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Editorial on the Research Topic

Molecular biomarkers and imaging markers in the prediction, diagnosis,

and prognosis of bladder cancer

Bladder cancer (BLCA) is a commonmalignant tumor in the urinary system. BLCA is

divided into muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder

cancer (NMIBC) (Sanli et al., 2017). Approximately 70% of BLCA patients are initially

diagnosed with NMIBC, but 50%–70% of patients relapse after treatment, and 10%–20%

of patients progress to MIBC. The 5-year survival rate for patients with MIBC is about

50% (Lenis et al., 2020; Wilson et al., 2022). Nowadays there is still a lack of public

recognized, universally applicable diagnosis and prognostic markers for BLCA.

In this Research Topic, we compiled seventeen research articles and one review that

summarized new advances about molecular biomarkers and imaging markers in the

prediction, diagnosis, and prognosis of BLCA.

For the diagnosis of BLCA, Jeong and Ku systematically reviewed research progress of

non-invasive diagnosis of BLCA. Urine cytology shows high sensitivity and specificity in

high-grade urothelial cancer diagnosis. Moreover, nuclear matrix protein-22 (NMP-22),

bladder tumor antigen (BTA), BTAstat and BTA-TRAK, UroVysion in Fluorescence in

situ Hybridization, urine miRNA and urine cell-free DNA show high clinical application

value for the diagnosis of BLCA. Xu et al. developed a novel urine cytology test (UCT) by

mixing urine with mNPs (Nano-cytology) to harvest more tumor cells during UCT

procedures. The Nano-cytology assay had a significantly improved sensitivity compared

with UCT for detecting BLCA patients. It represents a promising tool for diagnosis of

BLCA in clinical practice. Ye et al. utilized non-negative matrix factorization (NMF)
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algorithm to construct a radiomics signature based on CT

images, and the radiomics signature is a potential biomarker

to predict BCG response and relapse free survival (RFS) after

BCG treatment in patients with high-risk NMIBC.

Increasing evidence have demonstrated that tumor

microenvironment (TME), such as immune cells and cancer-

associated fibroblasts (CAFs) affect tumor progression, prognosis

and chemotherapy resistance (Biffi and Tuveson, 2019; Huang

et al., 2022). Huang et al. identified three distinct immune cell

infiltration (ICI) subtypes based on the TME immune infiltration

pattern of 584 BLCA patients. The ICI score represented an

effective prognostic predictor for evaluating the response to

immunotherapy. Yang et al. identified four subtypes of BLCA

based on immune profiling including immune ignorant, cold

tumor, immune inactive, and hot tumor. CCL4 may be the key

molecule functioning in immune cell infiltration in the hot tumor

subtype. Moreover, neutrophils may function as an important

suppressor in the TME of the immune ignorant and immune

inactive subtypes. Chu et al. identified three types of TME

patterns (stromal-activation subtype, immune-enriched

subtype and immune-suppressive subtype). Then the tumor

microenvironment signature (TMSig) was constructed by

modified Lasso penalized regression. Patients in low-TMSig

score groups had a better prognosis, higher M1 macrophage

infiltration, better response to immunotherapy, and more similar

molecular characteristics to the luminal (differentiated) subtype.

Zheng et al. found that CD3E and LCK were potential

biomarkers for MIBC. High-LCK and high-CD3E expression

patients had a higher percentage of responders than the low-

expression groups for immunotherapy. Tumor necrosis factor

(TNF) family members play vital roles in cancer development

and antitumor immune responses (Freeman et al., 2021). Li et al.

developed and validated a robust TNF-based risk score, which

could predict prognostic outcomes, TME, and molecular

subtypes of BLCA. Ye et al. systematically assessed the DNA

methylation modes in BLCA, and identified three DNA

methylation modes. These modes are related to diverse

clinical outcomes, immunophenotypes, aggressiveness, and

immune responses of BLCA. DMRscore could serve as a

signature to predict prognosis outcomes and immune

responses. Taken together, these studies provided novel

immunotherapy biomarkers and therapeutic targets for BLCA.

Additionally, amounting evidence indicates that ferroptosis

may serve as a new target for BLCA (Kong et al., 2021; Lei et al.,

2022). Xia et al. comprehensively evaluated the ferroptosis

patterns of BLCA. They identified four distinct ferroptosis

patterns, and verified ferroptosis is associated with TMB,

TME immune cell infiltration, chemotherapy, and

immunotherapy in BLCA. Wang et al. identified a prediction

model containing five ferroptosis-related lncRNAs through

integrated bioinformatics. This prediction model performed a

good predictive ability, and can be used as an independent

prognostic indicator.

Metabolic reprogramming is a unique hallmark of tumor

cells. Accumulating evidence suggests that tumor metabolism

plays a critical role in maintaining tumorigenesis and

progression (Martínez-Reyes and Chandel, 2021; Raggi

et al., 2022). Zhang et al. evaluated correlation between the

metabolic status and the outcome of patients with BLCA using

data from TCGA and GEO databases. Two clusters were

identified using a consensus clustering algorithm based on

an energy metabolism-related signature. The established

energy metabolism-related gene signature was able to

predict survival in patients with BLCA. Song et al. found

iron metabolism is a pivot of tumor occurrence,

progression, and TME in BLCA. They clustered the TCGA-

BLCA cohort into four distinct iron metabolism patterns

based on 95 prognosis-related iron metabolism-related

genes (IMRGs), and then constructed the IMRG prognosis

signature (IMRGscore), which could be utilized as an

independent prognostic indicator.

Moreover, some authors have explored and studied

biomarkers about progression, prognosis and treatment of

BLCA. Tao et al. found that BRCC3 is upregulated in BLCA

and indicates a negative survival prognosis. In BLCA cells,

BRCC3 depletion dramatically attenuated cell proliferation,

viability and migration. Mechanistically, BRCC3 binds with

TRAF2 to activate NF-κB pathway. This finding points to

BRCC3 as a potential target in BLCA patients. Mao et al.

found ID2 expression was significantly downregulated in

TCGA database and clinical samples, and high ID2 expression

was associated with low-grade tumor staging and correlated with

better overall survival, disease specific survival (DSS) and

progress free interval (PFI). Mechanistically, ID2 acts as a

tumor suppressor through PI3K/AKT signaling pathway to

inhibit the progression and metastasis of BLCA. Du et al.

found cancer-associated myofibroblasts (myCAFs) participate

in extracellular matrix remodeling, tumor metabolism, cancer

stemness, and oncological mutations. myCAFs have potential as

potential diagnostic biomarkers and therapeutic targets for

BLCA. Gu and Liang constructed a 15-top-prognostic gene-

based signature based on TCGA-BLCA and

GSE13507 cohorts, and this gene signature indicated a highly

prognostic efficacy for BLCA.Moreover, the prognostic signature

has a favorable predictive value for treatment with gemcitabine,

doxorubicin, cisplatin, paclitaxel, and vinblastine. Song et al.

identified key biomarkers in gemcitabine (GEM)-resistant BLCA

and investigate their associations with tumor-infiltrating

immune cells in a tumor immune microenvironment through

integrative bioinformatics analysis. They reported that CAV1,

COL6A2, FABP4, FBLN1, PCOLCE, and CSPG4 were critical

biomarkers through regulating the immune cell infiltration in an

immune microenvironment of GEM-resistance and could act as

promising treatment targets for GEM-resistant MIBC.

In conclusion, the collections of research articles and reviews

under this Research Topic present novel insights on the
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prediction, diagnosis, and prognosis of bladder cancer. It will

hopefully encourage us to explore molecular targets from various

perspectives and ultimately promote the diagnosis and treatment

of BLCA.
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Urothelial bladder cancer (UBC) is the most common malignant tumor of the urinary
system. Most patients do not benefit from treatment with immune checkpoint inhibitors,
which are closely associated with immune profiling in the context of UBC. Therefore, we
aimed to characterize the immune profile of UBC to identify different immune subtypes
that may influence therapy choice. We identified four subtypes of UBC based on immune
profiling including immune ignorant, cold tumor, immune inactive, and hot tumor. After
excluding the cold tumor subtype because of its unique pathology distinct from the
other types, a high correlation between patient survival and immune characteristics
was observed. Most immune cell types had highly infiltrated the hot tumor subtype
compared to other subtypes. Interestingly, although immune cells infiltrated the tumor
microenvironment, they exhibited an exhaustion phenotype. CCL4 may be the key
molecule functioning in immune cell infiltration in the hot tumor subtype. Moreover,
neutrophils may function as an important suppressor in the tumor microenvironment
of the immune ignorant and immune inactive subtypes. Furthermore, different tumor-
intrinsic signaling pathways were involved in immune cell infiltration and exclusion in
these four different subtypes. Immune profiling could serve as a prognostic biomarker
for UBC, and has potential to guide treatment decisions in UBC. Targeting tumor-intrinsic
signaling pathways may be a promising strategy to treat UBC.

Keywords: urothelial bladder cancer, immune profiling, immune cell infiltration, tumor-intrinsic signaling
pathway, prognosis

INTRODUCTION

Urothelial bladder cancer (UBC) is the most common malignant tumor of the urinary system
and is one of the ten most common tumors (Ferlay et al., 2015), but the treatment of UBC has
seen little progress (von der Maase et al., 2005). However, some patients with advanced cancer
have shown durable remission, owing to the introduction of checkpoint inhibitors and other

Abbreviations: UBC, urothelial bladder cancer; ORR, objective response rate; IRGs, immune-related genes; TCGA, The
Cancer Genome Atlas; MSigDB, Molecular Signature Database; GSEA, Gene Set Enrichment Analysis; PPI, Protein protein
interaction; PCA, principal component analysis; UMAP, uniform manifold approximation and projection; GO, gene
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; OS, overall survival; Tcm, central memory T cells; Tem, effector
memory T cells; Tgd, gamma delta T; Th1, T helper 1; Th2, T helper 1; Tregs, regulatory T cells; pDC, plasmacytoid dendritic
cells; aDC, activated dendritic cells; cDC, conventional dendritic cells; iDC, immature dendritic cells; NKT, natural killer T
cell; TGF, transforming growth factor.
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immunotherapies (Bracarda et al., 2015; Carosella et al., 2015;
Kim et al., 2015). When treated with immune checkpoint
inhibitors, the objective response rate (ORR) in PD-L1+
bladder cancer patients was 52%, whereas the ORR in PD-
L1− patients with bladder cancer was only 11% (Powles et al.,
2014). Therefore, most patients with UBC do not benefit from
immune checkpoint inhibitors, and further study of the resistance
mechanisms is needed.

The antitumor T cell response is crucial for immunotherapy,
such as immune checkpoint inhibitors, to function (Harlin et al.,
2009; Ji et al., 2012; Liu, 2019). In UBC, increased T cell
infiltration has been found to be correlated with longer patient
survival (Sharma et al., 2007). Hot tumors filled with T cells and
other immune cells are often considered to be more sensitive
to immunotherapy compared to cold tumors with fewer T cells;
however, it is unclear why this may be the case. Variations in
immune profiles have been linked to the subtypes, prognosis, and
therapeutic responses of cancer (Iglesia et al., 2014; Gentles et al.,
2015; Li et al., 2016). Therefore, it is critical to understand the
immune profile of UBC.

Efforts have now been focused on understanding the
mechanisms driving T cell exclusion and immunosuppressive cell
infiltration. Immune aberrations have been shown to be closely
associated with inter-tumor heterogeneity (Verhaak et al., 2010;
Lehmann et al., 2011; Kim et al., 2019). Interestingly, activation
of the β-catenin signaling pathway can lead to a non-T cell-
inflamed phenotype in melanoma (Spranger et al., 2015). It is
not yet known if tumor-intrinsic features affect the immune
phenotype in UBC.

Therefore, the aim of this study was to further characterize the
immune profile of UBC to identify subtypes that may be relevant
for therapy choice.

PATIENTS AND METHODS

Clinical Samples and Data Collection
A total of 2,498 immune-related genes (IRGs) were obtained
from the ImmPort database1. RNA-seq data and clinical data
from 408 UBC patients were obtained from The Cancer Genome
Atlas (TCGA)2. All data were processed using software (version
3.6.0) or GSEA software (version 4.0.3). In addition, Molecular
Signature Database (MSigDB) gene sets were downloaded from
the Gene Set Enrichment Analysis (GSEA) browser3. Protein
protein interaction (PPI) network analysis was performed based
on the STRING database in http://string-db.org/cgi/input.pl.

Identification of Immune Subtypes
Sample clustering and comparisons were performed with the
R package Seurat. Transcripts per kilobase million values of
UBC patients were first log-transformed and normalized, then
gene expression data were analyzed by principal component
analysis (PCA). The Seurat JackStrawPlot function was used

1https://www.immport.org/home
2https://portal.gdc.cancer.gov/
3https://www.gsea-msigdb.org/gsea/index.jsp

to identify the number of significant principal components for
each cluster. Seurat’s FindClusters function was used to generate
clusters from the data, with a resolution of 0.5. We performed
uniform manifold approximation and projection (UMAP) for
data visualization in Seurat. Each sample yielded four clusters.
The FindAllMarkers function was used to identify differentially
expressed genes between the four clusters based on the following
cut-off values: adjusted P < 0.05 and |log2 FC| > 0.5.

Cell Infiltration and Differentially
Expressed Gene Analysis
Gene expression data were used to estimate cell infiltration levels
for 34 types of immune cells by R package xCell. Differentially
expressed genes among subtypes were determined and estimated
using the R package limma with significance criteria of adjusted
P-value < 0.05.

Signaling Pathway Analysis
Gene set enrichment analysis software was used to estimated
significant gene ontology (GO) functions and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
enriched in each immune subtype with the significance criteria
(|NES| > 1, NOM p-val < 0.05, FDR q-val < 0.25). The
enrichment levels of GO functions or KEGG pathways were
quantified by single-sample GSEA in the R package gsva, based
on transcripts per kilobase million values of the TCGA samples.
The single-sample GSEA in our study was performed with the C2
and C5 gene sets that are involved in KEGG pathways and GO
functions, respectively. The C2 and C5 gene sets were retrieved
from MSigDB (see text footnote 3).

Immunohistochemistry and
Immunofluorescence Staining
Human UBC tissues were obtained from The First Affiliated
Hospital of Zhengzhou University in 2019, all tissues were fixed,
embedded in paraffin and serially sliced. Paraffin-embedded
tissue slides were dewaxed in 65◦C for 1 h, hydrated in alcohol
with different concentrations, heated in citrate buffer for antigen
retrieval, and incubated with hydrogen peroxide for 10 min
to inactivate endogenous peroxidases. Anti-human CD8 (1:200,
abcam, ab199016), DSG2 (1:300, abcam, ab150372), CACNB2
antibody (1:200, abcam, ab93606) were added on slides and
incubated at 4◦C overnight. On the next day, slides were stained
with HRP-conjunct anti-rabbit/mouse antibody (ZSGB-BIO, SP-
9000). These protein expressions were visualized by DAB staining
(ZSGB-BIO, ZLI-9018) following slides being counterstained
with hematoxylin. The photos were recorded by microscope
(PerkinElmer, Vectra).

For immunofluorescence, the sections were treated with 1%
Triton X100 in 0.01 M PBS. Anti-human CD8 (1:200, abcam,
ab199016), CCL4 antibody (1:100, abcam, ab45690) were added
on slides and incubated at 4◦C overnight. On the next day, Alexa
Fluor 488-AffiniPure Donkey Anti-Mouse IgG (1:1000, Jackson,
715-545-150) and Alexa Fluor 594-AffiniPure Donkey Anti-
Rabbit IgG (1:1000, Jackson, 711-585-152) were used to detect
the primary antibodies. Nuclear staining was performed with
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DAPI (C0060, Solarbio). The stained cells were observed under
microscope (PerkinElmer, Vectra), and photos were recorded.

Statistical Analysis
The prognostic values of the four clusters, IRGs, and immune
cell infiltration were estimated using the Kaplan-Meier curve
and log-rank test with the R packages survival4 and survminer5.
UBC samples were classified into high and low groups for IRG
expression and immune cell infiltration based on the optimal
cutoff value. Correlation coefficients (r) were calculated by
Spearman’s correlation analysis. For comparisons of more than
two groups, Kruskal–Wallis tests were used to estimate the
differences. For all statistical methods, P < 0.05 was considered
to be significantly different.

RESULTS

Classifying Subtypes of UBC by Immune
Profiling
First, we determined whether T cell-inflamed and non-T cell-
inflamed UBCs could be identified using the IRG expression
signature from the Immport website (1187 genes). Next, these
genes were screened by survival analysis, which revealed 752
IRGs to be significantly differentially expressed with P < 0.05.
Furthermore, these 752 genes were analyzed using PCA
(Figure 1A). In total, ten principal components were identified,
and, among them, six principal components had significant
differences with P < 0.05 (Figure 1B). These six principal
components were then analyzed using UMAP (Figure 1C). The
results identified four subtypes: immune ignorant, cold tumor,
immune inactive, and hot tumor (subtype 1–4, Figure 1D).
Among these subtypes, tumors with an immunosuppressive
phenotype were defined as immune ignorant (subtype 1, n = 117),
tumors that were completely devoid of immune infiltration were
defined as a so-called cold tumor (subtype 2, n = 110), tumors
that lack activation of the interferon signaling pathway and have
no response to immunotherapy were categorized as immune
inactive (subtype 3, n = 107), and tumors infiltrated by T cells and
other immune cells were referred to as a hot tumor (subtype 4,
n = 57). Overall survival (OS) analysis revealed that UBC patients
with tumors belonging to different subtypes exhibited differential
survival (Figure 1E). Patient survival in subtypes 2 and 4 was
better than that of subtypes 1 and 3 (Figure 1E). Therefore, UBCs
could be grouped based on their expression of genes indicative of
an immune cell-inflamed tumor microenvironment.

We further evaluated the relationship between populations
of the four subtypes and clinical pathological parameters.
The results indicated that the pathology of most patients in
the cold tumor subtype (subtype 2) were papillary, whereas
other subtypes were primarily non-papillary (Supplementary
Figure 1A). Moreover, other clinical parameters, including
grade, clinical stage, tumor (T) status, and lymph node (N)
status, of patients in the cold tumor subtype were significantly

4https://cran.r-project.org/package=survival
5https://cran.r-project.org/package=survminer

different compared to patients in other subtypes (Supplementary
Figures 1B–E), indicating that patients in the cold tumor subtype
were in the early stage of the tumor. This explains why patients in
the cold tumor subtype exhibited good survival.

Next, we analyzed the correlation between the expression of
T cell signature genes (CCL4, CCL5, CCL8, CCL13, CCL18,
CCR5, CD3D, CD3E, CD4, and CD8A) and patient survival. For
this analysis, patients in the cold tumor subtype were excluded
due to their unique pathological type and early clinical stage.
The results revealed that low expression levels of these genes
were associated with poor OS (Supplementary Figure 2). These
data demonstrate that the T cell signature genes could serve as
potential prognostic biomarkers.

Characteristics of Immune Cell
Infiltration in UBC
To further investigate and confirm the immune cell infiltration
in different subtypes of UBC, we analyzed and estimated the
following 34 subpopulations of immune cells: activated T cells,
including CD4+ and CD8+ naïve T cells, central memory T cells
(Tcm) and effector memory T cells (Tem), gamma delta T (Tgd)
cells, T helper 1 (Th1) cells, Th2 cells, regulatory T cells (Tregs);
naïve, class-switched memory, memory, and pro-B cells; along
with cell subtypes related to innate immunity, such as monocytes,
M1/M2-like macrophages, mast cells, eosinophils, neutrophils,
plasmacytoid, activated, and conventional, immature dendritic
cells (pDC, aDC, cDC, and iDC), NK cells, and natural
killer T (NKT) cells.

We observed heterogeneity across these four subtypes of
UBC. The hot tumor subtype (subtype 4) was enriched for
immune cell infiltration; however, the other three subtypes were
lacking immune cell infiltration (Figure 2A). Excluding the cold
tumor subtype, we further compared the degree of immune cell
infiltration between the other three subtypes. The results revealed
that most immune cells had highly infiltrated the hot tumor
subtype compared with the other subtypes (Figure 2B). These
findings suggest that patients in the hot tumor subtype have a
high degree of immune cell infiltration and have good antitumor
immunity, which may explain why patients in the hot tumor
subtype exhibited good survival.

Additionally, the correlation between immune cells and
patient survival was further analyzed. We found that immune
cell profiling was positively associated with survival, high levels
of immune cell infiltration, and specifically related to adaptive
immunity, including CD4 + T cells, Tcm and Tem CD4 + and
CD8 + T cells, naïve CD8 + T cells, cDC, DC, and class switched
memory B cells, resulting in a good prognosis (Supplementary
Figure 3). In summary, immune cell profiling could function as a
prognostic biomarker for UBC.

Activated Immune Cells Exhibit an
Immunosuppressive Phenotype
Based on the above results, we identified the hot tumor
subtype as an immune cell-inflamed tumor, particularly a T cell-
inflamed tumor. Moreover, the expression of IRGs, including
CD8A, CXCL9, CXCL10, CXCL11, CCL4, CCL5, CCL13, CCL18,
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FIGURE 1 | Subtypes of UBC classified by immune profiling. (A) IRGs (752 genes) were analyzed by PCA. (B) The Seurat JackStrawPlot function was used to
identify the number of significant principal components for clustering. (C) UMAP was performed for data visualization using Seurat. (D) Sample clustering and
comparisons were performed using the R Package Seurat. (E) Subtype survival was estimated by Kaplan-Meier analysis.

IL2RG, etc., were markedly higher in the hot tumor subtype
compared to the other subtypes (Supplementary Figure 4).
Next, we investigated the correlation between the immune-
related molecules highly expressed in the hot tumor subtype and
immune cell infiltration in the tumor microenvironment. The
results showed that the expression of IRGs was closely correlated
with immune cell infiltration (Figure 3A), revealing that high
expression of IRGs, especially of chemokines that recruit T
cells, such as CXCL9, CXCL10, CXCL11, etc., could induce an
increase in immune cell infiltration in bladder cancers of the
hot tumor subtype.

It has been shown that increased levels of immune inhibitory
molecules are associated with a T cell-inflamed phenotype
(Spranger et al., 2013). Therefore, we evaluated the relationship
between the expression of immune inhibitory molecules (TIGIT,
PDCD1LG2, PDCD1, LAG3, HAVCR2, CTLA4, and CD274) in
the immune ignorant, immune inactive, and hot tumor subtypes.
This revealed that inhibitory molecules were significantly
more highly expressed in immune cells (Figures 3B–D).
Furthermore, the expression of these inhibitory molecules was

positively correlated with the T cell signature gene CD8A
(Supplementary Figure 5). Interestingly, although immune cells
had infiltrated the tumor microenvironment, they exhibited an
exhaustion phenotype.

Enriched Signaling Pathways Involved in
T Cell Infiltration in the Hot Tumor
Subtype
To validate which signaling pathways were involved in immune
cell infiltration, especially in the T cell-inflamed tumor
microenvironment, we further categorized two different gene
populations with high and low expression in the hot tumor
subtype (Figure 4A). Then, we assessed signaling pathway
enrichment by comparing the immune ignorant versus hot tumor
subtype (1 vs. 4) and the immune inactive versus hot tumor
subtype (3 vs. 4). GO enrichment results revealed that 1,089
signaling pathways were screened, and 46 KEGG pathways were
found to be enriched (Figure 4B). Based on these enriched
signaling pathways, ten signaling pathways with significant
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FIGURE 2 | Characteristics of immune cell infiltration in UBC. (A) Immune cell infiltration in the four subtypes is presented as a heatmap. (B) Comparison of immune
cell infiltration in different subtypes. Data are shown as boxplots. *P < 0.05, **P < 0.01, ****P < 0.0001, ns, non-significant.

standard that survival analyses were selected and included CD4
positive alpha beta T cell activation, interferon gamma mediated
signaling pathway, positive regulation of alpha beta T cell
proliferation, positive regulation of T cell cytokine production,
regulation of T cell differentiation, regulation of T cell receptor
signaling pathway, T cell differentiation involved in immune
response, antigen processing and presentation, natural killer cell
mediated cytotoxicity, and T cell receptor signaling pathway
(Figure 4C). To evaluate whether the high level of immune cell
infiltration was mediated by these enriched signaling pathways,
their correlation was analyzed. The results indicated that these
enriched signaling pathways were positively correlated with
increased infiltration of most immune cell types (Figure 4D),
and with high expression of IRGs in the hot tumor subtype
(Figure 4E). The above data has revealed that the regulation of
the T cell differentiation and activation signaling pathways are
involved in immune cell infiltration in the hot tumor subtype.

Next, we investigated the interaction of these high level
immune-related molecules in the hot tumor subtype and found

a strong interaction between these molecules (Figure 4F).
Additionally, CCL4 was the most connected with other molecules
(Figure 4G), suggesting that CCL4 could be the key molecule
functioning in the immune cell infiltration of the hot tumor
subtype. Moreover, immunofluorescence results showed that
CCL4 level was positively correlated with CD8 level in human
UBC tissues (Figure 4H), indicating that CD8+ T cell infiltration
is closely associated with CCL4 in the hot tumor subtype.

Enriched Signaling Pathways Involved in
the Lack of Immune Cell Infiltration in
the Immune Ignorant and Immune
Inactive Subtypes
Tumor-intrinsic signaling pathway has been reported to mediate
the immune phenotype of the tumor microenvironment. To
develop new therapeutic strategies that improve the response
to immunotherapies, it has been a priority to identify the
molecular signaling pathways that function in tumor cells
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FIGURE 3 | Correlation between immune cell infiltration and IRG expression in different subtypes. (A) The relationship between immune cell infiltration and IRG
expression in the hot tumor subtype. (B) The relationship between immune cell infiltration and inhibitory molecules (TIGIT, PDCD1LG2, PDCD1, LAG3, HAVCR2,
CTLA4, and CD274) in the immune ignorant subtype. (C) The relationship between immune cell infiltration and inhibitory molecules in the immune inactive subtype.
(D) The relationship between immune cell infiltration and inhibitory molecules in the hot tumor subtype. *P < 0.05, **P < 0.01.

and may capable of inducing the exclusion of immune cells,
especially T cells, from the tumor microenvironment. Therefore,
we hypothesized that some tumor-intrinsic signaling pathways
may be involved in the exclusion of immune cells in the
immune ignorant and immune inactive subtypes. First, two
different gene populations were grouped based on high and
low expression in the immune ignorant subtype (Figure 5A).
Additionally, five signaling pathways that were highly expressed
and had significant survival analyses were identified and included
including cardiac ventricle morphogenesis, cell-cell signaling
involved in cardiac conduction, cell communication involved
in cardiac conduction, nephron development, regulation of
cardiac muscle cell membrane repolarization, and response
to BMP signaling pathway (Figure 5B). Correlation analysis
revealed that these signaling pathways were negatively associated
with decreased immune cell infiltration, particularly T cell
exclusion (Figure 5C), and positively associated with the
expression level of IRGs, which were highly expressed in the
immune ignorant subtype (Figure 5D). Finally, the related
genes (CXADR, KCNQ1, SCN4B, and CACNB2) of the cell-cell
signaling involved in cardiac conduction signaling pathway, the
most enriched pathway in the immune ignorant subtype, were
negatively associated with CD8+ T cell infiltration (Figure 5E).
Furthermore, we analyzed the correlation between CD8 and
CACNB2 by immunohistochemistry, showing that CACNB2
level was negatively correlated with CD8 level in human UBC
tissues (Figure 5F). Therefore, the lack of T cells in the tumor

microenvironment could be mediated by cell-cell signaling
involved in cardiac conduction signaling pathway in the immune
ignorant subtype.

Additionally, the mechanism underlying T cell exclusion from
the tumor microenvironment in the immune inactive subtype
was identified and analyzed. The significantly different genes
were divided into two groups (Figure 6A). Three main signaling
pathways were enriched in the immune inactive subtype,
including desmosome, keratinocyte proliferation, and regulation
of keratinocyte proliferation signaling pathway (Figure 6B), and
these three pathways also had a strong survival significance.
Correlation analysis revealed that these three signaling pathways
were negatively correlated with the lack of immune cell
infiltration, especially T cell exclusion (Figure 6C), and were
also positively correlated with the levels of IRGs, which were
highly expressed in the immune inactive subtype (Figure 6D).
The related genes (PPL, DSG2, PERP, and JUP, etc.) of the
desmosome signaling pathway, the most enriched pathway in the
immune inactive subtype, were negatively associated with CD8+
T cell infiltration (Figure 6E). And we also found that DSG2
level was negatively correlated with CD8 level in human UBC
tissues (Figure 6F). Taken together, these results indicate that
tumor-intrinsic signaling pathways are involved in the decrease
of immune cell infiltration in the non-T cell-inflamed phenotype.

Immune profiling in the immune inactive subtype was similar
to that of the immune ignorant subtype, demonstrating that
neutrophils were increased in the tumor microenvironment
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FIGURE 4 | Enriched signaling pathways involved in T cell infiltration in the hot tumor subtype. (A) Differentially expressed genes in the hot tumor subtype versus
other subtypes (4 vs. 1 and 3). (B) Signaling pathway enrichment in different subtypes (1 vs. 4, and 3 vs. 4) was analyzed using GO and KEGG analysis. (C) Enriched
signaling pathways in the hot tumor subtype were analyzed and are presented. (D) Correlation between enriched signaling pathways and immune cell infiltration in
the hot tumor subtype. (E) Correlation of enriched signaling pathways and IRGs in the hot tumor subtype. (F) Network of the high level immune-related molecules in
the hot tumor subtype. (G) The number of molecules linked with one another in the hot tumor subtype was analyzed. (H) CCL4 and CD8 expression in human UBC
tissues was analyzed by immunofluorescence. Data are presented as a bar chart. *P < 0.05, **P < 0.01.

via the crucial signaling pathways found in both the immune
ignorant and immune inactive subtypes. Neutrophils were
found to function as an important suppressor, in opposition
of antitumor immunity, in the tumor microenvironment of the
immune ignorant and immune inactive subtypes.

DISCUSSION

The classification of bladder cancer is dependent on various
types of profiling. Muscle-invasive bladder cancer patients treated
with bladder-sparing trimodality therapy have been classified
into luminal, luminal-infiltrated, basal, and claudin-low subtypes

based on whole transcriptome expression profiling (Efstathiou
et al., 2019). Sweis et al. (2016) analyzed 267 samples of
UBC from a TCGA dataset and divided into the samples
into T cell-inflamed and non-T cell-inflamed subtypes based
on immune gene profiling. A cluster of 725 genes containing
12 T cell signature genes was used to perform consensus
clustering of tumor samples. In the current study, we used 752
IRGs to classify subtypes of UBC. The results identified the
following four subtypes: immune ignorant, cold tumor, immune
inactive, and hot tumor. Among these subtypes, subtype 1 is
defined as immune ignorant and presents an immunosuppressive
phenotype and decreased immune cell infiltration; subtype 2 is
defined as cold tumor due to the complete lack of immune cell
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FIGURE 5 | Enriched signaling pathways involved in the lack of immune cell infiltration in the immune ignorant subtype. (A) Differentially expressed genes in the
immune ignorant subtype with respect to other subtypes. (B) Enriched signaling pathways in the immune ignorant subtype were analyzed and are presented.
(C) Correlation between enriched signaling pathways and immune cell infiltration in the immune ignorant subtype. (D) Correlation between enriched signaling
pathways and IRGs in the immune ignorant subtype. (E) Correlation between cell signaling involved in cardiac conduction signaling pathway-related molecules and
CD8+ T cell infiltration in the immune ignorant subtype. (F) CACNB2 and CD8 expression in human UBC tissues was analyzed by immunohistochemistry. *P < 0.05,
**P < 0.01.

infiltration; subtype 3 is referred to as immune inactive due to
the lack of active interferon signaling and failure to respond
to immunotherapy; subtype 4 is defined as hot tumor due to
the enrichment of T cells and other immune cells in the tumor
microenvironment.

Among these four subtypes, the cold tumor subtype is
unique (Fang et al., 2018). The results indicated that the clinical
pathology of patients in the cold tumor subtype was primarily
papillary, whereas other subtypes were primarily non-papillary.
Moreover, other clinical parameters, including grade and clinical
stage, T and N statuses indicated that patients in the cold tumor
subtype were in the early stage of UBC. This explains why patients
in the cold tumor subtype exhibited good survival given the
unique clinical pathology compared to other subtypes.

A variety of papers have demonstrated a close
relationship between immunity and patient survival. DC-
SIGN + macrophages were correlated with poor prognosis
and inferior therapeutic response to fluorouracil-based
adjuvant chemotherapy, and may serve as an independent

prognostic factor for gastric cancer (Liu et al., 2020). In addition,
intratumoral CD8 status had an obvious effect on prognosis. In
patients with high levels of intratumoral CD8, PD-L1 expression
revealed no significant prognostic impact; however, in patients
with low levels of intratumoral CD8, the presence of PD-L1
was associated with a significantly worse prognosis compared
to the control (Handa et al., 2020). Moreover, Sun et al. (2018)
developed a radiomic signature for CD8 cells, and a high baseline
radiomic score was correlated with improved OS. In our study,
we also used IRGs as prognostic biomarkers in UBC. High levels
of T cell signature genes (CCL4, CCL5, CCL8, CCL13, CCL18,
CCR5, CD3D, CD3E, CD4, and CD8A) were associated with
a good OS. Furthermore, we found that a high level antitumor
immune cell infiltration was positively associated with survival,
and provided a good prognosis, suggesting that immune cell
profiling could serve as a prognostic biomarker for UBC.

In the current study, we also found that cancer patients within
the four subtypes exhibited different survivals. Excluding the cold
tumor subtype (the unique subtype with an early clinical stage),
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FIGURE 6 | Enriched signaling pathways involved in the lack of immune cell infiltration in the immune inactive subtype. (A) Differentially expressed genes in the
immune inactive subtype with respect to other subtypes. (B) Enriched signaling pathways in the immune inactive subtype were analyzed and are presented.
(C) Correlation between enriched signaling pathways and immune cell infiltration in the immune inactive subtype. (D) Correlation between enriched signaling
pathways and IRGs in the immune inactive subtype. (E) Correlation between desmosome signaling pathway-related molecules and CD8+ T cell infiltration in the
immune inactive subtype. (F) DSG2 and CD8 expression in human UBC tissues was analyzed by immunohistochemistry. *P < 0.05, **P < 0.01.

patients in the hot tumor subtype with high immune infiltration
exhibited good antitumor immunity, which may explain why
patients in the hot tumor subtype demonstrated better survival.
In other published papers, the immune active subtype has
been associated with improved survival and shared similar
genomic characteristics with those who responded to anti-PD-1
therapy (Zhou et al., 2020). In addition, the immunosuppressive
subtype was found to feature high immune infiltration, stromal
enrichment, and activation of the transforming growth factor
(TGF)-β signaling pathway was correlated with the non-
responsive signature of immune checkpoint inhibitor therapy,
which may be required for the combination therapy of anti-PD-
L1 and anti-TGF-β (Zhou et al., 2020).

T cell exhaustion is a hallmark of cancers and is characterized
by the increase of several immune checkpoints that lead to
the failure of immune checkpoint inhibitors. Woroniecka et al.
(2018) observed the poor function of infiltrated T cells in the
tumor microenvironment of glioblastoma. In localized clear cell
renal cell carcinoma, the intratumoral infiltration of exhausted

CD8+ T cells with high levels of PD-1, Tim-3, and Lag-3
was investigated (Giraldo et al., 2017). The current study also
found that although immune cells had infiltrated the tumor
microenvironment of UBC, immune cells, especially T cells,
exhibited an exhaustion phenotype.

In our previous study, the activation of specific tumor-
intrinsic signaling pathways could be explained the phenomenon
of immune exclusion in a subset of cancers (Yang et al., 2019).
Increasing evidence has indicated that tumor-intrinsic signaling
plays an important role in regulating tumor immune escape.
Activation of the β-catenin signaling pathway within melanoma
tumor cells excludes immune cell activation and leads to a
non-T cell-inflamed tumor microenvironment (Spranger et al.,
2015). Constitutively active STAT3 signaling in tumor cells has
been shown to downregulate chemokine expression, including
CCL5 and CXCL10, which are functionally responsible for T cell
recruitment (Wang et al., 2004; Burdelya et al., 2005). Profiling
the expression of IRGs identified three molecular pathways
linked with the non-T cell-inflamed subtype (Fang et al., 2018).
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In this study, the tumor-intrinsic signaling pathways, such as
cardiac ventricle morphogenesis, cell communication involved
in cardiac conduction, nephron development, regulation of
cardiac muscle cell membrane repolarization, and response
to BMP signaling pathway, may be involved in the non-T
inflamed tumor microenvironment of the immune ignorant
subtype. Moreover, desmosome, keratinocyte proliferation, and
regulation of keratinocyte proliferation signaling pathway may be
responsible for T cell exclusion in the immune inactive subtype.

In our study, we observed a relatively increase of neutrophils
in the immune inactive subtype and immune ignorant subtype,
which were found to function in opposition of antitumor
immunity. Mandelli et al. (2020) reported that basal type
of bladder cancer contained a significantly higher density of
CD66b+ tumor-associated neutrophils (TANs) compared to the
luminal type, and a high density of TANs and T cells was
significantly associated with a better outcome. However, Liu
et al. (2018) found that elevated CD66b+ TAN was correlated
with an advanced T-stage, a high grade, a worse recurrence-free
survival within non-muscle invasive bladder cancer subgroup
and a worse overall survival within all urothelial bladder cancer
cases. Therefore, Neutrophils might show different phenotypes
and roles in different histological types of bladder cancers.

CONCLUSION

Urothelial bladder cancer can be classified into four subtypes
by immune profiling. The hot tumor subtype has a high level
of immune cell infiltration and is closely associated with good
patient survival. IRGs and infiltrated immune cells can serve
as potential biomarkers for prognosis. Tumor-intrinsic signaling
pathways may play a key role in intratumoral T cell exclusion
and poor prognosis in the immune ignorant and immune
inactive subtypes. Therefore, targeting these signaling pathways
represents a promising strategy for the treatment of UBC.
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Tumors are closely related to the tumor microenvironment (TME). The complex
interaction between tumor cells and the TME plays an indisputable role in tumor
development. Tumor cells can affect the TME, promote tumor angiogenesis and induce
immune tolerance by releasing cell signaling molecules. Immune cell infiltration (ICI) in the
TME can affect the prognosis of patients with bladder cancer. However, the pattern of
ICI of the TME in bladder cancer has not yet been elucidated. Herein, we identified three
distinct ICI subtypes based on the TME immune infiltration pattern of 584 bladder cancer
patients using the ESTIMATE and CIBERSORT algorithms. Then, we identified three
gene clusters based on the differentially expressed genes (DEGs) between the three
ICI subtypes. In addition, the ICI score was determined using single sample gene set
enrichment analysis (ssGSEA). The results suggested that patients in the high ICI score
subgroup had a favorable prognosis and higher expression of checkpoint-related and
immune activity-related genes. The high ICI score subgroup was also linked to increased
tumor mutation burden (TMB) and neoantigen burden. A cohort treated with anti-PD-
L1 immunotherapy confirmed the therapeutic advantage and clinical benefit of patients
with higher ICI scores. In the end, our study also shows that the ICI score represents
an effective prognostic predictor for evaluating the response to immunotherapy. In
conclusion, our study deepened the understanding of the TME, and it provides new
ideas for improving patients’ response to immunotherapy and promoting individualized
tumor immunotherapy in the future.

Keywords: ICI, immune subtype, tumor microenvironment, bladder cancer, immunotherapy

INTRODUCTION

Bladder cancer is the most common malignant tumor of the urinary system. It accounts for the
highest incidence of genitourinary tumors in China and is the second most common genitourinary
malignancy in the United States (Kaufman et al., 2009). Bladder cancer can occur at any age, even
in children, and its incidence increases with age and in those aged 50–70 years old. The incidence
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of bladder cancer in males is three to four times higher than
that in females (Kaufman et al., 2009; Sanli et al., 2017).
According to the histological classification of urinary tract
tumors in the 2004 WHO “Pathology and Genetics of Tumors
in the Urological System and Male Reproduction Organ,” the
pathological types of bladder cancer include bladder urothelial
carcinoma, bladder squamous cell carcinoma and bladder
adenocarcinoma. Other rare disease subtypes include bladder
clear cell carcinoma, bladder small cell carcinoma and bladder
carcinoid. Among them, bladder urothelial carcinoma is the most
common, accounting for more than 90% of the total number
of bladder cancer patients. Urothelial carcinoma of the bladder
can be divided into non-muscle invasive urothelial carcinoma
(NMIBC) and muscle invasive urothelial carcinoma (MIBC),
and approximately 75% of newly diagnosed patients have non-
muscle invasive bladder cancer with 25% having muscle invasive
bladder cancer (Kaufman et al., 2009; Sanli et al., 2017). Most
patients with non-muscle invasive urothelial carcinoma receive
transurethral resection of bladder tumors and bladder perfusion
therapy to prevent recurrence postoperatively. Total cystectomy
is often used in patients with muscle invasive urothelial
carcinoma, squamous cell carcinoma and adenocarcinoma of
the bladder, and partial cystectomy may be used in some
patients. Neoadjuvant chemotherapy combined with surgery is
also recommended for patients with muscle invasive urothelial
carcinoma. Metastatic bladder cancer is primarily treated with
chemotherapy. Approximately 70% of patients relapse after
transurethral resection, and Bacillus Calmette-Guerin (BCG) or
chemotherapy can reduce the recurrence rate to 25–40%.

Immunotherapy is a treatment method that artificially
enhances or suppresses the immune function of the body to
treat diseases by harnessing the immune state of the body,
which is low or hyperactive. Tumor immunotherapy aims
to activate the human immune system, kill tumor cells and
tissues through autoimmune function, and restore the normal
antitumor immune response of the body by restarting and
maintaining the tumor-immune cycle to control and eliminate
tumors. It includes monoclonal antibody immune checkpoint
inhibitors, therapeutic antibodies, cancer vaccines, cell therapy,
small molecule inhibitors and so on. Immunotherapy has evolved
in recent years and has been proven to treat a variety of cancers,
including melanoma, non-small cell lung cancer, kidney cancer
and prostate cancer (Del Paggio, 2018). For example, ipilimumab
improves survival in melanoma patients (Hodi et al., 2010;
Schadendorf et al., 2015). Immunotherapy strategies for bladder
cancer include intravesical administration of BCG (Alexandroff
et al., 1999) and immune checkpoint inhibitors. However, studies
have shown that immunotherapy is effective in only a small
number of patients (Julie and Scott, 2012; Christofi et al., 2019).
Therefore, new therapeutic markers are needed to identify the
subgroup of patients who are suitable for immunotherapy.

The TME has been recognized as an important component
of malignant tumor tissues and plays a mixed role in
tumor progression, metastasis, treatment resistance and disease
recurrence (Runa et al., 2017). The TME refers to the surrounding
microenvironment of tumor cells, including blood vessels,
immune cells, fibroblasts, bone marrow-derived inflammatory

cells, various signaling molecules and the extracellular matrix
(ECM). The complex interaction between tumor cells and
the TME plays an indisputable role in tumor development
(Pottier et al., 2015). Tumors are closely related to the
TME. Tumors can affect their microenvironment, promote
tumor angiogenesis and induce immune tolerance by releasing
cell signaling molecules (Kerkar and Restifo, 2012). Tumor
cells promote the growth and development of tumors by
changing and maintaining the conditions of their survival and
development through autocrine and paracrine mechanisms.
Immune cells in the microenvironment include adaptive
immunity, T lymphocytes, dendritic cells and accidental B cells,
innate immunity, macrophages, polymorphonuclear leukocytes,
and natural killer cells, which can influence tumor cell growth
and development (Whiteside, 2008). Therefore, it is possible
to identify different immune phenotypes by analyzing the
heterogeneity and complexity of the TME, improving the ability
to guide and predict responses to immunotherapy.

In this study, we identified three distinct immune ICI subtypes
based on the infiltration patterns of 22 immune cells obtained
using the CIBERSORT algorithm and the immune score and
stroma score computed by the ESTIMATE algorithm of 584
bladder cancer tumor samples. Samples were further divided into
three gene clusters based on DEGs identified based on three ICI
subtypes. In addition, we established an ICI score to characterize
the immune landscape of bladder cancer, which can accurately
predict patients’ outcomes and responses to immunotherapy.
Finally, the ICI score was validated in an independent cohort.
The results indicated that the ICI score can be used as an
effective prognostic predictor of immunotherapy. The evaluation
of ICI patterns in larger samples may provide new directions for
strategies of immunotherapy in bladder cancer.

MATERIALS AND METHODS

Study Cohort and Data Pre-processing
Bladder cancer data were obtained from five publicly available
datasets, TCGA-BLCA, GSE13507, GSE31684, E-MTAB-1803,
and a validation cohort (GSE93527). The RNA-Seq data
(fragments per kilobase million value) of the TCGA-BLCA
cohort were downloaded using the R package “TCGAbiolinks,”
and the FPKM values were transformed into TPM values.
Four hundred and fourteen samples of bladder cancer were
obtained by considering only the mRNA-encoding protein.
Clinical and survival information of TCGA-BLCA was extracted
from pan-cancer data, including age, sex, stage, etc. Only overall
survival (OS) was considered. Tumor samples lacking clinical
information were excluded, and samples with 0 OS were also
removed. Common samples of expression profile data and
survival information were extracted, and 406 bladder cancer
samples were obtained from the TCGA-BLCA cohort. The copy
number variation data were downloaded from Fire Browse1.
Mutation data were downloaded from cBioPortal2. The number

1http://firebrowse.org/
2https://www.cbioportal.org/
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of predicted neoantigens of TCGA-BLCA samples was obtained
from a published article (Rooney et al., 2015). The GSE13507
cohort and GSE93527 cohort were downloaded from the
Gene Expression Omnibus database3 on the Illumina platform.
The microarray datasets (GSE31684 and E-MTAB-1803) were
downloaded from the Array Express database4 on the Affymetrix
platform. Samples with non-muscle invasive bladder cancer
(NMIBC) samples were excluded, and only patients with muscle
invasive bladder cancer (MIBC) were retained. Similarly, tumor
samples lacking clinical information and samples with 0 OS
were removed. Four datasets were combined, and the “Combat”
algorithm was used to eliminate the batch effect (Supplementary
Figure 2). In the end, a total of 584 bladder cancer samples
were obtained for subsequent analysis. Detailed information
on 584 bladder cancer patients is shown in Supplementary
Table 1. The validation cohort, Imvigor210, was obtained from
the R package “Imvigor210coreBiologies,” including survival
outcomes, response results and expression profiles of patients
who received immunotherapy (Mariathasan et al., 2018).
The functional annotation gene set (h.all.v7.2.symbol) was
downloaded from the MSigDB database5. The data of cell lines
in bladder cancer were downloaded from DepMap6.

Unsupervised Clustering Analysis
The level of ICI in bladder cancer was quantified by the
CIBERSORT algorithm using the LM22 gene signature (Newman
et al., 2015). The immune score and stroma score of each sample
were calculated using the ESTIMATE algorithm (Yoshihara et al.,
2013). Unsupervised clustering was applied to classify patients
into distinct ICI subtypes according to the above 24 signatures.
Consensus clustering was used to determine the number of
clusters and stability using the R package “ConsensusClusterPlus”
(Wilkerson and Hayes, 2010). We repeated 1,000 times (each
using 90% of the samples) to guarantee the stability of clustering.
The optimal cluster number was determined by the clustering
score for the cumulative distribution function (CDF) curve and
the relative changes in the area under the CDF curve.

Identification of Differentially Expressed
Genes
To identify ICI pattern-related genes, patients with bladder
cancer were classified into three distinct ICI subtypes. The
R package “limma” was applied to determine DEGs between
different ICI subtypes (Ritchie et al., 2015). The significance
criteria for determining DEGs were set as adjusted p < 0.05 and
fold change cut-off of 1.65.

Generation of ICI Score
To quantify ICI patterns of individual tumors, the ICI score was
calculated. First, patients were classified into different groups
using an unsupervised clustering method based on overlapping
DEGs. We performed consensus clustering to determine the

3https://www.ncbi.nlm.nih.gov/geo/
4https://www.ebi.ac.uk/arrayexpress/
5http://www.gsea-msigdb.org/gsea/msigdb
6https://depmap.org/portal/

number of clusters that was repeated 500 times (each using 90% of
the samples) of Spearman distance measurement using the PAM
clustering method to enhance the stability of clustering. Second,
we performed Pearson correlation analysis between DEGs and
the cluster signature and obtained ICI gene signatures A and B,
which were positively and negatively correlated with the cluster
signature, respectively. Finally, we used the Boruta algorithm to
reduce the dimension of ICI gene signatures. And then we used
ssGSEA to calculate the signature scores (Barbie et al., 2009;
Kursa and Rudnicki, 2010). ssGSEA was performed using the R
package “GSVA.” We then defined the ICI score using a method
similar to the gene expression grade index (GGI) (Sotiriou et al.,
2006; Zeng et al., 2019):

ICI score =
∑

ScoreA −
∑

ScoreB

Somatic Mutation Analysis
The mutation data of TCGA-BLCA tumor samples were
downloaded from cBioPortal (see text footnote 2). Studies
have shown that higher TMB and somatic mutation rates are
correlated with stronger antitumor immunity (Rooney et al.,
2015). To determine the relationship between somatic mutation
and ICI score, we first classified patients into two subgroups, the
high and low ICI score subgroups, and then used the R package
“maftools” to identify driver genes in the high and low ICI score
subgroups (Mayakonda et al., 2018). The top 25 driver genes with
the highest mutation frequency were further analyzed.

Copy Number Variation Analysis
The copy number variation data of TCGA-BLCA tumor samples
were downloaded from Fire Browse (see text footnote 1).
The Genomic Identification of Significant Targets in Cancer
(GISTIC2.0) algorithm was utilized to classify the copy number
variant genes with remarkable gains and losses (Mermel et al.,
2011). The confidence level was set to 0.95, and other parameters
were left at default settings (Luo et al., 2020; Yang et al., 2020).

Collection of Genomic and Clinical
Information With Immunotherapy
To further validate the predictive value of prognosis of the
ICI score, we applied the ICI score to an independent anti-
PD-L1 immunotherapy cohort, IMvigor210. The expression
data and detailed clinical annotations of this cohort were
obtained using the R package “IMvigor210CoreBiologies”
that can be downloaded from http://research-pub.gene.com/
IMvigor210CoreBiologies (Mariathasan et al., 2018). For gene
expression data, the count value was also transformed into the
TPM value with log2(TPM+1) for further analysis.

Statistical Analysis
All statistical analyses were conducted using R version 4.0.2. The
Kruskal–Wallis test was used for statistical comparison among
more than two groups, and the Wilcoxon test was used for
two group comparisons (Hazra and Gogtay, 2016). Kaplan–
Meier curves were used to evaluate survival time in patients
with bladder cancer. The OS probability was evaluated. The
log-rank test was utilized to identify significant differences. The
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Wilcoxon test was used to analyze the correlation between the ICI
score subgroups and somatic mutation frequency, and Pearson
analysis was used to compute the correlation coefficient. All
statistical p-values were two-sided, with p < 0.05 indicating
statistical significance.

RESULTS

Identification of ICI Subtypes in Bladder
Cancer
The detailed workflow for ICI score construction is shown in
Supplementary Figure 1. The abundance of 22 immune cells
was estimated using the CIBERSORT algorithm, the enrichment
scores of stromal cells and immune cells were estimated using
the ESTIMATE algorithm, and 24 signatures were obtained for
clustering analysis (Supplementary Table 2; Yoshihara et al.,
2013; Newman et al., 2015). We identified three distinct ICI
subtypes based on the above 24 signatures in 584 patients with
bladder cancer, designated ICI clusters A–C (Figure 1A and
Supplementary Figure 3). The OS curve of the three ICI subtypes
was obtained using the Kaplan–Meier method (log-rank test,
p = 0.003; Figure 1B). To visualize immune cell interactions in
the TME, we also analyzed the correlations between 22 immune
cells (Figure 1C). Additionally, we compared the composition
of the TME of three distinct ICI subtypes to further elucidate
differences among ICI subtypes. The infiltration levels of CD8+
T cells, activated natural killer cells, activated memory CD4+
T cells, follicular helper T cells and M1 macrophages were
significantly higher in ICI cluster A. Patients in ICI cluster B were
characterized by a significantly higher infiltration level of naive
CD4+ T cells, gamma delta T cells and activated mast cells. ICI
cluster C was marked by increased monocytes, M2 macrophages,
resting memory CD4+ T cells and resting mast cells infiltration
and had the poorest prognosis (Figure 1D). Finally, we analyzed
and compared the expression levels of two important immune
checkpoints of the ICI subtypes, PD-L1 and PD1. The results
indicated that ICI cluster A exhibited the highest expression level
of the two immune checkpoints (Figures 1E,F).

Identification of Gene Subtypes Based
on DEGs
Subsequent analysis was only based on the TCGA-BLCA
cohort. To elucidate the difference in biological features in ICI
subtypes, we performed differential analysis using the R package
“limma” to determine transcriptome differences between ICI
subtypes (Ritchie et al., 2015). Finally, 857 DEGs were identified
(Supplementary Table 3). Then, 506 gene signatures A and
351 gene signatures B were identified by Pearson correlation
analysis (Supplementary Table 4). At the same time, we used the
Boruta algorithm to reduce the dimensions of gene signatures
A and B, and 97 gene signatures A and 112 gene signatures B
were finally obtained (Kursa and Rudnicki, 2010). Subsequently,
unsupervised clustering was applied to classify patients into three
subtypes based on 857 DEGs, gene clusters A–C (Figure 2A
and Supplementary Figure 4). Gene cluster A exhibited lower

expression of gene signatures A and gene signatures B. Gene
cluster B had a higher expression level of gene signatures A and
lower expression level of gene signatures B, and gene cluster
C was the opposite with higher expression of gene signatures
B and lower expression of gene signatures A (Figure 2A). The
OS curve of the three gene subtypes was obtained using the
Kaplan–Meier method (log-rank test, p < 0.001; Figure 2B). We
found that patients in gene cluster C had the poorest prognosis.
Gene ontology (GO) enrichment analysis was executed. The
significantly enriched biological processes of gene signatures
A and gene signatures B are summarized in Figures 2C,D,
respectively. Detailed information on the enrichment analysis
is shown in Supplementary Table 5. We also found that gene
cluster A exhibited increased activated dendritic cells, naive
CD4+ T cells, and gamma delta T cell infiltration. Gene cluster
B, with the highest immune score, exhibited higher infiltration of
M1 and M2 macrophages, natural killer cells, activated memory
CD4+ T cells, CD8+ T cells and regulatory T cells. Gene cluster
C displayed an escalated stroma score and higher infiltration of
M0 macrophages and resting mast cells (Figure 2E). Similarly,
analyzing the expression level of two immune checkpoints
showed that gene cluster B had the highest expression of PD1 and
PD-L1 (Figures 2F,G).

Construction of the ICI Scores
To quantify the ICI patterns of individual tumors, the ICI
score was constructed (Zhang et al., 2020). ssGSEA was used
to calculate the score of gene signatures A and B, score A
and score B, and then the prognostic signatures score was
obtained. Patients were classified into two subgroups as high
or low ICI score groups by the median score in the TCGA-
BLCA cohort. The distribution of patients in three gene subtypes
and two subgroups is shown in Figure 3A. We compared
the expression levels of the immune checkpoint- and immune
activity-related genes between the two groups to evaluate the
immune activity and tolerance condition (Hugo et al., 2016;
Ayers et al., 2017). We found significant overexpression of
most immune checkpoint- and immune activity-related genes
in the high ICI group, except TBX2 (Figure 3B). Gene set
enrichment analysis (GSEA) was then executed (Figures 3C,D).
Detailed information is provided in Supplementary Table 6.
In addition, survival analysis revealed that the prognosis
of patients in the high ICI score group was better than
that in the low ICI score group (log-rank test, p = 0.002;
Figure 3E).

Furthermore, the predictive value of prognosis of the ICI score
was validated in the total BLCA cohort (n = 584), including
TCGA-BLCA (n = 406), GSE13507 (n = 61), GSE31684 (n = 74),
and E-MTAB-1803 (n = 43). Survival analysis showed that the
prognosis of patients in the high ICI score group was better
than that in the low ICI score group (log-rank test, p = 0.017;
Supplementary Figure 5A). In addition, we validated the ICI
score in a completely independent external cohort (GSE93527).
Survival analysis revealed that the prognosis of patients in the
high ICI score group was better than that in the low ICI score
group (log-rank test, p = 0.01; Supplementary Figure 5B).
Finally, we validated the results on cell lines of bladder cancer.
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FIGURE 1 | Identification of ICI subtypes in bladder cancer. (A) Consensus clustering of TIICs in four BLCA cohorts. (B) Kaplan–Meier curves for OS of all BLCA
patients with ICI clusters (log-rank test, p = 0.003). (C) Cellular interaction of the TIICs types. (D) The fraction of TIICs, immune score and stromal score in three ICI
clusters (Kruskal–Wallis test, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). (E,F) The difference in PD-L1 (E) and PD-1 (F) expression among three ICI
clusters (Kruskal–Wallis test, p < 2.2e-16).
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FIGURE 2 | Identification of gene subtypes based on DEGs in TCGA-BLCA cohort. (A) Consensus clustering of DEGs among three ICI subtypes. (B) Kaplan–Meier
curves for OS of the three gene clusters (log-rank test, p < 0.001). (C,D) GO enrichment analysis of the two ICI-related signature genes: ICI signature genes A (C)
and ICI signature genes B (D). (E) The fraction of TIICs, immune score and stromal score in three gene clusters (Kruskal–Wallis test, *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001). (F,G) The difference in the expression of PD-L1 (F) and PD-1 (G) among three gene clusters (Kruskal–Wallis test, p < 2.2e-16).
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FIGURE 3 | Construction of the ICI score. (A) Alluvial diagram of gene cluster distribution in groups with different ICI score and survival outcomes. (B) The difference
in the expression of immune checkpoint-related genes (IDO1, CD274, HAVCR2, PDCD1, CTLA4, and LAG3) and immune activity-related genes (CD8A, CXCL10,
CXCL9, GZMA, PRF1, TBX2, and TNF) between high and low ICI score subgroups. (C,D) The gene set enrichment analysis (GSEA) in high (C) and low ICI score
subgroups (D). (E) Kaplan–Meier curves for high and low ICI score groups in the TCGA-BLCA cohort (log-rank test, p = 0.002). ***p < 0.001; ****p < 0.0001.

We calculated the ICI score for each cell line and grouped
them into two groups by the median scores. Subsequently,
we conducted differential expression analysis between the two
groups and obtained 886 differentially expressed genes (| log2FC|
> 1.65 and p-value < 0.05). Finally, we conducted hierarchical
clustering of cell lines based on these differentially expressed

genes, and finally obtained two classes, class 1 and class 2
(Supplementary Figure 5C). We analyzed and compared the ICI
score of the two classes, and the results showed that the ICI score
of class 2 was significantly higher than that of class 1 (Wilcoxon
test, p = 0.019; Supplementary Figure 5D). It indicated that
the differentially expressed genes defined were related to the
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FIGURE 4 | The relationship between the ICI score and somatic mutation in the TCGA- BLCA cohort. (A) TMB difference in the high and low ICI score subgroups
(Wilcoxon test, p = 0.002). (B) Pearson correlation analysis between ICI score and mutation load (Pearson correlation coefficient = 0.157, p = 0.001). (C) The
comparison of TMB among three gene clusters (Kruskal–Wallis test, p = 0.0002). (D) Kaplan–Meier curves for high and low TMB groups of (log-rank test,
p < 0.001). (E) Kaplan–Meier curves for patients stratified by both TMB and ICI score (log-rank test, p < 0.001).
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FIGURE 5 | The oncoPrint in the high (A) and low ICI score group (B).

ICI score, and also verified the prognostic effect of ICI score
from another aspect.

The Relationship Between the ICI Score
and Somatic Mutation and Copy Number
Variation
The TMB is a crucial biomarker in cancer immunotherapy
(Chan et al., 2019). Studies show that a higher TMB is

correlated with stronger antitumor immunity (Rooney et al.,
2015). Our analysis revealed that patients in the high ICI score
group exhibited significantly higher TMB than those in the
low ICI score group (Wilcoxon test, p = 0.002; Figure 4A).
Pearson correlation analysis confirmed that the ICI score
was significantly and positively correlated with TMB (Pearson
correlation coefficient = 0.157, p = 0.001; Figure 4B). In addition,
we found significant differences in TMB between the three gene
clusters. The patients in gene cluster B exhibited significantly
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TABLE 1 | The association between ICI score and somatic variants.

Hugo_Symbol High score Low score p-value

Mutated samples Mutation frequency Mutated samples Mutation frequency

FGFR3 36 19% 20 9% 0.0042

NEB 33 17% 20 9% 0.0139

PIK3CA 51 27% 38 18% 0.0214

SYNE1 47 25% 35 16% 0.0287

KDM6A 57 30% 49 23% 0.0829

TTN 98 52% 94 43% 0.0858

RB1 39 21% 31 14% 0.0912

MUC16 61 32% 54 25% 0.0993

STAG2 31 16% 24 11% 0.1167

TP53 98 52% 96 44% 0.1256

BIRC6 28 15% 23 11% 0.2011

FLG 36 19% 32 15% 0.2470

ATM 30 16% 26 12% 0.2567

AHNAK2 27 14% 23 11% 0.2595

HMCN1 39 21% 36 17% 0.2948

KMT2D 58 31% 57 26% 0.3241

KMT2C 39 21% 37 17% 0.3557

EP300 32 17% 31 14% 0.4627

ARID1A 44 23% 57 26% 0.4874

CSMD3 28 15% 29 13% 0.5774

OBSCN 26 14% 27 12% 0.6950

ELF3 22 12% 27 12% 0.8045

DNAH11 25 13% 28 13% 0.9229

DNAH5 25 13% 28 13% 0.9229

MACF1 32 17% 36 17% 0.9268

higher TMB than those in gene cluster A and C (Kruskal–
Wallis test, p = 0.0002; Figure 4C). Next, we divided patients
into high and low TMB subgroups according to the median
TMB value. Survival analysis showed that patients in the high
TMB subgroup presented better OS than those in the low TMB
subgroup (log-rank test, p < 0.001; Figure 4D). To evaluate
the synergistic effect of ICI score and TMB in bladder cancer,
we further classified patients into four subgroups: high TMB +
high ICI score, high TMB + low ICI score, low TMB + high
ICI score, and low TMB + low ICI score. The stratified analysis
revealed that TMB status did not affect the prediction of ICI
score, and the high ICI score group exhibited significantly better
survival in both the high and low TMB subgroups (log-rank
test, p < 0.001; Figure 4E). We also evaluated somatic variants
of driver genes between the low and high ICI groups, which
were determined using the R package “maftools.” The top 25
driver genes with the highest mutation frequency in the high
and low ICI score subgroups were analyzed (Figures 5A,B).
The results revealed that the mutation frequency of FGFR3,
NEB, PIK3CA, and SYNE1 in the high ICI score group was
significantly higher than that in the low ICI score group, which
provides some new ideas regarding the association between
ICI and somatic mutation in immune checkpoint inhibitor
therapy (Table 1).

Furthermore, we analyzed the relationship between the ICI
score and copy number variation. GISTIC2.0 was used to analyze
the copy number variation in the high and low ICI score
subgroups (Mermel et al., 2011). The results were visualized
using the R package “maftools” (Figures 6A,B). Significantly
amplified regions in the high ICI score subgroup included
1q21.3, 1p34.2, 5p15.33, 6p24.1, etc. Significant amplified in
the low ICI score subgroup included 3p25.2, 4q13.3, 6q23.3,
8p11.23, etc. In addition, we identified DEGs between the high
and low ICI score groups, including 1140 genes that were
highly expressed in the high ICI score group and 3419 genes
that were highly expressed in the low ICI score group (|
log2FC| > log2(1.2) and padj < 0.05). And then we mapped
the chromosomal locations of those genes. We performed
Pearson correlation analysis between the expression of these
genes and the copy number of the region in which the
genes are located. According to the r-value, the correlation
information of the first 24 genes in the high and low ICI
score groups was plotted (Supplementary Figures 6A,B).
For example, the expression of gene CD274 was positively
correlated with the copy number of its region “9p24.1,”
and the correlation coefficient was 0.525 (Supplementary
Figure 6A). Therefore, the high expression of this gene is
significantly correlated with the copy number of its region.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 August 2021 | Volume 9 | Article 72381728

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-723817 August 25, 2021 Time: 17:45 # 11

Huang et al. ICI Pattern in Bladder Cancer

FIGURE 6 | The relationship between the ICI score and copy number variation in the TCGA-BLCA cohort. (A,B) The visualization of the copy number variation
analysis based on GISTIC2.0 for high (A) and low (B) ICI score groups.

Detailed correlation information of these genes is shown in
Supplementary Table 7.

The Relationship Between the ICI Score
and Antitumor Immunity
To determine how the ICI score enhanced the immunogenicity of
bladder cancer and activated antitumor immunity, we compared

the expression of 74 immune-related genes between the high ICI
score and low ICI score groups. The 74 immune-related genes
were obtained from a published article (Yi et al., 2020). The
results revealed that the expression of 53 immune-related genes
was significantly different between the high and low ICI score
group (Supplementary Figure 7). The detailed information of
74 immune-related genes is shown in Supplementary Table 8.
Tumor neoantigens are abnormal proteins or antigens produced
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FIGURE 7 | The relationship between the ICI score and antitumor immunity and the role of ICI pattern in anti-PD-L1 immunotherapy. (A) The difference of the
number of neoantigens in the high and low ICI score groups (Wilcoxon test, p = 0.079). (B) The comparison of the ICI score in different anti-PD-1 clinical response
statuses (Wilcoxon test, p = 0.003). (C) Kaplan–Meier curves for patients in the high and low ICI score group in the IMvigor210 cohort (log-rank test, p = 0.016).
(D) The rate of clinical response to anti-PD-L1 immunotherapy in the high and low ICI score groups in the IMvigor210 cohort (CR, complete response; PR, partial
response; SD, stable disease; PD, progressive disease).

by mutations in the genes of tumor cells that are recognized by
immune cells and can activate the immune system (Lennerz et al.,
2005; Zhou et al., 2005). Neoantigens are a key target of cancer
immunotherapy (Gubin et al., 2015). The feasibility of developing
personalized immunotherapies based on neoantigens has been
demonstrated (Nielsen et al., 2007; Mahesh, 2014). Therefore,
it is necessary to explore the relationship between neoantigens
and ICI score. The number of predicted neoantigens of some
TCGA-BLCA samples was obtained from a published article
(Rooney et al., 2015). The results demonstrated that the number
of neoantigens in the high ICI score group was higher than that in
the low ICI score group, but the differences were not statistically
significant (Wilcoxon test, p = 0.079; Figure 7A).

The Role of ICI Pattern in Anti-PD-L1
Immunotherapy
Immune checkpoints are a series of molecules that are expressed
on immune cells and regulate the degree of immune activation.
They play an important role in preventing the occurrence of

autoimmune action (Pardoll, 2012). Immunotherapy induced by
the blockade of PD-L1 and PD-1 is undoubtedly a breakthrough
in cancer treatment (Sharma et al., 2011; Hinrichs and Rosenberg,
2014). As a result, based on an anti-PD-L1 immunotherapy
cohort, IMvigor210, we investigated to determine whether the
ICI score predicts patients’ responses to immune checkpoint
inhibitors. Similarly, patients were classified into two groups as
the high and low ICI score groups by the median score. We found
that higher ICI score were associated with objective responses
to anti-PD-L1 treatment, and patients with responses to anti-
PD-L1 treatment exhibited higher ICI score in the Imvigor210
cohort (Wilcoxon test, p = 0.003; Figure 7B). Patients with high
ICI score exhibited significantly prolonged OS (log-rank test,
p = 0.016; Figure 7C). In addition, patients in the high ICI
score group exhibited a significantly higher objective response
rate (CR/PR) to anti-PD-L1 immunotherapy than those in the
low ICI score group (Figure 7D). In conclusion, these results
indicated that the ICI score is significantly associated with anti-
PD-L1 immunotherapy responses and that the established ICI
score can help predict the anti-PD-L1 immunotherapy response.
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FIGURE 8 | The first 12 drugs with different responses between the high ICI score subgroup and low ICI score subgroup.

In addition, the relationship between the ICI score and the
sensitivity of drug therapy was examined. We analyzed the effect
of the ICI score on the sensitivity of bladder cancer cells to
drug therapy in the TCGA-BLCA cohort based on Genomics
of Drug Sensitivity in Cancer (GDSC)7. Among them, 92 drugs
exhibited significantly different responses between the high and
low ICI score groups (Supplementary Figure 7). The high ICI
score group exhibited increased bladder cancer sensitivity to 50
drugs. According to the p-value, the first 12 drugs with different
responses were plotted (Figure 8).

DISCUSSION

Immunotherapy has evolved in recent years and has been
proven to treat a variety of cancers, including melanoma,
non-small cell lung cancer, kidney cancer and prostate cancer
(Del Paggio, 2018). It functions by blocking PD-L1 and PD-
1. PD-1 is an inhibitory receptor expressed on the surface of
activated T cells with two ligands, PD-L1 and PD-L2. PD-L1
is generally widely expressed on the surface of epithelial cells,
endothelial cells, and tumor cells. PD-1/PD-L1 inhibitors have
been successful in the treatment of melanoma and therefore are
also being studied in urothelial carcinoma. A high level of PD-
L1 expression was found in the TME of urothelial carcinoma,
which increases the recognition of exogenous antigens by the
host immune system (Inman et al., 2007; Chen and Mellman,
2013). A 2016 study reported that a PD-L1 monoclonal antibody,
durvalumab (MEDI4736), exhibited some clinical efficacy in
patients with bladder urothelial carcinoma receiving multiline
therapy (Massard et al., 2016). However, studies have shown

7https://www.cancerrxgene.org/

that immunotherapy is effective in only a small number of
patients (Julie and Scott, 2012; Christofi et al., 2019). Therefore,
new therapeutic markers are needed to identify the subgroup of
patients who are suitable for immunotherapy. In this study, we
identified three ICI subtypes based on ICI and then identified
three gene clusters based on the DEGs between the ICI
subtypes. In addition, we developed a method to quantify the
tumor immune environment of individual tumors. Our results
suggested that the ICI score is a valid prognostic predictor
for evaluating immunotherapy response and provides a worthy
reference for the immunotherapy of bladder cancer.

The TME that surrounds tumor cells is composed of tumor-
infiltrating immune cells (TIICs), mesenchymal cells, endothelial
cells, inflammatory mediators, and ECM molecules (Hanahan
and Coussens, 2012). A large number of studies have shown
that the TME has significant effects on tumor growth and
development, therapeutic resistance and clinical outcome (Wu
and Dai, 2017; Peltanova et al., 2019; Baghban et al., 2020). In this
study, we identified three distinct ICI subtypes based on the ICI
pattern of 584 bladder cancer samples. The characteristics of the
TME and the proportions of 22 tumor immune infiltration cells
were significantly different among the three ICI subtypes. This
suggests the critical role of ICI in cancer progression. In detail,
a previous study demonstrated that the functions of B cells are
different in different types of cancer (Liu et al., 2018). B cells can
be activated by tumor cells and then secrete immunoglobulin to
inhibit tumor growth (Li et al., 2009). Some studies have shown
that B cell infiltration promotes tumor invasion and metastasis
in bladder cancer (Ou et al., 2015). In our study, there was no
significant difference in the infiltration of naive B cells among
the three ICI subtypes, while the infiltration level of memory B
cells in ICI subtype C with the poorest prognosis was significantly
higher than that in ICI subtypes A and B. This indicates that
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B cell infiltration promotes tumor invasion and metastasis in
bladder cancer, consistent with a previous study (Ou et al., 2015).
Memory T cells, effector T cells and T cell differentiation play
an important role in immune defense (Li et al., 2020). T cells
can be classified into CD4+ and CD8+ T cells, and CD4+ T
cells can further differentiate into regulatory T cells (Tregs)
and follicular helper T cells (Tfhs). Tregs are responsible for
maintaining the balance of immune responses and preventing
excessive immune responses, and they are thought to be involved
in the escape of tumors from the host’s immune system in cancer
(Whiteside, 2014). They have also been shown to have a positive
prognostic effect on bladder cancer (Winerdal et al., 2018). Tfhs
are thought to play a key role in coordinating humoral-related
immune responses, and the abnormal regulatory behavior of Tfhs
contributes to autoimmune diseases, primary immunodeficiency
and acquired immunodeficiency (Jia et al., 2015). In addition,
studies have shown that high expression of Tfh-related genes in
colorectal cancer and breast cancer is associated with a good
prognosis (Shi et al., 2018). In our study, ICI subtype A, with a
better prognosis, exhibited higher immune infiltration of Treg
and Tfh cells. These results imply that Tregs and Tfh cells play
a positive role during the development of bladder cancer, which
is consistent with previous studies (Shi et al., 2018; Winerdal
et al., 2018). Macrophages, including M1 and M2 macrophages,
are an important part of innate and adaptive immunity (Hao
et al., 2012). Studies have shown that M1 macrophages have
the opposite effect as M2 macrophages. M1 macrophages
participate in a positive immune response and play the role
of immune surveillance by secreting proinflammatory cytokines
and chemokines and presenting antigens. M2 macrophages only
have a weak antigen-presenting ability and play an important
role in immune regulation by secreting inhibitory cytokines to
downregulate the immune response (Chanmee et al., 2014). In
this study, we found that infiltration of M1 macrophages was
higher in ICI subtype A with a better prognosis, while the
infiltration level of M2 macrophages was higher in ICI subtype
C with a poorer prognosis, consistent with known findings.

Studies have shown that only a small number of patients
respond to immunotherapy, which suggests that the immune
phenotype cannot completely or accurately predict the response
of patients to immunotherapy (Julie and Scott, 2012; Christofi
et al., 2019). Therefore, we identified three gene clusters based
on DEGs between three ICI subtypes. Gene cluster B, with the
highest immune score, exhibited higher infiltration of plasma
cells, CD8+ T cells and activated CD4+ T cells, and the expression
levels of PD1 and PD-L1 were higher in this cluster, presenting
an immune-hot phenotype. We speculate that patients in this
cluster might benefit from immunotherapy. Gene cluster A had
the lowest immune and stroma scores, and the infiltration level
of immune-associated cells was decreased, which suggests an
immune-cold phenotype. A good prognosis in this cluster may
be related to the high immune infiltration of naive CD4+ T
cells, which can rapidly differentiate into effector, regulatory, or
memory T cells activated by antigen-presenting cells.

Considering the individual heterogeneity of the TME, it is
necessary to quantify the ICI pattern of individual tumors (Runa
et al., 2017). For that, we established the ICI score to evaluate

the degree of individual patient immune infiltration in bladder
cancer. Our analysis suggested that patients in the high ICI
score group had a favorable prognosis and higher expression
of checkpoint-related and immune activity-related genes.
The GSEA results showed that ALLOGRAFT_REJECTION,
INTERFERON_ALPHA_RESPONSE and INTERFERON_GAM
MA_RESPONSE were significantly enriched in the high ICI
score group, while ANGIOGENESIS, COAGULATION and
EPITHELIAL_MESENCHYMAL_TRANSITION were enriched
in the low ICI score group. ALLOGRAFT_REJECTION involves
cytokine-cytokine receptor interactions and IL-12-mediated
signal-related pathways, and upregulation of this gene set is
associated with the activation of the acute immune response.
Interferon is a cytokine that can trigger protective defenses
of the immune system, activate immune cells, upregulate
antigen presentation and prevent viral replication (Parkin
and Cohen, 2001). A previous study demonstrated that an
improvement in survival was observed when interferon was
administered to patients with bladder cancer (Flávia et al., 2018).
Conversely, tumor angiogenesis is a prerequisite for tumor
growth and metastasis and is associated with reduced survival in
bladder cancer (Kong et al., 2005; Agrawal et al., 2011). Increased
expression of coagulation factors was observed in cancer patients,
and coagulation factors may promote migration and invasion by
transforming macrophages into tumor-associated macrophages
in gastric cancer (Ma et al., 2011). Epithelial-mesenchymal
transition (EMT) is a process in which epithelial cells with
polarity are transformed into transitional mesenchymal cells and
acquire the ability to invade and migrate, which exists in multiple
physiological and pathological processes of the human body.
EMT is closely related to the invasion and metastasis of tumor
cells (Thiery, 2003).

In addition, studies have shown that increased TMB and
somatic mutation rates are correlated with stronger antitumor
immunity (Rooney et al., 2015). Therefore, it is necessary
to explore the relationship between TMB and ICI score.
Survival analysis demonstrated that the high TMB group had
a better prognosis than the low TMB group. Our analysis
also showed a significantly positive correlation between ICI
score and TMB with a correlation coefficient of 0.157. These
results were consistent with previous studies. Stratification
analysis revealed that the ICI score was a potent biomarker
of prognosis independent of TMB. In addition, studies have
shown that FGFR3 mutations occur in 50% of primary
bladder tumors and are associated with a favorable prognosis
(van Rhijn et al., 2003; Oers et al., 2009; Saing et al.,
2018). PIK3CA mutations were also associated with improved
outcomes (Kim et al., 2015). Our results revealed that the
mutation frequency of FGFR3 and PIK3CA in the high
ICI score subgroup with better prognosis was significantly
higher than that in the low ICI score subgroup. Finally,
the prognostic value of the ICI score was validated in
all BLCA cohorts.

In short, we analyzed the ICI pattern, providing a clear
view of the antitumor immune or protumor immune response
in bladder cancer. We found that the difference in ICI
patterns was correlated with tumor heterogeneity and treatment
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complexity. Thus, systematic evaluation of tumor ICI patterns
in this study has crucial clinical implications. Moreover,
our results provide new ideas for improving patient clinical
response to immunotherapy and promoting individualized
tumor immunotherapy in the future.

CONCLUSION

In this study, we identified three ICI subtypes based on ICI
and then identified three gene clusters based on the DEGs
among the ICI subtypes. In addition, we developed a method to
quantify the tumor immune environment of individual tumors.
Our results suggested that the ICI score is a valid prognostic
biomarker and predictor for evaluating immunotherapy
response, providing new ideas for improving patients’ response
to immunotherapy and promoting individualized tumor
immunotherapy in the future.
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NF-κB signaling is very important in cancers. However, the role of BRCC3-associated
NF-κB signaling activation in bladder cancer remains to be characterized. Western
blotting and IHC of tissue microarray were used to confirm the abnormal expression
of BRCC3 in bladder cancer. Growth curve, colony formation, soft agar assay and
Xenograft model were performed to identify the role of BRCC3 over-expression or
knock-out in bladder cancer. Further, RNA-Seq and luciferase reporter assays were
used to identify the down-stream signaling pathway. Finally, co-immunoprecipitation and
fluorescence confocal assay were performed to verify the precise target of BRCC3.
Here, we found that high expression of BRCC3 promoted tumorigenesis through
targeting the TRAF2 protein. BRCC3 expression is up-regulated in bladder cancer
patients which indicates a negative prognosis. By in vitro and in vivo assays, we
found genetic BRCC3 ablation markedly blocks proliferation, viability and migration of
bladder cancer cells. Mechanistically, RNA-Seq analysis shows that NF-κB signaling
is down-regulated in BRCC3-deficient cells. BRCC3 binds to and synergizes with
TRAF2 to activate NF-κB signaling. Our results indicate that high BRCC3 expression
activates NF-κB signaling by targeting TRAF2 for activation, which in turn facilitates
tumorigenesis in bladder cancer. This finding points to BRCC3 as a potential target in
bladder cancer patients.

