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Editorial on the Research Topic

Understanding in the human and the machine

This Research Topic was initiated in a workshop—in August 2021 in Washington

D.C. – under the auspices of the U.S. Air Force Office of Scientific Research and Air

Force Research Laboratories. This Issue is dedicated to analyzing understanding and is a

sequel to 2017 Research Topic, which focused on the fundaments of self-organization in

the nervous system https://www.frontiersin.org/research-topics/4050/self-organization-

in-the-nervous-system#articles. A crosscutting theme in both journals—and the

workshop—is the principle of Variational Free-Energy Minimization (VFEM), also

known as Active Inference (Friston et al., 2006; Friston, 2010; Parr et al., 2022). This

principle has been applied to further our understanding of the role, adaptive value and

neuronal mechanisms of the capacity to understand (“understanding of understanding”).

Conceptualizing understanding as a product of uniquely human self-organization—

obtaining levels of free energy minimization inaccessible to other species—appears

to offer a promising perspective on the neuronal underpinnings of understanding

and designing devices possessing a modicum of human understanding (machine

understanding). This editorial reviews the state-of-affairs in the multidisciplinary

domain of understanding R&D (“the science of understanding”), summarizes some key

ideas in theoretical approaches centered on the application of VFEM (Yufik and Friston,

2016; Yufik et al., 2017), and introduces contributions in the present collection.

Human intellect apprehends the world and itself through the lens of understanding.

Since the time of Aristotle (2004) the capacity to understand—and the innate desire

to exercise that capacity—have been recognized as the defining features of human

intelligence, distinguishing humans from other species (Lear, 1988; Greco, 2014).

Analysis of how understanding operates and influences the ways humans interact with

the world—and with each other—has remained a key focus in psychology (Piaget,

1974, 1978) and philosophical discourse throughout history [e.g., (Kant, 1990 (1781);

Hegel, [1977 (1807)]; Locke, [1996 (1689)]; Russell, [1997 (1921)]; Descartes, [1998

(1637)]; Berkeley, [1998 (1734)]; Hume, [2018 (1739)]). Although never dormant,

interest in the phenomenon of understanding was renewed and re-invigorated in

the modern era, due to the emergence of radically novel conceptual constructs in

mathematics, physics, biology, psychology and other disciplines turning to “eternal”
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questions like what makes the world understandable, the origins

and limits of understanding, etc. from the realm of speculative

philosophy to the mainstream of scientific inquiry (Mehra,

1999; Freeman, 2000; Barsalou, 2008; Rovelli, 2014; de Regt,

2017). Accomplishments in the last decades—at the intersection

of computer science, neuroscience and other disciplines—have

realized some intelligence (learning, reasoning) in engineering

artifacts. The resulting proliferation of smart systems, including

weapons capable of acting autonomously or collaboratively with

warfighters, has created an urgent demand for advances in

machine intelligence to furnish a competitive edge in commerce

and defense. This Research Topic seeks to facilitate progress

in the science of understanding, with a special focus on

machine understanding.

What is understanding and how does it effect performance?

Continuing debates on the subject (Gelepithis, 1986;

Baumberger et al., 2016; Hannon, 2021) reveal a tangle of

issues and controversies that can be traced back to Plato

and Aristotle. And have not been settled since. In particular,

difficulties persist in clarifying relations between understanding,

knowledge and belief (Grimm, 2006; Baumberger, 2014;

Pritchard, 2014), defining the value (benefits) of understanding

in adaptive performance (Kvanvig, 2003, 2009; Grimm, 2012,

2014), circumscribing the relative roles of explanation and

prediction enabled (and perhaps entailed) by understanding

(Khalifa, 2013). The cognitivist school in psychology reduces

understanding to possessing algorithms (subject S understands

task T if S possesses algorithms for carrying out T) (Newell

and Simon, 1972; Simon, 1979). Conversely, other authoritative

sources maintain that understanding involves non-algorithmic

and non-computable components (Penrose, 1997, 2016) and

argue that algorithms can be designed so that computers

give the impression of understanding a task, while remaining

clueless about its meaning (Searle, 1990; Kauffman, 2010). An

example from a psychology classic (Piaget, 1978) illustrates the

distinction between the way non-algorithmic and algorithmic

processes manifest: consider a row of N domino pieces standing

on edge and compare two kinds of performance: predicting

at a glance that, whatever N, when pushing the first piece,

the last piece will fall, vs. predicting the same but only after

having worked mentally through all the N pieces, one-at-a-time.

According to our proposal, diverging views on understanding

are not mutually exclusive but reflect different components

and operational stages in the underlying mechanism, as

discussed below.

Variational Free Energy Minimization (VFEM) rests on

several assumptions, including the following: (a) to survive,

any organism, from the simplest (bacteria) to most advanced

(humans), must possess internal (a.k.a., world or generative)

models that embody regularities in the organism’s environment,

(b) such internal models stir an organisms’ interaction with the

environment toward minimizing variational free energy (VFE)

in sensing–acting cycles (roughly speaking, the VFE expresses

prediction errors, that is, discrepancies between sensations

predicted to follow actions and those actually experienced)

and (c) suppression of prediction errors goes hand-in-hand

with resisting entropic forces and maintaining organisms in

characteristic states (of low entropy) (Friston, 2010). Our

contention is that understanding engages particularly efficient

mechanisms that are unique to human brains. Interested readers

can find more detailed discussions of these notions in Yufik and

Friston (2016) and Yufik (2019, 2021a,b). In brief:

To appreciate the distinction between understanding and

learning, consider how different approaches account for

superior performance in chess. The learning-centric approach

attributes such performance to assimilating large stores of

chess data and winning a new game with reference to the

winning moves of previous games (Chase et al., 1973; Gobet

and Simon, 1996). This account leaves unexplained how humans

can compete with machines that have access to unlimited data

and operate with processing rates billions of times faster than

those seen in humans. Particularly mystifying is a quite common

phenomenon of young talent defeating adult masters [e.g., a 9

year old Reshevsky played over 1,500 games of simultaneous

chess in one US tour and lost <0.5% of the games (Reshevsky,

2012)]. An alternative view predicates superior performance on

superior understanding. How so?

Three definitions in the literature identify significant

components of the understanding capacity (with some critical

exceptions, as will be explained shortly):

1. “Understanding, grasp: apprehending general

relations in a multitude of particulars” (The Webster’s

Collegiate Dictionary).

2. “Understanding requires the grasping of explanatory and

other coherence-making relationships in a large body of

information. One can know many unrelated pieces of

information, but understanding is achieved only when

informational items are pieced together” (Kvanvig, 2003,

p. 192).

3. Scientific understanding involves expressing relations in

the form of equations and acquiring “some feel for the

character of the solution . . . . if we have a way of knowing

what should happen in given circumstances without

actually solving the equations, then we “understand”

the equation, as applied to the circumstances” (Richard

Feynman, cf. de Regt, 2017, p. 102)

A simple example serves to illustrate these definitions.

Consider a scene comprising just two “particulars” (dog,

cat) and imagine grasping the relation between them: “dog

chasing cat.” Note that such grasping requires (a) recognizing

individual behaviors (running cat, running dog), (b) piecing

these informational items together (Kvanvig, 2003, p. 192) and

(c) apprehending a particular form of behavior coordination

(chase). Grasping the relation brought about “a way of knowing
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what should happen in given circumstances” (Richard Feynman,

c/f de Regt, 2017, p. 102) which includes prediction (e.g., if the

dog runs faster than the cat it will intercept the cat; if the cat

speeds up, so will the dog, etc.) and explanation (e.g., the cat

is running because it’s being chased by the dog). Such rough

(qualitative) predictions are inherent in—and derive directly

from—the relation, and can be followed by reasoning about

details, in order to achieve better prediction accuracy (e.g.,

“solving equations” to determine the time of intercept given the

distance and velocities).

Consider now increasing the number of “particulars” and

complicating the scene in three ways: (a) imagine that the

cat disappears behind a fence, (b) let there be an observer

trying to predict what might happen and let there be a tree

behind the fence, visible to the observer and (c) imagine the

observer seeing no trees but entertains the possibility of their

presence. In (a), the dog changes course and runs to the other

side of the fence to intercept the cat. In (b) and (c), the dog’s

behavior does not change, but the observer realizes that the

cat might climb the tree and thus leave the dog disappointed.

Predators are genetically equipped with modeling mechanisms

that reflect long-term statistical averages in the behavior of

their prey (e.g., on the average, prey continue their movement

patterns when disappearing behind objects) and allow gradual

response tuning in the vicinity of such averages, based on

individual experiences (learning). Such mechanisms restrict

adaptive behavior to recollecting precedents—if available—or

to trial-and-error, otherwise (i.e., error suppression strategies

in (b) and (c) are not accessible to most creatures). By

contrast, human mechanisms support the composition of

unified relational structures that integrate the recollected,

and current sensory elements, and simulate interdependencies

among them. Understanding overcomes restrictions engendered

by both genetically fixed automatisms and individual learning—

and makes possible predicting and constructing adequate

responses to novel conditions. Themechanism engages three key

components (Yufik, 1998, 2013, 2021a,b):

1. Integration of initially unrelated elements into coherent

relational models in one-step transitions (akin to phase

transition in physical substrate),

2. Models are synergistic structures: they impose

coordination between the constituent elements that

constrain their variation,

3. Models are self-coordinating and resist fragmentation.

Some clarifications are called for here.

1. Borrowing the notion from physics, models can be viewed

as virtual systems (Yufik, 1998) holding a superposition

of possible organizations afforded by the arrangement of

elements (e.g., and expert model of piece arrangements

on a chessboard holds a superposition of plausible piece

grouping (or functional complexes, in the sense of De

Groot) (De Groot, 1965). Such superpositions collapse to

one configuration yielding the steepest entropy reduction

in the virtual system, giving rise to the experience of grasp,

e.g. [(cat running somewhere), (dog running somewhere)]

→ (dog chasing cat)].

2. Collapse and compression establish coordination across

the model that suppresses superfluous (redundant)

variations. For example, a thought that the cat might start

grooming does not cohere with the form of behavioral

coordination determined by the relation, which bars

such thoughts from entering the observer’s mind when

predicting outcomes.

3. In unified models, thinking of variations in one element

effects corresponding variations in others (hence, the self-

coordination). For example, envisioning the cat climbing

the tree immediately implies a failure to intercept. Similarly,

when considering the moves of particular pieces, unified

models—held by experts—render them aware of the

accompanying exposure and changing relations across the

board, while fragmented models (c.f., novices) preclude

such awareness (Yufik and Yufik, 2018). To intuit the

difference, think of taking opponent’s piece and loosing the

game in a fewmoves (“fool’s mate”) vs. sacrificing own piece

and winning the game.

Crucially, compression and self-coordination in models

precludes an inefficient wasting of time and energy on

(considering) actions with marginal or no impact, while keeping

in focus those few that decide the outcomes—the actions that

“matter.” The scale of such savings can become astronomical as

the number of elements increases. Studies of expert performance

in complex dynamic tasks (firefighters, military commanders)

have found that expert decision processes, instead of weighing

alternatives, converge quickly on a single plan considered by

them to be “obvious” (Klein, 2017). In a similar vein, possibilities

and risks inherent in piece arrangements can be obvious to a

chess prodigy, while less capable players are forced to move

step-by-step through combinatorial fog. A lack of understanding

turns chess positions into incoherent arrangements of pieces,

each having several degrees of freedom. In contrast, expert

models “squeeze out” degrees of freedom and thus provide “a

way of knowing what should happen in given circumstances”

(Richard Feynman, c/f de Regt, 2017, p. 102).

Summarily, understanding derives from self-organization

in the brain that amplify adaptive efficiency, by supporting

the construction of models representing objects, their behavior

and patterns of behavioral coordination—and enabling an

increase in the expressive complexity of such models, without

compromising their efficient use. Stated differently, human

models enable prediction and construction of apt responses

to complex interplays between multiple environmental entities,

by collapsing combinatorial spaces engendered by those
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interplays Complexity collapse (radical simplification) makes

complex situations and responses to them meaningful and

explainable (Yufik, 1998, 2002, 2013). Activities in neuronal

masses constitutive of such models remain the subject of

current and future research (Moran et al., 2013). This kind

of efficiency emerges in the minimization of VFE via the

implicit maximization of model evidence or marginal likelihood

associated to the internal model. In this formulation, log model

evidence can be expressed as accuracy minus complexity. This

means, minimizing VFE is simply a description of the kind

of sentient behavior considered above; namely providing an

accurate account of exchange with the world that is as simple

as possible. Understanding is the key to the right kind of

complexity minimization—the right kind of collapse across

degrees of freedom that capture the regularities, invariances

and compositional regularities evinced by our [inter]action with

the lived world. Indeed the aging brain may imbue better

understanding through increased generalizability (decreased

complexity, Moran et al., 2014).

We now turn to the contributions in this Research Topic.

While centered on VFEM formulations, the intent for the

Issue was to showcase current thinking about understanding

and related problems. Accordingly, articles in the Issue

address a range of opinions spanning philosophy, neuroscience,

cognitive science, biology and engineering, with an excursion

into biological underpinnings of cognitive pathologies. This

introduction serves as an annotated table of contents, breaking

the collection into several (overlapping) thematic groups.

Philosophy of understanding

Khalifa et al. discuss the relative roles of philosophy

and other disciplines (cognitive science, neuroscience, other)

in advancing the science of understanding, suggesting that

philosophy can offer a framework for both formulating

discipline-specific accounts of understanding and then unifying

such accounts under a general theory. Sloman et al. argue that

inquiry into biological foundations of human intelligence should

not be confined to analyzing individual brains but must consider

communities of individuals.

Understanding and consciousness

Pepperell considers whether progress in machine

understanding is predicated on advances machine

consciousness, leaning toward answering this question in

the affirmative. Arguments encompass both general ideas

and experimental findings in neuroscience, venturing into

the domains of creative thinking (understanding paintings)

and offering suggestions regarding the limitations of machine

learning and requirements for machine understanding.

Luczak and Kubo examine the relations between consciousness

and adaptive efficiency. Their predictive Neuronal Adaptation

hypothesis associates consciousness with prediction and

ascribes prediction and error correction abilities to

individual neurons—acting as basic functional units—that

underwrite consciousness.

Human-machine interaction

Parr and Pezzulo observe that applications of machine

intelligence are hampered by the machine’s inability to explain

its decisions, and engage VEFM to argue that comprehensive

explanations require the optimization of generative models at

two levels: a model of the world chooses responses based on

the predicted conditions in the world and a higher-level model

predicts choices in the world model and uses such predictions

to formulate explanations of the lower-level decisions. Schoeller

et al. observe that the robustness of human-machine interaction

depends on the level of trust experienced by users, and

analyze trust determinants and trust-building strategies from the

vantage point of VFEM. Blaha et al. point at the existence of

different stages in the process of reaching understanding, and

suggest natural language probes for tracing progress through

the stages expected to be conserved over humans, machines

and human-machine teams. Llinas and Malhotra review current

research on situation control and suggest approaches, in the

spirit of the VFEM, toward expanding research scope, focusing

on the construction of adaptive situation models that can

predict situational changes and then use prediction outcomes to

minimize errors. Yufik and Malhotra. discuss distinctions and

overlap in the notions of “situation awareness” and “situation

understanding” and argue that attaining mutual human-

machine understanding requires establishing an isomorphism

between the corresponding models. More precisely, since

human models represent objects, their behavior and forms of

situated behavioral coordination, machinemodels that represent

the same would be inherently explainable to users and would

allow straightforward mapping of user feedback onto machine

processes (hence, the mutual understanding).

Evolutionary origins

Vicencio-Jimenez et al. discuss the thermodynamic aspects

of cognitive processes and propose Energy Homeostasis

Principle (EHP) complementing the VFEM principle in

explaining the origins and evolution of intelligence. Intelligence

develops in an open thermodynamic system (brain) in a

growing hierarchy of components (neuronal groupings) that

regulate their energy needs and interact with other components

in the hierarchy while preserving a degree of independence.

Kozma et al. rely on a vast amount of EEG data to formulate
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a model of neuronal processes underlying intelligence. EEG

recordings demonstrate self-organization of neuronal activities,

interspersed with episodic collapses in the ensuing structures.

Such local phase transitions produce phase gradients that

correlate with transient perceptual experiences. The mechanism

of phase transition and become being gradient propagation

is consistent with those envisioned in the Global Workspace

Theory and may be responsible for optimizing trade-offs

between demands posed by rapid adaption to novelty vs.

preservation of stability. Latash discusses substantive similarities

in the theories of motor control and cognitive control: both

postulate predictive processes and anticipatory adjustments to

actions and assume that such prediction and adjustments are

carried out by self-organization processes in the control system,

particularly producing task-specific synergistic groupings of

control elements. These similarities may be indicative of a

common synergistic mechanism participating in the entire range

of control activities, “from figuring out the best next move

in a chess position to activating motor units appropriate for

implementing that move on the chess board” (Latash, this

Research Topic).

Cognitive architecture

Kroger and Kim investigate neuronal responses in

frontopolar cortex (FPC) known to participate in the

performance of complex cognitive functions, including

understanding. The study seeks to determine differences in

FPC involvement when subjects respond to two types of

demands: acquiring and maintaining structured information vs.

manipulating such information in performing cognitive tasks.

Analysis of fMRI data reveals differences in FPC recruitment

and activities sensitive to task organization and complexity.

FPC appears to be particularly involved when responding to

new and/or creating new information. Safron et al. describe

a bio-inspired architecture for robotic control. Analysis of

cognitive control focuses on the navigation problem involving

simultaneous localization and mapping (SLAM) (i.e., build a

map of the terrain concurrently with identifying one’s location

on the map) and hypothesizes that navigation mechanisms

residing in the hippocampal/entorhinal system could be

coopted by evolution in the implementation of higher cognitive

functions. Construction of the world model in the SLAM

architecture is governed by the VFEM principle, entailing

optimization of representational units (c.f., categories) in

the model.

Machine learning

Articles in this thematic group illustrate application of

machine learning methods in the type of tasks where they

excel the most, i.e., classification and recognition. Cai et al.

review results in the application of machine learning and

feature extraction algorithms for emotion recognition, that

is, classifying EEG signals and correlating such classes with

emotional states of the subjects, following classifications of

discrete emotional states in psychological literature. Wang

and Zeng use learning in Spiking Neural Networks (SNN) to

model acquisition of concepts integrating features of different

sensory modalities (multisensory concept learning), under two

conditions: preceding integration, inputs in each modality

either become associated, or remain independent. Integration

vectors produced by the SSN procedure are subsequently labeled

(correlated to concepts) by psychologists.

Neurobiological mechanisms of
cognitive pathologies

Wang et al. investigate pathological conditions in the

nervous system of schizophrenia patients that cause grossly

maladaptive behavior (severe aggression) and admit correction

only via medical treatment. Having established the correlation

between aggression severity and inflammation accompanied

by bacterial dislocation, the study suggests development of

novel methods for containing aggression, which focus on

suppressing inflammation.

Summary and conclusions

To summarize, the articles in this collection present partially

overlapping as well as strongly diverging opinions on issues

dealing with intelligence and adaptive efficiency in a wide range

of settings, from social groups to human-machine teams and

down to individuals demonstrating performance varying from

superior to pathological. The VFEM principle applies at all

levels to some degree; from adjusting social policies, correcting

individual behavior, and treating pathologies. Understanding

is an adaptive strategy within the VFEM scope, expressing

integrative operation of two core principles, as follows.

Models represent regularities in the record of sensory

inflows and an organism’s responses, and vary in scope:

from representing contiguous elements in short segments

in the record to representing non-contiguous element

groupings separated by indefinitely large segments (Yufik,

1998, 2018; Yufik and Sheridan, 2002). Regularities constitute

compressible components in the record, with the degree of

compression dependent on the types of pressure that drive

adaptation. In particular, environmental pressure demands

minimization of prediction errors (i.e., VFE) consequent

on the organism’s decisions, while thermodynamic pressure

demands maintaining life-compatible ratios of energy intakes
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vs. energy expenditures in the brain producing those decisions.

The adaptation-by-learning strategy (recall and compare)

subsists on low degrees of compression, limiting adaptation

scope to low-complexity contingencies in the organism’s

vicinity (think of predators chasing preys). By contrast, a

uniquely human genetic pressure (i.e., curiosity and the desire

to understand) requires unlimited expansions of expressivity

over spatial, temporal and complexity dimensions—thus

creating an incessant demand for compression and the

minimization of complexity (think of formulating theories

and aha moments when the simplicity of the solution

reveals itself).

Biophysics imposes hard constraints on brain development,

limiting the size of the neuronal pool and the ratio of

energy supply and expenditure compatible with sustaining life.

Complexity and thermodynamic (and metabolic) constraints

are intimately linked. For example, the Jarzynski equality

tells us immediately, that the more we change our mind—in

terms of erasing information—the more energy we consume.

Technically, this enables one to associate the complexity of

our world models with the metabolic cost of maintaining

them in open exchange with the environment. Grasp (abrupt

unification of disparate neuronal processes in coherent and self-

coordinating structures) aptly responds to all three forms of

pressure under complexity and thermodynamic constraints, i.e.,

grasp mechanisms allow unlimited expansion in the scope of

regularities captured in world models, while yielding adequate

prediction accuracy at sustainable energy costs. Grasp extracts

the essence (the gist) of a situation, enabling predictions at

costs that are infinitesimally small in comparison with those

the system would be facing without grasp. To fully appreciate

the scale of savings, think of 15 moves look-ahead reported

by world class masters (Kasparov, 2007). Shannon’s (1950)

formula puts the number of possible games after 15 half-

moves at approximately 2 ×1021. Making an assumption that

a player can evaluate one such possibility per second and

can keep this rate up for 30 mins obtains about 2 × 103

evaluations, indicating reduction in the amount of processing on

the scale 1018 : 1. Figuratively, grasp confines costly evaluations

(reasoning about moves) to the gist of the position held

within a hair thin path in a combinatorial ocean that is

million times wider than the Pacific. Some articles in this

Issue resonate with the above ideas, while some others offer

interesting alternatives.

In conclusion, we offer some observations and suggestions

for future research in biological and machine intelligence. The

history of the latter can be divided into four periods: pebbles,

abacus, calculators and computers. Gadgets of the former three

types hold only data, while algorithms for manipulating data

remain in the mind of the user. The computer revolution

was propelled by the realization (John von Neumann) that

algorithms can be held alongside data in the same medium. This

revolution allowed the delegation of learning to machines, with

the temptation to reduce all of higher cognition to algorithmic

data manipulation (machine learning). As a result, progress

in machine intelligence has relied primarily on advances

in the efficiency of data manipulation, which is, in a way

orthogonal to that exploited by evolution (human neurons

are not faster, smaller or more energy efficient than other

species, though there are more of them). The tremendous

value produced by machine learning does not change the

fact that, in principle, learning machines operate in a context

invariant fashion—in familiar conditions—and can only deceive

users into ascribing understanding to them while, in fact,

having none.

Evolution has explored the adaptation-by-learning

route in millions of species and during billions of years

since the emergence of life on earth, and ran into a dead

end in higher animals. Understanding is a product of a

recent evolutionary discovery [which, conceivably, coopted

some existing mechanisms (Yufik, 2018, 2021a) that, in

about 100,000 years, advanced human civilization from

foraging and hunting to launching missiles and sending

telescopes to the outer space]. The core mental act of

‘merging pieces together’ is non-verbalizable but could

have given birth to language (Berwick and Chomsky,

2017). The adaptive value of a non-algorithmic “grasp”

derives precisely from its ability to overcome inertia and

dissolve templates acquired in the course of learning. It

is not unreasonable to assume that imparting a modicum

of understanding capacity to machines could bring about

benefits on a par with or greater than those delivered by the

computer revolution.

Technically speaking, the transition from machine learning

to machine understanding shifts the research emphasis from

representing recognition via vector mapping (as in neural nets)

to representing relations via coordinated vector movement

(think of the domino row and associate direction vector

with each piece—considering that rotating one vector in

the first piece brings about similar rotations in others).

Challenges posed by deviating from the von Neumann–Turing

architecture and/or designing computable approximations of

the ways understanding operates might be stupendous but not

insurmountable (Siegelmann, 1999; Yufik, 2002; Traversa and

Di Ventra, 2017; Di Ventra and Traversa, 2018; Hylton, 2022).

VFEM does not stipulate methods for implementing machine

intelligence but constrains the conceptual or computational

space for formulating them and establishes a tractable

performance metric. Arguably, the problem of machine

consciousness is subordinate to that of machine understanding:

if understanding is a lens, consciousness acts as an eyelid:

one can see when the lid is up and not when it is

down (with degrees of clarity depending on the degree

of squinting).
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A recent book on expert decision making was entitled

“Sources of Power” (Klein, 2017), whose title coheres with one

of the key insights in a philosophical classic:

“Quite generally, the familiar, just because it is familiar,

is not cognitively understood. The commonest way in which

we deceive either ourselves or others about understanding is

by assuming something is familiar and accepting it on that

account; with all its pros and cons, such knowing never gets

anywhere, and it knows not why.

. . . The analysis of an idea, as it used to be carried out

was, in fact, nothing else than ridding it of the form in which

it had become familiar. . . . The activity of dissolution is the

power and work of the Understanding, the most astonishing

and mightiest of powers, or rather the absolute power”

[Hegel, [1977 (1807)], p. 18].

Harnessing this power can be decisive in securing

competitive edge in commerce and defense.
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Objective: Accumulating evidence indicates that inflammation abnormalities may

contribute to aggression behaviors in psychotic patients, however, the possible

sources of inflammation remain elusive. We aimed to evaluate the associations

among aggression, inflammation, and bacterial translocation (BT) in aggression-affected

schizophrenia (ScZ) inpatients with 2 weeks of antipsychotics discontinuation.

Methods: Serum specimens collected from 112 aggression and 112 non-aggression

individuals with ScZ and 56 healthy adults were used for quantifications of

inflammation- or BT-related biomarkers. Aggression severity was assessed by Modified

Overt Aggression Scale (MOAS).

Results: Proinflammation phenotype dominated and leaky gut-induced BT occurred

only in cases with ScZ with a history of aggression, and the MOAS score positively

related to levels of C-reactive protein, interleukin (IL)-6, IL-1β, and tumor necrosis

factor-α. Furthermore, serum levels of BT-derived lipopolysaccharide (LPS), as well as

LPS-responded soluble CD14, were not only positively correlated with levels of above

proinflammation mediators but also the total MOAS score and subscore for aggression

against objects or others.

Conclusion: Our results collectively demonstrate the presence of leaky gut and further

correlate BT-derived LPS and soluble CD14 to onset or severity of aggression possibly

by driving proinflammation response in inpatients with ScZ, which indicates that BT may

be a novel anti-inflammation therapeutic target for aggression prophylaxis.

Keywords: schizophrenia, aggression, bacterial translocation, inflammation, association

INTRODUCTION

Schizophrenia (ScZ) is a chronic and heterogeneous psychiatric syndrome characterized by
recurrent episodes of acute psychosis alternating with periods of full or partial remission. Globally,
ScZ affects ∼1% of the population and occurs mainly in individuals in the late adolescence or
early adulthood (Kahn et al., 2015; Charlson et al., 2018). It covers a broad spectrum of clinical
symptoms including positive symptoms (delusions, hallucinations, etc.), negative symptoms
(anhedonia, social withdrawal, poverty of thought, etc.), and cognitive dysfunction. Current
treatment modalities are available only for symptoms mitigation, thus, significant disability,

13

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://doi.org/10.3389/fnsys.2021.704069
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsys.2021.704069&domain=pdf&date_stamp=2021-09-29
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:medisci@163.com
https://doi.org/10.3389/fnsys.2021.704069
https://www.frontiersin.org/articles/10.3389/fnsys.2021.704069/full


Wang et al. Translocating Lipopolysaccharide Associates With Aggression

insupportable psychosocial burdens, and prematuremortality are
of great concerns (Tiihonen et al., 2017; Stepnicki et al., 2018).

Compared with the general population, inpatients with ScZ
are four to seven times more likely to commit aggression acts
involving verbal threat, assault, and homicide, which brings
a great challenge for both mental health services and public
safety (Cho et al., 2019). Aggression is more inclined to be an
independent entity. The manifold pathogenesis of aggression in
ScZ is complicated by elevated serum C-reactive protein (CRP)
and increased ratio of CRP to interleukin (IL)-10, which arouses
increasing concerns about the role of systemic inflammation in
the onset or severity of aggression in ScZ (Barzilay et al., 2016;
Das et al., 2016; Zhang et al., 2017). Inflammation phenotype
involves the integration of various pro-/anti-inflammatory
cytokines. Interleukin-6, IL-1β, and tumor necrosis factor (TNF)-
α are well-proved proinflammatory cytokines responsible for
initiation and exacerbation of inflammation, and the serum levels
of them were demonstrated to be significantly upregulated in
patients with ScZ in most of the related studies (Lesh et al.,
2018; Momtazmanesh et al., 2019). Although other cytokines
such as interferon (IFN)-γ, IL-4, IL-17, IL-10, and transforming
growth factor (TGF)-β were also proved to be linked with
ScZ, they may promote or suppress inflammation response
in the different subsets of cases with ScZ (Lesh et al., 2018;
Momtazmanesh et al., 2019). Crossing blood-brain barrier, the
peripheral cytokines precipitate changes in mood and behavior
through hypothalamic–pituitary–adrenal axis (Petra et al., 2015;
Singh et al., 2019; Misiak et al., 2020), which lays a structural
foundation for studying the involvement of inflammation in
aggression. However, the mentioned cytokines except serum
CRP are rarely profiled and potential sources of peripheral
inflammation, with exception of being overweight or lack of
dental care, are seldom explored (Fond et al., 2021) in individuals
with aggression (Ag)-affected ScZ (ScZ-Ag).

Interestingly, inflammation abnormalities could be caused by
alterations in the gut microbiome and the recent evidence from
human metabolomics suggested a correlation between enteric
dysbacteriosis and dysfunction of neurochemical pathways
including inflammation activation underlying aggression in
patients with ScZ (Severance et al., 2016; Manchia and Fanos,
2017; Chen et al., 2021; Zeng et al., 2021). Changes in gut
microbiota may compromise the integrity of the intestinal
tract (leaky gut) and subsequently cause a higher translocation
rate of bacterial immunogenic components such as bacterial
DNA (BactDNA) and lipopolysaccharide (LPS) from gut
into peripheral circulation, which in turn activate immuno-
inflammatory signaling (Francés et al., 2007; Martin-Subero
et al., 2016). The so-called bacterial translocation (BT) was
extensively proved to be correlated with various inflammation-
involved diseases and with negative symptoms or neurocognitive
impairments in deficit cases with ScZ (Caso et al., 2016; Maes
et al., 2019a; Severance et al., 2020). However, the occurrence
of leaky gut-related BT and its association with systemic
inflammation in ScZ-Ag are poorly investigated.

Taken together, we hypothesize that proinflammation
cytokines characterize the aggression behaviors in patients with
ScZ and increased intestinal permeability-caused BT is one of

the main culprits for the tuning process of inflammation. With
regard to this, we determined serum levels of aforementioned
inflammation cytokines, leaky gut and BT-related biomarkers,
and further assessed the correlations between BT biomarkers
and inflammation cytokines or the severity of aggression, in the
hope of providing more convincing evidence for BT-derived
inflammatory pathogenesis of aggression in ScZ.

MATERIALS AND METHODS

Study Population
The prospective and controlled investigation was conducted
in inpatients with ScZ with or without aggression behaviors
within 1 week prior to admission during November 2019 to
November 2020 in the Second People’s Hospital of Zhumadian,
a tertiary psychiatric hospital in Henan Province, China. At
sample collection, all included inpatients with ScZ were at least
2 weeks of antipsychotics discontinuation. Inpatients with ScZ
with the presence of aggression behaviors within 1 week prior
to admission and absence of any aggression behaviors during
disease course before enrollment were classified into ScZ-Ag and
NScZ-Ag groups, respectively.

For comparison, age-, gender-, and body mass index (BMI)-
matched healthy volunteers recruited during the same period
with no history of psychiatric or medical illness were set as
control (Ctrl group) and the ratio of healthy volunteers: cases
with ScZ-Ag is 1:2. All the subjects were aged ≥18 years.
The diagnosis was made by two board-certified psychiatrists
according to the 10th edition of the international classification
of diseases (ICD-10) criteria for ScZ. Exclusion criteria included:
(a) aggression behaviors not within 1 week prior to admission;
(b) pregnant or lactating women; (s) presence of any other
psychoses including affective disorder or substance abuse;
(d) comorbidity with severe somatic diseases or neurological
diseases; (e) comorbidity with other medical conditions such as
parenchymal organ-specific diseases, immune-related diseases,
hematological diseases, gastrointestinal diseases, and any history
of gastrointestinal surgeries; (f) use of systemic corticosteroids,
any other immunosuppressive therapy, and oral probiotics in
the recent 3 months; (g) inpatients with fever (>37.9◦C) or
those who were treated with antibiotics, antipyretics or anti-
inflammatory medications in the recent 2 weeks. The study
was approved by and carried out under the guidelines of the
Ethics Committee of the Hospital, and written informed consent
was obtained from all the healthy volunteers, the inpatients or
the guardians of inpatients (if the patients were unable to sign
consent because of poor intelligence) at the time of recruitment.

Subjects Profiles
A structured questionnaire was used to collect data on general
sociodemographic variables (age, gender, occupation, education
background, ethnicity, height and weight, family income, living
circumstance andmarriage status), health status (medical history,
current medications and family history), and living habits
(alcohol intake and smoking pattern) in all the participants.
In inpatients with ScZ, the information on specific conditions
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including the onset of illness and the type of aggression
was inquired.

Clinical Assessments
Modified Overt Aggression Scale (MOAS) was used to
characterize aggression behaviors observed within the past
1 week. It involves four subscales and a score from zero to four
is assigned for each type of aggression with zero indicating no
aggression and higher scores pointing to increasing severity. The
score of each subscale is then multiplied by a predefined loading
(one for verbal aggression, two for aggression against objects,
three for self-aggression, and four for aggression against other
people) and the sum of each subscale-weighted score (range
0–40) is referred to the total score. Inpatient with a total score of
zero or only having a score of one or more for verbal aggression
was classified as being the non-aggressive (Huang et al., 2009).
The presence and severity of each psychiatric symptom in
cases with ScZ were evaluated by the positive and negative
syndrome scale (PANSS) involving positive symptom subscale
(seven items), negative symptom subscale (seven items), general
psychopathological subscale (16 items), and supplemental
items (three items). Each item on the subscale score from one
to seven base on the frequency and severity of the symptom
(Kelley et al., 2013).

Blood Sampling and Laboratory Detection
Fasting peripheral blood samples were collected from all the
subjects at 8:00 a.m. Blood cell count and liver function
were examined routinely. The protein levels of indicators
assessed by enzyme-linked immunosorbent assay (ELISA) in
this study involved CRP (#E007462, 3ABio, Shanghai, China),
IL-6 (#E000482, 3ABio, Shanghai, China), IL-1β (#E001772,
3ABio, Shanghai, China), IL-4 (#DG10308H, Dogesce, Beijing,
China), IL-10 (#DG10495H, Dogesce, Beijing, China), IL-
17 (#DG10431H, Dogesce, Beijing, China), IFN-γ (#C608-01,
GenStar, Beijing, China), TNF-α (#489204, Cayman, Michigan,
USA), TGF-β (#DG10113H, Dogesce, Beijing, China); leaky
gut-related biomarkers[intestinal fatty acid-binding protein
(I-FABP, #DFBP20, R&D Systems, Minnesota, USA) and
Claudin-3 (#abx250611, Abbexa, Cambridge, UK)]; BT-related
biomarkers[LPS (#DG11072H, Dogesce, Beijing, China), soluble
CD14 (sCD14, #DC140, R&D Systems, Minnesota, USA), and
endotoxin core antibody (EndoCAb, #E013362, 3ABio, Shanghai,
China)]. Assays were performed according to the specifications
of the manufacturer and the detection limits were in line
with the instructions of the manufacturer. Each serum sample
was measured in duplicate. All the plates were read by the
I MarkTM Micro plate Reader (Bio-Rad, Hercules, California,
United States).

Quantification of BactDNA Fragments
Quantification of circulating BactDNA fragments and quality
control were performed as described previously (Such et al., 2002;
Ericsen et al., 2016). To avoid potentially bacterial contamination
of molecular biology reagents, all the specimens were processed
in airflow chambers by the same investigator and all the
tubes were never exposed to free air. To remove potentially

confounding 16S rDNA contamination, six tubes of prepared
diethyl pyrocarbonate (DEPC) water were set as negative controls
and the processes of water from DNA extraction to quantitative
PCR (qPCR) were completely synchronized with those of blood.

Genomic DNA was extracted from 200 µl of serum or
DEPC water using QIAmp DNA Blood Minikit (Qiagen, Hilden,
Germany) according to the instructions of the manufacturer
and DNA was eluted in a 100 µl final volume. BactDNA levels
were determined by qPCR in an amplification reaction of 20
µl with forward primer (5′-AGAGGGTGATCGGCCACA-3′)
and reverse primer (5′-TGCTGCCTCCCGTAGGAGT-3′), the
universal eubacterial primers of a conserved region of 16S rDNA
gene (Francés et al., 2004). The amplification conditions for
the 59 base pairs of DNA fragments were 95◦C for 10min,
followed by 45 cycles at 95◦C for 15 s and 60◦C for 60 s. Each
sample was amplified in triplicate and the BactDNA content was
calculated according to a standard curve that generated from
serial dilutions of plasmid DNA containing known copy numbers
of the template. The final circulating BactDNA concentration was
calculated by subtracting the proportion of 16S rDNA copies/µl
detected in water controls from those in blood.

Statistical Analyses
Statistical analysis of the data compiled in Excel databank
was conducted using SPSS/PC software (Version 19.0 for
Windows; SPSS Inc., China). Categorical and continuous
variables were expressed as number (%) or mean (M)
± SD, respectively. Normal distribution of raw data was
inspected by Kolmogorov–Smirnov tests, and IL-17, IGF-β, and
EndoCAb were logarithmically transformed to achieve Gaussian
distributions. There were no outliers in MOAS score, PANSS
score, cytokines, and bacterial measures by inspection of related
boxplots. For comparison of demographic information and
clinical characteristics at baseline among groups, Fisher’s exact
Chi-square test or one-way ANOVA were conducted except
specification. Analysis of covariance (ANCOVA) controlling for
age, gender, BMI, and course with ScZ was used to analyze
cytokines and bacterial measures among the three groups, and
Bonferroni’s multiple comparison test that can calculate the
corrected statistical significance for multiple comparisons was
performed for post-hoc analysis of pairwise comparisons. Partial
correlation analysis controlling for episodes with ScZ, course
with ScZ, income levels, marriage status, education background,
and occupation was used to determine the relationship between
clinical symptoms and inflammation cytokines or bacterial
measures. All the tests were two-sided. A P < 0.05 was accepted
as the cutoff for statistical significance.

RESULTS

Inpatients Characteristics
During the time of study, a total of 528 adult inpatients
with ScZ demonstrated a history of aggression behaviors
prior to hospitalization. By excluding cases with <2 weeks of
antipsychotics discontinuation (56 cases), aggression occurred
prior to 1 week time period preceding hospital admission (135
cases), aggression occurred prior to and within 1 week (184
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TABLE 1 | Clinic characteristics of all inpatients at baseline.

Items ScZ-Ag

group

NScZ-Ag

group

Ctrl group P-value

Case No. 112 112 56 -

Female, n (%) 67 (59.8) 64 (57.1) 35 (62.5) 0.792

Age, mean (SD), years 33.5 (8.4) 34.2 (9.1) 33.8 (8.7) 0.835

BMI, mean (SD), kg/m2 21.9 (2.4) 21.7 (2.1) 22.3 (1.9) 0.243

Ethnic Han, n (%) 105 (93.8) 109 (97.3) 52 (92.9) 0.336

Low income, n (%) 72 (64.3) 41 (36.7) 17 (30.4) 0.000

Living with families, n (%) 91 (81.3) 96 (85.7) 45 (80.4) 0.579

Marriage status, n (%)

Married 18 (16.1) 33 (29.5) 35 (62.5) 0.000

Single 66 (58.9) 35 (31.2) 15 (26.8)

Divorced 26 (23.1) 37 (33.0) 6 (10.7)

Widowed 2 (1.9) 7 (6.3) 0 (0)

Education background, n (%)

Elementary school and below 82 (73.2) 49 (43.8) 12 (21.4) 0.000

Middle and high school 15 (13.4) 39 (34.8) 16 (28.6)

College and above 15 (13.4) 24 (21.5) 28 (50.0)

Occupation, n (%)

Physical labor 21 (18.8) 22 (19.7) 18 (32.1) 0.000

Mental labor 13 (11.6) 10 (8.9) 29 (51.8)

Unemployment 78 (69.6) 80 (71.4) 9 (16.1)

No. of ScZ episodes& 5.6 (2.7) 4.9 (3.2) NA 0.319

ScZ course, mean (SD), years& 7.4 (4.3) 6.9 (4.1) NA 0.431

Total MOAS score& 16.4 (8.2) 1.6 (0.9) 0 (0.0) 0.000

Total PANSS score& 65.2 (8.3) 63.4 (7.5) 0 (0.0) 0.090

ScZ-Ag, schizophrenia with aggression; NScZ-Ag, schizophrenia without any aggression;

BMI, body mass index; MOAS, Modified Overt Aggression Scale; PANSS, positive and

negative syndrome scale; NA, not applicable; &, analysis using Student’s t-test between

ScZ-Ag and NScZ-Ag groups. The meaning of the bold values indicate P< 0.05.

cases), and aggression occurred only within 1 week but met
the aforementioned exclusion criteria (41 cases), only 21.2%
(112/528) of them [average total MOAS score, mean(SD),
16.4(8.2)] were included in ScZ-Ag group as defined previously.
In this study, 112 age-, gender-, and BMI-matched NScZ-
Ag inpatients [average total MOAS score, mean(SD), 1.6(0.9)]
and 56 healthy volunteers were included. As Table 1 showed,
there was statistical significance in terms of income, marriage,
education level, and occupation among the three groups (P <

0.001 for all variables). Compared with NScZ-Ag group, more
aggression inpatients were single (58.9 vs. 31.2%, P = 0.010) and
a much higher proportion of aggression cases had low income
(64.3 vs. 36.7%, P= 0.017) and poor education background (73.2
vs. 43.8%, P = 0.021). Between inpatients with ScZ with and
without aggression, there was no statistical difference regarding
ethnicity, living conditions, occupation distribution, episodes
with ScZ, course with ScZ, and total PANSS score (P > 0.05 for
all the variables).

Inflammation and Severity of Aggression
As shown in Figure 1, the results of ANCOVA analysis displayed
that there were statistically significant differences between ScZ-
Ag, NScZ-Ag, and Ctrl groups in terms of CRP (F = 75.2, P <

0.001), IL-6 (F= 102.00, P< 0.001), IL-1β (F= 37.90, P< 0.001),
TNF-α (F = 450.00, P < 0.001), IL-17 (F = 7.00, P = 0.007),
and TGF-β (F = 7.55, P = 0.008). Further, post-hoc analysis
using Bonferroni’s multiple comparison test found that none of
inflammatory markers differed significantly between NScZ-Ag
and Ctrl groups (all P > 0.05), while serum levels of CRP, IL-6, IL-
1β, and TNF-α dramatically increased approximately two to five
times on average in ScZ-Ag group in comparison with NScZ-Ag
group (all P < 0.001). On partial correlation analysis controlling
potential confounders, serum levels of CRP (r = 0.309, P <

0.001), IL-6 (r = 0.526, P < 0.001), IL-1β (r = 0.552, P < 0.001),
and TNF-α (r = 0.517, P < 0.001) were all positively associated
with total MOAS score in ScZ-Ag group (Figure 2). Altogether,
these results indicate that systemic proinflammation response
mainly occurs in inpatients with ScZ with aggression behaviors.

BT Determination and Its Association With
Inflammation
To explore the source of proinflammation phenotype, BT-
related serum biomarkers in all the subjects were measured
(Figure 3). Regarding biomarkers of “leaky gut” (Claudin-3 and
I-FABP), bacterial components (LPS and BactDNA), and LPS-
response products (sCD14 and EndoCAb), statistically significant
differences between the three groups were observed (all P < 0.01)
from ANCOVA analysis results. Post-hoc analysis showed that
only BactDNA titers (11.79 ± 6.97 vs. 7.19 ± 4.76 copies/µl, P
< 0.001) and sCD14 levels (1.57 ± 1.15 vs. 1.07 ± 0.61 × 106

pg/ml, P < 0.05) were moderately increased in NScZ-Ag group
than Ctrl group, while serum concentrations of Claudin-3 (58.47
± 13.52 vs. 39.27 ± 9.61 ng/ml, P < 0.001), I-FABP (80.47 ±

21.47 vs. 29.56 ± 7.46 pg/ml, P < 0.001), LPS (73.51 ± 32.29 vs.
23.16 ± 7.83 pg/ml, P < 0.001), sCD14 (3.45 ± 1.39 vs. 1.57 ±

1.15× 106 pg/ml, P < 0.001) were significantly higher, EndoCAb
concentration (2.18 ± 0.13 vs. 2.23 ± 0.11 log10 MMU/ml, P
< 0.01) was remarkably lower in ScZ-Ag group than NScZ-Ag
group. In ScZ-Ag group (Table 2), circulating concentration of
LPS was further found to be positively correlated with CRP (P
< 0.001), IL-1β (P = 0.001) and TNF-α (P = 0.006), sCD14 was
positively associated with CRP (P < 0.001), IL-6 (P= 0.007), and
TNF-α (P= 0.040) after controlling potential confounders. These
data not only indicate the presence of “leaky gut,” but also imply
the link that circulating LPS from BT, as well as LPS responded
sCD14, might be the important cause synergistically leading
to the higher levels of proinflammation mediators observed in
inpatients with ScZ with any type of aggression behaviors.

Correlation of BT With Symptoms
Dimensions
Partial correlation analyses in inpatients with aggression
(Table 3) showed that total MOAS score was positively associated
with protein levels of circulating LPS (r = 0.412, P = 0.005)
or sCD14 (r = 0.267, P = 0.035). Regarding the subscale of
MOAS, only aggression against objects (r = 0.406, P = 0.006) or
toward others (r = 0.326, P = 0.011) were found to be correlated
positively with circulating LPS, and such associations with the
circulating sCD14 were also detected. In addition, results showed
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FIGURE 1 | Protein levels of serum CRP (A), IL-6 (B), IL-1β (C), TNF-α (D), IFN-γ (E), IL-4 (F), IL-17 (G), IL-10 (H) and TGF-β (J) in peripheral blood of subjects. CRP,

C-reactive protein; IL, interleukin; TNF, tumor necrosis factor; TGF, transforming growth factor. Data were presented as boxplots. In post-hoc analysis using

Bonferroni’s multiple comparison test, n.s. > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001 analysis using ANCOVA.
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FIGURE 2 | Partial correlation analyses of MOAS with CRP (A), IL-6 (B), IL-1β (C), and TNF-α (D) in ScZ-Ag group.

statistically significant association between positive PANSS and
circulating LPS (r = 0.298, P = 0.023) or sCD14 (r = 0.315,
P = 0.015). Altogether, the data further suggest that the
increased protein levels of LPS or sCD14 in peripheral blood
potentially initiate aggression behaviors in inpatients with ScZ via
exacerbating the severity of systemic inflammation.

DISCUSSION

Aggression can attack individuals with or without psychosis.
It is one of the top 20 causes of disabilities worldwide that
is present in 15.3–53.2% of inpatients with ScZ in China
(Zhou et al., 2016). Growing evidence demonstrate that the
serious public health problem is the resultant of pro-/anti-
inflammation imbalance, since some inflammation cytokines
were proved to be involved in the pathogenesis of ScZ (Müller
et al., 2015; Petrikis et al., 2015; Momtazmanesh et al., 2019;
Feng et al., 2020; Park and Miller, 2020). However, the role
of and alterations in these cytokines may be variable in

different stratifications of ScZ, antipsychotic drugs used or
presence of aggression behaviors is a case (Petrikis et al., 2017;
Momtazmanesh et al., 2019). This study was the first to focus on
aggression-affected inpatients with ScZ with at least 2 weeks of
antipsychotics discontinuation. Different from previous studies
(Miller et al., 2011; de Witte et al., 2014; Momtazmanesh et al.,
2019), our results from Bonferroni’s multiple comparison tests

demonstrated no difference in inflammation phenotype between

inpatients with ScZ without aggression and healthy controls. The
contradictory results may be attributed to differences in statistical

analysis methods used and the specific enrolled participants
without any aggression behaviors during the disease course,
which further verifies the inconsistent conclusions regarding
inflammatory phenotypes in ScZ (Momtazmanesh et al., 2019).
In sharp contrast, dramatical elevations of CRP, IL-6, IL-1β,
and TNF-α were not only observed in inpatients with ScZ with
aggression, but the elevated cytokines also correlated positively to
the severity of aggression measured by MOAS score that is partly
similar to the previous reports (Petrikis et al., 2015; Zhang et al.,
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FIGURE 3 | Serum levels of LPS (A), BactDNA (B), sCD14 (C), EndoCAb (D), Claudin-3 (E) and I-FABP (F) among the three groups. LPS, lipopolysaccharide;

BactDNA, bacterial DNA; sCD14, soluble CD14; EndoCAb, endotoxin core antibody; I-FABP, intestinal fatty acid-binding protein. Data were presented as boxplots. In

post-hoc analysis using Bonferroni’s multiple comparison test, n.s. > 0.05, *P < 0.05, ***P < 0.001 analysis using ANCOVA.

2017; Orsolini et al., 2018; Momtazmanesh et al., 2019; Fond
et al., 2021). Li et al. demonstrated positive correlations between
higher plasma IL-17 or TGF-β1 and severity of aggression in
patients with ScZ (Li et al., 2016), however, we found slightly
lower serum IL-17 and higher serum TGF-β1 in individuals with
ScZ with aggression as compared with those without aggression.
These findings indicate the need for additional research to
confirm the role of IL-17 and TGF-β1 in aggression onset.
Among the functional redundancies of IL-6, IL-1β, and TNF-α,
these proinflammation mediators potentially drive aggression in
a sophisticated and coordinated network. These data collectively
suggest the contributory role of systemic proinflammation in the
occurrence of aggression in ScZ.

Gastrointestinal source of proinflammation was unveiled in
deficit ScZ, and the leaky gut was identified as one of the
prerequisites for the inflammatory pathophysiology (Severance

et al., 2012, 2016; Barber et al., 2019; Ciháková et al., 2019;
Maes et al., 2019b). Transcellular integrity, paracellular adherens,
and tight junctions are demonstrated universally to be the
structural basis for maintaining normal intestinal permeability.
Permeability-related biomarkers such as I-FABP and Claudin-
3 present at high levels in peripheral blood can reliably reflect
the occurrence of leaky gut as they are released into circulation
by enterocytes when intestinal epitheliums are compromised
(Barmeyer et al., 2017). The evidence that remarkable increases
in serum levels of I-FABP and Claudin-3 only in cases
with ScZ with aggression behaviors in this study indicates
the possible role of increased intestinal permeability in the
onset of proinflammation-driven aggression that has not been
previously reported.

Correspondingly, the peripheral blood concentration of LPS
was significantly higher in an aggression-affected group with
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TABLE 2 | Relations of bacterial translocation markers to cytokines in ScZ-Ag group.

BT markers

Cytokines CRP IL-6 IL-1β TNF-α

r P r P r P r P

LPS 0.713 0.000* 0.212 0.298 0.627 0.001* 0.583 0.006*

BactDNA 0.201 0.329 0.196 0.472 0.098 0.592 0.302 0.129

sCD14 0.826 0.000* 0.509 0.007* 0.056 0.613 0.341 0.040*

EndoCAb −0.239 0.269 −0.117 0.523 −0.049 0.617 −0.316 0.084

I-FABP 0.112 0.564 0.082 0.613 0.067 0.627 0.298 0.158

Claudin-3 0.257 0.218 0.286 0.182 0.318 0.065 0.125 0.499

*P < 0.05. Analyses using partial correlation analysis. The meaning of the bold values indicate P< 0.05.

TABLE 3 | Correlations of Lipopolysaccharide or sCD14 with severity aggression.

Items LPS sCD14

r P r P

Total MOAS score 0.412 0.005* 0.267 0.035*

Verbal aggression 0.198 0.263 0.154 0.299

Aggression against objects 0.406 0.006* 0.397 0.008*

Self-aggression −0.054 0.512 −0.067 0.476

Aggression toward others 0.326 0.011* 0.256 0.042*

Total PANSS score 0.068 0.477 0.118 0.364

Positive 0.298 0.023* 0.315 0.015*

Negative −0.136 0.317 −0.098 0.418

General 0.049 0.574 0.009 0.832

*P < 0.05. Analyses using partial correlation analysis. The meaning of the bold values

indicate P< 0.05.

ScZ as compared with the non-aggression. Translocating LPS
links with an exacerbation of inflammation response (Panpetch
et al., 2020) and the following correlation analysis also showed
positive correlativity between the circulating concentrations of
proinflammation mediators and LPS, and also LPS responded
sCD14. Furthermore, serum levels of both the LPS and sCD14
were found to be related to specific aggression behaviors
(aggression against objects or toward others) or psychotic
symptoms (positive PANSS). As LPS-specific host response,
sCD14 circulates at high levels in the serum and interacts
with translocating LPS to stimulate antigen-presenting cells
via toll-like receptor 4 (TLR4) signaling (Tsukamoto et al.,
2018). Under bacteria or LPS challenge, vascular endothelial
cells and perivascular mast cells have been reported to express
abundant TLR4, thus, initiating the production of inflammation
cytokines (Zeuke et al., 2002). On the other hand, decreased
host EndoCAb in peripheral blood failed to bind and clear
LPS from circulation, which ensures a high serum level of
LPS for a long time and subsequently maintains systemic
inflammation (Kyosiimire-Lugemwa et al., 2020). It is also worth
noting that serum BactDNA loads in cases with ScZ with
aggression may have little effect on inflammation state given
the results from correlation analysis and differential expressions
of BactDNA among cases with or without aggression. We
can only speculate that serum BactDNA loads quantified by

qPCR likely underestimate the presence of BactDNA within
whole blood and corresponding perturbation of inflammation
markers may be transient. Collectively, these findings emphasize
the implication of translocating LPS as well as sCD14 in the
systemic inflammation response, and thus, argue for the potential
causative relationship between BT and onset of aggression in ScZ.

Largely due to the failures of interpersonal inference, to
develop a proper theory of mind or in sensory attenuation,
ScZ was identified as one of the emotion recognition disorders
(Demekas et al., 2020). Emotion recognition has also been
suggested to underlie aggression in individuals with ScZ (Acland
et al., 2021); however, that may be decreased by elevated low-
grade inflammation (Balter et al., 2018, 2021). In this study,
evidence that systemic proinflammation potentially initiated by
serum LPS correlated with aggression severity in inpatients
with ScZ implies the possible contribution role of serum LPS
to aggressive behaviors via emotion misrecognition that has
important implications for integrated treatments of aggression.

Unfortunately, at least five limitations exist in our study. At
first, a structured clinical interview to determine the clinical
diagnosis of subjects was not performed. Second, only single
samples from participants in a single center were obtained,
within-subject verification of related biomarkers and replication
procedures in larger study populations from multicenter are
expected. Third, higher circulating BactDNA load was observed
in NScZ-Ag group compared with the healthy group (Figure 3B),
while correlation analysis between BactDNA and inflammation
in NScZ-Ag group was not conducted as inflammation cytokines
did not differ between the two groups (Figure 1), thereby
perplexing the function of BactDNA in pathogenesis with ScZ.
Furthermore, as with all case-controlled clinical studies, present
data failed to adequately explain the causal relationship between
BT-caused inflammation response and aggression in ScZ, related
animal experiments are expected for ethical considerations.
At last, the molecular mechanism by which translocating LPS
promotes systemic inflammation and thus drives aggression
remains to be further investigated.

CONCLUSION

In conclusion, this study verifies mainly the presence of leaky
gut-caused BT and further correlates BT-derived LPS and
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soluble CD14 to the severity of aggression possibly by driving
proinflammation response in cases with ScZ with aggression.
These observations collectively indicate that BT may be a novel
anti-inflammation therapeutic target for aggression prophylaxis
and improving disease outcomes in patients with ScZ with
aggression against objects and others.
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In order to interact seamlessly with robots, users must infer the causes of a robot’s
behavior–and be confident about that inference (and its predictions). Hence, trust is
a necessary condition for human-robot collaboration (HRC). However, and despite its
crucial role, it is still largely unknown how trust emerges, develops, and supports human
relationship to technological systems. In the following paper we review the literature
on trust, human-robot interaction, HRC, and human interaction at large. Early models
of trust suggest that it is a trade-off between benevolence and competence; while
studies of human to human interaction emphasize the role of shared behavior and
mutual knowledge in the gradual building of trust. We go on to introduce a model of
trust as an agent’ best explanation for reliable sensory exchange with an extended
motor plant or partner. This model is based on the cognitive neuroscience of active
inference and suggests that, in the context of HRC, trust can be casted in terms of
virtual control over an artificial agent. Interactive feedback is a necessary condition
to the extension of the trustor’s perception-action cycle. This model has important
implications for understanding human-robot interaction and collaboration–as it allows
the traditional determinants of human trust, such as the benevolence and competence
attributed to the trustee, to be defined in terms of hierarchical active inference, while
vulnerability can be described in terms of information exchange and empowerment.
Furthermore, this model emphasizes the role of user feedback during HRC and suggests
that boredom and surprise may be used in personalized interactions as markers for
under and over-reliance on the system. The description of trust as a sense of virtual
control offers a crucial step toward grounding human factors in cognitive neuroscience
and improving the design of human-centered technology. Furthermore, we examine
the role of shared behavior in the genesis of trust, especially in the context of dyadic
collaboration, suggesting important consequences for the acceptability and design of
human-robot collaborative systems.

Keywords: trust, control, active inference, human-robot interaction, cobotics, extended mind hypothesis, human
computer interaction
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INTRODUCTION

Technology greatly extends the scope of human control, and
allows our species to thrive by engineering (predictable) artificial
systems to replace (uncertain) natural events (Pio-Lopez et al.,
2016). Navigating and operating within the domain of regularities
requires considerably less motor and cognitive effort (e.g.,
pressing a switch to lift heavy weights) and less perceptual and
attentional resources (Brey, 2000); thereby increasing the time
and energy available for other activities. However, the inherent
complexity of technological systems invariably leads to a state
of “epistemic vulnerability,” whereby the internal dynamics of
the system are hidden to the user and, crucially, must be
inferred from the observer via the behavior of the system.
Indeed, current misgivings about machine learning rest upon
the issue of explainability and interpretability namely, the extent
to which a user can understand what is going on “under the
hood” (Došilović et al., 2018). By epistemic vulnerability here
we mean that the user relies on inference to understand the
machine–what the machine does, how it does it, how its actions
change given context, etc. Critically, the lack of opacity of these
processes may give rise to suspicions and qualms regarding
the agent’s goals. What factors influence trust during human-
robot interaction, and how does human inference modulate the
continuous information exchange in human-computer systems?
It is widely recognized that trust is a precondition to (successful)
human-machine interactions (Lee and See, 2004; Sheridan,
2019a). However, despite great effort from researchers in the field,
we still lack a computational understanding of the role of trust
in successful human interactions with complex technological
systems. Here, we review contemporary theories of trust and
their associated empirical data in the context of human-machine
interaction. Drawing on the literature in cognitive science of
active inference (Friston et al., 2006), control (Sheridan, 2019b),
and hierarchical perception-action cycles (Salge and Polani,
2017), we introduce a cross-disciplinary framework of trust–
modeled as a sense of virtual control. To understand the role
of trust in robotics, we first present a brief overview of basic
cognitive functions, focusing on the organization of motor
control. We then explain the fundamental components of trust–
in terms of active inference–and conclude with some remarks
about the emergence and development of trust in the context
of dyadic human-robot collaboration (HRC), which we take as
a good use case for this approach to trust.

SURPRISE MINIMIZING AGENTS

From the standpoint of contemporary cognitive neuroscience,
perception and action are means for living organisms to
reduce their surprise (i.e., acquire information) about (past,
current, and future) states of the world (Friston et al., 2006).
The brain according to this framework is considered to be
a constructive, statistical organ that continuously generates
hypotheses (i.e., beliefs) to predict the most likely causes of the
sensory data it encounters (i.e., sensations). These predictions
then guide behavior accordingly in a top-down fashion (Gregory,

1980). Various unifying and complementary theories have been
proposed to describe this process (e.g., the free energy principle,
active inference, predictive processing, dynamic logic, and the
Bayesian brain hypothesis). Three fundamental brain functions
are defined as follows: (1) perception senses change in the
surroundings, (2) cognition predicts the consequences of change,
and (3) action controls the causes of change. This tripartition
is reflected in the hierarchical functional architecture of brain
systems (Kandel et al., 2000), speaking to the brain as an engine
of prediction ultimately aiming at the minimization (and active
avoidance) of surprising states (see Figure 1). There are several
ways of describing the requisite (neuronal) message passing–
in terms of Bayesian belief updating (Friston et al., 2017).
Perhaps the most popular at present is predictive coding (Rao
and Ballard, 1999), where inference and learning is driven
by prediction errors, and agency emerges from perception-
action loops (Fuster, 2004; Parr and Friston, 2019), continuously
exchanging information with the sensorium. By sense of agency
we refer to the feeling of control over one’s actions and their
perceived consequences (Gallagher, 2000; Haggard, 2017).

As underwriting perception and action (Méndez et al., 2014),
cognition (i.e., active inference or planning) is closely related
to evaluating the consequences of action in relation to prior
beliefs about homeostatic needs of survival and reproduction;
preparing responses to anticipated change (Pessoa, 2010). Here,
beliefs correspond to Bayesian beliefs (i.e., posterior probability
distributions over some hidden state of the world)–as opposed
to propositional beliefs in the folk psychology sense. Minds and
their basic functions–such as perception, emotion, cognition, and
action–ultimately seek good predictive control. That is, they are
continuously aiming to minimize uncertainty about states of
the world, where uncertainty is simply expected surprise (i.e.,
entropy), given a course of action. There are two fundamental
ways to avoid (expected) surprise: (1) change one’s cognition,
beliefs or hypotheses (i.e., perception), or (2) change the world
(i.e., action). This distinction is crucial in the context of robotic
systems, which are quintessentially concerned with changing the
causes of sensations, rather than changing perceptual inference
via cognition (Jovanović et al., 2019).

In short, action aims at reducing uncertainty, where
exploratory behavior leads us to interact “freely” with objects
in the world–to improve our generative models of the way
they behave, maximizing the fit between them, and ultimately
rendering these behaviors more predictable (Pisula and Siegel,
2005). A generative model is at the heart of active inference–
and indeed the current treatment. Technically, models are a
probabilistic specification of how (sensory) consequences are
caused by hidden or latent states of the world. It generally
comprises a likelihood; namely, the probability of a sensory
outcome given a hidden state–and prior beliefs over hidden
states. Maximizing the fit or alignment between a generative
model of the sensed world–and the process generating sensory
outcomes corresponds to minimizing surprise (e.g., prediction
error) or–in more statistical terms–maximizing the evidence for
their model (Hohwy, 2016). In the setting of active inference,
this is often referred to as self-evidencing. In active inference,
(expected) surprise is approximated with (expected) variational
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FIGURE 1 | Perception models afferent changes in states of the world detected by receptor cells (e.g., in the retina) all along the perceptual hierarchy. In this control
diagram,

⊗
denotes a comparator. The red arrows denote inference and learning (i.e., driven by prediction errors) that compare (descending) predictions with

(ascending) sensations. Cognition and higher order processing attempt to predict sensory input and futures states of the world based on available (generative)
models; thereby, minimizing prediction error. Action organizes the motor hierarchy in an attempt to actively control the efferent consequences of ongoing events;
namely, by modifying causes anticipated through perceptual means, thereby altering the system’ dynamics to make them more predictable (i.e., less surprising).
Though not specified on this diagram, perception can be further subdivided into interoception and exteroception; respectively, modeling changes in the internal and
external world. Emotion–and related notions of selfhood–usually arise via predictive processing of interoceptive sensations, often known as interoceptive inference
(Seth, 2013, 2014; Seth and Friston, 2016).

free energy; thereby providing a tractable objective function for
perception and action. The integration of efferent (motor) and
afferent (sensory) signals results in what can be termed the
sensation of control, or feeling of agency, whereby sensorimotor
mismatch is minimized.

These three functions of perception-cognition-action form a
hierarchical system with sensorimotor signals at the lowest levels
of the hierarchy, and abstract cognition (executive functions
of goal- directed planning and decision-making) at the highest
levels (Schoeller et al., 2018). Perception is organized in
a hierarchical fashion, with bottom-up sensory signals (e.g.,
“a change in color from red to green”) being continuously
predicted by top-down cognitive models (e.g., “green-light
authorization for crossing the street”). Action models are
also organized hierarchically, whereby fine motor interaction
with the external world (e.g., typing on a keyboard), are
contextualized by higher order goals (e.g., writing a paragraph),
themselves prescribed by high abstract plans (e.g., getting

a paper accepted in a conference)–ultimately underwriting
existential goals–corresponding to the organization of life itself
(Schoeller et al., 2018).

A key notion is precision weighting, which refers to
the reliability or salience of prediction errors. The higher
the precision, the more impactful the prediction errors on
how processing unfolds. In Active Inference terms, precision
represents the agent’s confidence that certain action policies (i.e.,
sequence of actions) will produce the states the agent highly
expects (Friston et al., 2014). Predictive agents decide what
actions to pursue based on the predicted sensory consequences
of the action–choosing those behaviors that are most likely to
minimize surprise over the long term, and so maximize their time
spent in the sensory states they expect. The performance of action
policies to reduce prediction error can be plotted as a slope that
depicts the speed at which errors are predicted to be managed
along the way. The steepness of the slope indicated how fast
errors are being reduced given some policy: the steeper the slope
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the faster the rate, the shallower the slope the slower the rate. If
the speed of error reduction is faster that expected, the action
policy should be made more precise; and if the rate is slower
than expended, and errors are amassing unexpectedly, then the
policy isn’t as successful at bringing about those future sensory
states that are expected, and this should be taken as evidence for
weighing an action policy as having low precision.

Change in the rate at which error is being resolved manifests
for humans as emotional valence–we feel good when error is
being reduced at a better than expected rate, and we feel bad
when error is unexpectedly on the rise (Joffily and Coricelli,
2013; Schoeller, 2015, 2017; Schoeller and Perlovsky, 2016;
Schoeller et al., 2017; Van de Cruys, 2017; Kiverstein et al.,
2019; Perlovsky and Schoeller, 2019; Wilkinson et al., 2019;
Nave et al., 2020). Valence systems provide the agent with a
domain general controller capable of tracking changes in error
managements and adjusting precision expectations relative to
those changes (Kiverstein et al., 2019; Hesp et al., 2021). This
bodily information is a reflection of an agent’s perceived fitness–
that is, how adaptive the agent’s current predictive model is
relative to their environment.

Affective valence is widely acknowledged to play an important
role in trust (Dunn and Schweitzer, 2005). Positive feelings have
been shown to increase trusting, while negative feelings diminish
it (Dunn and Schweitzer, 2005). The active inference framework
helps to account for this evidence, suggesting that positive and
negative feelings are in part a reflection of how well or poorly
one is able to predict the actions of another person. As detailed in
the following section, affectivity plays a crucial role in mediating
exchanges with robots, often acting as a cardinal determinant
of trust in that context specifically (Broadbent et al., 2007). As
a consequence, robotic design that considers affect–and related
higher-level constructs–are likely to enhance productivity and
acceptance (Norman et al., 2003).

AGENCY AND EMPOWERMENT IN
HUMAN-TECHNOLOGICAL EXTENSION

The relevance of active inference for robotics has been
experimentally demonstrated in Pio-Lopez et al. (2016). In
the context of automation, understanding human agency is all
the more important–as experimental studies have demonstrated
that one can prime for agency with external cues (leading to
abusive control), and clinical studies reveal that an impairment of
control is associated with depression, stress, and anxiety-related
disorders (Abramson et al., 1989; Chorpita and Barlow, 1998).
The integration of efferent (motor) and afferent (sensory) signals
results in what can be termed the sensation of control or a feeling
of agency (Salomon et al., 2016; Vuorre and Metcalfe, 2016),
which depends on the correspondence of top-down (virtual)
predictions of the outcomes of action, and the bottom-up (actual)
sensations. As illustrated in Figure 1, the brain compares actual
sensory consequences of the motor action with an internal model
of its predicted sensory consequences. When predicted sensory
consequences match incoming sensory signals, the movement is
attributed to the self and a (confident) sense of agency is said

to emerge (Wolpert et al., 1995; Hohwy, 2007; Synofzik et al.,
2008; Salomon et al., 2016). Situations where there is a mismatch
between intended and observed actions we also see a feeling
of loss of agency, and an attribution of the movement (or lack
thereof) to an external source. For example, if someone was
to move my arm then there would be the sensory experience
but without the prediction. If instead I was to try to move my
arm, but due to anesthetic I was unable to, there would be
the prediction but not the sensory confirmation. Agency then
is just another hypothesis (or Bayesian belief) that is used to
explain interoceptive, exteroceptive, and proprioceptive input. If
sensory evidence is consistent with my motor plans, then I can be
confident that “I caused that.” Conversely, if I sense something
that I did not predict, then the alternative hypothesis that “you
caused that” becomes the best explanation (Seth, 2015). The
accompanying uncertainty may be associated with negative affect
such as stress or anxiety (Stephan et al., 2016; Peters et al., 2017).
Again, the very notions of stress and anxiety are treated as higher-
level constructs–that best explain the interoceptive signals that
attend situations of uncertainty and adjust precision accordingly;
e.g., physiological autonomic responses of the flight or fright sort
(Barrett and Simmons, 2015; Seth and Friston, 2016).

To measure the amount of control (or influence) an agent
has and perceives, Klyubin et al. (2005) proposed the concept
of empowerment. Empowerment is a property of self-organized
adaptive systems and is a function of the agent perception-
action loop, more specifically the relation between sensors
and actuators of the organism, as induced by interactions
between the environment and the agent’s morphology (Salge
and Polani, 2017). Empowerment is low when the agent has no
control over what it senses, and it is high the more control is
evinced (Friston et al., 2006). An information-theoretic definition
has been proposed, whereby empowerment is interpreted as
the amount of information the agent can exchange with its
environment through its perception-action cycle. According to
Klyubin et al. (2005), empowerment is null when the agent
has no control over what it is sensing, and it is higher the
more perceivable control or influence the agent has. Hence,
“empowerment can be interpreted as the amount of information
the agent could potentially inject into the environment via its
actuator and later capture via its sensor.” Consider for example
the difference between passively watching a movie and being
engaged with the same content in an immersive virtual reality
setting. Crucially, empowerment is a reflection of what an agent
can do, not what the agent actually does (Klyubin et al., 2005),
and maximizing empowerment adapts sensors and actuators to
each other. In other words, empowerment can be described
in terms of sensorimotor fitness–i.e., the spatial and temporal
relevance of the feedback the robot gets on its own behavior.
For example, a robot that gets multisensor feedback on the
probability of success of its actions has greater empowerment
than a robot who is deprived of, say, visual information or which
receives delayed information (the greater the delay, the weaker
the empowerment). This calls forth a framework where the so-
called exploration/exploitation dilemma (crucial for safety in
HRC) can be casted as a behavioral account of the perception-
action cycle.
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Technology considerably increases human empowerment
(Brey, 2000), freeing the human animal from many niches
or geographical constraints (e.g., climate or geology), and
allowing increasingly complicated narratives and trajectories
to develop within the scope of human control (e.g., cranes
allow the manipulation of heavy systems beyond mere human
capabilities). Predictive organisms are attracted to–and rewarded
by–opportunities to improve their predictive grip on their
environments–i.e., to improve their empowerment. By definition,
technological extension of the perception-action cycle offers
a powerful way of expanding empowerment, but to function
effectively it needs to be integrated with the agent’s sensorimotor
dynamics. In other words, technology must enter the agent’
extended repertoire of behaviors. That inclusion requires the
technological extensions to be modeled internally by the agent
in the same capacity of its own sensorimotor contingencies, at
some level of abstraction. This (self) modeling of technological
extension is key to the emergence of trust–in active inference
terms: a high precision on beliefs about how the technology will
behave and evolve relative to our own sensorimotor engagements.
This is an extension of the same mechanism giving rise to
agency beyond the realm of the body. As we attempt to show in
the next section, this extension of human control beyond mere
motor action and its cognitive monitoring requires trust–as a
sense of virtual control in an extended perception-action cycle
(Sheridan, 1988). The study of human agency has clear relevance
for robotic motor control, but to our knowledge it has not yet
been applied to the problem of trust in complex technological
systems or human-robot interaction. In the next section, we
examine the possibility of modeling trust in relation to active
inference and empowerment.

TRUST AS VIRTUAL CONTROL IN
EXTENDED AGENCY

Within the context of human-robot interactions (Lee, 2008),
optimal trust is crucial to avoid so-called disuse of technology
(i.e., loss of productivity resulting from users not trusting
the system), but also abuse of technology (i.e., loss of safety
resulting from overreliance on the system). Hence, the cognitive
neuroscience of trust has implications for both safety and
management (Sheridan and Parasuraman, 2005; Lee, 2008).
Indeed, technological abuse and overreliance on automation
count among the most important sources of catastrophes
(Sheridan and Parasuraman, 2005). From a theoretical point
of view, tremendous variations exist in what trust represents
and how it can best be quantified, and several definitions
have been suggested with potential applications for automation
(Muir, 1994; Cohen et al., 1999). An exhaustive review–of the
large body of work devoted to trust literature–is outside the
scope of this article: excellent reviews can be found in Lee
and See (2004) and Sheridan (2019b). Here, we present the
fundamental elements of these models of trust, in the light of
perception-action loops, and potential applications to robotics to
demonstrate the relevance of the active inference framework for
human factors in HRI.

Several measures of trust exist in a variety of settings from
management, to interpersonal, and automation. In reviewing the
literature on trust, Lee and See identified three categories of
definitions; all fundamentally related to uncertainty and control
(2004). The fundamental relation between trust and uncertainty
appears most salient in situations when the uncertainty derives
from the realization of goals or intentions (e.g., in human-
robot interactions, or employee-employer relationships), where
internal details about the agent are unknown, leaving the trustor
vulnerable. In the context of robotics–where human action is
extended by robotic systems–the match between goals of the
(extended) human agent and those of the (extending) robotic
agent is crucial in determining the success of the relation
(whether the agent will make use of the extension). In order of
generality, the definitions identified by Lee and See are: (1) trust
as intention to (contract) vulnerability, (2) trust as vulnerability,
and (3) trust as estimation of an event likelihood. Note that these
three general definitions, derive from early definitions of trust by
Muir (1994) and Mayer et al. (1995), according to whom trust is
a trade-off between ability (A) and benevolence (B), whereby a
reliable system is high in both A and B (Figure 2).

The importance of externalizing goals of robotics systems (i.e.,
transparency) at all levels of the hierarchical perception-action
loop cannot be stressed enough–for successful communication
and gradual building of trust (Sheridan and Parasuraman,
2005). This is well captured in the standard definition of
trust by Sheridan (2019b), where communication of goals
(or transparency) plays a crucial role among the seven item
scales of trust (see Table 1).

In summary, trust is fundamentally related to human control
to the extent that it is required for any extension of the
perception-action cycle (i.e., when the success of the performance
depends on some other agent’s perception-action cycle, rather
than one’s own). Above, we saw that vulnerability is a function
of empowerment in the extended agent (the more extended the
agent, the more vulnerable), which can be evaluated through
interaction with the robotic perception-action cycle. This may
help to explain why operator curiosity is an important source
of accidents in the robot industry (Lind, 2009), as curiosity
aims to reduce uncertainty about the technology and so increase
trust and control, and suggests potential solutions in the field of

FIGURE 2 | Muir and Mayer model of trust as a function of the trustee’s ability,
benevolence and reliability (1995) where risk perception affects risk action.
This bipartition of trust as ability and benevolence amounts to two different
levels in the motor hierarchy of the extended agent (e.g., the robot), whereby
benevolence refers to the high-level goals motivating the extended agent and
ability refers to the means of the agent to realize these goals, i.e., the
sophistication of its low-level motor output in relation to the task at hand.
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TABLE 1 | Standard definition of trust by Sheridan (2019b).

(1) Statistical reliability (lack of error).

(2) Usefulness (ability of the system to do what is most important, e.g., in trading benefits and costs).

(3) Robustness (ability and flexibility of the system to perform variations of the task).

(4) Understandability (transparency of the system in revealing how and why it is doing what it is doing).

(5) Explication of intent (system communicating to the trustee what it will do next).

(6) Familiarity (to the user based on past experience).

(7) Dependence (upon the system by the trustee as compared to other ways of doing the given task).

accidentology. Trust is required in situations of uncertainty; and
it varies as the system exhibits predictable regularities. Sheridan
and Meyer models suggest that one will trust a predictable
system, to the extent that one can act upon that system to obtain
similar results over time, and eventually render its behavior more
predictable through incremental alterations.

We have considered how a sense of agency emerges, as the
resolution of mismatch between (1) the (perceptual) expectation
(i.e., hypothesis) about the consequences of (motor) action, and
(2) the perceived results of action (observation, perception). We
introduced the idea of trust as a sense of virtual, extended control.
In other words, trust is a measure of the precision, or confidence,
afforded by action plans that involve another (i.e., of the match
between one’s actions–and their underlying intentions–and the
predicted sensory consequences through another agent). As such,
“trust” is an essential inference about states of affairs; in which the
anticipated consequences of extended action are realized reliably.
From the point of view of “emotional” inference (Smith et al.,
2019), trust is therefore the best explanation for a reliable sensory
exchange with an extended motor plant or partner. Given the role
that affect plays in tuning precision on action policies, “reliable”
here means a reliable way to reduce expected free energy (via the
extended interaction). We are attracted by, or solicited to use, a
tool or device because it affords to us a means of reducing error,
in a better than expected way relative to doing the same work in
the absence of technological extension.

It is generally assumed that trust in any system increases
with evidence of that system’s reliability (Figure 3). The greater
the convergence of behavior models between trustor and trustee
(i.e., the largest the benevolence), the greater the trust in the
relationship (Hisnanick, 1989). Perhaps, this explains why simple
mimicry facilitates adoption, or why one tends to agree with
people who behave similarly–we generalize shared goals on
the basis of shared behavior (Cirelli, 2018). The similarity-
attraction hypothesis in social psychology predicts that people
with similar personality characteristics will be attracted to each
other (Morry, 2005). Hence, technology that displays personality
characteristics–similar to those of the user–tends to be accepted
more rapidly (Nass et al., 1995). As machines become increasingly
intelligent, it is crucial that they communicate higher-order goals
accordingly (Sheridan, 2019b). Communication of goals can be
simplified by rendering the perception-action cycle explicit/and
augmenting sensors to indicate their perceptual range (e.g.,
the human retina affords some information about the portion
of the visual field it senses); thereby, greatly reducing the
risk of accidents.

Finally, trust is a fundamentally dynamic process that
eventually leads to a state of dependence (Figure 4). This
is best exemplified in the context of information technology,
whereby the information is no longer stored internally (e.g.,
phone numbers, navigation pathways, historical facts) but all
that is known is the access pathway (my phone’s contact list,
my preferred web mapping service, a Wikipedia page). As
suggested by the Sheridan scale, the dynamics of trust go beyond
mere predictability and ultimately lead to a state of prosthetic
dependence in the context of the specific task. This is evident in
the context of automation, which increases the perception-action
cycle at an exponential rate, thereby leading to a high abandon
rate of past practices, as new technologies are adopted. Formally
speaking, as technology allows the agent to reduce prediction
error (by better understanding the problem space, and through
more empowered actions) the agent comes to expect that slope of
error reduction within those contexts and relative to the specific
tasks. The result is a gradual loss of interest or solicitation by
previous less potent forms of HRCs–they have become outdated
and so have lost their motivational appeal.

In the context of interpersonal relationships, Rempel et al.
(1985) described trust as an evolving phenomenon, where growth
is a function of the relationships progress. They further argue that
the anticipation of future behavior forms the basis of trust at the
earliest stages of a relationship. This is followed by dependability,
which reflects the degree to which behavior is consistent. As
the relationship matures, the basis of trust ultimately passes
the threshold of faith, which has been related to benevolence
(Lee and See, 2004); i.e., coordination on higher order goals
driving behavior. Crucially, an early study of the adaptation of
operators to new technology demonstrated a similar progression
(Hisnanick, 1989). Trust in that context depends on trial-and-
error experience, followed by understanding of the technology’s
operation, and finally, a state of certainty or faith (see Figure 5).
Lee and Moray (1992) made similar distinctions in defining the
factors that influence trust in automation.

TRUST DURING DYADIC
COLLABORATION

We have seen that the essential components of trust (benevolence
and competence) can be cast in terms of the confidence in
beliefs at (respectively) high and low levels in the motor
hierarchy, but how can active inference contribute to the science
of extended agency? In this section, we examine the role of
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FIGURE 3 | On the left, levels of trust from Dietz and Den Hartog (2006). On the right, cross-plot of (objective) trustworthiness compared to (subjective) trust by
Sheridan (1988), Sheridan (2019b). As a pioneer in the study of trust in technology, Sheridan further suggested that (subjective) trust can be cross-plotted against
(objective) trustworthiness. This representation engenders four extremes: justified trust or distrust, blind trust (trusted untrustworthy; i.e., misuse) and missed
opportunity (untrusted trustworthy; i.e., disuse). The dotted curve represents calibration, which is linear when trust is justified. Poor calibration can lead to loss of
safety (due to overconfident misuse), or loss of productivity (due to underconfident disuse).

FIGURE 4 | Dynamics of trust over time–with four phases from discovery to faith: for a consistently reliable system, dependence (i.e., risk) is inversely proportional to
uncertainty, assessed through a cycle of trial and error, until a threshold is reached. Through cycles of trial and errors, trust gradually evolves from predictability
(model) to dependability (control) to a state of faith (overreliance). Our model suggests that boredom is a marker of overreliance.

expectations in the context of dyadic interaction. So, what
would a formal (first principles) approach like active inference
bring to HRC? At its most straightforward, trust is a measure
of the confidence that we place in something behaving in
beneficial ways that we can highly predict. Technically, this
speaks to the encoding of uncertainty in generative models of
dyadic interactions. These generative models necessarily entail
making inferences about policies; namely, ordered sequences
of action during dyadic exchanges (Moutoussis et al., 2014;
Friston and Frith, 2015). This could range from turn taking
in communication (Wilson and Wilson, 2005; Ghazanfar and
Takahashi, 2014) to skilled interactions with robotic devices. At
its most elemental, the encoding of uncertainty in generative
models is usually framed in terms of the precision (i.e., inverse
variance) or confidence (Friston et al., 2014). Crucially, every
(subpersonal) belief that is updated during active inference can
have the attribute of a precision or confidence. This means

that the questions about trust reduce to identifying what kind
of belief structure has a precision that can be associated with
the construct of “trust.” In generative models based upon
discrete-state spaces (e.g., partially observed Markov decision
processes) there are several candidates for such beliefs. Perhaps
the most pertinent–to dyadic interactions–are the beliefs about
state transitions; i.e., what happens if I (or you) do that. For
example, if I trust you, that means I have precise Bayesian beliefs
about how you will respond to my actions. This translates into
precise beliefs about state transitions during controlled exchanges
(Parr and Friston, 2017; Parr et al., 2018). This means that
I can plan deep into the future before things become very
uncertain and, in turn, form precise posterior beliefs about
the best courses of action, in other words our policies align
(see Figure 5).

Conversely, if I do not trust you, I will have imprecise beliefs
about how you will respond and will only be able to entertain
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FIGURE 5 | Waves of technological adoption related to predictive slopes of
extended engagement (empowerment) during versioning of the technology.
Indeed this is an oversimplification for the sake of visualization as we are
assuming a linear progression of empowerment over time in the evolving
versions of the technology (i.e., a healthy research and development cycle)
where, for most technologies, newer versions may not present much greater
empowerment as compared to older ones. The important idea here is the
inflection point (flex) indicating the start of technological decay reflecting the
abandon rate of a practice as the experience of better predictive slopes of
extended technological engagements lead to disengagement of non-extended
approaches (e.g., cars replace horses replacing legs). Old slopes are less than
expected and so unsatisfactory as compared to new ones.

FIGURE 6 | A trust dyad, whereby Agent 1 performs action A at t, within the
action policy P, and in collaboration with Agent 2. In a trustworthy relationship,
Agent 1 can expect from Agent 2 an action Policy P’, where P’ is symmetrical
to P (each action of P’ at t + 1 is a response to P at t). Past (observed) actions
are blue and future (anticipated) actions are red. The bold line in between
policies represents the shared policy (or joint narrative), whereby A(t + 1) can
be prepared based on beliefs about anticipated R(t).

short term plans during any exchange. Furthermore, it will be
difficult to infer precise outcomes of any course of action–and
hence hard to entertain a shared policy. This means I will also be
uncertain about which is the best course of action. Technically,
this results in an imprecise belief distribution over policies, which
is normally associated with negative affect or some form of angst

(Seth and Friston, 2016; Badcock et al., 2017; Peters et al., 2017).
Notice, that now there is not just error in the environment to
deal with but also the uncertainty of the other. As uncertainty
increases, negatively valenced feelings emerge as a reflection of
that change, and in turn reduce precision on the policies related
to that collaboration. The result is the agent is less likely to be
attracted to enact policies of extension with that other person or
robot, and so much more likely to revert to using more habitual
(and already highly precise) ways of reducing error. In short,
almost by definition, engaging with an untrustworthy partner is,
in a folk psychological sense, rather stressful.

Clearly, this active inference formulation is somewhat
hypothetical. There will be many other belief structures that could
be imprecise; for example, prior beliefs about the policies I should
entertain and, indeed, the precision of likelihood mappings (that
map from latent or hidden states of the world to observed
outcomes). The latter is usually considered in terms of ambiguity
(Friston et al., 2017; Veissière et al., 2019). In other words, I
could consider your behavior or responses ambiguous–and that
could render you untrustworthy; even if I have very precise beliefs
about the latent states you are likely to navigate or pursue. In
short, it may be an open question as to whether the precision of
state transitions, likelihood contingencies or prior beliefs about
policies manifest as differences in trust. This brings us to a
fundamental motivation for the formalization of trust in terms
of active inference.

It is possible to build models of dyadic exchange under ideal
Bayesian assumptions using active inference (e.g., Moutoussis
et al., 2014; Friston and Frith, 2015). This means that one
can optimize the prior beliefs inherent in these models to
render observed choice behavior the most likely. Put another
way, one can fit active inference models to empirical behavior
to estimate the prior beliefs that different subjects evince
through their responses (Parr et al., 2018). These estimates
include a subject’s prior beliefs about the precision of various
probability distributions or Bayesian beliefs. In turn, this means
it should be possible to phenotype any given person in an
experimentally controlled (dyadic) situation and estimate the
precision of various beliefs that best explain their behavior.
One could, in principle, then establish correlations between
different kinds of precision and other validated measures
of trust, such as those above. This would then establish
what part of active inference best corresponds to the folk
psychological–and formal definitions of trust. Interestingly, this
kind of approach has already been considered in the context
of computational psychiatry and computational phenotyping;
especially in relation to epistemic trust (Fonagy and Allison,
2014). Epistemic trust is a characteristic of the confidence placed
in someone as a source of knowledge or guidance. Clearly,
this kind of trust becomes essential in terms of therapeutic
relationships and, perhaps, teacher pupil relationships. Finally,
one important determinant of the confidence placed in–or
precision afforded–generative models of interpersonal exchange
is the degree to which I can use myself as a model of
you. This speaks to the fundamental importance of a shared
narrative (or generative model) that underwrites any meaningful
interaction of the sort we are talking about. This can be
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articulated in terms of a generalized synchrony that enables
a primitive form of communication or hermeneutics (Friston
and Frith, 2015). Crucially, two agents adopting the same
model can predict each other’s behavior, and minimize their
mutual prediction errors (Figure 6). This has important
experimental implications, especially in the context of HRC,
where robotic mimicry can be seen as mere self-extension
for the user, leading to what philosophers of technology
call relative transparency (where whatever impacts the robot
also impacts me–see Brey, 2000). The self being the product
of the highest prediction capacities, when another agent
becomes more predictable it also increases the similarity at
the highest levels in the cognitive hierarchy and thereby
facilitates joint action.

This mutual predictability is also self-evident in terms of
sharing the same narrative; e.g., language. In other words,
my modeling of you is licensed as precise or trustworthy if,
and only if, we speak the same language. This perspective
can be unpacked in many directions; for example, in terms
of niche construction and communication among multiple
conspecifics (in an ecological context) (Constant et al., 2019;
Veissière et al., 2019). It also speaks to the potential importance
of taking into account self-models in HRC design, allowing both
users and robots to represent each other’s behavior efficiently.
Indeed, on the above reading of active inference, such shared
narratives become imperative for trustworthy exchanges and
collaboration. Indeed, current models suggest that the rise of
subjectivity and the “self ” are grounded in privileged predictive
capacities regarding the states of the organism compared to the
external environment (Limanowski and Blankenburg, 2013; Apps
and Tsakiris, 2014; Allen and Friston, 2016; Salomon, 2017). As
such, dyadic trust in another agent (biological or artificial) can
be viewed as a process of extending these predictive processes
beyond the body and rendering the external agent as part of
a self model. Moreover, recently robotic interfaces have been
used to induce modulations of self models by interfering with
sensorimotor predictions. This in turn gives rise to phenomena
closely resembling psychiatric symptoms (Blanke et al., 2014;
Faivre et al., 2020; Salomon et al., 2020).

CONCLUSION

In the light of our increasing dependence on technology,
it is worth considering that the largest aspect of human
interactions with machines (their use) essentially rests
upon vague approximative mental models of the underlying
mechanisms (e.g., few smartphone users can understand the
functioning of a computer operating software). Technically,
in active inference, the use of simplified generative models
(e.g., heuristics) is an integral part of self-evidencing. This
follows because the evidence for a generative model (e.g.,
of how a smartphone works) can be expressed as accuracy
minus complexity. In this setting, complexity is the divergence
between posterior and prior beliefs–before and after belief
updating. This means the generative model is required to
provide an accurate account of sensory exchanges (with

a smartphone) that is as simple as possible (Maisto et al.,
2015). In short, the best generative model will be, necessarily,
simpler than the thing it is modeling. This principle holds
true of technology in general (extending the scope of human
perception-action cycles), and automation specifically (replacing
these perception-action capabilities). We have examined
the concept of trust from the standpoint of control and
perception-action loops and found that trust components
(i.e., competence and benevolence) are best casted in terms
of an action-cognitive hierarchy. By examining trust from
the standpoint of active inference, we were also better
able to understand phenomena, such as exploration-related
accidents, and the gradual building of trust with shared goals,
narratives and agency. One of the benefits of this model is
that it applies to any sort of collaborative enterprise between
humans and machines. Although the specifications of the
machine (e.g., its size, its use, etc.) and the nature of the
collaboration (e.g., occasional, constant, autonomous, etc.)
will of course change how and what one models about the
collaborative machine, the trust one feel emerges from the
identical process of modeling their states and behaviors over
time in ways that allow them to be included in one’s own
generative model (in a particular context). HRC is of course
only a first step and it will be interesting going forward
to consider how this model of trust as extended predictive
control practically is applied to the wide variety of cases
where humans and machines are working closely together in
our world today.

As the complexity and autonomy of artificial systems
go up, so too will the complexity and sophistication of the
model we generate about the behaviors of those systems. In
the case of collaborating with artificial intelligence systems
this becomes even more challenging, and would increasingly
require useful opacifications of the underlying decision
making mechanisms that drive those system’s behaviors.
The science of human-robot interaction could make rapid
progress if objective measures of trust were developed, and
the neuroscience of agency does offer such metrics. It is
here that a simulation setup of the sort offered by active
inference could play an important part. Among the potential
biomarkers for agency and control, the N1 component of
event related electrical brain responses–a negative potential
occurring approximately 100 ms after stimulus onset–is
attenuated during self-produced or predicted events, relative
to that observed during externally generated feedback. As
machine become increasingly intelligent, it is to be expected that
not only users will develop more sophisticated (generative)
models of their internal behavior and the reliability of
these behavior, but robots will also adapt to interindividual
differences (Sheridan, 2019b), hence reciprocally monitor the
trustworthiness of users, and thereby allow for safer and more
productive interaction.

In this paper we have proposed a novel view of trust as
extended (predictive) control, a view that is well poised to help
us elucidate the mechanisms underlying trust between humans,
and between humans and technological artifacts. However, this
should only be seen as the beginning. The field of HRC is quickly
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evolving, as the robots we find ourselves collaborating with are
increasingly complex and autonomous. Degree of autonomy
is of particular importance here for thinking about HRCs. As
autonomy increases in our robotic partners different forms of
collaboration are bound to emerge, and new requirements for
trusting those artifacts will be necessary. While we do not have
the space here to fully explore these more complex examples in
current and future HRC, we can at least say that transparency
and ethical-design will become increasingly important. Given
the framework we have proposed, for trust to emerge in these
complex interactions human agents need to be able to accurately
(or at least usefully) model the sorts of decision-trees that the
autonomous artificial agents make use of in various contexts. The
means by which such transparency can be achieved is a topic for
further research.

Furthermore, as artificial intelligence systems evolve in
complexity we will inevitably be interacting with technological
artifacts that are able to model humans in return. This two-way
predictive modeling will result in new forms of collaboration
and new approaches to developing a trusting relationship (see
Demekas et al., 2020). Collaborative dynamics between humans
is already being modeled using the AIF (Ramstead et al., 2020), in
which predictive agents model each other’s generative model in
ways that allow groups to temporarily become a unified error-
minimizing machine. With the possibility of future artificial
autonomous agents using variations of a prediction hierarchy like
humans use, exploring the emergent dynamics between human
and artificial agents in this way becomes possible as well.

KEY POINTS:

• Mind–all brain–is a constructive, statistical organ that
continuously generates hypotheses to predict the most
likely causes of its sensory data.

• We present a model of trust as the best explanation
for a reliable sensory exchange with an extended motor
plant or partner.

• User boredom may be a marker of overreliance.
• Shared narratives, mutual predictability, and self-models

are crucial in human-robot interaction design and
imperative for trustworthy exchanges and collaboration.

• Generalized synchrony enables a primitive form
of communication.

• Shared generative models may allow agents to predict each
other more accurately and minimize their prediction errors
or surprise, leading to more efficient HRC.
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Cognitive neuroscience seeks to discover the biological foundations of the human
mind. One goal is to explain how mental operations are generated by the information
processing architecture of the human brain. Our aim is to assess whether this is a
well-defined objective. Our contention will be that it is not because the information
processing of any given individual is not contained entirely within that individual’s brain.
Rather, it typically includes components situated in the heads of others, in addition
to being distributed across parts of the individual’s body and physical environment.
Our focus here will be on cognition distributed across individuals, or on what we call
the “community of knowledge,” the challenge that poses for reduction of cognition
to neurobiology and the contribution of cognitive neuroscience to the study of
communal processes.

Keywords: community of knowledge, cognitive neuroscience, thinking, collective cognition, social neuroscience

THE INDIVIDUAL BRAIN AND COLLECTIVE MIND

A central aim of cognitive neuroscience is to explain how people think, elucidating the
representations and processes that allow humans to judge, reason, remember, and decide (Barbey
et al., 2021). To achieve this goal, cognitive neuroscientific theories have as a rule made certain
fundamental assumptions:

(a) Knowledge is represented in the brain.
(b) Knowledge is represented by the individual.
(c) Knowledge is transferred between individuals.

where “knowledge” is understood broadly—as it usually is in behavioral science—as people’s
attempts to represent their world, including both observable and latent objects and processes, in
ways that support memory, understanding, reasoning, and decision making. It includes beliefs
that are more or less justified, and that might correspond to factual truth or not. Evidence to
suggest that knowledge is represented in the brain [assumption (a)] may reflect: (1) correlations
with neural activity (e.g., spike trains generated by neurons in V1 correlate with the presence and
location of edges in the visual environment), (2) causal effects of knowledge on the operation of
neural systems (e.g., spike trains generated by neurons in V1 are used by downstream areas for
further processing), and/or (3) neural computations applied to manipulate and process knowledge.
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Although assumption (a) is typical of theories in the
psychological and brain sciences (for reviews, see Gazzaniga
et al., 2019; Barbey et al., 2021), it is not universal. Proponents
of embodied cognition see knowledge as distributed across
the brain, the body, and artifacts used to process information
(e.g., Barsalou, 2008) and proponents of cultural psychology
sometimes see knowledge as embedded in cultural practices
(Duque et al., 2010; Holmes, 2020). But assumptions (b) and
(c) are widely shared by disciplines that focus on cognition
(for a review, see Boone and Piccinini, 2016). The idea is
that what really counts as cognition is mediated by individual
processes of reasoning and decision making; that cognitive
processing is distinct from interactions with books, the internet,
other people, and so on. Moreover, other people are obviously
sources of information, but their value for an individual is
in the information they transfer. The goal of this manuscript
is to question the generality of these assumptions, spell out
some of the resulting limitations of the cognitive neuroscience
approach, and try to suggest some more constructive directions
for the field. Our contention will be that the information
processing of any given individual is not contained entirely
within that individual’s brain (or even their bodies or physical
environments). Rather, it typically includes components situated
in the heads of others, and that the transfer of information is
more the exception than the rule.

Assumption (a) as usually understood implies (b). If
knowledge is represented in the brain, then it is represented by
individuals. Thus standard neuroimaging methods assess brain
activity and task performance within the individual (for a review
of fMRI methods, see Bandettini, 2012). According to this view,
the neural foundations of the human mind can be discovered by
studying the individual brain and identifying common patterns
of brain activity across individuals. Thus, by averaging data
from multiple subjects, cognitive neuroscience seeks to derive
general principles of brain function and thereby reveal the
mechanisms that drive human cognition. This approach lies
at the heart of modern research in cognitive neuroscience,
reflecting a disciplinary aim to generalize beyond the individual
to characterize fundamental properties of the human mind
using widely held methodological conventions, such as averaging
data from multiple subjects, to infer general principles of brain
function (Gazzaniga et al., 2019).

Although assumption (a) implies (b), the converse does not
also hold. If knowledge is represented by the individual, it
need not be represented exclusively within the brain. More
importantly, as we will argue, an individual’s knowledge not
only arises in large part from communal interactions, but also
depends on cognitive states of other members of the community.
This places limits on the utility of studying individual brains to
infer general principles of the collective mind. Our conclusion is
decidedly not that cognitive neuroscience makes no contribution
to the study of cognition. It is that cognitive neuroscience
does not provide a sufficient basis to model cognition. Social
neuroscience is an emerging field that addresses part of the
problem, as it takes as a central tenet that “brains are not
solitary information processing devices” (Cacioppo and Decety,
2011). Nevertheless, the discussions we are aware of within

the field of cognitive neuroscience still abide by assumptions
(b) and (c).

THE COMMUNITY OF KNOWLEDGE
AND THE LIMITS OF THE INDIVIDUAL

We start with assumption (b). Years of research in psychology,
cognitive science, philosophy, and anthropology have shown
that human cognition is a collective enterprise and is therefore
not to be found within a single individual. Human cognition
is an emergent property that reflects communal knowledge
and representations that are distributed within a community
(Hutchins, 1995; Clark and Chalmers, 1998; Wilson and Keil,
1998; Henrich, 2015; Mercier and Sperber, 2017; Sloman and
Fernbach, 2017). By “emergent” property we mean nothing
elusive or mysterious, but simply certain well-documented
properties of groups that would not exist in the absence of
relevant properties of individuals, but are not properties of any
individual member of the group, or any aggregation of properties
of some or all members of the group.

Accumulating evidence indicates that memory, reasoning,
decision-making, and other higher-level functions take place
across people. The evidence that mental processing is engaged
by a community of knowledge is multifaceted (for a review,
see Rabb et al., 2019). The claim that the mind is a social
entity is an extension of the extended mind hypothesis (Clark
and Chalmers, 1998): Cognition extends into the physical world
and the brains of others. The point is not that other people
know things that I do not; the point is that my knowledge
often depends on what others know even in the absence of any
knowledge transfer from them to me. I might say, “I know
how to get to Montreal,” when what I really mean is that I
know how to get to the airport and the team piloting the
aircraft can get from the airport to Montreal. Similarly, one
might say that “what makes a car go” is the motor: that’s
why it’s called a “motor,” after all. But while a full account
will include the engine as a key contributor, the propulsion
system is distributed over the engine, drive shaft, the human
who turns the key, fuel, a roadway, and more. Changing the
boundaries of what has traditionally been considered cognitive
processing in an analogous way – from individual brains to
interacting communities – perhaps raises questions of who
should get credit and who should take responsibility for the
effects of an individual’s action, but it is nevertheless an
accurate description of the mechanisms humans use to process
information. Furthermore, as the boundaries for what counts as
cognitive processing shift, the operational target for studying the
human mind moves beyond the scope of methods that examine
performance through the lens of the individual.

Philosophers analyzing natural language illustrate how
cognitive processes are extended into the world. The classic
analysis is by Putnam (1975), who points out that we often
use words whose reference (or denotation or extension) and
therefore, according to Putnam, their meaning, is determined
by factors outside one’s brain or mind (i.e., externalism). One
could see Humpty Dumpty as an extreme and defiant internalist:
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“When I use a word, it means precisely what I want it to mean,
no more and no less” (Carroll, 1872). Putnam’s argument is the
subject of vigorous and sophisticated but not entirely conclusive
debate (Goldberg, 2016; see also Burge, 1979). Nonetheless it is
now widely agreed that some form of externalism is at least a
necessary part of an explanation of how our everyday terms have
their referents (or denotations) and meanings.

The philosopher whom one might call the Godfather of
Externalism, Wittgenstein (1973), preferred to draw attention
to what he saw as linguistic facts that had been overlooked,
above all, that the meaning of words depends on (or is even
identical to) their use. Although that bald statement is highly
controversial, what matters from our point of view is that the
meaning of a word and its correct use depend on collective
knowledge that extends beyond the individual, reflecting a social
context (Boroditsky and Gaby, 2010). Thus, for a community of
knowledge to support meaning and communication, there must
be sufficient stability of common usage even as usage typically
changes over time. The same holds for sentence meanings, as
in, “Zirconium comes after Yttrium in the Periodic Table.” The
speaker may have long ago forgotten—or never even knew—
what exactly Zirconium is and why one thing comes after
another in the Periodic Table. Nonetheless the statement has a
meaning that has been fixed by the appropriate members of the
scientific community, and propagated more-or-less successfully
to generations of students. The speaker’s statement is true and has
that communally established meaning, no matter how confused
the speaker may be. Some might distinguish the speaker’s
meaning from the correct, communally-ordained meaning. That
is important in some contexts (e.g., in teaching and in evaluating
students), but the point here is that the sentence has a precise
meaning established by chemical science, even if that is not
precisely what is in the speaker’s head, but only in the heads
of others.

The same holds of theories. The statement “According to
modern chemistry there are more than a hundred elements”
is true regardless of how well or poorly the speaker might
understand modern chemistry. It is true because “modern
chemistry” means the chemical theories agreed upon by socially
recognized experts. This holds even if the relevant theories are
no longer in the speaker’s head, and even if the speaker never
understood the theories.

