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Purpose: This study was to investigate the role of different radiomics models with
enhanced computed tomography (CT) scan in differentiating low from high grade renal
clear cell carcinomas.

Materials and Methods: CT data of 190 cases with pathologically confirmed renal cell
carcinomas were collected and divided into the training set and testing set according to
different time periods, with 122 cases in the training set and 68 cases in the testing set.
The region of interest (ROI) was delineated layer by layer.

Results: A total of 402 radiomics features were extracted for analysis. Six of the radiomic
parameters were deemed very valuable by univariate analysis, rank sum test, LASSO
cross validation and correlation analysis. From these six features, multivariate logistic
regression model, support vector machine (SVM), and decision tree model were
established for analysis. The performance of each model was evaluated by AUC value
on the ROC curve and decision curve analysis (DCA). Among the three prediction models,
the SVMmodel showed a high predictive efficiency. The AUC values of the training set and
the testing set were 0.84 and 0.83, respectively, which were significantly higher than those
of the decision tree model and the multivariate logistic regression model. The DCA
revealed a better predictive performance in the SVM model that possessed the highest
degree of coincidence.

Conclusion: Radiomics analysis using the SVM radiomics model has highly efficiency in
discriminating high- and low-grade clear cell renal cell carcinomas.

Keywords: renal clear cell carcinoma, enhanced computed tomography, imaging histology, logistic
regression, radiomics
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INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) accounts for 70% of
renal cancers (1). Since the long-term survival of clear cell
carcinoma patients correlates negatively to the Fuhrman
grading (2–4), it is crucial to accurately grade clear cell
carcinoma of the kidney as early as possible. Grading ccRCC
through aspiration biopsy is controversial as the operation itself
carries risk of metastatic spread (5, 6). Previous studies on RCC
were mostly based on analysis of images of conventional
computed tomography (CT) (7–9), which was often interfered
by human factors and lack of quantification. Through precise
quantitative analysis of medical images, radiomics provides
researchers an effective way to detect biological characteristic
changes caused by tumor microenvironment (10–12). Classic CT
information or CT-based radiomics has been applied to establish
predictive models for ccRCC grade. In three logistic regression
models of radiomics based on non-texture features, texture
fraction and non-texture feature combined with texture
fraction for identifying high- and low-grade ccRCCs (13), the
area under the operating curve (AUC) values in the three models
were 0.826, 0.878, and 0.843 for the training set and 0.671, 0.771,
and 0.780 for the testing set, respectively. Some image features
like tumor size (TS) and permeability surface-area product (PS)
were helpful in differentiating high- from low-grade ccRCCs
based on conventional CT studies, with the AUC of TS and PS of
0.7 (14). The sensitivity and specificity were 0.8 and 0.6 for TS
and 0.7 and 0.8 for PS, respectively. Moreover, gene fragments
and radiomics can be combined to establish a two-group model
for differentiating ccRCC from non-clear cell RCC (non-ccRCC),
with the AUC of the training set and testing set being 0.969 and
0.900, respectively (15). Some studies confirmed that necrosis
can independently predict the biological invasiveness of ccRCCs
(16, 17). Moreover, only the logistic regression model was
utilized in most of these studies lacking comparison between
different predictive modeling methods. Therefore, in this study,
three models including logistic regression, decision tree and
support vector machine (SVM) were established and compared
for ccRCC grading performance.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the Ethics Review
Committee of Affiliated Hospital of Hebei University with all
patients given their signed informed consent. All methods were
performed in accordance with the relevant guidelines and
regulations. Patients with ccRCC were enrolled between
January, 2017 and December, 2018 in our hospital. Inclusion
criteria were a single lesion with clear grades of RCC and
preoperative enhanced CT images in the cortical phase with
fast-in and fast-out enhancement (cortical phase showed the
clearest). Exclusion criteria were: (I) carcinomar metastasis, (II)
cystic changes in the lesion of carcinoma, (III) necrosis volume
>80% of the maximal lesion volume, and (IV) poor image
Frontiers in Oncology | www.frontiersin.org 27
quality. In accord with these criteria, 42 unqualified samples
were excluded, and 190 eligible samples were included. In this
study, I-II grade ccRCC was defined as low-grade renal clear cell
carcinoma, and III-IV grade ccRCC was defined as high-grade
renal carcinoma (18) (Figure 1). Among the qualified 190
patients with ccRCC, 133 cases were of grade I-II ccRCC and
57 cases were of grade III-IV ccRCC, including 98 males and 92
females with an age range of 27–88 years (mean 58.30 ± 8.70)
(Table 1). Their maximal diameters of the carcinoma ranged 2-
12 cm (mean 5.6 ± 4.4) from post-operative pathological exams.