Keywords: BRCC3, TRAF2, NF-kB, tumorigenesis, bladder cancer

Abbreviations: BCa, Bladder cancer; CHX, cycloheximide; DMEM, Dulbecco’s modified Eagle’s medium; DSBs, DNA
double-strand breaks; ECIS, Electric Cell-substrate Impedance Sensing; EMT, epithelial-mesenchymal transition; FBS, fetal
bovine serum; IHC, Immunohistochemical. K63-Ub, lysine 63-linked ubiquitin polymers; NF-κB, Nuclear factor kappa-
B; PBS, phosphate-buffered saline; qRT-PCR, quantitative real-time PCR; RT, Reverse transcription; SDS-PAGE, sodium
dodecyl sulfate-polyacrylamide gel electrophoresis; sgRNAs, small guide RNAs.
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INTRODUCTION

Bladder cancer (BCa) is one of the most common tumors in
the urinary system. There are approximately 78,100 new cases
and 32,100 bladder cancer-related deaths in China annually
(Cumberbatch et al., 2018). The bladder cancer related incidence
and mortality rates in China have been rising rapidly. At
present, diagnosing bladder cancer mainly depends on urine
exfoliative cytology, cystoscopy and live examination, of which
the former has very low sensitivity and the latter is an
intrusive operation increasing the suffering of the patients
(Roos et al., 2008; He et al., 2018; Choudhury and Hoskin,
2019). The main method of clinical treatment for bladder
cancer is surgical treatment. Once the opportunity for surgical
intervention is lost or the disease recurs, treatment can rely
on only traditional radiotherapy and chemotherapy, and there
is no molecular targeted drug suitable for bladder cancer
in the clinic. The main reason for this clinical approach
is the lack of accurate and reliable molecular therapeutic
markers for bladder cancer. Although triple therapy with
surgery/radiotherapy/chemotherapy has recently been explored
to treat advanced bladder cancer, the efficacy is still not
good enough (Dudley et al., 2018; Efstathiou et al., 2019).
Therefore, to explore the mechanism of bladder cancer
progression, and identify specific diagnostic molecules and
potential therapeutic targets for bladder cancer are quite
urgently needed.

The NF-κB signaling pathway plays important roles in various
kinds of chronic diseases, including cancer, inflammation and
so on (Kunnumakkara et al., 2018). The aberrant activation
of NF-κB signaling pathway has been noted in various human
cancers (Rayet and Gelinas, 1999; Al-Halabi et al., 2011). Hence,
targeting the NF-κB pathways have high potential for preventing
cancers. However, most drugs targeting the NF-κB pathway have
adverse side effects. Therefore, it is urgent to find a novel protein
targeting NF-κB pathways that plays a crucial role in bladder
cancer (Kunnumakkara et al., 2018).

BRCC3 is a member of deubiquitinase family, which can
specifically cleave lysine 63-linked ubiquitin polymers (K63-Ub).
The zinc-dependent JAB1/MPN/MOV4 metalloprotease domain
is critical for the deubiquitylation activity of BRCC3 (Huang
et al., 2015). In the DNA damage response, BRCC3 specifically
cuts K63-Ub from histones H2A and H2AX. DNA double-
strand breaks (DSBs) can result in genotoxic stress and promote
tumorigenesis (Sun et al., 2016). Consistent with this conclusion,
aberrant expression of BRCC3 has been associated with decreased
sensitivity to ionizing radiation breast carcinomas and defects
in the G2/M checkpoint in nasopharyngeal carcinomas (Dong
et al., 2003; Tu et al., 2015). In cervical cancer, knocking
down BRCC3 expression inhibits cell viability, invasion and
migration via inhibition of epithelial-mesenchymal transition
(EMT) progression and the expression levels of Snail family
(Zhang and Zhou, 2018). Apart from its role in the DSB-
associated carcinogenesis, BRCC3 regulates the type I interferon
signaling pathway during antiviral responses and inflammasome
activity by deubiquitinating NLRP3 (Py et al., 2013; Hu
et al., 2019). Although BRCC3 has emerged as an oncogene

in various tumors, the role of BRCC3 in bladder cancer
is still obscure.

In this study, we reported BRCC3 as a novel oncogene
in bladder cancer. We identified BRCC3 bound to TRAF2
to activate NF-κB signaling. Meanwhile, we found BRCC3
was aberrantly expressed in BCa patients with an unfavorable
prognosis. BRCC3 over-expression promoted tumorigenesis and
was not associated with the enzymatic activity of BRCC3. In
contrast, knocking out of BRCC3 attenuated the tumorigenesis
in vitro and in vivo. Our findings suggested BRCC3 as a potential
target in BCa patients.

MATERIALS AND METHODS

Cell Culture
Immortalized human bladder epithelial SV-HUC1 cell; human
bladder cancer cells lines including the EJ, T24, 5637, UMUC3,
SW780, RT4, and J82 cell lines; and HEK293T cell line were
purchased from the Stem Cell Bank, CASS, China. SV-HUC1,
EJ, T24, and 5637 cells were cultured in RPMI 1640 medium
containing 10% fetal bovine serum (FBS; Gibco, China), 100
U/ml penicillin-G sodium and 100 mg/ml streptomycin sulfate
at 37◦C under an atmosphere of 95% air and 5% CO2. UMUC3,
SW780, RT4, J82, and HEK293T cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (Gibco) supplemented with
10% FBS, 100 U/ml penicillin-G sodium and 100 mg/ml
streptomycin sulfate at 37◦C in 5% CO2.

Reagents and Antibodies
Proteasome inhibitor MG132 (Sigma, United States); the
protein translation inhibitor cycloheximide (CHX, Sigma);
and low melting point agarose (Solarbio Life Sciences, Spain)
were purchased. The cDNA Reverse Transcription Kit was
purchased from Thermo Fisher Scientific (Thermo Fisher
Scientific, United States). Antibodies against BRCC3 (1:1,000,
Cat. #18215), TNFα (1:100, Cat. #8184), and Ki67 (1:200,
Cat. #9449) were purchased from Cell Signaling Technologies
(Danvers, MA, United States). An anti-β-actin antibody
(1:1,000, Cat. #AC026) was purchased from ABclonal (ABclonal,
United States). Antibodies against FLAG (1:1,000, Cat. #M185-
3L) and HA (1:1,000, Cat. # M180-3) were purchased from
MBL (MBL Beijing Biotech Co., Ltd.). An anti-TRAF2 antibody
(1:1,000, Cat. #ab126758) was obtained from Abcam (Abcam,
United Kingdom).

Plasmids and sgRNA
A plasmid expressing wild type BRCC3 and the deubiquitinating
enzyme-null mutant BRCC3 (which was built by a site-
directed mutation of H122Q) was generated using PCR and
cloned into pHAGE/puro/3 × Flag. Plasmids expressing HA-
TRAF2, HA-TNFR, HA-TAK1, HA-TAB1, HA-IKKβ, or HA-P65
were generated with pCDNA5/FRT/TO-3 × HA, respectively.
pRL-TK and pGL3-NF-κB-luc were purchased from Addgene
(Cambridge, MA, United States). For CRISPR-Cas9 gene
editing, small guide RNAs (sgRNAs) of BRCC3 were cloned
into lenti-v2 (Addgene, Cat. #92062). The sgRNA sequences:
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sgRNA-F, 5′-caccGAAGTAATGGGGCTGTGCAT-3′; sgRNA-R,
5′-aaacATGCACAGCCCCATTACTTC-3′.

Genetic Knock-Out of BRCC3 in Human
Bladder T24 Cells
The genetic knockout of BRCC3 in T24 cells was performed using
a CRISPR-Cas9 system. Briefly, we designed BRCC3-sepcific
sgRNAs1 which was cloned into lenti-v2. HEK293T cells were
transfected with two packaging vectors and the recombinant
lenti-v2 vector containing the BRCC3-sepcific sgRNA sequences.
After 48 h, the supernatant containing the lentivirus was
harvested. 1 × 105 T24 cells were incubated with the lentivirus
for 48 h and then exposed to 600 ng/ml puromycin for another
5 days. Next, the cells were put in five 96-well plates by limiting
dilution method. After 14 days of growth, the single clones were

1http://www.e-crisp.org/E-CRISP/

screened using immunoblotting analysis with an anti-BRCC3
antibody, and the positive clones were amplified.

Transient Transfections and
Lentivirus-Mediated Stable
Overexpression
To produce lentivirus, 293T cells were incubated with MAX
transfection reagent, corresponding expression plasmids together
with the packaging vectors pMD2.G (Addgene, Cat. #12259)
and psPAX2 (Addgene, Cat. #12260). The transfection complex
was mixed in DMEM (Gibco) without FBS, and finally dripped
to cells. And the medium which contains virus was gain
72 h later. For stable transfection with pHAGE-3 × FLAG-
BRCC3, 600 ng/ml puromycin was used for 5 days to kill
the non-transfected cells. The efficiencies of transfection were
determined by western blot.

FIGURE 1 | Expression of BRCC3 in bladder cancer. (A) Data form Oncomine database. Three microarray datasets exhibited obvious upregulation of BRCC3
expression in muscle-invading bladder cancer tissue compared to normal. (B) Disease-free survival time analysis of data from the GEPIA database. The p-value is
indicated. (C) Immunohistochemical staining for BRCC3 in tissue microarrays containing cancer tissue samples, adjacent tissue samples and normal bladder tissue
samples from patients with chronic cystitis or a healthy urinary tract. Representative staining images for different pathological types of bladder cancer including
uro-endothelial carcinoma, squamous cell carcinomas and adenocarcinoma are shown. (D) Tissue microarray data analysis of BRCC3 expression in 188 bladder
cancer tissue samples, 12 corresponding adjacent tissue samples and 16 normal bladder tissue samples (including 8 chronic cystitis tissue samples and 8 healthy
bladder tissue samples collected at autopsy). (E) The mRNA expression levels of BRCC3 in SV-HUC-1 and 8 bladder cancer cell lines. (F) The protein expression
levels of BRCC3 in SV-HUC-1 and 8 bladder cancer cell lines. *P < 0.05, **P < 0.001, and ***P < 0.001 compared with controls.
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Cell Proliferation Assays
We used Electric Cell-substrate Impedance Sensing (ECIS)
method to perform cell proliferation assays. An ECIS system was
obtained from Applied BioPhysics, Inc. The ECIS culture-ware
used was 96W10idf. Briefly, the protocol was as follows: The
cell suspension was prepared first, and then counted. The cell
suspension was diluted to 4 × 103 cells in 200 µl, and added to
a 96-well electrode plate. Then, the signal from the cells in the
electrode plate was conventionally monitored for 48–72 h. The
data were analyzed by the specific software matched to the ECIS
system. The experiments were performed in triplicate.

Colony Formation and Soft Agar Assay
For the colony formation assay, UMUC3 cells (4 × 102 cells)
or T24 cells(1 × 103 cells)were cultured in a 6-well plate. Eight
days later, the cell colonies were fixed and stained with 0.3%
crystal violet in ethanol, counted and photographed. For the soft
agar assay, low melting point agarose and 2 ml of 0.7% lower
agar-RPMI 1640 medium were plated into 6-well plates. Then,
UMUC3 cells (3 × 104) or T24 cells (5 × 104 cells) was mixed
with agar-RPMI 1640 medium, which were cultured for more
than 14 days. Finally, the numbers of cell clones were counted
and recorded (the cell colony including more than 10 cells was
counted as one colony).

Luciferase Reporter Assays
For luciferase assays, a dual-luciferase kit [Promega, Cat.
#E1980, Promega (Beijing) Biotech Co., Ltd.] was used. 48 h
after cells were transfected with pGL3-NF-κB-luc (containing a
repetitive NF-κB sequence), pRL-TK and the indicated levels of

the expression constructs, the reporter assays were performed
according to the standard protocol.

Real-Time PCR
Total RNA was isolated using TRIzol Reagent (Invitrogen).
The RevertAid Fist Strand cDNA Synthesis Kit (Thermo Fisher
Scientific) was used for the RT analysis, and 2 µg of RNA
was reverse transcribed into cDNA. Real-time quantitative PCR
was performed by adding 2 µl of RT reaction mixture to
a final volume of 20 µl and analyzing the reaction mixture
with an ABI PRISM 7500 system (Applied Biosystems, Forster
City, Calif) by using the FastStart Universal SYBR Green
Master protocol (ROCHE, 04913850001). Primer sequences
and annealing temperatures are summarized in Supplementary
Table 1. Values were normalized to GAPDH amplification.

Immunoblotting Analysis
Cells were washed by ice-cold phosphate-buffered saline (PBS)
for three times and lysed in 1% Triton lysis buffer on ice. A BCA
kit (Thermo Fisher Scientific) was then used to test the protein
concentrations. 50 µg total protein (was separated by 10–15%
SDS-PAGE electrophoresis (Promoton Biotechnology, shanghai,
China) and transferred onto PVDF membranes (Millipore,
cat# IPVH00010). After electrophoresis, PVDF membranes with
protein on it were incubated with TBST (containing 5% non-fat
dry milk) for 60 min at room temperature, and then incubated
with specific primary antibodies overnight at 4◦C followed by
incubation with HRP-conjugated secondary antibodies at 37◦C
for 2 h at room temperature. The membranes were developed
with the WesternBright ECL HRP substrate (Advansta).

FIGURE 2 | The overexpression of BRCC3 increased tumor cell proliferation in vitro. (A) BRCC3-overexpressing cells were identified via immunoblotting. (B) Colony
formation assays. The number of clones was counted and plotted. (C) An ECIS cell proliferation assay was performed. (D) Three-dimensional colony formation
assay was performed in soft agar. The colony numbers are expressed as the means ± standard error of triplicate assays. (E) The Quantitative data show the
colonies numbers in (D). (F) Transwell migration assay. The relative cell numbers of migrating were statistically analyzed. (G) Quantitative data show the number of
migrating cells in (F). *P< 0.05, **P< 0.001, and ***P< 0.001 compared with controls.
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Co-immunoprecipitation
NP-40 lysis buffer was used to lysed cells in immunoprecipitation
assays. The indicated antibody and protein G-agarose beads
(Roche) were added into the cell lysates at 4◦C overnight. Then,
the beads were washed three times with 500 µl of wash buffer
containing 300 mM NaCl at 4◦C. The precipitates were analyzed
by standard western blot.

Fluorescence Confocal Assays
T24 cells were seeded in 12-mm cover-slips, and washed with
PBS. After that, cells were fixed with 4% PFA for 15 min. The
cells were then treated with a 0.1% Triton X-100 solution and
blocked in normal goat serum for 30 min at room temperature.
The fixed cells were incubated with the indicated antibodies
at the proper dilution for 2 h at room temperature, washed
three times with PBS, and incubated with secondary antibodies
for 1 h. Nuclei were visualized by incubating with DAPI (2
µg/ml) for 10 min at room temperature, and slides were analyzed
using a confocal microscope system (Nikon C2+ Confocal
Microscope, Japan).

Xenograft Assays
Male BALB/c-null mice (4-weeks old) were purchased from
Beijing Vital River Laboratory Animal Technology Co., Ltd.
(Beijing, China), and maintained in the laboratory animal facility
of Zhongnan Hospital of Wuhan University. One week later
for adaptive feeding, mice were subcutaneous injected with
4 × 106 wide-type T24 cells or BRCC3−/− T24 cells (n = 6).
Five weeks later, the mice were sacrificed under effectively
anesthetic by 2% pentobarbital sodium (30 mg/kg) and the

tumors were removed and weighed. In addition, tumor volume
was measured every 3 days.

Immunohistochemical (IHC) Analysis
Two tissue microarrays (Alenabio, cat. #BL2081c, and cat.
#T124a, Alenabio Co., Ltd) including 188 bladder cancer tissue
specimens, 12 corresponding adjacent tissues specimens and 16
normal bladder tissue specimens were used. Briefly, the paraffin-
embedded sections were first deparaffinized. And then citrate
buffer (pH 6.0) was used for antigen retrieval, and 0.3% H2O2 was
used to block the endogenous peroxidase activity. The indicated
primary antibody and secondary antibody were added to the
sections. Nuclei were labeled with DAB. The histoscore value
of BRCC3 in the paraffin-embedded sections was analyzed by
fluorescence microscopy.

Statistical Analysis
SPSS version 13.0 (University of Nevada, Las Vegas, NV,
United States) was used for the statistical analyses. All data are
presented as the means ± standard error. Statistical analysis
was performed using Student’s t-test or one-way ANOVA, with
P < 0.05 considered statistically significant.

RESULTS

BRCC3 Was Upregulated in Bladder
Cancer
To analyze the level of BRCC3 in bladder cancer, we first
searched the Oncomine and GEPIA databases. The mRNA

FIGURE 3 | The depletion of BRCC3 repressed tumor formation in vitro. (A) BRCC3-deficient cells were identified via Western blotting assays. (B) Colony formation
assays. (C) An ECIS cell proliferation assay was performed. (D) Three-dimensional colony formation assay was performed in soft agar. The colony numbers are
expressed as the means ± standard error of triplicate assays. (E) The Quantitative data show the colonies numbers in (D). (F) Transwell migration assay. The relative
cell numbers of migrating were statistically analyzed. (G) Quantitative data show the number of migrating cells in (F). *P< 0.05, **P< 0.001, and ***P< 0.001
compared with controls.
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levels of BRCC3 in bladder cancer tissue specimens were
obviously upregulated, compared with those in normal bladder
tissue samples (Figure 1A). And upregulated BRCC3 expression

was negatively related to the diseases-free survival in patients
with bladder cancer (Figure 1B). To confirm the results
above, we performed an IHC analysis of BRCC3 using tissue

FIGURE 4 | Knocking out of BRCC3 resulted in inactivation of the NF-κB signaling pathway. (A) KEGG pathway enrichment analysis was used to assess wild type
and BRCC3−/− bladder cancer cells. (B) GSEA identified NF-κB pathway-related gene sets enriched in the wild-type cells. (C) BRCC3 promotes the transcriptional
activity of NF-κB. 293T cells were transfected with an NF-κB reporter firefly luciferase plasmid (200 ng), pRL-TK (10 ng) and the indicated amounts of a BRCC3
plasmid. Reporter assays were performed 48 h after transfection, and the results are presented as the NF-κB/TK luciferase activity. Data were analyzed employing
one-way ANOVA and presented as the means ± standard error (n = 3/group). (D) BRCC3 promoted the transcriptional activity of NF-κB in bladder cancer 5637
bladder cancer cells. The experiments and data analyses were performed as in (C). (E) BRCC3 ablation inhibited the transcriptional activity of NF-κB. (F) The
BRCC3 deficiency blocked the transcription of NF-κB-targeted genes in the T24 cells. The expression levels of the indicated NF-κB-targeted genes were examined
by RT-qPCR in BRCC3−/− T24 cells and wild type T24 cells. (G) BRCC3 deficiency reduced the degradation of IκBα under TNFα stimulation. BRCC3−/− T24 cells
and wild type T24 cells were treated with 5 ng/ml TNFα for indicated time, and then the cell total protein lysis was analyzed by immunoblotting assays.
(H) Quantitative data show the relative protein levels of IκBα in (G). Statistical analysis was conducted using a t-test. The means ± standard error from three
independent experiments is shown. *P< 0.05, **P< 0.001, and ***P< 0.001 compared with controls.
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microarrays, which contained 188 bladder cancer tissue samples,
12 corresponding adjacent tissue samples and 16 normal
bladder tissue samples. The results indicated a significant
upregulation of the BRCC3 expression level in the cancer tissue
compared to the paired adjacent and normal bladder tissue
(Figures 1C,D). Moreover, we investigated the BRCC3 mRNA
and protein levels in bladder cancer-derived cell lines and the
immortalized normal uroepithelial cell line SV-HUC1, and found
that 6 out of 8 cancer cell lines showed BRCC3 expression
upregulation, compared with SV-HUC1 (Figures 1E,F). Taken
together, these results implied BRCC3 was upregulated aberrantly
in bladder cancer.

Overexpression of BRCC3 Increased Cell
Proliferation and Migration
To study the role of BRCC3 in the biological behaviors,
we created wild type BRCC3 (BRCC3 WT) overexpression
and BRCC3 deubiquitinating enzyme-null mutant (H122Q,
BRCC3 HQ) overexpression UMUC3 bladder cancer cell
lines via lentiviral transfection. Western blotting determined
the protein levels of the wild type and the mutant type
BRCC3 (Figure 2A). The colony formation assay and cell
growth assay based on the ECIS system showed that the
overexpression of the wild type BRCC3 dramatically promoted

cell growth and colony formation (Figures 2B,C). Next, we
performed soft agar assays which showed a similar result to
the results of the colony formation and proliferation assays
(Figures 2D,E). Furthermore, a transwell migration assay
suggested the overexpression of the wild type BRCC3 increased
cell migration (Figures 2F,G). And meanwhile we investigated
the effects of the overexpression of the deubiquitinating enzyme-
null mutant BRCC3 on both cell proliferation and migration,
which interestingly showed the similar effects as the wide type
protein (Figures 2B–D,F).

Knocking Out BRCC3 Inhibited Cell
Proliferation and Migration
We then knocked out the endogenous BRCC3 gene in the T24
cell line using CRISPR-Cas9 gene-editing system. Western blot
analysis verified the abolition of the expression of BRCC3 protein
in the knockout cells (Figure 3A). Colony formation assays
and the ECIS proliferation system were used to measure cell
proliferation. BRCC3-deficient cells showed significant inhibition
of cell growth (Figures 3B,C). The colony numbers in soft agar
assays were remarkably decreased when BRCC3 expression was
depleted (Figures 3D,E). A transwell migration assay suggested
that knocking out BRCC3 reduced cell migration obviously
(Figures 3F,G).

FIGURE 5 | BRCC3 activated the NF-κB signaling pathway through TRAF2. (A) The synergistic effects of TNFR, TRAF2, TAK1, and TAB1, IKKβ or P65 together with
BRCC3 on NF-κB transcriptional activation were evaluated. HEK293T cells were co-transfected with an NF-κB reporter firefly luciferase plasmid (200 ng), pRL-TK
(10 ng), the indicated component of an NF-κB pathway (300 ng) and a BRCC3 plasmid (300 ng). Reporter assays were performed 48 h after transfection, and the
results are presented as the NF-κB/TK luciferase activity. Data were analyzed employing one-way ANOVA and are presented as the mean ± SE (n= 3 per group).
(B) The influence of endogenous BRCC3 on NF-κB transcriptional activation induced by different NF-κB pathway components including TNFR, TRAF2, TAK1 and
TAB1, IKKβ, and P65 was assessed. (C) BRCC3 interacted with TRAF2 in both exogenous and endogenous ways. The whole-cell extracts of HEK293T cells
(co-transfected with BRCC3 and TRAF2 for 48 h) or the wild type T24 cells were prepared and incubated with an anti-Flag antibody or anti-BRCC3 antibody and
Sepharose beads, and the immunoprecipitants were collected. The precipitates were then analyzed by SDS–PAGE, and Western blotting was performed with an
anti-HA antibody or anti-TRAF2 antibody. Data are shown as the means ± standard error of technical replicates from one representative experiment out of three
experiments. *P< 0.05, **P< 0.001, ***P< 0.001 compared with controls. (D) Immunofluorescence staining showed the co-localization of endogenous BRCC3 and
TRAF2. Fluorescence confocal microscopy analysis was performed with T24 cells, using antibodies of BRCC3 and TRAF2 according to the standard
immunofluorescence assays.
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Genetic Deficiency in BRCC3 Resulted in
Inactivation of the NF-κB Signaling
Pathway
To identify the possible signaling pathway involved, we
performed RNA-Seq analysis using the wild type and
BRCC3-deficient T24 cell lines. Gene Set Enrichment Analysis
(GSEA) was conducted using KEGG pathway enrichment
models, and we found that the NF-κB signaling pathway
was significantly inactivated when BRCC3 was knocked out
(Figures 4A,B). To confirm this finding, we tested whether
BRCC3 can activate the luciferase activity of an NF-κB reporter
in both HEK293 cells and three bladder cancer cell lines 5637,
T24, and EJ. We observed that exogenous overexpression of
BRCC3 activated NF-κB pathway in a dose-dependent manner
(Figures 4C,D and Supplementary Figure 1). To identify
the role of endogenous BRCC3, an NF-κB reporter assay was
performed with wide type and BRCC3-deficient T24 cells. The
results showed that the ablation of BRCC3 vastly inhibited
NF-κB activity (Figure 4E). In addition, Real-time PCR analyses
indicated that the ablation of BRCC3 reduced the expression of
the NF-κB signaling down-stream genes including cIAP2, TNFα,
and ICAM (Figure 4F). It is well recognized that IκBα protein
sequesters P65 in the cytoplasm under physiological conditions.
However, under stimulation with cytokines, pathogens and so

on, IκBα is degraded which makes P65 released into the nucleus,
leading to NF-κB activation finally. Therefore, we also checked
the influence of BRCC3 on the degradation rate of IκBα under
TNFα stimulation. We found that abolition of BRCC3 reduced
IκB degradation (Figures 4G,H), which lead to the blockade of
NF-κB activation.

BRCC3 Activated NF-κB Signaling
Pathway via TRAF2
To further investigate the relationship between BRCC3 and
NF-κB signaling, BRCC3 was co-expressed with several NF-κB
signaling protein plasmids in HEK293T cells and then analyzed
the relative luciferase activity using an NF-κB signaling reporter
plasmid. We found that BRCC3 increased the activation NF-
κB signaling pathway together with the upstream molecules
TNFR and TRAF2 (Figure 5A). However, BRCC3 did not
increase IKKβ, P65 and TAK1/TAB1-induced activation of NF-
κB signaling (Figure 5A). Besides, we found overexpression
of TNFR, TRAF2 and P65 were able to activate the NF-κB
signaling pathway in wild type (BRCC3+/+) T24 cells, but failed
to activate the signaling in BRCC3-deficient (BRCC3−/−) T24
cells (Figure 5B). These results suggested the activation of the
NF-κB signaling pathway was at least partially dependent on the
function of BRCC3. Additionally, we used immunoprecipitation

FIGURE 6 | The depletion of BRCC3 inhibits bladder cancer tumorigenesis in vivo. (A) Xenograft models (n = 6) were established by subcutaneously inoculating
wild-type or BRCC3-KO cells and allowing the cells to grow for 5 weeks. Then the mice were sacrificed and the tumors were removed and weighed. (B–D) The
tumor volume and weight measurements are shown. (E) Representative H&E staining and immunohistochemical staining of the xenograft tumors from the
tumor-bearing mice in the wild-type and BRCC3-KO groups, showed the deficiency of BRCC3 (the fifth panel) and the upregulation of IκBα expression (the second
panel), the downregulation of Ki67 expression (the top panel), TNFα expression (the third panel) and p-P65 expression (the fourth panel) in the BRCC3-KO groups.
Statistical analysis of the tumor volume and weight were performed using one-way ANOVA. The means ± standard error of three independent experiments is shown.
*P < 0.05, **P < 0.001, and ***P < 0.001 compared with controls.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 September 2021 | Volume 9 | Article 72034943

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-720349 September 11, 2021 Time: 16:4 # 9

Tao et al. BRCC3 Promotes Bladder Cancer Tumorigenesis

assays to examine the interaction of BRCC3 with proteins of
components of NF-κB signaling pathways such as TNFR, TRAF2,
P65, and so on. We found that BRCC3 interacted with TRAF2 in
both exogenous and endogenous expression models (Figure 5C).
Moreover, the colocalization of BRCC3 and TRAF2 was proved
by an endogenous immunofluorescence (Figure 5D).

Knocking Out BRCC3 Inhibited Bladder
Cancer Growth in vivo
To confirm BRCC3 function in vivo, we constructed xenograft
models. The parental T24 cells and two BRCC3-deficient T24
cell lines were injected into separate nude mice. About 1
month later, the tumors were dissected from the tumor-bearing
mice. The volumes of the tumors from the parental T24
cells were much larger than those from the BRCC3−/− cells
(Figures 6A,B). Accordingly, a dramatic advantage in tumor
weight that agreed with the differences in tumor size was also
observed (Figures 6C,D). These results suggested that BRCC3
played an important role in the regulation of bladder cancer
tumorigenesis in vivo. Moreover, the dissected neoplasms were
embedded in paraffin and assessed by immunohistochemistry,
finding that the expression of Ki67 was lower in the BRCC3−/−
group (Figure 6E). Furthermore, TNFα and phospho-P65 was
decreased while the level of IκBα was increased in the BRCC3−/−

group, which confirmed that the abolition of BRCC3 inhibited
the NF-κB signaling pathway (Figure 6E).

DISCUSSION

The deubiquitination family is involved in a wide range
of biological processes, including cancer and inflammation
(Massoumi, 2011; Li et al., 2013). The function of BRCC3 in
bladder cancer remains elusive. The protein level of BRCC3 in
bladder cancer in The Cancer Genome Atlas (TCGA) datasets
showed that BRCC3 expression is aberrantly upregulated in
bladder cancer patients. Analysis of Oncomine datasets was
consistent with this conclusion. To further verify these findings,
IHC staining found upregulated BRCC3 expression in bladder
cancer tumor tissue. Next, we determined the function of
BRCC3 in the progression of bladder cancer using BRCC3
over-expressed and BRCC3 deficient cells in vitro. Our findings
showed BRCC3 plays a crucial role in facilitating the development
and progression of bladder cancer.

To reveal the way how BRCC3 promotes carcinogenesis, we
analyzed BRCC3-deficient bladder cancer cell lines by RNA-
Seq, and the data showed that the NF-κB inflammatory pathway
was notably downregulated when BRCC3 was knockout. We

FIGURE 7 | Our study demonstrated that BRCC3 could promote BCa cells proliferation and migration both in vitro and in vivo. Furthermore, BRCC3 exerts its
oncogenic role via binding to TRAF2, which in turn activates NF-κB signaling and inflammation in bladder cancer.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 September 2021 | Volume 9 | Article 72034944

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-720349 September 11, 2021 Time: 16:4 # 10

Tao et al. BRCC3 Promotes Bladder Cancer Tumorigenesis

further confirmed this result by luciferase, qPCR and Western
blotting assays. Through co-transfecting of the node protein of
the NF-κB pathway, we reported that BRCC3 maximizes the
potential of TRAF2 to activate the NF-κB pathway, and further
exploration showed that BRCC3 binds to TRAF2. Finally, the
xenograft model showed that a deficiency in BRCC3 expression
significantly decreased tumorigenesis in vivo.

Accumulating evidence indicates that the deubiquitinase
BRCC3 participates in carcinogenesis by regulating DNA stability
(Huang et al., 2015). Although BRCC3 has been reported to be
an important regulator of NLRP3 activity (Py et al., 2013; Hu
et al., 2019), the function of BRCC3 in the NF-κB signaling
pathway has not been reported. Our results showed BRCC3
promotes the NF-κB signaling in bladder cancer, therefore
resulting in tumorigenesis, which is different from the previously
described mechanism. TRAF2 can promote tumorigenesis in
several cancers (Wu et al., 2005; Etemadi et al., 2015; Borghi
et al., 2016; Wei et al., 2017). The stability and activity of TRAF2
are mediated by a large number of E3 ubiquitin ligases and
deubiquitinating enzymes (Habelhah et al., 2002; Trompouki
et al., 2003; Li et al., 2009; Xiao et al., 2012; Zhong et al., 2013;
Borghi et al., 2016). We demonstrated that BRCC3 facilitates
tumorigenesis via TRAF2 in bladder cancer. Interestingly, by
using a validated deubiquitinating enzyme-null site-directed
mutation (H122Q) of BRCC3 (Cooper et al., 2009; Py et al., 2013;
Liu et al., 2018), we found that BRCC3 interacts with TRAF2, yet
through a mechanism that is independent of the deubiquitinating
enzyme activity of BRCC3.

In summary, we found that BRCC3 is overexpressed and
associated with a poor prognosis in bladder cancer. BRCC3 exerts
its oncogenic role via binding to TRAF2, which in turn leads the
activation of NF-κB signaling in bladder cancer (Figure 7). Our
study provides novel insight into the function of BRCC3 in the
TRAF2-activating NF-κB signaling cascade in bladder cancer.
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Background: Inhibitors of DNA-binding (ID) proteins are important regulators of cell
proliferation and differentiation. The aim of this study was to evaluated the role of ID
proteins in bladder cancer (BCa) and related molecular mechanisms.

Methods: The TCGA database was analyzed for the expression and clinical
significance of ID proteins. The expression of ID2 was determined by qRT-PCR,
immunohistochemical staining and western blot. The role of ID2 was determined by
CCK-8, colony formation, wound healing, transwell and xenograft tumor assays, and
the potential mechanism of ID2 in BCa was investigated by RNA sequencing.

Results: ID2 expression was significantly downregulated in TCGA database and clinical
samples, and high ID2 expression was associated with low-grade tumor staging and
correlated with better overall survival, disease specific survival (DSS) and progress free
interval (PFI). In vivo and in vitro experiments showed that knockdown of ID2 promoted
proliferation, migration, invasion and metastasis of BCa cells, while overexpression
of ID2 significantly inhibited cell proliferation, migration, invasion and metastasis.
Mechanistically, ID2 acts as a tumor suppressor through PI3K/AKT signaling pathway
to inhibit the progression and metastasis of BCa.

Conclusion: Our results suggest that ID2 exerts tumor suppressive effects in BCa
through PI3K/AKT signaling pathway, and altered ID2 expression can be used as a
biomarker of BCa progression and metastasis.

Keywords: bladder cancer, ID2, PI3K/AKT signaling pathway, progression, metastasis

BACKGROUND

Bladder cancer (BCa) is one of the tumors with high morbidity and mortality in the urinary system.
In 2020, BCa ranked 12th in incidence and 13th in mortality among all malignant tumors (Sung
et al., 2021). The latest statistical results from China Tumor Registry show that the incidence rate of
BCa in China was 8.0/100,000 and the mortality rate was 3.3/100,000 in 2015 (Zhang et al., 2020).
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BCa can be divided into non-muscle invasive bladder cancer
(NMIBC) and muscle invasive bladder cancer (MIBC) based
on muscle infiltration (Mao et al., 2019). NMIBC accounts
for approximately more than 75% of BCa and the preferred
treatment is transurethral resection of bladder tumour (TURBt)
(Dy et al., 2017). Although NMIBC generally has a good
prognosis, it has a high recurrence rate and about 10–15% of
patients will progress to MIBC in the course of treatment (Ranzi
et al., 2017). MIBC is highly aggressive and prone to metastasis,
and patients have a poor prognosis (Robertson et al., 2017).
After the progression of NMIBC to MIBC, radical cystectomy is
generally chosen as the treatment modality (Witjes et al., 2021).
However, the cost of surgery is significantly higher, the quality
of life after surgery is significantly lower, and the burden on
family and society is significantly higher (Garcia-Donas et al.,
2017). Therefore, it is particularly important to explore the
mechanisms of BCa progression, discover new biomarkers and
identify effective therapeutic targets for BCa.

Inhibitors of DNA-binding (ID) proteins are important
regulators of cell proliferation and differentiation. ID family
proteins are a class of proteins that contain the basic Helix-
Loop-Helix (bHLH) structural domain while lacking a DNA
binding sites, which belong to the HLH family and are negative
regulators of the basic HLH transcription factors (Benezra
et al., 1990). ID proteins can inhibit cell differentiation and
can induce cell proliferation by regulating different cell cycle
regulators to enhance tissue invasiveness and angiogenesis of
tumor cells (Perk et al., 2005). ID proteins are expressed in
many tissues and organs, but their expression is somewhat
variable in different developmental stages and tissues (Massari
and Murre, 2000). An increasing number of studies have
confirmed that abnormal expression of ID proteins is not only
involved in tumor development, but also closely related to
tumor invasion and metastasis formation (Volpert et al., 2002;
Fong et al., 2004). However, the predictive value of ID proteins
for BCa and their possible molecular mechanisms have not
been elucidated.

In this study, we examined the expression of ID proteins
(ID1, ID2, ID3, and ID4) in BCa tissues and found that ID2
expression was downregulated and associated with tumor stage
and survival. Further analysis showed that ID2 inhibited BCa
proliferation, migration, invasion and metastasis through the
PI3K/AKT signaling pathway. Taken together, our study suggests
that ID2 may be a potential therapeutic target for BCa.

MATERIALS AND METHODS

Clinical Specimens
Twenty-five pairs of BCa tumor tissues and corresponding
adjacent normal tissues were collected from BCa patients
who underwent radical cystectomy between January 2016 and
December 2016 at Shanghai Tenth People’s Hospital (Shanghai,
China). None of the patients in this study received any
radiotherapy or chemotherapy before the surgery. Pathology
of all BCa patients was confirmed by hospital pathologists,
and pathological staging was determined according to the

American Joint Committee on Cancer TNM staging system (7th
edition). The study was evaluated and approved by the Ethics
Committee of the Shanghai Tenth People’s Hospital (SHSY-
IEC-4.1/19-120/01) and was conducted in accordance with the
relevant regulations. All patients or their relatives had written
informed consent.

The Cancer Genome Atlas Database
ID1, ID2, ID3, and ID4 expression in BCa and related clinical
data are available from the Cancer Genomics Browser. In
brief, we downloaded RNA-seq data and clinical information
from the TCGA database for 433 BCa projects, including
19 cases with matched normal tissues. The downloaded
data were used in transcripts per million (TPM) format
for analysis. In addition, we downloaded RNA-seq data in
TPM format from the TCGA and Genotype-Tissue Expression
(GTEx) databases.

Cell Lines and Culture
The immortalized human normal bladder epithelial cell line SV-
HUC-1 and human BCa cell lines UMUC3, 5637, T24, and EJ
were purchased from the Cell Bank of the Chinese Academy of
Sciences (Shanghai, China). UMUC3, 5637, T24, and EJ cells
were cultured in RPMI-1640 medium (Gibco; Thermo Fisher
Scientific, United States) and SV-HUC-1 cells were maintained
in F12K medium (Sigma-Aldrich; Merck KGaA, Germany).
All cell cultures were supplemented with 10% fetal bovine
serum (FBS, Gibco; Thermo Fisher Scientific, United States)
and 1% penicillin/streptomycin (Gibco; Thermo Fisher Scientific,
United States) and cultured at 37◦C in a humidified incubator
containing 5% CO2.

Cell Transfection
Small interfering RNAs specifically targeting ID2 (si-ID2:
GGACTCGCATCCCACTATT) and negative control siRNA
(Control) were purchased from RiboBio (Guangzhou,
China). Transient transfection was performed at 30–50%
cell confluence using Lipofectamine 3000 (Thermo Fisher
Scientific, United States). ID2 knockdown lentivirus (sh-ID2)
carrying si-ID2, Control lentivirus and ID2 overexpression
lentivirus (OE-ID2) carrying si-ID2, Control, or ID2 sequences,
respectively, and the lentivirus were constructed by BioLink
(Shanghai, China). sh-ID2, Control, and OE-ID2 stable transfer
cell lines were generated by lentivirus transfection.

RNA Sequencing Analysis
To find ID2-associated downstream pathways, we performed
RNA sequencing analysis on EJ cell line transfected with OE-
ID2, sh-ID2, and control lentivirus. mRNA expression analysis
was performed on Agilent’s whole human genome microarray
4× 44 K v2 (026652) with monochrome hybridization, including
probes for 34184 human mRNA transcripts. RNA sequencing was
performed according to the previously described procedure (Luo
et al., 2019). Sample preparation and microarray hybridization
were performed according to the standard protocol of Arraystar
(Majorbio, Shanghai, China). In addition, further Gene Ontology
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(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis was used to screen for signaling pathways.

RNA Extraction and Quantitative
Real-Time Polymerase Chain Reaction
Total RNA was extracted from cells or human tissue using
Trizol reagent (TaKaRa, China) according to the manufacturer’s

instructions. Reverse transcription was performed using cDNA
kits (R312, Vazyme Biotech, Nanjing, China) to synthesize
cDNA. CT values were detected by qRT-PCR using SYBR
Green PCR kit (Q141, Vazyme Biotech, Nanjing, China) and
the ABI Prism 7500 sequence detection system (Applied
Biosystems, United States). Primers for ID2 are listed below:
ID2-F 5′ TCAGCACTTAAAAGATTCCGTG 3′; ID2-R 5′ GA
CAGCAAAGCACTGTGTGG 3′; PI3K-F 5′ ATCAACAGCCAA

FIGURE 1 | ID2 expression correlates with clinical characteristics and survival rate in the TCGA database. (A,B) ID2 expression profile across all tumor samples and
paired normal tissues. (C) The difference expression of ID2 in BCa tissues and adjacent normal tissues. (D) The difference expression of ID2 in BCa tissues and
paired normal tissues. (E) The difference expression of ID2 in normal tissues of GTEx combined with TCGA and BCa tissues of TCGA. (F–H) Overall survival (F),
disease-specific survival (G), and progress free interval (H) curve of BCa patients with low (n = 207) and high (n = 207) ID2 expression. (I–M) Relative expression
levels of ID2 in TCGA database with T stage (I), N stage (J), M stage (K), pathological stage (L), tumor grade (M). (N) ROC curve showed the efficiency of ID2
expression level to distinguishing BCa tissue from non-tumor tissue (***p < 0.001).
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CAAATACC 3′; PI3K-R 5′ TTCTTATCACCGTCACCCT 3′;
Akt-F 5′ ATCAACAGCCAACAAATACC 3′; Akt-R 5′ TTCTTA
TCACCGTCACCCT 3′; SGK3-F 5′ TGGGGCTGTTCTGTA
TGAAATGCTG 3′; SGK3-R 5′ TGGACCAGGCTGTAAGA
CTCACTC 3′; GAPDH-F 5′ AACGGATTTGGTCGTATTG 3′;
GAPDH-R 5′ GGAAGATGGTGATGGGATT 3′. The relative
expression of ID2 was calculated using the 2−1 1 Ct method and
GAPDH was used as internal standards.

Cell Counting Kit-8 Assays
Transfected EJ and UNUC3 cells were seeded at a density of
2,000 cells per well into 96-well plates (Corning, United States).
After seeding for 12, 24, 48, 72, and 96 h, 100 µl of serum-free
medium and 10 µl of CCK8 solution (Yeasen, Shanghai, China)
were added to each well and incubated at 37◦C in the dark for 2
h, and optical density (OD) was detected at 450 nm.

Colony Formation Assays
Transfected cells were plated into 6-well plates (Corning,
United States) at a density of 500 per well and cultured
with complete medium for approximately 2 weeks. The
culture was terminated when clones were visible to the naked
eye in the culture dish. 2 weeks later, colonies were fixed
using formaldehyde and then stained with 0.1% crystalline
violet (Vicmed, China). These colonies were subsequently
photographed and counted.

Wound Healing Assay
The transfected cells were seeded into 6-well plates (Corning,
United States). When cells were reconnected and reached 80%
confluence, cell monolayers were scratched with a 200 µL
pipette. Subsequently, cells were washed with PBS to remove
cell debris and medium containing 2% FBS was added. At 0,
12, and 24 h after injury, images were acquired at the same
locations and wound area was calculated using ImageJ software
(NIH, United States).

Cell Apoptosis Assay
Transfected cells were grown into 6-well plates (Corning,
United States), and all cells in the medium and adherent to
the wall were collected when the cells grew to 80% confluence.
Cells were washed twice with cold 1 × PBS, Annexin V (BD
Biosciences, United States) binding buffer was added, and then
stained for 15 min at room temperature in the dark using
fluorescein isothiocyanate (FITC) and propidium iodide (PI).
Finally, the apoptosis rate was detected using BD FACS Calibur
(Beckman Coulter, CA, United States).

Transwell Migration and Invasion Assays
Both cell migration and invasion ability assays were performed
using Transwell chambers (8 µm pore size, Corning,
United States). The upper chamber was not covered with
Matrigel (BD Biosciences, United States) for the migration
assay and 100 µl Matrigel for the invasion assay. Specifically,
transfected cells (5 × 104) were inoculated in the upper
chamber and culture medium containing 10% FBS was

placed in the lower chamber. After 12–24 h incubation,
the invading and migrating cells were fixed, stained with
0.1% crystalline violet (Vicmed, China), photographed and
counted using an inverted microscope (Leica Microsystems,
Germany).

Western Blot Analysis
Cells were lysed with RIPA buffer (Beyotime, China) containing
protease inhibitors on ice and proteins were extracted, and
protein concentrations were determined using BCA protein
assay kit (Thermo Fisher Scientific, United States). Protein
lysates (50 µg/lane) were separated by 10% sodium dodecyl
sulfate-polyacrylamide gels (SDS-PAGE) electrophoresis and
transferred to polyvinylidene fluoride membranes (Merck,
United States). The membranes were subsequently blocked with
5% skim milk for 1 h and incubated with primary antibodies
(Supplementary Table 1) overnight at 4◦C. Subsequently,
the membranes were incubated with secondary mouse
or rabbit antibodies at room temperature for 1 h. After
washing three times with PBST, the signals were observed

TABLE 1 | The relationship between the expression of ID2 and various
clinicopathological variables in the TCGA database.

Characteristics Total ID2 expression P-value

Low High

Total 414 207 207

Age (years) 0.921

≤70 234 116 (28.0%) 118 (28.5%)

>70 180 91 (22.0%) 89 (21.5%)

Sex 0.264

Female 109 60 (14.5%) 49 (11.8%)

Male 305 147 (35.5%) 158 (38.2%)

T-stage 0.014

T1 5 0 (0.0%) 5 (1.3%)

T2 119 52 (13.7%) 67 (17.6%)

T3 196 110 (28.9%) 86 (22.6%)

T4 60 33 (8.7%) 27 (7.1%)

N-stage 0.160

N0 239 112 (30.3%) 127 (34.3%)

N1 46 27 (7.3%) 19 (5.1%)

N2 77 46 (12.4%) 31 (8.4%)

N3 8 4 (1.1%) 4 (1.1%)

M-stage 0.657

M0 203 97 (45.5%) 105 (49.3%)

M1 11 4 (1.9%) 7 (3.3%)

Pathological stage 0.004

Stage I 4 0 (0.0%) 4 (1.0%)

Stage II 130 53 (12.9%) 77 (18.7%)

Stage III 142 74 (18.0%) 68 (16.5%)

Stage IV 136 80 (19.4%) 56 (13.6%)

Grade 0.023

High grade 390 202 (49.1%) 188 (45.7%)

Low grade 21 5 (1.2%) 16 (3.9%)

P < 0.05 are shown in bold.
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using a Tanon (Shanghai, China) chemiluminescence image
analysis system.

Xenograft Tumor Models
Forty 4-week male M-NSG mice were purchased from Model
Biological Center Inc., (Shanghai, China), and the mice were
randomly divided into 8 groups (n = 5 per group).

Subcutaneous xenograft tumor model: UMUC3 cells stably
transfected with sh-ID2 or Control and EJ cells stably transfected
with Control or OE-ID2 were collected and resuspended in
saline. 100 µl of 5 × 107 density cells were mixed with 100 µl

Matrigel (BD, United States) and injected subcutaneously into the
mice. The length and width of the tumors were measured weekly
and the tumor volume was calculated using the formula: volume
(mm3) = 0.5 × width2

× length. Mice were sacrificed after
4 weeks, the subcutaneously transplanted tumors were excised,
and the weight of each tumor was recorded. A portion of the
tumor tissue was fixed in 10% buffered formalin and subjected
to subsequent analysis.

In vivo lung metastasis model: Cell lines were constructed
as described above in “Cell transfection.” UMUC3 cells stably
transfected with sh-ID2 or Control and EJ cells stably transfected

FIGURE 2 | ID2 is down-regulated in BCa clinical sample. (A–D) qRT-PCR (A–C) and western blot (D) analysis of ID2 expression levels in BCa tissues and paired
normal tissues. (E) Representative IHC images showing ID2 staining in normal tissues (N) and BCa tumor (T) sections.
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with Control or OE-ID2 were collected and resuspended in
saline. 1 × 106 cells were injected from the tail vein of mice
in a volume of 200 µl. Mice were executed after 4 weeks,
lung tissue was excised, and fixed in 10% buffered formalin
to observe the number of metastatic nodules in the lungs was
observed using the in vivo imaging system (IVIS) imaging
system (Calipers, Hopkinton, United States) for observation and
subsequent analysis.

Haematoxylin and Eosin and
Immunohistochemical Staining
Mice lung tissues were embedded in paraffin and sectioned at
a thickness of 5µm, followed by H&E staining. Mice tumor
tissues were fixed with 4% paraformaldehyde and embedded in
paraffin after dehydration through ethanol solution. IHC was
performed according to the previously described protocol (Mao
et al., 2020), followed by recording images with a microscope
(Leica Microsystems, Germany).

Statistical Analysis
The relationship between ID2 expression and various
clinicopathological variables was examined using the chi-square
test. SPSS 20.0 software (IBM, United States), GraphPad Prism
8.3 software (San Diego, United States), and R-Studio software
(Boston, United States) were used for all statistical analyses.
For all studies, P< 0.05 between groups were considered
statistically significant.

RESULTS

ID2 Expression Correlates With Clinical
Characteristics and Survival Rate in the
Cancer Genome Atlas Database
To explore the expression of ID1, ID2, ID3, and ID4 in BCa,
we first detected and analyzed their expression in the TCGA
database. We analyzed their expression in 414 BCa tissues and
19 normal tissues, 19 BCa tissues and matched normal tissues,
and found that ID2, ID3, and ID4 were downregulated in BCa
tissues (Figures 1A–D and Supplementary Figures 1H–J, O–Q),
while ID1 expression was not different (Supplementary Figures
1A–C). In addition, we also compared the expression of ID1,
ID2, ID3, and ID4 in 28 normal samples from the GTEx
combined TCGA database and 414 BCa samples from the
TCGA database, and similarly found low expression of ID2, ID3
and ID4 (Figure 1E and Supplementary Figures 1K,R) and
no difference in ID1 expression (Supplementary Figure 1D).
Further survival analysis revealed that ID1 and ID2 expression
were associated with overall survival (OS) (Figure 1F and
Supplementary Figure 1L), disease specific survival (DSS)
(Figure 1G and Supplementary Figure 1M), and progress free
interval (PFI) (Figure 1H and Supplementary Figure 1N), while
ID3 expression was not associated with survival (Supplementary
Figures 1E–G,S–U). Subsequently, we examined the relationship
between ID2 and clinical variables and found that ID2 expression
correlated with TNM stage (Figures 1I–K), pathological stage

(Figure 1L) and grade (Figure 1M) in TCGA patients. In
addition, the chi-squared assay showed that ID2 expression
correlated with T-stage, pathological stage and grade (Table 1).
Moreover, receiver operating characteristic (ROC) curves were
used to analyze the effectiveness of ID2 expression levels in
distinguishing BCa tissue from normal tissue. The area under
curve (AUC) of ID2 was 0.820 (Figure 1N), indicating that
ID2 can be used as an ideal biomarker to distinguish BCa
from normal tissue.

ID2 Is Down-Regulated in Bladder
Cancer Clinical Sample
To further validate the conclusion that ID2 is downregulated
expression in the TCGA database, we examined the ID2 mRNA
expression levels in 25 paired BCa tissue samples by qRT-PCR.
The results revealed that ID2 expression was low expression in
tumor tissues (Figures 2A–C) and similar results were observed
by western blotting (Figure 2D). The clinical and pathological
characteristics of our patients are shown in Table 2, and we found
that ID2 expression was associated with T-stage and M-stage.
In addition, IHC results also showed that ID2 expression was
significantly down-regulated in tumor tissues (Figure 2E).

ID2 Inhibits Proliferation, Migration, and
Invasion of Bladder Cancer Cells in vitro
We first examined the expression of ID2 in BCa cell lines, and
the results showed that ID2 was lowly expressed at both the
mRNA level and protein level (Figure 3A). To investigate the
biological role of ID2 in BCa cells, we designed siRNA against

TABLE 2 | The relationship between the expression of ID2 and various
clinicopathological variables in our center.

Characteristics Total ID2 expression P-value

Low High

Total 25 12 13

Age (years) 0.073

<70 13 4 (33.3) 9 (69.2)

≥70 12 8 (66.7) 4 (30.8)

Sex 0.035

Male 18 11 (91.7) 7 (53.8)

Female 7 1 (8.3) 6 (46.2)

T-stage 0.019

T1-T2 18 6 (50.0) 12 (92.3)

T3-T4 7 6 (50.0) 1 (7.7)

N-stage 0.114

N0 17 10 (83.3) 7 (53.8)

N1/N2 8 2 (16.7) 6 (46.2)

M-stage 0.047

M0 19 7 (58.3) 12 (92.3)

M1 6 5 (41.7) 1 (7.7)

Tumor size (cm) 0.543

<3 13 7 (58.3) 6 (46.2)

≥3 12 5 (41.7) 7 (53.8)

P < 0.05 are shown in bold.
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FIGURE 3 | ID2 inhibits proliferation, migration and invasion of BCa cells in vitro. (A) Relative expression of ID2 in SV-HUC-1 cell and BCa cell lines. (B) Expression of
ID2 was confirmed by qRT-PCR in BCa cell lines EJ and UMUC3 transfected with sh-ID2, Control or OE-ID2. (C) CCK8 assay of cell proliferation capacity of EJ and
UMUC3 cells after transfection with sh-ID2, Control, or OE-ID2. (D,E) Cell apoptosis assay were performed in EJ (D) and UMUC3 (E) cells after transfection with
sh-ID2, Control or OE-ID2. (F,G) Colony formation assays were performed in EJ (F) and UMUC3 (G) cells after transfection with sh-ID2, Control, or OE-ID2. (H,I)
Wound healing assays were performed in EJ (H) and UMUC3 (I) cells after transfection with sh-ID2, Control, or OE-ID2. (J,K) Transwell assays were performed in EJ
(J) and UMUC3 (K) cells after transfection with sh-ID2, Control, or OE-ID2 (*p < 0.05, **p < 0.01, ***p < 0.001).

ID2 (si-ID2) and an overexpression plasmid (OE-ID2), which
were transfected into EJ and UMUC3 cells. qRT-PCR showed
that si-ID2 decreased ID2 expression, while transfection with
OE-ID2 could upregulated ID2 expression levels (Figure 3B).
Apoptosis assays showed that inhibition of ID2 expression
inhibited apoptosis and overexpression promoted apoptosis in EJ
and UMUC3 cells (Figures 3D,E). CCK-8 and colony formation
assays showed that inhibition of ID2 significantly enhanced
proliferation of EJ and UMUC3 cells, while overexpression of
ID2 had the opposite effect (Figures 3C,F,G). In addition, wound
healing and Transwell assays also showed that silencing ID2
enhanced the migration and invasion ability of EJ and UMUC3

cells, while overexpression of ID2 decreased the migration and
invasion ability of the cells (Figures 3H–K).

ID2 Suppressed the Growth and
Metastasis of Bladder Cancer Cells
in vivo
To assess the effect of ID2 on BCa growth and metastasis in vivo,
we designed subcutaneous xenograft tumor models and lung
metastasis models. UMUC3 cells stably transfected with sh-
ID2 and Control, and EJ cells stably transfected with Control
and OE-ID2 were injected subcutaneously into M-NSG mice to

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 October 2021 | Volume 9 | Article 73836453

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-738364 October 21, 2021 Time: 11:58 # 8

Mao et al. ID2 Inhibits Bladder Cancer Progression

construct xenograft tumor models. As expected, after 4 weeks, the
tumor volume and weight in the sh-ID2 group were higher than
those in the control group, and the tumor volume and weight
in the OE-ID2 group were smaller than those in the control
group (Figures 4A–C). IHC assays showed that the expression
of ID2 was significantly up-regulated in the OE-ID2 group and
down-regulated in the sh-ID2 group compared to the Control
group (Figure 4D).

In addition, the above-mentioned stable transfer cells were
injected tail vein into mice. In vitro imaging and H&E staining
results showed that the sh-ID2 group had more metastatic foci in
the lungs of the mice, while the mice in the OE-ID2 group had
essentially no metastatic foci (Figures 4E,F).

ID2 Regulated Bladder Cancer
Progression via PI3K/AKT Signaling
Pathway
To decipher the downstream-related pathways of ID2 in BCa
progression, we constructed sh-ID2, NC-ID2, and OE-ID2 EJ

stable transduction cell lines and sequenced the three cell lines
at the transcriptional level (Supplementary Table 2). We first
analyzed sh-ID2 and NC-ID2 and identified 18 down-regulated
differentially expressed genes (DEGs) and 22 up-regulated DEGs
(Figures 5A–D). Subsequent analysis of NC-ID2 and OE-ID2
revealed 22 genes with high expression and 27 genes with low
expression (Figures 5E–H). Further analysis showed that 10
genes were co-variant (Figures 5I,J). We performed GO analysis
and KEGG analysis on 10 genes and found that PI3K/AKT
signaling pathway was significantly enriched (Figures 5K,L and
Supplementary Table 3).

Subsequently, we examined the expression changes of
PI3K/AKT signaling pathway related proteins (AKT and PI3K).
Western blotting results showed that transfection of sh-ID2
could lead to decreased protein levels of ID2 and increased
protein and mRNA levels of p-AKT and p-PI3K in EJ
and UMUC3 cells (Figures 6A–D); transfection of OE-ID2
resulted in a significant increase in ID2 levels and decreased
protein levels of p-AKT and p-PI3K in cells (Figures 6A–D).
Through the above experiments, we demonstrated that ID2

FIGURE 4 | ID2 suppressed the growth and metastasis of BCa cells in vivo. (A) Representative images of xenograft tumors in nude mice. (B) The growth curves of
xenografts. (C) The tumor weight of xenografts. (D) IHC assay demonstrated the level of ID2 in pairs of tumors. (E,F) Representative in vitro imaging (E) and H&E
images (F) of lung tissue sections (**p < 0.01, ***p < 0.001).
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FIGURE 5 | ID2 regulated BCa progression via PI3K/AKT signaling pathway. (A,B) Volcano plot (A) and heatmap (B) of RNA-Seq analysis of NC-ID2 and sh-ID2
cells. (C,D) GO terms (C) and KEGG analysis (D) to detect differentially expressed genes. (E,F) Volcano plot (E) and heatmap (F) of RNA-Seq analysis of NC-ID2
and OE-ID2 cells. (G,H) GO terms (G) and KEGG analysis (H) to detect differentially expressed genes. (I) Venn diagrams show the number of genes with changes in
NC-ID2 and sh-ID2, NC-ID2, and OE-ID2. (J) Heatmap of RNA-Seq analysis of sh-ID2, NC-ID2, and OE-ID2 cells. (K,L) GO terms (K) and KEGG analysis (L) to
detect differentially expressed genes.

may be involved in BCa progression through PI3K/AKT
signaling pathway.

DISCUSSION

In this study, we first examined the expression and prognostic
value of four ID proteins in the TCGA BCa database. We
found that ID2 was lowly expressed in BCa tumor tissues, ID2
expression correlated with TNM stage, grade and pathological
stage, and that high ID2 expression was positively correlated

with OS, DSS, and PFI. In vivo and in vitro functional
experiments, we found that knockdown of ID2 promoted
proliferation, migration, invasion and metastasis and inhibited
apoptosis of BCa cells, while overexpression of ID2 significantly
inhibited cell proliferation, migration, invasion and metastasis
and promoted apoptosis. Mechanistically, we demonstrated that
ID2 can be involved in BCa progression and metastasis through
the PI3K/AKT signaling pathway.

Abnormal expression of many molecules or aberrant
activation of signaling pathways can lead to the development,
invasion and metastasis of BCa. Among them, PI3K/AKT
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FIGURE 6 | Protein and mRNA changes in EJ and UMUC3 cells after transfection with si-ID2, NC-ID2 and OE-ID2. (A,B) Protein and mRNA changes in EJ cells.
(C,D) Protein and mRNA changes in UMUC3 cell (**p < 0.01, ***p < 0.001).

signaling pathway is an important signaling pathway that
is widely present in cells and can regulate cell growth,
proliferation, apoptosis, metabolism, tumor invasion, and
metastasis (Petrulea et al., 2015). This signaling pathway is
abnormally activated in some BCa patients and is associated
with the occurrence, development and prognosis of BCa
(Sathe and Nawroth, 2018).

ID family proteins are members of the bHLH transcription
factor family, and their negative regulatory role in the
activation of bHLH transcription factors, which can inhibit cell
differentiation by suppressing the binding of bHLH transcription
factors to DNA and other tissue-specific bHLH (Kee, 2009).
ID family proteins include ID1, ID2, ID3, and ID4, which are
involved in the regulation of cell growth processes, including
cell growth, differentiation, and death (Norton, 2000). ID family
genes have been shown to be extensively involved in the
development of a variety of cells and tissues in the body and
have been associated with cancer (Ruzinova and Benezra, 2003;
Wang and Baker, 2015).

Aberrant expression levels of ID2 protein have been reported
in a variety of cancers, such as non-small cell lung cancer,
breast cancer, esophageal squamous cell carcinoma (ESCC), and
colorectal cancer (Yuen et al., 2007; Gray et al., 2008; Rollin et al.,
2009; Liu et al., 2019). Yuen et al. (2007) found that ID1 and

ID2 are highly expressed in ESCC and are markers of metastasis
and prognosis in ESCC. Stighall et al. (2005) found that high
ID2 protein expression was associated with a good prognosis in
patients with primary breast cancer and reduced the invasiveness
of breast cancer cells. In addition, Gray et al. (2008) found that
ID2 protein was highly expressed in colorectal cancer samples
and that intraperitoneal injection of ID2 small interfering RNA
reduced the growth of colorectal cancer in mouse liver, suggesting
that ID2 is a potential drug target for tumor therapy. A study of
ID2 in bladder cancer found that ID2 was highly expressed in
BCa and regulated by H19 (Luo et al., 2013). We speculate that
there may be two reasons for the different findings in the present
study and the study by Luo et al. (2013): first, it may be related
to the tumor heterogeneity of bladder cancer (Chen et al., 2015;
Warrick et al., 2019); second, patients who received preoperative
chemotherapy or radiotherapy were excluded from the present
study, and there were no relevant exclusion criteria for sample
collection in the study by Luo et al. (2013). It has been found that
treatment of human lung cancer NCI-H460 cells with an external
drug (curcumin) can lead to high expression of ID1, ID2, and ID3
(Chiang et al., 2015). In the present study, we demonstrated that
ID2 was significantly downregulated in BCa tissues at the mRNA
level and protein level through the TCGA BCa database and
clinical data from our center, high ID2 expression was negatively
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associated with tumor stage and positively correlated with
overall survival, DSS and PFI. Furthermore, ID2 mechanistically
inhibits BCa progression and metastasis through the PI3K/AKT
signaling pathway.

CONCLUSION

We found that ID2 expression was downregulated in BCa tissues
and cell lines, and that low ID2 expression was associated with
poor prognosis. ID2 could be a novel biomarker for BCa, and this
signaling axis could be a potential therapeutic target for BCa.
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The tumor microenvironment (TME) is mainly composed of tumor cells, tumor-infiltrating
immune cells, and stromal components. It plays an essential role in the prognosis and
therapeutic response of patients. Nonetheless, the TME landscape of urothelial cancer
(UC) has not been fully elucidated. In this study, we systematically analyzed several UC
cohorts, and three types of TME patterns (stromal-activation subtype, immune-enriched
subtype and immune-suppressive subtype) were defined. The tumor microenvironment
signature (TMSig) was constructed by modified Lasso penalized regression. Patients were
stratified into high- and low-TMSig score groups. The low-score group had a better
prognosis (p < 0.0001), higher M1 macrophage infiltration (p < 0.01), better response to
immunotherapy (p < 0.05), and more similar molecular characteristics to the luminal
(differentiated) subtype. The accuracy of the TMSig for predicting the immunotherapy
response was also verified in three independent cohorts. We highlighted that the TMSig is
an effective predictor of patient prognosis and immunotherapy response. Quantitative
evaluation of a single sample is valuable for us to combine histopathological and molecular
characteristics to comprehensively evaluate the status of the patient. Targeted
macrophage treatment has great potential for the individualized precision therapy of
UC patients.

Keywords: tumor microenvironment, immunotherapy, urothelial cancer, macrophage, immune checkpoint

INTRODUCTION

Urothelial carcinoma of the bladder comprises two disease entities with different molecular
characteristics and clinical outcomes (Knowles and Hurst, 2015). It is one of the most common
malignant tumors of the genitourinary system, and it was estimated that there will be 83,730 new
cases and 17,200 deaths worldwide in 2021 (Siegel et al., 2021). Non-muscle invasive bladder cancer
(NMIBC) accounts for approximately 70% of newly diagnosed bladder cancers and comprises
different entities, including carcinoma in situ (CIS), noninvasive nipple tumors, and papillary tumors
invading the lamina propria. The overall survival (OS) rate of patients with NMIBC has been
approximately 90% for 5 years. However, approximately 15 to 20% of NMIBC progresses to muscle
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invasive bladder cancer (MIBC), and CIS and advanced
papillomas are more likely to progress to MIBC than low-
grade papillomas. MIBC refers to tumor invasion of the
detrusor, the prognosis of it is poor. It easily metastasizes and
the determination of treatment is complex and difficult (Knowles
and Hurst, 2015; Dinney et al., 2004; Kamat et al., 2016; Siegel
et al., 2018; Magers et al., 2019; Patel et al., 2020).

Over the past few decades, cancer treatment has undergone
revolutionary changes, from traditional chemotherapy and
radiation-targeting of tumors to antibody-based
immunotherapy. This antibody-based therapy can more
accurately regulate the immune response to tumors. The
clinical treatment for metastatic urothelial carcinoma has also
changed dramatically due to recent immunotherapy
developments (Li et al., 2019a; Powles et al., 2020).
Immunotherapy with immune checkpoint blockades, such as
those targeting PD-1/PD-L1 and CTLA-4, has shown amazing
clinical benefit in a small number of patients who achieve a
persistent response. However, the clinical efficacy in most
patients is small or nonexistent, far from meeting clinical
needs (Topalian et al., 2012).

Traditional cognition holds that tumor progression is
caused only by alterations in the genetic or epigenetic
characteristics of tumor cells. However, with the gradual
deepening of research, it has become clear that the TME
also plays a key role in the growth and survival of tumor
cells (Zhang et al., 2020a). Tumor cells can not only adapt and
survive in such environments but also evade the detection and
elimination by the host immune surveillance system by
disguising themselves as normal cells. It can also induce
various biological behavior changes by directly and
indirectly interacting with other TME components,
inducing processes such as cell proliferation, immune
tolerance, and angiogenesis (Zhang et al., 2020a; Zhang
et al., 2020b). Determining the status of TME at the time of
diagnosis can help determine their response to
immunotherapy (Rosenberg et al., 2016) and provide
information on the benefit of chemotherapy (Jiang et al.,
2018). The changes in the infiltration levels of CD8+ T cells,
CD4+ T cells and tumor-associated macrophages in the TME
are related to the prognosis of a variety of malignant tumors,
including urothelial carcinoma, melanoma, lung cancer, breast
cancer and gastric cancer (Turley et al., 2015; Nishino et al.,
2017; Mariathasan et al., 2018; Zeng et al., 2019). Increasing
evidence has confirmed the clinicopathological significance of
TME infiltration for predicting patient prognosis and
therapeutic responses. However, the comprehensive
landscape of the TME in UC has not been fully elucidated
up to now.

In this study, we comprehensively evaluated the TME pattern
by integrating multi-omics data from multiple cohorts. The TME
phenotype was associated with the genomic, clinical, and
pathological features of UC and a scoring scheme was
established to quantify the immune status of a single sample.
The TMSig was constructed by modified Lasso penalized
regression and could serve as a robust predictor of patient
prognosis and immunotherapy response.

MATERIALS AND METHODS

We used five urothelial cancer cohorts were used in this study,
including the IMvigor210 cohort (Balar et al., 2017), the TCGA-
BLCA cohort (Robertson et al., 2017), the GSE32548 cohort
(Lindgren et al., 2012), the GSE48075 cohort (Choi et al.,
2014), and the UTUC cohort (Su et al., 2021). The TMSig
constructed in the current study was assessed for prognostic
ability in all five independent cohorts and the combined cohort.
We also obtained pretreatment tumor expression profiles from
three cohorts receiving immunotherapy to examine the response
to immunotherapy in high- and low-scoring populations.
Expression profile data for human cancer cell lines (CCL) data
was from the Broad Institute Cancer Cell Line Encyclopedia
(CCLE) (Ghandi et al., 2019). In addition, molecular and drug
sensitivity data from two pharmacogenomic datasets (CTRP and
PRISM) (Basu et al., 2013; Yu et al., 2016) of hundreds of CCLs
were used to estimate drug response in clinical samples.

Additional detailed methodological descriptions, including the
data preprocessing process, assessment of immune cell
infiltration levels, identification of TME regulatory patterns,
biofunctional analysis, TMSig construction process and
evaluation of clinical applicability, clinical cohort drug
sensitivity assessment, and statistical analysis were described in
detail in Supplementary Materials and Methods.

RESULTS

The Landscape of TME Immune Cell
Infiltration of Urothelial Cancer and the
Identification of TME Patterns
An overview of our research is shown in Figure 1A. First, we
systematically constructed a landscape of the TME immune cell
network that comprehensively demonstrated the interactions
between immune cells (Supplementary Figure S1A). Then,
CIBERSORT algorithms were performed to quantify the
infiltration levels of immune cells in UC tissues
(Supplementary Table S1). According to the immune cell
infiltration data and clinical information of 348 patients
(Supplementary Table S2), we performed unsupervised
clustering to classify the UC patients into three distinct
subtypes (Figure 1B), including 62 patients in TME-ClusterA,
137 patients in TME-ClusterB, and 149 patients in TME-
ClusterC (Supplementary Figure S1B). And there were
significant differences in prognosis outcomes among these
clusters. The TME-ClusterB exhibited a prominent survival
advantage, while the prognosis of patients in TME-ClusterA
was the worst (log-rank test, p � 0.01, Figure 1C). And the
distribution of immune cell infiltration in the IMvigor210 cohort
was shown in Figure 1D. In addition, we also performed
CIBERSORT analysis in The Cancer Genome Atlas (TCGA)
cohort and used the same parameters for consistent clustering.
We found that the TCGA cohort could also be divided into three
categories, and also had a significant difference in prognosis
among three categories (log-rank test, p � 0.00052,
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Figure 1E), which further indicates the rationality of stratifying
urothelial cancer patients according to TME characteristics.
Interestingly, we found that in the TCGA cohort, there was a
partial overlap in the survival curves between ClusterB and
ClusterC, which is most likely due to a batch effect between
these two cohorts. And the main conclusion that ClusterB has the
best prognosis and ClusterA has the worst prognosis obtained by
clustering is not affected.

Immune-associated cells could reflect the characteristics of
individual immunemicroenvironment to a certain extent, and the

immune checkpoint is also considered to be an important factor
in predicting the response to immunotherapy. The Kaplan-Meier
analysis we performed also showed that patients with different
levels of immune cell infiltration and immune checkpoint
expression had significant difference in clinical prognosis
(Supplementary Figure S2). In order to explore the
characteristics of patients in different patterns, we carried out
a detailed comparison of them. The expression levels of CD8+

effector T cells and immune checkpoints in patients of TME-
ClusterB were higher than those in patients in the other clusters

FIGURE 1 | Landscape of the TME in urothelial cancer and characteristics of TME subtypes. (A) The overview of study design. (B) Consensus matrixes of all
patients with urothelial cancer for each k (k � 2–5), displaying the clustering stability using 1,000 iterations of hierarchical clustering. (C) Kaplan-Meier curves for overall
survival (OS) of urothelial cancer patients from the IMvigor210 cohort with the TME patterns. (D) Immune infiltration cells expressed in TMEclusters. The range of p values
are labeled above each boxplot with asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (E) Kaplan Meier curves for overall survival (OS) of urothelial
cancer patients from the TCGA cohort with the TME patterns.

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 7641253

Chu et al. Novel Signature for Immunotherapy Response

61

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


(p < 0.05) (Figures 2A,B). These results strongly imply that
patients in TME-ClusterB may be more likely to benefit from
immunotherapy, which is consistent with the favorable prognosis
in TME-ClusterB patients. The high level of immune-associated
cell infiltration level also indicated that this cluster may be
associated with multiple immune-related responses or activities
and could be identified as immune-enriched subtype. TME-
ClusterA was associated with the activation of epithelial-
mesenchymal transition (EMT), the transforming growth
factor-β (TGF-β), and Wnt signaling pathways (Figures 2C–I).
The expression of specific immune checkpoints was also lower in
this cluster (Figure 2J). The patients in this cluster had the worst
prognosis, and the infiltration levels of T regulatory cells and M0
andM2macrophages in this cluster were significantly higher than
those in other clusters. Based on these characteristics, this cluster
could be identified as the stromal-activation subtype.
Interestingly, we also observed abundant immune cell
infiltration in TME-ClusterC, such as memory B cells, plasma
cells, CD4+ memory resting T cells, monocytes, resting dendritic
cells, activated dendritic cells, activated mast cells, and
eosinophils, but the relative abundance of immune cells did
not significantly change the prognosis of these patients, and
their powerful antitumor effect was suppressed. So, we defined
this group as the immune-suppressive subtype.

Identification of TME-Cluster Related
Differentially Expressed Genes (DEGs) and
Functional Analysis
To clarify the unique biological role of each cluster in the TME,
we performed a differential expression analysis with the limma
package. Each cluster was compared with the other clusters in
the cohort, and a total of 7,996 DEGs were identified
(Supplementary Figure S3A and Supplementary Table
S3). Based on these DEGs, the GSVA package was used to
analyze the specific enrichment pathways of each cluster
(Supplementary Table S4). We found that TME-ClusterA
was significantly enriched in HALLMARK EPITHELIAL
MESENCHYMAL TRANSITION, HALLMARK
COAGULATION, and HALLMARK ANGIOGENESIS,
which may be related to the poor prognosis outcome
(Supplementary Figure S3B). We conducted a functional
enrichment analysis by the clusterProfiler R package
(Supplementary Table S5) and found enrichment mainly in
neutrophil activation, neutrophil-mediated immunity, T cell
activation, regulation of innate immune response, and other
immune-related Gene Ontology (GO) terms (Figure 2K). This
once again proved the close relationship between the DEGs
and immune-related functions.

FIGURE 2 |Molecular characterization of TME-Clusters and identification of Gene-Cluster. (A) CD8+T cell effector, (B) Immune checkpoint signature, (C–E) EMT-
related signature, (F). Pan_F_TBRs signature, (G) TGFb Family Member signature, (H) TGFb Family Member Receptor signature, (I)WNT target signature. (J) Immune
checkpoints expression in TME-Clusters. (K) GO enrichment analysis of the TME-related genes. (L) Kaplan–Meier curves for Gene-Clusters. (M) Immune checkpoints
expression in Gene-Clusters. (N) Immune infiltration cells expressed in Gene-Clusters. The range of p values are labeled above each boxplot with asterisks (*p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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FIGURE 3 | Exploring the clinical practice value of TMSig. (A) Kaplan-Meier curves for overall survival (OS) of patients from the train cohort. (B) Kaplan-Meier curves
for OS of patients from the test cohort. (C)Kaplan-Meier curves for OS of patients from the IMvigor210 cohort. (D) Independent prognostic analysis of TMSig. (E)Kaplan-
Meier curves for OS of patients from the GSE32548 cohort. (F) Kaplan-Meier curves for OS of patients from the GSE48075 cohort. (G) Kaplan-Meier curves for OS of
patients from the UTUC cohort. (H)Dynamic nomogram for clinical practice. (I)Calibration curve analysis. (J) The decision curves analysis. (K) The c-index of TMSig
compared with other signatures.
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To further explore the association between the DEGs and
phenotypes, we conducted another unsupervised clustering
analysis (Supplementary Figure S3C) and found that the
cohort could also be divided into three cohorts with significant
prognosis differences (log-rank p � 0.045) (Figure 2L). We
referred to these as Gene-Clusters A, B, and C. Patients in
Gene-ClusterB had the best prognostic outcomes, while
patients in Gene-ClusterA had the worst. Using a chi-square
analysis to compare the gene clusters and TME patterns, we
found good consistency between these two grouping
methods (χ2 contingency tests, p < 2.2e-16). The
distribution of patients by TME patterns and TME gene
clusters are shown and specific information can be found in
Supplementary Table S6. There were also significant
differences in the level of immune checkpoint expression
(Figure 2M) and immune cell infiltration (Figure 2N)
among these gene clusters, indicating that these gene
clusters could also represent the TME characteristics of
the patients.

Construction of the TMSig
For the TME-related DEGs, we first matched expression data
with clinical information, then reduced the dimension by using
the univariate Cox regression model and used the more stringent
p < 0.01 as the screening criterion to select 318 prognosis-related
genes for further analysis (Supplementary Table S7). Next, we
divided the IMvigor210 cohort into a training set and testing set
at a ratio of 7:3. In the training set (n � 244), we performed
modified Lasso regression analysis to construct the TMSig. In
the process of cyclic calculation, we found that the maximum
AUC value of the TMSig at 2 years was 0.906 (Supplementary
Figure S4A). We defined the gene signature present at this
time as the best candidate model. The prognosis of the low-
score group was significantly better than that of the high-
score group in the training set (log-rank p < 0.0001)
(Figure 3A). Similar to the results obtained with the
training set, the low-score group had a better prognosis in
the internal testing set (log-rank p < 0.0001) (Figure 3B) and
in the entire IMvigor210 cohort (log-rank p < 0.0001)
(Figure 3C). The ROC curves proved the robust predictive
ability of the TMSig, and the AUC at 1 year was 0.88 and
0.906 at 2 years in the training set. The AUC at 1 year was
0.747, and that at 2 years was 0.805 in the testing cohort. In
the whole cohort, the AUC was 0.840 at 1 year and 0.876 at
2 years (Supplementary Figures S4B–D). Then we
performed the univariate Cox regression algorithm to
analyze TMSig together with other clinical characteristics
of the patients in the training set. And further included them
in the multivariate Cox regression algorithm after screening
out the features with p < 0.05. And the same analysis was
performed not only in the train cohort, but also in the test
cohort and the entire IMvigor210 cohort. The p-value of
TMSig < 0.05 in each time of analysis, proving that it can be
served as an independent prognostic factor for patients
(Figure 3D). And the TMSig also showed better
prognostic predictive power in three independent cohorts
(Figures 3E–G).

The TMSig score had a significantly different distribution in
BOR, immune phenotype, IC level and other subgroups
(Kruskal−Wallis, p < 0.05) and had a difference in TC level,
but it was not significant (Supplementary Figures S4E–H). To
further verify the reliability of the TMSig for predicting the
prognostic outcomes, we performed a stratified analysis based
on the clinical information of the IMvigor210 cohort. Through
the Kaplan-Meier analysis, we found the TMSig has a great
performance in several clinical subgroups (Immune phenotype:
immune desert type, immune excluded type, immune inflamed
type, IC level: IC0, IC1, IC2, Sex: Male, Female, BOR: SD/PD, CR/
PR, TC level: TC0, TC1, TC2, Tobacco history: NEVER,
PREVIOUS OR CURRENT, Supplementary Figures S4I–W).
We also conducted an external verification of the prognostic
value of the TMSig in the independent TCGA-BLCA cohort
and found that it was of great significance for predicting both
the overall survival (OS) and disease-specific survival (DSS)
rates of these patients (Supplementary Figures S5A,B). In
addition, stratified analysis of the TCGA cohort showed that
the TMSig had significant prognostic significance in patients
with higher disease stages (Supplementary Figures S5C,D),
which inspired us to conclude that the TMSig may play a
unique role in predicting the prognosis of patients with
advanced neoplasia.

To improve the clinical application of TMSig, we constructed
dynamic nomogram (TMSigDynNomapp: https://the-
nomogram.shinyapps.io/TMSigDynNomapp/, Figure 3H),
while calibration plots showed that comprehensive
signature has accurate predictive power at different time
points (Figure 3I). Decision curve analysis also showed
that comprehensive signature can provide better clinical
benefit to patients compared to applying gender, IC level,
and other indicators for prediction (Figure 3J). Compared
with other previously reported bladder cancer-related
signatures, TMSig also has more robust predictive power
(Figure 3K).