These remarks on social meaning converge with recent work
in the emerging discipline of “social epistemology” (Goldman,
1999), the study of knowledge as a social entity. We will speak
of “knowledge” in an everyday sense, without entering into the
labyrinthine and ultimately inconclusive attempts at definition
offered by philosophers from the time of Plato, including what
“really constitutes” social knowledge. What matters here is that
research within social epistemology demonstrates that successful
transmission of knowledge clearly does occur and depends on
three general conditions (Goldberg, 2016): (i) social norms of
assertion; (ii) reliable means of comprehending what is said
(which depend on social norms of meaning and usage); and
(iii) a reliable way of telling a reliable source of knowledge
from an unreliable one. For reasons we elaborate below, we
believe that the role of society in epistemology is not only to

transmit knowledge from one individual to another, but to retain
knowledge even when it is not transmitted.

Sloman and Fernbach (2017) extended the externalist project
well beyond a concern with the meanings of words, to large
swathes of conceptual knowledge. Outside their narrow areas
of expertise, individuals are relatively ignorant (Zaller, 1992;
Dunning, 2011). In any given domain, they know much less
than there is to know, but nonetheless do know certain things
that others understand more fully. The extent to which we
rely on others in this way is often obscured by the fact that
people tend to overestimate how much they know about how
things work (Rozenblit and Keil, 2002; Lawson, 2006; Fernbach
et al., 2013; Vitriol and Marsh, 2018). They overestimate their
ability to reason causally (Sloman and Fernbach, 2017). They
also overestimate what they know about concept meanings
(Kominsky and Keil, 2014) and their ability to justify an argument
(Fisher and Keil, 2014) and claim to have knowledge of events and
concepts that are fabricated (Paulhus et al., 2003).

The best explanation for our tendency to overestimate how
much we know is that we confuse what others know for what
we know (Wilson and Keil, 1998). Others know how things
work, and we sometimes fail to distinguish their knowledge from
our own. The idea is the converse of the curse of knowledge
(Nickerson, 1999). In that case, people tend to believe that
others know what they themselves know (this is part of what
makes teaching hard). In both cases, people are failing to note
the boundary among individuals. Circumstances can produce a
rude awakening if things go wrong and we suddenly need to
understand how to fix them, or if we are otherwise challenged
to produce a full explanation either in a real world situation or
by a psychologist.

Nonetheless, as Goldman (1999) observes, even a shallow
understanding of a concept, idea, or statement can give us
valuable practical information. Fortunately, we can know and
make use of a good many truths without ourselves possessing the
wherewithal to prove them, so long as our limited understanding
is properly anchored elsewhere. We develop multiple examples
below. Meanwhile, from a very broad perspective, we note
that the conceptual web is tangled and immense, containing
far more than a mere mortal could store and make sense of
Sloman and Fernbach (2017). Thus we are by nature creatures
that rely heavily on others to have full understandings of word
meanings (“semantic deference” in the philosophical literature)
and a more full and secure grasp of ideas, statements, or
theories than our own incomplete grasp reflected in our shallow
understanding. This dovetails not only with experimental results
(Rozenblit and Keil, 2002; Fernbach et al., 2013; Kominsky
and Keil, 2014; Sloman and Rabb, 2016), but also with recent
anthropological work on culture-gene coevolution showing that
cultural accumulation exerted selective pressure for genetic
evolution of our abilities to identify and access reliable sources of
information and expertise (e.g., Richerson et al., 2010; Henrich,
2015).

At a social level, the fact that knowledge is communal also
has a political dimension. As societies develop, group policy and
decision-making will depend on the aggregation, coordination,
and codification of various sorts of knowledge distributed

Frontiers in Systems Neuroscience | www.frontiersin.org 3 October 2021 | Volume 15 | Article 67512737

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-15-675127 October 16, 2021 Time: 15:12 # 4

Sloman et al. Communal Knowledge and Cognitive Neuroscience

across many individuals (e.g., experts in the production, storage,
distribution, and preparation of food). There is lively debate
among political theorists about whether command and control
societies, democracies, or something else can best fulfill the
needs and aspirations of its members (Anderson, 2006; Ober,
2008). Is decision-making best served by cloistered experts
or through information gathered from non-experts as well?
Non-experts presumably have greater access to details of local
situations, but attempts to utilize widely distributed knowledge
poses greater problems of aggregation and coordination. As
Hayek (1945) remarked, the aggregation and deployment of
widely distributed information is a central issue for theories
of government. However, our interest here is not the relative
merits of different forms of government. We mention these issues
only to illustrate the far-reaching and pervasive importance of
information processing in social networks and by implication the
need for a political level of explanation in the understanding of a
community of knowledge.

SOCIAL KNOWLEDGE WITHOUT SOCIAL
TRANSMISSION: OUTSOURCING

Work on collective cognition points to several ways that
individual cognition depends on others (Hemmatian and
Sloman, 2018). One is collaboration: Problem-solving, decision-
making, memory, and other cognitive processes involve the joint
activity of more than one person, and in many contexts mutual
awareness of a joint intention to perform some task. Work on
collaboration has focused on team dynamics (Pentland, 2012)
and group intelligence (Woolley et al., 2010). A second form of
cognitive dependence on others, and the one that grounds our
argument, is outsourcing: The knowledge people use often sits
(or sat) in the head of someone else, someone not necessarily
present (or even alive). Frequently, outsourcing requires that we
have access to outsourced knowledge when the need arises. But
often merely knowing we have access is sufficient for practical
purposes (e.g., we go to Tahiti assuming we’ll find what we need to
enjoy ourselves when we’re there). On occasion we do access the
information, and this requires some type of social transmission.
Such transmission comes in the form of social learning of a skill,
practice, norm, or theory on the one hand, or in the form of
more episodic or ad hoc accessing of information for limited,
perhaps one-time, use (Barsalou, 1983). A prime example of the
former would be an apprentice learning a trade from a master;
of the latter, “googling” to find out who won the 1912 World
Series. The transmission of information around a social network
is a key determinant of human behavior (Christakis and Fowler,
2009).

A key requirement in using information that is sitting in
someone else’s head is the possession of what we will call
epistemic pointers (“epistemic” meaning having to do with
knowledge): the conscious or implicit awareness of where some
needed information can be found. Sometimes we can envision
many potential pathways to an information source, whether
direct or indirect, and sometimes very few. Thus we may
envision many potential information sources for how to get to

Rome (travel agents, friends who have been there), and various
pathways by which we might access a given source (e.g., find
the phone number of a friend who said she had a good travel
agent) but fewer pathways to find out how to get to the rock
shaped like an elephant that someone mentioned in passing.
Our representations of pointers, to a source or to a step on
a pathway to a source, can be partial and vague, providing
little or no practical guidance (“some physics Professor knows
it”), or full and precise (“it’s in Einstein’s manuscript on the
special theory of relativity”). If we are completely clueless, we
can be said to lack pointers and pathways, and simply have a
placeholder for information. The evidence of human ignorance
that we review below leads us to suspect that the vast majority
of the knowledge that we have access to and use is in the form
of placeholders.

SETTING THE STAGE: COLLABORATION

The centrality of collaboration for human activity derives from
the fact that humans are unique in the cognitive tools they have
for collaboration. Tomasello and Carpenter (2007) make the case
that no other animal can share intentionality in the way that
humans can in the sense of establishing common ground to
jointly pursue a common goal, and a large body of work describes
the unique tools humans have to model the thoughts and feelings,
including intentions and motivations, of those around them (e.g.,
Baron-Cohen, 1991).

The role of collaboration in specifically cognitive performance
has been most fully studied in memory. Wegner et al. (1991)
report some of the early work showing that groups, especially
married couples, distribute storage demands according to relative
expertise. They call these “transactive memory systems.” Theiner
(2013) argues that transactive memory systems reflect emergent
group-level memories, providing evidence that: (i) members of
a transactive memory system are not interchangeable (because
each member makes unique contributions to the group); (ii)
if members are removed from the group, the system will no
longer function (omitting essential components of the group-
level memory); (iii) the disassembly and reassembly of the
group may impair its function (for example, when members of
the group no longer understand the distribution of knowledge
within the system and what information they are responsible
for knowing); and (iv) cooperative and inhibitory actions among
members are critical (given the interactive and emergent nature
of transactive memories) (for a review, see Meade et al., 2018).
Wilson (2005) claims that these properties of a transactive
memory system have important political consequences as they
affect the commemoration and memorialization of politically
relevant events and culturally important origin stories that shape
nationalism and attitudes toward human rights and other issues.
Memory systems play a critical role in communities.

Further evidence for the importance of collaboration in
thought comes from naturalistic studies of group behavior. The
seminal work was conducted by Hutchins (1995). He offered
a classic description of navigating a Navy ship to harbor, a
complex and risky task. The process involves multiple people
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contributing to a dynamic representation of the ship’s changing
location with reference to a target channel while looking out
for changing currents and other vessels. Various forms of
representation are used, all feeding into performance of a
distributed task with a common goal. Sometimes the common
goal is known only by leadership (in the case of a secret mission,
say). Nevertheless, successful collaboration involves individuals
pursuing their goals so as to contribute to the common goal.
Many of the tasks we perform everyday have this collaborative
nature, from shopping to crossing the street. If a car is coming
as we cross, we trust that the driver won’t accelerate into us,
and the more assertive street crossers among us expect them
to slow down in order to obtain the common goal of traffic
flow without harm to anyone. Banks and Millward (2000)
discuss the nature of distributed representation and review
data showing that distributing the components of a task across
a group so that each member is a resident expert can lead
to better performance than giving everyone the same shared
information. Hutchin’s nautical example illustrates this, insofar
as some essential jobs require multiple types of expertise. Other
jobs might not require this, so that crew members may substitute
for one another, because all of them have the same basic
information or skill level needed for the job. Often in real life
there will be a mix, so that the task occupies an intermediate
position relative to Banks and Millward’s two types of group
(i.e., diverse local experts versus all group members having the
same knowledge). Work on collective intelligence also provides
a good example of emergent group properties, illustrating how
collective problem-solving relies more on collaboration and
social interconnectedness than on having individual experts on
the team (Woolley et al., 2010).

COLLABORATION AND
NEUROSCIENCE: THE CASE OF
NEURAL COUPLING

Research in cognitive neuroscience has not ignored these trends
in the study of cognition. An emerging area of research
investigates the communal nature of brain networks, examining
how the coupling of brain-to-brain networks enables pairs
of individuals or larger groups to interact (Montague et al.,
2002; Schilbach et al., 2013; Hasson and Frith, 2016). These
studies deploy a generalization of neuroimaging methods,
applying techniques that were once used to assess intra-brain
connectivity (i.e., within the individual) to examine inter-subject
connectivity (i.e., between different subjects; Simony et al.,
2016). This can be achieved through experiments in which
brain activity within multiple participants is simultaneously
examined (i.e., “hyperscanning;” Montague et al., 2002) or
analyzed post hoc (Babiloni and Astolfi, 2014). Such approaches
have been applied to assess brain-to-brain communication
dynamics underlying natural language (e.g., Schmalzle et al.,
2015). Recently, researchers have placed two people face-to-
face in a single scanner to examine, for example, the neural
mechanisms underlying social interaction (e.g., when people
make eye contact; for a review, see Servick, 2020). The situation –

very noisy and now also very crowded – does not score high
on ecological validity. Also, it is hard to see how one could
scale this approach up to study larger groups (big scanners, little
participants?). Nonetheless this is a reasonable place to start,
and here, as with hyperscanning and retrospective analysis of
neuroimaging data, one might well secure suggestive results.
So although the examination of brain-to-brain networks is
rare in cognitive neuroscience, with only a handful of studies
conducted to date (for a review, see Hasson and Frith, 2016),
this approach represents a promising framework for extending
cognitive neuroscience beyond the study of individuals to
an investigation of dyads, groups, and perhaps one day to
larger communities.

This approach has set the stage for research on the
neural foundations of communal knowledge, investigating how
cognitive and neural representations are distributed within the
community and how information propagates through social
networks, for example, based on their composition, structure,
and dynamics (for a review, see Falk and Bassett, 2017; for
a discussion of hyperscanning methods, see Novembre and
Iannetti, 2020; Moreau and Dumas, 2021). Evidence from this
literature indicates that the strength of the coupling between the
neural representation of communication partners is associated
with communication success (i.e., successful comprehension
of the transmitted signal; Stephens et al., 2010; Silbert et al.,
2014; Hasson and Frith, 2016). For example, the degree
of brain-to-brain synchrony within networks associated with
learning and memory (e.g., the default mode network) predicts
successful comprehension and memory of a story told among
communication partners (Stephens et al., 2010). Indeed, evidence
indicates that people who are closely related within their
social network (i.e., individuals with a social distance of one)
demonstrate more similar brain responses to a variety of stimuli
(e.g., movie clips) relative to individuals who share only distant
relations (Parkinson et al., 2017). Research further suggests that
the efficiency of inter-subject brain connectivity increases with
the level of interaction between subjects, providing evidence that
strong social ties predict the efficiency of brain-to-brain network
coupling (Toppi et al., 2015; for a discussion of the timescale of
social dynamics, see Flack, 2012).

THE MAIN EVENT: OUTSOURCING

A community of knowledge involves more than coupling. We
do collaborate, and we engage in joint actions involving shared
attention, but we also make use of others without coupling:
We outsource to knowledge housed in our culture, beyond the
small groups we collaborate with. In the best cases, we outsource
to experts. A great many people know that the earth revolves
around the sun, but only a much smaller number know how to
show that. Both sorts of people are part of a typical community
of knowledge, and both are, by community standards, said to
know that the earth revolves around the sun. This holds even
though the non-expert does not know who the experts are, does
not remember how she came to have that knowledge, and does
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not know what observations and reasoning show that our solar
system is heliocentric.

Outsourcing in some circumstances can make us vulnerable
to a lack of valuable knowledge. Henrich (2015) describes how
an epidemic that killed off many older and more knowledgeable
members of the Polar Inuit tribe resulted in the tribe losing
access to much of its technology: Weapons, architectural features
of their snow homes, and transportation (e.g., a particular type
of kayak). Knowledge about how to build and use these tools
resided in the heads of those lost members. Without them,
the remaining members of the tribe were unable to figure out
how to build such tools, and were forced to resort to less
effective means of hunting, staying warm, and traveling. The
issue here is not collaboration. Tool users were not cognitively
coupling with the tool providers. Rather, they were accessing and
making use of the latter’s knowledge without acquiring it, in this
case outsourcing both the expertise and the production of vital
artifacts. Assumptions that individuals had been able to rely on
(i.e., that they would have access to a tool for obtaining food)
no longer held. The problem was that the younger members of
the tribe had outsourced their knowledge to others who were
no longer available. Anthropologists have documented numerous
cases of loss of technology through death of the possessors
of a society’s specialized knowledge, or through isolation from
formerly available knowledge sources (e.g., Henrich and Henrich,
2007). By the same token, a community can add new expertise by
admitting (or forcibly adding) new members with special skills
(e.g., Weatherford, 2005).

Sometimes we are aware that we are outsourcing, for instance
when we explicitly decide to let someone else do our cognitive
work for us (as one lets an accountant file one’s taxes). In such
cases, we explicitly build a pointer, a mental representation that
indicates the repository of knowledge we do not ourselves fully
possess and that anchors the shallow or incomplete knowledge
we do possess. We have a pointer to an accountant or tax lawyer
(whether to a specific person or just to a “tax preparer to be
determined”), just in case we are audited.

But often we outsource without full awareness, acting as if we
have filled gaps in our knowledge even though no information has
been transferred. Our use of words is often licensed by knowledge
only others have, our explanations often appeal to causal models
that sit in the heads of scientists and engineers, and our political
beliefs and values are inherited from our spiritual and political
communities. More generally, people’s sense of understanding,
reasoning, decision-making, and use of words and concepts are
often outsourced to others, and often we do not know whom we
are outsourcing to, or even that we are doing it. For instance,
when we say “they landed on the moon,” most of us have little
idea who they refers to, and often lack conscious awareness
that we don’t know who they were. Or we say, “We know that
Pluto is not strictly speaking a planet.” We know that much
on reliable grounds. What little we know is anchored by the
possibility of transmission (direct or perhaps very indirect) from
communal experts; specifically, the scientists who set the criteria
for planethood, and who know whether Pluto qualifies and on the
basis of what evidence. Again, it is highly advantageous to be able
to outsource – and in fact necessary – since we can’t all master

full knowledge of all the crafts, skills, theoretical knowledge, and
up-to-date-details of local situations that we need or might need
to navigate our environment.

Moreover, people believe they understand the basics of
helicopters, toilets, and ballpoint pens even when they do
not (Rozenblit and Keil, 2002). Fortunately, others do. In
addition, the knowledge that others do increases our sense of
understanding not only of artifacts, but of scientific phenomena
and political policies (Sloman and Rabb, 2016; Rabb et al.,
2019). In fact, just having access to the Internet also increases
our sense of understanding even when we are unable to use
it (Fisher et al., 2015). These findings cannot be attributed
to memory failures because, in the vast majority of cases, the
relevant mechanisms were never understood. And the studies
include control conditions to rule out alternative explanations
based on self-presentation effects and task demands. What they
show is that mere access to information increases our sense of
understanding. This suggests our sense of understanding reflects
our roles as members of a community of knowledge, and suggests
that we maintain pointers to or placeholders for information
that others retain. The fact that access causes us to attribute
greater understanding to ourselves implies that our sense of
understanding is inflated. This in turn implies that we fail to
distinguish those pointers or placeholders from actual possession
of information; we don’t know that we do not really know how
artifacts like toilets work, but the awareness that others do leads
us to think we ourselves do, at least until we are challenged
or we land in a situation demanding genuine expertise (Call
the plumber now!).

More evidence for this kind of implicit outsourcing comes
from work on what makes an explanation satisfying. People
find explanations of value even if they provide no information,
as long as the explanations use words that are entrenched in
a community. For example, Hemmatian and Sloman (2018)
gave subjects a label for a phenomenon (e.g., “Carimaeric”) and
told them that the label referred to instances with a specific
defining feature (e.g., stars whose size and brightness varied
over time). Then the label was used as an explanation for
the defining property (someone asked why a particular star’s
size and brightness varied over time and was told that it’s
because the star is Carimaeric). Subjects were asked to what
extent the explanation answered the question. They answered
more positively if the label was entrenched within a community
than if it was not. Similar findings have been obtained using
mental health terms, even among mental health professionals
(Hemmatian et al., 2019). In these cases, there is no coupling
between the unidentified community members who use the
explanation and the agent. There is merely the heuristic that
the fact that others know increases my sense of understanding.
This heuristic is so powerful that it operates even when others’
knowledge has no informational content.

Some of the clearest evidence for this heuristic comes from
the political domain. We often take strong stances on issues
that we are ignorant about. These authors believe strongly in
anthropogenic climate change despite being relatively ignorant of
both the full range of evidence and the mechanism for it. We rely
on those scientists who study such things. Political issues tend
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to be complex and we need to rely on others, at least in part,
to form and justify our opinions. In a representative democracy,
for instance, we try to be informed on key issues, but rely on
specialized committees to investigate matters more thoroughly.
For better or for worse, individual support for policies, positions,
and leaders comes largely from partisan cues rather than non-
partisan weighing of evidence (Cohen, 2003; Hawkins and Nosek,
2012; Anduiza et al., 2013; Han and Federico, 2017; Van Boven
et al., 2018). A growing body of evidence indicates that partisan
cues determine how we understand events (Jacobson, 2010;
Frenda et al., 2013; but see Bullock et al., 2015) and even whether
we take steps to protect ourselves from infectious disease (Geana
et al., 2021)1. Marks et al. (2019) show that people use partisan
cues to decide whose advice to follow in a competitive game
even when they have objective evidence about who the better
players are. When evaluating data, we are often more concerned
with being perceived as good community citizens by acceding
to our community’s mores than we are with making accurate
judgments (Kahan et al., 2011). Such a bias has a rationale if it
maintains community membership, and membership is deemed
more important than being correct.

Outsourcing knowledge, including the choice of whom to
outsource to, is a risky affair. One must estimate what the
source does and does not know, their ability to transmit
information, and whether their interests align with yours.
One must determine how much to trust potential sources of
information. Outsourcing, whether influenced by partisan bias or
not, is a direct consequence of the human need and tendency to
construct pointers to knowledge that other people store.

The basic features of how a community holds knowledge—
relative ignorance associated with epistemic pointers to
expertise—apply to both social information and disinformation,
to well-grounded knowledge, as well as fervently held nonsense
perpetrated by unreliable sources. Community norms about what
counts as knowledge, and as a reliable pathway of knowledge
transmission, may vary greatly: One subculture will require,
for some subject matters, scientific expertise on the part of an
ultimate source, along with reliable paths of transmission of
scientific knowledge, paths often institutionalized, as with schools
or trade unions and their certifications. Another subculture
will consider God the ultimate source of understanding
in important areas, and divine revelation, or the word
of officially ordained spokespersons, as appropriate paths
of dissemination.

Thus the role of our social networks goes beyond actively
sharing information. We use them to represent and process
information, such that the network itself serves as an external
processor and storage site. We trust others to maintain
accurate statistics, to distil news, to total our grocery bill,
help us fill out our tax forms, and to tell us what position
to take on complex policy. In all such tasks, representation
and processing of essential information does not in general
occur in individual brains. They do not occur in individual

1Geana, M., Rabb, N., and Sloman, S. A. (2021). Walking the Party Line: The
Growing Role of Political Ideology in Shaping Health Behavior in the United States.
Manuscript under review.

brains even if we allow that those brains are coupled within
a social network. Representation and processing occur over a
larger portion of an encompassing network, and potentially
over the entire network, branching out to include our
sources, our sources’ sources, and any intermediaries such
as books, the internet, or other people, along the paths
of transmission.

OUTSOURCING IN COGNITIVE
NEUROSCIENCE: CONSTRUCTING
EPISTEMIC POINTERS

To explain phenomena associated with outsourcing, we cannot
appeal to coupling, because coupling requires specification of
who is coupling with whom. To explain outsourcing, cognitive
neuroscientists must appeal to a different theoretical construct:
Neural pointers or placeholders, representations in the brain
that act as pointers to knowledge held elsewhere. The work
in cognitive neuroscience that most directly addresses the
mechanisms of outsourcing concerns how the representation
of knowledge relates to affiliation, on whom we trust to retain
reliable knowledge. Putting aside the role of trust in institutions,
social neuroscience research examining trust in more personal
contexts indicates that trust and cooperation are mediated by a
network of brain regions that support core social skills, such as
the capacity to infer and reason about the mental states of others
(for reviews, see Adolphs, 2009; Rilling and Sanfey, 2011). This
work provides the basis for future research investigating how the
neurobiology of trust contributes to the representation and use
of outsourcing in collective cognition. To do so, however, the
field will need to move beyond the use of “isolation paradigms”
in which subjects observe others whom they might or might
not then trust (Becchio et al., 2010). In such cases, subjects
neither participate in direct social interaction with potential
objects of trust nor outsource their own reasoning to others
(Schilbach et al., 2013). Such observation is seldom the sole
basis of epistemic pointers, and often is not involved at all.
Instead, pointers typically depend on cues that reflect how
third parties or the community as a whole regard a potential
source. This can involve informal gossip or more institutionalized
“rating systems” and reviews, where the latter will bring us
back to social institutions. So there is a vast arena, virtually
unexplored by social neuroscience, starting with the origin and
nature of the neural mechanisms that serve as pointers to
communal knowledge.

THE IRREDUCIBILITY OF THE
COMMUNITY OF KNOWLEDGE

The implication of our discussion is that many activities that
seem solitary—like writing a scientific paper—require a cultural
community as well as the physical world now including the
Internet (to ground language, to support claims, to provide
inspiration and an audience, etc.). Does this mean there is
no solely neurobiological representation for performing such
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tasks? Perhaps neurobiological reduction can be accomplished
by giving up on the idea of reduction to a single brain, and
instead appeal to reduction to a network of brains (Falk and
Bassett, 2017). Perhaps a broader view of cognitive neuroscience
as the study of information processing in a social network of
neural networks can overcome the challenge posed for cognitive
neuroscience by the community of knowledge. Can networks of
individuals processing together be reduced to networks of brains
interconnected by some common resource, perhaps some form
of neural synchrony?

We believe the answer is “no.” For one thing, the relevant
social network is frequently changing, as is membership in groups
addressing different problems (for climate change, it involves
climate scientists but for predicting football scores, it involves
football fans). So there are no fixed neurobiological media to
appeal to. This might seem to be irrelevant, as the goal of
cognitive neuroscience is not to reduce cognition to a group of
specific brains. Rather, one studies specific brains in order to
find general patterns of activity that occur in different brains.
But this is precisely the problem; namely, the general pattern
may not capture specific properties exhibited by the individual.
Generalization from the group to the individual depends on
equivalence of the mean and variance at each level; an equivalence
that has increasingly been called into question (Fisher et al.,
2018). The same problem will almost certainly arise with
generalizations about multiple groups’ performance of a given
task. Indeed the problem may be much worse, as changing group
membership may introduce even greater variation across groups
of the patterns of interaction that produce a group’s performance.

Changes in membership will not just mean changes in the
attributes and resources the members bring to the group, but
also – and more strikingly – potentially very large differences
in the way members interact, even if they happen to produce
the same result (e.g., if they forecast the same football score as
another group whose members interacted in their own, different
way in arriving at that prediction). Studies of group dynamics
and organizational behavior recognize that many factors affect
the efficiency and result of group collaboration: the relative
dominance of discussion by some particular member(s), the
timidity of others, the motivations of members, the level of
experience and expertise of the members, the level of relevant
knowledge about the particular teams involved, the stakes
involved in making a good prediction, time limitations, the
degree of synergy among team members, size of the group, form
of discussion used (Hirst and Manier, 1996; Cuc et al., 2006),
demographic makeup of the members, and so on. Different fans,
or even the same fans on different occasions, can arrive at the
same score forecasts for the same game by an unlimited number
of patterns of interaction. This not only produces the problem
of multiple realization (of a type of group performance on a
given task) on a grand scale, but indicates that there will be no
tolerably definite and generalizable pattern of group dynamics
that applies to particular groups addressing the same given task.
Hence there is no one general pattern, or even manageable
number of patterns, to be reduced to neuroscience.

On a more positive note, research in group dynamics
and organizational behavior has, as just noted, identified

numerous factors that enter into group performance. So cognitive
neuroscience (social and individual) can, by drawing on that
research, investigate the neural underpinnings of types of factors
such as trust, mind-reading capacities, and many others that drive
different forms of group interaction, and this will be essential for
an account of group cognition if such an account is ever to be had.
But that is a far cry from reducing group behavior to any variety
of neuroscience.

GROUP INTELLIGENCE AND
INVENTIVENESS

Anthropological and psychological research, in the lab and in
the field, strongly reinforces the point: group intelligence and
group inventiveness are not just the properties of an individual
(such as the smartest or most inventive member of the group),
or an average of the members’ properties, or an aggregate of the
members’ individual cognitive properties (Woolley et al., 2010).
They are sometimes quite surprising properties that emerge from
interactions among members of the group, in some cases as a
matter of learning, sometimes just from a repeated exchange
of ideas, sometimes from a group of initially equal members,
sometimes from a group with one or two initial stand outs. The
effect of group interaction can be positive or negative depending
on the motivations, personal traits, group camaraderie and
various situational constraints (e.g., time limitations, availability
of paper and pencil, food, and rest).

The moral is that examination of the brains of group members
will not reveal or predict precisely how the group as a whole
will perform, nor through what complex pattern of interaction or
mechanisms it arrived at a given result. Even in a relatively small
group there will be an enormous number of interactions that
might produce any given result, and that number will increase
exponentially with any increase in group size, not to mention the
introduction of other potentially influential factors.

Thus there is no way to identify any particular neurobiological
pattern (or manageably small number of patterns) across brains
as the way(s) in which groups produce new knowledge, or even
the way the same group functions on different occasions or with
regard to different sorts of cognitive tasks. Put another way, even
if we could find out through observation, self-report, or fMRI
conducted in everyone, that specific members of a given group
engaged in certain specific types of interaction with other specific
members, and we were able to reduce that to neurobiological
terms, we would not be able to say more than that this is one
of innumerable ways a particular group result might be realized
in a particular social and physical context. An open-ended list of
possible realizations at the psychological or behavioral level does
not support a reduction of this bit of psychological description
to cognitive neuroscience even if it tells us a lot about what goes
into that performance. Note once again that we need functional
descriptions, which will themselves be complex and predictive of
behavior in only a limited way. Functional descriptions will, as
with individual psychology and neuroscience, provide essential
guidance and support for social neuroscience, and potentially
draw on insights from neuroscience.
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JUSTIFICATION AND COMMUNAL
NORMS

We saw earlier that within a community of knowledge most
of what we know is anchored in the heads of people doing
scientific, technical, and other sorts of intellectual work, or in
the knowhow of expert mechanics, electricians, potters, and so
on. Thus, most of an individual’s knowledge is just more or
less shallow understanding or very limited practical knowhow,
along with a more-or-less precise pointer to expert knowledge
(Rabb et al., 2019). For instance, we know that “smoking
causes lung cancer” but most of us are not sure why. So the
neurobiological representations under study are really mostly
pointers to knowledge that experts have or to pathways of
transmission by which we can reliably access that information.
Hence, the network that anchors much of our knowledge about
the causal structure of the world is actually a network that
sits across brains, not within a brain: It is not an aggregate of
brain contents, but a pattern of interactions among brains with
certain contents. Because it is the contents that are important,
and not the specific brains, there are an unlimited number of
patterns of interactions that would generate and maintain the
same causal beliefs.

But the actual justification for those beliefs is more systematic
than that. We have seen that it depends on community norms for
attributing knowledge and associated institutions of knowledge
certification. Within a given community, whatever complies
with those norms qualifies as knowledge. Some communities
may have rather eccentric norms, and regard some things as
general knowledge that another community regards as wild-
eyed conspiracy theory (issues of fake news and slander come to
mind). Accordingly, an account of most of our knowledge will
need to include the role of such social institutions and norms.
I can legitimately claim to know that the sun does not revolve
around the earth, that anthropocentric climate change is real, that
the Pythagorean Theorem is true, and a great many other things
I “learned in school,” even if I cannot myself produce proofs for
any of them, or even say precisely what they amount to (Note that
this is different from the case in which I could produce a proof if I
sat down and tried to work one out). I know these things because
they are known by recognized knowledge sources and I got them
from socially recognized reliable transmitters of knowledge. This
holds even if I can’t now remember where I learned it and am not
capable of coming up with the evidence or proofs that sit in the
heads of others.

My indirect and usually very superficial knowledge is
anchored in the social network of experts and paths of
transmission. Similarly, even the knowledge of experts is typically
anchored in large part in that of other experts, as architects rely
on results in materials science, industrial design, designers and
manufacturers of drafting tables and instruments, and so on.
Again, an enormous amount of anyone’s knowledge exists only
by way of a larger community of cognizers and their interactions.
These aspects of knowledge—including knowledge worked out in
the privacy of my study or laboratory—are “knowledge” only by
virtue of being anchored in a larger social network, independently
of the particular neurobiology they are grounded in.

Consider a team of researchers writing a manuscript together.
A complete account of collaboration and outsourcing involved
in joint manuscript writing would have to include not only the
brains of the authors, but also those whose evidence or testimony
provides the support for claims made in the manuscript. If the
manuscript presents findings summarizing a report, then the
network would have to include the brains of everybody who wrote
the report, or perhaps only those who contributed relevant parts.
But how would you decide whose brain is relevant? It would
depend on whether relevant knowledge was referenced in the
manuscript. In other words, the structure of the knowledge is
necessary to determine the relevant source and corresponding
neural network to represent that knowledge. The knowledge
would therefore not be reducible to a neural network, because
identifying the network would depend on the knowledge.

Anyone attempting to describe the cross-brain neural network
involved in writing a given manuscript, in the relevant processing
and transmission (or lack thereof) of various sorts of information
from multiple diverse sources, would not know which brains
to look at, or what to look for in different brains, without
already being able to identify how each bit of information in the
manuscript is grounded. But even if we could identify a posteriori
the network of brains or profiles of brain activity pertinent to
a given piece of collaborative writing, we would be no further
in explaining how or why the article came to be written. The
reason that some ideas enter into a representation is because they
elaborate on or integrate the representation in a more or less
coherent way. One reason a report gets cited in a manuscript is
that it supports or illustrates some informational point. If there is
resonance among neural networks, it is because the information
they represent is resonant; the neural networks are secondary.
The knowledge held by the community is driving; any emergent
neural networks are coming along for the ride.

At the beginning of this essay, we stated three widely-held
assumptions in cognitive neuroscience that are inconsistent with
facts about what and how people know. Our aim is not to
diminish the important contributions of cognitive neuroscience.
The assumptions we stated do hold for a variety of critical
functions: Procedural knowledge is held in individual brains
(or at least individual nervous systems in interaction with the
world), and people obviously retain some symbolic knowledge
in their individual brains. Moreover, common sense is enough
to indicate that knowledge at a basic-level (Rosch, 1978) is
regularly transferred between individuals. But far more symbolic
knowledge than people are aware of is held by others –
outside the individual’s brain. Thus, the purpose of much
of cognitive neuroscience, to reduce knowledge to the neural
level, is a pipe dream. The fact of communal knowledge
creates a key limitation or boundary conditions for cognitive
neuroscience.

SUMMARY AND IMPLICATIONS

We have elaborated a theory of the community of knowledge,
identifying as primary components outsourcing and
collaboration, along with an hypothesis about how we construct
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BOX 1 | Cognitive neuroscience meets the community of knowledge.
Our understanding of how the world works is limited and we often rely on experts for knowledge and advice. One way that we rely on others is by outsourcing the
cognitive work and task of reasoning to experts in our community. For example, we believe that “smoking causes lung cancer” even though many of us have little
understanding of why this is the case. Here, we simply appeal to knowledge and expertise that scientists within our community hold.

And we behave in a manner that is consistent with knowing this information. We believe that smoking would elevate the risk of lung cancer; if a person were
diagnosed with lung cancer, we would suppose they were a smoker; and we choose not to smoke because of the perceived cancer risk. But, again, an explanation
for why “smoking causes lung cancer” is something that most of us do not know or understand. Our limited understanding simply relies on experts in the community
who have this knowledge; we outsource the cognitive task of knowing and rely on experts for advice.

It may appear that this example is a special case and that we rarely outsource our knowledge to others. But, in fact, we do this all the time. Think of how well
people understand principles of science, medicine, philosophy, history, and politics, or how modern technology works. We often have very little knowledge ourselves
and instead rely on others to understand, think, reason, and decide. This reliance reflects how our individual beliefs are grounded in a community of knowledge.

By appealing to the community, we can ground our limited understanding in expert knowledge, scientific conventions, and normative social practices. Thus, the
community justifies and gives meaning to our shallow knowledge and beliefs. Without relying on the community, our beliefs would become untethered from the social
conventions and scientific evidence that are necessary to support them. It would become unclear, for example, whether “smoking causes lung cancer,” bringing into
question the truth of our beliefs, the motivation for our actions, and no longer supporting the function that this knowledge serves in guiding our thought and behavior.
Thus, to understand the role that knowledge serves in human intelligence, it is necessary to look beyond the individual and to study the community.

In this article, we explore the implications of outsourcing for the field of cognitive neuroscience: To what extent is cognitive neuroscience able to study the
communal nature of knowledge? How would standard neuroscience methods, such as fMRI or EEG, capture knowledge that is distributed within the community?
In the case of outsourcing, knowledge is not represented by the individual and knowledge is not transferred between individuals (i.e., it is the expert(s) who hold the
knowledge). Thus, to study outsourcing, cognitive neuroscience would need to establish methods to identify the source of knowledge (i.e., who has the relevant
information within the community?) and characterize the socially distributed nature of brain network function (e.g., what is the neural basis of outsourcing and the
capacity to refer to knowledge held in the community?).

In this article, we identify the challenges this poses for cognitive neuroscience. One challenge is that representing the source of expertise for a given belief is not
straightforward because expertise is time and context dependent, may rely on multiple members of the community, and may even depend on experts that are no
longer alive. Another challenge is that outsourcing may reflect emergent knowledge that is distributed across the community rather than located within a given expert
(e.g., knowledge of how to operate a navy ship is distributed across several critical roles; Hutchins, 1995). Standard methods in cognitive neuroscience, such as
fMRI or EEG, are unable to directly assess knowledge distributed in the community because they are limited to examining the brains of individuals (or, at most, very
small groups).

Thus, we argue that the outsourcing of knowledge to the community cannot be captured by methods in cognitive neuroscience that attempt to localize knowledge
within the brain of an individual. We conclude that outsourcing is a central feature of human intelligence that appears to be beyond the reach of cognitive
neuroscience.

epistemic pointers to potential sources of knowledge, whether
those sources be people to whom we outsource knowledge
or with whom we might collaborate. Our hypothesis places
limits on the power of cognitive neuroscience to explain mental
functioning (Text Box 1). Cognitive neuroscience has often
focused on tasks that, at least on their face, are performed by
individuals (cf., Becchio et al., 2010; Schilbach et al., 2013). But
the limited predictive power of these tasks for human behavior
may reflect the fact that these tasks and methods do not capture
normal human thinking and may explain some of the limited
replicability and generalization of fMRI findings (Turner et al.,
2019). People devote themselves to tasks that involve artifacts
and representational media designed by other people, to issues
created by other people, to ideas developed by and with other
people, to actions that involve other people, and of course to
learning from sources outside themselves. None of these tasks
are amenable to a full accounting from cognitive neuroscience.

Furthermore, our appeal to collective knowledge serves
to reinforce the multiple realizability problem (Marr, 1982),
allowing functional states to operate over complex and dynamic
social networks. Whatever neural representations correspond to
a bit of knowledge, they are tied to my belief by virtue of a
functional relation (a placeholder in my brain that expresses the
equivalent of “experts believe this!”), along with the existence
of a reliable pedigree for that belief, not simply because my
brain is part of a larger neural network. Functional states
reflect communal knowledge. Because the human knowledge
system is distributed across people, the parts of it that

are anchored in others’ knowledge are beyond the reach of
cognitive neuroscience.

In sum, the community of knowledge hypothesis implies that
it’s a mistake to think of neurobiology as sitting beneath and
potentially explaining the cognition that constitutes the emergent
thinking in which groups and communities engage. And that’s
most thinking. It also implies that components of that socially
distributed cognitive system cannot in principle be defined in
terms of or eliminated in favor of neurobiology.

Notice that our argument against reductionism has nothing
to do with the nature of consciousness, the target of many
such arguments (Searle, 2000; Dennett, 2018). In our view,
this is a virtue because consciousness has escaped serious
scientific analysis and therefore provides little ground for a
serious scientific argument. The representations entailed by
collective cognition, in contrast, can be analyzed. In principle,
the representations involved in (say) designing a complex object
may be abstract in the sense that they reflect interactions among
knowledge stored in multiple brains, as well as the physical and
virtual worlds, but they are describable nonetheless. As such, the
emergent features of human cognition that we are advocating
are well-documented and well-established as subjects of fruitful
scientific research.

Our argument does have positive implications about how
to make progress in cognitive neuroscience. To mention only
some of the most basic of these, it suggests that our models
of information processing for most tasks should focus on
communal, not individual, representations. Because most of
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what we know and reason about is stored outside our heads,
our models should not be exclusively about how we represent
content, but also about how we represent pointers toward
knowledge that is housed elsewhere. Because our actions are joint
with others, models of information processing require not only a
notion of intention, but a notion of shared intention (Tomasello
et al., 2005). Finally, models of judgment that apply to objects of
any complexity need to address how we outsource information,
not just how we aggregate beliefs and evidence.

CONCLUSION

The goal of this article is to focus cognitive neuroscientists
on important facts about cognitive processing that have
been neglected, and that, if attended to, would facilitate
the project of cognitive neuroscience. Greater understanding
of how people collaborate would help reveal how neural
processing makes use of group dynamics and affiliation, and
it would support a more realistic model of mental activity
that acknowledges individual limitations. Greater understanding
of how people outsource would help reveal the actual nature
and limits of neural representation, and shed light on how
people organize information by revealing how they believe
it is distributed in the community and the world. And
greater appreciation of the emergent nature of knowledge
in society would help us recognize the limits of cognitive
neuroscience, that the study of the brain alone cannot
reveal the representations responsible for activities that involve
the community. Thus, we join the call for a new era in
cognitive neuroscience, one that seeks to establish explanatory
theories of the human mind that recognize the communal
nature of knowledge and the need to assess cognitive and

neural representations at the level of the community –
broadening the scope of research and theory in cognitive
neuroscience by recognizing how much of what we think depends
on other people.
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While machine learning techniques have been transformative in solving a range of
problems, an important challenge is to understand why they arrive at the decisions
they output. Some have argued that this necessitates augmenting machine intelligence
with understanding such that, when queried, a machine is able to explain its behaviour
(i.e., explainable AI). In this article, we address the issue of machine understanding from
the perspective of active inference. This paradigm enables decision making based upon
a model of how data are generated. The generative model contains those variables
required to explain sensory data, and its inversion may be seen as an attempt to explain
the causes of these data. Here we are interested in explanations of one’s own actions.
This implies a deep generative model that includes a model of the world, used to infer
policies, and a higher-level model that attempts to predict which policies will be selected
based upon a space of hypothetical (i.e., counterfactual) explanations—and which can
subsequently be used to provide (retrospective) explanations about the policies pursued.
We illustrate the construct validity of this notion of understanding in relation to human
understanding by highlighting the similarities in computational architecture and the
consequences of its dysfunction.

Keywords: active inference, explainable AI, insight, decision making, generative model, understanding

INTRODUCTION

How would we know whether a machine had understood why it chose to do what it did?
Simplistically, we might expect that, when queried, it would be able to communicate an explanation
for its actions. In this article, we take this to be our operational definition ofmachine understanding
(Yufik, 2018). Based on this definition, we can break the problem down into two parts. The first is
that a machine must be able to infer why it has taken the actions it has. The second is that it must
be able to act to communicate this inference when queried. In thinking about the first—explaining
behaviour—it is useful to think about how we go about explaining anything. In the philosophy
of science, there is considerable debate about the notion of explanation (Craik, 1952; Bird, 1998;
Psillos, 2002), which is beyond the scope of this article. Our use of the term is largely coherent with
the idea of ‘‘inference to the best explanation’’ that is common in Bayesian treatments of perception
(Helmholtz, 1866; Gregory, 1980) and in philosophy (Lipton, 2017) and proceeds as follows.
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As scientists, we formulate a series of alternative hypothetical
explanations. Each hypothesis entails different predictions about
the data that we have measured. By comparing our predictions
with those data, we assess which hypothesis is most congruent
with our measurements. Translating this same process to
explaining behaviour, the implication is that we need a space of
hypotheses representing reasons1 for behaviour, each of which
predicts an alternative course of action. The process of explaining
our actions2—i.e., having insight into our decisions—then
becomes an inference problem. Given some observed sequence
of choices, which explanations best fit those data?

This inferential perspective on decision-making is central to
active inference (Friston et al., 2014; Parr et al., 2022), which
frames perception and action as dual mechanisms that jointly
improve our inferences about the causes of our sensory data.
While perception is the optimisation of our beliefs to better fit the
data we observe, action changes the world to better fit our beliefs.
When the internal models required to draw these inferences
are temporally deep (Friston et al., 2021), they must include
the consequences of the sequential decisions we make while
engaging with our environment. Active inference offers a set of
prior beliefs about these decisions that represent explanations
for behaviour. These explanations divide into three types (Da
Costa et al., 2020). First, we select decisions whose sensory
consequences cohere with the data anticipated under our model
(Åström, 1965; Pezzulo et al., 2018). Second, our choices provide
us with data that resolve our uncertainty about our environment
(Mirza et al., 2018). Third, the context in which we find ourselves
may bias us towards some actions and away from others (Pezzulo
et al., 2013; Maisto et al., 2019). The first of these prompts us to
head to a restaurant when our internal model predicts satiation
when we feel hungry. The second leads us to survey the menu, to
resolve our uncertainty about the food on offer. The third biases
us towards ordering the same meal as on previous visits to the
restaurant. Together, these account for exploitative (preference-
seeking), explorative (curiosity-driven), and (context-sensitive)
habitual behaviour. The last of these turns out to be particularly
important in what follows, as it allows us to construct a narrative
as to why we make the choices we do.

In what follows, we consider a simple, well-validated, task that
incorporates both explorative, exploitative, and context-sensitive
elements (Friston et al., 2015; Chen et al., 2020). It is based upon a
T-maze paradigm, in which we start in the centre of the maze. In
either the left or the right arm of the T-maze, there is a preferred
(i.e., rewarding) stimulus whose position is initially unknown.
In the final arm, there is a cue that indicates the location of
the rewarding stimulus. To solve this maze and find the reward,
we must decide whether to commit to one of the potentially
rewarding arms or to seek out information about which is most
likely to be profitable before exploiting this information. The
twist here is that, after exposure to the maze, we follow up with

1Note that not all hypotheses represent reasons for doing something, and the idea
of reason does not follow directly from the scientific analogy. Central to this article
is the idea that the hypotheses we are interested in can be translated into a verbal
explanation that can be recognised as a reason for behaviour.
2Or the process of a machine or artificial agent explaining its actions.

a query. This takes the form of an instruction to explain either
the first or the second move made. By communicating the reason
for the action taken, the agent demonstrates a primitive form of
insight into their own behaviour.

This touches upon questions about insight into our actions.
This concept is important in many fields, ranging from
metacognition (Fleming and Dolan, 2012) to cognitive neurology
(Ballard et al., 1997; Fotopoulou, 2012) and psychiatry (David,
1990), where some syndromes are characterised by a patient
exhibiting a lack of insight into their own behaviour. However,
the term ‘‘insight’’ is often used to mean subtly different things
and it is worth being clear upon the way in which we use the
word here. Note that this is distinct from insight in the sense of
the ‘‘aha moment’’—where a different way of thinking about a
problem leads to a clearer understanding of its solution (Kounios
and Beeman, 2014; Friston et al., 2017a). In this article, we refer
to insight of a different sort. Specifically, how do we come to
understand the reasons for our own decision making? To the
extent that veridicality is a useful concept here, insight can be
regarded as a veridical inference about the causes of behaviour.

The hypothesis implicit in this article is that insight is
confabulation, but that this confabulation may be constrained
by sensory data to a greater or lesser extent. This provides
a behavioural complement to the idea that perception is
constrained hallucination (Paolucci, 2021). More precisely, both
perception and explanation are inferences. In the extreme case
that they are not constrained by data, we call them hallucination
or confabulation, respectively. This perspective is endorsed by
the philosophical position that, just as we must draw inferences
about why other people behave the way they do, our explanations
for our own behaviour are also inferred (Carruthers, 2009,
2011). However, we can go further than this. Interestingly, our
retrospective (or confabulated) explanations are not innocuous
but can change our beliefs about what we did and why.
Specifically, hearing our own explanations provides further
evidence for the policies we reported, which therefore become
more plausible. This suggests an adaptive role for insight in
improving our decision making, in addition to the benefits of
being able to communicate explanations for behaviour to others.

In what follows, we briefly review the notion of a generative
model and active inference. We then outline the specific
generative model used throughout this and illustrate the
behaviour that results from its solution through numerical
simulations. Finally, we offer a summary of the results, in
addition to a discussion of the relationship between the structure
of these inferences in relation to the neuroanatomy of human
cognition.

THE GENERATIVE MODEL

Under active inference, the generative model plays a central
role in accounting for different sorts of behaviour. It is the
implicit model used by a brain (or synthetic analogue) to
explain the data presented by the environment. However, it is
more than this. It also represents beliefs about how the world
should be—from the perspective of some (biological or synthetic)
creature (Bruineberg et al., 2016; Tschantz et al., 2020). This
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means the generative model guides both a creature’s perception
and its actions. Formally, fulfilling these objectives requires
scoring the quality of the model as an explanation of data and
the quality of the data in relation to the model. The two qualities
may be scored using a single objective function: the marginal
likelihood or Bayesian model evidence. Simply put, the marginal
likelihood scores the probability of observing some measured
data given the model. That this depends upon both model and
data implies it can be maximised either by modifying the model
or by acting to change the data.

In practice, the marginal likelihood is often very difficult to
compute. However, it can be approximated by a negative free
energy functional (a.k.a., an evidence lower bound or ELBO).
This free energy is constructed in relation to a variational
(approximate posterior) distribution that maximises the free
energy when it is as close as possible to the posterior probability
of the hidden states in a model given measured data (Beal,
2003; Winn and Bishop, 2005; Dauwels, 2007). Some accounts
of neuronal dynamics rest upon the idea that the activity in
populations of neurons parameterises this variational density,
and that the evolution of this activity ensures the alignment
between the variational and exact posterior distributions (Friston
and Kiebel, 2009; Bogacz, 2017; Parr et al., 2019; Da Costa
et al., 2021). This means the role of a generative model in
active inference is as follows. It determines the dynamics internal
to some system (e.g., neuronal dynamics in the brain), and
actions that result from these dynamics, via a free energy
functional that approximates the marginal likelihood of the
model. The maximisation of a marginal likelihood is sometimes
characterised as ‘‘self-evidencing’’ (Hohwy, 2016).

We now turn to the specific generative model employed in
this article. This is depicted in Figure 1. It is a deep temporal
model (Friston et al., 2017b), in the sense that it evolves
over two distinct timescales. Each level factorises into a set of
factors [reminiscent of the idea of neuronal packets (Yufik and
Sheridan, 1996)] that simplify the model—in the sense that we
do not need to explicitly represent every possible combination
of states (Friston and Buzsaki, 2016). At the faster (first) level,
the model factorises into maze states and linguistic states. The
former describes a T-maze in terms of two state factors (Friston
et al., 2015). These are the agent’s location in the maze, and
the context—i.e., whether the reward is more likely to be in
the left arm or the right arm. The location is controllable by
the agent, in the sense that transitions between locations from
one timestep to the next depend upon the choices it selects.
These alternative transitions are indicated by the arrows in the
location panel. Note that the left and right arms are absorbing
states—meaning that once entered, the agent cannot leave these
locations. In contrast, the context stays the same over time
and cannot be changed through action. The allowable policies
that the agent can select between are characterised in terms of
sequences of actions (i.e., transitions). The first two moves across
all the policies cover every possible combination of two moves
(transitions to a given location), recalling that the absorbing
states ensure that if the first move is to go to the left or right
arm, the second move must be to stay there. The maze states
predict two outcomes. The first is an exteroceptive outcome,

that indicates where the agent is in the maze and, if at the cue
location, whether the reward is most likely in the left or the
right arm.

The second outcome modality pertains to the reward. Under
active inference, there is nothing special about a rewardmodality:
it is treated like any other observation. However, all outcome
modalities can be assigned prior probability distributions that
specify how likely we are to encounter the different outcomes
in that modality. For instance, the generative model employed
by a mouse might assign a relatively high prior probability to
encounter cheese, in virtue of the fact that mice will act in
such a way that they obtain cheese. For this reason, these prior
probabilities can be regarded as prior preferences. A rewarding
outcome is then simply a preferred or anticipated outcome. In
other words, an outcome is rendered rewarding by the agent’s
anticipation of encountering it—and its actions to fulfil this
expectation.

In our generative model, we include three levels of reward.
The first is the attractive outcome (the reward) which is assigned
a high relative prior probability. The second is an aversive
outcome, which is assigned a low prior probability such that
our agent believes it will act to avoid encountering it. The
final outcome is a neutral outcome, with an intermediate
prior preference. Depending upon the context, the attractive or
aversive outcomes are encountered in the left and right arms
of the maze, with the neutral outcome found elsewhere. The
construction of the maze states is identical to that presented in
previous articles, including (Friston et al., 2015, 2017; Chen et al.,
2020).

The linguistic states are involved in determining the sentences
that will be heard when the behaviour is queried or when
responding to the query (i.e., the heard word and spoken word
outcome modalities in Figure 1, respectively). As in previous
applications of active inference to linguistic communication,
these states factorise into syntactic structures and the semantics
that can be expressed through this syntax (Friston et al., 2020).
The syntactic states take the form of words and placeholder
words associated with a set of transition probabilities—which
determine which word (or placeholder) follows each other
word. For instance, the word ‘‘Please’’ is followed by the word
‘‘explain.’’ Depending upon the first word in the sequence,
different syntactic structures appear. If we start with the word
‘‘Please’’, the syntax is consistent with a query. If starting with the
word ‘‘I’’, it is an answer. In addition, there is a silent syntactic
state associated with solving the maze. When the syntactic state
is anything other than this silent state, the maze outcomes
are set to be in the central location with a neutral reward.
This precludes maze-solving (i.e., navigational) behaviour while
the agent is attempting to explain its behaviour; and can be
regarded as a form of sensory attenuation—as the maze states are
functionally disconnected from their associated outcomes during
the explanation. The semantic states are the words that can be
slotted into the placeholders in the syntactic sequences to provide
a meaningful sentence. The third semantic state doubles as the
contextual state for the maze.

The slower (second) level deals with the narrative structure
of the task, and the maintenance of the information required
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FIGURE 1 | The generative model. This schematic offers an overview of the internal model used by an agent to explain how hidden states conspire to generate
observable outcomes. This figure is displayed in four main parts. These are the second level hidden states, the first level linguistic states, the first level maze states,
and the observed outcomes. Each of these is further decomposed or factorised. The overall structure of the model means that second level states predict first level
states. Although not shown here explicitly, the second level states additionally predict the policy (or trajectory) of the location states at the first level, providing a
context sensitive bias for decision making. The first level states then combine to predict the observations. Arrows between states within each factor represent
allowable transitions. In the absence of arrows, the assumption is that there are no dynamics associated with that state—i.e., it stays the same over time. Prior
preferences are attributed to the outcomes such that the central location of the maze is mildly aversive. The reward outcome modality includes an attractive,
aversive, and neutral outcome. Please see the main text for more detail.

for its solution. This includes a set of narrative states indicating
whether the task is to solve the maze, listen to a query, or respond
to that query. These are associated with a prior belief that the
first thing to do is to solve the maze and that this is followed by
the query and then the response. The narrative states predict the
first syntactic state of the sequences at the first level. Specifically,
the silent syntax is predicted when the maze should be solved,
the syntax beginning ‘‘Please’’ when the query is offered, and the
syntax beginning ‘‘I’’ when the answer is required. In addition,
the policy is represented at the second level, decomposed into
the first and second moves. Each combination of these predicts
an alternative policy at the first level. The reward location state
predicts the first level context, and the query state predicts
whether the first level semantic state associated with the query
syntax is ‘‘first’’ or ‘‘second’’—i.e., whether the query is about the

first or the second move. Combinations of these states predict
different combinations of semantic states at the first level. For
instance, when the narrative state is ‘‘answer’’, the query state is
‘‘first’’, and the first move state is a move to the cue location,
the second semantic state is predicted to be ‘did not know’, the
fourth semantic state is predicted to be ‘‘explored’’, and the fifth
semantic state is predicted to be ‘‘the cue’’.

We will not unpack the details of the solution to this
form of the generative model here, as they have been detailed
in numerous other publications (Friston et al., 2017,b; Parr
et al., 2019; Da Costa et al., 2020; Sajid et al., 2021). However,
we provide a brief outline of the procedure. In short, the
generative model outlined above can be formulated in terms of
a joint probability distribution over the states (s(i)) at each level
(indicated by the superscript), the policy at the first level (π (1)),
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and the outcomes they generate (o). The marginal likelihood
of this model can be approximated by a negative free energy
functional (F) which can be recursively defined as follows:

F(2) (o) = DKL
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)]
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In Equation 1, theE symbol means ‘‘expectation’’ or average. The
Q distributions are the variational distributions that approximate
posterior probabilities and the symbol DKL represents a
Kullback-Leibler divergence—which quantifies how different
two probability distributions are from one another. Beliefs about
each set of states and policies in the model are computed as
follows:
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The second line depends upon the empirical (conditional) prior
probability for each policy. This is given as:
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Here, E is a function that acts as a prior weight or
bias—conditioned upon the second level states, for the policies
(Parr et al., 2021). TheH in the second line is a Shannon entropy
and C parameterises the preferred outcomes. The function G is
referred to as expected free energy, and penalises those policies
associated with large deviations from preferred outcomes, and
policies in which the outcomes are uninformative about the
hidden states.

This generative model permits two different types of action.
These can be distinguished based upon how they influence the
outcomes. The first sort of action influences the hidden states,
which then cause changes in outcomes. Movement from one
location to another in the maze falls under this category. In
practice, these actions are chosen based upon the policy inferred
to be the most probable a posteriori. The second sort of action
directly influences the outcomes. This is the form of action

involved in generating the linguistic outcomes (specifically, the
spoken word). The latter are selected to minimise the free energy
given current beliefs:

oτ+1 = argmin
oτ+1

F(2)
(
oτ+1|ot≤τ

)
= argmax

oτ+1
EQ

(
s(1) ,π (1)

) [ln P (oτ+1|s(1)τ+1)] (4)

This is in the same spirit as formulations of active inference
in terms of predictive coding with reflexes. The idea is that by
predicting the data we would anticipate given our beliefs, low-
level reflexes of the sort found in the spinal cord or brainstem
can correct deviations between our predictions and measurable
data such that our predictions are fulfilled (Adams et al., 2013;
Shipp et al., 2013). Having outlined the generative model, and
the principles that underwrite its solution, we next turn to a
series of numerical simulations that demonstrate some of the key
behaviours of this model.

SIMULATIONS

In this section, we attempt to do three things. First, we illustrate
the behaviour of an agent who relies upon the generative
model outlined in the preceding section. We then attempt to
offer some intuition as to the belief updating that underwrites
this behaviour, and in doing so highlight the belief updating
that occurs over multiple timescales in deep temporal models
of this sort. In addition, we demonstrate the emergence of
replay phenomena—of the sort that might be measured in the
hippocampus of behaving rodents. Finally, we investigate what
happens when we violate the assumptions of the generative
model and the confabulatory explanations that result.

Figure 2 illustrates the behaviour and belief updating that
occurs during the maze task, followed by the query presented
to the agent and the response it offers. Two simulations are
presented to show the answers given to two different queries,
following the same behaviour. In both cases, the agent is initially
uncertain about the context, as shown by the faint green circles in
the left and right arms—indicating an equal posterior probability
assigned to the reward being on the left or right. The agent
starts in the central location and maintains veridical beliefs about
its location throughout. At the second timestep, we see that
the agent has elected to explore, seeking out the cue arm. On
observing a cue indicating the right context, it updates its beliefs
such that the reward is now anticipated in the right arm. At the
third timestep, it has moved to the right arm, finding the reward
there. When queried about the reasons for the first move, the
agent sensibly replies that it did not know where the reward
was (as we can verify from the plot of the maze at t = 1), so
it explored by going to the cue location (as we can verify from
the maze plot at t = 2). When queried about the second move, it
replies that it did know where the reward was (again, verifiable
from the maze plot at t = 2)—having already seen the cue by this
point—and that it consequently went to find the reward in the
right arm. This pair of simulations illustrates that the generative
model is sufficient for the agent to infer the actions it has taken,
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FIGURE 2 | Beliefs and behaviour. This figure reports the results of two simulations—one in which the first move is queried (left), and one in which the second
move is queried (right). Each is divided into the three stages of the task. The first row of plots shows the beliefs and behaviour as the maze is solved during the first
three time-steps. The small filled red circle shows the position of the agent in the maze. The larger unfilled circle shows the beliefs of the agent about its position.
When this is red, this indicates a posterior probability of one of being in that location. As the probability decreases, the red fades to nothing—i.e., a posterior
probability of zero of being in that location. In both simulations, the agent maintained confident and veridical beliefs about its location. The beliefs about the context
(i.e., reward-left and reward-right) are shown in green, with the intensity of the green colour in the left and right arms (and of the arrows in the cue location)
corresponds to the probability assigned to the associated context under the agent’s posterior beliefs. On solving the maze, the agent moves on to the query stage,
and the sentence presented to the agent is shown. Finally, the agent has the opportunity to answer the query, and the sentence it generates is shown below.

to come to a reasonable explanation of the motivations behind
these actions, and to explain this when queried. In accordance
with our definition in the introduction, this meets the criteria for
a (simple) form of understanding.

To delve into the mechanisms by which this understanding
is achieved, Figure 3 details the beliefs held by the agent about
the variables in the generative model throughout the simulation
from the right of Figure 2. The grey dashed lines indicate the
timesteps at the slower (second) level of the model, referred to
hereafter as ‘‘epochs’’, and illustrate their alignment with the
time-course of the faster) first level. During the first epoch, we see
the first level beliefs (lower panel) being updated in accordance
with the solution to the maze in Figure 2. The sequence here
is reminiscent of the sequential activation of hippocampal place
cells as rodents move through a series of locations (O’Keefe and
Dostrovsky, 1971; Foster andWilson, 2007). Inferences about the
semantic states (i.e., the words #1 to #5 shown at the bottom of
the bottom panel) remain uncertain during this time. Note the
update in beliefs about the context (see ‘‘Right context’’ in the
lower panel) on reaching the cue location, as the agent obtains
the cue and goes from believing both contexts to be equally likely
to believe that the right context is in play. The accompanying
belief-updating for the policy (centre panel) shows that initially,
the agent believes it will choose one of the many policies that
start by going to the cue location, which correspond to the
rows coloured in grey —consistent with the epistemic affordance
associated with this location. On reaching the cue location, all

uncertainty about the context is resolved, meaning the only
remaining motivational drive is to obtain the cue. This prompts
further belief updating about the policy, favouring the single
policy in which the first move was to go to the cue and the
second to the right arm. On enacting this policy and receiving
the associated sensory input (i.e., observing itself going to the cue
then right arm locations), the agent becomes confident that this
is the policy it has pursued.

The inferred policy and context now allow for updating of
beliefs about the first epoch at the second level. Practically, the
updating of beliefs at each level happens asynchronously in this
implementation, such that beliefs at the second level are updated
following the updates at the first level. This asynchronous
updating rests upon an adiabatic assumption, which means the
two timescales in question may be treated under a mean-field
assumption (i.e., approximately independently of one another).
Consistent with the first level inferences, the second level beliefs
over this epoch are updated such that the first and second
moves inferred are consistent with the selected policy, and the
reward location is consistent with the maze context. These
beliefs are then used to provide empirical priors for the first
level during the second epoch. Note the second epoch begins
with a veridical belief about the policy selected and the maze
context—ensuring these do not have to be re-inferred by the
first level.

During the second epoch at the first level, the query is
presented to the agent. Once the word ‘‘second’’ is heard, it is
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FIGURE 3 | Hierarchical belief updating. This figure shows the beliefs about states and policies over time in the temporally deep model. The main message of
this figure is that this updating occurs over distinct timescales, with the first level states being updated much faster than those of the second level. The layout of
these plots are as follows. Each row within each plot represents an alternative state or policy. The x-axis represents time; such that columns of the plot are discrete
time steps. The shading of each cell in the state (or policy) x time arrays indicates the posterior probability assigned to that state (or policy) at that time. Black is a
probability of one, white of zero, with intermediate shades representing intermediate probabilities. To avoid overcrowding, we have not labelled each row individually,
but have annotated the states (and policies) that are inferred to be most likely in red. The vertical dashed lines indicate the alignment of the three epochs at the
slowest (second level) with the inferences about the policies and states. Interpreted from a computational neuroscience point of view, each row of each plot can be
regarded as a raster plot, indicating the aggregated firing rates of a distinct population of neurons.

able to update its belief about the first semantic state. At the end
of the epoch, this is propagated to the second level, allowing for
belief updating so that the query is inferred to be about the second
move. This belief about the query is propagated through to the
third epoch by the second level, again providing an empirical
prior belief to the first level that the second query must now be
answered. In addition, beliefs about the reward location and the
moves selected at the second level combine with the belief about
the query to provide prior beliefs about the semantic states. These
beliefs lead the agent to generate the appropriate response to the
question.

An interesting feature of the belief updating shown in Figure 3
is the updates in beliefs about the maze location during the
second and third epochs. Recall that, when the syntactic states
are consistent with the query or answer, the maze states are
decoupled from the associated outcomes—which are set at the
central location and neutral reward. Despite this, the beliefs
about the location in the maze during the first few timesteps
of the second and third epoch appear to replay the beliefs that
were held when solving the maze. Figure 4 examines this more
closely, by plotting the beliefs about the maze for the first three
timesteps during each epoch. Note that, although the red dot
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FIGURE 4 | Maze beliefs and replay. This figure reports the beliefs of the
agent for the first three time-steps during each of the slower epochs at the
narrative level. Each column of images displays a single epoch, with each row
displaying the beliefs (and location) at each of the first three steps. The format
of each image is the same as in Figure 2. These can be regarded as visual
displays of the belief updates shown in Figure 3. The important things to
note are: (i) that maze-solving epoch is identical to that of Figure 2, (ii) that
the true location (i.e., red dot) is central in the query and answer epochs, (iii)
that the context is known from the start in the latter two epochs, and (iv) that
the beliefs about the location hidden states are consistent throughout all three
epochs.

remains in the centre during the query and answer epochs, the
red circle indicating the inferred location moves according to
the same sequence as in the maze-solving epoch—however, the
beliefs about the context are preserved from the end of the maze-
solving. Replay of this sort has been identified physiologically in
rodents in the same hippocampal cells that signal sequences of
locations while behaving (Louie and Wilson, 2001; Foster, 2017;
Pezzulo et al., 2017), hinting that the mechanisms that solve this
generative model may also be at work in biological brains. That
these mechanisms play a functional role is evidenced by the fact
that interrupting hippocampal sharp-wave ripple activity (during
which replays often occur) impairs memory-guided navigational
choices (Jadhav et al., 2012). Interestingly, models built with the
aim of simulating replay call upon a similar hierarchical structure
in which the highest (narrative) level of the model involves an
alternation between behaviour and replay sequences (Stoianov
et al., 2021). Although these models focus more upon the role of
replay in learning, our simulations suggest that such models can
be interpreted, loosely, as if the synthetic agents are attempting to
make sense of their previous actions during the replay sequences.

So why does replay occur when solving this model? The
answer to this has two parts. In Bayesian statistics, the inference
we draw depends upon a prior and a likelihood. In our model,
both contribute to the development of replay. Recall that, while
the query and answer syntactic states are in play, the maze
outcomes are fixed. This means that no matter which actions
the agent chooses, it will receive no sensory feedback coherent
with those choices. This means the likelihood distribution is

rendered uninformative and effectively uncouples the reality
of the agent’s position in the maze from the beliefs it has
about this location. While this ensures the agent remains—for
all practical purposes—fixed to the spot, it also liberates [or
detaches (Gärdenfors, 2005; Pezzulo and Castelfranchi, 2007)]
the inference process from the constraints of sensory input.
As such, it can be seen as a form of sensory attenuation of
the sort we might anticipate during dreaming (Windt et al.,
2014), imagination (Villena-González et al., 2016; Kilteni et al.,
2018), or episodic recall (Conway, 2001; Barron et al., 2020).
This accounts for the role of the likelihood. However, freeing
the agent from the constraints of sensation is not sufficient for
replay. We also need a prior that assigns greater plausibility to
the previous sequence of actions. This comes from the second
level inference about the actions taken during the first epoch
and their propagation to subsequent epochs as empirical priors.
In other words, when sensory input is attenuated, a generative
model simply recirculates prior information. In our example,
this information pertains to the previous sequence of actions,
but it could relate to other regularities learned during previous
exposure to sensory data (Fiser et al., 2010; Buesing et al., 2011;
Pezzulo et al., 2021). It is important to note that this construction
was not designed to simulate replay. It is an emergent feature
when beliefs about the policy must be propagated forwards in
time (i.e., held in working memory) to help answer questions
later.

Another feature of the belief updates from Figure 2 that is
worth unpacking is the increase in confidence about the context
during the answer epoch. This seems counterintuitive, as the
agent has had no new access to the maze outcomes. However,
new data has arisen that prompts this increase in confidence—the
agent has heard themself say that the reward was on the right.
In other words, the agent is using its own answer about reward
location as evidence about the context. To examine this further,
Figure 5 reports the results of a simulation in which we start
with the query phase and provide two opportunities to answer
the query. This means the maze is never solved (or, if it had
been, no memory of the solution remains), but the agent is still
asked about how they came to a (fictitious) solution, violating the
assumptions of the generative model. In other words, it starts the
query epoch with the same priors about policy and context as the
agent in Figures 3, 4 has at the beginning of the maze-solving
epoch. We see that, during the query epoch in Figure 5, the
agent is uncertain about the state of the maze and the actions
it took. It is confident that it started out in the first location
and ascribes a slightly higher probability to being away from
the central location by the third timestep, consistent with the
fact that most plausible policies involve moving away from here.
The probability of ending up in the left or right arm increases
over time, as these are absorbing states. This in turn lends those
policies leading to those states greater plausibility.

The beliefs about the left and right arms are similar during the
first answer epoch (see the lower image of the centre column of
Figure 5). This is because, by the third timestep of the first answer
epoch, the agent has heard itself say that it did not know the
reward location but has not yet heard its assertion that the reward
was on the left. Taken together, the agent’s first answer does not
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FIGURE 5 | Confabulation. This figure reports the behaviour of an agent
who confabulates an answer as to why it pursued the course of action that it
did, in virtue of never having pursued any course of action. It is given two
opportunities to explain itself. The first answer given is nonsensical, as the
generative model assumes that going straight to the reward.

make much sense. If going straight to the left on the first move,
the agent should have known it was on the left in advance. This is
evenmore puzzling when we note that the generativemodel takes
a move that results in the reward location as evidence that the
reward location was known. However, the apparent mismatch
between not knowing it was on the left, but going straight there to
find it anyway, is understandable when we consider that it is the
second level of themodel that enforces internal consistency in the
story told by the agent. In our previous simulations (Figure 2),
the agent already has a good idea as to which moves it made
and the context of the maze by the time of the query epoch. In
Figure 5, the agent is unable to formulate these beliefs until the
first time it hears itself giving the explanation. However, by the
second answer epoch, it has had a chance to synthesise what it has
heard itself saying, and to revise this to an internally consistent

explanation. Here, it has taken the fact that it did not know the
reward location, and that it was on the left, and inferred that
it must have guessed incorrectly given that it did not know the
location. The result is the inference that it guessed at the reward
location and got it wrong; a perfectly internally consistent, if
confabulated, story.

DISCUSSION

This article was designed to address the problem of machine
understanding and to show what this might look like using
an active inferential approach in a simple example setting.
The solution was based upon a deep temporal model, whose
separation into two timescales allowed for a narrative overview
of the task, and the propagation of information from one
epoch to the next. The separation of timescales inherent to
the model, and associated belief updating, in Figure 3 is a
generic feature of many deep temporal models. For example, in
Friston et al. (2017b) a similar construction was used to simulate
reading, where each word in a sentence provides information
about the letters in the next word. In (Heins et al., 2020),
a deep temporal model was employed for the purposes of a
visual search paradigm, where each fixation point was associated
with a dot-motion evidence accumulation task (Shadlen and
Newsome, 1996). Similar approaches have been employed for
working memory tasks (Parr and Friston, 2017), enabling the
maintenance of information ‘‘in mind’’ throughout a delay
period (Funahashi et al., 1989). These models have also found
application in the modelling of emotions (Smith et al., 2019) and
‘‘affective inference’’ (Hesp et al., 2021). They have additionally
been formulated through neural network models of the kind
found in machine learning (Ueltzhöffer, 2018).

Probably the closest functional homologue to the process
in this article was a deep temporal model of motor control
(Parr et al., 2021), in which sequences of small movements were
composed into longer trajectories via a higher (slower) level of
the model. As in this article, this called upon the propagation
not just of beliefs about states, but of beliefs about policies from
one epoch to the next. One of the contributions of the modelling
of motor control was to examine the consequences of a lesion
to the connection between the two levels. Interestingly, lesions
of the generative model for motor control produced a lack of
coherence in movement trajectories that is formally analogous
to the incoherent story confabulated during the first answer
in Figure 5 (later made consistent through the input from the
second level).

The functional architecture of the homologous processes in
the brain appears to involve the prefrontal cortices. Working
memory is a good example of this, as the neural populations
exhibiting persistent activity throughout delay-periods have been
identified in the prefrontal cortex (Funahashi et al., 1989;
Botvinick, 2008). However, these structures have also been
linked directly to metacognition—the ability to assess one’s own
cognition—via lesion studies (Fleming et al., 2014). The frontal
cortices interact directly—and via subcortical nuclei—with the
temporal cortices (Kier et al., 2004; Blankenship et al., 2016;
Rikhye et al., 2018), whose lateral surfaces are associated with
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language (Price, 2000; Hutsler, 2003), and whose medial surfaces
are associated with episodic memory and recall (Squire and
Zola, 1998; Eichenbaum et al., 2012). They also share dense
reciprocal connections with the basal ganglia (Naito and Kita,
1994)—the set of grey-matter nuclei most associated with the
adjudication between alternative actions (Nambu, 2004). This
hints at homology between the structure of the generative
model in this article and the anatomy of the associated
neuronal computation, providing a construct validation of our
formulation of action understanding in relation to human
understanding. It is also interesting to note that confabulatory
pathologies in humans (Korsakoff, 1887) arise when the
connectivity between the frontal, temporal, and subcortical
nuclei are disrupted (Korsakoff, 1887; Benson et al., 1996; Turner
et al., 2008), further endorsing the computational anatomy.
Conceptually, starting from the query epoch in Figure 5 may
be analogous to a disconnection that precludes a memory of the
maze-solving epoch from being propagated to the query epoch,
such that we arrive at the query epoch as if it were the first
epoch.

Given that the primary aim of this article was to address
understanding of actions, it is interesting to note that some
phenomena that feature in living machines (like us) emerge on
solving this problem. The emergence of replay is of particular
interest in the context of theories about the emergence of episodic
memory. This form of memory has two defining features. The
first is that it is declarative, in the sense that its contents can
in principle be ‘‘declared’’ (Anderson, 1976; Squire and Zola,
1998). This contrasts with, for example, procedural memories.
The second defining feature of episodic memory is that it
is associated with a spatiotemporal context—in contrast to
semantic memories of facts that may be divorced from such
contexts. The replay phenomena shown in Figures 3, 4 meets
both these criteria.We know it can be declared, as this is precisely
what happens when the query is answered. It is spatiotemporal,
in the sense that it is a memory of a sequence of locations in time.
As such, one could view this as a simulation of a primitive sort
of episodic memory. The reason this is interesting is that one
explanation for episodic memory in biological creatures suggests
that it developed alongside the ability to communicate past
experiences (Mahr and Csibra, 2018). The simulations presented
here lend some weight to these ideas, given that we set out
to develop a model capable of explaining past actions, and
found physiological hallmarks of episodic memory (i.e., replay)
in the resulting belief updating. This is not in conflict with the
conception of episodic memory as supporting a form of mental
time-travel in the past and the future, enabling recall of the past
and imagination of the future. As demonstrated in Figure 5,
the agent is perfectly capable of using the same machinery for
imagination of events that have not yet happened.

The central theme of this article is an inference about
‘‘what caused me to do that?’’ However, the status of Bayesian
methods in establishing causation of this sort is controversial.
The reason for this is that Bayes’ theorem is symmetrical. It
says that the product of a prior and likelihood is the product
of a marginal likelihood and posterior probability. However,
the labels ‘‘prior’’ and ‘‘marginal likelihood’’ can be swapped

(provided ‘‘likelihood’’ and ‘‘posterior’’ are also swapped)
without compromising the formal integrity of the theorem.
This cautions against interpreting a conditional probability as
a causal statement. This is less worrying in our context, as we
know by construction that sensory data are caused by hidden
states—i.e., we have implicitly built in a causal assumption to the
model. However, the role of policies as causes of behaviour is a
little more nuanced.

An influential formalism designed to address causality (Pearl,
2009, 2010) rests upon the idea of interventions. Under this
formalism, an important notation is the ‘‘do’’ notation, in which
P(y| do(x)) is the distribution of y once x is fixed through some
intervention. This breaks the symmetry of Bayes’ theorem as, if x
causes y, P(y| do(x)) will be equal to P(y| x), but P(x| do(y)) will be
equal to P(x). The concept of intervention helps to contextualise
the notion of a causal hierarchy—sometimes referred to as
‘‘Pearl’s hierarchy’’ (Bareinboim et al., 2020). This hierarchy
distinguishes between the three levels of the generative model.
In ascending order, these are associational, interventional, and
counterfactual. This provides a useful framework in which to
situate the generative model outlined in this article. Given that
the relationship between policies and the sequence of states is
articulated in terms of conditional probabilities, our generative
model must be at least at the associative level of Pearl’s hierarchy.
Implicitly, the interventional level criteria are also met, in that
the inversion of the model employs a structured variational
distribution (Dauwels, 2007) in which the marginals for the first
level are evaluated as being independent of the second level
states. This means the model is treated as if P(s(1)|π(1)) is equal
to P(s(1)| do(π(1))) and P(π (1)) is equal to P(π (1)| do(s(1))).
However, it is worth noting that this applies only to the location
states at the first level—the other states being conditionally
independent of the policy given the second level states (i.e., the
first level explanation is not caused by the policy pursued in an
interventional sense, although there is an associational form of
causality linking the two). In addition, the second level states do
play a causative role, ensuring that the explanation at this level
also causes the policy it attempts to account for. The third level
of the Pearl hierarchy is more interesting from our perspective,
given the emergence of a simple form of imagination as we saw
in Figure 5. The criteria for counterfactual causation are met by
noting that, initially, beliefs about all policies are evaluated for
each policy. For each policy, this means there are a set of beliefs
about states as if that policy were pursued. It is this counterfactual
inference that facilitates the confabulation observed on asking for
an explanation for a policy never pursued.

In this article, we elaborated on an operational notion
of understanding as ‘‘inference to the best explanation’’ and
described an active inference agent that is able to infer
and communicate an explanation for its actions. However,
the nature of understanding is a longstanding problem in
philosophy—which we make no claims as to having solved. An
interesting question is whether our agent (or more broadly, any
artificial system) really understands anything. While addressing
this question is clearly beyond the scope of this article, we hope
that providing an example of an artificial system that appears to
understand its actions helps advance the theoretical debate—and
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assists in the identification of what is still missing from current
operational definitions of understanding.

An interesting extension to this work would be to incorporate
the response ‘‘I don’t know’’ as an alternative to the explanations
available to the agent. We have assumed this is unavailable
to the agent in our simulations, as it is reasonable to assume
that if we behave a particular way, we believe we know why
we did. However, this prompts attempts at explanation despite
not having engaged in the task. While it is interesting that
these explanations enable the agent to convince itself of what
has happened, we might anticipate that an agent could spare
itself spurious explanations if able to infer that it is not sure
of the answer. This might then point to the mechanisms for
confabulation and loss of insight in psychopathology—framing it
as a failure of inference about what is and is not known. However,
this is not a straightforward problem to solve. This is evidenced
by the (metacognitive) difficulties people have in assessing their
own ability at performing even the simplest of tasks (Fleming
et al., 2010; Fleming, 2021). Another interesting avenue would
be to consider the role of two agents communicating with one
another on task performance (Bahrami et al., 2012; Shea et al.,
2014). For instance, it would be interesting to see whether, on
receiving the explanation from an agent who has just completed
the task, a second agent may perform the task more efficiently.
Furthermore, the choice of question by the second agent may be
more interesting, as they may wish to resolve uncertainty not just
about the actions of the first agent, but of the structure of the
task itself. For an example of this sort of diachronic inference,
please see Friston et al. (2020). Diachronic inference refers to
inferences drawn when two agents engage in a form of turn-
taking, as is common in conversation, giving a periodic switching
between speaking and listening. The current article dealt with
only a single switch (from listening to speaking), which could
usefully be expanded into a more extended conversation.

CONCLUSION

A key challenge for machine learning and artificial intelligence
is to overcome the problem of understanding. While these
approaches have been successful in making a range of decisions,
the explanations for these decisions is often opaque. This article
has sought to set out what a system capable of understanding
and providing explanations for its decisions might look like.
We took as our operational definition of understanding the
ability to disambiguate between alternative hypotheses as to

the reasons for behaving in a particular way and the ability to
communicate the inferred reason for this behaviour, on being
queried. To this aim, we constructed a generative model that
predicts both behaviour and its (linguistic) explanation. This
called upon a deep model that propagates information about
choices through multiple epochs, enabling the presentation of
a task (a simple T-maze), a query epoch, and an answer epoch.
We demonstrated that inversion of this model under active
inference allows for convincing explanations for the decisions
made when solving the task. Interestingly, these explanations
can also change our beliefs about what somebody did and
why. Furthermore, biological phenomena such as replay emerge
from this inversion—affording evidence for theories of episodic
memory based upon a need to communicate past events. Finally,
we saw that the pathologies of inference—on violation of
the assumptions of the model—are similar to those seen in
human behaviour in the context of some psychopathologies.
The pathological explanations we encountered highlight that
understanding can be thought of as constrained confabulation,
but that it is constrained to a greater or lesser degree by the
quality of the data used to form explanations.
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Biological systems differ from the inanimate world in their behaviors ranging from simple
movements to coordinated purposeful actions by large groups of muscles, to perception
of the world based on signals of different modalities, to cognitive acts, and to the role
of self-imposed constraints such as laws of ethics. Respectively, depending on the
behavior of interest, studies of biological objects based on laws of nature (physics)
have to deal with different salient sets of variables and parameters. Understanding is
a high-level concept, and its analysis has been linked to other high-level concepts such
as “mental model” and “meaning”. Attempts to analyze understanding based on laws
of nature are an example of the top-down approach. Studies of the neural control of
movements represent an opposite, bottom-up approach, which starts at the interface
with classical physics of the inanimate world and operates with traditional concepts such
as forces, coordinates, etc. There are common features shared by the two approaches.
In particular, both assume organizations of large groups of elements into task-specific
groups, which can be described with only a handful of salient variables. Both assume
optimality criteria that allow the emergence of families of solutions to typical tasks. Both
assume predictive processes reflected in anticipatory adjustments to actions (motor and
non-motor). Both recognize the importance of generating dynamically stable solutions.
The recent progress in studies of the neural control of movements has led to a theory
of hierarchical control with spatial referent coordinates for the effectors. This theory, in
combination with the uncontrolled manifold hypothesis, allows quantifying the stability of
actions with respect to salient variables. This approach has been used in the analysis
of motor learning, changes in movements with typical and atypical development and
with aging, and impaired actions by patients with various neurological disorders. It has
been developed to address issues of kinesthetic perception. There seems to be hope
that the two counter-directional approaches will meet and result in a single theoretical
scheme encompassing biological phenomena from figuring out the best next move in
a chess position to activating motor units appropriate for implementing that move on
the chessboard.

Keywords: referent coordinate, uncontrolled manifold, stability, motor equivalence, efference copy, iso-perceptual
manifold

Abbreviations: f , function; F, force; L, length; λ, threshold of the stretch reflex; MU, motor unit; ORT, space orthogonal
to the uncontrolled manifold; RC, referent coordinate; UCM, uncontrolled manifold; VUCM and VORT, variance within
the UCM and within ORT.
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INTRODUCTION

Two terms, ‘‘understanding’’ (as used in cognitive neuroscience)
and ‘‘synergy’’ (as used in movement neuroscience) seem to
be closely related to each other. Indeed, understanding has
been viewed as the discovery of co-variation between groups of
relevant cognitive variables based on optimization, likely related
tominimizing energy expenditure inside the system (Yufik, 2013,
2019). It has been also linked to one’s ability to transform
multiple lower-level concepts into a unified higher-level concept,
meaning (Perlovsky, 2016). Understanding leads to overcoming
the inertia of prior learning and enabling the construction of
adequate responses under novel and unfamiliar circumstances
(Yufik and Friston, 2016).

The word synergy has been used in the field of motor control
with two implied meanings: Grouping numerous elements into
stable groups to reduce the number of variables manipulated by
the brain and co-varying group involvement with the purpose
to ensure dynamical stability of actions in the unpredictable
environment (reviewed in Bernstein, 1947; Latash, 2008,
2020a,b). Optimization ideas have been used broadly to account
for the observed grouping of elements and their time evolution
during typical actions (reviewed in Prilutsky and Zatsiorsky,
2002; Diedrichsen et al., 2010). So, both notions can be viewed
as combinations of grouping plus co-variation plus optimization.
Can they represent fundamentally similar neural mechanisms
reflecting different stages of the evolutionary process, from
synergies seen across numerous species to understanding claimed
to be unique to the human species (Yufik, 2019)?

The contrast between the two notions becomes obvious if
one considers typical spaces of variables where these notions
are defined and applied: The spaces of mental models and
meanings in studies of understanding vs. the spaces of variables
from classical physics such as forces and coordinates (and
their derivatives) in studies of synergies. The two notions and
the corresponding spaces reflect two classes of approaches to
neuroscience problems based on laws of nature: top-down and
bottom-up. The former tries to describe aspects of cognition,
including the one of understanding. It starts with accepting a
set of axiomatic notions such as the mental model and meaning.
The second starts from the interface with the inanimate world
and operates with notions from classical physics, in particular
classical mechanics. Of course, top and bottom are defined within
this classification relatively arbitrarily. For example, one can
start from classical physics and chemistry or even physics of
elementary particles, and consider the simplest motor actions as
examples of top-down analysis.

This article follows the bottom-up approach as compared
to typical studies of cognition. It starts with trying to identify
terms within the biology-specific adequate language (Gelfand,
1991; Gelfand and Latash, 1998), missing in the physics of
inanimate nature. This leads to two important concepts, those
of parametric control and spatial referent coordinates (RCs)
originating from the classical equilibrium-point hypothesis
(Feldman, 1966, 1986, 2015). Further, the concept of synergy
is linked to arguably the most important feature of biological
actions, their controlled task-specific stability. The ideas of

synergic control and hierarchical control with spatial RCs are
merged naturally (Latash, 2010, 2019, 2021a) leading to the
possibility of ensuring dynamic stability of actions at levels
ranging from groups of motor units to the whole body. This is an
actively developed field with applications to such areas as motor
learning, neurological disorders, and rehabilitation.

Further, we try to expand this approach to the field
of perception. This development faces major problems with
experimental verification because salient variables are not as
readily measurable objectively. Nevertheless, there are promising
recent theoretical and experimental studies suggesting the
existence of percept-stabilizing synergies. At the end of the
article, we return to the notion of understanding and try to link
it to the stage of discovery during motor skill acquisition.

THE NEURAL CONTROL OF BIOLOGICAL
ACTION

Bernstein was arguably the first to emphasize that the brain could
not in principle prescribe such peripheral variables as forces
and trajectories given the typical time delays associated with
processing and conduction of neural signals, and time-varying
changes in the external forces and intrinsic body states,
which can never be perfectly predicted in advance (Bernstein,
1947; translation in Latash, 2020b). According to one of
the influential theories of motor control, this problem is
solved by using parametric control: biological movements
are produced by changing parameters within the relations
between actively produced forces and coordinates (reviewed in
Feldman, 2015; Latash, 2019). In physical terms, these parameters
have been associated with spatial referent coordinates for the
involved effectors. Their physiological meaning is threshold for
muscle activation associated with subthreshold depolarization of
corresponding neuronal pools.

An alternative approach to problems of motor control and
coordination has been developed assuming that the brain
performs computations (addressed as ‘‘internal models’’, e.g.,
Wolpert et al., 1998; Kawato, 1999; Shadmehr and Wise,
2005) to plan, predict, and prescribe peripheral mechanical
variables produced by muscles, joints, and other effectors.
Major differences between this approach and the one following
Bernstein’s traditions have been reviewed earlier (Ostry and
Feldman, 2003; Feldman and Latash, 2005; Feldman, 2015). The
purpose of this article is not to contribute to these polemics but
to follow Bernstein’s definition and understanding of synergies
and review recent studies exploring synergies at different levels
and in different domains.

Within the classical equilibrium-point hypothesis for
the control of a single muscle (Feldman, 1966, 1986), the
salient parameter is the threshold (λ) of the stretch reflex
expressed in units of muscle length and, simultaneously,
representing subthreshold depolarization of the corresponding
alpha-motoneuronal pool expressed in units salient for
neurophysiological processes, millivolts. Changing λ can
lead to various changes in peripheral variables such as muscle
activation level, force (F), and length (L), depending on the
external force field, in line with Bernstein’s insight.
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The idea of control with spatial RCs has been generalized to
both multi-muscle systems that take part in typical functional
actions and to intra-muscle subsystems. Whole-body actions, for
example, pointing, are assumed to be controlled with a relatively
low-dimensional RC specified at the level of task-relevant
effectors, for example, a three-dimensional coordinate during
typical arm reaching or pointing actions. Further, there is a
sequence of few-to-many transformations leading to higher-
dimensional RCs at hierarchically lower levels such as joints
and muscles. This process is associated with apparent problems
of redundancy because a small number of constraints are used
to specify a large number of variables. As discussed later,
the classical formulation of this problem (Bernstein, 1947;
Turvey, 1990) is misleading and has to be replaced with the
concept of abundance (Latash, 2012), which is not a source of
the computational problem but an evolutionary advantageous
design that ensures both stability of actions and their flexibility,
i.e., adjustment to the changing external conditions.

Recently, the idea of control with RCs has been expanded
in the opposite direction, i.e., inside the muscle (Madarshahian
et al., 2021). Indeed, a number of muscles in the human body are
viewed as combinations of compartments (Jeneson et al., 1990;
Mariappan et al., 2010), i.e., groups of motor units united by both
functional and anatomical criteria. Each compartment consists
of numerous motor units, which may be viewed as the smallest
unit of control. A motor unit is controlled by a single alpha-
motoneuron and, as such, it obeys the law ‘‘all or none’’, which
means that it can be recruited only as a whole. The contribution
of a motor unit to muscle (or compartment) activation and
mechanics can be varied by changing the frequency (fMU)
of action potential generation by the corresponding alpha-
motoneuron.

Figure 1A illustrates the dependence between fMU and the
length of a group of muscle fibers forming the motor unit.
It is characterized by the threshold of activation, λMU (motor
units are typically recruited in an orderly fashion, from the
smallest to the largest ones, Henneman et al., 1965) and the
specific shape of the dependence of fMU on muscle length. An
increase in fMU corresponds to an increase in the contribution
of this particular motor unit to muscle force. Hence, the muscle
F(L) characteristic may be viewed as a superposition of motor
unit fMU(L) characteristics (Figure 1B). Of course, expansion of
the control with RC into spaces of muscle compartments and
motor units is associated with even more glaring problems of
redundancy or, if one accepts the concept of abundance, with
even more opportunities to ensure dynamical stability of salient
task-related performance variables.

Recently, the idea of control with RCs has been developed
to account for a variety of phenomena including effects of
motor adaptation to unusual force fields (Gribble and Ostry,
2000), motor learning (Turpin et al., 2016), neuronal population
coding of control variables by the brain (Feldman, 2019), agonist-
antagonist coactivation (Latash, 2018a), perceptual errors
(Latash, 2018b), and certain types of neurological disorders
including spasticity (Jobin and Levin, 2000; Mullick et al.,
2013). This approach is based on the solid foundation of
experimental findings in studies ranging from those involving

FIGURE 1 | (A) The dependence between frequency of firing of a motor unit,
fMU, and length of the group of muscle fibers forming this motor unit. Its
threshold of activation is λMU. (B) The muscle force-length, F (L) characteristic
(solid line) may be viewed as a superposition of motor unit characteristics
(dashed lines). The motor units are recruited in an orderly fashion, from
smaller to larger ones.

animal preparations (Feldman and Orlovsky, 1972; Hoffer and
Andreassen, 1981) to healthy humans (Feldman, 1966; Schmidt
and McGown, 1980; Latash and Gottlieb, 1990; Latash, 1992).

CONTROLLED STABILITY OF ACTION

The concept of synergy in movement studies has been used
at least since the XIXth century as a synonym of the
word coordination; respectively, asynergia and dyssynergia have
been used as synonyms of impaired coordination (Babinski,
1899). Bernstein incorporated this concept into his multi-
level hierarchical scheme for the control of movements as
the second from the bottom level. Its full name was ‘‘The
level of synergies and patterns or the thalamo-pallidar level’’
emphasizing the importance of the loops through the basal
ganglia, an insight supported by recent studies (reviewed in
Latash and Huang, 2015). According to Bernstein, the level of
synergies serves two main functions: (1) organizing numerous
elements into groups; and (2) ensuring the dynamical stability
of movements.

The former function of synergies is directly related to the
famous problem of motor redundancy (Bernstein, 1947, 1967).
Bernstein was arguably the first to pay attention to the fact
that each natural movement involves numerous elements at
multiple levels of analysis, kinetic, kinematic, muscle activation,
etc. The number of elements is larger than the number
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of constraints associated with typical tasks and, therefore,
an infinite number of solutions exist. In his main book,
Bernstein (1947) was ambiguous with respect to this problem.
In different sections, he emphasized both the elimination of
redundant degrees-of-freedom considered as the main problem
of motor control and benefits of having extra degrees-of-
freedom. How does the central nervous system select specific
solutions observed during movements? Bernstein’s expression
‘‘elimination of redundant degrees-of-freedom’’ as the method
of finding unique solutions for typical problems of motor
redundancy dominated the field until recently. In fact, the
problem of motor redundancy has another component: Even
for a single element, movement from an initial to a final state
can proceed along an infinite number of trajectories. How
does the central nervous system select specific trajectories from
this set? So, there is a problem of state redundancy and a
problem of trajectory redundancy. During natural movements,
both problems coexist.

Arguably, the most commonly used method to solve such
problems has been optimization formulated as search for a
minimum (or maximum) of a cost function in different spaces
of variables, mechanical, neurophysiological, and psychological
(reviewed in Seif-Naraghi and Winters, 1990; Prilutsky and
Zatsiorsky, 2002). Recently, methods of optimal feedback control
have been used to find solutions for such problems (Todorov
and Jordan, 2002; Diedrichsen et al., 2010). There are two
obvious problems with most such methods. First, they assume
that the neural controller computes cost function values, typically
based on performance variables, over movement time prior
to movement initiation, i.e., that movement time is known
in advance and time profiles of the relevant variables can be
accurately predicted over the future movement. Second, the
choice of the cost function is usually rather arbitrary, reflecting
personal theoretical preferences.

The ill-posed nature of the problem of motor redundancy can
be illustrated with the example of excessive muscle co-activation
seen at early stages of skill acquisition (Bernstein, 1947).
Bernstein viewed this phenomenon as an attempt to mitigate
the problem of redundancy by limiting the kinematic space
of possible movements. This may be true if the problem
is considered at the level of joint kinematics. However,
co-activation obviously makes the problem worse at the level
of muscle activation and motor unit recruitment. This example
suggests that, before the problem is solved, it has to be clearly
formulated at the level of neural control variables, such as RCs,
not peripheral mechanical variables.

Recently, the problem of motor redundancy has been
reformulated as the principle of abundance (Gelfand and
Latash, 1998; Latash, 2012). This reformulation emphasizes the
importance of variability in both neural and motor processes
and postulates that the brain facilitates ‘‘good enough’’ solutions
(Loeb, 2012; Akulin et al., 2019) and uses the abundance
of elements to ensure desired dynamical stability of those
solutions with respect to salient performance variables. The
idea of abundance follows naturally the classical Bernstein’s
study of hammering by professional blacksmiths (Bernstein,
1930) where he showed that the trajectory of the tip of the

hammer showed less inter-trial variability compared to the
trajectories of individual joints. The importance of motor
variability has also been illustrated by pathologies characterized
by unusually low variability (e.g., low postural sway in advanced-
stage Parkinson’s disease, Horak et al., 1992) and the links
between low variability and incidence of chronic pain in
healthy persons (Madeleine et al., 2008; Madeleine and Madsen,
2009).

The principle of abundance fits well the aforementioned
definition of the level of synergies in the multi-level hierarchical
control scheme by Bernstein (1947) and Latash (2020a), in
particular its assumed role in ensuring dynamical stability
of actions. This approach is tightly linked to the concept
of uncontrolled manifold (UCM; Schöner, 1995; Scholz and
Schöner, 1999). According to the UCM-hypothesis, the central
nervous systems acts in multi-dimensional spaces of elemental
variables and structures variance in those spaces to allow
relatively large variance along a subspace where a salient
performance variable does not change (the UCM for that
variable) while minimizing variance leading to changes in
that variable, i.e., in the orthogonal to the UCM space
(ORT space).

Figure 2 illustrates the UCM concept for the task of producing
constant total force (FTOT) while pressing with two independent
effectors, e.g., two fingers. The inter-trial data cloud is expected
to form an ellipse elongated along the UCM. Quantifying
variance per dimension within the UCM and within the ORT
is expected to produce an inequality VUCM > VORT if indeed
the central nervous system stabilizes the potentially important
performance variable (FTOT, in this example) at the expense of
other variables produced by the same set of effectors. If the
subject in this experiment is asked to produce a different force
magnitude, the UCM shifts, but the location and shape of the
data cloud are expected to be robust (as illustrated for three
FTOT magnitudes in Figure 2). It has been suggested that the
location of the center of the inter-trial cloud may reflect an
optimization principle, whereas the shape of the cloud reflects the
stability of the performance variable (Park et al., 2010). Assuming
that there exists a single optimal solution and any deviations
from this solution incur extra costs, large VUCM (reflecting
high stability) implies large deviations from the center of the
data point distributions, i.e., large violations of the optimality
principle.

Large magnitudes of VUCM are reflections of low stability
along the UCM, which is functionally important. Indeed, large
VUCM allows performing secondary tasks with the same set of
elements without negative interference with the original task.
In addition, low stability along the UCM channels effects of
unexpected perturbations into the UCM thus protecting the
salient variable from such perturbations. For example, imagine
walking along the beach while carrying in the dominant hand
a mug filled with hot coffee. At the level of kinematics, vertical
mug orientation is a salient performance variable, which gets
contributions from numerous kinematic variables—joint angles
along the body and the arm. During walking, unexpected
perturbations emerge frequently, e.g., when stepping on a pebble,
unexpected surface, etc. A multi-joint synergy stabilizing the
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FIGURE 2 | An illustration of the UCM concept for the task of producing
constant total force (FTOT) while pressing with two fingers. A cloud of data
points across trials is shown with an ellipse. Note that variance along the
solution space (uncontrolled manifold, UCM, solid lines) is larger than
orthogonal to the UCM (ORT, dashed line), VUCM > VORT. Producing different
force magnitudes is associated with UCM shifts, while the relative location
and shape of the data clouds remain about the same (lighter images). VUCM,
variance within the UCM; VORT, variance within the ORT.

mug orientation helps channel the kinematic effects of such
perturbations into the respective UCM. You can lean and pick
up a shell without spilling the coffee, which requires using
a subset of joints of the body; this can be done by limiting
joint rotations to the UCM. Clinical studies have confirmed
the importance of high VUCM magnitudes by showing that low
indices of stability seen in certain groups of neurological patients
are associated primarily with low magnitudes of VUCM, not
with large magnitudes of VORT (Falaki et al., 2017; Jo et al.,
2017).

A number of schemes have been suggested leading to the
typical structure of variance for stabilized performance variables
(VUCM > VORT). These include short-latency feedback loops
within the central nervous system, somewhat similar to the
classical system of recurrent inhibitions, as well as feedback
projections from peripheral sensory endings (Latash et al., 2005;
Martin et al., 2009). Similar clouds of data points elongated along
the solutions space have been reported in modeling studies based
on the minimal intervention principle (Todorov and Jordan,
2002) and implemented using optimal feedback control schemes
(reviewed in Diedrichsen et al., 2010). Within those schemes,
deviations in spaces of elemental variables are corrected by the
central nervous system only if they introduce errors into salient
performance variables.

The different stability along the UCM and along ORT leads to
a particular signature of the phenomenon of motor equivalence.
If a person is instructed to correct an ongoing action in
cases of perturbations affecting a salient performance variable,
corrections show very large motor equivalent components,
i.e., deviations along the corresponding UCM (Figure 3; Mattos
et al., 2011, 2015). In other words, deviations of elemental
variables during the corrections show large components that
do not correct anything, i.e., they are wasteful from the point
of view of energy expenditure. Such large motor equivalent
deviations are expected if corrective signals generated by the
brain are seen as inputs (perturbations) into a neural network

FIGURE 3 | (A) A perturbation leads to a deviation of the system from an
initial point 1 to point 2. During quick corrective action (to point 3), motor
equivalent (ME) deviations along the corresponding UCM are larger than
non-ME deviations. (B) Large ME deviations are expected if corrective signals
serve as perturbations into the neural network ensuring the corresponding
synergy.

forming the corresponding synergy (Figure 3). Studies of motor
equivalent and non-motor equivalent deviations have confirmed
their relationship to the VUCM and VORT indices expected from
statistics of folded distributions (Falaki et al., 2017).

Recently, the notion of performance-stabilizing synergies has
been developed for spaces of hypothetical control variables,
i.e., RCs at different levels of the presumed control hierarchy
(Reschechtko and Latash, 2017, 2018; Latash, 2021a). Indeed,
the abundance of RCs at any control level allows (but does not
dictate!) synergies stabilizing performance. Such synergies have
been confirmed in multi-finger force production tasks (Ambike
et al., 2016a,b, 2018).

Important findings in studies of motor synergies include the
following (reviewed in Latash, 2008, 2019)

• The central nervous system can use a set of elemental variables
to stabilize various performance variables in a task-specific
manner;

• Synergies can be attenuated in anticipation of an action that
requires a quick change in the salient performance variable.
These phenomena have been addressed as anticipatory synergy
adjustments;

• Unintentional drifts in performance are associated with loss
of stability, which can be quantified in spaces of mechanical
elemental variables and control variables; and

• Controlled stability suffers with advanced age, atypical
development, and a range of neurological disorders. It can be
improved with specialized training.

THE ORIGIN OF STABLE AND ILLUSORY
PERCEPTS

Perception of one’s own body configuration, movements,
and forces at the interface with the environment has been
traditionally addressed as kinesthetic perception. Kinesthetic
perception can be viewed as the process of measurement
of salient variables and reporting them to oneself or others.
The importance of both the efferent (motor related) and
the afferent (sensory, generated at the periphery) signals for
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kinesthetic perception has been accepted for a long time, at
least from the middle of the last century when Von Holst
and Mittelstaedt (1950/1973) introduced the notion of efference
copy, close in spirit to the notion of corollary discharge (Sperry,
1950). In the original formulation, the concept of efference
copy was associated with a copy of signals sent by alpha-
motoneurons to muscles. This signal was used to predict changes
in afferent signals from proprioceptors induced by the future
movement (so-called, reafference). Reafference was expected to
interact with efference copy and produce reflex changes in
movements only if it differed from the efference copy-based
prediction. This understanding of efference copy has been
criticized recently (Feldman, 2009, 2016) because it cannot
explain how muscles can be relaxed after a movement to a new
posture. Indeed, if muscles are relaxed efference copy is the
same (zero) in both states, and any changes in afferent signals
cannot be predicted based on efference copy changes. Hence,
they have to produce reflex muscle activation in contrast to
everyday observations.

