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involving a strange attractor
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Although nonlinear dynamics have been mastered
by physicists and mathematicians for along time
(as most physical systems are inherently nonlin-
ear in nature), the recent successful application
of nonlinear methods to modeling and predict-
ing several evolutionary, ecological, physiolog-
ical, and biochemical processes has generated
great interest and enthusiasm among research-
ers in computational neuroscience and cognitive
psychology. Additionally, in the last years it has
been demonstrated that nonlinear analysis can be
successfully used to model not only basic cellular
and molecular data but also complex cognitive
processes and behavioral interactions.

The theoretical features of nonlinear systems
(such wunstable periodic orbits, period-dou-
bling bifurcations and phase space dynamics)
have already been successfully applied by sev-
eral research groups to analyze the behavior of
a variety of neuronal and cognitive processes.
Additionally the concept of strange attractors
has lead to a new understanding of information
processing which considers higher cognitive func-
tions (such as language, attention, memory and

decision making) as complex systems emerging from the dynamic interaction between parallel
streams of information flowing between highly interconnected neuronal clusters organized in
a widely distributed circuit and modulated by key central nodes. Furthermore, the paradigm
of self-organization derived from the nonlinear dynamics theory has offered an interesting
account of the phenomenon of emergence of new complex cognitive structures from random
and non-deterministic patterns, similarly to what has been previously observed in nonlinear
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studies of fluid dynamics.Finally, the challenges of coupling massive amount of data related
to brain function generated from new research fields in experimental neuroscience (such as
magnetoencephalography, optogenetics and single-cell intra-operative recordings of neuronal
activity) have generated the necessity of new research strategies which incorporate complex
pattern analysis as an important feature of their algorithms.

Up to now nonlinear dynamics has already been successfully employed to model both basic single
and multiple neurons activity (such as single-cell firing patterns, neural networks synchroniza-
tion, autonomic activity, electroencephalographic measurements, and noise modulation in the
cerebellum), as well as higher cognitive functions and complex psychiatric disorders. Similarly,
previous experimental studies have suggested that several cognitive functions can be successfully
modeled with basis on the transient activity of large-scale brain networks in the presence of
noise. Such studies have demonstrated that it is possible to represent typical decision-making
paradigms of neuroeconomics by dynamic models governed by ordinary differential equations
with a finite number of possibilities at the decision points and basic heuristic rules which incor-
porate variable degrees of uncertainty.

This e-book has include frontline research in computational neuroscience and cognitive psy-
chology involving applications of nonlinear analysis, especially regarding the representation and
modeling of complex neural and cognitive systems. Several experts teams around the world have
provided frontline theoretical and experimental contributions (as well as reviews, perspectives
and commentaries) in the fields of nonlinear modeling of cognitive systems, chaotic dynamics
in computational neuroscience, fractal analysis of biological brain data, nonlinear dynamics
in neural networks research, nonlinear and fuzzy logics in complex neural systems, nonlinear
analysis of psychiatric disorders and dynamic modeling of sensorimotor coordination.

Rather than a comprehensive compilation of the possible topics in neuroscience and cognitive
research to which non-linear may be used, this e-book intends to provide some illustrative
examples of the broad range of fields to which the powerful tools of non-linear analysis can be
successfully employed. We sincerely hope that that these articles may stimulate the reader to
deepen its interest in the topic of non-linear analysis in neuroscience and cognitive sciences,
paving the way for future theoretical and experimental research on this rapidly evolving and
promising research field.

Citation: Mattei, T. A., ed. (2016). Nonlinear Analysis in Neuroscience and Behavioral Research.
Lausanne: Frontiers Media. doi: 10.3389/978-2-88919-996-9
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Although non-linear dynamics has been mastered by physicists
and mathematicians for a long time, as most physical systems are
inherently non-linear in nature (Kirillov and Dmitry, 2013), the
more recent successful application of non-linear and fractal meth-
ods to modeling and prediction of several evolutionary, ecologic,
genetic, and biochemical processes (Avilés, 1999) has generated
great interest and enthusiasm for such type of approach among
researchers in neuroscience and cognitive psychology.

After initial works on this emerging field, it became clear that
that multiple aspects of brain function as viewed from different
perspectives and scales present a nonlinear behavior, with a com-
plex phase space composed of multiple equilibrium points, limit
cycles, stability regions, and trajectory flows as well as a dynam-
ics which includes unstable periodic orbits, period-doubling
bifurcations, as well as other features typical of chaotic systems
(Birbaumer et al., 1995). Moreover it was also demonstrated that
non-linear dynamics was able to explain several unique features
of the brain such as plasticity and learning (Freeman, 1994).

More recently the concept of strange attractors has lead to a
new understanding of information processing in the brain which,
instead of the old “localizationist” approaches (Wernicke, 1970),
considers higher cognitive functions (such as language, atten-
tion, memory and decision-making) as systemic properties which
emerge from the dynamic interaction between parallel streams
of information flowing between highly interconnected neuronal
clusters that are organized in a widely distributed circuit modu-
lated by key central nodes (Mattei, 2013a,b). According to such
paradigm, the concept of self-organization has been able to offer
a proper account of the phenomenon of evolutionary emergence
of new complex cognitive structures from non-deterministic ran-
dom patterns, similarly to what has been previously observed in
nonlinear studies of fluid dynamics (Dixon et al., 2012).

Additionally, the challenges of interpreting massive amounts
of information related to brain function generated from emerg-
ing research fields in experimental neuroscience (such as func-
tional MRi, magnetoencephalography, optogenetics, and single-
cell intra-operative recordings) have generated the necessity of
new methods for which incorporate complex pattern analysis as
an important feature of their algorithms (Turk-Browne, 2013).

Up to now nonlinear methods have already been successfully
employed to describe and model (among many other examples)
single-cell firing patterns (Thomas et al., 2013), neural networks
synchronization (Yu et al., 2011), autonomic activity (Tseng et al.,
2013), electroencephalographic data (Abdsolo et al., 2007), noise
modulation in the cerebellum (Tokuda et al., 2010), as well as

higher cognitive functions and complex psychiatric disorders
(Bystritsky et al., 2012). Additionally fractal analysis has been
extensively explored not only in the description of the temporal
aspects of neuronal dynamics, but also in the evaluation of key
structural patterns of cellular organization in both normal and
pathological histologic brain samples (Mattei, 2013a,b).

Finally, recent studies have demonstrated that several cognitive
functions can be successfully modeled with basis on the tran-
sient activity of large-scale brain networks in the presence of noise
(Rabinovich et al., 2008). In fact, it has already been suggested
that the observed pervasiveness of the 1/f scaling (also called 1/f
noise, fractal time, or pink noise) in both neural and cognitive
functions may have a very close relationship (if not a causal one)
with the phenomenon of metastability of brain states (Kello et al.,
2008). Other studies in the emerging field of neuroeconomics
have shown that it is possible to represent typical decision-making
paradigms by dynamic models governed by ordinary differen-
tial equations with a finite number of possibilities at the decision
points as well as basic rules to address uncertainty (Holmes et al.,
2004).