The TMSig Could Effectively Predict Patient
Response to Immunotherapy and
Correlates With Immune Cell Infiltration,
Tumor Mutation Load (TMB), and Tumor
Neoantigen Burden (TNB)
We used ROC curves to evaluate the ability of the TMSig score
to predict the efficacy of immunotherapy among patients in the
IMvigor210 cohort and compared the score with known
effective predictors such as TMB (Samstein et al., 2019),
TNB (Wolf et al., 2019), and M1 macrophages (Zeng et al.,
2020). It was found that the accuracy of the TMSig in
effectively predicting the response to immunotherapy was
not inferior to that of other biomarkers. (TMSig score
AUC: 0.826, TMB AUC: 0.728, TNB AUC: 0.767, M1
macrophage AUC: 0.702) (Supplementary Figure S5E). To
fully demonstrate the robustness of the TMSig for predicting
immunotherapy response, we included two independent data
sets for external validation. The AUC predicted by the TMSig
score in the data from Miao et al. was 0.75 (Supplementary
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Figure S5F), and the AUC predicted by the TMSig score in the
GSE35640 dataset was 0.687 (Supplementary Figure S5G). All
these results indicate the great potential of the TMSig for
discriminating patients who may benefit from
immunotherapy.

It is well known that patients with different infiltration levels
of immune cells have different prognostic outcomes or treatment
responses. Therefore, we performed a Spearman correlation
analysis to explore the relationship between the TMSig score
and the infiltration level of various immune cells and found

that there was a significant positive correlation between the
TMSig score and M0 macrophages, resting mast cells,
neutrophils, and eosinophils (p < 0.05, cor > 0) and a
significant negative correlation with the infiltration level of
follicular helper T cells, activated NK cells, gamma delta
T cells, memory B cells, CD4+ memory-activated T cells,
and M1 macrophages (p < 0.05, cor < 0) (Figure 4A). The
strongest positive correlation was between the TMSig score
and M0 macrophages (Figure 4B), and the strongest negative
correlation was between the TMSig score and M1macrophages

FIGURE 4 | The association of TMSig score with immune-associated cells, TMB and TNB. (A) The correlation of TMSig score with immune cell infiltration level. The
depth of the color represents the p-value and the size of the dot represents the absolute value of the correlation coefficient. (B) The correlation of TMSig score with M0
Macrophage. (C) The correlation of TMSig score with M1 Macrophage. (D) Modest but significant correlation of TMSig score with TNB. (E) The correlations of TMSig
score with TMB. (F) Kaplan-Meier curves for patients stratified by both TNB and TMSig score. (G) Kaplan-Meier curves for patients stratified by both TMB and
TMSig score.
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(Figure 4C). There was a moderate but significant negative
correlation between the TMSig score and TNB (Kruskal-
Wallis, p � 0.00049) (Figure 4D), and the correlation
between the TMSig score and TMB also demonstrated the
same trend (Figure 4E). Intriguingly, combining the TMSig
score with TMB or TNB contributed to the survival
assessment (Kaplan-Meier analysis, TMSig score +TNB

binary: p < 0.0001; TMSig score +TMB binary: p <
0.0001) (Figures 4F,G). We should clear that the
correlation between TMSig and M1 macrophages is strong
and deserves focused attention. But its correlation with TMB
or TNB is moderate, which could provide direction for our
study, but the exact relationship needs to be verified by
further studies.

FIGURE 5 |Molecular differences between high- and low-score subgroups and distribution among previous subtypes. (A) The TMSig score in the high score group
was significantly higher than that in the low score group. (B) The expression level of immune checkpoints in the high score and low score groups. (C) Immune infiltration
cells are expressed in the high score and low score groups (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (D) The immune therapy response and TIDE value of
patients with urothelial cancer. (E) The subclass mapping analysis showed a significant difference in response to anti-PD-1 therapy among these two groups. The
distribution of TMSig score of the IMvigor210 cohort in molecular subtypes. (F) Baylor subtype, (G) UNC subtype, (H)MDA subtype, (I) TCGA subtypes. The distribution
of TMSig score of the TCGA cohort in molecular subtypes. (J) Baylor subtype, (K) UNC subtype, (L) MDA subtype, (M) TCGA subtypes.
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Characteristic Differences Between the
High and Low TMSig Score Groups
The high-score group had a higher TMSig score (Wilcoxon, p <
2.2e−16) (Figure 5A), indicating that the two groups have unique
features not only in prognosis but also in immune-related
characteristics. TIGIT, CD274, CTLA4, PDCD1, and LAG3
presented higher expression levels in the low score group (p <
0.05) (Figure 5B), which suggests that people with low TMSig
scores might have a better response to immunotherapies targeting
immune checkpoints. The immune infiltration cell analysis also
showed that these two groups had significantly different marker
immune cells (Figure 5C). Then, we used the Tumor Immune
Dysfunction and Exclusion (TIDE) algorithm to evaluate each
patient’s potential response to immunotherapy and observed
that the responsiveness of immunotherapy in the low-score
group was higher than that in the high-score group (p � 0.02)
(Figure 5D). Moreover, subclass mapping was performed with

another group of 47 melanoma patients who responded to
immunotherapy (Roh et al., 2017). We were encouraged by the
observation that a low score indicated potential patient
response to PD-1 treatment. (Bonferroni corrected p �
0.008) (Figure 5E). These results reconfirmed the
application value of the TMSig. To further explore the
significantly enriched pathways of the DEGs between the
two groups, we carried out GSEA using the clusterProfiler
and fgsea R packages. It was found that HALLMARK
ANGIOGENESIS, HALLMARK TGF-ß_ SIGNALING,
HALLMARK APOPTOSIS, HALLMARK HYPOXIA, and
HALLMARK P53 PATHWAY were significantly enriched in
the upregulated genes (Supplementary Table S8), which may
be related to poor prognosis.

In addition, we found that the high-score samples of the
Baylor subtype and UNC subtype were mainly concentrated in
the basal type (Wilcoxon, Baylor subtype, p � 2.1e-04; UNC

FIGURE 6 | Identification of candidate agents with higher drug sensitivity in high-TMSig score patients. (A) A venn diagram of compounds from the CTRP and the
PRISM datasets. (B) Schematic outlining the strategy for identification of potential therapeutic agents. (C) Comparison of estimated cisplatin’s sensitivity (logAUC)
between high GULP1 expression and low GULP1 expression groups. (D) The results of differential drug response analysis and Spearman’s correlation analysis of
compounds from CTRP datasets. (E) The results of differential drug response analysis and Spearman’s correlation analysis of compounds from PRISM datasets.
(F) Unpaired comparative analysis of target genes for potential drugs. (G) Paired comparative analysis of target genes for potential drugs.
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subtype, p � 2.8e-04) (Figures 5F,G), and the TMSig score in the
basal MDA subtype was also significantly higher than that in the
luminal type and p53-like type (Kruskal−Wallis, p � 3e−06)
(Figure 5H). In the TCGA subtypes, high scores were mainly
distributed in clusters III and IV (Figure 5I), and it is generally
believed that clusters I/II and III/IV in the molecular subtypes
officially obtained by the TCGA are similar to differentiated (or
luminal) and basal tumors, respectively (Mo et al., 2018). We also
verified the distribution of TMSig scores among the four
classification methods in the independent TCGA-BLCA
dataset, and the results were consistent with those of the
IMvigor210 cohort (Figures 5J–M). Therefore, we inferred
that the TMSig is closely related to molecular subtypes of
bladder cancer, and different scores may indicate different
molecular characteristics, which is of great significance for
further understanding the characteristics of these two groups.

Identification of Potential Therapeutic
Agents for High TMSig Score Patients
The CTRP and PRISM datasets contain gene expression profiles
and drug sensitivity profiles for hundreds of CCLs and can be
used to construct predictive models of drug response. After
removing duplicate drugs, these two datasets share 168
compounds, for a total of 1752 compounds (Figure 6A). We
removed drugs with deletion values greater than 20% and cell
lines derived from haematopoietic and lymphoid tissue. Finally,
680 CCLs for 354 compounds in the CTRP dataset and 480 CCLs
for 1285 compounds in the PRISM dataset were used for
subsequent analyses. The specific screening process is shown
in Figure 6B. Before proceeding further, we first demonstrated
that the results of drug response estimation are reliable. Cisplatin
is a common therapeutic agent for bladder cancer patients, and a
recent study showed that high GULP1 expression enhanced the
sensitivity of patients to cisplatin (Teramoto et al., 2021). We
divided the patients into high and low expression groups
according to the expression level of GULP1. The Wilcoxon
rank sum test was used to compare the difference in AUC
estimates of cisplatin between the two groups, and the results
showed that the AUC estimates were significantly higher (p �
0.003) in patients with high GULP1 expression (Figure 6C),
consistent with the clinical presentation of cisplatin. After
verifying the reliability of the calculation method, we adopted
a similar analysis method to Yang et al. (2021). First, differential
drug response analysis was performed between the group with
high TMSig score (upper decile) and the group with low TMSig
score (lower decile) to identify the group with high TMSig score
(log2FC > 0.10) with low estimated AUC values. Then, by
Spearman correlation analysis between AUC value and TMSig
score, compounds with negative correlation coefficients
(Spearman’s r < −0.30 for CTRP or <0.45 for PRISM). These
analyses yielded one CTRP-derived compound (PD318088) and
two Prism-derived compounds (Levocarnitine, YM−976)
(Figures 6D,E). Secondly, the fold-change difference of the
expression level of candidate drug target genes between tumor
tissues and normal tissues (including paired analysis and
unpaired analysis) was calculated. A higher fold change value

indicated a greater potential of candidate agent for UC treatment
(PD318088: MAP2K1, MAP2K2; YM−976: PDE4B, PDE4D)
(Figures 6F,G). Finally, we searched at PubMed (https://www.
ncbi.nlm.nih.gov/PubMed/) to find evidence of candidate
compounds for UC treatment. Overall, PD318088 and
YM−976, with relatively sufficient evidence, are considered to
be the most promising potential treatment drugs for people with
high TMSig score.

DISCUSSION

Mounting evidence has identified the essential role of the TME in
the occurrence and development of UC and the prognosis of
patients. However, there is still a lack of comprehensive
understanding of the tumor microenvironment of UC. So, we
comprehensively analyzed a large cohort of UC patients and
constructed the TMSig to comprehensively analyze the tumor
microenvironment pattern and predict the survival rate of UC
patients and guide more accurate and effective applications of
immunotherapy and chemotherapy strategies.

Compared with previous published articles, our study has
significant innovation and advantages. Our study not only
identified TME patterns in patients with urothelial cancer and
established TMSig as a metric to quantify individual patients, but
also developed a convenient and practical webpage nomogram,
which is more clinically useful than the study by Meng et al.
(2021). Meanwhile, the predictive power of TMSig for
immunotherapy response has been fully validated by the TIDE
algorithm, Submap algorithm, and multiple clinical cohorts
receiving immunotherapy. Moreover, potential sensitive drugs
have been fully explored with the help of the robust approach.
Compared with the study of Meireson et al. (2021), it is a greater
improvement in the depth and breadth. In addition, we
performed the improved lasso algorithm, which is more
advanced in its selection compared to the study of Zhang
et al. (2021). Besides, we used multiple omics data such as
genomics, transcriptomics to make the analysis more in-depth
and complete. Compared with many previous reported signatures
(Sun et al., 2021a; Sun et al., 2021b; He et al., 2021; Yan et al.,
2021), the predictive power of TMsig is more outstanding.
Besides, the TMSig scoring system we constructed can
effectively assess the immune profile of patients with urothelial
cancer and predict patient prognosis, which we have validated
with a sample of 1025 cases. To make the TMSig score better
applicable to clinical practice, we included TMSig and IC level in
the follow-up analysis and constructed a web-based dynamic
nomogram. And the high accuracy and better clinical benefit
results of this nomogram was well demonstrated by calibration
plots and decision curves. In addition, TMSig can identify
potential therapeutic agents for high-risk populations and fully
validate them with robust methods to guide clinical precision
treatment.

In this study, we identified a TME pattern with a stromal-
activation subtype, immune-enriched subtype and immune-
suppressive subtype based on unsupervised consensus
clustering of immune cell infiltration in the TME. These
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subtypes are characterized by different immunophenotypes and
immune states, which are related to different prognostic
outcomes and antitumor immunity levels. Mariathasan et al.
found that TGF-β inhibits antitumor immunity by limiting
T cell infiltration to shape the tumor microenvironment
(Tauriello et al., 2018). Blockade of TGF β signal transduction
makes it easy to target tumors with anti-PD-1/PD-L1 checkpoint
therapy (Panagi et al., 2020). They also found that TGF-
β-blocking antibodies and anti-PD-L1 therapy reduced the
transduction of TGF-β signaling in stromal cells and improved
the infiltration level of T cells into the center of the tumor, thereby
stimulating a strong antitumor immune response and causing
tumor regression (Tauriello et al., 2018). Based on these findings,
we speculate that the stromal-activation subtype may benefit
from a combination of immune checkpoint block drugs and
TGF-β blockers (Lan et al., 2018; Ravi et al., 2018). The immune-
enriched subtype is similar to the known immunoinflammatory
phenotype. This finding supports the potential predictive value of
the benefits of immunotherapy. Zhao et al. demonstrated that the
immunoinflammatory phenotype of triple-negative breast cancer
is characterized by the infiltration of CD8+ T cells into the tumor
parenchyma (Mariathasan et al., 2018). Job et al. reported that the
immune-inflammatory type is characterized by a large level of T
lymphocyte infiltration and the activation and upregulation of
inflammatory and immune checkpoint pathways. This phenotype
is associated with better patient prognosis (Zhao et al., 2020). Our
study also revealed that the patients in this subtype had the best
prognosis outcomes, which is similar to the results of previous
studies.

The TMSig score had the strongest significant negative
correlation with M1 macrophages and the strongest significant
positive correlation with M0 macrophages. Regarding the low-
score group, M1 macrophage infiltration was significant, and the
prognosis was good, while in the high-score group, M0
macrophage infiltration was significant, and the prognosis was
poor. This suggests that the different states of macrophages may
be an important reason for the difference in prognosis among
patients with different scores. Tumor-associated macrophages
(TAMs) are one of the most abundant matrix components in the
tumor microenvironment (Mantovani et al., 2008; Hanahan and
Weinberg, 2011; Li et al., 2019b). Previous studies have mainly
focused on M2 macrophages because they account for the vast
majority of TAMs and have the potential for transformation (Ge
et al., 2019). However, M0 and M1 macrophages have attracted
increasing attention. M2 macrophages differentiated from M0
macrophages were also highly infiltrated in the population with
high infiltration of M0 macrophages, which inhibited
inflammation, T cell proliferation and differentiation and
promoted angiogenesis of the tumor matrix and tumor cell
proliferation (Bingle et al., 2002; Gordon, 2003; Pollard, 2004;
Mantovani et al., 2005; Hume, 2015). These mechanisms cannot
be ignored due to the poor prognosis of this population. In
addition, M1 macrophages have been proven by a previous study
to be an important marker for predicting patient prognosis
outcomes and the immunotherapy response of patients with
mUC (Zeng et al., 2020; Mantovani et al., 2017), and their
anticancer ability, such as activating the inflammatory

response, participating in host innate immunity and inhibiting
tumor cells in the TME, has also been widely recognized (Bingle
et al., 2002; Gordon, 2003; Pollard, 2004; Mantovani et al., 2005;
Hume, 2015). Samples with highM1 infiltration levels often show
immune activation, while those with low M1 infiltration may
show an activation of steroid hormone metabolism, which may
promote the exclusion of CD8+ T cells from the TME (Zeng et al.,
2020; Ma et al., 2019). Therefore, the different states of
macrophages between the high- and low-score groups worth
investigating further and may contribute to the accurate
application of treatments (Li et al., 2019b; Tang et al., 2013).

In this study, we found that the high TMSig score group was
mainly distributed in the basal subtype, with poor prognosis and
significantly lower expression levels of immune checkpoints,
which was consistent with previously reported characteristics
of the basal subtype (Mo et al., 2018), and the low-score
group presented similar characteristics to the differentiated (or
luminal) subtype. This indicates that the TMSig score could
effectively represent the tumor differentiation status of the
samples. In addition, the TMSig score verified the robustness
of the prediction of patient immunotherapy response in multiple
independent cohorts and was not limited to the comparison of
the expression levels of relevant genes, which also demonstrates
the superiority of our approach in comparison with signatures
reported in previous studies. EGFR pathways are specifically
activated in basal-like MIBC. In vitro and in vivo experiments
have also proven that basal-like MIBC cell lines are sensitive to
EGFR inhibitors, suggesting that EGFR has great potential as a
basal-likeMIBC treatment target (Rebouissou et al., 2014). Due to
the close correlation between the high-score group and basal-like
MIBC, EGFR is worth further investigations in this group. In
addition, because of the remarkable tumor heterogeneity in
bladder cancer, research on the subtype-specific targets and
treatment therapies of bladder cancer is important and urgent.

High TNB and TMB in tumors are related to enhanced
responses to immunotherapy (Samstein et al., 2019; Zeng
et al., 2020). The new antigens generated by somatic cell
mutations in tumors represent a promising method to
promote tumor immune recognition. The main hypothesis of
immunotherapy is that tumors with elevated TMBwill have more
new antigens and therefore have higher immunogenicity (Wolf
et al., 2019). The TMSig score was closely related to immune
response predictors, suggesting that it may be related to different
immunotherapy responses. Independent prognostic analysis
showed that the TMSig score is an independent prognostic
factor for UC patients and is not affected by other factors. The
correlation coefficient between them was relatively low,
indicating that the TMSig score, TMB, and TNB represent
different aspects of tumor immune features. In addition, the
high- and low-score groups not only had significant differences in
survival and prognosis outcomes but also had significant
differences in responses to immunotherapy. GSEA also
showed that many carcinogenic pathways were significantly
activated in high-score patients. The sensitivity of patients
with high and low scores to different chemotherapeutic drugs
has also been explored, which will provide new clinical treatment
ideas for patients with urothelial carcinoma.
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In the current study, we combined multicohort and
multigroup data to comprehensively evaluate multidimensional
features associated with TME infiltration patterns. We
constructed the TMSig, an effective predictor of prognosis,
immunotherapy response by scoring patients, which provides
new insights into the identification of subtype-specific
populations and markers. The low-score group had a better
prognosis, better response to immunotherapy, stronger
infiltration of M1 macrophages and was more inclined to be
in the luminal (differentiated) molecular subtypes. In addition,
macrophage-targeted therapy should be considered. Giving full
consideration to the antitumor effect of M1 macrophages may
have an essential impact on the prognosis of UC patients.
Although there is significantly difference of the immune
checkpoint distribution between high and low score groups,
they had some overlap. So, its clinical application should be
more cautious in predicting immune checkpoints. Besides, our
findings should be further verified in more prospective cohorts to
define the clinical application value more accurately. The
important role of macrophages in UC patients should be
further explored at the single-cell level. Since not all patients
with higher TMSig scores benefit from immunotherapy, more
meaningful clinical features should be included in the predictive
model to improve its accuracy.

CONCLUSION

Through a comprehensive and systematic analysis of the TME
characteristics of UC patients, we identified the TMSig score as an
independent prognostic factor. The TMSig score can not only
accurately predict the prognosis outcomes of patients with UC
but also robustly predict patient immunotherapy response in
multiple independent cohorts. Interestingly, we found that the
TMSig score may play a unique role in high-grade and advanced-
stage UC. The high- and low-risk TMSig score groups are in good
agreement with the previously recognized molecular subtypes.
This enables us to combine histopathological staging with
molecular subtypes, comprehensively evaluate the samples, and
inspire new ideas for subtype-specific precision therapy. We also
found that the difference in the state of macrophages may be the
essential factor underlying the difference in patient prognoses.
The in-depth study of macrophage-targeted therapy would have
great value in advancing the individualized therapy approach for
patients with urothelial cancer.
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Background: Considering the heterogeneity and complexity of epigenetic regulation in
bladder cancer, the underlying mechanisms of global DNA methylation modification in the
immune microenvironment must be investigated to predict the prognosis outcomes and
clinical response to immunotherapy.

Methods: We systematically assessed the DNA methylation modes of 985 integrated
bladder cancer samples with the unsupervised clustering algorithm. Subsequently, these
DNA methylation modes were analyzed for their correlations with features of the immune
microenvironment. The principal analysis algorithm was performed to calculate the
DMRscores of each samples for qualification analysis.

Findings: Three DNA methylation modes were revealed among 985 bladder cancer
samples, and these modes are related to diverse clinical outcomes and several immune
microenvironment phenotypes, e.g., immune-desert, immune-inflamed, and immune-
excluded ones. Then patients were classified into high- and low-DMRscore subgroups
according to the DMRscore, which was calculated based on the expression of DNA
methylation related genes (DMRGs). Patients with the low-DMRscore subgroup presented
a prominent survival advantage that was significantly correlated to the immune-inflamed
phenotype. Further analysis revealed that patients with low DMRscores exhibited less
TP53 wild mutation, lower cancer stage and molecular subtypes were mainly papillary
subtypes. In addition, an independent immunotherapy cohort confirmed that DMRscore
could serve as a signature to predict prognosis outcomes and immune responses.

Conclusion: Global DNA methylation modes can be used to predict the
immunophenotypes, aggressiveness, and immune responses of bladder cancer. DNA
methylation status assessments will strengthen our insights into the features of the immune
microenvironment and promote the development of more effective treatment strategies.

Keywords: bladder cancer, DNA methylation regulators, immunotherapy, prognostic model, tumor
microenvironment
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INTRODUCTION

DNA methylation modification is one of the most representative
epigenetic modifications, which is indispensable in vertebrate
development and illnesses (Ortega-Recalde and Hore, 2019; da
Rocha and Gendrel, 2019). Besides, it has been demonstrated to
associate with multiple biological functions in cancer, e.g., the
formation and evolution of tumor microenvironment, as well as
impairment restoration in the immune cycle (Chen et al., 2020;
Zhang et al., 2020a). On the other hand, abnormal DNA
methylation is also significantly related to the occurrence of
multiple cancer types, such as sarcoma (Koelsche et al., 2021),
bladder cancer (Liu et al., 2021a), and vulvar intraepithelial
neoplasia (Thuijs et al., 2021).

Bladder cancer is an extremely malignant urogenital
neoplasm (Siegel et al., 2021). Heterogeneous distributions
of genome clusters lead to molecular and cellular heterogeneity
in tumors, which affect clinical outcomes and treatment
responses (Qiu et al., 2019; Craig et al., 2020). Despite
pronounced progress in the treatment of bladder cancer,
more effective therapeutic strategies are still in demand.
Studies have demonstrated that several genes involved in
the occurrence and progression of bladder cancer are
regulated by promoter methylation. For example, Chen X
et al. built a diagnostic model based on 2 DNA methylation
markers for early detection and recurrent monitoring of
bladder cancer. Wilhelm CS et al. discovered that LINE1
hypomethylation may contribute to bladder cancer
tumorigenesis, especially in women (Wilhelm et al., 2010).
Kandimalla R et al. summarized the biomarkers of DNA
methylation and identified that methylated genes, including
SFRP1, SOX9, FHIT, CDH1, PMF1, RUNX3, LAMC2, and
RASSF1A, are related to the poor clinical outcomes in bladder
cancer patients (Kandimalla et al., 2013). In short, DNA
methylation is involved in carcinogenesis or tumor
inhibition across varying scenarios.

In recent years, immune checkpoint blockade therapy has
emerged as a promising therapeutic strategy. It aims to enhance
the immune activity of T lymphocytes to kill tumor cells by
inhibiting immune checkpoints, such as PD-1 and its ligand PD-
L1 (Yi et al., 2018). Studies have shown that immunotherapy
could improve clinical outcomes of numerous tumors, such as
ovarian cancer (Wan et al., 2021), bladder cancer (Han et al.,
2021), and colorectal cancer (Liu et al., 2021b). However, patients
respond to immunotherapy differently, and the effective rate of
immune checkpoint blockade therapy has been less than 20%.
The expression level of PD-L1, tumor microenvironment (TME),
and tumor mutation burden (TMB) have been reported as
signatures to evaluate the clinical responses to immunotherapy
(Samstein et al., 2019). Previous studies demonstrated that DNA
methylation may contribute to the alteration of TME. For
instance, Sasidharan Nair V et al. discovered that DNA
hypomethylation shall alter the expression of CTLA-4, TIGIT,
and PD-1 genes (Sasidharan Nair et al., 2018). Elashi AA et al.
also revealed that an abnormal promoter methylation profile is
correlated to the peripheral upregulation of TIGIT and PD-1 in
many cancers. They speculated that a combined administration of

anti-PD-1 agents and demethylation inhibitors could be a more
effective immunotherapeutic strategy than the current ones
(Elashi et al., 2019). However, the regulatory mechanisms of
global DNA methylation on tumor microenvironment and
immune response in bladder cancer remain unclear.

In this study, genomic data and clinical information of 985
samples from six independent bladder cancer cohorts were
included. DNA methylation modes were clarified by analyzing
the expression of fifteen DNA methylation regulators in these
samples We investigate the DNA methylation regulators
rather than DNA methylation itself, because the biology
function of DNA methylation would be altered according
to the genomic environment. Specifically, three DNA
methylation modes were identified to meet the criteria of
immune-desert, immune-inflamed, and immune-excluded
immunophenotypes, respectively. Moreover, an evaluation
system was built to qualify the DNA methylation modes in
individual patients, and the patients’ clinical responses to
immunotherapy were assessed based on their DMRscore.
Our study provides a new perspective to observe the global
DNA methylation status and the immunophenotype of
individual tumors in bladder cancer so that more specified
precision medicine could be achieved.

RESULTS

The Landscape of DNA Methylation
Regulators in Bladder Cancer
We executed systematic research that included 15 DNA
methylation regulators and summarizes the mutation rates of
all these regulators in bladder cancer. Among 412 samples, 52
samples experienced alteration of DNA methylation regulators,
with frequency 12.62%. According to the waterfall diagram,
alterations of the MBD1 gene were the most frequent, and
these alterations have been reported to participate in
tumorigenesis. Besides, DNMT1, DNMT3A, and DNMT3B
genes also exhibited an alteration frequency of 2%
(Figure 1A). Furthermore, co-occurrence mutation was
observed in several DNA methylation regulators despite their
functional differences, including NTHL1, MBD3, MECP2,
UHRF2, and ZBTB33 (Supplementary Figure S1C).

In addition, a prevalent CNV alteration was observed in the
fifteen regulators (Figure 1D). Specifically, DNMT3B, UHRF2,
and MECP2 demonstrated a widespread frequency of
amplification in samples while MBD3, UHRF1, and NTHL1
were frequently detected. The locations and circle sequences of
the DNA methylation regulators along the chromosomes are
depicted in Figure 1B. Moreover, the principal component
analysis revealed that the bladder cancer can be
distinguished from normal samples by observing the
expression levels of the 15 regulators (Figure 1C). In
addition, the mRNA expressions of the 15 DNA
methylation regulators are also significantly different
between BLCA tumors and normal tissues (Figure 1E). In a
word, the genomic imbalance of DNA methylation regulators
is vital for bladder cancer tumorigenesis and development.
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DNA Methylation Regulator Clusters
The complete clinical information and transcriptome data of six
GEO datasets (GSE13507, GSE31684, GSE32548, GSE48075,
GSE48476, GSE80691) and TCGA-BLCA were enrolled into
one cohort for further exploration. A univariate Cox
regression analysis was performed to find the prognostic
value of the 15 DNA methylation regulators in bladder
cancer patients (Supplementary Figure S1B). Following
that, the comprehensive landscape of the regulators’
intercorrelation and their prognostic attributes for bladder
cancer were calculated by network planning (Figure 2B). From
these results, we speculated that DNA methylation regulators
may be related to the heterogeneity of bladder cancer.
Therefore, unsupervised clustering was performed to
explore ultramodern DNA methylation regulator clusters
(DMRclusters) based on the expression levels of the
regulators in the meta-cohort. Three DMRclusters were
classified, including 306, 348, and 331 sample patients in
DMRcluster A, B, and C, respectively, and these distinct
DMRclusters could be distinguished via the principal
component analysis (Figure 2D). Specifically, DMRcluster
A presented a particularly prominent survival advantage,

but DMRCluster B exhibited the worst clinical outcome in
the integrated cohort (Figure 2A).

The Immune Features of Distinct
DMRclusters
The GSVA enrichment analysis was performed to identify the
biological processes in the DMRclusters. Judging from the results,
DMRcluster A was enriched in immune activation pathways,
such as the T/B cell receptor signaling pathway, toll-like receptor
signature, as well as complement and coagulation cascades. On
the other hand, DMRcluster B was prominently associated with
immune suppression, and DMRcluster C was even more
prominent in carcinogenic pathways, including the P53
signature pathway and the ERBB signature pathway (Figures
2E,F). As expected, subsequent analyses revealed that
DMRcluster A was significantly enriched in cells related to
acquired immunity, including activated B cells, central
memory CD4/CD8 T cells, and activated dendritic cells
(Figure 3B). Such a finding could well explain the results of
the survival analysis. Meanwhile, stromal activity (e.g., epithelial-
mesenchymal transition &, EMT) was remarkably enriched in

FIGURE 1 | Landscape of genetic alteration and transcriptome variation of DNA methylation regulators in bladder cancer. (A) The alteration frequency of 15 DNA
methylation regulators in 412 bladder cancer samples (TCGA-BLCA). the annotation of each variant types was displayed by the bagplots right barplots. Each cohort
represented an individual sample. The stacked barplot below displayed conversion ratio for each sample. (B) The location of CNV alteration of DNA methylation
regulators on 23 chromosomes was displayed by circular plot. (C) Principal component analysis (PCA) for the transcriptome characteristics of 15 DNAmethylation
regulators to distinguish tumors from normal samples in GSE13507 cohort. Tumor samples were labeled with blue color and normal samples were labeled with yellow.
(D) The frequency of copy number variation in TCGA-BLCA cohort. Deletion frequency: the green dot and amplification frequency: red dot. The number represented the
variation frequency. (E) The transcriptome characteristics of 15 DNA methylation regulators between normal and bladder cancer tissues. Tumor: red box; Normal: blue
box. The median value: black lines in boxes, the outliers: black dots out boxes. The asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001).
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DMRcluster C (Figure 3A). Based on all the previous results, we
speculated that these DMRclusters had remarkably diverse
features in terms of immune cell infiltration into the tumor
microenvironment. Specifically, DMRclusters A, B, C were
featured by immune-inflamed, immune-desert, and immune-
excluded phenotypes, respectively.

The Transcriptome Data and Clinical
Features of DMRclusters
To further investigate these DMRclusters in diverse biological
processes and clinical features, we focused on the TCGA-BLCA
cohort containing 407 bladder cancer patients and their
exhaustive clinical information. Similarly, the patients were
classified into three clusters with unsupervised clustering
(Supplementary Figures S2A–D). Judging from the results
DNA methylation regulators’ transcriptional profiles among
the three DMRclusters demonstrated significant difference,
which was validated by one-way ANOVA analysis

(Supplementary Figure S2E). Specifically, DMRcluster A
revealed high expression of DNMT3B and DNMT3A,
DMRcluster B was characterized by higher DNMT1 and
UHRF1 expressions, and DMRcluster C exhibited lower
contents of DNMT1, DNMT3A, DNMT3B, and UHRF1 at
various extents (Figure 3C). Patients with the luminal
infiltrated subtype were characterized by DMRcluster A, while
the basal squamous subtype was featured by DMRcluster B
(Figure 2C); besides, both DMRclusters B and C were
enriched in the neuronal subtype (Figure 4D). In bladder
cancer treatments, the neuronal subtype is particularly difficult
because of its poor clinical outcome, while the luminal papillary
subtype is prone to better survival. Thus, we performed the K-M
analysis, and the results also validated our conjecture that patients
characterized by DMRclusters B and C exhibited significantly
more rapid disease progression and poorer clinical outcomes,
while DMRcluster A presented a remarkable survival advantage
(Supplementary Figure S2F). In addition, the luminal
infiltration subtype in bladder cancer is characterized by low

FIGURE 2 | Clusters of DNA methylation modes and biological profiles of each cluster. A Kaplan-Meier curve with p value 0.032 displayed a remarkable difference
among three DNA methylation modes, the DMRcluster B presented a remarkable poor clinical outcome. DMRcluster (A): 306 samples, DMRcluster (B): 348 samples
and DMRcluster (C): 331 samples. The meta cohort including 985 samples (GSE13507, GSE31684, GSE32548, GSE48075, GSE48476, GSE80691 and TCGA-
BLCA). (B) The interplay among DNA methylation regulators in bladder cancer. Red and gary represented readers and writers respectively. The size of circles
displayed the influence of each regulator on clinical outcomes. The lines connecting regulators represented their interactions, and thickness represented the correlation
strength. Negative correlation was labeled with blue and positive correlation was labeled with red. Risk factor: purple, favorable factor: green. (C) The proportion of
molecular subtypes in the three DNAmethylation modes (TCGA-BLCA). Basal squamous subtype, green; Luminal subtype, blue; luminal infiltrated subtype, red; luminal
papillary subtype, yellow; and Neuronal subtype, olivedrab. (D) Principal component analysis (PCA) for the transcriptome characteristics of three DMRclusters.
DMRcluster A was labeled with blue color, DMRcluster (B) was labeled with red color and DMRcluster (C) was labeled with green. (E,F) Gene set variant analysis
displayed the activation status of biological pathways in diverse DMRclusters. The heatmap help us to observe the difference of biology pathway activity among three
DMRclusters. Blue represented inhibited pathways and red represented activated pathway. (E) DMRcluster (A) vs. DMRcluster (B); F DMRcluster (B) vs.
DMRcluster (C).
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tumor cell purity and high lymphocytic infiltration. Most patients
with the luminal infiltration subtype were categorized into
DMRcluster A, and only a small amount of luminal
infiltration was observed in DMRcluster B (Figure 4D),
suggesting that DMRcluster A is related to immune activation
and DMRcluster B is associated with the immune-desert
phenotype.

Functional Annotations of DMRGs
To further explore the potential biological processes in each
DMRcluster, the R package named “limma” was performed to
find DMRGs, and a total of 832 genes were selected
(Supplementary Figure S2G). GO analysis was executed on
the DMRGs using the R package “clusterProfiler.” DMRGs
were prominently enriched in immunity activation pathways,
DNA methylation, and cell proliferation, which verified that
DNA methylation is vital in the immune regulation of tumor
progression (Figure 3D).

To further investigate the mechanisms of DNA regulation, the
patients were classified into three genomic subtypes based on the
expression of the 832 DMRGs. Similarly, the genomic subtypes

were identified via the unsupervised clustering algorithm. They
were termed Gene cluster A, B, and C, respectively
(Supplementary Figures S3A–D), and they were all related to
DNA methylation in bladder cancer. A heat map also
demonstrated that the three Gene clusters can be distinguished
by their signature transcriptomes (Figure 4A). According to the
K-M survival method, Gene cluster A presented a remarkable
survival advantage, while Gene cluster B was proved to be
associated with a poorer prognosis (Figure 4D). Moreover, the
three Gene clusters revealed significant differences in the
expression of DNA methylation regulators (Figure 4G).

TME Characteristics in the Three
Gene.clusters
To identify the role of Gene clusters in the immune regulation of
TME, we investigated the expression of cytokines and
chemokines in Gene clusters. The targets of identification were
chosen from the literature, among which ZEB1, TGFB2,
PDGFRA, VIM, COL4A1, TGFBR2, TWIST1, ACTA2, and
SMAD9 are related to transcripts of the transforming growth

FIGURE 3 | Tumor microenvironment characteristics and transcriptome profile in three DNA methylation modification modes. (A) stromal activation pathways
among three different DNA methylation modification modes include EMT, angiogenesis and Pan-F-TBRS. (B) The content of each tumor microenvironment immune
infiltrating cells in three DNA methylation modification modes. The median value: black lines in boxes, the outliers: black dots out boxes. (C) The heatmap help us to
observe the expression level of DNA methylation regulators among different DMRclusters (TCGA-BLCA cohort). DMRcluster subtypes, Molecular subtypes,
Histology, Grade, Stage, Gender, Age and Survival status were used as patient annotations. Red represented high expression level of DNA methylation regulators and
blue represented low expression level. (D) Functional annotation for DNAmethylation-related genes. Red representedmore enriched genes and blue represented a small
number of enriched genes.
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factor (TGF) b/EMT pathway. Besides, HAVCR2, CD80, LAG3,
CD86, TIGIT, PDCD1, TNFRSF9, PD-L1, IDO1, CTLA4, and
PD-L2 are associated with the transcripts of immune checkpoints,
and CXCL10, PRF1, CD8A, CXCL9, GZMB, GZMA, TNF, IFNG,
and TBX2 are associated with immune-activated transcripts
(Sotiriou et al., 2006; Barbie et al., 2009; Ritchie et al., 2015;
Zeng et al., 2019).

We found that the transcripts related to immune activation
pathways were significantly up-regulated in Gene cluster B, but
the patients in this cluster did not show an expected survival
advantage. Previous studies revealed that high stromal activation
was associated with limited immune activation (MacGregor et al.,
2019). Therefore, we investigated the transcripts related to the
(TGF)b/EMT pathway in this cluster and demonstrated stromal
activation within. Based on these findings, we assumed that anti-
tumor effects of immune cells in Gene cluster B are limited by
stromal activation, indicating that Gene cluster B is the immune-
excluded subtype. Besides, the transcripts of immune checkpoints
were examined as highly expressed in Gene cluster B, suggesting
that immunotherapy may bring unexpected outcomes
(Supplementary Figures S3F–H).

To further investigate the functions of DMRGs, we examined
the identified pathways in bladder cancer patients. Gene cluster A
was found to enrich in CD8 T effector, DNA replication,

mismatch repair, and antigen processing machinery pathways
(Supplementary Figure S3E). Previous studies demonstrated
that bladder cancer can be classified into five subtypes
according to the molecular phenotype. Among them, the
luminal-papillary subtype exhibits the best prognosis with a
five-year survival rate of 60%. On the other hand, the five-year
survival rate of neuronal bladder cancer is only 17% (Robertson
et al., 2017). Our findings suggested that Gene cluster A was
almost fully composed of the luminal-papillary subtype, which
was relevant to survival advantage (Figure 4F).

Individual Modification Patterns of DNA
Methylation
By now, the experimental results have confirmed that DNA
methylation is irreplaceable in the formation of distinct TME
landscapes. However, investigations above were not helpful to
predict the DNA methylation status of an individual sample as
they were conducted on a population. Since tumors are
heterogeneous and complex, we built the DMRscore model to
qualify the DNA methylation status based on the expression of
DMRGs.

In this section, we attempted to assess whether DMRscore is
effective in predicting clinical outcomes. Patients were classified

FIGURE 4 | Construction of DNA methylation signatures for individual sample. (A) The heatmap help us to observe the transcriptome landscape among different
Gene.clusters (TCGA-BLCA cohort). Gene.cluster subtypes, Molecular subtypes, Histology, Grade, Stage, Gender, Age and Survival status were used as patient
annotations. Red represented high expression level and blue represented low expression level. B-C Differences in DMRscore among three DMRclusters (B) or
Gene.clusters (C) in TCGA-BLCA cohort (Kruskal-Wallis test, p < 0.001). D-E Kaplan-Meier curve displayed a remarkable difference among three Gene. clusters
((D), p < 0.001) or DMRscore subgroups ((E), p < 0.001) in TCGA-BLCA cohort. (F) Sankey diagram displayed the alteration of DMRclusters, molecular subtypes,
Gene.cluster and DMRscore. (G) The transcriptome characteristics of 15 DNA methylation regulators among Gene.clusters. Gene.cluster (A): blue box; Gene.cluster
(B): red box. Gene.cluster C: green box. Themedian value: black lines in boxes, the outliers: black dots out boxes. (H)Differences in the known gene signatures between
high DMRscore and low DMRscore subgroups. APC: antigen-presenting cells. The asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001).
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into groups of high and low DMRscores according to the best
cutoff value. The correlation results between DMRscores and
clinical outcomes showed that patients in the low DMRscore
group exhibited a remarkable clinical advantage, while those in
the other group demonstrated less satisfactory clinical outcomes
(TCGA-BLCA cohort) (Figure 4E, p � 7.158e-05). The
Figure 4H shown that patients with high DMRscore were
enriched in APC_co_inhibition, T_cell_coinhibition, which
revealed that this subgroup presented immunosuppression.
Subsequently, we examined whether the DMRscore can serve
as an independent index to evaluate the clinical outcomes of
bladder cancer. Multivariate Cox regression analysis was used to
take the independent indices, including age and DMRscore, into
the calculation, and the results confirmed DMRscore as an
independent and robust prognostic index (HR � 1.05;
Supplementary Figure S4A). Variations of individual patients
are displayed by the Sankey diagram (Figure 4F).

To reassure the predictive effects of DMRscore, we examined
its relationship with the identified clusters by Kruskal-Wallis
tests. The test results suggested that DMRscore could be used to
predict DNA methylation clusters. Specifically, both DMRcluster
B and Gene cluster B showed the highest median DMRscore
(Figures 4B,C). In addition, patients suffering from neuronal
bladder cancer also exhibited the highest median DMRscore

among five molecular subtypes (Figure 5A). In a word,
DMRscore has been proved as an effective index to assess the
DNA methylation status of individual samples and predict
clinical outcomes. In order to develop the accuracy of predictive
performance, the prognostic nomogram included a DMRscore, and
other clinical variables was constructed to evaluate the 1-, 3-, and 5-
year overall survival probabilities (Supplementary Figure S6).

Particularly, the capability of DMRscore to assess the efficacy
of adjuvant chemotherapy (ADJC) in bladder cancer patients was
evaluated. DMRscore prediction results were not disturbed by
ADJC: whether receiving ADJC or not, the low-DMRscore group
always presented significant survival advantages. However,
DMRscore cannot be utilized to judge whether ADJC can be
applied on a bladder cancer patient, and patients with low
DMRscores had shorter survival after ADJC. (Figure 5B). In
addition, patients with high grade, TP53MT, and non-papillary
subtypes of the cancer showed significantly higher DMRscores,
with a poorer survival prognosis (Figure 6A). This also validated
in E-MTAB-4321 cohort (Supplementary Figure S4C).
Furthermore, the capability of DMRscore to assess the efficacy
of TP53 mutation in bladder cancer patients was examined as
well. We found that the L. DMRscore-TP53. WT group exhibited
a remarkably advantageous survival, while the H. DMRscore-
TP53. MT group demonstrated the worst clinical outcome

FIGURE5 | Characteristics of DMRscore in TCGA molecular subtypes and tumor mutation burden. (A) Differences in DMRscore among diverse bladder cancer
molecular subtypes. Basal squamous subtype, blue; Luminal subtype, red; luminal infiltrated subtype, green; luminal papillary subtype, sapphire; and Neuronal subtype,
yellow. (B) Kaplan-Meier curve showed the clinical prognosis of patients with combination of DMRscore and adjuvant chemotherapy stratification. H, high. L, low. ADJC,
adjuvant chemotherapy (p � 0.028). (C) Kaplan-Meier curve showed the clinical prognosis of patients with combination of DMRscore and TP53 stratification. H,
high. L, low. MT, mutation type; WT, wild type (p < 0.001). (D) Difference in tumor mutation burden between high DMRscore and low DMRscore (p � 0.019). (E)
Correlation between DMRscore and tumormutation burden. (R � 0.25, p < 0.001) (F,G) The landscape of tumor somatic mutation in TCGA-BLCA established by high (F)
and low DMRscore (G). Each column represented individual patients. The upper barplot displayed tumor mutation burden.
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(Figure 5C). K-M survival analysis and multivariate Cox
regression analysis for the E-MTAB-4321 cohort also verified
that DMRscore can serve as an independent prognostic index in
bladder cancer (Figure 6C; Supplementary Figure S4B).

The Role of DNA Methylation Mode in
anti-PD-1/PD-L1 Immunotherapy
Studies have verified that patients’ response to immunotherapy is
related to the TMB frequency, and higher TMB statuses lead to a
persistent response to anti-PD-1/PD-L1 immunotherapy. We
investigated the somatic mutation frequencies between high-
and low-DMRscore groups in the TCGA-BLCA cohort.
However, TMB quantification analysis verified that DMRscore
is significantly and positively correlated to TMB (Figures 5D,E).
Besides, the waterfall diagram showed that the high-DMRscore
group was more susceptible to somatic mutations than the other
group, with somatic mutation frequencies of 146/148 (98.65%)
and 234/251 (93.23%), respectively (Figures 5F,G). Thus, our
experimental results indicated that patients with a high

DMRscore exhibit good response to anti-PD-1/PD-L1
immunotherapy, which is contradictory to previous findings.
Consequently, we speculated that TMB frequency cannot be
utilized to predict the effect of immunotherapy in this model.

In order to further examine the prediction performance of the
DMRscoremodel, we applied the establishedDMRscore signature to
other independent bladder cancer cohorts. Almost all cohorts
presented survival differences as revealed by the DMRscore
model except for two GEO datasets with few samples
(Supplementary Figures S5A–E). The prediction performance of
the DMRscore model for tumor stages was assessed by the receiver
operating characteristic (ROC) curves, and the area under the curve
(AUC) was 0.699 and 0.721at 3 and 5 years, respectively
(Supplementary Figures S5F,G). These data indicated that the
DMRscore signature could serve as a new biomarker to predict
clinical outcomes.

Immune checkpoint blockade therapy has undoubtedly
produced significant therapeutic benefits for many cancer
patients. Based on the collected immunotherapy cohorts, we
explored whether DMRscore can serve as a signature to

FIGURE 6 | Role of DNAmethylation modification in clinical prediction. (A) Differences in DMRscore among different clinical status. The median value: black lines in
boxes, the outliers: black dots out boxes. MT, mutation type; WT, wild type. (B) Kaplan-Meier curve showed the clinical prognosis of patients with combination of
DMRscore and NEO stratification. H, high. L, low. NEO, Newantigen burden (p < 0.001). (C) Survival analyses for high (135 samples) and low (341 samples) DMRscore
subgroups in the E-MTAB-4321 cohort using Kaplan-Meier curves (p < 0.001). (D) Survival analyses for high (430 samples) and low (151 samples) DMRscore
subgroups in the GEO-metacohort cohort using Kaplan-Meier curves (p < 0.001). (E) Survival analyses for high (147 samples) and low (151 samples) DMRscore
subgroups in the anti-PD-L1 cohort (IMvigor210 cohort) using Kaplan-Meier curves (p � 0.004). (F,G) The proportion of patients with response to PD-L1 blockade
immunotherapy in low or high DMRscore subgroups. SD, stable disease; PD, progressive disease; CR, complete response; PR, partial response. Responser/
Nonresponer: 32%/68% in the low m6Ascore groups and 14%/86% in the high m6Ascore groups. H Differences in PD-L1 expression between low and high m6Ascore
groups (p < 0.0001). L Differences in DMRscore among distinct tumor immune phenotypes in IMvigor210 cohort. (p � 0.029).
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predict patients ’ response to immunotherapy. Remarkable
survival advantages are seen in patients with low DMRscores
in the GEO-metacohort and anti-PD-L1 cohorts (IMvigor210,
advantaged urothelial cancer) (Figures 6D,E). In addition, these
patients also exhibited much better clinical outcomes when
receiving anti-PD-L1 immune checkpoint blockade therapy
(Figure 6F), and they were characterized by a significantly
higher expression of PD-L1, a potential clinical response to
immunotherapy (Figure 6H). Besides, we evaluated the tumor
neoantigen burden in bladder cancer patients, and those with high
neoantigen burden and low DMRscore signatures presented a
significant survival advantage. (Figure 6B). Judging from
Figure 6G, the DMRscore signature was a robust and potential
biomarker to estimate patient response and clinical outcomes in
immunotherapy. The immunophenotypes of metastatic urothelial
cancer have been distinguished in the IMvigor210 cohort, so we
studied the differences of DMRscore among them (Figure 6I).
Most patients with low DMRscores exhibited the inflamed
immunophenotype, to which individualized immunotherapy is
crucial in treatment. In a word, DNA methylation modes are
significantly related to tumor immunophenotypes and patients’
clinical responses to immunotherapy.

DISCUSSION

DNA methylation is closely related to tumorigenesis and tumor
progression. The extent of DNAmethylation varies among cancer
types and different stages of cancer progression. For example, the
progression of prostate cancer has been related to DNA
hypomethylation (Fraser et al., 2017; Wu et al., 2020), while
bladder cancer pathology was characterized by global DNA
hypermethylation (Osei-Amponsa et al., 2020). Thus, this
observation revealed that DNA methylation may occur in a
cancer-specific manner and alter the tumor microenvironment.
Liu P et al. demonstrated that DNMT1 regulated the tumor
growth in bladder cancer via modulating the status of DNA
methylation in the promoter of PTEN (Liu et al., 2020). Zhu Y
et al. demonstrated that MBD2 was a protective signature against
bladder carcinoma according to the RNA data from the
peripheral blood lymphocytes of 98 bladder cancer patients
and 135 frequency-matched control patients (Zhu et al., 2004).
Ying L et al. confirmed that epigenetic repression of RGS2 by
UHRF1 contributes to bladder cancer progression (Ying et al., 2015).
However, most researches only focused on the effect of a single DNA
methylation regulator on the alteration of TME and tumor
progression. As a result, the landscape of immune cell infiltration
characteristics, which is mediated by the synergistic effect of multiple
DNA methylation regulators, remained less understood. By
clarifying the roles of diverse DNA methylation modes in
immune cell infiltration, our knowledge about TME and anti-
tumor response could advance, and foundations of more efficient
immunotherapy strategies could be established.

In this study, we identified three DNA methylation modes
based on expression level 15 DNA methylation regulators, and
each DMRcluster was found to correlate with significantly
different TMEs. Specifically, DMRclusters A, B, and C are

characterized by immune-inflamed, immune-desert, and
immune-excluded phenotypes, respectively. The immune-
inflamed phenotype, or “hot tumor,” is characterized by the
existence of a large number of immune cells in the TME
(Zhang et al., 2020b; Gruber et al., 2020; Yu et al., 2021). The
other two phenotypes, or “cold tumor,” show non-inflammatory
infiltration. Despite the immune-excluded phenotype exhibits
considerable immune cell infiltration, the immune cells are
constrained by the stromal component that can be present
either in the tumor capsule or throughout the whole tumor
tissue to prevent the immune cells from exerting anti-tumor
effects (Lambrechts et al., 2018; Kaymak et al., 2021). Such an idea
is verified by the strong stromal activation in DMRcluster C,
where the EMT pathway inhibited the activity of immune cells.
Thus, our classifications of different DNA methylation modes
were confirmed feasible and effective.

In addition, we confirmed that the transcriptomes in distinct
DNAmethylationmodes are different, and obtained differentially
expressed genes among thses DNA methylation patterns. Their
actual compositions are related to DNA methylation and
immune-related biological pathways. Therefore, we termed
these differentially expressed genes as DMRGs. Three genomic
subtypes were divided from the samples based on the expression
of DMRGs, and these subtypes were also significantly related to
distinct immunophenotypes. Therefore, DNA methylation is
indeed irreplaceable in shaping the TME, and a systematic
assessment of DNA methylation modes will contribute to
understanding the mechanisms of tumorigenesis and to the
advancements of personal medicine.

Since tumors are heterogeneous, we built a DMRscore model
to evaluate DNA methylation features in individual tumors. The
patients with highDMRscores were characterized as the immune-
desert phenotype, while the patients with low DMRscores were
characterized as the immune-inflamed phenotype. These results
were further verified in the IMvigor210 cohort whose
immunophenotypes have been identified (Necchi et al., 2017).
Comprehensive analyses suggest that DMRscore signature is a
robust and potential biomarker to assess patients’ response to
immunotherapy, Patients with low DMRscore displayed higher
expression of PD-L1 compared to patients with higher
DMRscore, and had a better response to Atezolizumab. In
addition, patients with low DMRscores exhibited less TP53
wild mutation, lower cancer grade, low tumor mutation
burden, and molecular subtypes were mainly papillary subtypes.

In summary, DMRscore can systematically assess the DNA
methylation landscape and detect the TME characteristics,
thereby identifying the immunophenotypes of individual
patients for more efficient immunotherapeutic strategies.
Besides, DMRscore can be used to evaluate other features of
bladder cancer patients, including molecular subtypes, genetic
mutation, tumor stage, and clinical histology. Moreover,
DMRscore could serve as an independent prognostic indicator
for effective prediction of clinical outcomes, as well as a factor that
reflects the efficacy of and clinical responses to immunotherapy.
Our research uncovers that DNA methylation can alter the
immune microenvironment, resulting in the emergence of a
“cold tumor.” Herein, we propose a new hypothesis:
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targeting DNA methylation regulators or DMR-related
biological pathways could be effective to alter the DNA
methylation status so that the unfavorable factors could be
removed, and “cold tumors” could transform into “hot” ones.
If proved correct, this hypothesis may promote the
development of immunotherapeutic agents and drug
combinations. Our study provided a new perspective to
reveal the global DNA methylation status in bladder
cancer patients, to predict the immunophenotype of
individual tumors, and to promote individualized medicine.

Compared with existing investigations on prognostic
signatures of bladder cancer, this study has some noteworthy
advantages and shortcomings. Firstly, our investigation
contributed to demonstrate the effect of DNA methylation
modification in shaping of tumor microenvironment complexity
and diversity, and explored the potential role of DNA methylation
status to predict the clinical response to Atezolizumab therapy in
urothelial carcinoma. The global DNA methylation landscape was
constructed as the observation object to systematically investigate
the effect of DNA methylation modification on tumor
microenvironment, which has not been clarified before this
study. Our study is mainly based on bioinformatics analysis and
requires further clinical verification. Basic experiments are needed
to verify the relationship between prognostic characteristics and
immune infiltration; In the future we will conduct multicenter, large
sample size studies to prospectively validate the model in order to
further test the predictive potential and clinical ability of our model.

METHODS

Data Acquisition and Processing
The workflow in our study is displayed in Supplementary Figure
S1A. 7 sets of transcriptome data and their corresponding clinical
annotations were obtained from The Cancer Genome Alta (TCGA)
and Gene-expression omnibus (GEO) databases, in which patients
without complete clinical annotation were excluded. The “ComBat”
algorithm in the R package “sva” was used to correct the batch effect
of non-biological technical deviations. The comprehensive
information of all alternative bladder cancer datasets is
summarized in Table 1. The transcriptome data were
downloaded from UCSC Xena database, and the somatic
mutation information was obtained from TCGA database. We
investigated numerous DNA methylation regulators, including

the DNA methyltransferase family (DNMT1, DNMT3A,
DNMT3B), the methyl-CpG-binding domain proteins (MeCP2,
MBD1, MBD2, MBD3, MBD4), the ubiquitin-like proteins
containing PHD and RING finger domains (UHRF1,
UHRF2), zinc-finger domain proteins (ZBTB33, ZBTB4),
NTHL1, SMUG1, and UNG (Jones, 2012; Moore et al.,
2013; Koch et al., 2018). All the data were processed with
the R package “Bioconductor” in R software (version 4.0.3).

Unsupervised Clustering of the Fifteen DNA
Methylation Regulators
The unsupervised clustering algorithm was utilized to find out
the distinct DNAmethylation patterns based on the expression
of the fifteen alternative DNA methylation regulators. The R
package “ConsensuClsterPlus” was run 1,000 repetitive times to
ensure the stability of classification, and the clustering number was
assigned according to the K value. Subsequently, to verify the
differences in biological functions among the three DNA
methylation patterns, we ran the R package “GSVA.” GSVA
(gene set variation analysis) is an unsupervised method to
evaluate variations of biological pathways in a sample
population (Hänzelmann et al., 2013). The gene sets identified
from GSVA were named “c2.cp.kegg.v6.2.-symbols.”

Estimation of Tumor Microenvironment Cell
Infiltration
The ssGSEA (single-sample gene set enrichment analysis) was
utilized to calculate the relative amounts of gene components in
each TME cell infiltration. A gene set that labels each immune cell
type was adopted from the published studies (Charoentong et al.,
2017). We investigated several immune cell types, including
activated B cells, activated CD4 T cells, macrophages, eosinophils,
CD56dim natural killer cells, and neutrophils. Each type of immune
cell was counted for its enrichment score, and a box diagram was
used to compare the scores in different DNA methylation patterns.

Identification of DNA Methylation Related
Genes Among Distinct DNA Methylation
Modes
To reveal which genes are DMRGs, we classified the samples into
three DNA methylation clusters based on the expression levels of

TABLE 1 | The gene expression profiles of bladder cancer included in this study.

Accession number Source Number of patients Survival

TCGA: BLCA Illumina RNAseq 432 OS
GEO: GSE13507 Illumina human-6 v2.0 expression beadchip 256 OS
GEO: GSE31684 Affymetrix Human Genome U133 Plus 2.0 Array 93 OS
GEO: GSE32548 Illumina HumanHT-12 V3.0 expression beadchip 131 OS
GEO: GSE48075 Illumina HumanHT-12 V3.0 expression beadchip 142 OS
GEO: GSE48276 Illumina HumanHT-12 WG-DASL V4.0 R2 expression beadchip 116 OS
GEO: GSE70691 Illumina HumanHT-12 WG-DASL V4.0 R2 expression beadchip 49 OS
ArrayExpress: E-MTAB-4321 Illumina HiSeq 2000 476 PFS
IMvigor210 Illumina RNAseq 348 OS
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fifteen DNA methylation regulators. The differentially expressed
genes (DEGs) among the clusters were picked out by an R
package named “limma” with the adjusted p-value <0.001.

Construction of DNA Methylation Regulator
Score Groups
To qualify the DNA methylation status of individual samples
from bladder cancer patients, we designed a DNA methylation
signature termed DMRscore for assessments. The DNA
methylation score groups were designed as follows: After
identifying the DMRGs, we extracted the overlapping genes in
them. Patients were divided into groups with distinct immune
subtypes for further analysis, which was performed by an
unsupervised clustering approach on the overlapping DMRGs.
The number of gene clusters andmodel stability were validated by
the consensus clustering algorithm. Furthermore, the univariate
Cox regression analysis was executed for each overlapping
DMRG to find out the ones related to prognosis.
Subsequently, the established DMRscore model was subject
to the principal component analysis (PCA) that combines
the linear high-dimension indicators into their linear
independent low-dimension counterparts. Moreover, in
PCA, both types of indicators retain their original information,
and the speed of data processing is accelerated. Both
principal components (i.e., the two types of indicators) were
extracted to calculate the DMRscore as DMRscore � ∑(PC1i +
PC2i), where i is the expression level of the prognostic-related
DMRGs.

To comprehensively evaluate the clinical outcome of each
patient, a prognostic nomogram that contained the T stage, M
stage, N stage, Gender, Age, clinical Stage and DMRscore was
constructed. Subsequently, the 1-, 3-, 5- year overall survival
probabilities were assessed by the calibration curve. A calibration
curve close to 45° indicated the prominent prediction ability of the
constructed model.

The Relationship Between DNAMethylation
Features and Other Relevant Biological
Functions
We obtained several gene sets that are involved in certain biological
processes, e.g., DNA damage repair, homologous recombination, cell
cycle, mismatch repair, DNA replication, nucleotide excision,
carcinogenesis, Pan-F-TBRS, EMT, angiogenesis, immune
checkpoint, actions of CD8 T effector cells, and antigen processing
(Rosenberg et al., 2016; Şenbabaoğlu et al., 2016; Mariathasan et al.,
2018). The correlations between DNAmethylation features and these
processes were further identified via correlation analysis.

The Genomic Profiles of Immune
Checkpoint Blockage Effects and
Corresponding Clinical Information
In order to explore the predictive effect of DNA methylation
statuses in immunotherapy, we included an immunotherapeutic
cohort in this study, advanced urothelial cancer treated with

atezolizumab (IMvigor210 cohort) (Rosenberg et al., 2016).
Atezolizumab is anti-PD-1 monoclonal antibody. The
transcriptome profiles of immune checkpoint blockage effects
and their corresponding clinical information were obtained from
the public dataset.

Statistical Analysis
Data processing was conducted solely on R software (version
4.0.3). The R package named “limma” was run to analyze
differential gene expressions among distinct subtypes. The
Spearman analysis and distance correlation analysis were
performed to calculate correlation coefficients between the
DNA methylation regulators and the infiltration of immune
cells. The survival curves of bladder cancer patients were
plotted via the Kaplan-Meier method, and the curves’ area
under the curve (AUC) was calculated to evaluate the
specificity and sensitivity of DMRscores obtained by the R
package “pROC”. The location and circle sequence of the
DNA methylation regulators along the chromosomes were
depicted by the R package “RCircos”. Moreover, the R package
“DEseq2” was run to normalize the raw data and convert the
normalized cell count to TPM in the “IMvigor 210” cohort.
Finally, the mutation landscape was drawn and presented via
the R package “maftools.” All statistic p numbers were bilateral,
and p < 0.05 was considered statistically significant.
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LCK and CD3E Orchestrate the Tumor
Microenvironment and Promote
Immunotherapy Response and
Survival of Muscle-Invasive Bladder
Cancer Patients
Xiaonan Zheng1,2†, Xinyang Liao1†, Ling Nie3†, Tianhai Lin1, Hang Xu1, Lu Yang1,
Bairong Shen2, Shi Qiu1*, Jianzhong Ai1* and Qiang Wei1*

1Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China, 2Institute of Systems
Genetics, West China Hospital, Sichuan University, Chengdu, China, 3Department of Pathology, West China Hospital, Sichuan
University, Chengdu, China

Background: Studies have demonstrated the significance of multiple biomarkers for
bladder cancer. Here, we attempt to present biomarkers potentially predictive of the
prognosis and immunotherapy response of muscle-invasive bladder cancer (MIBC).

Method: Immune and stromal scores were calculated for MIBC patients from The Cancer
Genome Atlas (TCGA). Core differential expression genes (DEGs) with prognostic value
were identified and validated using an independent dataset GSE31684. The clinical
implications of prognostic genes and the inter-gene correlation were presented. The
distribution of tumor-infiltrating immune cells (TICs), the correlation with tumor mutation
burden (TMB), and the expression of eight immune checkpoint–relevant genes and CD39
were accordingly compared. Two bladder cancer cohorts (GSE176307 and IMvigor210)
receiving immunotherapy were recruited to validate the prognostic value of LCK and CD3E
for immunotherapy.

Results: 361 MIBC samples from TCGA revealed a worse overall survival for higher
stromal infiltration (p � 0.009) but a better overall survival for higher immune infiltration (p �
0.042). CD3E and LCK were independently validated by TCGA and GSE31684 to be
prognostic for MIBC. CD3E was the most correlative gene of LCK, with a coefficient of r �
0.86 (p < 0.001). CD8+ T cells and macrophage M1 are more abundant in favor of a higher
expression of CD3E and LCK in MIBC and across pan-cancers. Immune checkpoints like
CTLA4, CD274 (PD-1), and PDCD1 (PD-L1) were highly expressed in high-CD3E and
high-LCK groups for MIBC and also for pan-cancers, except for thymoma. LCK and CD3E
had a moderate positive correlation with CD39 expression. Importantly, high-LCK and
high-CD3E groups had a higher percentage of responders than the low-expression
groups both in GSE176307 (LCK: 22.73vs. 13.64%, CD3E: 22.00 vs. 13.16%) and
IMvigor210 cohorts (LCK: 28.19 vs. 17.45%, CD3E: 25.50 vs. 20.13%).
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Conclusion: CD3E and LCK were potential biomarkers of MIBC. CD3E and LCK were
positively correlated with several regular immunotherapy biomarkers, which is supported
by real-world outcomes from two immunotherapy cohorts.

Keywords: muscle-invasive bladder cancer, LCK, CD3e, tumor microenvironment, immunotherapy

INTRODUCTION

As one of the most common malignant solid tumors, bladder
cancer (BC) causes 573,278 incidents and 212,536 deaths in 2020
(Sung et al., 2021). Muscle-invasive bladder cancer (MIBC), the
advanced stage of BC, makes up 20–30% of BC at the initial
diagnosis, and the five-year overall survival is maintained less than
50% (Lenis et al., 2020). Although radical cystectomy still remains a
common approach, immunotherapy has rapidly progressed, with
five immune checkpoint inhibitors approved to treat advanced BC.
However, it is noticeable that the response rate to those
immunotherapy drugs reaches only 20–40%, which greatly
restricts the clinical management ofMIBC (Doroshow et al., 2021).

Studies have demonstrated the positive role of multiple
biomarkers such as tumor mutation burden (TMB) (Goodman
et al., 2017), the abundance of tumor-infiltrating immune cells
(TICs) (Petitprez et al., 2020), and the expression level of PD-L1
(Jia et al., 2018) and CD39 (also known as ENTPD1) (Allard et al.,
2017; Moesta et al., 2020) in predicting the response rate to
immune checkpoint inhibitors (ICIs). However, the limited
accuracy of those biomarkers should still be noted. In recent
years, immune cells have been recognized as a key component of
the tumor microenvironment. Immune cells are essentially
involved in tumorigenesis and tumor progression and thus
influence the survival outcomes (Fu et al., 2018; Hinshaw and
Shevde, 2019; Jiang et al., 2019). Based on this concept, it appears
reasonable to identify prognostic biomarkers for MIBC by
predicting the level of TICs (Yoshihara et al., 2013). With
these immune-based prognostic genes, we can further estimate
their correlation with immune checkpoint genes, tumor mutation
burden, TICs, and certain predictors such as CD39, which may
hopefully provide us new insights into the precise
immunotherapy of MIBC. Therefore, this study aims to
identify new immune-based prognostic genes of MIBC and
validate them in clinical cohorts receiving immunotherapy.

METHODS

Data Collection and Immune and Stromal
Score Calculation
Gene expression data of bladder cancer with clinical variables
were obtained from The Cancer Genome Atlas (TCGA) database,
and patients with MIBC (T2 to T4) were selected for subsequent
analysis. Another independent dataset was downloaded from
Gene Expression Omnibus (GEO) for external validation. The
ESTIMATE algorithm was used to calculate scores to predict the
level of immune and stromal cell infiltration for each patient
(Yoshihara et al., 2013). The R package “ESTIMATE” has been
widely utilized in cancer-related studies (Liu et al., 2021a; Liu

et al., 2021b; Liu et al., 2021c). The optimal cutoff values of
immune and stromal scores were determined with maximally
selected log-rank using the R package “survminer” (Li et al.,
2020), and patients were then divided into immune-high/-low
and stromal-high/-low groups. Kaplan–Meier curves were
utilized to evaluate the association of immune and stromal
scores with survival outcomes.

Identification of Prognostic Genes
Differential expression genes (DEGs) between immune-high
versus immune-low and stromal-high versus stromal-low
subgroups were identified using the “limma” R package with a
setting of |fold change| > 2 and a p value < 0.05, visualized with a
heatmap and intersected with a Venn plot. Enrichment analyses of
gene ontology (GO) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway were performed to reveal the biological
process, cellular component, molecular function, and molecular
pathways that the intersected DEGs were associated with.

The protein–protein interaction (PPI) network of the DEGs
was constructed with the STRING database (https://string-db.
org/), with an interaction confidence of 0.99, and the core
modules of the network were identified, defined as a collection
of genes with no less than three nodes within the network. The
prognostic value of the genes present in the core modules of the
PPI network was evaluated with Kaplan–Meier curves. Then an
independent GEO dataset GSE31684 was used for the external
validation of the prognostic genes. A p value < 0.05 indicates that
the correlation is significant.

Clinical and Immune Implications of the
Prognostic Genes
The first 100 most correlative genes of each prognostic gene were
identified and then intersected. Subsequent enrichment analyses and
network construction were performed. The expression of the

TABLE 1 | Characteristics of included patients from TCGA and GSE31684
datasets.

TCGA MIBC GEO GSE31684

Age (years)
<65 129 (35.73%) 24 (30.77%)
≥65 232 (64.27%) 54 (69.23%)

Sex
Female 95 (26.32%) 21 (26.92%)
Male 266 (73.68%) 57 (73.08%)

T stage
T2 114 (31.58%) 17 (21.79%)
T3 190 (52.63%) 42 (53.85%)
T4 57 (15.79%) 19 (24.36%)
Mean follow-up (days) 785.07 1209.45
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FIGURE 1 | Prediction of the level of tumor-infiltrating immune cells and stromal cells. (A–B) The optimal cutoff value of the immune score and stromal score was
calculated. (C–D) Prognostic value of the immune score and stromal score. (E–F) Identification of differential expressed genes according to the immune and stromal
scores. A p value < 0.05 indicates statistical significance.
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prognostic genes was compared between tumor and normal samples
with data downloaded from the UALCAN cancer database
(Chandrashekar et al., 2017) and the Human Protein Atlas
(Uhlén et al., 2015). The connection between the prognostic
genes and clinical variables was presented in a Sanguini diagram
using the R package “ggalluval.” The percentage abundance of TICs
was predicted and displayed using the R package “pheatmap,” and
the CIBERSORT algorithm was utilized to compare the distribution
of TICs according to the expression level of prognostic genes with

the R package “ggplot.”We further evaluated the expression of eight
immune checkpoint–relevant genes to reveal a potential role of the
prognostic genes in immunotherapy. Correlation between TICs,
immune checkpoint–relevant genes expression levels, and TMB
with LCK and CD3E was further performed for pan-cancers,
including 32 kinds of tumors. Another two independent bladder
cancer cohorts receiving anti-PD1/PD-L1 inhibitor immunotherapy
(GSE176307 (Rose et al., 2021) and IMvigor210 (Mariathasan et al.,
2018)) were recruited to validate the predictive value of LCK and

FIGURE 2 | Identification and validation of prognostic genes of muscle-invasive bladder cancer. (A) Intersection of differential expressed genes. (B–C) Enrichment
analyses and the protein–protein network construction of the intersected differential expressed genes. (D–E) Partial presentation of the prognostic genes with the core
module of the protein–protein network found through TCGA samples. (F–G) External validation with the GSE31684 dataset identifies that LCK and CD3E were the
prognostic genes of muscle-invasive bladder cancer. A p value < 0.05 indicates statistical significance.
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CD3E for immune response (responder: partial response [PR] or
complete response [CR]; non-responder: stable disease [SD]; or
progressed disease [PD]). The R package “Maxstat,” “Survminer,”
“Survival,” and “ggplot2” were used to assess the prognostic
significance of LCK and CD3E. The correlation of LCK and
CD3E with immune phenotypes (inflamed, excluded, and desert)
in the IMvigor210 cohort was also analyzed.

RESULT

CD3E and LCK Are the Prognostic Genes of
MIBC
A total of 361 and 78MIBCpatients were identified fromTCGAand
GSE31684 (Table 1), respectively. The optimal cutoff values were
1157.37 for the immune score and -1106.15 for the stromal score

(Figures 1A, B). In total, 92 patients from TCGA were assigned to
the immune-high group and 269 to the immune-low group, while
253 patients were classified as stromal-high and 108 stromal-low.
Higher immune infiltration was associated with improved overall
survival (p � 0.042), while increased stromal infiltration was
associated with worse overall survival (p � 0.009) (Figures 1C, D).

In total, 2033 DEGs were identified in stromal-high/low
groups and 1843 DEGs in the immune-high/low groups
(Figures 1E, F). Then 1234 DEGs were eventually intersected
(Figure 2A), and the enrichment analyses indicated a role in
cytokine–cytokine receptor interaction and T-cell activation
(Figure 2B). Network construction identified a core module of
173 genes (Figure 2C). Survival curves demonstrated that CD3E
(TCGA: p � 0.041, GEO: p � 0.022) and LCK (TCGA: p � 0.026,
GEO: p � 0.024) were the prognostic genes of MIBC after external
validation with GSE31684 (Figures 2D–G).

FIGURE 3 | Correlation between LCK and CD3E. (A–B) co-expressed genes of LCK and CD3E. (C–D) Spearman correlation and co-expression analysis between
LCK andCD3E. (E) Intersection of the first 100 genes co-expressedwith LCKandCD3E. (F–G)Enrichment analyses and the network pathway of the 85 intersected genes.
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CD3E Is the Most Correlative Gene of LCK
in MBC
The top 100 genes that co-express with LCK and CD3E are
partially presented in Figures 3A, B. Interestingly, CD3E was the
most correlative gene of LCK, with a Spearman coefficient r �
0.86 (p < 0.001) (Figures 3C, D). The intersection of the top
100 co-expressed genes of LCK and CD3E were found to be
associated with T-cell activation and differentiation and the T-cell
receptor signaling pathway (Figures 3E–G).

Correlation of LCK/CD3E with Clinical
Characteristics of MIBC
The expression of LCK and CD3E was found to be much lower in
tumor samples than in normal samples, with a median expression
value (transcript per million) of 6.685 vs 3.116 for LCK

(Figure 4A) and 17.484 vs 5.58 for CD3E (Figure 4B).
Immunohistochemical staining showed a consistent expression
trend of LCK (Figures 4C, D) and CD3E (Figures 4E, F) between
normal tissue and bladder cancer samples. The association
between clinical variables, including age, gender, and
pathological stage, with the expression of LCK and CD3E, was
also displayed, from which we could observe that there was a
tendency of the distribution of high/low LCK/CD3E across
different pathologic stages of MIBC (Figures 4G, H).
Supplementary Figure S1 more quantitatively shows that
MIBC patients in earlier stages (stages II and III vs stage IV)
had a slightly higher percentage of high-LCK and high-CD3E
expression (high-LCK: 53.11 vs. 44.19%; high-CD3E: 51.55vs.vs
48.06%; Supplementary Figure S1A). Further subgroup analyses
consistently indicated that higher expressions of LCK and CD3E
were found in MIBC patients diagnosed with earlier T stage

FIGURE 4 | Clinical implication of LCK and CD3E. (A) Comparison of the expression value of LCK between normal tissue and bladder cancer tissue from TCGA;
immunohistochemical staining of LCK in normal tissue (C)and bladder tumor tissue (D). (B) Comparison of the expression value of CD3E between normal tissue and
bladder cancer tissue from TCGA. Immunohistochemical staining of LCK in normal tissue (E) and bladder tumor tissue (F). (G–H) Correlation of LCK and CD3E with
clinical information of muscle-invasive bladder cancer.
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(T2&T3 vs. T4: high-LCK: 50.16vs.vs 48.28%; high-CD3E: 50.32
vs 46.55%; Supplementary Figure S1B), and in particular earlier
N stage (N0 vs. N1 and N2 vs. N3: high-LCK: 52.04 vs. 46.22vs.vs
28.57%; high-CD3E: 51.58 vs 49.58% vs. 28.57%; Supplementary
Figure S1C) and earlier M stage (M0 vs.M1: high-LCK: 45.76 vs.
0%; high-CD3E: 42.94 vs. 12.50%; Supplementary Figure S1D).

Correlation of LCK/CD3E with
Tumor-Infiltrating Lymphocytes, Immune
Checkpoint, Tumor Mutation Burden, and
ENTPD1 (CD39)
The percentage abundance of TICs in MIBC patients is shown in
Supplementary Figure S2 and Supplementary Table S1, from
which we have a general view of the percentage of different TICs
in MIBC samples. The CIBERSORT algorithm revealed the
significantly different distribution of TICs between LCK-high/
low and CD3E-high/low subgroups; for instance, the infiltration
of memory B cells, CD8+ T cells, CD4+memory activated, and
macrophage M1 was higher in the LCK-high and CD3E-high
subgroups (Figures 5A, B). Further analysis indicated a higher
expression of several key immune checkpoint–relevant genes
such as PD-1, PD-L1, PD-L2, and CTLA4 in LCK-high and
CD3E-high subgroups (Figures 5C, D). Moreover, this positive
correlation between memory B cell, CD8+ T cell, CD4+ memory
activated, and macrophage M1 with LCK and CD3E was also
consistent across different cancer types (Figures 6A,B).

Interestingly, LCK and CD3E had a generally positive
correlation with those eight immune checkpoint genes for
pan-cancers, except for thymoma (Figures 7A, B). Pan-cancer
analysis also revealed a positive correlation between LCK/CD3E
and TMB in several types of cancers, despite the coefficients being
small (Figures 7C, D). Further analyses showed that the
correlation of LCK and CD3E with TMB in bladder cancer
was weak, although a statistical significance was reached
(Figures 7E, F). Last but not least, there was a moderate
correlation between CD39, a previously reported gene
predictive of response rate to PD-1 inhibitors, with LCK (r �
0.48, p < 0.001) and CD3E (r � 0.52, p < 0.001) (Figures 7G, H).

Prognostic Value of LCK and CD3E for
MIBC in Predicting Immune Response and
Survival After Immunotherapy Among Two
Independent Validation Cohorts
Figures 8A, B show a greater percentage of high LCK (62.50 vs.
47.22%) and high CD3E (68.75% vs. 54.17%) in MIBC patients
defined as immunotherapy responders in GSE176307 dataset,
which was consistent with the tendency in the IMvigor210 cohort
(LCK: 61.76 vs. 46.52%, CD3E: 55.88 vs. 48.26%, Figures 8C, D).
More importantly, the percentage of responders distributed in
high-LCK and high-CD3E groups was obviously higher,
considering the generally relatively limited response rate of
immunotherapy, than the low-expression groups, both in

FIGURE 5 | Association of LCK and CD3E with the distribution of tumor-infiltrating immune cells and with the expression of immune checkpoint genes in muscle-
invasive bladder cancer. (A–B) Distribution of tumor-infiltrating immune cells based on the expression level of LCK and CD3E. (C–D) Expression level of immune
checkpoint genes based on the expression level of LCK and CD3E. * p < 0.05, ** p < 0.01, *** p < 0.001.
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GSE176307 (LCK: 22.73 vs. 13.64%, CD3E: 22.00 vs. 13.16%,
Figures 8E,F) and IMvigor210 cohorts (LCK: 28.19vs.vs 17.45%,
CD3E: 25.50 vs. 20.13%, immune cells), excluded (immune cells
accumulated but not efficiently infiltrated) and desert phenotypes
(absence of CD8+ T cells) (Figures 8I,J). Similarly, high-LCK and
high-CD3E group also had more inflamed phenotypes (LCK:
42.28vs.vs 8.26%, CD3E: 42.74vs.vs 7.50%, Figures 8K, 8L).
Supplementary Figure S3 presents a tendency of higher
expression of LCK and CD3E in the responder group versus
the non-responders (Supplementary Figures S3A–S3D), but
statistical significance was not reached. However, a significant
trend of LCK/CD3E expression was observed across the immune
phenotypes (Supplementary Figure S3E–S3F). Last, the
prognostic value of LCK and CD3E was validated by
indicating higher expression of LCK (GSE176307: HR 0.44,
95% CI 0.26–0.75, p � 0.003; IMvigor210: HR 0.45, 95% CI
0.26–0.76, p � 0.003, Figures 8M,N) or CD3E (GSE176307: HR
0.64, 95% CI 0.48–0.86, p � 0.003; IMvigor210: HR 0.58, 95% CI
0.39–0.87, p � 0.008, Figures 8O,P) and was associated with an

improved overall survival for bladder cancer patients receiving
immunotherapy.

DISCUSSION

The current study found the prognostic value of LCK and CD3E
for MIBC. A higher expression of LCK/CD3E was indicative of
improved survival of MIBC patients. LCK is the major T-cell
receptor (TCR) kinase and has selectivity on the four CD3-
signaling proteins of TCR (Marth et al., 1985). Early studies
demonstrated that LCK was widely expressed in immune cells
and was a potential biomarker of malignant tumors (Harr et al.,
2010; Till et al., 2017; Zeng et al., 2020). Importantly, through an
ionic interaction between basic residue-rich sequences and acidic
residues, CD3E is the only CD3 chain that can efficiently interact
with LCK (Li et al., 2017). The ionic interaction between LCK and
CD3E controls the TCR phosphorylation, which is considered as
the initial step in T-cell signaling to trigger adaptive immunity

FIGURE 6 | Correlation between tumor-infiltrating immune cells with the expression of LCK (A) and CD3E (B) across pan-cancers.
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against tumor cells (Li et al., 2017; Hartl et al., 2020). This might
also explain our findings of the richer abundance of CD8+ T cells in
the high-LCK and high-CD3E groups. The CD8+ T cell, also
known as the cytotoxic T cell, is one of the dominant
differentiated T cells. CD8+ T cells have been well proved to be
the main effector of eliminating tumor cells through the
recognition of MHC I molecules binding to the antigen on the
surface of tumor cells (Vesely et al., 2011). However, increasing
evidence has revealed the shift of CD8+ T cells from a functional
state to an exhausted state, indicating the high heterogeneity of
CD8+ T cells (Simoni et al., 2018; Thommen and Schumacher,
2018) and also demanding the combination of CD8 with other
biomarkers in predicting prognosis. An early study demonstrated
high-affinity neoantigens correlated with better prognosis of
hepatocellular carcinoma by activating CD39 + CD8+ T cells
(Liu et al., 2020). Therefore, our study assessed the correlation

of CD39 with LCK and CD3E, and a positive correlation was
found. Altogether, these findings explained, to an extent, the
prognostic value of LCK and CD3E for MIBC diagnosis.