CT Image Acquisition
Abdominal plain and enhancement CT scans were performed
with a 64-row CT scanner (GE Discovery HD 750, GE Health
Care, Chicago, IL, USA). Contrast agent was iodophor alcohol, a
non-ionic iodine contrast agent. The post-injection scanning
time points were 30-35s, 50-60s and 180s, covering the
medullary phase and renal pelvis stage. Scanning parameters
were as follows: cortical phase, pitch: 0.984:1, layer thickness:
5 mm, field of view: 40 cm×40 cm, matrix: 512×512, tube voltage:
100-120 kV, tube current: 134-409 mA, window width: 250-450
HU, and window position: 30-50 HU.

Volumes of Interest (VOIs) Segmentation
The cortical phase images of enhanced CT from 190 subjects
were imported into the ITK-SNAP software (19), and the region
of interest (ROI) was delineated by one radiologist with 8 years of
working experience and checked by another radiologist with 10
years of working experience.

Radiomics Feature Extraction
and Selection
The radiomics features were extracted from the original and
filtered images with the AK software (Artificial Intelligence Kit
V3.0.0.R, GE Healthcare, China). A total of 402 features were
obtained, including 42 histogram features, 144 gray-level co-
occurrence matrices features (GLCM), 180 gray-level run length
matrices features (GLRM), 11 gray-level zone matrices features
(GLSZM), 15 shape-based features, and 10 Haralick features. The
feature selection procedure was as follows: Firstly, the data of
patients from January 2017 to April 2018 were included in the
training set, and the data of patients from April 2018 to December
2018 were included in the testing set, with the data of 122 patients
in the training set (with 81 cases of I-II ccRCC and 41 cases of III-
IV ccRCC) and 68 patients in the testing set (with 52 cases of I-II
ccRCC and 16 cases of III-IV ccRCC). Secondly, the data were
preprocessed, including replacing missing values with the median
value and standardizing the Z-score of features in all data.
Thirdly, the extracted features were analyzed by one-way
ANOVA and Wilcox rank-sum test, with the significant P value
set at less than 0.05. Then, the least absolute shrinkage and
selection operator (LASSO) method, which has been shown to
be suitable for high dimensional data analysis (13), were used for
further feature screening. The LASSO method selects features
using a tuning parameter (Lambda), with some coefficients in the
covariance can be shrunk to zero when the cross-validation error
May 2021 | Volume 11 | Article 659969
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is the smallest. All the feature selection procedure performed on
the training set and applied on the testing set. The finally selected
features were used to construct models.
RADIOMIC MODEL BUILDING AND
VALIDATION

The ROC curves of each model in the training set (data of 122
patients) and testing set (68 patients) were calculated with all
available patients and the AUC values were derived (Figure 3).
Frontiers in Oncology | www.frontiersin.org 38
The predictive performances of three models (logistic regression,
decision tree, and SVM) were compared for analysis. The
decision curve analysis (DCA) was conducted to evaluate the
clinical usefulness of the models for ccRCC prediction. DCA
quantified the net benefits at different threshold probabilities in
the training and testing set (Figure 4).