In more recent studies, the role of the efferent process
in perception has been associated with specifying a reference
point (RC, see earlier). Indeed, to measure a physical variable,
one has to have a reference point (from where to measure)
and a tool (e.g., a ruler to measure distance). The efferent
process has been assumed to supply the former component,
and signals from peripheral receptors—the latter component
(reviewed in Feldman, 2015, 2016; Latash, 2019, 2021b).
Figure 4 illustrates the process of perceiving muscle length
and force. Command to the muscle specifies the threshold
of its stretch reflex (λ), which plays the role of RC. Many
sensory signals show non-zero levels of activity when muscle
length is shorter than λ and increase their activity level
with deviation from λ along the force-length characteristic.
These involve signals from length-sensitive and force-sensitive
receptors as well as signals generated by the alpha-motoneurons
innervating the muscle. Taken together, these signals form an
abundant set, which may be viewed as the basis for stable
kinesthetic percepts.

Imagine that you press with a hand against a stop such
that no movement occurs. During changes in the pressing
force, we have a veridical, undisturbed perception of steady
posture. Where does this percept come from? Indeed, all
signals from relevant peripheral receptors change. Signals from
muscle spindles change with unavoidable changes in muscle
fiber length (coupled to tendon length changes, such that the
‘‘tendon plus muscle’’ complex stays at the same length) and
also changes in the activity of gamma-motoneurons, which
change the sensitivity of spindle endings. Note that gamma-
motoneurons change their activation level in parallel to the
signals from alpha-motoneurons. There will be obvious changes
in signals from force-sensitive Golgi tendon organs and from
articular receptors, which are sensitive to the articular capsule
tension. All the efferent signals will change as well. There seem
to be no signals that are kept unchanged to correspond to the
undisturbed perception of arm configuration. This observation
has been interpreted as a reflection of all the signals, afferent
and efferent, being constrained to a sub-space in the combined

FIGURE 4 | An illustration of perceiving muscle length (L) and force (F).
Command to the muscle specifies the threshold of its stretch reflex (λ), which
plays the role of referent coordinate. Many sensory and motor signals
increase with deviation from λ along the force-length characteristic. Any of
these signals may serve as afferent components of perceiving both force and
length, F0 and L0.

multi-dimensional afferent-efferent space—the iso-perceptual
manifold (Latash, 2018b).

A cartoon illustration of the iso-perceptual manifold in a
three-dimensional space is shown in Figure 5. One coordinate
corresponds to an efferent signal (RC), and the other two—to
two afferent signals (A1 and A2). Note that variations of all
signals are possible within the iso-perceptual manifold leading
to the undisturbed perception of the salient variable. Such
motion can be termed perceptually-equivalent, similarly to the
motor equivalent motion described earlier. When the signals go
outside the iso-perceptual manifold, perception of a change in
the respective variable is reported, even if it is kept unchanged.
The concept of the iso-perceptual manifold can be viewed as a
definition of a stable kinesthetic percept. Indeed, there is no other
definition addressing perceptual stability, which is a functionally
very important feature of perception, crucial in the evolutionary
process.

The iso-perceptual manifold concept implies that accurate
perception of a functionally important variable can be associated
with variable efferent and afferent signals to and from the
involved elements. As a result, perception of variables produced
by the elements may be less accurate when they participate in
a multi-element action compared to their perception in single-
element actions and to the perception of a variable produced by
all the elements together. This prediction has been confirmed
experimentally showing that perception of finger force is more
precise and less variable during single-finger force production
tasks as compared to multi-finger tasks (Cuadra and Latash,
2019; Cuadra et al., 2021b).

The described scheme can account for kinesthetic illusions,
in particular those induced by muscle vibration (Goodwin
et al., 1972; Roll and Vedel, 1982; Lackner and Taublieb,
1984), a powerful stimulus for signals from velocity-sensitive
sensory endings in muscle spindles (Brown et al., 1967;
Matthews and Stein, 1969). Note that this scheme links the
perception of kinematic and kinetic variables and predicts
vibration-induced illusions of both position and force—a
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FIGURE 5 | A cartoon illustration of the iso-perceptual manifold (IPM). One
coordinate corresponds to an efferent signal (RC), and the other two—to two
afferent signals (A1 and A2). Note that variations of all signals are possible
within the IPM (e.g., from point a to points b1, b2, and b3) leading to the
undisturbed perception of the salient variable. Such motion is
perceptually-equivalent (PE). RC, referent coordinate.

prediction confirmed experimentally (Cafarelli and Kostka,
1981; Reschechtko et al., 2018). Some of the most recent
studies explored the potential role of changes in efference
copy in kinesthetic illusions, in particular those seen during
misperception of force following voluntary muscle coactivation
and the drifts in force after turning the visual feedback
off (Cuadra et al., 2020, 2021a; Latash, 2021b). Under
those conditions, relatively large-amplitude force changes
are either not perceived or even perceived as happening
in the opposite direction. The authors interpreted those
observations as reflections of using distorted efference copy
signals. In other words, efference copy is not necessarily a
copy of the ongoing efferent process, as suggested earlier
based on observations of vibration-induced kinesthetic illusions
(Feldman and Latash, 1982).

Some of the mentioned studies also reported differences
between two methods used to report percepts: Using verbal
reports based on a psychophysical scale and using the
contralateral effector to match the perceived variable. Both
methods may be seen as suboptimal for obvious reasons such
as subjectivity, possible drifts in memorized scales, asymmetry
of the effectors on the two sides of the body, and other factors.
Those studies observed qualitative differences in the reported
percepts based on the two methods (Cuadra et al., 2020, 2021b).
For example, coactivating muscles under the instruction to keep
the pressing finger force constant leads to an unintentional force
increase by about 50%. When asked to report the force change
verbally, the subjects report that the force dropped by a small
magnitude. In contrast, when asked to match the force with the
contralateral hand, the subjects overshoot the actually increased
force (Cuadra et al., 2020).

These observations suggest that perceiving-to-report and
perceiving-to-act may involve different neural circuits. This
conclusion matches well the classical notions of dorsal and
ventral brain streams introduced for visual perception (Goodale
et al., 1991; Goodale and Milner, 1992; Kravitz et al., 2011).
It generalizes these notions to proprioception (see also Proffitt

et al., 2003; Zadra et al., 2016) with a possibility that this rule
applies to other modalities as well.

ELEMENTS OF PHILOSOPHY OF
BIOLOGICAL ACTION

The development of the idea of control with spatial RCs to
perception is promising. However, this bottom-up approach
may hit serious obstacles when dealing with issues that have
traditionally been considered as those of cognition. An attempt to
couple cognitive problems, such as, for example, selecting a target
for movement, has been made by Gregor Schöner and colleagues
in the form of the neural field theory incorporated into a general
framework involved in the generation of functional actions,
which involves the control with spatial referent coordinates
and the synergic control of movements (Erlhagen and Schöner,
2002; Martin et al., 2009, 2019). However, even this most
advanced scheme is rather far from dealing with such concepts
as understanding.

It is possible that another qualitative step is needed to move
from the control of biological movements with spatial RCs (and
related perceptual phenomena) to issues such as understanding
the relations among objects and using this understanding for
selection of future motor and non-motor actions, including
cognitive actions. This problem seems to be directly related to
finding sets of adequate variables for each new level of analysis
where variables and methods developed to describe processes at
other levels fail (cf. Gelfand, 1991). This problem is also related
to the ideas developed by the French philosopher, Merleau-Ponty
(1942/1963), of different levels of complexity and associated
problems pertaining to processes in inanimate nature (‘‘physical
order’’), biological systems (‘‘life order’’), and conscious systems
(‘‘human order’’).

The theory of control of biological movements with spatial
referent coordinates makes a step from laws of nature of the
inanimate world to possible laws of nature involved in the
motor function of living systems. Can the same basic notions
and laws be applied to problems of psychology and cognition?
Or, to approach the problem of interface between biological
action and cognition from the other side, does the concept of
understanding apply equally to the fields of animal (including
human) movements and to cognitive tasks such as selecting an
optimal move in the chess game? Do children understand how to
use the hand to turn the doorknob when they learn to open the
door?

Nikolai Bernstein would probably agree that understanding
is related to creating a synergy within the relevant space of
elemental variables although this requires expanding the concept
of synergy beyond its definition in his hierarchical scheme
for the control of actions (Bernstein, 1947; translation in
Latash, 2020b). Within that scheme, Bernstein placed synergy
at the second from the bottom level (Level B). Within the
same scheme, the concept of understanding (not used in the
book) seems to be applicable only at the two top levels, the
Level of Actions (Level D) and the Level of Symbolic Actions
(Level E). The differences within the hierarchical scheme are
one of the factors that make using two words justifiable. So
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far, synergy has been linked to action stability but not to
selecting targets for action or other decision-making steps. In
contrast, the concept of understanding has been developed
within a computational approach based on the idea of active
inference linked to minimization of variational free energy
for a variety of brain functions including the control of
movement and decision-making (Friston, 2012; Friston et al.,
2013, 2017).

There are several features that are shared by the concepts
of synergy and understanding. Both involve organizing the
elemental variables into a few basic groups (addressed in
movement studies with many names including modes, modules,
factors, and primitives, reviewed in Latash, 2020a). Both
involve ensuring the stability of task-specific outcomes, which
may be picking up a glass with water and moving it to
the mouth or finding an optimal move winning the chess
game. Indeed, the concept of stability seems highly relevant
to understanding: unstable understanding is doubt, which
can be equated to the development of or transition toward
understanding.

In his most comprehensive book, Bernstein (1947)
emphasized the feeling of discovery when learning a skill,
which he associated with delegating the responsibility for certain
features of the task to lower levels of control (he addressed
them as ‘‘background levels’’), which are typically not perceived
consciously. Such discoveries were associated, in particular,
with finding dynamically stable trajectories solving the task,
i.e., using pre-existing or creating new synergies stabilizing
salient variables. For example, after one learns how to ride a
bicycle, it is not necessary to think about not falling down, and
the brain can become preoccupied with other tasks (e.g., where
to ride it to and for what purpose, or even reciting poetry) as

long as the road does not present perturbations exceeding the
range of dynamical stability.

Using a similar language, understanding is also equivalent
to delegating certain groups of problems to lower levels such
that one is able to take for granted solutions for those problems
and to have time and energy to deal with something more
exciting and challenging. Can one develop a computational
toolbox to measure the ability to understand that could be
equivalent to the toolbox associated with the UCM hypothesis
described earlier? This would require defining sets of elemental
variables, salient higher-level variables, and the mapping rules
between the two. A better understanding would imply using
broadly varying combinations of elemental variables resulting in
acceptable solutions for the cognitive task at hand. Is there an
inherent trade-off between understanding (in terms of ensuring
the stability of task-solving processes) and optimization (e.g., in
terms of energy, Yufik, 2019) similar to the one described earlier
for movements (Park et al., 2010)? These are exciting questions
without answers so far.
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Emotion recognition has become increasingly prominent in the medical field and human-
computer interaction. When people’s emotions change under external stimuli, various
physiological signals of the human body will fluctuate. Electroencephalography (EEG)
is closely related to brain activity, making it possible to judge the subject’s emotional
changes through EEG signals. Meanwhile, machine learning algorithms, which are good
at digging out data features from a statistical perspective and making judgments, have
developed by leaps and bounds. Therefore, using machine learning to extract feature
vectors related to emotional states from EEG signals and constructing a classifier to
separate emotions into discrete states to realize emotion recognition has a broad
development prospect. This paper introduces the acquisition, preprocessing, feature
extraction, and classification of EEG signals in sequence following the progress of
EEG-based machine learning algorithms for emotion recognition. And it may help
beginners who will use EEG-based machine learning algorithms for emotion recognition
to understand the development status of this field. The journals we selected are all
retrieved from the Web of Science retrieval platform. And the publication dates of most
of the selected articles are concentrated in 2016–2021.

Keywords: EEG, machine learning, emotion recognition, feature extraction, classification

INTRODUCTION

Emotions are the changes in people’s psychological and physiological states when they face external
stimuli such as sounds, images, smells, temperature, and so on. And it plays a vital role in
mental and physical health, decision-making, and social communication. To realize emotion
recognition, Ekman regarded emotions as six discrete and measurable states related to physiological
information, namely happy, sad, anger, fear, surprise, and disgust (Ekman, 1999; Gilda et al., 2018).
Subsequent studies on emotion recognition mostly followed this emotion classification basis, but
some researchers had added new emotional states, including neutral, arousal, relaxed (Bong et al.,
2012; Selvaraj et al., 2013; Walter et al., 2014; Goshvarpour et al., 2017; Minhad et al., 2017; Wei
et al., 2018). Some people had also provided a new classification standard for emotions, including
relaxation, mental stress, physical load, mental stress combined with physical load (Mikuckas et al.,
2014). The setting that emotions are discretized states makes the emotion recognition can be
perfectly realized by classification in machine learning. The overall process of machine learning for
emotion recognition is as follows: the subjects’ facial expressions, speech sounds, body movements
(Kessous et al., 2010), electromyography (EMG), respiration (RSP) (Wei, 2013), galvanic skin
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response (GSR) (Tarnowski et al., 2018), blood volume
pulsation (BVP), skin temperature (SKT) (Gouizi et al.,
2011), photoplethysmographic (PPG) (Lee et al., 2019),
electrocardiogram (ECG) (Hsu et al., 2020), heart rate (HR)
(Wen et al., 2014) and electroencephalography (EEG) will
appear corresponding changes when stimulated by external
audio, visual, audio-visual and other stimuli. In addition to the
above external factors that will affect the changes in emotions,
autonomic nervous system (ANS) activity is viewed as a major
component of the emotion response (Kreibig, 2010). Ekman
(1992) analyzed six basic emotions by recording six ANS
parameters. And Levenson (2014) discussed emotions activate
different patterns of ANS response for different emotions.

The above-mentioned physiological information can be
collected via specific devices, then features related to emotion
states can be extracted after preprocessing the collected data,
and finally, emotion recognition will be realized by classifying
these features. Compared with external body changes such as
facial expressions and speech sounds, the internal physiological
information such as EMG, SKT, ANS, and EEG can more
genuinely reflect the emotional changes of the subject due
to its inability to conceal deliberately. And among the many
physiological signals, there are a vast number of researches on
collecting EEG, which contains relatively affluent information
to recognize emotions through machine learning algorithms.
Aim to classify physically disabled people and Autism children’s
emotional expressions, Hassouneh et al. (2020) achieved a
maximum emotion recognition rate of 87.25% using the long
short-term memory (LSTM) as the classifier to EEG signals.
Aim to classify Parkinson’s disease (PD) from healthy controls,
Yuvaraj et al. (2014) presented a computational framework
using emotional information from the brain’s electrical activity.
Face the situation that the diagnosis of depression almost
exclusively depends on doctor-patient communication and scale
analysis, which has obvious disadvantages such as patient denial,
poor sensitivity, subjective biases, and inaccuracy. Li et al.
(2019) committed to automatically and accurately depression
recognition using the transformation of EEG features and
machine learning methods.

This paper summarizes the development of EEG-based
machine learning methods for emotion recognition from
four aspects: acquisition, preprocessing, feature extraction, and
feature classification. It is helpful for beginners who rely upon
EEG-based machine learning algorithms for emotion recognition
to understand the current development of the field and then find
their breakthrough points in this field.

ACQUISITION OF
ELECTROENCEPHALOGRAPHY
SIGNALS FOR EMOTION RECOGNITION

There are generally two ways to acquire EEG signals related
to emotions. One way is to stimulate the subject to produce
emotional changes by playing audio, video, or other materials
and obtain the EEG signal through the EEG device worn by
the subject. Yuvaraj et al. (2014) obtained EEG data using

the Emotive EPOC 14-channel EEG wireless recording headset
(Emotive Systems, Inc., San Francisco, CA) with 128 Hz sampling
frequency per channel from 20 PD patients and 20 healthy
by inducing the six basic emotions of happiness, sadness, fear,
anger, surprise, and disgust using multimodal (audio and visual)
stimuli. Bhatti et al. (2016) used music tracks as stimuli to evoke
different emotions and created a new dataset of EEG signals in
response to audio music tracks using the single-channel EEG
headset (Neurosky) with a sampling rate 512 Hz. Chai et al.
(2016) recorded EEG signals related to audio-visual stimuli using
a Biosemi Active Two system. And EEG signals were digitized
by a 24-bit analog-digital converter with a 512 Hz sampling rate.
Chen et al. (2018) used a 16-lead Emotiv brainwave instrument
(14 of which were EEG acquisition channels and 2 of which
were reference electrodes) at a frequency of 128 Hz. Later, Seo
et al. (2019) used a video stimulus to evoke boredom and non-
boredom and collected EEG data using the Muse EEG headband
from 28 Korean adult participants. And Li et al. (2019) conducted
an experiment based on emotional face stimuli and recorded 28
subjects’ EEG data from 128-channel HydroCel Geodesic Sensor
Net by Net Station software. In Hou et al. (2020), the Cerebus
system (Blackrock Microsystems, United States) was used to
collect EEG data at a 1 kHz sampling rate using a 32-channel
EEG cap. In the same year, Maeng et al. (2020) introduced a new
multimodal dataset via Biopac’s M150 equipment called MERTI-
Apps based on Asian physiological signals. And Gupta et al.
(2020) used an HTC Vive VR display to enable participants to
interact with immersive 360◦ videos in VR and collected EEG
signals using a 16-channel OpenBCI EEG Cap with a 125 Hz
sampling frequency. Later, Keelawat et al. (2021) acquired EEG
data based on a Waveguard EEG cap with a 250 Hz sampling rate
from 12 students from Osaka University, to whom song samples
were presented. What’s more, to effectively collect EEG signals,
the attachment position of electrodes for EEG equipment in many
studies follows the international 10–20 system (Chai et al., 2016;
Seo et al., 2019; Hou et al., 2020; Huang, 2021).

Another way is to use the existing, well-known database in
the field of emotion recognition based on EEG, including DEAP
(Izquierdo-Reyes et al., 2018), MAHNOB-HCI (Izquierdo-Reyes
et al., 2018), GAMEEMO (Özerdem and Polat, 2017), SEED (Lu
et al., 2020), LUMED (Cimtay and Ekmekcioglu, 2020), AMIGOS
(Galvão et al., 2021), and DREAMER (Galvão et al., 2021). After
obtaining the original EEG signal related to emotion states, the
following operation is to preprocess the EEG signal to improve
the quality of the EEG data.

PREPROCESSING METHOD OF
ELECTROENCEPHALOGRAPHY SIGNAL

The raw EEG data collected through EEG equipment is mixed
with electronic equipment noise, as well as potential artifacts of
electrooculography (EOG), electromyogram (EMG), respiration
and body movements. Therefore, a series of preprocessing
operations are usually performed before the feature extraction of
the EEG signal to improve the signal-to-noise ratio.
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Bandpass filters are used by most research institutes as a
simple and effective noise removal method. However, since there
is no precise regulation on the effective frequency band in the
EEG signal, the bandpass filters used in different studies had
different cutoff frequencies. Generally, the purpose of setting
the low cutoff frequency at about 4 Hz (Özerdem and Polat,
2017; Chao et al., 2018; Pane et al., 2019; Yin et al., 2020)
was to remove electrooculography (EOG) artifacts (0–4 Hz) and
potential artifacts of respiration and body movements within 0–
3 Hz. While some documents set the low cutoff frequency at
about 1 Hz (Yuvaraj et al., 2014; Bhatti et al., 2016; Liang et al.,
2019; Hou et al., 2020; Keelawat et al., 2021), the purpose of which
was to remove the baseline drift (DC component) in the EEG
signal and the 1/f noise introduced by the acquire equipment. On
the other hand, for high cutoff frequency, most researchers set it
to about 45 Hz (Kessous et al., 2010; Yuvaraj et al., 2014; Liang
et al., 2019; Yin et al., 2020) to remove the other artifact noises
at the high frequencies. While, some recent studies (Hou et al.,
2020; Lu et al., 2020; Rahman et al., 2020) set it around 70–75
Hz to preserve more emotion-related features among the EEG to
improve the accuracy of emotion recognition.

In addition to using bandpass filters for noise suppression,
scholars have also adopted many other excellent methods
for preprocessing EEG signals. For example, in the work of
Aguiñaga and Ramirez (2018), the Laplacian filter described by
Murugappan (2012) was implemented to mitigate the problem
that EEG signals were naturally contaminated with noise and
artifacts. And then, a blind source separation (BSS) algorithm
was implemented to remove redundancy between active elements
meanwhile preserve information of non-active elements. And
in the study of Chen et al. (2018), the independent component
analysis (ICA) was used to suppress noise. Furthermore, the
study conducted in Cimtay and Ekmekcioglu (2020) compared
three types of smoothing filters (smooth filter, median filter,
and Savitzky-Golay) on EEG data and concluded that the most
useful filter was the classical Savitzky-Golaly which smoothed
the data without distorting the shape of the waves. And the
main contribution of Alhalaseh and Alasasfeh (2020) relied on
using empirical mode decomposition/intrinsic mode functions
(EMD/IMF) and variational mode decomposition (VMD) for
signal processing purposes. Besides, Keelawat et al. (2021)
used EEGLAB, an open-source MATLAB environment for EEG
processing, to remove contaminated artifacts based on ICA.

In addition to removing noise and artifacts, there are other
tasks to be done in the preprocessing process. Since the effective
frequency band of the EEG signal does not exceed 75 Hz, while
the sampling rate of some acquisition devices was even as high
as 1,000 Hz, far exceeding the required sampling rate, down-
sampling was usually required to reduce the amount of data and
increase the execution rate of the algorithm (Chao et al., 2018;
Rahman et al., 2020). Besides, to correlate EEG data with brain
events easily, the continuously recorded EEG data were usually
segmented with time windows of different lengths according to
the timestamp of occurrence (Cimtay and Ekmekcioglu, 2020). In
addition, considering that the EEG signal is composed of different
rhythmic components, including Delta rhythm (< 3 Hz), Theta
rhythm (4–7 Hz), Alpha rhythm (8–12 Hz), Beta rhythm (13–30

Hz), and Gamma rhythm (>31 Hz), some studies used bandpass
filters to separate the rhythm components in the preprocessing
stage to facilitate later feature extraction (Yulita et al., 2019).

FEATURE EXTRACTION OF
EMOTION-RELATED
ELECTROENCEPHALOGRAPHY
SIGNALS

Feature extraction is the algorithm of extracting the specific
characteristic features from the EEG signals. These distinctive
features describe each emotion in a unique way. The complexity
of the emotion recognition is also reduced when the complex
input signal is converted into a crisp dataset (Hemanth et al.,
2018). Ten features from the time domain, frequency domain,
and wavelet domain are usually extracted. Features in the
frequency domain are including power spectral density (PSD).
Features belonging to the time domain include latency to
amplitude ratio (LAR), peak-to-peak value, kurtosis, mean value,
peak-to-peak time window, and signal power. And features from
the wavelet domain are including entropy and energy (Bhatti
et al., 2016). Besides, fractal dimension and statistical features
were used by Nawaz et al. (2020). And several non-linear features
such as correlation dimension (CD), approximate entropy (AP),
largest Lyapunov exponent (LLE), higher-order spectra (HOS),
and Hurst exponent (HE) had been used widely to characterize
the emotional EEG signal (Balli and Palaniappan, 2010; Chua
et al., 2011).

To extract features related to emotional states from EEG
signals, a large number of researches on feature extraction
algorithms have emerged. Chai et al. (2016) proposed a novel
feature extraction method called the subspace alignment auto-
encoder (SAAE), which combined an auto-encoder network
and a subspace alignment solution in a unified framework
and took advantage of both non-linear transformation and a
consistency constraint. And Özerdem and Polat (2017) used
Discrete wavelet transform (DWT) for feature extraction from
EEG signals. Later, Li et al. (2018) organized differential entropy
features from different channels as two-dimensional maps to
train the hierarchical convolutional neural network (HCNN). In
the same year, Izquierdo-Reyes et al. (2018) applied the Welch
algorithm to estimate the PSD of each EEG channel, using a
Hanning window of 128 samples. Soroush et al. (2018) extracted
non-linear features from EEG data, and they suggested feature
variability through time intervals instead of absolute values
of features. What’s more, discriminant features were selected
using the genetic algorithm (GA). And Chen et al. (2018)
leveraged EMD to obtain several intrinsic eigenmode functions
and Approximation Entropy (AE) of the first four IMFs as
features from EEG signals for learning and recognition. Later,
In Chao et al. (2019), the frequency domain, frequency band
characteristics, and spatial characteristics of the multichannel
EEG signals were combined to construct the multiband feature
matrix (MFM). Consider that the rhythmic patterns of an EEG
series could differ between subjects and between different mental
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states of the same subject, Liang et al. (2019) used a segment-
based feature extraction method to obtain EEG features in three
domains (frequency, time, and wavelet). In Li et al. (2019), the
PSD and activity were extracted as original features using the
Auto-regress model and Hjorth algorithm with different time
windows. And Qing et al. (2019) used the autoencoder to further
process the differential feature to improve the discriminative
power of the features. Besides, Yulita et al. (2019) used principal
component analysis (PCA) to change most of the original
variables that correlate with each other into a set of variables
that are smaller and mutually independent. Later Alhalaseh and
Alasasfeh (2020) used entropy and Higuchi’s fractal dimension
(HFD) in the feature extraction stage. And Salankar et al.
(2021) first adapted EMD to decomposes the signals into several
oscillatory IMF and then extracted features including area,
mean, and central tendency measure of the elliptical region
from second-order difference plots (SODP). In the same year,
Wang et al. (2021) proposed an emotion quantification analysis
(EQA) method, which was conducted based on the emotional
similarity quantification (ESQ) algorithm in which each emotion
was mapped in the valence-arousal domains according to the
emotional similarity matrixes.

After feature extraction, some studies also reduced the
feature space by feature selection (FS) technique to avoid
over-specification using large number of extracted features and
to make the feature extraction feasible online. In study of
Jirayucharoensak et al. (2014), the input features of the deep
learning network (DLN) were power spectral densities of 32-
channel EEG signals from 32 subjects. To alleviate the overfitting
problem, PCA was applied to extract the most important
components of initial input features. Later, Rahman et al. (2020)
implemented spatial PCA to reduce signal dimensionality and

to select suitable features based on the t-statistical inferences.
And Zhang et al. (2020) proposed a shared-subspace feature
elimination (SSFE) approach to identify EEG variables with
common characteristics across multiple individuals. Yin et al.
(2020) proposed a new locally robust feature selection (LRFS)
method to determine generalizable features of EEG within several
subsets of accessible subjects. Besides, Maeng et al. (2020) used
GA to determine the active feature group from the extracted
features. Also, other FS algorithms, including correlation ratio
(CR), mutual information (MI), and random forest (RF), were
used in Suzuki et al. (2021). After extracting the emotional state-
related feature vectors from the EEG signal, the next important
step is to classify these features to achieve emotion recognition.

CLASSIFICATION OF
EMOTION-RELATED
ELECTROENCEPHALOGRAPHY
SIGNALS

The concept of classification is to construct a classifier based on
existing data. The classifier is a general term for the methods
of classifying samples, and for emotion recognition using EEG
signals, it is a crucial part, which takes the features extracted in
the above process as input to complete the recognition of the
emotional states.

Many classifiers have been implemented to help emotion
recognition, including Support Vector Machine (SVM),
multilayer perceptron (MLP), Circular Back Propagation Neural
Network (CBPN), Deep Kohonen Neural Network (DKNN),
deep belief networks with glia chains (DBN-GCs), artificial neural
network (ANN), linear discriminant analysis (LDA), capsule

TABLE 1 | Classifiers and their performance.

Classification Item Author Model Accuracy (%)

Arousal and valence Jirayucharoensak et al., 2014 DLN Arousal: 46.03 Valence: 49.52

Choi and Kim, 2018 LSTM Arousal: 74.65 Valence: 78.00

Chao et al., 2018 DBN-GCs Arousal: 75.92 Valence: 76.83

Maeng et al., 2020 GA-LSTM Arousal: 94.8 Valence: 91.3

Keelawat et al., 2021 CNN Arousal: 56.85 Valence: 73.34

Arousal, valence, and dominance Chao et al., 2019 CapsNet Arousal: 68.285 Valence: 66.73 Dominance: 67.25

Positive and negative Özerdem and Polat, 2017 MLP 77.14

Lu et al., 2020 SVM 85.11

Positive, negative, and neutral Li et al., 2018 HCNN 97

Rahman et al., 2020 ANN 86.57 ± 4.08

Wang et al., 2020 CNN 90.59

Boredom and non-boredom Seo et al., 2019 KNN 86.73

Pleasand and unpleasand Gupta et al., 2020 KNN, SVM KNN:96.5 SVM:83.7

Happy, calm, sad, and fear Chen et al., 2018 DBN-SVM 87.32

Happy, sad, angry, and astounded Li et al., 2019 SVM 89.02

Happy, angry, sad, and relaxed Pane et al., 2019 RF 75.6

Kessous et al., 2010 DKNN, CBPN 95–98

Sad, disgust, angry, and surprise Sakalle et al., 2021 LSTM 94.12

Happy, fear, sad, and neutral Galvão et al., 2021 MSFBEL 74.22

Happy, sad, surprise, fear, disgust, and angry Hassouneh et al., 2020 LSTM 87.25
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network (CapsNet), convolutional neural network (CNN), multi-
scale frequency bands ensemble learning (MSFBEL) and so on.
And their emotion recognition accuracies are listed in Table 1.

Liu et al. (2020) by combining the CNN, SAE, and DNN and
training them separately, the proposed network is shown as an
efficient method with a faster convergence than the conventional
CNN. And, for the SEED dataset, the best recognition accuracy
reaches 96.77%. Topic and Russo (2021) propose a new model
for emotion recognition based on the topographic (TOPO-
FM) and holographic (HOLO-FM) representation of EEG signal
characteristics. Experimental results show that the proposed
methods can improve the emotion recognition rate on the
different size datasets.

Unlike researches listed in Table 1, which only identified a
limited set of emotional states (e.g., happiness, sadness, anger,
etc.), Galvão et al. (2021) were dedicated to predicting the
exact values of valence and arousal in a subject-independent
scenario. The systematic analysis revealed that the best prediction
model was a KNN regressor (K = 1) with Manhattan distance,
features from the alpha, beta, gamma bands, and the differential
asymmetry from the alpha band. Results, using the DEAP,
AMIGOS, and DREAMER datasets, showed that this model
could predict valence and arousal values with a low error
(MAE < 0.06, RMSE < 0.16).

CONCLUSION AND DISCUSSION

To improve the accuracy of EEG signal-based machine
learning algorithms in emotion recognition, researchers have

made a lot of efforts in the acquisition, preprocessing,
feature extraction, and classification of EEG signals. From
the above summary, it can be found that the current stage
of emotion recognition based on machine learning is mainly
focused on the improvement of accuracy. What’s more, some
combinations of feature extraction algorithms and classifiers
can even achieve 100% accuracy in the two-classification
of emotion recognition. And we believe that the following
two goals that need to be achieved in emotion recognition
based on machine learning are: (1) Perception of smaller
changes in emotion; (2). Reduction in the complexity of
emotion recognition algorithms so that the algorithm can
be transplanted to wearable devices to realize real-time
emotion recognition.
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Spatio-temporal brain activity monitored by EEG recordings in humans and other

mammals has identified beta/gamma oscillations (20–80 Hz), which are self-organized

into spatio-temporal structures recurring at theta/alpha rates (4–12 Hz). These

structures have statistically significant correlations with sensory stimuli and reinforcement

contingencies perceived by the subject. The repeated collapse of self-organized

structures at theta/alpha rates generates laterally propagating phase gradients (phase

cones), ignited at some specific location of the cortical sheet. Phase cones have been

interpreted as neural signatures of transient perceptual experiences according to the

cinematic theory of brain dynamics. The rapid expansion of essentially isotropic phase

cones is consistent with the propagation of perceptual broadcasts postulated by Global

Workspace Theory (GWT). What is the evolutionary advantage of brains operating

with repeatedly collapsing dynamics? This question is answered using thermodynamic

concepts. According to neuropercolation theory, waking brains are described as non-

equilibrium thermodynamic systems operating at the edge of criticality, undergoing

repeated phase transitions. This work analyzes the role of long-range axonal connections

and metabolic processes in the regulation of critical brain dynamics. Historically, the

near 10 Hz domain has been associated with conscious sensory integration, cortical

“ignitions” linked to conscious visual perception, and conscious experiences. We can

therefore combine a very large body of experimental evidence and theory, including

graph theory, neuropercolation, and GWT. This cortical operating style may optimize a

tradeoff between rapid adaptation to novelty vs. stable and widespread self-organization,

therefore resulting in significant Darwinian benefits.

Keywords: machine understanding, cortex, perception, consciousness, graph theory, neuropercolation, phase

transition, criticality
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1. INTRODUCTION

1.1. Computers, Brains, and Energy
We tend to think of the field of computers and informatics
as a major event in the history of ideas, and that is broadly
correct. But the mathematics of computation can be traced
back to ideas propounded by philosophers and linguists at
least a thousand years ago. Western and Asian traditions are
often traced to the first millennium BCE; certainly the readable
scripts of that time seem to reveal ideas and observations
that are remarkably “modern.” History is itself a massively
parallel distributed network of events over many centuries.
It was not until the invention of digital computers about 80
years ago that systematic studies became feasible to explore
the possibility of developing man-made intelligent machines
(Turing and Haugeland, 1950; Von Neumann, 1958), which have
the potential of demonstrating problem-solving performance
comparable to humans. Computer technology demonstrated
exponential growth for over half a century. Computers support
all aspects of our life. Indispensable and pervasive, they lift
billions of people out of poverty worldwide and help them to
benefit from technological progress in a modern, interconnected
society. The dominant approaches in these applications use
Neural Networks (NNs) (Barto et al., 1983; Bishop, 1995; Miller
et al., 1995) and Deep Learning (DL), and produce cutting-edge
AI with often super-human performance (LeCun et al., 2015;
Mnih et al., 2015; Schmidhuber, 2015). The present development
trend of intelligent technologies is unsustainable. DL has very
high demand for computational power and it requires huge data
resources, raising many questions from engineering, societal,
and ethical perspectives (Jordan and Mitchell, 2015; Marcus,
2018; Kozma et al., 2019a). Computer chips reach hard limits,
marked by the approaching end ofMoore’s law, which dominated
computer development for over half a century (Waldrop, 2016).
Energy considerations are an important part of the challenges.
High-performance computers require increasing proportions of
the available electrical energy to operate (Amodei et al., 2018).
Moreover, it is increasingly complicated to remove the heat
dissipated in the densely packed microchip circuitries.

Brains provide us valuable clues regarding efficient use
of resources, including energy. The operation of brains is
naturally constrained by the available metabolic resources
following fundamental laws of thermodynamics. According
to the free energy principle, brains optimize metabolic and
computational efficiency by reconfiguring themselves while they
interact with the environment in the action and perception
cycle (Friston et al., 2006; Sengupta et al., 2013). Brains
continuously optimize their energy resource allocation, while
advanced computing algorithms are mostly agnostic when it
comes to power consumption. Arguably, brains are several
orders of magnitude more energy-efficient than cutting-edge
AI when solving specific machine learning tasks (Amodei
et al., 2018; Kozma et al., 2019b; Marković et al., 2020).
The efforts to achieve human-level intelligence and machine
understanding by scaling up computing using million-core chips
are impressive, but alternative approaches may become useful as
well. Energy-awareness is a basic manifestation of embodiment,

which is crucial for the emergence of intelligence in brains
and machines (Dreyfus, 2007), and it provides the key for
progress in machine understanding as well (Yufik, 2013, 2019).
Neuromorphic technologies have great potential in large-scale
computing systems, including spiking neural networks (Furber,
2016; Hazan et al., 2018; Roy et al., 2019), and memristive
hardware (Di Ventra et al., 2009; Chua, 2012; Kozma et al.,
2012; Stieg et al., 2019). Combining neuromorphic technologies
with brain-inspired thermodynamic models of computing has
the potential of providing the required breakthrough in machine
understanding (Yufik and Friston, 2016; Friston et al., 2020).

1.2. Cognitive Dynamics and
Consciousness
It is often thought that the question of consciousness in the
waking brain is so difficult and poorly understood that empirical
science has nothing to say about it. However, beginning some
decades ago, empirical scientists in psychology and neuroscience
have published literally thousands of scientific papers, mostly
on very specific aspects of conscious perception and cognition.1

Global Workspace Theory (GWT) is one of the prominent
modeling approaches (Baars, 1997; Baars and Geld, 2019; Baars
et al., 2021). GWT fundamentally proposes that the striking
capacity limits of conscious percepts implies very widespread
unconscious access to processing resources in the brain. This
convergence of two very different theoretical traditions suggests
that they are two sides of the same coin.

GWT first emerged around 1980, based on the cognitive
architecture tradition in cognitive science, including global
workspace architecture (Newell et al., 1972). The cognitive
architecture program goes back many decades, when Herbert A.
Simon and the Netherlands chess master Adrian De Groot began
to carefully study the move-by-move “consciousness reports” of
advanced chess players (Simon, 1967; De Groot, 2014). Since the
middle of the last century, a number of cognitive architectures
have been proposed and partially tested. The book by Newell
(1994) can be considered to be a summary of this empirical
modeling tradition. At least a dozen cognitive architectures
have been proposed in this research practice. They proposed
different computer implementations with two shared features:
All cognitive architectures had a serial perception and problem-
solving component, and in all cases the serial flow of immediately
accessible events interacted with a very large long-term memory
capacity, which appears to be a non-serial set of knowledge
sources. Cognitive architectures also merged with a separate
experimental cognitive research tradition, until, by the 1970s
and 80s, it began to seem that both lines of research could be
understood in a single framework (John and Newell, 1990). The
work of Tversky and Kahneman (2011) is another example of this
pattern of discoveries, focusing on the empirical phenomenon of
automaticity. Newell (1994) discussed this striking convergence
of a serial “stream of consciousness” reported by subjects, and
a very large, non-serial set of memory domains, which are not

1In the scientific literature, over 27 thousand relevant abstracts can be found at this

link: https://pubmed.ncbi.nlm.nih.gov/?term=conscious+brain.
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in reportable consciousness at any given time; but the massively
parallel memory domain is unconscious most of the time during
chess playing.

Baars was one of the first cognitive scientists to explicitly use
the word “conscious” for the serial component of chess-playing
protocols, and “unconscious” for the large set of knowledge
sources that players demonstrably use, but which may not
become explicit in any single chess move. What Baars called
Global Workspace Theory (GWT) in the 1980s combined two
streams of scientific study, the cognitive architecture tradition
and the field of cognitive psychology (Baars, 1997). That
convergence seemed to be surprisingly easy to describe. By
1980 the field of cognitive science began to emerge, and the
computational, mathematical, and cognitive-behavioral streams
of development turned into a single, extensive field of study.
Baars’ GWT linked a vast empirical literature to the theoretical
concept of consciousness, which could be inferred from the
mass of evidence, and which also seemed to reflect the reported
experiences of subjects in many tasks.

The distinctive feature of all cognitive architectures, including
GWT, can be found in Newell’s pioneering formulation.
Rather than a passive unconscious long-term memory, with
more powerful computers the idea emerged that the parallel
component reflects a “society” of specialized knowledge sources
that were not conscious by themselves, but which interacted
to “post messages” on some shared knowledge domain, called
a global workspace. Since that time, computational GWT has
seen very widespread use in cognitive and computer science.
The mathematics of parallel-interactive computation led to both
fundamental and practical insights into human cognition. What
seemed puzzling and scattered before 1980 gradually emerged
with a greater degree of clarity (Franklin et al., 2012).2

Cognitive Science is now Cognitive Neuroscience, leading
to another large set of converging ideas, with more and more
brain and behavioral evidence interacting in fruitful ways. In
fields like language studies, for example, it became routine
to consider the perceptual aspects of a stream of words (like
this one) as conscious, in fast-cycling interaction with multiple
unconscious knowledge domains. “Society models” gradually
merged with the brain sciences, giving rise to contemporary
cognitive neuroscience theory. We prefer to think of a “family”
of GWT architectures, where Baars’ version is perhaps the best
known today, but the family has many members that continue
to evolve. Essentially empirical, this set of theories may be
considered similar enough to be treated as a “family” of global
workspace-like approaches, including (Dehaene et al., 1998;
Fingelkurts et al., 2010; Edelman et al., 2011; Tononi and Koch,
2015; Kozma and Freeman, 2016; Mashour et al., 2020; Deco
et al., 2021). Each approach is distinctive and each is based on
a strong body of evidence; but they converge well. Much to our
surprise, a very large scientific literature in neurobiology has also
converged with all the fields in a remarkable way.

The current paper presents yet another region of
convergence between multiple empirical and theoretical

2Stan Franklin’s research group really pushed the world of computer science and

AI toward these cognitive architectures and moved the needle into this direction,

in a 20+ year strong research program at the University of Memphis.

streams of development. With direct brain recordings of the
electromagnetic activity of single neurons and massive neuronal
networks, we may be seeing a convergence between many
intellectual traditions. We view brains as large-scale complex
networks, and brain dynamics as percolation processes evolving
over these networks, with potentially adaptive structures.
We introduce several key analysis methods, such as the
thermodynamics of wave packets, statistical physics of criticality
and phase transitions, cinematic theory of neurodynamics and
metastability, and a hypothesis concerning the interpretation
of the experimentally observed neurodynamics using the GWT
framework. Two main computational results are introduced
to illustrate the findings. The first describes the essential role
of non-local axonal connections in maintaining a near-critical
state of brain oscillations. The second result concerns the role
of astrocyte-neural coupling in maintaining neural fields with
rapid transitions between states with high and low synchrony,
respectively. We conclude the work with discussing the potential
implications of these results to lay down the principles of
machine understanding.

The rest of the essay addresses the fundamental question:
What could be the evolutionary advantage of brains utilizing
phase transitions, as compared to possible alternatives with
smooth dynamics?

2. METHODS

Describing brains as open thermodynamic systems converting
noisy sensory inputs andmetabolic energy into conscious sensory
percepts to explicit understanding of the world.

2.1. Thermodynamics of Wave Packets3

There is a vast literature on experimental investigations of
thermodynamics of brains, see, e.g., Abeles and Gerstein (1988),
Fuchs et al. (1992), Freeman (2000), and Friston et al. (2006).
Freeman K sets provide a theoretical framework for brain models
with a hierarchy of increasingly complex structure, dynamics,
and function (Freeman, 1975, 1991, 2000; Kozma and Freeman,
2009). Several key aspects are summarized here, using the
concept of metastability,4 as described in Kozma and Freeman
(2016, 2017).

PROPOSITION 1 (Characterization of wave packets (WPs);
Kozma and Freeman, 2016). The action-perception cycle is
manifested through the self-organized sequence of metastable,

3We take no position on philosophical questions that are often raised in

connection with conscious perception, the brain, and the relevance of quantum

mechanics and quantum fields. Global workspace theory and neuropercolation

should be considered on their respective merits. Both theories have been fruitful,

and here we consider how they may interact in interpreting experimental results.
4A state of a dynamical system is called metastable, if it is not stable, but it

maintains its integrity for an extended period of time, which is meaningful for

the analyzed problem. In other words, a metastable state is unstable over very long

time scales, but it can be considered stable for shorter, still extended time periods.

It is of special interest to study metastability in spatially extended systems, when

metastability in time ismanifested in the emergence of well-defined spatial patterns

for some time periods. Transient dynamics from one metastable state to another

metastable state has been extensively studied in various mathematical and physical

systems. In the present essay, we refer to metastability appearing in the form of

intermittent synchronization of cortical activity.

Frontiers in Systems Neuroscience | www.frontiersin.org 3 December 2021 | Volume 15 | Article 78440480

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Kozma et al. Stimulus-Driven EEG Phase Transitions

highly synchronized patterns of spatio-temporal amplitude
modulated (AM) activity at the beta/gamma carrier frequency
(20-80 Hz). These AM patterns emerge and collapse, and as such
they form spatio-temporal Wave Packets (WPs). The WPs evolve
as follows:

(i) WPs exist for a time window of ∼100 ms, corresponding
to approx. 10Hz frequency band. They have spatially-
localized evolving patterns, therefore they are sometimes
called wave packets.

(ii) WPs have statistically significant correlations with sensory
stimuli and reinforcement contingencies perceived by
the subject.

(iii) WPs are separated in time by brief transitionary periods (10-
20ms). During these transitionary periods, the AM patterns
collapse and large-scale synchrony diminishes.

(iv) The repeated collapse of WPs points to recurring singularities
in mammalian cortical dynamics ignited at a given location
of the cortex. Following the selection and activation of
a Hebbian cell assembly corresponding to the stimulus,
the synchronized activity of neural populations rapidly
propagates across the cortical sheet in the form of a
phase cone.

(v) The rapid transitions and propagation of phase cones
following their ignition cannot be explained by synaptic
transmissions only, and it requires the emergence of
collective dynamics.

The repeated collapse and emergence of the metastable wave
packets defines a quasi-periodic oscillatory energy cycle with the
following steps:

PROPOSITION 2 (Energy cycle of wave packets; Kozma
and Freeman, 2017). The temporal evolution of Wave Packets

is sustained by the corresponding energy cycle, described
by thermodynamic processes involving energy and entropy

transfer between highly-ordered (liquid) states and disordered
(gaseous) states:

(i) The cycle starts with a disordered background state with low

amplitude waves. This state has high entropy and in the
thermodynamic sense it is analogous to a gaseous state.

(ii) At a certain space-time point, synchrony is ignited in the

neural populations in response to a meaningful stimulus and
a phase cone starts to grow from an incipient state. The phase
cone develops into a highly structured, metastable WP with

low entropy oscillating at a narrow beta/gamma frequency
band. The emergence of the WP leads to the dissipation of

energy in the form of heat, which is removed by the blood
stream through the capillaries. This can be viewed as a

condensation process to a liquid state.
(iii) The metastable WP continuously erodes with decreasing

synchrony between the neuron components, due to the impact
of input stimuli and random perturbations. The entropy
increases, which corresponds to the thermodynamic process
of evaporation.

(iv) At the end of the cycle, the intensity of the neural firing
activity drops to a level when the activity patterns are
dissolved and the thermodynamics returns to the high-
entropy gaseous state.

This section summarized key aspects of experimental findings
on EEG recordings in terms of thermodynamic processes.
The next sections introduce methods of statistical physics and
mathematical theory of graphs and networks to quantitatively
characterize these findings.

2.2. Criticality in Brains and
Neuropercolation Model
The thermodynamic interpretation of the action-perception
cycle outlined above implies that brains operate through
repeated transitions between highly-organized, synchronous
states and disorganized states with low levels of synchrony.
These observations lead to the hypothesis that brains are critical
or near-critical systems, which has been proposed by various
authors. One prominent approach is based on the concept of self-
organized-criticality (SOC) when a high-dimensional complex
system organizes itself to a critical point which is an attractor
state. SOC demonstrates scale invariance, including power-law
behavior with 1/f scaling, where f is the frequency of the events
corresponding to the specific problem domains. In the case
of neural processes, f could relate, for example, to bursts of
spontaneous activity in neural populations, and 1/f shows the
number of bursts of the given frequency. SOC has been observed
in many disciplines, from earthquakes, to solar flares, sandpiles,
etc, and in neural tissues as well (Beggs and Timme, 2012; Shew
and Plenz, 2013). SOC is widely used now in the interpretation of
brain monitoring data, including the connectome, resting state
networks, consciousness, and other areas; see, e.g., Fingelkurts
et al. (2013), Tagliazucchi (2017), Nosonovsky and Roy (2020),
andWang et al. (2020). Under certain conditions, deviation from
the power-law behavior predicted by SOC are observed in brain
dynamics, which justify approaches addressing criticality beyond
SOC, e.g., critical integration and soft assemblies (Aguilera and
Di Paolo, 2021).

A related approach uses percolation theory to describe
criticality of brain operation, by modeling the cortical neuropil
(Kozma et al., 2005, 2014; Bollobás et al., 2010; Kozma and Puljic,
2015).

PROPOSITION 3 (Neuropercolation model of criticality and
phase transition in brain dynamics; Kozma et al., 2005; Kozma
and Puljic, 2015). According to neuropercolation, critical behavior
in the cortex is made possible by the filamentous structure of
the cortical neuropil, which is the most complex substance in the
known universe. Neuropercolation is the generalization of Ising
models and lattice cellular automata, and it describes the following
aspects of the neuropil:

(i) Presence of rare long axonal connections between neurons,
which allow action at distant locations with minimal delay.

(ii) Contribution of astrocytes cells, which have a key role in
metabolic processes and in the formation of field effects.

(iii) Incorporation of random noise effects; the model is
robust to noise and noise is an important constructive
control parameter to tune the system to achieve
desired behavior.

(iv) Input-induced and spontaneous phase transitions between
states with large-scale synchrony and without synchrony
exhibit brief episodes with long-range spatial correlations.
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(v) Neuropercolation proposes a constructive algorithm that
self-regulates cortical dynamics at criticality following
supercritical explosive excursions.

Beyond the theoretical results, neuropercolation has been
employed successfully to interpret experiments with Pavlovian
conditioning in rabbits (Kozma et al., 2014; Kozma and Puljic,
2015), on entrainment of sensory processing by respiration in
rats and human subjects (Heck et al., 2017, 2019), and strategy
changes during learning in gerbils (Kozma et al., 2021).

2.3. Intermittent Metastable Brain
Oscillations
There is widespread agreement that processing of sensory
information in the cortex is associated with complex spatio-
temporal patterns of activity (Abeles, 1982). Experimental
observations of intermittent brain oscillations with extended
metastable periods, interrupted by rapid transients, are widely
discussed in the literature (Lehmann et al., 1987; Buzsáki, 1998).
This issue is often framed as a choice between opposing views
of continuous vs. discrete cognition. Following the wisdom
of Kelso’s complementarity principle, the likely answer would
be that both discrete and continuous aspects are relevant
to cognition through the unity of continuity-discreteness
(Fingelkurts and Fingelkurts, 2006; Tognoli and Kelso, 2014; Parr
and Friston, 2018). Recent reviews by Josipovic (2019), Menétrey
et al. (2021), and Lundqvist and Wutz (2021) help to disentangle
the arguments.

The hypothesis that perception happens in discrete epochs
has been around for decades, and models of brains as
dynamical systems with itinerant trajectories over distributed
attractor landscapes provided mathematical tools to support
the analysis, see, e.g., Babloyantz and Destexhe (1986), Skarda
and Freeman (1987), Freeman (2000), and Tsuda (2001). Crick
and Koch (2003) described discrete frames as snapshots in
visual processing, as well as in consciousness; while Tetko
and Villa (2001) provided evidence of cognitive relevance of
spatio-temporal neural activity patterns. The sample-and-hold
hypothesis expands on the sampling idea and it describes the
perceptual and motor processing cycle (Edelman and Moyal,
2017). Spatiotemporal sequences of time-position patterns have
been observed in the human brain associated with cognitive
tasks (Tal and Abeles, 2018). Recent models describing sequential
processing of complex patterns of brain activity are developed in,
e.g., Cabessa and Villa (2018), Malagarriga et al. (2019).

EEG data evaluated using Hilbert analysis also display sudden
transitions of cognitive relevance (Brennan et al., 2011; Frohlich
et al., 2015), while operational architectonics provides a powerful
framework for transient synchronization of operational modules
underlying mental states (Fingelkurts et al., 2010, 2017). Phase
transitions over large-scale brain networks have been applied
to describe the switches from one frame to another in the
cinematic theory of neurodynamics and cognition (Kozma and
Freeman, 2016, 2017). Kozunov et al. (2018) evaluates MEG
visual processing data and points to the role of phase transitions
and critical phenomena to understand how meaning can emerge
from sensory data. The identified cycle length varies depending

on the experimental conditions; i.e., it is in the theta/bands
in the cinematic theory (Freeman, 2000; Kozma and Freeman,
2017); while Pereira et al. (2017) estimate a very long cycle of
consciousness (2 s). The work by Werbos and Davis (2016) is
unique by identifying a very precise clock cycle of 153 ms, by
analyzing Buzsáki lab data (Fujisawa et al., 2015).

There are various open issues regarding discrete effects in
neurodynamics and some questions were raised about their
significance in cognition and consciousness. For example, Fekete
et al. (2018) states that the involved brain networks cannot
produce switching behavior at the rates observed in brain
imaging experiments. They lay out a valuable work, but they
do admit that their reasoning does not hold for strongly
non-linear systems as brains are. Their proposed multi-scale
computation near criticality is certainly interesting and it has
a lot in common with the edge of criticality described as the
result of ontogenetic development in neuropercolation in the
past two decades (Kozma et al., 2005). White (2018) does
not question the existence of sudden changes observed by

Freeman et al. (2006), Brennan et al. (2011), and Kozma and
Freeman (2016), rather it misses the established proof that
these neurodynamic effects are relevant to conscious perception.
Clearly, there is a need for extensive further experiments before

confirming or rejecting the central hypothesis on the key role of
phase transitions in cognition and consciousness. Some recent
experiments lend support to the hypothesis on discontinuities in
cognition, such as entrainment of multi-sensory perception by

the respiratory cycle (Heck et al., 2017); how breathing shapes
memory functions (Heck et al., 2019); the role of state transitions
in strategy changes during an aversive learning paradigm and

the formation of Hebbian cell assemblies by identifying emergent
causal cortical networks (Kozma et al., 2021); and clustering of
phase cones during interictal periods over the epileptogenetic
brain region (Ramon and Holmes, 2020). Statistical markers of

phase transitions show potential use in psychotherapy (Sulis,
2021).

PROPOSITION 4 (Transient processing in perception; Kozma
and Freeman, 2017). Phase transitions over large-scale brain

networks have been applied to describe the switches from one frame
to another in the cinematic theory perception, as follows:

(i) The intermittent emergence and collapse of AM patterns

in EEG data is interpreted as the evidence that perceptual
information processing happens in discrete steps, aligned with

the prominent AM patterns.
(ii) The cinematic theory of perception uses the concept of the

frame and the shutter, which follow each other sequentially.
There is no exact threshold separating the two phases from
each other, rather they transit to each other following the
corresponding energy cycle of WP.

(iii) The frames are defined by the dominant AM patterns
which are sustained for an extended period of around 100
ms, with significant variation depending on experimental
conditions. The frames are selected according to the reinforced
contingencies as perceived by the subject. The frame activity
is largely synchronous across large cortical areas during
the existence of the frame. However, the frame is not
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a frozen pattern, rather it oscillates at the beta/gamma
carrier frequencies.

(iv) The shutter is defined by the relatively short periods (approx.
10 ms) when the AM patterns collapsed and the neural
activity is disordered, still not completely random and
maintains some trace of the previous dynamics.

The Freeman/Kozma approach has been called cinematic,
because the cortical dynamics self organizes into phase plateaus
at roughly every ∼ 100 ms, followed by a collapse of the phase
plateau for about 10 ms. During the brief collapse of synchrony,
the cortex is prepared to receive novel perturbations, while the
self organized phase synchrony is a time of relative stability and
internal processing. This style of functioning plausibly optimizes
a balance between receptivity to novelty and stability, pointing
to potential evolutionary advantage by the rapid, moment-to-
moment adaptivity of the conscious cortex.

Brains are dynamic systems, they can never stop, not even
during the relatively quiet periods when frames with metastable
amplitude patterns are maintained. Being constrained to a quasi-
periodic attractor basin during a frame is just the sign of relative
silence, before the explosive impact of the phase transition, which
destroys the existing structure and gives rise to the emergence
of a new pattern in response to the new sensory input and its
meaning to the subject (Freeman, 2000). Dynamical modeling
of the brain includes both continuity of the movement along its
trajectory, as well as rapid changes as the path leads from one
metastable state to another (Tognoli et al., 2018). The switches
are not rigid and they have their own rich dynamic structure and
a hierarchy with possibly scale-free distribution (Mora-Sánchez
et al., 2019). These results show that an integrative approach to
identify major features of cognitive dynamics and consciousness
is very productive, including the unity of discrete and continuous
operating modalities in brains.

2.4. Hypothesis on the Link Between EEG
Perceptual Transition and GWT
Phase transitions and criticality in cortical layers may have a
profound impact on the nature of consciousness. There have
been various attempts to integrate phase transitions with GWT,
such as the one by Werner (2013), to model the emergence of
multi-level collective behaviors in brain dynamics. Tagliazucchi
(2017) describes consciousness as the integration of fragmented,
highly differentiated entities into a unified message, and they
use percolation model to describe the propagation of conscious
access through the brain networkmedium, with phase transitions
when a critical threshold is reached. Josipovic (2019) elaborates
the concept of non-dual awareness in the framework of GWT.
GWT is hereby linked to perceptual phase transitions (Freeman,
1991, 2000; Kozma and Freeman, 2016).

PROPOSITION 5 (Main Hypothesis on EEG phase transitions
as indications of conscious experience Kozma and Freeman,
2016; Baars and Geld, 2019). Phase transitions in the cortex are
ignited at a given location of the cortex, according to EEG data.
Phase transitions generate laterally propagating phase gradients
(phase cones) across the cortical sheet. In the context of GWT, these
results are interpreted as follows:

(i) Phase cones are neural signatures of perceptual broadcasts
described by GWT.

(ii) The rapid expansion of phase cones, covering large cortical
areas within 10-20 ms, are consistent with the propagation of
perceptual broadcast postulated by GWT.

(iii) The recurrence time of the cortical phase transitions
is about 100 ms, which is consistent with the ∼ 100
ms window identified in numerous perceptual and
behavioral experiments.

The ∼ 100 ms time domain has long been studied in the sensory
sciences and proposed as an integration period for conscious
cortical information processing (Baars, 1988; Madl et al., 2011;
Baars and Geld, 2019). GWT suggests that conscious sensory
events are the leading edge of adaptation during waking life. The
very fast and highly adaptive role of cortex clearly fits within
a Darwinian framework of genetic, epigenetic, and moment-to-
moment cortical adaptation (Edelman et al., 2011). Edelman’s
Neural Darwinism is highly consistent with this approach,
and specifies the role of selectionism at multiple time and
spatial scales in the brain. Interpreting phase cones as neural
manifestations of perceptual broadcasts of GWT is an important
step to connect the content of consciousness with the temporal
structure of consciousness per se (Menétrey et al., 2021). Next,
computational results are introduced to illustrate the hypothesis.

3. RESULTS

3.1. Long-Axonal Connections Facilitate
Criticality in the Neuropil
Brain networks analysis has been successful to study anatomical,
functional, and effective brain connectivity, using tools of graph
theory (Iglesias and Villa, 2007, 2010; Stam and Reijneveld,
2007; Steyn-Ross and Steyn-Ross, 2010; Bullmore and Sporns,
2012; Haimovici et al., 2013). Imamoglu et al. (2012) suggest
that frontal and visual brain regions are part of a functional
network that supports conscious object recognition by changes
in functional connectivity. Zanin et al. (2021) point out
that neuroscience of brain networks often emphasizes the
extraction of neural connectivity represented by strong links
and highly-connected nodes, although weak links can in fact
be critical in determining the transition between universality
classes. Most of the existing network-based toolsets extract
information on the interaction of localized units and nodes
(Korhonen et al., 2021). Brains are metastable systems, and their
optimal functioning depends upon a delicate metastable balance
between local specialized processes and their global integration
(Fingelkurts and Fingelkurts, 2010), while minute perturbations
and topological changes can lead to significant deviations from
the normal operational dynamics (Tozzi et al., 2017), with an
impact on synchronization effects in these complex non-linear
systems (Brama et al., 2015; Xu et al., 2020). Random graphs
and cellular automata models have been developed for cortical
dynamics to address the challenges (Balister et al., 2006; Kozma
and Puljic, 2015; Ajazi et al., 2019; Turkheimer et al., 2019).
Percolation models are especially helpful in the interpretation of
experimental findings describing the intermittent emergence of
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common-mode oscillations in neural cell assemblies (Kozma and
Freeman, 2016).

An important theoretical finding describes phase transitions
in a graph model of the cortical neuropil with a mix of short and
long connections, including long axons (Janson et al., 2019). A
random graph G

Z
2
N ,p

is considered over the square grid of size

(N + 1) × (N + 1), and p is the probability describing random
long edges, see Equation (1). We assume periodic boundary
conditions, for simplicity, thus we have a torus with the short
notation Z

2
N . The set of vertices of G consists of all the vertices of

Z
2
N . There are two types of edges E, short and long, respectively.

Short edges are all the edges from the torusZ2
N ; i.e., each node has

4 short edges connecting to its 4 direct neighbors. Additionally,
we introduce random long edges as follows: for any pair of
vertices that are at distance d apart of each other on the lattice, we
assign an edge with probability p that depends on the distance:

pd = P

(

(x, y) ∈ E(G
Z
2
N ,p

) and dist(x, y) = d
)

= c/[Ndα], (1)

Here α is a number, e.g., α = 1. An activation process is defined
on G

Z
2
N ,p

as follows: Denote by A(t) the set of all active vertices

at time t. We say that a vertex v is active at time t if its potential
function χv(t) = 1 and inactive if χv(t) = 0. Therefore, A(t) =
{v ∈ V(G)

∣

∣ χv(t) = 1}. At the start, A(0) consists of all vertices
that are active with probability p0. Each vertex may change its
potential based on the states of its neighbors as follows:

χv(t + 1) = 11





∑

u∈N(v)

χu(t) ≥ k



 (2)

A vertex can become active if at least k of its neighbors are
active. Let ρt be a proportion of active nodes at time t, i.e.,
ρt = A(t)/N2 then the evolution of ρt can be described in a
mean-field approximation, for details, see Janson et al. (2019). A
key result has been derived for the existence of phase transition
of the activation process over G

Z
2
N ,p

:

PROPOSITION 6 (MAIN THEOREM JKRS219: on phase
transitions in the neuropercolation model with short and long
connections Janson et al., 2019). For the activation process A(t)
over random graph G

Z
2
N ,pd

, in the mean-field approximation, there

exists a critical probability pc such that for a fixed p, w.h.p.:

1. all vertices will eventually be active if p > pc, while
2. all vertices will eventually be inactive for p < pc.
3. The value of pc is given as the function of k and λ through the

solution of some transcendental equations.

The main theorem in Proposition 3.1 rigorously proves the
existence of phase transitions in neuropercolation model with
long axons; its meaning is illustrated in Figure 1, using numerical
evaluation of the precise mathematical formula. In Figure 1,
the x-axis shows λ, which scales linearly with the probability
of long axons, while the y-axis is the critical probability when
the phase transition happens; k indicates the update rule. It is
seen that there is a region for small λ values, where the model
behaves essentially as a local system. For large λ values, the
critical probability diminishes what is expected for a global system

without local order. There is a transitionary region when the
incremental addition of long connections does matter, as it is
expected to be the case in the neuropil. Clearly, this model cannot
grasp all the complexity of brain networks, and there are many
advancements including inhibitory and excitatory effects, multi-
layer architectures with delayed reentrant connections. Still, the
introduced effect is very robust and it is a unique property of the
neuropil with a mix of short and long projections. Brains can
benefit from the transitionary region for tuning their behavior
between local fragmentation and overall global dominance, using
adaptation and learning effects.

3.2. Metabolic Processing in the Neuropil
Controls Transitions Between States With
High and Low Synchrony Based on
Hysteresis Dynamics
Following fundamental studies on the brain energy budget
(Raichle and Gusnard, 2002; Magistretti, 2006), there are
extensive integrative models on metabolic coupling in the
neuron-glia ensemble with capillaries (Cloutier et al., 2009;
Belanger et al., 2011; Jolivet et al., 2015), and the role of metabolic
constraints on spiking activity (Teixeira and Murray, 2015; Zhu
et al., 2018; Qian et al., 2019). The models typically use multi-
compartmental neuron models, but some simplified still realistic
spiking neuron models are popular as well, e.g., Izhikevich
(2003).

To describe the emergence of synchronized collective cortical
oscillations driven by metabolic constraints, the capillary
astrocyte-neuron model (CAN) is introduced, which couples
spiking and metabolic processes (Kozma et al., 2018, 2019b). The
simplest CAN model has two metabolic variables: g(t) and m(t),
where g(t) describes the available glycogen stored in the astrocyte,
m(t) models the available ATP in the neuron’s mitochondria.
Izhikevich (2003) model is used for the spiking neurons, with
variables u(t) and v(t), which are the dimensionless membrane
potential and the membrane recovery variable, respectively. The
following differential equations describe the rate of change of
the variables:

dv/dt = 81(u, v)+ I(t)

du/dt = 82(u, v, b
+(m)) (3a)

dg/dt = −91(g,m)+ κ

∫ t

t−τ

v(t′)dt′

dm/dt = −92(g,m)+ 91(g,m) (3b)

Here 81(u, v) is membrane potential fitting function; 82(u, v,m)
describes the recovery variable dynamics, modulated by the
available ATP via m(t). 91(g,m) and 92(g,m) describe the
attenuation of g(t) and m(t), respectively. I(t) describes the
influence of synaptic currents. The integral term in Equation
(3b) describes the cumulative effect of spiking on the glutamate
concentration in the synaptic cleft, over time period of τ , and
κ is a scaling parameter. Izhikevich’s model has a sensitivity
parameter b regulating spike production inside term 82(u, v,m).
A nominal value of b = 0.2 assures regular spiking (Izhikevich,
2003). To close the feedback loop between the metabolic and
neural parts of the model, b is modulated by m(t) as follows:
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FIGURE 1 | Illustration of the effect of the long edges λ on the critical probability pc; parameter k specifies the type of the update rule; based on Janson et al. (2019).

b+(m(t)) = [ωb + βm(t)]. Here ω is a scaling parameter in
the range [0.75, 1.25], directly impacting the spiking density. The
2nd term reflects the contribution of m(t), where β is a control
parameter in the range [0, 0.5]. For β = 0, metabolic processes
do not impact spiking, while increasing β leads to increasing
frequency of spiking. Full elaboration of the model is given in
Kozma et al. (2018).

PROPOSITION 7 (Metabolic control of synchrony transitions
in neural populations based on hysteresis dynamics Kozma
et al., 2019b). The capillary astrocyte-neuron model (CAN)

described by Equations (3a)–(3b) demonstrates transitions between
synchronized collective cortical oscillations and the absence
of synchrony, as illustrated in Figure 2. The process has the
following properties:

(i) The amount of available energy modulates the oscillation

frequency of neural populations.
(ii) There is a hysteresis effect as the result of cusp bifurcation in

the CAN model. The space defined by the forward gain from
neural to metabolic subsystems, and the feedback gain from

metabolic to neural system has a bifurcation point leading
to the split of a stable equilibrium to two stable and one

unstable equilibrium.
(iii) The parameters corresponding to the bifurcated states

produce self-sustained oscillations between high and
low-synchrony states.

(iv) The results reproduce experimentally observed collective

neural dynamics in the form of large-scale cortical
phase transitions.

It is important to point out that the metabolic processes

are required to produce the hysteresis effect and the desired
transitions between states with high and low synchrony.

Populations of pure spiking neurons without metabolic
components are not sufficient to reproduce the experimentally

observed transition effects, as it has been remarked by Deschle
et al. (2021).

4. DISCUSSION: HUMAN
UNDERSTANDING AND MACHINE
UNDERSTANDING

This work explores what the evolutionary advantage may be of
brains utilizing repeated phase transitions at theta/alpha rates, as
compared to possible alternatives with smooth dynamics. There
are a striking number of regularities that are found over and
over again at around 10 Hz. Some of these emerge from the
mathematics of neurodynamics described here, and some of
them emerge from a century of research in conscious sensory
perception. We can call this pattern of convergence the “magic
number” near-10 Hz (∼100 ms). The flow of conscious events is
serial, while unconscious knowledge domains constantly interact
with the conscious stream, as EEG data and psychological
evidence show over and over again. The ∼100 ms Temporal
Window has been studied since the 1800s because it keeps on
emerging in psychological evidence. In psychology experiments,
it is always linked to highly reliable reports of conscious sensory
experiences. As we described here, the magic Temporal Window
may be explained by the cinematic view of neurodynamics and
phase transitions in the cortex. Because the ∼100 ms Temporal
Window is so common, and clearly appears in association with
conscious experiences, this possible link is intriguing.

Some of the empirical phenomena that clearly dwell in the
magic Temporal Window:

1. Two sensory inputs fuse into single conscious gestalts if they
occur within a ∼100 ms time window. This is an enormously
general phenomenon in sensory psychophysics, both within
and between the major sensory modalities.

2. Themotor domain shows a similar TemporalWindow. Simple
reaction time hovers around ∼100 ms. In continuous tasks,
the relationship between sensory output and motor outputs
works best within the Temporal Window.

3. The ∼ 100 ms sensory integration window is found in all
the major senses, and also in cross sensory tasks. We should
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FIGURE 2 | Metabolic-neural model; (A) hierarchy of structures from cellular, mini-column, and mesoscopic population levels; (B) hysteresis effect on the transition

between states with low (blue/turqoise) and high synchrony (purple); (C) examples of spiking raster plots for low and high synchrony.

reemphasize the extraordinary generality of this phenomenon
across vision, audition, and touch perception in humans and
other species. What has been missing is an explanation.

The mathematical properties of cortex, as found by Kozma
and Freeman (2016), may therefore explain unconscious-
conscious events as they have long been observed in psychology
experiments. Phase transitions create the basis for rapid and
robust responses to environmental challenges, which provided
our ancestors with evolutionary advantage compared to the
competitors. As an illustration of these abstract considerations,
we can easily imagine a wild rabbit needing to interpret a raptor
attack in order to escape it. Under the best possible scenario,
it may take ∼ 100 ms or more for the rabbit to perceive the
attack, and even longer to combine these events with short
term and long term memory (Madl et al., 2011). Based on
the evolutionary process, this specific time window is sufficient
to develop a successful escape strategy while optimizing the
finite resources of its brain and body, considering the natural
environment, in which the rabbit’s ancestors strived for millions
of years.

In this work, we outlined a framework for interpreting
and modeling brain measurements demonstrating metastable
dynamics with rapid transients, which can be used to develop
computational devices incorporating brain-inspired principles.
Such novel devices have the potential to develop machines which

understand the world around us in a way as we humans do, and
help us with the challenges we face.
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The Air Force research programs envision developing AI technologies that will ensure
battlespace dominance, by radical increases in the speed of battlespace understanding
and decision-making. In the last half century, advances in AI have been concentrated
in the area of machine learning. Recent experimental findings and insights in systems
neuroscience, the biophysics of cognition, and other disciplines provide converging
results that set the stage for technologies of machine understanding and machine-
augmented Situational Understanding. This paper will review some of the key ideas
and results in the literature, and outline new suggestions. We define situational
understanding and the distinctions between understanding and awareness, consider
examples of how understanding—or lack of it—manifest in performance, and review
hypotheses concerning the underlying neuronal mechanisms. Suggestions for further
R&D are motivated by these hypotheses and are centered on the notions of Active
Inference and Virtual Associative Networks.

Keywords: understanding, neuronal packet, active inference, complexity, cognitive effort

INTRODUCTION: DEFINING SITUATIONAL AWARENESS AND
SITUATIONAL UNDERSTANDING

The notions of Situational Awareness and Situational Understanding figure prominently in
multiple DoD documents, predicating the achievement of battlespace dominance on SA/SU
superiority as, for example, in the following:

“Joint and Army commanders rely on data, information, and intelligence during operations to develop
situational understanding against determined and adaptive enemies. . . because of limitations associated
with human cognition, and because much of the information obtained in war is contradictory or false,
more information will not equate to better understanding. Commanders and units must be prepared
to integrate intelligence and operations to develop situational understanding” (The United States Army
Functional Concept for Intelligence, 2020–2040, TRADOC 2017 Pamphlet 525- 2-, p. iii).

Distinctions between SA and SU are defined as follows:

“Situational awareness is immediate knowledge of the conditions of the operation, constrained
geographically in time. More simply, it is Soldiers knowing what is currently happening around them.
Situational awareness occurs in Soldiers’ minds. It is not a display or the common operating picture; it
is the interpretation of displays or the current actual observation of the situation. . . .

Situational understanding is the product of applying analysis and judgment to relevant information
to determine the relationships among the mission variables to facilitate decision making. It enables
commanders to determine the implications of what is happening and forecast what may happen.” The
United States Army Operations and Doctrine. Guide to FM-3-0.
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Definitive publications by the originator of SA/SU concept
and theory (Endsley, 1987, 1988, 1994; Endsley and Connors,
2014) identify three levels of situation awareness and associate
understanding with Level 2, as shown in Figure 1.

According to the schematic in Figure 1, understanding
mediates between perception and prediction. The question
is: what does such mediation involve, what, exactly, does
understanding contribute? The significance of such a
contribution can be questioned by, for example, pointing at
innumerable cases in the animal domain of going directly
from perception to prediction (e.g., intercepting preys requires
predators to possess mechanisms for movement prediction, as in
frogs shooting their tongues to catch flying insects). The bulk of
this paper is dedicated to analyzing the role and contribution of
understanding in human performance, pointing, in particular,
at uniquely human forms of prediction involving generation of
explanations derived from attentively (deliberately, consciously)
constructed situation models. Because prediction necessarily
entails the consequences of action, these models must include the
(counterfactual) consequences of acting. In turn, this mandates
generative models of the future (i.e., with temporal depth) and
implicit agency. The ensuing approach differs from that adopted
in the conventional AI, as follows.

Behaviorist psychology conceptualized the brain as a “black
box” and was “fanatically uninterested” in reports concerning
events in the box (Solms, 2021, p.10). Borrowing from this
expression, one might suggest that cognitivist psychology and AI
have been “fanatically uninterested” in the role of understanding;
focusing predominantly on learning and reasoning (this
contention will be re-visited later in the paper). This paper
argues that the capacity for understanding is the definitive
feature of human intellect enabling adequate performance in
novel situations when one needs to act without the benefit
of prior experience or even to counteract the inertia of prior
learning. The argument is presented in five parts: the remainder
of part I analyzes the notions of situation awareness and situation
understanding, focusing on the latter; part II outlines Virtual
Associative Network (VAN) theory of understanding, part III
places VAN theory in a broader context of Active Inference, part
IV considers implementation (machine understanding), followed
by a concluding discussion in part V. In the remainder of this
part, we define some of the key notions that set the stage for and
will be unpacked in the rest of the paper.

The central tenet of this paper boils down to the notion
that understanding involves self-directed construction and the
manipulation of mental models. In short, planning (as inference).
This idea is not original but suggestions concerning the structure
of the models and the underlying neuronal mechanisms are
(Yufik, 1996, 1998; Yufik and Friston, 2016; Yufik, 2018, 2021b).
Figure 2 introduces some key notions in the proposal, seeking
to position mechanisms of awareness and mental modeling
within the brain’s functional architecture. Stated succinctly,
the following treatment builds upon an understanding of the
computational architecture of the only systems that evince
“understanding”; namely, ourselves.

Figure 2 adopts the classical three-partite
model of brain architecture in Luria (1973, 1974);

Sigurdsson and Duvarci (2016), except for the inclusion of
the cerebellum and Periaqueductal Grey (PAG) structure, whose
role in cognitive processes—in particular the maintenance of
awareness—was recently discovered (Solms, 2021). It was found
that removing the bulk of cortex (in both R and M systems)
while leaving the PAG intact preserves a degree of awareness
(Solms, 2021). For example, hydranencephalic children (born
without cortex) respond to objects placed in their hands,
and surgically decorticated animals remain capable of some
responses and even rudimentary learning (moreover, in some
cases a casual observer might fail to notice differences in the
behavior of decorticated animals and intact controls) (Oakley,
1981; Cerminara et al., 2009; Solms, 2021). By contrast, lesions of
the PAG and/or reticular structure obliterate awareness (reticular
structures project into cortex while PAG receives converging
projections from cortex) (Solms, 2021). The architecture in
Figure 2 indicates that intact PAG and RAS support minimal
awareness (link from PAG to MSP indicates awareness achieved
in the absence of the cortex) while an interplay of all the other
functional systems produces a hierarchy of awareness levels
above the minimal.

Levels of Awareness
To define levels of awareness, one needs to conceptualize the
world as generating a stream of stimuli and cognition as a process
of assimilating sensory streams aimed to extract energy and
sustain energy inflows (these crucially important notions will be
re-iterated throughput the paper). With these notions in mind,
the following levels of awareness can be identified.

1. Minimal awareness (“vegetative wakefulness,” the term is
due to Solms, 2021, p. 134). Streams of sensory stimuli are
experienced as flux (noise).

2. Selective awareness. Organism responds to fixed
combinations of contiguous stimuli as they appear in
the flux (as in frogs catching flies).

3. Discriminating awareness. “Blobs” with fuzzy boundaries
emerge in perceptual synthesis comprising some
contiguous stimuli groupings with varying correlation
strength inside the groups.

4. Differentiating awareness. Different stimuli compositions
are assimilated into “blobs” that are sharply bounded and
segregated from the surrounds (“blobs” subsequently turn
into distinct “objects,” as in telling letters apart).

5. Recognition-based awareness. Variations in stimuli
compositions in the objects are differentiated (stated
differently, different stimuli compositions are experienced
as manifestations of the same object, as in recognizing
letters in different fonts or handwriting).

6. Context-based awareness. The perceptual recognition of
objects is influenced by their surrounds (think of the
often-cited example of perceiving a shape that looks like
a distorted letter A or distorted letter H, depending on its
appearance in the middle of C_T or the beginning of _AT).

7. Understanding-based awareness. This level is qualitatively
different from the preceding levels: all levels deal with
learning, i.e., developing memory structures reflecting the
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FIGURE 1 | Three levels of Situation Awareness (adopted from Endsley and Connors, 2014).

statistics of correlation, contingencies and contiguity in the
world. By contrast, this level produces and manipulates
complex relational structures (mental models) uprooted
from such statistics (accounting for non-contiguous and
weakly correlated, sparse stimuli groupings) — in other
words, compositions and counterfactuals. To illustrate the
distinction: the statistics of English texts would suffice
for resolving the “_AT or C_T” ambiguity but not for
understanding the expression “hats on cats” (when was the
last time you saw or read about cats wearing hats?).

Arguably, Figure 1 refers primarily to understanding-based
situation awareness. It is informative to note that cells in
prefrontal cortices represent the association of sensory items of
more than one sensory modality, integrate these items across
time and participate in performing tasks requiring reasoning
and manipulation of complex relational structures (Kroger
et al., 2002). Construction and manipulation of complex
relational structures underlies understanding. More precisely,
understanding enables construction of models expressing
unlikely correlations (like cats in hats), while sometimes failing
to register some precise and routinely encountered ones (e.g.,
medieval medicine for centuries failed to see the relation
between a beating heart and blood circulation, placing the
source of circulation in the liver). This paper offers ideas seeking
to account for both the strengths and the weaknesses of the
understanding capacity. Three pivotal notions (work, switching,
and arousal) are referenced in Figure 2 (labeled in italics).

Work (Mental Work)
Operations on mental models demand effort and energy, in
the same manner as are those demanded by any bodily (i.e.,
thermodynamic) work, such as running or lifting weights.

Switching
The functional architecture in Figure 2 is shared across many
species, except for the capability to temporarily decouple mental
models from the motor-sensory periphery and environmental
feedback. The emergence of this regulatory capacity—to
allow such decoupling— underwrites the development of an
understanding capacity that is uniquely human and enables
uniquely human skills, such as extending the horizon of
prediction reach from the immediate to an indefinitely remote
future and extending actions reach from objects in the immediate
surrounds to indefinitely distant ones, etc.

Arousal
Regulation of arousal (energy distribution in the cortices) is an
integral and critical ingredient of mental modeling. In particular,
modeling is contingent on maintaining the stability and integrity
of neuronal structures in the cortices implementing the models.
Resisting entropic erosion and disintegration of the structures
require sustained inflows of metabolic energy. These ideas will
be given precise definitions that will be mapped onto a simple
mathematical formalism.

To summarize, three different brain mechanisms have been
identified: those that circumvent the cortex, those that engage
the cortex, and those mechanisms that are realized in the
cortex and are temporarily disengaged from the motor-sensory
periphery (switching). The former two mechanisms underlie
learning and are shared among multiple species, including
humans, while the latter is unique to humans and underlies
understanding. The proposal so far is derived from the following
conceptualization: (a) the world is a process or stream (not
a “static pond”), (b) cognition is a process of adapting an
organism’s state and behavior to variations in the stream, and (c)
the adaptation are powered by energy (work) extracted from the
stream and distributed inside the system (regulation of arousal).
Understanding complements learning: learning extrapolates
from past experiences, while understanding overcomes the
inertia of learning when encountering new conditions with no
precedents. Overcoming inertia is an effortful process that can fail
but provides unique performance advantages when it succeeds.
It was noted that AI and the cognitivist school of thought have
downplayed the role of understanding in performance.

The concept of Situation Awareness in Figure 1 predicates
awareness on understanding, consistent with the notion of
understanding-based awareness introduced in this section
(note that Figure 1 does not address learning. Accordingly,
this article does not expand on relations between learning and
understanding, except for the comments in the preceding
paragraph). The next section takes a closer look at the
process of understanding and provides examples of its
successes and failures.

Situational Understanding
Colloquially, “understanding” denotes an ability to figure
out what to do when there is no recipe available and
no precedent or aid to consult. The dictionary formulation
captures the essence of that ability defining understanding

Frontiers in Systems Neuroscience | www.frontiersin.org 3 December 2021 | Volume 15 | Article 78625292

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-15-786252 December 22, 2021 Time: 9:25 # 4

Yufik and Malhotra Human/Machine Situational Understanding

FIGURE 2 | Mental models are structures formed in Memory System (M) and manipulated by Regulatory System (R). Manipulation is enabled by activation (arousal)
arriving from the Activation System A (includes Reticular Activating System) and serves to organize activities in Motor-Sensory Periphery (MSP) in such a way that the
resulting changes in world states are consistent with the intent originating in R.

(comprehension, grasp) as “apprehending general relations in a
multitude of particulars” (Webster’s Collegiate Dictionary). In
science, relations are expressed by equations. Accordingly, in
understanding scientific theory T, apprehending general relations
takes the form of “recognizing qualitatively characteristic
consequences of T without performing exact calculations”
(Criterion for Intelligibility of Theories) (de Regt, 2017,
p. 102). The experience of attaining scientific understanding was
described by Richard Feynman as having

“some feel for the character of the solution in different
circumstances. . . . if we have a way of knowing what should
happen in given circumstances without actually solving the
equations, then we “understand” the equation, as applied to
the circumstances. A physical understanding is a completely
unmathematical, imprecise, and inexact thing, but absolutely
necessary for a physicist (Feynman, c/f de Regt, 2017, p. 102).

The Criterion subsumes epistemic and pragmatic aspects of
theoretical understanding, i.e., producing explanations of various
phenomena and applications in various situations. Figuratively,
understanding cuts through the “fog of war” (Clausewitz,
2015/1835) when apprehending battlefield situations and the “fog
of mathematics” when apprehending scientific theories.

These notions are consistent with conceptualizations of
understanding in psychology [theory of understanding (Piaget,
1975, 1978), theory of fluid and crystallized intelligence

(Cattell, 1971, 1978)], emphasizing ability to apprehend relations
under novel conditions and in the absence of practice or
instruction [fluid intelligence (Cattell, 1971, 1978)]. The term
“situational understanding” connotes changing conditions, with
situations transforming fluidly into each other (e.g., attack-
halt - withdraw - attack. . ., etc.). The remainder of this
section presents examples of situational understanding, prefaced
by a brief analysis (anatomy of the process) in the next
two paragraphs. These examples are followed by preliminary
suggestions regarding the underlying mechanisms.

Reduce a multitude of objects to just two, A and B, and
consider situation “A moves towards B.” In reaching decision
that A attacks B, three stages can be identified, with the first
one being readily apparent, while the significance of the second
is easily overlooked. First, one must perceive A and B, which
involves distinct activities (alternating attention between A and
B) producing two distinct memory elements (percepts). Second,
percept A and percept B must be juxtaposed (grouped), i.e.,
brought together and held together in memory (call it “working
memory”). The task appears to be easy when the activities follow
in tight succession (e.g., both A and B are within the field of
view) but not so easy when they are separated by large time
intervals. The third stage involves establishing a relation, which
is predicated on the success of the preceding stages. The second
stage is crucial: arguably, the development of understanding
was launched by the emergence of mechanisms in the brain
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allowing juxtaposition of percepts separated by large stretches
of time. At this point, it is informative to note that a recent
theory concerning the origins of language capacity in the humans
associated this capacity with the emergent availability of mental
operation (called Merge) where disjoint units A and B are
brought together to produce a new unit (A B) → C amenable
to subsequent Merge, (C Q) → Z, and so on (Chomsky, 2007;
Berwick and Chomsky, 2016).

Identifying stages in the understanding process helps to
appreciate the staggering challenges it faces. When experiencing
A, how does the idea of relating A to B come to mind? Figuring
out this relation takes effort but the very expression “coming
to mind” connotes spontaneity. Accordingly, understanding
can break down if the effort is insufficient and/or spontaneous
mechanisms fail to deliver. The point is that understanding
involves dynamic interplay of deliberate operations and
automatic memory processes triggered by the operations that
might or might not converge in a grasp. To exemplify the point,
consider a syllogism (say, “all humans are mortal, Socrates is a
human, therefore Socrates is mortal”). It might appear that the
conclusion inescapably follows from the premises but that’s an
illusion: one might be aware of each of the premises individually
but fail to bring them together, and/or the conclusion might
either not come to mind or get suppressed upon arrival.
Some extreme examples of failed and successful situational
understanding are listed next.

On May 17, 1987, the USS Stark on patrol in the Persian
Gulf was struck by two Exocet AM-39 cruise missiles fired from
an Iraqi F-1 Mirage fighter. An investigation revealed that the
aircraft was detected by AWAC (Airborne Warning and Control)
patrolling in the area and identified as “friendly.” Due to the
erroneous initial identification, the captain and crewmembers
on the frigate ignored subsequent aircraft maneuvers that were
unambiguously hostile (turning, descending and accelerating in
the direction of the ship) which resulted in a loss of 37 lives and
severe damages to the ship (Miller and Shattuck, 2004).

Between May 9th and June 14th in 1940, France was invaded
by the German army. France was one of the major military
powers in Europe that maintained adequately equipped forces
and, besides, invested tremendous resources in erecting state-
of-the-art fortifications on its northern border (the Maginot
Line). Despite these preparations, France suffered a historic
defeat. Massive literature has been produced over many decades,
analyzing the course of events and suggesting various reasons
for this colossal and catastrophic failure. A book published
in 1941 by a competent French author (served as a liaison
officer in the British army during WWI) summarized discussions
with French and British officers and political figures before and
after the events in question, His analysis offers what appears
to be a plausible account and explanations (Maurois, 1941).
In particular, the book pointed out that French military and
political authorities overestimated the efficiency of the Maginot
defenses which stemmed, interestingly, from French technical
advances and a sense of engineering superiority. French generals
determined Maginot fortifications to be impenetrable on the
grounds that they “can be built so rapidly that, in the time
necessary for an enemy to take a first line, the defending army

can construct a second . . .” (Maurois, 1941, p. 42). A full range
of state-of-the-art technologies (reconnaissance photography,
advanced communications, etc.) was employed, the terrain was
meticulously examined and mapped out and artillery ranges were
calculated in advance. “These painstaking labors assured absolute
precision of fire. The spotters in front of the forts had before
them photographs of the country divided into numbered squares.
Perceiving the enemy in square 248-B, all they would have to
do was murmur “248-B” into the telephone, and 10 s later the
occupied zone would have been deluged with shells and bullets”
(Maurois, 1941, p. 48). In short, a confident consensus was
predicting that the Maginot fortifications will never be broken
through. These predictions turned out to be correct: Germans
went around and bypassed the Maginot Line entirely, invading
Paris on June 14, 1940.

On January 15th, 2009, the Airbus A320-214 flying from
LaGuardia Airport in New York struck a flock of geese during
its initial climb out. The plane lost engine power, and ditched
in the Hudson River off midtown Manhattan just 6 min after
the take off. The pilot in command was Captain Sullenberger
(CS), the first officer was Skiles. The bird strike occurred 3 min
into the flight and resulted in an immediate and complete loss
of thrust from both engines. At that instant, Skiles began going
through the three-page emergency procedures checklist and CS
took over the controls. In about 30 s, he requested permission
for an emergency landing in a nearby airport in New Jersey (NJ)
but decided on a different course of action after the permission
was granted. Having informed controllers on the ground about
his reasons (“We can’t do it”) and intents (“We’re gonna be in
the Hudson”), CS proceeded to glide along and then ditch the
aircraft in the river. All the 155 people on board survived against
a staggeringly bad odds (Suhir, 2019).

The underlying mental process in all three incidents involves
item grouping, success or failure in the overall task performance
depended on how that step was accomplished. One more example
will help to illustrate this contention. Analysis of eye tracking
records of ATC controllers revealed latent grouping of aircraft
signatures on ATC displays which appeared to be motivated
by gestalt criteria (e.g., relative proximity). The probability of
detecting possible collision was higher for the aircraft residing
in the same group (A B) than for those residing in different
groups, (A B) (C D). It was hypothesized that novice controllers
could not disable gestalt grouping but the more skilled ones
developed a capacity for overcoming its impact on performance
(Landry et al., 2001; Yufik and Sheridan, 2002). We now turn to
analyzing these examples.

In the USS Stark incident, three items had to be accounted
for in the Captain’s decision process: A = own ship, B = AWAC,
and C = F1 Mirage. In the Captain’s mental model, grouping
(A B) was the dominant one (i.e., attributing significance to
any item C respective A relied entirely on B). The “friendly”
determination rendered C irrelevant to A and removed it from
consideration. Hence, the “blind spot” on the Iraqi F-1 Mirage
fighter whose behavior was displaying signs of attack that could
not be any clearer: the aircraft was ascending away from the ship
but then sharply changed its course and started descending and
accelerating toward the ship.
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FIGURE 3 | Situational Understanding is a product of background (knowledge, training) and mental skills. A solid horizontal line underscores that skills operate on
top of the background.

French military planners recognized the possibilities of
German bypassing maneuvers (e.g., attacking through Belgium)
but “rationalized them away,” i.e., worked out lines of reasoning
that rendered them highly unlikely and, ultimately, have forced
them out of consideration. French strategic thinking was
structured by the experience of trench warfare in WWI when
opponents were facing each other from fortified positions and
conducted frontal assaults to break through each other’s defenses.
As a result, the mental models of the leading strategists were
focused on the fortifications and defended areas in front of
them (A B) while turning a “blind eye “ to the adjacent areas
(C). Because of the influence earned by the generals in their
past victories, these models became the dominant view across
the French military, intelligence and political communities.
Common sense would suggest that the Maginot Line needed
to be “prolonged along the Belgian frontier by fortifications
that were perhaps less strong but nevertheless formidable. I
received one of the greatest shocks of my life when I saw the
pathetic line. . .which was all that separated us from invasion
and defeat” (Maurois, 1941, p. 19). The point is that experience-
sculpted models can produce pathological tunnel vision which
cannot be remedied by reasoning – to the contrary, reasoning
confined to the same tunnels can only make them more rigid.
Practical validation, an otherwise uncompromisingly reliable
criteria, could also do a disservice (one can imagine placing
targets in front of the fortifications and, after some extra practice,
having them destroyed, not in 10 but in 8 s).

The Airbus A320-214 incident prompted a thorough
investigation and analysis that engaged the most advanced
investigative and analytic tools available (Suhir, 2012, 2018,
2019; Suhir et al., 2021). Unlike in the previously cited scenarios,
this analysis had unlimited access to complete records and
could use computer modeling and testing in flight simulators
to validate the conclusion. The analysis was centered on
probabilistic risk estimates accounting for the human error
stemming from imbalances between human capacities (Human
Capacity Factor, or HCF) and mental workload (MWL). Ten
major contributors into HCF were identified: (1) psychological
suitability for the given task, (2) professional qualifications and
experience, (3) level, quality, and timeliness of past and recent
training, (4) mature (realistic) and independent thinking, (5)
performance sustainability (predictability, consistency), (6)
ability to concentrate and act in cold blood (“cool demeanor”)
in hazardous and even in life threatening situations, (7)
ability to anticipate (“expecting the unexpected”), (8) ability to
operate effectively under pressure, (9) self-control in hazardous

situations, and (10) ability to make a substantiated decision in
a short period of time. Captain Sullenberger was expected to
score high on the majority of these factors. In simulator tests,
four pilots were briefed in advance about the entire scenario in
full detail and then exposed to simulated conditions immediately
after the bird strike. Knowing in advance what to expect, all four
were able to land the aircraft. However, when a 30 sec delay was
imposed (the time it took Sullenberger to assess the situation
and decide on the course of action), all four pilots crashed
(Suhir, 2013).

Applying the HCF metric to other examples, it can be
suggested that HCF scores reflect capacity for situational
understanding, ranging from the bottom low to exceptionally
high. For the purposes of this paper, the ten factors can be divided
into four groups three of which can be roughly mapped onto
components in the architecture in Figure 2 (roughly, factors 2
and 3 relate to Memory, factors 1, 5, 6 relate to Activation and
factor 4 and 9 relate to Regulation) while the forth group is made
up of 7, the ability to anticipate (“expecting the unexpected”), and
10, the ability to make a substantiated decision in a short period
of time) relate to Situational Understanding, conceptualized here
as a product of interplay between the other three groups. Figure 3
re-phrases this suggestion.

Mental skills operate on top of background, including
knowledge and skills acquired in training, but are qualitatively
different from those. The distinction extends from responding
to unexpected eventualities to constructing scientific proofs or
theories where the process of selecting and applying the rules
of the theory at each stage cannot be itself governed by another
set of rules (de Regt, 2017). In the Airbus incident, emergency
rules and training dictated either consulting the emergency
checklists or seeking possibilities for heading to the nearest
airport. Following either of these courses of action would be
both rational (not random or unreasonable) and in line with
the cumulative experience in the aviation community, but would
have surely killed all on board.

There are five points to be made here. First, an NJ landing was
initially considered by CS and implicitly supported by controllers
on the ground, as evidenced by the granting landing permission.
Second, CS could not even start analyzing the NJ option (i.e.,
considering the current altitude, airspeed, distance, wind, aircraft
characteristics, etc.) but could only develop a “feel” that it would
not work out. Third, despite the absence of analysis, the “feel”
allowed a substantive decision (“We can’t do it”). Forth, having
developed the “feel,” CS acted on it resolutely, entailing another
substantive decision (“We’re gonna be in the Hudson”). Fifth,
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CS did not know the future but performed comparably to or
better than pilots who knew the scenario in advance. In short,
CS understood the situation in a process involving three distinct
mental operations, as follows.

1. Forceful re-grouping, not derived from any rule or
precedent (jump, �).
(A B) � (A C), here A is the aircraft, B is the New Jersey
airport and C is the Hudson River.
The expression reads as “group (A B) is jumped to group
(A C).”

2. Alternating attention between members inside a group
while envisioning variations in their characteristics
(coordination,
 ).
[var (A) 
 var (C)], attention alternates between
envisioning variations in the aircraft behavior [var (A) (e.g.,
changes in attack angle) and changes along the riverbed
(var (C)] (e.g., changes in width, curvature, etc.). Reads as
“A is coordinated with C.”

3. Forcefully iterating coordination until a particular
coordination pattern (relation) is apprehended (blending,
!).
[(var (A) ! var (C)], reads as “A is blended with C.”
Blending transforms a coordinated group into a cohesive
and coherent functional whole so that, e.g., envisioning
variations in one member brings to mind the corresponding
variations in the other one (thinking of ditching near a
particular spot brings to mind the required changes in
aircraft behavior and, vice versa, envisioning changes in
the behavior brings to mind the corresponding changes
in the location of the spot). Blending establishes relation
R on the group [var (A) 
 var (C)] → (A R C) which
gets expressed in substantive decisions (“We’re gonna be
in the Hudson”) and gives rise to probability estimates for
coordinated activities (“chances of a successful ditching
are not too bad”) and their outcomes (more on that in
the next section).

Operations jump, coordination, and blending participate in the
construction of mental models, culminating in blending which
makes one aware of, i.e., anticipate direct and indirect results
of one’s actions without considering situational details. Intuitive
appreciation of this dualistic relationship between awareness and
understanding seems to be the motivation in the Situational
Awareness concept and the SA schema in Figure 1.

To summarize, understanding involves the construction of
mental models that make an adequate performance possible
when exploring unknown phenomena and/or dealing with
unforeseeable eventualities in the otherwise familiar tasks. In
the latter case, understanding enables decision processes that
are substantive, short (as compared to the duration of the
task), rely on minimal information intake, and achieve results
approximating those one would achieve had all the eventualities
been known in advance. Importantly, mental models not only
generate likelihood estimates for future conditions but make one
envision them and then actively regulate motor-sensory activities
consistent with the anticipated conditions and in coordination

with motor-sensory feedback (hence, the “expecting of the
unexpected”). Note that simply to decide or choose immediately
requires there to be a space of policies or narratives to select
from. The position offered in this paper is that this necessarily
entails the ability to represent the (counterfactual) consequences
of two or more courses of action—and to select optimally among
these representations. What brain mechanisms could underlie
this capability?

THE VIRTUAL ASSOCIATIVE NETWORK
THEORY OF MENTAL MODELING

The VAN model was motivated by one paramount question
(“How does understanding work?”) and stems from the three
already familiar ideas that can be re-stated as follows:

(1) The world is a stream, and brain processes are
dynamically orchestrated to adapt organism’s behavior to
variations in the stream.

(2) The brain is a physical system, wherein all processes need
to be powered by energy extracted from the stream.

(3) Physical systems are dissipative, so any re-organization
takes time (instantaneous reorganization would require
infinite energy). As a result, adaptive re-organizations are
necessarily anticipatory.

Taken together, these ideas entailed the following two
hypotheses:

(a) the evolution of biological intelligence has been
(selectively) pressured to stabilize energy supplies
above some life-sustaining thresholds and

(b) human intelligence was brought about by biophysical
processes—discovered by evolution—that allowed for
two fundamental mechanisms to emerge: mechanisms
that stabilized energy supplies from the outside and those
minimized dissipative losses and energy consumption
inside the brain. These mechanisms culminate in the
uniquely human capacity for understanding, as outlined in
the remainder of this section. The next section will suggest
a hand-in-glove relationship between thermodynamic
efficiency and variational free energy minimization
(VFEM) (Friston, 2009, 2010).

Note that the VAN approach is orthogonal to that expressed
in the perceptron (neural nets) idea: dynamically orchestrated
neuronal structures vs. fixed structures (after the weights are
settled), input streams where stimuli combinations are never
twice the same vs. recurring inputs. Crucially, accounting for
energy and time is integral to the VAN model and alien to the
perceptron framework. In short, the VAN and perceptron models
reside in different conceptual terrains. The appeal of the former
is the possibility of quickly reaching a point where a theory of
understanding can be articulated. Technically, the distinction
between perceptron and related reinforcement learning and VAN
is the distinction between an appeal to the Bellman optimality
principle (any part of an optimal path between two configurations
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of a dynamical system is itself optimal) and a more generic
principle of least action where action corresponds to energy times
time. VAN and the free energy principle (a.k.a. active inference)
share exactly the same commitments. Note that formulating
optimal behavior in terms of a principle of least action necessarily
involves time—and the consequences of behavior.

To set the stage, return to Figure 2, and think of the world
as a succession or stream of states Si, Sj . . . arriving with
time interval τ1, and think of the brain as a pool of N binary
neurons. Interaction is driven by the need to extract energy
from the world in the amounts sufficient for the pool’s survival.
Anthropomorphically, this entails recurring cycles of inquiring
(What is the current state of affairs in the world?) and forming
responses (What shall I do about it?). The sequence of “inquiries”
at each cycle can be expanded: What is the state? What can I do
about it? What shall I do about? How shall I do it? and so on. Also,
different types of neurons can be envisioned and mapped onto
different components in the architecture in Figure 2 (sensory
neurons, motor neurons, etc.).

Whatever the composition of the pool and the content and
order of the inquiries, activities in the pool boil down to
selectively flipping (exciting or inhibiting) neurons in a particular
order. Make two assumptions: (a) each state Si can emit energy
reward i ranging from 0 to some maximum 4

max
i , depending on

the order and composition of “flippings” in the pool and (b) each
“flip” consumes energy d (at the first approximation, let all flips
be powered by the same energy amount). The problem facing
the pool can be defined now as maximizing energy inflows while
minimizing the number of flips. It will be argued, in four steps,
that understanding involves a particular strategy for satisfying
this dual objective (step 4 defines architecture for understanding).

Step 1. Neuronal Groupings
A pool of N binary neurons admits 2Nconfigurations so that,
in principle, selecting a rewarding configuration for a particular
world state can pose a problem that grows in complexity with the
size of the pool (associating complexity measure with the number
of options). The problem is alleviated when choices are dictated
by the world state itself (i.e., each stimulus in the composition of
Si excites particular neurons) but, otherwise, the pool needs to
choose between 2N options.

Assume that a mechanism exists to partition the pool into m
groupings [call them neuronal assemblies (Hebb, 1949, 1980)]
such that all the neurons in every group behave in unison. Such
partitioning would offer more efficiency, reducing the number
of choices from 2N to 2m. The remedy is radical because it not
only puts a lid on complexity growth but causes complexity
to decrease steeply with the size of the pool (e.g., partitioning
pool of 10 neurons into 5 groups yields 25: 1 reduction in the
number of options while having 5 groups in a pool of 100 neurons
obtains 295: 1 reduction). Complexity reduction translates into
an increase decision speedup (e.g., equating complexity to time-
complexity, by assuming one choice per unit time) and internal
energy savings. Indeed, complexity reduction can be regarded
as underlying all (i.e., universal) computation; in the sense of
algorithmic complexity and Solomonov induction. The benefits
of compression and complexity minimization come at a price:

FIGURE 4 | Self-partitioning in the neuronal pool radically impacts pool’s
capacities in responding to world streams and involves trade-offs between
time and accuracy, as a function of group size. The relationship is non-linear,
creating long tail areas where, on the one side, sacrificing speed (increasing
the number of groups) produces no appreciable improvements in accuracy
(“useless details”) and, on the other side, small speed gains produce quickly
increasing errors (“useless generalities”). A narrow inflection zone (Ockham’s
point, or O-point) lies between the tail areas.

imploding complexity is accompanied by exploding error — as
the loss of degrees of freedom precludes an accurate prediction.
This trade-off between accuracy and complexity is illustrated in
the notional diagram in Figure 4 (error ηi is measured by the
difference between energy gain 4

N
i obtainable in the pool without

partitioning and gain 4
m
i yielded by m- partitioning).

To illustrate, veering to the left of the O-point in the
Airbus accident would be akin to CS receiving advice “aviate,
navigate, communicate” from the ground controllers, which
is a paramount principle in aviation human factors (Wiener
and Nagler, 1988) but hardly a useful guidance under the
circumstances, while veering to the right would be like offering
a refreshment course in plane aerodynamics. Depending on the
task, the relative width of Ockham’s zone on the group size axis
can be very small so the ability to stay within it (e.g., not going
through emergency checklists, discontinuing communications,
etc.) can make vital differences in the performance outcomes. Put
simply, there is a right level of “grouping” or “course graining”
that provides the right balance between accuracy and complexity.
Statistically speaking, this corresponds to maximizing marginal
likelihood or model evidence.