Immunotherapy of ICIs has become a common choice for
treating advanced cancer worldwide. However, the response rate
to ICIs remains low (Doroshow et al., 2021). To provide better
guidance of administrating ICIs to patients who are potentially
responsive, researchers have longed to explore biomarkers that can
predict the benefit of ICI treatment. TMB, the expression level of
PD-L1, and the abundance of TICs have been proposed in this
context (Goodman et al., 2017; Jia et al., 2018). Nevertheless,
controversies still remain in terms of predicting accuracy. For
instance, the higher expression of PD-L1 was reported to be
predictive of improved survival after ICI immunotherapy, but a
small part of patients lacking PD-L1 expression would still benefit
from ICIs (Patel and Kurzrock, 2015). The abundance of tumor-

FIGURE 7 | Correlation of LCK/CD3E with immune checkpoint genes and tumor mutation burden across pan-cancers. (A–B) Correlation of LCK/CD3E with
immune checkpoint genes across pan-cancers. (C–D)Correlation of LCK/CD3E with tumor mutation burden across pan-cancers. (E–F) Spearman correlation between
LCK/CD3E and tumor mutation burden in bladder cancer. (G–H) Spearman correlation between ENTPD1 (CD39) with LCK/CD3E in bladder cancer.
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infiltrating CD8+ T cells also demonstrated to mediate response to
immunotherapy. However, CD8+ T-cell persistence was observed
when it was associated with a CD39-negative state, and a higher
proportion of CD39 + CD8+ T cells was correlatedwith an improved
response rate to ICIs (Krishna and Lowery, 2020). Therefore, it
looks unreasonable for a single biomarker to predict the survival
benefits of ICIs and prognosis for MIBC, which necessitates the
inter-biomarker correlation analyses and the integration of different
biomarkers. In this context, our study did not only reveal a positive
correlation of LCK and CD3E with CD8+ T-cell abundance and

CD39 expression level but also report a higher expression of several
typical immune checkpoint–relevant genes such as PD-1, PD-L1,
and CTLA4 in the LCK-high and CD3E-high groups. Notably,
LCK- and CD3E-related TMBs were low in our study. These
findings taken together suggested the potential of LCK and
CD3E in predicting the effect of ICI therapy.

To our knowledge, this is the first study reporting the potential
prognostic value of LCK and CD3E in MIBC. However, our
findings should not be interpreted without limitations. The first
limitation is the retrospective nature of our study. Given that two

FIGURE 8 | Prognostic value of LCK and CD3E for MIBC in predicting immune response and survival after immunotherapy among two independent validation
cohorts. (A–D) Percentage of high/low LCK/CD3E expression in responders and non-responders. (E–H) Proportion of responder and non-responder in high/low-LCK/
CD3E groups. (I–J) Percentage of high/low-LCK/CD3E expression in different immune phenotypes. (K–L) Proportion of different immune phenotypes in high/low-LCK/
CD3E groups. (M–P) Kaplan–Meier curves showing the prognostic value of LCK and CD3E for MIBC overall survival in GSE176306 and IMvior210.
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independent public datasets were employed for validation,
multicenter samples would make the findings more
convincing. Furthermore, samples used in this study were
from the core region of the tumor tissue, making us unable to
take different parts of the tumor into the analysis. All those
limitations imply well-designed prospective research to validate
the prognostic value of LCK and CD3E in clinical practice.
Moreover, experiments exploring the potential signaling
pathway of LCK/CD3E/TCR, CD8+ T cells, CD39, and PD-1/
PD-L1 are required.

CONCLUSION

CD3E and LCK, two tightly correlated genes in T-cell receptor
phosphorylation, were found to be potential biomarkers of MIBC
prognosis. Importantly, CD3E and LCK were positively correlated
with several regular immunotherapy biomarkers such as TIC
infiltration (memory B cells, CD8+ T cells, CD4+ memory
activated, and macrophage M1) and the expression of PD-1,
PD-L1, CTLA4, and CD39, which was supported by real-world
data from two independent MIBC immunotherapy cohorts.
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GLOSSARY

ACC adrenocortical carcinoma

BC bladder cancer

BLCA bladder urothelial carcinoma

BRCA breast invasive carcinoma

CESC cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL cholangiocarcinoma

COAD colon adenocarcinoma

DEGs differential expression genes

DLBC lymphoid neoplasm diffuse large B-cell lymphoma

ESCA esophageal carcinoma

GBM glioblastoma multiforme

GEO Gene Expression Omnibus

GO gene ontology

HNSC head and neck squamous cell carcinoma

ICIs immune checkpoint inhibitors

KEGG Kyoto Encyclopedia of Genes and Genomes

KICH kidney chromophobe

KIRC kidney renal clear cell carcinoma

KIRP kidney renal papillary cell carcinoma

LAML acute myeloid leukemia

LGG brain lower grade glioma

LIHC liver hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

MESO mesothelioma

MIBC muscle-invasive bladder cancer

OV ovarian serous cystadenocarcinoma

PAAD pancreatic adenocarcinoma

PCPG pheochromocytoma and paraganglioma

PRAD prostate adenocarcinoma

PPI protein–protein interaction

READ rectum adenocarcinoma

SARC sarcoma

SKCM skin cutaneous melanoma

STAD stomach adenocarcinoma

TCGA The Cancer Genome Atlas

TCR T-cell receptor

TGCT testicular germ cell tumors

THCA thyroid carcinoma

THYM thymoma

TICs tumor-infiltrating immune cells

TMB tumor mutation burden

UCS uterine carcinosarcoma

UVM uveal melanoma.
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Gemcitabine-Resistant Biomarkers in
Bladder Cancer are Associated with
Tumor-Immune Microenvironment
Yuxuan Song1,2, Yiqing Du1, Caipeng Qin1, Haohong Liang2, Wenbo Yang1, Jiaxing Lin1,
Mengting Ding1, Jingli Han1 and Tao Xu1*

1Department of Urology, Peking University People’s Hospital, Beijing, China, 2Biomedical Pioneering Innovation Center (BIOPIC),
School of Life Sciences, Peking University, Beijing, China

To identify key biomarkers in gemcitabine (GEM)-resistant bladder cancer (BCa) and
investigate their associations with tumor-infiltrating immune cells in a tumor immune
microenvironment, we performed the present study on the basis of large-scale
sequencing data. Expression profiles from the Gene Expression Omnibus
GSE77883 dataset and The Cancer Genome Atlas BLCA dataset were analyzed.
Both BCa development and GEM-resistance were identified to be immune-related
through evaluating tumor-infiltrating immune cells. Eighty-two DEGs were obtained to
be related to GEM-resistance. Functional enrichment analysis demonstrated they were
related to regulation of immune cells proliferation. Protein–protein interaction network
selected six key genes (CAV1, COL6A2, FABP4, FBLN1, PCOLCE, and CSPG4).
Immunohistochemistry confirmed the down-regulation of the six key genes in BCa.
Survival analyses revealed the six key genes were significantly associated with BCa
overall survival. Correlation analyses revealed the six key genes had high infiltration of
most immune cells. Gene set enrichment analysis further detected the key genes might
regulate GEM-resistance through immune response and drug metabolism of
cytochrome P450. Next, microRNA-gene regulatory network identified three key
microRNAs (hsa-miR-124-3p, hsa-miR-26b-5p, and hsa-miR-192-5p) involved in
GEM-resistant BCa. Connectivity Map analysis identified histone deacetylase
inhibitors might circumvent GEM-resistance. In conclusion, CAV1, COL6A2,
FABP4, FBLN1, PCOLCE, and CSPG4 were identified to be critical biomarkers
through regulating the immune cell infiltration in an immune microenvironment of
GEM-resistance and could act as promising treatment targets for GEM-resistant
muscle-invasive BCa.

Keywords: bladder cancer, gemcitabine, tumor immune microenvironment, GEO, TCGA

INTRODUCTION

Bladder cancer (BCa) is the ninth most prevalent cancer globally (Antoni et al., 2017; Bray et al.,
2018). Approximately 540,000 new cases have been diagnosed and 195,000 patients die of BCa each
year (Antoni et al., 2017; Bray et al., 2018). The BCa incidence is elevated worldwide and the tumor
burden increases due to population aging and environmental pollution during the past 2 decades
(Ebrahimi et al., 2019; Yang et al., 2019).
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Although surgical operation has been utilized in BCa
treatment, the prognosis is still poor (Kirkali et al., 2005;
Goebell et al., 2008; Humphrey et al., 2016). The 5-year
relapse rate after initial treatment is from 55% to 85% in
non-muscle-invasive BCa (NMIBC) and the 5-year survival
rate is from 30% to 45% in muscle-invasive BCa (MIBC)
(Choueiri and Raghavan, 2008; Lightfoot et al., 2014;
Antoni et al., 2017). Chemotherapy is a promising
treatment for reducing the recurrence rate and improving
the survival rate of BCa patients (Coen et al., 2019).
Gemcitabine (GEM) is a kind of cytosine analogue that
inhibits DNA synthesis. Combination therapy of GEM and
other chemotherapeutic drugs has been widely utilized in the
treatment of MIBC (Oh et al., 2009).

However, GEM-resistance causes a severe challenge in the
treatment of MIBC. It is reported that the response rate of
advanced MIBC with GEM treatment is less than 40%, which
indicates a limited efficacy of GEM treatment (Kaufman et al.,
2009; Sternberg et al., 2013). The long-term curative effects of
GEM declined sharply with the extension of treatment time
(Cao et al., 2018). In addition, inherent or acquired drug
resistance is usually observed in clinical practice (Bergman
et al., 2002; Wang and Lippard, 2005). As a consequence, it is
necessary and vital to explore potential mechanisms of GEM-
resistance. On the one hand, MIBC has the nature of high
somatic-mutation frequency and molecular heterogeneity,
which exerts a critical role in drug resistance
(Giannopoulou et al., 2019). On the other hand,
dysfunction of immune system exerts a crucial role in
tumor resistance (Yu et al., 2018). Co-delivery of GEM and
small interfering RNA targeting IDO1 could relieve the
immune brakes and further alleviate the immune inhibition
of M2 macrophages, which indicates that these immune cells
are associated with regulation of immune response to GEM
(Chen et al., 2020). In addition, bioinformatics analyses
constructs a microRNA (miRNA)-gene regulatory network
associated with alteration of memory CD4+ T cells in GEM-
resistant pancreatic cancer cells, which suggests the immune
system is implicated in the microenvironment of GEM-
resistance (Gu et al., 2020).

The present study focused on the key genes, miRNA-gene
regulatory network, and their immune microenvironment based
on GEM-resistant BCa in order to explore reliable prognostic
indicators and provide treatment targets for GEM-resistant BCa.

MATERIALS AND METHODS

The Cancer Genome Atlas (TCGA) Bladder
Urothelial Carcinoma (BLCA) dataset
The gene expression profiling dataset and clinical data of TCGA
BLCA (accessed September 1, 2021) were downloaded from the
TCGA website (http://portal.gdc.cancer.gov/). TCGA BLCA
comprised BCa tissues (n � 404) and adjacent normal tissues
(n � 18). Among all samples, there were 18 pairs of BCa tissues
(n � 18) and matched adjacent normal tissues (n � 18).

GSE77883 dataset from Gene Expression
Omnibus (GEO) database
Gene expression profiles of GSE77883 (accessed September 1st,
2021) were downloaded from GEO (http://www.ncbi.nlm.nih.
gov/geo/). Six cells containing untreated T24 cells (n � 3) and
GEM-resistant T24 cells (n � 3) were enrolled. RNA was
extracted and measured through microarray (Platform:
GPL17077 Agilent-039494 SurePrint G3 Human GE v2 8 ×
60 K Microarray 039381).

Gene Set Variation Analysis (GSVA)
We downloaded the gene set of
TOOKER_GEMCITABINE_RESISTANCE_UP (M19654)
(Tooker et al., 2007) from the Molecular Signatures Database
(MSigDB: http://www.gsea-msigdb.org/gsea/index.jsp) (Liberzon
et al., 2015), and M19654 is the key GEM-related gene set from
chemical and genetic perturbations of MSigDB. The normalized
GEM-resistance GSVA score of the gene set was measured for
each BCa tissue from TCGA BLCA using the GSVA algorithm
with the GSVA R package (Hänzelmann et al., 2013). The median
value of the GEM-resistance score was used to divide all TCGA
BCa tissues into high score of the GEM-resistance group (n �
202) and low score of the GEM-resistance group (n � 202).

Immune cells analysis in tumor-immune
microenvironment
Tumor-infiltrating immune cells were measured and analyzed
with the MCPcounter (Microenvironment Cell Populations-
counter) R package (Becht et al., 2016). In order to explore
whether GEM-resistance is immune-related, we compared the
immune cells between the high score of the GEM-resistance
group (n � 202) and low score of the GEM-resistance group
(n � 202) in TCGABCa tissues. The Pearsonmethod was adopted
to assess the correlation between the normalized GEM-resistance
GSVA score and immune cells. To further clarify the correlation
between immune system and BCa development, we compared the
immune cells between 18 pairs of BCa tissues (n � 18) and
matched adjacent normal tissues (n � 18) in TCGA BLCA.

Identification of differentially expressed
genes (DEGs) in GSE77883 and TCGA BLCA
datasets
Limma R package was adopted to detect DEGs between GEM-
resistant T24 cells and untreated T24 cells in the GSE77883
dataset (Ritchie et al., 2015). In addition, we also identified
DEGs between 18 pairs of BCa tissues and adjacent tissues in
TCGA BLCA. Benjamini-Hochberg method (Benjamini and
Hochberg, 1995; Benjamini and Hochberg, 2000) was used to
adjust the p-values for multiplicity and control false discovery
rate. The thresholds were |logFC| ≥ 1 and adjusted p-value (adj.
p-value) < 0.05. Venn diagram was adopted to find overlapped
DEGs in the GSE77883 and TCGA BLCA datasets. These
overlapped DEGs were considered as GEM-resistant genes
in BCa.
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Functional enrichment analysis
ClusterProfiler R package (Yu et al., 2012) was applied to identify
the biological functions of overlapped DEGs through Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway collections. Metascape (http://
metascape.org) was utilized to identify the most closely
enriched clusters (Zhou et al., 2019).

Protein–protein interaction (PPI) network
and selection of hub genes
We applied String (version 11.0: http://string-db.org/)
(Szklarczyk et al., 2017) to construct interactions among
proteins on the basis of the overlapped DEGs with the
interaction score of 0.400 was set as threshold. In addition,
cytoHubba in Cytoscape software screened 10 genes with
highest connection degrees. Univariate Cox regression analysis
further detected prognosis-related genes among the top 10 genes
based on BCa patients (n � 404) from the TCGA BLCA dataset.

Immunohistochemistry and validation by
TCGA BLCA and Genotype-Tissue
Expression (GTEx) datasets
Immunohistochemistry was extracted and analyzed from The
Human Protein Atlas (THPA) database (http://www.proteinatlas.
org/) (Uhlen et al., 2010). We evaluated expression levels of the
identified six prognosis-related genes (CAV1, CSPG4, FBLN1,
COL6A2, FABP4, and PCOLCE) between tumor and normal
tissues at protein level.

To confirm the differential expression of the six prognosis-
related genes in a larger sample size, box plots were adopted to
compare the expression of CAV1, CSPG4, FBLN1, COL6A2,
FABP4, and PCOLCE between BCa tissues and normal tissues
from the TCGA BLCA dataset and the GTEx dataset through
Gene Expression Profiling Interactive Analysis (GEPIA) (http://
gepia.cancer-pku.cn/) (Tang et al., 2017).

Survival analysis
Based on the TCGA BLCA dataset, we analyzed the six selected
genes (CAV1, CSPG4, FBLN1, COL6A2, FABP4, and PCOLCE)
with overall survival (OS) and disease-free survival (DFS)
through the Kaplan–Meier (KM) Plotter (http://kmplot.com/
analysis/) (Nagy et al., 2018).

Predictive value of the six hub genes in
immunotherapy
CAMOIP (Comprehensive Analysis on Multi-Omics of
Immunotherapy in Pan-cancer) is a tool for analyzing the
expression data and mutation data from the immunotherapy-
treated projects, using a standard processing pipeline (Lin et al.,
2021). The IMvigor210 cohort to investigate the clinical activity
of immunotherapy with atezolizumab in metastatic BCa was used
for an integrated biomarker evaluation (Mariathasan et al., 2018).
We used gene expression profiling from the IMvigor210 cohort to
evaluate the predictive value of the six key genes (CAV1,

COL6A2, FABP4, FBLN1, PCOLCE, and CSPG4) in OS after
immunotherapy through CAMOIP.

Pearson correlation analysis explored the
six hub genes with tumor-infiltrating
immune cells
TIMER (Tumor Immune Estimation Resource) (http://timer.
cistrome.org/) (Li et al., 2016; Li et al., 2017) was adopted to
measure the impacts of immune cells on BCa OS through
separating all BCa samples (n � 404) into high and low
abundance groups based on median value of each immune cell
abundance. In addition, Pearson method measured correlations
between immune cells and expression levels of the six genes
(CAV1, CSPG4, FBLN1, COL6A2, FABP4, and PCOLCE) in BCa
patients (n � 404) from the TCGABLCA dataset through Pearson
correlation analysis.

Genetic mutation analysis
The cBioPortal database (http://www.cbioportal.org/) was
utilized to investigate mutations of the six hub genes (CAV1,
CSPG4, FBLN1, COL6A2, FABP4, and PCOLCE) in BCa patients
(n � 404) from the TCGA BLCA dataset. Survival analysis and
immune cells were also explored based on genetic mutations.

miRNA-Gene regulatory network
Two databases including miRTarbase (http://mirtarbase.mbc.
nctu.edu.tw/php/) (Chou et al., 2018) and Targetscan (http://
www.targetscan.org/vert_72/) (Agarwal et al., 2015) were
experimentally validated miRNA-target gene interaction
databases and they were adopted to predict upstream miRNAs
and to build the miRNA-gene regulatory network. Venn diagram
was used to identify overlapped miRNAs as key miRNAs and KM
Plotter was utilized to evaluate the effects of key miRNAs on BCa
OS based on BCa patients from the TCGA BLCA dataset as
mentioned before. Pearsonmethod was performed to evaluate the
pairwise gene correlation in BCa samples from the TCGA BLCA
dataset.

Gene set enrichment analysis (GSEA)
To clarify the roles of the six hub genes (CAV1, CSPG4, FBLN1,
COL6A2, FABP4, and PCOLCE), we applied GSEA to analyze the
enrichment of BCa samples (n � 404) in the TCGA BLCA dataset
by assessing the normalized enrichment score (NES)
(Subramanian et al., 2007).

Screening of potential targeted drugs in
GEM-resistant BCa
The Connectivity Map (CMAP) database (http://portals.
broadinstitute.org/cmap) (Lamb et al., 2006; Lamb, 2007) was
utilized to explore the potential drugs with antagonism or
synergism to GEM-resistance. This database used details of
DEGs to identify potential targeted drugs. Eighty-two key
DEGs in GEM-resistant BCa were uploaded to the CMAP
database. Next, the 82 key DEGs were compared to expression
profiles stored in CMAP in order to select potential drugs. Drugs
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with p-value <0.05 were considered as significant targeted drugs
to GEM-resistance.

Statistical analysis
Statistical analyses were performed by R software (v3.6.1: http://
www.r-project.org), GraphPad Prism 7.0, Metascape, GEPIA, KM
Plotter, TIMER, and cBioPortal. Univariate Cox regression, KM
method, and log-rank test were adopted for survival analysis by
calculating hazard ratio (HR) and 95% confidence interval (CI).
Student’s t test was applied to evaluate quantitative variables. The
correlation coefficient, R-value, was used to estimate the strength of
Pearson correlation analysis. The two-sided p-value <0.05 was set as
the threshold. Cytoscape software (v.3.6.1) was adopted for
visualization of networks.

RESULTS

Figure 1 showed the workflow.

Tumor immune microenvironment in
GEM-resistance
Based on 404 BCa tissues from the TCGA BLCA dataset, GSVA
analysis indicated that BCa patients with high score of GEM-
resistance had worse OS compared with those with low score
(HR � 1.57, 95%CI � 1.14–2.16) (p � 0.006) (Figure 2A).
Furthermore, correlation analysis revealed GEM-resistance score
was positively associated with cytotoxicity scores (R � 0.376, p <
0.001), macrophages/monocytes (R � 0.317, p < 0.001), NK cells,
and cancer-associated fibroblasts. GEM-resistance score was
negatively associated with myeloid dendritic cells (Figures 2B,C).
In addition, BCa patients with high score of GEM-resistance had
higher abundance of the cytotoxicity scores, macrophages/

monocytes, NK cells, and cancer-associated fibroblasts as well as
lower abundance ofmyeloid dendritic cells in comparisonwith those
with low score, which confirmed the results of correlation analysis
(Figures 2D,E). From the above results, we identified that GEM-
resistance score in BCa is closely related to immune
microenvironment. In addition, GSVA analysis based on the
GSE77883 dataset indicated that GEM-resistant T24 cells had
higher score of GEM-resistance than untreated T24 cells (p �
0.03) (Supplementary Figure S1).

Tumor-immune microenvironment in BCa
development
Based on 18 pairs of BCa tissues and matched adjacent normal
tissues, immune cells infiltration analysis suggested that the
abundance of B cells, myeloid dendritic cells, endothelial cells,
and cancer associated fibroblast cells was obviously down-
regulated in BCa tissues compared with matched adjacent
normal tissues (p < 0.05). However, for other immune cells,
no change was observed (p > 0.05) (Supplementary Figure S2).
From the above results, we identified that BCa development is
closely related to an immune microenvironment.

Identification of key genes in GSE77883 and
TCGA BLCA datasets
We firstly compared GEM-resistant T24 cells with untreated T24
cells in the GSE77883 dataset; 2,176 DEGs containing 888 up-
regulated and 1,289 down-regulated genes were obtained in
GEM-resistant BCa cells (Figure 3A and Figure 3C).

In addition, we compared 18 pairs of BCa tissues and matched
adjacent normal tissues in the TCGA BLCA dataset. We obtained
1,398 DEGs containing 468 up-regulated and 930 down-regulated
genes in BCa tissues (Figure 3B and Figure 3D).

FIGURE 1 | Workflow of this study. TCGA: The Cancer Genome Atlas; BLCA: Bladder urothelial carcinoma; GEO: Gene Expression Omnibus; BCa: Bladder
cancer; GSVA: Gene set variation analysis; GTEx: Genotype-tissue expression; DEGs: Differentially expressed genes; PPI: Protein–protein interaction; miRNA:
microRNA; GSEA: Gene set enrichment analysis.
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FIGURE 2 |Gene set variation analysis identified that gemcitabine (GEM)-resistance was associated with prognosis and immune microenvironment in 404 bladder
cancer (BCa) patients from the TCGA BLCA dataset. (A) Kaplan–Meier survival indicated BCa patients with high score of GEM-resistance had poor overall survival; (B,C)
Correlations between GEM-resistance score and immune cells; (D,E) Differences in abundance of immune cells between high score and low score of GEM-resistance.
*p < 0.05.
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In order to investigate which genes were associated with
both GEM-resistance and BCa development, Venn diagram
combined the DEGs from two datasets and identified the
overlapped DEGs obtained in both datasets. Ultimately, 82

overlapped DEGs (11 overlapped up-regulated and 71
overlapped down-regulated genes) were obtained and were
considered as GEM-resistant genes in BCa (Figures 3E,F)
(Supplementary Table S1).

FIGURE 3 | Identification of key genes in the GSE77883 and TCGA BLCA datasets. (A) Heat map of differentially expressed genes (DEGs) between gemcitabine
(GEM)-resistant T24 cells and untreated T24 cells based on the GSE77883 dataset; (B)Heat map of DEGs between bladder cancer (BCa) tissues andmatched adjacent
normal tissues based on the TCGA BLCA dataset; (C) Volcano plot of DEGs between GEM-resistant T24 cells and untreated T24 cells based on the GSE77883 dataset;
(D) Volcano plot of DEGs between BCa tissues and matched adjacent normal tissues based on the TCGA BLCA dataset; (E) Venn diagram identified overlapped
DEGs in both GSE77883 and TCGA BLCA datasets; (F) Heat map of 82 overlapped DEGs and they were key genes in both GEM-resistance and BCa development.
adj.P.-value was adjusted p-value for Benjamini-Hochberg (BH) method.
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Functional enrichment analysis
Biological process analysis indicated that the 82 overlapped DEGs
were enriched in regulation of the epithelial cell apoptotic process
(GO:1904035) and muscle tissue development (GO:0060537).
Component analysis detected that they were mainly located at the
extracellular matrix (GO:0031012) and cell leading edge (GO:
0031252). Molecular function analysis demonstrated that they
participated in growth factor binding (GO:0019838) and toxic
substance binding (GO:0015643) (Figure 4A and Table 1).
Pathway analyses identified GEM-resistance was associated with
the peroxisome proliferator-activated receptor (PPAR) signaling
pathway (hsa03320), extracellular matrix (ECM)-receptor
interaction (hsa04512), and focal adhesion (hsa04510) (Figures
4B,C and Table 1).

Metascape identified the interactions of the main 19 clustered
enrichment terms (Supplementary Figure S3 and
Supplementary Table S2). Table 2 shows that negative
regulation of cell proliferation (GO:0008285) and its relevant
enrichment terms were significantly associated with immune cells
including endothelial cells (GO:2000351), T cells (GO:0050870),
and granulocytes (GO:0071621), which confirmed the close
relationship between GEM-resistance and immune system.

PPI network and selection of hub genes
Finally, PPI network enrolled 37 nodes and 49 edges (Figure 5A).
Among the interactions,CAV1, COL6A2, FABP4, FBLN1,

PCOLCE, CSPG4, CCL2, THBS1, CFH, and COL6A1 with the
highest degree scores were considered as the top 10 genes. Figure 5B
showed the key module constituted by the 10 genes.

Ultimately, univariate Cox regression analysis detected that six
genes (CAV1, COL6A2, FABP4, FBLN1, PCOLCE, andCSPG4)were
identified to be prognosis-related (p < 0.05) (Table 3) (Figure 5C).

Immunohistochemistry and validation of
hub genes by TCGA and GTEx datasets
We collected and analyzed immunohistochemistry of BCa tissues
and normal bladder tissues from THPA. Expression levels of the
six hub genes (CAV1, COL6A2, FABP4, FBLN1, PCOLCE, and
CSPG4) were evaluated at protein level. Figure 6 reveals the six
hub genes were down-regulated in BCa tissues.

In addition, we also validated the six hub genes between 404
BCa tissues and 28 normal bladder tissues from the TCGA BLCA
and GTEx datasets. Box plots indicated that they were all down-
regulated in BCa samples (p < 0.05), which was in accord with the
results of immunohistochemistry (Figure 6).

Survival analysis and predictive value of the
six hub genes in immunotherapy
KM curves suggested that the six hub genes could influence the
OS time (Supplementary Figure S4). Lower expression levels

FIGURE 4 | Enrichment analyses through 82 overlapped differentially expressed genes. (A) Gene ontology enrichment analysis. Biological process (BP) indicated
they were enriched in regulation of epithelial cell apoptotic process (GO:1904035) and muscle tissue development (GO:0060537); cell component (CC) indicated they
were enriched in extracellular matrix (GO:0031012) and cell leading edge (GO:0031252); molecular function (MF) indicated they were enriched in growth factor binding
(GO:0019838) and toxic substance binding (GO:0015643); (B,C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene-concept network
analysis. They were enriched in the peroxisome proliferator-activated receptor (PPAR) signaling pathway (hsa03320), extracellular matrix (ECM)-receptor interaction
(hsa04512), and focal adhesion (hsa04510).
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of FABP4, FBLN1, and COL6A2 indicated worse OS time (p <
0.05). However, higher expression levels of CSPG4, CAV1, and
PCOLCE might be indicators for worse OS time (p < 0.05) for
BCa patients. In addition, we identified that FABP4, CSPG4,

COL6A2, and PCOLCE were related to DFS time of BCa (p <
0.05) (Supplementary Figure S4).

IMvigor210 cohort indicated that COL6A2 (HR > 1),
FABP4 (HR > 1), and FBLN1 (HR < 1) could predict the

TABLE 1 | Functional enrichment analysis results

Term Description Category Adjusted p-value

GO:0007517 Muscle organ development GO (BP) 2.59E-03
GO:0060538 Skeletal muscle organ development GO (BP) 7.46E-03
GO:0014706 Striated muscle tissue development GO (BP) 1.99E-02
GO:1904035 Regulation of epithelial cell apoptotic process GO (BP) 1.99E-02
GO:0060537 Muscle tissue development GO (BP) 1.99E-02
GO:0007519 Skeletal muscle tissue development GO (BP) 2.00E-02
GO:0050680 Negative regulation of epithelial cell proliferation GO (BP) 2.18E-02
GO:0045862 Positive regulation of proteolysis GO (BP) 2`.45E-02
GO:1904019 Epithelial cell apoptotic process GO (BP) 2.49E-02
GO:2000351 Regulation of endothelial cell apoptotic process GO (BP) 2.49E-02
GO:0031012 Extracellular matrix GO (CC) 1.04E-04
GO:0062023 Collagen-containing extracellular matrix GO (CC) 6.16E-04
GO:0031256 Leading edge membrane GO (CC) 2.91E-03
GO:0032590 Dendrite membrane GO (CC) 5.90E-03
GO:0031252 Cell leading edge GO (CC) 8.01E-03
GO:0043197 Dendritic spine GO (CC) 9.77E-03
GO:0044309 Neuron spine GO (CC) 9.77E-03
GO:0031901 Early endosome membrane GO (CC) 9.77E-03
GO:0005581 Collagen trimer GO (CC) 1.03E-02
GO:0032589 Neuron projection membrane GO (CC) 1.55E-02
GO:0005201 Extracellular matrix structural constituent GO (MF) 7.61E-05
GO:0019215 Intermediate filament binding GO (MF) 3.35E-03
GO:0019838 Growth factor binding GO (MF) 1.15E-02
GO:0016504 Peptidase activator activity GO (MF) 2.46E-02
GO:0030020 Extracellular matrix structural constituent conferring tensile strength GO (MF) 2.90E-02
GO:0015643 Toxic substance binding GO (MF) 3.26E-02
GO:0045125 Bioactive lipid receptor activity GO (MF) 3.95E-02
GO:0001664 G protein-coupled receptor binding GO (MF) 4.73E-02
hsa03320 Peroxisome proliferators-activated receptor (PPAR) signaling pathway KEGG pathway 1.62E-02
hsa04512 Extracellular matrix (ECM)-receptor interaction KEGG pathway 1.62E-02
hsa04510 Focal adhesion KEGG pathway 2.93E-02

GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; BP: biological process; CC: cell component; MF: molecular function.

TABLE 2 | Immune-related enrichment terms associated with immune cells proliferation

Term Description Category Adjusted p-value

GO:0008285 Negative regulation of cell proliferation GO (BP) 1.13E-05
GO:2000351 Regulation of endothelial cell apoptotic process GO (BP) 5.92E-05
GO:0072577 Endothelial cell apoptotic process GO (BP) 8.03E-05
GO:2000353 Positive regulation of endothelial cell apoptotic process GO (BP) 8.22E-05
GO:0002696 Positive regulation of leukocyte activation GO (BP) 2.15E-03
GO:0001937 Negative regulation of endothelial cell proliferation GO (BP) 2.48E-03
GO:1903037 Regulation of leukocyte cell-cell adhesion GO (BP) 4.40E-03
GO:0050870 Positive regulation of T cell activation GO (BP) 5.35E-03
GO:0007159 Leukocyte cell-cell adhesion GO (BP) 6.74E-03
GO:0030595 Leukocyte chemotaxis GO (BP) 7.05E-03
GO:0050900 Leukocyte migration GO (BP) 7.37E-03
GO:1903039 Positive regulation of leukocyte cell-cell adhesion GO (BP) 7.39E-03
GO:0071621 Granulocyte chemotaxis GO (BP) 7.78E-03

GO: Gene Ontology; BP: biological process.
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OS after immunotherapy with atezolizumab (p < 0.05)
(Figure 7).

Tumor-infiltrating immune cells with hub
genes in TCGA BLCA dataset
We used TIMER to clarify the effects of immune cells on OS of BCa
patients in the TCGABLCAdataset.We found thatfive immune cells

(CD4+ T cells, CD8+ T cells, neutrophils, endothelial cells, and cancer
associated fibroblast cells) were associated with OS of BCa. Patients
with high abundance of CD4+T cells andCD8+ T cells had longerOS
time than those with low infiltration levels. However, patients with
low infiltration levels of neutrophils, endothelial cells, and cancer-
associated fibroblast cells had longer OS time compared with those
with high infiltration levels of these immune cells (Supplementary
Figure S5).

FIGURE 5 | Protein–protein interaction (PPI) network and selection of hub genes. (A) PPI network of DEGs; (B) Hub module; (C) Six prognostic genes (CAV1,
COL6A2, FABP4, FBLN1, PCOLCE, and CSPG4) through univariate Cox regression. Bold genes meant prognosis-related genes.

TABLE 3 | The six hub genes with high degree scores

Gene symbol Ensembel ID Description Type Hazard ratio
(95% confidence

interval)

p-Value

CAV1 ENSG00000105974 Caveolin 1 Down-regulated 1.64 (1.14–2.36) 0.007
COL6A2 ENSG00000142173 Collagen type VI alpha 2 chain Down-regulated 0.54 (0.40–0.72) <0.001
FABP4 ENSG00000170323 Fatty acid binding protein 4 Down-regulated 0.74 (0.55–0.99) 0.043
FBLN1 ENSG00000077942 Fibulin 1 Down-regulated 0.71 (0.52–0.98) 0.039
PCOLCE ENSG00000106333 Procollagen C-endopeptidase enhancer Down-regulated 1.44 (1.07–1.94) 0.016
CSPG4 ENSG00000173546 Chondroitin sulfate proteoglycan 4 Down-regulated 1.49 (1.09–2.03) 0.011
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Pearson correlation analysis evaluated the correlations
between the six hub genes (CAV1, COL6A2, FABP4, FBLN1,
PCOLCE, and CSPG4) and abundance of main immune cells
(Table 4 and Figure 8A) (Supplementary Figure S6). When we
restricted the robust R-value to more than 0.400, we found
CAV1 had strong correlation with dendritic cells. COL6A2 and
PCOLCE had strong correlations with macrophages
(Figure 8B).

In addition, GSVA and Pearson correlation analysis identified
PCOLCE, CSPG4, COL6A2, and CAV1 were positively
correlated with the score of GEM-resistance (R-value >0, p <
0.05) (Figures 9A–D). However, FBLN1 and FABP4 were
negatively correlated with GEM-resistance (R-value <0, p <
0.05) (Figures 9E,F).

Genetic mutations of hub genes in TCGA
BLCA dataset
Figure 9G illustrated the mutation frequencies of the six hub
genes (CAV1, COL6A2, FABP4, FBLN1, PCOLCE, and CSPG4)
in 404 BCa patients from the TCGABLCA dataset. Among the six
hub genes, the top three most frequently mutated genes were
FBLN1 (5.0%), FABP4 (4.0%), and CSPG4 (4.0%). FBLN1
mutations included fusion mutation, amplification mutation,
and deletion mutation. Most of FABP4 mutations were
amplification mutations and most of CSPG4 mutations were
missense mutations.

Furthermore, mutations of all the six hub genes didn’t
influence the OS time in comparison with the wild-type group

(p > 0.05) (Figure 9H). TIMER identified that CSPG4 mutations
could elevate the abundance of CD4+ T cells (p � 0.009) and NK
cells (p � 0.021) (Figure 9I), while the genetic mutations of the
other five hub genes were not associated with abundance of
immune cells.

Construction of miRNA-gene regulatory
network
A total of 72 miRNAs might regulate the expression levels of six
hub genes through the miRTarBase and Targetscan databases
(Table 5). The miRNA-gene regulatory network is displayed in
Figure 10.

As we could see in Figure 11A, hsa-miR-124-3p was the
overlapped upstream miRNA of CAV1, COL6A2, and CSPG4;
hsa-miR-26b-5p and hsa-miR-192-5p were overlapped upstream
miRNAs of CAV1 and PCOLCE, which indicated the three
miRNAs might be key miRNAs in regulating the hub genes.
Survival analysis demonstrated that higher expression levels of
hsa-miR-124-3p and hsa-miR-192-5p were significantly related
to better prognosis in BCa patients from the TCGA BLCA
dataset.

Furthermore, a pairwise correlation analysis of CAV1,
COL6A2, CSPG4, and PCOLCE was carried out. Expression
of the four genes demonstrated a significant positive
correlation (p < 0.05). The increase of one hub gene was
strongly correlated with the increase of another one
(Figure 11B). Hence, based on the overlapped upstream
miRNAs and correlation analysis, we confirmed that the

FIGURE 6 | Immunohistochemistry and validation of six hub genes by the TCGA BLCA and GTEx datasets. Immunohistochemistry from THPA (left part in each
subfigure) and bladder cancer (BCa) tissues (n � 404) and normal tissues (n � 28) from the TCGA BLCA and GTEx datasets (right part in each subfigure) indicated that the
six selected genes (CAV1, COL6A2, FABP4, FBLN1, PCOLCE, and CSPG4) were down-regulated in BCa. (A) CAV1; (B) CSPG4; (C) FBLN1; (D) COL6A2; (E) FABP4;
(F) PCOLCE.
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three key miRNAs (hsa-miR-124-3p, hsa-miR-26b-5p, and
hsa-miR-192-5p) could regulate the four hub genes (CAV1,
COL6A2, CSPG4, and PCOLCE) in GEM-resistance and
tumor immune microenvironment. We also plotted the key
regulatory network in Figure 11C. In addition, we detected
DEGs between high score of GEM-resistance and low score of
GEM-resistance. We found PCOLCE, CSPG4, COL6A2, and
CAV1 were up-regulated in patients with high GEM-resistance
scores, which further confirmed their key roles in GEM-
resistance (Supplementary Figure S7).

Gene set enrichment analysis
GSEA was conducted to investigate the possible role of the six
hub genes (CAV1, COL6A2, FABP4, FBLN1, PCOLCE, and
CSPG4) involved in GEM-resistance. We identified CSPG4
(Figure 12) was obviously enriched in cancer-related pathways
and functions including the bladder cancer pathway
(hsa05219) and TGF-β signaling pathway (hsa04350). In
addition, CSPG4 exerted a vital role in chemotherapy-
related functions including drug metabolism of cytochrome

P450 (hsa00982), drug metabolism of other enzymes
(hsa00983), cellular response to drug (GO:0035690), and
response to drug (GO:0042493). Further, CSPG4 was also
enriched in pathways of immune response and immune
cells including the B cell receptor signaling pathway
(hsa04662), NK cell-mediated cytotoxicity pathway
(hsa04650), and T cell receptor signaling pathway
(hsa04660) (Supplementary Tables S3, S4). In addition, the
other five genes were also enriched in cancer-related (hsa05200
and hsa05219), immune-related (hsa04660, hsa4650, and
hsa04662), and chemotherapy-related (hsa00982 and
hsa00983) pathways (Supplementary Table S5).

Selection of targeted drugs for
GEM-resistant BCa
CMAP analysis indicated 75 drugs might have antagonistic or
synergistic effects on GEM-resistance. According to the
enrichment score, Table 6 displayed the top 10 drugs with
antagonism and the top 10 drugs with synergism, respectively.

FIGURE 7 | IMvigor210 cohort indicated that COL6A2, FABP4 and FBLN1 could predict the OS after immunotherapy with atezolizumab. (A) FBLN1; (B) FABP4;
(C) COL6A2; (D) CAV1; (E) PCOLCE; (F) CSPG4.
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The top 10 antagonistic drugs for GEM-resistant BCa were
lisinopril, rifabutin, clonidine, prasterone, vorinostat,
prednisone, nifenazone, alvespimycin, trichostatin A, and
tanespimycin.

DISCUSSION

Accumulating evidence indicates that aberrantly expressed
genes are significantly associated with GEM-resistance in
BCa. It is reported that CSNK1D played a key role in the
metabolism of GEM, and inhibition of CSNK1D could
sensitize BCa cells to GEM treatment, which might be
utilized as a therapeutic target for metastatic BCa (Udhaya
Kumar et al., 2020; Vena et al., 2020). Xie et al. identified that
circular RNA (circRNA) circHIPK3 was an independent
prognostic predictor, and up-regulation of circHIPK3
promoted GEM-sensitivity in BCa (Xie et al., 2020).
Another study based on BCa cells indicated that inhibition
of GP130 could enhance the sensitivity to GEM and reduce

viability and migration of tumor cells through regulating the
PI3K/AKT/mTOR signaling pathways (Li X. et al., 2019). This
study analyzed the GSE77883 dataset from the GEO and
TCGA BLCA datasets to identify promising biomarkers for
GEM-resistant BCa through high-throughput sequencing data
and bioinformatics analyses.

We assessed immune cells and identified that both BCa
development and GEM-resistance were immune-related. We
found that 82 key DEGs were significantly related to both BCa
development and GEM-resistance. Functional enrichment
analyses found these key DEGs were enriched in immune-
related items, especially in the regulation of immune cell
proliferation. After construction of the PPI network and Cox
regression analysis, we selected six hub genes (CAV1,
COL6A2, FABP4, FBLN1, PCOLCE, and CSPG4) with the
highest connectivity degrees and prognostic values for
further analyses. We used immunohistochemistry from
THPA and expression profiles from larger samples to
confirm the down-regulation of six hub genes in BCa at
protein and mRNA level, respectively. Survival analyses
demonstrated that they were related to OS time. Down-
regulation of CSPG4, CAV1, and PCOLCE might be
related to elevated chemotherapy sensitivity and thus
lower expression levels of them were associated with better
OS. IMvigor210 cohort validated that COL6A2, FABP4, and
FBLN1 could predict the OS after immunotherapy with
atezolizumab. Pearson correlation analysis revealed CAV1,
COL6A2, and PCOLCE had strong correlations with immune
cells, such as dendritic cells and macrophages. Next, we
constructed the key miRNA-gene regulatory network based
on four key genes (CAV1, COL6A2, PCOLCE, and CSPG4)
and three key miRNAs (hsa-miR-124-3p, hsa-miR-26b-5p,
and hsa-miR-192-5p).

CAV1 is the chief component of the caveolae plasma
membranes in most human cells and participates in
immune response and cancer progression (Shi et al., 2020).
CAV1 in prostate cancer could induce
epithelial–mesenchymal transition through activating cancer
immune evasion, and CAV1 in cancer-derived exosomes was
able to induce chemoresistance in recipient cells (Lin et al.,
2019), which conformed to our results revealed in GEM-
resistant BCa. In addition, CAV1 might also promote
systemic lupus erythematosus through regulating pathways
of T cell costimulation, lymphocyte costimulation, and B cell
receptor signaling (Udhaya Kumar et al., 2020). CAV1 was
pivotal in acute immune-mediated hepatic damage through
driving RNS-mediated ferroptosis (Deng et al., 2020). The
presently found CAV1 was the key gene regulated by three
upstream miRNAs in the miRNA-gene regulatory network.
Zhou et al. found that hsa-miR-124-3p and hsa-miR-192-5p
suppressed the proliferation and invasion of tumor cells by
targeting CAV1 (Zhou et al., 2018; Chen et al., 2019).
Therefore, we hypothesized that CAV1 could facilitate
tumor development and GEM-resistance via immune escape
mechanism.

COL6A2 is one of the collagen family members and encodes
one alpha chain of type VI collagen identified in most

TABLE 4 | Pearson correlation analysis indicated the six hub genes (CAV1,
COL6A2, FABP4, FBLN1, PCOLCE and CSPG4) were associated with
immune cells infiltration

Immune cells Hub gene R-value p-Value

B cell CAV1 −0.193 2.22E−04
— COL6A2 −0.18 5.87E−04
— FABP4 0.053 3.09E−01
— FBLN1 0.224 1.58E−05
— PCOLCE −0.146 5.34E−03
— CSPG4 −0.087 9.81E−02
CD8+ T cell CAV1 0.356 2.24E−12
— COL6A2 0.198 1.35E−04
— FABP4 −0.065 2.18E−01
— FBLN1 −0.133 1.09E−02
— PCOLCE 0.062 2.37E−01
— CSPG4 0.198 1.35E−04
CD4+ T cell CAV1 0.127 1.55E−02
— COL6A2 0.303 3.48E−09
— FABP4 0.054 3.04E−01
— FBLN1 −0.188 3.13E−04
— PCOLCE 0.215 3.42E−05
— CSPG4 0.16 2.21E−03
Macrophage CAV1 0.217 2.99E−05
— COL6A2 0.443 5.44E−19
— FABP4 0.008 8.75E−01
— FBLN1 0.305 2.61E−09
— PCOLCE 0.411 2.79E−16
— CSPG4 0.24 3.39E−06
Neutrophil CAV1 0.348 9.07E−12
— COL6A2 0.271 1.52E−07
— FABP4 −0.159 2.40E−03
— FBLN1 −0.141 6.94E−03
— PCOLCE 0.102 5.28E−02
— CSPG4 0.21 5.62E−05
Dendritic cell CAV1 0.417 8.02E−17
— COL6A2 0.368 3.71E−13
— FABP4 −0.127 1.50E−02
— FBLN1 −0.262 3.92E−07
— PCOLCE 0.156 2.82E−03
— CSPG4 0.235 5.85E−06

The bold values indicated statistical significance.
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connective tissues (Hou et al., 2016). COL6A2 was reported to
be up-regulated and to gather in the ECM-receptor interaction
signaling pathway, which promoted the BCa progression (Zhu
et al., 2019). Down-regulation of COL6A2 induced by
decreased IDO1 could suppress host anti-tumor immune
response through inhibiting immune-related pathways
(Xiang et al., 2019). We found COL6A2 was positively
correlated with most immune cells in a tumor-immune
microenvironment, which could support the highly
immunogenic nature of COL6A2 in BCa.

CSPG4 is a kind of transmembrane proteoglycan,
considered as a promising tumor-associated antigen
(Cavallo et al., 2007). Previous investigations have
identified CSPG4 as a key gene in soft-tissue sarcoma,
melanoma, and glioblastoma (Benassi et al., 2009; Wang
et al., 2011). We found CSPG4 exerted a vital role in BCa
prognosis, and both the expression and mutation of CSPG4
might influence the immune cells in BCa. In addition, Rolih
et al. systematically summarized the evidence of CSPG4 in

tumor biology and suggested that CSPG4 and anti-CSPG4
vaccination strategy had the potential to be an attractive
target for anti-tumor immunotherapy (Rolih et al., 2017).
GSEA detected that CSPG4 contributed to cancer-related
pathways, immune system process, and drug metabolism,
which further confirmed its value in drug-resistance and
immunotherapy of BCa (Song et al., 2020). Nevertheless,
further investigations are demanded to verify its
mechanisms in BCa.

PCOLCE is a glycoprotein that elevates the activity of
procollagen C-proteinase (Pulido et al., 2018). PCOLCE was
up-regulated in osteosarcoma and promotes the distant
metastasis (Wang et al., 2019). We found PCOLCE was
down-regulated and was also associated with prognosis in
BCa. The difference of PCOLCE expression between the
two tumors could be explained by the miRNA-gene
regulatory network; hsa-miR-26b-5p and hsa-miR-192-5p
regulated the co-expression of PCOLCE and CAV1 in the
network of BCa. Besides, PCOLCE was revealed to be involved

FIGURE 8 | Tumor-infiltrating immune cell analysis with the six hub genes (CAV1, COL6A2, FABP4, FBLN1, PCOLCE, and CSPG4) through Pearson correlation
method. (A) Heat map showed correlations between immune cells and six hub genes; (B) Robust correlations (R-value more than 0.400) was identified between CAV1,
COL6A2, and PCOLCE and immune cells.
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FIGURE 9 | Genetic mutations analysis of the six hub genes (CAV1, COL6A2, FABP4, FBLN1, PCOLCE, and CSPG4) in the TCGA BLCA dataset. (A–F)
Correlations between GEM-resistance score and the six hub genes; (G) Mutation frequencies of CAV1, COL6A2, FABP4, FBLN1, PCOLCE, and CSPG4 in the TCGA
BLCA dataset; (H)Kaplan–Meier survival curves showed that genetic mutations of six selected genes (CAV1, COL6A2, FABP4, FBLN1, PCOLCE, and CSPG4) were not
associated with overall survival (OS) based on the TCGA BLCA dataset; (I) CSPG4 mutation was associated with infiltration levels of CD4+ T cells and natural killer
(NK) cells.
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in platelet and endothelial function and immune activation in
human immunodeficiency virus (HIV) patients after
pitavastatin treatment, which bound PCOLCE to immune
related functions (DeFilippi et al., 2020).

The identified key miRNA-gene regulatory network
indicated that hsa-miR-124-3p, hsa-miR-192-5p, and hsa-
miR-26b-5p were key miRNAs in regulating the above
genes. It is reported that higher expression level of hsa-
miR-124-3p suppressed tumor proliferation and indicated
better BCa prognosis in BCa through targeting downstream
genes (Wang et al., 2015; Zhou et al., 2018; Zo and Long, 2019).

Besides, hsa-miR-124-3p was frequently and tumor-
specifically methylated in primary BCa, indicating that
epigenetic silencing of hsa-miR-124-3p may also participate
in BCa development (Shimizu et al., 2013). In vitro studies
demonstrated that hsa-miR-192-5p was a suppressor for BCa
cells by cell cycle regulation and clinical studies identified hsa-
miR-192-5p as an independent prognostic marker based on
multivariate COX regression (Jin et al., 2015; Hu et al., 2017).
Bioinformatics analysis combined with in vitro experiments
demonstrated that hsa-miR-26b-5p was a critical regulator in
BCa progression by targeting the proliferation-related gene

TABLE 5 | Upstream microRNAs (miRNAs) of the six hub genes (CAV1, COL6A2, FABP4, FBLN1, PCOLCE and CSPG4)

Hub gene Upstream miRNAs

CAV1 hsa-miR-124-3p, hsa-miR-26b-5p, hsa-miR-192-5p, hsa-miR-34c-5p, hsa-miR-34b-5p, hsa-miR-103a-3p, hsa-miR-
7-5p, hsa-miR-199a-5p, hsa-miR-203a-3p, hsa-miR-107, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-93-5p, hsa-miR-
106a-5p, hsa-miR-194-5p, hsa-miR-106b-5p, hsa-miR-20b-5p, hsa-miR-526b-3p, hsa-miR-519d-3p, hsa-miR-3609,
hsa-miR-548ah-5p, hsa-miR-4796-3p, hsa-miR-3973, hsa-miR-873-5p, hsa-miR-520h, hsa-miR-520g-3p, hsa-miR-
4463, hsa-miR-1238-3p, hsa-miR-6749-3p, hsa-miR-6792-3p, hsa-miR-4691-5p, hsa-miR-627-3p, hsa-miR-660-3p,
hsa-miR-5193, hsa-miR-670-3p, hsa-miR-4277, hsa-miR-584-3p, hsa-miR-5004-3p, hsa-miR-1261, hsa-miR-4791, hsa-
miR-3201, hsa-miR-766-5p, hsa-miR-3140-3p, hsa-miR-4722-5p, hsa-miR-4468, hsa-miR-4673, hsa-miR-4645-5p,
hsa-miR-4692, hsa-miR-4514, hsa-miR-4459, hsa-miR-556-5p, hsa-miR-208b-5p, hsa-miR-208a-5p, hsa-miR-6165,
hsa-miR-6753-5p, hsa-miR-1911-3p, hsa-miR-338-5p, hsa-miR-4517

COL6A2 hsa-miR-124-3p, hsa-miR-10b-5p, hsa-miR-10a-5p, hsa-miR-3928-3p, hsa-miR-29c-3p
PCOLCE hsa-miR-192-5p, hsa-miR-26b-5p, hsa-miR-215-5p, hsa-miR-182-5p
FABP4 hsa-miR-138-5p, hsa-miR-369-5p, hsa-miR-335-5p
FBLN1 hsa-miR-30a-3p
CSPG4 hsa-miR-124-3p

Bold miRNAs meant key miRNAs regulating ≥2 hub genes.

FIGURE 10 | microRNA-gene regulatory network.
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PDCD10 (Wu et al., 2018). With regard to the relationship
between the three miRNAs and immune system, there is
evidence that they played roles in modulating immune
escape and immune cells (Li K. et al., 2019; Ji et al., 2019;
Amoruso et al., 2020).

The CMAP database analysis identified the potential drugs
with synergism or antagonism to GEM-resistance. We
identified that two histone deacetylase inhibitors
(HDACIs), trichostatin A and vorinostat, had antagonistic
effects on GEM-resistance, indicating that the two drugs

FIGURE 11 | Identification of hubmicroRNAs (miRNAs) and the keymiRNA-gene regulatory network. (A) hsa-miR-124-3p, hsa-miR-26b-5p, and hsa-miR-192-5p
were overlapped upstream miRNAs of four hub genes (CAV1, COL6A2, PCOLCE, and CSPG4) and their survival analyses; (B) Pairwise correlation analyses of four hub
genes (CAV1, COL6A2, PCOLCE, and CSPG4); (C) Key miRNA-gene regulatory network formed by the three overlapped miRNAs and the four hub genes.
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might circumvent the GEM-resistance and enhance the
sensitivity to GEM. In vivo studies based on BCa cells
revealed that trichostatin A may synergistically enhance
GEM-mediated cell cycle arrest and apoptosis through
inhibiting the Raf/MEK/ERK pathway (Jeon et al., 2011;
Lin et al., 2018), which provided HDACIs as promising
treatment methods to improve GEM-resistant BCa patients
in future clinical practice. It is also worth noticing that
oxybuprocaine and benzocaine had the synergistic effects
to GEM-resistance and the two anesthetics might aggravate
GEM-resistance in BCa. Furthermore, ascorbic acid, also
called vitamin C, was identified to be associated with
aggravate GEM-resistance. However, a phase I clinical trial
based on pancreatic cancer patients indicated that ascorbic
acid combined concurrently with GEM was well tolerated and
could reduce adverse events, which is inconsistent with our
results (Welsh et al., 2013).

In order to reduce the potential bias caused by one single
method and to verify the relationship between key biomarkers in
GEM-resistant BCa and tumor immune microenvironment, the
present study used two methods including MCPcounter (Becht
et al., 2016) and TIMER (Li et al., 2016; Li et al., 2017) for the
calculating of the immune cells. By using these two methods
separately, the results indicated that GEM-resistance and the key
genes were closely related to immune cells, which further verified
that the results were stable and convincing. However, several
limitations existed. Even if immunohistochemistry was used to
confirm the down-regulation of hub genes, and cell lines instead
of in vivomodels were used to perform CMAP analysis, we didn’t
verify their actual molecular mechanisms. Therefore, the above
hypotheses should be verified through experimental methods in
future studies. Since most BCa tissues from the TCGA BLCA
dataset were MIBC tissues, our findings were more applicable to
GEM-resistant MIBC patients.

FIGURE 12 | Gene set enrichment analysis of CSPG4. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) functional
analysis identified that CSPG4 was enriched in cancer-related, chemotherapy-related, and immune-related functions. (A) Cancer-related KEGG pathway analysis; (B)
Chemotherapy-related KEGG pathway analysis; (C) Immune-related KEGG pathway analysis; (D) Cancer-related GO enrichment analysis; (E) Chemotherapy-related
GO enrichment analysis; (F) Immune-related GO enrichment analysis.
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CONCLUSION

We identified both BCa development and GEM-resistance were
immune-related. CAV1, COL6A2, FABP4, FBLN1, PCOLCE,
and CSPG4 are hub genes in GEM-resistant MIBC. They
could serve as potential prognostic predictors and
immunotherapy targets for MIBC. In addition, the key
miRNA-gene regulatory network suggested three key miRNAs
(hsa-miR-124-3p, hsa-miR-26b-5p, and hsa-miR-192-5p) might
also be implicated in GEM-resistance. Ultimately, CMAP analysis
identified HDACIs (trichostatin A and vorinostat) might
circumvent the GEM-resistance and enhance the sensitivity
to GEM.
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Novel Non-Invasive Diagnosis of
Bladder Cancer in Urine Based on
Multifunctional Nanoparticles
Jinshan Xu1†, Shuxiong Zeng1†, Jun Li2†, Li Gao3, Wenjun Le2, Xin Huang2, GuandanWang4,
Bingdi Chen2*, Zhensheng Zhang1* and Chuanliang Xu1*

1Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China, 2Institute for Regenerative Medicine,
Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai,
China, 3Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China, 4Department of Nutrition,
Changhai Hospital, Naval Medical University, Shanghai, China

Objectives: Tumor cells were reported to have perpetual negative surface charges due to
elevated glycolysis, and multifunctional nanoprobes (Fe3O4@SiO2, mNPs) could attach
onto tumor cells via opposite surface charges. We thus evaluated whether mixing mNPs
with urine could improve the sensitivity of urine cytology test (UCT).

Methods:We developed a novel UCTmethod by mixing urine with mNPs (Nano-cytology)
to harvest more tumor cells during UCT procedures. The same voided urine sample was
divided equally for the Nano-cytology and UCT assay, and evaluated by cytopathologists
in a blinded way. The accuracy of UCT, Nano-cytology, and the combination of the two
approaches (Nano-UCT) for detecting bladder cancer were determined.

Results: Urine samples were prospectively collected from 102 bladder cancer patients
and 49 non-cancer participants from June 2020 to February 2021 in Changhai Hospital.
Overall sensitivity of the Nano-cytology assay was significantly higher than that of the UCT
assay (82.4 vs. 59.8%, p < .01). Sensitivity for low- and high-grade tumors was 79.1% and
39.5% (p < .01) and 84.7% and 74.6% (p = .25) for Nano-cytology and UCT, respectively.
Specificity of Nano-cytology was slightly lower than that of UCT (89.8% vs. 100%, p =
.022), which is mainly caused by severe urinary tract infection. In addition, Nano-UCT
showed increased sensitivity with 90.2% for overall patients, and 83.7% and 94.9% for
low- and high-grade tumor, respectively.

Conclusion: The Nano-cytology assay had a significantly improved sensitivity compared
with UCT for detecting bladder cancer patients. It represents a promising tool for diagnosis
of bladder cancer in clinical practice.

Keywords: bladder cancer, diagnosis, nanoparticles, urine cytology, nano

INTRODUCTION

Bladder cancer (BC) is the 10th most commonly diagnosed cancer worldwide (International Agency
for Research on Cancer, 2021). Approximately 75% of patients with BC present with non-muscle-
invasive bladder cancer (NMIBC) (Compérat et al., 2015). Patients with NMIBC have a significant
risk of recurrence and progression after transurethral resection of bladder tumor (TURBT) (Babjuk
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et al., 2019). As a result, patients with NMIBC need lifelong
surveillance after therapy. Cystoscopy and urine cytology are the
most important examinations for both diagnosis and surveillance
of BC. However, cystoscopy is invasive and costly, and may miss
flat lesions and carcinoma in situ (CIS) with a false-negative
outcome ranging from 10% to 40% (Grossman et al., 2005).
Currently, although numerous non-invasive urine biomarkers
have been developed for diagnosis of UC, urine cytology test
(UCT) is the only recommended liquid biopsy for surveillance of
BC in different treatment guidelines for BC (Witjes et al., 2021).
LCT (liquid-based cytology test) is commonly used in UCT daily
practice with the advantages of being specific and non-invasive,
but LCT depends on the experience of cytopathologists and the
sensitivity is unsatisfactory, varying from 29% to 84% for
different grades of BC, especially lower for low-grade BC (Yafi
et al., 2015; Babjuk et al., 2022). Therefore, there is a clinical need
to decrease the technique difficulty of LCT and improve its
sensitivity.

With the rapid development of nanoscience and
nanotechnology, numerous studies have focused on exploring
nanomaterials for diagnosis and treatment of a myriad of cancers
(Sahoo et al., 2007). Although glutamine, sialic acid, etc. can affect
the surface charge of tumor cells, the most important effect is the
that of glucose metabolism. Elevated glycolysis in tumor cells
usually led to a higher-level secretion of lactate, which caused
negative charges on the cell surfaces, while the surfaces of normal
cells remain charge-neutral or slightly positive due to normal
glycolysis (Chen et al., 2016). Taking advantage of the unique
biophysical property of tumor cells, novel multifunctional
nanoprobes (Fe3O4@SiO2, mNPs) with positive charges were
developed to capture tumor cells specifically without using any
specific molecular marker (Chen et al., 2016).

In the present study, we aimed to evaluate whether mixing
mNPs with urine (Nano-cytology) could help to identify tumor
cells in patients with hematuria, and to compare the diagnostic
accuracy of Nano-cytology with traditional UCT in a prospective,
blinded, single-center clinical trial.

MATERIALS AND METHODS

Construction of Electrically Charged mNPs
The mNPs are composed of the positively charged mNPs and the
negatively charged mNPs. Detailed procedures to construct
mNPs were described in a previous study, and all the mNPs
used in the present study were synthesized by The Institute for
Biomedical Engineering & Nano Science, Tongji University
School of Medicine (Chen et al., 2016).

Cell Culture
T921, 5637, EJ, RT-4, Biu-87, and T-24 cells were grown in RPMI
1640 medium supplemented with 10% (v/v) heat-inactivated fetal
bovine serum (FBS) and 1% (v/v) penicillin–streptomycin (PS) at
37°C in a 5% CO2 humidified atmosphere. Hela cells were
cultured at 37°C in DMEM supplemented with 10% FBS and
1% (v/v) PS in a humidified atmosphere in the presence of 5%
CO2. Non-cancerous bladder epithelial cells SVHUC were grown

in F12K supplemented with the 10% (v/v) heat-inactivated fetal
bovine serum (FBS) and 1% (v/v) penicillin–streptomycin (PS) at
37°C in a 5% CO2 humidified atmosphere. Typically, cells were
passaged by trypsinization and maintained in medium
accordingly.

Preparation of Primary Cells
Primary bladder tumor cells were isolated from rates of xenograft
bladder cancer models and bladder cancer patients’ tissue who
underwent radical cystectomy in our hospital as previously
reported (Xu et al., 2013). A total of six cases of tumor tissue
and corresponding normal urothelial tissue (adjacent to cancer)
were collected from patients. Primary cells were cultured in 24-
well plates with 1 × 105 cells per well. Cells were incubated in
RPMI 1640 medium containing 10% FBS, 100 U/ml penicillin,
and 100 µg/ml streptomycin. The research was approved and
performed under the ethical and legal standards of the Ethics
Committee of Shanghai Changhai Hospital (CHEC2019082).

Fluorescence Microscopy Analysis
Bladder tumor cells and Hela cells were grown at 37°C under
normal cell culture conditions to 70%–80% confluency. The
culture wells were washed thoroughly with PBS, trypsin, and
resuspended in PBS. mNPs were added at the indicated
concentrations to the cell suspensions and incubated on ice for
5 min with gentle agitation. After incubation, the NP-bound cells
were captured by a permanent magnet placed against the side wall
of the tube and free cells were removed by washing three times
with PBS. The captured cells were released by removing the
magnet and resuspended in PBS. Then, the captured cells were
imaged using fluorescence microscopy (DMIL, Leica, Germany)
and counted by a hemocytometer.

Patients and Samples
During June 2020 to February 2021, participants were prospectively
recruited fromChanghai Hospital. The inclusion criteria for patients
with bladder cancer were as follows: patients diagnosed with bladder
cancer and underwent TURBT or cystectomy for treatment; male or
female ages >18 years; patients without any other tumor history; and
patients who signed the informed consent form. The inclusion
criteria for participants in the control group were as follows:
participants without any tumor disease and willing to provide
urine samples, participants who signed the informed consent, and
participants with any benign urinary diseases, such as urinary stones,
cystitis glandularis, interstitial cystitis, and cystitis. Exclusion criteria
included patients unwilling to sign the consent form or unwilling to
provide urine sample for analysis; patients who already had an
indwelling catheter; and patients with incidental prostate cancer by
prostate biopsy, transurethral resection of prostate, or cystectomy.
Urine samples of approximately 100ml were collected from
participants at the time of hospital admission. Urine samples
were divided equally for UCT and nano-cytology analysis.

Urine Cytology Test
Approximately 50 ml of urine was used for UCT analysis. We
used the BD-TriPath Preparatory (BD-TriPath Imaging,
Burlington, NC), a liquid-based sampling technique, for the
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preparation of urine cytologic samples. Slides were prepared and
processed according to the manufacturer’s protocol, and were
evaluated by experienced cytopathologists blinded to the patients’
clinical information. The UCT assay was given as negative
(normal cells and atypical cells were regarded as negative) and
positive (suspicious tumor cells and tumor cells were regarded as
positive).

Nano-Cytology Assay
Urine samples (50 ml) were processed for the Nano-cytology
assay as soon as they were obtained. Urine was centrifuged at
600 g for 5 min. The cell pellet was resuspended in phosphate-
buffered saline (×1) and centrifuged at 600 g for 5 min. Cells
seeded in a 5-ml centrifuge tube were incubated with the
positively or negatively charged mNPs at 4°C for 15 min.
After incubation, the magnet was used to capture the cells
surrounded by mNPs. All cell-mNPs incubations were
performed on ice to avoid endocytic events. The captured
cells were resuspended in 200 µl of phosphate-buffered saline
(×1), and 20 µl of the remixed samples was placed in the cell
counting plate and imaged using microscopy (Cellometer Auto
1000, Nexcelom Bioscience, United States) to look for
suspicious tumor cells. If suspicious tumor cell was found,
the result score value = 1; otherwise, value = 0. The rest of
the captured cells were prepared and processed according to the
UCT protocol (Figure 1). Cytology was evaluated by
experienced cytopathologists blinded to the patients’ clinical
information. The results were given as negative (N) or positive
(P). Finally, a Nano-cytology modality was developed
combining the value and the cytology result. The protocol
could be made as follows: positive results include P1, P0, and
N1; a negative result is N0.

Statistical Analysis
Sensitivity, specificity, negative predictive value (NPV), and
positive predictive value (PPV) were calculated for Nano-
cytology, UCT, and a combination of these two methods
(Nano-UCT). Subgroup analyses were performed for different
tumor grades and stages. The Fisher’s test (by SPSS Statistics
software, v22.0, IBM Institute) was used to determine the
statistical difference for categorical variables. A p-value <.05
was considered statistically significant.

RESULTS

Interaction of the mNPs With Bladder
Cancer Cell
To determine whether positively charged mNPs could bind bladder
tumor cells specifically, six different bladder cancer cell lines and the
Hela cell line (positive control) were incubated with positively and
negatively charged mNPs, respectively. Upon electrostatic interaction
with enough mNPs, the captured cells were “pulled” to the side of the
tube by a magnet. Figure 2A shows that positively and negatively
charged mNPs had a completely different pattern of interaction with
tumor cells, and positively charged mNPs had a significantly higher
ability to capture tumor cells, which was in line with our previous
study (Chen et al., 2016). Furthermore, we tried to characterize the
interaction of the bladder cancer cell andmNPs; a constant number of
three different bladder cancer cells were incubated with various
concentrations of positively charged mNPs ranging from 5 to
150 µg/ml, and with 50 µg/ml mNPs at different pH. The
efficiency of the magnetic capture ability for bladder tumor cells by
mNPs is shown in Figures 2B,C; 50 µg/ml positive NPs were enough
to capture most of the 5 × 105 bladder cancer cells, and the mNPs

FIGURE 1 | Schematic diagram showing the procedure of Nano-cytology. The cells in suspension are mixed with positively charged NPs. Cell/NP bindings take
place due to the opposite charges. The captured cells are magnetically attracted to the side of the tube by a permanent magnet. The “Nano-ring” phenomenon can be
observed by a microscope. The collected cells also need a cytology test.
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showed stable capture efficiency with pH ranging from 6 to 9.
Moreover, we demonstrated that 50 µg/ml positively charged
mNPs could capture 50 tumor cells per 50ml of urine (Figure 2D).

mNPs Formed Nano-Ring Around Bladder
Tumor Cells
We transfected green fluorescent labeled lentivirus into Biu-87
cells (Figure 3A) and incubated with mNPs. As shown in
Figure 3B, we found positively charged mNPs binding to and
covering the surface of Biu-87 cells. The phenomenon looked like
rings (nano-ring) under a microscope (Figure 3A). We further
performed an experiment to validate the positively chargedmNPs
specifically capturing tumor cells. Labeled Biu-87 cells were
mixed with the non-cancerous SVHUC cells in a ratio of 1:1
and incubated with positively charged mNPs. As displayed, nano-
ring was found around Biu-87 cells, but not detected around
SVHUC cells, which showed no fluorescence (Figure 3C).

The Ability of mNPs to Differentiate Tumor
Cells in Primary Cultured Cells
To determine whether the nano-ring phenomenon also existed in
primary cultured cells, different types of primary cells were harvested
from SCID, FVB, C57, nude mice’s bladder, bladder cancer patients’
tissue, and subcutaneous xenograft tumor by T24 cells on nude mice
and incubated with positively charged mNPs. No nano-ring
phenomenon was found in the normal mice cells. Cells from
subcutaneous xenograft tumor and patients’ tumor tissue, the

nano-ring phenomena were obvious (Figures 4A–C). The mNPs
bond cells were then magnetically captured and separated. Slides
contained separated cells that were confirmed to be tumor cells by
cytopathologists blinded to the information of cells (Figure 4D).

The Ability of mNPs to Differentiate Tumor
Cells in Urine
We further investigated whether mNPs could identify tumor cells
from urine and avoid the influence of red blood cells and white
blood cells in urine. Urine exfoliated cells from bladder cancer
patients were used to incubate with positively charged mNPs.
Many cells showed the nano-ring phenomenon (Figure 4E). In
Figure 4E, white blood cells were smaller than bladder cancer
cells, and nano-ring was not seen. While red blood cells were
found in hematuria cases due to its properties, which adheres to
the tube and is hard to wipe off. However, this could be
distinguished by the feature of round cake with concave center
on both sides. As shown in Figure 4F, tumor cells with nano-ring
were detected and confirmed by cytopathologists.

Nano-Cytology Showed Improved
Sensitivity Compared With Urine Cytology
Test
One hundred and six patients and 49 controls were enrolled to
compare the sensitivity between nano-cytology and traditional
UCT assays. Four participants were excluded due to the incidental
prostate cancer found after cystectomy. Detailed information of

FIGURE 2 | Interaction of the mNPs with bladder tumor cells. (A) Positive mNPs and negative mNPs have completely different patterns of interaction with bladder
tumor cells. ***p < .001. (B) The magnetic capture efficiencies of bladder tumor cells by NPs of positive charges are plotted at various mNP concentrations. (C) The
magnetic capture efficiencies of bladder tumor cells by mNPs of positive charges are plotted at various pH value. (D) Positive mNPs can capture cancer cell if more than
50 cells in 50-ml samples were given.
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included participants is shown in Table 1. Compared with UCT,
nano-cytology identified BC with significantly improved overall
sensitivity (82.4% vs. 59.8%, p < .01), but slightly lower specificity

(89.8% vs. 100%, p = .022, Table 2). Nano-cytology resulted in higher
sensitivity for identifying low-grade (79.1% vs. 39.5%, p < .01) and
high-grade BC (84.7% vs. 74.6%, p = .25) compared with UCT.

FIGURE 3 | Foundation of “nano ring” in bladder tumor cells. (A) Biu-87 cells show green fluorescence. (B) Incubate fluorescent Biu-87 cells with positive mNPs,
cells were surrounded by the mNPs (red arrows). (C) Mix the same number of fluorescent Biu-87 cells, SVHUC cells, and positive mNPs; mNPs only surround green
fluorescent Biu-87 cells (black frame), and no NPs surround the only cell without fluorescence (red frame).

FIGURE 4 | “Nano ring” in living organisms’ bladder tumor cells. (A–C) In subcutaneous tumorigenic mice’s cells and patients’ tissue, the “nano ring” phenomenon
is obvious. (D) Cytology test proves the NP-bound patient’s tissue cells were tumor cells. (E) Incubate positive mNPs with Bladder cancer patients’ urine exfoliated cells.
“Nano ring” phenomenon is obvious. White blood cell (red arrow) is smaller than the bladder cancer cell (blue arrow). (F)Cytology test proves that the NP-bound patients’
exfoliated cells were tumor cells.
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Moreover, the advantage of nano-cytology was maintained in the
detection of NMIBC (82.4 vs. 56.5%, p < .01), but there was no
difference between muscle-invasive BC (82.4% vs. 76.5%, p = 1).
When combining these two methods together, nano-UCT resulted in
a sensitivity of 90.2%, a specificity of 89.8%, a PPV of 94.8%, and an
NPV of 81.5% (Table 3).

DISCUSSION

In the present study, we found that positively charged mNPs
could specifically capture bladder tumor cells in urine, and tumor

cells that bond with mNPs could be enriched under the influence
of a magnet. The patient exfoliated cells that showed the nano-
ring phenomenon should be regarded as suspicious tumor cells
and tumor cells. The sensitivity of standard UCT for detecting
urothelial carcinoma is low, largely due to its inability to process
the entire sample, paucicellularity, and the presence of
background cells (Miyake et al., 2021). Our novel approach
could help to reduce the confounding background cells such
as normal urothelial cells, apoptotic cells, and red and white blood
cells in urine. Cytopathologists thus could focus on evaluating
suspicious cells captured by mNPs. As a result, our study showed
that nano-cytology had a significantly higher sensitivity (82.4%
vs. 59.8%), especially for low-grade tumor cells (79.1% vs. 39.5%),
and comparable specificity compared with traditional UCT. In
addition, the mNPs are cost-effective, which can be synthesized at
a cost of $100 and test tens of thousands of samples. So there is
not much difference between nano-cytology and UCT in terms
of cost.

Urine cytology is a commonly used noninvasive approach for
detecting tumor cells in the urinary tract with high specificity.
Currently, UCT is recommended in the surveillance of high-risk
NMIBC in clinical guidelines at certain intervals (Babjuk et al.,
2019). However, the sensitivity of UCT varied from 29% to 84%
for tumors of different grades and stages (Dimashkieh et al.,
2013), and the sensitivity for detecting CIS was 28%–100%
(Babjuk et al., 2022). Meanwhile, the accuracy of UCT largely
depends on the experience and skill of the technicians and
cytopathologists. The Paris System for Reporting Urinary
Cytology have been put forward to standardize the reporting
system of UCT (Babjuk et al., 2022). Meilleroux et al. (2018)
reported that the Paris System helped to characterize the atypical

TABLE 1 | Patient baseline characteristics.

Urine samples Tumor Control p-value

Participants included 102 49
Participants excluded 4
Gender .601
Male 87 41
Female 15 8

Age
Mean (SD) 66.51 (12.31) 66.24 (13.55) .354
Tumor stage
<pT2 85
≥pT2 17

Tumor grade
Low grade 43
High grade 59

Benign urinary diseases in control
Urinary stones 13
Benign prostate hyperplasia 21
Incontinence 4
Others 11

TABLE 2 | Detailed comparison of sensitivity obtained by Nano-cytology and UCT for BCa detection in relation to tumor stages and grades.

Tumors Nano-cytology UCT p-value

n Positive/n Total Sensitivity (%) n Positive/n Total Sensitivity (%)

BC 84/102 82.4 61/102 59.8 .001*
BC by grade
Low 34/43 79.1 17/43 39.5 .000*
TaLG 27/34 79.4 9/34 26.5 .000*
T1LG 6/7 85.7 6/7 85.7 1
T2–4LG 1/2 50.0 2/2 100.0 .248
High 50/59 84.7 44/59 74.6 .253
TaHG 9/12 75.0 8/12 66.7 .653
T1HG 28/32 87.5 25/32 78.1 .320
T2–4HG 13/15 86.7 11/15 73.3 .361

BC by stage
<pT2 70/85 82.4 48/85 56.5 .000*
Ta 36/46 78.3 17/46 37.0 .000*
T1 34/39 87.2 31/39 79.5 .362
≥pT2 14/17 82.4 13/17 76.5 1.000

Control n Negative/n Total Specificity (%) n Negative/n Total Specificity (%)
All 44/49 89.8 49/49 100.0 .022*
Normal 32/32 100.0 32/32 100.0 1
Infection 12/17 70.6 17/17 100.0 .003*

PPV 94.3% 100%
NPV 71.0% 54.4%

NPV, negative predictive value; PPV, positive predictive value.
*Significant, p < .05.
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urothelial cells and low-grade urothelial neoplasm. Several novel
approaches have been explored to improve the sensitivity of UCT.
Birkhahn et al. (2013) invented a novel portable microfiltration
device for the capture, enumeration, and characterization of
exfoliated tumor cells in urine. Sensitivity (53.3% vs. 40.0%)
and specificity (100% vs. 95.8%) of microfilter cytology were
higher than standard cytology. Miyake et al. (2021) created a
high-throughput detection device for hexylaminolevulinate-
mediated fluorescent voided urine cytology, and this novel
approach was found to have significantly higher sensitivity
compared with standard cytology (63% vs. 29%).

Over the last few decades, numerous studies have tried to
explore novel techniques to detect urothelial carcinoma by
analyzing protein and nucleic acid in urine. Several methods
such as bladder tumor antigen, FISH, and NMP22 have been
approved by the FDA. However, clinical application of these
markers is still rare due to the lower specificity compared with
UCT and the low reproducibility. None of these markers have
been accepted for diagnosis or follow-up in daily practice or
clinical guidelines (Babjuk et al., 2022). More recently, several
detection platforms based on high-throughput sequencing have
been developed, such as CxBladder (Kavalieris et al., 2016) and
Xpert (Valenberg et al., 2019) (multigene expression markers);
Bladder EpiCheck (Mancini et al., 2020), UriFind (Ruan et al.,
2021), and utMeMA (Chen et al., 2020) (DNA methylation
markers); and UroCAD (Chromosomal instability) (Zeng
et al., 2020). These novel markers were reported to have both
high sensitivity and specificity and NPV. Valenberg et al. (2019)
developed the Xpert Bladder Cancer Monitor (Xpert) and
measured five mRNA targets (ABL1, CRH, IGF2, UPK1B, and
ANXA10) that are frequently overexpressed in BC. The overall

sensitivity was 74% (63% for LG, 83% for HG) and specificity was
80%. Ruan et al. (2021) developed and validated a urine-based
PCR DNA methylation assay for early detection of BC, which
showed a sensitivity of 88.1%–91.2%, a specificity of 89.7–85.7%,
and superior sensitivity in detecting low-grade (66.7%–77.8%)
and Ta tumors (83.3%). Compared with these detection platforms
based on the high-throughput sequencing, nano-cytology showed
similar sensitivity for low-grade (79.1%) and Ta tumors (78.3%).
However, these liquid biopsy methods are still not widely used in
clinical practice; further studies with a larger sample size in
multiple centers and longer follow-up are warranted.

Nanotechnology has widely been developed for the
management of cancers from diagnosis to treatment
(Tomlinson et al., 2015). However, nanotechnology applied on
the noninvasive detection of BC is limited. Eissa et al. (2014)
described a gold nanoparticle assay in which target RNA was
purified using magnetic nanoparticles (Fe2O3) and then detected
with standard molecular techniques. This approach reached a
sensitivity of 88.5% and a specificity of 94%. Hyaluronanase was
detected in urine based on the agglomeration characteristics of
cationic gold nanoparticles to diagnose BC in 40 participants; this
study showed that the sensitivity was 90% and the specificity was
80.8% when the threshold value was 93.5 μU/ng protein (Nossier
et al., 2013). Nossier et al. (2016) developed a simple colorimetric
gold nanoparticle assay for the detection of urinary total
gelatinase activity (MMP-2 and MMP-9) to differentiate BC
patients, and resulted in a sensitivity of 87.5% and a specificity
of 86.4%.