Statistical Analysis
Statistical analysis was performed with the R software (version:
3.6.3, www.r-project.org). The Chi-square test was used to
evaluate the distribution difference in high and low-grade cc
RCCs. The LASSO, SVM, and decision tree model were
conducted based on ‘glmnet’, ‘e1071’, and ‘rpart’ packages,
respectively. The receiver operating characteristics (ROC)
curve analysis was performed to determine the AUC, accuracy,
specificity and sensitivity for evaluating the performance of the
model. The significance was set at P < 0.05.
RESULTS

The six most valuable features selected by LASSO for radiomics
modelling were GLCMEntropy, GreyLevelNonuniformity,
ShortRunEmphasis, LongRunLowGreyLevelEmphasis,
ShortRunLowGreyLevelEmphasis, and IntensityVariability. The
LASSO regression was shown in Figure 2. The specific
parameters and feature extraction used in the six most valuable
features were demonstrated in Table 2. These features were used
FIGURE 1 | Clear cell renal cell carcinomas (ccRCC) with different grades. (A) Grade I ccRCC (arrow) was demonstrated. (B) Grade II ccRCC was shown (arrow).
(C) Grade III ccRCC was revealed (arrow). (D) Grade IV ccRCC (arrow) was displayed.
TABLE 1 | Demography of patients in two sets.

Variables Training set Testing set

Case no. 122(64%) 68 (36%)
Sex
Male 66(54%) 33(49%)
Female 56(46%) 35(51%)

Age mean (range, y) 55.6(28-85) 56.1(31-87)
< 60 59(48%) 35(51%)
≧60 33(49%) 63(52%)

Subtype
Low-grade ccRCC 81(66%) 52(76%)
High-grade ccRCC 41(34%) 16(24%)

Tumor size (cm, mean ± SD)
Low-grade ccRCC 6.48 ± 3.46 6.57 ± 3.31
High-grade ccRCC 7.21 ± 3.13 8.31 ± 3.31
Low grade, grades I-II; High-grade, grades III-IV; SD, standard deviation.
May 2021 | Volume 11 | Article 659969
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to establish three models of logistic regression, decision tree and
SVM in the training set with 122 patients. Each model was
trained and assessed using the repeated ten-fold cross-validation
method in the training set. Performance of differentiating high
grade from low grade ccRCC was evaluated with the testing set
(68 patients) (Figure 3).

The AUC values in the training set and testing sets are
respectively 0.63 (95% CI 0.53-0.73) and 0.64 (95% CI 0.48-0.8)
with the logistic regression model, 0.84 (95% CI 0.76-0.92) and 0.83
(95% CI 0.69-0.96) with SVM model, and finally, 0.69 (95% CI
0.60-0.78) and 0.72 (95% CI 0.56-0.87) with the decision tree
model. The cutoff value of each model was obtained from the
Youden index from the ROC curve, with the value being 0.366,
0.38, and 0.276, respectively, in the logistic regression, SVM, and
decision tree for the test set. The results presented in Tables 3 and 4
showed that the SVM model had achieved the best performance.

DCA was conducted to evaluate clinical usefulness of the
models in prediction by quantifying the net benefits (relative
benefits), at different threshold probabilities in both sets
(Figure 4). The SVM model had the best performance in
prediction of low- and high- grade renal cell carcinoma. In the
DCA analysis (Figure 4), the SVM model was shown to obtain
the highest benefit in the range of 0.34-0.49 which contained the
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cutoff value 0.38 for the SVM model. The “benefit” was relative
and indicated the efficiency of the models in the test set.

The prediction performance of the three models for low and
high grade RCC was verified and compared (Figures 5–7). There
was no significant (P=0.054) difference in the high and low-grade
distribution of ccRCCs between the training and testing sets.