In this special edition of Frontiers Computational
Neuroscience dedicated to the topic of Non-linear and Fractal
Analysis in Neuroscience and Cognitive Psychology, special
articles from several frontline research groups around the world
were carefully selected in order to provide a representative sample
of the different research fields in neuroscience and cognitive psy-
chology where non-linear and fractal analysis may be successfully
applied.

The selected articles include both classical problems where
non-linear method have been traditionally employed (such as
EEG data analysis) as well as other new research fields in which
non-linear analysis has been shown to be useful not only for
modeling normal brain dynamics but also for the diagnosis of
neurological and psychiatric disorders, monitoring of their nat-
ural history and evaluation of the effects of different therapeutic
strategies.

Opverall, both theoretical and experimental works in the field
seem to demonstrate that the advanced tools of non-linear
analysis can much more accurately describe and represent the
complexity of brain dynamics than traditional mathematical
and computational methods based on linear and deterministic
analysis.

Although it seems quite unquestionable that future attempts
to model complex brain and cognitive functions will signifi-
cantly benefit from non-linear methods, the exact cognitive and
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Mattei

Non-linear analysis in neuroscience

neuronal variables that may exhibit a significant chaotic pattern
is still an open question. However, taking into account the per-
vasiveness of non-linear behavior in the brain, which has already
been demonstrated by such an extensive literature in so many dif-
ferent fields of neuroscience and cognitive psychology (as well
as the remarkable progress that has been achieved by the appli-
cation of non-linear and fractal analysis in such research areas),
maybe the burden of proof should be on the other side. Perhaps
the real question to be answered is: Which areas of neuroscience
and cognitive psychology would not benefit from the advantages
that non-linear and fractal analysis has to offer?
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We used optogenetic mice to investigate possible nonlinear responses of the medial
prefrontal cortex (MPFC) local network to light stimuli delivered by a 473 nm laser through
a fiber optics. Every 2 s, a brief 10 ms light pulse was applied and the local field potentials
(LFPs) were recorded with a 10kHz sampling rate. The experiment was repeated 100
times and we only retained and analyzed data from six animals that showed stable
and repeatable response to optical stimulations. The presence of nonlinearity in our
data was checked using the null hypothesis that the data were linearly correlated in
the temporal domain, but were random otherwise. For each trail, 100 surrogate data
sets were generated and both time reversal asymmetry and false nearest neighbor (FNN)
were used as discriminating statistics for the null hypothesis. We found that nonlinearity
is present in all LFP data. The first 0.5 s of each 2s LFP recording were dominated by
the transient response of the networks. For each trial, we used the last 1.5s of steady
activity to measure the phase resetting induced by the brief 10 ms light stimulus. After
correcting the LFPs for the effect of phase resetting, additional preprocessing was carried
out using dendrograms to identify “similar” groups among LFP trials. We found that
the steady dynamics of mPFC in response to light stimuli could be reconstructed in a
three-dimensional phase space with topologically similar “8”-shaped attractors across
different animals. Our results also open the possibility of designing a low-dimensional
model for optical stimulation of the mPFC local network.

Keywords: optogenetics, medial prefrontal cortex, electrophysiology, delay-embedding, nonlinear dynamics

1. Introduction

Synchronization of neural oscillators across different areas of the brain is involved in memory
consolidation, decision-making, and many other cognitive processes (Oprisan and Buhusi, 2014).
In humans, sustained theta oscillations were detected when subjects navigated through a virtual
maze by memory alone, relative to when they were guided through the maze by arrow cues (Kahana
etal., 1999). Also the duration of sustained theta activity is proportional to the length of the maze.
However, theta rhythm does not seem to correlate with decision-making processes. The duration of
gamma rhythm is proportional to the decision time. Gamma oscillations showed strong coherence
across different areas of the brain during associative learning (Miltner et al., 1999). A similar
strong coherence in gamma band was found between frontal and parietal cortex during successful
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recollection (Burgess and Ali, 2002). Cross-frequency coupling
between brain rhythms is essential in organization and
consolidation of working memory (Oprisan and Buhusi, 2013).
Such a cross-frequency coupling between gamma and theta
oscillations is believed to code multiple items in an ordered
way in hippocampus where spatial information is represented
in different gamma subcycles of a theta cycle (Kirihara et al.,
2012; Lisman and Jensen, 2013). It is believed that alpha rhythm
suppresses task-irrelevant information, gamma oscillations are
essential for memory maintenance, whereas theta rhythms
drive the organization of sequentially ordered items (Roux and
Uhlhaas, 2014). Synchronization of neural activity is also critical,
for example, in encoding and decoding of odor identity and
intensity (Stopfer et al., 2003; Broome et al., 2006).

Gamma rhythm involves the reciprocal interaction between
interneurons, mainly parvalbumin (PV4) fast spiking
interneurons (FS PV+) and principal cells (Traub et al., 1997).
The predominant mechanism for neuronal synchronization is
the synergistic excitation of glutamatergic pyramidal cells and
GABAergic interneurons (Parra et al., 1998; Fujiwara-Tsukamoto
and Isomura, 2008).

Nonlinear time series analysis was successfully applied, for
example, to extract quantitative features from recordings of
brain electrical activity that may serve as diagnostic tools for
different pathologies (Jung et al., 2003). In particular, large-
scale synchronization of activity among neurons that leads to
epileptic processes was extensively investigated with the tools
of nonlinear dynamics both for the purpose of early detection
of seizures (Jerger et al., 2001; Iasemidis, 2003; Iasemidis et al.,
2003; Paivinen et al., 2005) and for the purpose of using the
nonlinearity in neural network response to reset the phase of
the underlying synchronous activity of large neural populations
in order to disrupt the synchrony and re-establish normal
activity (Tass, 2003; Greenberg et al., 2010). A series of nonlinear
parameters showed significant change during ictal period as
compared to the interictal period (Babloyantz and Destexhe,
1986; van der Heyden et al., 1999) and reflect spatiotemporal
changes in signal complexity. It was also suggested that
differences in therapeutic responsiveness may reflect underlying
distinct dynamic changes during epileptic seizure (Jung et al.,
2003).

The present study performed nonlinear time series analysis
of LFP recordings from PV+ neurons: (1) to determine if
nonlinearity is present using time reversal asymmetry and FNN
statistics between the original signal and surrogate data; (2)
to measure the phase shift (resetting) induced by brief light
stimuli, and (3) to compute the delay (lag) time and embedding
dimension of LFP data.