Based on the fact that the tumor cell membrane is negatively
charged, nanoparticles with positive electricity are more
conducive to bind to the cell membrane (Chen et al., 2016;
Hla et al., 2021). Inspired by unlike electric charges attract, we
utilized the positively charged mNPs to capture tumor cells in
urine. The morphology of low-grade tumor cells is not much
different from normal urothelium. As a result, it is difficult to
identify low-grade tumor cells with plenty of background cells,
which leads to lower sensitivity compared to high-grade tumor
cells in standard UCT (Barkan et al., 2016). The Nano-cytology
method could identify tumor cells by the nano-ring phenomenon
and enrich tumor cells and reduce the influence of a large number
of background cells in exfoliated cell slides, thus improving the
reading efficiency and accuracy of cytopathologists.

Limitations of the present study should be noted. First, mNPs
are synthesized and provided by the laboratory we worked with,
and nano-cytology is currently only available in our hospital. As a
result, this is a single-center study. Second, only a small number
of urine samples were included in the present study, and the value
of nano-cytology should be confirmed via a larger cohort and
multicenter study in the future. Third, Nano-cytology was the
combination of the “nano-ring” phenomenon and the cytology
test of the mNP-enriched cells. Compared with UCT, the cytology
test of mNP enrichment lost some of the urine exfoliated cells.
Fourth, nano-ring is essential to capture tumor cells, but we have
found that mNPs could also be absorbed by few leukocytes such
as granulocytes in a previous study (Chen et al., 2016). In the
present study, five patients with a false-positive result (nano-ring
phenomenon on white blood cells) were found to have a high level

TABLE 3 | Detailed comparison of sensitivity obtained by Nano-UCT for BCa
detection in relation to tumor stages and grades.

Tumors Combination of Nano-cytology and UCT

n Positive/n Total Sensitivity (%)

BC 92/102 90.2
BC by grade
Low 36/43 83.7
TaLG 27/34 79.4
T1LG 7/7 100.0
T2–4LG 2/2 100.0
High 56/59 94.9
TaHG 12/12 100.0
T1HG 30/32 93.8
T2–4HG 14/15 93.3

BC by stage
<pT2 76/85 89.4
Ta 39/46 84.8
T1 37/39 94.9
≥pT2 16/17 94.1

Control n Negative/n Total Specificity (%)
All 44/49 89.8
Normal 32/32 100.0
Infection 12/17 70.6

PPV 94.8%
NPV 81.5%

NPV, negative predictive value; PPV, positive predictive value.
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of white blood cells in urine (at least 280 cells/HPF). Predictably, the
diagnostic accuracy can be influenced in patients with severe urinary
tract infection, and nano-cytology should be conducted after
infection is under control. Fourth, although mNPs are specific for
tumor cells, they cannot capture tumor cells less than 50/50 ml; the
lack of sufficient exfoliative cells in urine from patients may be the
major technique limitation. So, the combination of nano-cytology
and UCT will help to improve detection sensitivity. Fifth, we did not
compare the diagnostic performance of nano-cytology with FISH
assay, because urine sample collected at one urination is not enough
for three urine tests, and urine collected at different times may
further introduce bias.

CONCLUSION

Compared with standard UCT, the Nano-cytology assay showed
significantly improved sensitivity and comparable specificity for
detecting BC. Nano-cytology may be a promising novel approach
adjunct to cystoscopy for diagnosis of BC in clinical practice.
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TNF Family–Based Signature Predicts
Prognosis, Tumor Microenvironment,
and Molecular Subtypes in Bladder
Carcinoma
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Background: Tumor necrosis factor (TNF) family members play vital roles in cancer
development and antitumor immune responses. However, the expression patterns,
prognostic values, and immunological characteristics of TNF members in bladder
carcinoma (BLCA) remain unclear.

Methods: The training cohort, TCGA-BLCA, was downloaded from The Cancer Genome
Atlas; another two Gene Expression Omnibus datasets (GSE13507 and GSE32894) and
the Xiangya cohort (RNA-sequencing cohort collected from our hospital) were used as the
external validation cohort. The least absolute shrinkage and selection operator (LASSO)
algorithm and cross-validation were used to screen variables. Cox regression model and
random survival forest (RSF) were used to develop the risk score, respectively. Then, we
systematically correlated the TNF risk score with the tumor microenvironment (TME) cell
infiltration, molecular subtypes of BLCA, and the potential value for predicting the efficacy
of immunotherapy.

Results:We developed two TNF-based patterns, named TNF cluster 1 and TNF cluster 2.
TNF cluster 1 exhibited poorer survival outcome and an inflamed TME characteristic
compared with TNF cluster 2. We then filtered out 196 differentially expressed genes
between the two TNF clusters and applied the LASSO algorithm and cross-validation to
screen out 22 genes to build the risk score. For risk score, we found that RSF exhibited
higher efficacy than the Cox regression model, and we chose the risk score developed by
RSF for the following analysis. BLCA patients in the higher risk score group showed
significantly poorer survival outcomes. Moreover, these results could be validated in the
external validation cohorts, including the GSE13507, GSE32894, and Xiangya cohorts.
Then, we systematically correlated the risk score with TME cell infiltration and found that it
was positively correlated with the infiltration of a majority of immune cells. Also, a higher risk
score indicated a basal subtype of BLCA. Notably, the relationship between risk score,
TME cell infiltration, and molecular subtypes could be validated in the Xiangya cohort.
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Conclusion: We developed and validated a robust TNF-based risk score, which could
predict prognostic outcomes, TME, and molecular subtypes of BLCA. However, the value
of risk score predicting the efficacy of immunotherapy needs further research.

Keywords: bladder carcinoma, prognosis, tumor microenvironment, immunotherapy, molecular subtype

INTRODUCTION

Bladder carcinoma (BLCA) is the 11th most common carcinomas
globally, with nearly 550,000 new cases and 200,000 new deaths
every year (Bray et al., 2018). BLCA can be divided into muscle-
invasive bladder carcinoma (MIBC) and non–muscle-invasive
bladder carcinoma (NMIBC) based on whether the tumors
invade the detrusor muscle (Sanli et al., 2017). MIBCs account
for approximately 20% of newly diagnosed BLCA, and 15% to
20% of NMIBC cases tend to progress to MIBC, which is a more
aggressive form of cancer with extremely poor survival outcomes
(Patel et al., 2020). Moreover, 10% of diagnosed BLCA cases are
spread beyond the bladder, with only 5% to 30% 5-year overall
survival (OS) rate (Siegel et al., 2018). Therefore, discovering
specific prognostic methods for the OS of BLCA is needed to
choose the most suitable treatment options for distinct subsets of
BLCA patients.

Because of the poor prognosis, the US Food and Drug
Administration has approved five immune checkpoint
inhibitors (ICIs) for the treatment of metastatic BLCA (Patel
et al., 2020). As a result, the immune component of the tumor
microenvironment (TME) has reinvigorated the interest of
researchers. ICIs can reinvigorate anticancer immune
responses by targeting inhibitory receptors on T cells, and
they have achieved remarkable success in treating different
types of carcinomas (Havel et al., 2019). However, only a
subset of patients benefits from ICI treatment. Engaging
costimulatory receptors is another promising way for
promoting T-cell responsiveness (Tran and Theodorescu,
2020). Tumor necrosis factor (TNF) family members, which
contain 29 TNF receptors (TNFRSF) and 19 TNF ligands
(TNFSF), play a vital role in the immune system through
either coinhibited or costimulated ways (Dostert et al., 2019).
Therefore, regulating the comprehensive interactions between
TNF members is a promising carcinoma treatment option.
However, the expression patterns, prognostic values, and
immunological characteristics of TNF family members in
BLCA remain unclear. In this study, we conducted a
comprehensive analysis of TNF family members regarding
prognosis, TME, and molecular subtypes of BLCA.

MATERIALS AND METHODS

Sources of BLCA Datasets and
Preprocessing
We enrolled 932 BLCA cases from three public datasets and an
RNA-sequencing (RNA-seq) cohort collected from Xiangya
hospital. For The Cancer Genome Atlas (TCGA) database, the
fragments per kilobase per million mapped fragments (FPKM)

and the count value of 408 BLCA samples were downloaded from
Genomic Data Commons (GDC, https://portal.gdc.cancer.gov/)
(Colaprico et al., 2016), and then we transformed the FPKM value
into transcripts per kilobase million value. After filtering
duplicated patients and patients lacking full follow-up
information, 403 patients from TCGA-BLCA were finally
enrolled. Another two Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/) datasets with clinical and
survival information were also enrolled. There are 308 cases in
GSE32894 (Sjödahl et al., 2012), and we excluded 84 cases
without survival information. There are 188 tumor cases and
67 normal cases in GSE13507 (Lee et al., 2010), and we excluded
23 tumor cases without survival information. Finally, for GEO
databases, we included 224 cases from GSE32894 and 165 cases
from GSE13507. As our previous study reported (Hu et al., 2021),
we developed an RNA-seq cohort based on Xiangya hospital
(Xiangya cohort) and uploaded it on the GEO database
(GSE188715), which included 56 patients with survival
information. The clinical information of these four datasets is
summarized in Supplementary Table S1.

Consensus Clustering
Forty-seven TNF family genes, including 18 TNFSF and 29
TNFRSF genes, were collected from a previous study
(Supplementary Table S2) (Zhang et al., 2020). We excluded
TNFRSF6B because of its zero expression in TCGA-BLCA and
included 46 TNF family genes for further analysis. We applied the
consensus clustering algorithm (maxK � 5, reps � 100, pItem �
0.8, distance � “manhattan,” clusterAlg � “pam”) implemented in
the “ConsensuClusterPlus” R package to identify distinct TNF-
related patterns based on these 46 TNF family genes (Wilkerson
and Hayes, 2010).

Depicting Tumor Immune
Microenvironment of BLCA
In summary, the tumor immune microenvironment (TIME) of
BLCA in this study included the activation of the anti–cancer-
immunity cycle, infiltration of immune cells, and expression of
ICI genes, effector genes of immune cells, and T cell–associated
inflammatory signature (TIS). The activation levels of seven-step
anti–cancer-immunity cycles were downloaded from the tracking
tumor immunophenotype (TIP) (http://biocc.hrbmu.edu.cn/
TIP/) (Xu et al., 2018), which is a web-based analytical
platform. Then, the single-sample gene set enrichment analysis
(ssGSEA) algorithm was applied to calculate individual immune
cells in the TME, and the gene set for calculating is summarized in
Supplementary Table S3 (Charoentong et al., 2017). In addition,
we summarized 22 ICI genes, 18 TIS genes, and effector genes of
immune cells, including CD8+ T cells, dendritic cells (DCs),
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macrophages, natural killer (NK) cells, and type 1 T helper (TH1)
cells from our previous study (Supplementary Table S4) (Hu
et al., 2021).

Gene Set Variation Analysis and Molecular
Subtypes of BLCA
Gene signatures that had a close association with the clinical
response to immune checkpoint blockade (ICB) therapy and
molecular subtypes of BLCA were summarized from the
studies by Mariathasan et al. and Kamoun et al., respectively
(Supplementary Table S5) (Mariathasan et al., 2018; Kamoun
et al., 2020). We then performed enrichment gene set variation
analysis (GSVA) based on these signatures using the “GSVA” R
package (Hänzelmann et al., 2013). In addition, seven
independent molecular subtype classifications were developed
using the “ConsensusMIBC” and “BLCAsubtyping” R packages
as our previous study described (Hu et al., 2021). Based on the
classification methods reported in consensus subtype, we
renamed different names of molecular subtypes into “basal”
and “luminal” subtypes (Kamoun et al., 2020).

Differentially Expressed Genes Filtering and
Functional Annotation
We applied empirical Bayesian algorithm implemented in the
“limma” R package to identify differentially expressed genes
(DEGs). The genes with absolute log2 fold change greater than 2
and adjusted p < 0.01 were considered as DEGs.We then conducted
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses using the “ClusterProfiler” R package.

The Development and Validation of a Risk
Score Based on DEGs
We first applied univariate Cox analysis to identify the genes with
prognostic value based on the DEGs using the “survival” R
package. We then selected the prognostic genes to perform the
least absolute shrinkage and selection operator (LASSO) regression
using the “glmnet”R package.We filtered 24 genes to develop a risk
score; among these genes, IL9R and TSPAN8 were ruled out
because of nonexpression in the validation cohort. Finally,
22 TNF-associated genes were enrolled, and a TNF-based risk
score was developed using the “rfsrc” function implemented in the
“randomForestSRC” R package. In addition, we also developed a
risk score using Cox proportional hazard regression analysis
implemented in the “glmnet” R package:

Risk score � ∑ βipRNAi.

We set the median value of the TNF-based risk score as the
cutoff value and divided the patients into high and low TNF risk
score groups. The Kaplan–Meier (K-M)method and log-rank test
implemented in the “survminer” R package were used to plot the
survival curves, and the timeROC function implemented in the
“tROC” R package was used to assess the predictive accuracy of
the risk score.

Statistical Analysis
Pearson or Spearman correlation coefficients were applied to
evaluate the correlations among the variables, and t test or Mann-
Whitney U test was applied to evaluate the differences between
binary groups with continuous variables. The K-M method and
log-rank test were applied to plot the survival curves, and
univariate Cox analysis and LASSO algorithm were applied to
narrow down the candidate genes for developing risk score. The
values of hazard ratio for the candidate genes were calculated by
univariate Cox regression model. Both random survival forest
(RSF) and Cox proportional hazard regression analysis were
applied to develop the risk score, and the predictive accuracy
of the TNF-based risk score was assessed using time-dependent
receiver operating characteristic (ROC) analysis. Multivariate
Cox regression model was chosen for calculating independent
prognostic value of the TNF-based risk score. p < 0.05 was set as
the significant criteria, and the two-sided statistical tests were
applied. R software (4.0.3) was used for all analyses.

RESULTS

Development of TNF-Based Patterns and
Association With TIME
Figure 1Ashows the comprehensive landscape of 46 TNF family
genes connection, interaction, and prognostic roles. TNF family
genes had a close relationship with each other, and most of the
genes had prognostic roles. So, we conducted an unsupervised
clustering analysis using the “ConsensuClusterPlus” R package
based on these 46 TNF family genes and found that dividing the
TCGA-BLCA patients into two patterns was most suitable
(Supplementary Figure S1). We named these two patterns as
TNF cluster 1 and TNF cluster 2 and found that TNF cluster 1
exhibited significantly poorer survival outcome compared with
cluster 2 (p � 0.02, Figure 1B).

We then wondered if these TNF-based patterns had regulation
roles in the TME. A series of stepwise actions should be activated,
proceeded, and expanded to effectively kill carcinoma cells; these
series of steps were named cancer-immunity cycles and consisted
of seven steps (Chen and Mellman, 2013). We found that a
majority of these steps were activated significantly higher in the
TNF cluster 1 than cluster 2, including T-cell recruiting, CD8 T-cell
recruiting, NK cell recruiting, infiltration of immune cells into
tumors, and killing of cancer cells (Figure 1C). This result
indicated that TNF cluster 1 might represent an inflamed TME
of BLCA and could be more sensitive to ICB therapy (Gajewski,
2015; Zemek et al., 2019). We then directly figured out the
infiltration levels of 28 immune cells in the TME using ssGSEA
algorithm and confirmed that TNF cluster 1 could be an inflamed
phenotype with higher infiltration of immune cells, including
activated CD4 T cells, activated CD8 T cells, macrophages, NK
cells, and TH1 cells (Figure 1D). Mariathasan et al. developed gene
signatures that are closely associated with clinical response to ICB
therapy (Mariathasan et al., 2018). As shown in Figure 1E, all these
21 gene signatures were significantly activated in TNF cluster 1,
indicating that patients in TNF cluster 1 could be more sensitive to
ICB therapy.
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FIGURE 1 | Development of TNF-based patterns and association with TIME. (A) The interaction between TNF family members in bladder carcinomas. The size of
the circle represents the p value for overall survival (OS) calculated using log-rank test. The green and purple dots in the circle represent the favorable and risk factors for
OS, respectively; red and blue lines represent positive and negative correlations between TNF family members, respectively. (B) K-M plot of OS between two TNF-based
patterns; red and azure lines represent TNF clusters 1 and 2, respectively. (C) The different levels of anticancer immunity between two TNF-based patterns; red and
azure lines represent TNF cluster 1 and 2, respectively. (D) The different infiltration levels of 28 immune cells in the TME using ssGSEA algorithm between two TNF-based
patterns; red and azure lines represent TNF clusters 1 and 2, respectively. (E) The different activated levels of gene signatures associated with ICB response between two
TNF-based patterns. Red and azure lines represent TNF clusters 1 and 2, respectively. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not statistically significant.
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FIGURE 2 | Development of a TNF family–based risk score in the TCGA-BLCA cohort. (A) Coefficients of TNF-related DEGs with prognostic value are shown by
lambda parameter. (B) Partial likelihood deviance versus log (lambda) drawn by LASSO algorithm and cross-validation. (C) The univariate analysis of 22 TNF-associated
genes selected for developing risk score is shown in forest plots. (D) K-M plot of OS between TNF-based risk score groups; red and azure lines represent high and low
TNF-based risk score groups, respectively. (E) The area under the curve (AUC) plot of TNF-based risk score in TCGA training cohort. (F) Forest plots of multivariate
Cox analysis of TNF-based risk score combined with age, gender, tumor grade, and stage of BLCA. (G) Nomogram developed by using age, tumor stage, and TNF-
based risk score. (H) Calibration curves of the nomogram.
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FIGURE 3 | External validation of the TNF-based risk score. (A,B) K-M plot of OS between TNF-based risk score groups and AUC plot of the risk score in the
GSE13507 validation cohort, respectively. (C,D)K-M plot of OS between TNF-based risk score groups and AUC plot of the risk score in the GSE32894 validation cohort,
respectively. (E,F) K-M plot of OS between TNF-based risk score groups and AUC plot of the risk score in Xiangya validation cohort, respectively. Red and azure lines
represent high and low TNF-based risk score groups, respectively.
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Development of a TNF Family–Based Risk
Score in the TCGA-BLCA Cohort
We have depicted two TNF-based patterns and correlated them
with survival outcome and TIME. In order to conduct a
personalized evaluation of the role of TNF family genes in
BLCA, we further developed a TNF family–based risk score.
First, we filtered out 196 DEGs between TNF cluster 1 and cluster
2 using the “limma” R package (Supplementary Figures S2A, B,
Supplementary Table S6). GO and KEGG analysis revealed that
these 196 DEGs could be enriched in some immune-related
pathways, like collagen-containing extracellular matrix and
cytokine activity (Supplementary Figures S2C–F,
Supplementary Table S7), which had driven us to correlate
the risk score with TIME and ICB response in the next step.
Among these 196 DEGs, 60 genes possessed prognostic values
using univariate Cox analysis (Supplementary Table S8). We
further narrowed down these genes using LASSO and 10-fold
cross-validation. We identified 24 candidate genes with minimal
lambda (0.11), and IL9R and TSPAN8 were ruled out because of
nonexpression in the validation cohort (Figures 2A, B). Finally,
22 TNF-associated genes were enrolled, and a TNF-based risk
score was developed using the “rfsrc” function implemented in
the “randomForestSRC” R package. The prognostic values of
these genes are shown in Figure 2C. As shown in Figure 2D, the
patients with high TNF-based risk score exhibited significantly
poorer survival outcomes (p < 0.0001), and the predictive
accuracy for 12, 36, and 60 months were 0.79, 0.81, and 0.80,
respectively (Figure 2E), indicating relatively high predictive
accuracy. However, the accuracy of the risk score developed
using Cox proportional hazard regression analysis was lower
than the RSF developed risk score (Supplementary Figures S3A,
B). Therefore, we chose the risk score developed using RSF for
further analysis. Combined with age, gender, tumor grade, and
stage of BLCA, TNF-based risk score still remained an
independent risk factor (p < 0.001) in multivariate Cox
analysis (Figure 2F). We then developed a nomogram by
combining the TNF-based risk score and other
clinicopathological characteristics with independent prognostic
values inmultivariate Cox analysis, including age and tumor stage
(Figure 2G). The OS predicted by the nomogram was generally
consistent with the actual OS, indicating the potentiality in the
clinical application of this nomogram (Figure 2H).

External Validation of the Risk Score
To test the extrapolation of our risk score, we validated the risk
score using external cohorts, including GSE13507, GSE32894,
and Xiangya cohort. As shown in Figures 3A, B, the patients with
higher risk score in GSE13507 also exhibited significantly poorer
survival outcomes (p � 0.0051), and the predictive accuracies for
12, 36, and 60 months were 0.69, 0.68, and 0.68, respectively. For
GSE32894, the survival outcomes in the high-risk group were still
poorer (p � 0.00013), and the predictive accuracies for 12, 36, and
60 months were 0.80, 0.86, and 0.86, respectively, indicating
relatively high predictive accuracy of our risk score (Figures
3C, D). The same for Xiangya cohort, the patients in the high-risk
score group exhibited poorer survival outcomes (p � 0.018), and

the predictive accuracies for 12, 24, and 36 months were 0.67,
0.63, and 0.70, respectively (Figures 3E, F). The risk score
developed using Cox proportional hazard regression analysis
was not satisfied as developed using RSF (Supplementary
Figures S3B–H). All these results indicated that our risk score
could be a robust predictive tool for OS of BLCA.

Association Between TNF Family–Based
Risk Score and TIME and ICB Response
One of the main obstacles in understanding and treating
carcinoma is the high heterogeneity of the TME (Duan et al.,
2020). So, we correlated our TNF family–based risk score with
TIME and detected its potential biomarker role for ICB response.
For cancer-immunity cycles, TNF-based risk score was
significantly positively correlated with the majority of these
seven steps, including T-cell recruiting, CD8 T-cell recruiting,
macrophage recruiting, TH1 cell recruiting, and killing of cancer
cells (Figure 4A, left, Supplementary Table S9). Moreover, the
risk score was significantly positively associated with immune
cells in the TME, such as activated CD4 and CD8 T cells,
macrophages, and TH1 cells (Figure 4A, right, Supplementary
Table S9). Unlike TNF-based patterns, our TNF-based risk score
could evaluate the patients’ individual TME phenotypes and
guide treatment options. We further found that the risk score
was positively correlated with the TIS score (Figure 4B). As
shown in Figures 4C, D, the risk score was positively correlated
with most of the ICI genes and TIS genes (Supplementary Table
S10). The patients in the high-risk score group expressed higher
effector genes of immune cells, including CD8+ T cells, DCs,
macrophages, NK cells, and TH1 cells (Figure 4E). We further
evaluated the level of ICB response–associated pathways between
high- and low-risk score groups and found that almost all these
pathways were activated in the high-risk score group. These
results indicated that patients with higher risk score
represented an inflamed phenotype and might be more
sensitive to ICB therapy.

TNF Family–Based Risk Score Stratified
Molecular Subtypes of BLCA
Molecular subtypes were extensively researched topics that could
predict the prognosis and treatment response of BLCA (Warrick
et al., 2019). There are seven reported BLCA molecular
classifications (Kamoun et al., 2020). However, the different
numbers, sizes, and names of molecular subtypes, as well as the
complicated detected methods, impeded their clinical application.
In this study, we found that the high-risk score group represented
the basal subtype of BLCA across seven molecular classifications,
including TCGA subtype (Robertson et al., 2017), MDAnderson
Cancer Center (MDA) subtype (Choi et al., 2014), Lund subtype
(Marzouka et al., 2018), Cartes d’Identité des Tumeurs-Curie (CIT)
subtype (Rebouissou et al., 2014), University of North Carolina
(UNC) subtype (Damrauer et al., 2014), Baylor subtype (Mo et al.,
2018), and consensus subtype (Kamoun et al., 2020) (Figure 5A).
The high-risk score group was characterized by the activation of
basal differentiation, epithelial–mesenchymal transition
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FIGURE 4 | Association between TNF family–based risk score and TIME and ICB response. (A) The association between TNF-based risk score and cancer-
immunity cycles (left) and immune cells in the TME (right). The different types of lines represent the positive or negative relations. The different colors of the lines
represent the p values of the relations, and the thickness of the lines represents the strength of the relations. (B) The association between TNF-based risk score and
T cell–associated inflammatory signature (TIS) score. (C, D) The association between TNF-based risk score and immune checkpoint inhibitor (ICI) genes and TIS
genes, respectively. (E) The different expression patterns of effector genes of immune cells between different TNF-based risk score groups. (F) The different activated
levels of gene signatures associated with ICB response between different TNF-based risk score groups. Red and azure lines represent high and low TNF-based risk
score, respectively. **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not statistically significant.
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differentiation, immune differentiation, interferon response, and so
on (Figure 5A) and might be more sensitive to neoadjuvant
chemotherapy (NAC) and immune therapy. On the contrary,
the low-risk score group represented the luminal subtypes and
was characterized by urothelial differentiation, Ta pathway, and
luminal differentiation (Figure 5A). Importantly, the risk score’s
predictive accuracy for molecular subtypes was extremely high,
with a majority of ROCs being more than 0.90 (Figure 5B). The
basal subtype has the features of more immune cell infiltration and
higher response rates to immunotherapy, whereas the luminal
subtype has the opposite features (Kamoun et al., 2020). The ability
of TNF family–based risk score stratifying molecular subtypes of
BLCA-revalidated risk score could predict TIME and ICB response
from the aspect of molecular subtypes.

Validation of the TNF Family–Based Risk
Score Roles in the Xiangya Cohort
We validated the relationship between TNF family–based risk
score and TME and molecular subtypes in the Xiangya cohort. As

expected, the TNF-based risk score was positively correlated with
most steps of cancer-immunity cycles and immune cells in the
TME in the Xiangya cohort (Figure 6A, Supplementary Table
S11). For the effector genes of immune cells, patients with high-
risk score expressed them higher than the low-risk score group
(Figure 6B). Moreover, the risk score in the Xiangya cohort was
also positively correlated with most of the ICI genes and TIS
genes (Figures 6C, D, Supplementary Table S12). For molecular
subtypes of BLCA, the patients with a high-risk score represented
basal subtypes, whereas patients with a low-risk score represented
luminal subtypes in the Xiangya cohort (Figure 6E). All ROCs for
molecular subtypes were more than 0.90 (Figure 6F).

DISCUSSION

Our study was the first comprehensive investigation of the
expression patterns and clinical and immunological roles of
TNF family members in BLCA. We developed TNF-based
patterns and correlated these patterns with prognosis and

FIGURE 5 | TNF family–based risk score stratified molecular subtypes of BLCA in TCGA cohort. (A) The heat map of different TNF-based risk score groups, seven
molecular subtype classifications, and bladder cancer–associated signatures in BLCA. Activated or inhibited pathways are marked as red or blue, respectively. (B) AUC
plot of the risk score for predicting seven molecular subtype classifications in BLCA.
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FIGURE 6 | Validation of the TNF family–based risk score roles in the Xiangya cohort. (A) The association between TNF-based risk score, cancer-immunity cycles
(left), and immune cells in the TME (right) in the Xiangya cohort. The different types of lines represent the positive or negative relations. The different colors of the lines
represent the p values of the relations, and the thickness of the lines represents the strength of the relations. (B) The different expression patterns of effector genes of
immune cells between different TNF-based risk score groups in the Xiangya cohort. (C,D) The association between TNF-based risk score and ICI genes and TIS
genes, respectively, in the Xiangya cohort. (E) The heat map of different TNF-based risk score groups, seven molecular subtype classifications, and bladder
cancer–associated signatures in Xiangya cohort. Activated or inhibited pathways are marked as red or blue, respectively. (F) AUC plot of the risk score for predicting
seven molecular subtype classifications in the Xiangya cohort.
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immune cell infiltration. In order to conduct a personalized
evaluation of the role of TNF family members in BLCA, we
have also developed and validated a TNF family–based risk score,
which could be a robust tool for predicting prognosis. We further
explored the relationship between the risk score and immune
phenotypes and immunotherapy response of BLCA based on the
specific role of TNF family members in TME. Moreover, TNF-
based risk score could accurately stratify BLCA patients into basal
and luminal subtypes, which reclarified the potential role for
predicting the immune phenotypes and immunotherapy
response from the aspect of molecular subtypes.

TNF family members, including 19 TNFSF ligands and 29
TNFRSF receptors, have a comprehensive shared ligand and
receptor usage system. This system makes the TNF family
members vital regulators of immunity through either
coinhibited or costimulated ways (Dostert et al., 2019).
TNFRSF6 can mediate the process of removing activated
effector T cells, preventing immune damage by an over-long
immune response (Dostert et al., 2019). Moreover, TNFRSF6 is
essential for the process of cytotoxic T and NK cells killing tumor
cells (Berke, 1995), whereas in its ligand, the expression of TNFSF6
in carcinoma cells could eliminate the infiltration of T cells and
promote tumor proliferation and progression (Hahne et al., 1996;
O’Connell et al., 1996). The higher expression of TNFRSF25 in
activated T cells can promote T-cell proliferation and
inflammatory cytokine production (Meylan et al., 2011; Ward-
Kavanagh et al., 2016). TNFRSF4, as a costimulatory receptor,
could be upregulated in CD8+ T cells, CD4+ T cells, and TH1 cells
after antigen recognition (Willoughby et al., 2017). Interferon-γ
could upregulate the expression of TNFSF10 in T cells, NK cells,
and DCs, which could induce the death of numerous carcinoma
cells (Pitti et al., 1996; Dostert et al., 2019). Zhang et al. conducted
comprehensive analyses of TNF family members and correlated
them with prognosis, immune phenotypes, and immunotherapy in
lung adenocarcinoma (LUSC) (Zhang et al., 2020). In their study,
they also developed a TNF-based risk score correlated with
prognosis and immune cell infiltration in LUSC. However, their
predictive accuracy remained unclear. In our study, we developed
two risk scores using RSF and Cox proportional hazard regression
analysis, respectively. We found that the risk score developed by
RSF possessed higher predictive accuracy. Li et al. compared the
RSF with other prediction models and found that RSF performed
best with the highest AUC (Yang et al., 2020). The reasons could be
that RSF could deal with regression and classification problems at
the same time and accept dirty data. As far as we know, this is the
first TNF-based risk score predicting the prognosis of BLCA.

ICB therapies, including programmed cell death-1, its ligand,
and cytotoxic T-lymphocyte associated protein-4, have been
approved for the treatment of multiple carcinoma types, such
as advanced melanoma, renal cell carcinoma, non–small cell lung
cancer, and BLCA (Reck et al., 2016; Motzer et al., 2018; Jenkins
and Fisher, 2021). However, response rates to ICB therapies are
approximately only 15% to 20% across different carcinomas
(Osipov et al., 2019). TME, consisting of carcinoma cells,
immune cells, stromal cells, and extracellular molecules, plays

a key role in the efficacy of immunotherapy (Son et al., 2017). The
TME can be divided into noninflamed (cold) and inflamed (hot)
phenotypes based on the levels of T-cell infiltration and
inflammatory cytokine (Duan et al., 2020). The inflamed
phenotype of TME is reported to be more sensitive to ICB
therapy as the preexisting T cells in the TME are a vital
determinant for immunotherapy response (Liu et al., 2020).
Distinguishing the immune phenotypes of BLCA is a
promising way for improving ICB response rates in BLCA.
Many efforts are committing to developing a risk score for
immune phenotypes (Wang et al., 2020; Liu et al., 2021), and
this is the first TNF-based risk score for predicting immune
phenotypes in BLCA. We not only correlated the risk score with
TME immune cell infiltration in pubic databases, but also
validated its role in TME using the RNA-seq cohort developed
by our hospital (Xiangya cohort), which made our risk score a
more robust and reliable tool for predicting immune phenotypes.
Moreover, we found that the TNF-based risk score could predict
the ICB response rate using 21 gene signatures closely associated
with clinical response to ICB therapy from the study by
Mariathasan et al. (Mariathasan et al., 2018).

BLCA is a biologically heterogeneous disease and has different
clinical outcomes and responses to therapies. Besides the
conventional staging system using clinicopathological features,
more and more studies are focusing on dividing BLCA into
molecular subtypes using gene expression profiling and
unsupervised analyses (Choi et al., 2014; Kamoun et al., 2020).
Until now, there are seven reported BLCA molecular
classifications, including TCGA, MDA, Lund, CIT, UNC,
Baylor, and consensus subtypes (Kamoun et al., 2020).
Generally, the basal subtype of BLCA patients possesses more
immune cell infiltration and could be more sensitive to
immunotherapy and NAC. However, the different numbers,
sizes, and names of molecular subtypes and the complicated
detected methods impeded the clinical application of all these
seven classifications. The TNF-based risk score developed by us
could distinguish basal and luminal subtypes of BLCA with high
predictive accuracy, which could advance the clinical application
of the molecular subtypes. Interestingly, although more immune
cells are infiltrating into TME in the basal subtype of patients, this
subtype is associated with poorer survival outcomes (Choi et al.,
2014; Warrick et al., 2019). This could explain why the TNF risk
score represented an inflamed phenotype of BLCA and was
associated with poorer survival outcomes.

It should be acknowledged that there are some limitations. First,
although we validated our risk score in two public databases and our
Xiangya cohort, all these cohorts were retrospective cohorts, and
prospective cohorts are still needed for further validation. Second,
immune profiles in the TME are complicated and regulated by
numerous factors. We did not validate the TNF family members’
role in TME in vivo and in vitro. Third, our training cohort (TCGA)
was developed using RNA-seq, whereas two of our validation
cohorts (GSE32894 and GSE13507) were developed using
microarray. We could not correct for the batch effects. However,
our risk score could be robustly validated in validation cohort
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regardless of batch effects caused by different sequencing platforms,
indicating that our risk score was reliable.

CONCLUSION

We developed and validated a robust TNF-based risk score,
which could predict prognostic outcomes, TME, and
molecular subtypes of BLCA. However, the value of risk score
predicting the efficacy of immunotherapy needs further research.
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GLOSSARY

TNF tumor necrosis factor

BLCA bladder carcinoma

TCGA the cancer genome atlas

GEO gene expression omnibus

LASSO least absolute shrinkage and selection operator

RSF random survival forest

TME tumor microenvironment

DEG differentially expressed gene

MIBC muscle-invasive bladder carcinoma

NMIBC non–muscle-invasive bladder carcinoma

OS overall survival

FDA US food and drug administration

ICI immune checkpoint inhibitor

TNFRSF TNF receptor

TNFSF TNF ligand

RNA-seq RNA-sequencing

FPKM fragments per kilobase per million mapped fragments

GDC Genomic Data Commons

TPM transcripts per kilobase million

TIME tumor immune microenvironment

TIS T cell–associated inflammatory signature

TIP tracking tumor immunophenotype

ssGSEA single-sample gene set enrichment analysis

DC dendritic cell

NK cell natural killer cell

TH1 cell Type 1 T helper cell

GSVA gene set variation analysis

ICB immune checkpoint blockade

FC fold change

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

K-M Kaplan–Meier

ROC receiver operating characteristic

MDA MDAnderson Cancer Center

CIT Cartes d’Identité des Tumeurs-Curie

UNC University of North Carolina

NAC neoadjuvant chemotherapy

LUSC lung adenocarcinoma
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Identification and Quantification of
Iron Metabolism Landscape on
Therapy and Prognosis in Bladder
Cancer
Xiaodong Song1†, Sheng Xin1†, Yucong Zhang2, Jiaquan Mao1, Chen Duan1, Kai Cui1,
Liang Chen1, Fan Li1, Zheng Liu1, Tao Wang1, Jihong Liu1, Xiaming Liu1* and Wen Song1*

1Department of Urology, Tongji Hospital, Tongji Medical College, HuazhongUniversity of Science and Technology, Wuhan, China,
2Department of Geriatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

The morbidity of bladder cancer (BLCA) is high and has gradually elevated in recent years.
BLCA is also characterized by high recurrence and high invasiveness. Due to the drug
resistance and lack of effective prognostic indicators, the prognosis of patients with BLCA
is greatly affected. Iron metabolism is considered to be a pivot of tumor occurrence,
progression, and tumor microenvironment (TME) in tumors, but there is little research in
BLCA. Herein, we used univariate COX regression analysis to screen 95 prognosis-related
iron metabolism-related genes (IMRGs) according to transcription RNA sequencing and
prognosis information of the Cancer Genome Atlas (TCGA) database. TCGA-BLCA cohort
was clustered into four distinct iron metabolism patterns (C1, C2, C3, and C4) by the non-
negative matrix factorization (NMF) algorithm. Survival analysis showed that C1 and C3
patterns had a better prognosis. Gene set variant analysis (GSVA) revealed that C2 and C4
patterns were mostly enriched in carcinogenic and immune activation pathways.
ESTIMATE and single sample gene set enrichment analysis (ssGSEA) also confirmed
the level of immune cell infiltration in C2 and C4 patterns was significantly elevated.
Moreover, the immune checkpoint genes in C2 and C4 patterns were observably
overexpressed. Studies on somatic mutations showed that the tumor mutation burden
(TMB) of C1 and C4 patterns was the lowest. Chemotherapy response assessment
revealed that C2 pattern was the most sensitive to chemotherapy, while C3 pattern was
the most insensitive. Then we established the IMRG prognosis signature (IMRGscore) by
the least absolute shrinkage and selection operator (LASSO), including 13 IMRGs
(TCIRG1, CTSE, ATP6V0A1, CYP2C8, RNF19A, CYP4Z1, YPEL5, PLOD1, BMP6,
CAST, SCD, IFNG, and ASIC3). We confirmed IMRGscore could be utilized as an
independent prognostic indicator. Therefore, validation and quantification of iron
metabolism landscapes will help us comprehend the formation of the BLCA
immunosuppressive microenvironment, guide the selection of chemotherapeutic drugs
and immunotherapy, and predict the prognosis of patients.

Keywords: bladder cancer, iron metabolism, tumor microenvionment, prognostic signature, nomogram,
bioinformactics
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INTRODUCTION

Bladder cancer (BLCA) is one of the most familiar malignant
tumors in the urinary system, with about 81400 new cases and
17900 deaths in the United States in 2020 (Siegel et al., 2020).
Approximately 75% of BLCA was found to be non-muscle
invasive bladder cancer (NMIBC), which was characterized
by a high recurrence rate (45% 5-year recurrence rate)
(Berdik, 2017; Babjuk et al., 2019). Transurethral resection of
bladder tumor (TURBT), chemotherapy, BCG vaccine,
radiotherapy, and radical cystectomy are the main treatments
for BLCA patients (Berdik, 2017). Chemotherapy and
immunotherapy are also important strategies for conservative
treatment of BLCA (Yin et al., 2016; Rouanne et al., 2018).
However, some patients are not sensitive to these drug therapies.
Due to the high recurrence rate, high metastatic risk, and
patient’s dissatisfaction with the treatment effect, it is of
great significance to identify and quantify some molecular
landscapes that have impacts on the choice of drug
treatment, and explore a novel indicator that predicts the
prognosis of BLCA patients.

Iron is a vital trace element for cell proliferation and
growth in the human body (Torti and Torti, 2013). In
cancer, the absorbability, effusion, storage, and regulation
of iron are entirely disturbed, which indicates that the
reprogramming of iron metabolism would induce the
dysregulation in tumor cells division and survival
(Andrews, 2008; Manz et al., 2016; Wang et al., 2018; Jung
et al., 2019). Iron plays a dual role in cancer (Thévenod,
2018). Epidemiological investigations revealed that
excess iron was a hazard factor of carcinogenesis (Stevens
et al., 1994; Wu et al., 2004; Fonseca-Nunes et al., 2014).
The accumulation of iron supports tumor worsening in
proliferation, metabolism, and metastasis (Torti et al.,
2018). Cancer cells exhibit a phenotype search for iron
through disordering regulation of iron-binding proteins
(Dufès et al., 2013; Bialasek et al., 2019). On the other
hand, iron dependence of cancer cells affects many cell
death modes, including ferroptosis, a form of iron-
dependent cell death (Mou et al., 2019; Battaglia et al.,
2020). Inducing ferroptosis of cancer cells has become a
new hotspot in the research and development of cancer
treatment (Hassannia et al., 2019; Xu et al., 2019).

There has been little research on iron metabolism in BLCA.
The study was conducted to confirm whether iron metabolism
had an effect on the molecular microenvironment of BLCA, as
well as its ability to predict the clinical prognosis. We first
clustered the TCGA-BLCA cohort into different iron
metabolic patterns on the basis of the expression of iron
metabolism-related genes (IMRGs). Then the survival
prognosis, GSVA analysis, tumor immune microenvironment
(TIME), somatic mutations chemotherapy, and immunotherapy
response among different patterns were analyzed. Eventually, we
established a prognostic signature associated with iron
metabolism and confirmed that it is an effective independent
predictor in BLCA patients.

MATERIALS AND METHODS

Retrieval of IronMetabolism-Related Genes
A set of IMRGs was sorted from multiple gene sets from
Molecular Signatures Database (MSigDB) (http://www.gsea-msigdb.
org/gsea/msigdb/index.jsp), including GOMF_IRON_ION_BINDING,
GOBP_IRON_ION_TRANSPORT, GOBP_RESPONSE_TO_IRON_
ION, GOBP_IRON_ION_METABOLISM, GOBP_IRON_IMPORT_
INTO_CELL, GOBP_IRON_ION_IMPORT_ACROSS_PLASMA_
MEMBRANE, GOMF_2_IRON_2_SULFUR_CLUSTER_BINDING,
GOMF_4_IRON_4_SULFUR_CLUSTER_BINDING, GOBP_IRON_
COORDINATION_ENTITY_TRANSPORT, GOBP_CELLULAR_
IRON_ION_METABOLISM, GOBP_HEME_METABOLIC_PROCESS,
HEME_BIOSYNTHETIC_PROCESS,MODULE_540,HALLMARK_
HEME_METABOLISM and REACTOME_IRON_UPTAKE_AND_
TRANSPORT. After removing the duplicate genes from all gene
sets, a total of 515 IMRGs were retrieved.

TABLE 1 | Characteristics of patients included in the study.

Variable TCGA-BLCA
cohort (n = 400)

GSE13507
cohort (n = 165)

Number (%) Number (%)

Age
≤70 228 (57.00) 109 (66.06)
>70 172 (43.00) 56 (33.94)
Gender
MALE 296 (74.00) 135 (81.82)
FEMALE 104 (26.00) 30 (18.18)

T stage
TX 1 (0.25) 0
T0 1 (0.25) 0
Ta 0 24 (14.55)
T1 3 (0.75) 80 (48.48)
T2 117 (29.25) 31 (18.79)
T3 190 (47.5) 19 (11.52)
T4 57 (14.25) 11 (6.67)
Unknow 31 (7.75) 0

N stage
NX 36 (9.00) 1 (0.61)
N0 233 (58.25) 149 (90.30)
N1 44 (11.00) 8 (4.85)
N2 75 (18.75) 6 (3.64)
N3 7 (1.75) 1 (0.61)
Unknow 5 (1.25) 0

M stage
MX 194 (48.50) 0
M0 193 (48.25) 158 (95.76)
M1 11 (2.75) 7 (4.24)
Unknow 2 (0.50) 0

Pathologic stage
Stage 0 0 23 (13.94)
Stage I 2 (0.50) 80 (48.48)
Stage II 127 (31.75) 26 (15.76)
Stage III 138 (34.50) 29 (17.58)
Stage IV 131 (32.75) 7 (4.24)
unknow 2 (0.50) 0

Histologic grade
Low grade 20 (5.00) 105 (63.64)
High grade 377 (94.25) 60 (36.36)
unknow 3 (0.75) 0
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Acquisition and Process of Original Data
Transcription RNA sequencing, clinical data, and somatic
mutation data for patients with BLCA were obtained from the
Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.
gov/). The cohort included 411 BLCA tissues and 19 normal
bladder tissues. The TCGA-BLCA level 3 RNA-sequencing data
was downloaded as fragments per kilobase of transcript per million
mapped reads (FPKM), and when multiple Ensembl IDs were
mapped to a single gene symbol in the RNA sequencing data, gene
expression is annotated in an average expression. The GSE13507
dataset was analyzed as an external validation cohort. The gene
expression profile and clinical information for the microarray
dataset came from the Gene Expression Synthesis (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/). All sequencing
data were processed with log two transformation, background
adjustment, normalization, final summarization through the
“Affy” package in R. The clinical information of all BLCA
patients included in this study is shown in Tables 1, 2.

NMF Clustering for Iron Metabolism
Patterns
We matched IMRGs’ RNAseq data and overall survival (OS)
information of the TCGA-BLCA dataset. A univariate Cox

TABLE 2 | Prognosis-related IMRGs selected by univariate COX regression
analysis.

Gene HR z p-value

AIFM3 0.73913 −3.0568 0.00224
ALKBH2 0.71241 −2.4545 0.01411
ALKBH3 1.35869 2.1987 0.02790
ALOX5 0.85793 −2.8965 0.00377
ASIC3 0.68739 −2.2624 0.02367
ATP5IF1 0.71955 −2.1818 0.02913
ATP6V0A1 1.81787 3.6315 0.00028
ATP6V0D1 1.45896 2.7342 0.00625
ATP6V1A 1.37125 2.0984 0.03587
ATP6V1C2 1.28480 2.2647 0.02353
ATP6V1G3 2.54732 2.9203 0.00350
BMP6 1.30778 2.9345 0.00334
CAST 1.33555 2.8334 0.00460
CDO1 1.25977 2.3200 0.02034
CIAO3 0.64021 −2.3552 0.01851
CIR1 0.52578 −3.1615 0.00157
CISD1 1.28174 2.0195 0.04343
CLTC 1.52718 3.0834 0.00205
CROCCP2 0.66104 −2.9905 0.00278
CTSE 0.84792 −3.9943 0.00006
CUL1 1.46334 2.1223 0.03381
CYBRD1 1.13803 2.1286 0.03329
CYP19A1 1.82637 3.2558 0.00113
CYP1B1 1.12555 2.3874 0.01697
CYP26B1 1.22486 2.8893 0.00386
CYP27B1 0.76528 −2.0634 0.03908
CYP2C8 0.48055 −3.2681 0.00108
CYP2D6 0.53783 −2.5791 0.00991
CYP2D7 0.39076 −3.3122 0.00093
CYP2F1 1.47375 2.3839 0.01713
CYP2R1 0.68076 −2.2516 0.02434
CYP2W1 1.14759 2.2957 0.02169
CYP3A5 0.88535 −2.1530 0.03132
CYP4A22 0.01075 −2.3088 0.02095
CYP4F12 0.85576 −3.1193 0.00181
CYP4F8 0.89174 −2.6547 0.00794
CYP4Z1 0.51083 −3.0875 0.00202
CYP4Z2P 0.71692 −3.1295 0.00175
CYP51A1 1.54962 3.0788 0.00208
CYP7B1 1.25543 2.0346 0.04189
DNM2 0.72877 −2.6658 0.00768
ENDOD1 1.36254 3.4875 0.00049
EPOR 0.79640 −2.2602 0.02381
FA2H 0.86757 −2.3261 0.02001
FECH 1.29593 2.0714 0.03832
FTO 1.44207 2.1268 0.03344
G6PD 1.18156 2.4243 0.01534
GCLM 1.19098 2.5395 0.01110
HJV 0.00736 −2.2164 0.02667
HRG 0.28674 −1.9665 0.04924
IFNG 0.72938 −2.4603 0.01388
ISCU 0.69174 −2.1696 0.03004
LAMP2 1.22151 2.0780 0.03771
MBOAT2 1.31363 3.5807 0.00034
MKRN1 0.66446 −2.3893 0.01688
MYC 1.14183 2.4370 0.01481
NARF 0.73477 −2.3869 0.01699
NDUFV2 0.71090 −2.3388 0.01934
NFE2 1.25892 2.0291 0.04244
NUBPL 1.71372 2.1941 0.02823
OGFOD1 1.56046 2.0597 0.03943
P3H1 1.27676 2.5856 0.00972
P3H3 1.16777 2.4532 0.01416

(Continued in next column)

TABLE 2 | (Continued) Prognosis-related IMRGs selected by univariate COX
regression analysis.

Gene HR z p-value

P4HA2 1.33888 2.9448 0.00323
P4HA3 1.28168 2.8335 0.00460
PGLS 0.75124 −1.9790 0.04782
PHF8 0.73442 −2.3199 0.02034
PLOD1 1.32204 2.9487 0.00319
PPEF1 1.96121 2.6470 0.00812
PTGIS 1.13599 2.9572 0.00310
RAB11B 0.67495 −2.4727 0.01341
RBM5 0.73620 −2.2846 0.02234
REV3L 1.40219 2.3541 0.01857
RNF19A 0.71735 −3.2263 0.00125
RSAD1 0.73571 −2.1465 0.03184
SCD 1.14688 2.6027 0.00925
SIDT2 1.45914 2.4669 0.01363
SLC25A28 0.75484 −2.0647 0.03895
SLC25A38 0.71371 −2.4859 0.01292
SLC39A14 1.24303 2.5771 0.00996
SLC6A9 1.23132 2.3060 0.02111
SLC7A11 1.16394 2.7767 0.00549
SRI 0.78060 −1.9652 0.04939
STEAP4 1.17801 2.3779 0.01741
TCIRG1 0.70379 −4.0200 0.00006
TET1 2.00528 2.6694 0.00760
TFRC 1.16560 2.2608 0.02377
TMCC2 1.38726 2.8966 0.00377
TNS1 1.11924 2.0886 0.03674
TSPO 0.79418 −2.8037 0.00505
TYW5 0.46331 −2.2249 0.02609
UCP2 0.89329 −2.0547 0.03991
UGT1A1 0.76531 −2.2396 0.02512
UGT1A4 6.38284 2.1260 0.03350
YPEL5 0.62817 −3.0093 0.00262

HR, hazard ratio.
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regression analysis was carried out to determine the prognosis-
related IMRGs in BLCA, with a screening criterion of p < 0.05.
Non-negative matrix factorization (NMF) is applied to
determine distinct iron metabolism-related patterns with the
help of the “NMF” R package. NMF algorithm decomposes
the original matrix into two non-negative matrices to identify
the potential features in the gene expression profile (Brunet et al.,
2004). Repeat the deposition and aggregate the results to obtain
consistent clustering. According to the cophenetic coefficient,
contour, and sample size, k = 4 was determined as the best cluster
number.

GSVA
Gene set variant analysis (GSVA), is a nonparametric,
unsupervised algorithm. GSVA transforms the isolate gene
expression matrix to an expression matrix of particular gene
sets as features. The algorithm is implemented based on the
“GSVA” R package. The difference of expression matrix after
transformation was analyzed by the “limma” package to find the
difference of enriched functions among different iron metabolic
patterns.

Evaluation of Tumor Immune
Microenvironment
In order to assess the TIME status of BLCA, we used single
sample gene set enrichment analysis (ssGSEA), ESTIMATE, and
CIBERSORT in R. ssGSEA investigated congenital and adaptive
immune cells as well as a variety of immune-related functions.
The Normalized Enrichment Score (NES) was to embody the
relative amount of each TIME infiltration unit in patients.
ESTIMATE predicted the level of infiltrating matrix and
immune cells by calculating stromal and immune scores,
comprehensively obtained the ESTIMATE score for evaluating
the TIME. We also evaluated the relative fraction of 22 tumor-
infiltrating immune cells (TIICs), including B cells, T cells,
natural killer (NK) cells, macrophages, dendritic cells (DCs),
eosinophils, neutrophils, and so on in each cancer sample with
CIBERSORT algorithm. p < .05 was the threshold of a credible
sample for estimating the proportion of immune cells.

Evaluation of Immunotherapy and
Chemotherapy on IronMetabolism Patterns
Tumor Immune Dysfunction and Exclusion (TIDE) score is a
computational framework developed based on the analysis and
modeling of characteristic genes for T cell exclusion and T cell
dysfunction in immunosuppression at high levels of cytotoxic T
lymphocytes (CTL) (Jiang et al., 2018). We applied four
indicators to predict the efficacy of immunotherapy, including
exclusion score, dysfunction score, microsatellite instability
(MSI), and TIDE. The chemotherapeutic response of BLCA
patients was evaluated by Genomics of Drug Sensitivity in
Cancer (GDSC) (https://www.cancerRxgene.org). Six
chemotherapeutic drugs in BLCA treatment were chosen,
including Gemcitabine, Cisplatin, Docetaxel, Mitomycin-C,
Doxorubicin, and Paclitaxel. The ridge regression algorithm

was used to calculate the half-maximal inhibitory
concentration (IC50), and satisfactory prediction accuracy was
obtained through 10 times cross-validation (Geeleher et al.,
2014). The calculation process was completed by the
“pRRophetic” R package.

Construction and Validation of IMRG
Prognostic Signature
According to the prognosis-related IMRGs in the univariate Cox
regression model, the “glmnet” package in R performed the least
absolute shrinkage and selection operator (LASSO) to identify
important prognostic IMRGs and select one standard error (SE)
above the minimum criteria. The multivariate Cox regression
model made it more optimized and practical. Finally, the
IMRGscore formula was obtained:

Risk score � (expGene1 × coefficient gene1)

+(expGene2 × coefficient gene2) + . . .

+(expGeneN × coefficient GeneN)

On the basis of the optimal cut-off of IMRGscore obtained by
the “surv_cutpoint” function in R, we divided BLCA patients into
high-risk and low-risk groups. With the help of Kaplan-Meier
analysis (“survival” package) and receiver operating characteristic
(ROC) curve (“timeROC” package), the predictive ability of the
prognostic signature was evaluated. The diagnostic accuracy was
estimated by the area under the curve (AUC). The same
IMRGscore calculation formula, cut-off value and, analysis
methods were applied in the GSE13507 cohort to validate the
signature.

Establishment and Evaluation of the
Nomogram
Nomogram is an intuitive clinical prognosis prediction model
integrating a variety of clinicopathological features related to
prognosis. We established a nomogram model to provide a more
accurate prediction of prognosis for clinical patients based on
IMRGscore and clinical pathological characteristics. First,
univariate Cox regression analysis was utilized to assess the
predicted values of variables. Then further determined the
coefficient via multivariate Cox regression analysis. The “rms”
R package then established a nomogram for predicting the
operating system. Concordance index (C-index) and
calibration analysis were applied to estimate the accuracy and
consistency. Finally, the clinical application value of the
nomogram is evaluated using Decision Curve Analysis (DCA).
These analyses were performed with “survival” package.

Statistical Analysis
All statistical analyses were completed with R software (version
4.0.4) in this study. Before establishing and verifying the
prognostic signature, the batch differences between the TCGA
dataset and GEO datasets were removed through the “sva”
package. Wilcoxon rank-sum test was to verify the significance
of the difference in two groups. When comparing more than two
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groups, the Kruskal Wallis test was selected to verify the
difference. Set p-value <.05 as a statistically significant standard.

RESULTS

To describe our research intuitively and systematically, we
showed the research process in Figure 1.

Characterization of Iron Metabolism
Patterns in BLCA
Through the univariate COX regression analysis (p < .05) of the
TCGA-BLCA patients with integrated survival information and
cancer tissue expression profile, 95 IMRGs were selected as
prognosis-related genes (Table 1). Then we clustered the
TCGA-BLCA cohort by NMF algorithm based on these genes.
According to cophenetic coefficients, we decided k = 4 as the best
cluster number (Figure 2A). Figure 2B was the NMF matrix
heatmap when k = 4, including C1 subtype 89 cases, C2 subtype
141 cases, C3 subtype 91 cases, and C4 subtype 79 cases. Kaplan-
Meier survival curves showed that the prognosis of patients in C1
and C3 patterns was better than that of C1 and C2 patterns (p =
.020) (Figure 2C).

Figure 2D shows the expression of prognosis-related IMRGs
in iron metabolic patterns. We also analyzed the
clinicopathological differences among distinct iron metabolism
patterns (Figure 2E). It was found that the proportion of TNM

stages, pathologic stage, histologic grade, OS, DSS, and PFI events
was dissimilar among patterns, and the incidence of advanced
clinicopathological results in C2 and C4 patterns tended to
increase.

Through GSVA analysis, we obtained the rich-concentration
pathways among iron metabolism patterns (Figure 2F). We
found that C4 pattern was positively related to multiple
stromal, carcinogenic, and immune activation related
pathways, including TGF-β signaling pathway, WNT signaling
pathway, MAPK signaling pathway, JAK-STAT signaling
pathway, T cell receptor signaling pathway, chemokine
signaling pathway, B cell receptor signaling pathway,
cytokine–cytokine receptor interaction, NOD-like receptor
signaling pathway, TOLL-like receptor signaling pathway and
so on. C2 pattern showed a similar trend to C4 pattern, but C2
was also significantly expressed in a variety of DNA damage
repair related pathways. The correlation score of most
carcinogenic and immune activation-related pathways was
reduced in C1 and C3 patterns. While C3 pattern was also
found to exhibit an enriched trend in DNA damage repair
related pathways.

Tumor Immune Microenvironment of Iron
Metabolism Patterns
In order to investigate whether there are differences in TIME
among distinct iron metabolism patterns, we used ESTIMATE
and ssGSEA scores for evaluation. ESTIMATE showed that there

FIGURE 1 | Flow chart of our study.
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were significant differences in the stromal score (p < .001),
immune score (p < .001), and ESTIMATE score (p < .001)
among the three patterns, of which C4 was the highest, C1
and C3 were the lowest (Figure 3A). Then we analyzed the
infiltration differences in immune cells among iron metabolism
patterns. The ssGSEA score suggested that the infiltration of all 22
TIICs in iron metabolism patterns was significantly different,
among which, the ssGSEA score of TIICs in C1 and C3 patterns
was lower and C2 and C4 patterns were higher (Figure 3B). And
the enrichment trend of immune-related functions in iron
metabolism patterns was similar to that of immune cell
infiltration (Figure 3C). Additionally, the expression levels of
major histocompatibility complex (MHC) molecules,
costimulatory molecules, and adhesion molecules roundly
decreased in C1 and C3 patterns (Figure 3D).

Tumor Somatic Mutation in IronMetabolism
Patterns
The tumorigenesis frequently occurs after the accumulation of
gene mutations (Martincorena and Campbell, 2015). It is also
reported that tumor mutation burden (TMB) can be used as a
potential prognostic indicator for BLCA (Chan et al., 2019).
Consequently, we used the “maftools” R package to show the
distribution of somatic mutations and the differences of TMB in

various iron metabolism patterns. Through the simple nucleotide
variation information of TCGA-BLCA, the mutation spectrum
and TMB of each sample was obtained. In BLCA samples, the 20
genes with the highest mutation rate were TP53, TTN, KMT2D,
MUC16, ARID1A, KDM6A, PIK3CA, SYNE1, RB1, HMCN1,
FGFR3, RYR2, KMT2C, MACF1, EP300, FLG, FAT4, STAG2,
ATM and OBSCN (Figures 4A–D). C2 pattern had the highest
mutation rate of TP53, while the mutation of TTN and KMT2D
mostly happened in C3 pattern. The mutation rates of these three
genes in C1 and C4 patterns were significantly reduced. Most
gene mutations were missense-mutation. In patients with BLCA,
high TMB indicated a better prognosis (hazard ratio [HR] = .65
(.48–.88), p = .005) (Figure 4E). Additionally, we found that the
TMB of C2 and C3 patterns was significantly upper than that of
C1 and C4 patterns (Figure 4F).

Evaluation of Immunotherapy in Iron
Metabolism Patterns
Lately, immune checkpoint inhibitors (ICIs) have gradually become
the second-line treatment for advanced BLCA. Therefore, we
analyzed the expression of some immune checkpoints (PDCD1
(PD-1), CD274 (PD-L1), PDCD1LG2 (PD-L2), LAG3, TIGIT,
IDO1, and CTLA4) among different iron metabolism patterns to
predict the efficacy of immunotherapy (Figure 5A). The expression

FIGURE 2 | Non-negative matrix factorization clustering of iron metabolism patterns in TCGA-BLCA cohort. (A) Cophenetic coefficients of NMF algorithm
clustering number from 2–10 (B)NMFmatrix heatmapwhen k = 4. (C)Kaplan-Meier survival analysis of ironmetabolism patterns. (D) Expression Heatmap of prognosis-
related IMRGs. (E)Correlation between iron metabolism pattern and clinicopathological characteristics. (F)Heatmap of GSVA analysis among iron metabolism patterns.
*p < 0.05; **p < 0.01; ***p < 0.001.
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of all immune checkpoints in C2 and C4 patterns was signally
higher than that in the other two patterns. This suggested that C2
and C4 might be more suitable for ICIs treatment. However, the
high expression level of immune checkpoints may be related to the
formation of the immunosuppressive microenvironment (Dunn
et al., 2002). This conclusion was confirmed in Figures 5B,C. C4
immune exclusion score was observably higher than other iron
metabolism patterns. The immune dysfunction score of C4 pattern
also increased signally, while C3 was the lowest. Moreover, we used

the TIDE algorithm to evaluate ICIs response, in which the MSI of
C1 and the TIDE of C4 were the highest (Figures 5D,E).

Chemotherapeutics Drugs Response in Iron
Metabolism Patterns
Chemotherapeutics drugs are widely used in the treatment of
BLCA, including intravesical instillation and systemic
chemotherapy. Consequently, we evaluated the IC50 values of

FIGURE 3 | Tumor immune microenvironment of iron metabolism patterns. (A) Differences of stromal, immune, and ESTIMATE scores among iron metabolism
patterns (B) Infiltration of 22 TIICs in iron metabolism patterns. (C) Immune-related functions in iron metabolism patterns. (D) Difference analysis in MHC molecules,
costimulatory molecules, and adhesion molecules of iron metabolism patterns. *p < 0.05; **p < 0.01; ***p < 0.001.
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six commonly used chemotherapeutic drugs (Gemcitabine,
Cisplatin, Docetaxel, Mitomycin-C, Doxorubicin, and
Paclitaxel) in each sample (Figures 6A–F). Among the six
drugs, C2 patterns showed the lowest IC50 value. In
Gemcitabine, Cisplatin, Docetaxel, and Paclitaxel, the IC50
value of C4 pattern was also lower than that of C1 and C3
patterns. As for C3 pattern, the IC50 value in Gemcitabine,
Doxorubicin, and Paclitaxel was higher than that of C1
pattern. The above results strongly indicated that C2 was the
most sensitive to chemotherapeutic drugs, C4 was the second,
while C3 was more insensitive to chemotherapeutic drugs.

Establishment of the IMRG Prognostic
Signature in the TCGA-BLCA Cohort
We selected 400 BLCA patients with explicit, non-zero OS and
survival status to establish an IMRG signature from the TCGA
database. Then used the LASSO Cox regression model to
calculate, and selected an SE higher than the minimum
standard to further screen the prognostic genes. Finally,
through the multivariate COX regression analysis, we obtained
the optimal prognostic signature containing 13 IMRGs, including
TCIRG1, CTSE, ATP6V0A1, CYP2C8, RNF19A, CYP4Z1,

YPEL5, PLOD1, BMP6, CAST, SCD, IFNG, and ASIC3
(Figures 7A,B). And constructed a formula to evaluate the
IMRGscore of each patient: IMRGscore = −(.18775 × TCIRG1
expression) − (.073 × CTSE expression) + (.33856 × ATP6V0A1
expression) − (.37089 × CYP2C8 expression) − (.30306 ×
RNF19A expression) − (.27636 × CYP4Z1 expression) −
(.35016 × YPEL5 expression) + (.17559 × PLOD1 expression)
+ (.25065 × BMP6 expression) + (.23398 × CAST expression) +
(.13313 × SCD expression) − (.52087 × IFNG expression) −
(.57726 × ASIC3 expression). And according to the optimal cut-
off value (cut point = 1.78265), samples were decomposed into
low- and high-risk groups. Kaplan-Meier survival analysis
showed that the OS of the low-risk group was longer (hazard
ratio [HR] = 4.49 (3.29–6.14), p < .001) (Figure 7C). And the
AUCs for the 1-, 3-, and 5-year OS survival rates were .741, .772,
and .755, respectively (Figure 7D). The risk score distribution,
survival status graph, and expression profile heatmap were shown
in Figures 7E–G. The proportion of patient deaths was
observably positively correlated with the IMRGscore. The
expression of ATP6V0A1, PLOD1, BMP6, CAST, and SCD
were up-regulated in the high-risk group, while TCIRG1,
CTSE, CYP2C8, RNF19A, CYP4Z1, YPEL5, IFNG, and ASIC3
were down-regulated.

FIGURE 4 | Somatic mutations in distinct iron metabolism patterns. Waterfall plots of 20 genes with the highest mutation rate in C1 pattern (A), C2 pattern (B), C3
pattern (C), and C4 pattern (D). (E)Kaplan-Meier survival analysis of TMB in BLCA patients. (F)Difference analysis of TMB among different ironmetabolism patterns. *p <
0.05; **p < 0.01; ***p < 0.001.
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FIGURE 5 | Evaluation of immunotherapeutic therapy in iron metabolism patterns. (A) The expression of immune checkpoints in iron metabolism patterns. The
comparisons of exclusion score (B), dysfunction score (C), MSI (D) and TIDE (E) among iron metabolism patterns. *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 6 | Evaluation of chemotherapy in iron metabolism patterns. The comparisons in IC50 value of Gemcitabine (A), Cisplatin (B), Docetaxel (C), Mitomycin-C
(D), Doxorubicin (E), and Paclitaxel (F) among iron metabolism patterns.
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Confirmation of the IMRG Signature in the
GSE13507 Cohort
As the test set, 165 BLCA samples in the GSE13507 cohort were
grouped using the same IMRGscore calculation formula and cut-
off value of the train set to validate the applicability and stability
of the IMRG signature. Consistent with the above conclusion,
patients in the low-risk group had a better OS (hazard ratio [HR]
= 2.65 (1.52–4.60), p = .001) in the GSE13507 cohort (Figure 8A).
The AUCs for the 1-, 3-, and 5-year OS survival rates were .753,
.630, and .552, respectively (Figure 8B). The conclusions of the
risk score distribution, survival status graph, and expression
profile heatmap were consistent with the training set
(Figures 8C–E).

Clinical Relevance of the IMRG Signature
To further supplement the clinical application value of the IMRG
prognostic signature, we integrated the significant differences in
IMRGscore among distinct subgroups of BLCA patients with
clinicopathological characteristics (Figure 9A). Heatmap
indicated that the advanced TNM stages, pathologic stage,
histologic grade, aging, and worse OS, DSS, and PFI events
had an elevated trend in IMRGscore.

Since the significant correlation between signature and
clinicopathological stage, we determined whether the
IMRGscore was a clinically independent predictor of BLCA
patients (Figures 9B,C). Univariate Cox regression analysis
showed that advanced pathologic stage (p < .001), aging (p =
.005), and higher IMRGscore (p < .001) were unfavorable factors
for OS. After performing the multivariate Cox regression analysis,
we confirmed that the IMRGscore was an independent
prognostic parameter.

Establishment of a NomogramBased on the
IMRG Signature
According to the above result from univariate Cox regression
analysis of the TCGA-BLCA cohort, we established a nomogram
model containing pathologic stage, age, and IMRGscore
(Figure 10A). After removing the patients without complete
information and the subgroups of variables with few samples,
a total of 362 patients were included. We standardized each
variable with a score from 0 to 100 and summed the scores to
obtain the total number of points for each BLCA patient. The
predicted 1-, 3-, and 5-year survival probabilities of each patient
were standardized according to the relationship between the
positions along with the prognosis and total points axes. The
C-index reached 0.694 (95% CI: 0.653–0.735). Figures 10B–D
suggested that the nomogram model predicted that the prognosis
results of TCGA-BLCA patients would fit well with the actual
prognosis results. Besides, DCA curves revealed that the signature
provided patients with a stable and significant net benefit in
BLCA patients (Figures 10E–G). Then based on the nomogram
model, we built the Kaplan-Meier survival curve and the time-
dependent ROC curves. In the TCGA-BLCA cohort, we divided
samples into high- and low-risk groups with the optimal cut-off
value (cut point = −.122532). Patients in the high-risk group
showed a significantly poor OS (hazard ratio [HR] = 4.22
(2.92–6.10), p < .001, Figure 10H). The AUCs for the 1-, 3-,
and 5-year OS survival rates were .764, .769, and .760, respectively
(Figure 10I). Additionally, we verified the nomogram model in
the GSE13507 cohort. The cut-off value was consistent with the
train set. Kaplan-Meier survival analysis showed that patients in
the low-risk group had a better OS than those in the high-risk
group (hazard ratio [HR] = 6.47 (2.89–14.49), p < .001,

FIGURE 7 | Construction of IMRG signature and prognosis analysis based on the training set. (A,B) LASSO regression identified 13 IMRGs. (C) Kaplan-Meier
survival analysis between IMRGscore-defined groups. (D) Time-dependent ROC curves of IMRG signature. (E) IMRGscore distribution. (F) Survival status map. (G)
IMRGs expression profiles heatmap.
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Figure 10J), and the AUCs were .896, .906, and .915
(Figure 10K).

GSEA
To further comprehend the effect of IMRGs expression on the
biological characteristics of BLCA, we carried on GSEA analysis
in IMRGscore-defined groups (Figures 11A,B). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) results revealed
that in the high-risk group, the main enrichment pathways were
ECM receptor interaction, regulation of actin cytoskeleton, MAPK
signaling pathway, WNT signaling pathway, pathways in cancer.
While the low-risk group ismainly concentrated in allograft rejection,
asthma, primary immunodeficiency, and so on. Furthermore,
Figures 11C,D showed the enrichment of the high- and low-risk
groups in the Gene Ontology biological process (GOBP). We found
that the low-risk group was enriched in multiple immune functions,
such as activation of immune response, adaptive immune response, B
cell-mediated immunity, and so on.

Correlation Between Tumor Immune
Microenvironment and IMRG Signature
As we mentioned before, iron metabolism is closely related to
TIME. Based on the CIBERSORT algorithm, we calculated the

proportion of 22 TIICs in each TCGA-BLCA sample
(Figure 12A). After selecting samples with significant immune
cell fraction results (p < .05), 195 samples were included in the
difference analysis, including 141 cases in the low-risk group and
54 cases in the high-risk group. Then the difference in the
proportion of TIICs between the IMRGscore-defined groups
was shown in Figure 12B. It was found that the fraction of
CD8 T cells, activated CD4 memory T cells, follicular helper
T cells (TFH) and regulatory T cells (Treg) in the low-risk group
was significantly higher. In contrast, the fraction of M0
macrophages was upper in the high-risk group. Furthermore,
high levels of CD8 T cells (p = .004), activated CD4 memory
T cells (p = .013) and TFH (p = .041) were observably associated
with better OS (Figures 12C–E), while increased M0
macrophages (p = .035) indicated a poor OS (Figure 12F).

DISCUSSION

Bladder cancer is a heterogeneous malignancy. Patients with
BLCA generally show different prognoses because of the
molecular discrepancy (Knowles and Hurst, 2015; Guo and
Czerniak, 2019). At present, it is generally believed that
clinical or pathological stages were insufficient to predict the

FIGURE 8 | Validation of IMRG signature based on the test set. (A) Kaplan-Meier survival analysis between IMRGscore-defined groups. (B) Time-dependent ROC
curves of IMRG signature. (C) IMRGscore distribution. (D) Survival status map. (E) IMRGs expression profiles heatmap.
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prognosis of patients with BLCA (Konety, 2006; Rosenberg et al.,
2013). Therefore, it is essential to develop a more accurate and
efficient model to predict the survival prognosis for patients. In
recent years, some studies have found iron involvement in the
appearance and progression of cancers. Abundant researches
have revealed that iron metabolism is involved in the entire
process of cancer progression. Murata M. demonstrated that
iron released from the damaged transferrin could mediate the
Fenton reaction and produce ROS, which contributes to the
carcinogenic process in multiple ways (Murata, 2018). A cross-
sectional study found that the serum iron concentration in
patients with BLCA was lower than that in the control group
(Mazdak et al., 2010). However, studies on the potential function
of iron metabolism in the treatment and prognosis of BLCA are
scarce.

In this study, patients in the TCGA-BLCA cohort were divided
into four iron metabolism patterns based on the expression of

prognosis-related IMRGs. Survival analysis suggested that C1 and
C3 had a better prognosis. Our results also showed that C2 and
C4 patterns have higher enrichment scores in multiple
carcinogenic and immune activation-related pathways. For
instance, abnormal activation of NOD-like receptors (NLRs)
occurs in various cancers, coordinates the tumor immune
microenvironment, and promotes angiogenesis, cancer cell
stem cells, and chemotherapy resistance, thereby enhancing
tumor risk (Liu et al., 2019). Toll-like receptor (TLR) is a
transmembrane pattern recognition receptor that detects and
defends microbial pathogens through the innate immune
response (Brennan and Gilmore, 2018). The activation of the
Notch signaling pathway can be seen in most components of the
tumor microenvironment (TME), such as angiogenesis, tumor
stem cell maintenance, immune infiltration, or therapeutic
resistance (Meurette and Mehlen, 2018). Besides, C2 and C4
iron metabolism patterns were highly infiltrated by immune cells,

FIGURE 9 | Clinical relevance of IMRG signature. Correlation between IMRGscore and clinicopathological characteristics, including T stage (A), N stage (B), M
stage (C), pathologic stage (D), histologic grade (E), age (F), gender (G), OS event (H), DSS event (I), and PFI event (J). Univariate (K) andmultivariate (L)Cox regression
analysis of risk-group and clinicopathological characteristics. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 10 | Nomogram model based on clinicopathological characteristics and IMRGscore. (A) Nomogram for predicting the probability of OS over 1, 3, and 5
years. (B–D) Calibration curves for predicting the fitness of the nomogram model in 1, 3, and 5 years. (E–G) DCA curves based on three predictors of 1, 3, and 5 years.
(H) Kaplan-Meier analysis of nomogram model in the TCGA-BLCA cohort. (I) Time-dependent ROC curves of nomogram model in the TCGA-BLCA cohort. (J) Kaplan-
Meier analysis of nomogram model in the GSE13507 cohort. (K) Time-dependent ROC curves of nomogram model in the GSE13507 cohort.
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and the expression of MHC genes was highly elevated. These
characteristics are consistent with an immune-inflamed
phenotype. On the other hand, C1 and C3 are suspected to be
immune-desert phenotypes due to lack of immune infiltration
and antigen presentation. Additionally, we found that multiple
immune checkpoints (PD-1, PD-L1, PD-L2, LAG3, TIGIT,
IDO1, and CTLA4) were highly expressed in C2 and C4
patterns, which might indicate that immunotherapy has a
better effect on them. Furthermore, studies have shown that
the high-level expression of immune checkpoint genes might
be a stimulative to the immunosuppressive microenvironment
and led to the immune escape of tumor cells (Dunn et al., 2002).
The TIDE algorithm confirmed this conclusion. Therefore,
we speculate that the reason why C2 and C4 patterns do not
show a better prognosis of immunoinflammatory phenotype
is that the antitumor effect based on the activated immune
pathway and high infiltration level of T cells were eliminated
by the formation of the immunosuppressive microenvironment.
The above evidence proved that iron metabolism is of

great significance in shaping various TME landscapes in
BLCA.

Somatic mutation is not only the driving factor of cancer, but
also the guiding basis for diagnosis and treatment. The three
genes with the highest mutation rate in BLCA were TP53, TTN,
and KMT2D. The mutation rate of TP53 in C2 iron metabolism
pattern was the highest, while in C1 pattern was the lowest. In C2
and C3 patterns, the incidence of TTN and KMT2D mutations
was significantly higher. Detection of TP53 mutation was
conducive to estimating the high risk of early lesions (Olivier
et al., 2010). Single TTN gene mutation often indicated high
TMB (Oh et al., 2020). The mutation of epigenetic regulator
KMT2D was a biomarker of poor prognosis in some cancers
(Ferrero et al., 2020). Additionally, we found that high TMB
suggested that patients with BLCA had a better prognosis
through the TCGA database. Consistently, the TMB of C1
and C4 patterns was observably decreased. These results show
that iron metabolism has a complex interaction with somatic
mutation.

FIGURE 11 | Correlation between IMRG signature and biological functions. KEGG results of the high-risk group (A) and low-risk group (B). GOBP results of the
high-risk group (C) and low-risk group (D).
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Chemotherapy is still one of the main treatments for BLCA.
According to the latest guidelines of the European Association of
Urology (EAU), all muscle-invasive bladder cancer (MIBC)
patients with physical conditions can apply platinum-based
neoadjuvant chemotherapy before operation (Witjes et al.,
2021). This study investigated the efficacy of six common
chemotherapeutic drugs on iron metabolism mode, including
Gemcitabine, Cisplatin, Docetaxel, Mitomycin-C, Doxorubicin,
and Paclitaxel. The results showed that C2 pattern was the most
sensitive to these chemotherapeutic drugs, while C3 pattern was
the most insensitive. This provided a reference basis for the
selection of clinical chemotherapy drugs.

Due to the effect of iron metabolism on the tumorigenesis and
progression of cancer, it is of great importance to establish an
IMRG signature for predicting the prognosis of patients with
BLCA. Herein, we applied stepwise regression analysis to
compose a clinical prognostic signature for BLCA patients
with 13 IMRGs (TCIRG1, CTSE, ATP6V0A1, CYP2C8,
RNF19A, CYP4Z1, YPEL5, PLOD1, BMP6, CAST, SCD,
IFNG, and ASIC3). A test set was utilized to confirm its
accuracy and stability. Moreover, the IMRGscore was elevated
in multiple advanced clinicopathological stages. And multivariate
Cox regression analysis verified that IMRGscore was an
independent prognostic index of BLCA patients. Finally,
we combined some clinicopathological features, including

pathologic stage, age, and IMRGscore to construct a
nomogram that accurately predicted the prognosis of patients
with BLCA. The accuracy and clinical contributions were verified
by calibration analysis and DCA.

Several studies have shown that these 13 IMRGs are closely
related to cancers, and some of these genes have been confirmed
about BLCA. TCIRG1, one of the V-ATPase subunits, is
abnormally overexpressed in patients with recurrent
hepatocellular carcinoma, and enhances the ability of
metastasis by regulating the growth, death, and epithelial to
mesenchymal transition of cancer cells (Yang et al., 2018). A
retrospective study suggests that CTSE can be used as an
independent prognostic marker for NMIBC, so as to guide the
treatment of patients (Lin et al., 2001). ATP6V0A1was
demonstrated that it could enhance the fusion of
autophagosomes and lysosomes, up-regulate autophagy
volume accumulation, and finally induce autophagic cell death
(Hsin et al., 2012). CYP2C8 can be regulated by GAS5/miR-382-
3p in hepatocellular carcinoma and play an anticancer role (Li
and Chen, 2020). RNF19A was confirmed to be overexpressed in
non-small cell lung cancer, which plays a carcinogenic role by
destroying the function of p53 (Cheng et al., 2021). CYP4Z1 was
confirmed to be highly expressed in BLCA and positively
correlated with the progression of histologic grade and
pathologic stage (Al-Saraireh et al., 2021). YPEL5 was found

FIGURE 12 | Tumor immune microenvironment of IMRG signature. (A) The proportion of 22 TIICs in BLCA. (B) Infiltration of 22 TIICs in low- and high-risk groups.
Correlation between the infiltration level of TIICs (CD8 T cells (C), activated CD4memory T cells (D), follicular helper T cells (E), andM0macrophages (F) and prognosis of
patients with BLCA. *p < 0.05; **p < 0.01.
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to be inhibited by METTL3-m6A (N6-methyladenosine)-
YTHDF2 axis in colorectal cancer, promoting the growth and
metastasis of tumor (Zhou et al., 2021). The expression of PLOD1
was an independent prognostic factor in BLCA patients, and
downregulated by inhibitor could significantly reduce the
invasiveness of BLCA cells (Yamada et al., 2019). The
expression of BMP6, a key endogenous regulator of iron
metabolism, was affected by Med19, which could promote
bone metastasis and invasiveness of bladder cancer
(Andriopoulos Jr et al., 2009; Wen et al., 2013). Public clinical
data also confirm that BMP6 is a prognostic marker for bladder
cancer (Yuen et al., 2012). Calpastatin (CAST) is involved in
many important physiological processes, including cell cycle,
ECM, cancer cell proliferation, metastasis, and apoptosis (Nian
and Ma, 2021). SCD can protect cancer cells from oxidative stress
and ferroptosis through mediated lipogenesis in prostate cancer
with over-activation of PI3K-AKT-mTOR signaling (Yi et al.,
2020). SCD has also been shown to reduce proliferation and
invasion of BLCA cells when inhibited (Piao et al., 2019). Iron
metabolism can affect innate immune response by affecting IFNG
mediated immune response pathway in macrophages (Nairz
et al., 2014). And IFNG was demonstrated to inhibit the
activity of bladder cancer stem cells (Qiu et al., 2020). ASIC3
has an H+ gating function, which promotes the acid-induced
epithelial-mesenchymal transition in pancreatic cancer cells (Zhu
et al., 2017).