In verification of the logistic regression model (Figure 5), the
true negative rate (specificity) for predicting grade I-II ccRCC
was 60.5% (49/81) in the training and 53.7% (22/41) in the
testing set, and the true positive rate (sensitivity) for predicting
grade III-IV ccRCC was 65.4% (34/52) in the training and 75%
(12/16) in the testing set. In verification of the SVM model
(Figure 6), the true negative rate (specificity) was 76.5% (62/81)
for predicting grade I-II ccRCC in the training and 85.4% (35/41)
in the testing set, and the true positive rate (sensitivity) was
84.6% (44/52) in the training set. The testing set also exhibited a
true negative rate of 75% (12/16) for predicting grade III-IV
ccRCC. In verification of the decision tree model (Figure 7), the
true negative rate (specificity) was 77.8% (63/81) for predicting
grade I-II ccRCC with the true positive rate (sensitivity) of 55.8%
(29/52) in the training set. For the testing set, the true negative
rate was 82.9% (34/41) for predicting grade I-II ccRCC and
62.5% (10/16) for predicting grade III-IV ccRCC.
A B

FIGURE 2 | Feature selection with the LASSO method. (A) The tuning parameter (l) changes in the LASSO model. The binomial deviance curve was generated with
the log (l). The minimum criteria for five-fold cross-validation were applied. The best l = 0.0212 was obtained at the minimal binomial deviance. (B) The LASSO
coefficient profile plot with different log (l) was shown. The vertical red line was the best l with 6 selected radiomic features.
TABLE 2 | Specific parameters and feature extraction in six features.

ID Class Type Offset Direction

1 GLCM Entropy 7 Angle90
2 RLM GreyLevelNonuniformity 7 All (3D)
3 RLM ShortRunEmphasis 7 Angle0
4 RLM LongRunLowGreyLevelEmphasis 7 Angle0
5 RLM ShortRunLowGreyLevelEmphasis 4 All (3D)
6 Histogram IntensityVariability – –
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The AUC, accuracy, specificity, and sensitivity were used to
evaluate the performance of the model (Tables 1 and 2).
Through comprehensive comparison of the AUC value,
specificity, sensitivity of the three models, the best prediction
efficiency, observed in the sSVM model, was therefore selected
for prediction purpose in this study. The SVM model had the
greatest accuracy (0.797 and 0.825), sensitivity (0.846 and 0.825)
and specificity (0.742 and 0.750) in both the training and testing
set compared with the logistic regression model (0.624 and 0.596,
0.654 and 0.750, 0.605 and 0.537, respectively) and the decision
tree model (0.692 and 0.772, 0.558 and 0.625, 0.778 and
0.829, respectively).
DISCUSSION

The present study was aimed at the differentiation of high- from
low-grade ccRCCs, because pathological grades highly correlate
with ccRCC metastasis and prognosis (20). ccRCC has different
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clinical prognoses at different grades, and early identification of
pathological grade of ccRCCs is valuable for timely clinical
treatment and patient health.

Radiomics analysis is to extract a multitude of features form
medical images to analyze size, shape, and texture, with useful
spatial information on pixel or voxel distribution and modes.
The recent advancements in the study of ccRCCs were based on
imaging histology except for its grading (21). In the modeling
and identification of high- and low-grade ccRCCs, previous
studies (22, 23) used in vivo diffusion-weighted imaging (DWI)
and imaging histology to achieve the AUC value of 0.8, whereas
an AUC value of 0.73 was reached by the Renometric score based
on CT imaging in identification of high-level RCCs (23). The
AUC values for SVMmodel in the training and testing sets in our
study were 0.84 and 0.83, respectively, higher than 0.8 or 0.73 of
methods described earlier.

Ding et al. (13) applied radiomics to establish three logistic
regression models to identify high and low-grade ccRCCs,
achieving the AUC values in the training sets of the three
TABLE 3 | ROC curve analysis of three models in the training set.