We investigated the response of the local neural network
in the mPFC activated by light stimuli and determined the
number of degrees of freedom necessary for a quantitative, global,
description of the steady activity of the network, i.e., long after
the light stimulus was switched off. Although each neuron is
described by a relatively large number of parameters, using
nonlinear dynamics (Oprisan, 2002) it is possible to capture
some essential features of the system in a low-dimensional
space (Oprisan and Canavier, 2006; Oprisan, 2009). One possible

approach to low-dimensional modeling is by using the method
of phase resetting, which reduces the complexity of a neural
oscillator to a lookup table that relates the phase of the
presynaptic stimulus with a reset in the firing phase of the
postsynaptic neuron (Oprisan, 2013).

We recently applied delay embedding to investigating
the possibility of recovering phase resetting from single-cell
recordings (Oprisan and Canavier, 2002; Oprisan et al., 2003).
Although techniques for eliminating nonessential degrees of
freedom through time scale separation were used extensively
(Oprisan and Canavier, 2006; Oprisan, 2009), the novelty of
our approach is that we used the phase resetting induced by
light stimulus to quickly identify similar activity patterns for the
purpose of applying delay embedding technique.

2. Materials and Methods

2.1. Human Search and Animal Research

All procedures were done in accordance to the National Institute
of Health guidelines as approved by the Medical University of
South Carolina Institutional Animal Care and Use Committee.

2.2. Experimental Protocol

Male PV-Cre mice (B6; 129P2 - Pval?ml(Cre)Arbr/]y 1ackson
Laboratory (Bar Harbor, ME, USA) were infected with the viral
vector [AAV2/5. EFla. DIO. hChR2(H134R) - EYFP. WPRE.
hGH, Penn Vector Core, University of Pennsylvania] delivered
to the mPFC as described in detail in Dilgen et al. (2013).

Electrophysiological data were recorded using an optrode
positioned with a Narishige (Japan) hydraulic microdrive.
Extracellular signals were amplified by a Grass amplifier (Grass
Technologies, West Warwick, RI, USA), digitized at 10 kHz
by a 1401plus data acquisition system, visualized using Spike2
software (Cambridge Electronic Design, LTD., Cambridge, UK)
and stored on a PC for offline analysis. Line noise was eliminated
by using a HumBug 50/60 Hz Noise Eliminator (Quest Scientific
Inc., Canada). The signal was band-pass filtered online between
0.1 and 10 kHz for single- or multi-unit activity, or between 0.1
and 130 Hz for local field potentials (LFP) recordings.

Light stimulation was generated by a 473 nm laser (DPSS
Laser System, OEM Laser Systems Inc., East Lansing, MI,
USA), controlled via a 1401plus digitizer and Spike2 software
(Cambridge Electronic Design LTD., Cambridge, UK). Light
pulses were delivered via the 50 um diameter optical fiber glued
to the recording electrode (Thorlabs, Inc., Newton, NJ, USA).

At the top of the recording track the efficacy of optical
stimulation was assessed by monitoring single-unit or multi-
unit responses to various light pulses (duration 10-250 ms).
High firing rate action potentials, low half-width amplitude
(presumably from PV-positive interneurons) during the light
stimulation, and/or the inhibition of regular spiking units
was considered confirmation of optical stimulation of ChR2
expressing PV+ interneurons. The optrode was repositioned
along the dorsal ventral axis if no response was found. Upon
finding a stable response, filters were changed to record field
potentials (0.1-100 Hz). Two different optical stimulations were
delivered: (1) a 40 Hz 10-pulse train that lasted 250 ms with 10
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ms pulse duration followed by a 15 ms break, and (2) a single
pulse with 10 ms duration. In both cases, the recording lasted for
2 s from the beginning of optical stimulus. Local field potential
(LEP) activity was monitored for a minimum of 10 min while
occasionally stimulating at 40 Hz to ensure the stability of the
electrode placement and the ability to induce the oscillation.
Additionally, LFP activity was monitored as a tertiary method of
assessing anesthesia levels. Several animals were excluded from
analysis due to fluctuating levels of LFP activity that resulted from
titration of anesthesia levels during the experiment.

3. Data Analysis

For each of the six animals, we analyzed 100 different trials, each
with a duration of 2 s measured from the onset of a brief 10 ms
stimulus until the next stimulus. For each 2 s long LFP recording,
there are two regions of interest: the first approximately 0.5 s that
follows the stimulus, which is the transient response of the neural
network, and the last 1.5 s of the recording that is the steady
activity of the network. The transient response is essential in the
subsequent analysis of the steady response since it determines
the amount of phase resetting induced by optical stimulus (see
Section 3.2 for a detailed description of the procedure employed
to determine the phase resetting induced by a light stimulus).
The steady activity of the network was investigated to determine
if there is any low-dimensional attractor that may explain the
observed dynamics.

3.1. Tests for Nonlinearity

Detection of nonlinearity is the first step before any nonlinear
analysis. The test is necessary since noisy data and an insufficient
number of observations may point to nonlinearity of an
otherwise purely stochastic time series (see for example Osborne
and Provencale, 1989). There are at least two widely-used
methods for testing time series nonlinearities: surrogate data
(Theiler et al., 1992; Small, 2005) and bootstrap (Efron, 1982).
The most commonly used method to identify time series
nonlinearity is a statistical approach based on surrogate data
technique. The bootstrap method extracts explicit parametric
models from the data (Efron, 1982).

In the following, we will only use the surrogate data
method. Testing for nonlinearity with surrogate data requires
an appropriate null hypothesis, e.g., that the data are linearly
correlated in the temporal domain, but are random otherwise.
Once a null hypothesis was selected, surrogate data are generated
for the original series by preserving the linear correlations within
the original data while destroying any nonlinear structure by
randomizing the phases of the Fourier transform of the data
(Theiler et al., 1992).

From surrogates, the quantity of interest, e.g., the time reversal
asymmetry, is estimated for each realization. Next, a distribution
of the estimates is compiled and appropriate statistical tests are
carried out with the purpose of determining if the observed
data are likely to have been generated by the process set though
the null hypothesis. If the selected measure(s) of suspected
nonlinearity does not significantly change between the original

and the surrogate data, then the null hypothesis is true, otherwise
the null hypothesis is rejected.

The number of surrogates to be generated depends on the rate
of false rejections of the null hypothesis (Jung et al., 2003). For
example, if a significance level of I = 0.05 is desired, then at least
n = 1/I = 20 surrogates need to be generated (Jung et al., 2003;
Yuan et al., 2004). A set of values A; (with i = 1,..., n) of the
discriminating statistics is then computed from the surrogates
and compared agains the value A for the original time series.
Rejecting the null hypothesis can be done using: (1) rank ordering
or significance testing, (2) the average method (Yuan et al., 2004),
or (3) the coeflicient of variation method (Theiler et al., 1992;
Kugiumtzis, 2002; Jung et al., 2003).