GSEA analysis showed that several cancer-related pathways
were enriched in the high-risk group. The unique biochemical
and biophysical properties of ECMwhen it is dysregulated are the
key drivers of cancer progression (Walker et al., 2018). The
MAPK signaling pathway is considered to be related to cell
proliferation, differentiation, migration, aging, and apoptosis
(Sun et al., 2015). The Wnt signaling pathway is an important
driving factor to maintain tissue development and homeostasis.
Abnormal Wnt signaling will cause the occurrence and
progression of many cancers by affecting cancer stem cells
(Duchartre et al., 2016). Furthermore, CIBERSORT analysis
indicated that several TIICs with differential infiltration levels
had significant correlations between the prognosis of BLCA
patients, and played a regulatory role in the balance of iron
metabolism. After being activated by immunotherapy, CD8
T cells can enhance ferroptosis-specific lipid peroxidation and
increase ferroptosis in tumor cells, which contributes to the anti-
tumor effect (Wang et al., 2019). Macrophages are the regulatory
hub of iron metabolism. Macrophages phagocytize and degrade
aging and damaged erythrocytes to recover iron, and also have the
ability to release iron. The accumulation of M2 macrophages is
often associated with poor prognosis, and M2 macrophages
possess iron release characteristics (Recalcati et al., 2010).
Therefore, the accumulation of M2 macrophages may further
aggravate the disorder of iron metabolism.

Our research has obvious advantages in the study of iron
metabolism characteristics and the clinical application of BLCA.
First, we divided BLCA patients into distinct iron metabolism
landscapes to further confirm the relationship between iron

metabolism and TME and somatic mutations. At the same
time, we also verified that iron metabolism landscapes had
guiding significance for chemotherapy drugs and immunotherapy
selection. Next, we established the IMRG prognostic signature
and proved IMRGscore was an independent prognostic factor
for BLCA patients, and it also had the predictive ability for
clinicopathological characteristics. At present, our research is still
insufficient. First, it is a retrospective study. Deviations in variables
such as clinicopathological characteristics of patients most likely
exist. Second, our prognostic signature depends on gene expression
and does not take into account the effects of gene mutation,
methylation, or other factors on the prognosis of BLCA patients.
Finally, the prognostic signature can be incorporated into large
sample prospective studies to further verify its clinical value.
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Background: Bladder urothelial carcinoma (BLCA) is the most common type of bladder
cancer. In this study, the correlation between the metabolic status and the outcome of
patients with BLCA was evaluated using data from the Cancer Genome Atlas and Gene
Expression Omnibus datasets.

Methods: The clinical and transcriptomic data of patients with BLCA were downloaded
from the Cancer Genome Atlas and cBioPortal datasets, and energy metabolism-related
gene sets were obtained from the Molecular Signature Database. A consensus clustering
algorithm was then conducted to classify the patients into two clusters. Tumor prognosis,
clinicopathological features, mutations, functional analysis, ferroptosis status analysis,
immune infiltration, immune checkpoint-related gene expression level, chemotherapy
resistance, and tumor stem cells were analyzed between clusters. An energy
metabolism-related signature was further developed and verified using data from
cBioPortal datasets.

Results: Two clusters (C1 and C2) were identified using a consensus clustering algorithm
based on an energy metabolism-related signature. The patients with subtype C1 hadmore
metabolism-related pathways, different ferroptosis status, higher cancer stem cell scores,
higher chemotherapy resistance, and better prognosis. Subtype C2 was characterized by
an increased number of advanced BLCA cases and immune-related pathways. Higher
immune and stromal scores were also observed for the C2 subtype. A signature containing
16 energy metabolism-related genes was then identified, which can accurately predict the
prognosis of patients with BLCA.

Conclusion: We found that the energy metabolism-associated subtypes of BLCA are
closely related to the immune microenvironment, immune checkpoint-related gene
expression, ferroptosis status, CSCs, chemotherapy resistance, prognosis, and
progression of BLCA patients. The established energy metabolism-related gene
signature was able to predict survival in patients with BLCA.
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INTRODUCTION

Bladder cancer (BC) is one of the most prevalent cancers,
accounting for approximately 200,000 deaths per year
worldwide, with preponderance in men compared with
women (4:1) (Bray et al., 2018). More than 90% of BC cases
are transitional cell carcinomas, also known as bladder urothelial
carcinoma (BUC or BLCA), accounting for the majority of
primary BC cases (Potts et al., 2017). BC can be divided into
muscle invasive bladder cancer (MIBC) and non-muscle invasive
bladder cancer (NMIBC) based on whether it invades the muscle
layer of the bladder (Babjuk et al., 2017). At the time of initial
diagnosis, NMIBC accounts for approximately 75% of BC cases
(Hollenbeck et al., 2007). In NMIBC patients, carcinoma in situ
(CIS), high-grade T1, and high-grade Ta tumors are considered to
have a high risk of tumor recurrence and disease progression. In
the clinical management of BLCA, the prognosis of tumors often
depends on the histopathology and stage of cancer (Kamat et al.,
2016; Babjuk et al., 2017), which provides a simple risk
stratification but cannot explain the different prognoses and
outcomes of patients with the same histopathology and tumor
stage. Thus, it is imperative to determine new biomarkers
correlated with the prognosis of patients with BLCA at an
early stage.

Alterations in the energy metabolism of cancer cells compared
with normal cells are an emerging hallmark of most cancers
(Hanahan and Weinberg, 2011; Fumarola et al., 2018). In the
different types of energy metabolism reprogramming that cancer
cells may rely on, glycolysis is the most common pathway that
many cancer cells may utilize, even in the presence of oxygen, to
generate ATP to maintain the reduction–oxidation balance and
macromolecular biosynthesis, which is required to support the
growth, division, and migration of cancer cells (Vander Heiden
and DeBerardinis, 2017). This phenomenon of glycolysis in the
presence of oxygen is also known as the Warburg effect (Dang
and Semenza, 1999). While the metabolic phenotype of some
tumor cells is mainly glycolytic, some other tumors have a
predominantly oxidative phosphorylation (OXPHOS)
metabolic phenotype (Sonveaux et al., 2008). There is growing
evidence that metabolic reprogramming of cancer cells is
heterogeneous. Furthermore, it has been reported that tumor
cells can also absorb free fatty acids and ketones secreted by
adjacent catabolic cells, which provide energy for mitochondrial
OXPHOS (Bonuccelli et al., 2010; Nieman et al., 2011). In
addition, a previous study reported that glutamine-driven
mitochondrial OXPHOS, rather than glycolysis, takes up most
of the ATP production under hypoxic conditions (Fan et al.,
2013). Concerns regarding the possibility that cancer-related
energy metabolic reprogramming may provide new targeted
therapies are emerging, which may have fewer side effects and
higher antitumor efficiency than conventional cytotoxic
chemotherapy (Tennant et al., 2010; DeBerardinis and
Chandel, 2016; Luengo et al., 2017).

In this study, the energy metabolic profile and clinical value in
patients with BLCA were investigated using the Cancer Genome
Atlas (TCGA) and cBioPortal online sequencing data. Based on
the consensus clustering analysis of the gene expression profile,

patients could be classified into two robust clusters with
significant differences in molecular features and tumor
prognosis. Furthermore, an energy metabolism-related
signature was developed to assess the prognosis of patients
with BLCA in the TCGA dataset, which was then verified
using data from the cBioPortal database. We found a
significant association between the prognosis of patients with
BLCA and the energy metabolism-related signature, which
could serve as an independent clinicopathological prognostic
factor. In summary, our study revealed a strong correlation
between energy metabolism status and clinical prognosis of
patients with BLCA.

METHODS

Dataset Collection
Data from bladder cancer patients containing clinicopathological
and transcriptomic information were downloaded from the
Cancer Genome Atlas (TCGA) data portal (https://portal.gdc.
cancer.gov/). Moreover, a validation cohort (n = 296) was derived
from the cBioPortal online database (http://www.cbioportal.org/
), and it validated the results (Gao et al., 2013).

Gene Sets Containing and Consensus
Clustering
The Molecular Signature Database (MSigDB, http://www.broad.
mit.edu/gsea/msigdb/) was utilized to contain two energy
metabolism-related gene sets (energy-requiring part of
metabolism and reactome energy metabolism) (Subramanian
et al., 2005; Zhou et al., 2018). After removing overlapping
genes, an energy metabolism-related gene set containing 590
genes was obtained (Supplementary Datasheet S1). The
“ConsensusClusterPlus” R package was then used to perform
consensus clustering analysis, and the maximum number of
clusters was set at 6. The “pheatmap” R package was utilized
to visualize the results of the most differentially expressed energy
metabolism-related genes in the form of a heatmap. Survival
curves were generated using the R packages “survival.”
Comparisons of clinicopathological characteristics were
performed using chi-square tests or Fisher’s exact tests for
categorical variables and Student’s t-tests for continuous
variables.

Differentially Expressed Gene Identification
and Enrichment Analysis
The differentially expressed genes (DEGs) between groups
characterized by consensus clustering were explored and
visualized in volcano plots using the “ggplot” R package. The
thresholds of the fold-change value and adjusted p value were set
at 1.5 and 0.05, respectively. The top 50 upregulated and
downregulated DEGs with the most differential changes are
shown in the form of a heatmap. Furthermore, we used the
“ClusterProfiler” R package to conduct enrichment analysis to
better understand the underlying functions of the potential
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targets. GO functions were analyzed for the DEGs between
groups identified by energy metabolism-related genes, and the
KEGG pathway and gene set enrichment analysis (GSEA) were

enriched. In addition, the correlation between metabolic status
and CSCs was evaluated using the OCLR algorithm constructed
by Malta et al. (Teo and Rosenberg, 2018).

FIGURE 1 | Consensus clustering analysis to identify the genomic subtype of BLCA based on an energy metabolism-related gene set. (A) Consensus clustering
matrix of 408 samples from the TCGA dataset for k = 2. (B) Heatmap of energy metabolism-related gene expression in different clusters. Red represents high gene
expression, and blue represents low expression. (C) TheKaplan–Meier curve of overall survival of BLCApatients in two clusters. (D) Tumor stage distribution ofBLCApatients
in two clusters with different metabolic statuses. The frequency of KDM6A (E), FGFR3 (F), and RB1 (G) mutations in two clusters with different metabolic statuses.
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Immune Infiltration and Ferroptosis Status
Analysis
Based on the cohorts grouped by consensus clustering, immune
infiltration estimation was then conducted using the xCell and
CIBERSORT algorithms in the “immunedeconv” R package and
visualized in the form of a heatmap and boxplot. Furthermore,
eight immune checkpoint-relevant genes (CD274, CTLA4,
HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT, and
SIGLEC15) were selected and then explored in the different
groups, and the “ggplot2” and “pheatmap” R packages were
utilized to visualize the expression of these genes in the two
groups. The Wilcox test was used for the analysis of significance
between groups, and p < 0.05 was regarded as statistically
significant. The ferroptosis status analysis was achieved
through the “ggplot2” and “pheatmap” R packages.

Gene Signature Identification
The TCGA–BLCA dataset was analyzed to determine whether the
energy metabolism-related genes were correlated with the overall
survival of the patients via univariate Cox proportional hazards
regression analysis. Simultaneously, DEGs between bladder
cancer and normal tissue were determined using the online
tool Gene Expression Profiling Interactive Analysis 2.0.
(GEPIA2; http://gepia2.cancer-pku.cn/#index) (Tang et al.,
2019). A Venn diagram was constructed to select the optimal
energy metabolism-related gene set with the R package “ggplot2.”
Furthermore, the least absolute shrinkage and selection operator
(LASSO) Cox regression algorithm was conducted through the
“glmnet” R package. The nomogram and calibration curves were
constructed by using the “rms” and “survival” R packages.

RESULTS

Data Collection and Consensus Clustering
To explore the role of energy metabolism status in BLCA, we
obtained a cohort of 408 patients using RNA sequencing data and
clinicopathological information from the TCGA database. Two
energy metabolism-related gene sets were then obtained, and
after removing overlapping genes, an energy metabolism-related
gene set containing 590 genes was obtained (Supplementary
Datasheet S1).

The association between energy metabolism status and
prognosis of patients with BLCA was further investigated. The
consensus clustering algorithm, empirical cumulative
distribution function (CDF) plot, and consensus clustering
matrix indicated that patients could be grouped into two
groups (Figure 1A, Supplementary Figure S1). Figure 1B
presents the clustering heatmap of the top variable expression
genes with SD >0.1 in these two clusters grouped by the energy
metabolism-related gene set. Survival curves revealed that
patients in cluster 1 had a significantly longer overall survival
[OS hazards ratio (HR): 0.608, 95% confidence interval (CI):
0.453–0.817, p < 0.001, Figure 1C] and better progression-free
survival (PFS, HR: 0.691, 95% CI: 0.513–0.931, p = 0.0151,
Supplementary Figure S1) than those in cluster 2.

The clinicopathological features of the two clusters were
explored to investigate the differences between the clusters.
Survival status and race were significantly different between
the two clusters (Table 1). In addition, patients in cluster 1
tended to have no metastasis, relatively earlier tumor stage
(Figure 1D), and relatively lower histologic grade, whereas
more metastasis, higher tumor stage, and higher tumor grade
were observed in patients from cluster 2. The top 20 most
frequently mutated genes in each cluster were then compared,
and we found that the frequency of KDM6A (p = 0.001,
Figure 1E) and FGFR3 (p < 0.001, Figure 1F) mutations were
higher in C1, whereas the frequency of RB1 mutations (p < 0.001,
Figure 1G) in C2 was higher.

Enrichment Analysis
To explore the underlying mechanism of the difference between
the two clusters, DEGs between the two clusters were identified.
As shown in Figure 2A, the volcano plot indicated the
upregulated genes (SNX31, VSIG2, DHRS2, HMGCS2, etc.)
and downregulated genes (KRT6B, KRT6A, KRT14, etc.) in
cluster 1 as compared to cluster 2. The top 50 upregulated
and downregulated genes were then displayed in the form of a
heatmap (Figure 2B).

Moreover, with the thresholds of the fold-change value and
adjusted p value setting at 1.5 and 0.05, up- and downregulated
genes were selected for functional enrichment analysis. KEGG
analysis of the most relevant signaling pathways in cluster 1 was
mainly associated with the energy metabolism (Figure 2C). The
results of GO analysis showed the same trend, and the most
enriched terms in the biological process (BP), molAUCecular
function (MF), and cellular component (CC) were strongly
correlated with the energy metabolism (Figure 2C), mainly

TABLE 1 | Clinicopathological feathers between the two clusters identified by
energy metabolic-related gene set.

Characteristics C1 (n = 228) C2 (n = 180) p Value

Survive <0.001
Alive 148 (64.9%) 81 (45%)
Dead 80 (35.1%) 99 (55%)

Gender 0.098
Female 52 (22.8%) 55 (30.6%)
Male 176 (77.2%) 125 (69.4%)

Race <0.001
Asian 38 (16.7%) 6 (3.3%)
Black 13 (5.7%) 10 (5.6%)
White 166 (72.8%) 158 (87.8%)

Metastasis 0.001
M0 129 (56.6%) 67 (37.2%)
M1 6 (2.6%) 5 (2.8%)
MX 92 (40.4%) 106 (58.9%)

Stage <0.001
I 2 (0.9%) 0
II 91 (39.9%) 39 (21.7%)
III 64 (28.1%) 76 (42.2%)
IV 69 (30.3%) 65 (36.1%)

Histologic grade <0.001
High 205 (89.9%) 179 (99.4%)
Low 21 (9.2%) 0
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FIGURE 2 | Identification of DEGs between the two clusters grouped by energymetabolism-related gene set and functional enrichment analysis. (A) Volcano plot of
DEGs between two clusters with different metabolic statuses. The red and blue points represent up- and downregulated genes with statistical significance, respectively.
(B) Heatmap of the top 50 up- and downregulated genes with the most differential changes. (C)GO/KEGG analysis of DEGs that were upregulated in cluster 1. (D)GO/
KEGG analysis of DEGs that were downregulated in cluster 1. DEG: differentially expressed genes.
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FIGURE 3 | Ferroptosis status analysis and GSEA results. (A) GSEA of DEGs that were upregulated in cluster 1 and cluster 2. (B) GSEA results of lipid oxidation
metabolism terms. (C) Heatmap of ferroptosis-related gene expression in two different metabolic status clusters. (D) Ferroptosis-related gene interaction network. The
red and blue lines represent the positive and negative correlation, respectively. The thickness of the line represents the correlation between the two genes. The larger
circle indicates a more significant prognostic log rank p value. (E) Expression difference of ferroptosis-related genes between the two clusters. GSEA: gene set
enrichment analysis. DEG: differentially expressed genes. *p < 0.05, **p < 0.01, ***p < 0.001.
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enriched in small-molecule catabolic processes, lipid catabolic
processes, and fatty acid metabolic processes. However, the GO/
KEGG analysis of the downregulated genes in cluster 1, indicating
that they were upregulated in cluster 2, showed different results.
GO analysis of cluster 2 was mainly enriched in immune terms,
including T-cell activation, leukocyte cell–cell adhesion, negative
regulation of immune system process, regulation of leukocyte
cell–cell adhesion, and regulation of T-cell activation. In the
KEGG pathways, the results showed that the DEGs were
mainly enriched in cytokine–cytokine receptor interactions,
chemokine signaling pathways, and immune-related pathways,
including those involving phagosomes, Th17 cell differentiation,
and Th1 and Th2 cell differentiation. GSEA results of cluster 1
also showed metabolism-associated terms, while cluster 2 was
mainly enriched in immune terms (Figure 3A, Supplementary
Figure S2). These results indicated that cluster 1 could be
characterized by the activation of oncometabolic processes,
while cluster 2 may be characterized by the upregulation of
tumor-related immunogenicity.

Ferroptosis Status Analysis
Ferroptosis, driven by excessive lipid peroxidation, is an iron-
dependent regulated cell death that is related to the development
and treatment response of various types of tumors (Chen et al.,
2021). The enrichment results of the GSEA indicated that the two
clusters were different in terms of fatty acid beta oxidation,
eicosanoid metabolism via lipoxygenases lox, and oxidation by
cytochrome p450 (Figure 3B). These lipid oxidation metabolism
characteristics, which were correlated to ferroptosis, suggested
that the ferroptosis status of the two clusters may differ. Analysis
of ferroptosis-related genes between the two groups revealed that
many ferroptosis-related genes were differentially expressed
between the two clusters (Figures 3C,E), and the expression
levels of some genes (including ACSL5, ACSL1, GSS, SLC7A11,
SCL39A8, SLC39A14, and PRNP) were significantly associated
with the prognosis of patients with BLCA (Supplementary
Figure S3). In addition, the correlation between the
ferroptosis-related genes was more obvious in cluster 1 and
was dominated by a positive correlation, while the correlation
between different genes in the ferroptosis-related gene network of
C2 was weaker (Figure 3D). SLC7A11 was significantly
downregulated in cluster 1, and the prognostic effect of
SLC7A11 in cluster 1 was more significant than that in cluster
2. Similarly, SAT1 was significantly upregulated in cluster 2, and
the prognostic effect in cluster 2 was more significant. This
finding suggested that the metabolism status of BLCA patients
was significantly associated with the expression of selected
ferroptosis-related genes, some of which were correlated with
the prognosis of BLCA.

Immune Infiltration Analysis
Based on the enrichment analysis results that upregulated genes
in cluster 2 were correlated with tumor immune function in
BLCA, the immune infiltration status of the two clusters was then
examined. A heatmap of immune cell infiltration suggested that
the tumor immune microenvironment was significantly different
between the two clusters (Figure 4A). Cluster 2 had higher

infiltration levels of T-cell CD4+ Th1, T-cell CD4+ Th2, T-cell
CD4+memory, T-cell regulatory, T-cell CD4+ naïve, granulocyte-
monocyte progenitor, macrophage, M1 macrophage, M2
macrophage, myeloid dendritic cell, activated myeloid
dendritic cells, monocytes, mast cells, plasmacytoid dendritic
cells, T-cell CD8+, T-cell CD8+ effector memory, T-cell CD8+

central memory, B-cell plasma, B-cell naïve, B cell, and B-cell
memory. In addition, high infiltration levels of CD4+ central
memory T cells, eosinophils, and CD8+ naïve T cells were
observed in cluster 2. Boxplots showed similar results using
the CIBERSORT algorithm (Figure 4B). The Spearman
correlation analysis also revealed a significant association
between energy metabolism-related gene set risk scores and
the infiltration of CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and myeloid dendritic cells (Supplementary
Figure S4). This result is consistent with the conclusion of the
enrichment analysis, indicating that patients with BLCA from
cluster 2 had higher immune cell infiltration and that the energy
metabolism-related gene set had a potential correlation with the
tumor immune microenvironment.

Furthermore, we investigated the expression of immune
checkpoint (IC)-related genes between the two clusters. In
cluster 2, we found a relatively higher expression of IC-related
genes, including CD274, CTLA4, HAVCR2, LAG3, PDCD1,
PDCD1LG2, and TIGIT (Figures 4C,D). However, SIGLEC15
expression was higher in cluster 1. Thus, energy metabolism-
related genes were significantly correlated with biomarkers of
immune checkpoints and may play an important role in
immunological therapy for BLCA.

Cancer Stem Cells and Drug Sensitivity
Analysis
Based on the gene expression profile containing 11,774 CSC-
associated genes, analysis of CSCs was conducted, and patients in
cluster 1 had a higher CSC score, indicating a significant
correlation between energy metabolic status and CSCs
(Figure 4E). Next, drug sensitivity was evaluated between the
two clusters. Figures 4F,G show that energy metabolic status was
significantly associated with the IC50 scores of doxorubicin and
gemcitabine for BLCA.

Energy Metabolism-Related Gene
Signature Identification
Considering the close correlation between the prognosis of
patients with BLCA and energy metabolism status, we suggest
developing an energy metabolism-related gene signature for
prognosis prediction. Based on DEGs between cluster 1 and
cluster 2, Venn diagrams were constructed and showed that
162 of 590 metabolism-related genes were differentially
expressed between clusters (Supplementary Figure S5). Then,
67 of 162 metabolism-related genes were further identified with a
significant relevance to the OS of patients with BLCA (p < 0.1). To
ensure the feasibility and stability of the clinical prognostic value
of these 67 genes, LASSO analysis was conducted, and we
obtained 16 energy–metabolism-correlated genes associated
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with the prognosis of patients with BLCA, including FBP1,
AOC2, SLC16A8, IDUA, CYP2C8, GPC2, HS3ST1, UGT2B7,
GSTM1, CSPG4, ACY3, SLC16A3, TPST1, CES1, HSPG2, and
CYP1B1 (Figures 5A,B). Therefore, based on the Cox coefficient,
the energy metabolism-related gene-based prognostic signature
(EMRGPS) was calculated as follows: risk score= (−0.055 × FBP1
expression) + (−0.0085 × AOC2 expression) + (−0.0567 ×
SLC16A8 expression) + (−0.0351 × IDUA expression) +
(−0.0444 × CYP2C8 expression) + (−0.0627 × GPC2

expression) + (−0.0885 × HS3ST1 expression) + (−0.0096 ×
UGT2B7 expression) + (0.0197 × GSTM1 expression) + (0.026
× CSPG4 expression) + (−0.1969 × ACY3 expression) + (0.0445 ×
SLC16A3 expression) + (0.117 × TPST1 expression) + (0.0421 ×
CES1 expression) + (0.0264 × HSPG2 expression) + (0.0051 ×
CYP1B1 expression).

Based on the median value of the risk score, patients with
BLCA could be categorized into low-risk and high-risk groups
(Figure 5C). The Kaplan–Meier curve indicated that patients in

FIGURE 4 | Analysis of immune cell infiltration between two clusters. (A) Immune cell score heatmap by xCell algorithm. Red represents high expression/score,
whereas blue represents low expression/score. (B) Boxplot of immune infiltration status in two clusters by the CIBERSORT algorithm. Heatmap (C) and boxplot (D) of
immune checkpoint-related gene expression between two clusters. Cancer stem cell scores (E) and chemotherapy resistance to doxorubicin (F) and gemcitabine (G) of
the two clusters. *p < 0.05, **p < 0.01, ***p < 0.001.
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the high-risk group had a significantly poorer OS than those in
the low-risk group (Figure 5D, p < 0.001), and the AUCs for 1-,
3-, and 5-year OS were 0.714, 0.739, and 0.693, respectively
(Figure 5E). Furthermore, to ensure the prediction value of
EMRGPS, an independent cohort from the cBioPortal online
database served as a validation set to verify our results. Survival
curves showed similar results, and significantly worse OS was

observed in the low-risk group than in the high-risk group in
patients from the cBioPortal online database (Figure 6E). The
AUCs for 1-, 3-, and 5-year OS in the validation cohort were
0.637, 0.626, and 0.629, respectively (Figure 6F). The association
between signature risk scores and clinicopathological
characteristics of the validation cohort was presented in the
form of a Sankey diagram (Figure 6G).

FIGURE 5 | Prognostic signature was established based on four prognostic energy metabolism-related genes. (A) LASSO coefficient profiles of the genes
associated with the metabolism of BLCA. (B) Partial likelihood deviance is plotted versus log(λ). (C) The risk score of each sample based on the energy metabolism-
related gene set. Patients were divided into low-risk and high-risk groups according to the median value of the risk score. The high/low expression levels of 16 genes
which were involved in the prognostic signature are shown in red/blue in each sample. (D) The Kaplan–Meier curve of overall survival differences stratified by
signature risk score. (E) The ROC curves of the signature for overall survival at 1, 3, and 5 years. LASSO: least absolute shrinkage and selection operator. ROC: receiver
operating characteristic.
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FIGURE 6 |Construction of a nomogram and the independent signature validation. (A)Nomogram for predicting 1-, 3-, or 5-year OS in patients with BLCA. (B) The
calibration plots for predicting 1-year OS. (C) The calibration plots for predicting 3-year OS. (D) The calibration plots for predicting 5-year OS. (E) Validation of the
signature in overall survival based on data from the cBioPortal online database. (F) The ROC curves of the signature validation for overall survival at 1, 3, and 5 years. (G)
Sankey diagram showing the association between signature risk scores and clinicopathological characteristics based on data from the cBioPortal database. OS:
overall survival. ROC: receiver operating characteristic.
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To better predict the prognostic value of EMRGPS in patients
with BLCA, a nomogram using available clinicopathological
parameters and the risk score of the signature was constructed
(Figure 6A). Moreover, calibration curves using 1-, 3-, and 5-year
survival rates were developed to estimate the accuracy of the
nomogram (Figures 6B–D). The multivariate and univariate Cox
regression analyses of EMRGPS and other clinicopathological
characteristics for OS are presented in Table 2. The signature risk
score was an independent factor for the prognosis of patients with
BLCA (HR: 2.443, 95% CI: 1.758–3.395, p < 0.001). Furthermore,
the survival analysis (Supplementary Figure S6) and the
different expression patterns (Figure 7A) of the 16 genes

involved in EMRGPS between normal and tumor tissues were
explored in the TCGA cohort (Figure 7). Of the 16 metabolism-
related genes, we found that AOC2, IDUA, GPC2, CSPG4,
TPST1, and CYP1B1 were differentially expressed between
tumor and normal tissue at the protein level according to the
Human Protein Atlas (HPA) cohort (Figure 7B).

DISCUSSION

The phenomenon of cancer cells shifting their metabolic
pathways from oxidative phosphorylation to glycolysis for the

TABLE 2 | Multivariate and univariate Cox regression analyses of EMRGPS and other clinicopathologic characteristics for OS in the TCGA cohort.

Overall survival Univariate analysis Multivariate analysis

HR 95% CI p Value HR 95% CI p Value

TCGA cohort
Age 1.033 1.017–1.049 <0.001 1.029 1.013–1.045 <0.001
Gender (female vs. male) 1.196 0.856–1.670 0.295
Race 0.264
White Reference
Asian 0.624 0.318–1.227 0.171
Black 1.258 0.713–2.220 0.427
Tumor stage (III–IV vs. I–II) 2.123 1.463–3.081 <0.001 1.819 1.250–2.646 0.002
Grade (low vs. high) 0.346 0.085–1.397 0.136
Risk Score (high vs. low) 2.712 1.959–3.757 <0.001 2.443 1.758–3.395 <0.001

Feathers with p value <0.1 were involved in multivariate Cox regression analyses. EMRGPS: energy metabolism-related gene-based prognostic signature.

FIGURE 7 | Box plot of the expression difference of 16 genes involved in the prognostic signature between normal and BLCA tissue (A). The expression difference
of AOC2, IDUA, GPC2, CSPG4, TPST1, and CYP1B1 between tumor and normal tissue at the protein level according to the Human Protein Atlas (HPA) cohort. (B). *p <
0.05, **p < 0.01, ***p < 0.001.
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production of sufficient adenosine triphosphate (ATP) and
necessary macromolecular biosynthesis, also known as the
Warburg effect, was first described in the 1920s (Weinhouse,
1956). Since its initial establishment, much effort has been made
to better understand the potential mechanisms of cancer
metabolic reprogramming. Growing evidence has shown that
agents targeting cellular energetics in multiple pathways are
involved in alterations in cancer metabolism (Jain et al., 2012).
In this study, the association between energy metabolic status and
the prognosis of patients with BLCAwas evaluated based on RNA
sequencing data from TCGA and cBioPortal online databases. A
significant correlation between clinicopathological features and
energy metabolism was observed, indicating that energy
metabolism and BLCA are closely linked.

Functional enrichment analysis revealed a strong association
between energy metabolic status and immune and inflammatory
responses, suggesting an interface between energy metabolic
status and the tumor immune microenvironment. Several
recent studies have reported numerous alterations in the
metabolic status of bladder cancer, indicating that tumor
metabolic status may play a role in the tumor immune
microenvironment (Woolbright et al., 2018). It was found that
the immune system could be affected by lactic acid accumulated
from the aerobic glycolysis process of tumor cells, which includes
the enhancement of cytokine transcription and inhibition of the
differentiation of monocytes into dendritic cells (Becker et al.,
2013; Ghesquière et al., 2014). Oresta et al. found that
mitochondrial metabolism is reprogrammed to control the
induction of immunogenic cell death and the efficacy of
chemotherapy for bladder cancer by increasing OXPHOS
(Oresta et al., 2021). Our study showed a similar result, in
which a significant correlation between metabolic status and
resistance to chemotherapy, including doxorubicin and
gemcitabine, was observed. Wang et al. reported that the
inhibition of pyruvate kinase M2, a glycolytic enzyme for the
Warburg effect, could significantly reduce chemoresistance to
cisplatin in bladder cancer (Wang et al., 2017).We also found that
energy metabolism was significantly correlated with most ICI
biomarkers, which acted as biomarkers and immune checkpoint
inhibitors or participated in the tumorigenesis and progression of
BLCA. Checkpoint inhibitors have recently been approved as
second-line treatments, which may alter the pattern of bladder
cancer treatment (Teo and Rosenberg, 2018). This result indicates
that energy metabolic status may affect the tumor
microenvironment through immune cell infiltration and
therefore mediate carcinogenesis of BLCA, and may play an
important role in the sensitivity and resistance of immune
therapy. A recent study found that mutations in peroxisome
proliferator-activated receptor gamma (PPARγ), a transcription
factor connecting glucose and fatty metabolism, led to immune
suppression, such as inhibiting the infiltration of CD8+ T cells in
the tumor microenvironment, which may play an important role
in checkpoint inhibition in BLCA (Korpal et al., 2017).

Using the OCLR algorithm constructed by Malta et al. (Malta
et al., 2018), we found that BLCA metabolic status was
significantly correlated with CSCs. CSCs are a population of
undifferentiated cells exhibiting stem-like features, with high

tumorigenic capacity to recreate the heterogeneity of the
primary tumor and serve as a major culprit for recurrence in
bladder cancer (Chan et al., 2010; van der Horst et al., 2012).
Previous studies have reported that CSCs are resistant to
conventional therapies, including chemotherapy, radiation, and
immunotherapy (Bao et al., 2006; Li et al., 2008; Radvanyi, 2013).
The potential mechanism of CSCs with energy metabolic status in
patients with BLCA requires further investigation.

Due to the strong association between energy metabolic status
and clinicopathological characteristics in patients with BLCA, a
signature was established to stratify patients into high- or low-risk
of poor prognosis. Von Rundstedt et al. reported a 30-gene
metabolic signature that was significant in predicting survival
in patients with BLCA (von Rundstedt et al., 2016). In this study,
with the application of a combination of lasso regression, a
signature of 16 genes showed a powerful effect on survival
prediction. Of the 16 metabolism-related genes, we found
AOC2, IDUA, GPC2, CSPG4, TPST1, and CYP1B1 to be
differentially expressed between tumor and normal tissues at
the protein level. The AOC2 gene encodes retina-specific amine
oxidase, which oxidizes aromatic monoamines such as
p-tyramine, tryptamine, and 2-phenylethylamine. Its
physiological role is still unclear, but a previous study
suggested that AOC2 plays a role in hereditary retinal diseases
(Lopes de Carvalho et al., 2019). IDUA encodes an enzyme that is
correlated to the degradation of two glycosaminoglycans, and
mutations in this gene lead to the autosomal recessive disease
mucopolysaccharidosis type I (Ghosh et al., 2017). GPC2 belongs
to a six-member human glypican family of proteins and is highly
expressed in neuroblastoma (Li et al., 2017). CSPG4 represents an
integral membrane chondroitin sulfate proteoglycan, which is
highly expressed in human malignant melanoma cells (Uranowska
et al., 2021). TPST1 encodes an integral membrane glycoprotein
of the trans-Golgi network, catalyzing the tyrosine O-sulfation
of soluble and membrane proteins that pass through this
compartment. TPST1 encodes an integral membrane
glycoprotein of the trans-Golgi network, catalyzing the tyrosine
O-sulfation of soluble and membrane proteins that pass through
this compartment. A previous study reported that TPST1 is highly
expressed in breast carcinoma, oral squamous cell carcinoma, and
soft tissue sarcoma (Jiang et al., 2015). This gene encodes amember
of the cytochrome P450 superfamily of enzymes. Cytochrome P450
proteins are monooxygenases that catalyze many reactions
involved in drug metabolism and synthesis of cholesterol,
steroids, and other lipids (Dong et al., 2021).

The main limitation of this study is that most analyses were
conducted at the mRNA level; further analysis at the protein level
is imperative. Moreover, our results were mainly based on the
TCGA and cBioPortal datasets. Although the large number of
cases from these databases may decrease the risk of bias, another
independent cohort is needed to validate our results and
minimize the bias.

In conclusion, we found that energy metabolic status is closely
related to the immune microenvironment, IC-related genes,
CSCs, chemotherapy resistance, prognosis, and recurrence in
patients with BLCA. The energy metabolism-related gene
signature was then developed to predict the survival of
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patients with BLCA. In the era of precision medicine, this
signature could provide an effective tool to meet the clinical
requirements of BLCA management to some extent.
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Radiomics of Contrast-Enhanced
Computed Tomography: A Potential
Biomarker for Pretreatment Prediction
of the Response to Bacillus
Calmette-Guerin Immunotherapy in
Non-Muscle-Invasive Bladder Cancer
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Jin Yao1*, Jiaming Liu2* and Bin Song1
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Science and Technology of China, Chengdu, China

Background: Bacillus Calmette-Guerin (BCG) instillation is recommended postoperatively
after transurethral resection of bladder cancer (TURBT) in patients with high-risk non-
muscle-invasive bladder cancer (NMIBC). An accurate prediction model for the BCG
response can help identify patients with NMIBC who may benefit from alternative therapy.

Objective: To investigate the value of computed tomography (CT) radiomics features in
predicting the response to BCG instillation among patients with primary high-risk NMIBC.

Methods: Patients with pathologically confirmed high-risk NMIBC were retrospectively
reviewed. Patients who underwent contrast-enhanced CT examination within one to
2weeks before TURBT and received ≥5 BCG instillation treatments in two independent
hospitals were enrolled. Patients with a routine follow-up of at least 1 year at the outpatient
department were included in the final cohort. Radiomics features based on CT images were
extracted from the tumor and its periphery in the training cohort, and a radiomics signature
was built with recursive feature elimination. Selected features further underwent an
unsupervised radiomics analysis using the newly introduced method, non-negative matrix
factorization (NMF), to compute factor factorization decompositions of the radiomics matrix.
Finally, a robust component, which was most associated with BCG failure in 1 year, was
selected. The performance of the selected component was assessed and tested in an
external validation cohort.

Results: Overall, 128 patients (training cohort, n = 104; external validation cohort, n = 24)
were included, including 12 BCG failures in the training cohort and 11 failures in the
validation cohort each. NMF revealed five components, of which component 3 was
selected for the best discrimination of BCG failure; it had an area under the curve
(AUC) of .79, sensitivity of .79, and specificity of .65 in the training set. In the external
validation cohort, it achieved an AUC of .68, sensitivity of .73, and specificity of .69. Survival
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analysis showed that patients with higher component scores had poor recurrence-free
survival (RFS) in both cohorts (C-index: training cohort, .69; validation cohort, .68).

Conclusion: The study suggested that radiomics components based on NMF might be a
potential biomarker to predict BCG response and RFS after BCG treatment in patients with
high-risk NMIBC.

Keywords: BCG immunotherapy, NMF (nonnegative matrix factorization), NMIBC (non-muscle-invasive bladder
cancer), CECT images, radiomics analysis

INTRODUCTION

Bladder cancer (BCa) is one of the most common cancers
worldwide (Siegel et al., 2020). Based on the presence of
muscular-invasiveness, BCa is pathologically categorized into
muscular invasive BCa (MIBC) and non-muscular invasive BCa
(NMIBC). Currently, the standard care for patients with NMIBC
with a high-risk of recurrence is Bacillus Calmette-Guérin (BCG)
instillation along with transurethral resection of bladder tumor
(TURBT) (Babjuk et al., 2019). This therapy is effective in reducing
recurrence and progression and increasing the survival of patients
with high risk (Babjuk et al., 2019). However, approximately
40–60% of patients experience tumor recurrence within 2 years
(Kamat and Sylvester, 2016). The earlier the tumor recurrence or
BCG response is predicted, the better the patients’ chances of
recieving new or alternative therapies because of the high
recurrence rate after BCG treatment (Lotan et al., 2017).

However, no standard method has been established for
predicting responses to BCG instillation. As the outcome of
BCG instillation tends to vary across molecular characteristics,
how to make a quantitative pretreatment prediction on the
recurrence or progression after BCG treatment for better
treatment planning is still a great challenge (Tran et al., 2020).
Various biochemical indicators have been proposed to predict the
responses to BCG in patients with high-risk NMIBC, including
urinary and serum cytokine/chemokine profiles, and peripheral
blood counts, such as eosinophils, neutrophils, lymphocytes, Th1,
and Th2. However, these studies had small sample sizes and were
not externally validated (Kamat et al., 2018; Martínez et al., 2019;
Temiz et al., 2021). No studies have applied medical imaging tests,
such as ultrasound, computed tomography (CT), and magnetic
resonance imaging (MRI), for predicting BCG treatment response,
while they have been widely used for pretreatment prediction of
other cancers, such as breast (Liu et al., 2020; Xiong et al., 2021),
lung (Liu et al., 2021), and renal cancers (Rallis et al., 2021). Since
diagnostic images can depict the phenotypes of bladder cancer in a
non-invasive way, recent studies have illustrated that the utilization
of imaging biomarkers to predict the response of MIBC with
different chemotherapies is feasible (Cha et al., 2017; Hadjiiski
et al., 2020; Necchi et al., 2020). Among these non-invasive
imaging-based radiomics prediction or classification models,
various dimensionality reduction and matrix decomposition
methods have been introduced, such as vector quantization and
principal component analysis. However, these methods have
limited ability to capture the full message of radiomics data
from a small region of interest (ROI) in patients with NMIBC,

whichmight account for the fact that no radiomics model has been
developed for predicting BCG response in such patients.

Non-negative matrix factorization (NMF), an algorithm based
on decomposition by parts (Lee and Sebastian, 1999), has been
introduced to identify distinct molecular patterns, while
recovering meaningful biological information from tumor-
related microarray data (Brunet et al., 2004; Motzer et al.,
2020). In this study, we used NMF to decompose the radiomic
features from small lesions on contrast-enhanced CT images,
which can then be analyzed by combining different features; thus,
generating all variabilities of components to represent samples,
analogous to gene expression patterns in terms of the metagenes
(Brunet et al., 2004). Subsequently, the most relevant component
of BCG failures could be selected, which might be a potential
biomarker for BCG response.

In this study, we applied NMF and our model selection
criterion by factorizing the radiomic features extracted from
the pretreatment contrast-enhanced CT images in NMIBC and
generated different feature components representing different
NMIBC subtypes. We were able to investigate whether
radiomics feature components are associated with BCG failure
and whether this substaging method can be used to improve
patient stratification at diagnosis of NMIBC.

MATERIALS AND METHODS

Study Design
This was a two-center retrospective observational study. An
unsupervised factorization algorithm named NMF, which
iteratively selects the most robust pattern within pretreatment
contrast-enhanced CT images, was proposed to predict the
response to BCG in patients with high-risk NMIBC.
Histopathological examination after TURBT was performed as per
the reference standard. This study was approved by the institutional
review boards of West China Hospital and Shang Jin Nan Fu
Hospital, and was conducted in accordance with the Declaration
of Helsinki, and the requirement for informed consent was waived.

Patients
Patients who 1) were pathologically diagnosed with HR-NMIBC
(Tis or Ta/T1HGurothelial carcinoma) by TURBT; 2) received≥5/
6 BCG induction instillations after TURBT; 3) underwent TURBT
or radical cystectomywhen a new lesion was found during follow-up
cystoscopy; and 4) underwent pretreatment contrast-enhanced CT
scanning before TURBT within one to 2 weeks were included in the
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study. Patients who 1) did not have pre-TURBT pathological results;
2) did not complete BCG induction or had a nonstandard instillation
regimen (i.e., the number of BCG instillation less than 5); 3) had
confirmative surgery at an external institution, or did not have their
recurrence assessed, or had follow-up less than 12mon; 4) did not
undergo pretreatment contrast-enhanced CT scanning; and 5) had
insufficient CT quality to obtain measurements (e.g., due to metal
artifacts) were excluded from the study.

The primary endpoint of this study was the response status to
BCG instillation therapy (BCG failure/BCG response) within 1 year.
Specifically, BCG failure was defined according to the European
Urology Association guidelines (Babjuk et al., 2019). The secondary
endpoint was recurrence-free survival (RFS), defined as the time
interval from the beginning of BCG therapy to the first high-grade
disease recurrence (BCG failure) during follow-up.

Image Recognition and Feature Extraction
Contrast-enhanced CT examination of each patient was
performed within 1–2 weeks before surgery. CT scanning was
performed using a 128-MDCT scanner (SOMATOM Definition
Flash, syngo CT 2012B medical system, Siemens, Germany) or a
160-revolution APAX MDCT scanner (Quantix 160 mm × ray
cube, GEmedical system, United States). All CT examinations
were performed under the following conditions: 120 KVp;
210mA; 14.17 ctdIVOL (mGy); 778.7 DLP (mGy*cm); pitch,
1.0; rotation time, .5 s; section thickness, 2.0 and 5.0 mm.

Three-dimensional region of interest (3D-ROI) was manually
delineated on the CT images using ITK-SNAP software (http://
www.itksnap.org), and the largest tumor was targeted for patients
with multiple lesions in this study. To accurately match the targeted
ROI and the pathological result, we had a coordinator to carefully
review the surgery records and record the final pathological grades
of targeted tumors. Radiologist 1 (4 years’ experience) manually
drew the 3D-ROIs along the tumormargin, and then the radiologist
2 (10 years’ experience) validated these ROIs. To ensure
reproducibility of ROIs, intra-class correlation (ICCs) was used
for evaluating intra-observer agreement. We randomly selected 30
patients and re-delineated ROIs by radiologists 1 one month later
after the initial ROI segmentation. An ICC greater than 0.75 were
considered ROIs of satisfactory reproducibility. All images were
resampled to a spacing of 1.0*1.0*2.0 cm.We used the image feature
extraction software Python package (pyradiomics) to obtain
107 CT-based radiomic features, all of which were based on
original images, including 14 shape features, 18 histogram
features, and 68 texture features (Supplementary Table S1). All
of these features have been previously reported (Aerts et al., 2014;
Zhang et al., 2020; Fiz et al., 2021).

Feature Decomposition and NMF
Component Construction
Radiomic features with high collinearity were excluded.
Subclasses were then computed by reducing the dimensionality
of the expression data from reserved radiomics features to a few
meta-features using NMF (Python pakage Nimfa) (Kamat et al.,
2018). This method computes multiple k-factor factorization
decompositions of the feature matrix, which is the first value

where the residual sum of squares curve presents an inflection
point (Hutchins et al., 2008).

In traditional matrix decomposition technologies, such as
feature decomposition, the decomposed matrix will have
negative values, but negative values are meaningless in the
actual scene. For example, in the field of image processing,
radiomics features are a matrix composed of non-negative
numbers, which have no practical significance for the negative
values obtained by decomposition processing. Our goal is to find a
small number of meta-features, each defined as a positive linear
combination of the M radiomics features. Mathematically, this
corresponds to factoring matrix V into two matrices with positive
entries, V ~WH. The shape of V isM ×N,M equals to the number
of features and N equals to the number of samples, as shown in
Figure 2A. Matrix W has size M × k, with each of the k columns
defining a meta-feature; entry Wij is the coefficient of feature i in
metafeature j. Matrix H has size k × N, with each of theM columns
representing the metafeature pattern of the corresponding sample;
entry Hij represents the level of metafeature i in sample j. For more
convenient expression, we depict the level of the metafeature as the
score of this component. As the NMF finds different solutions for
different initial conditions, the factorizations were repeated 100
times. To select the metafeature with the most predictive ability for
disease relapse, we built single-factor Cox models for each
metafeature to find the metafeature with the highest C-index.

Performance Assessment
The predictive values of the NMF components were evaluated
using the receiver operator characteristic and area under curve
(AUC). The cutoff values for estimating sensitivity and specificity
were determined using the Youden’s index. The prognostic
performance of the proposed components was assessed using
Harrell’s concordance index (C-index) and Kaplan–Meier log-
rank analysis, which was also tested in the validation cohort.
Furthermore, confusionmatrices were constructed to evaluate the
agreement between the observed outcomes and the NMF-
predicted outcomes, and a calibration curve was plotted for
the evaluation of predicted survival.

Statistical Analysis Workflow
Descriptive data were summarized as frequencies and percentages.
Continuous parametric variables are presented as mean ± standard
deviation. Nonparametric variables are shown asmean (interquartile
range). Pearson’s chi-square test or Fisher’s exact test was used for
categorical variables. Comparisons of continuous variables were
conducted using Mann-Whitney U tests or Student’s t-tests.
Statistical significance was set at p < .05 was considered to be
statistically different. Statistical analyses were performed using R
software (version 3.8).

RESULTS

Clinical Characteristics
As shown in Figure 1, 413 potentially eligible patients were
consecutively retrieved from the databases of two hospitals,
and 128 patients were finally included in this study according
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to the inclusion and exclusion criteria. The dataset from West
China Hospital had 108 eligible patients and was used to develop
the model. The clinical characteristics of the patients are
summarized in Table 1.

The cutoff date of the primary training cohort was June 19,
2021, and the median follow-up time was 24 months (IQR,
16–37 months). Twelve patients (11.1%) had BCG failure. The

median RFS was 9 months (IQR, 8–10 months). The cutoff date
of the validation cohort was September 30, 2021, and the median
follow-up time was 12 months (IQR, 7–21 months). Eleven
patients (45.8%) experienced BCG failure. The median RFS
was 7 months (IQR, 5–10 months). No significant differences
were detected between these two cohorts in terms of age, rate of
concomitant carcinoma in situ, tumor focality, and size, while the

TABLE 1 | Baseline characteristics of the patients in this study.

Primary
cohort (N = 104)

Validation
cohort (N = 24)

p

Age (years, mean ± SD) 66.0 ± 11.2 69.2 ± 10.8 .196
Gender
Male 82 (78.8) 21 (20.2) 0.256
Female 22 (21.2) 3 (79.8)

Concomitant CIS .327
No 70 (67.3) 18 (75)
Yes 34 (32.7) 6 (25)

Tumor focality 0.522
Unifocal 51 (49.2) 12 (50)
Multifocal 53 (50.8) 12 (50)

Tumor size (cm) 0.418
<3 74 (71.2) 16 (66.7)
≥3 30 (28.8) 8 (33.3)

Stage <.001
Ta 58 (55.8) 4 (16.7)
T1 49 (44.2) 20 (83.3)

BCG failure <.001
No 96 (88.9) 13 (54.2)
Yes 12 (11.1) 11 (45.8)

Median total BCG instillations (IQR) 19 (19–23) 14 (9—16)
Median total mos follow-up (IQR) 24 (16–37) 12 (7–21)
Median mos time to BCG failure (IQR) 9 (8—10) 7 (5–10)

BCG, Bacillus Calmette-Guerin; CIS, carcinoma in situ; IQR, inter-quartile range; SD, standard deviation.

FIGURE 1 | Patient recruitment and study design.
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validation cohort had significantly higher proportions of BCG
failure (p < .001) and T1 stage (p < .001).

Construction of NMF Components
We excluded 53 radiomic features with high collinearity. To
expand our understanding of the radiomics of bladder cancer,
we utilized NMF to leverage the CT radiomics dataset in high-
risk NMIBC and further identify predictive radiomics
biomarkers of BCG failure. The most robust NMF of 108
patients selected and testing k = 2 to k = 10 was identified
as k = 5 (Figure 2B). That is, NMF identified five components
of radiomics features in the primary training cohort (as shown
in the Supplementary Table S2). The W matrix reflects the
composition of each component (Figure 3A), and the H
matrix reflects the scores of five components for each

sample (Figure 3B), from which we can conclude that
component 3 is most associated with the failure of BCG
treatment, as the level of this component is higher in the
samples with the failure of BCG treatment.

Predictive and Prognostic Performance of
NMF Components
The scores of NMF component 3 yielded a good prediction
performance, with an AUC of .79 in the developing cohort
(Figure 4A), and accurately predicted 9/12 BCG failures and
60/92 patients without BCG failure (Figure 4B). The optimal
cutoff value was the component z-score of .2 with sensitivity and
specificity of .75 and .65, respectively. Component 3 showed
moderate performance in recurrence-free survival (RFS)

FIGURE 2 |Workflow of non-negativematrix factorization (NMF). (A) V represents the original datamatrix as the combination of twomatrices, V ~WH. The shape of
V is M × N, M equals to the number of features and N equals to the number of samples. W is a matrix which contains the reduced number of k components derive from
NMF, and the sub-classified features for each component (M). Matrix H has size k × N, with each of the M columns representing the metafeature pattern of the
corresponding sample. (B) The most robust NMF of training cohort selected and tested k = 2 to k = 10, and the turning point was identified as k = 5. That is, NMF
identified five components of radiomics features in the primary training cohort.

FIGURE 3 | Illustration of component selection with NMF. (A) Patients were aggregated by NMF component using the mean across patients for each component,
and the mean Z score for each feature was calculated, resulting in one Z score per feature per NMF component. (B) Heatmap of radiomics features. Z scores were
calculated for each features. Samples are grouped by NMF components.
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estimation in the training cohort, with a C-index of .69. Patients
were divided into high-risk and low-risk groups, with a
component z-score of .2 as the cutoff. Compared with patients
with a z-score of less than .2, patients in the group with z-score
larger than .2 had a significantly shorter RFS (Figure 4C, p <
.005). The associations between the top five features in NMF
component 3 and RFS were separately examined, as shown in
Supplementary Figure S1.

Good performance was also observed for BCG failure
prediction in the validation cohort. As shown in Figure 5B,
NMF component 3 accurately predicted 8/11 BCG failures and 9/
13 patients without BCG failure. Although he AUC of NMF
dropped marginally in the validation cohort, the AUC
approximated .70 (Figure 5A), and the sensitivity and
specificity were .73 and .69, respectively. For prognostic
performance, component 3 achieved a moderate performance
in the estimation of RFS (C-index, 0.68) in the validation cohort.
Compared with patients with a z-score of less than .2, patients in
the group with z-score larger than .2 had a significantly shorter
RFS (Figure 5C, p = .04). The calibration curve and decision
curve analysis of the NMF components are shown in Figures
5D,E, which indicate its potential clinical usefulness.

DISCUSSION

In this two-center study, we investigated the ability of
pretreatment contrast-enhanced radiomics analysis so as to
predict BCG failure in patients with high-risk NMIBC. An
unsupervised strategy named NMF was proposed with better
performance in the primary training cohort and performed well
in the external validation cohort. The outperformance of NMF
indicated that the NMF-decomposed components from CT
radiomics features could serve as potential biomarkers for
pretreatment predicting BCG failure in patients with high-risk
NMIBC.

It is of great guiding significance for the selection of treatment
options and clinical decision support of patients with high-risk
NMIBC to identify predictive biomarkers related to the BCG
response and subsequent recurrence time (Kamat et al., 2018;
Ilijazi et al., 2020; Shiota et al., 2020). Currently, most studies have
focused on biomarkers in biological specimens, such as peripheral
blood, urine, and tumor tissue from surgery. High levels of urine
Treg cells and tumor-infiltrating dendritic cells in the
pathological examination were associated with rapid
recurrence following BCG therapy (Chevalier et al., 2018;

FIGURE 4 | Association between NMF component 3 and clinical outcomes in primary cohort. (A) ROC curve and the AUC for the predictive accuracy of NMF
component 3 in predicting BCG failure in 1 year. (B) Confusion matrix presenting the predictive outcomes using NMF component 3 and true outcomes of BCG failure in
1 year. (C)With the component Z score of .2 as the cutoff, patients with scores <.2 (0) had significantly prolonged recurrence free survival (RFS) than those with scores
>.2 (1), p < .005.
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Ayari et al., 2009). For prognostic outcome after BCG treatment,
Martinez et al. found that patients with a lower T-bet+/
lymphocyte ratio and higher GTR/NLR had significantly
longer recurrence-free survival (Martínez et al., 2019). As to
the pathological results, De Jong et al. found that T1 patients
with extensive invasion of the lamina propria had a higher risk for
BCG failure and an improved progression-free survival (de Jong
et al., 2021). However, there are some inherent limitations for
these biomarker-finding studies, such as poor specificity of
biochemical factors for reacting to both inflammation and
tumor, lack of external validation, and high interobserver
variability in invasion extension (Babjuk et al., 2019; Del
Giudice et al., 2020). The presentation of tumors on
radiological images tends to be more stable than biochemistry
factors, and image biomarkers extracted from medical images
retain excellent stability (Zwanenburg et al., 2020) and are more
easily available than pathological substaging. In our study, a non-
invasive CT-based NMF component was developed and
performed well in an external validation cohort.

Various imaging-based radiomics models have been proposed
to predict treatment responses in different cancers (Liu et al.,
2021; Rallis et al., 2021;. Zhong et al., 2021) with the hypothesis
that these selected imaging features reflect specific tumor
phenotypes (Lambin et al., 2012; Aerts et al., 2014). In
addition, many other studies have reported the effects of
imaging features on survival outcomes, but no studies have

been reported regarding BCG instillation on patients
diagnosed with high-risk NMIBC. In this study, the
proportion of BCG failure in 1 year was too low to construct a
traditional radiomics model, which we had tried on, and of which
the accuracy was similar to that of flipping a coin. The main
reasons for the unexpected low discrimination of traditional
radiomics models might be the low proportion of BCG failure
and relatively greater amount of radiomic features, which
increased the difficulty of traditional machine learning
methods to discover patterns of BCG failure cases (van der
Ploeg et al., 2014; Gillies, Kinahan, and Hricak 2016; Moons
et al., 2019). The goal of our research is similar to gene expression
studies, of which a handful metagenes are selected from
thousands of genes in limited samples. This can be achieved
with NMF, which is an unsupervised algorithm based on
decomposition by parts and a model selection mechanism.
NMF has been used to iteratively select the most robust
biomarkers from thousands of genes (Zhong et al., 2018; Zeng
et al., 2019; Motzer et al., 2020) and to find structural covariance
patterns in neuroimaging content (Nassar et al., 2019; Patel et al.,
2020). In our application of NMF to radiomic features, the parts
were the components of a reduced representation of the original
hidden features, which may enable the recovery of biologically
similar phenotypes. Considering that the molecular mode of BCG
actions remains partially understood, NMF components might be
a hint for potential pathways for BCG treatment failure based on

FIGURE 5 | External validation of NMF component 3. (A) ROC curve and the AUC for the predictive accuracy of NMF component 3 in predicting BCG failure in
1 year. (B)Confusionmatrix presenting the predictive outcomes using NMF component 3 and true outcomes of BCG failure in 1 year. (C)With the component Z score of
.2 as the cutoff, patients with scores <.2 (0) had significantly prolonged recurrence free survival (RFS) than those with scores >.2 (1), p = .04. (D) Calibration curve of the
component 3. (E) Decision curve of component 3. The X-axis shows the cutoff value, while the Y-axis shows the net benefit.
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previous reports about the cellular geography associated with the
poor response to BCG (Ilijazi et al., 2020; Shiota et al., 2020; Tran
et al., 2020).

Compared with CT, the superiority of MRI has been
documented with respect to the diagnostic performance and
evaluation of treatment response of BCa, but there have been
no studies on their performance in radiomics analysis (Wong
et al., 2021). For MRI-based radiomics, it is quite difficult to
standardize image acquisitions for numerous parameters and
many variations among manufacturers with different magnetic
fields (Wakabayashi et al., 2019). In addition, MRI is susceptible
to many artifacts, such as image and signal distortion
consequences due to contiguous gas-filled bowls and gas
bubbles within the bladder (Lin and Chen, 2015) which could
complicate the reproducibility of measurements. In studies on CT
radiomics, automatic acquisition protocol and test-retest analysis
have proven to be useful in overcoming the bias of acquisition
protocols (Caruso et al., 2021). In light of the above limitations,
radiomic models based on MRI are more difficult to reproduce
across institutions than those based on CT images (Harding-
Theobald et al., 2021). CT is recommended prior to TURBT
according to the NCCN guidelines, and is still the most
commonly used imaging method worldwide in diagnosing and
staging BCa, mainly because CT is fast and inexpensive (Babjuk
et al., 2019; Flaig et al., 2020). Considering the easily acquired CT
images across hospitals, the CT radiomics model can be clinically
validated on a larger sample. As expected, the NMF components
from CT radiomics demonstrated a stable performance in this
double-center study, and further large-scale studies are needed to
determine the reproducibility and clinical utility of NMF
components.

Despite these remarkable results, our study has several
inherent limitations. First, although we found a robust
component, which was strongly related to the risk of BCG
failure in 1 year and associated with the recurrence survival
after BCG instillation, we failed to uncover the underlying
molecular mechanisms of these nested radiomic features.
Further investigation could focus on the comparison of gene/
molecular expression patterns among different subtypes defined
by radiomic features. Second, owing to the retrospective design of
this study, some inherent limitations were inevitable, such as the
high proportion of excluded cases for missing data and those with
poor quality in CT images. Besides, the retrospective designmight
be the main cause of inconsistent recurrence rates in the two
cohorts. Given the fact that our NMF strategy performed well in
both cohorts with extremely different BCG failure rates, we still
have confidence in the further predictive validation of NMF

strategy. Future studies should enroll more patients with
standard BCG instillation with regular follow-up, so that the
NMF strategy could be better validated.

In conclusion, the present preliminary study suggests that
NMF could provide a potential tool for predicting BCG response
and survival outcomes in patients with high-risk NMIBC. With
further molecular research, NMF-based components may be
useful as molecular biomarkers of treatment response.
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Bladder cancer (BLCA) is a tumor that possesses significant heterogeneity, and the tumor
microenvironment (TME) plays an important role in the development of BLCA. The TME
chiefly consists of tumor cells and tumor-infiltrating immune cells admixed with stromal
components. Recent studies have revealed that stromal components, especially cancer-
associated fibroblasts (CAFs), affect immune cell infiltration and modulate the extracellular
matrix in the TME of BLCA, ultimately impacting the prognosis and therapeutic efficacy of
BLCA. Among the subgroups of CAFs, myofibroblasts (myCAFs) were the most abundant
and were demonstrated to play an essential role in affecting the prognosis of various
tumors, including BLCA. However, the dynamic changes in myCAFs during
carcinogenesis and tumor progression have been less discussed previously. With the
help of bioinformatics algorithms, we discussed the roles of myCAFs in the carcinogenesis
and prognosis of BLCA in this manuscript. Our study highlighted the pathogenesis of
BLCA was accompanied by a decrease in the abundance of myCAFs, revealing potential
protective properties of myCAFs in the carcinogenesis of BLCA. Meanwhile, the reduced
expressions of myCAFs marker genes were highly accurate in predicting tumorigenesis. In
contrast, we also demonstrated that myCAFs regulated extracellular matrix remodeling,
tumor metabolism, cancer stemness, and oncological mutations, ultimately impacting the
treatment responsiveness and prognosis of BLCA patients. Thus, our research revealed
the bimodal roles of myCAFs in the development of BLCA, which may be associated with
the temporal change of the TME. The in-depth study of myofibroblasts and the TME may
provide potential diagnostic biomarkers and therapeutic targets for BLCA.
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INTRODUCTION

Bladder cancer (BLCA) is a common cancer of the urinary system
with two distinct features, frequent recurrence and heterogeneity
in tumor progression (Lokeshwar et al., 2020). Clinically, BLCA
can be divided into muscle-invasive bladder cancer (MIBC) and
non-muscle-invasive bladder cancer (NMIBC) (Kamoun et al.,
2020). Of note, myofibroblasts are present in the vast majority of
MIBC sections, suggesting that myofibroblasts play a critical role
in the progression and heterogeneity of BLCA. Owing precisely to
the highly heterogeneous nature of MIBC, patients with MIBC
have limited treatment options and often need to undergo radical
cystectomy, which significantly affects patients’ quality of life
(Gakis et al., 2017). With the recent development of
immunotherapy, immune checkpoint blockade (ICB) therapy
is now a guideline-recommended treatment for advanced
BLCA when chemotherapy fails (Funt and Rosenberg, 2017).
However, ICB therapy still faces many limitations, including
multiple adverse effects and unpleasant therapeutic
responsiveness (Lopez-Beltran et al., 2021).

The tumor microenvironment (TME) is an intricate system
that mainly consists of tumor cells, stromal cells, and tumor
infiltrated immune cells (Patnaik et al., 2017). Emerging evidence
has shown that stromal components can shape the TME,
influence chemotherapy and immunotherapy responsiveness,
and promote malignant tumor progression (Yang et al., 2018).
Cancer-associated fibroblasts (CAFs) occupy a dominant
position in the stromal components of the TME. Recent
evidence suggests that CAFs play profound roles in shaping
the immune landscape of the TME via ECM-regulated
immune cell anchorage and trafficking and via suppression of
immune activation (Yu et al., 2020). In addition, CAFs-associated
remodeling of the TME also plays a crucial role in the
chemosensitivity of tumors (Zhang et al., 2020). Thus, the
functions of CAFs in the tumor microenvironment are
complicated, and further studies on CAFs are critical in the
field of cancer research.

With the rapid development of single-cell RNA
sequencing (scRNA-seq) techniques, CAFs are now
considered to be classified into different subgroups,
including inflammatory CAFs (iCAFs), myofibroblasts
(myCAFs), and antigen-presenting CAFs (apCAFs) (Elyada
et al., 2019). myCAFs have been shown to promote a more
aggressive cancer cell phenotype by both in vivo and in vitro
experiments (Otranto et al., 2012). Meanwhile, myCAFs have
been demonstrated to greatly impact patients’ prognosis
among various types of human cancers (Liu et al., 2016).
However, controversy remains, with some studies confirming
that animal models of pancreatic cancer after removal of
myCAFs exhibit significantly worse prognosis, suggesting
that fibroblast reactions could also play a protective role
(Özdemir et al., 2014). Therefore, it is essential to
investigate the dynamics of myCAFs to study the temporal
alterations in the tumor microenvironment.

In the present study, we comprehensively discussed the roles
of myCAFs in the carcinogenesis and progression of BLCA with
the help of bioinformatics algorithms and immunohistochemical

validations. Our research revealed dual functions of myCAFs that
crucially affected the carcinogenesis, prognosis, and therapy
responsiveness of BLCA. Further studies on myCAFs may
provide potential diagnostic biomarkers and therapeutic
targets for BLCA.

MATERIALS AND METHODS

Raw Data Acquisition
The gene transcriptome data of 408 patients with BLCA were
downloaded from the TCGA portal (https://portal.gdc.cancer.gov/
), 406 patients with complete clinical information were further
selected. The average gene expression of the samples from the
same patient was calculated using the “limma” package of R
software version 4.0.3. Gene expression was transformed into
TPM for further analysis. Meanwhile, GEO cohorts (GSE13507
and GSE32894) were obtained from the Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/). Gene expression of the TCGA
and GEO cohorts was transformed by log2 (expression+1) before
normalization by the “Combat” algorithm of the “SVA” package.
The integrated cohort (TCGA, GSE13507, and GSE32894) was used
for subsequent analysis. The IMvigor210 cohort was obtained from
the R package “IMvigor210CoreBiologies” for external validation
(Mariathasan et al., 2018). (http://researchpub.gene.com/
IMvigor210CoreBiologies/IMvigor210CoreBiologies.tar.gz). The
information of the cohorts used in this manuscript was provided
in Table 1.

Weighted Gene Co-Expression Network
Analysis (WGCNA) and Differentially
Expressed Genes (DEGs) Analysis
The “WGCNA” R package was used to identify the genes
correlated with normal and tumor tissues for co-expression
network analysis. A heatmap displays the values of the
correlation between each module and the normal and tumor
tissues. The genes with the highest correlations in the modules
were selected for subsequent analysis. DEGs were calculated using
the Limma package of R software between different groups and
were defined as genes with adjusted p-value < 0.05 and |Log2
(Fold Change)| >1.

Survival Analysis and Independent
Prognostic Factor Screening
Kaplan–Meier (KM) survival analysis with the log-rank test
was used to compare the survival differences in the present
study. Figures were plotted using the R packages “survival” and
“survminer.” The Univariate and multivariate Cox regression
analyses were performed to screen the independent risk factors
for patients’ overall survival (OS) and disease-free survival
(DFS). Due to the different survival information in the
integrated BLCA cohort, the survival analysis for OS in this
study collected patients from the TCGA and GSE13507
cohorts. The analysis for DFS included patients from the
GSE32894 cohort.
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Consensus Cluster
Consistency analysis of all the samples was conducted using the
‘ConsensusClusterPlus’ package of R software version 4.0.3. The
maximum number of clusters was 9, and 80% of the total sample
was drawn 50 times, clusterAlg = “km,” distance = “euclidean.” In
this study, BLCA patients were clustered into three distinct
subgroups based on the gene expression levels of myCAF
marker genes, including ACTA2, TAGLN, MYL9, TPM1,
and TPM2.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway Enrichment
Analysis
Gene Ontology (GO), which included molecular function (MF),
biological pathways (BP), and cellular components (CC), was
used for functional annotation. Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis was used to obtain an
analytical study based on DEGs. The “ClusterProfiler” package
of R software was used to annotate GO functions and enrich the
KEGG pathways.

Calculation of the Cancer Stemness Index
The OCLR algorithm was constructed by Malta et al. to calculate
cancer stemness based on mRNA expression and DNA
methylation levels (Malta et al., 2018). In this manuscript, we
used EREG-mRNAsi and EREG-DNAsi to represent the
stemness of each sample. We further corrected the stem cell
index by adjusting to the tumor purity and obtained the corrected
stem cell index (mRNAsi or DNAsi/TumorPurity). The cancer
stemness results of TCGA patients were obtained from the UCSC
Xena database (https://xenabrowser.net/datapages/).

Gene Set Variation Analysis and
Single-Sample Gene Set Enrichment
Analysis (ssGSEA)
Gene set variation analysis (GSVA) is a pathway-based analysis
method that provides each sample with an overall pathway or
gene set activity score (Hänzelmann et al., 2013). The pathways of
the hallmark gene sets were used for GSVA to identify their
comprehensive activities. The ssGSEA algorithm is a rank-based
method defining a score representing the degree of absolute
enrichment of a particular gene set in each sample. We
constructed the myCAFs score based on the combined
expression of myCAFs marker genes, including ACTA2,
TAGLN, MYL9, TPM1, and TPM2. The GSVA and ssGSEA
processes were conducted by the R Bioconductor package Gene
Set Variation Analysis version 3.5. The high and low myCAFs

groups were classified based on the medium value of the
myCAFs score.

Bladder Cancer Molecular Subtyping
The molecular subtype of BLCA was obtained from previously
published articles, which classified BLCA into five subtypes
(Robertson et al., 2017) according to molecular expression,
mutation, and immune infiltration.

Estimation of Tumor-Infiltrating Immune
Cells and Biological Functions
The abundance of the TME components was estimated by the
‘immunedeconv’ (Sturm et al., 2019) R package. The results of
four different algorithms, including TIMER (Li et al., 2016),
CIBERSORT (Newman et al., 2015), xCELL (Aran et al.,
2017), and MCP-COUNTER (Becht et al., 2016), are
displayed. Subsequently, scores of biological functions,
including lipid metabolism (Wu et al., 2019), energy
metabolism (Zhou et al., 2018), DNA repair (Jinjia et al.,
2019), senescence-associated secreting phenotype (SASP)
(Birch and Gil, 2020), and ageing (Cardoso et al., 2018), were
acquired through the ssGSEA algorithm.

Calculation of Tumor Immune Dysfunction
and Exclusion and Prediction of ICB
Treatment Reactiveness
The tumor dysfunction and exclusion scores of each patient
were calculated using the TIDE algorithm. Potential ICB
response was predicted based on the dysfunction and
exclusion score. TIDE uses various gene expression markers
to assess two distinct tumor immune escape mechanisms,
including tumor-infiltrating cytotoxic T lymphocyte (CTL)
dysfunction and exclusion by immunosuppressive factors.
Higher TIDE scores indicated poorer efficacy of ICB
therapy (Jiang et al., 2018).

Prediction of the Chemotherapeutic
Response
We predicted the chemotherapeutic response for each TCGA
sample based on the largest publicly available pharmacogenomics
database, the Genomics of Drug Sensitivity in Cancer (GDSC),
(https://www.cancerrxgene.org). The prediction process was
implemented by the R package “pRRophetic,” where the half-
maximal inhibitory concentration (IC50) of the samples was
estimated by ridge regression (Geeleher et al., 2014; Lu et al.,
2019).

TABLE 1 | Information for the BLCA cohorts used in the present study.

Cohort GSE13507 GSE32894 TCGA-BLCA IMvigor210

Type (Number) NMIBC(103), MIBC(62) NMIBC(215), MIBC(93) NMIBC(5), MIBC(401)
Gender Female:30, Male:135 Female:80, Male:228 Female:107, Male:299 Female:65, Male:233
Survival outcome OS DFS OS
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Gene Mutation Analysis
Somatic mutation information was downloaded from the TCGA
database and subsequently visualized using the R package
“maftools.” The waterfall plot showed mutation data of each
gene. The specific mutation types were annotated with different
colors at the bottom left of the waterfall plot. The tumor mutation
burden (TMB) was estimated as (total mutation/total covered
bases) × 10̂6.

Immunohistochemical Analysis and Scoring
Forty postoperative BLCA sections from 2016 to 2021 were
recruited for IHC analysis with the approval of the
institutional ethics committee. The patients’ clinical
information is listed in the following table (Table 2). The
BenchMark GX automatic immunohistochemical staining
system (Roche, Switzerland) with the Opti View DAB
Detection Kit (Ventana, USA) was used to detect ACTA2
(Abcam, catalog number: ab7817, 1:250) expression in this
study. The primary antibodies were visualized using a
horseradish peroxidase-labeled secondary antibody.
Hematoxylin was applied for counterstaining, whereas Bluing
Reagent was applied for post counterstaining. The mean
integrated optical density (IOD) values of positive protein
expression was calculated by Image-Pro Plus 6.0.

Statistical Analysis
Principal component analysis (PCA) confirmed the distinct
distribution of the clusters gained from the consensus analysis.
The Wilcoxon test was used to examine the differences between
variables of the two groups. Furthermore, the Kruskal–Wallis test
(non-normal distribution) or one-way ANOVA (normal
distribution) was used to analyze statistically significant
differences for the variables of more than two groups. The
Spearman correlation test examined the relationship between
two different elements. The Receiver operating characteristic
(ROC) curves were used to determine the predictive accuracy
of myCAFs marker genes for bladder carcinogenesis. A two-sided
p value < 0.05 was considered statistically significant. All
statistical analyses were performed using R language v4.0.3.

RESULTS

Five myCAFs Marker Genes Were Identified
to BeAssociatedWith the Pathogenesis and
Prognosis of BLCA
We applied WGCNA and DEGs analysis between normal and
BLCA samples to screen for genes potentially associated with

bladder carcinogenesis. The yellow module of WGCNA was
identified as the most related module with tumorigenesis
(Figure 1A). A total of 325 up-regulated and 722 down-
regulated DEGs were identified by differential analysis
(Figure 1B). After intersecting genes in the yellow module of
WGCNA with DEGs, we identified five myCAFs marker genes
defined by previous single-cell sequencing (Elyada et al., 2019)
that were significantly down-regulated in tumor tissues, including
ACTA2, MYL9, TAGLN, TPM1, and TPM2 (Figures 1C,D). To
clarify the impact of these genes on the prognosis of BLCA, we
applied the KM survival analysis, with the results showing that
high expression of these genes impaired the OS (Figure 1E) and
DFS (Figure 1F) of BLCA patients. These results indicated the
dual roles of myCAFs marker genes in tumorigenesis and BLCA
prognosis.

Consistent Clustering Arranged BLCA
Patients Into Three Distinct Subgroups
Based on the Expression of the Five myCAF
Marker Genes
We subsequently integrated the gene expression data of BLCA
patients from the TCGA, GSE13507, and GSE32894 cohorts.
Consistent clustering classified the BLCA patients from the
integrated cohort into three subgroups based on these five
myCAFs marker genes (Figure 2A). Patients’ OS (p = 0.002)
and DFS (p < 0.001) significantly differed between the three
clusters (Figures 2B,C), suggesting that the different abundance
of myCAFs may impact the prognosis of BLCA patients. By
analyzing the clinical characteristics of patients in different
subgroups, we found that the proportion of more advanced
BLCA was higher in the cluster with higher myCAFs content
(p < 0.001), suggesting a potential association of myCAFs
abundance with the T-stage of BLCA (Figure 2D; Table 3).
Subsequently, we confirmed the different expression levels of
myCAFs-related genes in these three groups using PCA
(Figure 2E). By screening the DEGs among the three
subgroups, we further identified a total of 60 common DEGs
(Figure 2F) that were significantly involved in extracellular
matrix remodeling, further confirming that the abundance of
myCAFs may indeed confer different clinical and TME features
to these three subgroups of BLCA patients (Figure 2G).

myCAFs Abundance Was an Independent
Risk Factor for Patients’ OS and DFS
To better quantify the abundance of myCAFs, we constructed a
myCAF score by the ssGSEA algorithm based on the combined
expression levels of the five myCAF marker genes. High myCAFs

TABLE 2 | Clinical information for BLCA patients with IHC analysis.

Characteristics Age Gender T Stage N stage M Stage Grade

≤65 >65 Male Female Ta-T1 T2-T4 N− N+ M− M+ High Low

Number 19 21 30 10 26 14 38 2 37 3 32 8
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score significantly shortened patients’ OS (high vs. low, p <
0.001) and DFS (high vs. low, p < 0.001) (Figure 3A) and acted
as an independent risk factor for OS (multivariate Cox
regression, p = 0.049) (Figure 3B) and DFS (multivariate

Cox regression, p = 0.031) (Table 4). The correlation analysis
between myCAFs scores and clinical characteristics of BLCA
patients revealed significant differences in myCAFs scores
between subgroups of myCAFs, between BLCA patients with

FIGURE 1 |WGCNA and DEGs analysis identified five marker genes of myCAFs that showed bimodal functions on bladder cancer carcinogenesis and prognosis.
(A) WGCNA indicated the yellow module was the most correlated module with bladder carcinogenesis, with a correlation efficiency (Gene significance to module
membership) of 0.83. (B) Volcano plot displayed the differentially expressed genes between normal and tumor samples with adjusted p-value<0.05 and |Log2(Fold
Change)|>1. (C,D) The intersection of WGCNA and DEG analysis in the integrated cohort identified the expression of five myCAFs related genes, including ACTA2,
TAGLN, MYL9, TPM1, and TPM2, were significantly down-regulated in tumor tissue (p < 0.001). (E,F) KM survival analysis revealed that patients with high expression of
ACTA2, TAGLN, MYL9, TPM1, and TPM2 owned shortened OS (p < 0.001) (panel E) and DFS (p < 0.001) (panel F). ***p < 0.001.
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FIGURE 2 | Consensus clusters identified three subgroups of BLCA patients showing significant differences in clinical pathological and tumor microenvironment
features. (A) BLCA patients in the integrated cohort were classified into three distinct clusters based on the myCAFs related gene expressions. (B) KM survival analysis
indicated a significant OS difference between the three clusters (p = 0.002), with patients of cluster A showing the lowest medium survival interval. (C) Patients’ DFS was
significantly lower in cluster A and B than that in cluster C (p < 0.001). (D) The heatmap demonstrated the association of BLCA subgroups with T-stage, age, and
gender, suggesting that subgroups with high levels of myCAFs have a higher proportion of more advanced BLCA patients (p < 0.001). (E) Principal component analysis
confirmed the scattered distribution of CAFs related gene expressions between the three clusters. (F,G) The 60 common differentially expressed genes between the
three clusters were significantly enriched in extracellular matrix remodeling related processes, including extracellular structure organization, ECM-receptor interaction,
and Focal adhesion.
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different ages and T-stages (Figure 3C). These results suggested
that advanced BLCA tended to own higher myCAFs abundance.
Meantimes, we found that the subtypes with higher myCAFs
scores took a higher proportion in T3-T4 patients than in T2
patients, laterally suggesting the potential correlation of
myCAFs abundance with the T-stage of BLCA patients
(Figure 3D). We also observed that the patient’s age
crucially altered the myCAFs score, indicating that
senescence impacts the abundance of myCAFs. To further
discuss the effect of myCAFs on survival in different
subgroups of BLCA patients, we conducted subgroup survival
analysis and found that the myCAFs level had a significant
impact on the OS and DFS of BLCA patients in several
subgroups, especially in young (age <65) and male patients
(Figures 3E,F).

myCAFs regulated in T Cell Infiltration and
Immune Response, Further Influencing the
Immunotherapy Responsiveness of BLCA
Patients
With the TIMER, CIBERSORT, and MCP-COUNTER
algorithms, we found that tumors with high myCAFs scores
had higher CD8+ T cell infiltration and possessed elevated
levels of immunosuppressive cells such as M2 macrophages
(Figure 4A). myCAFs scores were also correlated with tumor
microenvironment scores provided by xCEll, especially stromal
scores. These results suggest that the abundance of myCAFs in
stromal components may increase the infiltration of CD8+ T cells
and affect the M2 polarization of macrophages. Further analysis
of the immune processes associated with myCAFs revealed that
myCAFs scores were significantly positively correlated with the
levels of various immune checkpoint molecules (Figure 4B).
Tumors with high myCAFs scores had higher CCR,
checkpoint, cytotoxicity, HLA, MHC, and proinflammatory
activities (Figure 4C). The TIDE algorithm further revealed
that myCAFs scores significantly correlated with T cell
exclusion and dysfunction (Figure 4D). These results
indicated that myCAFs could induce and sequester CD8+

T cells in the tumor microenvironment, hinder their
infiltration into the tumor tissue, and ultimately lead to T cell
dysfunction, resulting in immune evasion. Subsequent
predictions of response to immune checkpoint inhibitor
therapy by the TIDE algorithm confirmed these inferences,
showing that patients with high myCAFs scores exhibited
lower responsiveness to immune checkpoint therapy
(Figure 4E). Immune checkpoint responsiveness results from
the IMvigor210 cohort further confirmed the predictions of the

TIDE algorithm (Figure 4F). We also validated the characteristics
of myCAFs scores in patients with different T cell infiltration
features in the IMvigor210 cohort. Specifically, myCAFs scores
were higher in the inflamed and excluded phenotypes than in the
desert phenotype (Figure 4G).

myCAFs Were Correlated With Tumor
Metabolic Features,
Senescence-Associated Secreting
Phenotype, and Cancer Stemness,
Influencing the Responsiveness of BLCA
Patients to Chemotherapy
We further analyzed the metabolic characteristics associated
with myCAFs. We found that energy, lipid metabolism, fatty
acid metabolism, and adipogenesis activities were significantly
reduced in tumors with high myCAFs. In contrast, SASP and
senescence-related gene expression were significantly more
active in tumors with high myCAFs. After GSVA, we found
that tumors with high myCAFs exhibited stronger angiogenesis
and myogenesis, more elevated hypoxia, and lower oxidative
phosphorylation levels. These results fully suggested that
remodeling of the tumor microenvironment by myCAFs
could occur through multiple pathways and finally result in a
hypoxia- and nutrition-deprived tumor microenvironment. In
addition, myCAFs could also affect several signaling pathways
related to tumor cell stemness, such as the STAT3 (Wang et al.,
2018), KRAS (Yoon et al., 2019), and Notch (Yang et al., 2020)
signaling pathways, suggesting that the abundance of myCAFs
may affect tumor stemness (Figures 5A,B). We then performed
correlation analysis between myCAFs and tumor stemness by
two different scoring algorithms, the mRNA stemness index
(EREG-mRNAsi) and the DNA stemness index (EREG-DNAsi).
We corrected the above index based on tumor purity,
considering the influence of stromal components (Stemcell
index/TumorPurity). The results showed that the myCAFs
score had a significant positive correlation with the tumor
stemness index, suggesting that tumor stemness was more
robust in patients with higher myCAFs scores (Figure 5C).
Among the sensitivity of chemotherapeutic drugs obtained by
the “pRRophetic” package, we found that patients with higher
myCAFs scores tended to respond to cisplatin-based
chemotherapy. In contrast, myCAFs abundance significantly
impacted patient sensitivity to two commonly used
chemotherapeutic drugs for BLCA, gemcitabine and
methotrexate (Figure 5D).

myCAFs Were Associated With Tumor
Mutation Burden and Oncogenic Mutations,
Especially FGFR3 and the RTK-RAS
Signaling Pathway
After analyzing the gene mutation profile of the TCGA BLCA
cohort by the “maftools” package, we combined the gene
mutation information with myCAFs scores and found that
myCAFs scores conformed to show a significant negative
correlation with tumor mutation burden (TMB) (Figure 6A).