Parameter Logistic (Train) SVM (Train) Decision Tree (Train)

AUC 0.632 (CI: 0.533–0.730) 0.840 (CI: 0.653–0.758) 0.688 (CI: 0.601–0.775)
Accuracy 0.624 (CI: 0.530–0.707) 0.797 (CI: 0.719–0.862) 0.692 (CI: 0.606–0.769)
Sensitivity 0.654 (CI: 0.462–0.788) 0.846 (CI: 0.558–0.942) 0.558 (CI: 0.385–0.681)
Specificity 0.605 (CI: 0.272–0.741) 0.742 (CI: 0.284–0.852) 0.778 (CI: 0.575–0.904)
May 2021 | Volu
ROC, Receiver operating characteristic; AUC, area under the operating curve; CI, confidence interval.
FIGURE 3 | The receiver operating characteristics (ROC) curve analysis was performed for three models of logistic regression, support vector machine and decision
tree in the training set and testing set.
TABLE 4 | ROC curve analysis of three models in the testing set.

Parameter Logistic regression Support vector machine Decision Tree

AUC 0.639 (CI: 0.476–0.802) 0.826 (CI: 0.688–0.964) 0.717 (CI: 0.564–0.871)
Accuracy 0.596 (CI: 0.458–0.724) 0.825 (CI: 0.701–0.913) 0.772 (CI: 0.642–0.873)
Sensitivity 0.750 (CI: 0.436–0.938) 0.750 (CI: 0.438–0.938) 0.625 (CI: 0.320–0.812)
Specificity 0.537 (CI: 0.195–0.756) 0.854 (CI: 0.341–0.976) 0.829 (CI: 0.400–0.951)
ROC, Receiver operating characteristic; AUC, area under the operating curve; CI, confidence interval.
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models of 0.826, 0.878, 0.843 compared with the AUC values in
the testing sets of 0.671, 0.771 and 0.780, respectively. Although
the results in training set were better, the scores in testing set
were not as satisfactory probably due to a trend of over-fitting. In
addition, Ding et al. extracted the texture features from the
maximal diameter level of the mass and collected less
heterogeneous information of the mass (13). Compared with
the study by Ding et al, our SVM-based model performed better,
with our SVM-based AUC in the training and testing set being
0.84 and 0.83, respectively. Shu et al. (24) established three
radiomic models based on renal CT enhancement images in
the cortical and parenchymal phases, including cortical phase
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model, parenchymal phase model, and in combination. The
corresponding accuracy, AUC value, sensitivity and specificity
were 0.719, 0.766, 0.818 and 0.822) for the cortical phase model,
0.738, 0.602, 0.693 and 0.677 for the parenchymal phase
model, and 0.777, 0.838, 0.838 and 0.839 for the combined
model. Comparing these results to the study with 3D texture
analysis based model by Shu et al. (24), our results have better
accuracy, AUC value, and sensitivity. Although the model
produced by Shu et al. (24) possessed slightly higher specificity
with the combined multi-period model outperforming the one-
period model, their study used full data to build the model
without using independent test data to validate their results.
FIGURE 4 | Decision curve analysis (DCA) was conducted to evaluate the clinical usefulness of the models in prediction by quantifying the net benefits at different
threshold probabilities in the training and testing set. The SVM model had the best performance in prediction of low- and high-grade renal cell carcinoma. Logistic,
logistic regression model; SVM, support vector machine model; Decision tree, decision tree model.
FIGURE 5 | Verification and comparison of the logistic regression model in predicting low and high grade renal cell carcinoma in the training and testing set. In the
training set, the true negative rate (specificity) for predicting grade I-II clear cell renal cell carcinoma (ccRCC) was 60.5% (49/81), and the true positive rate (sensitivity)
for predicting grade III-IV ccRCC was 65.4% (34/52). In the testing set, the true negative rate was 53.7% (22/41) for predicting grade I-II ccRCC and 75% (12/16) for
predicting grade III-IV.
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Radiomics-based grading models demonstrated better
performance than the model based on conventional CT
parameters. Chen et al. (14) pointed out that tumor size (TS) and
permeability surface-area products (PS) were helpful in distinguishing
the high and low grade clear cell renal cancers, with the AUC of both
TS and PS being 0.7 and the sensitivity and specificity being 0.8 and
0.6 for TS and 0.7 and 0.8) for PS. The grading performance in our
study was also better than this study (15).