Arguably, the emergence of grouping mechanisms in the
neuronal substrate was a major discovery in the evolution
of biological intelligence (from sensing to understanding).
Accordingly, the concept of neuronal assembly remains the
single, most revealing idea at the foundation of neuroscience
(Hebb, 1949, 1980). Neuronal grouping opened new avenues for
development, via fine-tuning and manipulation of the groups.
Pursuing such adaptive improvements equates to bending curves
and “pushing” the Ockham’s point toward obtaining minimal
error in the smallest number of groups (see Figure 3). It was
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FIGURE 5 | (1) Patterns of excitation-inhibition within groups can be varied,
which can be expressed as rotation of group response vectors (symbol y
denotes operation “rotation of group response vector”). (2) Movements of
group response vectors can be coordinated: every position of GRVA

determines a range of admissible positions for GRVB, and vice versa,
movement of one vector causes re-positioning of the other one (i.e., thinking
of changes in A brings to mind the corresponding changes in B).

subsequently argued that thermodynamics has been doing the
“pushing” (Yufik, 1998, 2013), we will touch on that later.

Step 2. Varying and Coordinating Group
Activities
On-off decisions on neuronal groups can be dynamically nuanced
to allow more close tracking of the world stream, by, first,
tuning receptive fields in individual neurons and, second, by
varying excitation–inhibition balance within each. A convenient
expression of that strategy can be obtained by summing up
response vectors of all the participating neurons in a group to
obtain “group response vector” (GRV) and then characterizing
activity variations inside a group as patterns in the movement
of GRV. Finally, mechanisms for inter-group coordination
would develop on top of the mechanisms for controlling intra-
group variations. Coordination involves mutual constraints, i.e.,
variations in one group can both trigger and limit the range
of variations in another one. Mutual constraints reduce the
number of options, thus shifting the O-point down and to the
left. Figure 5 depicts progression from intra-group variation to
inter-group coordination.

One of the cornerstone findings in neuroscience revealed that
movement control (e.g., extending hand toward a target) involves
a rotation of response vectors in groups of motor neurons, as in
Figure 5.1 (Georgopoulos and Massey, 1987; Georgopoulos et al.,
1988, 1989, 1993). Accordingly, complex coordinated movements
can involve coordinated rotation of group response vectors in
synergistic structures in the motor cortex comprising multiple
neuronal groups (Latash, 2008).

Step 3. Neuronal Packets and Brain
Energy Landscapes
The following hypotheses is central in the VAN model: neuronal
assemblies are formed as a result of phase transitions (Kozma
et al., 2005; Berry et al., 2018) in associative networks,
when tightly associated subnets become separated by energy
barriers from their surrounds (c.f., the formation of droplets in
oversaturated vapors). The term “neuronal packet” was coined
in Yufik (1998) to denote neuronal assemblies bounded by

energy barriers. It can be argued that Hebb’s insight recognizing
assemblies as functional units in the nervous system (as
opposed to attributing this role to individual neurons) necessarily
implied the existence of biophysical mechanisms that keep
such assemblies together, separate them from the surrounding
network and make it possible to manipulate them without
violating their integrity and separation. On that argument, the
VAN theory only makes explicit what was already implied in the
idea of neuronal assembly. Figure 6 elaborates this contention.

Associating boundary energy barriers with biological neuronal
groups expresses a non-negotiable mandate that operations on
such groups, including accessing the neurons inside, varying
excitation-inhibition patterns in the groups, removing neurons
from a group, etc. all involve work and thus require a focused
energy supply to the group’s vicinity sufficient for performing
that work. Multiple packets establish an energy landscape in the
associative network, as shown in Figure 7.

Packets are internally cohesive and externally weakly coupled
(i.e., neurons in a packet are strongly connected with each
other and weakly connected with the neurons in other packets),
the cohesion/coupling ratio in a packet determines the depth
of energy “well” in which it resides: the deeper the well, the
more stable the packet, which translates into reduced amounts
of processing and higher degree of subjective confidence when
packet contents are matched against the stream [packets respond
to correlated stimuli groupings, the number of matches sufficient
for confidently identifying the current input decreases as the
cohesion/coupling ratio increase (Malhotra and Yufik, 1999)].
Changes in the landscape, as in Figure 6, result from changes in
arousal accompanying changes in subjective values (importance)
attributed to the input (objects, situation): the higher the value
attribute to an object, the deeper the corresponding well becomes
(more on that shortly).

The notions of neuronal packets and energy landscape in
Yufik (1996, 1998); Yufik and Sheridan (2002) anticipated
experimental and theoretical investigations of cortical energy
landscapes (Watanabe et al., 2014; Gu et al., 2017, 2018; Kang
et al., 2019). However, packet energy barriers are amenable to
direct experience, as was first intimated by William James in his
classic “The Principles of Psychology” back in 1890, as follows. To
access an item in memory, one must make attention

“linger over those which seem pertinent, and ignore the rest.
Through this hovering of the attention in the neighborhood of the
desired object, the accumulation of associates become so great that
the combined tensions of their neural processes break through the
bar, and the nervous wave pours into the track which has so long
been awaiting its advent” (James, 1950/1890, v. 1, p. 586).

To appreciate the insightful metaphor “breaking through
the bar,” think of desperately trying to recollect the name of
an acquaintance that escaped you just at the moment you
were making an introduction. With a stunning insight and
vividness (Figure 8), James describes the experience of mounting
mental effort to access packet’s internals from the surrounding
associative structure:

“Call the forgotten thing Z, the first facts with which we felt it was
related, a, b, c and the details finally operative in calling it up, l,
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FIGURE 6 | The idea of assembly expresses the notion that groups of tightly associated neurons form cohesive units distinct from their surrounds in the network
(associative links are not shown). The notion of a neuronal packet expresses, in the most general terms, a mechanism for forming and stabilizing such units in a
material substrate (i.e., phase transition and emergence of an energy barrier in the interface between the phases). PRVA denotes “packet response vector.”

FIGURE 7 | Associative structures reside in continuous energy landscape.
Coordinating objects A and B occupying different minima (A B) → (A� B)
requires repetitive climbing over the energy “hill” between the minima.
Deformation in the landscape (lowering the “hill”) enables blending
(A� B) → (A! B), producing a structure where A and B remain distinct
and, at the same time, capable of constraining each other’s behavior.

m and l. . . .The activity in Z will at first be a mere tension, but
as the activities in a, b and c little by little irradiate into l, m, n,
and as all these processes are somehow connected with Z, their
combined irradiation upon Z . . .succeed in helping the tension
there to overcome the resistance, and in rousing Z to full activity”
(James, 1950/1890, v. 1, p. 586).

Building on the notions in Figure 7, assume, first, that Z
admits a number of distinguishable states Z = Z1, Z2, . . ., Zk,
second, another packet Q = Q1, Q2, . . .., Qm exists somewhere
in the associative network, third, attention alternates between
varying states in Z Z1 → Z2 → ...→ Zk and Q Q1→ Q2→

. . .. →Qm (i.e., rotating packet vectors) until, finally, a particular
form of coordination between the variation patterns is established
(relation r), producing a coordinated relational structure Z r
Q. With that, a model is formed expressing variations in the
world stream in terms of objects, their behavior and inter-
object relations (more on that shortly). Transporting James’ vivid
account into modern context, “hovering of the attention” can
be compared to burning fuel in a helicopter hovering over a
particular spot, and inter-packet coordination is like keeping
two helicopters airborne and executing different but coordinated

FIGURE 8 | Accessing contents of packet Z requires sustained attention in
the associative neighborhood until effort is mounted sufficient for overcoming
“resistance”(i.e., boundary energy barrier) (adopted from James, 1950/1890,
v. 1, p. 586).

flight patterns. Finally, forcing changes in the landscape and
establishing coordination, as in Figure 6, is analogous to letting
the helicopters roll on the ground and having them connected by
a rod to coordinate their moves. The following two suggestions
reiterate these notions more precisely.

First, alternating between the packets is an effortful process
critically dependent on the strength of “resistance” offered by the
energy barrier: excessive height will make the packets mutually
inaccessible while low barriers will make them less stable and
thus disallow sustained and reproducible variations. In short,
the process is contingent on maintaining a near-optimal height
of energy barriers throughout the landscape, as suggested in
Figure 6.

Second, establishing relations replaces effortful alternations
between packets with effortless (automatic) “facilitation” (the
term is due to Hebb, 1949). Stated differently, a rule
“varied together, coordinated together” can be suggested as
a complement to Hebb’s “fire together, wire together” rule,
extending its application from neurons to packets. Facilitation
underlies the experience of coming to mind when thinking of
changes in Z brings to mind the corresponding changes in Q,
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as in Figure 5.2. More generally, packets become organized
(blended) into a model yielding the capacity to “have some feel
for the character of the solution . . ..without actually solving
the equations” (Feynman, see section “The Virtual Associative
Network Theory of Mental Modeling”). Stated differently, one
becomes aware of the direction in which changes in one model
component impact behavior of the other ones and of the entire
composition, consistent with the insight expressed in Figure 1.
Situational “feeling” is coextensive with reaching understanding
and obtaining complexity reduction in the modeling process on
a scale ranging from small in simple situations to astronomical
in complex ones.

To appreciate the significance of the benefit, think of a
most rudimentary task, e.g., a chimpanzee connecting sticks
and climbing on top of piled boxes to reach some fruit.
Connecting sticks involves trying out different random variations
until the proper coordination is encountered (Koehler, 1999).
Connected sticks become a physical unit that can be physically
coordinated with other units (i.e., carried on top the boxes) which
is contingent on forming and coordinating the corresponding
memory units (pairwise coordinations, i. e, stick1- fruit, stick2-
fruit, box1- fruit, etc. might never amount to a solution). Ability
to temporarily decouple mental operations from their motor-
sensory expressions and to combine coordinated packets into
stable functional units amenable to further coordination (that
is, the ability to think and understand) separates humans from
other species. Piaget articulated these notions convincingly,
by pointing at the “contrast between step-by-step material
coordinations and co-instantaneous mental coordinations”
and demonstrating in multiple experiments that “mental co-
ordinations succeed in combining all the multifarious data and
successive data into an overall, simultaneous picture which
vastly multiplies their power of spatio-temporal extensions. . .”
(Piaget, 1978, p. 218).

Step 4. Architecture for Understanding
Figure 9 positions mechanisms of packet manipulation in the
three-partite brain architecture in Figure 2 superposed on the
schema of Situational Understanding in Figure 3.

Two blocks are identified, denoting two classes of memory
processes and operations: block A is shared across many species
while block B is exclusively human, as follows. Block A limits
memory processes to the formation of associative networks and
packets, and allows for the rotation of packet vectors. Block B
allows other operations leading to construction of mental models
and operations on them.

Block A (block B is absent or underdeveloped) reflects
cognitive capacities in non-humans, from simple organisms to
advanced animals. Rudimentary forms of learning reduced
to selective formation and strengthening of associative
links are available in simple organisms (e.g., worms, frogs)
and decorticated animals [e.g., rats having 99.8% of the
cortex surgically removed (Oakley, 1981)]. Intact rodents
occupy an intermediate position in the capacity ladder
[learning involves formation of a few neuronal groups that
get selectively re-combined depending on changes in the

situation (Lin et al., 2006)]. Apes and some avians can learn to
coordinate a few objects (link C).

Block A operates on the associative and packet network
in block B while leaving the mosaic of associative links
intact. Flexible neuronal “maneuvers” [fluid intelligence
(Cattell, 1971, 1978)] underlie management of competing goals
and other executive functions (Mansouri et al., 2009, 2017)
and involve selective re-combination of packets, producing a
hierarchy of relational models (hierarchy of flexible relational
structures developing on top of an associative network is called
virtual associative network). Interactions between levels are two-
directional, with the top-down processes selectively engaging
lower levels, down to deployment of sensorimotor resources
which can entail changes in the bottom associative network due
to sensorimotor feedback (please see below).

Link D places energy distribution across the packet network
under regulatory influence (volitional control), thus making it
an integral part of a human cognitive system, as suggested in
Figure 10.

In the extreme, low barriers allow floods of irrelevant
associations while high barriers confine attention to a few familiar
associations. Accordingly, optimal arousal obtains optimal task
space partitioning (m0) yielding optimal performance.

Arousal-induced changes in the landscape account for the
levels of awareness, from vegetative wakefulness (flat landscape)
to understanding-based awareness (optimal landscape, see
Figure 1). Subjective experience of arousal varies from fear,
stress, anxiety on the one and of the spectrum to excitement
and exhilaration on the other end. Accordingly, moving along
the spectrum changes the topological characteristics of the
energy landscape: from fragmented access (i.e., some areas
are inaccessible) to the unrestricted accessibility of a flat
surface. Stress-induced changes in landscape topology are likely
to underlie the idea of “suppressed memories” treated in
psychoanalysis (disturbing memories are not erased or degraded
but become “walled off “ behind high barriers, so access to
them can be restored if the barriers are lowered. Treatment that
concentrates on the associative neighborhood (see Figure 6), as
in dream analysis, seems to be appropriate for that purpose).
Methods of memory recovery were disputed, on the grounds that
it might be as likely to conjure false memories as to recover access
to the lost ones (Loftus and Ketcham, 1996). However, creation
and suppression are two sides of the same coin, i.e., the same
mechanism that facilitates creative re-combination of memory
structures can block access to some of them. Stress-induced
landscape distortions can be responsible for other psychological
symptoms, such as obsessive thoughts.

We will now return to the examples above, this time applying
the notions of the VAN framework. The USS Stark incident
and the Maginot catastrophe were not a product of insufficient
training or illogical reasoning but resulted from understanding
failure, that is, the inability to form “mental co-ordinations . . .
combining all the multifarious data and successive data into
an overall, simultaneous picture” (Piaget, 1978, p. 218). Despite
differences in circumstances, the nature of cognitive deficiency
was the same in both scenarios: an inability to overcome
the resistance of elevated energy barriers, which resulted in
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FIGURE 9 | Architectures for understanding. This diagram represents cognition as a regulatory process that is directed at adapting (matching) behavior variations in
the organism to condition variations in the world stream and is powered by energy inflows extracted from the stream. Organization in the system comprises different
structures submitted to regulation [from tuning receptive fields in individual neurons (Fritz et al., 2003, 2005), to rotating packet vectors, to constructing and
manipulating mental models], seeking to stabilize energy inflows while minimizing metabolic costs.

fragmented (as opposed to simultaneous) “pictures.” On the
VAN theory account, the captain’s mental model in the first
scenario comprised two uncoordinated packets: A = ship, objects
relevant to the ship, and B = all other objects. A highly valued
but erroneous AWAC classification placed the Iraq jet in the
second group, and the captain’s mental skills did not allow
crossing the A | B barrier and coordinating members of B
with members of A. In the second scenario, mental model of
the high command comprised A = fortifications, defended area
in front of fortifications and B = adjacent areas, objects in
the adjacent areas separated by an energy barrier that turned
out to be insurmountable due to overvalued significance of
past experiences. French high command, as a collective entity,
demonstrated low level of self-control under fear and anxiety
brought about by the anticipated German attack, which caused
them to fall back on the past tactics and made them “fanatically
uninterested” in deviating from them.

By contrast, a high degree of self control (“ability to operate
effectively under pressure, self-control in hazardous situations”
Suhir, 2013) demonstrated in the Airbus incident made possible
suppressing fear and bringing arousal to a level enabling
situational understanding manifested in overcoming the inertia
of training and customary practices (regulations, authority of
the ground control, etc.), “feeling” the appropriate course of
action, and making decisions at a substantive level (“we can’t
do it,” “we’re gonna be in the Hudson”). The well coordinated
mental model regulated subsequent activities in a top-down
fashion, by selectively engaging skills and knowledge in the
pilot’s background repertoire as necessary for coordinating flight
pattern with river characteristics to enable a safe ditching.
Figure 11 depicts a succession of mental operations.

Figure 10 underscores that mental models are regulatory
structures that, beside supplying “pictures,” control their own
execution via dynamic coordination of various data streams in
the motor-sensory loop completed via environmental feedback
[sensory streams include visual input (e.g., river shape),

FIGURE 10 | The shape of the energy landscape is a function of interplay
between arousal and value distribution across the packets (reflecting value
distribution in the corresponding objects). Heightened arousal lowers energy
barriers across the landscape enabling coordination of distant packets, as
might be necessary for unfamiliar and complex (creative) tasks, while
decreasing arousal elevates the barriers thus restricting coordination to
proximal packets (which might suffice for simple and familiar tasks).

motor-kinesthetic input, etc.]. Execution is accompanied by
a feeling of confidence in reaching the objective (e.g., safe
ditching) that varies depending on the varying degree of
correspondence between the envisioned outcomes of control
actions and the actually observed ones. Technically, grasp can be
said to establish a functional on the space of packet vectors that
returns confidence values for different patterns of inter-packet
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FIGURE 11 | Here A - aircraft, B - New Jersey airport, C - Hudson River. Mental operations are accompanied by imagery and remain decoupled from the
motor-sensory feedback until, following grasp, the motor-sensory system gets engaged.

coordination. Behavior of the functional depends on the vector
space topology, i.e., accessibility between packets.

Following grasp, the repetitive successful exercise of a newly
formed model causes its stabilization, which is captured, to an
extent, in the concept of frame (schema, script, etc.) defined
as a fixed memory arrangement comprised of components
(slots) with variable contents (e.g., script of visiting a restaurant
comprises slots “entering,” “being seated,” “studying menu,” etc.
(Schank and Abelson, 1977; Norman, 1988). A few comments on
the frame idea are offered in the discussion part.

Since the VAN theory pivots on the notion of energy efficiency
in the brain, a brief excursion into that subject is in order. The
notion that neuronal system optimizes energy processes (Yufik,
1998, 2013; Yufik and Sheridan, 2002) is consistent with later
theoretical proposals (e.g., Niven and Laughlin, 2008; Vergara
et al., 2019; Pepperell, 2020, 2018) and an increasing number
of experimental findings (the discussion section offers a brief
review of some data). To appreciate the sources of energy
efficiency inherent in the VAN concept, consider the following.
In an associative network, excitation in any node or group of
nodes can propagate throughout the entire network. By contrast,
propagation of excitations induced within a packet is obstructed
by boundary energy barriers (i.e., crossing a barrier incurs
energy costs). Moreover, seeking further energy savings drives
the system toward constraining intra-packet activities to packet
subsets and, when crossing the barriers, to engage only packets
amenable to mutual coordination. In this way, formation of
mental models comprising entities (packets), behavior (transition
between intra-packet activity patterns) and relations (inter-
packet coordination) expresses the dual tendency to increase
the efficacy of action plans (enabled by situation understanding)
while decreasing the costs of such planning. A reference to
neuronal processes that might be responsible for some of these
phenomena will conclude this section.

Interaction between neuronal cells is mediated by several
types of substances, including neurotransmitters and
neuromodulators. Neurotransmitters act strictly locally, i.e.,
they are released by a pre-synaptic neuron and facilitate (or
inhibit) generation of action potentials in a single post-synaptic
target. By contrast, neuromodulators act diffusely, i.e., they are
released to a neighborhood as opposed to a specific synapse
and affect a population of neurons in that neighborhood
possessing a particular receptor type (metabotropic receptors).
Neuromodulators control the number of neurotransmitters

synthesized and released by the neurons, thus allowing up- or
down- regulation of interaction intensity. Neurotransmitters
move through fast-acting receptors metabotropic receptors
are slow-acting receptors that modulate the functioning of
the neuron over longer periods (Avery and Krichmar, 2017;
Pedrosa and Clopath, 2017). Neuromodulators were found to
provide emotional content to sensory inputs, such as feelings
of risk, reward, novelty, effort and, perhaps, other feelings
in the arousal spectrum (Nadim and Bucher, 2014). It can
be suggested that James’ vivid depiction of “hovering of the
attention in the neighborhood of the desired object” provides
an accurate introspective account of the work invested in
regulating neuromodulator concentration and neurotransmitter
production at the packet boundary, which amounts to lowering
the energy barrier until “the combined tensions of neural
processes break through the bar” (James, 1950/1890, v. 1, p. 586).
Since neuromodulators are slow acting, the packet remains
accessible for a period of time sufficient for the task at hand.

To summarize, psychology usually treats awareness
as a necessary but insufficient prerequisite for reaching
understanding (e.g., one can be fully aware of all the pieces
and their positions on the chessboard but fails to understand
the situation). According to the present theory, predicating
situation awareness on situation understanding, as in Figure 1,
refers to understanding-based awareness (see section “Levels
of Awareness”) and expresses a keen insight consistent with
one of the key assertions in the VAN theory: the experience of
attaining understanding accompanies emergence of a synergistic
(coherent and cohesive) mental models, simulating (envisioning)
possible actions on particular elements in such models generates
awareness of the constraints and likely consequences of those
actions in the other elements throughout the model (hence, the
situation awareness).

INTEGRATING VIRTUAL ASSOCIATIVE
NETWORK INTO THE VARIATIONAL
FREE ENERGY MINIMIZATION
FRAMEWORK

The Free Energy Minimization principle offers a “rough guide to
the brain” (Friston, 2009) and extends to any biological system,
from single-cell organisms to social networks (Friston, 2010).
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The central tenets of the VFEM come from the realization that
any living system must resist tendencies to disorder, including
those emanating from the environment, while obtaining means
for resistance from that same environment:

“The motivation for the free-energy principle . . . rests upon the
fact that self-organizing biological agents resist a tendency to
disorder and therefore minimize the entropy of their sensory
states “ (Friston, 2010, p. 293).

The success or failure of the enterprise depend on the system’s
ability to adapt, via forming models of the world used to predict
the forthcoming conditions. The VFEM principle expresses
this insight in information-theoretic terms, via the notion of
variational free energy defined as follows:

“Free-energy is an information theory quantity that bounds the
evidence for a model of data . . . Here, the data are sensory
inputs and the model is encoded by the brain. . . ... In fact, under
simplifying assumptions. . .it is just the amount of prediction
error” (Friston, 2010, p. 293).

Technically, variational free energy is Fv is defined as surprise
(or self-information) - ln p (y| m) associated with observation
y under model m, plus the difference between the expected and
the actual observations (i.e., the prediction error under model
m), measured as a Kullback-Leibler divergence DKL, or entropy,
quantifying distinguishability of two probability distributions.

This section adopts the simplifying assumptions and equates
variational free energy to prediction error. The VFEM principle
conceptualizes minimization of prediction error as a causal factor
guiding interaction with the environment, as follows:

“We are open systems in exchange with the environment; the
environment acts on us to produce sensory impressions and
we act on the environment to change its states. This exchange
rests upon sensory and effector organs (like photoreceptors and
oculomotor muscles). If we change the environment or our
relationship to it, sensory input changes. Therefore, action can
reduce free-energy (i.e., prediction errors) by changing sensory
input, whereas perception reduces free-energy by changing
predictions” (Friston, 2010, p. 295).

Adaptive capacities culminate in the ability to adjust accuracy,
or precision to optimally match the amplitude of prediction
errors, as follows:

“Conceptually, precision is a key determinant of free energy
minimization and the enabling – or activation – of prediction
errors. In other words, precision determines which prediction errors
are selected and, ultimately, how we represent the world and
our actions upon it. . . ..it is evident that there are three ways
to reduce free energy or prediction error. First, one can act
to change sensations, so they match predictions (i.e., action).
Second, one can change internal representations to produce a
better prediction (i.e., perception). Finally, one can adjust the
precision to optimally match the amplitude of prediction errors”
(Solms and Friston, 2018).

The VAN theory instantiates the VFEM principle for the
human brain, identifying understanding with a particular
strategy for predictive error reduction and a particular form of
precision adjustment. In this way, the VAN theory proposes some

substantive contributions to the VFEM framework, including the
following. Firstly, the VFEM principle envisions changing actions
to change sensations and changing internal representations in
order to change perceptions. The VAN theory envisions, in
addition, changes in the internal models to produce and change
understanding. Secondly, “the motivation for the free-energy
principle . . .. rests upon the fact that self-organizing biological
agents resist a tendency to disorder and therefore minimize
the entropy of their sensory states” (Friston, 2010, p. 293).
VAN postulates that self-directed construction of mental models
constitutes a form of self-organization in the brain that reduces
the entropy of its internal states (Yufik, 2013, 2019) (more on
that important point in the next section). Thirdly, according to
the VFEM, error minimization brings about the minimization of
energy consumption in the brain. By contrast, VAN attributes
ontological primacy to energy processes and derives error
reduction from the pressure to reduce energy consumption.

Technically, the VAN and VFT share the same commitment to
finding the right balance between accuracy and complexity, i.e.,
the right kind of grouping or course graining that conforms to
Occam’s principle. This follows because variational free energy
is a bound upon the log of marginal likelihood or model
evidence (i.e., negative surprise or self information). As noted
above, the marginal likelihood can always be decomposed into
accuracy and complexity. This means that the energy landscapes
above map gracefully to the variational free energy landscapes
that attend the free energy principle. The link between the
informational imperatives for minimizing prediction errors and
the thermodynamic imperatives for efficient processing rest
upon the complexity cost, that can be expressed in terms of a
thermodynamic cost (via the Jarzynski equality). An example
will illustrate the underlying notion of efficiency from both a
statistical and thermodynamic perspective:

Consider a frog trying to catch flies and getting disappointed
by the results (too many misses). To secure a better energy
supply, the frog can start shooting its tongue faster, more often,
etc. If the hit/miss ratio does not improve and the frog keeps
shooting the tongue in vain, it will soon sense the amplitude
of prediction error unambiguously – by dying from exhaustion.
Presume that neuronal mechanisms emerge that improve the
score by improving sensory- motor coordination. In principle,
this line of improvement could continue indefinitely making
the frog progressively more sophisticated hunter, except that the
mechanisms can require more neurons engaged in more intense
activities which will result in increasing energy demands that
can outweigh increases in the intake (besides, there are obvious
physiological and physical limitations on the brain size, and
neither neurons can become smaller, nor the underlying chemical
processes can run faster).

Consequently, radical behavior improvements are predicated
on discovering mechanisms that deliver them without increases
in the size of neuronal pool and/or neuronal activities, that is,
without increases in internal energy consumption or, better yet,
entailing energy savings. The point is that such mechanisms
might or might not emerge, and error reduction is a consequence
of their development, as opposed to such mechanisms being
a guaranteed accompaniment of error reduction. With these
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FIGURE 12 | VAN theory instantiates VFEM framework, by accounting for error optimization mechanisms underlying human understanding. The figure above the
horizontal dotted line depicts a VFEM construct where adaptive interaction between world states and the brain (internal states) is conducted via motor-sensory loop
and pivots on the mechanisms of error minimization and precision adjustment (adopted from Solms and Friston, 2018). Figure below the horizontal dotted line
summarizes the VAN approach deriving error optimization from capabilities inherent in self-directed packet manipulation (see Figure 9). Vertical dotted lines suggest
mapping between the VFEM and VAN constructs. The sensory and activity states constitute Markov Blanket that shields internal states from the world states and, at
the same, mediates interaction between them.

caveats, Figure 12 suggests a straightforward integration of the
VAN model into the VFEM framework.

MACHINE SITUATIONAL
UNDERSTANDING

This section illustrates the function of machine
situational understanding and discusses approaches toward
its implementation.

Machine Understanding
A machine can be said to possess situational understanding to the
extent it can:

(a) accept task definition from the operator expressed in
substantive terms,

(b) evaluate a novel, unfamiliar situation and develop a course
of action consistent with the task and situational constraints (the
available time, data sources, etc.) and

(c) communicate its decisions and their reasons to the
operator in substantive terms.

In other words, decision aid is attributed a degree of
situational understanding if the operator feels that the machine

input contributes into his/her situational awareness and
can be sufficiently trusted to adjust his/her own situational
understanding and to act on machine advice. In the VAN
framework, substantive expressions address objects (entities),
their behavior, and forms of behavior co-ordination (relations).
The same three examples will illustrate these suggestions.

In the USS Stark incident, an on-board situation
understanding aid (SUA) could overrule AWAC target
classification and issue a warning like “Attention: there is
0.92 probability that this is enemy aircraft.” The chances that the
warning will be trusted and acted upon will improve significantly
if, when asked “How do you know?” the system would reply
with “The aircraft was ascending but then turned sharply and
started descending and accelerating toward you.” Assuming that
the captain interacts with the ship systems via the aid, the SUA
would accept the captain’s command “Engage the target” and
initiate activities by the engagement protocol [note that learning
systems (e.g., deep learning) are capable of reliably detecting and
identifying objects but are limited in their ability to apprehend
relations and explain their decisions to the user].

In the Airbus incident, the SUA could be tasked with
interacting with ground control to request permission to land
in NJA, and could respond with “We are not going to make
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it.” Improving situation understanding in the Maginot scenario
would require breaking a rigid mental template, some (tentative)
suggestions for a possible role of SUA will be made shortly, after
introducing VAN computational framework.

Virtual Associative Network
Computational Framework and Virtual
Associative Network/Variational Free
Energy Minimization Integration
The VAN computational framework was dubbed “gnostron”
(Yufik, 2018), to underscore distinction from “perceptron”:
perceptron has a fixed neuronal structure while gnostron is a
neuronal pool where structure evolves gradually and remains
flexible. Gnostron formalism is a straightforward expression
of VAN considerations summarized in section “Integrating
Virtual Associative Network into the Variational Free Energy
Minimization Framework,” as follows.

World is a stream of stimuli S = s1, s2, . . .., sM arriving
in different combinations at a pool comprised of N neurons
X = x1, x2, xN , with each neuron responding probabilistically to a
subset of stimuli. In turn, the stimuli respond probabilistically to
the neurons that pool mobilizes and “fires at” them, by releasing
energy deposits (neuronxi has receptive field µij, µih, . . .µik, here
µih denotes probability that stimulus sh will release deposit Eh
in response to the pool having fired xi). Mobilization (selecting
neurons and preparing them to fire) takes time and neurons,
after having fired, need to time to recover, which forces the pool
to engage in anticipatory mobilization. Engaging xi consumes
energy δi comprising the work of mobilization ρi and the work of
firing νi, δi = ρi + νi (note that mental operations are constituents
of mobilization).

The pool’s survival depends on maintaining net energy inflows
(cumulative deposits minus cumulative expenditures) above
some minimal threshold, which includes the requirement that
the average mobilization period is commensurate with the tempo
of stimuli arrival. This formulation translates the problem of
survival and adaptive efficiency into that of probabilistic resource
optimization: orchestrate the pool’s activities (mobilization, firing
and inhibition, or demobilization) consistent with variations in
the stream so that energy inflows are maximized (or stabilized at
some acceptable level) while energy expenditures are minimized.
Conceptualizing cognitive processes as dynamic optimization of
neuronal resources (Yufik, 1996, 1998) is consistent with the
recent views associating advanced cognitive functions with the
ability to monitor the significance of multiple goals and flexibly
switch between them so that the rewards yielded by the goals
are maximized and the associated neuronal costs are minimized
(e.g. Mansouri et al., 2017). The gnostron framework pivots on
the notion that mechanisms of neuronal groupings envisioned in
the VAN map directly onto heuristics for probabilistic resource
optimization so that energy savings in the biological substrate
equate to reduced processing expenditures in the machine
implementation. Figure 13 returns to hunting frogs (section
“Integrating Virtual Associative Network into the Variational
Free Energy Minimization Framework”) in order to illustrate and
summarizes these notions,

Boundary energy barriers bound evidence for the
corresponding object (Yufik and Friston, 2016; Yufik, 2019,
2021a,b). More precisely, recognition confidence associated with
firing a neuron is a function of the corresponding probability
µih in the neuron’s receptive field and the strength of neuron’s
attachment to (correlation with) other neurons in the packet.
High confidence motivates leaving the packet but the fee charged
for crossing the barrier discourages premature decisions and
forces seeking confirmation or disconfirmation, in which case
paying the fee remains the only option.

Technically, formation of packets constitutes a heuristic
yielding complexity reduction in the probabilistic optimization
problem. More precisely, forming packet network atop the
associative network breaks a very large, continuous problem
into a succession of discrete problems small enough to be
solved by full search (this strategy appears to underlie the
Long Term Memory/Short Term Memory (STM) architecture
where small STM buffer [less than 10 items (Miller, 1956)]
is subject to exhaustive scanning (Sternberg, 1969). The
computational architecture of associative cortices readily affords
self-partitioning in associative networks allowing near-optimal
behavior. In Gnostron, the partitioning quality is defined by a
simple criterion: choose a particular optimization algorithm and
compare results obtained before (baseline) and after partitioning
into packets [a stripped down, proof-of-concept system for
target recognition obtained close to two orders of magnitude
complexity reduction with acceptably small error amplitude
(Malhotra and Yufik, 1999; Yufik and Malhotra, 1999)]. Figure 13
generalizes the gnostron proposal.

Figure 14 lists key neuronal mechanisms postulated in
VAN, seeking to establish three points: First, the postulated
mechanisms have algorithmic expression in the framework
of probabilistic resources optimization. Second, gnostron
framework establishes a degree of isomorphism between human
decision processes (as envisioned in VAN) and computational
procedures: both substantive decision-making and Gnostron
procedures operate with models representing objects, behavior
and relations. Moreover, lower level gnostron procedures
can be mapped meaningfully onto mental operations (for
example, computing packets involves operations on cutsets in
networks that correspond, roughly, to refocusing attention from
prominent relations between objects to background relations that
were deemed to be less significant). Finally, gnostron mediates
between human operators and other systems but does not
replace them (for example, gnostron can be calling on standard
on-board systems to estimate the chances of safe landing in
the New Jersey Airport. By the same token, it will be able to
respond to a query like “Is the NJA an option?”). In this way,
gnostron shields an operator from computation details while
maintaining interaction at a substantive level adequate for shared
situational understanding.

Strategy V involves formation of fixed templates. To
appreciate differences in performance yielded by strategies V and
VI, map them onto acquisition of chess skills, as follows: strategy
III enables one to tell apart (recognize) chess pieces, strategy
IV associates admissible behavior (rules) with the pieces, and
strategy V enables memorization of particular tactics. To take a

Frontiers in Systems Neuroscience | www.frontiersin.org 16 December 2021 | Volume 15 | Article 786252105

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-15-786252 December 22, 2021 Time: 9:25 # 17

Yufik and Malhotra Human/Machine Situational Understanding

FIGURE 13 | Frogs shoot their tongues at small moving objects in sufficient proximity. (A) Mobilizing, firing and inhibiting neurons consumes energy and extracts
energy deposits from the world stream (the flies). (B) Connections are formed between co-firing neurons and get strengthened with each successful episode (these
connections can be genetically fixed, as in frogs). (C) Phase transition in the network turns the associative group into a cohesive packet bounded by an energy
barrier. (D) The packet is a functional unit (has a receptive field computed as a function of receptive fields in the constituent neurons) amenable to mobilization and
allocation. In the humans, mobilizing and allocating packets is experienced as perceiving “objects,” packet “tuning” (rotating packet vector) defines the states of the
object, admissible transitions between the states define behaviors (self-directed packet manipulation is available to humans but not to frogs).

FIGURE 14 | VAN identifies six basic mechanisms employed by the brain to produce adaptive responses to variations in the world stream. The mechanisms vary
from tuning receptive fields in individual neurons (I) to constructing and manipulating mental models (VI). Gnostron architecture integrates these mechanisms.

closer look at the latter, a few chess notions will be helpful: Fool’s
mate (capital F) is a checkmate delivered in the fewest possible
moves (2–4) after the beginning of the game, fool’s mate (small f)
is a maneuver of a few moves anytime in the game that delivers
checkmate or turns opponents’ position into a hopelessly lost one,
and Sicilian defense is a particular Black move in response to a
particular White move at the opening of the game (1. e4 c5). It’s
easy to see that a novice player taught only the Sicilian template is
unlikely to seek tournaments (“what will happen after I do c5?”).
Chess books teach seven basic strategies for continuing the game
but, being taught all seven or, to take things to the extreme, having
memorized the gazillion games ever played that used Sicilian
template would make no difference: fool’s mate is guaranteed if
a more skilled opponent deviates from one of the memorized
games, or just opens the game by any move other than e4.

The argument is (a re-statement of Searle’s Chinese room
argument) that knowledge, however, extensive, neither amounts

nor guarantees understanding. Moreover, knowledge without
understanding easily becomes a vulnerability. More to the point,
the German army delivered fool’s mate to the French command
at the beginning of the campaign, taking advantage of the fact
that the latter adhered to a rigid tactical template acquired in
the WWI. Deficiencies in strategic thinking on that scale can
hardly be remedied by a decision aid (although detecting rigid
templates can be a part of gnostron tactics when interacting with
human operators).

The chess example will serve to illustrate a general contention
regarding situational understanding in both the human and the
machine, as follows. Understanding involves the ability to form
templates that is inextricably combined with the ability to re-
structure and deviate from them and to incorporate them as units
into other structures. Growing understanding is accompanied by
growing organization and global order in the neuronal pool (see
Figure 13) and growing repertoire of sensorimotor activities (e.g.,
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from acquiring a repertoire of standard procedures in managing
routine flights to safely ditching a suddenly disabled aircraft).
The expanding activity repertoire entails growing entropy in the
sensory-motor system. That is, understanding capacity brings
about reduction of entropy in the internal states while increasing
entropy in the motor-sensory periphery. Figure 15 illustrates this
important aspect of VAN/VFEM integration.

Incorporation of understanding into the VFEM schema, as
in Figure 14, suggests a modification in the formulation of
the principle, as follows: FV → min under HMB → max and
W(DKL) → max.

Here, W(DKL) denotes the amount of work invested in
minimizing discrepancy between the predicted and actual
probability distributions [the Kullback-Leibler divergence was
shown to define a lower bound to entropy production and thus
the average amount of work dissipated along the process (divided
by the temperature) (Roldan and Parrondo, 2012)].

That is, under a fixed energy budget in the brain,
understanding capacity is a result of increased organization
(decreased entropy) in the regulatory system which diverts more
energy to—and thus increasing the amount of useful work in—
the memory system, to allow expanding activity repertoires
(growing entropy) in the motor-sensory system (see Figure 2)
that in turn leads to increasing (and/or stabilizing) energy
inflows extracted from the world stream. Operations on models
underlie prediction and retrodiction: in A and B under relation
r, changes in the behavior of A predict changes in the behavior
of B and changes in the behavior B retrodict to changes in
the behavior in A, as afforded by the relation r. The process
is tightly constrained in a template (e.g., under conviction that
frontal assault is the only viable strategy, any intelligence is
interpreted as either conforming, or irrelevant, or a product of
deliberate misinformation). Transition from template-matching
to mental modeling relaxes the constraints, posing the problem
of hypotheses selection (“that does not look like preparations for
a frontal assault, what can that possibly be?”) captured in the
notion of abductive inference.

“The first starting of a hypothesis and the entertaining of it, either
as simple interrogation or with any degree of confidence, is an
inferential step which I propose to call abduction (or retrodiction).
This will include a preference for any hypothesis over others
which would equally explain the facts, so long as as this preference
is not based on upon any previous knowledge bearing upon
the truth of the hypotheses, nor on any testing of any of the
hypotheses, after having admitted them on probation. . . . the
whole question of what one of the number of possible hypotheses
ought to be entertained becomes purely a question of economy ”
(Peirce, 1901/1955, pp. 151, 154).

The thinking process naturally selects the path of least
resistance (i.e., strong associations, as in a template), and needs
to be forcefully interrupted and re-directed to paths deviating
from “any previous knowledge.” These operations are defined
as “intervention” and insertion of “counterfactuals” in a recent
probabilistic model of causal reasoning (Pearl and Mackenzie,
2018), and are represented by operations of jump, coordination
and blending in VAN (to be discussed elsewhere).

To summarize, this section mapped some of the cognitive
operations claimed to underlie understanding capacity in the
humans onto computational procedures defined within the
probabilistic optimization framework [excepting some residue
having no computational expression (Penrose, 1997)]. It was
proposed that understanding allows the brain to deal with non-
contiguous, weakly correlated stimuli groupings in the world
stream. In particular, understanding makes possible accounting
for complex interdependencies between actions and world states,
as in producing changes in objects indirectly, via coordinated
changes in some other objects. Cognitive operations boil down to
variable grouping and stabilization of the groups which enables
subsequent intra-group variation and inter-group coordination,
all serving to maximize and stabilize energy rewards (value)
while minimizing internal energy costs. These operations can
be mapped onto brain components whose functions have been
defined in classical models as well as in some recent findings
[e.g., the hippocampus has been found to be constructing
abstract values spaces (Knudsen and Wallis, 2021)]. Emphasizing
the role of coordination in understanding is consistent with
a classical theory (Piaget, 1975, 1978) and with some recent
findings concerning the role of cerebellum in the higher cognitive
functions (Cerminara et al., 2009; Schmahmann et al., 2019).

Implementing operations postulated in the cognitive
theory in tractable algorithms would endow machines with
capabilities approximating those attributed to human situational
understanding within selected situation classes. In particular,
machines could be approaching the ability to “feel” the
direction of appropriate actions without examining details
and to formulate recommendations, explain them and receive
instructions from human operators expressed in substantive
terms. Attaining situational understanding reduces operational
complexity (Yufik and Hartzell, 1989) enables explainable
predictions, identification of critical situational elements and
dynamic orchestration and optimization of cognitive and
computing resources (Lieder and Griffiths, 2019).

DISCUSSION

Arguably, foundational ideas of the cognitivist framework were
influenced by von Neumann’s conceptualization of computing
systems envisioning that data and procedures for operating on
the data are held in the same medium. The template “data –
procedures” holds no “slots” for understanding so adopting the
template in representing cognition required marginalizing the
role of that capacity in intelligent performance. Accordingly,
a definitive volume on human problem-solving mentioned
understanding once in the concluding chapters, and only to
point out that “high level of mechanization can be achieved in
executing the algorithm, without any evidence of understanding”
(Newell and Simon, 1972, p. 832). The cognitivist framework
accorded understanding no function in the architecture of
cognition (Anderson, 1983; Rosenbloom et al., 1991] nor any
place in a theory of cognition (Newell, 1992), and structured the
definition of understanding so it could be forced into the available
two “slots”:
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FIGURE 15 | An absence of understanding capacity entails tendency to minimize the entropy in a Markov Blanket while understanding seeks to maximize entropy in
MB while minimizing entropy of the internal states [entropy of associative network is maximal if potential connectivity is unrestricted (Figure 14I) and minimal when
connections are restricted (by coordination demands) and sparse (Figure 14VI)].

FIGURE 16 | Adapting to world streams involves work performed by
regulatory system on a memory system. Mental models are neuronal
structures amplifying the brain’s capacity to handle challenging tasks
(non-contiguous stimuli, acting on objects to impact other objects, etc.) within
a limited energy budget (Raichle and Gusnard, 2002) (question “who is pulling
the rope in the pulley?” will be entertained elsewhere).

“S understands knowledge K if S uses K whenever appropriate. S
understands task T if S has knowledge and procedures needed to
perform T” (Simon, 1979, p. 447).

Language understanding was conceptualized as manipulation
of scripts (i.e., template matching) (Schank and Abelson, 1977).
It is interesting to note that a book addressing the practice of
problem solving as opposed to the theory of that in Newell
and Simon (1972), presented in the front-page picture some
key notions that were overlooked in the theory: the brain was
depicted as a contraption comprising a power plant, a regulator
and a system of wheels delivering power to a pulley used for
lifting weights (Fogler et al., 2013). Figure 16 borrows from that
depiction to re-state a main message of this paper.

Conceptualizing cognition as mental work invested in
dynamic orchestration and marshaling of neuronal resources
suggests a simple definition of consciousness, as follows (we are
taking the liberty of citing an earlier work):

“Virtual networks form spontaneously on top of the associative
network. By contrast, operations on the virtual network
are not spontaneous but self-directed (deliberate, attentive,
conscious) and are conducted by the control module. These
operations perform work and require cognitive effort, the term
“consciousness” denotes the experience of exerting that effort. On
that account, “cogito ergo sum” expresses not an inference but a
direct experience of cognitive strain – one can doubt the reality
of the objects of thinking and even of the subject of thinking but
cannot doubt the immediate and direct experience of an effort
exerted in the process of thinking” (Yufik, 2013, p. 50).

In short, VAN suggested that cognitive processes alternate
between conscious (deliberate, effortful) and subconscious
(spontaneous) phases. It is encouraging that later studies have
arrived at similar conclusion in treating the phenomenon of
consciousness (Solms, 2021).

In general, the VAN approach allowed drawing a line
from neuronal processes all the way up to understanding and
consciousness. The line is admittedly thin and punctuated but
short (only 4 waypoints), connecting basic experimental findings
[“tunable” neurons (Fritz et al., 2003, 2005), “tunable” assemblies
(Georgopoulos and Massey, 1987; Georgopoulos et al., 1989,
1993)] to most advanced cognitive theories (Friston and Stephan,
2007; Friston, 2009, 2010; Parr and Friston, 2019; Ramstead
et al., 2021). The approach builds on some of the key insights
at the foundation of cognitive science [neuronal assemblies
(Hebb, 1949, 1980), fluid intelligence (Cattell, 1971, 1978), mental
effort in memory retrieval (James, 1950/1890), understanding
as co-instantaneous co-ordination (Piaget, 1978, 1975), mental
modeling (Johnson-Laird, 1983), other], and anticipated some
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of the recent ideas and suggestions relating energy processes
and cognition (Christie and Schrater, 2015; Pepperell, 2018;
Vergara et al., 2019; Hylton, 2020). Consistent with the recent
analysis of different kinds of free energy in the Bayesian account
of cognition (Gottwald and Braun, 2020), the VAN model
establishes reciprocity between the minimization of variational
free energy and minimization of thermodynamic free energy
in the neuronal system (Yufik and Friston, 2016; Yufik et al.,
2016). Tentatively, the approach suggested unity of or a close
relation between the mechanisms of sensori-motor coordination
(Sparrow and Irizarry-Lopez, 1987; Sparrow and Newell, 1998;
Sparrow et al., 2007; Latash, 2008, 2021), cortical coordination
(Bressler and Kelso, 2001) and coordination in mental models
(Yufik and Friston, 2016; Yufik, 2019, 2021a,b). Finally, the
approach informs design of operator support in complex
dynamics tasks (Yufik and Hartzell, 1989; Yufik and Sheridan,
1997; Landry et al., 2001; Yufik and Sheridan, 2002) using a
transparent mathematical formalism (Yufik, 1998). Arguably, the
hierarchy of VAN processing mechanisms (as in Figure 13) is
compatible with the idea of “neuron-centered concepts” that
associates concepts with patterns of input information evoking
specific selective responses in groups of neurons (Gorban et al.,
2019) [VAN postulates existence of complex neurons responding
to specific activity patterns in lower-level (simpler) neurons
or neuronal groupings]. The VAN view is consistent with the
notion of cognition grounded in modal simulations, bodily
states, and situated actions (Barsalou, 2008), as opposed to more
conventional view in AI reducing cognition to computations
on amodal symbols. As was argued earlier in this section, the
conventional (cognitivist) approach has been downplaying the
role of understanding in intelligent performance.

With some exaggeration, the view on cognition adopted in
AI and cognitive science can be characterized as “intelligence
without understanding.” Figuratively, human intelligence can
be compared to an Egyptian pyramid visited by tourists
who are paying attention to a few stones at the bottom
(learning) and the last stone on top (reasoning) while ignoring
the rest. The pyramid holds a great promise since even
limited explorations have produced spectacular successes. In
the period of about 60 years, during which neural network
technology has progressed from handling simple tasks (like
recognizing letters) to participating in the most complex form
of scientific analysis (Krasnopolsky, 2013) and beating humans
in the games of chess and Go. The technology is based
on algebraic methods of iterative error reduction (training)
which are highly computationally intense. Accordingly, the
progress was due to increases in hardware efficiency and
the development of ingenious heuristics aimed at reducing
the computational complexity of the iteration procedures.
The hardware efficiency has increased about a billion times
[NVIDIA’s GTX 1080 GPU delivers nine teraflops for about $
500, a similar power output in 1961 would have cost about
$9 trillion for a string of IBM 1620 computers (Shepard
et al., 2018)]. For argument’s sake, assume that the efficiency
of the procedures has increased a thousand times, yielding
a trillion times increase in the overall efficiency. Consider
the following: the analysis of eye movements showed that

expert chess players immediately and exclusively focused on
the relevant aspects in the chess task while novices also
examined irrelevant aspects (Bilalić et al., 2010). The ability to
“feel” the situation, or to “know what should happen in
given circumstances” prior to examining those circumstances
in detail [(Feynman, c/f de Regt, 2017, p. 102] makes possible
competition between slow thinking human players and fast
computing chess machines.

The point is that the brain cannot accelerate either the
underlying biophysical processes or the conscious reasoning,
can neither miniaturize neurons nor increase their number, and
cannot significantly increase the average rate of ATP production.
These limitations foreclosed the paths to cognitive performance
improvements taken in AI and enforced development of radically
different strategies. A fair competition between human players
and chess algorithms would require running the algorithms on
an abacus or some manual calculator.

AI is being widely perceived as a critical and, perhaps, decisive
component in the national defense (West and Allen, 2020;
Niotto, 2021), giving an advantage that derives predominantly
from the strength of machine learning in general and neural
nets in particular. The expectation seems to be that friendly
neural nets will be victorious over the adversarial ones, which
calls for designing methods to deceiving adversarial nets (e.g.,
Nguyen et al., 2015) while ruggedizing own nets and preparing
them for frontal assaults. Conclusion of an expert group tasked
with assessing the implementation of AI for the Department of
Defense appear to be curbing the expectation:

“the sheer magnitude, millions of billions of parameters (or
weights) which are learned as part of the training. . . makes it
impossible to really understand exactly how the machine does
what it does. Thus the response of the network to all possible
inputs is unknowable” (Scharre, 2018, p. 186).

It is interesting to note that recent developments in the neural
net technology have taken a turn suggesting possible convergence
with some of the methods outlined in this paper. In particular,
clusters of neurons (called “capsules”) are being identified in
neural nets whose activity vector is taken to constitute the
instantiation parameters of a specific type of entity such as an
object or an object part. With that, the length of the activity
vector is taken to represent the probability that the entity exists
and its orientation to represent the instantiation parameters
(Sabour et al., 2017).

To main points in this paper can be summarized as follows:

1. The paper presented a definition of understanding
that is consistent with and substantiating analysis of
understanding capacity in the current literature (Piaget,
1978; de Regt, 2017), outlined several hypotheses
concerning the underlying mechanisms (the VAN theory)
and suggested that (a) understanding constitutes a
special form of Active Inference and (b) situational
understanding enables situation awareness, consistent
with the conceptualization expressed in Figure 1.

2. The active inference framework encompasses the entire
spectrum of living organisms and associates adaptive
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behavior with the minimization of variational free energy
in the nervous system (Friston, 2010). According to VAN,
understanding engages mechanisms that are unique to
humans and yield a dual benefit of decreasing both
the variational free energy and the metabolic energy
expenditures. Minimization of variational free energy
roughly equates to minimizing prediction error. Prediction
via understanding provides a uniquely efficient form of
error reduction.

3. The notion that minimization of metabolic costs can serve
as a unifying principle in considering brain processes is
not new (e.g., Hasenstaub et al., 2010; Huang et al., 2012).
The VAN proposal deviates from the other suggestions,
by (a) identifying specific mechanisms of metabolic cost
minimization and (b) associating these mechanisms with a
potentially unlimited growth in the variety and complexity
of tasks accessible to humans, including the ability to
overcome the inertia of past learning and to act efficiently
under fluid and novel circumstances having no past
precedents (Yufik and Sheridan, 2002; Yufik, 2013).

4. Understanding involves self-directed composition
of coordinated neuronal structures (mental models)
establishing relations (dependencies) between entities
perceived previously as separate and independent.
Composing such models can be highly effort-demanding.
However, such composition expenditures are compensated
by low-effort manipulations of the models making one
aware of how local changes can bring about and coordinate
with changes in the rest of the model (e.g., Yufik and Yufik,
2018). More precisely, manipulating models can “give
some feel for the character” of coordinated changes (de
Regt, 2017), which subsequently focuses attention on the
critical situation elements. In general, mental modeling
enables advances in the performance of complex tasks, by
minimizing both the internal costs of the foresight and the
risk of costly errors.

5. The paper used the notion of binary neurons, but only
to simplify the argument. The theory is not restricted
to this simplification, hypothesizing the existence of
classes of complex neurons responding to different activity
patterns in their input, to combinations of such activity
patterns in several neuronal groups, or to forms of activity
coordination [e.g., “concept cells” responding to different
images of a person as well as the written and spoken
names of that person (Quiroga, 2020) belong to the second
class]. The pivotal notion of packets defines a property of
neuronal groups that is invariant across models of neurons
[in the same way as the notion of “neuronal assembly”
(Hebb, 1980) is not committed to any particular model].
The theory builds on two experimentally established and
model-invariant characteristics of neuronal mechanisms
[rotation of assembly vectors (Georgopoulos et al., 1989)
and task-related plasticity of neuronal receptive fields (Fritz
et al., 2003)], expanding their application to complex
neurons and neuronal groupings.

6. The theory derives understanding from coordination in
the behavior (patterns of excitation-inhibition activities) of

neuronal packets, which is consistent with conceptualizing
brain as a dynamical system or “dynome” [as opposed to
static “connectome” (Kopell et al., 2014)]. By definition,
virtual network comprises a hierarchy of network types
[synaptic, associative, packet, behavioral and relational
networks (Yufik, 1998, 2019)]. Roughly, the former
two network types belong to neural and functional
connectomes while the latter three types form a dynome.
Recent literature associates advanced cognitive capabilities
in primates and humans with the ability to monitor
the significance of multiple goals in parallel, and to
switch between the goals (Mansouri et al., 2009; Mansouri
et al., 2017). The present proposal expands the scope
of advanced capabilities in the humans, to include
dynamic coordination of multiple goals within integrated
situation models.

7. The paper argues that increasing the efficiency of
human-machine systems, particularly in challenging
circumstances (short decision cycle, high cost of errors,
etc.) requires mutual understanding between the parties.
The VAN theory suggests an avenue toward meeting the
requirement, offering tractable procedures amenable to
integration with the methods of active inference. The
VAN formalism (gnostron) is orthogonal to methods
rooted in the perceptron architecture (vector movement
coordination in dynamically composed networks in the
gnostron vs. vector mapping in fixed networks with
adjustable synaptic weights in the perceptron).

8. Mental modeling constitutes a form of self-organization
in the brain. Biological processes underlying such self-
organization can be approximated computationally in
conventional (von Neumann-Turing) computers or,
potentially, emulated in devices operating on principles
different from those adopted in the conventional machines
(Hylton, 2020).

9. In machine understanding, as conceptualized in VAN,
machine processes and human cognitive processes are
isomorphic, i.e., humans think of entities, behavior
and relations and machines compute the same. Shared
situational understanding in a human-machine system
does not make the system infallible but can be expected
to amplify and accelerate human grasp, increase human
trust and confidence, and sharply reduce the likelihood of
costly errors. In the autonomous scenarios, understanding
expands the range of tasks that can be reliably delegated
to the machine (methods for measuring performance
improvements resulting from machine understanding are
beyond the scope of this paper).

The above points suggest directions for further R&D, from
developing deeper insights into the role and mechanisms
of understanding to formulating tractable computational
formalisms and designing artifacts that take advantage of those
insights. The VAN/VFEM proposal contends that the objective of
ensuring battlespace dominance brings to the fore the problem of
situation understanding enabling coordination and prediction of
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multiple activities under conditions that might be unfamiliar and
undergoing kaleidoscopic changes. The proposal complements
advances in machine learning and suggests other approaches that
might be worth exploring.

It feels appropriate to conclude the discussion with a quote
from a philosopher of mind and Nobel Laureate in physics:

“. . .it seems to me that intelligence is something which requires
understanding. To use the term intelligence in a context in
which we deny that any understanding is present seems to me
unreasonable. Likewise, understanding without any awareness is

also a bit of a non-sense. . . . So that means that intelligence
requires awareness. Although I am not defining any of these
terms, it seems to me to be reasonable to insist upon these
relations between them” (Penrose et al., 2000, p. 100).
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It is still elusive to explain the emergence of behavior and understanding based on its
neural mechanisms. One renowned proposal is the Free Energy Principle (FEP), which
uses an information-theoretic framework derived from thermodynamic considerations to
describe how behavior and understanding emerge. FEP starts from a whole-organism
approach, based on mental states and phenomena, mapping them into the neuronal
substrate. An alternative approach, the Energy Homeostasis Principle (EHP), initiates
a similar explanatory effort but starts from single-neuron phenomena and builds up to
whole-organism behavior and understanding. In this work, we further develop the EHP
as a distinct but complementary vision to FEP and try to explain how behavior and
understanding would emerge from the local requirements of the neurons. Based on EHP
and a strict naturalist approach that sees living beings as physical and deterministic
systems, we explain scenarios where learning would emerge without the need for
volition or goals. Given these starting points, we state several considerations of how we
see the nervous system, particularly the role of the function, purpose, and conception
of goal-oriented behavior. We problematize these conceptions, giving an alternative
teleology-free framework in which behavior and, ultimately, understanding would still
emerge. We reinterpret neural processing by explaining basic learning scenarios up to
simple anticipatory behavior. Finally, we end the article with an evolutionary perspective
of how this non-goal-oriented behavior appeared. We acknowledge that our proposal, in
its current form, is still far from explaining the emergence of understanding. Nonetheless,
we set the ground for an alternative neuron-based framework to ultimately explain
understanding.

Keywords: homeostasis, free energy principle, behavior, energy, neural network

INTRODUCTION

When an animal displays different behaviors, what are the primary processes occurring in
the nervous system? How do neurons, neuronal networks, and ultimately the whole nervous
system participate in behavior generation? This article argues that the nervous system unfolds
autogenous mechanisms of energetic homeostasis, maintaining its energy equilibrium as a system.
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In our view, the nervous system operates in the continuous
present tense of its structural dynamics under strictly local rules
of energy stability, without pursuing biological goals or adaptive
adjustments for the organism. This spontaneous process of
maintaining its energy balance occurs so that under statistically
normal anatomical, physiological, and ecological conditions, it
results precisely in those behaviors that prove to be adaptive for
the animal.

This view of the nervous system corresponds, in essence, to
what has been recently introduced as the Energy Homeostasis
Principle (EHP; Vergara et al., 2019). This theoretical proposal
draws strongly from the autopoietic theory of cognition in the
sense of being strictly naturalistic (Maturana, 1978; Villalobos
and Ward, 2015; Villalobos, 2015), and resonates, although
with important nuances, with some aspects of the Free Energy
Principle (FEP) approach in theoretical neuroscience (Friston
and Stephan, 2007; Friston, 2010). The EHP does not hold
that animal behavior and cognition arise only because the
nervous system is a homeostatic energy system. If that were
the case, we should observe cognition and complex behavior
in any homeostatic energy system, as may occur in an open
thermodynamic system that exhibits some degree of stability,
such as tornadoes and stars (Ulanowicz and Hannon, 1987;
McGregor and Virgo, 2011). Instead, the proposal is to realize
that while we observe the behavior or the signs of cognition
shown by an organism, its nervous system operates by simply
following, in its own way, the EHP.

The nervous system is a homeostatic energy system, like
other similar natural systems, but with significant structural and
organizational features that make it unique. These features are
essential because they explain why the nervous system, despite
operating under the EHP, can generate phenomena such as
animal behavior and cognition. The argument EHP asserts is
that despite all the unique features we may find in the nervous
system, it remains the fact that its operations follow, ultimately,
homeostatic energy mechanisms.

This latter statement merits further discussion. When we
speak of the unique features in the nervous system, we are
not inviting the reader to picture mysterious non-natural
features. All thermodynamic systems that maintain stability and
integrity for the period they exist, long or short, have their
own features related to their specific structural compositions
and dynamic patterns. Candle flames and tornadoes are both
dissipative structures that exhibit thermodynamic stability in
their respective magnitudes or scales. However, only candle
flames generate fast exothermic combustion reactions, radiate
light, and illuminate a dark room. Conversely, tornadoes, not
candle flames, can travel kilometers through large geographic
areas, lifting and violently shaking heavy objects. There is
nothing mysterious about these differences. They relate to each
system’s respective chemical and physical features, which must
be considered to explain the varied phenomena associated with
each system. What is a candle doing as a system when its flame
radiates light and warms up our hands? From the systemic
thermodynamic point of view, it is simply maintaining its
stability and integrity as a dissipative system. When a tornado
passes through a village and destroys the houses, what is it

doing as a system? Again, from the systemic thermodynamic
point of view, it is simply maintaining its stability and integrity
as a dissipative system. But, if both systems are doing the
same, how do they generate such different phenomena and
results? The answer lies in the unique features of each system,
the context in which they form, their material qualities, and
so on.

The nervous system is a homeostatic energy system.
Still, the specific way it manifests such quality given its
biological (e.g., histological) composition, anatomical structure
and physiological organization, its looped coupling with both the
internal milieu and the external environment, its development
within the organism, generate distinctive results and phenomena
called behavior and cognition. In what follows, we will review the
general systemic conditions that run for the nervous system.

GENERAL SYSTEMIC CONDITIONS

To understand the nervous system and the phenomena typically
associated with its functioning (e.g., perception, motor control,
language, and consciousness) it is crucial to examine its
peculiarities and distinctive features as a system. However,
it is equally important to consider the conditions that the
nervous system shares with all natural systems, living and not-
living, and according to which it must work. After all, what is
fascinating about the nervous system is that, being a natural
system (that is, a system that respects the laws, conditions,
and principles that rule and restrict every natural system),
it can generate phenomena as peculiar and exceptional as
perceptual experience, understanding, consciousness, language,
and intelligent reasoning.

This latter explanatory exercise is essential because, when
facing extremely complex explanatory problems, it is usually
tempting and easy to resort to the strategy of endowing
the components and explanatory machinery of the system
under study with the very special and complex properties
we want to explain. For instance, this was the case with
the explanation of the phenomenon of life. For an extended
period, it was assumed that the components of living beings
were unique in that they were endowed with a certain
kind of vital force or energy that was not present in the
components of inert objects (Bechtel and Richardson, 1998).
We tried to explain life by postulating that the matter of which
living beings are made was itself, somehow, living. Similarly,
when facing the problem of explaining cognitive and mental
phenomena, such as perception or intelligent reasoning, it is
tempting to think of the nervous system, its components, and
machinery, as if they themselves operated with protocognitive
(subpersonal, automatic, unconscious) cognitive mechanisms,
as if the nervous system was an epistemic agent dealing itself
with alleged problems of uncertainty and lack of information,
working on the base of hypotheses, inferences, predictions,
error detection, and looking for evidence and hypothesis
confirmation.

As the cases of biology and the problem of life teach us,
the strategy of projecting the properties and capacities of the
explanandum, even in a carefully sophisticated deflationary way,
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into the explanatory substratum itself does not lead to adequate
explanations. We think we would do better if we take the nervous
system not as a cognitive agent but as a physical machine (Ashby,
1947) and try to understand its operation according to the
conditions that rule every physical system in general. Doing
this does not mean, of course, ignoring the particular features
of the nervous system regarding its structure and organization;
it just means understanding that such specific features do not
set the nervous system apart from the rest of the natural
systems.

Before we further develop our argument for a strict
naturalistic approach to explain the emergence of behavior, we
consider it essential to lay out some foundational concepts, so
the reader can better consider the starting points. These points
are not meant to provide an exhaustive characterization of the
nervous system; far from that. However, combined, they should
help us understand, in broad terms, the way the nervous system
operates and generates some of the phenomena associated with
its functioning. We consider the following premises:

1. The nervous system is non-teleological. Its dynamics are
not driven by purposes or goals. As is the case with natural
systems in general, the dynamics of the nervous system
unfold following physical laws that are blind to purposes
or goals (Villalobos and Ward, 2015).

2. The nervous system is non-normative. Its dynamics are
not based on normative considerations such as what is (or
might be) good or bad, adequate, or inadequate, beneficial,
or harmful to the system itself or the organism. As is the
case with natural systems in general, the dynamics of the
nervous system unfold following physical laws that are
blind to normative values (Villalobos and Ward, 2015).

3. The interactions of the nervous system with its
surrounding systems, both intra- and extra-organism,
are structural (i.e., physical, chemical, energetic) in nature,
not epistemic, informative, or cognitive (Maturana, 2002).
The nervous system is not an epistemic agent that collects
and processes information, and its functioning is not
oriented to knowing (inferring, predicting, guessing)
anything (Villalobos, 2015).

4. The components of the nervous system, its neurons, and
networks work through strictly local interactions, without
‘‘having in view’’ distal states, either intra- or extra-
organism (Maturana and Varela, 1987).

5. The nervous system operates in its continuous structural
present, without ‘‘having in view’’ non-current states,
either past or future (Ashby, 1960; Maturana, 2008).

6. The nervous system, at the neuroscience scale of analysis,
behaves deterministically (Ashby, 1960; Maturana, 1980).
It is not a free agent that chooses, among a set of
possibilities, what to do. The nervous system does what
it does every instant because its structure at that instant
simply allows no other action.

7. The nervous system is an open thermodynamic system that
exchanges matter and energy with its surroundings.

8. The nervous system is a homeostatic system that, like
all homeostatic systems, maintains certain stability and
equilibrium in its physical parameters and shows the

capacity to restore them when they are disturbed within
specific ranges (Ashby, 1960).

9. Nervous systems, since their first formation in the
embryonal stage, grow and develop in the continuous
coupling, adaptation, and structural coherence with
their biological surroundings and the extra-organism
environment. This is a trivial condition for every system.
Everything that begins to exist does so because the
conditions for its emergence and existence are given. Every
system emerges adapted to, or in structural coherence with,
its surrounding conditions. This adaptation is conserved
while the system exists as such and lost when the system
ceases to exist.

10. Anervous systemwithnormal anatomical andphysiological
development is always coupled in a loop with:

(i) other physiological systems of the organism, such as
the endocrine, immune, cardiovascular, and digestive
systems.

(ii) the external environment through specialized sensory
organs and motor structures. Since these couplings
are functionally closed as feedback loops, the nervous
system always affects itself through them and thus
maintains its homeostasis. At the same time, since
these couplings arise in structural coherence and
adaptation from the beginning (recall point 9), the
self-centered homeostatic dynamics of the nervous
system result in the conservation of the adaptation of
the rest of the organism.

11. Complex enough nervous systems are hierarchically
organized as second-order homeostatic systems, therefore
exhibiting ultrastability and great flexibility (Ashby, 1960).
Hierarchy, in this context, implies that some of the
feedback loops of the nervous system (mentioned in point
10) operate at the first level of stability, whereas others
operate over them at a higher level. In this functional
organization, the higher level constraints but does not
eliminate the degrees of freedom of the lower level, so
the latter can deploy a considerable range of variability
in its dynamics to the extent that does not disturb the
equilibrium of the former. Because of this, from the point
of view of the higher level of homeostasis, the lower level
will appear to show not only adaptive or ‘‘useful’’ dynamics
but also ‘‘neutral’’ or ‘‘useless’’ ones.

In the following sections, we will elaborate on the EHP
considering this set of premises to produce a plausible explanation
for behavior and, ultimately, understanding.Wewill start arguing
how a naturalistic approach is required to disentangle proximate
causes (cell operation) from distal causes (organism operations).
Then, we will build over this conception to reinterpret neural
processing without goal or purpose. We will also evaluate
anticipatory behavior by means of the EHP and contrast it
with the FEP. Finally, we will offer an evolutionary argument
regarding how these apparently goal-directed-behaviors emerge
from non-teleological mechanisms. Moreover, we will discuss
how useless behavior may appear and may constitute a potential
adaptive advantage in evolutionary terms.
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SOME SPECIFIC CONSIDERATIONS
ABOUT THE NERVOUS SYSTEM

One way to illustrate how neuronal interactions are restricted,
and therefore, locally driven interactions dynamics, is to realize
their context. When comparing the whole organism to its
component cells, or even organs, it can be noted that cells are
sensitive to completely different scales of physical phenomena
(Southern et al., 2008; Dada and Mendes, 2011). For instance,
swimming in a pool or the ocean makes little difference to an
experienced swimmer, whereas doing so in an aqueous solution
would be lethal to a cell (Pedersen et al., 2011). This becomes very
clear at the spatial and temporal scales (Engel, 1980; Southern
et al., 2008; Dada and Mendes, 2011; DiFrisco, 2017). For
example, at the chemical level, cells are most sensitive to their
direct environment, a space in the order of micrometers or
smaller, whereas we, as organisms, are sensitive to phenomena
in the order of millimeters and beyond. Regarding the time
scale, the difference is equally remarkable. Most of our cells are
replaced in our lifetime (DiFrisco, 2017), which means their time
scale is significantly shorter than ours.

We may argue the specifics of these differences, such as
up to what point the scales overlap, or how arbitrary it is
even to state that such scales exist. However, the core of that
observation goes beyond the scales themselves, the point being
the phenomenological operational closure of a whole human
being compared with a single cell is remarkably different. What
I see as a hamburger is not the same experience for a cell. On
the one hand, a cell is too tiny to perceive the hamburger as
a whole, but also its potential interactions with it are different
from those we would engage in. There is a difference between
how we perceive and the actions we may perform given such
perception; how we couple with objects in behavior. As such,
even if we would acknowledge that a neuron or neural network
could foresee something, it would be in a shorter time span and
based on their local interactions.

The global concept of how local interactions build up
hierarchically to behavior is depicted in Figure 1A, where we
intend to remark local interactions. For instance, cells may
interact directly with other cellular phenomena only. By doing
so, they are structurally coupled with the environment, and
if alive, maintain their energetic equilibrium and, therefore,
their operational closure (close-loop arrow). Hierarchically, these
local interactions may lead to population phenomena, such as
synchronization. Given the intricate codependence between the
actions of individual cells, a group of cells starts to behave
as a unity, like a fish shoal showing coordinated movements
(Herbert-Read, 2016), or eusocial insects, where survival is a
matter of the colony and not only of the individual (Gillooly
et al., 2010). In both examples, there are not unique individuals
signaling what has to be done to the colony, but rather local
interactions as one-to-one individuals produce these complex
phenomena. For instance, the fish shoal seems to move like a
wholly coordinated system, while this global property answers to
individual interactions of one fish considering the movements
of the fish right next to it (Herbert-Read et al., 2011). As
such, complex systemic phenomena may occur driven by local

interactions when sensorimotor actions of individual entities are
codependent and intimately coupled (Bonabeau et al., 1997). This
distinction is critical to avoid extrapolating system properties to
local components; however, it raises some challenges. Given our
aim to explain the emergence of behavior from a naturalistic
viewpoint, the difference in sensitivity is challenging for at least
two reasons. The first reason is the difficulty in establishing
relationships between these levels; if they do not perceive the
same phenomena, how are their dynamics aligned for survival?
This complicates the development of causal explanations in
biology. A similar situation was noticed 60 years ago by Ernst
Mayr (1961) when he established that virtually all explanations
of biological phenomena consisted of sets of proximate causes
and sets of ultimate causes (or distal, given our framework). In
Ernst Mayr’s work, he illustrates the difficulties in establishing
the causes of behavior, arguing that they can be attributed to
the environment, physiology (including molecular mechanisms),
or the interaction between the two. In this context, proximate
causes would be those that control the organism’s responses to
immediate environmental factors (such as the sunrise regulation
of the sleep-wake cycle in a mouse), while ultimate causes
would be those that have an impact on the organism’s survival
(such as increased nocturnal activity in mice that decreases the
probability of encountering predators). These ultimate causes are
rooted in evolutionary mechanisms and have been incorporated
into the system through generations of natural selection (Mayr,
1961). Therefore, under the EHP view, behavior emerges from
the intersection of coupled local interactions, which keep cells
alive, and evolutionary pressure, that permits local conditions
to remain coupled, if they do not jeopardize the life of the
whole organism (the distal cause). It is critical to notice that
the distal cause can be interpreted as a consequence of meeting
local requirements. Recalling point 6, ‘‘The nervous system
does what it does at every instant because its structure at that
instant simply allows no other action’’. In other words, distal
causes exist as a result of living beings staying alive coupled
with their environment and restricted to the evolutionary and
individual history that has determined particular properties of
their structure.

There is a second reason where local interactions are relevant.
For the organism to survive, the fundamental needs of all these
hierarchic levels must be met (Figure 1A). The specific needs of
different kinds of cells are varied and different from those of the
organisms they compose. Therefore, there are multiple layers or
levels of operational closure that are not strictly equivalent nor
overlapped and theymustmeet the entire organism requirements
to stay alive and coupled with its environment. This illustrates the
complex synchronization that must occur in the cell population
of such an organism to survive, as well as the close codependence
of a variety of cellular populations with remarkably different
requirements.

Now, an apparent contradiction appears. Despite the short
overlap of sensitivity to phenomena between the parts of our
body and the whole organism, we exhibit adaptative behaviors.
This supposed paradox has been solved mainly by assigning
functions aimed at the survival of the entire organism to different
parts of the body (Roux, 2014). However, this position usually
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FIGURE 1 | Schematic hierarchical structure and interactions for (A) a generic living organism, and (B) highlighting particular features of the nervous system. In (A)
self-closed arrows distinguish an operation closure denoting a certain level of independence of its internal operations. Bidirectional arrows for each self-closed arrows
denote the local interactions at each level (cell, system, organism), highlighting the relevance of local interactions. The cohesive and codependent interactions that
lead to the emergence of a system as a recognizable unit are represented by a bigger circle denoting a self-closed arrow containing those local interactions
(i.e., System, Organism). These systems may also interact with each other at a higher level (in terms of space and time) of interactions. Finally, the codependence of
these systems will finally produce what we recognize as an organism following the same rationale, while then interactions are established with what we traditionally
recognize as the environment (depicted by the upper curve). In the case of (B), we highlighted the sensorimotor loop (internal and external), as well as the structure
of sensorial structures, middle structures (traditionally referred to as processing related areas), and finally effectors. In this figure, we highlighted only muscles, but
effectors cover a major range of structures, such as glands.

omits the evolutionary process that led to those functions, while
also neglecting the survival of the cells that live in the organism.
It is critical to note that many of our cells die each day and that
each of these cells has different survival requirements and may
not act in alignment with the survival of the whole organism. This
is evident in pathologies such as cancer (Chaffer and Weinberg,
2011) and autoimmune diseases (Park and Kupper, 2015). We
tend to refer to these conditions as errors or problems of specific
systems and functions, overlooking that, since cells live in us,
but not for us, there is a possibility that these phenomena
may occur. As far as the global system (i.e., organism) meets
its requirements, codependence relations will keep the system
alive, regardless of other local interactions with no adaptive nor
maladaptive values that may emerge.

Our alternative approach would be to consider that each
cell meets its own requirements to survive. In this sense, it
is essential to assume that the cell, as an autopoietic unit,
can respond and exert control over its niche, but only within
its local environment. Thus, specific environmental conditions
that occur in localized regions of our body will set in motion
different cellular mechanisms. Since cells can only directly

influence that local environment, they can only meet their
requirements. Naturally, these local interactions may have distal
impacts (as Ernst Mayr conception); most of the time, when all
cells meet their requirements, they indirectly end up meeting
ours. As such, behavior can be considered an emergent property
derived from the individual actions of cells that lead to their
survival, and ultimately to ours. These two levels must be
aligned for the whole organism to survive; however, there is
a possibility of mismatch where some are neutral (without
significant consequences) while others give rise to what we call
pathology.

This different approach can be described as an interaction of
parallel causes and requirements nested in cells and organisms,
in the sense that the phenomena present in individual cells
mirror a distal effect on the whole organism and vice versa.
Therefore, we may explain behavior from the viewpoint of the
entire organism or the interactions of its cells. However, a more
comprehensive approach would be to track cellular interactions
up to the mirrored effect on the organisms without neglecting
that the proximal causes affecting each layer or level are aligned
for survival. As such, the same phenomenon can present a
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different impact on the organism and the cell populations within.
For instance, covering the head with the limbs to block a
hit to the head is adaptive for organisms, yet limb cells will
die as a result, and the behavior would not be adaptive for
them.

At this point, we may start asking which is the most relevant
aspect of cells’ survival. Naturally, energy management is critical
for survival in any cell, as they must balance expenditure
with income and maintain an adequate reserve to cope with
environmental restrictions. If we consider a cell that lives within
an organism and that has an evident impact over its behavior,
such as a neuron, this premise stands. For neurons to survive,
they must properly manage their energy budget. Problems of the
organism, such as avoiding injuries, coupling with stressful work,
dealing with the death of a close one, and so on, are not part of
the proximal phenomena stressing a single neuron. Of course,
those phenomena have stimuli transduction into local neural
requirements: energy demand imposition. Therefore, neurons
will deploy mechanisms to couple with their local requirements
and, hopefully, they will solve the organism’s problems as well. As
such, when describing how behavior emerges, we should always
map the differences between the organism and cellular domain
of interactions. For instance, Vergara et al. (2019) described
perceptual stimuli as mapped into physiology with different
impacts at each level. An organism may just be looking at
something. At the same time, transduction sets electromagnetic
waves of the visual spectrum into action potentials, which in turn
produce a cascade effect all over the nervous system, impacting
the energetic demands of neurons and glia (Vergara et al., 2019).
Depending on how demanding this stimulus is energetically,
neurons may regulate their synaptic weights (Barral and Reyes,
2016), producing a new functional network. This new functional
network will, in turn, activate muscles leading to visible behavior
that may change the stimulus (e.g., closing the eyes).

This rationale is what we depict in Figure 1B, where we
remark the particular conditions of the nervous system. All
sensory inputs, driven from sensory organs, internal or external,
are activated by stimulation that impose energetic demands on
the nervous system. The system can affect that energy imposition
by effector activity, such as muscle activation, among others. As
such, closing the eyes will reduce the amount of spent energy
driven by visual perception. It is also relevant to notice that for
a single neuron, or even for a central nervous system neural
network, it makes almost no difference if the signal arrives from
interoceptive receptors or perception organs. The stimulation
received is, in physical and chemical terms, the same. However,
as previously implied in point 11, the feedback loops established
by the nervous system through perceptual and interoceptive
structures are hierarchically organized in such a way that their
respective dynamics get coordinated. Also, we must not forget
that the organisms not only interact with the environment
through the nervous system, and that the nervous system is
also coupled with other physiological systems, obeying the same
rationale of local interactions.

In this framework, the energy balance mechanisms of the
cells have a consequential impact on physiology resulting in
the emergence of behavior. At the same time, since the cellular

and whole-organism levels are analogous to nested layers or
levels, the behavior itself will impact not only the experience
of the whole organism but also the cells that compose it. It
may be the case that only some of the cells are affected, which
remarks the need of recognizing that the same phenomena may
impact differently the whole organism and regions (cells) within.
Also relevant is the fact that neurons cannot directly experience
the stimuli that trigger organism behaviors. Once sensorial
transduction is made, only proximal phenomena such as action
potential, lactate transporter activation, synaptic modulations,
and so on, are observable. In other words, cells such as neurons
are never solving a mathematical problem, or recognizing a face,
but are only solving energy needs required for their survival.

REINTERPRETING NEURAL PROCESSING

The notion that behavior is not inside the machine is notably
exemplified in the experiments in ‘‘synthetic psychology’’ of
Braitenberg (1986). He presented how simple mechanisms
may lead to complex behaviors and the illusion of complex
cognitive processing. The complexity may be loaned from the
environment, while internal mechanisms can stay simple. We
usually think of neural mechanisms as complex and difficult to
assess, based on the complexity of behavior. Let us assume for
a moment that it might be the case that neural mechanisms are
relatively simple and that most of the complexity we see in our
behavior is loaned from our environment. Is there an experiment
like Braitenberg’s, in which we can test real neurons?

Novellino et al. (2007) and Tessadori et al. (2013) presented
an experiment resembling Braitenberg’s vehicles using neuron
cultures (actual neurons, not artificial neural networks). In this
setup, a cart decodes distance to objects using a firing rate
paradigm, and then the same paradigm is used to code back the
wheels’ speed independently. If the cart crashes, a stimulation
burst of 20 Hz for 2 s is delivered (Tessadori et al., 2013). Under
this protocol, the neuron culture learns to avoid obstacles. Thus,
as external observers, we may be tempted to say that the cart
does not like to crash, and it, therefore, learns to avoid obstacles.
Even more, we are tempted to say that the goal of such behavior
is to avoid crashes. However, that stimulation pattern is known
to trigger plasticity (Madhavan et al., 2007; Chiappalone et al.,
2008; le Feber et al., 2010). We may also argue that each time
the cart crashes, it induces plasticity, changing the functional
network. Considering how the experiment is set up, the changes
will keep occurring unless crashes are avoided. Once no more
crashes occur, no more changes in the network are expected.
In other words, a functional neural network will keep changing
until an ‘‘obstacle avoidance’’ structure emerges, and we will be
tempted to say that the neural culture learned to avoid obstacles.

Critically, the functional network does not appear by means
of an impact-avoidance goal, but as an effect derived from the
energy demands posed by the stimulation that drives plasticity.
Our proximate cause was energy demands, while the distal effect
was avoiding obstacles. Importantly, this effect is structurally
determined by how the wiring and stimulation conditions were
set to the vehicle controlled by the neuron culture, meaning
that a wider set of ‘‘learnings’’ can emerge if the structure
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changes. Under this framework, it is rather useless to think that,
at the neuron level, a particular neuron or set of neurons are
‘‘processing obstacle avoidance’’, or that there is an obstacle
avoidance network in the neuronal culture. At the level of the
organism, we can be tempted to use this approach, and it might
be even helpful in some contexts. Nonetheless, to explain how
the vehicle learns, we must consider that individual neurons
deal with significant energy demands that trigger plasticity as a
compensation mechanism (Vergara et al., 2019), which produces
the avoidance of obstacles as emergent behavior.

It is possible to establish that, in proximal terms, neurons
must efficiently solve their energy management. As depicted in
Figure 2, we expect that a neural network in equilibrium will
lose its energy balance driven by external stimuli. The energy
imbalance will propagate through the network according to
its structural constraints. Since most neural connections with
different regions are bidirectional, the system will generate a
global answer (as observers, we may declare it a coordinated
answer). Eventually, this will get to the effectors (full propagation
is achieved). At that moment, the organism will be able to take
action as a whole system to impact the input stimulus that has
disturbed the energy balance. It is critical to notice that, in the
meantime, local mechanisms of single neurons are triggered to
couple with this increment in energy demand as well. Within this
close-loop structure, the actions taken by the entire organism, as
well as those taken by individual cells, will allow a new energy
equilibrium to be achieved, which will be a novel functional
neural structure associated with a novel behavior.

From the previous argument highlighting energy as a key
regulatory element, makes sense considering neurons’ proximal
context as the trigger of neuron regulation. Neurons are
extremely sensitive to oxygen deprivation (Ames, 2000) and
the central nervous system possesses small glycogen reserves
(Brown and Ransom, 2007). Neurons answer to energy demands
(neural activity) by outsourcing their energy needs to the glia
(Weber and Barros, 2015), which will trigger the neurovascular
coupling associated with neural activity (Sokoloff, 2008; Schulz
et al., 2012; Robinson and Jackson, 2016), followed by increased
glucose uptake and glycolytic rate of astrocytes (Magistretti and
Allaman, 2018). In addition, neuronal mitochondria increase
ATP synthesis in response to an increment in synaptic stimuli
(Jekabsons and Nicholls, 2004; Connolly et al., 2014; Rangaraju
et al., 2014; Toloe et al., 2014; Lange et al., 2015). These are
just the early responses in the range of hours, as the synaptic
scaling ends balancing to a homeostatic level of neurons’ activity
(Barral and Reyes, 2016), reducing the energy cost of the activity
increment. An increment in stimulation is expected to produce
long-term network modularization (Novellino et al., 2007).
Interestingly enough, when significant downscaling occurs, a
few synaptic weights (dendritic spines) will increase (El-Boustani
et al., 2018; Jungenitz et al., 2018). As such, while we have
only described the proximal actions of neurons, they have a
vast impact on the neural networks and therefore behavior. It is
plausible to observe neural processing as an emergent property
rooted in proximal cells requirements.

Up to this point, we have been able to rephrase neural
processing without purpose or so-called ‘‘goal-oriented

behaviors’’. Our explanation has also been faithful to a structural
determinism, meaning that behavior in the vehicle (i.e., neuronal
culture) emerges as a result of neurons doing the actions
determined by their properties and structure. So far, introducing
volition or desires in this context would be to acknowledge
openly that a culture of neurons shares the same properties
we usually attribute to a whole organism. However, does this
reinterpretation lead to new implications?

The most obvious is the reinterpretation of key phenomena
into local interactions. For instance, neural activity, usually
seen as neural processing, would be interpreted as energy
expenditure, as an environmental pressure for a neuron, which
forces it to activate mechanisms to balance its energy budget.
Otherwise, it dies. Plasticity, classically viewed as a learning
mechanism (please note how amolecular mechanism has a whole
system property; learning), would be reinterpreted as a coupling
mechanism of neurons to deal with incoming energetic demands
from presynaptic neurons. As stated in Vergara et al. (2019),
the synaptic gain will change to match a homeostatic energy
level. This immediately sets some empirical implications. For
instance, synaptic scaling should answer to stimulation, but also
to energy availability. Therefore, changes in glucose availability
in a neuronal culture should change the dynamics of classic
synaptic scaling protocols. Specifically, synaptic scaling should be
higher in the case of less glucose availability (for more empirical
predictions, see Vergara et al., 2019).

Another consequence of viewing neuronal processing as an
emergent property of individual neurons displaying mechanisms
that allow them to stay alive under different energy pressures
is that not everything neurons do is helpful to the organism.
In other words, since neurons are only solving their local
requirements, their actions may lead to the emergence of useless
behaviors. This means that part of the neural network activity,
which can respond to the continuous activity of multiple stimuli,
will lead to the appearance of behaviors with no apparent
usefulness and that may even be maladaptive. This is necessarily
the consequence of a codependent system governed by local
actions. Each component solves its requirements as part of
its condition of existence, but once they are solved, other
harmless actions may occur as a kind of debris that results
from the operational closure. It is crucial to notice that as living
beings we do not need a perfect functional coupling with the
environment; it must be just good enough to survive. If we
consider further the hierarchic structure, even relevant actions
for survival at a single cell level may have useless or undesired
impacts at the whole-organism level. As long as survival is not
immediately compromised, e.g., as far as physiologically critical
homeostatic systems are not driven away from equilibrium,
these mismatches may freely occur. This consequence frees us
from the need to include a function in every behavior we have.
Many of them can be helpful for our survival and others may
not, but above all, given the degree of freedom allowed by
the hierarchical organization of the neural-body-environment
homeostatic mechanisms, we can have neutral behaviors from an
adaptative viewpoint.

This last point is critical since the degree of behavioral
flexibility increases the probability of producing neutral
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FIGURE 2 | A simplified version of Figure 1B depicting temporal dynamics driven by external stimuli that push the system out of its energetic equilibrium. This
figure does not intend to be an exhaustive description of the temporal dynamics of this process, rather to depict some critical features of such dynamics. In
particular, that the energy demand imposition of the initial stimulus would only be detected by the sensory regions, and then propagate into the remaining areas. We
also emphasize that these regions are bidirectionally related, so that, before the behavior occurs, it is expected that some energy compensations of single neurons
and neural networks will take place. When the system is in full propagation of the energy demand imposed by the environment, a behavior will take place impacting
the perceived environment. This will have an effect on the sensory areas. However, the impact is not immediate, and it will return to a propagation process in which
the mechanisms of all levels (neuron, neural networks, organism) will find a novel equilibrium.

behaviors and deleterious ones. Thus, it is not surprising that
animals with high behavioral flexibility are associated with
greater effort and parenting times during ontogeny (Isler and
van Schaik, 2009, 2012; Barton and Capellini, 2011; Heldstab
et al., 2019; Uomini et al., 2020). One only needs to observe how
a toddler relates to its environment to discover that many of
our behaviors during infancy put our survival or fitness at peril.
Parental care or parenting allows us to buffer this flexibility,
allowing us to stay alive. Conversely, flexibility also allows us to
increase fitness by adapting to the environment during ontogeny,
unlike less flexible animals requiring phylogenetic mechanisms
of change to adapt.

BUILDING UP TO COMPLEX BEHAVIORS

Behavioral flexibility by means of EHP is a powerful concept, as
it explains fast changes in behavior during ontogeny, but it also
allows the test-retest rationale to operate. As far as the test-retest
rationale follows the restrictions imposed by single-cell energy
management, learning can emerge. We expect that this flexibility
is what ultimately gives rise to the most complex cognitive

phenomena, such as understanding. Specifically, what we refer
to as useless behavior can be interpreted out of the teleological
paradigm as behavioral flexibility. Those apparently useless
behaviors may find their usefulness when an environmental
pressure is relieved by this behavior, or they may never find
their usefulness from the observer’s position. From a naturalistic
approach, this is just flexibility to couple with the environment
following point 8, describing the nervous system as a homeostatic
system that will maintain certain stability and equilibrium and
restore it to a certain extent.

In this view, complex cognitive phenomena emerge from this
hierarchical flexibility of the system. These more sophisticated
cognitive phenomena are vastly discussed and modeled using
the Free Energy Principle (Friston, 2010). How does EHP
stand in contrast to FEP? The FEP is an organism-based
approach that considers volition as a critical element, especially
when regarding aspects such as understanding (Yufik and
Friston, 2016), as it distinguishes lower forms of learning,
allowing the introduction of cognitive models. Therefore, as
an initial difference, we noticed that FEP rather omits neuron
requirements, assuming them as chronically met. Secondly, it
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assumes the presence of goal-oriented behaviors, volition, and
purpose, which is to be expected if starting from a whole
organism viewpoint.

Although there are obvious differences between these two
perspectives, especially since the FEP contains teleological
elements and considers the nervous system as an epistemic
agent (points 1 and 3 of ‘‘General Systemic Conditions’’ section),
Yufik’s proposal (Yufik, 2013, 2019; Yufik and Friston, 2016)
is very similar to the EHP at the neural network level. He
developed the idea of how neural assemblies (or packets)
would appear, producing functional networks which allow
understanding to emerge. The core idea envisions the mind
as a cartographer mapping the environment, similar to classic
cognitive perspectives (Bateson, 2015), where modularization of
functional neural activity will allow differences to be made. In
order to establish that two objects are different, a difference
in the functional network should emerge (different packets or
sets of packets) to allow the recognition of such distinction.
Following our rationale, the critical question is what local
mechanism is driving the emergence of those distinctions.
During the works of this thermodynamic conception of
cognition, there is an acknowledgment of the relevance of energy
in modulating the packets’ emergence in this proposal (Yufik,
2013, 2019; Yufik and Friston, 2016). For instance, cortical tone
(temperature of this thermodynamic formalization), which can
be rephrased as energy demands using EHP, is critical in how
the system will react towards the equilibrium by FEP conception
(Yufik, 2013).

This is a critical aspect, as in this FEP-driven proposal
energy conditions modify the neural functional structure to
produce a novel equilibrium. This conceptually very similar to
the EHP, as depicted in Figure 2, achieves a novel equilibrium
by a new energetic demand (i.e., cortical tone). Even more
interesting is that in Yufik’s work (Yufik, 2013, 2019; Yufik
and Friston, 2016) modularization is expected from a learning
process, the same process reported by Tessadori et al. (2013)
and Novellino et al. (2007), which we have explained from
an EHP viewpoint above. This role of energy management is
even more explicit in the following communications (Yufik,
2019), mainly focused on the demand or energy expenditure and
availability. Therefore, both approaches find common ground
in the middle, acknowledging that local neuron requirements
(i.e., energy management) are critical for modularization to
occur, leading to cognitive distinctions that will ultimately
produce understanding.

It is relevant to notice that EHP and FEP are two sides of
the same coin. Following the parallel conception of organism
vs. cell community approach, all conceptions derived from FEP
could be mapped in EHP terms and vice versa. Naturally, as
we get closer to cellular processes, FEP is less precise on its
implications, and when getting closer to high cognitive functions,
EHP is rather vague. However, reasonable efforts can be made
to understand what is happening at cellular and physiological
levels when we describe the cognitive mechanism. For instance,
one challenging explanation to be made from the EHP side is
anticipatory behavior. How can neurons caring about their local
needs solve upcoming organism events?

One key aspect of anticipatory behavior is that it must be
learned first. In other words, it is not anticipating anything, it
is rather re-evoking structural history. This means that most
predictions we make are based upon past experiences. Therefore,
we avoid pain, as we have previously experienced pain. Similar
to what we described in Tessadori’s vehicle case (Tessadori et al.,
2013), energy demands derived from the painful stimulation lead
to restructuration, allowing pain avoidance to occur (rephrased
as reducing surprise by FEP means). If we focused not on the
result but on the learning phase, we would notice that consistent
unrelated stimulus (e.g., a light turning on, an acoustic event, or
a similar signal event) is followed by pain.

Light, sound, and pain produce energy demands through
perception. Nonetheless, the pain has a durable effect, which
means a long-lasting energy demand situation. Also, its intensity
is directly related to the amount of damage (Dubin and
Patapoutian, 2010). Therefore, that is the critical stimulation to
be avoided by means of local neuron requirements.

When we focus on neural activity during situations of these
characteristics, we observe that both neural activities, the one
derived from the upcoming pain signal and the one directly
derived from pain, begin to fire closer in time through learning
(Urien et al., 2018). The overall activity appears to be the same,
but the temporal aspect change. Basically, now the signal triggers
both the signal-related activity and the originally pain-driven
avoidance behavior. The critical aspect here is that the signal that
anticipates pain does not mean pain itself, but in neural activity,
the signal packet (assembly) will fire just before the avoidance
behavior packet. Following the logic of fire together, wire together,
the avoidance packet will ultimately be activated without the
pain but with the signal packet, meaning the fusion of these two
packets. Please note that this explanation does not involve mental
manipulations yet as the ones suggested by FEP, and we can still
be faithful to our premises.

From EHP, the fusion of these neural activities into one
module that would lead to the so-called anticipatory behavior,
is driven by the same rationale observed in Figure 2. Basically,
the initial trial will deploy many behaviors that will not be
useful to keep the equilibrium, while at the same time the
propagation of the energy demand imposed by pain will, in
consequence, functionally restructure the network with each
iteration. Following the same proposed mechanism for the
vehicle controlled by a neuronal culture, at some point behavior
will satisfy the condition of approaching neurons to a novel
equilibrium. During this central energy regulation, with each
iteration the best ‘‘pain-avoidance’’ structure will be selected
until the predictive behavior is settled. These changes may even
follow a random structure change, and they would still work.
However, neural mechanisms such as synaptic reinforcement
by fire together, wire together (Abbott and Nelson, 2000), play
a critical role for this to happen efficiently. Considering that
the EHP reinterprets these plastic mechanisms as coping energy
mechanisms of neurons, we are able to explain these phenomena
without yet needing to call for complex mental scenarios.
Naturally, this explanation does not cover more sophisticated
behaviors like planning, which under a classic view require
volitional manipulation of information. However, it sheds light
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on how, starting from cellular communities, ‘‘goal-directed’’
behaviors can be explained leaving the goal as the consequence,
not the cause. Neurons don’t even realize that the animal
was submitted to pain; they just react according to their local
requirements. It is we who, as observers, are tempted to say that
the animal learns to anticipate the aversive stimulus. Even more
relevant is the fact that as we show anticipatory behavior, we may
be blind to the actual causes that led to this apparent anticipatory
behavior by neglecting history, which under the EHP view is
no more than an expression of an organism coupled with its
environment where its particular history defines the behaviors
that will be deployed when observing the signal related to pain.

Under this context, we have given an explanation of how an
organism can act in the prediction of hazard, without actually
predicting it. Local neural properties allow these phenomena
to occur without incorporating purpose, mental model, or
further mental scenarios. Notably, FEP and EHP, despite
their differences in starting points (and, therefore, conceptual
frameworks), share similar predictions on how neural networks
would operate. Distinctions are made on what produces those
changes. Another relevant difference of our approach is that
neurons can fulfill their requirements without solving the
problem of the whole organism but never endangering the
life of the organism (at least not immediately). Therefore, the
behavioral flexibility given by the impact left by neurons when
solving their needs could have a negative, neutral, or positive
impact, which means that the neurons may find local energy
homeostasis attractors that satisfy their requirements but not
necessarily the organism’s requirements. However, if so, why
does it seem that they are almost always positive (hence the
teleological need to indicate their function)?

AN EVOLUTIONARY PERSPECTIVE ON
THE COUPLING OF DIFFERENT LEVELS
OF OPERATIONAL CLOSURES

We see what remains, not what has been. During the evolutionary
history of living beings, most species have disappeared, have
become extinct (Newman, 1997). In fact, the species that are alive
today represent less than 1% of the historical total (Newman,
1997; Jablonski, 2004). This makes it risky to use evidence only
from modern animals to explain the relationship between the
cellular and whole-organism levels of organization. On the other
hand, virtually all present-day animal body plans date at least
back to the Cambrian explosion (CE), an event that occurred
more than 500 million years ago (Maloof et al., 2010). While
it is still a matter of debate, it is possible to propose that near
that time window, a level of animal diversification and radiation
occurred that had not been seen before and has not been seen
since (Keijzer, 2015; Trestman, 2013).

Interestingly, this period has also been ascribed as when
metazoans with complex active bodies appeared (Trestman,
2013). These organisms are defined by having: (i) articulated
appendages; (ii) many degrees of freedom of controlled
movement; (iii) true senses (with specialized organs such as
eyes); (iv) sense-guided motility; and (v) anatomical capacity

for object manipulation (Trestman, 2013). The appearance
of metazoans probably occurred at least 200 million years
before the CE (Erwin, 2015; Dohrmann and Wörheide,
2017), and the nervous system probably appeared during
the Ediacaran period (635 million years ago). In simpler
metazoans with low-complexity nervous systems, synchrony
between the neuronal and organism levels was probably much
easier to achieve than in animals with complex active bodies.
Movement is not yet a problem for those animals. Thus, it
is feasible that, during the initial evolution of the nervous
system, a limiting element was the alignment between the
neuronal level and that of the whole organism. Once this
occurred, the space for possible radiation and diversification
opened up.

In ontogenetic terms, the reality is similar. In animals, the
highest mortality rates are usually seen early in life (Caughley,
1966), when their individual-environment relationships are still
being established and they tend to have much more behavioral
flexibility. Even in our species, this reality is not far off, for it has
not been long since most of our offspring died during the first
3 years of life (Volk and Atkinson, 2013). The problem lies in
that we often only consider its present condition when observing
an organism such as ourselves and its direct relationship with
the environment, ignoring its phylogenetic and ontogenetic
history. Under this perspective, most cellular phenomena are
aligned with their whole-organism functions. This may lead
to the interpretation that the proportion of misaligned events
between these levels of the organization is negligible or almost
nonexistent. Thus, we only see what has worked for survival,
while counterexamples of instances where cellular phenomena
are misaligned with organisms vanish. In other words, under
this view, we are incurring a survival bias, where we focus
only on the instances where cellular and whole-organism levels
overcame a selection process and overlook those that did not.
This can lead us to false conclusions, such as overrepresenting
aligned states or assuming cellular levels have functions for
our survival.

This also translates into a tradeoff between flexibility and
survivability. Higher degrees of freedom and higher levels of
flexibility allow the emergence of novel adaptations, which
increase the organism’s fitness. This context can also explain why
larger nervous systems (brains withmore neurons) are associated
with greater behavioral richness. A larger number of neurons
leads to a greater diversity of local responses/solutions and
greater behavioral flexibility. However, on the other hand, there
may be a maximum of possible degrees of freedom before the
number of misalignments between cellular and whole-organism
levels can remain functional.

Another point to consider is that not necessarily every lack of
synchrony is maladaptive. There is the possibility that some of
the neuronal activity that is not fully aligned with the organism
is ‘‘neutral.’’ Thus, analogous to models of neutral evolution, it
is feasible that a non-trivial proportion of what neurons do to
solve their local energy requirements has no significant impact
on the organism’s survival. It is possible to postulate that the less
fundamental to survival a behavior is, the more neutral activity
there is. That is, the less essential behaviors probably allow for
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FIGURE 3 | Schematic of the historic progression of organism coupling with their environment leading to a diversity of organisms (phylogenetic mechanisms) and
behavioral flexibility (ontogenetic mechanisms). Evolution may generate important changes in organism morphology, producing major differences between different
species (depicted with different shapes and colors). Ontogenetic mechanisms will be constrained by phylogenetic history but will produce a large number of potential
behaviors from which only a subsample will appear. The behaviors that appear during ontogeny will depend on the individual life history of each organism that will lead
iteratively to different functional structures (depicted as change in color but not shape), which will ultimately produce different behaviors and functional constraints.

less alignment between levels. This, in turn, would increase the
presence of behavioral richness or ‘‘polymorphisms’’ in those
behaviors. Specifically, when both the adaptive value and the
survival hazard are low, neutral behavior emerges (Figure 3).

Finally, it is critical to realize that, under this notion, behaviors
are not goal-oriented per se. Many may appear as goal-directed,
as they are conditions of existence of the system (e.g., breathing).
Under our scope, breathing organisms stay alive, therefore
exist. However, breathing was never designed or deliberately
addressed to meet the oxygen requirements of the organism.
When we remove the goal rationale of structures and behavior,
the evolutive process in which behavior emerges loses its need
for teleological explanation. As such, the brain or areas within

were not designed to solve specific problems. Instead, in meeting
their own requirements, cells satisfy the organism’s requirements
too; if not, survival is compromised.Whenmost cells living in the
cellular community meet their requirements, the organisms will
do so. It is simply the condition of existence of such a community.
Behavioral diversity and flexibility emerge within these messy
interactions of individual cells acting locally and producing distal
effects that may not even affect them directly.

FINAL REMARKS

When we observe a single cell acting in an anticipatory fashion
(e.g., Shirakawa, 2006), we avoid attributing it to a sense of
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volition, or any epistemic or informational operation. We focus
on its local mechanisms which result in such anticipatory
behavior. Avoiding it is reasonable, as including it obscures the
mechanisms, and we also recognize the cell as a physical system
determined by the mechanisms governing it. For some reason,
when coming to human beings, we fail to recognize them in
such a way. This is so dramatic, that besides EHP, we have no
knowledge of another integrative explicative proposal of behavior
using a strict naturalistic approach.

FEP is probably the most sophisticated and flexible proposal
explaining human behavior as an integrative framework.
However, it uses a strong epistemic rationale to explain
behavior. This leads to assigning volition to all living beings
(or even dissipative systems) or stating that the concept is
only applicable for certain systems such as human beings.
Despite the differences, it is notable that the phenomena
described at the neural network level are quite similar in both
proposals, meaning that both recognize more or less the same
events as relevant to explain behavior. The causes of those
events are different depending on which proposal framework is
used.

We understand that intending to explain behavior and most
sophisticated forms of it, such as understanding, is a major
challenge for EHP. However, we consider that it is a required
academic exercise in our current framework of neuroscience.
As we have stated above, goals can easily emerge as observer
assignation once the system is coupled with its environment,
but from an evolutionary perspective, adaptations do not appear
to solve a problem; they just appear, and they are preserved

due to advantageous (or at least non-deleterious) impacts. In
other words, focusing on the goal may obscure the actual
mechanisms that produce the phenomena we look forward to
understanding.
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Predictive Neuronal Adaptation as a
Basis for Consciousness
Artur Luczak* and Yoshimasa Kubo

Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada

Being able to correctly predict the future and to adjust own actions accordingly can
offer a great survival advantage. In fact, this could be the main reason why brains
evolved. Consciousness, the most mysterious feature of brain activity, also seems to
be related to predicting the future and detecting surprise: a mismatch between actual
and predicted situation. Similarly at a single neuron level, predicting future activity and
adapting synaptic inputs accordingly was shown to be the best strategy to maximize the
metabolic energy for a neuron. Following on these ideas, here we examined if surprise
minimization by single neurons could be a basis for consciousness. First, we showed in
simulations that as a neural network learns a new task, then the surprise within neurons
(defined as the difference between actual and expected activity) changes similarly to
the consciousness of skills in humans. Moreover, implementing adaptation of neuronal
activity to minimize surprise at fast time scales (tens of milliseconds) resulted in improved
network performance. This improvement is likely because adapting activity based on the
internal predictive model allows each neuron to make a more “educated” response to
stimuli. Based on those results, we propose that the neuronal predictive adaptation
to minimize surprise could be a basic building block of conscious processing. Such
adaptation allows neurons to exchange information about own predictions and thus to
build more complex predictive models. To be precise, we provide an equation to quantify
consciousness as the amount of surprise minus the size of the adaptation error. Since
neuronal adaptation can be studied experimentally, this can allow testing directly our
hypothesis. Specifically, we postulate that any substance affecting neuronal adaptation
will also affect consciousness. Interestingly, our predictive adaptation hypothesis is
consistent with multiple ideas presented previously in diverse theories of consciousness,
such as global workspace theory, integrated information, attention schema theory, and
predictive processing framework. In summary, we present a theoretical, computational,
and experimental support for the hypothesis that neuronal adaptation is a possible
biological mechanism of conscious processing, and we discuss how this could provide
a step toward a unified theory of consciousness.