In rank ordering, Ay must occurs either on the first or on the
last place in the ordered list of all values of the discriminating
statistics to reject the null hypothesis (see the null hypothesis
rejection using FNN Section 4.2).

In the average statistical method, a score y (sometimes called
a Z-score) is derived as follows:

2 1
V= * )
where 1 = % Y%, A is the mean value of the discriminating

statistics over all surrogates. If the score y is much less than 1,
then the relative discrepancy can be considered negligible. If y
is greater than 1, then the original data and the surrogates are
significantly different and the null hypothesis is rejected.

In the coefficient of variation statistical method, a score y is
derived as follows:

A —Xo
T

y = , (1)

where o), is the standard deviation of the discriminating statistics
over all surrogates. If the values A; are fairly normally distributed,
rejection of the null hypothesis requires a y - value of about 1.96
ata 95% confidence level (Stam et al., 1998; Jung et al., 2003).

For every trial and every animal we generated n = 100
surrogates and used two different discriminating statistics to
detect potential nonlinearity in our data. The first y score
was based on the reversibility of the time series. The second
discriminating statistics was based on the percentage of false
nearest neighbors (see Section 4.2).

A time series is said to be reversible only if its probabilistic
properties are invariant with respect to time reversal (Diks
et al, 1995). Time irreversibility is a strong signature of
nonlinearity (Schreiber and Schmitz, 2000) and rejection of the
null hypothesis implies that the time series cannot be described
by a linear Gaussian random process (Diks et al., 1995). We
used the Tisean function timerev to compute the time reversal
asymmetry statistics both for the original and the surrogate data
(Hegger et al., 1999; Schreiber and Schmitz, 2000). The 100
surrogate data files for each of the 100 trials were generated using
Tisean function surrogate (Hegger et al., 1999; Schreiber and
Schmitz, 2000).

Figure 1A shows one of the original time series (continuous
blue line) together with one of its 100 surrogates (dashed red
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FIGURE 1 | Surrogate data. An ensemble of 100 surrogate data sets similar to the original time series, but consistent with the null hypothesis, were generated using
Tisean. (A) The original data from a randomly selected trial (blue continuous line) and one of its 100 surrogates (dashed red line) look similar. For each trial, 100
surrogates have been created by a stationary Gaussian linear process using the function surrogate of Tisean. (B) The discriminating statistic for the original trials and
for each of their surrogates over all five groups showed that only the third group does not meet the nonlinearity criterion (the horizontal continuous line) since its y
score is less than 1.96. For all the other four groups the null hypothesis can be rejected.
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line). Although the two data sets might look similar, the time
reversal asymmetry value for the original data was Ao = 0.1893
and for the surrogate data shown in Figure 1A it was A = 2.4948.
The fact that the surrogates are significantly different from the
original data means that, for example, the delay embedding
dimension for surrogates is different than for the original data.
Indeed, we found that the embedding dimension is higher for
surrogates (see Figure 6C). It also means that the surrogates
do not unfold correctly in the lower-dimensional embedding
space of the original data (see Supplementary Materials). We
used the coeflicient of variation statistical method to compute
a y score from Equation (1). Figure 1B shows all y scores
for the first animal. The statistics was computed over groups
of original data lumped together based on their “similarity” as
determined after correcting for phase resetting induced by the
light stimulus (see Section 3.2 below for details) and using the
dendrogram (see Section 3.3 below for details). The average y
score of time reversal asymmetry statistics that was computed
from individual A;- values for each trial in the third group
was less than 1.96. Therefore, the null hypothesis that the
data had been created by a stationary Gaussian linear process
could not be rejected for this group of LFPs. For all the other
groups of original data formed out of the 100 trials the y score
was above 1.96 and therefore we rejected the null hypothesis.
Although this time reversal asymmetry discriminating statistics
seems to exclude the third group of data, we also used the
FNN discriminating statistics for all data (see Section 4.2). The
FNN reflects the degree of determinism in the original data and
therefore serves as a good choice for a discriminating statistic
(Hegger et al., 1999; Yuan et al., 2004). Briefly, for the third group
of data, which was rejected based on time reversal asymmetry
discriminating statistics, we found that the percentage of FNN for
all 100 surrogates computed for all trials in the respective group
was always larger than for the original data (see Figure 6C).
Therefore, based on both discriminating statistics, it is likely that
nonlinearity is present in all our data.

3.2. Phase Resetting of LFP
LFPs are weighted sums of activities produced by neural
oscillators in the proximity of the recording electrode (Ebersole
and Pedley, 2003). In order to better understand the effect of
a stimulus, such as a brief laser pulse on a neural network, we
used a simplified neural oscillator model (see Figure 2A) that
produced rhythmic activity. We used a Morris-Lecar (ML) model
neuron (Morris and Lecar, 1981). When a noise free oscillator
with intrinsic firing period P; (see Figure2A) is perturbed,
e.g., by applying a brief rectangular current stimulus, the effect
is a transient change in its intrinsic period. For example, a
perturbation delivered at phase 0.3, measured from the most
recent membrane potential peak, produces a delay of the next
peak of activity (continuous blue trace in Figure 2A). On the
other hand, an identical perturbation delivered to the same free
running oscillator at a phase of 0.5 produces a significant advance
of the next peak of activity (dashed red trace in Figure 2A). As we
notice from Figure 2A, the cycles after the perturbation return
pretty quickly to the intrinsic activity of the cell, i.e., the most
significant effect of the perturbation is concentrated during the
cycle that contains the perturbation. The induced phase resetting,
i.e., the permanent phase shift of post-stimulus activity compared
to pre-stimulus phase, depends not only on the strength and
duration of the perturbation, but also on its timing (or phase).
One approach often used for reducing the noise is averaging
multiple trials. How should a meaningful average be carried
out to both reduce the noise and preserve the characteristics of
the rhythmic pattern, such as amplitude, phase, and frequency?
One possibility is to align all action potentials at stimulus onset
and added them up (see the thick black trace in Figure 2B) to
generate a LFP. In Figure 2B we also added a uniform noise
to neural oscillator’s bias current such that the individual traces
are pretty rugged. The effect of noise is especially visible on
the dashes and dashed-dotted traces in Figure 2B during the
slow hyperpolarization. By adding 100 noisy action potential
traces produced by resetting the neural oscillator at 100 equally
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change in the length of the current cycle during which the perturbation was active (A). The intrinsic firing period P; (see black bar on top of the third cycle that contains
the perturbation) was shortened by a perturbation applied at phase ¢ = 0.5 (see dashed red trace and the corresponding red bar on top of the third cycle). The same
perturbation applied at phase ¢ = 0.3 (measured from the peak of the action potential—see vertical dotted lines) lengthened the current cycle (see continuous blue
trace and the corresponding blue bar on top of the third cycle). (B) The average membrane potential of 100 noisy traces (thick black line) perturbed at 100 equally
spaced phases during the third cycle is less noisy and retains some low frequency oscillations present in all individual traces. All traces were aligned at stimulus onset
and only two of them are shown (red dashed and blue dashed-dotted). (C) LFP recordings also aligned at laser stimulus onset show an average LFP trace (black thick
trace) that is almost noise free and retains some spectral characteristics of its components. At the same time, the shape of the average LFP trace is significantly
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spaced phases we produced a smooth average (see the thick
black trace in Figure 2B). Therefore, on the positive side,
we could use a (weighted) sum of noisy traces to reduce
the noise in our data. The other positive outcome is that
the (weighted) sum retains some of the characteristics of the
individual traces, such as the intrinsic firing frequency. However,
we also notice form Figure 2B that the shape of the (weighted)
average is quite different from any of its constituents, which
raises the question: is this averaging procedure the right ways of
computing a (weighted) average from individual trials? Based on
Figures 2A,B, we can conclude that the mismatch between the
average (black thick line) and the individual trials (blue and red
traces) is due to the fact that the periodically delivered stimulus
found the background oscillatory activity of the neuron at
different phases, therefore, produced different phases resettings.
Without correcting for the stimulus induced phase resetting
effect on each trial we lose the phase and amplitude information
by simply adding all individual traces. We noticed the same
effects when attempting to remove the noise in out LFP data
be averaging all trials aligned at the onset of the light stimulus
(see Figure 2C). As a result, whenever performing an averaging
of noisy rhythmic patterns for the purpose of reducing the
noise, first the individual traces must be corrected for the phase
resetting induced by the external stimulus.