TABLE 3 | Different invasive features among distinct BLCA subgroups.

Cluster T3-T4 T2 Ta-T1

Cluster A 107 (48.4%) 70 (31.7%) 44 (19.9%)
Cluster B 121 (36.8%) 83 (24.2%) 125 (38.0%)
Cluster C 62 (20.9%) 82 (27.7%) 152 (51.4%)

Chi-square test p-value < 0.001.
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In addition, myCAFs score combined with TMB had a more
substantial effect on patients’ OS (Figure 6B), and the mutation
information of the IMvigor210 cohort further confirmed the
negative correlation between myCAFs abundance and TMB
(Figure 6C). In addition, the abundance of myCAFs had a

significant effect on the RTK-RAS signaling pathway
(Figure 6D) and FGFR3 mutation frequency (Figure 6E),
showing that tumors with high myCAFs scores often
possessed lower RTK-RAS signaling pathways and FGFR3
mutation frequencies.

FIGURE 3 | The myCAFs score was significantly correlated with patients’ prognosis and clinical-pathological features. (A) Patients with high myCAFs scores
showed significant impaired OS (p < 0.001) and DFS (p < 0.001). (B) ThemyCAFs score acted as an independent risk factor for patients’OS revealed bymultivariate Cox
regression analysis (p = 0.049). (C) The myCAFs score was significantly correlated with patients’ myCAFs cluster, age, and T-stage. (D) Significant differences in
myCAFs scores were found amongmolecular subtypes of BLCA, with a higher proportion of myCAFs-richmolecular subtypes in more advanced BLCA (p < 0.001).
(E) Subgroup survival analysis in TCGA and GSE13507 cohorts showed that patients with high myCAFs scores tended to own impaired OS, especially patients with
male (p < 0.001) and age less than 65 (p < 0.001). (F) Subgroup survival analysis on patients’DFS in the GSE32894 cohort also confirmed highmyCAFs score shortened
DFS in patients with male (p < 0.001) and age less than 65 (p < 0.001). ***p < 0.001, **p < 0.01, *p < 0.05.
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IHC Analysis Validated the Dynamics of
myCAFs During Tumor Development
Combined with the above bioinformatics analysis, we found a
dynamic change in myCAFs abundance during the development
of BLCA. To validate this phenomenon, we further compared the
expression levels of the myCAFs marker genes in paired BLCA
and normal paraneoplastic samples in the TCGA cohort
(Figure 7A). The results confirmed the reduced expression of
the myCAFs marker genes in tumor tissues. ROC analysis
indicated highly diagnostic accuracy of the myCAFs marker
genes in distinguishing tumors from normal bladder tissues,
especially ACTA2 (Figure 7B). Through IHC assay, we
verified the reduced ACTA2 expression levels in tumor tissues
compared with the adjacent normal mucosa, indicating a
decreased myCAFs abundance in BLCA tissue (Figure 7C).
Further analysis of ACTA2 in BLCA sections with different
stages revealed that ACTA2 expression levels were significantly
elevated in T2 (MIBC without external bladder invasion) and T3-
T4 BLCA (MIBC with external bladder invasion) (Figure 7D).
Thus, we summarize the characteristics of changes in ACTA2
expression during BLCA carcinogenesis and progression in our
recruited postoperative sections (Figure 7E), showing similar
features to the dynamic changes in the fraction of myCAFs in our
bioinformatics analysis cohorts (TCGA, GSE13507, and
GSE32894) (Figure 7F).

DISCUSSION

BLCA is the fourth most common cancer among the male
population (Kaneko and Li, 2018). The incidence rate of
BLCA is higher in men, three to five times higher than that in
women. It has a worldwide incidence and mortality of 330,000
and 123,000, respectively (Davis et al., 2018). Therefore, BLCA is
a significant burden on global public health. Most BLCAs are
urothelial carcinomas and are classified as either NMIBC or
MIBC because of the distinct implications on patient
management. Radical cystectomy is still the mainstay
treatment for MIBC. Treatments for high-grade muscle
invasive and metastatic BLCA have not advanced beyond
gemcitabine and cisplatin combined chemotherapy. Recently,
ICB therapy has opened the possibility of immunotherapy for

BLCA, especially for muscle-invasive and metastatic BLCA, when
chemotherapy fails.

While cancer originates from the accumulation of mutations
within cancer cells, cancer progression and therapy
responsiveness are strongly modulated by the surrounding
stromal cells in the tumor microenvironment (Sahai et al.,
2020). The last decades have witnessed a significant research
trend towards CAFs. It is now believed that CAFs regulate cancer
proliferation and metastasis through growth factor production,
synthesis, and remodeling of the extracellular matrix (ECM).
Recently, there has also been a growing understanding of the
ability of CAFs to regulate the immune system. Targeting CAFs,
by altering their number, subtype, or function is being explored to
improve cancer therapy (Sahai et al., 2020). With the
advancement of research techniques in recent years, many
controversies have emerged in the study of CAFs, including
the different effects of CAFs on tumors.

While most previous reports showed a significant tumor-
promoting effect of CAFs, studies of CAFs have also identified
the antitumor roles of CAFs (Özdemir et al., 2014). Evidence
proposed that tumor stroma played a bimodal role in cancer
development, impeding neoplastic growth in normal tissue while
encouraging migration and tumor growth during tumor
progression. The heterogeneity of CAFs allows them to
comprise multiple subgroups, including tumor-promoting and
tumor-suppressing CAFs (Schauer et al., 2011). As the fibroblasts
are very heterogeneous and highly plastic, temporal changes of
the tumor microenvironment could dramatically affect the
dynamics of fibroblasts during cancer development. It has
been demonstrated that there is a process of interconversion
between different subgroups of CAFs and that the conversion of
cancer-inhibiting to cancer-promoting CAFs may accompany the
development of BLCA (Li B. et al., 2021). A recent study also
demonstrated that CAFs in lung metastases are transcriptionally
dynamic and plastic, revealing stage-specific gene signatures of
CAFs that imply functional tasks to remodel the tumor
microenvironment, including extracellular matrix remodeling,
stress response, and shaping the inflammatory
microenvironment (Shani et al., 2021). By investigating the
effects of myofibroblasts in early lesions in breast cancer
development and progression, Betul G et al. revealed the
phenotypic and functional characteristics of CAFs in
preneoplastic lesions, further underlining the importance of
temporal changes in CAFs during cancer progression (Gok
Yavuz et al., 2018). Freja A et al. demonstrated that multiple
subpopulations of CAFs co-exist in murine breast cancer and that
the abundance and dynamics for each marker differ depending
on tumor type and time (Venning et al., 2021). In the present
article, we also found evidence with the bioinformatics analysis
supporting that myCAFs played dual functions within the
carcinogenesis and progression of BLCA, further emphasizing
the significance of the temporal change in tumor
microenvironment on both the tumor and stromal cells.
Meanwhile, Our study also found that the pathogenesis of
epithelial tumors like BLCA was accompanied by a significant
decrease in fibroblast content, resulting in significantly lower
expression levels of marker genes for myCAFs such as ACTA2.

TABLE 4 | Univariate and multivariate Cox regression of myCAFs for patient DFS.

Characteristics HR HR.95 L HR.95H p-value

Univariate Cox regression
Gender 1.538 0.577 4.100 0.389
Age 0.551 0.251 1.210 0.137
T-stage 45.087 10.617 191.473 <0.001
myCAFs 144.304 10.964 1899.241 <0.001

Multivariate Cox regression
Gender 2.232 0.796 6.255 0.127
Age 0.636 0.276 1.464 0.287
T-stage 30.523 6.976 133.555 <0.001
myCAFs 20.181 1.320 308.566 0.031
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However, it does not mean that activated fibroblasts are more
deficient in BLCA than normal tissues. Previous studies have
confirmed that the proportion of myCAFs in BLCA was still
elevated compared to normal paraneoplastic tissues (Li B.

et al., 2021). Therefore, it is critical to discuss the changes
in fibroblasts during the development of BLCA in terms of
their absolute content and the ratio of different CAFs
subpopulations.

FIGURE 4 | Relationship between myCAFs score and the immune landscape of BLCA patients. (A) The TIMER, CIBERSORT, xCELL, and MCP-COUNTER
algorithms showed significantly higher CD8+ T cells (p < 0.001) and M2 macrophages (p < 0.001) in the high myCAFs group. (B) The myCAFs score was significantly
positively correlated with the expression levels of multiple immune checkpoint-related genes, including CD274 (R = 0.21, p < 0.001), PDCD1 (R = 0.28, p < 0.001),
CTLA4 (R = 0.40, p < 0.001), PDCD1LG2 (R = 0.45, p < 0.001), HAVCR2 (R = 0.47, p < 0.001), and LAG3 (R = 0.33, p < 0.001). (C) Immune-related functions,
including CCR (p < 0.001), checkpoint (p < 0.001), cytotoxic activity (p < 0.001), HLA (p < 0.001), inflammation-promoting (p < 0.001), MHC_class_I (p < 0.001), and para
inflammation (p < 0.001) were significantly higher in patients with high myCAFs scores. (D) The myCAFs score was positively correlated with T cell dysfunction (R = 0.57,
p < 0.001) and exclusion score (R = 0.53, p < 0.001) gained from the TIDE algorithm. (E) TIDE algorithm predicts that patients with high myCAFs scores are more likely to
be unresponsive to ICB treatment (p < 0.001). (F) The results of the IMvigor210 immunotherapy cohort confirmed the lower responsive rate of high myCAFs score
patients. (G)myCAFs scores were higher in excluded (p < 0.05) and inflamed (p < 0.05) phenotype than that in desert phenotype. ***p < 0.001, **p < 0.01, *p < 0.05, ns:
not significant.
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This present article identified five myCAFs marker genes that
showed highly similar expression patterns and impact on BLCA
patients’ prognosis, including ACTA2, TAGLN, MYL9, TPM1,
and TPM2. Three different subgroups of BLCA patients based on
the expression of these genes were revealed through systematic
bioinformatics analysis. Patients with distinct myCAFs levels
exhibited diverse tumor microenvironment features with
altered infiltration of CD8 T cells and the polarization of M2
macrophages, further bringing differences in patients’ prognosis
and treatment responses. With further verification of the TIDE
algorithm and the IMvigor210 immunotherapy cohort, our
results highlighted that the therapy targeting myCAFs might
benefit patients’ therapy responsiveness and prognosis.
Meantime, our study also indicated a crucial effect of
senescence on the extracellular matrix and fibroblasts with
elder patients possessing higher myCAFs abundances (Fane
and Weeraratna, 2020), suggesting that aging-related factors
also need to be adequately addressed in the study of CAFs.

In the present study, we also found that myCAFs were
significantly correlated with the mutation frequency of FGFR3
in TCGA BLCA patients, showing that patients with high FGFR3
mutations possessed lower myCAFs abundance. We further

revealed a negative correlation between myCAFs content and
tumor mutation burden, suggesting that BLCA with high
myCAFs content has a lower TMB. Since previous studies
indicated that a low TMB is detrimental to the immune
system’s recognition of tumor cells and affects the
immunotherapeutic response, our results suggested that the
effect of myCAFs on therapeutic responsiveness might also be
related to tumor mutations (Sholl et al., 2020).

Predictive models based on bioinformatics analysis are
widely available in the field of BLCA research, and many of
them show high predictive accuracy (Abudurexiti et al., 2019;
Li Z. et al., 2021; Du et al., 2021). However, there are still fewer
diagnostic models for predicting the carcinogenesis of BLCA.
In the present study, we constructed a myCAFs score that
showed potential in distinguishing the pathogenesis of bladder
cancer. Meanwhile, our myCAFs score has a significant
predictive value for OS and DFS in BLCA. However, our
prediction model did not show a considerable advantage in
predictive accuracy on patients’ prognoses compared with
other prognostic models. The main reason is that our
myCAFs score was not constructed by the Cox regression
model but by the ssGSEA algorithm. Precisely on this basis,

FIGURE 5 | myCAFs score was correlated with tumor metabolic activities, senescence, tumor stemness, and chemotherapy responsiveness in BLCA patients.
(A,B) myCAFs are closely associated with energy (p < 0.05), lipid (p < 0.001), fatty acid (p < 0.001) metabolic activities, senescence-related secretory phenotypes (p <
0.001), tumor microenvironment remodeling-related processes (p < 0.001), and cancer stemness-related pathways (p < 0.001). (C) The myCAFs score was positively
correlated with EREGmRNAsi (R = 0.64, p < 0.001) and EREG DNAsi (R = 0.28, p < 0.001), indicating that the myCAFs score was positively correlated with cancer
stemness. (D) The responsiveness of chemotherapy predicted by the “pRRophetic” package highlighted patients with highmyCAFs scores tend to benefit from cisplatin
chemotherapy (p < 0.001) but are resistant to gemcitabine (p < 0.001) and methotrexate (p < 0.001). ***p < 0.001, **p < 0.01, *p < 0.05.
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our myCAFs can reflect the myCAFs content in each tumor
sample more realistically than other prediction models,
validated by the high correlation of our myCAFs score with
the CAFs score calculated by the MCP-COUNTER algorithm
(Figure 4A). At the same time, the ssGSEA algorithm
integrates the combined expression of the five genes used
for myCAFs score construction, leading to a high

correlation of the myCAFs score with the expression levels
of these five genes. In clinical applications, we can even detect
one of these genes, especially ACTA2, to represent the
myCAFs score, which is convenient for clinical applications
and confirmed by our immunohistochemical experiments.

With our myCAFs score, we deeply explored the dynamic
change of myCAFs during BLCA carcinogenesis and

FIGURE 6 |myCAFs score was related to the TMB and mutation frequency of FGFR3 and the RTK-RAS pathway. (A–C)myCAFs were negatively correlated with
TMB (R = 0.20, p < 0.001), and the combination of myCAFs and TMB better differentiated patients’ OS (p < 0.001). The IMvigor210 cohort validated the negative
correlation betweenmyCAFs and TMB in the TCGA cohort (p < 0.05). (D) the mutation frequency of the RTK-RAS signaling pathway was higher in the lowmyCAFs score
group (p < 0.001). (E) the waterfall plot showed lower FGFR3 (p < 0.001), ARID1A (p < 0.05), KMT2D (p < 0.05) mutation frequency in high myCAFs score patients.
***p < 0.001, **p < 0.01, *p < 0.05.
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progression, suggesting that fibroblasts may play multiple
roles in the process of tumor development in reaction to the
time-dependent tumor microenvironment. However, our
results were limited by the lack of deconvoluting

algorithms that could precisely identify the accurate
subgroups of CAFs in bulk sequencing. Further
verification by scRNA-seq and experimental assays are
required for discussing the temporal change of CAFs.

FIGURE 7 | The development of bladder cancer is accompanied by dynamic changes in the abundance of myCAFs. (A) myCAFs related gene expressions were
significantly reduced in BLCA samples compared with adjacent normal tissue (p < 0.001) in the TCGA BLCA cohort. (B) The ROC curve demonstrated that decreased
expression of the five myCAFs marker genes was highly accurate in predicting bladder carcinogenesis. (C) IHC analysis confirmed the reduction of myCAFs in BLCA
tissue compared with paired normal tissue. (D,E). IHC with IOD analysis suggested a significant decrease of myCAFs abundance in tumor samples (normal to Ta-
T1, p < 0.001; normal to T2, p < 0.01; normal to T3-T4, p < 0.05), while high myCAFs abundance was observed in advanced BLCA sections (T3-T4 to Ta-T1, p < 0.05).
(F) ssGSEA generated myCAFs score in the integrated BLCA cohort confirmed the dynamic change of myCAFs abundance in the development of BLCA. ***p < 0.001,
**p < 0.01, *p < 0.05, ns: not significant.
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Meantime, the prediction of therapy responsiveness in this
manuscript mainly depended on bioinformatics algorithms
and should be verified by further experimental and clinical
research. In addition, we need a larger sample size of BLCA
sections to validate the immunohistochemical results of
this study.

CONCLUSION

Our results revealed the dynamic changes in myCAFs
abundance in the development of BLCA and highlighted the
TME remodeling property of myCAFs, which further
impacted BLCA patients’ therapy responsiveness and
prognosis. The in-depth study of myofibroblasts can help
explore the role of fibroblasts in the development of BLCA
and provide possible diagnostic markers for predicting bladder
carcinogenesis and potential therapeutic targets for BLCA
treatment.
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Bladder cancer (BC) is a highly prevalent cancer form of the genitourinary system;
however, the effective biomarkers are still ambiguous and deserve deeper
investigation. Long non-coding RNA (lncRNA) occupies a prominent position in tumor
biology and immunology, and ferroptosis-related genes participate in regulatory processes
of cancer. In this study, 538 differentially expressed ferroptosis-related lncRNAs were
identified from the The Cancer Genome Atlas database through co-expression method
and differential expression analysis. Then, the samples involved were equally and randomly
divided into two cohorts for the construction of gene model and accuracy verification.
Subsequently, a prediction model containing five ferroptosis-related lncRNAs was
constructed by LASSO and Cox regression analysis. Furthermore, in terms of
predictive performance, consistent results were achieved in the training set, testing set,
and entire set. Kaplan–Meier curve, receiver operating characteristic area under the curve,
and principal component analysis results verified the good predictive ability of model, and
the gene model was confirmed as an independent prognostic indicator. To further
investigate the mechanism, we explored the upstream of five lncRNAs and found that
they may be modified by m6A to increase or decrease their expression in BC. Importantly,
the low-risk group displayed higher mutation burden of tumors and lower Tumor Immune
Dysfunction and Exclusion score, which may be predicted to have a higher response rate
to immunotherapy. Interestingly, the patients in the high-risk group appeared to have a
higher sensitivity to traditional chemotherapeutic agents through pRRophetic analysis. In
general, our research established a five-ferroptosis-related lncRNA signature, which can
be served as a promising prognostic biomarker for BC.
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BACKGROUND

Bladder cancer (BC) is one of the main humanmalignant tumors,
which has high morbidity and mortality. There were
approximately 81,400 newly diagnosed cases and 17,980 deaths
in United States in 2020 (Siegel et al., 2020). BC can be classified
into muscle-invasive bladder cancer (MIBC) and non-muscle-
invasive bladder cancer (NMIBC) according to the extent of
tumor invasion (Thompson 2006). Approximately 75% of
newly diagnosed urothelial BC is NMIBC (Burger et al., 2013).
The main diagnostic modalities for NMIBC is transurethral
resection and cystoscopy (Babjuk et al., 2017; Sefik et al.,
2019). In addition, most patients are diagnosed as late-stage
cancer with postoperative drug resistance and rapid
progression (Dreicer 2017; Robertson et al., 2018). Because of
the high recurrence rate of BC, continuous surveillance strategies
and treatment were necessary (Svatek et al., 2014). The
biomarkers related to early diagnosis and prognosis prediction
are especially important and urgently need.

Whether immune escape or immune response, the occurrence
and development of tumor is inseparable from the immunity.
Immunotherapy has a good therapeutic effect in many tumors
and brought hope to many patients with cancer (Sharma and
Allison 2015). Bacillus Calmette Guerin (BCG) is the main drug
for intravesical instillation of BC because of the enhanced
immune response (Kamat et al., 2016). Nevertheless, tumor
immune escape brings challenges to immunotherapy (Tang
et al., 2020). It is necessary to analyze the relationship between
BC and immunity.

Long non-coding RNA (lncRNA) is a special class of non-
coding RNAs longer than 200 nucleotides in length (Mendell
2016). Many lncRNAs recruit regulatory protein complexes to
regulate transcription (Engreitz et al., 2016). Our previous studies
have shown that some lncRNAs were different from that in
normal tissues, which could be prognostic factors in many
cancers including head and neck squamous cell, clear cell
renal, and endometrium (Yin et al., 2018; Xu et al., 2019;
Wang et al., 2020). Furthermore, the lncRNA LNMAT2 and
SNHG16 enhanced tumor lymphangiogenesis and lymph node
(LN) metastasis, which may be attractive therapeutic targets for
BC with LN metastasis (Chen et al., 2020; Chen C. et al., 2021).
However, the role of lncRNAs in BC has not fully understood and
merit further work.

As a new star in cancer, ferroptosis is a kind of programmed
cell death differed from cell necrosis, apoptosis, and autophagy.
The characteristic of ferroptosis is accumulation of heavy ROS
and iron (Dixon et al., 2012). In addition, ferroptosis is closely
related to tumor that affects tumor-related signaling pathways
and plays an important role in chemotherapy, radiotherapy, and
immunotherapy (Chen X. et al., 2021). There are many
ferroptosis regulators consist of GPX4 (Yang et al., 2014),
SLC7A11 (Koppula et al., 2021), ACSL4 (Doll et al., 2017),
etc. According to many current works, lncRNAs may regulate
the ferroptosis as an epigenetic regulator. LINC00336 could
regulate the expression of cystathionine-β-synthase and inhibit
ferroptosis combined with ELAV-like RNA-binding protein 1
(ELAVL1) (Wang M. et al., 2019). The cytosolic lncRNA P53RRA

activate the p53 pathway to promote ferroptosis and apoptosis
(Jiang et al., 2015). Nevertheless, the regulator role of some
ferroptosis-related lncRNAs in BC has not been fully understood.

Therefore, we analyzed BC genes from The Cancer Genome
Atlas (TCGA) and screen out differentially expressed (DE)
ferroptosis-prognosis–related lncRNAs. The five ferroptosis-
prognosis–related lncRNAs were screened out. Furthermore,
we built a prediction model that had been tested the strong
prediction ability. The result of survival analysis confirmed that
the risk score was inversely correlated with the survival of
patients. Cox regression analysis showed that the risk score is
an independent risk factor for BC. Then, we compared the
differences in clinical stage, immunity, and methylation
between the two risk groups and carried out depth
immunoassay. Thus, it is confirmed that the five-ferroptosis-
related lncRNA signature that closely related to tumor immunity
has great significance for the prognosis prediction of BC.

MATERIALS AND METHODS

Data Collection and lncRNAs Screening
We downloaded clinical and RNA sequencing data of BC from
TCGA (https://portal.gdc.cancer.gov/). Samples with insufficient
clinical information were excluded. Hence, there are 406 BC
tissues and 19 normal tissues with mRNA sequencing and
lncRNA sequencing. Ferroptosis genes were acquired from
FerrDb (www.zhounan.org/ferrdb/). A total of
1,752 ferroptosis-related lncRNAs were selected by the co-
expression analysis between ferroptosis genes and BC lncRNAs
(|cor| > 0.4 and p < 0.001). We explored the significantly DE BC
genes, ferroptosis genes, and ferroptosis-related lncRNAs
between cancer and normal samples using the limma package.
The cutoff value was |log2FC| > 1 and FDR <0.05 (FC, fold
change; FDR, false discovery rate).

Function and Pathway Enrichment of DE
Ferroptosis Genes
We used the clusterProfler package to analyze the Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways of DE ferroptosis genes to further explore the
underlying molecular functions (MFs) and cellular
components (CCs) (p < 0.05).

Identification and Selection of
Ferroptosis-Prognosis–Related lncRNAs
The ferroptosis-prognosis–related lncRNAs were screened by
univariate Cox regression analysis. The LASSO regression
analysis was used on the screened genes and establishes the
risk model. Then, we studied the lncRNAs that can affect BC
alone by multivariate regression analysis.

All 406 BC samples were randomly divided into two sets. The
risk score for each sample was calculated using the formula
Risk score (RS) � ∑N

i�1(ExpipCoei) (N is the number of
prognostic lncRNA genes, Expi is the expression value of
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lncRNA, and Coei is the estimated regression coefficient of
lncRNA in the multivariable Cox regression analysis), which
could predict the prognosis risk of patients with BC.
According to the median risk score, the patients in each group
were divided into high- and low-risk groups. Overall survival
(OS) was compared between the two risk groups. The receiver
operating characteristic (ROC) was carried out with the R
package to test predictive ability of our model. Principal
component analysis (PCA) was used to explore the
distribution of samples in different risk group. Survival

analysis and Cox regression analysis were performed on the
clinical variables (age, gender, grade, and stage) and the risk
scores.

Construct the Network of
Ferroptosis-Prognosis–Related lncRNAs
To explore the connections of these ferroptosis-related lncRNAs
that can predict prognosis of BC, co-expression analysis was
performed to construct the network. We used the database to

FIGURE 1 | The mentality of this study and comparison of gene expression between bladder tissue and adjacent normal tissue. (A) Flow chart of this research.
Expression heatmaps of bladder cancer genes including mRNA and lncRNA (B), ferroptosis genes (D) and ferroptosis-related lncRNAs (F). Volcano plot of differentially
expressed bladder cancer genes (C), ferroptosis genes (E) and ferroptosis-related lncRNAs (G) between normal and tumor samples.
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explore the interaction between and distinguished genes
according to p value.

Comparative Analysis of High- and
Low-Risk Group
Previous studies have confirmed that methylation is of great
significance in tumors (Yin et al., 2021). To further explore the
relationship between our risk grouping, clinical variables and
m6A methylation, we compared the differences in TNM staging
system, age, gender, grade, stage, and m6A methylation genes
between the high- and low-risk groups.

Immunoassay
Weused different algorithms to evaluate the immune cell abundance
of the high- and low-risk groups including and studied the
correlation between immune cell content and the risk score in
BC samples. Furthermore, the differences of immune function,
immune checkpoints, and molecular typing of immune subtypes
between the two risk groups were studied. Moreover, to explore the

significance of our risk model in immune escape and
immunotherapy, we used VarScan to discuss the tumor mutation
burden (TMB) and calculated the Tumor Immune Dysfunction and
Exclusion (TIDE) score. To further explore the effect of immunity on
BC, tumor samples were divided into two groups according to the
quantity of memory B cells, T cells, macrophages, neutrophils, etc.,
and Kaplan–Meier survival curve was drawn. Similarly, we evaluated
the immune function of BC samples and divided them into two
groups according to themedian immune score. Survival analysis was
performed for different groups.

Drug Sensitivity Analysis
In addition, drug resistance is a bottleneck in tumor treatment. To
explore the relationship between the risk score and the sensitivity of
antineoplastic agents, we used an R package to calculate the 50%
inhibiting concentration (IC50) of commonly used drugs for BC.

Statistical Analysis
R software package limma selected the DE genes between tumor
tissues and normal tissues. LASSO regression analysis was carried

FIGURE 2 | Functional enrichment analysis of ferroptosis-related genes. (A,B) The GO analysis of DE ferroptosis genes. (C,D) The KEGG analysis revealed that DE
ferroptosis genes were associated with microRNAs, Kaposi’s sarcoma-associated herpesvirus infection, PI3K-Akt signaling pathway, etc.
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out with glmnet package. We used Cox regression analysis to
identify prognostic factors for BC. Survival curves were plotted by
the survival package for R. To further confirmed prediction ability
of the risk score, PCA was used to describe the distribution of the
high- and low-risk groups.

RESULTS

Differentially Expressed Gene in BC
The flow chart of this study is shown in Figure 1A. We first
acquired the data from TCGA and identified 4,847 DE genes
(including mRNAs and lncRNAs) of BC. There were 3,429
upregulated and 1,418 downregulated genes in tumor samples
compared to normal samples (Figures 1B,C). In addition, 61 DE
ferroptosis genes (36 elevated and 25 downregulated; Figures
1D,E) were distinguished. Co-expression analysis was used to
find ferroptosis-related lncRNAs. Among them, 538 DE
ferroptosis-related lncRNAs (463 elevated and 75

downregulated; Figures 1F,G) were screened out between
tumor tissues and normal tissues (|log2FC| > 1 and FDR <0.05).

GO and KEGG Pathway Enrichment
Analysis
The GO analysis revealed that DE ferroptosis genes is related to
intrinsic apoptotic, multicellular organismal homeostasis, and
response to some stimulus including steroid hormone, drug,
and oxidative stress, at the biological process (BP) category.
The relationship between some DE genes and BP is shown in
Supplementary Figure S1A. For the MF category, the DE genes
were involved in iron ion binding, oxidoreductase activity, acting
on single donors with incorporation of molecular oxygen, cargo
receptor activity, etc. What is more, they mainly enriched in
endoplasmic reticulum lumen, caveola, lipid droplet,
melanosome, pigment granule, etc., at the CC category
(Figures 2A,B). The KEGG analysis revealed that DE
ferroptosis genes were associated with microRNAs, Kaposi’s

FIGURE 3 | Identifcation of ferroptosis-prognosis–related lncRNAs. (A,B) LASSO regression analysis selected ferroptosis-prognosis–related lncRNAs. (C)
Multivariate Cox regression analysis to identify independent risk factors for bladder cancer.
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sarcoma-associated herpesvirus infection, PI3K-Akt signaling
pathway, etc. (Figures 2C,D).

Establish and Verify the Prediction Model
We try to discuss the relationship between ferroptosis-related
lncRNAs and survival. As a result, 16 ferroptosis-related lncRNAs
were closely related with OS in the univariate Cox regression
analysis (Supplementary Figure S1B). We build the risk
signature of the five ferroptosis-related lncRNAs by the
LASSO regression analysis (Figures 3A,B). Then, the further

research result showed that two of the five ferroptosis-related
lncRNAs genes with hazard ratio (HR) > 1 (AC096921.2 and
LINC02762) could be poor prognostic markers for BC and other
three genes with a HR < 1 (Z98200.1, LINC00649, and
AL031775.1) may be protective markers (Figure 3C).

All 406 BC samples were then divided into training set and
testing set by the complete randomization method. The training
set included 204 samples, which were divided into high-risk
group (n = 102) and the low-risk group (n = 102) according
to the calculated median risk score. Kaplan–Meier survival curve

FIGURE 4 | Validation of prediction model in training set. (A) Kaplan–Meier survival curves revealed OS comparison of the high- and low-risk groups. (B) Receiver
operating characteristic (ROC). Distribution of risk scores (C) and survival status (D). (E) Expression heatmaps of the five ferroptosis-prognosis–related lncRNAs. (F,G,H)
Principal component analysis (PCA) was used to explore the distribution of samples in different risk group.
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revealed that the OS in the high-risk group was significantly lower
than that in the low-risk group (p < 0.001; Figure 4A). We plotted
ROC and the area under the curve (AUC) was 0.708 (Figure 4B).
The differences between the two risk groups in the distribution of
risk score and survival status were further explored. (Figures
4C,D). Patients with BC in the high-risk group had high
expression of AC096921.2 and LINC02762 but low expression
of Z98200.1, LINC00649, and AL031775.1 (Figure 4E).

The testing set and entire set were divided into high-risk
group (n = 109 in the testing set, n = 211 in the entire set) and
low-risk group (n = 93 in the testing set, n = 195 in the entire
set) by the same way as training set. There was significant
difference in the OS rate between the two groups according to
the risk score. Patients in the high-risk group had poorer OS
than the low-risk group (p < 0.012, p < 0.001; Supplementary
Figures 2A, 3A). The AUC was 0.656 and 0.683 in the testing
set and the entire set, respectively (Supplementary Figures
S2B, 3B). The distributions of the risk score and survival state
were shown in Supplementary Figures S2C,D and
Supplementary Figures S3C,D. The expression plotted of
the five ferroptosis-related lncRNAs is demonstrated in
Supplementary Figures S2E, 3E. To explore the function of
the five ferroptosis-related lncRNAs in BC, we performed PCA

that showed that the whole genome expression, DE
ferroptosis-related lncRNAs, and the above risk genes in the
model could separate the high- and low-risk groups (Figures
4F–H). The results showed that samples in the two risk groups
generally had different ferroptosis states and may be identified
by the lncRNA signature.

Furthermore, we compared the prognostic relevance of BC
between the risk score and clinical variables (age, gender, grade,
and stage). Univariate Cox regression analysis in the training and
entire sets revealed that age, stage, and the risk score were directly
related to the prognosis of BC (Figure 5A, Supplementary Figure
S5A; p < 0.001). In addition, themultivariate Cox regression analysis
showed that age, stage, and the risk score were independent
prognostic indictors in BC (Figure 5B, Supplementary Figure
S5B; p < 0.001). The AUC corresponding to the risk score
(training set, 0.705; testing set, 0.652; entire set, 0.680) was higher
than that for age (training set, 0.704; testing set, 0.610; entire set,
0.660), gender (training set, 0.536; testing set, 0.411; entire set, 0.479),
grade (training set, 0.528; testing set, 0.527; entire set, 0.528), and
stage (training set, 0.672; testing set, 0.600; entire set, 0.639)
(Figure 5C, Supplementary Figures S4C, 5C). This risk score
was an independent risk factor for BC prognosis and had good
predictive power at 1, 2, and 3 years (Figure 5D, Supplementary

FIGURE 5 | Identification of prognostic indicators for bladder cancer in training set. (A)Univariate Cox regression analysis showed that age, stage and the risk score
were prognostic factors of bladder cancer. (B) Age, stage, and the risk score are independent risk factors for bladder cancer. (C) ROC curve of prognostic indicators for
bladder cancer. (D) Time-dependent ROC curve of the risk score.
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Figures S4D, 5D). The results demonstrated that the risk score
based on five lncRNAs may predict the OS rate of patients with BC.

Interaction Network
To enhance the understanding of potential interactions among the
five ferroptosis-related lncRNAs, a total of 23 related genes were
obtained by gene coexpression analysis. Furthermore, Cytoscape
software was used to construct the network (|cor|>0.3, p < 0.05;
Figure 6A). ATM may be a junction of the genes network, which
connected Z98200.1, LINC00649, and AC096921.2.

Comparative Analysis of Different Risk
Groups
Cluster analysis of stage, grade, TNM stage, age, gender
distribution, and target gene showed that patients with worse
pathological stage, higher grade, and later stage had higher risk
score, higher expression of AC096921.2 and LINC02762, and

lower expression of Z98200.1, LINC00649, and AL031775.1
(Figure 6B). Patients in the high-risk group had a later
clinical stage than those in the low-risk group. T stage, gender,
and stage were closely related to the risk score.

In addition, our previous work revealed that m6A played an
important role in lung cancer (Yin et al., 2021). Hence, we explored
the expression of m6A methylation gene in patients with BC. There
were obvious differences between the high- and low-risk groups.
Expression of YTHDF1, YTHDF2, YTHDC1, and METTL3 in the
low-risk group was significantly high compared with the high-risk
group, which suggests that m6A modification may affect the
progression of BC (Supplementary Figure S6A).

The Target lncRNAs May Be Bound up With
Immunity
To study the biological pathways and functions involved in the
pathogenesis of BC, we performed gene set enrichment analysis. The

FIGURE 6 | (A) Network diagram of five target lncRNA-related genes. (B) Cluster analysis. (C) Gene set enrichment analysis (GSEA) of target lncRNAs.
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five lncRNAs may participate in B-cell receptor signaling pathway,
T-cell receptor signaling pathway, and MAPK signaling pathway
(Figure 6C).

The immune response to tumor affects the progress of tumor to a
great extent. Immune cell infiltration in tumor microenvironment
(TME) can reflect the immune response to tumor. The proportion of
immune cells in the two risk groups is shown in Figures 7A,B. There
were distinct differences in immune response between the high- and
low-risk groups. The immune cell abundance was significantly
correlated with the risk score (Figure 7C). In addition, the
analysis of immune score showed that the immune function of

the high-risk group was stronger than that of the low-risk group
(Figure 7D). We further explored the immune checkpoint genes in
these groups. The results revealed that the genes were generally
highly expressed in the high-risk group except LGALS9, TNFSF15,
TNFRSF25, and TNFRSF14 (Figure 7E). The mechanism of the five
lncRNAsmay be related to immune response. Furthermore, type C1
(wound healing) immunization is the main immunization mode in
the low-risk group, whereas type C2 [interferon-γ (IFN-γ)
dominant] immunization accounts for a high proportion in the
high-risk group (Figure 8A). The proportion of type C3
(inflammatory) and type C4 (lymphocyte depleted) immunization

FIGURE 7 | Immunoassay showed that the five ferroptosis-prognosis–related lncRNAs were closely related to the immune system. (A) Proportion of immune cells
in the high- and low-risk groups. (B) Immune cell abundance in the high- and low-risk groups. (C) Correlation analysis between immune cell abundance and the risk
score. (D) Immune function analysis showed that there were significant differences between the high- and low-risk groups. (E) Comparison of immune checkpoints
between two risk groups.
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was low in the two groups. The difference of molecular typing of
immune subtypes between the two risk groups was statistically
significant. Moreover, the high-risk group had higher TIDE
prediction scores and patients may not benefit from immune
checkpoint inhibitor (ICI; Figures 8B,C). Programmed death
inhibitor-1 (PD-1) protein or its ligand (PD-L1) plays an
important role in many tumor treatments. TMB is an index to
evaluate the efficacy of PD-1 antibody therapy. The analysis showed
that the low-risk group has a lower TMB as a whole (Figures 8D,E).
Therefore, its immunotherapy response rate may be higher. The
difference of TMB was statistically significant (Figure 8F).

The low-content group of memory B cells (p = 0.012),
macrophages (M0: p = 0.014; M2: p < 0.001), resting mast
cells (p = 0.018), neutrophils (p < 0.001), and activated natural
killer cells (p = 0.032) had better OS. For plasma cells (p <
0.001), activated CD4+ memory T cells (p = 0.001), and CD8+

T cells (p < 0.001) (Supplementary Figures S7A–F), better
survival appeared in the high-content group (Supplementary

Figures S7G–I). In addition, the survival analysis of immune
function showed that there were significant differences in
survival between immune score groups, and the
high–immune score group had better OS than the
low–immune score group (Supplementary Figure S8).

Significance of the Risk Model in Routine
Chemotherapy
We explored the response of patients with BC with different risk
scores to conventional chemotherapy drugs including cisplatin,
paclitaxel, doxorubicin, mitomycin, gemcitabine, and docetaxel
(Figure 9). The difference of drug sensitivity between the high-
and low-risk groups was statistically significant. Patients in the
high-risk group had higher drug sensitivity than those in the low-
risk group. The findings suggest that this risk model may be
helpful for clinical treatment and prevention of drug resistance in
patients with BC.

FIGURE 8 | Comparison of two risk groups in molecular typing of immune subtypes, tumor mutation burden (TMB), and immune escape. (A) Proportion of
molecular typing of immune subtypes. (B) The high-risk group had more immune dysfunction. (C) Compared with the low-risk group, the high-risk group had higher
Tumor Immune Dysfunction and Exclusion (TIDE) score and greater potential of immune escape. (D) TMB of the low-risk group. (E) TMB of the high-risk group. (F)
Statistical analysis of TMB in two risk groups.
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Single Gene Risk Analysis
The diversity in expression of the five ferroptosis-related
lncRNAs genes between BC tissues and normal tissues was
shown in Figure 10A. The 406 patients with BC were divided
into high- and low-expression groups according to the median
expression level of each lncRNA. The Kaplan–Meier curve of the
high- and low-expression groups showed that Z98200.1,
LINC00649, and AL031775.1 were positively correlated with
the prognosis of BC and that LINC02762 was negatively
correlated with the prognosis of BC (Figure 10B).

DISCUSSION

Some research studies reported the change characteristics of
morbidity and mortality of BC from 1990 to 2016 and
predicted that the morbidity will continue to rise by 2030,
especially in the high social population index countries (Cai
et al., 2020). European Organization for Research and
Treatment of Cancer divided patients with BC into low-,
medium-, and high-risk groups according to tumor size,
number, T category, recurrence rate, in situ cancer, and
grading (Sylvester et al., 2006). Hence, the discovery and
application of more prognostic predictors in BC may improve
the survival rate of patients.

Increasing studies have confirmed that lncRNAs potentially
participate in cancer progression. Our current study explored the
differential expression of ferroptosis-related ncRNA genes in
patients with BC and found 463 upregulated genes and 75

downregulated genes. LncRNAs may affect the occurrence and
progression of BC through ferroptosis. The results indicate that
lncRNAs could regulate development of cancer on many levels
such as the TME, tumor growth, invasion, metastasis, and
recurrence (Statello et al., 2021). Focally amplified lncRNA on
chromosome 1 (FAL1) repressed P21 to regulate the cell
proliferation (Hu et al., 2014). Gastric cancer–associated
lncRNA1 (GClnc1) may promote progression of BC via
activation of MYC (Zhuang et al., 2019). Although many
studies have been devoted to the role of lncRNAs in tumors,
further research in the prognosis of BC is still extremely needed.

Further analysis showed that these genes may play a role by
affecting microRNAs and PI3K-Akt signaling pathway. The PI3K
pathway was widely activated in BC, which could be the potential
therapeutic targets (Cancer Genome Atlas Research 2014).
Pictilisib (an effective PI3K inhibitor) synergized with cisplatin
and/or gemcitabine could significantly delay the growth of BC
compared with single-drug treatment (Zeng et al., 2017). The
inhibitor of PI3K acted synergistically with fibroblast growth
factor receptor inhibitors in BC, which plays a significant role of
targeted therapeutics (Wang et al., 2017). Inhibition of PI3K
pathway may activate the corresponding feedback pathway and
affect the therapeutic effect. How to prevent drug resistance
deserves further study.

Our research showed that the five ferroptosis-related lncRNAs
may act on the immune system. There were significant differences
between the two risk groups in immune cell abundance, immune
function, immune escape, and TMB. Patients with high risk of BC
may have a stronger immune response. It was found that the

FIGURE 9 | Drug sensitivity analysis of cisplatin (A), paclitaxel (B), doxorubicin (C), mitomycin (D), gemcitabine (E), and docetaxel (F).
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degree of immune infiltration and immune molecules is related to
prognosis (Efstathiou et al., 2019; Seo et al., 2021). In recent years,
immunotherapy has developed rapidly and is widely used in the
treatment of a variety of tumors. From the BCG, which is the first
approved immunotherapy drug of BC approved by the Food and
Drug Administration to adoptive immunotherapy, immune
checkpoint blockades, cancer vaccines, bispecific antibodies,
and oncolytic viruses, more and more immunotherapy has

been used in the field of BC (Wu et al., 2021). The research of
immunotherapy combined with chemotherapy is emerging one
after another. Maintenance avelumab plus chemotherapy with
gemcitabine plus cisplatin or carboplatin significantly prolonged
the progression-free survival and the OS of patients with
unresectable urothelial carcinoma (Galsky et al., 2020; Powles
et al., 2020). Whether primary or metastatic tumors, ICI is
beneficial to the treatment of BC (Grobet-Jeandin et al., 2021).

FIGURE 10 | Survival analysis of single lncRNA. (A) The expression levels of five target lncRNAs in tumor tissues and normal tissues were compared. (B) The
samples were grouped according to the median expression size for survival analysis, and the survival analysis was carried out.
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This research suggests that, using the model to predict the risk
score of patients with BC, can reflect the effect of ICI and immune
response rate to some extent. Immunoassays for BC may provide
more diagnostic and therapeutic options for patients. In addition,
the difference between the two risk groups in the treatment
response of commonly used chemotherapeutic agents for BC
suggests that this model may be helpful in the selection of
chemotherapy regimen and the judgment of curative effect.

Interestingly, ferroptosis plays an important role in preventing
drug resistance and tumor immunity, which is perceived as a
major breakthrough (Viswanathan et al., 2017; Wang W. et al.,
2019). Furthermore, ferroptosis can occur in a variety of immune
cells and affect the immune response, among which, T cells have
an effect on ferroptosis of tumors (Xu et al., 2021).
Immunotherapy activated CD8+ T cells downregulate SLC3A2
and SLC7A11 by releasing IFN-γ, which reduces the uptake of
cystine and promotes ferroptosis. In addition, ferroptosis can
enhance the antitumor effect mediated by T cells (WangW. et al.,
2019). Detecting specific ferroptosis-related biomarkers may help
us diagnose and treat tumors. Some scholars have proposed that
gene modification can be used to enhance immunity to tumors.

Tracing upstream of the target genes, we found that they
might be modified by m6A to increase or decrease their
expression in BC. M6A is a base modification behavior
widely existing in mRNAs. This reversible methylation
occurs at the sixth nitrogen atom of adenylate. Its
regulatory factors include methyltransferase (METTL3,
METTL14, WTAP, and KIAA1492), demethylase [fat mass
and obesity-associated protein (FTO) and ALKBH5] and
methylated reading protein (YTHDC1-2, YTHDF1-3,
HNRNPA2B1, and eIF). Gene methylation occurs widely in
tumors. FTO mediates m6A modification of MALAT/miR-
384/MAL2 axis to promote tumorigenesis of BC (Tao et al.,
2021). Studies have shown that m6A modification and PI3K-
Akt signaling pathway also play a role in
epithelial–mesenchymal transition (EMT) (Lin et al., 2019).
Primary epithelial tumor cells mainly develop type three EMT,
which enhances cell invasiveness and migration, resulting in
tumor progression and metastasis (Kalluri. 2009).

Our research started with ferroptosis-related lncRNAs and
explored some new biomarkers for BC. It expands the layout of
BC gene expression study and provides more abundant and
comprehensive support for the diagnosis and treatment of BC.
Early identification and risk stratification of patients with BC at
the gene level is conducive to the development of precision
medicine. We can also use the ferroptosis gene specifically
expressed in BC as a breakthrough to inhibit tumor resistance
and relapse and explore new therapeutic targets. Tumor-related
research is changing with each passing day, and its mystery is
gradually revealed. In the experiment, there may be some
differences between reality and expectation in terms of the
comparison results of the target genes expression in tumor
samples and normal samples, which may due to the
insufficient sample size of normal tissues. We tried to validate
our risk model with another independent database of BC data, but
the database with complete information was not found.

In a word, we identified some novel biomarkers closely related
to survival rate of patients with BC and generated a prediction
model that has positive significance in predicting prognosis of
BC. The more in-depth and detailed research of ferroptosis in BC
was required, and the specific pathway of target gene on each
system is still unclear. Moreover, whether the treatment targeting
the five lncRNAs can improve the therapeutic effect on related
chemotherapeutic drugs and immunotherapy such as ICI and
reduce drug resistance deserves further study.
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Supplementary Figure S2 | Validation of prediction model in testing set. (A)
Kaplan–Meier survival curves. (B) Receiver operating characteristic (ROC).
Distribution of risk scores (C) and survival status (D). (E) Expression heatmaps
of the five ferroptosis-prognosis–related lncRNAs.

Supplementary Figure S3 | Validation of prediction model in entire set. (A)
Kaplan–Meier survival curves. (B) Receiver operating characteristic (ROC).
Distribution of risk scores (C) and survival status (D). (E) Expression heatmaps
of the five ferroptosis-prognosis–related lncRNAs.

Supplementary Figure S4 | Identification of prognostic indicators in testing set. (A)
Univariate Cox regression analysis. (B) Multivariate Cox regression analysis. (C)
ROC curve of prognostic indicators for bladder cancer. (D) Time-dependent ROC
curve of the risk score.

Supplementary Figure S5 | Identification of prognostic indicators in entire set. (A)
Univariate Cox regression analysis. (B) Multivariate Cox regression analysis.

(C) ROC curve of prognostic indicators for bladder cancer. (D) Time-dependent
ROC curve of the risk score.

Supplementary Figure S6 | Analysis of m6A-related gene expression in two risk
groups.

Supplementary Figure S7 | The samples were grouped according to the
abundance of immune cells, and the overall survival rate between grades was
compared. Memory B cells (A), M0 macrophages (B), M2 macrophages (C), resting
mast cells (D), neutrophils (E), activated NK cells (F), plasma cells (G), activated
CD4+ memory T cells (H), and CD8+ T cells (I).

Supplementary Figure S8 | The different immune function scores of the samples
were calculated, and the overall survival of the high rating group and the low rating
group were compared. APC co-inhibition (A), checkpoint (B), cytolytic activity (C),
HLA (D), inflammation-promoting (E), MHC class I (F), T-cell co-inhibition (G), T-cell
co-stimulation (H), and type I IFN response (I).
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Ferroptosis Patterns and Tumor
Microenvironment Infiltration
Characterization in Bladder Cancer
Qi-Dong Xia†, Jian-Xuan Sun†, Chen-Qian Liu, Jin-Zhou Xu, Ye An, Meng-Yao Xu,
Zheng Liu*‡, Jia Hu*‡ and Shao-Gang Wang*‡

Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China

Background: Ferroptosis is a unique iron-dependent form of cell death and bladder
cancer (BCa) is one of the top ten most common cancer types in the world. However, the
role of ferroptosis in shaping the tumor microenvironment and influencing tumor
clinicopathological features remains unknown.

Methods: Using the data downloaded from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO), we comprehensively evaluated the ferroptosis patterns of 570
BCa samples based on 234 validated ferroptosis genes reported in the FerrDb database
and systematically correlated these ferroptosis patterns with tumor microenvironment
(TME) cell-infiltrating characteristics. The ferroptosis score was constructed to quantify
ferroptosis patterns of individuals using principal component analysis (PCA) algorithms.

Results: Four distinct ferroptosis patterns and two gene clusters were finally determined.
Significant differences in clinical characteristics and the prognosis of patients were found
among different ferroptosis patterns and gene clusters, so were in the mRNA
transcriptome and the landscape of TME immune cell infiltration. We also established a
set of scoring system to quantify the ferroptosis pattern of individual patients with BCa
named the ferroptosis score, which was discovered to tightly interact with clinical
signatures such as the TNM category and tumor grade and could predict the
prognosis of patients with BCa. Moreover, tumor mutation burden (TMB) was
positively correlated to the ferroptosis score, and the low ferroptosis score was related
to a better response to immunotherapy using PD-1 blockade. Finally, we also found there
existed a positive correlation between the sensitivity to cisplatin chemotherapy and
ferroptosis score.

Conclusions: Our work demonstrated and interpreted the complicated regulation
mechanisms of ferroptosis on the tumor microenvironment and that better
understanding and evaluating ferroptosis patterns could be helpful in guiding the
clinical therapeutic strategy and improving the prognosis of patients with BCa.
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INTRODUCTION

Ferroptosis is a unique iron-dependent form of cell death and is
morphologically, biochemically, and genetically distinct from
apoptosis, necrosis, pyroptosis, and autophagy (Dixon et al.,
2012). Abundant and accessible cellular iron is necessary to
induce ferroptosis (Dixon et al., 2012). The first discovered
ferroptosis inducers are erastin (Dolma et al., 2003) and RSL3
(Yang and Stockwell, 2008), and then, a variety of ferroptosis
inducers have been found in succession such as sorafenib,
sulfasalazine, FIN56, and so on (Liang et al., 2019). System
Xc− inhibition and glutathione (GSH) peroxidase 4 (GPX4)
inhibition are the two main mechanisms that induce
ferroptosis (Liang et al., 2019). System Xc− is the glutamate/
cystine antiporter which can facilitate the exchange of cystine and
glutamate across the plasmamembrane (Bridges et al., 2012). The
inhibition of system Xc− can decrease the intracellular cysteine
level, which is the precursor for glutathione synthesis (Yang et al.,
2014). GPX4 is an indispensable enzyme which catalyzes the
reduction of lipid hydroperoxide within a complex cellular
membrane environment, which utilizes glutathione as an
essential cofactor for its enzymatic activity (Brigelius-Flohé
and Maiorino, 2013). Therefore, the inhibition of both system
Xc− and GPX4 will result in the accumulation of iron-dependent
lipid hydroperoxides and increased level of reactive oxygen
species (ROS), and finally, lead to cell death (Chan et al.,
2019). Ferroptosis is regulated by several molecular pathways
such as the transsulfuration pathway and mevalonate pathway
(Yang and Stockwell, 2016), and a variety of ferroptosis regulators
participate in these pathways (Liang et al., 2019). In recent years,
ferroptosis has been discovered to be related to many human
diseases such as acute kidney injury, Huntington disease,
periventricular leukomalacia, and so on, among which cancer
was the one that researchers paid most attention to (Liang et al.,
2019). Different cancers seem to exhibit significantly different
susceptibility to ferroptosis (Mou et al., 2019); therefore,
increasing the sensitivity to ferroptosis and developing new
therapies targeted at ferroptosis could be an intriguing and
challenging research field in the future.

Bladder cancer (BCa) is one of the top ten most common
cancer types in the world and accounted for approximately
550,000 new cases and 200,000 deaths in 2018 (Richters et al.,
2020). In the United States alone, in 2019, the number of new
cases and deaths were 80,470 and 17,670, respectively (Siegel
et al., 2019). Advanced age, male sex, tobacco smoking, and
occupational exposure to some chemical agents are the main risk
factors for the incidence of BCa (Sylvester et al., 2021). According
to the depth of tumor invasion and infiltration, BCa can be
divided into non-muscle invasive bladder cancer (NMIBC) and
muscle invasive bladder cancer (MIBC). Patients with NMIBC
are treated with endoscopic resection and adjuvant intravesical
therapy, including intravesical chemotherapy and intravesical
bacillus Calmette–Guérin (BCG) immunotherapy (Sylvester
et al., 2021). Patients with MIBC can choose radical
cystectomy (RC) and lymphadenectomy, pre- and post-
operative radiotherapy, neoadjuvant immunotherapy, as well
as chemotherapy depending on the risk classification (Witjes

et al., 2021). However, the efficacy of various treatments for BCa
remains unideal and new therapeutic strategies need to be
developed.

Recently, several studies have focused on the interaction
between ferroptosis and BCa. A variety of ferroptosis-related
signatures were established based on ferroptosis regulator genes
(FRGs) to predict the landscape of the epithelial-mesenchymal
transition (EMT) status, the tumor microenvironment (TME),
and the prognosis of patients with BCa, and it seems that these
signatures had their unique roles in evaluating their response to
chemotherapy and immunotherapy (Cui et al., 2021; Sun et al.,
2021; Yan et al., 2021). However, the establishment of these
signatures was confined to limited ferroptosis regulator genes and
many other novel validated ferroptosis-related genes were
ignored. So, in this article, we evaluated the genetic variation
of 23 ferroptosis regulators in BCa among a total of 412 samples
from the TCGA-BLCA cohort, explored the FerrDb database to
find validated ferroptosis genes (VFGs), divided the patients with
BCa into four ferroptosis patterns according to the expression
levels of VFGs and performed survival analysis, and then we
further explored the TME cell infiltration characteristics in
distinct VFG patterns and surprisingly found VFG patterns
were tightly connected with TME. Next, we discovered 367
VFG cluster-related differentially expressed genes (DEGs),
classified the patients into two distinct genomic subgroups,
and explored the interaction between VFG patterns and gene
patterns. Finally, we established a set of scoring system termed the
ferroptosis score to quantify the ferroptosis pattern in individual
patients and explored the characteristics of ferroptosis in tumor
somatic mutation, immunotherapy, and chemotherapy.

MATERIALS AND METHODS

Data Retrieval and Processing
Ferroptosis regulator genes (FRGs) were obtained from Liu
et al. (2020). Ferroptosis-related genes with validated
evidences were obtained from FerrDb (http://www.zhounan.
org/ferrdb/). RNA-sequencing data of BCa patients were
searched from The Cancer Genome Atlas (TCGA database,
https://portal.gdc.cancer.gov/) and the Gene Expression
Omnibus (GEO database, https://www.ncbi.nlm.nih.gov/gds/
?term=). Notably, datasets without detailed corresponding
survival information or with a small sample size were
excluded. Finally, two eligible high-quality bulk-seq cohorts,
TCGA_BLCA and GSE13507, were enrolled in this study.
Among them, transcriptome profiles in TCGA_BLCA
datasets were downloaded in the fragments per kilobase of
transcript per million mapped reads (FPKM) format. Then, we
transformed the FPKM values of each sample into transcripts
per kilobase million (TPM) values. Normalized matrix files
with corresponding clinical information of GSE13507 were
downloaded. We merged these two datasets and used the
combat algorithm to eliminate the batch effects by R
package “sva”. The mutation atlas was also downloaded
from the TCGA database. The copy number variation
matrix was obtained from UCSC-Xena (http://xena.ucsc.
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edu/). All the original data were processed and analyzed by the
R program version 4.1.1.

Differential Expression Status, Mutation
Atlas, and Copy Number Variation of FRGs
We first systematically investigated the expression, mutant, copy
number variant status of the FRGs. Differentially expressed
analysis was performed between normal tissue and tumor
tissue in both TCGA_BLCA and GSE13507. The mutation
atlas of these FRGs was extracted from the original matrix and
visualized. The copy number variation atlas was annotated and
visualized in the genome cycle plot.

Role of FRGs in Bladder Cancer and the
Unsupervised Cluster of VFGs
Having merged the gene matrix and eliminating the batch effects,
we performed both univariate cox regression and log-rank test to
check the prognostic value of the FRGs. Then, we performed the
Spearman correlation test between every two FRGs to investigate
the co-expression status between FRGs. Subsequently, we
conducted an unsupervised cluster of all the VFGs in FerrDb,
and the number of clusters was determined according to the
algorithm of consensus clustering. Notably, this unsupervised
clustering was conducted by R package “ConsensusClusterPlus”,
and all the procedures were repeated 1,000 times to ensure and
verify the stability of the unsupervised cluster.

Survival Differences, Potential Functions,
and Immune Infiltrations of the VFGClusters
Having obtained the classification clustered by the VFG, we
performed survival analysis to investigate the survival
differences between VFG clusters. Kaplan–Meier survival
curves were plotted, and the log-rank test was conducted.
Principle components analysis (PCA) was applied to check the
discrimination between different VFG clusters. In addition, gene
set variation analysis (GSVA) was used to compare the
differential enhanced functions or pathways between different
VFG clusters. Finally, single sample gene set enrichment analysis
(ssGSEA) was used to estimate the immune infiltration and
immune-related functions of each sample. The Wilcoxon test
was applied to compare the differential immune infiltration and
immune-related functions between VFG clusters.

Differentially Expressed Genes Between
VFG Clusters and the Establishment of the
Ferroptosis Score
Differentially expressed analysis was performed between every
two VFG clusters to seek the DEGs. Subsequently, we took an
intersect of these DEGs in different comparisons and obtained the
final DEGs. GO enrichment analysis and KEGG enrichment
analysis were conducted to further investigate the potential
functions and mechanisms of these DEGs. Subsequently,
univariate cox regression was carried out to seek those DEGs

with prognostic value. Following this, an unsupervised cluster was
performed again based on the left DEGs to quantify the detailed
ferroptosis patterns in BCa patients. Then, we performed
principal component analysis (PCA) to distinguish the
molecular characteristics of these DEGs with prognostic value
and obtained a ferroptosis score formula according to the PCA:

Ferroptosis score � ∑(PC1 + PC2).
Among the formula, PC1 and PC2 separately mean the
expression score in two dimensions of the DEGs. Thus, the
sum of these two scores was named the ferroptosis score,
which can represent the ferroptosis patterns to some extent.

Further Verification and Functional
Investigation of the Ferroptosis Score
In all included samples with detailed survival information, we set
the threshold according to the best cut-off value in the TCGA_
BLCA cohort calculated by the “surv_cutpoint” function in R
package “survminer”. Here, the best cut-off is -0.0410544, and
then all patients including TCGA_ BLCA and GSE13507 cohorts
were divided into high or low ferroptosis score groups. Cohorts
that are higher than -0.0410544 are defined as the high ferroptosis
score group and those that are lower are the low ferroptosis score
group. Survival analysis in all patients, TCGA_BLCA cohort, and
GSE13507 cohort, was separately conducted to check whether
this ferroptosis score was associated with survival. Then we
divided all patients into several sub-groups according to their
clinicopathological characteristics, including age, gender, grade, T
stage, N stage, and M stage. Then survival analysis was applied in
each sub-group to investigate the universality of this ferroptosis
score. In addition, in the TCGA_BLCA cohort, we calculated the
tumor mutation burden (TMB) of each patient according to its
somatic mutation profiles. Then we further investigated the
correlation between TMB and the ferroptosis score, and
combined these two factors to predict the survival of patients
with BCa. Following this, we separately summarized the mutation
atlas of the patients with low-/high ferroptosis scores and
compared the mutant frequencies of each gene between the
high ferroptosis score group and low ferroptosis score group
by the χ2 test.

More importantly, as the biological process of ferroptosis is
associated with both chemotherapy and immunotherapy, we
further explored the association between the drug sensitivity to
chemotherapy (cisplatin, doxorubicin, methotrexate,
vinblastine) which was predicted by the R package
“pRRophetic” (Geeleher et al., 2014). Notably, here we
performed three methods to predict the response to
immunotherapy: TCIA (Charoentong et al., 2017), TIDE
(Jiang et al., 2018), and submap (Hoshida et al., 2007). The
drug response to chemotherapy and immunotherapy was
compared between the high- or low-ferroptosis score groups
by the Wilcoxon test or χ2 test. In addition, we calculated the
ferroptosis score of each patient in IMvigor-210 cohort to
externally validate the predicted response to immunotherapy.
Response to anti-PD-L1 immunotherapy in IMvigor-210
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FIGURE 1 | Landscape of genetic and expression variation of ferroptosis regulators in BCa. (A)Mutation frequency of 23 ferroptosis regulator genes in 412 patients
with BCa from the TCGA-BLCA cohort. Each column represented individual patients. The upper barplot showed TMB. The number on the right indicated the mutation
frequency in each regulator gene. The right barplot showed the proportion of each variant type. The stacked barplot below showed a fraction of conversions in each
sample. (B) CNV variation frequency of ferroptosis regulator genes in GSE13507 cohort. The height of the column represented the alteration frequency. The
deletion frequency, green dot; The amplification frequency, red dot. (C) Location of CNV alteration of ferroptosis regulator genes on 23 chromosomes using GSE13507
cohort. (D) Expression of 22 ferroptosis regulator genes between normal bladder tissues and tumor tissues in the TCGA-BLCA cohort. Tumor, red; Normal, blue. Each

(Continued )
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cohort was also compared between the high- or low-ferroptosis
score groups.

Statistical Analysis
All the data processing and statistical analysis were conducted by
R software version 4.1.1. All the p-values were on two sides, and
p-value< 0.05 was considered with statistical significance.

RESULTS

Landscape of Genetic Variation of
Ferroptosis Regulators in Bladder Cancer
In this study, 23 genes were identified to play critical roles in
regulating ferroptosis and were defined as ferroptosis regulator
genes (FRGs), including cyclin-dependent kinase inhibitor 1
(CDKN1A), nuclear factor, erythroid 2 like 2 (NFE2L2),
Fanconi anemia complementation group D2 (FANCD2),
transferrin receptor (TFRC), dipeptidyl-dippeptidase-4
(DPP4), heat shock protein family A member 5 (HSPA5),
lysophosphatidylcholine acyltransferase 3 (LPCAT3),
cysteinyl tRNA synthetase (CARS), nuclear receptor
coactivator 4 (NCOA4), citrate synthase (CS), arachidonate
15-lipoxygenase (ALOX15), ribosomal protein L8 (RPL8),
glutaminase 2 (GLS2), solute carrier family 7 member 11
(SLC7A11), heat shock protein beta 1 (HSPB1), solute
carrier family 1 member 5 (SLC1A5), acyl-CoA synthetase
long-chain family member 4 (ACSL4), ER membrane protein
complex subunit 2 (TTC35/EMC2), metallothionein-1G
(MT1G), glutathione peroxidase 4 (GPX4), CDGSH iron
sulfur domain 1 (CISD1), spermidine/spermine N1-acetyl-
transferase 1 (SAT1), and ATP synthase membrane subunit
C locus 3 (ATP5MC3/ATP5G3) (Stockwell et al., 2017).
Among the 23 FRGs, 10 are negative regulators, including
CDKN1A, HSPA5, EMC2, SLC7A11, NFE2L2, MT1G, HSPB1,
GPX4, FANCD2, and CISD1, and 13 are positive regulators,
including SLC1A5, SAT1, TFRC, RPL8, NCOA4, LPCAT3,
GLS2, DPP4, CS, CARS, ATP5MC3, ALOX15, and ACSL4.

First, we summarized the incidence of copy number
variations (CNV) and somatic mutations of the 23 FRGs in
BCa. Mutations of FRGs occurred in 109 samples among a
total of 412 samples from the TCGA-BLCA cohort with a
frequency of 26.46%. We found that CDKN1A exhibited the
highest mutation frequency followed by NFE2L2 and
FANCD2, while EMC2, MT1G, GPX4, CISD1, SAT1, and
ATP5MC3 showed no mutation in BCa samples
(Figure 1A). Since CDKN1A had the highest mutation
frequency, we then explored whether mutations in
CDKN1A would influence the expression of other FRGs. As
shown in Supplementary Figure S1, the expression levels of
other FRGs were remarkably different between CDKN1A

mutation and wild samples, among which GLS2 and TFRC
expression were higher in CDKN1A mutation samples while
MT1G and RPL8 were just opposite (Supplementary Figures
S1A–D). Then, we investigated the CNV alteration in 23 FRGs
and found a prevalent CNV alteration in 22 FRGs, among
which most alterations were gained in copy number, while
ATP5MC3, SLC7A11, CISD1, GPX4, and MT1G had a greater
frequency of CNV loss (Figure 1B). The location of CNV
alteration of FRGs on chromosomes was shown in Figure 1C.
Next, we searched the GEO and TCGA databases for public
gene expression data in tumor, normal adjacent tumor tissue,
and normal tissue to find whether the above genetic variations
could influence the FRGs’ expression in BCa patients. We
discovered that both mutation and CNV alteration contributed
to the difference in expression levels of FRGs but CNV
alteration might play a more critical role. Most FRGs with
gain of CNV exhibited significantly higher expression in BCa
tumor tissues compared to normal adjacent tumor tissues or
normal bladder tissues, such as FANCD2, EMC2, and TFRC.
But when it came to FRGs with loss of CNV, the differences
between tumor tissue and normal adjacent tumor tissue or
normal bladder tissue were inconsistent with the variation in
CNV, which indicated that there existed other ways of
regulating the expression of FRGs except for CNV variation
(Figures 1D,E). The above analyses showed the high
heterogeneity of the genetic and expression alteration

FIGURE 1 | column represented individual samples. The upper line represented the type of tissues. The color of each pane represented the expression level. (E)
Expression of 19 ferroptosis regulator genes between normal bladder tissues, normal adjacent tumor tissues and tumor tissues in GSE13507 cohort. Tumor, blue;
Normal adjacent tumor, green; Normal, red. The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median
value, and black dots showed outliers. The asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001).

TABLE 1 | Annotation of 23 FRGs in the FerrDb database.

FRG Type Confidence

CDKN1A Suppressor Validated
HSPA5 Suppressor Validated
EMC2 Driver Validated
SLC7A11 Suppressor/Marker Validated
NFE2L2 Suppressor/Marker Validated
MT1G Suppressor Validated
HSPB1 Suppressor/Marker Validated
GPX4 Suppressor/Marker Validated
FANCD2 Suppressor Validated
CISD1 Suppressor Validated
SLC1A5 Driver Validated
SAT1 Driver/Marker Validated
TFRC Driver/Marker Validated
RPL8 Driver/Marker Validated
NCOA4 Driver Validated
LPCAT3 Driver Validated
GLS2 Driver Validated
DPP4 Driver Validated
CS Driver Validated
CARS Driver Validated
ATP5MC3 Driver/Marker Validated/Deduced
ALOX15 Driver/Marker Validated/Deduced
ACSL4 Driver Validated
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FIGURE 2 | Patterns of ferroptosis and biological characteristics of each pattern. (A,B) Principal component analysis for the expression profiles of common genes
before and after combination of GSE13507 and the TCGA-BLCA cohort. Before processing, two subgroups without intersection were identified, indicating the
GSE13507 and TCGA-BLCA samples were well distinguished based on the expression profiles of their common genes, while the two datasets merged together well
after processing. Samples from GSE13507 were marked with blue and samples from TCGA-BLCA marked with yellow. (C) Interaction between FRGs in BCa. The
circle size represented the effect of each ferroptosis regulator gene on the prognosis, and the range of values calculated by Log-rank test was p < 0.0001, p < 0.001, p <
0.01, p < 0.05 and p < 0.1, respectively. Red dots in the circle, risk factors of prognosis; Light green dots in the circle, protective factors of prognosis. The lines linking

(Continued )
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landscape of FRGs between normal and BCa samples,
indicating that the expression imbalance of FRGs played a
crucial role in the occurrence and progression of BCa.

Validated Ferroptosis Gene Patterns
Classified According to the Expression of
Validated Ferroptosis Genes
To further investigate the interaction between ferroptosis genes
and tumor characteristics, we explored the FerrDb database
established by Zhou et al. which collected nearly all the
ferroptosis regulators and markers reported in published
articles from PubMed up to 20 February 2020 (Zhou and Bao,
2020). In this database, genes were annotated as drivers,
suppressors, and markers according to their function reported
in the original article. And the confidence level was divided into
four categories sorted by experimental reliability and
reproducibility: validated, screened, predicted, and deduced

(Zhou and Bao, 2020). In Table 1, we summarized the 23
FRGs according to their annotations in the FerrDb database.
Next, we used Combat R packages to eliminate the heterogeneity
between the GEO dataset GSE13507 and TCGA-BLCA cohort
and enrolled them into a new meta-cohort. Before processing, we
could easily distinguish the two datasets by principal component
analysis (PCA) (Figure 2A), while the two datasets merged well
together after processing (Figure 2B). The detailed characteristics
of the included patients were shown in Table 2. Then we divided
the meta-cohort into two subgroups according to the expression
level of every FRG and performed survival analysis
(Supplementary Figures S2A–N). As shown in the figures, the
survival outcomes were significantly associated with the
expression levels of the fourteen FRGs, among which higher
expression level of ACSL4 and GPX4 predicted a better prognosis
while lower expression level of ALOX15, CDKN1A, DPP4,
FANCD2, HSPA5, HSPB1, MT1G, NCOA4, RPL8, SLC1A5,
SLC7A11, and TFRC revealed a survival advantage. The

FIGURE 2 | regulators showed their interactions, and their thickness showed the correlation strength between regulator genes. Negative correlation was marked with
blue and positive correlation with orange. The driver, driver/marker, suppressor, suppressor/marker were marked with dark green, purple, yellow, and gray, respectively.
(D) Consensus matrices of the meta-cohort for k = 4. (E) Principal component analysis for the transcriptome profiles of four ferroptosis patterns, showing a remarkable
difference on transcriptome between different ferroptosis patterns. (F) Unsupervised clustering of 234 validated ferroptosis genes in the meta-cohort. The VFGcluster,
project, age, gender, grade, and TNM category were used as patient annotations. Red represented high expression of regulators and blue represented low expression.
(G) Kaplan–Meier curves indicated ferroptosis patterns were markedly related to overall survival of 568 patients in meta-cohort, of which 244 cases were in VFGcluster A,
122 cases in VFGcluster B, 93 cases in VFGcluster C, and 109 cases in VFGcluster D (p = 0.015, Log-rank test).

TABLE 2 | Basic characteristics of the included patients.

Overall GSE13507 TCGA p

n 568 165 403
Status = Alive/Dead (%) 323/245 (56.9/43.1) 96/69 (58.2/41.8) 227/176 (56.3/43.7) 0.755
Age (mean (SD)) 67.22 (11.08) 65.18 (11.97) 68.06 (10.60) 0.005
Gender = Female/Male (%) 135/433 (23.8/76.2) 30/135 (18.2/81.8) 105/298 (26.1/73.9) 0.058
Grade (%) <0.001
High Grade 440 (77.5) 60 (36.4) 380 (94.3)
Low Grade 125 (22.0) 105 (63.6) 20 (5.0)
Unknown 3 (0.5) 0 (0.0) 3 (0.7)
T (%) <0.001
T1 83 (14.6) 80 (48.5) 3 (0.7)
T2 149 (26.2) 31 (18.8) 118 (29.3)
T3 210 (37.0) 19 (11.5) 191 (47.4)
T4 69 (12.1) 11 (6.7) 58 (14.4)
Ta 24 (4.2) 24 (14.5) 0 (0.0)
Unknown 33 (5.8) 0 (0.0) 33 (8.2)
M (%) <0.001
M0 351 (61.8) 158 (95.8) 193 (47.9)
M1 18 (3.2) 7 (4.2) 11 (2.7)
MX 197 (34.7) 0 (0.0) 197 (48.9)
Unknown 2 (0.4) 0 (0.0) 2 (0.5)
N (%) <0.001
N0 385 (67.8) 151 (91.5) 234 (58.1)
N1 54 (9.5) 8 (4.8) 46 (11.4)
N2 79 (13.9) 4 (2.4) 75 (18.6)
N3 8 (1.4) 1 (0.6) 7 (1.7)
NX 37 (6.5) 1 (0.6) 36 (8.9)
Unknown 5 (0.9) 0 (0.0) 5 (1.2)
Ferroptosis.scores (median [IQR]) 1.47 [−5.53, 5.78] 2.61 [−1.80, 4.84] −0.19 [−6.56, 7.11] 0.384
Group = High/Low (%) 314/254 (55.3/44.7) 115/50 (69.7/30.3) 199/204 (49.4/50.6) <0.001
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FIGURE 3 | TME cell infiltration characteristics in distinct VFG patterns. (A–F) GSVA enrichment analysis showing the activation states of biological pathways in
distinct ferroptosis patterns. The heatmap was used to visualize these biological processes, and red represented activated pathways and blue represented inhibited
pathways. The project and VFGclusters were used as sample annotations. (A) VFGcluster A vs. VFGcluster B; (B) VFGcluster A vs. VFGcluster C; (C) VFGcluster B vs.
VFGcluster C; (D) VFGcluster A vs. VFGcluster D; (E) VFGcluster B vs. VFGcluster D; (F) VFGcluster C vs. VFGcluster D. (G) The abundance of each TME infiltrating
cell in four ferroptosis patterns. The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value, and
black dots showed outliers. The asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001).
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comprehensive landscape of FRGs’ interactions, connections, and
their prognostic significance for BCa patients was described in the
FRG network (Figure 2C). In the network we could find that not
only FRGs in the same categories (e.g., drivers and drivers,
suppressors and suppressors) exhibited a significant
correlation, but also a remarkable correlation was shown
between drivers, suppressors, and markers. The results
uncovered the latent cross-talk among the FRGs which might
play a crucial role in the prognosis of BCa patients and needed to
be further studied.

In order to dig deep into the relationship between ferroptosis
genes and tumor characteristics, we explored all 382 ferroptosis
genes reported in the FerrDb database, including 150 drivers, 123
markers, and 109 suppressors (Supplementary Tables S1–S4).
Then we screened out the 234 validated ferroptosis genes (VFGs)
from them to improve credibility. We used the
ConsensusClusterPlus R package to classify patients with
qualitatively different ferroptosis patterns based on the
expression levels of 234 validated ferroptosis genes, and four
distinct validated ferroptosis gene patterns were identified using
unsupervised clustering (Figure 2D, Supplementary Figures
S3A–H), including 244 cases in pattern A, 123 cases in
pattern B, 93 cases in pattern C and 110 cases in pattern D.
Then the cumulative distribution function (CDF) curve and scree
plot were used to verify the rationality of the grouping
(Supplementary Figure S3I, J). The track plot showed the
details of grouping (Supplementary Figure S3K). We named
these patterns as VFGcluster A-D, respectively. A dramatic
difference was found on the FRG transcriptional profile
among the four different VFG clusters (Figure 2E).
VFGcluster A was characterized by decreased expression level
of HSPA5, SLC7A11, NFE2L2, SAT1, NCOA4, MT1G, and
DPP4, and presented variable increase in other FRGs;
VFGcluster B exhibited a remarkable decrease in SLC7A11,
RPL8, and GLS2 and an increase in NFE2L2, NCOA4, DPP4,
ACSL4, and SAT1; VFGcluster C showed a significant increase in
CDKN1A, HSPA5, MT1G, SAT1, DPP4, and ACSL4, and
decrease in GLS2, ALOX15, and HSPB1; and VFGcluster D
was characterized by increased expression of NFE2L2, HSPB1,
SLC1A5, TFRC, NCOA4, and CS. We also noticed that
VFGcluster B-C had higher TNM categories compared with
VFGcluster A, but there existed no significant differences in
gender and age among the four VFGclusters (Figure 2F).
Survival analyses for the four VFGclusters revealed the
particularly prominent survival advantage in patients from
VFGcluster A (Figure 2G).