Keywords: brain-inspired artificial neuronal networks, neuronal adaptation, theory of consciousness, biological
learning algorithms, anesthesia
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INTRODUCTION

“How does the brain work? Gather enough philosophers,
psychologists, and neuroscientists together (ideally with a few
mathematicians and clinicians added to the mix), and I guarantee
that a group will rapidly form to advocate for one answer in
particular: that the brain is a prediction machine” (Seth, 2020).
Predictive processing was also suggested to be one of the most
promising approaches to understand consciousness (Yufik and
Friston, 2016; Hohwy and Seth, 2020). Nevertheless, it is still
unclear how predictive processing could be implemented in the
brain (Lillicrap et al., 2020), as most of the proposed algorithms
require a precise network configuration (Rao and Ballard, 2005;
Bastos et al., 2012; Whittington and Bogacz, 2017), which could
be difficult to achieve, considering variability in neuronal circuits
(y Cajal, 1911).

To address this problem, we proposed that single neurons can
internally calculate predictions, which eliminates requirement of
precise neuronal circuits (Luczak et al., 2022). Biological neurons
have a variety of intracellular processes suitable for implementing
predictions (Gutfreund et al., 1995; Stuart and Sakmann, 1995;
Koch et al., 1996; Larkum et al., 1999; Ha and Cheong, 2017).
The most likely candidate for realizing predictive neuronal
mechanism appears to be calcium signaling (Bittner et al., 2017).
For instance, when a neuron is activated, it leads to a higher level
of somatic calcium lasting for tens of ms (Ali and Kwan, 2019). As
neuron activity is correlated with its past activity within tens of
ms (Harris et al., 2003; Luczak et al., 2004), thus, lasting increase
in calcium concentration may serve as a simple predictive signal
that a higher level of follow up activity is expected. Notably, basic
properties of neurons are highly conserved throughout evolution
(Kandel et al., 2000; Gomez et al., 2001; Roberts and Glanzman,
2003), therefore a single neuron with a predictive mechanism
could provide an elementary unit to build predictive brains for
diverse groups of animals.

This idea is further supported by a theoretical derivation
showing that the predictive learning rule provides an optimal
strategy for maximizing metabolic energy of a neuron. The details
of derivation are described in a study (Luczak et al., 2022) and a
summary is depicted in Figure 1. Shortly, Eb represents energy
received from blood vessels in the form of glucose and oxygen,
which is a non-linear function of local neuronal population
activity, including the considered neuron j activity (xj) (Devor
et al., 2003; Sokoloff, 2008). The Eele represents the energy
consumed by a neuron for electrical activity, which is mostly a
function of the presynaptic activity (xi) and respective synaptic
weights (wij) (Harris et al., 2012). A neuron also consumes
energy on housekeeping functions, which could be represented
by a constant Eh. As described in a study (Luczak et al.,
2022), this formulation shows that to maximize energy balance,
a neuron has to minimize its electrical activity (be active as
little as possible), but at the same time, it should maximize its
impact on other neurons’ activities to increase blood supply (be
active as much as possible). Thus, weights must be adjusted to
strike a balance between two opposing demands: maximizing the
neuron’s downstream impact and minimizing its own activity
(cost). This energy objective of a cell could be paraphrased as the
“lazy neuron principle: maximum impact with minimum activity.”
We can calculate such required changes in synaptic weights (1w)
that will maximize neuron’s energy (Ej) by using gradient ascent
method [for derivation see Supplementary Material or (Luczak
et al., 2022)]. As a result, we found that maximizing future energy
balance by a neuron leads to a predictive learning rule, where a
neuron adjusts its synaptic weights to minimize surprise [i.e., the
difference between actual (xj) and predicted activity (x̃j)].

Interestingly, this derived learning rule was shown to be
a generalization of Hebbian-based rules and other biologically
inspired learning algorithms, such as predictive coding and
temporal difference learning (Luczak et al., 2022). For example,
when x̃j = 0 in our predictive learning rule (i.e., when a neuron

FIGURE 1 | Maximizing neuron metabolic energy leads to predictive synaptic learning rule (see Supplementary Material for derivation details).
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FIGURE 2 | (A) Simplified schematic of our recurrent network architecture. For visualization, only a small subset of neurons is shown. (B) Illustration of neuron activity
in response to a stimulus. Initially the network receives only the input signal (bottom blue trace), but after 8 steps, the output signal is also presented (a.k.a. clamped
phase; bottom black trace). The red dot represents steady-state activity which was predicted from initial activity (in shaded region). The dashed line shows activity of
the same neuron in response to the same stimulus, if the output would not be clamped (xF ; a.k.a. free phase), which neuron “wants” to predict. Green insert:
synaptic weights (w) are adjusted in proportion (∝) to the difference between steady-state activity in clamped phase (x) and predicted activity (x̃) [adopted from
Luczak et al. (2022)].

does not make any prediction), then we obtain Hebb’s rule:
1wij = αxixj, a.k.a. “cells that fire together, wire together”(Hebb,
1949). Moreover, our model belongs to the category of energy-
based models, for which it was shown that synaptic update
rules are consistent with spike-timing-dependent plasticity
(Bengio et al., 2017). Thus, this predictive learning rule may
provide a theoretical connection between multiple brain-inspired
algorithms and may offer a step toward development of a unified
theory of neuronal learning.

The goal of this paper is to show that the properties ascribed
to consciousness could be explained in terms of predictive
learning within single neurons. For that, first, we will implement
a predictive learning rule in an artificial neural network, and
then we will use those simulation results together with biological
evidence to propose a predictive neuronal adaptation theory
of consciousness.

METHODS

Implementation of a Predictive Learning
Rule in a Neural Network
To study how properties of predictive learning rule may relate to
consciousness processes, we created a recurrent neural network.
It had 420 input units, 50 hidden units, and 10 output units as
illustrated in Figure 2A. The network was trained on a hand-
written digit recognition task MNIST (LeCun et al., 1998), with
21 × 20 pixels from center of each image given as input to
the network. The details of network training are described in a
study (Luczak et al., 2022). First, network is presented with only
an input signal and the activity starts propagating throughout
the network until it converges to a steady-state, when the
neurons’ activity stops changing, as depicted in Figure 2B. This
is repeated for 1,600 randomly chosen stimuli. During this phase,
we also trained a linear model to predict the steady-state activity.
Specifically, for each individual neuron, the activity during the

five initial time steps (x(1), . . . ,x(5)) was used to predict its steady-
state activity at time step 20: x(20), such that: x(20)≈x̃ = λ(1) ∗

x(1),+ · · · + λ(5) ∗ x(5) + b, where x̃ denotes predicted activity,
λ and b correspond to coefficients and offset terms of the least-
squared model, and the terms in brackets correspond to time
steps (Figure 2B). Next, a new set of 400 stimuli was used,
where from step 8, the network output was clamped at values
corresponding to image class (teaching signal). For example, if
the image of number 5 was presented, then the value of the 5th
output neuron was set to “1,” and the values of the other 9 output
neurons was set to “0,” and network was allowed to settle to the
steady-state. This steady-state was then compared with predicted
steady-state activity, which was calculated using the above least-
squared model. Subsequently, for each neuron, the weights were
updated based on the difference between the actual (xj) and its
predicted activity (x̃j) in proportion to each input contribution
(xi), as prescribed by the predictive learning rule in Figure 1
(Matlab code for a sample network with our predictive learning
rule is provided in Supplementary Material).

RESULTS

Neuronal Surprise Reproduces Stages of
Skill Consciousness
The network using predictive learning rule showed a typical
learning curve, with rapid improvement in performance in the
first few training epochs, and with plateauing performance during
later training epochs (Figure 3A). Notably, this shape of learning
curve is also typical for skill-learning in humans, where, initially
at the novice level, there are fast improvements, and it takes
exponentially more time to improve skills at, for example, elite
athlete level (Newell and Rosenbloom, 1981). However, what is
new and interesting here, is how a surprise (i.e., the difference
between actual and predicted activity) evolved during network
training (Figure 3B) and how it compares to the stages of “skill
consciousness,” as explained below.
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FIGURE 3 | Neuronal surprise in network with predictive learning rule. (A) Learning curve showing accuracy of the network across learning epochs. Colors indicate
conceivable extents of stages of “conscious competence” shown in panel (C). (B) Change in neuronal surprise (|actual – predicted activity|) averaged over all
neurons (see main text for details). (C) Diagram of the four stages of “conscious competence” during skill learning. (D) Neuronal surprise (proxy of skill consci.) vs
accuracy (a.k.a. competence) during network learning. This is replotting data from panels (A) vs (B), where each point corresponds to a single time epoch. Note that
although for example, “unconscious competence” (marked in green) spans over 150 epochs in panels (A) and (B), in panel (C) those points are “compressed” as
there is little change in accuracy, and in surprise during those epochs.

It was observed that learning involves the four stages of
“conscious competence” (Broadwell, 1969; Das and Biswas,
2018; Figure 3C): (1) Unconscious incompetence – where
individual does not know what he/she doesn’t know, and,
thus, that individual is not aware of his/her own knowledge
deficiencies (e.g., foreigner may not know about certain local
traffic regulations); (2) Conscious incompetence – where the
individual recognizes his/her own lack of knowledge or skills
but does not have those skills (e.g., a car passenger who does
not know how to drive); (3) Conscious competence – where
the individual develops skills but using it requires conscious
effort (e.g., beginner car driver); (4) Unconscious competence
- where due to extensive practice, the individual can perform
learned tasks on “autopilot” (e.g., driving car on the same
route every day).

Here we illustrate how the above stages of conscious
competence could be recapitulated by the network with our
predictive learning rule. We used the neuronal surprise as a
proxy measure of consciousness, which is motivated by previous
theoretical (Friston, 2018; Waade et al., 2020) and experimental
work (Babiloni et al., 2006; Del Cul et al., 2007), which will be
discussed in later sections. We calculated the surprise for each
neuron j as: < |xj − x̃j|>, where |. . .| denotes absolute value,
and < . . . > denotes average across all 400 images presented in a
single training epoch. The neuronal surprise was defined as mean
surprise across all of neurons. To better illustrate the network
behavior, we also plotted accuracy (a.k.a. competence) vs surprise
(a proxy of consciousness) (Figure 3D; model details and code
to reproduce presented figures are included in Supplementary
Material). Initially, when the network was presented with an

input image, the neurons in the hidden layer could almost
perfectly predict what will be the steady-state activity after the
output units are clamped (Figure 3B, first few epochs). This
is because the network starts with random connections and
the signal coming from 10 output units is relatively week in
comparison to the signal coming to the hidden layer from a much
larger number of input units: 420. Thus, the steady-state activity,
which neurons learn to predict when only the input image is
presented, is not much different from the steady-state activity
when input image is presented together with clamped outputs.
This is like the “unconscious incompetence” stage, as the network
is almost completely “not aware” of the teaching (clamped) signal
(Figure 3D, blue line). However, as the activity of the output
neurons is mostly correlated with any discrepancy between the
actual and the predicted activity in hidden layer neurons, thus,
the synaptic weights from output neurons are most strongly
modified. Consequently, as the learning progresses, the hidden
neurons are more and more affected by the output units, and their
surprise: the discrepancy between actual and predicted activity,
increases. This is analogous to the “conscious incompetence,”
where the network becomes “aware” of the clamped teaching
signal, but the network has not yet learned how to classify images
correctly (Figure 3D, light blue). In result, as magnitude of
surprise |xj − x̃j| increases, then other synaptic weights also start
changing more, as prescribed by the predictive learning rule in
Figure 1. Those synaptic updates made the activity driven by
the input image, closer to the desired activity as represented
by the clamped output units. This could be characterized as
“conscious competence,” where the surprise signal allows the
network to learn and to become more competent on that task
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FIGURE 4 | Adaptation in neurons and in our model. (A) Cartoon illustration of typical neuronal adaptation in response to constant stimuli. Note that after the initial
increase, neuronal activity moves closer toward the activity level without stimulus. (B) Similarly, in our model, adaptation shifts neuronal activity toward activity level
without clamp (predicted activity). Insert: We propose to define a single-neuron correlate of consciousness (sNCC) as neuronal adaptation. Arrows denote that
activity adapts toward predicted activity, which approximates activity without a clamp.

(Figure 3D, yellow line). Finally, as network learns to predict the
image class with high accuracy, then the surprise (the difference
between predicted and clamped teaching signal) is diminishing,
which is analogous to an expert who achieved “unconscious
competence” (Figure 3D, green line). This, that the neuronal
surprise recapitulates the stages of conscious competence, by first
increasing and then decreasing during learning, was a general
phenomenon across different datasets and across diverse network
architectures (Supplementary Figure 1).

Surprise Reduction by Neuronal
Adaptation
Derivation of the predictive learning rule in Figure 1 shows
that the best strategy for a cell to maximize metabolic energy is
by adjusting its synaptic weights to minimize surprise: |x− x̃|.
However, this change in surprise does not need to take minutes or
hours, as typically required for structural synaptic modification
to occur (Xu et al., 2009). Neurons have adaptation mechanisms,
which could serve to reduce surprise at a much faster time scale
of tens of ms (Whitmire and Stanley, 2016).

Neural adaptation is a ubiquitous phenomenon that can
be observed in neurons in the periphery, as well as in the
central nervous system; in vertebrates, as well as in invertebrates
(Whitmire and Stanley, 2016; Benda, 2021). Neuronal adaptation
can be defined as the change in activity in response to the
same stimulus. The stimulus can be a current injection into a
single neuron or a sensory input like sound, light, or whisker
stimulation. Usually, neuron activity adapts in exponential-
like fashion, with rapid adaptation at the beginning, and then
later plateauing at a steady-state value (Figure 4A). Typically,
neuronal adaptation is shown as the decrease in activity in
response to excitatory stimuli. However, neurons can also adapt
by increasing its spiking ability when inhibitory stimulus is
presented; for example, an injection of constant hyperpolarizing
current (Aizenman and Linden, 1999). Thus, adaptation could be
seen as change in neurons activity toward a typical or expected
(predicted) level (x̃).

To investigate effect of adaptation on neuronal processing,
we implemented a brain-inspired adaptation mechanism in the
units in our network. For this, during the clamped phase from
time step 8, the activity of each neuron was nudged toward the
predicted state (Figure 4B). Specifically, the activity of neuron j
at time step t was calculated as: xj,t = a ∗ x̃+ (1− a) ∗

∑
i(wi,j ∗

xi,t−1) , where 0 ≤ a ≤ 1 is a parameter denoting strength of
adaptation. For example, for a = 0, the adaptation is equal to
zero, and the network activity is the same as in original network
described in Figure 2. To update synaptic weights, we used the
same learning rule as in Figure 1: 1wi,j = xi(xj − x̃j), but here
xj represents clamped activity with added adaptation, which can
also be denoted as xA. Interestingly, networks with implemented
adaptation achieved better accuracy than the same networks
without adaptation (Supplementary Information). This could
be due to the fact that if an activity in the clamped phase is
much different from an expected activity without the clamp, then
learning may deteriorate as those two network states could be
in different modes of the energy function (Scellier and Bengio,
2017). Adaptation may reduce this problem by bringing clamped
state closer to expected. To give an analogy, if part of a car
is occluded by a tree, then, purely by sensory information, we
cannot say what is behind that tree. However, based on our
internal model of the world, we know what shape a car is, and,
thus, we can assume that the rest of the car is likely behind
the tree. Similarly, neuronal adaptation may allow a neuron to
integrate the input information with predictions from its internal
model, and then adjust its activity based on this combined
information leading to a more appropriate response.

HYPOTHESIS AND THEORY

Predictive Adaptation as a Signature of
Consciousness
It is largely accepted that consciousness is a gradual phenomenon
(Francken et al., 2021). It was also suggested that even
a single cell may have a minimum level of consciousness,
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based on the complexity of behavior and complexity of
information-processing within each cell (Reber, 2016; Baluška
and Reber, 2019). For example, every single cell contains large
biochemical networks, which were shown to make decisions
and to perform computations comparable to electrical logic
circuits (Supplementary Figure 2; McAdams and Shapiro,
1995). This allows for highly adaptive behavior, including
sensing and navigating toward food, avoiding a variety of
hazards, and coping with varying environments (Kaiser, 2013;
Boisseau et al., 2016). For instance, single-celled organisms
were shown to be able to “solve” mazes (Tero et al., 2010),
to “memorize” the geometry of its swimming area (Kunita
et al., 2016), and to learn to ignore irritating stimulus if
the cell’s response to it was ineffective (Tang and Marshall,
2018). Moreover, single-celled microorganisms were shown to
predict environmental changes, and to appropriately adapt
their behavior in advance (Tagkopoulos et al., 2008; Mitchell
et al., 2009). Those complex adaptive behaviors were proposed
to resemble cognitive behavior in more complex animals
(Lyon, 2015). This likely requires organism to build some
sort of internal predictive model of their own place in the
environment, which could be considered as a basic requirement
for consciousness.

The results presented in Figure 3 suggest that the level of
consciousness could be related to the amount of surprise. This
is also supported by results from human EEG studies, where the
neuronal signature of surprise: P300, closely reflects conscious
perception (Del Cul et al., 2007; Dehaene and Changeux, 2011).
Here, we propose that in a neuron, adaptation could be seen
similarly to P300, as a measure of surprise, and thus, it could
provide an estimate of the level of “conscious cellular perception.”
Specifically, as described above, surprise could be defined as a
difference between actual (x) and predicted activity (x̃). Because
adaptation changes neurons’ activity toward a predicted activity
level, thus, the size of adaptation (|x− xA|) is directly related
to the size of surprise: (|x− x̃|). Therefore, we propose to
define the single-neuron correlate of consciousness (sNCC)
as the magnitude of neuronal adaptation sNCC = |x− xA|,
(Figure 4B). Based on this, we hypothesize that single-cell

predictive adaptation is a minimal and sufficient mechanism for
conscious experience.

Generalized Definition of Consciousness
as a Process of Surprise Minimization
First, we will explain the main ideas using a simplified example,
then later, we will present how it can be generalized. Let us
have a two-dimensional environment, where at each location P,
there is a certain amount of food. There is also an organism that
wants to go to a location with the highest amount of food. That
organism does not know exactly how much food there is at any
given location, but based on past experience, the organism has an
internal model of the environment to help with predictions. For
instance, let us assume that the maximum concentration of food
(m) is at point Pm, but the smell of food comes from the direction
of point: Ps, where s stands for sensory evidence (Figure 5).
However, the concentration of food in the past was highest in the
North direction. The internal model combines this information
and predicts the highest probability of food in the North East
direction at point Pp, where p stands for predicted. Based on
this, the organism adapts and moves toward Pp to location PA,
where A stands for adaptation. When the organism arrives to
PA location, then it can compare the actual amount of food at
that location with the predicted one, and update the internal
model accordingly. Thus, by combining sensory information and
internal model predictions, our organism was able to adapt its
behavior more appropriately.

In the above-described case, we could say that our organism
was quite conscious of its environment, as it made close
to optimal decision. We can quantify it by measuring how
close to optimal location an organism moved: d(PA, Pm), as
compared if it would move in reflex-like fashion to location
that is purely determined by sensory stimulus: d(Ps, Pm), where
d(.,.) denotes a distance between 2 points. Specifically, we
can define organism consciousness of environment as Ce =

d (Ps, Pm) − d (PA, Pm), (Figure 5, insert). It is worth noting
that if an organism has a good model of external environment
to correctly predict location with maximum food, then: Pp ≈

FIGURE 5 | Insert: Consciousness (Ce) is defined here as a surprise: distance d(,) between obtained sensory information (Ps) and expected information. However, if
system cannot appropriately adapt based on that information, then conscious perception is reduced (adaptation error). Thus, Consciousness is a function of surprise
and ability of organism to adapt to minimize that surprise. Expected information is denoted by Pp and it is calculated by internal predictive model, which based on
partially available data tries to approximate actual state of the environment (Pm). Schematic on the left illustrates concept of Ce for sample organism living in 2D
environment (see main text for details).
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Pm, and thus, the first term in Ce : d (Ps, Pm) ≈ d
(
Ps, Pp

)
,

where this distance d (Ps, Pp) between sensory evidence (Ps) and
model prediction (Pp) is a description of surprise. The second
term in Ce : − d (PA, Pm), describes how far organism is
from location with maximum food/energy (Pm) after it made
adaptation (PA). This could be seen as an error term, which could
arise if predictive model is incorrect or if organism is unable to
move exactly to the predicted location. Hence, according to the
above definition of Ce, consciousness is equivalent to surprise, if
error term is 0, which would be the case for an organism to able
to perfectly adapt.

Although, we used here a two-dimensional environment as an
example, this can be generalized to a high-dimensional sensory
space. Let us consider a simple organism which can sense
concentration of 10 substances in a deep ocean. As organism
swims, it changes its position in 3D space, but more importantly,
concentration of 10 substances indicating location of food and
predators also changed with each movement. Thus, 3D space
translates to 10D sensory space, which is more relevant to
that organism behavior. Therefore, distances d in Ce = d (Ps,
Pm) − d (PA, Pm), may be more appropriately calculated in
sensory space of that organism, instead of the standard 3D spatial
coordinates. For example, we implicitly used idea of sensory space
in case of neurons shown in Figures 3, 4. Neuron senses its
local environment through variety of channels located especially
in synapses. Activity of a neuron affects other neurons, which
through feedback loops change synaptic inputs to that neuron,
and thus, its sensory environment. Because neuron gets energy
from blood vessels, which dilation is controlled by coordinated
activity of local neurons, therefore, neuron may “want” to move
in the sensory space corresponding to activity patterns resulting
in the most local blood flow. Therefore, change in neuron activity
is equivalent to a movement in a chemical sensory space, where
different locations in that space correspond to different amount of
energy obtained by a neuron. For that, the word “environment”
in Ce refers to this highly dimensional sensory space rather than
that of the typical 3D space.

This generalization to sensory space also allows to see
notions introduced earlier in Figures 3, 4 as special cases of
environmental consciousness Ce. For example, when organism
has the perfect model of external environment, then it can
correctly predict the location with maximum food, thus, Pp = Pm,
as we have explained before. However, if that organism can also
move exactly to predicted location such that: PA = Pp, then, also
PA = Pm. In such case, an adaptation error d(PA, Pm) becomes
0, and thus, Ce = d (Ps, Pm). Considering the above case that
Pm = PA, Ce can also be expressed as Ce = d (Ps, PA), which is
a distance by how much an organism moved or adapted. Thus, in
case of the neuron described in Figure 4, Ce = d (Ps, PA) ≈
d |x, xA| = |x− xA| = sNCC. Similarly, as mentioned earlier,
Ce becomes equivalent to surprise if organism perfectly adapts
(PA = Pp = Pm). In such case, adaptation error is zero, and
we can write Ce = d

(
Ps, Pp

)
≈ |x− x̃|, which is the distance

between the stimulus-evoked activity and the model prediction,
which we used to quantify the skill consciousness in Figure 3.
Thus, Ce is a function of surprise and ability of organism to adapt
to minimize that surprise.

Note that surprise and adaptation could be considered
as contributing to Ce on different timescales, with synaptic
changes gradually minimizing surprise over a long period of
time, and with neuronal adaptation changing neuronal firing
rapidly within 10–100 ms. When an organism is learning
a new skill, then activity driven by bottom-up signals is
different from activity provided by top-down teaching signals,
which results in a higher surprise term. However, if neurons
cannot adapt their activity accordingly (e.g., when biochemical
processes mediating adaptation within a neuron are blocked),
then adaptation error will be as large as the surprise term,
resulting in Ce = 0 and, thus, in no conscious experience.
Therefore, the surprise term could be interpreted as “potential
consciousness,” meaning the maximum possible consciousness
to a given stimulus. Synaptic strength gradually changes over
a period of learning, resulting in slow changes in “potential
consciousness.” However, when a stimulus is presented, and
neurons rapidly adapt their activity toward the predicted
level, it reduces the adaptation error term and results in
Ce > 0, and, thus, in conscious perception within a fraction of
a second.

Hypothesis Validation
A hypothesis, by definition, should generate testable predictions.
Our main hypothesis is that the neuronal adaptation is a
neuronal correlate of consciousness. This implies that neurons
and, thus, brains, without adaptation cannot be conscious.
Therefore, our hypothesis predicts that any mechanism which
affects neuronal adaptation will also affect consciousness.
This prediction was shown to be correct for a diverse
group of neurochemicals involved in sleep and anesthesia,
which also alter the neuronal adaptation. For instance,
levels of multiple neuromodulators in the brain such as
serotonin, noradrenaline, and acetylcholine are significantly
different between waking and sleeping in REM or non-REM
stages (España and Scammell, 2011). Whole-cell voltage-
clamp recordings in vitro in the pyramidal neurons have
demonstrated that all those neuromodulators also affect
neuronal adaptation (Satake et al., 2008). Similar results
were obtained when testing various substances used for
anesthesia, such as urethane (Sceniak and MacIver, 2006),
pentobarbital (Wehr and Zador, 2005), and ketamine
(Rennaker et al., 2007). Moreover, it was shown that a large
variety of anesthetics, including butanol, ethanol, ketamine,
lidocaine, and methohexital are blocking calcium-activated
potassium channels, which mediate neuronal adaptation
(Dreixler et al., 2000). Interestingly, considering a broad
spectrum of molecular and cellular mechanisms affected by
different anesthetic compounds, there remains significant
uncertainty of what is the single mechanism underlying
anesthesia (Armstrong et al., 2018). Our theory suggests
that what all anesthetics could have in common is the
ability to disturb neuronal adaptation. Thus, our theory
clearly provides testable predictions, which could either
be invalidated or validated by using pharmacological and
electrophysiological methods (see also “Limitation” section for
more discussion on this topic).
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Predictive Adaptation as a Step Toward a
Unified Theory of Consciousness
Important consequence of a neuron adapting its activity toward a
predicted level is that it allows neurons to exchange information
about its predictions. Thus, neuron output activity is not
exclusively driven by its synaptic inputs, but it is also a function
of its internal predictive model. Below, we will briefly describe
a few of the most prominent studies, as well as the theories of
consciousness [for in-depth reviews see Francken et al. (2021)
and Seth (2021)]. We will particularly focus on outlining the
differences and similarities to our theory of predictive adaptation,
and how it may provide a theoretical basis for connecting diverse
theories of consciousness.

Connection to Optical Illusions
Exchanging predictions among neurons may explain multiple
phenomena linked to conscious perception, such as optical
illusions. For example, let us consider a neuron tuned to
detect horizontal lines. Such neuron may learn that even
when feed-forward inputs are not exactly consistent with a
line (e.g., due to partial occlusion), then later on, it usually
receives a top-down signal indicating detection of a line due
to combining information from other parts of the image by
higher cortical areas. Thus, in the case of an image with illusory
contours, this neuron may receive less activation from feed-
forward inputs, as parts of the lines are missing. However,
based on experience with occluded objects, that neuron may
predict that it will soon receive top-down signals indicating
a line, thus, in expectation it will increase its activity toward
predicted levels. Consequently, other neurons receiving this
predictive information are more likely to interpret it as a line,
resulting in positive feedback loops and coherent perception
of a line.

Similar explanation could also be applied in case of ambiguous
images like the Rubin vase (face) optical illusion. If a set of
neurons in the association cortex receives inputs suggesting an
image of a face, then they will increase their activity accordingly
toward that “believe,” triggering a global activity pattern giving a
single perception of a face.

Connection to Global Neuronal Workspace Theory
As described above, a large-scale neuronal convergence to a
single “believe” is very similar to a theory of global neuronal
workspace (GNW) (Baars, 2002; Dehaene and Changeux, 2011).
Briefly, GNW states that an organism is conscious of something,
only when many different parts of the brain have access to
that information. Additionally, if that information is contained
only in the specific sensory or motor area, then the organism
is unconscious of that something. In our theory, consciousness
is on a continuous scale. However, if an activity is different
from what is expected across the many parts of the brain, then
our measure of Ce will also be larger as compared to a single
brain area, and because the brain is a highly non-linear system,
Ce could be orders of magnitude larger when the difference
between expected and predicted signal is exchanged in feedback
loops across the entire brain. Thus, if the brain during waking
has close to maximum Ce, and low Ce during, for example,

sleep, with intermediate values of Ce existing shortly during
transition between those states, then this could reconcile the
apparent difference between both theories. It is worth noting
also that according to the GNW theory, a key signature of
information accessing consciousness is the P300 component,
which as mentioned earlier reflects surprise (Donchin, 1981; Mars
et al., 2008). This is similar to our theory where Ce is defined in
terms of surprise (Figure 5). Therefore, taken all together, GNW
may be seen as a special case in our theory, where Ce is discretized
to have only two values.

Connection to Integrated Information Theory
Our theory is also consistent with the main ideas of integrated
information theory (IIT). The IIT quantifies consciousness as
the amount of information generated by an integrated complex
of elements above and beyond the information generated by
its individual parts, which is denoted as Phi (Tononi, 2015;
Tononi and Koch, 2015). Similarly, in our case, if two cells can
communicate, then this will allow each of them to make better
predictions and, thus, to increase combined Ce, by reducing error
term: d (PA, Pm). For instance, if cell #1, just by chance, has more
receptors to detect substance s1, and cell #2 has slightly more
receptors for substance s2, then by communicating predictions
to each other, both cells will be able to better detect food, which
secretes s1 and s2 [i.e., the wisdom of crowds (Friedman et al.,
2001)]. This simplified example can be directly extended to
neurons, where each has unique pattern of connections, thus,
partly providing novel information to other neurons. However,
there is one important difference between Phi and Ce. While Phi
can be computed based purely on connectivity pattern, Ce also
depends on stimulus. If stimulus is unexpected, then surprise
term d (Ps, Pm) will increase, and thus, even without any change
in network architecture, organism will be more conscious of
that stimulus. However, on average, elements with more complex
connectivity patterns, which have higher integrated information
Phi, will also have higher Ce, as more information sources will be
available for each element to improve predictions, thus, reducing
error term in Ce.

Connection to Attention Schema Theory
It was also proposed that consciousness requires building an
internal model of incoming information. For example, the brain
constructs a simplified model of the body to help monitor and
control movements, and similarly, at more abstract level, it may
construct an internal model of attention, which could form a basis
for consciousness (Graziano and Kastner, 2011; Graziano and
Webb, 2015). In our theory, an internal model is a crucial part
of defining the consciousness. Although our predictive model is
at the single-cell level, communication between neurons could
allow to form more complex models at the network level. Note
that due to neuronal adaptation toward predicted activity, each
neuron sends information to others, reflecting its internal model
predictions. Thus, neurons in higher areas build their internal
models based on combining information from other neuron
models. This suggests that higher-order models, like the model of
attention proposed by Graziano, could be a direct consequence
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of building the brain from elements with internal models as
described by our theory.

Connection to Predictive Processing
Our theory is closely related to the predictive processing
framework. This theoretical framework posits that the brain’s
overall function is to minimize the long-term average prediction
error (Hohwy and Seth, 2020). It also proposes that to accomplish
this process, the brain needs to have a generative model of its
internal and external environment, and continually update this
model based on prediction error (Friston, 2005, 2010; Friston
et al., 2017). The precursor of the predictive processing idea
could be traced back to a 19th century scholar named Hermann
von Helmholtz (Von Helmholtz, 1867). He suggested that the
brain fills in some missing information to make a better sense
of its surrounding environment. As in the earlier example of
a car behind a tree, the brain fills in the occluded parts to
provide the most likely picture of the surrounding world. Over
the recent years, predictive processing has gained significant
experimental support [see for review Walsh et al. (2020)].
There were also proposed predictive computational models
of vision, illustrating how top-down processing can enhance
bottom-up information (McClelland and Rumelhart, 1981; Rao
and Ballard, 2005). An important theoretical advancement was
made, when it was shown that predictive processing can be
understood as Bayesian inference to infer the causes of sensory
signals (Friston, 2003, 2005). This provided a mathematically
precise characterization of the predictive processing framework,
which was further generalized in the form of the free energy
principle (Friston, 2010). Our theory is fully consistent with
this framework. However, our work provides three novel and
important contributions to predictive processing:

(1) We derived mathematically that the predictive processing
maximizes metabolic energy of a neuron (Figure 1), which
provides biologically bound theoretical basis for predictive
processing framework.

(2) Based on the above theoretical considerations and based on
computational simulations, we showed that a single neuron
could be the basic element for building diverse predictive
networks (Figures 2, 3). This offers a solution to how
predictive processing could be implemented in the brain
without the need for precisely designed neuronal circuits
or special “error units.”

(3) Most importantly, we showed that predictive neuronal
adaptation could be the mechanism for conscious
processing (Figure 4) and based on this, we proposed a
quantitative definition of consciousness (Figure 5).

LIMITATIONS

While the present study offers a novel theoretical model of
consciousness derived from basic principles of maximizing
metabolic energy, this also comes with caveats that should be
considered. In the absence of a generally accepted definition and
measure of consciousness, all theories of consciousness, including
ours, are unfortunately more speculative than typical theories in
mostly other areas of science. For instance, to date, no theory

has convincingly demonstrated yet how neuronal mechanisms
can generate a specific conscious experience. Similarly, with our
theory, it has yet to be shown that connecting billions of adaptive
neurons could result in subjective feelings of “self,” which is
typically considered as consciousness. Here, as a step toward
addressing this problem, we described how single-neuron-level
predictive processes could be related to consciousness of skills at
the organism level (Figure 3). However, the caveat here is that
“skills consciousness” (as well as “consciousness”) does not have a
well-defined measure, thus, changes in skill consciousness during
learning are only described in loose qualitative terms. This needs
to be more rigorously measured in the future to allow for more
quantitative comparison to our model.

The related problem in theories of consciousness is the
difficulty in proving causal mechanisms of consciousness. For
example, in our definition of consciousness, the first term
represents “surprise” (Figure 5), and as we described earlier,
there is strong a experimental evidence relating surprise (e.g.,
P300) to conscious perception in humans. However, the caveat
is that it is also possible that surprise could be correlated with
consciousness without causing it, thus, experiencing surprise
and acting on it may not be sufficient to create consciousness.
Similarly, we described experimental evidence showing that a
diverse group of neurochemicals involved in sleep and anesthesia
also affects neuronal adaptation. However, this is also only
a correlation, and to prove that neuronal adaptation causes
consciousness, experiments controlling multiple confounding
factors, and selective blockage of adaptation would be needed to
provide a more conclusive answer.

One interesting feature of our definition of consciousness is its
simplicity and scalability: the same simple equation can describe
consciousness at the single-cell level as well as at the whole
organism level. However, this could be taken as an argument
against our theory, as the claim of consciousness in the single cell
or in a robot could be considered as a “far cry” from the typically
understood notion of consciousness. This is a valid objection.
To address this semantic problem, we introduced a broader
term, “consciousness of environment” (Ce; Figure 5). What we
are proposing in this manuscript is that the consciousness of
environment is on a continuous scale, and the consciousness that
we are experiencing as humans is just an extreme case of the same
process. To give an analogy, the celestial movement of planets was
considered to be governed by different laws than earthly objects,
but now we understand that the same gravitational laws could be
used to describe the movement of objects at both scales, which
we suggest could be similar with consciousness. Unfortunately,
we are still missing experimental means to precisely measure
consciousness, which makes theories of consciousness more
difficult to verify, and thus, more speculative.

Moreover, surprise minimalization could also be achieved
by other means than the intracellular predictive mechanism
proposed here. For instance, multiple predictive coding networks
have been developed, with specially designed neuronal circuits
including “error units,” which allow for comparing expected
and actual activity (Rao and Ballard, 2005; Bastos et al., 2012;
Whittington and Bogacz, 2017; Sacramento et al., 2018). Such
networks can be trained using other biological learning rules,
like spike-time-depended plasticity [STDP; (Bi and Poo, 2001)]
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or some variation of Hebbian learning [e.g., BCM (Bienenstock
et al., 1982)]. Thus, it is possible that consciousness in neuronal
system may be created by predictive mechanisms implemented
only at the network level. One problem with predictive coding
only at the circuit level is that it requires precise connectivity,
which could be difficult to achieve, considering the complexity
and variability of neuronal dendritic trees. Here, deriving from
the basic principle of metabolic energy maximization, we suggest
that predictive neurons could provide an elementary unit from
which a variety of predictive circuits could be built, thus solving
the above implementation problem. Therefore, in addition to
intracellular predictions, neurons may form predictive circuits,
giving rise to enhanced predictive abilities that increase the level
of consciousness in an animal, as discussed above in relation to
attention schema theory. Those network-level interactions may
lead to a rapid and exponential-like increase in Ce. However,
contrary to many other theories of consciousness, we suggest that
this increase in Ce will not result in qualitative change, and that
consciousness from single-celled organisms to humans could be
described on a continuous scale, as the same adaptive process of
surprise minimization.
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INTRODUCTION

It is only in the last 20 years that frontopolar cortex (FPC) has been recognized as distinct
anatomically and functionally from dorsolateral prefrontal cortex (DLPFC). It has appeared to be
recruited for complex or abstract cognition, and as a result has been thought to be responsible
for the most sophisticated human understanding (Thiebaut de Schotten et al., 2017, #27). In this
perspective article, we review recent thinking about frontal lobe organization, evidence bringing it
into question, and revisit an alternative view of FPC function. We then present an original study
arising from that view that demonstrates a new specialization of FPC.

Recently, several researchers have proposed a caudal-rostral organization of function in the
frontal lobes, with the most complex or abstract information processing found in the most anterior
portion of frontal cortex (Krawczyk et al., 2011; Voytek et al., 2015; Nee and D Esposito, 2016;
Dixon et al., 2017; Duverne and Koechlin, 2017; Badre and Nee, 2018; Jerath et al., 2019; Sarafyazd
and Jazayeri, 2019; Eichenbaum et al., 2020; Riddle et al., 2020). The nature of the cognitive function
employed in these studies has not been uniform. Badre and Nee (2018) reviewed relevant literature,
and noted that the output of each level of abstraction may feed into the next-lower level as top-down
control signals constraining processing in the lower level, which in turn feeds into a lower level. At
the lowest level of abstraction, premotor cortex produces information about appropriate responses
that are fed to the motor region. Recently, strong evidence of connected regions in the frontal cortex
has been produced by examining connectivity patterns (Thiebaut de Schotten et al., 2017). These
cortical areas may be part of cortico-striatal loops arranged hierarchically (Mestres-MissÈ et al.,
2012; Korb et al., 2017; Rusu and Pennartz, 2019).

Badre and Nee (2018) noted different kinds of abstraction in different studies. Some employ
temporal abstraction, in which more temporally distant information is treated as more abstract
(such as long-term future plans) and more temporally immediate information (an immediate
choice, such as which direction to take at an intersection) is more concrete. For example, Dixon
et al. (2017) studied three neural networks, each extending across multiple brain structures and
brain lobes. The network including the frontal pole processed distal goals, such as career choices,
and decisions subserving that goal, while the other networks processed more immediate goals.

Badre and Nee (2018) also noted that kinds of abstraction varied across studies. Some consisted
of what he called “policy abstraction:” the addition of more rules as the context in which
problems were solved; “relational integration abstraction,” in which more stimulus dimensions
had to be integrated in making responses; “temporal abstraction,” such that contexts were retained
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over increasing time intervals; and “domain general abstraction,”
meaning that anterior regions dealt with more domain-general
information than caudal areas. As Badre notes, studies have not
included more than one type of abstraction, and it’s difficult
to determine whether these kinds of abstraction are arrayed
across the frontal lobes in similar ways, though they have
produced caudal-to-rostral patterns of activation with increased
abstraction. This raises the question of whether there is some
operation common to all of these types of abstraction, and
perhaps other kinds as well.

In fact, Badre and Nee (2018) suggest that the frontal pole
may not be at the apex of the frontal hierarchy. Connectivity in
the frontal lobe (and the rest of the brain) has been extensively
examined. It may be assumed that information flows “down”
from the “top” of a hierarchy toward the lower levels. In the
parlance of a frontal hierarchy from frontal pole to motor cortex,
there is more need for connections traveling from frontal pole
toward lower level structures than for connections in the opposite
direction, so that there is asymmetry in connections between
frontal pole and lower areas. However, frontal pole exhibits more
symmetry with other frontal areas than this scheme suggests.
Instead, it is dorsolateral prefrontal cortex (DLPFC), specifically
Brodmann areas 45 and 46, that exhibit the asymmetry that
should be characteristic of the apex of the hierarchy. From a
different perspective, this conclusion is supported by a near-
infrared study by Schumacher et al. (2019).

A recent extensive review by Mansouri et al. (2020) provides a
complex and comprehensive analysis of literature and portrays
the ability to use abstract cognition as having a multitude of
subprocesses, located in regions across the frontal cortex. A
common network in prefrontal cortex, premotor areas, and
posterior parietal (mostly intraparietal sulcus) is augmented by
cognitive skills that together manifest in many areas of the brain.
This approach holds promise for parcellating and identifying the
components of higher cognition and their neural substrates. This
is largely in agreement with a review by Dixon et al. (2017), which
identifies three networks comprised of regions across the major
parts of the cerebrum that have unique domains and together
accomplish complex processing. These reviews provide evidence
that cognitive control for processing complex or abstract tasks
in the service of goal attainment may not be simply rooted in
frontopolar cortex.

This leaves us in something of a quandary. There is a
long history of observations of activity in the frontal pole
accompanying the most complex task performance, yet it may
not be passing the results “down” to constrain processing at lower
levels, until motor cortex executes some response. Mediating the
most abstract processing may not equate with being at the top of
a command structure for executing tasks that involve abstraction.
The anatomy seems to support just as well the idea that the
most complex or abstract processing demands are “handed off”
to the frontal pole, which is able to resolve abstract demands
and return the result to the executive in DLPFC, which then
determines a response that is translated into action in DLPFC
or premotor. It also supports a model in which the frontal pole
does not act this independently, but rather augments or joins
functionally with DLPFC, when complex or abstract tasks must

be mediated, by virtue of the highly integrative structure of the
neuropil there (Jacobs et al., 1997, 2001). What has evolution
yielded by adding the frontal pole to the executive? Perhaps it
is some computational ability that is not part of the executive
control of action, or cognitive control. Kroger et al. (2008) found
that as subjects formed mental models to solve very complex
problems, frontal pole was recruited. These models involved a
high degree of relational complexity, as the models were created
under the constraints of the problem. Resolving problems that are
relationally complex has been shown to recruit frontopolar cortex
(Kalina Christoff et al., 2001; Kroger et al., 2002, 2004; Wendelken
et al., 2008; Bunge et al., 2009; Crone et al., 2009; Krawczyk et al.,
2011; Bazargani et al., 2014).

Clearly humans are capable of more intelligent and
creative cognition than higher primates. In particular, they
excel at producing problem solutions which incorporate
information not present in the problem and not dependent
on external constraints. Yufik (2019) has proposed a
model of intelligence and understanding that depends
on creation of mental models by the neural substrate,
which directly addresses the creative production of novel
information. In this view, model construction is decoupled
from sensory-motor flow, a notion compatible with frontal
pole working outside of and in support of executive
control. Yufik’s model proposes specific neuronal processes
depending on “neuronal packets” underlying creative
understanding. Yufik and Friston (2016) provide an extensive
foundation for the model.

The idea of a cognitive control hierarchy flowing from
frontal pole posteriorly so that concrete motor behavior can
execute the actions dictated by the cognitive control architecture
makes many assumptions about the nature of information
processing in the frontal lobes. Working memory does not
only hold behavioral demands or control information and a
person is not always in the act of executing actions in the
service of abstract goals. Nonetheless, recent understanding
of the frontal lobes arises from studies limited to cognitive
control in goal satisfaction. What has not been discussed is the
nature of the neural and psychological processing that happens
in these frontal hierarchy studies, regardless of the kind of
abstraction involved. The computations in neural circuits are
difficult to discern and may depend for progress on theoretical
approaches such as that of Yufik (2019). In studies where subjects
execute tasks continuously with any of the kinds of abstraction
discussed above, at the instant a subject sees a stimulus, they
must form an arbitrarily complex representation—whether it is
composed of rules, dimensions, temporal character, or domain
information—and make a judgment or response according to
the instructions of the experiment, which are also incorporated
into the formed representation. If this representation is complex,
it is likely that some refreshing reinstantiates the representation
for maintenance. In everyday life, such representations are made
frequently. It is possible that in the course of reasoning or
planning, such a representation must be manipulated or altered.
When altered, a new representation results. It may have retained
much of the structure of the previously held representation,
with changes. Reasoning may then entail creating a series of
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representations, each derived from the previous representations,
with some degree of maintained structure.

A potential shortcoming of hierarchical theories is that they
posit that frontopolar cortex is recruited in the course of
cognitively abstract or complex mentation. Yet, the frontal pole
is recruited in paradigms that would be difficult to classify as
abstract or complex. Pollmann et al. (2000) presented subjects
with stimuli that contained a field of squares in one color,
sometimes with a single square having a different color. The
entire field moved back and forth in sinusoidal motion, and
sometimes, a single square moved in a sinusoidal direction
different from the field’s. So, one square differed in color or
motion. Subjects performed search on a series of stimuli, during
which the defining feature distinguishing the single square
altered between color or motion dimensions on successive trials.
Frontopolar activity was observed during such changes in target
dimension. When the dimension changed, the subject had to
quickly manipulate their representation of the task.

Sweeney et al. (1996) conducted an anti-saccade task, in
which subjects focused on a fixation, and a stimulus appeared
somewhere quickly and disappeared. In saccade trials, the
subjects looked at the spot where the stimulus had appeared.
On anti-saccade trials, they were to look at a spot opposite
the location of the stimulus, relative to the fixation. On anti-
saccade trials, frontopolar cortex was recruited. On anti-saccade
trials, subjects were required to form a cognitively more complex
representation of the task.

These paradigms don’t involve abstract representations
recruiting frontal pole as prescribed by hierarchical organization
theories. Abstraction or complexity is often created by
compounding contingencies; both of these tasks seem to involve
a single, one-level contingency which must be modified. They do
involve manipulating or changing their representation of the task.

One theme common to many studies of FPC is the integration
of information, which we refer to as structured information.
An integrative role is supported by anatomical features of FPC,
which differs from DLPFC in several respects. Pyramidal neurons
there are sparser but have richer, more complex dendritic trees
which receive more inputs than other association cortex and
their intracortical connections are primarily to other supramodal
association cortex (Jacobs et al., 1997, 2001). This morphology
suggests a role of integrating function or representations across
the higher processing centers in the brain. It is the most recently
evolved part of the frontal lobes (Semendeferi et al., 2001) and
is a late cortical structure to reach maturation (Flechsig, 1901;
Gogtay et al., 2004) which can be delayed by years in those with
higher IQ (Shaw et al., 2006). Developmental trends in the ability
to handle increased cognitive complexity are well documented
(Andrews and Halford, 2002; Loewenstein and Gentner, 2005;
Uttal et al., 2008) and correspond to the maturation of FPC
and frontal cortex in general (Bunge et al., 2002; Segalowitz and
Davies, 2004). Any complex representation or task set would be
well supported by this architecture, as would coordination of
multiple representations, tasks, or cognitive operations.

Prabhakaran et al. (2000) performed a study in which
maintenance of an integrated representation recruited FPC, along
with DLPFC. Study participants viewed multiple letters and

multiple locations denoted by brackets “[]” arranged in a sample
array. In one condition, the letters were located in the center
of the display, and the locations were distributed around the
display. After a delay, participants indicated whether the letters,
or the locations, or both, in a probe matched those in the
sample. In another condition, each letter was located within
one pair of brackets, which were distributed around the screen
and participants judged whether the letters in the probe were
located in the same locations as in the sample. Thus, participants
maintained integrated representations of the letters and positions
during the delay, and FPC responded to this task demand,
but not during the other conditions not requiring integration.
Some reservation about this interpretation is possible, however,
since the number of stimuli participants maintained approaches
working memory capacity (Cowan, 2001). Rypma et al. (1999)
found FPC to be recruited when participants simply maintained
six, but not four, letters in a match-to-sample paradigm. Clearly
overtaxing memory capacity, Grasby et al. (1994) showed an
activation in this area when subjects heard fifteen words and had
to immediately recall them but not for the same task using a word
list of five. Christoff and Gabrieli (2000) suggested that this may
be due to use of a mnemonic strategy employed when capacity
is exceeded. It is also possible that participants prevented decay
of items in working memory by continually refreshing them.
Badre and Wagner (2004) and Johnson et al. (2005) observed
FPC recruitment when participants refreshed items in memory.
Thus FPC activation found by Prabhakaran et al. (2000) may also
have arisen from executive control processes maintaining a large,
integrated representation.

De Pisapia et al. (2007) illustrated FPC recruitment for
integration in a different paradigm. They required a number and
operation (e.g., 9+) to be integrated with a subsequently viewed
subtask (3 × 7). When subjects performed this integration,
FPC was activated, but not when the subtask was presented
and completed first. The authors claim, “integration within WM
occurs when the result of a subtask becomes combined with an
already ongoing main task,” and emphasize that “integration is
not just insertion of WM contents into another representation,
but also requires that insertion follows and depends upon subtask
processing.” (p. 933). In this account, linkage of items by a task
context is a key demand. In another study, Reynolds et al. (2006)
observed bilateral FPC activity when subjects judged whether
each of two words was concrete or abstract, then indicated
whether the outcomes of the two judgments were the same or
different. The emphasis in this paradigm was on integration
of internally-generated information: results of these internal
judgments were compared in working memory for sameness.
Reynolds et al. (2006) propose that FPC responded to integration
of the two words in the comparison act. Beyond being integrated
for the comparison, the integrated working memory contents
were not ancillary to execution of a task. In both of these studies,
integration of information was a dynamic process executed by the
participant to compute a novel task solution.

FPC engagement by integration has been observed in other
studies. Fangmeier et al. (2006) conducted a study of three-
term reasoning in which participants viewed in sequence three
problem parts such as (1) × g, (2) g m, and (3) × m, and
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indicated whether the third relationship followed from the first
two. Capturing the separate neural responses to presentation
of each of the three parts, they observed that FPC was
activated when the second part was presented. At that point
it seems participants, anticipating the form of the problem
and third part, integrated the first two parts into a unitary
representation. Green et al. (2006) observed FPC activation when
stimuli were evaluated for analogical relationship, requiring
complex relational integration, but not when similarity in
categorical or semantic relationships were judged. Kosslyn et al.
(1994) required participants to judge whether a heard word and
a seen picture matched, resulting in FPC activation as the two
stimuli were integrated in comparison. Strange et al. (2001) found
that when making categorical decisions about letter strings, FPC
responded when the rule defining the category was changed,
inducing attempts to understand the relationships in the strings
described by the new rules. It’s likely this entailed integrating
representations of hypothetical relationships. In another study,
items were judged for the presence of simple features or abstract
features (Goldberg et al., 2007). The difference between the two
kinds of features lies in whether they were perceptual in nature
(simple) or could be derived by verbal description (abstract). FPC
was recruited when assessing the presence of the abstract features,
probably because the descriptive nature of the feature entailed
integrating a complex propositional representation of the feature.
Monti et al. (2007) also found FPC activation increased during
solution of difficult deduction problems compared to simpler
deduction problems. In these deduction tasks and other high-
level tasks like the Tower of Hanoi or Ravens Progressive
Matrices it is necessary for subjects to integrate together a
complex configuration of problem elements, and this task
element is one possible key to their FPC recruitment.

Some attempts to contrast manipulation and maintenance
have examined working memory for verbal material in modified
match-to-sample paradigms employing letters (D’Esposito et al.,
1999) or words and non-words (Barde and Thompson-Schill,
2002). In both studies, subjects determined whether a probe
item was included in the sample. In some trials, the judgment
included determining what position the item occupied in the
sample set. In the manipulation condition the letters or non-
words were reordered into alphabetical order, and Barde and
Thompson-Schill included an additional manipulation condition
in which words were arranged according to the size of the
objects they referenced. Barde and Thompson-Schill analyzed
activity by region, and grouped FPC and DLPFC together.
This ROI produced stronger activation during the manipulate
conditions. D’Esposito et al. (1999) analyzed neural responses
in individual subjects separately, subtracting activation for
maintenance from manipulation activity; most of their six
subjects exhibited greater activity in FPC during manipulation.
Since Barde and Thompson-Schill employed alphabetization
and size ordering the manipulation elicited by these tasks
also involved retrieval from long term memory, for either
knowledge about alphabetical order or semantic memory about
size. Retrieval of semantic information from long-term memory
has been associated with FPC in verb-generation tasks without
manipulation (Petersen et al., 1988; MacLeod et al., 1998). More

importantly for the present discussion, these studies resemble
the self-ordered tasks of Petrides et al. (1993) in that a
set of stimuli are progressively altered, requiring constant
creation of a structured representation via processing. They are
not designed to discriminate the contributions of integration
and manipulation.

The distinction we make between neural demands of
integrating of information and manipulation of information
echoes previous theoretical discussion about frontal lobe
operation. Wood and Grafman reviewed theories of frontal
lobe function and distinguished them along a process
vs. representation scheme (Wood and Grafman, 2003).
Extending this distinction to frontopolar cortex, studies
which have focused on the integration of information
best correspond to a representational view of FPC
function, while depicting FPC as executing or managing
manipulation resembles process-oriented theories of
frontal lobe function.

There has been no direct comparison of representing
integrated information, where representation is the primary
cognitive task, and manipulation of information, in which
information processing is key. The first goal of the current study
is to determine whether representing integrated information, in
the absence of manipulation or a task execution context, depends
on FPC. We employed a delayed match-to-sample paradigm in
which three letters, of different colors and placed in different
locations, are maintained in memory and compared to a probe
(see Figure 1). Neural responses were compared to a control task
in which three white letters centrally located were retained and
compared to a similar probe. To compare brain processing during
manipulation of internal representations and representation
of integrated information, another condition required making
one of two changes to the integrated representation of the
sample in memory. After presentation of the sample, and before
presentation of the probe, a cue screen appeared instructing
participants to change the identity or position of one of the
sample letters. Then, the modified representation was compared
to the probe to assess match. In this way, we contrasted FPC
recruitment during maintenance of an integrated representation
with the manipulation of it.

MATERIALS AND METHODS

Participants
Fifteen right-handed healthy subjects (age: 18–34; five female)
participated in the study. No subject had a history of neurological
or psychiatric problems. All participants completed informed
consents and the research was approved by the University of New
Mexico Institutional Review Board.

Cognitive Tasks
Stimuli were presented using a program written in E-Prime1 and
back-projected onto a screen, sitting outside the magnet bore
37.5 inches from a mirror mounted over the participant’s eyes

1www.pstnet.com
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FIGURE 1 | Illustration of three kinds of cognitive tasks. Stimuli in the initial
sample screen are encoded, and compared to a final probe, with an
intervening “change cue” in the manipulate trials. (A) Sample then probe in
control condition (with only letter identity maintenance); correct answer is
“yes” since the letters in the sample are the same as the letters in the probe.
(B) Integrate condition with maintenance of integrated letter identity, spatial
and color information; a “no” trial since the identity, position, and color are not
the same for each of the three letters in both sample and probe. (C) Sample,
change cue, and probe in a manipulate condition trial requiring manipulation
of integrated letter identity, spatial and color information; a “yes” trial. The two
letters in the sample are encoded, and at the change cue the internal
representation is altered so that the letter in the same color as the asterisk
(green in this trial) is moved to the position of the asterisk, and the identity of
the letter whose color matches the letter in the box is changed to match the
letter in the box. This changed mental representation is compared to the final
probe.

and tilted 45◦ to allow stimulus viewing. Response times and
accuracy for participant responses to probe screens on each trial
were recorded by the stimulus program.

Three different tasks or conditions were employed (see
Figure 1). Each trial consisted of two or three sequentially
presented screens: a sample (sample phase), blank or change
cue (cue phase), and probe (retrieval phase). The first condition
required maintenance of unintegrated information (control).
Participants saw a three-letter sample stimulus, in which letters
were all white and located in the center of a screen, with
the word “Remember” in a box at the bottom of the screen.
This was followed by an average 2-second-long inter-stimulus-
interval (ISI) with a blank screen and then a fixation screen
containing only a fixation cross and a blank box at the bottom.
Next another roughly 2-s blank ISI was followed finally by a
probe screen, again with three letters arranged in the middle.
Participants were trained to indicate by pushing one of two
buttons whether the letters in the sample were the same as the
letters in this probe (the order of the letters did not matter,
but in all “yes” trials the orders matched). Presentation of the
sample, intervening fixation, and probe, with the participant’s
response, constituted a trial. In a second condition (integrate),
three letters were in the sample, which were placed in random
locations around the screen and presented using different colors

randomly selected from red, blue, green, yellow, cyan and
magenta. Again following a blank ISI a second screen contained
a fixation and blank box at the bottom and another blank ISI,
a probe containing three colored letters in different positions
was presented. Participants indicated whether the letters in the
probe matched those in the sample on letter identity, color, and
position, requiring these features of each of the sample stimulus
letters to be retained in integrated representations. In the third
condition (manipulate), two colored and randomly positioned
letters were in the sample and probe just as in the integrate
condition but with one less letter, and the intervening screen
contained one of two “change” cues along with the fixation cross.
One of the change cues, an asterisk located somewhere on the
screen, indicated that the letter matching the asterisk in color
should be relocated to the position of the asterisk. The second
change cue, a letter in the box at the bottom of the screen,
indicated that the sample letter matching its color should be
changed to that letter (see Figure 1). Thus, the “change” cue
screen required subjects to change the identity of one of the two
sample letters, and to change the location of the other. These
manipulations were performed on the internally maintained
representation of the sample stimuli. When the probe screen
was presented, participants indicated whether the probe matched
the new representation of the stimulus after manipulation in
accordance with the change cue.

Following each trial, a 3–5 s ISI screen preceded the next
trial. One-third of the time, a null event (2 s) and another
ISI also intervened before the next trial. Stimulus duration for
all sample, change, probe, and fixation screens was 2 s. If the
participant did not respond to the probe within 5 s it was coded
as an incorrect trial. ISI blank screen durations randomly varied
from 3–5 s to jitter stimulus onsets throughout the experiment.
Additionally, null events with 5–7 s’ duration were presented
between randomly selected trials. The study consisted of three
runs, each 576 s long. During each run, 36 trials within each
condition and 36 null events occurred in semi-random order.

Imaging Acquisition
Functional mages were acquired on a 3-Tesla Siemens Trio
scanner located at the Mind Research Network in Albuquerque,
New Mexico. T2∗-weighted gradient echo, echo-planar images
(EPI) comprised of 33 interleaved 3 mm-skip-1 mm slices parallel
to the AC-PC line were acquired (TR = 2,000 ms, TE = 29 ms,
Flip = 75◦, FOV = 240 mm, Matrix = 64 × 64). Dummy
volumes for 16 s initiated each run to equilibrate the signal and
were discarded. A high-resolution T1 MPRAGE anatomical scan
was also acquired.

Image Analyses
fMRI data analysis was performed using SPM5 (Wellcome
Department of Cognitive Neurology, London, United Kingdom).
Images were corrected for differences in slice timing by
resampling all slices to match the middle slice using sinc
interpolation (Henson et al., 1999). Corrected images then
were spatially realigned to the first volume to correct head
motion in each run of all subjects. No participant had moved
more than 3 mm in any axis. The images were coregistered
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with the anatomical image (MPRAGE) of each subject and
then normalized to the standard T1 template (average 305)
from the Montreal Neurological Institute (MNI). The images
were resampled into 3 mm by normalization and spatially
smoothed with an 8 mm FWHM isotropic Gaussian kernel. Data
were high-pass filtered to remove low frequency noise with a
128 s cutoff period.

Statistical analyses were modeled using a canonical
hemodynamic response function (HRF) and its derivatives.
At the first level individual analysis, each event was calculated
using an event-related design with all events including samples
and cues of each task and null events. All task events were
subtracted by null events and these contrast maps were used to
analyze group data.

BOLD responses were compared between the samples for
the control, integrate, and manipulate conditions. We also
directly compared responses to the change cue of the manipulate
condition (manipulate two integrated letters) with activations
during the sample of the integrate condition (maintain three
integrated letters) in order to reveal the differences in activation
for manipulation and maintenance of integrated information.
P-values then were cluster level corrected at p < 0.05. Based on
group analyses, ROIs (10 mm spheres) were selected for further
analyses and BOLD signal changes were extracted.

RESULTS

Behavioral Results
Mean accuracy and RT are depicted in Figure 2. We used
one-way within-subjects ANOVAs to analyze accuracy and
RT for task conditions. The accuracy was lower in the
manipulate condition (0.726) than in control condition (0.926),
F(1, 14) = 46.460, p < 0.001, and lower in the integrate
condition (0.777) than in control condition, F(1, 14) = 44.903,
p < 0.001. RT in the control condition (998 ms) was faster
than in the integrate condition (1,222 ms), F(1, 14) = 17.568,
p < 0.001, and faster than in the manipulate condition (1,240 ms),
F(1, 14) = 39.482, p < 0.001.

fMRI Results
Sample Phase
We first contrasted activation for the sample phases for the
control, integrate, and manipulate conditions. Supplementary
Table 1 lists coordinates and activations for local maxima for
which there were significant differences in BOLD responses
for all contrasts performed. Activations for these contrasts are
illustrated in Figure 3 along with time courses of the activations.
Contrasting neural responses to the sample in the integrate
condition, when subjects encoded three colored letters in random
locations, to the sample in the control condition, when subjects
encoded three centered, white letters, a broad network of regions
were more activated by the sample of the integrate condition.
This included left and right inferior and middle frontal gyrus
(BA 6, 9, and left 46), left superior frontal gyrus (BA 6), left
and right precentral gyrus (BA 6), and left insula (BA 13).
Medially, anterior cingulate (BA 32), cingulate gyrus (BA 24),
and right cuneus (BA 17) were more strongly activated for
the integrate sample. Posteriorly, right superior parietal (BA 7),
bilateral inferior parietal lobule (BA 40), and bilateral precuneus
were activated, along with right superior temporal gyrus (BA
22), left and right middle occipital gyrus (BA 19), bilateral
lingual gyrus (BA 17/18), and left fusiform gyrus (BA 37).
Subcortically, bilateral caudate, right claustrum, and lentiform
nucleus were also recruited more in the integrate sample than the
control sample, as were right thalamus and bilateral cerebellum.
A similar network was more active during the sample phase of
the manipulate condition, when subjects viewed two letters of
different colors and in random locations, with the exceptions
of the right inferior gyrus, right precentral gyrus, and BA 24 in
cingulate gyrus.

Notably, the ROI in left DLPFC (BA 9) was larger in volume
in the manipulate and integrate samples than the maintenance
sample period, extending ventrally to Talairach coordinates−47,
−6, 34 during manipulation and −47, 3, 11 during the integrate
sample. Two regions in DLPFC that were significant in the
manipulate sample were absent in the integrate sample contrast,
despite the greater amount of integrated information in the
integrate sample. These ROIs were fairly anterior in BA 9

FIGURE 2 | Behavioral results. Mean accuracy (left) and response time (right) across subjects for the control, integrate, and manipulate conditions.
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FIGURE 3 | Labels refer to Brodmann’s areas and left or right hemisphere or medial. For example, in panel (A), 10l refers to left Brodmann Area 10 in the left
hemisphere. The green line represents activation or BOLD intensity in that area during the manipulate trials’ cue phase. We compared responses for trial phases and
depicted them in panels (C–E), with labeled arrows indicating Brodmann Areas. The subtraction of the integrate trial sample phase from the manipulate trial change
cue phase resulted in significant activations shown in green in panel (D). The opposite subtraction produced the medial red activations. The green ROIs’ activations
correspond to the green lines in panel (A). Thus, activations in panels (A,B) can be seen to arise from the same-colored ROIs in panels (C–E). Depicted in panel (A):
BOLD responses during sample and change cue phases of control, integrate, and manipulate trials for ROIs depicted in panels (C,D). (B) BOLD responses for ROIs
resulting from contrasting the probe phase in control, integrate, and manipulate trials, as depicted in panel (E). C, Control, I, Integrate, M, Manipulate trial types.
Samp, response to the sample phase of a trial type, cue, response to the change cue, prob, response to the probe phase.
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(Talairach coordinates −46, 18, 9 and 38, 38, 33). We speculate
that this may have reflected activity as participants prepared
for or anticipated the impending change cue in the manipulate
trials. Given that subjects were to manipulate the stimuli in
the manipulate sample, these frontal activations may reflect
strategy or preparation processing. There were no significant
differences between activation evoked by the manipulate and
integrate samples, nor were any regions more active during the
control sample than during the integrate or manipulate samples.

Probe Phase
Second, we contrasted responses to the probe stimuli in the
control, integrate, and manipulate conditions. A similar network
of regions was more significantly active during the integrate
probe and the manipulate probe than during the control probe.
However, in parietal cortex (BA 39/40), a larger volume ROI
was evoked by the manipulate probe than the integrate probe,
and a larger amplitude response was evoked in middle occipital
cortex during the integrate probe. Parietal cortex is active
for visual imagery, particularly manipulation of visual imagery
(Kosslyn et al., 2001); this activation during the probe suggests
these circuits were active to maintain the manipulated stimulus
while compared to the probe. Response time was slower for
the manipulate probe even though two maintained letters were
compared to two probe letters in that condition compared to
three in the integrate condition. Comparing the participant-
created representation was more demanding than comparing the
larger encoded representation to the probes. Greater activation
in mid-occipital regions probably reflects the greater demand on
visual working memory to maintain the larger stimulus. These
results together suggest that while the integrate sample was
retained in visual working memory, representing the stimulus
generated by participants depended less on visual substrates.

The manipulate condition probe was contrasted directly with
the integrate condition probe, revealing a cortical network more
active in the manipulate probe including left frontal pole (BA10),
bilateral DLPFC (left and right BA 9, left BA6), medial frontal
gyrus (BA 8/32), left precuneus (BA7), left angular gyrus and
right middle temporal gyrus (BA 39), left claustrum, and bilateral
pyramids of the cerebellum. The reverse contrast revealed a
significant difference only in the anterior cingulate (left BA32).
Though the integrate condition probe involved operations with
more extensive integrated representations, performing the same
operations on generated stimuli involved greater activity in
frontal cortex, particularly including frontal pole.

Manipulate Cue and Samples
Next we compared neural responses to manipulation of two
stimulus letters and to encoding of three stimulus letters
in the control and integrate condition samples. Activity was
significantly greater during manipulation than for the control
sample across cortical regions including BA 6, 9, and 46 in frontal
cortex and 7, 40, and 9 posteriorly. Activation in response to
the manipulation change cue was then contrasted with activity
for the integrate sample. This comparison addresses the primary
aim of this study: contrasting simple representation of integrated
information, and manipulation of it. These stimuli differed in

that the manipulation cue entailed both integration of features
and manipulation of the integrated representation of two colored
and randomly positioned letters while the integrate sample
entailed encoding and retention of three of them. Comparing
activity in response to the manipulation cue and the integrate
sample allowed us to isolate activation specific to manipulation
of an integrated representation as both required representation
of integrated information. In fact, since the integrate sample
contained three items and the manipulation stimulus contained
two, the demand on working memory capacity to sustain the
representation of the integrate sample was greater than for
the manipulation cue, yet a network of regions similar to
the manipulation cue minus the control sample responded
more to the manipulation cue than the integrate sample. An
exception is that activation in occipital visual areas was evident
when contrasting the manipulate cue to the control sample,
but not in the contrast between the manipulate cue and the
integrate sample, suggesting that maintaining the integrated
representation of the three letters in the integrate sample
and manipulating the integrated representation of two letters
depended on the same visual processing regions.

The time courses of BOLD responses were plotted for ROIs
that activated significantly more to the manipulate cue than to the
integrate sample phase. For each of these ROIs, a plot in Figure 3
depicts the time courses of BOLD responses for the sample phases
of each condition, and the manipulate condition change cue.
Lateral FPC, especially in the right hemisphere, responded more
to manipulation than during the samples. Though not significant,
the time courses suggest some participation of FPC during the
integrate and manipulate samples mostly in left FPC. Responses
to the manipulate cue were sharply increased in DLPFC and
parietal cortex relative to all of the sample periods. This network
accomplishing the manipulation exhibited strong dependence on
FPC while sustaining representations of the sample stimuli did
not. A graded increase in response intensity from the control
sample to the integrate sample and to the manipulate cue is seen
in several of the ROIs across cortex. Responses to the control
sample were surprisingly small, since activations for DLPFC are
typically found for match-to-sample paradigms. The contrasts
applied may have failed to produce ROIs where activation
during the control condition sample occurred. These regions did,
however, respond during the control probe.

Left inferior frontal gyrus (BA 45, Broca’s area) activated
for integration and more for manipulation but was slightly
suppressed during the control sample. Bilateral frontal eye fields
(BA 6) and supplementary eye field (BA 8/32) showed graded
responses to the integrate sample and manipulation but were not
responsive to the control sample. The most intense responses to
integration and especially manipulation were observed in parietal
cortex, in medial superior precuneus (BA7) and bilateral inferior
parietal cortex (BA 39/40, but bordering in lateral BA7).

Analysis also revealed four maxima that were more active
during the integrate sample than during the manipulation.
These areas were significantly different due to combinations of
activation to integrating and suppression during manipulation.
They included medial FPC (BA 10), anterior cingulate (BA 32),
and both dorsal (BA 31) and posterior cingulate (BA 30).
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Lateral frontal pole, especially in the right hemisphere,
responded strongly to manipulation, but a decrease below
baseline occurred in medial frontal pole during manipulation.
Different patterns of lateral and medial responses occurred
during the sample for the control and integrate conditions.
Neither medial nor lateral frontal pole appears to have
participated in encoding of the control sample. Both left and
medial FPC were recruited during the integrate sample, but little
activity was evident in right FPC. These BOLD plots suggest very
different engagement of medial and lateral frontal pole during
integration and manipulation; the relationship is enhanced by
deactivation in medial FPC for manipulation. To gauge the
active contribution of these areas during the tasks, we obtained
from each subject the maximum BOLD activation for these
regions following stimulus presentation for the integrate sample
and manipulate change cue phases. From these the average
peak activation across subjects for the two kinds of trial phase
were determined and are plotted in Figure 4; these reflect the
greatest activation of these regions and are not influenced by
deactivations. There is an interaction [F(1, 14) = 6.800, p < 0.05]
between points for the medial and right FPC maxima, but not
when all points are considered. This result makes clear that even
discounting deactivations in BOLD, response integration and
manipulation produce a different pattern of recruitment across
lateral and medial FPC.

To assess the relationship between observed BOLD differences
and performance on the experimental paradigm, correlations
between activation level for each ROI and mean response time
were computed. For the integrate trials, response time correlated
negatively with activation in left DLPFC during the sample
(BA 9, r = −0.52) and with activation in left DLPFC and
left inferior parietal cortex during the probe (BA 9 and 39,
r =−0.56 and−0.61, Figure 5). Activation during the manipulate
cue in a network including right FPC, left DLPFC, and right
inferior parietal lobe appears able to account for accuracy in
the manipulate trials, while increased left DLPFC and inferior
parietal activity resulted in faster responses on integrate trials,
possibly indicating additional effort in these regions during
encoding and solution.

DISCUSSION

The purpose of this study was to separate and compare
the demands placed on frontopolar cortex by representation
of integrated information and manipulation of integrated
information. The information integrated, letter identity, color,
and location, formed through the integration complex, structured
representations. Specifically, we manipulated the degree of
integration complexity of representations in working memory,
and the requirement to change the information to produce
a novel integrated representation. Maintaining an integrated
representation of three letters presented in three different colors
and locations did not recruit FPC significantly more than the
control condition requiring maintenance of three letters for
which only the identity of the letters was pertinent. FPC was
recruited, however, when a smaller structured representation
integrating two letters in different colors and locations was

FIGURE 4 | Lateral and medial FPC activity during integration and
manipulation. Mean peak activity represented as percent change of the BOLD
signal in left, medial, and right FPC during the integrate sample (solid line) and
manipulate condition change cue (dashed line). Mean maximum activation
amplitude across subjects is plotted to assess processing in each region
without influence from deactivations.

manipulated. This region was significantly more active for
manipulation of the two-letter stimulus than for maintenance of
the integrated 3-letter sample, and than for maintenance of the
simple sample in the control condition. These findings suggest
that FPC activation found for paradigms involving integration
of information results from the need to manipulate or create
integrated information, rather than the demands of representing
integrated information.

Other studies have shown that internal manipulation of
information alone is not sufficient to recruit FPC, for example,
in N-back paradigms (Cohen et al., 1997) or math performance
(Dehaene et al., 1999). This indicates that manipulation alone
is not a sufficient demand to recruit FPC. In our manipulate
condition, letter identity and color must be bound together
with a location. Each letter’s position was defined by its
spatial relationship to the other letters in the stimulus and
the surrounding frame. These constraints structure the encoded
representation of the stimulus. Maintaining this constrained
representation in working memory was insufficient to recruit
FPC; it was recruited in this study only when novel integrated
information was produced.

A key element of our experimental design is that the cognitive
demands of the integrated representation in the integrate
condition (3 letters) was larger than that in the manipulate
condition (2 letters). It is possible that during manipulation
intermediate representations were employed in which stimulus
features progressively changed, which when combined with
retaining the sample stimuli until the manipulation was complete,
summed to demand more integration than in our integrate
condition. In this interpretation, FPC activation in response to
the change cue may be a result of holding a sufficient amount of
information in integrated form. We suggest that the production
of these representations according to task constraints and the
representations thus produced essentially are manipulation. It
is this formative process that we propose is the fundamental
contribution of FPC.
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FIGURE 5 | RT and activation amplitude correlations. Correlation between reaction time and brain activation in BA9 in the sample phase of the integrate task, and in
BA 9 and BA 39 during the probe phase of the integrate task.

It might also be argued that when the cue was presented for
2 s, containing a colored asterisk in some location and a letter
in the box at the bottom of the stimulus screen, there was a
demand for the participant to integrate the original two sample
letters, and their locations and colors, as well as the asterisk’s color
and location, and the identity of the letter in the box with its
color. Formally, the relational complexity of this representation
is smaller than that demanded by the integrate sample which
entailed three letter identities, three locations, and three colors
[see Holyoak and Thagard (1995) and Halford et al. (2007)
for discussion of the formalization of complexity degree]. For
the manipulate cue, in addition to the two sample letters each
requiring binding a letter identity, color, and location, a position
was bound to a color (asterisk) and a letter identity was bound
to a color (letter in the box), so less integration was required
than for maintaining the integrate sample. Therefore the size
of the representation explicitly required by the cue contained
fewer bindings than the integrate sample. Pragmatically, the
cue was present for 2 s, during which it is likely that at
least part of the manipulation was completed, reducing the
need to retain the change cues in working memory, further
reducing the degree of integration required. The manipulation
performed in fact results in constituting a new integration
of elements of the sample and change cue. The distinction
between this and the mental activity occurring during the
integrate sample speaks to the essential aim of this study—that
manipulation of integrated representations involves production
of additional integrated information. The integrated nature of
the information constrains constitution of new representations.
We propose that this constrained production of representations
is the ideal sort of cognition to be served by the integrative
physical character of FPC. There is no obvious theoretical
reason why this description of neural processing should be
restricted to information about external stimuli, information
about task execution, or about relative reward associated with
action possibilities, all of which may be constrained to arbitrary
levels of complexity. In this view, managing multiple distinct
representations adds both information and complexity. Thus, it
might be possible to observe greater FPC activity for a single,

complexly constrained manipulation than multiple simpler
ones, and simple manipulations upon a complexly constrained
representation might produce similar demand to complex
manipulations of relatively simple information. These theoretical
proposals may be easily co-opted into testable hypotheses. The
multiplicity of paradigms which produce FPC activation as a
body witness the flexibility of constrained production.

Frontopolar cortex—the same FPC region more activated for
manipulation than the integrate or control samples—was also
recruited during the probe phases, as is depicted in Figure 3.
Left FPC responded significantly more to the integrate probe
and manipulate probes than the maintenance probe (not shown)
and to the manipulate probe than the integrate probe. Right
FPC also attained significance when the manipulate probe was
compared to the control probe, and as seen in the BOLD
time courses was more active than left FPC. Whereas neither
the integrate nor manipulate sample periods recruited FPC
relative to the control sample, the probe phase for both of
those conditions recruited FPC more than in the control. As
is also apparent in the time courses in Figure 3, comparing
an integrated representation of two letters which had been
produced by participants then retained for several seconds to
the letters in the probe recruited FPC more than comparing
three perceived and encoded integrated letters to three letters
in the probe. The nominal cognitive load is greater in the latter
case, but when the smaller representation had been created by
the participant, the comparison depended much more on FPC—
again, we propose, exploiting the integrative anatomical character
and connectivity of FPC to sustain the participant-produced
representation. This demand on FPC results from the need to
maintain the produced representation without any memory of a
perceived stimulus to refer to.

The recruitment of right FPC during the manipulate cue
and probe may result simply because the task entailed greater
integration demand and relied upon more of FPC, or because
of functional specialization in right FPC. Spatial processing
has been associated with the right hemisphere (Kosslyn et al.,
1994; Baddeley, 1996; Smith et al., 1996; Manoach et al., 2004).
Slotnick and Moo (2006) showed that memory for coordinate
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location (a dot was far from a figure) recruited right FPC, while
categorical memory (the dot is on the figure) recruited left FPC.
Manipulating letters at the change cue entailed manipulating
position in coordinate space.

Humans operate within complex environments comprised of
complex information. To select action in service of their goals in
novel situations requires the ability to create plans from existing
information. The central question of this study is whether FPC
augments human cognitive ability by enabling representation
of complex information, or whether it facilitates processing of
complex information into new structured representations. The
results support the latter conclusion. Even though a greater
quantity of information had to be integrated in the integrate
trials than in the manipulate trials, FPC was recruited only
when changes were made to the representation to create a
new representation.
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Integrating Philosophy

of Understanding With the Cognitive
Sciences.

Front. Syst. Neurosci. 16:764708.
doi: 10.3389/fnsys.2022.764708

Integrating Philosophy of
Understanding With the Cognitive
Sciences
Kareem Khalifa1* , Farhan Islam2, J. P. Gamboa3, Daniel A. Wilkenfeld4 and
Daniel Kostić5
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We provide two programmatic frameworks for integrating philosophical research
on understanding with complementary work in computer science, psychology, and
neuroscience. First, philosophical theories of understanding have consequences about
how agents should reason if they are to understand that can then be evaluated
empirically by their concordance with findings in scientific studies of reasoning.
Second, these studies use a multitude of explanations, and a philosophical theory of
understanding is well suited to integrating these explanations in illuminating ways.

Keywords: explanation, understanding, mechanism, computation, topology, dynamic systems, integration

INTRODUCTION

Historically, before a discipline is recognized as a science, it is a branch of philosophy. Physicists
and chemists began their careers as “natural philosophers” during the Scientific Revolution. Biology
and psychology underwent similar transformations throughout the nineteenth and early twentieth
centuries. So, one might think philosophical discussions of understanding will be superseded by a
“science of understanding.”

While we are no great forecasters of the future, we will suggest that philosophical accounts
of understanding can make two important scientific contributions. First, they provide a useful
repository of hypotheses that can be operationalized and tested by scientists. Second, philosophical
accounts of understanding can provide templates for unifying a variety of scientific explanations.

We proceed as follows. We first present these two frameworks for integrating philosophical
ideas about understanding with scientific research. Then we discuss the first of these frameworks,
in which philosophical theories of understanding propose hypotheses that are tested and refined
by the cognitive sciences. Finally, we discuss the second framework, in which considerations
of understanding provide criteria for integrating different scientific explanations. Both of our
proposals are intended to be programmatic. We hope that many of the relevant details will be
developed in future work.

TWO FRAMEWORKS FOR INTEGRATION

As several reviews attest (Baumberger, 2014; Baumberger et al., 2016; Gordon, 2017; Grimm,
2021; Hannon, 2021), understanding has become a lively topic of philosophical research over
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the past two decades. While some work has been done to integrate
these ideas with relevant findings from computer science,
psychology, and neuroscience, these interdisciplinary pursuits
are relatively nascent. While other frameworks are possible and
should be developed, we propose two ways of effecting a more
thoroughgoing synthesis between philosophy and these sciences
(Figure 1). In the first framework for integrating philosophy with
the cognitive sciences—what we call naturalized epistemology of
understanding (Figure 1A)—the philosophy of understanding
provides conjectures about reasoning that are tested and
explained by the relevant sciences. In the second integrative
framework—understanding-based integration (Figure 1B)—the
philosophy of understanding provides broad methodological
guidelines about how different kinds of scientific explanation
complement each other. The two proposals are independent of
each other: those unpersuaded by one may still pursue the other.
We discuss each in turn.

NATURALIZED EPISTEMOLOGY OF
UNDERSTANDING

In epistemology, naturalism is the position that philosophical
analyses of knowledge, justification, and kindred concepts
should be intimately connected with empirical science. Different
naturalists specify this connection in different ways; see Rysiew
(2021) for a review. Given that philosophical interest in
understanding has only recently achieved critical mass, the
more specific research program of a naturalized epistemology
of understanding is nascent. We propose to organize much
existing work according to the framework in Figure 1A. More
precisely, philosophical theories of understanding propose how
reasoning operates in understanding (see section “Philosophical
Theories Propose Reasoning in Understanding (I)”), and these
proposals are constrained by explanations and empirical tests
found in sciences that study this kind of reasoning (see section
“Scientific Studies of Reasoning’s Contributions to the Philosophy
of Understanding (II)”).

Philosophical Theories Propose
Reasoning in Understanding (I)
Two kinds of understanding have garnered significant
philosophical attention: explanatory understanding (Grimm,
2010, 2014; Khalifa, 2012, 2013a,b, 2017; Greco, 2013; Strevens,
2013; Hills, 2015; Kuorikoski and Ylikoski, 2015; Potochnik,
2017) and objectual understanding (Kvanvig, 2003; Elgin, 2004,
2017; Carter and Gordon, 2014; Kelp, 2015; Baumberger and
Brun, 2017; Baumberger, 2019; Dellsén, 2020; Wilkenfeld,
2021). Explanatory understanding involves understanding
why or how something is the case. (For terminological
convenience, subsequent references to “understanding-why”
are elliptical for “understanding-why or –how.”) Examples
include understanding why Caesar crossed the Rubicon and
understanding how babies are made. Objectual understanding
is most easily recognized by its grammar: it is the word
“understanding” followed immediately by a noun phrase,
e.g., understanding Roman history or understanding human

reproduction. Depending on the author, the objects of objectual
understanding are taken to be subject matters, phenomena, and
for some authors (e.g., Wilkenfeld, 2013), physical objects and
human behaviors. For instance, it is natural to think of Roman
history as a subject matter but somewhat counterintuitive to
think of it as a phenomenon. It is more natural to think of, e.g.,
the unemployment rate in February 2021 as a phenomenon than
as a subject matter. Human reproduction, by contrast, can be
comfortably glossed as either a subject matter or a phenomenon.

To clarify what they mean by explanatory and objectual
understanding, philosophers have disambiguated many other
senses of the English word “understanding.” Frequently, these
senses are briefly mentioned to avoid confusion but are not
discussed at length. They are listed in Table 1. Scientists may
find these distinctions useful when characterizing the kind of
understanding they are studying. That said, we will focus on
explanatory understanding hereafter. Thus, unless otherwise
noted, all subsequent uses of “understanding” refer exclusively to
explanatory understanding.

Virtually all philosophers agree that one can possess an
accurate explanation without understanding it, e.g., through rote
memorization. In cases such as this, philosophers widely agree
that the lack of understanding is due to the absence of significant
inferential or reasoning abilities. However, philosophers disagree
about which inferences characterize understanding. Three broad
kinds of reasoning have emerged. First, some focus on
the reasoning required to construct or consider explanatory
models (Newman, 2012, 2013, 2015; De Regt, 2017). Second,
others focus on the reasoning required to evaluate those
explanatory models (Khalifa, 2017). On both these views,
explanatory models serve as the conclusions of the relevant
inferences. However, the third and most prominent kind of
reasoning discussed takes explanatory information as premises
of the relevant reasoning—paradigmatically the inferences about
how counterfactual changes in the explanatory variable or
explanans would result in changes to the dependent variable
or explanandum (Hitchcock and Woodward, 2003; Woodward,
2003; Grimm, 2010, 2014; Bokulich, 2011; Wilkenfeld, 2013;
Hills, 2015; Kuorikoski and Ylikoski, 2015; Rice, 2015; Le
Bihan, 2016; Potochnik, 2017; Verreault-Julien, 2017). This
is frequently referred to as the ability to answer “what-if-
things-had-been-different questions.” Many of these authors
discuss all three of these kinds of reasoning—which we
call explanatory consideration, explanatory evaluation, and
counterfactual reasoning—often without explicitly distinguishing
them in the ways we have here.

Scientific Studies of Reasoning’s
Contributions to the Philosophy of
Understanding (II)
A naturalized epistemology of understanding begins with
the recognition that philosophers do not have a monopoly
on studying these kinds of reasoning. Computer scientists,
psychologists, and neuroscientists take explanatory and
counterfactual reasoning to be important topics of research.
Undoubtedly, each discipline has important insights and
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FIGURE 1 | Two ways to integrate philosophical work on understanding with relevant sciences. (A) Naturalized epistemology of understanding. (B)
Understanding-based integration.

contributions. Moreover, these scientific disciplines may raise
interesting questions about understanding that are not on the
current philosophical agenda.

Cognitive psychological investigations into the nature of
explanation and understanding frequently focus on the role of
those states in our cognitive lives. To the extent that one can
derive a general lesson from this literature, it is probably that both
having and seeking explanations aid other crucial cognitive tasks
such as prediction, control, and categorization. Developmental
psychologists argue that having proper explanations promotes

TABLE 1 | Kinds of understanding that philosophers infrequently discuss
(Khalifa, 2017, p. 2).

Kind of
understanding

Typical complement Examples

Propositional That + declarative
sentence

I understand that you might not
enjoy reading this book.

Broad linguistic Name of a language Schatzi understands German.

Narrow linguistic What + a linguistic
expression + means

Schatzi understands what “Ich
bin ein Berliner” means.

Procedural How + infinitive Miles understands how to play
trumpet.

Non-explanatory
interrogative

Embedded question that
does not seek an
explanation as its answer
(most who, where, what,
and when questions)

I understand who my friends are.
I understand where my friends
will be going. I understand what
my friends are doing. I
understand when my friends
need a good laugh.

survival, and that at least the sense of understanding evolved to
give us an immediate reward for gaining such abilities (Gopnik,
1998). In cognitive psychology, Koslowski et al. (2008) have
argued that having an explanation better enables thinkers to
incorporate evidence into a causal framework. Lombrozo and
collaborators have done extensive empirical work investigating
the epistemic advantages and occasional disadvantages of simply
being prompted to explain new data. They find that under
most normal circumstances trying to seek explanations enables
finding richer and more useful patterns (Williams and Lombrozo,
2010). This work also has the interesting implication that
the value of explanation and understanding depends on the
extent to which there are genuine patterns in the world,
with fully patterned worlds granting the most advantages from
prompts to explain (ibid.), and more exception-laden worlds
providing differential benefits (Kon and Lombrozo, 2019). It
has also been demonstrated that attempts to explain can
(perhaps counterintuitively) systematically mislead. For example,
attempts to explain can lead to miscategorization and inaccurate
predictions when there are no real patterns in the data (Williams
et al., 2013). Similarly, laypeople can be misguided by the
appearance of irrelevant neuroscientific or otherwise reductive
explanations (Weisberg et al., 2008; Hopkins et al., 2016). In
more theoretical work, Lombrozo (2006) and Lombrozo and
Wilkenfeld (2019) consider how different kinds of explanation
can lead to understanding that is either more or less tied to
specific causal pathways connecting explananda and explanantia
vs. understanding focused on how different pathways can lead to
the same end result. Thagard (2012) has argued that explanatory
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reasoning is key to science’s goals both intrinsically and as they
contribute to truth and education.

One recent thread in the cognitive science and philosophy
of understanding combines insights from information theory
and computer science to characterize understanding in terms
of data compression. Data compression (Grünwald, 2004)
involves the ability to produce large amounts of information
from relatively shorter hypotheses and explicitly encoded
data sets—in computer science and model-centric physics,
there is a burgeoning sense that understanding is tied to
pattern recognition and data compression. Petersen (2022)1

helpfully documents an array of such instances. Li and Vitányi
(2008) use compression and explanation almost interchangeably,
and at some points even suggest a possible equivalence
between compression and the scientific endeavor generally,
as in Davies (1990). Tegmark (2014) likewise connects the
notion of compression with the explanatory goals of science.
Wilkenfeld (2019) translates the importance of compression
to good scientific (and non-scientific) understanding into
the idiom of contemporary philosophy of science. While
part of the inspiration characterizing understanding in terms
of compression comes from the traditional “unificationist”
philosophical position that understanding involves having to
know fewer brute facts (Friedman, 1974) or argument patterns
(Kitcher, 1989), the introduction of compression helps evade
some objections to unificationist views, such as the fact that such
views require explanations to be arguments (Woodward, 2003)
and the fact that they allow for understanding via unification
that no actual human agent can readily use (Humphreys, 1993).
[Compression as a marker for intelligence has come under
recent criticism (e.g., Chollet, 2019) as only accounting for
past data and not future uncertainties; we believe Wilkenfeld’s
(2019) account evades this criticism by defining the relevant
compression partially in terms of usefulness, but defending that
claim is beyond the scope of this paper.]

There has also been more direct work on leveraging insights
from computer science in order to try to build explanatory
schemas and even to utilize those tools to reach conclusions about
true explanations. Schank (1986) built a model of computerized
explanations in terms of scripts and designed programs to look
for the best explanations. Similarly, Thagard (1989, 1992, 2012)—
who had previously (Thagard, 1978) done seminal philosophical
work on good-making features of explanation and how they
should guide theory choice—attempted to automate how
computers could use considerations of explanatory coherence to
make inferences about what actually occurred.

One underexplored area in the philosophy of understanding
and computer science is the extent to which neural nets and
deep learning machines can be taken to understand anything.
While Turing (1950) famously argued that a machine that could
behave sufficiently close to a person could thereby think (and
thus, perhaps, understand), many argue that learning algorithms
are concerned with prediction as opposed to understanding. The
most extreme version of this position is Searle’s (1980) claim
that computers by their nature cannot achieve understanding

1Petersen, S. (2022). Explanation as Compression.

because it requires semantic capacities when manipulating
symbols (i.e., an ability to interpret symbols and operations,
and to make further inferences based on those interpretations).
Computers at best have merely syntactic capabilities (they
can manipulate symbols using sets of instructions, without
understanding the meaning of either symbols or operation upon
them). However, at the point where deep learning machines
have hidden representations (Korb, 2004), can generate new
(seemingly theoretical) variables (ibid.), and can be trained to
do virtually any task to which computer scientists have set their
collective minds (including what looks from the outside like
abstract reasoning in IBM’s Watson and their Project Debater),
it raises vital philosophical questions regarding on what basis we
can continue to deny deep learning machines the appellation of
“understander.”

Elsewhere in cognitive science, early psychological studies
of reasoning throughout the 1960s and 1970s focused on
deductive reasoning and hypothesis testing (Osman, 2014).
A major influence on this trajectory was Piaget’s (1952) theory of
development, according to which children develop the capacity
for hypothetico-deductive reasoning around age 12. The kinds
of reasoning studied by psychologists then expanded beyond
their logical roots to include more humanistic categories such
as moral reasoning (Kohlberg, 1958). The psychology literature
offers a rich body of evidence demonstrating how people reason
under various conditions. For example, there is ample evidence
that performance on reasoning tasks is sensitive to the semantic
content of the problem being solved. One interpretation of this
phenomenon is that in some contexts, people do not reason
by applying content-free inference rules (Cheng and Holyoak,
1985; Cheng et al., 1986; Holyoak and Cheng, 1995). This
empirical possibility is of particular interest for philosophers.
In virtue of their (sometimes extensive) training in formal
logic, philosophers’ reasoning practices may be atypical of the
broader population. This in turn may bias their intuitions about
how “people” or “we” reason in various situations, including
when understanding. Another issue raised by sensitivity to
semantic content is how reasoning shifts depending on the
object of understanding. Although the distinctions explicated
by philosophers (e.g., explanatory vs. objectual understanding)
are clear enough, it is an open empirical question whether
and how reasoning differs within these categories depending on
the particular object and other contextual factors. As a final
example, a further insight from psychology is that people may
have multiple modes of reasoning that can be applied to the
very same problem. Since Wason and Evans (1974) suggested
the idea, dual-process theories have dominated the psychology of
reasoning.2 Although both terminology and precise hypotheses
vary significantly among dual-process theories (Evans, 2011,
2012), the basic idea is that one system of reasoning is fast
and intuitive, relying on prior knowledge, while another is
slow and more cognitively demanding. Supposing two or more
systems of reasoning can be deployed in the same situation, one
important consideration is how they figure in theories about

2Though see Osman (2004), Keren and Schul (2009), and Stephens et al. (2018) for
examples of criticisms.
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the reasoning involved in understanding. To the extent that
philosophical accounts are not merely normative but also aim
at describing how people actually reason when understanding,
psychological studies provide valuable empirical constraints and
theoretical considerations.

With the aid of techniques for imaging brains while subjects
perform cognitive tasks, neuroscientists have also made great
progress in recent decades on identifying regions of the brain
involved in reasoning. While that is certainly a worthwhile
goal, it may seem tangential to determining the kind of
reasoning that characterizes understanding. Here, we suggest
two ways in which findings from neuroscience may help
with this endeavor. First, neuroscientific evidence can help
resolve debates where behavioral data underdetermine which
psychological theory is most plausible. More precisely, in cases
where competing psychological models of reasoning make the
same behavioral predictions, they can be further distinguished
by the kinds of neural networks that would implement the
processes they hypothesize (Operskalski and Barbey, 2017). For
example, Goel et al. (2000) designed a functional magnetic
resonance imaging (fMRI) experiment to test the predictions
of dual mechanism theory vs. mental model theory. According
to the former, people have distinct mechanisms for form- and
content-based reasoning, and the latter should recruit language
processing structures in the left hemisphere. Mental model
theory, by contrast, claims that reasoning essentially involves
iconic representations, i.e., non-linguistic representations whose
structure corresponds to the structure of whatever they represent
(Johnson-Laird, 2010). In early formulations of the theory, it
was assumed that different kinds of reasoning problems depend
on the same visuo-spatial mechanisms in the right hemisphere
(Johnson-Laird, 1995). Goel et al. (2000) tested the theories
against one another by giving subjects logically equivalent
syllogisms with and without semantic content. As expected,
behavioral performance was similar in both conditions. Neither
theory predicts significant behavioral differences. Consistent
with both theories, the content-free syllogisms engaged spatial
processing regions in the right hemisphere. However, syllogisms
with semantic content activated a left hemisphere ventral
network that includes language processing structures like Broca’s
area. Unsurprisingly, proponents of mental models have disputed
the interpretation of the data (Kroger et al., 2008). We do
not take a stance on the issue here. We simply raise the
case because it illustrates how neuroscience can contribute
to debates between theories of reasoning pitched at the
psychological level.

Neuroscientific evidence can also guide the revision of
psychological models of understanding and reasoning. The
broader point is about cognitive ontology. In the sense we mean
here, a cognitive ontology is a set of standardized terms which
refer to the entities postulated by a cognitive theory (Janssen
et al., 2017). The point of developing a cognitive ontology
is to represent the structure of psychological processes and
facilitate communication through a shared taxonomy. One role
for neuroscience is to inform the construction of cognitive
ontologies. Price and Friston (2005), for instance, defend a
strong bottom-up approach. In their view, components in a

cognitive model (e.g., a model of counterfactual reasoning)
should be included or eliminated depending on our knowledge
of functional neuroanatomy. Others agree that neuroscience has
a crucial role to play in theorizing about cognitive architecture
but reject that it has any special authority in this undertaking
(Poldrack and Yarkoni, 2016; Sullivan, 2017). We take no
position here on how exactly neuroscience should influence the
construction of cognitive models and ontologies. Instead, we
highlight this important interdisciplinary issue to motivate the
potential value of neuroscience for models of understanding
and the reasoning involved in it, including those developed
by philosophers.

PHILOSOPHICAL THEORIES OF
UNDERSTANDING INTEGRATE
SCIENTIFIC EXPLANATIONS (III)

Thus, there appear to be ample resources for a naturalized
epistemology of understanding, in which explanations and
empirical tests from the cognitive sciences empirically constrain
philosophical proposals about the kinds of reasoning involved in
understanding. However, we offer a second and distinct proposal
for how the philosophy of understanding can inform scientific
practice: as an account of how different explanations can be
integrated (Figure 1B).

Such integration is needed when different explanations of
a single phenomenon use markedly different vocabularies and
concepts. This diversity of explanations is prevalent in several
sciences—including the cognitive sciences. To that end, we
first present different kinds of explanations frequently found
in the cognitive sciences. Whether these different explanations
are complements or competitors to each other raises several
issues that are simultaneously methodological and philosophical.
To address these issues, we then present a novel account of
explanatory integration predicated on the idea that explanations
are integrated to the extent that they collectively promote
understanding. To illustrate the uniqueness of this account, we
contrast our account of integration with a prominent alternative
in the philosophical literature.

Before proceeding, two caveats are in order. First, although
we focus on the cognitive sciences, the account of explanatory
integration proposed here is perfectly general. In principle,
the same account could be used in domains ranging from
particle physics to cultural anthropology. Second, our aim is
simply to show that our account of integration enjoys some
initial plausibility; a more thoroughgoing defense exceeds the
current paper’s scope.

A Variety of Scientific Explanations
Puzzles about explanatory integration arise only if there are
explanations in need of integration, i.e., explanations whose
fit with each other is not immediately obvious. In this
section, we provide examples of four kinds of explanations
found in the cognitive sciences: mechanistic, computational,
topological, and dynamical.

Frontiers in Systems Neuroscience | www.frontiersin.org 5 March 2022 | Volume 16 | Article 764708157

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-16-764708 March 8, 2022 Time: 11:11 # 6

Khalifa et al. Integrating Philosophy of Understanding

Mechanistic Explanations
Mechanistic explanations are widespread in the cognitive
sciences (Bechtel and Richardson, 1993; Machamer et al., 2000;
Craver, 2007; Illari and Williamson, 2010; Glennan, 2017;
Craver and Tabery, 2019). Despite extensive discussion in the
philosophical literature, there is no consensus on the proper
characterization of mechanisms or how exactly they figure in
mechanistic explanations.3 For our purposes, we illustrate basic
features of mechanistic explanations by focusing on Glennan’s
(2017, p. 17) minimal conception of mechanisms:

A mechanism for a phenomenon consists of entities (or parts)
whose activities and interactions are organized so as to be
responsible for the phenomenon.

This intentionally broad proposal captures a widely held
consensus among philosophers about conditions that are
necessary for something to be a mechanism. Where they
disagree is about further details, such as the nature and role
of causation, regularities, and levels of analysis involved in
mechanisms. At a minimum, mechanistic explanations account
for the phenomenon to be explained (the explanandum) by
identifying the organized entities, activities, and interactions
responsible for it.

Consider the case of the action potential. A mechanistic
explanation of this phenomenon specifies parts such as voltage-
gated sodium and potassium channels. It describes how activities
of the parts, like influx and efflux of ions through the channels,
underlie the rapid changes in membrane potential. It shows how
these activities are organized such that they are responsible for the
characteristic phases of action potentials. For example, the fact
that depolarization precedes hyperpolarization is explained in
part by the fact that sodium channels open faster than potassium
channels. In short, mechanistic explanations spell out the relevant
physical details.

Importantly, not all theoretical achievements in neuroscience
are mechanistic explanations. As a point of contrast, compare
Hodgkin and Huxley’s (1952) groundbreaking model of the
action potential. With their mathematical model worked out,
they were able to predict properties of action potentials and
neatly summarize empirical data from their voltage clamp
experiments. However, as Hodgkin and Huxley (1952) explicitly
pointed out, their equations lacked a physical basis. There is
some disagreement among philosophers about how we should
interpret the explanatory merits of the model (Levy, 2014; Craver
and Kaplan, 2020; Favela, 2020a), but what is clear is that the
Hodgkin and Huxley model is a major achievement that is not
a mechanistic explanation of the action potential. We return to
issues such as these below.

Computational Explanations
Mechanistic explanations are sometimes contrasted with
other kinds of explanation. In the philosophical literature,
computational explanations are perhaps the most prominent
alternative. Computational explanations are frequently
considered a subset of functional explanations. The latter

3See Craver (2014) for an overview of the latter issue.

explain phenomena by appealing to their function and the
functional organization of their parts (Fodor, 1968; Cummins,
1975, 1983, 2000). Insofar as computational explanations are
distinct from other kinds of functional explanations, it is
because the functions to which they appeal involve information
processing. Hereafter, we focus on computational explanations.

In computational explanations, a phenomenon is explained
in terms of a system performing a computation. A computation
involves the processing of input information according to a
series of specified operations that results in output information.
While many computational explanations describe the object of
computation as having representational content, some challenge
this as a universal constraint on computational explanations
(Piccinini, 2015; Dewhurst, 2018; Fresco and Miłkowski, 2021).
We will use “information” broadly, such that we remain silent
on this issue. Here, “operations” refer to logical or mathematical
manipulations on information such as addition, subtraction,
equation (setting a value equal to something), “AND,” etc. For
example, calculating n! involves taking in input n and calculating
the product of all natural numbers less than or equal to n and then
outputting said product. Thus, we can explain why pressing “5,”
“!,” “=”, in sequence on a calculator results in the display reading
“120”; the calculator computes the factorial.

More detailed computational explanations of this procedure
are possible. For example, the calculator performs this
computation by storing n and iteratively multiplying the
stored variable by one less than the previous iteration from
n to 1. In this case, the operations being used are equation,
multiplication, and subtraction. The information upon which
those operations are being performed are the inputted value
for n and the stored variable for the value of the factorial
at that iteration.

Topological Explanations
In topological or “network” explanations, a phenomenon is
explained by appeal to graph-theoretic properties. Scientists infer
a network’s structure from data, and then apply various graph-
theoretic algorithms to measure its topological properties.
For instance, clustering coefficients measure degrees of
interconnectedness among nodes in the same neighborhood.
Here, a node’s neighborhood is defined as the set of nodes to which
it is directly connected. An individual node’s local clustering
coefficient is the proportion of edges within its neighborhood
divided by the number of edges that could possibly exist between
the members of its neighborhood. By contrast, a network’s global
clustering coefficient is the ratio of closed triplets to the total
number of triplets in a graph. A triplet of nodes is any three
nodes that are connected by at least two edges. An open triplet is
connected by exactly two edges; a closed triplet, by three. Another
topological property, average (or “characteristic”) path length,
measures the mean number of edges needed to connect any two
nodes in the network.