After dropping the 0.5 s transient, we noticed that even very
similar LFP traces, such as those shown in Figure 3A, do not
overlap perfectly due to the phase resetting (or the permanent
phase shift) induced by light stimuli that arrived at different
phases of the LFP activity.

In order to correct the LFP recordings for the phase resetting
induced by the brief laser pulse, we performed a circular shift
of each LFP trace with respect to one, arbitrarily selected, trace
that was considered as a “reference” LFP. The phase resetting
maximized the coefficient of correlation between any trial and
the arbitrary “reference” (see Figure 3B). As a result of the
circular shift, the coefficient of correlation increased significantly

from an average of 0.0143 £ 0.055 (red trace in Figure 3C)
to 0.5854 =+ 0.1383 (blue trace in Figure 3C). Additionally, the
root-mean-square (rms) error, i.e., the Euclidian norm of the
difference between each 1.5 s long trial and the “reference” trial,
was computed (see Figure 3D). The rms error before circularly
shifting the trials was 13.4 & 2.9. By circularly shifting the trials to
remove the effect of phase resetting induced by the light stimulus,
we were able to decrease the rms error to 8.5 & 1.8 (see green
curve with squares in Figure 2D).

3.3. Dendrograms of Phase Shifted LFPs

The circular shift performed in the previous section with the
purpose of maximizing the coefficient of correlation between
any trial and an arbitrary “reference” helps correctly defining
the relative phase of trials with respect to each other. Another
helpful step in the process of automatic data classification before
attempting a delay embedding reconstruction was to separate
the trials in “similar”-looking groups. Since we were interested
in finding out if there is any attractor of networKs steady
activity, it is expected that phases space traces of different trials
would remain close to each other at all times. This implies
that individual recordings present some “similarities” that could
be detected using the dendrograms, e.g., for the purpose of
separating clean data from artifacts (due to malfunction of
laser trigger, etc.) We used dendrograms to find the similarity
trees of all 1.5 s long, phase-corrected, trials that allowed us
to further decrease the rms error to an arbitrarily selected
“reference” from the same group (see blue solid circles in
Figure 3D). The dendrogram in Figure 4A used the Euclidian
distance to measure similarities between the phase-shifted LFP
trials.

The dendrogram could be used, for example, to separated
groups of trials based on an arbitrary selection of the cutoff
distance along dendrogram’s trees. For example, by selecting
a cluster distance larger than 40 (see Figure 4A) all 100 trials
belong to just one group. As already discussed, lumping all trails
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in one group may inadvertently lump together low-dimensional
attractors with data affected by various equipment malfunctions.
Such an approach would make the task of identifying any
phase space attractor to which all trajectories remain close at
all times more computationally intensive. By decreasing the
cluster distance threshold, we could form two groups or more.
In the following, we used a cutoff cluster distance close to 20
and obtained five dendrogram-based groups (see the shaded
rectangles in Figure 4A). The plots of the LFPs for each of the
first three groups (Figure 4B) show pretty similar waveforms and
quite different form the last two groups of the dendrogram (see
Figure 4C). Therefore, it may be easier to visually identify an
attractor (if one exists) by looking at reconstructed attractor of
individual trials from the same group, for example by comparing
traces from group 1 against each other (see Figure 7B1). The
same is true when comparing trials from group 5 against each
other (see Figure 7B5). It is unlikely that we would be able to
find any trials from group 1 that remain close to any trials from
group 5, a fact that we learned during data preprocessing stage
using dendrograms.

The same numerical procedure was applied to all data from six
animals of which we only show one detailed example.

4. Delay Embedding Method

Given the complexity of a single pyramidal neuron and the
intricacy of synaptic coupling in the mPFT cortex (Schnitzler and
Gross, 2005), we would expect a rather high-dimensional delay
embedding for our LFP recordings.

In electrophysiology, we record the membrane potential time
series, which is just one of many independent variables required
for a full characterization of neural network activity. Even though
we have direct access to only one variable of the d—dimensional
dynamical system, i.e., the light-activated local network, it is still
possible to faithfully recover, or reconstruct, the phase space
dynamics through delay embedding method (Abarbanel, 1996;
Kantz and Schreiber, 1997; Schuster and Just, 2005; Kralemann
et al., 2008). For a time series x; = x(iAt) withi = 1,2,...,N
where N is the number of data points and At is the (uniform)
sampling time, a d—dimensional embedding vector is defined as

Xi = ('xis Xitns-ees xi+(d—1)n)»

where © = nAt is the delay, or lag, time (Packard et al., 1980;
Takens, 1981).
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FIGURE 4 | Dendrogram-based grouping of similar LFPs. Even after maximizing the correlation between trials by phase-shifting them to correct for phase
resetting effect, the distance to an average LFP “template” can be further improved by grouping LFP waveforms according to their Euclidian-based dendrogram (A).
Depending on the cutoff threshold for the distance along a tree, we can have a very coarse representation with only one group (for distance larger than 40) or five
groups for distance around 20 (see the shaded areas that mark different groups). As the dendrogram suggests, the average LFPs for the first three groups are quite
similar (B). The average LFP for the last two groups are also very similar (C), but quite different from the previous three groups. The resulting rms error of a trial with
respect to its corresponding group average is definitely an improvement over the simple averaging of all trials (see Figure 3D). Even though the group average could
be pretty close to capturing features of individual LFP trials form the respective group, the delay time for phase space reconstruction has a wide range of values (D)

Two parameters are essential for a correct delay embedding
reconstruction of the phase space: the lag time t and the
embedding dimension dg. The delay, or lag, time 7 is the
time interval between successive components of the embedded
vector. Although we assumed that the same delay time applies to
each component of the embedded vector, the delay embedding
method also allows for different delays along different directions
of the phase space (Vlachos and Kugiumtzis, 2010).