Heterogeneity is an important feature of malignant tumors
and is closely related to their biological behavior. CT enhanced
imaging can be used to effectively evaluate tumor heterogeneity
(25). After studying low enhancement on multiphase contrast-
enhanced CT images for predicting presence of high tumor grade
Frontiers in Oncology | www.frontiersin.org 712
of ccRCC (26), Miles et al. found that low tumor enhancement in
the cortico-medullary phases was an independent predictor of
high tumor grade, which may be useful in clinical care of patients
with nonsurgical approaches. It is speculated that the higher the
grade of renal clear cell carcinoma, the more abundant the small
capillaries (27), which is supported by another study by Li et al
(15). In addition, necrosis is highly correlated with heterogeneity
of tumors, which is of great significance (28). In this study (28),
various processing techniques including voxel normalization and
various filtering processes were used to extract a variety of high
and low order features, including gray matrix and 3D
morphological features. Finally, LASSO cross-processing was
used to select the most valuable six histological features.
FIGURE 6 | Verification and comparison of the support vector machine model in predicting low and high grade renal cell carcinoma in the training and testing set. In the
training set, the true negative rate (specificity) was 76.5% (62/81) for predicting grade I-II clear cell renal cell carcinoma (ccRCC), and the true positive rate (sensitivity) was
84.6% (44/52). In the testing set, the true negative rate was 85.4% (35/41) for predicting grade I-II ccRCC and 75% (12/16) for predicting grade III-IV ccRCC.
FIGURE 7 | Verification and comparison of the decision tree model in predicting low and high grade renal cell carcinoma in the training and testing set. In the
training set, the true negative rate (specificity) was 77.8% (63/81) for predicting grade I-II clear cell renal cell carcinoma (ccRCC), and the true positive rate (sensitivity)
was 55.8% (29/52). In the testing set, the true negative rate was 82.9% (34/41) for predicting grade I-II ccRCC and 62.5% (10/16) for predicting grade III-IV ccRCC.
May 2021 | Volume 11 | Article 659969

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pei et al. Radiomics to Differentiate Renal Carcinomas
After looking into a variety of common first-order features
that reflect tumor heterogeneity, such as average gray level,
kurtosis and entropy, Feng et al. proposed that entropy is an
independent and excellent radiomic feature to describe a degree
of disorder in images (29). In terms of lesion density distribution,
larger entropy values suggest more randomness while smaller
entropy values indicate uniformity. Thus, high-grade tumors
with relatively large liquefaction necrosis volume have reduced
the entropy detectable as a radiomic feature and were
consequently excluded from our study. In our study, we only
studied the primary renal cell carcinoma rather than metastatic
carcinomas from other resources. However, if the renal
cancerous lesions of the primary renal cell carcinoma
contained large-area necrosis or cystic changes, they would be
excluded from the study, because necrosis contained inactive
tissue and cystic changes contained liquid materials. Solid mass
should be retained as much as possible. The radiomics captured
tissues primarily with active and biological behavior, namely
solid mass tissues. Cystic degeneration and necrosis are similar in
nature, and the doping of these changes in the samples may
lower the evaluation efficiency of the results.

In our study, GLCM_entropy, Greylevel_Nonuniformity, and
Intensity_Variability of the six features reflect the degree of
random gray distribution in ROI, which is usually used to
demonstrate the tumor heterogeneity. ShortRun_Emphasis and
ShortRunLowGreyLevel_Emphasis are used to show the fine
texture of the tumor, whereas LongRunLowGreyLevel_Emphasis
is used to reflect the coarse texture within the tumor. The SVM
model in our study used the RBF kernel with C value 1 and gamma
0.001. The SVM is a nonlinear model which can get greater and
better results than the linear model. The SVMmodel may be used
for machine learning with small samples, for improving
generalization and solving higher-dimensional problems as well
as for avoiding structural selection in neural networks. There are
some limitations in our study. Firstly, the overall sample size was
relatively small. Secondly, patient data was not comprehensively
collected, with the construction of models having excluded
diagnostic elements from biochemistry, immunohistochemistry
and genetic studies. Thirdly, when the VOI was delineated, the
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accuracy of the delineated lesions was reduced, due to unclear
margins of some tumor masses or the influences by partial volume
effect. Fourthly, the current single-center study lacked
independent validation and evaluation from external
professionals. Although our scanning parameters and
reconstruction methods had been standardized, they should
have been fixed with multicenter studies, thus necessitating a
unified measurement standard for obtaining necessary
information. Lastly, this study was limited to its retrospective
nature and involvement with only Chinese ethnicity.