TME Cell Infiltration Characteristics in
Distinct VFG Patterns
In order to further explore the latent differences in biological
behaviors behind the distinct VFG patterns, we performed GSVA
enrichment analysis. As shown in Figures 3A,B, VFGcluster A
was dramatically enriched in pathways associated with
metabolism, such as glycerophospholipid metabolism, linolenic
metabolism, and drugmetabolismmediated by cytochrome P450.
VFGcluster B showed enrichment in stromal and carcinogenic

activation pathways such as MAPK signaling pathway, focal
adhesion, and ECM receptor interaction (Figure 3A), and it
also exhibited relative enrichment in pathways associated with
metabolism compared to VFGcluster C (Figure 3C). VFGcluster
C was related to pathways about stroma, tumorigenesis, and
infectious immunity (Figures 3B, 3C, 3F), while VFGcluster D
was remarkably enriched in metabolic and carcinogenic
activation pathways (Figures 3D–F). Then we analyzed the
TME cell infiltration and were surprised to find that
VFGcluster B and C were significantly enriched in nearly all
kinds of immune cells such as activated CD4+ T cell, activated
CD8+ T cell, activated dendritic cell, macrophage, MDSC, and
natural killer cell (Figure 3G). However, patients with these VFG
patterns did not show a corresponding survival advantage
(Figure 2F). It has been reported that the innate immune cells
as well as adaptive immune cells in TME could contribute to
tumor progression (Hinshaw and Shevde, 2019). Previous studies
have suggested that TME could be classified into three
distinguished immune phenotypes based on the basic immune
profiles: immune-inflamed phenotype, immune-excluded
phenotype, and immune-desert phenotype. The immune-
inflamed phenotype was characterized by abundant immune
cells presented in the tumor parenchyma as well as many
proinflammatory and effector cytokines. The immune-
excluded phenotype was also abundant in various immune
cells, however, the immune cells did not penetrate the tumor
parenchyma and were retained in the stroma surrounding the
tumor nests. The stroma could limit T-cell migration and their
normal function of anti-tumor. However, the immune-desert
phenotype was characterized by a lack of T cells in both the
parenchyma and the stroma of the tumor (Chen and Mellman,
2017). The results of GSVA analyses have displayed that
VFGcluster B and VFGcluster C were tightly connected with
stroma activation. Therefore, we speculated that VFGclsuter B
and VFGcluster C belonged to immune-excluded phenotype, in
which the stroma activation significantly suppressed the immune
cells’ normal anti-tumor function.

Generation of Ferroptosis Gene Signatures
and Functional Annotation
To further investigate the latent biological behavior of each VFG
pattern, we used limma R package to discover 367 VFG cluster-
related DEGs (Figure 4E). We performed GO and KEGG
enrichment analyses for the DEGs by using the clusterProfiler
R package. To our surprise, the results of GO enrichment analysis
showed a remarkable relationship with stroma and immunity in
all cellular component (CC), molecular function (MF), and
biological process (BP) patterns (Figures 4A,B). The genes in
KEGG analysis also exhibited enrichment in pathways related to
immunity, which was consistent with previous results (Figures
4C,D). The above results further proved that ferroptosis was an
indispensable component in modification of immunity and TME.
Then we performed unsupervised clustering analyses based on
the 367 VFG cluster-related DEGs to find out the potential
regulation mechanism. We successfully classified the patients
into two distinct genomic subgroups using the unsupervised
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FIGURE 4 | Generation of ferroptosis gene signatures and functional annotation. (A,B) Functional annotation for VFG cluster-related DEGs using GO enrichment
analysis. The color depth of the barplots and plots represented the number of genes enriched. The pathways were grouped by cellular component (CC), molecular
function (MF) and biological process (BP). (C,D) Functional annotation for VFG cluster-related DEGs using KEGG enrichment analysis. The color depth of the barplots
and plots represented the number of genes enriched. (E) 367 VFG cluster-related DEGs shown in the Venn diagram. (F) Unsupervised clustering of 367 VFG
cluster-related DEGs in meta-cohort and consensus matrices for k = 2. (G) Unsupervised clustering of overlapping 367 VFG cluster-related DEGs in meta-cohort to
classify patients into different genomic subtypes, termed as gene cluster A-B, respectively. The gene clusters, VFGclusters, project, age, gender, grade, and TNM
category were used as patient annotations. (H) Kaplan–Meier curves indicated ferroptosis genomic phenotypes were markedly related to overall survival of 568 patients
in meta-cohort, of which 243 cases were in gene cluster A and 325 cases in gene cluster B (p < 0.001, Log-rank test).
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FIGURE 5 | Establishment of the ferroptosis score and its interaction with tumor clinicopathological characteristics. (A) Expression of 18 FRGs in two gene clusters.
The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. The
asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001). The student’s t test was used to test the statistical differences between two gene
clusters. (B) Sankey diagram showing the changes of VFGclusters, survival status, gene cluster, and ferroptosis score. (C) Correlations between the ferroptosis
score and the known immune cells in meta-cohort using Spearman analysis. Negative correlation was marked with blue and positive correlation with red. (D) Differences
in the ferroptosis score among four VFGclusters in meta-cohort. The Kruskal Wallis H test was used to compare the statistical difference between four VFGclusters (p <
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clustering algorithm (Figures 4F,G, Supplementary Figures
S4A–H). The cumulative distribution function (CDF) curve
and screen plot also validated the rationality of the grouping
(Supplementary Figures S4I–K). We named the two different
subgroups as gene cluster A and B, respectively. In total, 243
patients were assigned to gene cluster A while 325 patients were
classified into gene cluster B. We observed that gene cluster B was
mainly composed of patients from VFGcluster A, and tumors in
gene cluster B had a better TNM category and were enriched in
low grade compared to gene cluster A (Figure 4G). Thus, it is not
difficult to explain the phenomenon that patients in gene cluster
B had a better prognosis (Figure 4H). We also found that the two
gene clusters were characterized by different signature genes
(Figure 4G). We also discovered a significant difference in
expression level among the majority of FRGs, which was
consistent with VFGclusters (Figure 5A).

Characteristics of Clinical Traits in
Ferroptosis Related Phenotypes
The above analyses revealed a remarkable correlation between
TME and ferroptosis based on the patient population.
Therefore, we next explored the latent ferroptosis pattern in
individual patients considering the individual heterogeneity
and complexity of ferroptosis. Based on these phenotype-
related genes, we constructed a set of scoring system named
the ferroptosis score to quantify the ferroptosis pattern of
individual patients with BCa. The Sankey diagram was used to
visualize the attribute changes of individual patients
(Figure 5B). To better understand the relationship between
ferroptosis signature and TME, we also tested the correlation
between the known immune cells and ferroptosis score
(Figure 5C). We found significant difference in the
ferroptosis score between VFGclusters using the Kruskal
Wallis H test (Figure 5D). VFGcluster A showed the
highest median score while VFGcluster B and C shared the
lowest median score, which indicated that the low ferroptosis
score might be related to stroma activation signatures.
Moreover, gene cluster B also exhibited a higher median
ferroptosis score compared to gene cluster A and the
difference was of statistical significance (Figure 5E). Next,
we further explored whether the ferroptosis score had a
predictive significance for the prognosis of patients. We
used survminer R package to determine the cut off value
-0.041 and divided the patients into two subgroups with
high and low ferroptosis score. We found a significant
survival advantage among patients with high ferroptosis
score in all of the GSE13507 cohort (Figure 5G), TCGA-

BLCA cohort (Figure 5F), and the meta-cohort
(Figure 5H). In the meta-cohort, the 5 year survival rate
with high ferroptosis score is almost twice than those with
low ferroptosis score (22.29% vs. 11.81%). Then, we
investigated the interaction between the ferroptosis score
and clinical signatures and found the ferroptosis score was
significantly related to the grade, TNM category, and final
survival status (Figures 6E–6N). We also found significant
differences of the ferroptosis score in the molecular subtypes of
BCa (Figure 6O). However, the distribution difference of the
ferroptosis score in age and gender did not show a statistical
significance (Supplementary Figures S5A–D). In addition, we
performed subgroup analyses and found the ferroptosis score
was a good predictor of survival especially for patients who
were male, with high grade and low TNM category (T1-T2,
N0-N3, M0) (Supplementary Figures S5E–S).

Characteristics of Ferroptosis in Tumor
Somatic Mutation, Immunotherapy and
Chemotherapy
Next, we sought to explore the relationship between the
ferroptosis score and TMB. We discovered that TMB was
positively correlated to the ferroptosis score. Compared to
other clusters, VFGcluster A had a higher ferroptosis score, so
did gene cluster B, which was consistent to above results
(Figures 5I,J). Then, we analyzed the distribution
differences of somatic mutation between the low and high
ferroptosis scores in the TCGA-BLCA cohort using maftools R
package. As shown in Figures 6C,D, in general, there were no
obvious distribution differences of TMB between the low and
high ferroptosis scores, but for some popular genes in BCa
studies such as FGFR3, the high ferroptosis score group
exhibited more extensive TMB than the low ferroptosis
score group. The previous studies have demonstrated that
TMB was tightly related to the results of immunotherapy
and the prognosis of patients (Chan et al., 2019; Valero
et al., 2021). Therefore, we first preformed survival analyses
to validate the linkage between TMB and clinical outcome and
were excited to find that patients with high ferroptosis score
and high TMB had a better prognosis, which indicated the
combination of ferroptosis score and TMB had a considerable
prognostic value for BCa patients (Figures 6A,B).

Then, we further explored whether the ferroptosis score had
a predictive significance for the outcome of immunotherapy.
As shown in Figures 7A–D, the expression of the main
immunotherapy targets PD-1, PD-L1, LAG-3, and CTLA-4
were significantly lower in patients with high ferroptosis score

FIGURE 5 | 0.001). (E) Differences in the ferroptosis score among two gene clusters in meta-cohort (p < 0.001, Wilcoxon test). (F) Survival analyses for low (204 cases)
and high (199 cases) ferroptosis score patient groups in the TCGA-BLCA cohort using Kaplan–Meier curves (p = 0.002, Log-rank test). (G) Survival analyses for low (50
cases) and high (115 cases) ferroptosis score patient groups in GSE13507 cohort using Kaplan–Meier curves (p = 0.017, Log-rank test). (H) Survival analyses for low
(254 cases) and high (314 cases) ferroptosis score patient groups in meta-cohort using Kaplan–Meier curves (p < 0.001, Log-rank test). (I) Linear regression analysis for
TMB and ferroptosis score. The dot represented each sample, and the color of the dot represented the VFGcluster. Blue, VFGcluster A; orange, VFGcluster B; red,
VFGcluster C; purple, VFGcluster D (R = 0.11, p = 0.023). (J) Linear regression analysis for TMB and ferroptosis score. The dot represented each sample, and the color of
the dot represented the gene cluster. Blue, gene cluster A; orange, gene cluster B (R = 0.11, p = 0.023).
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FIGURE 6 | Characteristics of ferroptosis in tumor somatic mutation and tumor stage. (A) Survival analyses for low (262 cases) and high (140 cases) TMB patient
groups in the TCGA-BLCA cohort using Kaplan–Meier curves (p < 0.001, Log-rank test). (B) Survival analyses for four groups grouped according to TMB and ferroptosis
score in the TCGA-BLCA cohort using Kaplan–Meier curves including 75 cases in the high TMB and high ferroptosis score group, 65 cases in the high TMB and low
ferroptosis score groups, 124 cases in the low TMB and high ferroptosis score group, and 138 cases in the low TMB and low ferroptosis score group. The high
TMB and high ferroptosis score group showed significantly better overall survival than the other three groups (p < 0.001, Log-rank test). (C,D) Waterfall plot of tumor
somatic mutation established by those with low ferroptosis score (C) and high ferroptosis score (D). Each column represented individual patients. The upper barplot
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compared to those with low ferroptosis score. Next, we
evaluated the interaction between the ferroptosis score and
the response to immune checkpoint inhibitors treatment. We
found that the low ferroptosis score was related to a better
response to anti-PD-1 and anti-CTLA-4 immunotherapy.
After Bonferroni correction, there still existed a remarkable
correlation between the low ferroptosis score and response to
anti-PD-1 immunotherapy although there was a lack of
statistical significance (Figure 7E). Then we divided the
patients into four subgroups according to the use of anti-
CTLA-4 and anti-PD-1 immunotherapy: CTLA-4 positive PD-
1 positive, CTLA-4 positive PD-1 negative, CTLA-4 negative
PD-1 positive, and CTLA-4 negative PD-1 negative. As shown
in Figures 7F–I, in CTLA-4 positive PD-1 negative and CTLA-
4 negative PD-1 negative subgroups, the high ferroptosis score
was related to a better immunotherapy response, while in
CTLA-4 positive PD-1 positive and CTLA-4 negative PD-1
positive subgroups the results were exactly opposite, which
further proved that ferroptosis had a tighter relationship with
immunotherapy targeted at PD-1 compared to other immune
checkpoint inhibitors. Anti-PD-L1 immunotherapy has also
been proven effective for patients with metastatic urothelial
carcinoma in a multicenter, single-arm phase 2 trial using
atezolizumab (IMvigor 210, NCT02108652) (Rosenberg et al.,
2016). Using the data acquired from IMvigor 210 cohort, we
further verified the interaction between the ferroptosis score
and immune phenotypes. We found there existed significant
differences in the proportion of three immune phenotypes
between low and high ferroptosis groups (Supplementary
Figure S6A). The immune-desert phenotype exhibited the
highest ferroptosis score, whereas the immune-inflamed
phenotype showed the lowest ferroptosis score
(Supplementary Figures S6B), which was in accordance
with the previous results. In general, a lower ferroptosis
score predicted a better immunotherapy response, and vice
versa (Figure 7J–M). Next, we would like to find out whether
the ferroptosis score was also connected with response to
chemotherapy. We screened out several commonly used
chemotherapy drugs in BCa and explored the interaction
between the half maximal inhibitory concentration (IC50)
and ferroptosis score. We found that the low ferroptosis
score was related to low IC50 in cisplatin, doxorubicin, and
vinblastine (Figures 7N, O, Q), which means a higher
sensitivity to chemotherapy. While methotrexate was just
the reverse (Figure 7P). Then we further discovered that
IC50 for cisplatin was positively correlated to the

ferroptosis score (Figure 7R). In summary, the above
results showed the unique role of the ferroptosis score in
predicting the efficacy of immunotherapy and chemotherapy.

DISCUSSION

Nowadays, increasing evidences have demonstrated that
ferroptosis could play a vital role in cancer therapy and
predicting the prognosis of patients with cancer (Mou et al.,
2019), including BCa. For example, Yan et al. has established a
prognostic signature based on 6 ferroptosis regulator genes which
could not only predict the progression of BCa patients but also the
landscape of macrophage infiltration and EMT status (Yan et al.,
2021). Moreover, a ferroptosis-related long non-coding RNA
(FRlncRNA) signature comprising 13 prognostic FRlncRNAs
established by Cui and his colleagues also had an independent
prognostic significance for the overall survival of BCa patients.
However, previous studies paid more attention to limited
ferroptosis regulator genes and did not go deep into the
comprehensive effect of ferroptosis in BCa as well as
interaction between TME cell infiltration and ferroptosis,
which were necessary to guide more effective immunotherapy
strategies or therapies targeted at ferroptosis.

In this article, we first summarized the landscape of genetic
variation of 23 FRGs in BCa among 412 samples from the TCGA-
BLCA cohort, then we explored the FerrDb database to collect all
382 ferroptosis genes ever reported, screened out 234 validated
ferroptosis genes, combined the GEO dataset GSE13507 and
TGCA-BLCA cohort into a new meta-cohort, and divided the
patients in the meta-cohort into four ferroptosis patterns named
VFGcluster A-D using unsupervised clustering according to the
expression levels of these validated ferroptosis genes. To our
surprise, we not only found significant differences in clinical
characteristics and the prognosis of patients among the four
distinct VFG clusters, but also found remarkable differences in
TME immune cell infiltration. TME comprises both cancer cells
and immune cells including T cells, B cells, natural killer cells (NK
cells), macrophages, dendritic cells (DCs), and myeloid-derived
suppressor cells (MDSCs) (Binnewies et al., 2018). It was
intriguing that VFGcluster B and C were abundant in almost
all kinds of immune cells but did not exhibit consistent survival
advantage. Therefore we classified the VFGcluster B and C into
immune-excluded phenotype, also called ‘cold’ tumor, in which
the majority of cytotoxic T lymphocytes (CTLs) were arrested in
the margin of the tumor mass instead of the core region, thus

FIGURE 6 | showed TMB. The number on the right indicated the mutation frequency in each gene. The right barplot showed the proportion of each variant type. (E)
Differences in the ferroptosis score between high and low tumor grade groups in meta-cohort (p < 0.001, Wilcoxon test). (F) Proportion of patients with different tumor
grade in low or high ferroptosis score groups. High grade/low grade: 91%/9% in the low ferroptosis score groups and 65%/35% in the high ferroptosis score groups. (G)
Differences in the ferroptosis score among Ta, T1-T2, and T3-T4 groups in meta-cohort (p < 0.001, Kruskal Wallis H test). (H) Proportion of patients with Ta, T1-T2, and
T3-T4 stage tumor in the low or high ferroptosis score groups. (I) Differences in the ferroptosis score among N0, N1-N3, and NX groups in meta-cohort (p < 0.001,
Kruskal Wallis H test). (J) Proportion of patients with N0, N1-N3, and NX stage tumor in low or high ferroptosis score groups. (K) Differences in the ferroptosis score
among M0, M1, and MX groups in meta-cohort (p < 0.001, Kruskal Wallis H test). (L) Proportion of patients with M0, M1, and MX stage tumor in the low or high
ferroptosis score groups. (M) Differences in the ferroptosis score between alive and dead groups in meta-cohort (p < 0.001, Wilcoxon test). (N) Proportion of alive
patients in the low or high ferroptosis score groups. (O)Differences in the ferroptosis score among three subtypes of BCa including basal, luminal and neuronal subtypes
(Kruskal Wallis H test).
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FIGURE 7 | Role of ferroptosis patterns in immunotherapy and chemotherapy. (A) Differences in the expression of PD-L1 between the high and low ferroptosis
score groups in meta-cohort (p < 0.001, Wilcoxon test). (B) Differences in the expression of CTLA-4 between high and low ferroptosis score groups in meta-cohort (p <
0.001, Wilcoxon test). (C) Differences in the expression of LAG-3 between high and low ferroptosis score groups in meta-cohort (p < 0.001, Wilcoxon test). (D)
Differences in the expression of PD-1 between high and low ferroptosis score groups inmeta-cohort (p < 0.001,Wilcoxon test). (E) The similarity of gene expression
profiles between ferroptosis score and BCa patients treated with immune checkpoint blockade (ICB). CTLA4-noR, patients no respond to anti-CTLA4 treatment,
CTLA4-R, patients respond to anti-CTLA4 treatment, PD1-noR, patients no respond to anti-PD-1 treatment, PD1-R, patients respond to anti-PD-1 treatment. (F–I)
Violin diagram showed the differences of response index between high and low ferroptosis score groups in four subgroups. (F) If no immunotherapy was conducted, the
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having poor response to immunotherapy (Binnewies et al., 2018).
Although both the immune cells and cancer cells in the TME
share similar growth signals and metabolic properties, there still
exist differences in the sensitivity to ferroptosis among these cells.
For example, it seems that anti-tumor T cells are sensitive to
ferroptosis while MDSCs exhibit resistance to ferroptosis, andM1
macrophages show higher resistance to ferroptosis than M2
phenotypes (Xu et al., 2021). Therefore, it is conceivable that
the TME immune cell infiltration is tightly related to the VFG
patterns. We also performed GSVA enrichment analysis and
found the pathways related to tumorigenesis and stroma
activation were remarkably enriched in VFGcluster B and C.
Various studies have demonstrated that stroma could prevent
CTL from entering the tumor core and suppress their anti-tumor
function. Cells in the stroma such as fibroblasts could not only
synthesize and secret collagen to formmechanical separation, but
also secretes signaling molecular like transforming growth factor
β (TGF-β), which was proved immunosuppressive. The
combination of TGF-β blocking antibody and anti-PD-L1
reduced TGF-β signaling in stromal cells, facilitated T-cell
penetration into the center of the tumor, and significantly
restored anti-tumor immunity and suppressed tumor
progression (Mariathasan et al., 2018). Therefore, the results of
GSVA enrichment analysis were consistent with VFGcluster
patterns.

Further, in this study, we explored the mRNA transcriptome
differences between distinct VFG patterns and also found a
remarkable relationship with stroma and immunity-related
pathways. These differentially expressed genes were considered as
ferroptosis-related signature genes. Then we classified the patients
into two distinct genomic subtypes based on the 367 VFG cluster-
related DEGs and found the gene clusters were tightly connected
with VFGcluster patterns. These results demonstrated again that
ferroptosis was an important signature to distinguish different TME
landscapes. Therefore, a comprehensive assessment of the
ferroptosis patterns will enhance our understanding of TME cell-
infiltrating characterization.

Next, considering the individual heterogeneity and complexity of
ferroptosis, it was necessary for us to explore the latent ferroptosis
pattern in individual patients. Thus, we constructed a set of scoring
system named the ferroptosis score to quantify the ferroptosis
pattern of individuals with BCa. We found immune cells in TME
were significantly related to the ferroptosis score and there also
existed differences in the ferroptosis score among distinct VFG

clusters. VFGcluster A showed the highest median score while
VFGcluster B and C shared the lowest median score, which
suggested the ferroptosis score was a reliable and effective tool to
assess the individual ferroptosis patterns and could also be used to
evaluate the landscape of TME immune cell infiltration. Moreover,
we also discovered that the ferroptosis score was tightly interacted
with clinical signatures such as the TNM category and tumor grade
and could predict the prognosis of patients with BCa, especially for
patients who were male, with high grade and low TNM category.

Our study also found that TMB was positively correlated to the
ferroptosis score. The previous studies have reported that TMB could
serve as a latent biomarker of the response to immunotherapy using
checkpoint inhibitors in multiple cancers such as lung cancer and
mesothelioma (Harber et al., 2021; Sholl, 2021). Therefore, we would
like to figure out whether the ferroptosis score could predict the
response to immunotherapy and guide clinical treatment strategies.
Many patients have benefited from immunotherapy using immune
checkpoint inhibitors such as PD-1, PD-L1, and CTLA-4 blockade,
but many more patients did not see pronounced clinical response to
immunotherapeutic intervention (Binnewies et al., 2018). PD-1/PD-
L1 blockade has demonstrated a significant benefit in patients with
unresectable and metastatic BCa in the second-line setting, either as
monotherapy or in combination with chemotherapy or CTLA-4
checkpoint inhibition (Witjes et al., 2021). The results of the phase II
trial using the PD-1 inhibitor pembrolizumab reported a complete
pathological remission (pT0) in 42% and pathological response
(<pT2) in 54% of patients (Necchi et al., 2018), whereas another
single-arm phase II trial with atezolizumab showed a pathologic
complete response rate of 31% (Powles et al., 2019). These results
suggested that the response rate still needed to be improved and it was
important to screen out patients who were appropriate for
immunotherapy. Our results found that the lower ferroptosis
score was connected with higher expression of main
immunotherapy targets like PD-1, PD-L1, LAG-3, and CTLA-4
and a better response to immunotherapy using PD-1 blockade.
Therefore, we showed that ferroptosis patterns played a non-
negligible role in distinguishing different TME and ferroptosis
signature integrated with various biomarkers comprising TMB,
immune checkpoint expression, landscape of TME immune cell
infiltration and stromal activation, and could be an effective
predictive strategy for immunotherapy.

Many drugs used for cancer treatment have been confirmed to
work as ferroptosis inducer in their anti-tumor function, such as
cisplatin and sorafenib (Liang et al., 2019). Therefore, in our

FIGURE 7 | high ferroptosis score resulted in a better prognosis compared to low ferroptosis score (p < 0.001, Wilcoxon test). (G) If only anti-PD1 immunotherapy was
used, the high ferroptosis score resulted in a worse prognosis compared to low ferroptosis score (p = 0.031, Wilcoxon test). (H) If only anti-CTLA4 immunotherapy was
used, the higher ferroptosis score group tended to get a better therapeutic response compared to low ferroptosis score group (p = 0.0044, Wilcoxon test). (I)When anti-
PD1 and anti-CTLA4 immunotherapy methods were simultaneously adopted, the high ferroptosis score group might get significantly worse prognosis compared to low
ferroptosis score group (p < 0.001, Wilcoxon test). (J) Differences in ferroptosis score between immunotherapy benefit and no benefit groups in meta-cohort (p = 0.025,
Wilcoxon test). (K) The proportion of patients benefit from immunotherapy in low or high ferroptosis score groups. (L) Differences in ferroptosis score between
immunotherapy response and nonresponse groups in meta-cohort (p < 0.001, Wilcoxon test). (M) The proportion of patients who response to immunotherapy in low or
high ferroptosis score groups. (N–Q) Differences in IC50 of chemotherapy drugs between high and low ferroptosis score groups in meta-cohort. N cisplatin (p < 0.001,
Wilcoxon test). (O) doxorubicin (p < 0.001, Wilcoxon test). (P)methotrexate (p < 0.001, Wilcoxon test). (Q) vinblastine (p = 0.046, Wilcoxon test). (R) Linear regression
analysis for cisplatin sensitivity and ferroptosis score. The dot represented each sample, and the color of the dot represented the level of risk. Blue, low risk; red, high risk
(R = 0.26, p < 0.001).
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study, we evaluated the relationship between the ferroptosis score
and sensitivity to different chemotherapy drugs and found IC50
for all these drugs exhibited a significant difference between the
high and low ferroptosis score groups, which indicated that the
ferroptosis score could also be a feasible indicator for the response
to chemotherapy. Since cisplatin-based chemotherapy was a
conventional treatment for patients with BCa (Sylvester et al.,
2021; Witjes et al., 2021), we further performed regression
analysis for the ferroptosis score and IC50 for cisplatin and
confirmed that there really existed a positive correlation
between the sensitivity to cisplatin chemotherapy and
ferroptosis score. Overall, the ferroptosis score could also be
an effective predictive strategy for chemotherapy, which could
help in selecting drug resistant patients before treatment.

In general, our study provided a comprehensive insight into
the interaction between ferroptosis, TMB, TME immune cell
infiltration, chemotherapy, and immunotherapy. We
demonstrated that different VFG patterns could help in
distinguishing the landscape of TME immune cell
infiltration and clinical characteristics among patients,
which was further verified using the ferroptosis score within
individuals. We also demonstrated that the ferroptosis score
could be used to evaluate the clinicopathological features
including the TNM category, tumor grade, TMB, and
genetic variation. Moreover, the ferroptosis score could also
function as a predictive indicator for the survival of patients.
Finally, we also evaluated the ability of the ferroptosis score to
predict the response to immunotherapy using immune
checkpoint inhibitor and chemotherapy, which might help
in improving therapeutic strategies, screening patients
eligible for immunotherapy or chemotherapy and guiding
individual precision therapy in the future.

However, we also realize that there still exist several
shortcomings and limitations in our study. First, the current
omics data only provide the level of mRNA but the ferroptosis
process relies on proteins, which will bring in some inaccuracies.
Second, although we have used the data acquired from IMvigor
210 cohort to further verify the role of ferroptosis patterns in
immunotherapy, the number of clinical samples is limited and
our study is a lack of verification from other clinical data sets
apart from the public data which will be helpful to further
confirm our conclusions, and whether ferroptosis has a similar
role in other types of cancer hasn’t been verified. Therefore, we
are prepared to collect some clinical samples to further verify our
conclusions, and assess the role of ferroptosis in other urinary
system tumors. Third, since some new studies were published and
novel ferroptosis-related genes were reported recently, the
ferroptosis-related genes we used for analyses could not be
comprehensive enough, which might bring a bias into our

study. Finally, the specific mechanisms behind the interaction
between ferroptosis patterns and TMB immune cell infiltration
remain unclear, so cell biological experiments should be
performed for further validation in the future.

In conclusion, our work demonstrated and interpreted the
complicated regulation mechanisms of ferroptosis on the tumor
microenvironment. The differences in ferroptosis patterns in
population or individual patients could significantly influence
the heterogeneity in tumor clinicopathological features and TME,
thus influencing the response to immunotherapy and
chemotherapy. Therefore, better understanding and evaluating
ferroptosis patterns could be helpful in guiding the clinical
therapeutic strategy and improving the prognosis of patients
with BCa.
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The clinical outcome of heterogeneous bladder cancer (BCa) is impacted by varying
molecular characteristics and clinical features, and new molecular classification is
necessary to recognize patients with dichotomized prognosis. We enrolled a total of
568 BCa patients from the TCGA-BLCA and GSE13507 cohorts. A total of 107 candidate
genes, which were mostly involved in the extracellular matrix-associated pathway, were
first selected through the consensus value of the area under the receiver operating
characteristic curve (AUC). Furthermore, absolute shrinkage and selection operation
regression analysis was implemented to reveal the 15 genes and establish the
prognostic signature. The newly defined prognostic signature could precisely separate
BCa patients into subgroups with favorable and poor prognosis in the training TCGA-
BLCA cohort (p < 0.001, HR = 2.41, and 95% CI: 1.76–3.29), as well as the testing
GSE13507 cohort (p < 0.001, HR = 7.32, and 95% CI: 1.76–3.29) and external validation
E-MTAB-4321 cohort (p < 0.001, HR = 10.56, 95% CI: 3.208–34.731). Multivariate Cox
analysis involving the signature and clinical features indicated that the signature is an
independent factor for the prediction of BCa prognosis. We also explored potential
targeted therapy for BCa patients with high- or low-risk scores and found that patients
with high risk were more suitable for chemotherapy with gemcitabine, doxorubicin,
cisplatin, paclitaxel, and vinblastine (all p < 0.05), but anti-PD-L1 therapy was useless.
We knocked down HEYL with siRNAs in T24 and 5,637 cells, and observed the decreased
protein level of HEYL, and inhibited cell viability and cell invasion. In summary, we proposed
and validated a 15-top-prognostic gene-based signature to indicate the dichotomized
prognosis and response to targeted therapy.
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INTRODUCTION

Bladder cancer (BCa), a common disease in the world with an
estimated 430,000 new cases diagnosed in 2012, is the ninth most
frequent tumor globally. Men have a higher incidence than
women, accounting for 75% of patients. European male
mortality rates were by far the highest recorded worldwide,
especially in Eastern Europe (Antoni et al., 2017). In China, its
morbidity and mortality are rising. According to the 2015
National Central Cancer Registry in China, the incidence of
BCa ranked sixth in male cancers, with 7.68/105 new cases
diagnosed in 2011 (Pang et al., 2016). A total of 3.56/105

persons died of BCa in 2014 (Chen et al., 2018). Among the
risk factors, smoking occupies the most important position, and
approximately two-thirds of men and one-third of women with
BCa are related to smoking (Farling, 2017). There are two types of
BCa, muscle invasive BCa (MIBC) and non-muscle invasive BCa
(NMIBC). NMIBC is also known as early-stage bladder cancer,
and MIBC is an advanced stage with a high recurrence rate
(Hautmann et al., 2006; Chamie et al., 2013).

As a heterogeneous disease, the clinical outcome of BCa is
impacted by various characteristics in different patients, such as
gene mutations, neoantigens, gene copy number alterations, and
infiltration of immunocytes. Low-grade tumors have a low
progression rate and a low short-term recurrence rate and can
be removed easily by transurethral resection (TUR) or
intravesical therapy with Bacillus Calmette-Guérin (BCG).
However, 15.0%–20.0% of NMIBCs ultimately develop into
invasive MIBCs (Hedegaard et al., 2016). At the other end of
the spectrum, with a high short-term recurrence rate and a high
malignant potential leading to tumor progression, high-grade
tumors always have a poor prognosis (Kirkali et al., 2005).
Therefore, it is important to establish an efficient and concise
novel method to discriminate high-risk and low-risk BCa
patients. Many teams have attempted to establish a novel
classification of BCa at the molecular level. Mo et al. generated
an 18-gene signature model to divide MIBC and NMIBC into two
subgroups: basal and differentiated. The basal subgroup
expressed a low signature gene level, and the differentiated
subgroups expressed a high signature gene level. Further study
showed a significant difference in overall survival time between
the basal and differentiated subgroups. Compared with the
differentiated subgroup, the basal subgroup had a worse
overall survival outcome (Mo et al., 2018). Sjödahl et al.
defined five major urothelial cancer subtypes using 308 cases,
and 11 signature genes were identified. They broke the limitation
of pathological staging and grading, adding more valuable
information for pathological classification (Sjödahl et al.,
2012). Kim et al. generated a progression-related gene
classifier to predict the disease outcome of NMIBC patients
(Kim W. J et al., 2010). Although many prognostic signatures
and molecular subtypes have been found, they are still not mature
enough to guide clinical therapy such as HER2 for breast cancer
(Tsang and Tse, 2020).

Molecular classification is a novel, objectively assessed,
individual, and functions as a complement to the classification
system. Some genetic events, such as genetic or epigenetic

changes that can cause aberrant gene expression, occur in the
early stage of BCa (Kim and Quan, 2005; Kim and Bae, 2008).
Thus, classification based on gene expression profiling represents
a potentially useful way to discriminate different prognosis. In
our novel molecular classification module, a total of 1,155 genes
from TCGA and GSE13507 cohorts were enrolled and finally
generated a 17-gene signature classifier.

MATERIALS AND METHODS

Data Collection
All expression profiles were derived from The Cancer Genome
Atlas (TCGA, https://portal.gdc.cancer.gov/) and the Gene
Expression Omnibus (GEO, www.ncbi.nlm.nih.gov/gds), and
corresponding clinical information was obtained from the
TCGA Bladder-cancer Clinical Data Resource dataset and
GEO clinical data resource. After matching the available gene
expression data and clinical features, a total of 403 patients from
the TCGA-BLCA cohort and 165 patients from the GSE13507
cohort were recorded for the utilization of the current study.

Identification of Candidate Genes
Taking the intersection of the expression files of the TCGA-
BLCA and GSE13507 cohorts, we finally enrolled 11,255 genes
for the subsequent analysis. The receiver operating characteristic
(ROC) curve and area under the curve (AUC) were calculated by
the “pROC” package to assess the prognostic ability of all
included genes and screen the genes included in the analysis
with optimal cutoff values (TCGA-BLCA: 0.60; GSE13507: 0.65).
Furthermore, to construct an accurate prognostic model, the
least absolute shrinkage and selector operation (LASSO)
regression analysis was implemented for screening candidate
genes by using the “glmnet” package. The minimum lambda
value was defined as a cutoff point to minimize the mean cross-
validated error. These genes selected via LASSO analysis were
used to calculate the risk score of each patient with the gene
expression value and coefficient. The process of the current study
is shown in Figure 1.

Enrichment Analysis of Selected Genes
The genes with the top mean AUC in both TCGA-BLCA and
GSE13507 cohorts were visualized with a heatmap using the R
function “barplot”. GO (Gene Ontology), KEGG (Kyoto
Encyclopedia of Genes and Genomes), and HALLMARK
enrichment analyses of genes were implemented by R package
“ClusterProfiler” (Yu et al., 2012) and “msigdbr” (Subramanian
et al., 2005). Dot plots of biological processes, molecular function,
and cellular components were visualized using the R function
“enrichGO”; the connections between biological processes were
shown using the R function “emapplot”, the correlation between
intersection genes and the top 5 biological process GO terms was
demonstrated using the R function “cnetplot”, KEGG pathways
were drawn using the R function “enrichKEGG”, and
HALLMARK pathways were illustrated using the function
“msigdbr” in “clusterProfiler”. Adjusted p < 0.05 was set as the
cutoff threshold.
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Overall Survival Analysis and Cox Survival
Analysis
Kaplan–Meier (K-M) survival analysis and a log-rank test were
performed based on the data of candidate gene expression profiles
and corresponding clinical parameters to evaluate survival rates
by using the “survival” package. The Cox model was established
to calculate hazard ratios (HRs) and 95% confidence intervals
(CIs). Multivariate Cox regression curves were generated to
explore the independent prognostic effect of risk scores after
adjusting for several clinical characteristics, including age, sex,
and grade. The results were illustrated with multiforest plots. To
further explore the impact of the classifier on the prognosis of
different subgroups, we conducted a subgroup analysis based on
clinical features related to prognosis, including age (≤70 or >70),
tumor stage (≤Stage II or >Stage II), sex (male or female), and
grade (low or high).

Prediction of the Response to Targeted
Therapy
We predicted the chemotherapeutic response for each sample
based on the Genomics of Drug Sensitivity in Cancer (GDSC). Six
commonly used chemotherapy drugs, cisplatin, doxorubicin,
mitomycin, paclitaxel, vinblastine, and gemcitabine, were
selected for assessment. We compared the response to the
above six drugs via the estimation of the samples’ half-

maximal inhibitory concentration (IC50) conducted by ridge
regression. To evaluate the individual likelihood of responding
to immunotherapy, a subclass analysis was performed in response
to anti-PD-L1 therapy based on the clinical response of 248
patients with BCa who underwent immunotherapy (Meng, 2021).

Cell Culture, Proliferation, Invasion, and
Western Blotting
We cultured the T24 and 5,637 BCa cell lines in RPMI-1640
medium supplemented with 10% fetal bovine serum at 37°C with
5% CO2. The BCa cell lines 5,637 and T24 were respectively
transfected with 50 pmol negative control, si-HEYL-1#, and si-
HEYL-2# inhibitors via Lipofectamine 3,000 (Invitrogen;
Thermo Fisher Scientific, Inc.) transfer system. The siRNAs
were purchased from Guangzhou Ribobio Co., Ltd., and the
sequences are listed in Supplementary Table S1.

We evaluated cell viability via the MTT assay. A total of 5,000
cells were seeded into a 24-well plate and cultured for 0, 1, 2, and
3 days. Then, 50 µl of 0.5% MTT reagent was added to each well,
and the cells were further cultured for 1.5 h at 37°C and then
detected on a microplate reader. The optical density (OD) values
were measured at 450 nm.

For cell invasion, we seeded 20,00 cells in the upper Transwell
chamber (8 μm; Corning, Inc.); Matrigel at a 1:20 concentration
was precoated and cultured at 37°C for 2 h. The lower chamber

FIGURE 1 | The process of the current study.
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FIGURE 2 | Top prognostic gene selection in both TCGA-BLCA and GSE13507 cohorts. (A) AUC evaluation of the prognostic value of candidate genes involved in
overall survival based on datasets TCGA and GSE10816. (B) The average AUC value of the top 11 candidate genes. (C) Annotation of enriched signaling pathways by
GO, KEGG, and HALLMARK.
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TABLE 1 | The details of the enriched signaling pathways of the 107 prognostic genes.

ONTOLOGY BP

Terms p-value p.adjust q-value geneID

Extracellular matrix organization 1.16E-18 1.26E-15 1.06E-15 PLOD1/MMP11/COL16A1/COL18A1/ADAM12/COL5A2/
COL3A1/COL5A3/BGN/FAP/COMP/TNC/GREM1/SULF1/
COL5A1/VCAN/LOX/ITGA5/ADAMTS2/COL1A1/COL8A1/
AEBP1/ITGA11

Extracellular structure organization 1.23E-18 1.26E-15 1.06E-15 PLOD1/MMP11/COL16A1/COL18A1/ADAM12/COL5A2/
COL3A1/COL5A3/BGN/FAP/COMP/TNC/GREM1/SULF1/
COL5A1/VCAN/LOX/ITGA5/ADAMTS2/COL1A1/COL8A1/
AEBP1/ITGA11

Collagen fibril organization 6.24E-17 4.27E-14 3.59E-14 PLOD1/MMP11/COL5A2/COL3A1/COL5A3/COMP/GREM1/
COL5A1/LOX/ADAMTS2/COL1A1/AEBP1

Ossification 2.40E-09 1.23E-06 1.03E-06 CTHRC1/DCHS1/GLI2/COL5A2/COMP/TNC/GREM1/VCAN/
LOX/COL1A1/RRBP1/ASPN/TWIST1/ITGA11/FAM20C

Osteoblast differentiation 2.73E-08 1.12E-05 9.41E-06 CTHRC1/GLI2/TNC/GREM1/VCAN/LOX/COL1A1/RRBP1/
TWIST1/ITGA11/FAM20C

ONTOLOGY CC

collagen-containing extracellular matrix 1.63E-15 3.32E-13 2.86E-13 CTHRC1/COL16A1/COL18A1/COL5A2/COL3A1/COL5A3/
BGN/COMP/TNC/GREM1/SULF1/COL5A1/VCAN/NCAM1/
ADAMTS2/CDH2/COL1A1/COL8A1/AEBP1/ASPN/SERPINE2

collagen trimer 2.52E-11 2.57E-09 2.21E-09 CTHRC1/COL16A1/COL18A1/COL5A2/COL3A1/COL5A3/
COL5A1/LOX/COL1A1/COL8A1

endoplasmic reticulum lumen 6.16E-11 4.19E-09 3.61E-09 RCN3/COL16A1/COL18A1/COL5A2/COL3A1/COL5A3/TNC/
COL5A1/VCAN/PDIA5/CDH2/COL1A1/COL8A1/FAM20C/CALU

complex of collagen trimers 4.24E-10 2.16E-08 1.86E-08 COL5A2/COL3A1/COL5A3/COL5A1/COL1A1/COL8A1

fibrillar collagen trimer 1.51E-09 5.14E-08 4.43E-08 COL5A2/COL3A1/COL5A3/COL5A1/COL1A1

ONTOLOGY MF

extracellular matrix structural constituent 1.22E-14 3.35E-12 3.03E-12 CTHRC1/COL16A1/COL18A1/COL5A2/COL3A1/COL5A3/
BGN/COMP/TNC/COL5A1/VCAN/COL1A1/COL8A1/AEBP1/
ASPN

extracellular matrix structural constituent conferring tensile
strength

5.00E-11 6.85E-09 6.19E-09 COL16A1/COL18A1/COL5A2/COL3A1/COL5A3/COL5A1/
COL1A1/COL8A1

glycosaminoglycan binding 4.63E-06 0.000423 0.000382 TNFAIP6/COL5A3/BGN/COMP/NRP2/SULF1/COL5A1/VCAN/
SERPINE2

integrin binding 8.05E-06 0.000552 0.000498 COL16A1/COL3A1/FAP/COMP/THY1/COL5A1/ITGA5

cell adhesion molecule binding 1.79E-05 0.000983 0.000887 PVR/COL16A1/COL3A1/FAP/COMP/THY1/COL5A1/ITGA5/
CALD1/CDH2/CNN3/FLNA

KEGG

Protein digestion and absorption 5.22E-07 7.57E-05 6.65E-05 COL16A1/COL18A1/COL1A1/COL3A1/COL5A1/COL5A2/
COL5A3/COL8A1

Glycosphingolipid biosynthesis—ganglio series 0.000143 0.010337 0.00908 B4GALNT1/ST3GAL5/ST6GALNAC5

ECM–receptor interaction 0.000366 0.017704 0.015551 COL1A1/COMP/ITGA11/ITGA5/TNC

HALLMARK

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 2.29E-22 6.86E-21 6.26E-21 ACTA2/ADAM12/BGN/CALD1/CALU/CDH2/COL16A1/
COL1A1/COL3A1/COL5A1/COL5A2/COL5A3/COMP/CTHRC1/
FAP/FLNA/GEM/GREM1/ITGA5/LOX/PLOD1/PRRX1/PVR/
SERPINE2/TAGLN/THY1/TNC/VCAN

HALLMARK_MYOGENESIS 7.61E-05 0.001142 0.001041 ACTC1/ADAM12/AEBP1/CNN3/COL1A1/COL3A1/DTNA/
MAPK12/NCAM1/SPHK1/TAGLN

HALLMARK_ANGIOGENESIS 0.001434 0.01434 0.013082 COL3A1/COL5A2/KCNJ8/VCAN
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was filled with complete medium as a chemoattractant. After
culturing the coculture system at 37°C for 24 h, the chamber and
cells were mixed with formalin for 15 min and further stained

with 1% crystal violet. The invaded cells were counted in 3 repeated
groups (magnification, ×200) under a light microscope (Nikon
Corporation).

FIGURE 3 | The network and chord graph shows the most important pathways. (A) Network of enriched signaling pathways; (B) Chord graph of the enriched
signaling pathways.

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 7250246

Gu and Liang 15-Top-Prognostic-Genes Signature for Bladder Cancer

237

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


FIGURE 4 | Establishment of the prognostic model (A)Heatmap showing the expression of 107 candidate genes in the TCGA-BLCA cohort. (B)Heatmap showing
the expression of 107 candidate genes in the GSE13507 cohort. (C) The optimal tuning parameter (lambda) in the LASSO analysis selected with 5-fold cross-validation
and one standard error rule. (D) LASSO coefficient profiles of the 107 candidate genes.
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Western blotting was performed to confirm the knockdown of
HEYL at the protein level. Anti-HEYL and anti-tubulin
antibodies were used to detect the protein lanes.

Statistical Analysis
All analyses were completed by R software v4.0.3 (http://www.r-
project.org). The risk score of each BCa patient was calculated
with the sum of the selected 15 gene coefficients by LASSO
regression. The high-risk group and low-risk group were
discriminated by the median value of the risk score. Heatmap
and enrichment analyses were applied to the visualized
expression files. K-M survival analysis was performed to
explore the survival difference between the high-risk and low-
risk score groups. A log-rank test was used to estimate the survival
analysis. HR and 95% CI were calculated by the Cox model. The
independent prognostic effect of the risk score was calculated by
multivariate Cox regression analysis. p < 0.05 was considered a
statistically significant difference.

RESULT

Gene Selection
In total, 403 patients with 14,163 genes in TCGA-BLCA and 165
patients with 18,561 genes in GSE13507 were first enrolled, and
the corresponding clinical information was also downloaded.
Following preprocessing of raw data, 11,255 intersecting genes
were subjected to the calculation of AUC to estimate the
prediction of the prognosis of BCa patients in those two
cohorts (Figure 2A). Genes with the top mean AUC are
shown in Figure 2B, including “GREM1”, “CLIP3”,
“PPFIBP2”, “COL5A1”, “CTHRC1”, “OLFML2B″, “COL5A3”,
“CALU”, “ISLR”, “COL1A1”, and “DNM1”. With the preset
cutoff value of AUC (TCGA-BLCA: 0.60; GSE13507: 0.65), we
finally enrolled 107 genes for the subsequent analysis.

Intersection Gene Enrichment and
Annotation
For the enrolled 107 candidate genes, we performed enrichment
analysis to reveal their potential function in BCa. The results
demonstrated the top five biological process, cellular component,
and molecular function GO terms, KEGG terms, and
HALLMARK terms (Figure 2C). We concluded that the
extracellular matrix structural process, cell adhesion molecule
binding, ECM–receptor interaction, and hallmark
epithelial–mesenchymal transition signaling pathways play
pivotal roles in the tumorigenesis of BCa. The details of the
enriched pathways and genes are displayed in Table 1. The
interrelation of the top 30 enriched biological processes is
presented in Figure 3A, and the correlation between
intersected genes and extracellular matrix-associated signaling
is also illustrated in Figure 3B.

Construction of the Prognostic Signature
The gene expression of 107 genes and associated clinical features
for the TCGA-BLCA cohort are shown in Figure 4A, and those

for the GSE13507 cohort are shown in Figure 4B. LASSO
regression was performed to identify candidate genes and
evaluate the corresponding coefficients in the TCGA-BLCA
training cohort (Figures 4C,D). Based on the minimum
lambda value of 0.032, a total of 15 genes were enrolled for
the calculation of the prognostic signature, with the formula risk
score = 0.109 × expression of PHGDH − 0.117 × expression of
CD96 + 0.007 × expression of SETBP1 + 0.077 × expression of
GALK1 + 0.019 × expression of DTNA +0.064 × expression
of SERPINB2 + 0.018 × expression of COMP +0.043 × expression
of CALM1 + 0.111 × expression of HEYL +0.022 × expression of
CCRN4L + 0.032 × expression of FADS2 + 0.083 × expression of
TMEM109 – 0.013 × expression of CTSE +0.021 × expression
of FAM43A − 0.022 × expression of IL9R. The risk score for
each patient in both TCGA-BLCA and GSE13507 cohorts was
calculated along with the above-mentioned formula. For the
subsequent analysis, the prognostic value of each single gene is
displayed in Supplementary Figure S1.

Prognostic Value of the Newly Defined
Signature
With the median risk score as the cutoff point, patients in the
TCGA-BLCA cohort were divided into the high-risk class (n =
201) and low-risk class (n = 198) (Supplementary Figure S2A),
and the results of the risk map showed a significant survival
difference between the two classes (Supplementary Figure
S2A). K-M curves demonstrated that the low-risk class had a
better overall survival time than the high-risk class (p < 0.001,
HR = 2.41, 95% CI: 1.76–3.29) (Figure 5A), and the ROC curve
showed that the AUC of this classification strategy could be
0.727, with a 95% CI of 0.678–0.776, which indicated an
outstanding prognostic value (Figure 5B). The distribution of
the clinical features in the high-risk and low-risk groups of
TCGA-BLCA are listed in Table 2. We also assessed the
prognostic value in different subgroups of patients. The
signature was meaningful for BCa patients in the subgroups
of age ≤ 70 years old (p < 0.01), age >70 years old (p < 0.01),
Stage I + II (p = 0.02), Stage III + IV (p < 0.01), male sex
(p < 0.01), and high grade (p < 0.01) in the TCGA-BLCA cohort
(Supplementary Figure S3).

Assessing the Prognostic Value of the
Signature in the Testing GSE13507 Cohort
To validate the 15-gene signature predictive values in other BCa
cohorts, the same formula was conducted in the GSE13507
dataset to generate the risk score of each patient. Similarly,
patients were divided into a high-risk group and a low-risk
group based on the median risk score as the cutoff point
(Supplementary Figure S2B). Consistent with the results in
the TCGA-BLCA cohort, the low-risk group exhibited a
shorter overall survival time than the high-risk group (p <
0.001, HR = 7.32, and 95% CI: 1.76–3.29, Figure 5C), and the
AUC was 0.786, with a 95% CI of 0.703–0.869 (Figure 5D). The
distribution of the clinical features in the high-risk and low-risk
groups of GSE13507 is listed in Table 3. We also assessed the
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prognostic value in different subgroups of patients. The signature
was meaningful for BCa patients in the subgroups of age ≤
70 years old (p < 0.01), age >70 years old (p < 0.01), Stage I +

II (p = 0.027), male (p < 0.01), female (p < 0.01), low grade (p =
0.018), and high grade (p < 0.01) in the GSE13507 cohort
(Supplementary Figure S4).

FIGURE 5 | Prognostic value of the newly defined signature. (A) K-M plot showing the separated clinical outcome of patients belonging to the high-risk and low-risk
subgroups in the training TCGA-BLCA cohort (A), testing GSE13507 cohort (C), and external validation cohort (E); ROC curve showing the prognostic value of the
signature in the training TCGA-BLCA cohort (B), testing GSE13507 cohort (D), and external validation cohort (F).
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Assessing the Prognostic Value of the
Signature in the External Validation
E-MTAB-4321 Cohort
To validate the 15-gene signature predictive values in other BCa
cohorts, the same formula was conducted in the E-MTAB-4321
dataset to generate the risk score of each patient. Similarly,
patients were divided into a high-risk group and a low-risk
group based on the median risk score as the cutoff point
(Supplementary Figure S2C). Consistent with the results in
the TCGA-BLCA cohort, the low-risk group exhibited a
shorter overall survival time than the high-risk group (p <
0.001, HR = 10.56, and 95% CI: 3.21–34.73, Figure 5E), and
the AUC was 0.829, with a 95% CI of 0.758–0.900 (Figure 5F).
We also assessed the prognostic value in different subgroups of
patients. The signature was meaningful for BCa patients in the
subgroups of age < = 70 years old (p = 0.004), age >70 years old
(p < 0.001), stage CIS and Ta (p = 0.004), stage T1–T4 (p = 0.019),
male sex (p < 0.001), low grade (p < 0.001), and high grade (p =
0.045) in the E-MTAB-4321 cohort (Supplementary Figure S5).

Independent Prognostic Value of the Risk
Score
To further explore the signature usage, multivariate Cox regression
analysis was performed in the TCGA-BLCA cohort, and as the
results showed, age, stage, and risk score were independent
prognostic factors (p < 0.001). Even after adjusting for the
impact of other clinical features, the signature defined high-risk
patients as having an approximately 2.22-fold higher risk of death
than low-risk patients (Figure 6A). A combined nomogram
enrolling both the signature classifier and other clinical features
demonstrated a better prognostic value (AUC: 0.740, 95% CI:
0.683–0.796, Figure 6B). For the GSE13507 cohort, we also
revealed similar findings. The prognostic signatures defined as
high-risk patients had a 2.90-fold higher risk of death than low-risk
patients, which acted as an independent prognostic factor after
adjusting for the features of age, tumor stage, sex, and grade
(Figure 6C). Moreover, the combined nomogram illustrated a
prognostic AUC value as high as 0.960, with a 95% CI of

0.928–0.992 (Figure 6D). For the E-MTAB-4321 cohort, the
prognostic signatures defined as high-risk patients had a 6.13-
fold risk of BCa recurrence compared with low-risk patients, which
acted as an independent prognostic factor after adjusting for the
features of age, T stage, sex, and grade (Figure 6E). The combined
nomogram illustrated a prognostic AUC value as high as 0.912,
with a 95% CI of 0.866–0.959 (Figure 6F).

Exploring the Appropriate Targeted
Therapy for BCa Patients
Six chemotherapy drugs, cisplatin, doxorubicin, mitomycin,
paclitaxel, vinblastine, and gemcitabine, are commonly used for
the clinical treatment of BCa. We compared the response of the six
drugs by assessing the IC50 after comparison with the GDSC data.
We found that patients in the high-risk group were more suitable
for treatment with gemcitabine, doxorubicin, cisplatin, paclitaxel,
and vinblastine (all p < 0.05), but not mitomycin (p = 0.06,
Figure 7A). For immunotherapy, especially anti-PD-L1 therapy,
we employed the gene expression data of the IMvigor210 cohort.
After comparing the similarity of the gene expression profile of
responders with the patients in both the high-risk and low-risk
groups, we found that both patients in the two subgroups were not
suitable for treatment with anti-PD-L1 therapy (Figure 7B).

Knockdown of HEYL Inhibited the
Proliferation and Invasion of BCa Cells
To evaluate the functions of the newly defined signature, we
evaluated the phenotypic alterations of BCa cells after
knockdown HEYL, due to the fact that HEYL was given a
large weight of 0.111 in the risk score formula. We transferred
the control, si-HEYL-1#, and si-HEYL-2# by the Lipofectamine
3,000 system to both T24 and 5,637 cells and observed decreased
protein levels of HEYL (Figures 8A,B). Cell viability was also
inhibited after knockdown by two siRNAs (Figures 8A,B). For
cell invasion, which represents tumor malignancy, we observed
similar results: the invaded cell numbers significantly decreased

TABLE 2 | Summary of clinical features in the TCGA-BLCA cohort.

Level Low risk High risk p

Survival time 29.43 ± 28.66 23.79 ± 25.37 0.038
Survival status (%) 0 140 (70.7) 84 (41.8) <0.001

1 58 (29.3) 117 (58.2)

Stage (%) ≤Stage II 84 (42.4) 45 (22.4) <0.001
>Stage II 114 (57.6) 156 (77.6)

Sex (%) Female 44 (22.2) 61 (30.3) 0.084
Male 154 (77.8) 140 (69.7)

Grade (%) High 179 (90.4) 200 (99.5) <0.001
Low 19 (9.6) 1 (0.5)

Age 66.62 ± 10.64 69.08 ± 10.24 0.019
Signature 1.92 ± 0.33 2.69 ± 0.26 <0.001

TABLE 3 | Summary of clinical features in the GSE13507 cohort.

Level Low risk High risk p

Survival time 55.60 ± 37.87 29.70 ± 30.42 <0.001
Survival status (%) 0 108 (90.8) 25 (54.3) <0.001

1 11 (9.2) 21 (45.7)

Stage (%) ≤Stage II 106 (89.1) 23 (50.0) <0.001
>Stage II 13 (10.9) 23 (50.0)

Sex (%) Female 17 (14.3) 13 (28.3) 0.063
Male 102 (85.7) 33 (71.7)

Type (%) MIBC 25 (21.0) 37 (80.4) <0.001
NMIBC 94 (79.0) 9 (19.6)

Grade (%) High 27 (22.7) 33 (71.7) <0.001
Low 92 (77.3) 13 (28.3)

Age 64.59 ± 12.65 66.72 ± 9.98 0.258
Signature 4.57 ± 0.26 5.26 ± 0.19 <0.001
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in the si-HEYL-1# (all p < 0.001, Figure 8C) and si-HEL-2# (all
p < 0.01, Figure 8D) groups compared with the control group in
both T24 and 5,637 cells.

DISCUSSION

BCa ranks as the fourth most common malignant cancer among
men in the Western world (Kirkali et al., 2005). BCa is a type of

tumor with a strong correlation between age and sex. The median
age at diagnosis is approximately 65–70 years old. The incidence
rate in men is 3–4 times that in women (Chen et al., 2018).
However, according to the Global Cancer Incidence and
Mortality Survey, the age-standardized rates (ASRs per
100,000) of women are 5.7, and the ASRs of men are 9.6,
suggesting that the stage-adjusted survival of BCa in women is
poorer than that in men (Ferlay et al., 2019). There is a detectable
difference among variant races and regions or countries. For

FIGURE 6 | Adjustment and combination of the clinical features with the prognostic signature. Multivariate Cox analysis and forest plot revealed the independent
prognostic value of the signature in the training TCGA-BLCA cohort (A), testing GSE13507 cohort (C), and external validation cohort (E). The combination nomogram of
the signature and clinical features displays a preferred prognostic value in the training TCGA-BLCA cohort (B), testing GSE13507 cohort (D), and external validation
cohort (F).
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instance, white Americans are more susceptible to BCa than
African Americans. On the other hand, white Americans are
more likely to evolve into invasive tumors and have a higher
mortality rate than African Americans (Uno et al., 2000). With
the development of sequencing and complementary technologies,
molecular classification methods based on genes have been
increasingly studied. Compared to the traditional pathology-
based classification, a novel subtyping strategy involves more
tumor biological information and is expected to have broad
application prospects.

Great progress has been made in the study of gene expression
profiles and cancer prognosis. For instance, patients with HER2-
enriched breast cancer have poor clinical outcomes, but they are
sensitive to neoadjuvant chemotherapy, which can greatly benefit
this group (Ross et al., 2003). However, only limited data are

available for predicting BCa and prognosis to date. Different
teams generate a distinct subtyping system, and each has its own
characteristics and validity. Either they were created to cater to a
specific clinical therapy project or relied on a robust statistical
method without considering the cancer biological process at data
analysis (Zhu et al., 2020). In our study, we downloaded two data
sets from different sources, and a total of 107 prognostic genes
were identified for LASSO analysis. To further explore the
functions of the 107 candidate genes, GO enrichment analysis
was performed. As the results showed, the candidate gene
expression was mainly involved in five pathways, including
extracellular matrix organization, extracellular structure
organization, ossification, collagen fibril organization, and
osteoblast differentiation. Moreover, we established the
prognostic signature by LASSO analysis of selected genes and

FIGURE 7 | Identification of appropriate targeted therapy for BCa patients. (A) Appropriate chemotherapy for signature-defined high-risk and low-risk patients. (B)
Appropriate anti-PD-L1 immunotherapy for signature-defined high-risk and low-risk patients.
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generated a risk predictive model with one of them. The formula
risk score = ∑n

i � 1αpXi (αrepresent coef. min) was used to
calculate the risk score of each patient. Selecting an optimal
cutoff point, the high-risk group and low-risk group were
separated. With a robust statistical method, we found that
patients in the high-risk group exhibited a worse prognosis
than those in the low-risk group. Independently, the same
formula and statistical strategy were performed on the testing
GSE13507 cohort and external validation E-MTAB-4321 cohort
to assess the efficacy of the model, and the result was similar to
that in the TCGA-BLCA cohort. Furthermore, we also realized
that the newly defined signature is an independent prognostic
signature after adjusting for the clinical features of age, tumor
stage, sex, and grade.

For the 15 genes enrolled for the calculation of the prognostic
signature, several basic experiments have already demonstrated
their function in the tumorigenesis of BCa. DNTA plays a role in

cell signal transduction and mediates the Notch1 pathway axis.
This pathway was reported to be an essential regulator in cell
proliferation, differentiation, and apoptosis (Kim M. Y et al.,
2010), and the Notch1 pathway has also been proven to
contribute to the metastasis of various malignancies, including
ovarian, breast, lung, and renal cancer (Kong et al., 2016). HEYL
is the target gene of the Notch1 pathway, and there is limited
information on the impact of its target gene HEYL. The results of
Weber et al. showed that an enhanced expression level of HEYL
decreased cancer cell dissemination and the absolute number of
metastases formed, while the capacity of cell metastasis remained
good, indicating that HEYL can function as a negative regulator
by inhibiting the infiltration of metastasis-initiating cells (Weber
et al., 2019). At the same time, we found two other tumor
suppression genes, SETBP1 and SULF1 (Lai et al., 2008; Li
et al., 2020). It was reported that decreased expression of
SETBP1 contributed to the development of non-small-cell lung

FIGURE 8 | Phenotypic validation of HEYL knockdown in BCa cell lines. (A) Knockdown of HEYL inhibited the viability of T24 cells. (B) Knockdown of HEYL
inhibited the viability of 5,637 cells. (C) Knockdown of HEYL inhibited the invasion of T24 cells. (D) Knockdown of HEYL inhibited the invasion of 5,637 cells.
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cancer cells by increasing tumor cell proliferation, migration, and
invasion and was associated with poor prognosis. In addition,
other studies have claimed that SETBP1 expression is associated
with acute myeloid leukemia and that microRNA-211-5p directly
targets SETBP1 to inhibit triple-negative breast cancer cell
proliferation, migration and metastasis (Chen et al., 2017).
SULF1 is increasingly considered for its tumor suppressor
effect. The target pathways related to the effect of SULF1
include hedgehog, Wnt, and multiple heparan sulfate-
dependent receptor tyrosine kinase pathways, which may
prove to be an important method to prevent and treat cancer
(Lai et al., 2008).

We also revealed six oncogenes that have been validated to be
related to the poor prognosis of patients with cancer: CTSE,
CALM1, PHGDH, IL9R, and CD96 (Boulay et al., 2001;
Possemato et al., 2011; Yan et al., 2011; Pontious et al., 2019;
Salazar et al., 2020; Zhao et al., 2020; Liu et al., 2021). CTSE is an
intracellular hydrolytic aspartic protease that has been found to
be overexpressed in cancer tissues. With the help of endoscopy
and immunosorbent assay (ELISA) and Western blot, CTSE was
considered a better biomarker than CA19-9 for detecting
pancreatic cancer. CALM1, a calcium ion (Ca2+) receptor
protein, is responsible for mediating various signaling
processes. Overexpression of CALM1 in cancer is significantly
related to clinical stage, T classification, and poor prognosis. The
function of CALM1 depends on the synergy of ERGF, and similar
to anti-EGFR antibodies, CALM1 inhibitors play an essential role
in cancer chemotherapy (Liu et al., 2021). PHGDH is a key
enzyme in the serine synthesis pathway. Serine is an intermediate
of other amino acids and lipid and nucleic acid synthesis
pathways (Locasale et al., 2011) and thus promotes cancer
progression. Studies have shown that PHGDH is a reliable
biomarker and independent factor predicting prognosis (Song
et al., 2018). IL9 is a multifunctional cytokine involved in many
pathways in the cell and plays opposite roles in different tumors.
For instance, IL9 inhibited the proliferation of the gastric cancer
cell line SGC-7901 in vitro (Cai et al., 2019) through the activation
of adaptive or innate immune responses. However, IL9 can act as
a tumorigenic factor or an enhancing factor to promote the
proliferation of hematological tumors and some solid tumors
(Chen andWang, 2014; Hu et al., 2017). CD96 is mainly involved
in immune function, especially the immune response mediated by
T cells. CD96 can promote cancer metastasis by enhancing NK
cell-target adhesion and inhibiting the NK-mediated cytokine
response (Liu et al., 2020). Interestingly, high expression of CD96
inhibits IL9 production in Th9 cells (Stanko et al., 2018).

The expression level of SERPINB2 was consistent with
carcinogen exposure, indicating that SEPRINB2 may provide
sensitive and accurate information for the beginning of
tumorigenic events (Lee et al., 2019). SERPINB2 was also
reported as a regulator or biomarker for predicting the
malignant progression of colorectal and bladder cancer
(Ganesh et al., 1994; Champelovier et al., 2002). Importantly,
an increase in SERPINB2 was detected with most of the
additional tested tumorigenic substances, which adds more
evidence for SEPRINB2 as a potential biomarker. Liu et al.
found that COMP was an excellent prognostic factor and

biomarker of colon cancer equivalent to noninvasive
biomarker performance, such as CA-199 (Liu et al., 2018).
Studies have shown that COMP contributes to the
development and metastasis of breast cancer. The enhanced
expression level of COMP in tumor cells is significantly
related to the reduced breast cancer-specific survival rate and
recurrence-free survival rate of patients, while the expression level
of COMP in the stroma has a poor connection with prognosis
(Englund et al., 2016). CCRN4L, a type of clock-control gene, is a
key component in the regulation of circadian rhythms (Filipski
and Lévi, 2009). It was considered that the expression of clock-
control genes changed in some cancer groups, and
polymorphisms in the CCRN4L gene may contribute to the
genesis of NSCLC in Brazilian patients (Couto et al., 2014).
FADS2 is a potential oncogene (Tian et al., 2020). Several
cancers have been validated to utilize FADS2 to desaturate
palmitate to the unusual fatty acid sapienate, which can be
applied to the biosynthesis of the membrane. Sapienate
biosynthesis is an alternative method for fatty acid
desaturation metabolism in cancer cells (Vriens et al., 2019).

As we know, this is the first study that concerned the top
prognosis prediction genes to construct the signature; we selected
the top prognostic genes with the high AUC values in both
TCGA-BLCA and GSE13507 cohorts, and the highly prognostic
efficacy of the 15-gene signature was displayed in both TCGA-
BLCA and GSE13507 cohorts, as well as the external validation
E-MTAB-4321 cohort. Meanwhile, several limitations of the
current study should be illustrated. First, real-world patient
cohort is needed to further validate the prognostic value of the
15-gene signature. Second, experimental studies of the enrolled
15 genes are necessary to further reveal the potential mechanisms
of them in BCa tumorigenesis. Third, the strength of evidence for
the significance of therapy is not enough, and further mechanism
study and clinical experiment should be conducted to evaluate the
targeted therapy efficacy.

CONCLUSION

As gene mutation events accumulate, tumor cells gradually
develop. Molecular changes occur earlier than clinical
symptom onset and overt radiographic evidence. Therefore,
molecular classifiers are considered promising tools for the
early prediction of tumors. BCa is a disease with multiple
factors and heterogeneity, and traditional classification cannot
reflect the actual situation and prognosis. In the current study, we
enrolled 15 genes that can delineate BCa from multiple angles,
and the 15-gene classifier was validated to be associated with the
clinical outcome and response to targeted therapy of patients
with BCa.
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Urinary Markers for Bladder Cancer
Diagnosis and Monitoring
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Hematuria is a typical symptom of bladder cancer which enables early detection of bladder
cancer. However, reliable diagnostic tools for bladder cancer using urine samples or other
non-invasive methods are lacking. Tremendous attempts have been tried and revealed
fancy works to convey definitive diagnostic power using urine samples. In this paper, we
reviewed urinary markers for bladder cancer and compared their efficacies.

Keywords: bladder cancer, urine marker, diagnosis, Hematuria, screening

INTRODUCTION

Bladder cancer is the 6th most common cancer inmen and 17thmost common cancer in women. The
incidence of bladder cancer is relatively high in developed countries, and because of rapid
industrialization, its worldwide incidence is increasing (Saginala et al., 2020). As bladder cancer
results in gross or microscopic hematuria, approximately 80% of bladder cancers are diagnosed as
non-muscle invasive bladder cancer (NMIBC) (Zhu et al., 2019). However, the recurrence rate of
NMIBC is as high as 60% within 1 year of the first diagnosis (Mancini et al., 2020). The gold standard
for the confirmative diagnosis of bladder cancer is cystoscopic examination, but its invasiveness
hinders its early utilization requiring non-invasive diagnostic marker (Zhu et al., 2019). The bladder
is a hollow organ that preserves urine; thus, tremendous attempts have been made to facilitate non-
invasive diagnostic tools using urine for bladder cancer. Nevertheless, there have been limitations to
these attempts due to the restricted efficacy reflecting the current status, which warrants skipping
further cystoscopic examinations. In this review, we summarize the representative tests for bladder
cancer using urine and suggest future directions.

URINE CYTOLOGY

Urine cytology examines the morphological changes in exfoliated cells from the urinary tract to assess
abnormalities (Woldu et al., 2017). The sensitivity of urine cytology varies with cancer grade. In high-
grade urothelial cancer, the sensitivity is as high as 86%, but 20–50% in low-grade cancers (Zhu et al.,
2019). Furthermore, urine cytology suffers from subjective results upon examination and variables related
to low cellularity, infections, and artifacts. The Paris Working Group released a standardized reporting
system for urine cytology to improve the objectivity of results (Barkan et al., 2016). To yield more
cellularity, catheterization and washing methods can be attempted in some situations, but are limited
because of the invasiveness and artifacts caused by the maneuvers (Sullivan et al., 2010). However, the
specificity of urine cytology is 90–100%, empowering its diagnostic value in addition to cystoscopy in
high-risk bladder cancer. In bladder cancer patients managed with transurethral resection, urine cytology
and cystoscopy examinations are recommended every 3–6 months by the National Comprehensive
Cancer Network guidelines (Flaig et al., 2020). Abnormal urine cytology results imply the presence of a
tumor, but negative results do not ensure normal conditions.
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OVERVIEW OF URINARY MOLECULAR
MARKERS

Molecular Markers
Considering that the purpose of urine testing is to avoid
unnecessary cystoscopic examinations, a high negative
predictive value is required for molecular marker tests.
Unfortunately, the reported markers only provided higher
sensitivity with lower specificity compared to urine cytology,
hampering their negative predictive value. Thus, none of them
is in use with recommendations from the guidelines.

Nuclear Matrix Protein-22
Borderline results from urine cytology, such as atypical cells, are
confusing for follow-up and diagnosis. Nuclear matrix protein-22
(NMP-22) mediates the appropriate distribution of chromatin in
cellular proliferation and exists at a low level in normal cells but at
a level as high as 25 fold in tumorous conditions (Têtu, 2009).
NMP-22 improves the positive predictive value of urine cytology
from 30 to 60% (Ahn et al., 2011). The NMP-22 Bladder Cancer
ELISA Test Kit quantifies the level of NMP-22 in urine to provide
a sensitivity of 50–70% and a specificity of 60–90% for cancer
detection. However, the variable results between individuals and
institutions restrict their use in clinical settings (Murakami et al.,
2021). NMP22 BladderChek delivers an easy and direct result
within 30 min at the point-of-care, with a sensitivity of 56% and
specificity of 88%. These values are especially higher in more
advanced-stage cancers. The pooled positive and negative
likelihood ratio were 4.36 and 0.51, respectively (Wang et al.,
2017). Thus, NMP22 BladderChek can be used in high-risk
patients but has limited clinical applications.

Bladder Tumor Antigen (BTA), BTAstat and
BTA-TRAK
The bladder tumor antigen (BTA) assay detects complement
factor H-related protein released from bladder cancer. BTA stat is
a point-of-care form, and BTA-TRAK is an ELISA kit that shares
similar sensitivity and specificity of 58 and 73%, respectively
(Têtu, 2009; Villicana et al., 2009). BTA analysis is approved by
the FDA for monitoring bladder cancer with cystoscopy, but not
for initial screening.

UroVysion in Fluorescence in situ
Hybridization
Bladder cancer exhibits aneuploidy of chromosomes (3, 7, and 17)
and deletion of the 9p21 locus. UroVysion uses fluorescence in situ
hybridization (FISH) to detect chromosomal abnormalities (Villicana
et al., 2009). The sensitivity of UroVysion varies depending on the
disease status from low to high T stage and tumor grade. The overall
sensitivity was approximately 72% and the specificity was 83%,
providing a higher diagnostic AUC of 0.867 compared with 0.626
for urine cytology (Villicana et al., 2009). Because of the complicated
procedures required by cytopathology experts and expensive
equipment, the expansion of this method is restricted.

Urine miRNA
MicroRNAs (miRNAs) are small non-coding RNAs consisting of
20–22 nucleotides, which regulate protein expression through
post-transcriptional gene regulation via RNA silencing. The
miRNA is transcribed in the nucleus by RNA polymerase II,
reading the long primary transcript, and matured by Drosha and
Dicer to form a single-stranded structure pairing with the 3’
untranslated region of messenger RNAs (mRNAs) (Kuehbacher
et al., 2007). miRNAs are relatively stable in body fluids, including
blood and urine, compared to mRNA, which allows miRNAs to
be an appropriate diagnostic target for bladder cancer. Although
the alteration of miRNA has not been fully elucidated in the
bladder, miRNA is dysregulated in bladder cancer to promote
proliferation and progression through epithelial to mesenchymal
transition and inhibit apoptosis (Enokida et al., 2016; Hofbauer
et al., 2018). Hofbauer et al. reported a diagnostic model using six
miRNAs (let-7c, miR-135a, miR-135b, miR-148a, miR-204, miR-
345) to provide a diagnostic AUC of 88.3% (Hofbauer et al.,
2018). In a meta-analysis of urine miRNA for bladder cancer
detection, a combination test with multiple miRNAs was found to
be superior to the single miRNA test (Kutwin et al., 2018).
Urinary miRNAs have implications not only for diagnosis, but
also for prognosis. For an instance, miR-9, miR-182, and miR-
200b have been associated with muscle invasiveness and poor
prognosis (Braicu et al., 2015). Huang et al. reported that miR-
125b acts as a tumor suppressor and is downregulated in bladder
cancer (Ahn et al., 2011). Wang et al. found that the urinary miR-
200 family, miR-192, and miR-155 are downregulated in bladder
cancer compared with controls (Ahn et al., 2011). The ratio of
urinary miR-126 to miR-152 is elevated in bladder cancer, with a
sensitivity and specificity of 72 and 82%, respectively (Hanke
et al., 2010). Otherwise miR-126, miR-96 show similar
sensitivities and specificity of 71–72% and 82–89% (Enokida
et al., 2016). The six-miRNA panel of miR-152, miR-148b-3p,
miR-3187-3p, miR-15b-5p, miR-27a-3p, and miR-30a-5p had a
high diagnostic yield, represented by an AUC of 0.899.
Furthermore, high levels of miR-152 and miR-3187-3p were
associated with poor recurrence-free survival in NMIBC (Jiang
et al., 2015).

Urine Cell-free DNA
Urine cell-free DNA (cfDNA) originates from several sources,
including urothelial cells, transrenal circulating DNA, and
bacteria (Tse et al., 2021). The majority of urine cfDNAs is
from urothelial cells lining the urinary tract, which can be
shed off and undergo necrosis or apoptosis to release DNA
from the cells. Unlike normal cells, tumor cells release longer
DNA segments with higher integrity (Casadio et al., 2013). Thus,
a higher proportion of cfDNA to cellular DNA reflects the
presence of tumor cells (Ou et al., 2020). Detection of urine
cfDNA integrity and mutations is available for assessing bladder
cancer. The integrity of urine cfDNA is much higher in bladder
cancer than under normal conditions (Brisuda et al., 2016).
Furthermore, the length of DNA fragments is relatively longer
in bladder cancer, implying that it originates from the necrotic
debris of cancer cells (Tse et al., 2021). Urine cfDNA tests can
detect bladder cancer with a sensitivity of 57–86% and specificity
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of 72–84% (Salvi et al., 2016). The amount of urine cfDNA
depends on the volume and concentration of the urine. Thus,
urine creatinine-adjusted DNA concentrations can be used for
normalization. Notably, urine cfDNA of 400-bp was much more
abundant than that of the control, whereas the median
concentration was only higher by 1.5 fold in bladder cancers
(Tse et al., 2021). Additionally, a urine cfDNA concentration over
250 ng/ml was indicated as the threshold value to predict bladder
cancers (Tse et al., 2021). Urine cfDNA sequencing has revealed
valuable genetic mutations for the detection of bladder cancer.
For an instance, the frequently detected mutations in bladder
cancers such as TERT, FGFR3, TP53, PIK3CA, and KRAS were
significantly altered in urine cfDNAs showing cancer detection
rate using these five gene panel with a AUC confidence interval of
0.94 (Ou et al., 2020). Telomerase reverse transcriptase (TERT)
mutations are observed in 60–85% of bladder cancers with
frequently mutated promoter regions C228T and C250T
(Avogbe et al., 2019). TERT promoter mutations in urinary
cell-free and cellular DNA can be detected in urothelial cancer
with a sensitivity of 86%, up to 93.9% when combined with urine
cytology, and with a specificity of 94.7%. The fibroblast growth
factor receptor3 (FGFR3) mutation is one of the most commonly
detected mutations in bladder cancer, occurring in approximately
12% of all cases and in 70% of low-grade NMIBC (Zuiverloon
et al., 2010; Weinstein et al., 2014). Urinary FGFR3 mutation
analysis has a sensitivity of 73% and a specificity of 87%, with
positive results implying shorter recurrence periods (Ahn et al.,
2011). In another study, urine cfDNA for droplet digital
polymerase chain reaction of the TERT promoter and FGFR3
provided a sensitivity of 68.9% and specificity of 100%, with an
enhanced sensitivity of 85.9% when combined with urine
cytology (Hayashi et al., 2020). Moreover, patients with TERT
mutations in urine cfDNA showed worse prognosis compared
with negative patients.

Tumors shed off DNA and the mutations harbor distinct
alterations of DNA sequences according to tumor type and
development, but the sensitivity of the cfDNA test is relatively
low, making it a more appropriate method with improvements.
DNA methylation is highly preserved throughout species and
organs, which vary in tumor cells, implying its utilization for
cancer detection (Lee et al., 2020). The detection of cfDNA
mutations targeting single nucleotide variants and copy number
alterations has caveats due to confounding signals of white blood
cells and clonal hematopoiesis of indeterminate potential.
Methylation sequencing of cfDNA surpasses targeted or
whole-genome sequencing in the Circulating Cell-free
Genome Atlas study (Liu et al., 2020). Epigenetic changes in
urine cfDNA have diagnostic value for urothelial cancers. Anouk
et al. reported that DNAmethylation of urine samples and tumor
tissues is significantly correlated, which allows the utilization of
urine DNA methylation analysis for the diagnosis of bladder
cancer. Among the nine genes reported in their previous study to
be associated with bladder cancer according to the methylation
status, the GHSR/MAL panel achieved a significant value with an
AUC of 0.87 (95% CI, 0.73–1.00) (Hentschel et al., 2020). Yu
et al. demonstrated that bladder cancer patients harbor
methylation of 11 genes, including SALL3, CFTR, ABCC6,

HPR1, RASSF1A, MT1A, ALX4, CDH13, RPRM, MINT1,
and BRCA1, in urine samples. Bladder EpiCHeck detects
DNA methylation in urine with a panel designed with 15
markers to diagnose bladder cancer with a sensitivity of
68.2% and a specificity of 88.0% (Witjes et al., 2018; Chen
et al., 2020). A 2-marker based methylation assay, utMeMA,
revealed a superior detection rate in early stage bladder cancer,
with a better association with tumor burden (Chen et al., 2020).
Furthermore, DNA methylation of urine samples is useful for
detecting the recurrence of bladder cancer. Notably, TWIST and
NID2 methylation are associated with bladder cancer recurrence
with 84 and 96% sensitivity and specificity, respectively. In
addition, another study reported that methylation of APC,
RASSF1A, and CDK2AP2 is associated with bladder cancer
recurrence with a sensitivity and specificity of 87 and 100%,
respectively (Kandimalla et al., 2013). Further investigation is
required to provide concrete evidence for the clinical use of these
examinations.

DISCUSSION/CONCLUSION

In bladder cancer, the diagnostic utilization of urine has
enormous potential because cancer cells shed materials directly
into the urine. Nonetheless, no other urine tests, except for urine
cytology, are recommended for the initial diagnosis or follow-up
of bladder cancer because of their low sensitivity and specificity.
In addition to traditional urinary marker tests, miRNA and
cfDNA tests have been investigated and have shown
promising results. Next-generation sequencing has enabled
deeper analysis of molecular markers in urine, and
comprehensive analysis can be achieved in accordance with
artificial intelligence to deduce the fundamental assembly of
molecular markers. In this regard, further studies are expected
to reveal key molecular panels that facilitate accurate diagnosis
and reduce invasive procedures.
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