4.1. Lag Time

The quality of phase space reconstruction is affected, among
other factors, by the amount of noise, the length of the time
series, and the choice of the delay time. For example, a too small
delay time t leads to embedded vector with highly correlated,
or indistinguishable, components. Geometrically, this means the
all trajectories are near the diagonal of the embedding space

and the attractor has a dimension close to one irrespective
of its complexity. To avoid such redundancy, the delay time
7 should be large enough to make the components of the
embedded vector independent of each other. However, a too
large delay time completely de-correlates the components of the
embedded vector. Geometrically, this means that phase space
points fill the entire embedding space randomly and the attractor
has a dimension close to the embedding space dimension.
Although there is no universal method for selecting the “right”
delay time, in practice we use a few different approaches to
avoid both the redundancy due to a too short delay time and
the irrelevance due to a too large delay time (Casdagli et al,
1991).

One of the methods often used for estimating the lag time
7 is the autocorrelation of the time series. Although researchers
agree that autocorrelation could provide a good estimation of
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the time lag, there is no consensus regarding the specifics.
For example, Zeng et al. (1991) considered that t is the time
at which the autocorrelation decays to e~!, Schiff and Chang
(1992) considered the first time when the autocorrelation is not
significantly different from zero, Schuster (Schuster and Just,
2005) suggested using the first zero of autocorrelation function to
ensure linear independence of the coordinates, King et al. (1987)
considered the time of the first inflection of the autocorrelation,
and Holzfuss and Mayer-Kress (1986) considered the first time
the autocorrelation reaches a minimum.

In addition to autocorrelation, Fraser and Swinney (1986)
suggested using the first local minimum of the average mutual
information (AMI) to estimate the time lag. Their method
measures the mutual dependence between x; and xjy, with
variable lag time nAt (see also Kantz and Schreiber, 1997; Hegger
et al., 1999).

Additionally, the total time spanned (Broomhead and King,
1986) by each embedded vector, i.e., t,, = (d— 1), is a significant
measure of potential crossover between temporal correlation
that could induce spurious spatial, or geometrical, correlation
between phase space points (Theiler, 1990).

4.2. Embedding Dimension

The embedding dimension was selected based on Takes’s theorem
(Takens, 1981) that ensured a faithful reconstruction of a
d—dimensional attractor in an embedding space with at most
2d+ 1 dimensions. For a dissipative system, Hausdoff dimension
could be estimated from a time series and used as the dimension
of the attractor (Holzfuss and Mayer-Kress, 1986; Kennel et al.,
1992; Provenzale et al., 1992). Good estimators of Hausdorf’s
dimension are the correlation dimension (Grassberger and
Procaccia, 1983) or the Lyapunov dimension (Kaplan and Yorke,
1979). Once the range (d < dg < 2d + 1) of embedding
dimensions is known, additional tests could determine the
optimum embedding dimension dg.

Kennel et al. (1992) introduced the false nearest neighbors
(FNN) procedure to obtain the optimum embedding dimension
(see also Kennel et al., 1992; Hegger et al,, 1999; Sen et al.,
2007). The idea behind FNN approach is to estimate the number
of points in the neighborhood of every given point for a fixed
embedding dimension. High dimensional attractors projected
onto a too low dimensional embedding space show a significant
number of false neighbors, i.e., phase space points that look
close to each other although in the true attractor space they are
far apart. The FEN method compares the Euclidian distance Ry
between two neighbors x; and x; computed in a d—dimensional
space against the distance Ryy; in a (d + 1)—dimensional
embedding space (Kennel et al.,, 1992). If the ratio of relative
distances between neighbors in the two embedding spaces, i.e.,

R%.  —R?
f = %, is larger than a predefined value then the
d

two points x; and x; are false neighbors, i.e., the points are
neighbors because of a too low projection and not because of
the true dynamics. The ratio f is usually set between 1.5 and 15
(Kennel et al., 1992; Abarbanel, 1996; Kantz and Schreiber, 1997).
Additionally, if the distance Ryy; is larger than the coefficient
of variation o/Xx of the data then the two points are false

neighbors. The reason is that o is a measure of the size of the
attractor and two points that are false neighbor will be indeed
stretched to the extremities of the attractor in dimension d + 1.
Abarbanel (1996) found that for many nonlinear systems the
value of f approaches 15, but the range is quite wide from 9 to
17 (Konstantinou, 2002). By successively computing the fraction
of FNNs in different embedding dimensions, it is possible to
estimate an optimum embedding. Some algorithms that takes
into account the temporal window t, = (d — 1)t spanned
by the embedded vectors allow simultaneous estimation of both
embedding dimension and lag time (see Stefansson et al., 1997).

5. Results

5.1. Experimental Data

Since we were interested in uncovering any possible attractor of
phase space trajectories, we only considered the last 1.5 s of each
2 s long recording. We first performed a phase shift of every 1.5
s long LFP recording to correct for the phase resetting due to
light stimulus (see Figure 3B for two similar-looking LFT traces
that were phase-shifted with respect to each other to maximize
the correlation coeflicient and correct for the phase resetting
effect).

5.2. Lag Time

As described in Section 4.1, we used two different approaches
to estimating the lag time 7: (1) the autocorrelation function
(Casdagli et al.,, 1991), and (2) the AMI method (Fraser and
Swinney, 1986). The first zero crossing of the autocorrelation
function is the time v beyond which x(t + 7) is completely
de-correlated from x(t). However, the first zero crossing of
the autocorrelation function takes into account only linear
correlations of the data (Abarbanel, 1996). The first minimum
of the nonlinear autocorrelation function called Average Mutual
Information (AMI) (Fraser and Swinney, 1986) is considered
a more suitable choice since this is the time when x(t + 1)
adds maximum information to the knowledge we have from x(t)
(Kantz and Schreiber, 1997). In most practical applications the
two methods are used together and they usually give similar
estimations of the lag time.