In their seminal paper, Watts and Strogatz (1998) applied
these concepts to a family of graphs and showed how a network’s
topological structure determines its dynamics. First, regular
graphs have both high global clustering coefficients and high
average path length. By contrast, random graphs have low global
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clustering coefficients and low average path length. Finally, they
introduced a third type of small-world graph with high clustering
coefficient but low average path length.

Highlighting differences between these three types of graphs
yields a powerful explanatory strategy. For example, because
regular networks have larger average path lengths than small-
world networks, things will “diffuse” throughout the former more
slowly than the latter, largely due to the greater number of edges
to be traversed. Similarly, because random networks have smaller
clustering coefficients than small-world networks, things will
also spread throughout the former more slowly than the latter,
largely due to sparse interconnections within neighborhoods
of nodes. Hence, ceteris paribus, propagation/diffusion is faster
in small-world networks. This is because the fewer long-range
connections between highly interconnected neighborhoods of
nodes shorten the distance between neighborhoods of nodes that
are otherwise very distant and enables them to behave as if they
were first neighbors. For example, Watts and Strogatz showed
that the nervous system of Caenorhabditi elegans is a small-world
network, and subsequent researchers argued that this system’s
small-world topology explains its relatively efficient information
propagation (Latora and Marchiori, 2001; Bullmore and Sporns,
2012).

Dynamical Explanations
In dynamical explanations, phenomena are accounted for using
the resources of dynamic systems theory. At root, a system is
dynamical if its state space can be described using differential
equations, paradigmatically of the following form:

ẋ (t) = f
(
x (t) ; p, t

)
Here, x is a vector (often describing the position of the system

of interest), f is a function, t is time, and p is a fixed parameter.
Thus, the equation describes the evolution of a system over time.
In dynamical explanations, these equations are used to show how
values of a quantity at a given time and place would uniquely
determine the phenomenon of interest, which is typically treated
as values of the same quantity at a subsequent time.

For example, consider dynamical explanations of why
bimanual coordination—defined roughly as wagging the index
fingers of both hands at the same time—is done either in- or anti-
phase. Haken et al. (1985) use the following differential equation
to model this phenomenon:

dφ

dt
= −asinφ− 2bsin2φ

Here φ is relative phase, having a value of either 0◦ or 180◦
(representing in- and anti-phase conditions, respectively) and
b/a is the coupling ratio inversely related to the oscillations’
frequency. The explanation rests on the fact that only the in- and
anti-phase oscillations of the index fingers are basins of attraction.

Understanding-Based Integration
Thus far, we have surveyed four different kinds of explanation—
mechanistic, computational, topological, and dynamical.
Moreover, each seems to have some explanatory power for some

phenomena. This raises the question as to how these seemingly
disparate kinds of explanation can be integrated. We propose
a new account of “understanding-based integration” (UBI)
to answer this question. A clear account of understanding is
needed if it is to integrate explanations. To that end, we first
present Khalifa’s (2017) model of understanding. We then
extend this account of understanding to provide a framework for
explanatory integration.

An Account of Understanding
We highlight two reasons to think that Khalifa’s account
of understanding is especially promising as a basis for
explanatory integration. First, as Khalifa (2019) argues, his
is among the most demanding philosophical accounts of
understanding. Consequently, it serves as a useful ideal to
which scientists should aspire. Second, this ideal is not
utopian. This is especially clear with Khalifa’s requirement that
scientists evaluate their explanations relative to the best available
methods and evidence. Indeed, among philosophical accounts
of understanding, Khalifa’s account is uniquely sensitive to
the centrality of hypothesis testing and experimental design in
advancing scientific understanding (Khalifa, 2017; Khalifa, in
press), and thus makes contact with workaday scientific practices.
In this section, we present its three core principles.

Khalifa’s first central principle is the Explanatory Floor:

Understanding why Y requires possession of a correct explanation
of why Y.

The Explanatory Floor’s underlying intuition is simple. It
seems odd to understand why Y while lacking a correct answer
to the question, “Why Y?” For instance, the person who lacks
a correct answer to the question “Why do apples fall from
trees?” does not understand why apples fall from trees. Since
explanations are answers to why-questions, the Explanatory
Floor appears platitudinous. Below, we provide further details
about correct explanation.

The Explanatory Floor is only one of three principles
comprising Khalifa’s account and imposes only a necessary
condition on understanding. By contrast, the second principle,
the Nexus Principle, describes how understanding can improve:

Understanding why Y improves in proportion to the amount
of correct explanatory information about Y (= Y’s explanatory
nexus) in one’s possession.

To motivate the Nexus Principle, suppose that one person
can correctly identify two causes of a fire, and another person
can only identify one of those causes. Ceteris paribus, the former
understands why the fire occurred better than the latter. Crucially
in what follows, however, “correct explanatory information”
is not limited to correct explanations. The explanatory nexus
also includes the relationships between correct explanations. We
return to these “inter-explanatory relationships” below.

Furthermore, recall our earlier remark that gaps in
understanding arise when one simply has an accurate
representation of an explanation (or explanatory nexus)
without significant cognitive ability. This leads to the last
principle, the Scientific Knowledge Principle:
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Understanding why Y improves as one’s possession of explanatory
information about Y bears greater resemblance to scientific
knowledge of Y ’s explanatory nexus.

Once again, we may motivate this with a simple example.
Consider two agents who possess the same explanatory
information that nevertheless differ in understanding because
of their abilities to relate that information to relevant theories,
models, methods, and observations. The Scientific Knowledge
Principle is intended to capture this idea. Khalifa provides a
detailed account of scientific knowledge of an explanation:

An agent S has scientific knowledge of why Y if and only if there
is some X such that S’s belief that X explains Y is the safe result of
S’s scientific explanatory evaluation (SEEing).

The core notions here are safety and SEEing. Safety is an
epistemological concept that requires an agent’s belief to not
easily have been false given the way in which it was formed
(Pritchard, 2009). SEEing then describes the way a belief in an
explanation should be formed to promote understanding. SEEing
consists of three phases:

1. Considering plausible potential explanations of how/
why Y ;

2. Comparing those explanations using the best available
methods and evidence; and

3. Undertaking commitments to these explanations on the
basis these comparisons. Paradigmatically, commitment
entails that one believes only those plausible potential
explanations that are decisive “winners” at the phase of
comparison.

Thus, scientific knowledge of an explanation is achieved
when one’s commitment to an explanation could not easily have
been false given the way that one considered and compared
that explanation to plausible alternative explanations of the
same phenomenon.

Understanding-Based Integration
With our account of understanding in hand, we now argue
that it provides a fruitful account of how different explanations,
such as the ones discussed above, can be integrated. The Nexus
Principle is the key engine of integration. As noted above, this
principle states that understanding improves in proportion to the
amount of explanatory information possessed. In the cognitive
sciences, a multitude of factors explain a single phenomenon.
According to the Nexus Principle, understanding improves not
only when more of these factors are identified, but when
the “inter-explanatory relationships” between these factors are
also identified.

One “inter-explanatory relationship” is that of relative
goodness. Some explanations are better than others, even if both
are correct. For instance, the presence of oxygen is explanatorily
relevant to any fire’s occurrence. However, oxygen is rarely judged
as the best explanation of a fire. Per the Nexus Principle, grasping
facts such as these enhances one’s understanding. Parallel points
apply in the cognitive sciences. For example, it has been observed
that mental simulations that involve episodic memory engage
the default network significantly more than mental simulations
that involve semantic memory (Parikh et al., 2018). Hence,
episodic memory better explains cases in which the default
network was more active during a mental simulation than does
semantic memory.

However, correct explanations can stand in other relations
than superiority and inferiority. For instance, the aforementioned
explanation involving the default network contributes to a
more encompassing computational explanation of counterfactual
reasoning involving three core stages of counterfactual thought
(Van Hoeck et al., 2015). First, alternative possibilities to
the actual course of events are mentally simulated. Second,
consequences are inferred from these simulations. Third,
adaptive behavior and learning geared toward future planning
and problem-solving occurs. The default network figures
prominently in the explanation of (at least) the first of these
processes (Figure 2).

FIGURE 2 | Computational and mechanistic explanations involved in counterfactual reasoning. Mental simulation (gray box) both contributes to the computational
explanation of counterfactual reasoning (black box) and is mechanistically explained by the activation of the default network.
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FIGURE 3 | Different inter-explanatory relationships. Letters at the head of an arrow denote phenomena to be explained; those at the tail, factors that do the
explaining. Thus, X1 explains X2 and X2 explains Y in (A); X1 and X2 independently explain Y in (B). X1 explains both X2 and Y, and X2 also explains Y in (C); X3
explains both X1 and X2, which in turn each explain Y in (D).

As this example illustrates, grasping the relationships
between different kinds of explanations can advance scientists’
understanding. In Figure 2, a computational account of mental
simulation explains certain aspects of counterfactual reasoning,
but mental simulation is then explained mechanistically: the
default network consists of parts (e.g., ventral medial prefrontal
cortex and posterior cingulate cortex) whose activities and
interactions (anatomical connections) are organized so as to be
responsible for various phenomena related to mental simulations.
Quite plausibly, scientific understanding increases when the
relationship between these two explanations is discovered.

Importantly, this is but an instance of an indefinite number
of other structures consisting of inter-explanatory relationships
(see Figure 3 for examples). In all of these structures, we
assume that for all i, Xi is a correct explanation of its respective
explanandum. Intuitively, a person who could not distinguish
these different explanatory structures would not understand
Y as well as someone who did. For instance, a person who
knew that X1 only explains Y through X2 in Figure 3A, or
that X1 and X2 are independent of each other in Figure 3B,
or that X3 is a common explanation or “deep determinant”
of both X1 and X2 in Figure 3D, etc. seems to have a
better understanding than a person who did not grasp these
relationships. Undoubtedly, explanations can stand in other
relationships that figure in the nexus.

Thus, the Nexus Principle provides useful guidelines for how
different kinds of explanations should be integrated. Moreover,
we have already seen that different kinds of explanations can
stand in fruitful inter-explanatory relationships, and that these
relationships enhance our understanding. In some cases, we

may find that one and the same phenomenon is explained
both mechanistically and non-mechanistically, but one of these
explanations will be better than another. As noted above,
“better than” and “worse than” are also inter-explanatory
relationships. So, the Nexus Principle implies that knowing
the relative strengths and weaknesses of different explanations
enhances understanding.

The Scientific Knowledge Principle also plays a role in UBI.
Suppose that X1 and X2 are competing explanations of Y. SEEing
would largely be achieved when, through empirical testing, X1
was found to explain significantly more of Y ’s variance than
X2. This gives scientists grounds for thinking X1 better explains
Y than X2 and thereby bolsters their understanding of Y.
Importantly, SEEing is also how scientists discover other inter-
explanatory relationships. An example is the aforementioned
study that identified the inter-explanatory relationships between
episodic memory, semantic memory, the default network, and
mental simulation (Parikh et al., 2018).

Mechanism-Based Integration
Aside from UBI, several other philosophical accounts of
explanatory integration in the cognitive sciences are available
(Kaplan, 2017; Miłkowski and Hohol, 2020). We provide some
preliminary comparisons with the most prominent of these
accounts, which we call mechanism-based integration (MBI).
According to strong MBI, all models in the cognitive sciences
are explanatory only insofar as they provide information about
mechanistic explanations. In response, several critics of MBI—
whom we call pluralists—have provided examples of putatively
non-mechanistic explanations (see Table 2). When presented
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with putatively non-mechanistic explanations, e.g., of the
computational, topological, and dynamical varieties, mechanists
(i.e., MBI’s proponents) have two strategies available. First, the
negative strategy argues that closer scrutiny of the relevant
sciences reveals the putatively non-mechanistic explanation to
be no explanation at all (Kaplan, 2011; Kaplan and Craver,
2011). The assimilation strategy argues that closer analysis of
the relevant sciences reveals the putatively non-mechanistic
explanation to be a mechanistic explanation, often of an
elliptical nature (Piccinini, 2006, 2015; Piccinini and Craver,
2011; Zednik, 2011; Miłkowski, 2013; Povich, 2015; Hochstein,
2016). Mechanists inclined toward strong MBI frequently use the
negative and assimilation strategies in a divide-and-conquer-like
manner: the negative strategy applies to some putatively non-
mechanistic explanations and the assimilation strategy applies
to the rest. However, more prevalent is a modest form of MBI
that simply applies these strategies to some putatively non-
mechanistic explanations.

Modest MBI diverges from pluralism on a case-by-case basis.
Such cases consist of an explanation where the negative or
assimilation strategy seems apt but stands in tension with other
considerations that suggest the model is both explanatory and
non-mechanistic. On this latter front, several pluralists argue
that computational, topological, and dynamical explanations’
formal and mathematical properties are not merely abstract
representations of mechanisms (Weiskopf, 2011; Serban, 2015;
Rusanen and Lappi, 2016; Egan, 2017; Lange, 2017; Chirimuuta,
2018; Darrason, 2018; Huneman, 2018; van Rooij and Baggio,
2021). Others argue that these explanations cannot (Chemero,
2009; Silberstein and Chemero, 2013; Rathkopf, 2018) or need
not (Shapiro, 2019) be decomposed into mechanistic components
or that they cannot be intervened upon in the same way that
mechanisms are intervened upon (Woodward, 2013; Meyer,
2020; Ross, 2020). Some argue that these putatively non-
mechanistic explanations are non-mechanistic because they
apply to several different kinds of systems that have markedly
different mechanistic structures (Chirimuuta, 2014; Ross, 2015).
Pluralist challenges specific to different kinds of explanations can
also be found (e.g., Kostić, 2018; Kostić and Khalifa, 2022)4.

In what follows, we will show how UBI is deserving of further
consideration because it suggests several plausible alternatives
to the assimilation and negative strategies. As such, it contrasts
with both strong and modest MBI. While we are partial to
pluralism, our discussion here is only meant to point to different
ways in which mechanists and pluralists can explore the issues
that divide them. Future research would determine whether UBI
outperforms MBI.

Assimilation Strategy
According to mechanists’ assimilation strategy, many putatively
non-mechanistic explanations are in fact elliptical mechanistic
explanations or “mechanism sketches” (Piccinini and Craver,
2011; Zednik, 2011; Miłkowski, 2013; Piccinini, 2015; Povich,
2015, in press). Thus, when deploying the assimilation strategy,

4Kostić, D., and Khalifa, K. (2022). Decoupling Topological Explanation from
Mechanisms.

mechanists take computational, topological, and dynamical
models to fall short of a (complete) mechanistic explanation,
but to nevertheless provide important information about
such mechanistic explanations. Mechanists have proposed two
ways that putatively non-mechanistic explanations can provide
mechanistic information, and thereby serve as mechanism
sketches. First, putatively non-mechanistic explanations can
be heuristics for discovering mechanistic explanations. Second,
putatively non-mechanistic explanations can constrain the space
of acceptable mechanistic explanations.

An alternative interpretation is possible. The fact that non-
mechanistic models assist in the identification of mechanistic
explanations does not entail that the former is a species of the
latter. Consequently, putatively non-mechanistic explanations
can play these two roles with respect to mechanistic explanations
without being mere mechanism sketches. In other words,
“genuinely” non-mechanistic explanations can guide or constrain
the discovery of mechanistic explanations. Earlier explanatory
pluralists (McCauley, 1986, 1996) already anticipated precursors
to this idea, but did not tie it explicitly as a response to mechanists’
assimilation strategy.

Moreover, this fits comfortably with our account of SEEing
and hence with UBI. Heuristics of discovery are naturally seen as
advancing SEEing’s first stage of considering plausible potential
explanations. Similarly, since the goal of SEEing is to identify
correct explanations and their relationships, it is a consequence
of UBI that different kinds of explanations of the related
phenomena constrain each other. For instance, suppose that we
have two computational explanations of the same phenomenon,
and that the key difference between them is that only the first
of these is probable given the best mechanistic explanations
of that phenomenon. Then that counts as a reason to treat
the first computational explanation as better than the second.
Hence, SEEing entails mechanistic explanations can constrain
computational explanations.

More generally, UBI can capture the same key inter-
explanatory relationships that mechanists prize without
assimilating putatively non-mechanistic explanations to
mechanistic explanation. Indeed, like many mechanists,
UBI suggests that not only do putatively non-mechanistic
explanations guide and constrain the discovery of mechanistic
explanations, but that the converse is also true. (The next
section provides an example of this.) Parity of reasoning entails
that mechanistic explanations should thereby be relegated to
mere “computational, topological, and dynamical sketches”
in these cases, but mechanists must resist this conclusion on
pain of contradiction. Since UBI captures these important
inter-explanatory relationships without broaching the more
controversial question of assimilation, it need not determine
which models are mere sketches of adequate explanations. Future
research would evaluate whether this is a virtue or a vice.

Negative Strategy
Mechanists’ assimilation strategy becomes more plausible than
the UBI-inspired alternative if there are good grounds for
thinking that the criteria that pluralists use to establish
putatively non-mechanistic explanations as genuine explanations
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TABLE 2 | Putatively non-mechanistic explanations discussed by philosophers.

Explanans Explanandum Scientific example Philosophical work discussing example

Computational explanations

Difference of Gaussians Stereoscopic vision Rodieck, 1965; Marr, 1982 Shagrir, 2010; Kaplan, 2011; Kaplan and
Craver, 2011*; Bechtel and Shagrir, 2015;
Rusanen and Lappi, 2016; Egan, 2017;
Shapiro, 2019

Exhaustive search Recall (memory) Sternberg, 1969 Shapiro, 2017, 2019

Gain field encoding Hand–eye coordination Zipser and Andersen, 1988; Pouget
and Sejnowski, 1997; Pouget et al.,
2002; Shadmehr and Wise, 2005

Shagrir, 2006*; Kaplan, 2011*; Serban, 2015;
Rusanen and Lappi, 2016; Egan, 2017

Geon composition Object recognition Hummel and Biederman, 1992 Weiskopf, 2011; Buckner, 2015*;
Povich, 2015*

Hybrid computation Efficiency of brain Sarpeshkar, 1998 Chirimuuta, 2018

Inhibitory feedback Normalization Carandini and Heeger, 2012 Chirimuuta, 2014; Serban, 2015

Internal integration Eye movement Seung et al., 2000 Egan, 2017

Line attractor of choice axis, stimuli’s
selection vector

Context-dependent decision
making

Mante et al., 2013 Chirimuuta, 2018

Mapping non-coplanar points to unique
rigid configuration

Three-dimensional visual
structure of moving objects

Ullman, 1979 Shagrir and Bechtel, 2014*; Egan, 2017

Optimization of spatial and spectral
information recovery (Gabor function)

V1 receptive fields Daugman, 1985 Chirimuuta, 2014, 2018

Similarity of stimulus to stored
exemplars

Categorization Love et al., 2004; Kruschke, 2008 Weiskopf, 2011; Buckner, 2015*;
Povich, 2015*

Topological explanations

Closeness centrality Speech and tonal processing Mišić et al., 2018 Kostić, 2020

Mean connectivity Ictogenicity Helling et al., 2019 Kostić and Khalifa, 2021

Motif frequency Functional connectivity Adachi et al., 2011 Kostić and Khalifa, 2021, 2022 (see text
footnote 4)

Navigation efficiency, diffusion efficiency Efficiency of neuronal
communication

Seguin et al., 2019 Kostić, 2020

Network communicability Cognitive control Gu et al., 2015 Kostić, 2020

Small-worldness Information propagation Watts and Strogatz, 1998 Kostić and Khalifa, 2022 (see text footnote 4)

Dynamical explanations

Coupling of eye and bodily movements Onset of motor control Kelso et al., 1998;
Shenoy et al., 2013

Chemero and Silberstein, 2008;
Vernazzani, 2019*; Favela, 2020b

Coupling ratio Bimanual coordination
(relative phase)

Haken et al., 1985 Chemero, 2000, 2001; Kaplan and Craver,
2011*; Stepp et al., 2011; Zednik, 2011*; Lamb
and Chemero, 2014; Golonka and Wilson,
2019*; Meyer, 2020

Strength of memory trace, salience of
target, waiting time, stance

Infant reaching (A-not-B error) Thelen et al., 2001 Zednik, 2011*; Gervais, 2015; Verdejo, 2015;
Venturelli, 2016; van Eck, 2018*; Meyer, 2020;
Povich, in press*

Potassium and sodium ion flows Neural excitability Hodgkin and Huxley, 1952;
FitzHugh, 1961; Nagumo et al.,
1962

Craver and Kaplan, 2011*; Kaplan and Bechtel,
2011*; Kaplan and Craver, 2011*; Ross, 2015;
Hochstein, 2017*; Favela, 2020a,b

The explanans (first column) is the factor that explains. The explanandum (second column) is the phenomenon to be explained. An asterisk indicates that the author takes
the explanation to be mechanistic.

are insufficient. This is the crux of the mechanists’ negative
strategy. As with the assimilation strategy, we suggest that UBI
provides a suggestive foil to the negative strategy.

The negative strategy’s key move is to identify a set of
non-explanatory models that pluralists’ criteria would wrongly
label as explanatory. Two kinds of non-explanatory models—
how-possibly and phenomenological models—exemplify this
mechanist argument. How-possibly models describe factors that
could but do not actually produce the phenomenon to be
explained. For instance, most explanations begin as conjectures

or untested hypotheses. Those that turn out to be false will
be how-possibly explanations. Phenomenological models, which
accurately describe or predict the target phenomenon without
explaining it, provide a second basis for the negative strategy.
Paradigmatically, phenomenological models correctly represent
non-explanatory correlations between two or more variables.
Mechanists claim that pluralist criteria of explanation will
wrongly classify some how-possibly and some phenomenological
models as correct explanations. By contrast, since models that
accurately represent mechanisms are “how-actually models,”
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i.e., models that cite explanatory factors responsible for
the phenomenon of interest, MBI appears well-positioned
to distinguish correct explanations from how-possibly and
phenomenological models.

However, UBI can distinguish correct explanations from how-
possibly and phenomenological models. Moreover, it can do so in
two distinct ways that do not appeal to mechanisms. First, it can
do so on what we call structural grounds, i.e., by identifying non-
mechanistic criteria of explanation that are sufficient for funding
the distinction. It can also defuse the negative strategy on what we
call procedural grounds, i.e., by showing that the procedures and
methods that promote understanding also distinguish correct
explanations from these non-explanatory models.

Structural Defenses
We suggest that the following provides a structural defense
against the negative strategy:

If X correctly explains Y, then the following are true:

(1) Accuracy Condition: X is an accurate representation, and
(2) Counterfactual Condition: Had the objects, processes, etc.

represented by X been different, then Y would have been
different.

These are only necessary conditions for correct explanations.
They are also sufficient for distinguishing correct explanations
from how-possibly and phenomenological models but are likely
insufficient for distinguishing correct explanations from every
other kind of non-explanatory model. Identifying these other
models is a useful avenue for future iterations of the negative
strategy and responses thereto.

Situating this within UBI, these conditions are naturally
seen as elaborating the Explanatory Floor, which claims that
understanding a phenomenon requires possession of a correct
explanation. Crucially, mechanists and pluralists alike widely
accept these as requirements on correct explanations, though
we discuss some exceptions below. Reasons for their widespread
acceptance becomes clear with a simple example. Consider
a case in which it is hypothesized that taking a certain
medication (X) explains recovery from an illness (Y). If it were
discovered that patients had not taken the medication, then this
hypothesis would violate the accuracy condition. Intuitively, it
would not be a correct explanation, but it would be a how-
possibly model.

More generally, how-possibly models are correct explanations
modulo satisfaction of the accuracy condition. Consequently,
pluralists can easily preserve this distinction without appealing
to mechanisms; accuracy is sufficient. Just as mechanisms can
be either accurately or inaccurately represented, so too can
computations, topological structures, and system dynamics be
either accurately or inaccurately represented. Similarly, just as
inaccurate mechanistic models can be how-possibly models
but cannot be correct explanations, so too can inaccurate
computational, topological, and dynamical models be how-
possibly models but cannot be how-actually models.

Analogously, the counterfactual condition preserves the
distinction between correct explanations and phenomenological
models. Suppose that our hypothesis about recovery is

confounded by the fact that patients’ recovery occurred 2 weeks
after the first symptoms, and that this is the typical recovery time
for anyone with the illness in question, regardless of whether they
take medication. Barring extenuating circumstances, e.g., that
the patients are immunocompromised, these facts would seem to
cast doubt upon the claim that the medication made a difference
to their recovery. In other words, they cast doubt on the following
counterfactual: had a patient not taken the medication, then that
patient would not have recovered when she did. Consequently,
the hypothesis about the medication explaining recovery violates
the counterfactual condition. Moreover, the hypothesis does
not appear to be correct, but would nevertheless describe the
patients’ situation, i.e., it would be a phenomenological model.

More generally, phenomenological models are correct
explanations modulo satisfaction of the counterfactual condition.
Just as a mechanistic model may accurately identify interacting
parts of a system that correlate with but do not explain its
behavior, a non-mechanistic model may accurately identify
computational processes, topological structures, and dynamical
properties of a system that correlate with but do not explain
its behavior. In both cases, the counterfactual condition
accounts for the models’ explanatory shortcomings; no appeal to
mechanisms is needed.

Procedural Defenses
Admittedly, structural defenses against the negative strategy are
not unique to UBI; other pluralists who are agnostic about UBI
have invoked them in different ways. By contrast, our second
procedural defense against the negative strategy is part and
parcel to UBI. Procedural defenses show that the procedures
that promote understanding also distinguish correct explanations
from how-possibly and phenomenological models.

The Scientific Knowledge Principle characterizes the key
procedures that simultaneously promote understanding and
distinguish correct explanations from these non-explanatory
models. Recall that SEEing consists of three stages: considering
plausible potential explanations of a phenomenon, comparing
them using the best available methods, and forming commitments
to explanatory models based on these comparisons. This provides
a procedural defense against the negative strategy. How-possibly
and phenomenological models will only be acceptable in the first
stage of SEEing: prior to their deficiencies being discovered, they
frequently deserve consideration as possible explanations of a
phenomenon. By contrast, correct explanations must “survive”
the remaining stages of SEEing: they must pass certain empirical
tests at the stage of comparison such that they are acceptable
at the stage of commitment. Indeed, it is often through SEEing
that scientists come to distinguish correct explanations from
how-possibly and phenomenological models.

Crucially, consideration is most effective when it does
not prejudge what makes something genuinely explanatory.
This minimizes the possibility of missing out on a fruitful
hypothesis. Consequently, both mechanistic and non-
mechanistic explanations should be included at this initial
stage of SEEing. However, our procedural defense supports
pluralism only if some computational, topological, or dynamical
explanations are acceptable in light of rigorous explanatory
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comparisons. As we see it, this is a strength of our procedural
defense, for it uses the empirical resources of our best science to
adjudicate debates between mechanists and pluralists that often
appear intractable from the philosophical armchair.

Nevertheless, we can point to an important kind of
explanatory comparison—which we call control-and-contrast—
that deserves greater philosophical and scientific attention when
considering explanatory integration in the cognitive sciences.
Control-and-contrast proceeds as follows. Let X1 and X2 be two
potential explanations of Y under consideration. Next, run two
controlled experiments: one in which the explanatory factors in
X1 are absent but those in X2 are present and the second in
which the explanatory factors in X1 are present but those in
X2 are absent. If Y is only present in the first experiment, then
the pair of experiments suggests that X2 is a better explanation
of Y than X1. Conversely, if Y is only present in the second
experiment, the pair of experiments suggests that X1 is a better
explanation of Y than X2. If Y is present in both experiments, the
experiments are inconclusive. If Y is absent in both experiments,
then the experiments suggest that the combination of X1 and
X2 better explains Y than either X1 or X2 does in isolation.
Since we suggest that both mechanistic and non-mechanistic
explanations should be considered and thereby play the roles of
X1 and X2, we also suggest that which of these different kinds
of explanations is correct for a given phenomenon Y should
frequently be determined by control-and-contrast.

In some cases, scientists are only interested in controlling-and-
contrasting explanations of the same kind. However, even in these
cases, the controls are often best described in terms of other kinds
of explanation. For instance, as discussed above, the default mode
network mechanistically explains mental simulations involved in
episodic memory. By contrast, when mental simulations involve
semantic memory, inferior temporal and lateral occipital regions
play a more pronounced role (Parikh et al., 2018). Both episodic
and semantic memory are functional or computational concepts
that can figure as controls in different experiments designed to
discover which of these mechanisms explains a particular kind of
mental simulation. Less common is controlling-and-contrasting
explanations of different kinds. Perhaps this is a lacuna in current
research. Alternatively, it may turn out that different kinds of
explanation rarely compete and are more amenable to integration
in the ways outlined above.

The procedural defense complements the structural defense in
two ways. First, not all pluralists accept the accuracy condition.
Their motivations for this are twofold. First, given that science
is a fallible enterprise, our best explanations today are likely to
be refuted. Second, many explanations invoke idealizations, i.e.,
known inaccuracies that nevertheless enhance understanding.
The procedural defense does not require the accuracy condition
but can still preserve the distinction between correct explanations
and non-explanatory models. Instead, the procedural defense
only requires that correct explanations be acceptable on the basis
of the best available scientific methods and evidence.

Second, tests such as control-and-contrast regiment the
subjunctive conditionals that characterize the counterfactual
condition. In evaluating counterfactuals, it is notoriously difficult
to identify what must be held constant, what can freely vary

without altering the truth-value of the conditional, and what must
vary in order to determine the truth-value of the conditional.
Our account of explanatory evaluation points to important
constraints on this process. Suppose that we are considering
two potential explanations Xi and Xj of some phenomenon Y.
To compare these models, we will be especially interested in
counterfactuals such as, “Had the value of Xi been different (but
the value of Xj had remained the same), then the value of Y would
have been different,” and also, “Had the value of Xi been different
(but the value of Xj had remained the same), then the value of
Y would have been the same.” These are precisely the kinds of
counterfactuals that will be empirically supported or refuted by
control-and-contrast.

CONCLUSION

Fruitful connections between the philosophy and science of
understanding can be forged. In a naturalized epistemology
of understanding, philosophical claims about various forms
of explanatory and counterfactual reasoning are empirically
constrained by scientific tests and explanations. By contrast,
in UBI, the philosophy of understanding contributes to the
science of understanding by providing broad methodological
prescriptions as to how diverse explanations can be woven
together. Specifically, UBI includes identification of inter-
explanatory relationships, consideration of different kinds
of explanations, and evaluation of these explanations using
methods such as control-and-contrast. As our suggestions
have been of a preliminary character, we hope that future
collaborations between philosophers and scientists will advance
our understanding of understanding.
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How do we gauge understanding? Tests of understanding, such as Turing’s imitation

game, are numerous; yet, attempts to achieve a state of understanding are not

satisfactory assessments. Intelligent agents designed to pass one test of understanding

often fall short of others. Rather than approaching understanding as a system state, in this

paper, we argue that understanding is a process that changes over time and experience.

The only window into the process is through the lens of natural language. Usefully,

failures of understanding reveal breakdowns in the process. We propose a set of natural

language-based probes that can be used to map the degree of understanding a human

or intelligent system has achieved through combinations of successes and failures.

Keywords: mutual understanding, common ground, behavioral measurement, human-machine teaming, human-

robot interaction, natural language processing, explainable AI, mental models

1. INTRODUCTION

Few would argue with the claim that intelligent behavior in humans and machines depends
on understanding. Yet, criteria for understanding are elusive. This is because, as this special
issue motivates, we know little conclusively about the mechanisms, representations, learning and
reasoning that comprise and demonstrate understanding; an ongoing challenge for researchers is
to differentiate the unique character of understanding from other cognitive behaviors. A critical
step toward establishing a unifying theoretical framework for understanding in both humans and
machines is to establish common measures and metrics that elucidate the degree of understanding
achieved within candidate frameworks or intelligent systems in a consistent way.

One component of this is clearly articulating what researchers should accept as evidence for
understanding, including what constitutes the central tests of a system’s ability to understand
its input. Hannon (2021) identified a plausible set of criteria for characterizing understanding:
understanding is a cognitive achievement, not gained simply by receiving information;
understanding comes in degrees; understanding manifests itself through abilities or know-how,
especially being able to “grasp” connections. There remains wide disagreement about these
basics and even about more fundamental questions, such as whether understanding is a form of
knowledge (and thus also subject to questions about the nature of knowledge). But this suggests
a single system may exhibit multiple levels of understanding, and these will change over time.
Accordingly, the evidence and critical tests should accommodate multiple degrees and adapt over
time. Instead of treating understanding as an outcome, it may be more fruitful to consider the
question: how does understanding support intelligent behaviors?
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In this paper, we argue that understanding is a process, not
an outcome. It depends on learning, interpreting, generalizing,
and acting upon information. No single test is sufficient for
demonstrating that one agent understands another. Indeed,
understanding is not a singular type of knowledge (see also,
Hannon, 2021). Assessing understanding requires probing the
extent of understanding; that is, we need to execute a series of
appropriately designed tests that probe the manner and extent to
which information has been learned, interpreted, generalized and
acted upon. The ability to probe, and therefore demonstrate any
degree of, understanding requires natural language.

This paper is organized as follows. Section 1.1 reviews
approaches to characterizing understanding from cognitive
science and education. Many efforts in these areas attempted
to establish comprehensive operational definitions and task-
based benchmarks. We identify how agents falling short of
desired task performance targets prompts a natural process
of probing. Section 2 reviews the closely associated history
of major challenge tests for computational intelligence, which
place tests of understanding in natural language conversation
contexts. Section 3 examines how the challenge of achieving
natural language processing in machines has prompted different
benchmarks across many levels of meaning representation;
both successes and failures at each level illustrate the extent
of understanding enabled by each level. Section 4.1 considers
the constructive nature of conversation and how humans
create mutual understanding through common ground. Despite
advances in non-verbal cues for natural interactions (Section 4.2),
common ground is a hard challenge for machines, particularly
robots. If understanding is a process, then the current inability
for machines to understand humans may stem from the inability
of machines to engage in the language-dependent process of
understanding. Section 5 reviews mental models and theory of
mind methods for verbally eliciting knowledge and reasoning
from humans. Section 6 reviews recent research on explainable
artificial intelligence (XAI), illustrating how machines can make
transparent their underlying operations. We synthesize these
various approaches from cognitive science, education, natural
language understanding, linguistics, verbal protocols, and XAI,
to outline a method to craft probes of understanding to examine
the understanding process. We argue that by establishing such
probes in the context of interest, we identify what constitutes
evidence for understanding. Thus, we can align the results of
probing with the degree to which the desired understanding in
humans and machines is achieved and systematically compare
hypotheses about the mechanisms underpinning understanding.

1.1. Attempts to Define Understanding
Several broad definitions have been proposed in the cognitive
sciences with a goal of establishing a definition that applies to
both human and artificial intelligence (AI). For example, Hough
and Gluck (2019) recently defined understanding as “The
acquisition, organization, and appropriate use of knowledge to
produce a response directed toward a goal, when that action
is taken with awareness of its perceived purpose” (Hough
and Gluck, 2019, p. 23). This is perhaps an updated, more
general version of Simon’s early definitions developed in his

efforts to outline the criteria for software programs capable
of understanding. Simon emphasized that understanding is “a
relation among a system, one or more bodies of knowledge,
and a set of tasks the system is expected to perform” (Simon,
1977, p. 1070). Simon’s incorporation of the task or goal for
an intelligent system is an extension of Moore and Newell’s
definition of understanding as a relationship between a system
and its appropriate use of knowledge (Moore and Newell, 1974).

Consistently, these definitions emphasize that understanding
entails the use of knowledge in pursuit of a task-related goal.
Subsequently, the evidence for understanding is then considered
to be the ability to successfully perform a target task.

This definition is measurable and achievable within narrowly
scoped problems. Narrowly scoped problems include single
problem solving tasks (e.g., Towers of Hanoi, demonstrated
by the UNDERSTAND program; Simon and Hayes, 1976), or
simple information recall in question and answer format (e.g.,
Siri or similar modern natural-language-based internet search
assistants). Throughout the history of AI research, we can find
many examples where accomplishing task-related goals has been
used to demonstrate success in achieving machine understanding
(usually with parallel human demonstrations or baselines).

There is an interesting context in which these early
understanding definitions were established. Parallel to the
emergence of computing and the computing analogies for
cognition in the 1950s and 60s, the first efforts to standardize
educational assessment were being published. The first of these,
Taxonomy of Educational Objectives (Bloom et al., 1956), avoided
the use of the term understanding; instead, it emphasized
knowledge, comprehension, application, analysis, synthesis, and
evaluation as increasingly complex objectives for someone to
acquire, interpret, and use information and skills. Revisions and
alternatives to this taxonomy replaced use of comprehension
with understanding, making it the second level of educational
objectives. In the revised Taxonomy of Educational Objectives,
understanding is currently defined as: “Determining the meaning
of instructional messages, including oral, written, and graphic
communication” (Krathwohl, 2002, p. 215). This is quite a
contrast to the task-oriented definitions in the cognitive sciences.
Instead of framing understanding as the successful use of
knowledge, understanding framed as comprehension emphasizes
abilities like interpretation and explanation—abilities that are
heavily dependent on natural language communication1.

However, both the educational taxonomic framing and the
task-oriented goal framing of understanding suffer the same
pitfall: both frame assessment as pass or fail. An individual
is able to pass the test for that level of understanding in the
taxonomy or not; an individual can correctly complete the
task, or not. Consequently, this pushes the whole construct of
understanding to be conceptualized as an intelligent agent’s state:
it can understand, or it cannot.

A problem with this perspective is that one can pass a
test without actually possessing the intended knowledge or

1The full list of understanding-related competencies are interpreting,

exemplifying, classifying, summarizing, inferring, comparing,

explaining (Krathwohl, 2002).
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skill, giving an appearance of understanding. When apparent
understanding is probed or pushed, perhaps tested in a slightly
different context or manner from which the information was
learned, the system fails. We see this fragility of performance
often for deep neural network classifiers, as evidenced by
the discovery of adversarial attacks. In some attacks, very
small amounts of noise added to an image can drastically
change the confidence of the classifier and switch image class
labels (Goodfellow et al., 2018). Very minor changes to the
inputs cause sharp increases in classifier errors, indicating that
the classifier only had a fragile depth to its representation
of the relationship between images and their conceptual-level
class assignments. This falls far short of the understanding that
developers intended such systems to have.

A danger in chasing the passing of a single test for
understanding is that the definition of that test and what it
takes to pass become moving targets. Researchers may never
agree on a single benchmark against which to measure all claims
about mechanisms of understanding. Indeed, Simon (1977) is
a microcosm of the dilemma. In a single paper, he lays out at
least three full definitions and seven varieties of understanding,
because computer programs built to demonstrate sufficient
ability for one definition were not sufficient to demonstrate
another (see Bobrow and Collins, 1975, for similar examples).

To move our assessments of understanding forward,
researchers need to change their perspectives on understanding:
namely that understanding is a series of behaviors, not a
single outcome.

1.2. The Process of Understanding
We propose that understanding should be conceptualized as
a process. Understanding is an ongoing cognitive activity of
acquiring, integrating and expressing knowledge according to
the task or situation at hand. The process of understanding
can amount to an individual’s internal reflection on their own
knowledge or abilities to accomplish a self-motivated goal;
the process by which multiple individuals learn about and
communicate with each other while working as a team; and the
process of accomplishing team or individual goals. Engaging in
the process allows agents to understand themselves, other agents,
and external systems or situations. Understanding as a process
means that different degrees of understanding may exist in a
system, particularly as the tasks or information to be understood
are increasingly complex.

Failures of understanding can illustrate breakdowns in the
process of understanding. They do this by spotlighting when
understanding has not completely enabled success. To determine
why an agent failed to understand, failures are usually probed.
That is, we find ways to ask why and how thought processes
were correct and under what conditions or at what point in
reasoning they were not. For example, in educational settings,
if a student answers a question incorrectly, they are often asked
to explain how they got to the wrong answer (or even to “show
their work” to provide teachers with the same information).
Cognitive scientists use confusion matrices or patterns of errors
to investigate failures of task performance. Both groups try to
identify the nature or source of the error, and then try to move

toward a state of correcting the error. Hence, probing the failures
can result in better understanding. Combined with successes,
failures help to map the boundaries or depths of what is and is
not understood by an intelligent agent.

2. APPROACH: PROBING FAILURES OF
UNDERSTANDING

Assessing understanding as a process requires a series of tests that
probe a system’s successes and failures in different dimensions
of understanding. Within AI and Natural Language Processing
(NLP), there is a tradition of creating evaluation benchmarks
and “challenge” test sets that establish measuring posts of how a
systemmight compare to an ideal, or human-like ability. Perhaps
the most well-known of these tests is the “Turing test,” proposed
by Alan Turing in 1950 to address the question, “Can machines
think?” (Turing, 1950). In part due to the difficulties of defining
thinking, Turing proposed an alternate formulation to probe
whether or not machines can exhibit an observable behavior
requiring thinking, namely a machine’s convincing participation
in “the imitation game.” In this game, there is a machine, a
human participant, and an “interrogator” asking questions of
the two parties and viewing written answers to the questions.
The interrogator asks questions to ascertain which party is the
machine and which is the human. The machine would succeed in
this test if it were able to convince the interrogator that it was the
human. The Turing test therefore presupposes that the ability to
participate in natural conversation evidences intelligent behavior.

Turing hypothesized that a machine would be able to pass
his test by the year 2000, and indeed, the Turing test moved
from thought experiment to implementation within the Loebner
competition starting in 1991—a more limited version of the
test in which the interrogator has only 5 minutes to make
a determination, and there is a limited set of topics. The
first system to pass this limited Turing test selected the topic
“whimsical conversation.” While fluent, one must question
whether such whimsical conversation actually evidences any
intelligence (Shieber, 1994). There is enduring fascination with
the Turing test that has inspired both a string of philosophical
criticisms of it as a litmus test for intelligence as well as
alternative tests.

Linguist and philosopher John Searle continued to probe the
question “Can computers think?” (Searle, 1984). He concluded
that no digital computer can think or “understand” language in
particular after posing the “Chinese room experiment.” In the
Chinese room experiment, he drew a parallel between a person
locked in a room manipulating Chinese symbols according
to ordering rules (i.e., syntax), but without any knowledge
of the actual meaning of these symbols (i.e., semantics), and
a computer question-answering system manipulating input
symbols designated as questions and returning associated
symbols as answers. He concluded that a person in this situation
does not “understand” Chinese, and that digital computers are
always in the Chinese room—while they can manipulate symbols
in such a way as to appear to understand language and even

Frontiers in Systems Neuroscience | www.frontiersin.org 3 March 2022 | Volume 16 | Article 800280172

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Blaha et al. Understanding Is a Process

answer questions correctly, they have access only to symbols and
syntax, but never the deeper semantics behind those symbols.

Thus, we ask whether or not such evaluations can still have
value in their diagnostic ability to pinpoint successes and failures
of understanding, where the illusion is broken and we can no
longer say that the system functions in practice, regardless of why
and how. A system that understands should be able to articulate
its comprehension and demonstrate its understanding in one
or more ways that humans can assess, similar to the ways we
have humans demonstrate their comprehension. As a practical
matter, this often demands that the system produce responses
using natural language. Indeed, we make a strong commitment
to the need for processing and responding to natural language: it
is only through natural language probes that artificial agents can
establish their understanding. In the absence of natural language
assessments, it may be impossible to establish whether systems
are merely symbol-manipulators.

For that reason, we focus on natural language processing as
a gateway to understanding in humans and machines. In the
following section, we work through attempted assessments of
“understanding” in natural language communication, and begin
to delineate how we might probe failures in that area to begin to
establish benchmarks and metrics for evaluating understanding
in a broad variety of systems and tasks.

3. NATURAL LANGUAGE
UNDERSTANDING

William James writes, “any number of impressions, from any
number of sensory sources, falling simultaneously on a mind
WHICH HAS NOT YET EXPERIENCED THEM SEPARATELY,
will fuse into a single undivided object for that mind...The baby,
assailed by eyes, ears, nose, skin, and entrails at once, feels it all
as one great blooming, buzzing confusion” (James, 1890, p. 488).
Although it has since become debatable how true this is of the
human infant brain, this state of blooming buzzing confusion is
certainly true for the machine. Similarly, De Saussure writes:

“Psychologically our thought—apart from its expression in

words—is only a shapeless and indistinct mass. Philosophers

and linguists have always agreed in recognizing that without

the help of signs we would be unable to make a clear-cut,

consistent distinction between two ideas. Without language,

thought is a vague, uncharted nebula. There are no pre-existing

ideas, and nothing is distinct before the appearance of language”

(De Saussure, 2011, p. 111).

Again, setting aside debates as to how true this is of human
thought, machines must learn how to differentiate sensory input
into meaningful bundles—separate categories of the things and
events of the world. Furthermore, at least in the domain of the
machine’s function, they must learn to do so in a way that maps
reasonably well to a human’s organization of the same sensory
input, such that both human andmachine can act upon the world
in any collaborative task. Because natural language provides a set
of labels for many of the discrete categories of the world that
humans are familiar with, to come to any kind of understanding

between human and machine, the machine must be able to map
its own categories and labels to natural language. This amounts
to a shared symbolic space between humans and machines,
which we propose is critical for establishing understanding and
certainly for probing and interrogating a system’s level and
failures of understanding. It is worth emphasizing that while any
shared symbolic space could accomplish this goal, we specifically
argue that natural language is the best choice for serving this
purpose as the symbolic language most familiar to humans.
By “natural language” we are referring to any modality of
natural language, in contrast to an artificial, controlled language2.
Given the fundamental nature of this shared symbolic space to
understanding, we discuss in relatively great detail the current
landscape of natural language understanding and its evaluation.

3.1. Introduction to Natural Language
Understanding
One area of Natural Language Processing (NLP) is referred to as
Natural Language Understanding (NLU), a term introduced by
Woods (1973), who proposed using English as a query language
for a lunar sciences computational system. The motivation
for using English as a query language remains relevant today
to a variety of applications where NLU components are
included. Natural language offers an ease of communication
with computational systems, given that people already know,
speak, and, as argued by Woods, think, in a natural language.
NLU is a higher-order text processing goal, necessarily built
upon other NLP components. McCarthy (1990), first published
in 1976, proposed what he thought would be the necessary
sub-components for achieving NLU:

1. A “parser” that turns English into ANL [Artificial Natural
Language].

2. An “understander” that constructs the “facts” from a text in
the ANL.

3. Expression of the “general information” about the world that
could allow getting the answers to the questions by formal
reasoning from the “facts” and the “general information.”

• The “general information” would also contain non-
sentence data structures and procedures, but the sentences
would tell what goals can be achieved by running the
procedures. In this way, we would get the best of the
sentential and procedural representations of knowledge.

4. A “problem solver” that could answer the above questions on
the basis of the “facts.”

Indeed, many NLU approaches introduce a pipeline somewhat
like this, including an intermediate, computer-readable semantic
representation and knowledge bases that can be used to compare
the represented proposition against some real-world knowledge.
It is this kind of approach that is also reflected in the discussion

2A controlled language could certainly be used to achieve and interrogate

understanding in a limited domain, but this places the cognitive burden

of communication on the human and precludes efficient generalization to

new domains, both of which can be problematic in dynamic and dangerous

communication settings.
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of semantic processing requirements by Jurafsky and Martin
(2009), who indicated that basic requirements include: the
truth of the proposition, unambiguous representations drawing
upon a specific sense inventory for handling polysemous words
and different contexts, as well as the ability to complete
disambiguation tasks on the level of both the word and sentence.

3.2. Evaluating Natural Language
Understanding
Because the broader goal of NLU is based upon the composition
of a variety of lower-level NLP tasks, the question of whether or
not a system can successfully “understand” natural language has
largely only been addressed first with respect to the particular
NLP task at hand (e.g., question-answering), and by evaluating
the success of the individual lower-level tasks. Within NLP, these
lower-level tasks are most commonly evaluated in the following
way:

1. Establish a test set: this is a set of test items, which must
be novel items unseen by the system in any training phase.
The ground truth result is known, generally by humans
establishing this through “annotation” or labeling of text
with a set of relevant labels and subsequently comparing
annotations for discrepancies to establish an agreed upon
“gold standard.”

2. Measure the system’s ability to reproduce the “gold standard”:
the most common evaluation metric for this in NLP is an
F-score, also referred to as F-measure or F1, which is the
harmonic mean of Precision (the number of true positive
results divided by the number of all identified positive results)
and Recall (the number of true positive results divided by
the number of all samples that should have been identified as
positive).

For a particular task, accepted baseline and state-of-the-art
performance levels are often established through shared tasks,
where somewhat different systems with different aims are
evaluated on a common test set or suite of test sets. Thus,
this is similar to the kind of “challenge” approach, described in
Section 2, first established in the Turing test. A good example
of a contemporary evaluation suite is The General Language
Understanding Evaluation (GLUE) benchmark (Wang et al.,
2018), which is a collection of resources for both training and
evaluation of various types of NLU tasks. It is intended to be
agnostic to the system type. The evaluation suite includes tasks
related to sentiment, paraphrase, natural language inference, co-
reference, as well as question-answering (many of the challenges
present in this evaluation suite parallel the types of probes
described in Section 6). Again, system performance on these
tasks is often contingent upon the performance of upstream,
basic NLP components such as word sense disambiguation and
syntactic parsing. In this sense, evaluating and probing the
failures of understanding within NLP can be broken down into
evaluations of the system’s ability to recognize and interpret units
of “meaning” at various levels of language, described next.

3.3. Levels of Language Meaning and
Understanding
The assumption that a broader NLU task presupposes smaller
subtasks reflects assumptions about how and where meaning is
encoded in natural language.

3.3.1. Understanding Word Meaning
There is a linguistic tradition that assumes that meaning is
compositional—the meaning of a sentence or phrase is made
up of the meanings of its individual parts, or word meanings
(e.g., Chomsky, 1980). Operating under this assumption, Word
Sense Disambiguation (WSD) is a key task for NLU, wherein,
given an electronic lexicon or dictionary of word senses, a sense
must be assigned to a word in context. For example, the sense
of play in “She plays the violin” is to perform on an instrument,
while “She plays soccer” is to participate in a game. One of the
primary challenges of WSD is the selection of an appropriate
lexicon, as lexicons can vary greatly in their level of coverage as
well as their sense “granularity”—or the number of distinct senses
associated with a word. WordNet (Fellbaum, 1998) is probably
the most well-known and widely used electronic database of
English words with ontological structure. It represents one of the
first large-scale efforts to add such structure to a dictionary-like
resource. The organization of WordNet was, in part, inspired
by work in psycholinguistics investigating how and what type
of information is stored in the human mental lexicon (Miller,
1995). WordNet is divided firstly into syntactic categories—
nouns, verbs, adjectives and adverbs—and secondly by semantic
relations, including synonymy, antonymy, hyponymy (e.g., tree
is a hypernym of maple), and meronymy (part-whole relations).
These relations make up a complex network of associations that
is both useful for computational linguistics and NLP, and also
informative in situating a word’s meaning with respect to others.

Although the original English WordNet has been so valuable
so as to inspire WordNets in a variety of other languages (e.g.,
Vossen, 1997), the practical utility of WordNet for WSD tasks
has been questioned, as formal evaluations have shown that
WordNet’s sense inventory is so fine-grained that it is difficult for
both humans and systems to tell the difference between senses
and apply the appropriate sense label in context. As a response
to this, the OntoNotes sense groupings were developed (Pradhan
et al., 2007). These can be thought of as a more coarse-grained
view of WordNet senses, as these sense groupings were based
on WordNet senses that were successively merged into more
coarse-grained senses based on the results of measuring inter-
annotator agreement (IAA) in tagging of the senses (Duffield
et al., 2007). Essentially, where two annotators were consistently
able to distinguish between two senses, the distinction was
kept. Where annotators were not able to consistently distinguish
between two senses, the senses were conflated into one sense.
In this way, human IAA establishes the ceiling performance on
the task. If humans cannot reliably agree upon the distinctions
of an annotation schema, we certainly cannot expect a machine
to be able to reproduce those distinctions of manually annotated
training and/or test data reliably. Indeed, subsequent systems
trained and tested on OntoNotes sense distinctions are able to
achieve much better performance on the WSD task, as measured
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by F-scores in comparison to a human-annotated gold standard
(e.g., Zhong et al., 2008). This has led to OntoNotes becoming a
benchmark dataset for training and testing WSD systems.

3.3.2. Understanding Sentence Meaning
Recognizing the meanings of all of the individual words in a
sentence, however, does not allow a system to understand the
overall meaning of a sentence. We must also enable a system’s
understanding of how meaning is composed, or the semantic
relationships between the words. Although there are a variety
of established theories as to how to determine and model the
semantic relations of a sentence, one dominant assumption
widely made in NLP can be summarized Jackendoff’s Projection
Principle (Jackendoff, 1990), which states that the basic scene
denoted by a sentence (i.e., participant roles) derives from
the argument structure of the head verb. Verbs structure the
relationships between other words of the sentence by designating
the “semantic role” that the word plays with respect to the main
verb of the sentence. Semantic roles, also called “thematic roles,”
refer to general classes of participants in a sentence and attempt
to define the relation of the participant to the event (which is
often expressed by the main verb). For example, in the sentence
Fred gave Maria a book, Fred is the agent of the action, the book
is the gift, and Maria the recipient. The nature of participation
in an event for a particular word is often the same, regardless
of the syntactic format of the sentence. For example, in Fred
gave a book to Maria, Maria is still the recipient, even though
Maria is syntactically now an object of a preposition instead of a
direct object.

Identifying the semantic roles of the participants is part of
the more general task of understanding the semantics of the
event, which has certain semantic components regardless of the
specific verb used. Whether a speaker talks of giving, handing,
or passing, there is always a transfer of an entity from the giver
to a recipient. Grouping verbs with similar semantics allows us
to refer to their shared semantic components and participant
types. To support a system’s ability to recognize and interpret
the semantics of a sentence in this way, a variety of resources
have been developed wherein human annotators attempt to apply
these theories of semantic roles and verb classes to large numbers
of English verbs. This annotated data can be used as training and
test data for automatic semantic role labeling (SRL), in which a
system automatically interprets an the who, what, where, when,
how of a particular event. SRL resources include the benchmark
PropBank (Palmer et al., 2005) and FrameNet (Fillmore et al.,
2002) verb lexicons and accompanying annotated corpora, which
have been reproduced in a variety of languages.

3.3.3. Understanding Constructional Meaning
NLP has made progress toward recognizing and understanding
the meanings of individual words and how those meanings
compose to form themeaning of the broader sentence they fall in.
Yet, understanding the meaning of a sentence can remain elusive,
because there are still other levels of meaning that come into
play for a human-like understanding of language. One aspect of
this is that, in practice, systems trained on resources that assume
the Projection Principle fail to understand sentences where the

semantics of participants does not stem from the semantics of the
head verb. For example, consider the sentences “She blinked the
snow off of her eyelashes,” and “We ate our way through New
York City.” While likely readily understandable to you as the
reader, such sentences can be confounding for systems that have
been trained to interpret sentence meaning through the lens of
the main verb, which is assumed to assign semantic roles to “the
snow” and “New York City”. This approach leads our systems
to expect and likely conclude that snow is something that can
be blinked, and a path through New York City is something
that can be ingested. Such creative language usages are pushed
aside in many linguistic theories as peripheral phenomena of
figurative language, unimportant for the broader understanding
of language (e.g., Chomsky, 1995). However, the increasing
availability of computer-readable corpora has demonstrated the
prevalence of these and related phenomena, where the meaning
of a sentence is somehow above and beyond the individual
word level. In contrast to the Projection Principle, theories of
Construction Grammar (e.g., Fillmore, 1988; Goldberg, 1995;
Michaelis and Lambrecht, 1996) account for such phenomena.
We have begun to see the rise of computational resources (such as
the FrameNet “Constructicon”; Fillmore et al., 2012) supporting
the recognition and interpretation of “constructions,” such as the
caused-motion and way-manner constructions exemplified in the
“blink” and “eat” sentences put forth for consideration above.

3.3.4. Understanding Meaning in Conversational

Context and Dialogue
Again, even if we add to our system’s understanding an
interpretation of such constructional meaning beyond the
compositional meaning of words, we may be missing implicit
information that arises from the broader context of a sentence,
from real-world, experiential and cultural knowledge, or from
the combination of these factors. This is the broader context
involved in dialogue, where language is used in bi-directional
communication between speakers or interlocutors. If we would
like agents to both understand and potentially communicate
about the world around them as another human might,
communication via natural language dialogue is an appealing
candidate. There are significant bodies of research in dialogue
systems, which can in turn require computational semantic
representations of natural language that attempt to capture all of
the levels of meaning described earlier in this section, as well as
the recognition of “speech acts,” or what someone is attempting
to do with a particular utterance beyond its basic content.

Task-oriented spoken dialogue systems, the goal of which is
broadly to identify a user’s intents and then act upon them to
satisfy that intent, have been an active area of research since the
early 1990s. Broadly, the architecture of such systems includes
(i) automatic speech recognition (ASR) to recognize an utterance
in speech and convert this into text, (ii) an NLU component
to identify the user’s intent, and (iii) a dialogue manager to
interact with the user and achieve the intended task (Bangalore
et al., 2006). In the earliest of these systems, “understanding” was
reduced to the task of detecting a keyword in a user’s utterance
after the user was prompted with a limited set of permitted
options (Wilpon et al., 1990).
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Accordingly, the semantic representation within such systems
has, in the past, been predefined frames for particular subtasks
(e.g., flight inquiry), with slots to be filled (e.g., destination
city; Issar and Ward, 1993). In such approaches, the semantic
representation was crafted for a specific application, making
generalizability to new domains difficult if not impossible.
Current approaches still model NLU as a combination of intent
and dialogue act classification and slot tagging, but many have
begun to incorporate recurrent neural networks (RNNs) and
some multi-task learning for both NLU and dialogue state
tracking (Chen et al., 2016; Hakkani-Tür et al., 2016), the latter
of which allows the system to take advantage of information
from the dialogue context to achieve improved NLU. Substantial
challenges to these systems include working in domains with
intents that have a large number of possible values for each
slot and accommodation of out-of-vocabulary slot values (i.e.,
operating in a domain with a great deal of linguistic variability).
Thus, a primary challenge today, as in the past, is representing the
meaning of an utterance in a form that can exploit the constraints
of a particular domain but also remain portable across domains
and robust despite linguistic variability.

There is a long-standing tradition of research in semantic
representation within NLP, AI, theoretical linguistics, and
philosophy (see Schubert, 2015, for an overview). In this
body of research, there are a variety of options that could be
used within dialogue systems for NLU. However, for many of
these representations, there are no existing automatic “parsers”
(which automatically convert language into the representation),
limiting their feasibility for larger-scale implementation. Two
notable exceptions with a body of research on automatic parsing
are combinatory categorial grammar (CCG; Steedman and
Baldridge, 2011) and Abstract Meaning Representation (AMR;
Banarescu et al., 2013). CCG parsers have already been
incorporated in some current dialogue systems (Chai et al.,
2014). Although promising, CCG parses closely mirror the
input language, so systems making use of CCG parses still face
the challenge of a great deal of linguistic variability that can
be associated with a single intent. In contrast, AMR abstracts
from surface variation; thus, AMR may offer more regular,
consistent parses in comparison to CCG. AMR is currently being
investigated for use in dialogue systems onboard robots used for
search and navigation tasks (Bonial et al., 2019).

To engage in dialogue, an interlocutor must interpret the
meaning of a speaker’s utterance on at least two levels, as
first suggested by Austin (1962): (i) its propositional content,
and (ii) its illocutionary force, or the “speech act”—what the
speaker is trying to do with the utterance in the conversational
context. While the aforementioned semantic representations
have traditionally sought to represent propositional content,
speech act theory has sought to delineate and explicate the
relationship between an utterance and its effects on the mental
and interactional states of the conversational participants. Speech
acts have been used as part of the meaning representation of task-
oriented dialogue systems since the 1970s (Bruce, 1975; Cohen
and Perrault, 1979; Allen and Perrault, 1980). For a summary of
some of the earlier work in this area, see (Traum, 1999). Although
the refinement and extension of Austin’s (1962) hypothesized

speech acts by Searle (1969) remains a canonical work on this
topic, there have since been a number of widely used speech act
taxonomies that differ from or augment this work, including an
ISO standard (Bunt et al., 2012). Nevertheless, these taxonomies
often have to be fine-tuned to the domain of interest to be
fully useful.

The recognition that meaning representations for dialogue
systems need to be expanded to combine different levels
of interpretation is growing. For example, Bonial et al.
(2020) present Dialogue-AMR, which augments standard AMR,
representing the content of an utterance, with speech acts
representing illocutionary force. O’Gorman et al. (2018) present
a Multi-Sentence AMR corpus (MS-AMR) designed to capture
co-reference, implicit roles, and bridging relations. Though not
strictly speech acts, the interconnected approach to meaning
that this corpus annotates is directly relevant for deducing
illocutionary force in a dialogue context.

Although human-robot dialogue systems often leverage a
similar architecture to that of the spoken dialogue systems
described above, human-robot dialogue introduces the challenge
of physically situated dialogue and the necessity for symbol and
action grounding, which generally incorporate computer vision.
Few systems are tackling all of these challenges at this point (but
see Chai et al., 2017). Symbol grounding invokes an additional
layer of meaning, as systems must be able to connect a linguistic
symbol to a real-world object or event. This requires a challenging
combination of both perception of the current environment, as
well as real-world knowledge that guide expectations about how
to assign sensory input into a category of things grouped under a
particular word or label in a given language. In addition to symbol
grounding, human-robot dialogue, like human-human dialogue,
requires establishing and maintaining “common conversational
ground” of the speakers, described further in Section 4.1.

Ontologies have commonly been used for storing, organizing,
and deploying the real-world knowledge required for physically
situated dialogue systems (as well as other intelligent agents).
However, we note that mapping informal concepts into a formal
language is a difficult and persistent problem, one in which
relatively little progress has been seen. For an example, consider
the difficulty of establishing that a machine understands how a
box works (Davis, 2011). Even everyday physical concepts that
are part of ordinary human conversation, such as near, far, short,
friendly, trustworthy, and so forth, are difficult to formalize. A
consequence, in part, is that a number of different foundational
formalisms (upper ontologies) have been proposed: Basic Formal
Ontology (Arp et al., 2015), General Formal Ontology (Herre
et al., 2006), Cyc (Matuszek et al., 2006), and others. Despite
the challenges, research continues in this area as there are few
alternatives that offer any explainability. A research direction that
may hold promise is the combination of the value of linguistic
and ontological resources with the power of deep learning (e.g.,
Faruqui et al., 2015).

Overall, the technical landscape of NLU underscores the need
for evaluating understanding as a process in which failures
can arise at various stages. Probing the success of increasingly
complex language understanding tasks allows us to pinpoint and
address the limitations of a system’s understanding. Although
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NLP has established a good model for evaluating systems using
suites of benchmark, shared tasks, the evaluations of subtasks
within NLP have not been cohesively united to establish clear
and measurable evaluations of the most complex tasks that rely
on lower levels of understanding. For example, there is little
consensus on how to evaluate either “success” or understanding
for dialogue systems (see Deriu et al., 2021, for a survey on
this topic).

3.4. Generative Language Models
Many of the approaches to different aspects of NLU described
thus far have been either semi or fully supervised machine
learning, often drawing upon human-annotated training data
and possibly some rule-based operations. Recently, NLP has seen
the rise of generative language models (GLMs), which constitute
a powerful unsupervised approach to various NLP tasks. GLMs
produce likely next text based on a context of other text. This
process has a surprising number of useful applications, one of
which is answering questions about a text passage. This is an
application where one may posit that at least certain questions
would require understanding of the passage to answer sensibly.
One of the most dominant current GLMs is the “Generative Pre-
trained Transformer” or GPT. It is a deep neural network with the
transformer architecture, trained on a large general text corpus,
that generates text as output, given a text prompt.

In contrast with rule-based and/or ontologically-based efforts
to provide some knowledge of the meaning behind symbols,
recent advances in developing massive pre-trained language
models, such as GPT-3 (Brown et al., 2020), have demonstrated
successes on a variety of question-answering and inference
tasks. GPT-3 illustrates that computers can exploit and deploy
knowledge encoded in the text in such a way as to at least broaden
and deepen the illusion of understanding language. In part, this
success may be attributed to the fact that GPT-3 is trained on
huge amounts of text. Thus, whereas the past components that
we’ve looked at are trained on annotated data relating to one
or another level of meaning, the broader meaning of entire
documents may be implicitly encoded in the GPT-3’s training
data, giving it a relatively broad “understanding” of meaning in
the context of lots and lots of full documents, which can contain
a surprising amount of cultural and real-world knowledge.

Nonetheless, GPT-3 has been criticized as “understanding”
nothing—criticisms reminiscent of Searle’s Chinese Room.
Several recent works have set out to pinpoint and classify failures.
Drawing inspiration from challenge questions meant to test the
strengths and weaknesses of language models like GPT-3 in
particular, we suggest the following three dimensions as a starting
point for creating probes of a GLM’s understanding:

1. Knowledge Source: Is the knowledge needed to understand an
input contained in information explicitly given to the system,
or in the learned world knowledge implicit in the weights
acquired during training, or in linguistic knowledge that the
system has learned from training?

2. Knowledge Type: Is the knowledge needed to understand
an input about concrete entities in the world, about events
and timelines, or about the contents of the minds of

people? Is it about general classes and schemas, or about
specific things?

3. Reasoning Required: What reasoning abilities are required
to understand the input? Can it be answered with analogical,
deductive, or inductive logic? Does it require temporal
reasoning, reasoning about negation, or meta-reasoning about
the motivations of the interlocutor to fully understand?

A recent analysis of the successes and failures of GPT-3 on
a question-answering task, involving a carefully curated set
of challenge questions, demonstrates that GPT-3 is able to
successfully answer questions where the Knowledge Source is
explicitly given, and can even answer questions where the
knowledge type involves the contents of others’ minds and some
limited timeline information (Summers-Stay et al., 2021). On
the other hand, it is fairly clear that GPT-3 lacks the ability to
synthesize and reason about the content it has seen. In particular,
GPT-3 has been shown to be unable to perform very simple
mathematical operations, even when related to its text prompt,
such as using addition or subtraction to determine the age
of a person described in a text (Gwern, 2020; Summers-Stay
et al., 2021). We suggest that this demonstrates the utility of
such challenge sets in probing the failures of understanding and
delineating the general areas where a particular system may lack
adequate understanding for a particular application or task.

4. DEMONSTRATING AND MAINTAINING
SHARED UNDERSTANDING

We now shift from considering natural language understanding,
which can be thought of as a largely unidirectional process
by which a system interprets and acts upon incoming natural
language input, to considerations of how the current level of
understanding is demonstrated by both humans and machines,
and how ongoing shared understanding is maintained. This
can be thought of as a bi-directional, dynamic process that
may include the initial interpretation of an input, but also the
ongoing efforts to subsequently demonstrate that the initial
interpretation was or was not successful and then iteratively
re-establish that shared understanding is being achieved as
communication proceeds.

4.1. Conversation and Common Ground
There is longstanding documentation of the numerous behaviors
in which humans engage to cultivate understanding. This
includes behaviors designed to establish and maintain what is
referred to as the common ground (Clark and Wilkes-Gibbs,
1986; Stalnaker, 2002). Common ground is the set of shared
beliefs and knowledge that speakers and addressees use to
appropriately situate utterances. Information becomes part of
the common ground when speakers and addressees demonstrate
that they mutually accept both the meaning that the speaker
intended to convey and that the addressee has understood that
meaning. Such information is then said to be grounded (Clark
and Schaefer, 1987, 1989). The idea that mutual acceptance is
required for grounding is part of a larger claim that conversation
is the joint activity of the conversational participants, achieved

Frontiers in Systems Neuroscience | www.frontiersin.org 8 March 2022 | Volume 16 | Article 800280177

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Blaha et al. Understanding Is a Process

through tightly coupled coordination rather than dissociable
actions (Clark andWilkes-Gibbs, 1986; Clark and Schaefer, 1989;
Clark, 1994).

The behaviors that qualify as good “demonstrations” of
mutual acceptance are complicated and varied. A behavior
that may suffice in one conversational context (e.g., small
talk) may be insufficient or inappropriate in another (e.g.,
defusing a bomb). Grounding behavior also varies as a function
of the communication medium (Clark and Brennan, 1991);
certain cues for grounding in face-to-face spoken conversation,
such as facial expressions or intonation, are unavailable for
use in text conversation, though conversational participants
can leverage other features of the text medium to ground
information (e.g., Potts, 2012; Mills, 2014). In all situations,
speakers and addressees must mutually establish an appropriate
grounding criterion by which to measure whether or not their
behaviors demonstrate a reasonable understanding for current
purposes (Clark and Wilkes-Gibbs, 1986; Clark, 1994). In some
sense, speakers and addressees do not work toward “true”
understanding in conversation, but rather toward the belief that
there is “sufficient” understanding.

So what are some of the ways in which speakers and
addressees contribute to the process of grounding? Speakers
often contribute to grounding by working to prevent potential
misunderstandings in the first place, such as through “self-
repair” of their own utterances; for example, “He called them
‘pants’ but he meant trousers, like he used the Australian–the
American word for trousers” where the incorrect “Australian”
is immediately corrected to “American” (Schegloff et al., 1977;
Clark, 1994). Speakers have been argued to prefer to repair
their own utterances, and furthermore initiate those repairs
themselves, rather than have their addressee indicate the need
for a repair or have the addressee attempt the repair (Schegloff
et al., 1977). When prevention of a production error is not
possible, speakers may instead warn of possible upcoming
understanding difficulties for their addressee through devices
such as filled pauses (e.g., “uh” or “um”) or other editing
terms (e.g., the use of “I mean” in an instance such as “We went
to the bank–I mean the store”; see Levelt, 1983; Clark, 1994).
Speakers cannot always form utterances perfectly, and thus may
reformulate their utterances on the fly to improve the likelihood
of understanding (Clark and Wilkes-Gibbs, 1986).

Addressees may contribute to grounding through something
as simple as continued attention or providing “continuers”
(also known as verbal back-channels, such as “mhhm” or
“yeah”), or through something as involved as providing an overt
indication of understanding through paraphrasing or repeating
verbatim what the speaker said (Clark and Schaefer, 1987, 1989).
Addressees may also initiate understanding repairs by requesting
clarification from the speaker in a form tailored to the nature
of their perceived non-understanding (Gonsior et al., 2010). It is
through this collaborative effort that conversational participants
achieve not only understanding but also the awareness of each
other’s mutual knowledge required for future conversation.

The legwork that speakers and addressees put intominimizing
their collaborative effort (even if these contributions sometimes
create greater individual effort) not only allow participants

to coordinate on their mutual beliefs, but also to develop
particular meanings and references as needed in the current
task. Such meanings may not extend beyond that task or to
new conversational participants (Clark and Wilkes-Gibbs, 1986;
Brennan and Clark, 1996). These conceptual pacts (Brennan
and Clark, 1996; Metzing and Brennan, 2003) and language
routines (Mills, 2014) present an enormous challenge for
human-machine understanding. Creating task-specific meanings
(grounded within the task context) is not just served by knowing
when and how to deploy collaborative conversational behaviors;
arguably such meanings cannot be created without this kind
of coordination and negotiation. It is unclear how this form
of language innovation and adaptation can be created within
human-machine teams until machines possess flexible grounding
capabilities, tailored to the medium of communication between
the team members.

The fact that human dialogue behaviors are designed to
compensate for understanding failures (and such behaviors
are arguably like “probing”) makes natural language dialogue
a fruitful area in which to consider how we might design
probes to assess the understanding of artificial systems. However,
objectively identifying and quantifying failures of understanding
in conversation still presents an enormous challenge. In the
absence of overt behavior from the conversational participants
themselves, detecting failures requires making assumptions
about the mental states of the conversational participants (see
Section 5). A distinction is sometimes made between failures
of understanding where an addressee is aware of the failure
(non-understanding) and failures where an addressee is not
immediately aware (misunderstanding, e.g., Hirst et al., 1994;
Weigand, 1999; Gonsior et al., 2010). In the case of non-
understanding, addressees take immediate steps to remedy
the failure, and therefore there is usually overt evidence
in the conversation demonstrating the failure. Clark and
Schaefer (1989), for example, identify at least four “states”
of understanding in which addressees may believe themselves
to be in, and which prompt different kinds of responses
to correct the associated failure. The identification and
quantification of non-understandings provide a path forward
for how we might develop machines that can exhibit similar
behaviors (see Gonsior et al., 2010, for one such example).
Misunderstandings, on the other hand, must be detected at
a later time either by the addressee, the original speaker, or
both to be corrected. There may not be overt evidence of
a failure at the time the failure occurs. Misunderstandings
are ultimately corrected under the assumption that dialogue
includes the process of “coming to an understanding,” not merely
having understanding (Weigand, 1999). Further, conversation
as a whole is still successful under the assumption that, while
at any given moment the conversational participants may
be misunderstanding each other, on average understanding is
achieved across the entirety of the conversation (Weigand,
1999). The implicit assumption of not only collaboration but
cooperation within conversation (Grice, 1975) allows humans to
progressively and jointly establish understanding. There is much
more to be learned about how speakers and addressees balance
tolerating some misunderstanding under the assumption that
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understanding is being achieved on average, with the need to
point out and correct misunderstandings as the conversation
progresses. Machines, too, will need to emulate this balance to
participate in conversation in a manner that would be perceived
as both natural and efficient to a human.

4.2. Perceived Understanding
In some areas of interaction research (e.g., human robot
interaction, human-agent interaction), most researchers do not
work explicitly on understanding. Most researchers presumably
think that understanding per se is too difficult a goal to reach
during even short-term interaction, so the focus becomes on how
to make the robot or agent appear as if it were understanding
an interaction partner, norms of a situation, or context. We
can label these sorts of approaches as perceived understanding.
Importantly, measures of perceived understanding are usually
quite straightforward: preferences and naturalness of the
interaction are common metrics.

Most of the work on perceived understanding focuses on
cues that the agent or robot can provide that signal that
the interaction is progressing. For example, there has been a
great deal of work that has shown that appropriate non-verbal
communication (eye-gaze, beat gestures, facial expressions) are
preferred and considered more natural than either random
non-verbal communication or interactions without those cues.
Trafton et al. (2008) showed that a robot system that was
able to track a conversation non-verbally by looking at the
speaker (based on a cognitive model of humans) was perceived
as more natural than a system that acted more distracted.
Other researchers have also shown that the amount, timing, and
location of a robot’s gaze can directly impact how much a person
wants to interact with the robot (Mutlu et al., 2012; Admoni et al.,
2013).

Researchers have also focused on proxemics—the amount
of personal space that people maintain around themselves.
Takayama and Pantofaru (2009), for example, showed that people
became uncomfortable when a robot approached too close to
them. Mumm and Mutlu (2011) showed that additional social
cues (e.g., head gaze, likability of the robot) interacted with social
distance as well. Beat gestures are another form of non-verbal
signaling that can be used in interaction. For example, Huang and
Mutlu (2013) showed that an agent that provides beat gestures
while talking is perceived as more natural. Nods by agents and
robots have also been shown to improve interaction and the
naturalness of the system (Sidner et al., 2006; Arimoto et al.,
2014).

Machines that demonstrate understanding of humans
(whether they truly possess such understanding or not) still
clearly represent an important benchmark toward creating
machines that humans in turn feel they can understand (see
Section 6 for further discussion on XAI). For humans to feel
that they can probe the understanding of machines in the
same manner as human conversational partners, machines
must possess the propensity to engage collaboratively and
cooperatively with humans in achieving understanding, rather
than focusing on the unilateral direction of the machine
understanding the human. One possible path toward unqualified

human-machine partnership and understanding may require
stepping back to better assess the foundations of most human
collaborations. Once a common interest or goal has been
realized, the next steps are likely to include considering the
expectations and thought process of the other, and recognizing
how these may differ from your own.

5. APPROACHING UNDERSTANDING
FROM MENTAL MODELS AND THEORY OF
MIND

A central part of the process of understanding a phenomenon
is to build a model of it, i.e., a representation of its salient and
functional components. Models may look very different from the
phenomenon itself. For example, a watch serves as a model of
the rotation of the earth. In cognitive science, human factors, and
computer science, researchers agree that humans build models
mentally to understand situations or other agents. When a set of
individuals build mental models that overlap with one another,
they are able to communicate efficiently and, as a consequence,
carry out tasks that demonstrate shared understanding.

In this section, we will review the various mental model
concepts and measurement methods, as well as theory of
mind indicators of inferences about the state of other agents,
and examine how each method may help provide insight on
understanding in humans and AI systems.

5.1. Mental Model Definitions and Theory
There are multiple perspectives on the definition of mental
models. Johnson-Laird (1983) defines mental models as small-
scale mental simulations of the world we develop to enable
reasoning about the environment around us. Gentner and
Stevens (2014) adds that mental models are representations
users develop of an environment, situation, or other agent.
These models are developed through interaction with a
system as well as the user’s inferences about the situation or
system behaviors. Mental models can be influenced by users’
previous experiences such as their exposure to technology and
similar systems (Gentner and Stevens, 2014). Most researchers
and scientists agree on the ways mental models support
intelligent behaviors:

“Mental models are the mechanisms whereby humans are able to

generate descriptions of system purpose and form, explanations of

system functioning and observed system states, and predictions of

future system states” (Rouse and Morris, 1986, p. 3).

Shared mental models are similar; however, shared mental
models are the common representations humans have about
the functioning, states, and future states of systems. Shared
mental models are usually investigated at a team level where
the “system” being represented can be a system a team uses
together or the “team” itself and its members (Cannon-Bowers
et al., 1993; Kennedy et al., 2008; Jonker et al., 2010). Previous
research suggests improved mental models and shared mental
models are positively correlated with improved individual and
team performance. Effective mental models have also been
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linked to better situational awareness of a system and improved
metacognition (Salas et al., 1994; Scielzo et al., 2004).

5.2. Ways of Measuring Mental Models
There are various methods for mental model elicitation, and each
measurement specifically addresses certain aspects within mental
model theory. Think Aloudmethods are one set of mental model
elicitation techniques. This method encourages participants to
verbally express their thought process about a situation or while
completing a task. Participants are guided through the steps
of describing their cognitive processes explicitly, often through
verbal protocols such as think-out-loud challenges, prospect,
and task reflection (Hoffman et al., 2018). One example of this
technique is the Think Aloud Problem Solving Task. During this
process participants verbally describe their thought process as
they complete a task. This method helps to provide insight into
how participants frame problems and the steps they take to solve
an issue. As participants explain their thoughts, experimenters
assess how participants conceptualize a system or issue (Hoffman
et al., 2018). Task reflection is a similar technique, where
experimenters probe participants post-task about their thought
process for completing the task. These methods (e.g., structured
interviews, self-explanation task, prediction task) primarily focus
on the user’s overall representation of the system, approach
toward problem-solving, and task reflection/execution (Hoffman
et al., 2018).

Another set of elicitation methods draw on how participants
understand concepts and their relations to each other, typifying
the various components and creating groups of similar factors.
Examples of these methods include card sorting, pathfinder,
and familiarity ratings. During card sorting and pathfinder
methods, participants group similar concepts together and
rate how similar each concept is with each other (Hoffman
et al., 2018). This measure can help participants schematically
represent their conceptualization of a system, its components,
and the relationships among items. Diagramming is another
mental model elicitation technique, where users can freely draw
a pictorial representation of their cognitive process, system, or
events (Hoffman et al., 2018). This method can help eliminate the
bias of the experimenter on how the user pictorially represents
their mental model arrays andmay capture new relationships and
spatial orientations of concepts.

5.3. Probing Mental Model Failures
Elicitation approaches can easily help researchers identify failures
of understanding and gaps in someone’s mental model of a
system. While conducting these elicitation methods, scientists
are able to identify where there is a gap in understanding and
the nature of the individual’s failed understanding, providing
rich information to equip scientists to repair where the
misunderstanding occurred. For instance, a novice mechanic
could be asked to diagram the layout of an engine and to
Think Out Loud the process they would take to complete an
engine repair. With the assistance of a subject matter expert,
scientists can easily determine whether the participant is lacking
knowledge of the schematic layout of the engine or if the
mechanic is still unfamiliar with the repair process.

While these methods seem to be very insightful for measuring
users’ representations of systems, these methods of mental
model measurement may not have the ability to capture
the entirety of understanding, especially when measuring a
human’s understanding of another human being. Previous
research outlines the variability in mental models. Gentner
and Stevens (2014) suggest that mental models are unstable
mental representations. Additionally, mental models are often
incomplete and lack firm boundaries. This is especially true
when measuring one’s mental model of an unceasingly evolving
system. As teammates and humans continue to interact and
gain more information about each other, mental models change.
One teammate’s mental model of their fellow team member
may change as they continue to work together; experiences help
team members learn more about their teammates’ experiences
and knowledge. Additionally, as a team faces new challenges
together, new knowledge is built and then processed, changing
each member’s mental model of the world around them,
their task, and their teammates. Mental model measurements
also fail to capture attitudes and emotional relations between
human and human mental models; these aspects are key and
crucial to how mental models of teammates are used when
completing tasks and relating with one another. We theorize
that while mental model measurements may provide effective
probing mechanisms for a user’s understanding of a system,
it may lack the robustness to comprehensively measure and
capture a human’s “understanding” of another human. Therefore,
leading us to believe that understanding may be a bit more
intricate and sophisticated than a mental model representation,
especially when the subject of the mental model is complex and
continually evolving.

5.4. Un-testable Theories in Theory of Mind
The shallowness of these representations is also evident for
most measures of theory of mind (ToM), an extension of
mental models in that both consider the knowledge or awareness
of someone else, yet takes the additional step appreciating
how that framework may differ from your own experience.
This ability to recognize another’s mental state as different
from one’s own is most commonly operationally measured
through counterfactual reasoning or false belief (e.g., Sally-
Anne task; Baron-Cohen et al., 1985, though ToM has been
demonstrated across a host of situations), such completion of
another’s failed action and recognizing another’s capacity to have
concurrent yet conflicting desires (Beaudoin et al., 2020). This
ability to hypothesize about the knowledge and intentions of
another agent, whether living or synthetic, develops at an early
age (Beaudoin et al., 2020) and is a valuable skill for social
interactions and effective teaming. In human-human teams, ToM
is considered critical to ensuring constructive planning and
exchanges toward accomplishing a task, whereas the benefit in
human-machine interactions is somewhat more ill-defined yet
still seen as important (Benninghoff et al., 2013; Winfield, 2018).

As noted with mental models, numerous measures have
been developed to evaluate an individual’s capacity for ToM,
yet the overwhelming majority of these are only sensitive
to developmental stages and clinical populations (Beaudoin
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et al., 2020). Such tasks typically ask participants to adopt the
perspective of a character in the story who has incomplete
knowledge of the situation, then infer how that character is
likely to respond. Moreover, most such tasks rely on drawings
or situational schematics to describe a third-person account of a
fictional scenario, similar to mental model elicitation approaches.
However, imaging studies indicate such experiences fail to elicit
the same neural response evident for actual social interactions,
suggesting participants do not perceive these narratives in a way
that accurately replicates personal interactions (Byom andMutlu,
2013).

More interactive methods have been used, such as Meltzoff’s
behavioral re-enactment study (Meltzoff, 1995) which
demonstrated that 18-month-olds were able to correctly interpret
and complete target actions the experimenter initiated but did
not finish. Though these results are compelling, paralleling
the Chinese room experiment, it is impossible to conclude
whether the toddlers had actually inferred the experimenter’s
intention, or were simply imitating an adult, behavior common
for that age group (Jones, 2009). Additionally, studies involving
neuro-typical adults have evaluated both observed behaviors
in a communication game (Keysar et al., 2003) as well as self-
reported experiences during daily activities (Bryant et al., 2013),
and concluded that adults, although capable of forming a ToM,
actually used the skill very rarely during real-world interactions.

In light of these findings for ToM, as well as those related
to mental models outlined previously, the ability to generate
any type of insight into the thoughts and perceptions of
others is no doubt beneficial, both in casual and teaming
environments. Indeed, the capacity to form mental models and
ToM is particularly useful across a wide variety of inter-personal
situations, such as supporting effective negotiations (de Weerd
et al., 2017), and learning or adopting more sophisticated
societal norms for ethics and morality (Leslie et al., 2006). It is
important to note however that both mental models and ToM
are thought to be beneficial precisely because they may help
to avoid misunderstandings and failures in collaboration, yet
implementation of the metrics discussed above offers little in
the way of ensuring two agents have a shared understanding.
Thus, members of a team, either human and synthetic, may
adequately demonstrate these skills of social cognition, but this
should not be viewed as a proxy for ensuring all teammates have
a shared understanding.

6. IMPLIED DEFINITIONS OF
UNDERSTANDING: EXPLAINABLE AI

One might plausibly think that artificial intelligence is at its core
the study of systems that understand. (McDermott, 1976, p. 4)
notes a temptation to assume away the challenge, however: “If
a researcher tries to write an “understanding” program, it isn’t
because he has thought of a better way of implementing this well-
understood task, but because he thinks he can come closer to
writing the first implementation.” In the intervening half-century
we have not yet seen that first implementation.

Relatively little research in AI explicitly addresses
understanding in computer systems or its assessment (Thórisson
et al., 2016). Simon and Eisenstadt (2000) are an exception. They
propose that artificial understanding be treated no differently
from human understanding, with conventional psychological
tests being applied. They further propose that, in contrast
to human testing, we have direct access to an AI system’s
internal program structures and memory, which may provide
evidence for or against understanding: for example, whether
a necessary perceptual discrimination is present, or whether a
given capability has been learned or was pre-programmed.

Páez (2019), writing about systems that explain their own
behavior, is also an exception. Páez holds that explanation should
not be the goal for explainable AI (XAI) systems—rather, “a
pragmatic and naturalistic account of understanding” should
be the focus of the field. Such an account is currently lacking.
Research in XAI offers promising hints about understanding,
however, which we pursue in the remainder of this section. Our
coverage of XAI, to include intelligible systems (Páez, 2019;Weld
and Bansal, 2019), transparent systems (Castelvecchi, 2016),
and related categories, will be selective. More comprehensive
resources are Confalonieri et al. (2021)’s history, Vilone and
Longo (2020)’s systematic review, and Mueller et al. (2019)’s
meta-review and bibliography.

As a preliminary, note that it is common to probe a person’s
understanding of some phenomenon by requesting explanations,
as in the verbal protocols discussed in Section 5; every schoolchild
is familiar with “Explain this. . . ” test questions. This is a form
of abduction: we use the requests for explanations as probes,
with responses providing evidence for or against specific forms
of understanding. Now consider an XAI system, or even all XAI
systems. We can translate the implemented explanations and
explanatory processes into probes. Because we focus on probing
for failure, we do not need to attribute understanding to these
systems; rather, each failed probe is interpreted as demonstrating
a lack of understanding.

By “translating” an explanation into a probe, we mean that
an explanation is typically a carefully structured account that
contains different kinds of information. Each is a potential
type of probe. We outline major categories below. We label
each category, describe representative types of probes found in
the literature, and give an example template for a probe. For
simplicity, assume that the target phenomenon to be explained
(and implicitly, understood) is a behavior y of a given system, and
that a probe is of the properties of some set of measurements X of
the system or of the environment (which the system may be able
to observe or change).
Relevant information. In a symbolic reasoning system, a discrete
item of information may be relevant because it is required to
make a potential inference (Buchanan and Shortliffe, 1984) or
to enable a step in a plan (Fox et al., 2017; Chakraborti et al.,
2020). Image classification systems process information in which
sets of items may be relevant rather than individual items (e.g.,
edges or patches rather than pixels). A well-known non-XAI
example is Pomerleau (1992)’s discovery that ALVINN, an early
autonomous vehicle, had learned to use the amount of grass
visible alongside the road as a surrogate for the road’s curvature
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when it needed to turn, causing unexpected behavior in non-
grassy settings. Comparable examples are now commonplace
in XAI systems for deep learning (Xu et al., 2019). A simple
probe might take the form, “Does y vary predictably with
different values of X?” where X may represent different sets of
measured variables.
Relevant distinctions. In some cases, in particular for systems
that deal with non-discrete data, distinctions are needed even to
define relevant features. These include distinguishing features in
image classification, whichmay be highlighted as patches, colored
overlays, saliency maps, etc. (Nourani et al., 2019; Xu et al.,
2019), as briefly discussed in Section 6.1; differences between
term frequencies in text information retrieval (Hearst, 1995); and
threshold values or functions on continuous data (Buchanan and
Shortliffe, 1984). A probe might take the form, for X known to
be relevant information, “Does y vary predictably with different
possible values of X only within a specific range of X? What is
that range?”
Relevant relationships. Treating relationships as a separate
category from items of information is largely arbitrary, in
that the relationships themselves are information, as are
properties of relationships. The distinction can be convenient
for discussion, however. Relationships can be relevant in
different ways. In explainable AI planning (Fox et al., 2017),
different types of relationships between actions may be relevant:
temporal ordering; “causal” relationships, i.e., in a causal-
link planning sense (Young et al., 1994); the absence of
predecessor actions needed for a given action; etc. A naïve Bayes
classifier is considered highly explainable in that it explicitly
identifies input variables relevant to the output classification
variable (Kononenko, 2001). More generally, a Bayes network
may be interpreted as a causal model, in which the existence of
individual links is relevant: X may be the set of causes for y, for
example. A simple probe might take the form, for different X,
“If X were constant, at different possible values, would y vary
predictably all of the time? None of the time?”

The probes above address “local” aspects of a phenomenon.
Further, there is an emphasis on prediction, though predictive
accuracy is not generally considered sufficient for explanation or
understanding. We can also consider the more global structure
and content of an explanation as evidence for understanding.
Counterfactuals. An account of what would happen under
different conditions is important in explanation (e.g., Fox et al.,
2017; Korpan and Epstein, 2018) in part because it can be
evidence for understanding in terms of causation. Again, these
are the central probes and explanations sought for theory of mind
assessments. Some of the example probes expressed above have
this flavor, e.g., “If the values ofX were such and such, what would
happen to y?”
Generalizations and abstractions. If we are interested in y
under many different values of X, we can think of our goal as
mapping out the policy that governs the system’s behavior. A
large number of individual samples may be adequate, but a
more concise generalization may be possible, ideally one that
applies to values of X and y not yet observed. This is a goal
of ambitious work by Thórisson et al. (2016) in the area of
artificial general intelligence. They directly define understanding

of a phenomenon 8 as a set of models capable of predicting,
explaining, recreating, and achieving goals with respect
to 8.
Analogical cases. Relatedly, if a phenomenon is understood in
one domain, it may be possible to transfer that understanding to
a new domain. For example, in robot behaviors, navigating to a
given location and reaching out to grasp a target object generally
depend on different control mechanisms and environment
observations. Nevertheless the concept of “blockage of the path”
is a generalization for some kinds of failure (St. Amant et al.,
2019); each is a plausible analogy for the other.

For all of these types of probes, we require some ground truth
against which we can compare a probe’s output. Is a system
capable of evaluating relevance, making appropriate distinctions,
identifying related entities with respect to some phenomenon, in
particular its own behavior? Can it extrapolate, answer “What
if?” questions, explain how unlike situations actually share some
underlying similarities? As we walk through a set of probes, we
accumulate successes and failures, to give a better picture of the
performance of a system or a human.

6.1. The Interpretability (or Lack Thereof) of
Transformers
The success at demonstrating apparent understanding of
GPT-3 and its subsequent variations of sizes and styles of
transformer networks beg the question of its interpretability and
explainability. Consequently, there is emerging work seeking to
interpret the internal representations underlying transformers
success; it is an active area in which researchers are starting
to probe AI understanding and might further benefit from
organizing the investigations by the systematic areas of probing
outlined above.

Self-attention (Vaswani et al., 2017), the driving force behind
the power of the transformer, has come out in front as an
interpretable neural network due to its ability to link network
weights to specific natural language tokens or pixels in an
image; that is, it brings attention to what is important. This
view is common in the literature (e.g., Xu et al., 2015; Martins
and Astudillo, 2016; Choi et al., 2017; Li et al., 2017; Xie
et al., 2017; Vig, 2019; Tang et al., 2020). To quote Li and
colleagues: “Attention provides an important way to explain the
workings of neural models, at least for tasks with an alignment
modeled between inputs and outputs, like machine translation or
summarization” (Li et al., 2017, p. 2).

In reality, displaying this interpretability is not as simple as
one may be led to believe. However, we posit that attempts
to display attention weight relationships for interpretability
are an example of attempts to probe the transformer’s
understanding. Specifically, they are probing the relevant
relationships. For example, Jain and Wallace (2019) performed
extensive experiments across a variety of NLP tasks that aim
to assess the validity of using attention weights as explanations
for the network’s predictions. They tested two lines of thinking.
Attention weights should correlate with feature importance
measures, and counterfactual attention weights should lead
to corresponding changes in prediction. Their results suggest
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that even though these attention models consistently lead
to indisputable improved performance on NLP tasks, the
transparency, explainability, and interpretability of these models
is questionable at best, especially when these models are deep and
have complex connections.

Brunner et al. (2020) found similar results in their study
of identifiability of attention weights and token embeddings.
They found that attention weights are not identifiable, i.e., there
are infinitely many attention distributions that can lead to the
same internal representation and model output. However, they
present Hidden Token Attribution, a gradient-based method
to quantify information mixing and showcase its ability to
investigate contextual embeddings in self-attention models. It
seems hope is not lost on the interpretability of transformers.
Chefer et al. (2021) recognize the difficulty in following
connections of complex networks and have benchmarked their
method on recent visual Transformer networks (such as ViT
model), as well as on text classification problems (BERT).
They have demonstrated the validity of their approach over
existing explainability methods. In the world of transformers and
attention, the question of understanding is still up for debate.

7. DISCUSSION AND CONCLUSION

We have outlined herein a set of natural language probe
structures that can be adapted to different domains and
applied to both human and AI understanding. Critical
to evaluating theories about understanding, these can be
defined independently of proposed theories and prior to
any empirical evaluations. They provide the structure for
independent evaluations. They also have the flexibility to
adapt to different contexts for assessing understanding to
provide a consistently measured body of evidence. Thus,
consistent with Hannon (2021)’s recent argument, we can
craft that set of criteria to define understanding through the
various degrees and abilities (plural) enabled by the process of
understanding.

We have argued here that natural language is the core
method for probing understanding. We have highlighted that
while there are many ways of showing understanding (e.g.,
performing well on a task), we are suggesting that language,
because it is the most familiar symbolic system to humans, is
the best, if not the only, method for probing understanding.
We should highlight that by natural language we do not mean
“perfect spoken language.” First, we realize that language can be
extremely nuanced with voice tone, gesture, etc. Second, there
are many forms of language that can convey many of the same
signals—sign language, text, etc. Forms of language that can take
advantage of multi-modal cues may convey understanding with
more efficient communications. Thus, we are proposing that
the more language-cues (e.g., spontaneous gesture, intonation)
that are available, the more nuanced and better probes of
understanding will be.

Additional complexity in structuring probes for elucidating
understanding arises because sometimes we are probing
understanding of the external world or mechanical systems,

and sometimes we are probing an agent’s understanding of
another human or intelligent system, as well as whether teamed
intelligent agents share mutual understanding. The process
of understanding has a flexibility that can support reasoning
and successful interpretation of all these types. Probes will
need to flexibly adapt, because probes designed for one type
of understanding may not elucidate another. In the present
work, we have not yet outlined a way to translate the
probe structures into specific experimental paradigms. There
is likely not a single way to do this; it will depend on a
number of factors, like whether you are probing humans or
intelligent agents, whether you have spoken or strictly typed
communications (or a combination of modalities), and whether
the probes are only posed in conversation/communication
tasks or if there are additional task completion targets or
performance metrics to pair with the probes. Elaborating
potential paradigms for putting the probes into practice is left for
future work.

There remain some intelligent behaviors that systematic
probing may still struggle to help measure or explain as the
process of understanding unfolds. Consider the sudden ability to
solve an insight problem (Metcalfe, 1986; Metcalfe and Wiebe,
1987). People are generally unable to articulate how they are
trying to reason through or solve a problem prior to insight.
After the “aha” moment however, people can explain the solution
verbally. This is further evidence that understanding requires
natural language expression. Not enough of the process has
unfolded when the person cannot explain their understanding;
the ability to articulate understanding marks achieving a depth of
understanding that can be probed.

One possible critique of our proposal that natural language is
the coremethod for probing understanding is that understanding
can be demonstrated by performance. For example, if a robot
observes a tennis player and learns how to hit various tennis
shots, does it understand how to play tennis? In this scenario,
the robot could have simply learned various cues for how to
hit the ball (stimulus-response) or even how to move itself to
win a point. However, we would argue that unless it could
use symbolic communication—language of some sort—it does
not actually understand the game of tennis (or even the shots
it can make). For example, if the robot could describe why
it would lob a ball over a net player, we would judge it to
have a much better understanding of the game than if the
robot could just perform the action at the right time. Along
these lines, Baker et al. (2020) demonstrated the emergence
of intelligent behaviors in reinforcement learning agents that
did not have any NLP capabilities. This seems to be a counter
argument to our natural language requirement. While the
agents do move through several levels of sophistication in
their coordinated activities, they do this with perfect internal
knowledge of the states of each other and the environment. Take
away any of this knowledge, and the coordination will falter.
This suggests that the need to establish understanding within and
between agents is the consequence of humans and most systems
lacking perfect knowledge of the states of the other agents.
That information must be communicated through a common
symbolic system.
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Concept learning highly depends on multisensory integration. In this study, we propose

a multisensory concept learning framework based on brain-inspired spiking neural

networks to create integrated vectors relying on the concept’s perceptual strength

of auditory, gustatory, haptic, olfactory, and visual. With different assumptions, two

paradigms: Independent Merge (IM) and Associate Merge (AM) are designed in the

framework. For testing, we employed eight distinct neural models and three multisensory

representation datasets. The experiments show that integrated vectors are closer to

human beings than the non-integrated ones. Furthermore, we systematically analyze the

similarities and differences between IM and AM paradigms and validate the generality of

our framework.

Keywords: concept learning,multisensory, spiking neural networks, brain-inspired, IndependentMerge, Associate

Merge

1. INTRODUCTION

Concept learning, or the ability to recognize commonalities and accentuate contrasts across a group
of linked events in order to generate structured knowledge, is a crucial component of cognition
(Roshan et al., 2001). Multisensory integration benefits concept learning (Shams and Seitz, 2008)
and plays an important role in semantic processing (Xu et al., 2017;Wang et al., 2020). For example,
when we learn the concept of “tea,” acoustically, we will perceive the sound of pouring water and
brewing, the sound of clashing porcelain, the sound of drinking tea; on taste, we can feel the tea is
a bit bitter, astringent or sweet; in touch, tea is liquid and we can feel its temperature; on smell, we
can perceive the faint scent and visually, it often appears together with the teapot or tea bowl, and
the tea leaves will have different colors. Combining information from multiple senses can produce
enhanced perception and learning, faster response times, and improved detection, discrimination,
and recognition capabilities (Calvert and Thesen, 2004). In the brain, multisensory integration
occurs mostly in the superior colliculus according to existing studies (Calvert and Thesen, 2004;
Cappe et al., 2009). Multisensory integration is a field that has attracted the interest of cognitive
psychologists, biologists, computational neuroscientists, and artificial intelligence researchers. The
term “multisensory concept learning” is used in this work to describe the process of learning
concepts using a model that mimics humans and combines information from multiple senses.

For the computational models of multisensory integration, cognitive psychologists’ models
are usually focused on model design and validation from the mechanism of multisensory
integration. These models are highly interpretable, taking neuroimaging and behavioral studies
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into consideration. The cue combination model based on
Bayesian decision theory is a classical model for analyzing
multisensory integration in cognitive psychology. It mainly
models the stimuli of different modalities as the likelihood
functions of Gaussian (Ursino et al., 2009, 2014) or Poisson
(Anastasio et al., 2014) distributions with different parameters,
and calculates the best combination of each modality that makes
the maximum posterior distribution through the assumption
of conditional independence and Bayesian rules. Anastasio et
al. built a model of visual and auditory fusion that combines
neuronal dynamic equations with feedback information, and
this model verified that multimodal stimuli have less response
time than unimodal stimuli (Anastasio et al., 2014). Parise et
al. proposed multisensory correlation detector based models to
describe correlation, lag, and synchrony across the senses (Parise
and Ernst, 2016). A purely visual haptic prediction model is
presented by Gao et al. (2016) with CNNs and LSTMs, which
enables robots to “feel” without physical interaction. Gepner et al.
(2015) developed a linear-nonlinear-Poisson cascade model that
incorporates information from olfaction and vision to mimic
Drosophila larvae navigation decisions, and the model was able
to predict Drosophila larvae reaction to new stimulus patterns
well.

For artificial intelligence researchers, they have proposed
different types of multisensory integration models based on the
available data and machine learning methods, such as direct
concatenation (Kiela and Bottou, 2014; Collell et al., 2017; Wang
et al., 2018b), canonical correlation analysis (Silberer et al.,
2013; Hill et al., 2014), singular value decomposition of the
integration matrix (Bruni et al., 2014), multisensory context (Hill
and Korhonen, 2014), autoencoders (Silberer and Lapata, 2014;
Wang et al., 2018a), and tensor fusion networks (Zadeh et al.,
2017; Liu et al., 2018; Verma et al., 2019). These works are mostly
focused on concept learning and sentiment analysis tasks and are
based on modeling of speech, text, and image data, which are
commonly utilized in AI.

To our knowledge, no work exists to model the five
senses of vision, hearing, touch, taste, and smell together.
This might be because controlling elements for experimental
design is challenging for cognitive psychologists, while data
for some modalities is difficult to get using perceptrons
for AI researchers. Meanwhile, cognitive psychologists
have published several multisensory datasets by asking
volunteers how much they perceive a specific concept
through their auditory, gustatory, tactile, olfactory, and
visual senses in order to establish the strength of each
modality. This provides a solid basis for the design of a
multisensory integration model that includes these five
modalities. In this article, we will model multisensory
integration using brain-like spiking neural networks and
merge input from five different modalities to generate integrated
representations.

This paper is organized as follows: Section 2 will introduce
relevant studies to our model, such as multisensory datasets
and fundamental SNN models; Section 3 will describe the
multisensory concept learning framework based on SNNs, which
includes the IndependentMerge and AssociateMerge paradigms.

Section 4 will exhibit the experiments, and the final section will
explore the future works.