We computed the lag times for individual trials (see Figure 4D
for the distribution of all lag times for animal # 1) and also for
group averages (see Table 1). Although only the autocorrelation-
based lag time are shown both in Figure 4D and Table 1, the
AMI-based lag time values (not shown) were within 10% of those
obtained with the autocorrelation.

TABLE 1 | Estimated lag times.

Mouse # Avg. Std. Group1 Group2 Group3 Group4 Group5
1 25909 542 1504 2962 2886 2578 2721

2 3150 885 3128 2982 4337 3390 3401

3 1759 483 2297 1814 1812 2203

4 2645 708 3394 2924 2611 3332

5 1842 708 1501 1722 1717 2286

6 1661 594 1518 1767 1583 1736 1374
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In Table 1, the second column (called Avg.) and the third
columns (called Std.) represent the average, respectively, the
standard deviation of the corresponding lag time distributions,
such as the one shown in Figure 4D for animal # 1. The next
columns in Table 1 represent the lag times of the dendrogram-
based group averages.

For example, for the first animal, the first zero crossing of
the autocorrelation function for dendrogram-based average LFP
of group 1 is around v ~ 1500A¢ (see Figure 5A), whereas
the first minimum of the AMI is around t ~ 2000Af (see
Figure 5B).

Our data were stored as single-column text files representing
the LFP recordings with a sampling rate of At = 10™* s. Tisean
command for estimating the lag time from autocorrelation
function was autocor dataFile.txt -p -0, where the option —p
specified periodic continuation of data and —o specified that the
expected output will be returned to a file named dataFile.txt.co,
which is plotted in Figure 5A.

Tisean command for estimating the lag time from the AMI
was mutual dataFile.txt -D10000 -o, where the option —D10000

specified the range of lag times for which AMI was computed
and stored in the file dataFile.txt.mut, which is plotted in
Figure 5B.

5.3. Embedding Dimension

The method of false nearest neighbors (FNN) estimates
the embedding dimension dr by repeatedly increasing the
embedding dimension until the orbits of the phase space flow
do not intersect or overlap with each other. We used a lag time
T = 2200At and estimated the embedding dimension using
FNN method with ratios f between 2 and 20 (see Figure 6A).
As expected, for large ratios of distances, e.g., f > 7, the
percentage of FNNs drops to almost zero for an embedding
dimension dg = 3.

The actual Tisean routine used was false_nearest dataFile.
txt -f2 -d2200 -o, which calculated the percentage of FNNs with
a ratio f > 2, a lag time d = 2200At, with the default
phase space dimensions from 1 to 5 (see Figure 6A). Figure 6A
clearly indicates that an embedding dimension dg = 3 is
sufficient.
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FIGURE 5 | Time lag estimation. The first zero crossing of autocorrelation function is around  ~ 1500At (A) and the first minimum of the average mutual
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FIGURE 6 | Percentage of false nearest neighbors. (A) For a too small ratio f < 7 of distances between neighbor points in different embedding dimensions, the
percentage of false nearest neighbors is high and only drops near zero for very large embedding dimensions. For larger ration f > 7 all percentages drop to almost
zero false nearest neighbors for an embedding dimension of dg = 3. This suggests that an optimum ratio is above f = 7, in agreement with results from others
(Abarbanel, 1996; Konstantinou, 2002). (B) To avoid spurious spatial correlations due to inherent temporal correlation between too closely spaced points in a time

series, the percentage of FNN was estimated with variable Theiler window (t). (C) The percentage of FNN is also a good discriminating statistics. For the third group of
data from the first animal, the logarithmic plot shows that the percentage of FNN for the original data (solid squares) is always smaller than any of the 100 surrogates.
Only the envelopes of the minimum (solid circles), respectively, maximum (solid triangles) values of FNN are shown.
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Any estimate of dimension, especially when it is based on
correlation among data points, assumes that pairs of points
are drawn randomly and independently according to the scale
invariant measure of the attractor. However, points occurring
close in time are not independent and lead to spuriously low
estimates of embedding dimension. To avoid this issue, points
closer than some minimum time (called the Theiler window)
can be excluded from calculations (Grassberger, 1987; Theiler,
1990). Heuristic examples of estimates of Theiler window are
three times the correlation time (Heath, 2000), (d — 1), or other
ad hoc values based on space-time separation plots (Provenzale
et al., 1992).

In our estimation of embedding dimension with FNN method,
we also tested a wide range of Theiler windows from 100 to
8000 sampling times (Figure 6B) in order to make sure that no
spurious temporal correlation among data points led us to a too
low estimation of the embedding dimension. All plots of the
fraction of FNNs indicated that dg = 3 is still a good choice
of the embedding dimension. The actual Tisean routine was
false_nearest dataFile.txt -f20 -d2200 -t100 -0, which calculates the
percentage of FNNs with a ratio greater than f = 20, a lag time of
d = 2200At, a Thriller windows —t of 100A¢ for all embedding
dimensions from 1 to 5 (see Figure 4B).

The attractors were reconstructed (see Figure7) using the
time lag v and embedding dimension dg as determined
above. AAs seen form Figures 7A1-A5, the dendrogram-based
preprocessing separated quite well the LFP waveforms in
“similar” groups such that randomly selected LFPs from the
same group remained close to each other at all times (see red
and green traces in Figures 7B1-B5). The reconstruction of
individual trials was performed with their corresponding delay
(lag) times (see Figure 4D for the distribution of all delay times
for the first animal). We also showed the reconstructed group
average (blue thick trace in Figures 7B1-B5) not because it
represents the “true” attractor, but rather as a visual cue to help
us gauge if the phase space trajectories of the individual trials
remained close to each other and at all times. As expected from
the dendrogram-based preprocessing, the first three groups gave
very similar reconstructed attractors. The shape of attractors
from the first three groups could be roughly described as a
continuous circular loop twisted in an “8”-shaped object (see
Figures 7B1-B3). Since the group average (blue thick line) is less
noisy than the individual trials (red and green lines) it serves as a
visual aid toward identifying the shape of the attractor suggested
by the individual trials. The shape of the first group’s attractor
(Figures 7B1-B3) could be viewed as an “8”-shaped loop bent
around its midpoint (see also Supplementary Materials Video).
However, by increasing the lag time, the “8”-shaped attractor
can be “untangled” such that the two loops look more like
the circles shown in Figures 7B2,B3. For example, in Figure 8
we showed two examples of the same trials (red and green
lines) together with their corresponding group average (thick
black trace) that were reconstructed in the three dimensional
phase space using different delay times. In Figure 8A for t =
1900 we clearly notice the twisted “8” shaped attractor that
looks straight in Figure 8B for a delay time of © = 2200.
Therefore, all attractors in Figures 7B1-B3 are topologically

identical (up to some microscale details) since any of them could
be morphed into another by a (circular) phase shift. Furthermore,
a close inspection of the fourth’s group attractor shows that it
is close to the previous three and quite different from the fifth
attractor.

The detailed procedure described above was also applied
to the other five data sets from different animals. The results
are summarized in Figures 9-13. For all six animals that were
retained and analyzed, the zero crossings of the autocorrelation
and the minimum the AMI gave consistent lag time estimations
(see Table 1).

We found that for all six animals the optimum delay
embedding dimension was dr = 3. We found topologically
identical attractors in all first four LFP dendrogram-based groups
for animal #1 (see Figures 7B1-B4), which cover 90% of the
recordings. The attractor is “8”-shaped and is topologically
equivalent (after appropriate phase shifting) with an “untangled”
attractor (see Figure 8).

For animal #2, all attractors belong to the same “8”-
shaped class or its topologically identical counterparts (see
Figures 9B1-B5), although the fifth group presented a very large
variability.

For animal #3, there were three topologically identical
dendrogram-based LFP groups that gave an “8”-shaped
attractor (see Figures 10B1-B3), which covered 84% of
recordings.

For animal #4, all attractors were topologically identical that
belonged to the “8”-shaped attractor (see Figures 11B1-B4),
although the fourth group presented a very large
variability.

For animal #5, there were again three topologically identical
dendrogram-based LFP groups that belonged to the “8”-
shaped attractor (see Figures 12B1-B3), which covered 74% of
recordings.

For animal #6, there were two topologically identical
dendrogram-based LFP groups that belonged to the “8”-
shaped attractor (see Figures 13B1,B2), which covered 34% of
recordings.

An important characteristic of the attractors that were not
included in the above category of “8”-shaped attractors or their
topological equivalents is that all of them showed relatively
low amplitude oscillations of the LFP. For example, while
the peak-to-peak amplitude of LFP oscillations for the four
topologically equivalent attractors shown in Figures 7B1-B4 was
between —0.15 and 4-0.25 arb. units, the amplitude of the LFP for
the last group was between —0.075 and 0.075 arb .unit., which is
a decrease by a factor of 2.6. Similarly, for animal #3, the range of
LFP for the “8”-shaped attractor or their topological equivalents
(see Figures 10B1-B3) was between —0.4 to +0.7 arb. units
whereas for the only dissimilar group the LFP amplitude was
between —0.1 to +-0.1, a decrease in amplitude of LFP by a factor
of 5.5. For animal #5, the decrease in amplitude of LFP only
by a factor of 1.5 and for animal #6 the factor was 2.5. One
possible explanation could be an intermittent malfunction of the
laser’s trigger. The dendrogram method helped us automatically
sort the data set into “similar” groups before performing a
delay embedding. As a result, we decreased the computational
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time by eliminating pair comparisons of all reconstructed
attractors to determine which trials remain close to each
other.

6. Discussion

Accurate quantification of the dynamic structure of LFPs
can provide insight into the characteristics of the underlying
neurophysiological processes that generated the data. In the
present study, we first determined that nonlinearity is present
in our LFP data using the surrogates method and two different
discriminating statistics: (1) time reversal asymmetry, and (2)
percentage of FNN. Time reversal asymmetry is a robust method
for detecting irreversibility, which represents nonlinearity, even
in the presence of a large amount of noise in the time
series (Diks et al., 1995). Time reversal asymmetry statistics
revealed clear differences between the original and the surrogates,
with the exception of one group of data out of five for
the first animal. For each of the six animals we had one
group of original data for which we could not reject the
null hypothesis that the time series could be produced by a
linearly filtered noise at a significance level of 5% (Stam et al,,
1998).

We performed also a FNN-based nonlinearity test and found
that for all LFPs the percentage of FNN is always smaller for
the original data trials compared to any of their surrogates. For
example, any of the individual trials from the group of data
for which we could not reject the null hypothesis based on
time reversal asymmetry criterion had a smaller percentage of
FNN than any of its 100 surrogates (see Figure 6C). As a result,
we concluded that nonlinearity is likely present in all our data
sets.

We performed two important data preprocessing that helped
us reduce the computational time required for attractors
identification: (1) phase shifting LFPs to correct for the phase
resetting induced by light stimulus, and (2) grouping the shifted
LFPs in similar patterns of activity using a dendrogram (see
Figure 4A).

Since the light stimulus was applied every 2s, it found
the rhythmic LFP activity at different phases. As a result, it
produced significantly different permanent phase shifts of the

LFPs from trial to trial (see the two out-of-phase red and blue
LFP recordings in Figure 2A). We determined the amount of
phase resetting by circularly shifting the recordings (for example,
compare the out-of-phase traces in Figure 3A against a better
overlap of LFPs in Figure 3B). The phase resetting in neural
networks is of paramount importance for large neural network
synchronization. For example, in deep brain stimulation (DBS)
procedures an electrical pulse is applied through an electrode to
a brain region with the purpose of disrupting the synchronous
activity, e.g., during epileptic seizures (Varela et al., 2001; Tass,
2003; Greenberg et al,, 2010). For this purpose, stimuli are
carefully designed with appropriate amplitude and duration
and are precisely delivered during DBS procedures (Tass, 2003;
Greenberg et al., 2010). Such procedures are based on precise
measurements of phase resetting. Although we did not use
electrical stimuli like in DBS, we also produced large phase
resettings in background activity of mPFC. Using correlation
maximization criteria, we were able to estimate quantitatively the
amount of phase resetting. To our knowledge, phase shifting LFPs
to maximize their pair correlation was not previously used in the
context of measuring the amount of phase resetting in optogentic
experiments.

Although dendrogram grouping is not absolutely necessary
for attractors identification, it reduced the computational time
required for data analysis. For example, for N = 100 trials we
should have performed N(N + 1)/2 & 5000 pair comparisons to
find if and which reconstructed phase space trajectories remained
close to each other, therefore, hinting toward a possible attractor.
Instead, we only checked if the individual trials from the same
group remained close to each other (see red and green traces
in Figures 7B1-B5). By analyzing all possible pairs of trials
we would have eventually reached the same conclusion, i.e.,
that the individual trials from group 1 (Figure 7B1) do not
remain close to the reconstructed trajectories from group 5 (see
Figure 7B5).

We showed that the recorded LFPs from mPFC of ChR2
expressing PV+ interneurons could be successfully embedded
in a three dimensional space. For this purpose, we presented
a detailed analysis of delay embedding procedure for LFPs in
response to a brief 10 ms light pulse. Both the autocorrelation
and the AMI gave consistently close estimations of delay, or
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