2. RELATED WORKS

2.1. Multisensory Concept Representation
Datasets
Cognitive psychologists label the multisensory datasets of
concepts by asking volunteers how much each concept is
acquired through a specific modality and introducing statistical
methods to establish the representation vector for each concept.
The pioneering work in this area is by Lynott and Connell (2013),
who proposed modality exclusivity norms for 423 adjective
concepts (Lynott and Connell, 2009) and 400 nominal concepts
on strength of association with each of the five primary sensory
modalities (auditory, gustatory, haptic, olfactory, visual). In this
article, we combine these two datasets of their previous works
and denote them as LC823. Lancaster Sensorimotor Norms
were published by Lynott et al. (2019), which included six
perceptual modalities (auditory, gustatory, haptic, interoceptive,
olfactory, visual) and five action effectors (foot/leg, hand/arm,
head, mouth, torso). This dataset (we denote as Lancaster40k)
is the largest ever, with 39,707 psycholinguistic concepts
(Lynott et al., 2019). Binder et al. (2016) constructed a set
of brain-based componential semantic representation (BBSR)
with 65 experienced attributes, including sensory, motor, spatial,
temporal, affective, social, and cognitive experiences, relying
on more recent neurobiological findings. This dataset contains
535 concepts and does an excellent work of separating a priori
conceptual categories and capturing semantic similarity (Binder
et al., 2016). Figure 1 shows the the concept “honey” in the
multisensory concept representation datasets mentioned.

We’ll concentrate on the effect of five forms of senses in this
article: vision, touch, sound, smell, and taste. In BBSR, we employ
the average value of the sub-dimensions corresponding to these
five senses, while using the first five dimensions of Lancaster40k.

2.2. Basic Neuron and Synapse Models
Spiking neural networks (SNNs) are commonly referred to
be the third generation of neural network models since
theyăareăinspired by current discoveries in neuroscience (Maass,
1997). Neurons are the basic processing units of the brain. They
communicate with each other via synapses. When the membrane
potential reaches a threshold, a spike is produced. External
stimuli are conveyed by firing rate and the temporal pattern of
spike trains (Rieke et al., 1999; Gerstner and Kistler, 2002). SNNs
integrate temporal information into the model and are capable
of accurately describing spike timing with dynamic changes in
synaptic weights which are more biologically plausible. We will
use SNNs as the foundation of our model to build a human-like
multisensory integration concept learning framework. Here, we
briefly outline the neural and synaptic models that will be used in
this research.

2.2.1. IF Neural Model
The integrate-and-fire (IF) model is a large family of models
which assumes that a membrane potential threshold controls the
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FIGURE 1 | The concept “honey” in multisensory datasets.

spikes of neurons. A spike is fired when the somatic membrane
potential exceeds the threshold, and the membrane potential
is resumed to reset potential (Gerstner and Kistler, 2002). The
neural processing is properly formalized by the model. In this
article, we follow a standard implementation (Troyer and Miller,
1997), and the membrane potential v(t) obeys

τIF
dv(t)

dt
= vrest − v(t)+ ge(t)(Ee − v(t))

if v(t) > vth, v(t)← vr

(1)

with the membrane time constant τIF = 20 ms, the resting
potential vrest = −14 mV , the threshold for spike firing vth = 6
mV , the reset potential vr = 0 mV , and excitatory potential
Ee = 0 mV . Synaptic inputs are modeled as conductance ge

changes with τe
dge
dt
= −ge, where τe = 5mV .

2.2.2. LIF Neural Model
The leaky integrate-and-fire (LIF) neuron model is one of the
most popular spiking neuron models because it is biologically
realistic and computationally easy to study and mimic. The LIF
neuron’s subthreshold dynamics are described by the equation
below:

τLIF
dv(t)

dt
= vrest − v(t)+ RmI

if v(t) > vth, v(t)← vr

(2)

In this paper, the membrane resistance constance Rm = 1, τLIF =
20, vrest = 1.05, vth = 1, and vr = 0.

2.2.3. Izhikevich Neural Model
Izhikevich model was first proposed in 2003 to replicate spiking
and bursting behavior of known types of cortical neurons.
The model combines the biological plausibility of Hodgkin
and Huxley (1952) dynamics with the computing efficiency
of integrate-and-fire neurons (Izhikevich, 2003). Biophysically
accurate Hodgkin-Huxley neural models are reduced to a

TABLE 1 | Izhikevich models.

Neurons Izhikevich parameters

a b c d

RZ (resonator) 0.10 0.25 −65 2

FS (fast spiking) 0.10 0.20 −65 2

IB (intrinsically bursting) 0.02 0.20 −55 4

LTS (low-threshold spiking) 0.02 0.25 −65 2

RS (regular spiking) 0.02 0.20 −65 8

CH (chattering) 0.02 0.20 −50 2

TC (thalamo-cortical) 0.02 0.25 −65 0.05

two-dimensional system of the following dynamics ordinary with
bifurcation methods:

dv(t)

dt
= 0.04v(t)2 + 5v(t)+ 140− u(t)+ I,

du

dt
= a(bv(t)− u(t))

if v(t) > vth, v(t)← c and u(t)← u(t)+ d

(3)

where the time scale of the recovery variable u is described by
the parameter a, the sensitivity of the recovery variable u to
subthreshold changes of the membrane potential v is described
by the parameter b, the parameter c defines the membrane
potential v’s after-spike reset value, which is induced by quick
high-threshold K+ conductances and after-spike reset of the
recovery variable u induced by slow high-threshold Na+ and K+

conductances is described by the parameter d (Izhikevich, 2003).
The model simulates the spiking and bursting activity of

known kinds of cortical or thalamic neurons such as resonator
(RZ), fast spiking (FS), intrinsically bursting (IB), low-threshold
spiking (LTS), regular spiking (RS), chattering (CH), and
thalamo-cortical (TC) based on these four parameters. These
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models are employed extensively in our work and details are
illustrated in Table 1.

2.2.4. STDP Synapse Models
Spike-timing-dependent plasticity (STDP) is a biological process
that modifies the strength of neural connections in the brain.
Learning and information storage in the brain, as well as the
growth and refinement of neural circuits throughout brain
development, are thought to be influenced by STDP (Bi and Poo,
2001). The typical STDP model is used in this research, and the
weight change 1w of a synapse relies on the relative time of
presynaptic spike arrivals and postsynaptic spike arrivals. 1w =
6tpre6tpostW(tpost − tpre), where the functionW(·) is defined as:

W(1t) =

{

A+exp(
1t
τ+
) 1t > 0

−A−exp(−
1t
τ−
) 1t < 0

(4)

When implement STDP, we follow the way of Brian2 (Stimberg
et al., 2019), which defines two variables apre and apost as the
“traces” of of pre- and post-synaptic activity, governed by the
following differential equations

τpre
apre

dt
= −apre

τpost
apost

dt
= −apost

(5)

Once a presynaptic spike occurs, the presynaptic trace is updated
and the weight is modified according to the rule

apre ← apre + Apre

w← w+ apost
(6)

And when a postsynaptic spike occurs:

apost ← apost + Apost

w← w+ apre
(7)

This is proved to be equivalent for the two kinds of STDP
formulations. And, in this article τpre = τpost = 1ms.

3. THE FRAMEWORK OF MULTISENSORY
CONCEPT LEARNING FRAMEWORK
BASED ON SPIKING NEURAL NETWORKS

We present a multisensory concept learning framework based on
SNNs in this part. The model’s input is a multisensory vector
labeled by cognitive psychologists, with an integrated vector as
the output following SNNs merging. Since there is no biological
study to show whether the information of multiple senses
is independent or associated before integration, two different
paradigms: Independent Merge (IM) and Associate Merge (AM)
are designed in our framework. The types of inputs and outputs
are the same for both paradigms, but the architectural design of
SNNs is different. These two paradigms involve the same phase
in the framework, and only oneăparadigm is chosen for concept
integration, depending on the assumption that whether multiple
sensory input is independent before integration.

Figure 2 illustrates the workflow: Firstly, for each modality
of the concept, we employ a neural model and transform
its perceptual strength in the concept’s multisensory vector
into external stimuli to the neuron (we work on five sensory
modalities: auditory, gustatory, haptic, olfactory, visual, so
the dimensions of the multisensory vector is five); Secondly,
the architecture of SNN is designed according to different
assumptions. We choose the IM paradigm if we assume that
multiple senses are independent of each other before fusion, and
we choose the AM paradigm if we assume that multiple senses
are associated with each other; Thirdly, we specify the neuron
model in SNN and sequentially feed concepts to the network,
with STDP rules adjusting the network’s connection weights.
Given the running interval [0,T], we record the spike trains
of each neuron; Finally, we convert the spike trains of specific
neurons into binarycode as the final integrated representation.
The framework is described in detail with the IM and AM
paradigms individually in the following sections.

3.1. The Framework
3.1.1. Independent Merge
The IM paradigm is founded on the commonly used cognitive
psychology assumption that information for each modality of
the concept is independent before integration. It’s a two-layer
spiking neural network model, with five neurons corresponding
to the stimuli of the concept’s five separate modal information
in the second layer, and a neuron reflecting the neural state
after multisensory integration in the second layer. We record the
spiking train of the postsynaptic neuron and transform them into
integrated vectors for the concept.

For each concept, we get its representation from human-
labeled vectors, Em = [mA,mG,mH ,mO,mV ]. The subscripts
here represent the concept’s perceptual strength as indicated by
auditory, gustatory, haptic, olfactory, and visual senses. We min-
max normalize the multisensory representation of the concept in
the dataset as input to the model during the data preparation
stage such that each value of the vector is between 0 and 1.
In LC823, for instance, the vector for the concept “honey” is
[0.13, 0.95, 0.57, 0.75, 0.80]. We employ LIF or Izhikevich as
presynaptic neural models and IF as postsynaptic neural models
independently for the generality of the framework. Initially, for
each presynaptic neuron, we regard the current I = mi ∗ Iboost
as the stimuli to the neuron where i ∈ [A,G,H,O,V] The the
conductance ge of the postsynaptic neuron is updated whenever
the presynaptic neuron fires as ge ← ge + 1Wij, and the
postsynaptic neuron generates spikes based on the IF model.
The synaptic strength between the postsynaptic neuron and the
presynaptic neuron is referred to as the weight 1Wij in this
case. The initial weights between presynaptic and postsynaptic
neurons Wi

0 =
gi

6n
i gi

where gi =
1
σ 2
i

,σ 2
i represents the variance

for each kind of multisensory data. They are calculated using
the Bayesian formula and the assumption that each modal is
independent before to fusion (details in the Appendix). At the
same time, the spike trains of presynaptic and postsynaptic
neurons will dynamically adjust to the weights in accordance
with the STDP law. During [0,T], we record the spike train of
the postsynaptic neuron Spost([0,T]) and transform them into
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FIGURE 2 | The framework of multisensory concept learning framework based on spiking neural networks. Firstly, for each modality of the concept, we employ a

neural model and transform its perceptual strength in the concept’s multisensory vector into external stimuli to the neuron; Secondly, the architecture of SNN is

designed according to different assumptions. We choose the IM paradigm if we assume that multiple senses are independent of each other before fusion, and we

choose the AM paradigm if we assume that multiple senses are associated with each other; Thirdly, we specify the neuron model in SNN and sequentially feed

concepts to the network, with STDP rules adjusting the network’s connection weights. Given the running interval [0,T ], we record the spike trains of each neuron;

Finally, we convert the spike trains of specific neurons into binarycode as the final integrated representation.

binarycode Bpost([0,T]), as the final integration representation
for the concept in the following manner:

Bpost([0,T]) = [T (Spost((0, tol])), T (Spost((tol, 2 ∗ tol])), · · · ,

T (Spost(((k− 1) ∗ tol, k ∗ tol])), · · · , T (Spost((⌊
T

tol
⌋ ∗ tol,T]))]

(8)
Here T (interval) operationmeans that if there is any spikes in the
interval, then the bit is 1, otherwise it is 0.

3.1.2. Associate Merge
The AM paradigm assumes that the information for each
modality of the concept is associate before integration. It’s a
five-neuron spiking neural network model, with five neurons
corresponding to the stimuli of the concept’s five separate modal
information. They are connected to one another, and there are no
self-connections. We record the spiking trains of all neurons and
transform them into integrated vectors for the concept.

We use LIF or Izhikevich neural models to model each
neuron for the generality of the framework. For each concept, we
get its normalized representation from human-labeled vectors,
Em = [mA,mG,mH ,mO,mV ]. Initially, for each neuron i ∈
[A,G,H,O,V], we consider I = mi ∗ Iboost as the stimuli. The
the current I of the postsynaptic neuron is updated whenever
the presynaptic neuron fires as I ← I + 1Wij. And the
postsynaptic neuron generates spikes based on the its model.
The weight Wij is the synaptic strength between the presynaptic
neuron and the postsynaptic neuron. The initial value for the
weight is determined by the correlation each modality pair
overall the representation dataset, i.e., W0 = Corr(i, j) where
i, j ∈ [A,G,H,O,V], which is different from AM paradigm.
Simultaneously, presynaptic and postsynaptic neurons’ spike
trains will dynamically change to the weights in accordance with
the STDP law. We denote Si([0,T]) as the ith neuron’s spike

trains during [0,T] and corresponding binary vector Bi([0,T]).
And we record the spike trains of all neurons, transform them
into binarycode Bi([0,T]) and concatenate them as the final
integration vector B([0,T]) in the following way:

Bi([0,T]) = [T (Si((0, tol])), T (Si((tol, 2 ∗ tol])), · · · ,

T (Si(((k− 1) ∗ tol, k ∗ tol])), · · · , T (Si((⌊
T

tol
⌋

∗ tol,T]))]

(9)

B([0,T]) = [BA([0,T])⊕ BH([0,T])⊕ BG([0,T])⊕ BO([0,T])

⊕BV ([0,T])] (10)

4. EXPERIMENTS

4.1. Concept Similarity Test
Concept similarity test is commonly used in the field of
artificial intelligence to evaluate the effectiveness of system-
generated representations (Agirre et al., 2009). Generally,
humans score the similarity of a particular concept pair, while the
concept pair corresponds to the system-generated representation
to calculate the similarity score. After the two scores are
ranked in the measure dataset, the Spearman’s correlation
coefficient is calculated to reflect how close the system-generated
representations are to humans. In this article, we evaluate the
closeness of the concepts’ original or multisensory integration
representations and human beings with WordSim353 (Agirre
et al., 2009) and SCWS1994 (Huang et al., 2012).

4.1.1. The Experiment
To thoroughly test our framework, we did experiments for
IM and AM paradigms with three multisensory datasets
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(BBSR, LC823, Lancaster40k) respectively and analyzed the
effectiveness differences between the representations after SNN
integration and the original representations. In the experiments,
both IM and AM paradigms involve a unique parameter in
the process of conversion from spike trains to binarycode:
the tolerance tol. It represents the size of the reducing
window for converting spike trains in the time interval
into binarycode, which reflects the strength of compressing
the spike sequence into a integrated binarycode. In each

dimension of the integrated vector, a larger tol signifies
a higher degree of information compression and a bigger
reducing window, and vice versa. But, if tol is too small, the
representation vector’s dimensionality will be too large, and
if tol is too big, the diversity of all representations will be
damaged. Therefore, we traverse tol across the range [0, 500]
while restricting diversity to the range [0.05, 0.95], and the
results indicate the present model’s ideal results as well as
the matching tol.

TABLE 2 | Concept similarity test results.

Merge way Model BBSR LC823an Lancaster40k

Tol WordSim353 SCWS1994 Average Tol WordSim353 SCWS1994 Average Tol WordSim353 SCWS1994 Average

Origin – – 0.4182 0.5838 0.5010 – 0.1321 0.5525 0.3423 – 0.2640 0.3974 0.3534

AM Izh-RZ 93 0.3455 0.6089 0.4772 165 0.3804 0.4260 0.4032 9 0.3560 0.3295 0.3427

Izh-FS 95 0.4955 0.5659 0.5307 312 0.4223 0.3788 0.4006 9 0.3787 0.3471 0.3629

Izh-IB 384 0.5455 0.5870 0.5662 32 0.3696 0.5277 0.4486 25 0.3388 0.3818 0.3603

Izh-LTS 174 0.5068 0.6127 0.5598 17 0.3107 0.5390 0.4249 16 0.3557 0.3629 0.3593

Izh-RS 366 0.4955 0.5857 0.5406 84 0.5179 0.5271 0.5225 55 0.3206 0.3708 0.3457

Izh-CH 170 0.4273 0.5928 0.5100 7 0.1089 0.4884 0.2986 14 0.3150 0.3349 0.3249

Izh-TC 148 0.5068 0.6103 0.5586 6 0.2214 0.5181 0.3698 7 0.3979 0.3364 0.3672

LIF 187 0.5727 0.6927 0.6327 330 0.5036 0.6330 0.5683 86 0.1788 0.3500 0.2644

IM Izh-RZ 17 0.4636 0.634 0.5488 10 0.5545 0.5618 0.5581 4 0.2026 0.3139 0.2583

Izh-FS 17 0.4636 0.6388 0.5512 10 0.5545 0.5617 0.5581 21 0.3371 0.2910 0.3140

Izh-IB 7 0.5477 0.5988 0.5733 24 0.5509 0.5491 0.5500 31 0.1597 0.3040 0.2319

Izh-LTS 83 0.5000 0.6417 0.5708 18 0.6080 0.5361 0.5721 56 0.3610 0.3448 0.3529

Izh-RS 196 0.5023 0.5530 0.5276 163 0.4830 0.4613 0.4722 68 0.0757 0.2959 0.1858

Izh-CH 94 0.4659 0.5786 0.5222 8 0.5696 0.4746 0.5221 50 0.3843 0.3813 0.3828

Izh-TC 17 0.4636 0.6125 0.5381 5 0.4509 0.5310 0.4909 20 0.3387 0.3042 0.3215

LIF 143 0.4205 0.6167 0.5186 3 0.0643 0.5672 0.3158 324 0.0018 0.1481 0.1965

The bold values indicates the current measure dataset reflect the best results, while the underlined values imply that the multisensory integrated representation is closer to humans than

the original representation.

FIGURE 3 | Modality exclusivity demonstration. Modality exclusivity (ME) is a metric measuring how much of a concept is perceived through a single perceptual

modality. For each concept, the value of ME is calculated as the perceptual strength range divided by the sum, and spanning from 0 to 100% for completely

multimodal to completely unimodal perception.
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We used the evaluation datasets WordSim353 and SCWS1994
for testing, and the inputs of the models were from different
sources of multisensory representation datasets: BBSR, LC823an,
Lancaster40k, and tested using two paradigms, IM and AM,
respectively. For the AMparadigm, Izhikevich’s sevenmodels and
LIF model were used, while for the IM paradigm, IF model were
used for postsynaptic neurons and Izhikevich’s seven models and
LIF model were used for presynaptic neurons. The running time
of all the tests is 100 ms and Iboost = 100.

4.1.2. Results and Analysis
From the overall results for both IM and AM paradigms,
the integrated vectors are closer to humans than the
original vectors based on our models: 37 submodels
achieved better results for a total of 48 tests for both IM
and AM, as Table 2 shows. In terms of overall dataset,
15/16 tests work better for the BBSR dataset, 14/16 tests
work better for LC823an, and 8/16 tests work better for
Lancaster40k.

In almost all experiments, multisensory integrated
representations based on our framework outperform
unintegrated ones, with the exception of the instability
shown in IM and AM paradigms when Lancaster40k
is employed as the input. For any of the multisensory
vectors, an integration way could be found to improve their
representations.

4.2. Comparisons Between IM and AM
Paradigms
Unlike the analysis of the macro-level above, in this section we
introduce the concept feature norms to compare IM and AM
paradigms from the micro-level perspective of each concept.
Concept feature norms are a way of representing concepts
by using standardized and systematic feature descriptions that
mirror human comprehension. The similarities and differences
of concepts are related to the intersection and difference
of concept feature norms. McRae’s concept feature norms,
introduced by McRae et al. (2005), are the most prominent
work in this area. They not only supplied 541 concepts
with feature norms, but also proposed a methodology for
generating them. For example, the feature norms of the
concept “basement” are “used for storage,” “found below ground,”
“is cold,” “found on the bottom floor,” “is dark,” “is damp,”
“made of cement,” “part of a house,” “has windows,” “has a
furnace,” “has a foundation,” “has stairways,” “has walls,” “is
musty,” “is scary,” and “is the lowest floor.” Another semantic
feature norms dataset analogous to McRae is CSLB (Centre
for Speech, Language, and the Brain). They collected 866
concepts and improved the feature normalization and feature
filtering procedure (Devereux et al., 2014). The McRae and
CSLB criteria for human conceptual cognition are used in this
research to investigate how each concept is similar to human
cognition.

We compare and analyze IM and AM paradigms from
two perspectives. First, we use the perceptual strength-related
metric Modality Exclusivity to compare the two paradigms

TABLE 3 | The sensibility of IM and AM results to modality exclusivity.

Izhkevich model
AM IM

McRae CSLB McRae CSLB

RZ 0.0149 −0.0987 −0.1524 −0.4848

FS 0.2679 0.0901 −0.134 −0.4447

IB −0.0559 0.0191 −0.2672 −0.4986

LTS 0.2113 0.035 −0.12 −0.0453

RS 0.1943 −0.0087 −0.006 −0.1997

CH 0.0988 0.0197 0.0294 0.0964

TC 0.2078 0.0398 −0.2115 −0.4761

to explore the sensitive of them to the concepts’ strength
distribution of multisensory information. Then, to assess the
generality of the IM and AM paradigms, we introduce nine
psycholinguistic dimensions derived from the concept’s nature,
which are unrelated to perceptual strength.

4.2.1. Modality Exclusivity
Modality Exclusivity (ME) is a metric measuring how much
of a concept is perceived through a single perceptual modality
(Lynott and Connell, 2013). For each concept, the value of ME is
calculated as the perceptual strength range divided by the sum,
and spanning from 0 to 100% for completely multimodal to
completely unimodal perception. Figure 3 show some examples.

In the concept feature norms dataset, we first obtain all
similar concepts csimilar for each concept c based on the
number of feature overlaps and record their rank list Rsimilar

c

sorted by similarity. Then, for all concepts, the corresponding
multisensory integrated binary representations BIM and BAM

are produced using the IM and AM paradigms, respectively.
Next, for concept c, its k similar concepts ck similar

IM and ck similar
AM

are computed based on integrated binarycodes and harming
distance, respectively. We query the rank of these k similar
concepts in the feature norms space Rsimilar

c and take the average
value, denoted as kARcIM and kARcAM , which reflects the closeness
of the multisensory representations to human cognition using
two ways of integration in our framework. Smaller values of
kAR indicate closer to human cognition at the microscopic
level. Finally, we focus on all concepts in the representation
dataset and calculate the correlation coefficients between the
kARcIM or kARcAM arrays obtained using the above approach and
the ME arrays corresponding to the concepts. This coefficient
reflects the correlation between the two different multisensory
concept integration paradigms and modal exclusivity. And in
this experiment we only test the Izhikevich model and set
k to 5.

The results in Table 3 reveal the difference between IM
and AM paradigms. The IM paradigm has a stronger negative
correlation in both concept feature norms test sets, but the
AM paradigms has a slightly positive correlation. We investigate
this discrepancy further by viewing the FS model in detail,
as shown in Figure 4. The results reveal that for concepts
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FIGURE 4 | The correlation between ME and average of five similar concept rankings.

with higher ME (such as “spring,” “thunder,” “yellow,” “debate,”
“clang” in Figure 3), the IM paradigm is better at multisensory
integration. While the AM paradigm is less input biased
for each modality, it benefits the concept of uniform modal
distribution (such as “theory,” “knowledge,” “pig,” “duck,” “lake”
in Figure 3).

4.2.2. Generality Analysis
The ME metric used in the previous experiments is a perceptual
strength-related indicator for the concept representation. In this
part, we will test the framework from the input concept itself.
And we introduce Glasgow norms which are a set of normative

assessments on nine psycholinguistic dimensions: arousal
(AROU), valence (VAL), dominance (DOM), concreteness
(CNC), imageability (IMAG), familiarity (FAM), age of
acquisition (AOA), semantic size (SIZE), and gender association
(GEND) for 5,553 concepts (Scott et al., 2019).

In the same manner as the previous experiment. In concept
feature norms, we first record all similar concepts for each
concept, then sort them by similarity and rank them. Then, for
IM and AM paradigms, we use the same concept input, get the
integration vector for each concept, find their k similar, and
get the mean value of their ranking in concept feature norms
as kARcIM and kARcAM . Finally, we determine the correlation
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FIGURE 5 | The heatmap of generality analysis results.

FIGURE 6 | The beeswarm of correlation distribution.
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coefficient between each psychological characteristic and the
concept’s average ranking value kAR for the two paradigms. We
still only test the Izhikevich model in this experiment, and the
value is set to 5.

We used heatmaps (Figure 5) to visualize the correlation
coefficients between the IM and AM paradigms’ kAR and
nine psycholinguistics in the two concept feature norms sets
McRae and CSLB. Additionally, we omit the adopted Izhikevich
submodels and provide the correlation coefficients using a
beeswarm (Figure 6) to explain them more clearly.

According to the experimental results presented, the absolute
values of all correlation coefficients are<0.3. The effect of vectors
after integration of either IM or AM paradigms does not have
any relationship with the nature of the concepts for several
dimensions, including AOA, AROU, FAM, IMAG, and VAL.
This indicates that both paradigms have good generality and the
framework is not affected by the concepts themselves.

5. DISCUSSION

In this study, we propose a SNN-based concept learning
framework for multisensory integration that can generate
integration vectors based on psychologist-labeled multimodal
representations. Vision, hearing, touch, smell, and taste are
among the five modalities used in our research, which also
includes a brain-like SNN model. We intend to add more
brain-like processes in the future, such as multisensory fusion
plasticity. The multisensory data we currently use are labeled by
cognitive psychologists, which is relatively expensive and small,
and in the future we consider expanding the relevant dataset
by mapping for larger scale experiments. The current research
focuses on multisensory representation of concepts, which is
a subset of pattern representation in AI, and future research
can be deeply integrated with downstream tasks to create AI

systems that incorporate multisensory integration. At the same
time, this places more demands on multisensory perceptrons.
Human perception of concepts has not only multisensory
perception but also more textual information based on abstract
information, and it is also worth exploring how to combine
these two parts to build human-like concept learning systems in
the future.
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APPENDIX

The Initial Weights in IM
Similar to what cognitive psychologists (Ursino et al., 2014)
have done before, we assume that for the concept s and its
each modality i ∈ [A,G,H,O,V] representations, p(xi|s) ∼
N(xi; s, σi), where N(x;µ, σ ) stands for the normal distribution
over x with mean µ and standard deviation σ . They are
conditionally independent from each other and by Bayes’ rule,

p(s|xA, xG, xH , xO, xV ) ∝ p(xA, xG, xH , xO, xV |s)

∝

∏

i

p(xi|s) =
1

∏

i(
√

2πσi)
e
−6i

(xi−s)
2

2σ2i

∝ −6i
(xi − s)2

2σ 2
i

(11)

The maximum-a-posteriori estimation for s is ŝ = 6i

1

σ2i

6i
1

σ2i

xi,

where 1
σ 2
i

reflects the reliability of each modality for the

same concept s. In our IM schema, we regard normalized
reliability as the initial weights between pre-synaptic neurons
(describing each modality) and the post-synaptic neuron(for
integration), i.e.,

w0
i =

1
σ 2
i

6i
1
σ 2
i

(12)

where we can get each σi via psychologist-labeled multisensory

datasets.
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Does Machine Understanding
Require Consciousness?
Robert Pepperell*

Fovolab, Cardiff Metropolitan University, Cardiff, United Kingdom

This article addresses the question of whether machine understanding requires
consciousness. Some researchers in the field of machine understanding have argued
that it is not necessary for computers to be conscious as long as they can match
or exceed human performance in certain tasks. But despite the remarkable recent
success of machine learning systems in areas such as natural language processing and
image classification, important questions remain about their limited performance and
about whether their cognitive abilities entail genuine understanding or are the product of
spurious correlations. Here I draw a distinction between natural, artificial, and machine
understanding. I analyse some concrete examples of natural understanding and show
that although it shares properties with the artificial understanding implemented in current
machine learning systems it also has some essential differences, the main one being
that natural understanding in humans entails consciousness. Moreover, evidence from
psychology and neurobiology suggests that it is this capacity for consciousness that, in
part at least, explains for the superior performance of humans in some cognitive tasks
and may also account for the authenticity of semantic processing that seems to be the
hallmark of natural understanding. I propose a hypothesis that might help to explain why
consciousness is important to understanding. In closing, I suggest that progress toward
implementing human-like understanding in machines—machine understanding—may
benefit from a naturalistic approach in which natural processes are modelled as closely
as possible in mechanical substrates.

Keywords: machine learning, consciousness, naturalism, understanding, brain modelling

INTRODUCTION

The human capacity for understanding is a complex phenomenon that can involve many cognitive
processes such as learning, insight, reward, memory, recognition, and perception. To implement
this phenomenon mechanically—that is, to create machines that understand in the same way that
humans do—presents an extremely daunting challenge.

Significant progress has been made toward this goal in the field of machine learning. We
now have systems that perform very well, and sometimes better than humans, in language
processing tasks (Devlin et al., 2019; He et al., 2021), image classification tasks (Zelinsky, 2013;
Yang et al., 2019), and in playing complex games (Silver et al., 2016). Even though these systems
are very effective in some situations, questions remain about how robust and generalisable they are
(Shankar et al., 2020) and to what extent they are truly capable of human-like understanding or
whether they are just computational manifestations of the Clever Hans spurious correlation effect
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(Lapuschkin et al., 2019). In the early twentieth century, a horse of
that name was touted as being able to solve arithmetic problems
but was later found to be responding to involuntary cues in
the body language of its trainer (Pfungst, 1911). This concern
is related to the long-standing problem of authenticity raised by
John Searle’s Chinese Room argument about whether artificially
intelligent machines have semantic understanding of the data
they are processing or whether they are “blindly” following
syntactic rules (Searle, 1984).

This article addresses the question of what constitutes
understanding in humans and how it compares to the kind of
understanding that is currently being implemented in digital
computers. Partially following Les and Les (2017), I draw
a distinction between “natural,” “artificial,” and “machine”
understanding, as set out in Table 1. Natural understanding is the
kind that humans are capable of; it is instantiated in the physical
substrate of our nervous systems, in particular in our brains,
and is regarded as “authentic.” I take it that this is the kind of
understanding that we ultimately aim to implement in machines.
Artificial understanding is a kind of understanding that is
currently implemented in highly trained digital computers and
is exemplified by natural language processors like BERT (Devlin
et al., 2019) and image classifiers like AlexNet (Krizhevsky et al.,
2017). For the reasons just given, this kind of understanding
does not perform as well, and nor is it regarded as authentic as,
natural understanding.

I will analyse examples of natural and artificial understanding
to describe some of their key properties and then compare
these properties in light of the challenge of producing
machine understanding, defined here as natural understanding
implemented in a mechanical substrate1. The analysis suggests
that natural understanding is distinguished from artificial
understanding by its property of consciousness and that machine
understanding systems may require this property if they are
to overcome the limitations of current artificial understanding
systems. This leads to the formulation of a hypothesis
about why the capacity for consciousness is advantageous to
natural understanding.

With some exceptions (e.g., Yufik, 2013; Hildt, 2019) recent
theorists have argued that it is not a requirement that computer-
based systems are capable of consciousness or genuine semantic
appreciation in order to understand (e.g., Anderson, 2017; Les
and Les, 2017; Thórisson and Kremelberg, 2017; Dietterich,
2019). The primary goal of these theorists is to design
machines that perform well in problem solving, object detection,
recognition, and language processing tasks (Zelinsky, 2013; Yang
et al., 2019). Indeed, based on the levels of performance in these
tasks achieved with recent machine learning systems, which are
not claimed to be conscious, there is justification for arguing
that consciousness is not a necessary requirement for artificial
understanding, at least in some cases. But if our goal is to create
machine understanding, as defined here, then the requirements

1A mechanical substrate is taken here to be a system composed of electrical
and mechanical components that is designed to enable the processing of
understanding, such as a computer or robotic system, that can receive data as input
and produce a readable output.

may be different. Here I consider in more detail what constitutes
natural understanding.

NATURAL UNDERSTANDING

Understanding cannot be easily or precisely defined. It has several
subtly different senses in English (Oxford English Dictionary)
and interpretations can vary from field to field. But is generally
taken to mean the ability to “grasp” or “see” how different parts
relate to or depend upon each other (Grimm, 2011). In this
section I aim to provide a fuller description of some of the
key properties of understanding by reference to two concrete
examples. To take first a simple example from the domain of
natural language understanding, for each of these sets of three
words find the fourth word that they have in common:

1. PRINT BERRY BIRD

2. FENCE CARD MASTER

3. CONTROL PLACE RATE

These are examples of the Remote Associates Test commonly
used to evaluate cognitive processes such as creative potential,
problem solving, divergent thinking, and insight (Mednick, 1968;
Bowden and Jung-Beeman, 2003). Consider your train of thought
as you find the solution. When you begin the task the three given
words seem to form an unrelated sequence. You may feel a mild
sense of tension or anxiety as you struggle to find the answer.
You probably take each given word in turn and wait for it to
trigger other words, jumping between the given words until you
alight upon a new word that links all three. Having found the
common word, the three given words seem to subtly change their
meaning by association with the common word. They acquire a
new relationship with each other while retaining their distinct
identities. Once you have understood the connection between
each set of words you may feel a sudden mild sensation of
pleasure or relief2.

To take a more involved example from the domain of art
interpretation, consider the painting reproduced in Figure 1
that was painted by Pablo Picasso in 1910. It is a typical
example of the analytic cubist style, developed by Picasso and
Georges Braque in the years before world war I and depicts an
arrangement of everyday household objects. If you are unfamiliar
with the visual language of cubism it may be very hard—even
impossible— to understand what it depicts and it usually takes
some training and practice to unpick the objects it contains from
the seemingly abstract forms.

Now consider the image presented in Figure 2. This shows
the same painting, but this time some of the objects have been
outlined and labelled. If you study this painting (which is known
as “Still Life with Lemons”) and then return to Figure 1 you
should now be able to recognise at least some of the items it

2The answer in each case is 1. BLUE, 2. POST, and 3. BIRTH. In the paper from
which these examples are taken 10% of the participants tested were able to find the
correct answer to 1 in less than 2 s, while only 1% were in the case of 2 and none
were in the case of 3 (Bowden and Jung-Beeman, 2003).
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TABLE 1 | Definitions of the three kinds of understanding referred to in this article.

Definitions of kinds of understanding

Natural understanding The human-like capacity for understanding that is instantiated in our neurobiology, in particular in our brains

Artificial understanding The capacity for understanding that is implemented in machine learning algorithms as instantiated in digital computers

Machine understanding The human-like capacity for natural understanding implemented in a non-human mechanical substrate

contains without the guidelines. Given more time and effort
you should eventually be able to piece together the entire
composition. Arguably, you will then have gained a greater
understanding of the meaning of the painting. Perhaps this
understanding dawns through a gradual analysis of the relations
between objects and their position in space. Or perhaps it appears
as a momentary flash of insight—sometimes referred to as an

FIGURE 1 | A reproduction of a painting by Pablo Picasso from 1910.
©Succession Picasso/DACS, London 2022.

FIGURE 2 | A reproduction of Still Life with Lemons by Pablo Picasso from
1910 with outlined and labelled objects. The painting depicts a table
containing a number of everyday household items, including glasses, a fruit
bowl, a lemon, and a key. The edges and legs of the table can be seen to the
left and right of the central grouping of objects.

“Aha!” moment—that is accompanied by the feeling of relief or
satisfaction associated with a sudden gain of information (Muth
and Carbon, 2013; Damiano et al., 2021). Either way, a significant
shift has taken place in your perceptual and cognitive faculties
such that objects and relationships between objects that were
previously absent are now present, despite the fact that you are
looking at the same image.

What is going on at the perceptual, cognitive, and
phenomenological levels during this acquisition of
understanding? Prior to viewing Figure 2 you probably
experienced a more or less abstract array of patterns and marks,
perhaps attended by a feeling of bewilderment or frustration.
Then, using the outline guides provided in Figure 2, you
began to separate the boundaries of certain objects from their
surroundings until you established their individual identities
and how they are spatially positioned in relation to each other
and to the scene as a whole. According to the predictive coding
theory of object recognition, your brain drew upon high-level
cognitive models that influenced the processing of lower-level
perceptual input via feedback in order to rapidly anticipate the
most probable meaning of what is being perceived (Rao and
Ballard, 1999). Once this meaning has been grasped you have
created a new network of semantic associations around the image
that are grounded in the wider context of your background
knowledge and experience (Harnad, 1990).

Understanding, recognition, detection and learning are
related but distinct processes. In one sense by studying this image
you have learned to detect and classify or label the objects as any
machine learning system might be trained to do with sufficient
training examples and computer power. But in experiencing the
phenomenal Aha! insight that accompanies the understanding
you have not just produced a certain statistical output from a
certain input; your perceptual, cognitive and phenomenological
facilities have undergone a transformation from a state where
that meaning is absent to one where it is present. There is
evidence from brain imaging and behavioural studies that having
undergone this experience with a small number of examples
of cubist paintings people are able to recognise more objects
more quickly in new examples while undergoing measurable
differences in brain activation (Wiesmann et al., 2009)3.

It is also important to stress that acquiring understanding
does not merely entail local object detection and recognition
but also in holding several distinct concepts in mind at once,
along with each of their attendant associations, while forming a
global conception of their interrelations and overall significance.
These distinct concepts can be highly diverse, as is illustrated

3There is also evidence that learning to understand cubist paintings by recognising
the objects in them increases people’s aesthetic experience of the paintings (Muth
et al., 2013).
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in the cartoon by Saul Steinberg that featured on the cover of
New Yorker magazine in 1969 showing the train of thought of a
person viewing a cubist painting by Georges Braque (Figure 3)4.
And they are not necessarily logically consistent. So, for example,
a certain patch of painting composed of diagonal lines, curves
and greyish-brown paint looks very unlike a lemon at the same
time as being a lemon. This dichotomy between the material from
which an image is constructed (paint, ink, pixels, etc.) and the
objects that the material represents is a fundamental feature of all
pictorial depiction (Pepperell, 2015), even if this cubist example is
an extreme case of perceptual incongruence between the pictorial
fabric and what is depicted. Yet despite this dichotomy we are
rarely prevented from understanding that, when looking at a
picture, a certain pattern of lines or colours simultaneously stands
for a quite different object.

To summarise, these cases of problem solving and art
interpretation demonstrate some of the key properties of natural
understanding as broadly described here, namely that it is a

4It is not clear from this illustration whether the collection of ideas and associations
contained in the viewer’s thought bubble are being experienced simultaneously or
sequentially. Personal experience of studying artworks in this way suggests that it
is probably a mixture of both.

FIGURE 3 | Cover of New Yorker magazine with a cartoon by Saul Steinberg
illustrating the diverse train of thought of a person viewing a cubist painting by
Georges Braque.

form of reasoning, learning or recognition that is accompanied
by a consciously experienced insight, motivated by a desire to
overcome anxiety and gain pleasurable reward, that entails a
diverse and sometimes contradictory set of associations, some of
which depend on contextual knowledge and meaning prediction,
that are bound together in a simultaneous cognitive state. These
features are summarised in Table 2.

This list does not exhaustively describe each of the properties
of natural understanding, nor does it collectively provide a
precise definition. And it is worth noting that some forms of
understanding are arrived at by a process of logical analysis
rather than sudden insight (Jung-Beeman et al., 2004; Carpenter,
2020). But, at least with respect to the cases discussed here,
this list is indicative of the range of properties that natural
understanding entails. Assuming we can generalise from this to
other cases of natural understanding, we have identified some
of the properties that an authentic implementation of machine
understanding would require.

ARTIFICIAL UNDERSTANDING

Having described some of the key properties of natural
understanding we turn to the artificial kind as defined in the
introduction. Many existing artificial intelligence systems are
implemented in computational neural networks such as deeply
layered convolutional neural networks that roughly approximate
the function of neural cells in brain tissue. Contemporary deep
neural networks evolved from early neurally inspired machine
learning architectures such as the Pandemonium and the
Perceptron pioneered in the 1950s (Rosenblatt, 1958; Selfridge,
1959). In these early models, continuous input data is first
discretised by “feature detectors” and then passed to intervening
layers of neurons that are weighted to respond to properties of
the features. Based on the sum of all the weights the system
reaches a decision processing about the most probable output.
These models in turn inspired the later parallel distributed
approaches to artificial intelligence that were developed by
Rumelhart and McClelland (1986) and in many ways provided
the core architecture of today’s artificial neural networks and
machine learning systems.

A typical artificial neural network tasked with, say, classifying
objects in photographs will take an image as input, divide it into
sub-sections (such as pixel colour values or clusters of pixels),
pass those values to an array of nodes or neurons in one of
what may be many interconnected “hidden” layers of such arrays,
apply weights and biases in order to arrive at a probabilistic
estimate of the likely class of the input, and pass the result to an
output layer that can be read off by the user. By supplying the
network with many training images, and by gradually optimising
the weightings and bias using error correction techniques such as
backpropagation, the network will eventually learn to classify its
target objects with a degree of accuracy that depends on factors
such as the size of the training dataset, the number of layers
in the networks, and the amount of error correction provided.
A simple feedforward example of this architecture is illustrated in
Figure 4.
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TABLE 2 | Summary of the key properties of natural understanding based on the cases of the remote associates task and the interpretation of a painting.

Key properties of natural understanding

Insight Aha! moment, or sudden change in how a stimulus is perceived entailing a revelation of new meaning that was previously absent

Reward A positively valenced emotional state that intrinsically motivates effortful cognition

Learning Adaptation by acquiring new knowledge that can be generalised to cases beyond the stimulus that produced the learning

Recognition The ability to correctly classify a stimulus, or part of a stimulus, according to the features it presents or contains

Differentiation The division of the perceptual stimulus into a multiple, diverse and sometimes contradictory set of meaningful elements

Integration The unification of diverse perceptual elements into a single coherence experience, without diminishing their diversity

Context Connecting to ideas, references and meanings that are not immediately present in the stimulus but are associated with it

Reasoning A capacity to acquire new knowledge by logically inferring or extrapolating from existing data

Prediction The ability to apply feedback from higher-level cognitive models to lower-level perceptual input to rapidly anticipate meaning

Consciousness The state of being aware of the self and the environment, and in particular awareness of the stimulus and the response to it

FIGURE 4 | A simple feedforward neural network architecture showing an input layer that serves to discretise the target data, one hidden layer that contains nodes
or “neurons” that can adjust their probabilistic weights, and an output layer where the decision of the system can be read off.

Since the explosion of research in artificial neural
networks and deep learning techniques in the 2010s, and
the accompanying exponential increase in raw computing
power, a plethora of designs and methods have evolved
for implementing machine learning (LeCun et al., 2015;
Aggarwal, 2018). In the case of a contemporary deep
learning system like BERT, the Bidirectional Encoder
Representations from Transformers, several methods are
combined in order to optimise performance in a range
of natural language understanding tasks, with the relative
performance of different variants of BERT being tested
against standardised benchmarks such as SuperGLUE
(Wang et al., 2019).

In these tests, passages of text are presented to humans
or computers to elicit a correct answer. Different kinds of
understanding are tested, including reading comprehension,
choosing correctly between alternatives, or reasoning correctly
based on a hypothesis. For example, in the following causal
reasoning task (Roemmele et al., 2011), given the statement: “My
body cast a shadow over the grass” and the question: “What’s the
CAUSE for this?”, the responder must choose between alternative
1: “The sun was rising” and alternative 2: “The grass was cut,”
the correct alternative being 1. In 2021, the DeBERTa variant
of BERT was shown to surpass human performance against the
SuperGLUE benchmark by a comfortable margin in some tests
(He et al., 2021).

Image classification systems are designed to recognise,
segment, or locate objects in images using convolutional neural

networks that employ similar techniques to those of natural
language processing systems but trained on vast databases
of human annotated photographs stored on repositories such
as ImageNet5. Competing models have been pitted against
each other in contests such as the ImageNet Large Scale
Visual Recognition Challenge or ILSVRC, which began in
2010 (Russakovsky et al., 2015). The ImageNet challenge
uses a large dataset of annotated images from the database
for training and a smaller subset for testing from which
the annotations are withheld. The competing classifiers are
required to perform several kinds of recognition and detection
tasks on the test dataset, including predicting the classes of
objects present in the image and drawing bounding boxes
around objects (tasks not dissimilar to the cubist painting
example discussed above). A breakthrough in image classification
performance was made in 2012 with the introduction of the
AlexNet architecture (Krizhevsky et al., 2017) which achieved
the then unprecedented score in the ImageNet challenge
of 63.3%. By 2021, systems such as Convolution and self-
Attention Net (CoAtNet) were achieving accuracy scores of
90.8% (Dai et al., 2021).

Given that these natural language and image classification
machines are routinely achieving 90 + % accuracy, and in
some cases outperforming humans, there is a sense in which
they can be rightly said to have a capacity for understanding,
even though they are implemented in very different substrates

5http://www.image-net.org
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from the biological tissue and processes that instantiates natural
understanding. After all, show them a sentence with a missing
word or a photograph containing many objects and they will
reliably be able to predict the missing word or label the objects.
This capacity for comprehension, reasoning, recognition, and
detection implemented in digital computers is what is referred
to here as artificial understanding.

The key properties of artificial understanding broadly
described here are that it relies on training with large datasets
through which the system learns by adjusting probabilistic
weightings of the neurons, modified by error correction, resulting
in statistical models that predict the most likely output for a
given input, whether that is by detecting and labelling a class
or reasoning from contextual data about the likely solution. To
carry out this process input data is differentiated into parts and
analysed to find patterns and associations between the parts
which are then integrated to produce an output. These key
properties of artificial understanding are summarised in Table 3.

Again, this is not a comprehensive list of the key features of
nor a precise definition of artificial understanding. But on the
basis of the natural language processing and image classification
systems discussed here we are in a position to make some
instructive comparisons between the natural and artificial kinds
of understanding.

COMPARING NATURAL AND ARTIFICIAL
UNDERSTANDING

As can be seen from Table 4, natural and artificial understanding,
as described here, share several key properties, at least
superficially, while some are unique to natural understanding.
In this section, I compare these properties to establish how
closely they are shared and what might be the significance of
the differences.

Shared Properties
Prima facie, both kinds of understanding share some capacity
for learning, recognition, differentiation, integration, utilisation
of contextual information, reasoning, and prediction. These
key properties are functionally similar in humans and artificial
neural networks in that for certain tasks they can produce the
same outputs from the same inputs, even if the substrates they
are instantiated in and the ways they are implemented are
very different. In the case of natural language processing, as

TABLE 4 | Comparison between the key properties of natural and artificial
understanding based on the cases discussed above.

Comparing properties of natural and artificial understanding

Natural understanding Artificial understanding

Learning Learning

Recognition Recognition

Differentiation Differentiation

Integration Integration

Context Context

Reasoning Reasoning

Prediction Prediction

Consciousness

Insight

Reward

Properties in bold are shared.

noted, humans and computers can achieve comparable scores
when assessed against the criteria used in the SuperGLUE tests,
which are based on tests designed to measure reading ability,
reasoning and comprehension skills in humans (e.g., Roemmele
et al., 2011). Neural network-based image classification systems
also now routinely equal and sometimes out-perform humans
(Buetti-Dinh et al., 2019). And neuroscientific models of
predictive coding in humans have inspired new designs of neural
networks with enhanced object recognition capabilities (Wen
et al., 2018). All this is testament to the remarkable proficiency
of artificial understanding systems in emulating these human
cognitive faculties.

Yet despite the impressive levels of performance achieved with
some deep learning models, and their functional similarity with
human capabilities, they still differ from and fall short of human-
level performance in several ways, including in terms of how
robust and generalisable they are. As noted above in the case of
cubist painting interpretation, humans are adept at applying what
they learn in one case to novel cases (Wiesmann et al., 2009).
But because deep learning systems become very finely “tuned”
to the limited datasets used to train them there is a danger of
“shallow” learning, where the system’s competences are limited
to the training data and they are unable to adapt to new cases, as
was shown recently in the domain of natural language inference
(McCoy et al., 2019).

Meanwhile, image classification tasks using ImageNet-trained
machine learning systems are yet to achieve human-level

TABLE 3 | Summary of the key properties of artificial understanding based on the cases of natural language processing and image classification.

Key properties of artificial understanding

Prediction A capacity to estimate the correct output given a certain input based on probabilistic calculations

Learning Improving performance of the system through a process of training and adaptation guided by feedback based on correctness of outputs

Differentiation The division of the input into multiple features that can be analysed in terms of regularities and patterns

Integration The summation of probabilistic analysis of the differentiated features to produce an output

Context A table of statistical relationships that is extracted from the training data and used predict the most likely missing data

Recognition Correctly identifying or labelling an object from a given input, or part of the input, by analysing its features and predicting the correct output

Reasoning The capacity to select the correct conclusion given information that is implicit in the input but not explicitly stated
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performance in certain tasks and are rated as being less robust
and less generalisable than human agents (Shankar et al.,
2020). The problems of robustness and generalisability in image
classification algorithms were further highlighted by a study
showing that the ability of leading models to understand the
content of photographs was significantly impaired by difficult
or “harder” cases, i.e., cases where the image content was more
ambiguous (Recht and Roelofs, 2019).

The differences, or dissonances, between human and machine
understanding (natural and artificial in the terminology used
here) were explored by Zhang et al. (2019) in the context of
Biederman’s theory of human image understanding (Biederman,
1985). Biederman (1985) argued that image recognition
depends upon first differentiating or segmenting the image into
components that are invariant with respect to viewing position
or image quality and from these components the understanding
of the image as a whole is constructed. Zhang et al. (2019) asked
both humans and neural network (NN) image classifiers to
segment a set of images into “super pixels” that contained the
portions of the image most salient to recognition. They found
that humans and NNs tended to segment the image in different
ways. When asked to recognise objects from the segmented
portions only, NNs often out-performed humans on “easy”
images, suggesting that humans and NNs were using different
strategies to complete the task. But NNs performed less well than
humans on more difficult or ambiguous images.

Collectively, this evidence suggests that while natural and
artificial kinds of understanding do share the properties listed
in bold in Table 4, at least at the functional level if not at the
substrate level, and have comparable levels of performance in
some cases, there are significant differences in how robust and
generalisable they are and in how well they are able to deal
with difficult cases. Moreover, questions remain about whether
machine learning systems rely on spurious correlations—that
they can be “right for the wrong reasons”—and whether they
genuinely have a capacity for semantic appreciation. This
leaves them vulnerable to Clever Hans and Chinese Room-
style criticisms, viz., that they are not, by their essential nature,
authentically cognising or understanding at all.

Unique Properties
The essential differences between natural and artificial
understanding become more pronounced when we consider
the key properties that are unique to natural consciousness,
the most obvious being that it entails consciousness. Questions
about the nature of consciousness, how it is instantiated in
humans (or other creatures for that matter), and how it might be
implemented in non-biological substrates are vast and deep and
cannot be addressed in detail here. But it is necessary to briefly
consider what the conscious property of natural understanding
might be contributing to the phenomenon as a whole and why it
might help to explain its essential difference from and advantages
over the artificial kind. This is especially so given that two of
the other key features of natural understanding as described
here, namely insight and reward, are themselves aspects of
conscious experience.

Consciousness can be defined as the state of awareness of
self and environment, and while this begs the question of what
is meant by awareness, I will take it that we are familiar with
what it means in ourselves. One way to measure the difference
between a system that is conscious and one that is not is that a
conscious system such as a human brain displays very high levels
of simultaneous differentiation and integration in its organisation
and behaviour (Tononi et al., 1994). Of course, any system
composed of different subsystems that are coupled together, i.e.,
a system of systems, will be differentiated and integrated to some
degree (Nielsen et al., 2015). But in the case of the human brain
this degree seems to be extremely large (Tononi et al., 1994)
and far greater than in existing machine learning systems if we
take the complexity of the system as a measure: it requires a
convoluted neural network having seven layers to emulate the
complexity a single human neuron (Beniaguev et al., 2021) and
there are estimated to be around 86 billion such neurons and
around the same number of non-neuronal cells in a human brain
(Azevedo et al., 2009).

Recent evidence from the neuroscientific study of
consciousness suggests that there is something particular about
the way brain activity during conscious states is differentiated
and integrated that contributes to the production of phenomenal
states. The Global Neuronal Workspace Hypothesis (GNW)
advocated by Baars et al. (2013) and Mashour et al. (2020)
proposes a model of conscious processing in which localised,
discrete and widely distributed cortical functions are integrated
via reciprocally connected long-range axons. At any one time,
information from one or more of these discrete functional
processors can be selectively amplified and “broadcast” across
the entire system, thus producing a single integrated, coherent
experience for the conscious agent concerned. The Integrated
Information Theory (IIT) of consciousness championed by
Tononi and Koch (2015) and Tononi et al. (2016)—in some
ways a competing theory to GNW—predicts that in order
for a system such as a brain to be conscious it must display
a high degree differentiation (by which they mean richness
or diversity of information) and integration (by which they
mean interdependence or interrelatedness of the information),
the quantity of which is given by a value known as 8. A fully
conscious brain, for example, will contain a greater quantity of 8
than a partially conscious or unconscious brain.

Tononi and Koch point to work conducted by Casali et al.
(2013) as empirical support for this hypothesis. By applying a
magnetic pulse to the brains of people having varying levels
of consciousness, including severely brain damaged patients
showing little or no signs of conscious awareness, and then
measuring the resulting patterns of activation using information-
theoretical measures of complexity, the experimenters were
able to reliably discriminate between levels of consciousness
on the basis of how much differentiation and integration
the patterns of activation displayed6. They found that greater
levels of differentiation and integration reliably predicted higher

6The measure of complexity in this case was the compressibility (using the Lempel-
Ziv algorithm) of the data generated by imaging the perturbation in the brains due
to the magnetic pulse (Ziv and Lempel, 1977).
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levels of consciousness, and could predict which people were
unconscious when these levels fell below a certain threshold in
their brains, such as in those with severe brain damage who
were in a vegetative state. It is important to note that even
though the brains of people with impaired consciousness were
still functioning to some extent, and therefore displaying a high
degree of differentiation and integration by the standards of many
physical systems, they fell short of the threshold necessary to
support full consciousness.

Further evidence that fully conscious states rely on
maintaining a critical balance between activity in localised
and segregated networks and globally integrated networks in the
brain was provided by Rizkallah et al. (2019). Using graph-theory
based analysis on high-density EEG data, the team showed that
levels of consciousness decreased as the level of integration
between long-range functional networks also decreased while,
at the same time, information processing became increasingly
clustered and localised. Besides disorders of consciousness,
researchers have also shown that imbalances between local
segregation and global integration in brain organisation are
implicated in neuropsychiatric and other clinical disorders (Fair
et al., 2007; Lord et al., 2017).

One difficult question raised by this evidence is whether there
is a direct causal relationship between the levels of differentiation
and integration observed in the activity of the brains of conscious
people and their conscious states, or whether the correlation is
spurious (Pepperell, 2018). The question is too philosophically
involved to be addressed in depth here. But the phenomenal
character of natural understanding, as described above, which
entails an awareness of both the parts of the thing understood
and the relations between the parts at the same time, is but
one expression what seems to be a property of all conscious
states, which is that they are experienced as simultaneously
differentiated and integrated, as was observed by Leibniz (1998)
in the eighteenth century and by many since7. Although this
correlation is not proof of a causal link between phenomenology
and underlying neurobiology, and nor does it explain why the
particular kind or degree of differentiation and integration that
occurs in conscious brains is critical, it does weaken any claim
that the correlation is merely spurious.

With respect to the property of insight, which is consciously
experienced, there is evidence from neuropsychology that
comprehension or understanding, including that which is
achieved through sudden insight or Aha!, is mediated by
regions of the brain that are important for integration of
differentiated brain processes (St George et al., 1999; Jung-
Beeman et al., 2004). The same principle has been observed
in the mechanisms that bind together widely distributed brain
areas as object representations become conscious (Tallon-Baudry
and Bertrand, 1999). Other studies have demonstrated that the

7Leibniz (1998) noted on several occasions that perception is “the expression of
a multitude in a unity.” More recently, Guilio Tononi, one of the prime movers
behind IIT, stated: “consciousness corresponds to the capacity of a system to
integrate information. This claim is motivated by two key phenomenological
properties of consciousness: differentiation – the availability of a very large number
of conscious experiences; and integration – the unity of each such experience”
(Tononi, 2004).

appearance of sudden moments of insight or comprehension are
in fact the culmination of multiple preceding brain states and
processes, suggesting that insight favours the “prepared mind”
and acts to draw these largely unconscious processes together
into a single conscious state (Kounios and Beeman, 2009). This
evidence therefore also points to a link between the underlying
mechanisms that mediate consciousness and the phenomenology
of natural understanding, or insight.

With respect to the property of reward, studies on the affective
states of people who experience insights consistently show that
they are emotionally diverse but positively valenced, with the
most reported emotional states being happiness, certainty, calm,
excitation, ease and delight (Shen et al., 2016). The affective states
associated with insight and problem solving have been shown to
depend on activity in regions of the brain associated with positive
affect and reward and on task-related motivational areas as well as
being implicated in processes of learning reinforcement, memory
reorganisation, semantic coherence, and fast retrieval encoding
(Tik et al., 2018).

The motivating power of potential reward, even when cued
subliminally, was demonstrated by researchers who used a
version of the remote associate task cited above to test problem
solving performance in people (Cristofori et al., 2018). Based
on their results they speculated that the potential for reward
activated systems of the brain that reinforce behaviour, facilitate
cognition, and enhance automatic integration of differentiated
processes. The fact that they did so subliminally was argued
to promote overall performance because cognitive resources
were not diverted from conscious processes such as attention
selectivity. Further evidence shows that mood can significantly
affect a person’s performance in problem solving, with people
in positively valenced states of mind being able to solve
problems or reach insights better than those in a less positive
mood (Subramaniam et al., 2009). This finding reinforces the
association between consciously experienced affect and capacity
for understanding.

While is premature to draw firm conclusions from the
neurobiological and psychological data relating to the key
properties that are unique to natural understanding, it
does seem to point toward a general trend: that the act of
consciously understanding something is characterised by high
degrees of simultaneous differentiation and integration—both
neurobiologically and phenomenologically—and positively
valenced affect that rewards problem solving and motivates
learning. This comparative analysis between the shared and
unique properties makes clear that although there are functional
similarities between natural and artificial kinds of understanding
there are also significant differences in function and in
essence due, in part, to the conscious properties that natural
understanding entails.

HYPOTHESIS

From the evidence and argument presented it is proposed that
the present performance limitations of artificial understanding,
and the questions about its authenticity noted in the introduction,
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may arise, at least in part, because it lacks the capacity for
consciousness and the associated capacities for insight and
reward that we find in natural understanding. This proposal can
be expressed in the following hypothesis:

The capabilities deemed desirable but deficient in artificial
understanding systems, viz., robustness, generalisability,
competence in hard cases and authentic appreciation of meaning,
occur in natural understanding, at least in part, because the
motivation to gain insight, the unification of divergent concepts
that the insight entails, and the reward that comes from achieving
it are consciously experienced.

The hypothesis suggests that there may be at least two reasons
why the properties unique to natural understanding contribute to
its capabilities and essential nature:

1. The promise of reward, and the positive affective states
entailed by achieving reward, provide the system with the
intrinsic motivation (Di Domenico and Ryan, 2017) to
devote the necessary cognitive resources, such as memory
search, object recognition, and selective attention, to the
task in hand. This in turn reinforces learning and promotes
memory reorganisation which improves performance in
subsequent related tasks, particularly with respect to
difficult cases, while also contributing to robustness.

2. The neurobiological activity that produces high degrees
of simultaneous differentiation and integration, and
which is associated with the occurrence of consciousness
in humans, allows the understander to assimilate
many diverse cognitive states into a single overarching
cognitive state without effacing the differences between its
constituent states. This neurobiological activity is reflected
at the phenomenological level, as described in section
“Natural Understanding,” where natural understanding is
characterised by the simultaneous “grasping” of diverse,
and sometimes contradictory, concepts that form a
meaningful conceptual whole.

Both of these reasons would require further analysis,
investigation, and ideally empirical testing before we can draw
any conclusions about their validity.

IMPLEMENTING MACHINE
UNDERSTANDING

The question of how to implement machine understanding is
related to, but distinct from, the question of how to implement
machine consciousness (Haikonen, 2003; Pepperell, 2007; Yufik,
2013; Manzotti and Chella, 2018; Hildt, 2019). It is beyond the
scope of this article to consider in any detail the conceptual
and technical challenges that would face someone trying to
encode the properties of natural understanding, as described
here, in a non-human substrate. However, if we take it that it
is the natural form of understanding that we are seeking to
implement it follows that a naturalistic approach to creating
such machines may be beneficial. By “naturalistic” I mean an
approach that seeks to model the properties and functions of

the naturally occurring phenomenon as closely as possible8.
This would be in keeping with the early models of machine
learning, cited above, that were directly inspired by natural
biological processes.

Even though today’s artificial neural networks are the direct
descendants of these early naturalistically inspired models, they
differ in important ways from the biological processes that
underlie human cognition and consciousness. Consider, for
example, that the adult human brain accounts for around 2% of
body mass, but consumes around 20% of the body’s energy budget
when at rest, or some 20 W (Sokoloff, 1992; Laughlin, 2001). Yet
while this might suggest that the brain is extremely energy hungry
it is in fact extraordinarily efficient when compared to current day
computers, especially those carrying out machine learning tasks
(García-Martín et al., 2019). Training just one learning model just
once can consume over 600,000 kWh (Strubell et al., 2019) while
the amount of power (in terms of ATP availability) used by the
cerebral cortex to carry actual computation has been estimated at
around 0.1 W (Levy and Calvert, 2021).

Consider also that the organisation and exploitation of energy
resources by the brain may be playing a far more significant
role in the production of consciousness than is often assumed
(Shulman, 2013). It can be argued that neuroscientific models of
brain activity based primarily on digital information processing
paradigms, which tend to predominate in the current literature,
have underplayed the causal role of energy in the production
of phenomenological states (Pepperell, 2018). For example, the
groundbreaking work on measuring consciousness based on
levels of differentiation and integration by Casali et al. (2013)
noted above is commonly interpreted in information theoretical
terms, where greater “information processing” relates to greater
consciousness. Yet the same results could be equally well
interpreted in energetic terms on the basis that greater levels of
differentiation and integration of the metabolic processes in the
brain are causally related to the greater levels of consciousness
observed.

Recent attempts have been made to dramatically improve
the energy efficiency of machine learning systems using
neuromorphic hardware (Stöckl and Maass, 2021) and given
the growing awareness of the environmental impact of machine
learning computing this is likely to become a topic of more
intense research (Dhar, 2020). Alongside this there is growing
interest in better understanding the causal role that energy and
work plays in mental functions like understanding (Yufik et al.,
2017) and in thermodynamically inspired models of computing
which attempt to harness the natural computational power
of complex, self-organising, non-equilibrium systems (Hylton,
2020). At the same time arguments continue about whether the
physical substrate in which any form of machine understanding
or consciousness is implemented might have a critical bearing on
its functionality and efficiency (Koene, 2012). Such arguments
become especially relevant in the context of a naturalistic
approach where, for example, the foundational role of energy
acquisition and dissipation in artificial intelligence is highlighted

8For an example of a naturalistic approach applied to the problem of
computationally modelling human visual space see Burleigh et al. (2018).
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(Thagard, 2022). These developments suggest that considerations
about the role that energy is playing in the natural system of the
brain will increasingly inform future development of machine
understanding and machine consciousness.

There is also an active line of research into designing systems
capable of human-like faculties of perception, cognition and
consciousness that is directly inspired by current neuroscientific
theories of brain function (Marblestone et al., 2016). Prominent
among these are models based on the Global Neuronal
Workspace (GNW) theory cited above (Haqiqatkhah, 2019;
Mallakin, 2019; Safron, 2020; VanRullen and Kanai, 2021).
According to this theory, the brain contains many processes that
are highly differentiated, localised, widely distributed and yet
unconscious. Under certain conditions, these localised processes
are broadcast across the entire brain network to form an
integrated cognitive state which advocates of the theory argue
is experienced consciously. Relating this theory to the example
discussed in section “Natural Understanding,” we could imagine
the diverse perceptions, concepts, and associations generated
by the cubist painting being instantiated in such distinct
cortical processes across the brain. At the same time, the richly
interconnected global workspace area containing long-distance
axons is able to select one or more local processes to be
broadcast to the entire system, thus allowing for widespread
and simultaneous integration of the diverse processes, just
as we experience when we have gained an understanding of
the painting’s meaning. Researchers such as VanRullen and
Kanai (2021) have proposed methods for implementing the
GNW in artificial neural networks with a view to improving
the performance of current machine learning systems and
potentially endowing them with a capacity for consciousness.
If validated such brain-inspired machines would, in principle,
satisfy the requirements for a mechanical implementation of
natural understanding as defined here.

However, there are also reasons to be cautious about our
ability to emulate natural understanding given the limitations
of current computer architectures and therefore our ability to
replicate natural processes in machines. A key property of the
brain activity associated with consciousness is the presence of
highly recursive neural processing in which activity is fed forward
and backward throughout the brain, creating dynamic loops that
bind local processes into larger global networks. GNW is one of
several theories of brain function that foreground the importance
of recursive, reentrant or recurrent processing (Edelman and
Gally, 2013; Lamme, 2020) and diminution of such feedback
activity has been shown to be one of the hallmarks of loss of
consciousness during anaesthesia (Lee et al., 2009; Hudetz and
Mashour, 2016). According to GNW, recurrent processing is
one mechanism through which the simultaneity of conscious
experience, in which multiple and diverse contents are bound
into a single state of mind, is generated (Mashour et al., 2020).
Given the highly complex physiological organisation of the brain,
noted above, with its billions of interacting cells densely arranged
in a three-dimensional lattice, it is not hard to appreciate how
intricate multiscalar patterns of recurrent processing occur.

It is much harder to imagine how similar levels of recurrent
processing could be implemented, or even simulated, in today’s

digital computer architectures. The physical design and operation
of current computer hardware, which is generally controlled by
a central processing unit that executes lines of computer code
sequentially at a fixed clock rate, means that it is incapable
of producing the highly non-linear and globally interconnected
behaviour we observe among biological neurons. Moreover,
the primarily linear nature of programme execution in current
computers (notwithstanding parallel processing architectures)
mitigates against the simultaneity of processing that seems
to mark natural understanding and conscious processing. Of
course, software-implemented feedback mechanisms are often
integral to machine learning algorithms (Herzog et al., 2020)
and neural feedback can be simulated in software (Caswell
et al., 2016). Moreover, recent research into how recurrent
processing in mammalian brains aids object recognition has
also shown that it improves performance when simulated in
neural nets (Kar et al., 2019). But generating the degree of
recurrent and simultaneous processing necessary to support
the synchronised integration of highly numerous and diverse
modules, in the way that seems to mark understanding and
consciousness in humans, may be far beyond the capability of
current digital computer architectures given the requirement for
complexity noted above.

This brief survey suggests that while natural biological
processes continue to be a source of guidance and inspiration
for those seeking to implement humans cognitive faculties such
as consciousness in non-human substrates significant challenges
and problems remain to be overcome.

CONCLUSION

This article addressed the question of whether consciousness is
required for machine understanding. I have shown that although
we lack a precise operational definition of understanding we
can draw a useful distinction between the natural, artificial
and machine kinds. By analysing concrete examples of natural
understanding I have described some of its key properties and
contrasted these with some of the key properties of artificial
understanding. Although much more could be said about these
properties and the contrasts between them, it is evident from the
analysis presented here that the conscious properties of natural
understanding mark a profound difference in both function and
essence from artificial understanding, even though both share
some functional similarities.

On the basis of this analysis, I have proposed a hypothesis that
may help to explain the advantages that natural understanding
has over the artificial kind, specifically in terms of its capacity
for robustness and generalisability, its ability to deal with
difficult cases, and in the authenticity of its cognitive and
semantic processing. The practical challenges of implementing
machine understanding have been briefly considered, and are
clearly considerable. I suggest that a naturalistic approach
to addressing this challenge may be beneficial, which means
modelling the biological processes and structures that mediate
understanding in humans and implementing these as efficiently
as possible in a non-human mechanical substrate. However,
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pursuing this approach may require us to move beyond today’s
computational architectures.

There are several limitations of the present study. To
mention three: first, as stated at the outset, the phenomenon
of natural understanding is highly complex and multifaceted,
and we lack any precise definition of what understanding is.
Worse, different people in different disciplines can take it to
mean different things. As such, it is unlikely that any single
analysis will be able to capture all its many psychological
and neurobiological properties, define them all in detail, and
explain how they all interact in a way that all agree upon.
The pragmatic approach taken here has been to describe these
properties in broad terms rather than define them precisely
to provide a useful working account of the phenomenon
so that it can be compared to other implementations of
understanding in certain cases. But any future work in this
area will inevitably require more precise and generally agreed
definitions.

Second, the relationship between consciousness and
understanding as discussed here is complicated by the fact
that many of the cognitive processes that enable natural
understanding occur subliminally, as noted above. Future
investigations may need to take greater account of the role of
unconscious processing in the brain, and how this might inform
the design of machine understanding systems. This raises further
questions about the extent to which we need to replicate natural
brain processes and functions to successfully implement human-
like capabilities in non-human substrates or whether designing

machines that achieve more or less the same results, even if by
very different means, will be sufficient “for all practical purposes”
(Anderson, 2017).

Third, the problem of machine understanding is one that,
to date and to a large extent, has been addressed within
the discipline of computer science. The analysis presented in
this article is highly interdisciplinary, drawing on knowledge
from art history, psychology, neuroscience, computer science,
consciousness studies and other fields. There is always a
danger in such highly interdisciplinary studies of oversimplifying
its constituent knowledge. However, the problem of machine
understanding may be one that is so broad and so deep that
we have no option but to take such a highly interdisciplinary
approach. In which case we will need to establish protocols of
cooperation among widely dispersed areas of research.
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There is an extensive body of literature on the topic of estimating situational states, in
applications ranging from cyber-defense to military operations to traffic situations and
autonomous cars. In the military/defense/intelligence literature, situation assessment
seems to be the sine qua non for any research on surveillance and reconnaissance,
command and control, and intelligence analysis. Virtually all of this work focuses on
assessing the situation-at-the-moment; many if not most of the estimation techniques
are based on Data and Information Fusion (DIF) approaches, with some recent
schemes employing Artificial Intelligence (AI) and Machine Learning (ML) methods. But
estimating and recognizing situational conditions is most often couched in a decision-
making, action-taking context, implying that actions may be needed so that certain
goal situations will be reached as a result of such actions, or at least that progress
toward such goal states will be made. This context thus frames the estimation of
situational states in the larger context of a control-loop, with a need to understand the
temporal evolution of situational states, not just a snapshot at a given time. Estimating
situational dynamics requires the important functions of situation recognition, situation
prediction, and situation understanding that are also central to such an integrated
estimation + action-taking architecture. The varied processes for all of these combined
capabilities lie in a closed-loop “situation control” framework, where the core operations
of a stochastic control process involve situation recognition—learning—prediction—
situation “error” assessment—and action taking to move the situation to a goal state.
We propose several additional functionalities for this closed-loop control process in
relation to some prior work on this topic, to include remarks on the integration of
control-theoretic principles. Expanded remarks are also made on the state of the art of
the schemas and computational technologies for situation recognition, prediction and
understanding, as well as the roles for human intelligence in this larger framework.

Keywords: stochastic control and time-varying systems, situation control, situation assessment, estimation,
prediction

INTRODUCTION AND REVIEW OF CURRENT RESEARCH

The concept of a “situation” can be thought of as describing a portion of a real-world that is of
interest to a participant in that portion of the world. An understanding of a situation is needed and
useful toward guiding or assessing the need for possible action of the participant in that situation.
Action of a participant may also be needed to possibly alter the situation if it is in an undesirable
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state (assuming resources capable of affecting the situation are
available), or for the participant to alter his position in the
situation. For a human participant, the mental faculties of
human cognition, such as consciousness (awareness), reasoning,
formation of beliefs, memory, adaptation, and learning, frame
the functional aspects of a process of cognitive situational
understanding, related to the notion of sensemaking (see, e.g.,
Pirolli and Card, 2005; Klein et al., 2007).1 Acting on the situation,
however, leads to the process of cognitive situation control,
as well described in various of Jakobson’s papers (Jakobson
et al., 2006, 2007, Jakobson, 2008; Jakobson, 2017) that, in
part, motivated this work. A depiction of that process is shown
in Figure 1 taken from Jakobson (2017); we offer here an
abbreviated description of that process. The cycle starts with
the existence of some (real, true) condition in the world, shown
here by Jakobson as the “Operational Theater” which, as shown,
can be affected by nature (that is, a context affected/defined by
various contextual factors) and possibly of hostile or adversarial
agents. That real situation is observed by imperfect and often
multiple, multimodal sensors, and possibly human observers to
support an estimation process that yields a “recognition” of the
situation (a state estimate) that may be reasoned over by a human
agent, or that provides an input to a subsequent automated
process. (The situational picture so derived is understood to be
only a part of some larger situational construct.) Jakobson calls
this estimate the “Abstract Situation” in Figure 1. Given the
current, recognized situation derived largely from observation,
a Situation Learning process evolves from what we will call
a contextual learning or a model-building process that could
also be called Situation Understanding. Such a process implies
an ability to develop a generalized, broader conception from
the particulars of the current recognized picture and exploiting
contextual factors either known a priori or collected in real-time.
This process is similar to Bruner’s view that “mental modeling
is a form of information production inside the neuronal system
extending the reach of human cognition ‘beyond the information
given”’ (Bruner, 1973). Following Jakobson, the recognized,
learned situation is compared to a goal situation that presumably
can be specified a priori or in real-time, and a difference is
computed between the two situational states by a Situation
Comparator function. That difference can be considered, from
a control process point of view, as an “error” signal; if that
(likely stochastic) difference is high enough (in consideration of
an estimated state variance), actions need to be contemplated
and assessed in a decision-making process, and once defined are
enabled onto the current situation in an effort to “move” the
situation toward the goal state. Note that Actions or Effects on to
the situation can only be realized through whatever “Actuators”
or Resources may be available to this control process.

There are two classes of “Resources” in this characterization:
Observational Resources and “Actuators” or Resources that
can enable changes in the real situation; these could also be

1Sensemaking is not the same as understanding; sensemaking involves interplay
between foraging for information and abstracting the information into a
representation called a schema that will facilitate a decision or solution
(http://www.peterpirolli.com/Professional/Blog__Making_Sense/Entries/2010/8/
16_What_is_sensemaking.html).

called “Effectors.” The effective design of a process of managing
these resources raises some challenges. For the Observational
Resources, they first of all have to support the process that forms
a recognized situational picture, possibly in the face of the “Five
V’s” of modern-day Big Data environments,2 since this process
does not start without an (estimated) recognized situational
picture. To the extent then that the Observational Resources are
a fixed resource set, and have any slack in their employment,
they can also be used/multiplexed to support the employment
of Effectors, as Effectors will need to be directed in some way.
We submit that there is a time delay of possibly widely varying
extent between the time of (initial) Situation Recognition and the
eventual time of action of the Effectors; that is, most situations are
continually unfolding and changing; they are dynamic. This being
the case, it can be that there is a meaningful difference between
the initial recognized situation and the situation that is eventually
acted upon; such differences may result in very incorrect results
of Actions if not accounted for. Thus, we assert that there will
usually be a need for a Situation Prediction capability to create a
temporal synchronization in this control process by propagating
the situational estimate to the (expected, estimated) time of
action. Then, just before acting, the predicted situation should
be verified, this also requiring Observational resources. In sum,
the Observational Resources will be shared over three different
functional operations, as follows:

• Synchronizing Observation to Situational Velocity,
Volume, Variety, Veracity, and Value in support of
Situation Recognition
• Observation Multiplexing to support employment of

Resources/Effectors
• Observation Multiplexing to support Situation Prediction

confirmation.

A factor that will be very important in determining the process
context for Situation Management and Control is the assessed
rate at which the situation is unfolding; that is, the Operational
Tempo (“OpTempo”) of the situation. This factor needs to
be weighed in relation to both the scanning/sampling rate of
the Observational Resources, the prediction interval, sensor
resolution factors, and in fact the viability of the overall process;
if the situation is unfolding at a rate faster than it can be feasibly
observed, forming dependable situation estimates will be very
difficult, and situational predictions will be equally hard. This
balance changes the dependence of the Learning/Understanding
process between a priori knowledge and real-time observational
data; uncertainties in the consequent estimated situation will also
be affected. Estimating situational OpTempo should therefore
be a fundamental requirement of the Situation Recognition
function, as it is a critical process design and management
parameter, setting the overall “clock” for this control process.
The notion of OpTempo is in the fashion of a meta-metric,
since any situation will be comprised of multiple component
processes unfolding at varying rates. Note too that there are
optimization issues lurking here, as regards defining how optimal

2Volume, velocity, variety, veracity, and value.

Frontiers in Systems Neuroscience | www.frontiersin.org 2 July 2022 | Volume 16 | Article 796100214

http://www.peterpirolli.com/Professional/Blog__Making_Sense/Entries/2010/8/16_What_is_sensemaking.html
http://www.peterpirolli.com/Professional/Blog__Making_Sense/Entries/2010/8/16_What_is_sensemaking.html
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-16-796100 July 23, 2022 Time: 15:39 # 3

Llinas and Malhotra Expanded Framework for Situation Control

FIGURE 1 | Concept of cognitive situational control derived from Jakobson (2017).

co-employment of bounded Observational Resources will be
managed across these process needs.

Jakobson does not elaborate on the functions of Situation
Learning nor on the Memory-based processes shown in Figure 1
(by choice, deferring those topics to future publications). He does
elaborate on the functions of Situation Recognition as a tree-like
hierarchical structure of component situation recognition sub-
processes. A disaster-based use case is described within which an
action-taking process that is also layered is elaborated. Jakobson,
along with others on various occasions, has produced a number of
papers on the central themes of cognitive situation management
and many related topics that bear on the overarching topic of
situation management (see prior citations and Jakobson et al.,
2006; Jakobson, 2008).

To provide a historical perspective related to the process of
situation control, we cite here the work of John Boyd, a military
strategist and United States Air Force Colonel who in the 1980’s
put forward the paradigm that has come to be called the “OODA
Loop,” OODA an acronym for Observe-Orient-Decide-Act (see
Boyd, 1986), but there are many papers, and a wide range of
publications related to this paradigm if one searches on the web.
It should be clear that these functions are quite similar to those
depicted in Figure 1, with “Orient” perhaps needing clarification.
Before remarking on Orient, it is emphasized that the OODA
process was framed as a mental process, and then was studied

by many to expand the framework to a potentially computational
basis. Orient then was about mental modeling that built a mental
model of a situation by consideration of prior knowledge (long-
term memory), new information, cultural factors (a contextual
effect), and other factors. This situation control type paradigm
has found its way into business intelligence settings, game
theory, law enforcement, and a multiplicity of other applications.
A thorough review of the OODA process is provided in Richards
(2012), although there are many publications about this process
that addresses situation control.

Our intent in this paper is to expand the framework
of cognitive control in terms of our views of several other
component processes (forthcoming), and in discussing
these additional processes, to relate them to research and
capabilities in the cognitive neurosciences and machine
understanding domains.

SITUATION CONTROL IN CRISIS
MANAGEMENT

There is a large literature on crisis management and disaster
management. In many cases, the characterization of the process
begins with an assumption that certain of these problems can be
anticipated, since in many cases an assessment of vulnerability to

Frontiers in Systems Neuroscience | www.frontiersin.org 3 July 2022 | Volume 16 | Article 796100215

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-16-796100 July 23, 2022 Time: 15:39 # 4

Llinas and Malhotra Expanded Framework for Situation Control

specific types of crises can be analyzed, such as in the cases of
natural disasters. The ability to achieve Situation Recognition in
these cases benefits from recognizing anticipated early signals of
the onset of the event, among other factors. However, there are
many other crises that do not follow this model, either because
they are of a rare type or perhaps because they are perpetrated
by some actors; situation recognition in these cases is both
more difficult and will also take more time for evidence accrual.
Perpetrated crises are analogous to military-type crises and can
have similar properties such as the employment of deception
techniques and other complications; these factors re-orient the
situation assessment process to one of adversarial reasoning. In
any setting involving situation state estimation, an early question
has to do with whether the setting is a natural one where
phenomena are driven by natural causes or whether the setting
comprises a two-sided, adversarial context. The case involving
adversaries can be related to the case of “Information Warfare,”
(IW), where the two sides are manipulating information, the
bases for perception and inference, to their advantage. The larger
purpose of these operations is to manage adversarial perceptions
by structuring the information available to an adversary to be
compliant with that perceptual construct. Another topic related
to deception is denial of information by covertness, camouflage,
jamming, and other means. Deception and denial strategies work
because of exploitation of reasoning errors, cognitive limitations,
and cognitive biases (Elsaesser and Stech, 2007). The most
important errors are:

• Reasoning causally
• Failure to include a deception hypothesis
• Biased estimates of probabilities
• Failure to consider false positive rates of evidence.

In our own experience in dealing with an earthquake
disaster case, there was the additional complication of multi-
jurisdictional participants, all taking different views of the
integrated situation and what resources are to be deployed
and controlled. This latter case involved additional processes
of consensus-forming and complex communications to both
recognize and predict situational states. In our disaster example
and in most crisis problem contexts, a top priority is life-saving
and casualty recovery, and the situation to both understand
and control is that which relates to all of the dimensions of
casualty-recovery operations. Such operations are dependent
on vulnerable infrastructure components such as airports,
ambulance depots, and electrical power. In addition, it is very
typical in crises that there are cascading effects; in the case
say of an earthquake, the tremors will cause primary problems
such as building collapses but will in addition rupture gas lines
leading to fires as secondary threats. These same cascading events
occur in other crises as well, such as in wildfires, where entry
and exit routes are compromised by evolving fire patterns, and
where wildfire observation such as from drones is affected by
dense smoke patterns; all of these factors drive a need to model
the dynamics of situation control patterns. A core challenge
in all situation control problems is achieving synchronization
of the situation recognition, prediction, and understanding

processes with control-related and action-taking processes. That
is, there are the issues of gaining situation awareness and
maintaining situation awareness, while comparing situational
conditions to those desired and subsequently deciding on specific
control actions.

Related Work; A Sampling
As noted above, there is a lot of literature on crisis and disaster
management for which the topic of situation control would seem
to be of interest. Relatively few papers in this field, however,
address end-to-end process issues and models in the systemic
context of this paper, although there many papers that address
portions of the entire process; we sample a few here.

For example, it is clear that any Situation Control process
must also be managing data and might require ancillary analytical
support operations. The paper by Hristidis et al. (2010) provides
one overview of data management and analysis processes
in a stressing disaster-type situation. Information extraction,
retrieval, and filtering processes (similar to data preparation
processes in data fusion operations) are needed to extract relevant
data of satisfactory quality for subsequent operations. Aspects of
the supporting process infrastructure are addressed here as well,
such as the need for a consistently formatted data base. This work
is focused on textual data (often called “soft” data to distinguish
it from quantitative “hard” data from electromechanical sensors),
an important class of data for situation control, often not
addressed.

Zambrano et al. (2017) provide an interesting aspect of a
modern-day situation control problem regarding the use of
cellphones; most modern contexts where a situation is evolving
will involve cellphones carried by many people, and cellphone
data of various type can contribute to both the estimation of
the situation and aid in controlling the situation. This paper
interestingly brings together a detailed data fusion process model,
following the well-known JDL Data Fusion Process Model (see
Llinas et al., 2004) and builds an end-to-end situation estimation
process model based on cellphone-captured data. The main
contribution here is the messaging protocol for information
exchange in complex cellphone networks, and support to early
warning notifications in real time.

The paper by Van de Walle et al. (2016) provides some
interesting views for enriching raw incoming information
by adding a summary of the information received, and by
channeling all incoming information to a central coordinator
who then decides upon further distribution within the team.
This paper is largely about information quality, a factor that is
important in all information operations. In a manner similar to
assigning “pedigree” to information sources based on analytical
or experiential bases, this paper discusses notions of information
richness that can be based on reputation or on analytical
methods that compute metrics for information sources based
on notions of completeness or timeliness, and other such
quality-influencing factors. While information can be enriched
in various ways, in this research “enriched information” is
defined as information that combines information from different
sources and is represented in a format with which professional
crisis responders are familiar, similar to the association and
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combining operations in a data fusion process. Information
that is not aggregated nor represented in a specific format is
considered “raw” or non-enriched. This work carries out a series
of experiments to explore the hypotheses related to information
enrichment and centralized decision-making, concluding that
that enriched and non-enriched information conditions are
significantly different only if information is centralized.

In Costa et al. (2012), a Situation Modeling Language (SML) is
developed, which is a graphical language for situation modeling,
and an approach to situation detection and recognition based on
the SML model is realized by linking the model to a rule-based
scheme. The motivation for this paper comes in part from a view
of Kokar et al. (2009) that argues, from an ontological point of
view, that “to make use of situation awareness [. . .] one must
be able to recognize situations, [. . .] associate various properties
with particular situations, and communicate descriptions of
situations to others.” In addition to supporting an ontological
foundation related to anything having to do with situations,
this paper has many features that resonate with our own ideas,
for example in defining situations as composite entities whose
constituents are other entities, their properties, and the relations
in which they are involved. This leads to an approach which
is similar to an ontological approach that we also argue for
in this paper, and also to a graphical construct that we also
support as the correct modeling basis for these problems. This
work also concerns itself with formal semantics which are
quite necessary for these problems since clear semantics aid

in clarifying combinatoric complexities of layered situational
constructs. Previous work by Dockhorn et al. (2007) addresses
what could be called the context of situation development, where
an “invariant” is defined as the necessary and sufficient conditions
for a situation to exist. Addressing context and its importance
in situation estimation is also addressed from various points
of view in works by Snidaro et al. (2016). Yet other work of
Costa et al. (2006) addresses a distributed rule-based approach
for situation detection. When well-designed and developed, rule-
based systems can be both efficient to develop and to effective
to employ, but there are many lessons-learned and limitations
of rule-based systems that need to be considered (e.g., Nazareth,
1989), such as scalability, blindness to data not included in
the rules, and coverage of unbounded parameter values. While
the foundational and systemic aspects of these works are very
relevant to our discussion on situation control, the authors point
out in more than one of these papers that evaluations of these
prototype implementations are under development.

All of these works are focused on the estimation function
and associated processes for developing capabilities to estimate
situational states. Collectively, many systems engineering issues
are addressed, to include data management, ontological issues,
modeling of situations, and other related functions for situational
estimation. In that regard, they are solid research projects
but they are not directed to the holistic, closed-loop situation
control process that involves decision-making once situational
states are determined.

FIGURE 2 | Expanded framework of cognitive situation control.
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PROPOSED FUNCTIONAL EXPANSION
OF THE BASELINE FRAMEWORK:
OVERVIEW

While Jakobson provides a sound initial foundation for a
process description of situation control, we suggest various
enhancements of this process description. A first remark is
that the level of specificity of the meaning and construct of a
“situation” needs to be elaborated; we see this ideally as resulting
from a formal ontological development. At the highest level of
abstraction, one could say that a situation is a set of entities (here,
writ large, meaning not only physical entities and objects but
events and behaviors) connected by a set of relations. Relations
bring a new challenge to observation-based estimation because
relations are not observable by conventional sensing devices,
sometimes called “hard” sensors, meaning electromechanical
type devices such as radars and imaging systems. Hard data
produces features and attributes of entities in the situation from
which inter-entity relations could be reasoned. It is possible that
“soft” data such as social media data may apply to a situation
control problem, in which case such data may, if based on human
observation, reasoning, and judgment, yield direct estimates
of inter-entity relations. Contextual type data, that imputes
influences on the estimation of entities and relations, would also
be fused in a robust observation and data fusion process to aid
situation estimation processes. Along with the entity ontology,
a relation ontology is also needed so that the specifics of a
labeled, specific situational state can be assembled from these
components. That assembly requires a higher level of abstraction
in inferencing. Thus, Jakobson’s situation recognition process
will need to be supported by an ontological foundation where
entities, relations, and labeled situational states are coupled to the
fusion and recognition processes that will have to assemble the
recognized, labeled situational state by exploiting this framework,
and also by accounting for the various uncertainties in the
integrated observational and inferential processes.

Another suggestion relates to the need for accounting for time.
As we remarked previously, the real world is always dynamic, and
so situations are in a constant process of unfolding; situations
can be labeled as continuously valued random variables. Thus,
we assert the need for a Situation Prediction process that is
the means for maintaining situation understanding over time.
How such a process may be framed depends on how the
situation state is modeled; for example, a situation could be
represented as a graph (entities as nodes, relations as arcs) or as
a pattern of variables in the form of a time-series, or yet other
representational forms. Many strategies for prediction address
the problem as a pseudo-extrapolation of some type, projecting
the most likely evolution of the dynamic sub-parts of a current
situation. This brings in the need for Situation Understanding,
which we characterize as a process that enables generalization
from the particulars of the moment. Situation Understanding
admits to adding knowledge and thus adding (or subtracting)
new piece-parts of the situational construct, thus enabling more
insightful projection of estimated situation dynamics. At some
point in time or as part of an ongoing process, an assessment of

whether the situation is satisfactory or not is typically carried out;
this requires a specification of some desired situational state (as
previously noted, Jakobson calls it a Goal Situation in Figure 1)
that is the basis for comparison. Executing this step thus requires
a process for Situational Comparison. However, executed, the
comparison process yields what could be called an “error signal”
as would exist in any control process, as Jakobson points out;
we assert that this error signal will have stochastic properties,
since the estimated situational state, and perhaps the goal state
as well, will have stochastic-type error factors embedded in the
calculations. The error signal requires assessment as to whether
any action is required, and so there is a question as to “degree” of
error, and if the error is stochastic, issues of variance in this error
variable will factor into the severity assessment.

Another timing issue also arises at this point: this relates to
the issue of synchronizing the action-taking and the situation
prediction processes in order that the planned action is in fact
acting on the intended world situation at the action-time. All
these processes consume time, and an estimate of the sum of
the decision-time and acting-time will set a requirement for
situation prediction so that the actions that occur are acting
onto the expected situation at that time; thus, there are process
interdependencies (see Llinas, 2014) for further remarks on
this point). These expanded remarks and functional needs are
depicted in Figure 2 that shows our suggestions for an expanded
framework of situation control:

EXPANDED FUNCTIONAL REVIEW:
STATE OF THE ART AND CHALLENGES

Situation Recognition
One definition of “recognize” is to “perceive something
previously known,” implying that a model-comparison type
process is employed for recognition. But even before a model
is conceptualized, a modeling framework is required to set
a norm for the structure and content of such a model; this
requirement brings into our discussion the need for a situation
ontology. To our knowledge, no fully and well-developed,
formalized ontological specification of a situational state exists
that has been taken up broadly by researchers addressing
the kind of problems we are discussing here (e.g., the data
fusion community). There has been a fairly large number of
publications that offer representational schemes for situations,
some labeled as ontologically-based, but those models have not
been broadly applied (see Dousson et al., 1993; Boury-Brisset,
2003; Baumgartner and Retschitzegger, 2006; Little and Rogova,
2009; Cardell-Oliver and Liu, 2010; Almeida et al., 2018, that
are just a sampling). As situations are rather complex world
states, processes trying to estimate these states need to take a
position on what the components of situations are, as most
approaches can be labeled as bottom-up, assembling situational
state estimates from estimates of the components. Development
of a rigorous situational ontology and harmonization of its use
across a community is a very complex matter. It would seem
that such an issue should fall to the portion of a community
addressing its engineering methods, and the regularization of
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top-down system engineering approaches; how this issue will
unfold going forward remains unclear.

As it is clear that situations evolve and change over time,
we need to think about the tempo of situation recognition
as a process, e.g., as a “freeze-frame” depiction or perhaps
an interval-based depiction. This issue muddies the distinction
between recognizing a situation and prediction and updating
of situations; the underlying issue is that a situational state
is a continuous variable, an emphasis previously pointed out.
Importantly, perhaps even crucially, the ability to assess the
situation evolution rate/OpTempo is needed to specify the
required observational rates of situation components, in the
fashion of a “Nyquist” criterion for signal sampling. Clearly if
the observational rates across the sensor suite are not tailored to
the situational tempo, the entire situation estimation and control
framework is compromised.

Sampling of Computational Methods for Situation
Recognition
As commented above, one way that Situation Recognition
(SR) can be approached is as a model-comparison process.
In Dahlbom et al. (2009) a template-based approach to SR
is described. This paper raises some basic questions for any
model-based approach, to include deciding which situation-
types to model, how complete must the matching process be,
and other issues related to the model-comparison scheme. We
also point out that a model-comparison approach, to include
any ML approach, is based on historical, available data and
a priori knowledge, and a root question revolves around the use
of “history” to assess the “future,” meaning that an argument
needs to be shaped that verifies that the applicability of such
models includes an acceptable spectrum of possible future
situations of interest. That is, such methods have boundaries
of situation coverage and will not address anything that is not
modeled, such as possible effects of nature, effects of contextual
factors, or the creative actions of an adversary. If we abstract a
“situation” as a set of entities in a set of relations, we can say
that SR aims at identifying complex constellations of entities
and relations, i.e., situations, extracted from a dynamic flow of
complex observational and other data and information. In a
broad sense, one could say that SR is a filtering process. This
process will depend on the extent and quality of both real-time
data projected to be available and of the a priori knowledge
employed in model construction. This distinction or balance of
available real-time data and degree of a priori domain knowledge
is clearly a crucial a priori design issue for the design of any SR
approach. The requirements for either of these factors depends
in part on the complexities of the set of relations embodied in
any situational construct; if the relations are simple, they should
be able to be inferred from observational data but if they are
complex, they will need to be derived from a combination of
observational data and a priori knowledge. In Dahlbom et al.
(2009), a simplified scheme for a template-based approach to
SR is developed; they point out that template-based methods
have also been applied in the extensive work in plan recognition,
such as in Azarewicz et al. (1989) and Carberry (2001), as well
as other early AI-based techniques such as rule-based systems,

both also being model-based approaches. Without doubt, the
framework used most frequently for Situation Recognition is the
Bayesian Network (BN)/Bayesian Belief Net (BBN) approach; the
publications advocating the use of BBN are numerous. Some
researchers Elsaesser and Stech (2007) suggest that BBN’s “can
be thought of as a graphical program script representing casual
relations among various concepts represented as nodes to which
observed significant events are posted as evidences,” which is
pretty much the dynamic process of interest here. The idea of
that paper is to construct BBNs from sub–networks of internodal
relations. An important advantage of this approach is that it uses
BBNs distributed across multiple computers exploiting simple
standard “publish” and “subscribe” functionalities that allows
for significant enhancement of the inferencing efficiency. Multi-
agent architectures involving other estimation techniques at
the nodes are also used for Situation Recognition. Many other
paradigms for SR including Fuzzy Logic and Markovian methods
can be seen in the literature.

Situation Prediction
As noted in section “Proposed Functional Expansion of the
Baseline Framework: Overview,” the requirement for a situation
prediction (SP) process is linked to the time of action onto
the predicted situation. As for most prediction, projection, or
extrapolation processes, the difficulty and accuracy of such
processes is linked to the temporal degree of projection (how far
ahead) and the rate of observation and input of any data that
the projections depend on; this is not just sensor/observational
data but contextual and soft data as well. We have emphasized
the importance of the temporal aspects and the need to
maintain situation awareness; that emphasis is acknowledged in
various recent publications (e.g., Blasch, 2006; Niklasson et al.,
2008; Baumgartner et al., 2010; Foo and Ng, 2013). Research
areas where situation prediction has been addressed include cyber
defense, for attack/intent projection, autonomous vehicles where
traffic situation prediction is crucial, and also crisis/disaster
management, to guide response services.

Sampling of Computational Frameworks for Situation
Prediction
Two application areas where SP is addressed are those related
to Cyber SP for cyber-defense and Traffic Situation SP related
to autonomous car systems. A broad area where SP has also
been addressed is in a wide variety of game settings, from Chess
to Wargaming to Video Gaming. Most game environments,
however, have various rules that can constrain the evolution
of situations and thus provide a constrained framework within
which to explore SP, although many other settings will also
have constraints. We choose to show the SP framework of
Baumgartner et al. (2010) for traffic prediction that describes
a holistic approach that shows the joint exploitation of an SA
Ontology and, in this case, Colored Petri Nets (CPN) as an SP
estimation/modeling scheme.

In the traffic/autonomous car application, it is desired
to predict critical situations from spatio-temporal relations
between objects. These and other relations can be expressed
by employing relation calculi, each of them focusing on a
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certain spatio-temporal relation, such as mereotopology-based
(“part-of” based), spatial orientation, or direction. According to
Baumgartner et al. (2010) these calculi are often modeled by
means of Conceptual Neighborhood Graphs (CNGs, see Freksa,
1991); as noted in this paper, the CNG’s impose constraints on
the existence of transitions between relations, thus providing a
way to bound the complexity of relation modeling. CNGs can be
used for modeling continuously varying processes, and have been
used in a variety of related applications. Representing CNGs as
CPNs can lead to increasing prediction precision by using precise
ontological knowledge of object characteristics (if the ontology
is done well) and interdependencies between spatio-temporal
relations. This can lead to increased prediction explicitness
in their approach by associating transitions with dynamically
derived distances for multiple view-points. These so-called
Situation Prediction Nets (SPN) in Baumgartner et al. (2010)
are derived automatically from the available situation awareness
ontologies. The research described in this paper is among the few
that proactively integrate an ontological framework for relations
and situation structures with a computational strategy for SP.

In Salfinger et al. (2013), a situation’s evolution is modeled as
a sequence of object-relational states it has evolved through, i.e.,
the sequence of its situation states. This approach discretizes the
continuous evolution of the monitored real-world objects into
a sequence of their different joint relational states defined by
various relations between those objects, defined in an “alphabet”
or what could be called a bounded ontology. Thus, the problem
of predicting a monitored situation’s evolution is cast as a
sequence prediction problem. This technique is also applied
here to the traffic-situation prediction problem. This approach
employs a Discrete Time Markov Chain scheme; this is preceded
by a situation-mining analysis to define the situation state-space
“alphabet,” learned from human-labeled state sequences.

As previously remarked, works on SP can also be found
in the cyber-defense domain. In Husák et al. (2019), a survey
of such methods is provided. Their approach addresses four
categories of predicative capability. The first two of these
categories are attack projection and intention recognition, in
which there is a need to predict the next move or the
intentions of the attacker, third is intrusion prediction, in
which predictions are developed of upcoming cyber-attacks,
and fourth is network security situation forecasting, in which
projections are made of the cybersecurity situation in the whole
network. Across these applications, the paper reviews two broad
categories of prediction techniques: discrete-time approaches,
and continuous-time approaches. The discrete-time techniques
include: “attack graphs” that probabilistically model initial and
successor states of a postulated attack process. As in Salfinger et al.
(2013), the state-space if often defined by a data mining analysis.
The predictions using attack graphs are based on traversing the
graph from an initial state and searching for a successful or
most-probable attack path. A number of papers are cited in
the survey that employ variations of this technique. Bayesian
Nets and Markov techniques, as well as Game-theoretic methods
are among the other discrete-time approaches reviewed. The
continuous-time methods reviewed fell in to two categories, time-
series methods and “gray” methods. These methods were largely

used for whole-network predictions involving forecasts of the
numbers, volumes, and composition of attacks in the network
and their distribution in time.

Some Views From Cognitive Neuroscience
We have maintained that Situation Prediction is a functional
requirement in the process of Situation Control. There are
relatively few frameworks offered in the technical engineering
literature for Situation Prediction (as just discussed) but there
are also some paradigms for this process in the computational
neuroscience literature. For example, Bubic et al. (2010) provide
one overview of such processes in the brain. In this paper,
distinctions are made in relation to the horizon over which
predictions might be made (as we have also mentioned
previously). For example, the term “expectation” is said to
reflect the information regarding the spatial and temporal
characteristics of an expected event, whereas “anticipation”
describes the impact of predictions on current behavior,
e.g., decisions and actions based on such predictions, and
“prospection” is described as an ability to “pre-experience the
future by simulating it in our minds.” These distinctions are
shown in Figure 3.

The main factors that influence the nature of a predictive
process are characterized in Bubic et al. (2010) as shown in
Figure 4.

Heeger, in a paper that provides somewhat detailed
mathematical models of cortical processes (Heeger, 2017),
suggests that prediction is one of three key cortical operations: (i)
inference: where perception is a non-convex optimization that
combines sensory input with prior expectation; (ii) exploration:
here, inference relies on neural response variability to explore
different possible interpretations; and (iii) prediction: inference
includes making predictions over a hierarchy of timescales,
not unlike suggested by Bubic et al. (2010) The starting point
for this development is the hypothesis that neural responses
minimize an energy function that represents a compromise
between the feedforward drive and prior drive (drive ≈ neural
signals). In these process models, the responses of the full
population of neurons (across all channels and all layers)
are asserted to converge to minimize a global optimization
criterion, which Heeger calls an energy function. Specifically, the
starting point for this model development is the hypothesis that
neural responses minimize an energy function that represents
a compromise between the feedforward drive and prior drive.
Heeger says that predictive coding theories start with a generative
model that describes how characteristics of the environment
produce sensory inputs; Perception on the other hand is
presumed to perform the inverse mapping, from sensory inputs
to characteristics of the environment. Heeger’s approach suggests
a different process for how the brain might predict over time,
relying on a recursive computation similar to a Kalman filter,
where the predictive basis functions serve the same role as the
dynamical system model in a Kalman filter.

Returning to cognition, many researchers in the neuro
and cognitive sciences have developed a view according to
which prediction or anticipation represents a fundamental
characteristic of brain functioning, suggesting that prediction
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FIGURE 3 | Distinctions in prediction-anticipation-prospection derived from Bubic et al. (2010).

FIGURE 4 | Factors influencing the nature of prediction derived from Bubic et al. (2010).

is “at the core of cognition” (Pezzulo et al., 2007). Further,
for many cognitive functions and neural systems, an ability to
anticipate is a core requirement, such as in motor and visual
processing and attention (Mehta and Schaal, 2002). According
to Friston (2005), predictive processing is inherent to all levels
of our organized neural system. It is suggested that predictions
drive our perception, cognition, and behavior in trying to
fulfill predictions by preferentially sampling features in the
environment. Nevertheless, it can be expected that mismatches
will occur, and the size of such mismatches (prediction error)
creates a “surprise” that the brain tries to minimize in order
to maintain present and future stability (Friston and Stephan,
2007). In reviewing Bubic’s paper, one comes away with
the interpretation that anticipatory or predictive processing
potentially reflects one of the core, fundamental principles of
brain functioning which justifies the notion of “the predictive
brain” seen in some papers.

These neuronal-level models are quite interesting in helping
to understand how the brain develops predictions, but what is
being predicted are anticipated human-based sensor signals that
are important to human survival.

One such model, the Virtual Associative Network (VAN),
is combined with active inference and presented elsewhere

in this Frontiers special edition (Moran et al., 2021). This
work presents a new, Cognitive-Partially Observable Markov
Decision Process (C-POMDP) framework, extending the
Partially Observable Markov Decision Process (POMDP)
to account for an internal, cognitive model which attempts
to contend with situation control considerations we outline
here such as situation recognition, prediction, learning
and understanding.

The C-POMDP framework presumes an active interaction
between the agent and its environment wherein the agent
interacts with the environment in repetitive cycles consisting
of (i) sensing observable phenomena within the environment;
(ii) estimating situational states, situation dynamics (behavior,
op tempo, relations, etc.); (iii) predicting future states and
rewards; and (iv) making decisions to maximize expected
rewards. A key point here is that these estimation and
decision-making processes are based upon an internal
model which is maintained and updated by the agent as it
reasons about experiences. In Moran et al. (2021), learning
is facilitated by probabilistic reasoning and operations
on a graph-based modeling structure which encapsulates
associations between objects (entities, situation artifacts),
behaviors, and relations.
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Situation Learning and Situation
Understanding
The topics of learning and understanding have of course been
extensively studied by a variety of research and application
communities. These concepts have some relationship but they are
also distinct from each other. Learning can be seen as dependent
on (at least) two processes: observation and data gathering, and
on experimentation and acting. Both processes produce real-
time data that support inductive processes directed to gaining
real-time knowledge. Understanding would seem to follow
learning wherein the gained knowledge, along with archived
knowledge, are exploited in combination to develop a generalized
understanding of a world situation that allow development
of a contextual perspective—a generalized perspective—of that
situation. Generalization allows the recognition of the similarities
in knowledge acquired in one circumstance, allowing for
transfer of knowledge onto new situations. The knowledge
to be transferred is often referred to as abstractions, because
the learner abstracts a rule or pattern of characteristics from
previous experiences with similar stimuli. Yufik (2018) defines
understanding as a form of active inference in self-adaptive
systems seeking to expand their inference domains while
minimizing metabolic costs incurred in the expansions; the
process thus also entails an optimization element directed
at minimizing neuronal energy consumption. This view also
sees understanding as an advanced adaptive mechanism in
virtual associative networks involving self-directed construction
of mental models establishing relations between domain entities.
Understanding inter-entity relations is also a core element of
situation understanding. Thus, the relationship between learning
and understanding can be seen as complementary; understanding
complements learning and serves to “overcome the inertia of
learned behavior” when conditions are unfamiliar or deviate from
those experienced in the past (Yufik, 2018). A challenge now
receiving considerable attention with the new thrusts into AI is to
understand how humans are able to generalize from very limited
sampling. One approach fostered by Tenenbaum et al. (2011) and
Lake et al. (2015) is based on probabilistic generative models,
proposed as a basis for linking the psychological and physical
aspects of the world. These techniques are being explored
in DARPA’s Machine Commonsense program; however, these
techniques will yield learning and understanding processes that
create the foundational nuggets of what humans typically call
“common sense” knowledge, often called tacit knowledge, and
are far from a computational ability to understand situations of
varying complexity. (An often-cited example of common, tacit
knowledge that humans accrue is the learning of embedded
rules of grammar that are learned over time from discrete
sampling.) As most would agree that understanding involves
uncertainty, whereas knowledge is often defined as “justified
true belief” following Plato (yet acknowledging Gettier),3 it
seems reasonable to explore probabilistic methods to model
commonsense understanding. The issue of exactly how certain
one must be about a belief to qualify as “knowing” has been called

3https://en.wikipedia.org/wiki/Gettier_problem

the boundary problem (Quine, 1987). We see that there are thus
distinctions between understanding and knowledge; importantly,
understanding can be possibly incorrect. Also important to this
discussion, as just mentioned, is the process of generalization, a
rather pervasive topic in psychology. In Austerweil et al. (2019),
discuss the issue of learning how to generalize, which suggests
that generalization requires postulating “overhypotheses” or
constraints in effect on the hypothesis domain to be nominated.
Some assert that such overhypotheses are innate but Austerweil
et al. (2019) argue that they can be learned. In either case,
the generalization framework is said to be Bayesian-based.
Generalization has also been studied in Shepard (1987) that
suggests an exponential metric distance between the stimuli
as a basis to assert similarity, and in Kemp et al. (2006) that
discusses the overhypotheses issue. We note that the issue of
assessing similarity or degrees of association between disparate or
multimodal data is broadly similar to the generalization question,
and is a topic addressed in the field of multisensor data fusion. In
those cases, techniques of multidimensional scaling, copulas, and
manifolds have been used to develop scaling methods to relate
such non-commensurate data.

Situation Comparison
The assessment of any situation as to its acceptability or
to the need for situation control and action-taking requires
the specification of some basis for comparison; in Figure 1
Jakobson shows the Situation Comparator function needing a
Goal Situation to be defined. As situational states can be rather
complex, the bases of comparison could perhaps be done for
portions of a situation rather than the entirety of a complicated,
entangled set of situational elements. How any such comparisons
would be done is also dependent on how one chooses to represent
situations. Our search for literature related to this situation
comparison issue shows that this issue has not been extensively
addressed, and the methods proposed are of very different type,
as described next.

Sampling of Computational Methods for Situation
Comparison
In Mannila and Ronkainen (1997), as in other works reviewed
here, a situation is depicted as a series of events, i.e., an event
sequence. For many papers, as we will see, the issue of comparison
evolves around developing notions of similarity. In Mannila and
Ronkainen (1997) then, there is the issue of defining similarity
across event sequences. Building on the intuition that differences
or similarities in sequences relates to how much work has
to be done to convert one sequence to another, they define
an “edit distance” measure of similarity. These edit distance
measures are computed using a dynamic programming approach.
Sequence transformation operations such as insert, delete, and
move are formed, as well as a cost measure. From this framework,
an optimization function can be developed to compute the
minimum cost of a sequence edit between sequence pairs. Some
limited empirical results are developed that show reasonable
performance of this exploratory approach. Sidenbladh et al.
(2005) propose an approach based on using random sets as the
representational form for situations. This paper compares rolling
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situation predictions as a use case where the situation predictions
at two different times are normalized due to estimation noise
differences, arguing that prediction error is proportional to
prediction time. Given that normalization, they define a standard
norm as a similarity/difference measure and also point out that
the Kullback-Liebler measure4 is inappropriate for this purpose.
In some of our own work, we have depicted situations as graphs,
following a simple situation definition, as previously mentioned,
as a set of entities connected by a set of relations. Situation
similarity then can be assessed by any of the many existing
types of metrics for graph comparison (see e.g., Hernandez and
Van Mieghem, 2011). Which metrics are best will depend on
the graph details; for example, relations among entities can be
directed, and so comparison would then require metrics that
account for directed arcs in the representational graphs for the
situations being compared. There are metrics that can compare
both the global and local characteristics of two graphs; methods
of this type have been used for anomaly detection in situational
analysis. Since the description of any situational state will employ
language to label the situational components (entities) and their
relations, notions of situational similarity may also involve issues
of semantic similarity in the terms employed. Our research in
hard and soft data fusion for disaster response needed to address
this issue, which has been studied extensively, since semantic
similarity and whether words mean the same thing is a core
issue in many application settings. A hierarchically structured
ontology or taxonomy can be useful in estimating the semantic
similarity between nodes in the taxonomic network. Two specific
approaches used to determine the conceptual similarity of two
terms in this type of network are known as node and edge-based
approaches. The node-based approach relates to the information
content approach while the edge-based approach corresponds to
the conceptual distance approach. The edge-counting measures
are based on a simplified version of spreading activation theory
(Cohen and Kjeldsen, 1987) that asserts that the hierarchy of
concepts in an ontology is organized along the lines of semantic
similarity. Thus, the more similar two concepts are, the more
links there are between the concepts, and the more closely
related they are Rada et al. (1989). The node-based measures
are based on the argument that the more information two
terms share in common, the more similar they are, and the
information shared by two terms is indicated by the information
content of the terms that subsume them in the taxonomy. Data
association methods employed in data fusion have been used
to assess whether two situation states have the same objects in
them (e.g., Stubberud and Kramer, 2005); these metrics used
ideas from metric spaces and cardinality principles to compute
object-set similarities. Other techniques for assessing situational
similarity can be drawn from measures for assessing similarity
of sets such as the Jaccard Similarity and the Overlap Coefficient
(Rees, 2019).5 Similarity of relations is also of interest, and the
methods of ontological similarity could be used for relation-
labels as well as methods from Fuzzy Logic and latent variable

4https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
5https://medium.com/rapids-ai/similarity-in-graphs-jaccard-vs.-the-overlap-
coefficient-610e083b877d

type analyses (Turney, 2006). Finally, (Gorodetsky et al., 2005)
develop a situation updating method that addresses the issue of
asynchronous data with a data ageing scheme, the missing data
issue with a direct data mining approach, and a situational state
classification scheme based on a rule-based approach, in an effort
to account for these various aspects of situation updating in an
integrated approach.

CONTROL DYNAMICS

We have described the overall control process so far as
rather linear and feed-forward but there may be inter-
functional interdependencies across each “situational” function
described here. As multisensor data fusion processes are relevant
information processes supporting situation control as candidate
processes for situation estimation (see, e.g., Liggins et al., 2009)
it is known that there can be inter-process dependencies that
need to be addressed among data fusion, situation estimation,
and decision-making processes (see Llinas et al., 2004; Llinas,
2014). In the case of data fusion processes, the approach to
situation estimation is typically layered, following a “divide and
conquer” approach typically employed for complex problems.
The layered estimates are partitioned according to specificity,
with lower levels estimating features of situational entities,
and upper levels estimating aggregated multi-entity relational
constructs. Thus, the layers share content about common entities
that may be helpful to share in a synergistic scheme; for data
fusion, Llinas et al. (2004) addresses some of the issues of
this point. In the case where data fusion and decision-making
processes are integrated in a single architecture, the inter-process
dependencies exist because one process, data fusion, is estimating
a situation and the other process is deciding about situations;
these interdependencies are discussed in Llinas (2014). Further,
the Action Planning and Action-Taking processes that depend on
the possibly complex viable action-spaces of available resources
(that is, the various situation-affecting actions that a given
resource can execute) can lead to the need for an optimization-
based approach to select the best resource to execute a particular
situation-affecting action. Situation OpTempo and overall timing
control again need to be considered since there can be delays in
making the action-taking decisions (e.g., solving an optimization
problem) and delays in employing a resource and realizing its
intended effects. Consideration of these factors aids in estimating
the time it takes to make a decision and the time for resources
to act on the situation. An a priori/ongoing estimate of the sum
of these times provides the time specification to the Situation
Prediction function so that the system is predicting the situational
state at the expected time of action from the resources; also
discussed in Llinas (2014).

Partially Observable Markov Decision
Process
Control Theory offers a foundational problem formulation for
many problems requiring Situation Control. Such problems
presume an active interaction between an intelligent agent and
its environment where:
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• The agent exercises repetitive cycles of sensing the
environment, executing actions and modifying them based
upon feedback
• The agent seeks to maximize cumulative rewards received

from the environment
• The agent iteratively maps an error signal into actions.

In the POMDP formulation, these problem elements are
expressed as sets, and mappings between the sets. More
specifically, the environment offers a set of states (S) and a set
of rewards (R). The agent will iteratively draw from a set of
observations (O), and choose from a set of actions (A). Here,
the dynamics of the situation are characterized by a set of
state transition probabilities (P), providing a mapping from a
particular state at time t to a state at time t + 1 (P: st→st+1).
The agent’s observations which are related to environmental state
(S), are characterized by a set of observation probabilities (Z)
which map state at time t to an observation at a time t or a
later time t + n (Z: st→ot+n, n =0). Similarly, the relationship
between rewards and underlying state received by the agent
may be modeled deterministically or stochastically as related
to state; If stochastic, the relationship between the states (S)
and rewards (R) will be characterized by a reward probability
mapping, Q (Q: st→rt+m, m ≥ 0). For further information on
a POMDP modeling approach, the reader is referred to Bertsekas
(1987).

Although the POMDP offers a principled problem
formulation for complex situation control problems, it is well
established that, for realistic problems, POMDP solutions
often suffer from “the curse of combinatorial explosion” and
approximate solutions methods are required for solution
(Bertsekas, 1987). These approximate methods include, perhaps
most notably, Reinforcement Learning methods (Spaan,
2012) which have been used extensively in some artificial
intelligence solutions.

The authors contend that the POMDP offers a starting
point for the control aspects of the situation control problem
formulation but effective solutions for complex situation control
problems will require that the relationships between pertinent
situational factors governing state transition probabilities (P),
observation probabilities (Z), and reward probabilities (Q) be
understood. In practice, identifying the relevant situational
factors and accurately modeling the relationships governing
these mappings will be derived experientially, through situation
learning as described in section “Situation Learning and Situation
Understanding” above. Further, the temporal considerations we
have cited such as the situation’s op tempo guiding the agent’s
observation rate, and the need for situation prediction over
multiple horizons accounting for both state and action dynamics,

must be taken into account in order to properly assess situation
error, a key step in the process model.

SUMMARY

There is a large literature on Situation Awareness and Situation
Assessment that, to a large degree, treats the estimation of
these states in isolation from many other functions needed to
frame a complete, closed-loop process that not only estimates
these states but addresses the overarching central issue for
so many applications of situation control. Jakobson and a
number of others, largely from the community of authors
and attendees of the IEEE Cognitive Situation Management
(CogSIMA) Conferences, have addressed many issues related to
situation control and have tried to move the science forward by
expanding the process view to a more holistic framework. This
paper is a contribution to that collection of works, and also offers
some limited remarks from the point of view of computational
neurodynamics that is intended to lay the foundation for a dialog
regarding the exploitation of Machine Intelligence within and
central to the situation control paradigm. This is a complex
space of thinking, of process architecting, of algorithmic design
and development, and of human-machine interaction. As the
broad technical communities of the world grapple with the
development and exploitation of AI, ML, Machine Intelligence,
and of the role of humans and of autonomous systems and
behaviors, the need to frame the situation control process will
be a central topic in the broadest sense; this paper is a small
contribution to that goal.
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Simultaneous localization and mapping (SLAM) represents a fundamental

problem for autonomous embodied systems, for which the

hippocampal/entorhinal system (H/E-S) has been optimized over the

course of evolution. We have developed a biologically-inspired SLAM

architecture based on latent variable generative modeling within the Free

Energy Principle and Active Inference (FEP-AI) framework, which affords

flexible navigation and planning in mobile robots. We have primarily focused

on attempting to reverse engineer H/E-S “design” properties, but here

we consider ways in which SLAM principles from robotics may help us

better understand nervous systems and emergent minds. After reviewing

LatentSLAM and notable features of this control architecture, we consider

how the H/E-S may realize these functional properties not only for physical

navigation, but also with respect to high-level cognition understood as

generalized simultaneous localization and mapping (G-SLAM). We focus on

loop-closure, graph-relaxation, and node duplication as particularly impactful

architectural features, suggesting these computational phenomena may

contribute to understanding cognitive insight (as proto-causal-inference),

accommodation (as integration into existing schemas), and assimilation

(as category formation). All these operations can similarly be describable

in terms of structure/category learning on multiple levels of abstraction.

However, here we adopt an ecological rationality perspective, framing H/E-S

functions as orchestrating SLAM processes within both concrete and abstract

hypothesis spaces. In this navigation/search process, adaptive cognitive

equilibration between assimilation and accommodation involves balancing
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tradeoffs between exploration and exploitation; this dynamic equilibrium may

be near optimally realized in FEP-AI, wherein control systems governed by

expected free energy objective functions naturally balance model simplicity

and accuracy. With respect to structure learning, such a balance would

involve constructing models and categories that are neither too inclusive nor

exclusive. We propose these (generalized) SLAM phenomena may represent

some of the most impactful sources of variation in cognition both within

and between individuals, suggesting that modulators of H/E-S functioning

may potentially illuminate their adaptive significances as fundamental

cybernetic control parameters. Finally, we discuss how understanding H/E-

S contributions to G-SLAM may provide a unifying framework for high-level

cognition and its potential realization in artificial intelligences.

KEYWORDS

SLAM, free energy principle, active inference, hippocampal and entorhinal systems,
hierarchical generative models, robotics, artificial intelligence

Introduction

“We take almost all the decisive steps in our lives as a result
of slight inner adjustments of which we are barely conscious.”

—W.G. Sebald.

“Not all those who wander are lost.”
—J.R.R. Tolkien, The Riddle of Strider, The Fellowship

of the Ring.

“We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.”

—T.S. Elliot, Little Gidding.

Autonomous systems face a fundamental challenge of
needing to understand where they are positioned as they
move through the world. Towards this end, roboticists
have extensively investigated solutions to the problem of
simultaneous localization and mapping (SLAM), whereby
systems must infer both a map of their surroundings and
their relative locations as they navigate through space (Cadena
et al., 2016). Considering that these same challenges face any
freely moving cybernetic system, natural selection has similarly
exerted extensive teleonomical (i.e., illusory purposefulness)
optimization in this direction (Dennett, 2017; Safron, 2019b), so
generating mechanisms for enabling wayfinding and situating
organisms within environments where they engage in multiple
kinds of adaptive foraging. Perhaps the most sophisticated of
all biological SLAM mechanisms is the hippocampal-entorhinal
system (H/E-S), whereby vertebrates become capable of both

remembering where they have been, inferring where they are,
and shaping where they are likely to go next.

Here, we argue that the development of the H/E-S
represented a major transition in evolution, so enabling
the emergence of teleology (i.e., actual goal-directedness) of
various forms (Safron, 2021b), ranging from governance by
expected action-outcome associations to explicitly represented
and reflexively modellable causal sequences involving extended
self-processes. We focus on the implications of SLAM capacities
via the H/E-S, and of evidence that this functionality may
have been repurposed for intelligent behavior and cognition
in seemingly non-spatial domains. We propose that all
cognition and goal-oriented behavior (broadly construed to
include mental actions) is based on navigation through
spatialized (re-)representations, ranging from modeling abstract
task-structures to temporal sequences, and perhaps even
sophisticated motor control via SLAM with respect to body
maps. Indeed, we would go as far as to suggest that the ubiquity
of implicit and explicit spatial metaphors in language strongly
points to a perspective in which cognition is centered on the
localization and mapping of phenomena within both concrete
and abstract feature spaces (Lakoff and Johnson, 1999; Bergen,
2012; Tversky, 2019).

In these ways, we believe Generalized Simultaneous
Localization and Mapping (G-SLAM) may provide enactive
groundings for cognitive science within the principles of
ecological rationality (Todd and Gigerenzer, 2012). That is,
we adopt a perspective in which cognition is traced back
to its ultimate origins, wherein rationality is understood in
terms of adaptations for shaping animal behavior in ways that
further evolutionary fitness. Such ecological and ethological
connections further provide bridges to optimal foraging theory
and (generalized) search processes as ways of understanding
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cognition as a kind of covert behavior (Hills et al., 2013).
While somewhat similar models of intelligence have been
proposed (Hawkins, 2021), we suggest these other views may
be somewhat misleading in neglecting to account for the
central role of the H/E-S for realizing G-SLAM. In addition to
providing an accurate viewpoint that grounds cognition in its
cybernetic function as shaped over the course of evolution and
development, G-SLAM will further allow rich cross-fertilization
of insights between cognitive science and artificial intelligence.
Given the particular functionalities enabled by the H/E-S, we
propose this reverse-engineering project ought to be the central
focus of cognitive science and machine learning, potentially
constituting the most viable path forward towards realizing AI
with advanced capacities for reasoning and planning (Bengio,
2017).

A thorough discussion of these issues is beyond the scope
of a single manuscript. However, below we attempt to provide
an overview of why we believe the G-SLAM perspective may
provide a unification framework for cognitive science. First (in
Section “LatentSLAM, a bio-inspired SLAM algorithm”), we
review our work on biologically-inspired SLAM architectures for
robotics. Then, we consider features of the H/E-S, including its
functionality for localization and mapping in both physical and
abstract domains. Finally, we discuss correspondences between
features of SLAM and core aspects of cognitive functioning. We
hope to explain how common principles may apply not only to
the fundamental task of finding one’s way to desired locations
in physical space, but for thought as navigation through abstract
spaces. While much of what follows will necessarily be under-
detailed and speculative, in subsequent publications, we (and
hopefully others) will explore these issues in greater detail as we
attempt to explain fundamental principles in neuroscience and
artificial intelligence, while simultaneously seeking synergistic
understanding by establishing conceptual mappings between
these domains (Hassabis et al., 2017).

In the following section, we provide a high-level overview
of LatentSLAM, which is also treated in greater detail in (Çatal
et al., 2021a,b). While we believe many of these technical
details may be relevant for explaining fundamental aspects of
high-level cognition, a more qualitative understanding of this
content should be sufficient for considering the conceptual
mappings we (begin to) explore in this manuscript (Table 1).
Section “The Hippocampal/Entorhinal System (H/E-S)” then
summarizes current views on the H/E-S and its functioning
in relation to spatial modeling and cognition more generally.
Finally, Section “G(eneralized-)SLAM as core cognitive process”
draws parallels between understanding in machines (using
LatentSLAM) and humans (considering the H/E-S) and propose
G-SLAM as a unification framework for cognitive science and
artificial intelligence.

We realize that this may be a challenging manuscript for
many readers, with some portions focused on describing
a robotics perspective, and other portions focused on

cognitive/systems neuroscience. Indeed, this article emerged
from an ongoing collaboration between roboticists and
a cognitive/systems neuroscientist, which has been both
rewarding and challenging in ways that demonstrate why
this kind of interdisciplinary work is both desirable and
difficult. One of our primary goals for this manuscript
is to provide a rough-but-useful conceptual scaffolding
(i.e., an initial partial map) for those who would attempt
such cross-domain research. In this way, interested readers
ought not be overly concerned if some of the content is
found to be excessively technical relative to their particular
background. However, we believe readers who follow
through with exploring these suggested mappings (which
we only begin to characterize) may be richly rewarded for
those efforts.

In brief, G-SLAM can be summarized as follows:

1. It is increasingly recognized that the H/E-S may be the key
to understanding high-level cognition.

2. Within the field of robotics, the H/E-S has been identified
as having been shaped by evolution for the problem
of simultaneous localization and mapping (SLAM) for
foraging animals, and where these capacities appear to have
been repurposed for navigating through other seemingly
non-spatial domains.

3. We believe it would be fruitful to explicitly think of the core
functionalities of SLAM systems and test whether these
are not just reflected in the functioning of the H/E-S with
respect to physical navigation, but with respect to other
high-level cognitive processes as well.

If the H/E-S is the kind of gateway to high-level cognition
that it is increasingly suggested to be (Evans and Burgess, 2020;
George et al., 2021; McNamee et al., 2021), and if it can be
well-modeled as having been selected for SLAM functionalities
that were later repurposed, then we believe the difficulty of
exploring the following material will more than repay the effort
of attempting to make the journey. We also ask readers to note
places where spatial language can be found, only some of which
was intentional. Indeed, we take such linguistic spatializations
as supporting evidence for the G-SLAM perspective, which
perhaps may be overlooked by virtue of its very ubiquity (cf. fish
not noticing water). This is not to say that all spatial cognition
points to a SLAM perspective. Yet we believe such spatial
mappings are notable in affording opportunities for localization
and mapping with respect to such domains. We leave it up to
the discernment of our readers to assess how far one can go
with following such paths through conceptual spaces, which
may not only provide new perspectives on familiar territories
on minds, but may even make inroads into discovering how we
may follow similar paths to the destination of creating artificial
systems with capacities that were formerly considered to be
uniquely human.
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TABLE 1 Potential correspondences between LatentSLAM, cognitive psychological, and bio-computational phenomena.

LatentSLAM Cognitive-psychological processes Bio-computational processes

Mapping/graphing: Inferring dimensions of feature spaces and relative locations
of phenomena based on observations

Relations between hippocampal place cells for particular
locations combined with entorhinal grid cells for
multi-scale metric-affordance information

Localization: Positioning specific phenomena (including the mapping
and localizing system itself) within inferred feature spaces

Conjunction of hippocampal/entorhinal place/grid cells for
positioning specific events within maps/graphs

Sensor and actuator uncertainty: Perceptual (including mnemonic and imaginative)
ambiguity

Body and world states are indirectly inferred based on
partial information from noisy signaling systems

Views: Visuospatial perception (as a function of actions) Information from ventral and dorsal visual streams (and
other modalities) organized according to egocentric
perspectival reference frames (via posterior midline
structures)

Proprioceptive poses: Somatospatial perception (as a function of actions) Frontal-parietal hierarchies over the somatomotor strip,
with modeling/control potentially enhanced via explicit
mapping of lateral parietal body schemas by other systems
(e.g., midline structures coupling with the H/E-S)

Experience-map: Structuring of episodic memory and imagination both
informed by and informing visuospatial and somatospatial
modalities

Transitions between hippocampal place fields entailing
spatiotemporal trajectories for organisms (potentially
including trajectories for important effector/sensor systems
such as eyes and hands), both entrained by and entraining
largescale cortical attracting states

Spatial landmark graphs: Consciously-accessible representations of (salience-biased)
spatial relations, potentially constituting our sense of space;
semantic content of graph is based on actions and
corresponding sensations as paths are traversed
across/through these nodes

Hippocampal place fields as chained attractors, mutually
entrained with cortex to orchestrate attracting states for
population activity along reduced-dimensionality
manifolds for both overt and covert action-perception
cycles at and between these locations

Hierarchical generative model: The processes by which a coherent stream of experience is
generated and remembered with respect to both action and
perception

A functional and algorithmic understanding of the brain as
a hybrid machine learning architecture for predictive
control of an embodied-environmentally-embedded agent

Fisher information metric: The amount of information gained when traveling along a
trajectory given a probabilistic generative model, wherein
autonomous functioning is realized by minimizing
discrepancies between predicted goal and present estimated
states (via active inference); with respect to structure
learning, the amount of “cognitive work” required to make
sense of a domain

The amount of neural activity that must be expended to
achieve adaptive cybernetic functioning in a given context,
including with respect to constructing and refining world
models entailed by patterns of effective connectivity

Accumulation of map uncertainty: Deviations between models and that which is represented
due to uncertainty with respect to cognition and latent
world states

Deviations between likely patterns of neuronal attractor
dynamics and their ability to orchestrate either overt or
covert action-perception cycles (i.e., behaving or
imagining) for autonomous functioning; cybernetic (and
potentially thermodynamic) entropy for nervous systems

Loop-closures: Events in which a familiar location in feature space is
encountered with high confidence

High degrees of converging mutually consistent activity
from the H/E-S and non-H/E systems

Graph-relaxation: Assimilation of novel information into existing schemas via
iterated distribution of updates across interconnected
cognitive structures

Updating connectivity patterns to influence relative
positioning of hippocampal place fields, potentially
accompanied by largescale reductions in Hopfield energy

Node creation: Accommodation of novel information via altering the
structure of cognitive maps/graphs, potentially resulting in
major updates to internal working (world) models with
novel concepts

Creation of new place fields, involving various forms of
(potentially neuromodulator-dependent) hippocampal
plasticity, and/or establishment of new prefrontal attractors
(i.e., patterns of canalized striatal-cortical loops)

Navigation: Setting destinations in generalized space, which function as
sources of prediction-error to be minimized through active
inference; this may apply to the organism as a whole
moving through (generalized) space, or to trajectories for
parts of a system for which specific intentional control is
warranted (e.g., directed ocular foveations or
grasping/pointing movements), including with respect to
spaces of a conceptual variety (e.g., spatialized time)

Predictive sweeps of activity across place fields from
hippocampal maps (cf. successor representations), which
can orchestrate largescale cortical attracting states (cf.
equilibrium points) and thereby drive both system-internal
self-organization (i.e., perceptual inference, imagination,
and learning) and overt enaction, which in turn creates new
sources of information to shape subsequent H/E-S
dynamics

Please note, these cross-domain mappings are neither meant to be exhaustive nor definitive, but are instead intended to point in the direction of what a G-SLAM perspective
might look like if more fully developed.

LatentSLAM, a bio-inspired SLAM
algorithm

Simultaneous localization and mapping (SLAM) has been
a long standing challenge in the robotics community (Cadena

et al., 2016). For autonomous functioning, a robot must try
to map its environment whilst trying to localize itself in
the map it is simultaneously constructing (i.e., SLAM). This
setup creates a kind of “chicken and egg” problem in that
a well-developed map is required for precise localization,
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but accurate location estimation is also required for knowing
how to develop the map by which locality is estimated. This
challenge is rendered even more difficult in that not only
must the system deal with the seemingly ill-posed problem just
described, but the inherent ambiguity of the environment is
made even more difficult by sources of uncertainty from sensors
and actuators. A fundamental challenge (and opportunity)
with localizing and mapping is the detection of loop-closures:
i.e., knowing when the robot re-encounters a location it
has already visited. The challenge is due to the circular
inference problems just described, and the opportunity is due
to the particularly valuable occasion for updating afforded
by the system having a reliable reference point in space.
Such loop-closures have a further functional significance in
allowing experiences to be bound together into a unified
representational system where updates can be propagated in
a mutually-constrained wholistic fashion, so providing a basis
for the rapid and flexible construction and refinement of
knowledge structures in the form of cognitive schemas that
have both graph-like and map-like properties. With further
experience, these schemata can then be transferred to the
neocortex in the form of more stable adaptive action and
thought tendencies, so forming a powerful hybrid architecture
for instantiating robust causal world models (Hafner et al., 2020;
Safron, 2021b).

SLAM has traditionally been tackled by Bayesian integration
of sensor information within a metric map, typically expressed
in terms of absolute distances and angles. In previous work, this
amounted to keeping track of distances between the robot and
various landmarks in the environment. Distance measurements
were typically combined through Bayesian filtering, a principled
way of combining heterogenous information sources through
Bayesian inference. Modern successful metric SLAM solutions,
however, combine lidar scans with the robots internal odometry
estimate through Kalman filtering (Kalman and Bucy, 1961) into
2D or 3D occupancy grid maps (Mur-Artal et al., 2015; Hess
et al., 2016). These occupancy maps (Figures 1B,C) keep track
of locations of objects in the environment by rasterizing space
and then marking certain grid locations as inaccessible—due to
being occupied with physical obstructions—so creating a map
that resembles what an architect would create to diagram a room
(Figure 1A).

Variations on this scheme are popular and differ wildly,
either substituting the integration algorithm or the type of
metric map. A metric map is akin to a Cartesian grid with
regular spacings. However, such spatial maps do not speak
to the object identities within the space of interest, nor the
particular relations between those objects. Thus, one of the
downsides of using metric maps is that by extension all
robotic reasoning must also happen on a metric level, any
semantic information (i.e., the meaning of a certain cluster of
grid-cell activations) needs to be added in later. Further, such
metric spaces represent an instance of deviating from natural

designs, as hippocampal/entorhinal system (H/E-S) mappings
are not independent of the objects contained within these
spaces, but instead induce distortions (e.g., expansions and
compressions) of spatial relations, which are also modulated as
a function of the salience of these entities for the organism/agent
(Bellmund et al., 2019; Boccara et al., 2019; Butler et al.,
2019).

Popular approaches for such spatiotemporal modeling
use particle filters or extended Kalman filters as Bayesian
integration methods (Thrun et al., 2005). Kalman filters
are notable in that they allow for estimation based on a
precision-weighted combination of probabilistic data sources,
so allowing for synergistic power in inference and updating,
which is also theoretically optimal in making use of all
available data (weighted by relative certainty). As will be
discussed in greater detail below, such integration may be
implemented in the H/E-S via convergent activation in
regions supporting high degrees of recurrent processing, such
as the CA3 subfield of the hippocampus. However, not
only does the H/E-S promote integrative estimation, but
also pattern separation/differentiation via other subregions
such as CA1, so allowing for attractors to take the form
of sparsely-connected graphs—cf. hybrid continuous/discrete
architectures based on Forney factor graphs and agent-designs
based on independently controllable factors (Friston et al.,
2017b; Thomas et al., 2017, 2018). Below we will also
describe how such graph-like representations not only help
to solve problems in navigating through physical spaces,
but may also form a basis for the kinds of high-level
cognition sought after in the domain of neurosymbolic AI
(Bengio, 2017).

We do not internally represent the world in a metric map.
For instance, none of our senses can naturally give us an
accurate distance measurement. Neither are we very effective
in following a metric description of a path. Hence, it makes
more sense for minds like ours (and potentially for artificial
agents) to represent a map intuitively as a graph-like structure
(Figure 1D), where subsequent graph-nodes could represent
subsequent high-level parts of the environment e.g., a node could
represent a part of the environment containing a door at a
certain rough location. Map traversal then becomes equivalent
to the potentially more intuitive problem of graph-traversal
or navigating between meaningful landmarks. Trajectories
can then be expressed in terms of consecutive semantically
meaningful directions. For example, the metrical path “move
forwards 2 meters, turn 90 degrees clockwise and continue
for 2 meters” could become “after going through the door go
right towards the table.” (Note: in vertebrate nervous systems,
such forms of navigation could either be based on H/E-
S graphs/maps, or occur via canalized striatocortical loops
implicitly mapping states to actions, possibly with functional
synergy, and also enhanced robustness (and thereby learnability)
via degeneracy/redundancy.)
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FIGURE 1

An overview of different map types, show-casing our robotics lab. Panel (A) gives an exact metric view of the room as drawn by an architect.
Panel (B) shows the same map as a 2D grid map, to create this map from panel (A) the map was rasterized and untraversable terrain was filled
into the granularity of a single raster cell. Pabel (C) shows the same room as an x, y, z mapping of red/green/blue values extracted from a RGBD
camera. This 3D grid map was generated by moving the camera through the physical lab. Finally, panel (D) shows the lab as a sparse graph.

In LatentSLAM (Çatal et al., 2021a), we proposed a
bio-inspired SLAM algorithm which tries to mimic this kind of
intuitive mapping. With this architecture, we built topological,
graph-based maps on top of a predictive model of the world,
so allowing for separation of the low-level metric actions of the
robot and high-level salient paths. Instead of using raw sensory
data—or fixed features thereof (Milford et al., 2004)—directly
as node representations, LatentSLAM learns compact state
representations conditioned on the robot’s actions, which are
then used as nodes. This latent representation gives rise to
a probabilistic belief space that allows for Bayesian reasoning
over environmental states. Graph nodes are formed from
trajectories on manifolds formed by belief distributions. That is,
rather than utilizing static maps, our agents navigate through
space by moving between landmarks based on expectations of
which state transitions are likely to be associated with those
kinds of percepts. As an underlying foundation, LatentSLAM
adopts the Free Energy Principle and Active Inference (FEP-
AI) framework to unify perception (i.e., localization), learning
(i.e., map building) and action (i.e., navigation) as a consequence
of the agent optimizing one sole objective: minimizing its
(expected) free energy (Friston, 2010; Friston et al., 2017a).
As will be described in greater detail below, we believe this is
an apt description of thinking as the unfolding of a stream of
consciousness, with a variety of somatic states being generated in
various combinations as the agent perceives and imagines itself
moving through space and time.

Representing the world in a graph

Graphs form a natural way of representing relations between
various sources of information in a sparse and easily traversable
manner. In LatentSLAM, such a structure is used to build
a high-level map from agent experiences. This experience
map contains nodes consisting of a pose, i.e., the agent’s
proprioceptive information, and a view distilled from the
sensory inputs. Together, the pose and view of an agent specify
its unique experience: a different view in the same pose gives
rise to a new experience; likewise, the same view from a different
pose also constitutes a novel experience. Views generally lie on
some learned compact manifold as a compressed version of
one or more sensory inputs, integrated and updated through
time. Links between experiences in the graph indicate possible
transitions between one experience and another.

Figure 2 provides a visual overview of how poses and
views combine into an integrated experience map. The pose
information allows the agent to embed the graph relative to
the geometrical layout of the environment. In this case, the
embedding is done in 2D-Cartesian space as the example shows
a ground based, velocity-controlled mobile robot. Embedding
the graph in a reference frame correlated with environment
characteristics organizes observations in ways that greatly
enhance inferential power, since this avoids combinatorial
explosions with respect to under-constrained hypothesis spaces.
That is, a given sensory impression could correspond to an
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FIGURE 2

The formation of an experience-map out of views and
proprioceptive poses. Sensory observations first need to be
integrated into views to be compared to existing experiences
from the graph. The shown graph is embedded in a Cartesian
reference frame extracted from the proprioceptive information.

unbounded number of world states (e.g., something may be big
and far away, or small and nearby), but coherent perspectival
reference frames allow for likely causes to be inferred by
mutually-constraining relevant contextual factors.

Experience map

The experience map (or graph) provides a high-level
overview of the environment. Each node in the map represents a
location in the physical world where the robot encountered some
interesting or novel experience. These positions are encoded in
poses in a spatial reference frame, e.g., a 2D-Cartesian space,
whilst the experiences themselves are expressed as implicit
representations of corresponding sensory observations. When
view representations change according to distances to known
landmarks, this setup resembles the approach described in
the classical graphSLAM algorithm (Thrun and Montemerlo,
2006). Note that the seminal work on graph-based experience
maps (Milford et al., 2004) also used an embedding of sensory
observations into a lower dimensional space. However, in
contrast to our approach, these mappings were deterministic and
fixed for all observations.

The graph is embedded in, as opposed to being expressed in,
a spatiotemporal reference frame, meaning that over time stored
(or inferred) poses on the map are likely to exhibit deviations
from their initial recorded values as they are progressively
updated. Loop-closure events trigger a graph-relaxation phase
wherein current graph nodes are re-positioned to take into
account the unique opportunity accompanying the closing
of the loop (i.e., the creation of a closed system of node
linkages allowing for updating of the entire graph through

energy minimization, accompanied by more confident location-
estimation through experience-trajectory converging on known
landmarks). This relaxation not only affords opportunities for
map refinement, but it is also necessary due to the accumulation
in pose errors from odometry drift. Wheel slippage, actuator
encoder errors, and other similar effects amount to a continual
increase in the uncertainty of the pose estimate. These sources
of error/noise are part of what makes loop-closure such a hard
problem in general. However, the loose embedding of pose
information in the graph (combined with associated views)
allows the map building to become robust to sensor and actuator
drift, thereby maintaining a consistent map of the environment.

Views

LatentSLAM probabilistically learns views from sensory
observations by incorporating the action trajectories from which
they are generated, which differentiates our architecture from
similar algorithms (Milford et al., 2004). The agent keeps track
of a sample of the current belief distribution over states, which
gets updated at each time-step into a new belief through
variational inference. This sample constitutes either the current
agent view, or a sensory-decoupled (or imagined) estimate of
the environment from the latent space of the agent’s generative
model. At each time-step, the agent inputs a conjunction of
the current action, sample, and current observation into its
generative model. This world model then generates a new state
belief distribution based on the current state sample, which
functions as a source of predictions for a predictive coding
perceptual architecture. At training time, the generative model
is tasked with predicting future observations based on previous
recordings of trajectories through the environment.

Proprioception

An agent needs a principled way of keeping track of its
estimated pose in the local environment. That is, an agent needs
a coherent way to integrate changes in its local pose according
to some local reference frame. In this form of proprioception,
agents can estimate the effects of certain actions on local pose
information relative to adjacent portions of its environment.
This aspect of embodiment is essential in enabling consistent
mapping and localization through challenging terrains.

In LatentSLAM this is handled through the low-level
generative model on the one hand, and the pose continuous
attractor network (CAN) on the other hand. The generative
model allows for reasoning in terms of how actions affect views:
i.e., it reduces the pose to an implicit part of the latent state
representation. The CAN, however, leaves pose estimation as
an explicit part of the greater LatentSLAM model. It integrates
successive pose estimates through time in a multidimensional
grid representing the agent in terms of internally measurable
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quantities. In the case of a ground-based mobile robot these
quantities would be the expected difference in x,y pose and
relative rotation of the robot over the z-axis. Hence, for a ground-
based robot the CAN would be expressed as a 3D grid, that
wraps around its edges. Sufficiently large displacements along
the x-axis of this grid would teleport the pose estimate back
to the negative bound of the same axis. This to accommodate
for traversing spaces that are larger than the number of grid
cells in the CAN. The pose estimate in the CAN is represented
as an activation per grid cell, the value of which determines
the amount of belief the model gives to the robot being in
this exact relative pose. Multiple grid cell locations can be
active at any given time, indicating varying beliefs over multiple
hypotheses. The highest activated cell indicates the current most
likely pose. Cell activity is generated in two ways: activity is
added (or subtracted) to a cell through motion and the current
proprioceptive translation thereof in terms of grid-cell entries;
alternatively, activity may be modified through view-cell linkage.
When a view is sufficiently different from others it gets added to
the experience map together with the current most likely pose.
This mechanism in turn allows experiences, when encountered,
to add activation into the CAN at the stored pose estimate. This
process can shift, and often correct, the internal pose estimate of
the agent, allowing it to compensate for proprioceptive drift.

This conjunction of views and poses has notable parallels
with neural representations decoded from respective lateral
and medial entorhinal cortices (Wang C. et al., 2018), which
constitute the predominant source of information for the
hippocampal system (i.e., the experience map). It is also
striking that the self-wrapping representational format for
LatentSLAM poses/views recapitulates the repeated metric-
spacing observed for entorhinal grid cells, whose location
invariance may potentially provide a basis for knowledge-
generalization and transitive inference across learning epochs
and domains (Whittington et al., 2022). We believe that such
correspondences between naturally and artificially “designed”
systems constitutes strong evidence in support of a SLAM
perspective for understanding the H/E-S.

A hierarchical generative model

The entirety of the LatentSLAM framework can be
understood mathematically in terms of a hierarchical generative
model (Figure 3; Çatal et al., 2021b).

There are two distinct levels of reasoning, each using
their own generative model to explain the dynamics of the
environment at the corresponding level of abstraction. As
the generative models are stacked, the higher-level model
takes the states from the lower level as observations, while
the lower level observes the actual environment through
the agents’ sensors. Each separate generative model can
be seen mathematically as representing the joint probability

p(õ, s̃, ã) = p(a0)p(s0)p(o0|s0)
∏T

t = 1 p(st|st − 1, at − 1)p(ot|st),
with o relevant observations at each level; s state description,
views or locations; and a possible actions at each level (either
displacements in the environment or node transitions). These
models only consider the generative process up until some future
time horizon T. The exact instantiation of the joint probability
and corresponding posterior distributions differ between each
level of the hierarchy; interested readers are referred to Çatal
et al. (2021b) for a more thorough description of this kind of
model, and some extra details are provided in the “Appendix”.

Action and state inference, that is finding suitable
instantiations of the posteriors p(at|st) and p(st|st − 1, ot , at − 1)

is achieved through Active Inference as understood in the
context of the Free Energy Principle (FEP-AI; Friston et al.,
2017a). In FEP-AI, intelligent agents are governed by predictive
models that attempt to minimize variational free energy through
updating of internal beliefs and modification of external states
through enaction (hence, active inference). When implementing
similar mechanisms in artificial agents such as robots, inference
is amortized—cf. planning as inference via memorization of
successful policies (Gershman and Goodman, 2014; Dasgupta
et al., 2018)—through training variational auto-encoders
(VAEs) with objective functionals that minimize (variational)
free energy. The model consists of three neural networks, with
each representing a conditioned probability distribution that
outputs different multivariate Gaussian distributions based on
differing inputs. These inputs can take the form of different
sensor modalities such as lidar or camera; or they might be
actions depending on the flow of information between neural
networks.

State inference emerges naturally from the neural network
architecture and training method. Active inference, however,
leverages the trained network to create a set of imaginary
trajectories from which optimal action sequences can be selected
through expected free energy minimization. The model is
trained on a free-energy objective functional, wherein it is
tasked with minimizing Bayesian surprise—in the form of KL
divergence—between prior and posterior estimates on the state.
In this hierarchical generative model, there are two sources of
information flowing in two directions at any given time. Sensory
observations flow upwards from the real world through the
lower-level pose-view model towards the higher-level mapping
model. Predictions flow in the opposite direction, originating
in the higher-level mapping model and flowing down into the
environment through the predicted actions in the lower-level
pose-view model.

Bottom-up sensory streams

The agent observes the world through sensors as it moves
around the environment. At the lower-level of the generative
model, the agent actively tries to predict future incoming sensory
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FIGURE 3

Overview of the hierarchical generative model. Highlighted in blue is the bottom-up sensory stream, and in pink the top-down prediction stream.
As the agent moves about, it alternates between these two modes. On the one hand it will infer state information from the observations, and on
the other hand it will predict future observations from inferred states.

observations (Figure 3, blue arrow indicating informational
flow). The agent actively abstracts away distractor elements in
the observations as every observation gets encoded into a latent
vector (i.e., views). As this encoding is generated from actions,
observations and the previous latent state, the model considers
the effects that history and actuation (or enaction) have on the
environment. The abstracted view then gets fed into the higher-
level mapping model which actively predicts the next experience
from the previous one, taking into account the way the agent is
presently traversing the experience graph and its current view.

Top-down prediction streams

At the same time, decisions flow down from the higher-level
to the lower-level of the generative model (Figure 3, red arrow
indicating informational flow). As a new navigational goal is set,
the desired trajectory through the experience map is generated.
Each node transition denotes one or more displacements in the
real environment. While traversing the graph, the agent sets

the views associated with the visited nodes as planning targets
for the lower-level model. At the hierarchically higher level, the
agent samples multiple state estimates from the current belief
distribution over states and leverages the predictive capabilities
of the generative model to envision possible outcomes up until
some fixed planning horizon (Friston et al., 2021). From all
these imagined future outcomes, the optimal one is selected after
which the process repeats itself until the target view and pose
are met. In turn the next node in the map trajectory is used to
generate a new lower-level planning target.

Creating the map

As mentioned earlier, once an agent encounters a sufficiently
different experience, a new node is inserted in the experience
map with the current view and pose. This process results in an
ever-growing map of the environment as the agent explores the
world. Hence, there needs to be a principled way to determine
whether a view is new or is already known to the agent. As with
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many such problems, the solution presents itself in the form of
a distance function in some well-defined mathematical space. A
well-chosen distance function will allow the agent to not only
build a consistent map of its environment but also account for
loop-closure events.

Distance functions

Many SLAM algorithms use the Euclidian distance between
poses to determine whether the current observation and pose are
known in the map or represent some novel experience. However,
due to the inherent drift in proprioception in many real-world
scenarios, often this distance metric between poses and/or
observations is not enough. Alternatives present themselves
depending on the form of the probabilistic framework upon
which the algorithm is based.

As described in Section “A hierarchical generative model”,
LatentSLAM learns a latent state space manifold over sensory
inputs (i.e., camera images). This enables the agent to not
only evaluate Euclidian distances between poses, but also
distances between two sensory inputs in the latent statistical
manifold. To evaluate distances inside the manifold we need
an appropriate distance measure. One notable candidate is
the Fisher information metric (Costa et al., 2015), which
represents informational differences between measurements.
In our context, this means that two measurements are only
encoded in different nodes of the experience map when there
is sufficiently more information in one compared to the other.
For example, moving in a long, white hallway with little texture
will not yield a change in information in the latent manifold,
hence this will be mapped on a single experience node. Only
when a salient feature appears, for example a door, there will be
enough sensory information to encode a new experience. In such
a scenario however, methods building a metric map will likely
fail as it is impossible to accurately track one’s position in a long,
textureless hallway.

Note how the Fisher information metric is also related to the
free energy minimization objective used for manifold learning.
Concretely, if we take KL[x||x+ δx] with x a probability
distribution and x+ δx a distribution close to x we get that if
δx→ 0 then KL[x||x+ δx] → 1

2 F(x)(δx)2. In other words, for
infinitesimally small differences between distributions the KL
divergence approaches the Fisher information metric (Kullback,
1959). This can be interpreted as integrating the agent’s
Bayesian surprise over infinitesimal timesteps to measure the
“information distance” traveled.

However, since the Fisher information metric and KL
divergence do not have closed form solutions for many types of
probability distributions, we use cosine similarity between the
modes of the distribution as a numerical stable approximation
function. Therefore, LatentSLAM evaluates information

differences between experiences instead of differences in exact
environmental observations.

Node creation and loop-closures

When a salient landmark is identified, but the agent cannot
find a single node in the graph which matches closely enough
with the current view or pose, a new node must be inserted in the
graph. Alternatively, if the current experience matches both on
pose and view, a loop-closure is registered, but the agent leaves
the map as is. In order to determine whether two experiences
match, LatentSLAM uses a matching threshold θ. Both the pose
and view of an experience is matched to experiences stored
in the map. Figure 4 gives a visual overview of the various
possible matching cases. If neither view nor pose match with
any possible stored view or pose, a new experience is created
and inserted into the map, as is shown in panel A. When the
view and the pose both match, a loop-closure has occurred
and the current experiences shifts to the stored experience, at
which point a graph-relaxation phase is initiated. If the current
observed experience matches with a stored experience further
along the path, a relocation is required, and the estimate is
shifted further along the path in the graph. Finally, if the current
pose estimate matches a stored experiences pose, but does not
find the corresponding matching view, a new node is inserted at
the same location. This allows the agent to keep track of varying
views of the same landmark throughout the map.

Graph-relaxation

As nodes are inserted throughout the graph, each new pose
observation is subjected to sensor drift, leading to increasing
errors for remembered poses. To address this issue, whenever
a loop-closure event is encountered, graph-relaxation is applied
to the experience graph. The algorithm treats every node in the
graph as being connected with its neighbors as if suspended
by weighted springs. The strength of each spring is related
to the pose distances between the nodes. Then the algorithm
reduces the total “energy content” of the graph by shifting the
poses in such a way that the sum of the forces is minimized.
This approach is similar to graph-relaxation in similar SLAM
algorithms (Thrun et al., 2005; Thrun and Montemerlo, 2006).
Graph-relaxation has the effect of morphing the shape of the
pose embedding of the map to reflect the actual topology of the
environment.

Setting the threshold

Because the matching threshold has a significant impact on
the shape and content of the map, it is one of the more important
hyper parameters of LatentSLAM. For every environment there
is an optimally tuned threshold parameter θ?. A matching
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FIGURE 4

Different cases for illustrating the map updating procedure. For each case we show the map (top), pose (bottom right), and views (bottom left)
in their own respective spaces. The current active map node is always indicated in red and the current pose or view value is the final one in the
sequence. In case (A), the agent encounters a new experience which is not within the threshold boundary of both the poses and views, so a new
node is inserted into the map. Case (B) demonstrates a loop-closure event, where both the pose and view are within their respective thresholds,
blue indicating the area pose information demarcated by its threshold θ, pink indicating the area covered by the view threshold. If both view and
pose are within the threshold boundary (blue and pink) of the next node (case C), the estimate is shifted to the next node, skipping the current
node in the graph. Finally, case (D) shows a matching pose without a matching view, requiring a new node insertion in the map.

threshold much lower than this optimal value will result in a
mapping procedure with almost no loop-closure events. The
map will contain every tiny permutation in views and poses as
a separate node and will be insufficient in countering odometry
drift. Conversely, if the threshold is set much higher than θ?,
the mapping procedure will lump everything together in a small
cluster of nodes. Figure 5 provides a visual example of the effects
of the matching threshold on the resulting map.

Navigation

Navigation is achieved through a dual process of first
selecting nodes in the higher-level experience map, and then
setting the node-views as targets for the active inference
based lower-level action planner. In the first phase a path is
generated through the graph connecting the current node and
the target node. The final node is selected based on the visual
reconstruction of the stored view. That is, the user of the system
selects the view they want the system to have at a certain place.
Once an experience trajectory is found, the agent can start acting
in the environment. As each consecutive experience node is
separated from its neighbors by a finite set of actions, a sequence
of target views are extracted from the trajectory, forming the
imaginary trajectory the agent may (approximately) bring about
through overt enaction. The (active inference based) lower-
level generative model is then capable of filling in further gaps
between imagination and reality through additional planning.

At each step, the agent takes into account its current
view and imagined trajectory up until the next target view.
This imagination process leverages the learned intricacies and
dynamics of the environment to compensate for the potential
stochasticity in the interaction. Once a suitable trajectory
is imagined at the higher-level, the agent enacts the first
step of the trajectory, after which the lower-level planning
process is repeated. These step-by-step transitions through the

environment make the agent more robust against unexpected
changes in the environment, which it might not have captured
during model training.

Crucially, imagined trajectories are scored using a common
objective functional of expected free energy, both on the higher
level of proposed paths through the experience map/graph,
as well as on the lower level of inferring actions capable of
transitioning the agent between nodes (Çatal et al., 2021b).
That is, trajectories are more likely to be selected if they
bring the agent towards preferred outcomes and/or resolve
uncertainty about the environment. Hence, action selection
comprises a trade-off between instrumental value and epistemic
value, which are naturally balanced according to a singular
criterion of variational free energy. To provide an example in
navigation, this tradeoff between the extrinsic value of realizing
prior preferences and the intrinsic value of novel information
could respectively manifest as either selecting a safer route via
well-recognized landmarks or instead taking an unknown (but
potentially shorter) path through a dark forest. Further, the
discovery of such shortcut paths through space speaks to the
kinds of flexible inference and learning that first motivated
construals of the hippocampal system in terms of cognitive maps
(Tolman, 1948), and in a G-SLAM context could be thought
of as a way of understanding a core aspect of intelligence in
the form of creative insight. And in the context of AI, such
creative cognition may afford the creation of much sought after
capacities for powerful inferences and one-shot learning in novel
situations, which if realized could greatly enhance autonomous
functioning.

Limitations and future directions

There are several limitations with the current
implementation of LatentSLAM. First, the experience
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FIGURE 5

(A) Metric map of our lab environment, with some example camera views at the marked locations. The views at different locations (i.e., 3 and
5 or 1 and 4) appear very similar, making this a hard environment for visual SLAM. Panels (B–D) show three possible mappings of the trajectory
shown in red in panel (A). (B) With a well-tuned threshold θ?, our LatentSLAM algorithm recovers a topological map of the environment, clearly
separating the four different aisles. (C) If the threshold is too stringent (θ � θ?), loop-closure events are not detected, as every view is seen as
unique, and the map becomes incorrect as proprioception errors (the main source of mapping errors) add up. (D) When the threshold is too
relaxed (θ � θ?), similar looking aisles are mapped onto each other due to false positive loop-closures.

graph is incapable of merging nodes with similar views
and approximately similar poses into a single unified stochastic
node. This in turn leads the algorithm to generate an increasing
number of nodes for each pass through a single location.
Second, the lower-level planning is limited to the sequence
length encountered during training, and as such the model is
incapable of imagining coherent outcomes beyond this time
horizon. This brings us to a potentially substantial limitation of
LatentSLAM, in that the lower-level generative model needs to
be pre-trained on the types of observations it can encounter in
the environment. That is, when the target views are unknown,
imaginative planning may be required wherein agents visualize
an assortment of potentially rewarding (counterfactual) action-
outcome pairings. Going forward, we aim to alleviate these
constraints by adapting the training procedure to accommodate
online learning, allowing the agent to learn to imagine whilst
exploring (Safron and Sheikhbahaee, 2021), which may be
understood as a kind of deep tree search through policy space
via Markov chain Monte Carlo sampling (Dohmatob et al.,
2020; Friston et al., 2021), with potentially relevant insights
obtainable from advances in Bayesian meta-reinforcement
learning (Schmidhuber, 2020).

To extend the biological fidelity (and potential functional
capacities) of our architecture, we intend on attempting to
recapitulate particular empirical phenomena such as the specific
conditions under which new place fields are introduced or
pruned away in mammalian nervous systems. For example,
the insertion of environmental barriers or encountering
corridors leading to identical rooms may induce duplication
of sensory views at different locations, which may speak
to the phenomenon of place-field duplication—which in a
LatentSLAM context would involve node creation (Lever et al.,
2009; Spiers et al., 2015)—yet where these representations may
also disappear with further learning. This kind of pruning

of nodes—potentially involving “artificial sleep”—could be a
valuable addition to latent SLAM’s functionality, and may
potentially be understood as an instance of Bayesian model
reduction with respect to structure learning (Friston et al., 2019),
so providing another means by which capacities for creative
insight (in terms of discovering more elegant models) may be
realized in AI.

With respect to these particular phenomena involving
challenging ambiguous situations, we may speculate that highly-
similar-but-subtly-different pose/experience map combinations
could represent instances associated with high levels of
prediction-error generation due to a combination of highly
precise priors and contradictory information. Speculatively, this
could be understood as an example of “hard negative mining”
from a contrastive learning perspective (Mazzaglia et al., 2022).
As will be described in greater detail below, such highly
surprising events may be similar to experiences of doorway
or threshold crossing, and may trigger the establishment
of event-boundaries via frame-resetting and spatial-retiling.
Speculatively, the assignment of particular content to particular
rooms in “memory palaces” could be understood as a necessary
part of the art of remembering due to this phenomenon
potentially interfering with semantic “chunking” (or coherent
co-grounding). In attempting to apply LatentSLAM to cognition
more generally, it could potentially be fruitful to look for
generalizations of these phenomena with respect to seemingly
non-spatial domains, such as with respect to creativity and
insight learning problems in human and non-human animals.

Finally, and with further relevance to realizing capacities
for imaginative planning and creative cognition, we will
attempt to include phenomena such as sharp-wave ripples
and forward/reverse replay across hippocampal place fields
(Ambrose et al., 2016; de la Prida, 2020; Higgins et al., 2020;
Igata et al., 2020), which have been suggested to form a
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means of efficient structural inference over cognitive graphs
(Evans and Burgess, 2020). With respect to our goal-seeking
agents, forward replay may potentially help to infer (and
prioritize) imagined (goal-oriented) trajectories, and reverse
replay may potentially help with: (a) back-chaining from
goals; (b) increasing the robustness of entailed policies via
regularization, and (speculatively), and (c) allowing for a
punishment mechanism via inverted orderings with respect to
spike-timing-dependent-plasticity. In these ways, not only may a
G-SLAM approach allow for deeper understanding of aspects of
biological functioning, but attempting to reverse engineer such
properties in artificial systems may provide potentially major
advances in the development of abiotic autonomous machines.

The hippocampal/entorhinal system
(H/E-S)

The hippocampal/entorhinal system (H/E-S) represents a
major transition in evolution (Gray and McNaughton, 2003;
Striedter, 2004), with homologs between avian and mammalian
species suggesting its functionality becoming established at least
300 million years ago (Suryanarayana et al., 2020), with some
of its origins potentially traceable to over 500 million years in
the past with the Cambrian explosion (Feinberg and Mallatt,
2013), and potentially even earlier. It may be no overstatement
to suggest that the H/E-S represents the core of autonomy
and cognition in the vertebrate nervous system, with similar
organizational principles enabling the potentially surprising
degrees of intelligence exhibited by insects (Ai et al., 2019;
Honkanen et al., 2019).

While their precise functional roles continue to be debated,
the discovery of hippocampal place cells and entorhinal grid
cells was a major advance in our understanding of how space is
represented in the brain (O’Keefe and Nadel, 1978; Hafting et al.,
2005). Similarly important was the discovery of head direction
cells in rats, which were found to activate according to moment-
to-moment changes in head direction (Sharp PE, 2001). Place
cells have been modeled as representing a “predictive map”
based on “successor representations” of likely state transitions
for the organism (Stachenfeld et al., 2017), and grid cells have
been understood as linking these graphs (or Markov chains)
to particular events happening within a flexible (multi-level)
metric tiling of space, so allowing for estimates of locations via
path integration over trajectories. While we need not resolve the
precise correspondences between these cell types here, there are
intriguing developmental observations of place cells acquiring
more mature functioning prior to grid cells, both of which
likely depend on head-direction cells for their emergence (Canto
et al., 2019; Mulders et al., 2021). In other contexts, place-
specific cells have been found to index temporal sequence
information, potentially functioning as “time cells” (Pastalkova
et al., 2008), so providing a further means by which the H/E-

S may provide foundations for coherent sense-making and
adaptive behavior through the spatiotemporal organization of
organismic information (Eichenbaum, 2014; Umbach et al.,
2020).

In addition to place, time and grid cells, a variety of
additional specialized cell types have been observed in the
H/E-S. While it was previously assumed that these features
represent innate inductive biases (Zador, 2019), increasing
evidence suggests these specialized cell types may arise from
experience-dependent plasticity, including models with similar
architectural principles to the ones described here. In recent
work from DeepMind (Uria et al., 2020), a recurrent system
was used to predict sequences of visual inputs from (the latent
space) of variational autoencoders. A natural mapping from
egocentric information to an allocentric spatial reference frame
was observed, including the induction of specialized units with
response properties similar to head direction, place, band,
landmark, boundary vector, and egocentric boundary cells.
Similar results have been obtained with the Tolman-Eichenbaum
machine (Whittington et al., 2020), including demonstrations
of reliable cell remapping, so enabling transfer learning across
episodes with the potential for the creative (re-)combination
of ideas and inferential synergy. Other intriguing work on the
emergence of specialized H/E-S functions through experience
comes from work on “clone-structured cognitive graphs”, where
various aspects of spatial maps are parsimoniously formed
as efficient (and explanatory) representations of likely state
transitions through the duplication and pruning of nodes
in a dynamically-evolving sequence memory (George et al.,
2021). While this evidence suggests a potentially substantial
amount of experience-dependence in the emergence of the
“zoo” of specialized neurons for spatiotemporal navigation, the
development of these features still involve clear innate inductive
biases (Zador, 2019). Specifically, specialized pathways ensure
that the H/E-S receives neck-stretch-receptor information
from the mamillary bodies and yaw/pitch/roll information
from the vestibular apparatus (Papez, 1937; Wijesinghe et al.,
2015), so providing bases for sensor-orientation with respect
to head-direction and thereby the foundations of egocentric
perspective.

H/E-S as orchestrator of high-level
cognition

While the association of the hippocampus with
autobiographical and declarative memory is well-documented
(MacKay, 2019), the H/E-S is increasingly being recognized
as foundational for cybernetic functioning on multiple
scales. A more thorough understanding of the principles
governing the H/E-S and its interactions with the rest of the
brain may allow us to understand how such sophisticated
cognition and behavior is demonstrated by biological organisms
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(Todd and Gigerenzer, 2012). Even more, such knowledge may
also allow us to find ways of reproducing these functionalities in
artificial intelligences.

The hippocampus is usually described in terms of a
“trisynaptic circuit” (Andersen, 1975), with multiple specialized
subsystems that interact with functional synergy. The dentate
gyrus is the primary input area to the hippocampus from
entorhinal cortex, with densely packed cells for pattern
separation, so allowing for multiple separable/orthogonal
representations. Much of this information then feeds into CA3,
characterized by highly recurrent circuits with tight loops for
dynamic pattern completion. This information is then routed
to CA1, characterized by sparse and stable representations,
representing the primary output area of the hippocampus
and interface with the rest of the brain. Taken together, the
subfields of the hippocampal complex allow multiple sources
of information to be not just independently stored in memory,
but also creatively combined within and across experiences,
so affording powerfully synergistic functionalities such as
transfer learning and generalizable knowledge. Intriguingly,
some evidence suggests that humans might be unique in
exhibiting less pattern separation in their hippocampal subfields,
potentially contributing to—and possibly being a function
of—cognition involving high degrees of abstraction/invariance
(Liashenko et al., 2020; Mok and Love, 2020; Quiroga, 2020).

Indeed, the functional properties enabled by the H/E-S
represent the state of the art in machine learning for real
world applications such as autonomous vehicles and artificial
intelligences attempting to realize higher-order reasoning
abilities (Ball et al., 2013; Bengio, 2017; Hassabis et al., 2017;
Kaplan and Friston, 2018; Shang et al., 2019; Eppe et al.,
2020; Greff et al., 2020; Parascandolo et al., 2020; Shamash
et al., 2020; Friston et al., 2021). This is a bold claim for a
system that might be describable as an association machine
or spatial mapper, which when lesioned tends to leave much
of higher-order intelligence intact. However, closer inspection
of hippocampal patients reveals its essential contributions to
complex reasoning, emotion, and general behavioral flexibility
(MacKay, 2019). It should also be kept in mind that while
someone might be able to maintain certain functions after
losing a system in adulthood—as this functionality may become
distributed throughout the rest of the brain with experience—the
congenital absence of a working H/E-S might be a wholly
different manner, potentially precluding the bootstrapping of
any kind of sophisticated cognition or coherent world modeling
whatsoever (Safron, 2021a). Further, principles of association
may be surprisingly powerful if they are capable of representing
specific relational structures as particular graphs/networks,
which are increasingly being recognized as powerful learning
and inferential systems (Gentner, 2010; Zhou et al., 2019; Crouse
et al., 2020). Some have even suggested that the mapping
abilities of the H/E-S may provide bases for a potential core
functionalities associated with conscious processing in the form

of “unlimited associative learning” (Birch et al., 2020), in which
knowledge may be flexibly aggregated across experiences (Mack
et al., 2018, 2020; Mok and Love, 2019)—cf. transfer and
meta-learning (Wang J. X. et al., 2018; Dasgupta et al., 2019;
Kirsch and Schmidhuber, 2020). The central role of the H/E-S
for higher-order cognition is further understandable in light of
the fact that many (and possibly most) aspects of intelligence can
be described as search processes (Conant and Ashby, 1970; Hills
et al., 2010), which might be even more clearly apparent if we
think of the possibility of spatializing abstract domains such as
complex feature spaces (Eichenbaum, 2015; Whittington et al.,
2018), or even time (Howard, 2018; Gauthier et al., 2019).

The H/E-S represents both the developmental foundation
and functional apex of the cortical hierarchy (Hawkins and
Blakeslee, 2004; Barron et al., 2020). In predictive processing
models of the brain—e.g., the variational autoencoder
framework described here—observations not predicted at
lower levels eventually reach the entorhinal cortex and
hippocampus. We propose the H/E-S allows these high-level
prediction-errors to be temporarily encoded and organized
with spatiotemporal and abstract relational structure for
informational synergy. Indeed, on a high-level of abstraction,
the H/E-S can be considered to be a kind of Kalman variational
autoencoder that combines heterogeneous forms of (precision-
weighted) information for SLAM in generalized state/phase
space (Fraccaro et al., 2017; Zhang et al., 2017). Alternatively
framed, the cortical predictive hierarchy can be viewed as
hierarchical Kalman filtering all the way up and all the way
down (Friston, 2010). Along these lines, it is notable that the
H/E-S itself may operate in a manner that reflects more general
principles of cortical predictive processing. With canonical
microcircuits for predictive coding, predictions are associated
with deep pyramidal neurons and alpha/beta frequencies, and
prediction-errors are associated with superficial pyramidal
neurons and gamma frequencies (Bastos et al., 2012, 2020).
Consistently with the H/E-S involving predictive processing,
novel information (i.e., prediction errors) induce activation of
superficial pyramidal neurons for entorhinal cortex, dentate,
and CA3, and recollection (i.e., predictions) are associated
with activations in deep pyramidal neurons for CA1 and
entorhinal cortices (Maass et al., 2014). Also consistently
with a predictive processing account, another study observed
superficial place cells in CA1 responding (via a rate code) in cue
poor-environments, and deep pyramidal neurons responding
(via a phase code) in cue-rich environments, where we might
respectively expect either prediction-errors or predictions to
predominate (Sharif et al., 2020).

From a predictive coding perspective, the hippocampus is
a strange kind of cortex, not only because of its particular
cytoarchitectonic properties (e.g., 3 vs. 6 layers), but also because
of its connectomic centrality. Some proposals have suggested
that memory recall may arise from “fictive prediction errors”
(Barron et al., 2020)—a perhaps somewhat counter-intuitive
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suggestion, in that the hippocampus is considered to be the
top of the cortical heterarchy, and hence would be expected
to only provide descending predictions—so providing a source
of training signals for optimizing generative models of the
world without sensory data, as well as affording stimulus-
independent learning and imaginative planning. This is
consistent with work from DeepMind in which the hippocampus
is described as operating according to principles of “big loop
recurrence”, where its outputs can be recirculated as inputs for
offline learning and counterfactual processing (Koster et al.,
2018). Indeed, the H/E-S may not only provide sources of
predictions for the neocortex, but potentially prediction-errors
for itself, possibly by parameterizing simulations from cortical
generative models (Higgins et al., 2020). Further, recent evidence
regarding episodic memory formation and retrieval suggests
that interactions between cortex and the H/E-S may reflect
the roles of various frequency bands in predictive coding, or
“routing” (Griffiths B. J. et al., 2019; Bastos et al., 2020). In
this work, neocortical alpha/beta (8–20 Hz) power decreases
reliably correlated with subsequent hippocampal fast gamma
(60–80 Hz), and hippocampal slow gamma (40–50 Hz) power,
potentially indicative of a trading off between predictions and
prediction errors. However, this is somewhat different than
the standard predictive coding account attributed to the cortex
more generally, in that gamma frequency involvement may
support the aforementioned idea that hippocampal reactivation
of memories involve “fictive prediction errors” (Barron et al.,
2020), rather than a suppressive explaining away.

In contrast to other slow rhythms, hippocampal theta
oscillations may indicate enhancement of observations via
cross-frequency phase coupling (Canolty and Knight, 2010),
potentially providing a basis for high-level action and attentional
selection. Along these lines, the ability of theta-oscillations to
select and orchestrate cortical ensembles at gamma frequencies
may provide a role for the hippocampal system as a comparator,
enabling contrasting between percepts, whether based on
observations or imagination (Safron, 2021b). Opposite phase
relations between CA1 and CA3 (Tingley and Buzsáki, 2018)
are suggestive, potentially indicating both a kind of predictive
coding within the hippocampal system, and possibly also
instantiating and orchestrating the formation and contrasting
of corresponding cortical ensembles as alternating phases of
duty cycles for theta oscillations (Heusser et al., 2016; Kunz
et al., 2019). Indeed, the entertainment of counterfactuals might
not only depend on a cortical hierarchy of sufficient size to
support an inner loop separable from immediate engagement
with the sensorium (Buckner and Krienen, 2013), but also a
working H/E-S to stabilize ensembles associated with novel
(due to being non-actual) possibilities (Hassabis et al., 2007). In
this way, in conjunction with the rest of the cortex, the H/E-S
could be viewed as an energy-based self-supervised contrastive
learner (Mazzaglia et al., 2022), which may enable a substantial
amount of adaptive-autonomous behavior if (variational) free-

energy/prediction-error is being minimized with respect to
divergences between goals and present estimated states (Hafner
et al., 2020; Safron, 2021b).

It has recently been suggested by researchers at Numenta
(a biologically-inspired AI company) that the principles (and
particular cellular adaptations such as grid cells) involved in
H/E-S functioning—e.g., allocentric object modeling (Sabour
et al., 2017; Kosiorek et al., 2019)—may be recapitulated
throughout the entire neocortex (Hawkins et al., 2019). The
idea that the H/E-S may represent a template for understanding
the neocortex is not unreasonable, since while it is referred
to as “subcortical”, it is technically composed of cortical tissue
(Insausti et al., 2017). Along these lines, not only is the H/E-
S topologically central as a “convergence divergence zone”
(Damasio, 2012) and hub for “semantic pointers” (Blouw
et al., 2016), but it is also primary from an evolutionary (as
archaecortex/periallocortex) and developmental perspective.

Modeling based on object-centered reference frames may be
a broader property of the neocortex (Hawkins, 2021). However,
we believe that such coherent perspectives may depend on being
able to conduct active inference and learning with sufficient
degrees of independence from other modeling/control processes
(Thomas et al., 2017, 2018). That is, we suggest that for
emergent modules to have H/E-S properties, they must be able
to achieve informational closure with sufficient rapidity that
they can both independently inform and be informed by action-
perception cycles with respect to particular effector-sensor
systems. For example, the establishment of such independently
controllable factors may be the case for large macrocolumns
such as rodent whisker barrels, but potentially not for ocular
dominance columns. To the extent that hippocampal and
entorhinal cell-types are found more generally throughout the
cortex (Long and Zhang, 2021), we suggest that it remains
ambiguous as to whether this reflects G-SLAM constituting a
common cortical algorithm, or whether such representations
are induced over the course of development via integrative
functioning involving the H/E-S.

The H/E-S as sense-maker and value
integrator/realizer

Switching between conceptual scenes involves ramping of
hippocampal activity, followed by high-frequency signaling with
the cortex as a new frame of sense making is established
(de la Prida, 2020; Karimi Abadchi et al., 2020; O’Callaghan
et al., 2021). Theoretically, these events (potentially accompanied
by sharp wave ripples) would represent the formation of
new grid/place tiling/mapping/graphing over a space/scope
of relevance, but where sufficient functionality is carried
over across remappings for integration of information across
episodes. Functionally speaking, these frame-shifts could be
understood in terms of Lévy flights with respect to generalized
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search, so allowing for more exploratory processing and creative
solutions in the face of challenges (Hills et al., 2010; McNamee
et al., 2021). That is, in contrast to searching via random walks
that would tend to result in reliable exploitative mapping of
simple domains, such discontinuous (and potentially fanciful)
flights to remote areas of hypothesis/phase spaces would allow
agents to both more efficiently explore complex domains and
escape from local optima. Considering that the H/E-S may be
understood as the highest (or most flexibly integrative) level
of agent-level control processes, altering parameters/modulators
relevant for this kind of more exploitative or exploratory
(generalized) search could be some of the most significant
sources on variation both between and within individuals and
species (Safron, 2020c).

While the precise conditions for remapping are likely to
vary based on multiple conditions, degree of overall prediction-
error seems to be one reliable trigger, as in an experiment in
which participants were cued to retrieve well-learned complex
room images from memory and then presented with either
identical or modified pictures (Bein et al., 2020); in this study, the
number of changes caused CA1–CA3 connectivity to decrease
(potentially indicating less intra-hippocampal recurrent activity)
and CA1-entorhinal connectivity to increase. Consistently,
another study found sensitivity to reward prediction errors
with respect to the establishment of new event boundaries
(Rouhani et al., 2020). Similar influences on the stability of
mappings by more general salience is suggested by studies
in which the H/E-S shows sensitivity to interactions with the
amygdala and responses to fearful stimuli (Chen et al., 2019), as
well as modulation of encoding based on attention/expectancy
(Mack et al., 2018, 2020; Urgolites et al., 2020). The dividing
of continuous unfoldings into discrete epochs provides another
means by which abstract phenomena such as time may be
conceptualized by the H/E-S (in addition to their spatialization,
perhaps as a kind of multidimensional scaling onto lower
dimensional manifolds that may be inspected either through
fictive navigation or imaginative visual foraging (Ramachandran
et al., 2016).

Notably, the H/E-S may not just be sensitive to reward, but
it may also help to provide a major source of the prediction
errors that drive phasic dopamine (Mannella et al., 2013; Ballard
et al., 2019; Jang et al., 2019; Laubach et al., 2020), potentially
involving internal contrasting between hippocampal subfields,
and with overall prediction-error being further integrated via
outputs to the subiculum (Tingley and Buzsáki, 2018; Canto
et al., 2019). This may allow for the allostatic prioritization of
goals with respect to not only cortical predictions from medial
prefrontal cortices, but even homeostatic regulatory nuclei of the
septum (Tingley and Buzsáki, 2018; Kunz et al., 2019; Livneh
et al., 2020). The importance of the H/E-S for motivational states
is also evidenced by its ability to influence the interoceptive
components of emotions (Edwards-Duric et al., 2020), which
may have a further (circular) causal significance in helping

to drive counterfactual simulations, potentially understandable
as affectively-canalized Markov chain Monte Carlo tree search
through value space (Dohmatob et al., 2020; Hesp et al., 2020;
Parascandolo et al., 2020; Safron, 2021b). In this way, not only
would the H/E-S help implement SLAM processes with respect
to both concrete and abstract cognition, but it may also help
to explain how agent-level mental processes can enter causal
streams leading to both mental simulations and overt enaction,
so affording some of the varieties of “free will” worth having for
autonomous systems (Safron, 2021b).

Some evidence for this affective influencing of H/E-S
dynamics may potentially be found in studies of increased
inter-hemispheric phase coupling (delta range coherence)
during treadmill running periods (Furtunato et al., 2020),
potentially corresponding to periods of increased driving by
biophysical signals indicating organismic salience. Crucially,
sources of H/E-S “reward” may not just take the form of the
aforementioned extrinsic value of goal realization, but may
also be driven by the intrinsic value of novel information,
for the hippocampus could provide a natural integrator of
prediction-error as top of the cortical hierarchy (Hawkins and
Blakeslee, 2004; Mannella et al., 2013; Fonken et al., 2020).
While the hippocampus and ventromedial prefrontal cortex
may usually work together in estimating expected value (or
opportunities for free energy minimization), theoretically, they
may also function as semi-separate value signals in terms
of respective information gain and preference satisfaction. In
this way, convergence of the H/E-S and its ventromedial
prefrontal collaborators upon the accumbens core—and thereby
nigral motor dopamine (Mannella et al., 2013)—may represent
physical manifestations of the dual optimization for intrinsic
and extrinsic value prescribed by active inference as a normative
account of intelligence. This kind of convergent control based
on heterogeneous (fundamental) value signals is notable, as it
is becoming increasingly clear the H/E-S is more than just a
temporary memory buffer, but rather may constitute a primary
basis for autonomous functioning for vertebrates as adaptive
cybernetic systems, as highlighted in Figure 6.

G(eneralized-)SLAM as core
cognitive process

As described above, the H/E-S and its functional
relationships with the neocortex may be understood as
implementing a kind of Kalman variational autoencoder
(Fraccaro et al., 2017). In this capacity, the H/E-S may provide
inspiration for developing advanced SLAM architectures. In
its dual role as both memory and control system, the H/E-
S has been further optimized for facilitating comparisons
between largescale patterns (e.g., organismic states), which in
machine learning terms may be understood as implementing
something akin to energy-based contrastive learning
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FIGURE 6

A model of hippocampally-orchestrated imaginative planning and action selection via generalized navigation. Goal-oriented action sequences
are depicted with respect to relevant neural processes. The hippocampal system provides (a) organization of cortical attracting states into value-
canalized spatiotemporal trajectories, (b) stabilization of ensembles via theta-mediated cross-frequency phase coupling, and (c) goal-oriented
cognition and behavior via contrasting (not depicted) sensed and imagined states. Hippocampal trajectories are shaped according to whichever
paths are expected to result in more positively valanced outcomes (cf. reward prediction errors). The expected value associated with navigating
to different portions of (potentially abstract) space is informed via coupling with similarly spatiotemporally-organized value representations (red
shaded hexagons) in vmPFC and associated systems. As chained patterns of activity progress across hippocampal place fields (red hexagons with
variable degrees of shading), theta-synchronized frontal ensembles (yellow shading spreading towards the front of the brain) help to generate (via
cross-frequency phase coupling) ensembles for directing attention, working memory, and overt enaction. Sensory updating of posterior cortices
occurs at alpha frequencies (blue shading), so providing a basis for conscious perception and imagination. With respect to these integrated
estimates of sensory states, hippocampal coupling at theta frequencies (yellow shading spreading towards the back of the brain) provides a basis
for (a) episodic memory and replay, (b) novel imaginings, and (c) adjustment of neuronal activity selection via orchestrated contrasting between
cortical ensembles. Abbreviations: nAC, nucleus accumbens; vmPFC, ventromedial prefrontal cortex; dmPFC, dorsomedial prefrontal cortex;
SMA, supplementary motor area; Pre-SMA, presupplementary motor area; SEF, supplementary eye fields; PCC, posterior cingulate cortex; PMCs,
posterior medial cortices; IPL, inferior parietal lobule. Reprinted with permission from Safron (2021b).

(Marblestone et al., 2016; Richards et al., 2019; Mazzaglia et al.,
2022). In this capacity, the H/E-S may provide inspiration for
developing architectures capable of engaging in self-supervised
learning, counterfactual modeling, and further enabling
high-level reasoning abilities including analogical structure
mapping (Gentner, 2010; Safron, 2019a), causal inference (Pearl
and Mackenzie, 2018), and imaginative planning (Kaplan and
Friston, 2018; Safron, 2021b).

As described above, and elsewhere (Safron, 2020b,c,
2021a,b), LatentSLAM’s dual-tier architecture provides an
abstract cybernetic interpretation of the H/E-S as the highest (or
most integrative) level of heterarchical control for embodied-
embedded organisms as they move through physical and
imagined worlds in the pursuit of valued goals, so providing a
computational/functional account of agency in biological (and
perhaps artificial) systems. Further, this hierarchical architecture

provides a basis for meta-learning in which slower and more
encompassing “outer loop” processes aggregate information over
faster “inner loop” processes, so affording the much-desired
goal of realizing synergistic inference and generalization of
knowledge across experiences (or lessons in curriculums for
lifelong learning). Even more, the upper levels of this kind of
hybrid architecture may provide a basis for explicit symbolic
reasoning (via abstract experience graphs) in addition to
enactive couplings with the world (via adaptive control of
poses/views), both of which are likely required for achieving
the goal of robust autonomous functioning for artificial
systems.

While attempting to navigate towards such destinations may
seem excessively ambitious, we would note that work on the
extended H/E-S was part of what inspired the formation of
some of the world’s leading AI companies such as DeepMind,
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and continues to be a central part of their research programs
(Hassabis and Maguire, 2009; Hassabis et al., 2017; Koster et al.,
2018; McNamee et al., 2021). Indeed, it is increasingly being
recognized that the spatiotemporal modeling properties of the
H/E-S may constitute an invaluable integrative framework for
understanding high-level cognition (Whittington et al., 2022).
However, we believe a G-SLAM framing might be particularly
notable in connecting to the context under which these systems
were first selected/shaped by evolution (and development),
as well as one of the primary functionalities of the H/E-S
that continues throughout the lifespan of organisms. That is,
our abilities to navigate both physical and conceptual worlds
represent an ongoing challenge for as long as we live. We further
suggest the connection between the practical necessities involved
in engineering physical systems may provide a particularly
valuable source of empirical traction for attempting to specify
the roles of particular features of the H/E-S, in that we can
draw upon the rich data generated as robots attempt to navigate
through the world.

Further, by also drawing upon biological details in designing
AI-architectures, we may find ourselves with access to invaluable
inductive biases which might be otherwise overlooked. Two
examples that come to mind include recent proposals by Bengio
and LeCun with respect to “GFlowNets” and “Joint Embedding
Predictive Architectures” (Bengio et al., 2022; LeCun, 2022).
We believe these efforts in creating autonomous and generally
intelligent systems may benefit by incorporating principles of
G-SLAM, such as the creation of systems capable of handling
loop trajectories as potentially enabling greater open-ended
and life-long learning, or in looking towards hybrid systems
similar to LatentSLAM as potentially allowing for explicit
representations and symbolic processing. While it has often
been said that the goal of AI is to create the “cognitive
equivalent of an airplane wing,” we would suggest that the
magnitude of the challenge may be far greater (more akin
to building a fully functioning plane or space ship), and the
problems of navigating through under-constrained architectural
(and learning curricula) design-spaces may be unsurmountable
without biological inspiration/grounding.

While LatentSLAM continues to be refined, we believe
these kinds of architectures provide a general framework for
understanding core elements of minds and brains. Indeed, to
localize something within a spatialized reference frame—which
itself is impacted by the entities it maps/graphs— may be what
it means to “understand” and “explain” something (Lakoff and
Johnson, 1999), and possibly even to experience anything at all
(Safron, 2020a, 2021a,b). That is to understand is to be able
to adopt a stance (or pose) from which elements and their
inter-relations may be mapped (or localized), as if projected
onto a plane whereby they are made visible for inspection (or
navigation). We believe these etymological considerations on the
nature of knowledge may be more than “mere” metaphors but
could point to the fundamentally embodied nature of minds.

We not only suggest that all thought may be understood
as navigating between representations that are being localized
and mapped (or graphed) within an organizing conceptual
domain, but all communication may be understood as the
transmission of such structures (as trajectories) between minds
(Zurn and Bassett, 2020). While the simultaneity of generalized
localization and mapping in cognition may not be obvious upon
introspection, this is more clearly the case when considering
unfamiliar concepts. For such novel domains, relationships
between concepts and broader organizing schemas involves the
same kind of challenges of circular inference as found in SLAM.
That is, when we are first attempting to understand a conceptual
domain, we do not know how to effectively connect the entities
whose shared features and relations motivate the construction
of organizing schemas. However, without such higher-order
abstractions and the predictive (or compressive) capacities they
provide, it is unclear which features of and relations between
entities are relevant for shared structure learning.

Heuristic algorithms may be invaluable in the bootstrapping
process, such as the kind of clustering involved in the
hierarchical Dirichlet process (Griffiths T. et al., 2019), models
of category formation via analogical alignment (Kuehne et al.,
2000), or concept derivation as abstraction over episodes
(Mack et al., 2018). We agree that such accounts may speak
to fundamental mental processes, but we also suggest that
rather than static feature maps, such nonparametric (Bayesian)
structure learning may apply to paths through mapped/graphed
domains. This is part of why we emphasized our use
of the Fisher distance measure above, as an information
metric that naturally applies to trajectories may potentially
provide the most valid (and potentially predictive) means
of assessing similarity/dissimilarity between entities in feature
spaces. Indeed, one of the most notable aspects of thinking is
its sequential operation and sensitivity to path dependencies.
While abstract conceptualization does allow for a good deal of
cognitive flexibility, cognition is still largely defined by deriving
knowledge via particular “chains of reasoning,” or “paths”
through mental space.

Regardless of the particular routes by which we reach the
heights of category learning, the formation of such abstract
representations constitute what may be the most powerful aspect
of our intelligence in terms of generalizable knowledge that
can robustly transfer across particular episodes (Marcus, 2020).
Such abstract categories further allow for the kinds of structured
representations whose importance was emphasized in decades
of work in (non-radically-enactive) cognitive science and “good
old fashioned AI.” The significance of such knowledge structures
may prove even greater in light of the advent of graph networks
within the context of geometric deep learning (Battaglia et al.,
2018)—and symbolic regression as potentially representing a
further degree of abstraction (Cranmer et al., 2020). Such
graphical representations are of increasing interest because
of both their interpretability as well as their extraordinary
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efficiency for modeling physical systems. With our models of
node duplication and graph-relaxation, LatentSLAM provides
a biologically plausible and computationally-tractable account
of how such cognitive schemas may be formed and modified
through experience. This is notable in that finding principled
means of creating and modifying particular structures for graph
neural networks (GNNs) remains an ongoing challenge. But
if such challenges can be surmounted, then we may achieve
the promise of neurosymbolic AI in combining the power of
connectionism with reasoning over explicitly represented (and
related) symbols (Garcez and Lamb, 2020; Greff et al., 2020).
More specifically, we believe that the ability of the H/E-S to create
navigable spaces populated by high-level attracting states may
also provide a basis for creating “ad hoc” (Barsalou, 1983) GNN
structures for different purposes.

While the relationships between place cells in the H/E-S
(or nodes in LatentSLAM) can be understood as a kind of
GNN, we believe it would be more accurate to characterize
these models as graph nets, in that they represent relations—or
semantic pointers (Blouw et al., 2016)—for hierarchically
lower graphs. While these details have yet to be incorporated
into LatentSLAM, it has been suggested that heteromodal
association cortices may constitute a shared latent space across
(autoencoding) cortical hierarchies with quasi-topographic
characteristics akin to those found with GNNs (Safron, 2020b,
2021a,b). While the H/E-S has significant interactions with the
entire cortical heterarchy, connectivity is most substantial for
deeper (or hierarchically higher) portions of cortex, consistent
with its potential role as a kind of graph network. The
degree to which these machine learning analogies may apply
to brain functioning is yet to be determined, but they
nonetheless represent a promising direction for creating artificial
systems that recapitulate the properties of natural intelligences
(Greff et al., 2020).

Intriguingly, the work in which brains were proposed to
entail GNN-type computation was developed independently
of LatentSLAM. However, similarly to how LatentSLAMs only
uses views and proprioceptive poses for specifying particular
experiences to be mapped (Figure 2), this other work proposed
that sufficient bases for agentic world modeling may involve
conjoined visuospatial and somatospatial modalities, potentially
(but not necessarily) understood as respective grid and
mesh-pose GNNs. In the model of episodic memory and
imagination described above (Figure 6), H/E-S trajectories are
used to orchestrate state transitions between these experiences
as the “stream of consciousness” (James, 1890). While many
aspects of cognition are unconscious, “thinking” and “reasoning”
are usually considered to involve sequentially generated
conscious operations. Notably, the formal conceptualization
of computation may have been largely inspired by Turing
introspecting his own consciousness in the process of doing
mathematics (Dehaene, 2014; Graves et al., 2014). Given that
it is unclear that we can be conscious of anything that lacks

grounding in somatic modalities and their abilities to change
(and be controlled) through time, then all thinking/reasoning
may potentially be understood as involving the kinds of action
selection and modeling described by LatentSLAM.

Fully describing the potential correspondences between
SLAM and high-level cognition is beyond the scope of a single
publication (Table 1), but before concluding we will briefly
comment on the importance of loop-closures and thresholds
for graph-relaxation and node duplication. In brief, we may
understand a (generalized) loop-closure event as a primary
factor contributing to the feeling of understanding and insight
(Gopnik, 1998; Fonken et al., 2020; Oh et al., 2020). After an
initial period of relatively ambiguous exploration, the formation
of a causal account (or trajectory through a concept space/graph)
would allow for a rapid decrease in prediction-error (Joffily
and Coricelli, 2013), or increase in compression (Schmidhuber,
2010). While some individuals may be relatively insensitive
to these feelings of (potentially sudden) conceptual familiarity
(Hou et al., 2013; Ben-Yakov et al., 2014), others may potentially
be overly sensitive (e.g., “déjà vu” and other kinds of false positive
inferences), with the specific functional tradeoffs involved
depending on particular contexts (DeYoung, 2015; Blain et al.,
2020; Safron and DeYoung, 2021).

Events in which this kind of cognitive closure is achieved
provide special opportunities for updating H/E-S models (or
categories) via graph-relaxation and node duplication. A variety
of relevant parameters can be identified (Figure 3), whether
in terms of thresholds for detecting loop-closures, the extent
to which graphs may be relaxed, or the ease with which new
nodes are created. However, in a G-SLAM context of trying to
model cognition more generally, we may think of loop-closure
recognition thresholds as sensitivity to cumulative prediction
error increases/decreases, graph-relaxation as changing attractor
dynamics within the H/E-S and neocortex on multiple
scales, and node duplication as the establishment of new
local ensembles of effective connectivity (cf. chained bump
attractors)—and potentially (but not necessarily) involving
neurogenesis, for which it is notable that the hippocampus is one
of the few places where this phenomenon is reliably observed.
These core SLAM processes may depend on multiple factors,
including neuromodulators such as dopamine and serotonin
(Safron, 2020c; Safron and Sheikhbahaee, 2021), as well as on
Bayesian priors (or “yesterday’s posteriors”).

With respect to the previously described example of
differential tuning thresholds for mapping the structure of aisles
(Figure 5), we may potentially have a crucial source of individual
differences in cognition. In theory, G-SLAM may be pointing
to (or localizing) a cognitive spectrum (and potential basis for
differential diatheses) spanning autism and schizophrenia (Byars
et al., 2014; Crespi and Dinsdale, 2019). Theoretically, we may
even expect to see these kinds of variations in SLAM maps in
the drawings of autistic and schizophrenic individuals (Morgan
et al., 2019; Philippsen and Nagai, 2020).
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Speculatively, not only may the conceptual understanding
of that which is being drawn be mapped and navigated by
the H/E-S as SLAM system, but the eye movements (Wynn
et al., 2020) and hand motions involved in skilled actions
such as drawing could themselves be orchestrated according
to hippocampal trajectories as a basis for chained equilibrium
setpoints (Latash, 2010). Even more speculatively, it could even
be the case that further degrees of sophisticated control—as
inference (Kaplan and Friston, 2018; Friston et al., 2021)—are
bootstrapped by simultaneously localizing and mapping the
body itself as a kind of space/graph, so allowing for more rarefied
and general SLAM capacities over the course of development. In
this view, much of cognitive development would involve initial
phases of using the H/E-S to learn intentional control over
either overtly or covertly expressed motor patterns, which then
become automatized (or amortized) by the thalamic-cerebellar
system (Safron, 2021a; Shine, 2021) and dorsal striatal-cortical
loops (Mannella et al., 2013), so freeing up the G-SLAM system
for further high-level predictive modeling and control. Can
the body itself be understood as a mapped spatial domain,
or is this just a way of speaking without any useful technical
correspondences? How far can we go with using these patterns
of linguistic use as hypotheses regarding cognitive processes and
underlying neural mechanisms? Could it even be the case that
the phenomenology of embodiment involves navigation through
and mapping of body maps via these cross-modal interactions,
which when disrupted could potentially contribute to altered
states of consciousness or potentially clinical conditions such as
depersonalization (Safron, 2020c; Ciaunica and Safron, 2022)?

With respect to personhood, beyond its foundational
role for autonomous functioning, widespread orchestration
of value-canalized trajectories through biophysical phase
space by the H/E-S also enables the development (and
ongoing functioning) of the spatiotemporally-extended
processes required for autonoetic and autobiographical self-
consciousness. In addition to constituting major transitions
in evolution, the advent of such self-reflective capacities
may have been required for the construction of advanced
social coordination and a (shared) symbolic order of being.
While such rarefied processes may be well-beyond anything
we are close to engendering in (abiotic) machines, it may
be the case that we are forced to recapitulate these kinds of
H/E-S functionalities if we are to successfully arrive at the
destination of creating robustly autonomous and general
artificial intelligences.

Indeed, G-SLAM parameters may constitute the most
important source of variation we can identify both between and
within individuals. To venture deep into unknown speculative
territory, the H/E-S may be the source of key adaptations
contributing to the evolution of cognitive modernity through
(potentially proto-schizotypal) flexibly creative cognition and
the birth of cumulative culture, which in time came to represent
what may be the “secret of our success” as a species and

the greatest of all major transitions in (generalized) evolution
(Premack, 1983; Gentner, 2010; Hofstadter and Sander, 2013;
Henrich, 2017; Safron, 2019b, 2020c; van den Heuvel et al., 2019;
Dehaene et al., 2022). While such models extend far beyond
domains of knowledge for which we have well-developed maps,
we believe such possibilities are worthy of further exploration.

Present limitations and future directions
for G-SLAM

While we describe experiments for LatentSLAM in other
publications (Çatal et al., 2021a), future work should attempt
to explicitly illustrate G-SLAM principles with experiments and
mathematical models/simulations. Further, while approaches
to localization and mapping may be diverse, this does
not mean that all technical solutions involved are best
described as SLAM problems. However, we believe that
analogues of processes like loop closure and node duplication
(and pruning) with respect to trajectories through cognitive
spaces would constitute strong evidence for the value of a
generalized SLAM perspective. It is also important to note
that symbolic processing in the brain involves more than
the H/E-S. For instance, a substantial amount of symbolic
communication is linguistic in a way that could be described
in terms of a hierarchical control system for vocal production
and hearing (gestural communication could provide another
illustrative example). While such action-perception cycles need
not involve the H/E-S, we also believe their functioning
may potentially be enhanced via H/E-S orchestration of
high-level dynamics (e.g., channeling neuronal manifolds along
particular trajectories).

We also believe it will be valuable to explore research
attempting to combine SLAM and various forms of semantic
processing in robotics/AI (Kostavelis and Gasteratos, 2015;
Sünderhauf et al., 2017; Garg et al., 2020). Not only does such
work illustrate the complexity of SLAM problems and how they
may (and must) be integrated with other cognitive processes
(cf. artificial consciousness?), but it also points to other ways
in which robotics can be used to inform our understanding of
minds, whether biologically grown and artificially engineered).
Finally, while we focus on a particular SLAM architecture
developed within the Free Energy Principle and Active Inference
framework, we believe it will be fruitful to consider other
approaches as well, many of which are extremely well developed
and sophisticated in their own right (Penny et al., 2013; Madl
et al., 2018; Stoianov et al., 2022; Taniguchi et al., 2022).

Conclusions

We have searched through broad and diverse terrains in
considering the ideas above, covering a lot of ground. To try
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to come full circle, we have described technical details of a
machine learning architecture for autonomous robot navigation,
discussed particulars of biological systems for realizing these
functionalities in brains, and started to explore how these
principles may provide a framework for understanding all
high-level cognition in terms of simultaneous localization and
mapping in space (broadly construed to include conceptual
spaces). We have only begun this journey, but we believe
the destination is promising, and we invite others to join us
in exploring this framework for understanding the nature of
thought. Some might contend that “prediction” or “modeling”
are more encompassing and fundamental than a generalized
SLAM perspective, and we would not disagree. However, we
believe that G-SLAM is unique in allowing for all these
perspectives to be combined with the principles of ecological
rationality that constituted the primary selective pressures
for high-level cognition over the course of evolution and
development. We suggest this neuroethological perspective
will be invaluable in allowing us to “carve nature at its
joints”, in terms of identifying the most important features
of functioning for the hippocampal/entorhinal system and
its connections to the rest of the brain [and body (and
world)]. We further believe that G-SLAM is unique in the
extent to which it connects to nature(s) of experience, where
we do in fact exist in a spatial world through which we
must navigate, and where it is difficult to find aspects of
mind not impacted by this fundamental physical situatedness.
In light of these sources of potential insight, we believe
that G-SLAM represents the way forward for understanding
complex minds, and potentially for building them, if we can
find sustainable paths into the unexplored territory of the
future.
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Appendix A: LatentSLAM
mathematical model

The latentSLAM model for SLAM can be seen as a two-level
active inference hierarchy working together to enable navigation.
The lower-level abstracts actions and observations from the
physical world into an abstract representation. The higher-level
takes the lower-level abstractions as inputs and creates a global
abstraction over them. In this appendix we will go into the
mathematical details of these models.

Generic active inference model

FIGURE A1

Graphical representation of a generic active inference model.
Gray nodes indicate that the corresponding value is observed,
white nodes need to be inferred.

Both levels of the hierarchy form an instantiation of an active
inference model (Figure A1). This means that each level forms
a generative model over its own actions and observations. We
assume the environment is modeled up to a certain time horizon
T by the agent as a POMDP with joint probability distribution

P(õ, s̃, ã,π) = P(so)P(π)
T∏

t = 1

P(ot |st )P(st |st−1, at−1)P(at−1 |π)

Where tildes indicate sequences of the corresponding
variables, a indicates the action, o the observation, s the latent
states and π the policy.

The agent needs to infer the posterior belief on latent
states P(s̃|õ, ã). In order to achieve this, we use a variational
approximation of the true posterior, which we parametrize as

Q(s̃|õ, ã) = Q(s0|o0)

T∏
t = 1

Q(st|st−1, at−1, ot)

Note that in all following discussions we will use Q to
designate a (variational) posterior and P as a prior distribution.

As we the agent is acting according to the free energy principle, it
is actively minimizing its variational free energy. Which we posit
here as

F = DKL[Q(s̃|õ, ã)||P(s̃, ã)] − EQ(s̃|õ,ã)[log P(õ|s̃)]

For a more detailed description of the derivation of F, we
refer the reader to. The generative model and the free energy
form only one aspect of active inference. The agent not only
needs to infer states from the present, but also actions for the
future. This is achieved through the expected free energy, which
we define for a future timestep τ and a given policy π as

G(π ,τ) = DKL[Q(sτ |π)||P(sτ )] + EQ(sτ )[H(P(oτ |sτ ))]

Summing over the future timesteps then gives the expected free
energy for a given policy.

Navigation model

Similar to the generic active inference model, we start by
defining the generative model in terms of a joint distribution
over its parts.

P(õ, s̃, ã, l̃, p̃, m̃,π) = P(õ, s̃i>0, ã, p̃i>0,π |l̃, s̃0, p̃0)P(l̃, m̃, s̃0, p̃0)

Where o, s, and π keep their earlier definition and we now
introduce the pose p, location l and move m to the discussion.
This joint distribution naturally decomposes into two new joints
over a subset of variables, allowing the independent treatment of
higher-level and lower-level navigation. The resulting graphical
model is shown in Figure A2.

FIGURE A2

Graphical overview of the hierarchical navigation model.

Frontiers in Systems Neuroscience 26 frontiersin.org

252

https://doi.org/10.3389/fnsys.2022.787659
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#articles
https://www.frontiersin.org


Safron et al. 10.3389/fnsys.2022.787659

If we look at the free energy of this model, we get

Fhierarchical = EQ

[
log Q

(
s̃, p̃
)
− log P

(
õ, s̃i>0, ã, p̃i>0|l̃, s̃0, p̃o

)
+log Q

(
l̃
)
− log P

(
l̃, m̃, s̃0, p̃0

)]
= Flow + Fhigh

Allowing for a clean separation in the creation of the lower
and higher-level state models.

Lower-level model

Using the same approximations for the lower-level model as
in the generic active inference model, we write the free energy as

Flow =
∑

t
EQ[log Q(pt)− log P(pt|pt−1, at−1, st)]

+ DKL[Q(st)||P(st|st−1, at−1)] + EQ[− log P(ot|st)]

From this we recover the same generative model for the
observations and observational latent states as before in the
generic case, however, the model is now supplemented with a
term responsible for the pose estimation aspects. In effect, this
means that we do not use any pose information for the visual
perception part of the model. Note that the pose estimation is in
fact conditioned on the current perceptual state estimate.

As might be expected from the free energy formulation,
the lower-level perception is implemented as a generic active
inference model. The pose estimation aspect is deliberately left
as an expected difference between the pose posterior and prior.

The pose prior is implemented as simple dynamics model
from the action velocities used to control the agent, i.e.,

θt = θt−1 + υa1t

xt = xt−1 + υl1t

yt = yt−1 + υl1t

With vaand vl the angular and linear velocity of the agent and
x,y,θ the coordinates and rotation in the plane of the agent.

The pose posterior Q (pt) is implemented as a CAN with
energy dynamics described as

ε1x,1y,1θ = exp
−1x2

−1y2

kexc
p

exp
−1θ2

kexc
d

− exp
−1x2

−1y2

kinh
d

exp
−1θ2

kinh
d

With kd and kp the variance constants for place and
direction, and the superscript exc and inh used to indicate

whether the effect is inhibitory or excitatory. The resulting
behavior is locally excitatory and globally inhibitory. The
conditioning on observatory state st is achieved by creating an
extra excitatory link with a state-pose episodic memory.

Higher-level model

Starting again from the free energy functional

Fhigh =
∑
T

DKL[Q(lT )||P(lT |lT −1, mT −1)]

+ EQ[− log P(sT ,0|lT )− log P(pT ,0|lT )]

We again see the classical active inference model emerging.
Note the usage of T instead of t to indicate that this
model operates on a different timescale. Likewise, only
the initial lower-level states for that inference cycle appear
in the likelihood (remember that this model uses the
states of the lower-level as observations). Here again, the
actual implementation of these models is geared towards a
navigational task. In order to infer the location, the prior
distribution of locations is implemented as an experience
graph. Each node in the graph incorporates a state, pose
pair to link it with the lower level. Links between the
nodes indicate a connection traversable on the lower level.
The dynamics model P(lT |lT −1, mT − 1) is deduced from
the adjacency matrix of the graph. The posterior belief
Q(lT |sT ,t , pT ,t) is build by assigning probability inversely
proportional to the cosine similarity and Euclidean distance
between current state pose pair and the pairs reachable from the
current node.

Map updates also trigger a graph-relaxation pass, in order
to facilitate loop-closures. The graph-relaxation phase shifts the
stored poses in each experience map node according to

1pi
=

1
2

inbound∑
j = 1

(pj
− pi
−1pij)+

outbound∑
k = 1

(pk
− pi
−1pij)



Action inference

So far, we have only discussed the state inference aspects
of the navigation model, however, action inference is also an
important aspect of active inference. The expected free energy
for the lower-level model is

Glow(π , τ) = DKL[Q(sτ , pτ |π)||Q(sT+1, pT+1|lT , mT)]

+EQ(sτ )[H(P(oτ |sτ ))]

The prior preferences in this equation are provided by the
higher-level model, and form targets to achieve within the single
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timestep of that level. High level targets are then extracted
according to

Ghigh(π, τ) = DKL[Q(lτ |π)||P(lτ )] + EQ(lτ )[H(P(pτ ,0|lτ ))

+H(P(sτ ,0|lτ ))]

Action selection happens than according to a
two-phase planning process. First, at the coarser
higher-level, second at the fine-grained lower level.
This allows for a reduction in search space for a
given trajectory.
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