In summary, the current study uses radiomics analysis to
differentiate the grade of ccRCC, and the support vector
machine-based model exhibits the best performance for
differentiating high- and low-grade ccRCC when compared to
the logistic regression model and the decision tree model.
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CT-Based Pelvic T1-Weighted MR
Image Synthesis Using UNet, UNet++
and Cycle-Consistent Generative
Adversarial Network (Cycle-GAN)
Reza Kalantar1, Christina Messiou1,2, Jessica M. Winfield1,2, Alexandra Renn2,
Arash Latifoltojar2, Kate Downey2, Aslam Sohaib2, Susan Lalondrelle3, Dow-Mu Koh1,2

and Matthew D. Blackledge1*

1 Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom, 2 Department of
Radiology, The Royal Marsden Hospital, London, United Kingdom, 3 Gynaecological Unit, The Royal Marsden Hospital,
London, United Kingdom

Background: Computed tomography (CT) and magnetic resonance imaging (MRI) are
the mainstay imaging modalities in radiotherapy planning. In MR-Linac treatment, manual
annotation of organs-at-risk (OARs) and clinical volumes requires a significant clinician
interaction and is a major challenge. Currently, there is a lack of available pre-annotated
MRI data for training supervised segmentation algorithms. This study aimed to develop a
deep learning (DL)-based framework to synthesize pelvic T1-weighted MRI from a pre-
existing repository of clinical planning CTs.

Methods: MRI synthesis was performed using UNet++ and cycle-consistent generative
adversarial network (Cycle-GAN), and the predictions were compared qualitatively and
quantitatively against a baseline UNet model using pixel-wise and perceptual loss
functions. Additionally, the Cycle-GAN predictions were evaluated through qualitative
expert testing (4 radiologists), and a pelvic bone segmentation routine based on a UNet
architecture was trained on synthetic MRI using CT-propagated contours and
subsequently tested on real pelvic T1 weighted MRI scans.

Results: In our experiments, Cycle-GAN generated sharp images for all pelvic slices whilst
UNet and UNet++ predictions suffered from poorer spatial resolution within deformable soft-
tissues (e.g. bladder, bowel). Qualitative radiologist assessment showed inter-expert
variabilities in the test scores; each of the four radiologists correctly identified images as
acquired/synthetic with 67%, 100%, 86% and 94% accuracy. Unsupervised segmentation of
pelvic bone on T1-weighted images was successful in a number of test cases

Conclusion: Pelvic MRI synthesis is a challenging task due to the absence of soft-tissue
contrast on CT. Our study showed the potential of deep learning models for synthesizing
realistic MR images from CT, and transferring cross-domain knowledge which may help to
expand training datasets for 21 development of MR-only segmentation models.

Keywords: convolutional neural network (CNN), generative adversarial network (GAN), medical image synthesis,
radiotherapy planning, magnetic resonance imaging (MRI), computed tomography (CT)
July 2021 | Volume 11 | Article 665807115

https://www.frontiersin.org/articles/10.3389/fonc.2021.665807/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.665807/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.665807/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.665807/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.665807/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Matthew.Blackledge@icr.ac.uk
https://doi.org/10.3389/fonc.2021.665807
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.665807
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.665807&domain=pdf&date_stamp=2021-07-30


Kalantar et al. CT-to-MR Image Synthesis Using DL
INTRODUCTION

Computed tomography (CT) is conventionally used for the
delineation of the gross tumor volume (GTV) and subsequent
clinical/planning target volumes (CTV/PTV), along with organs-
at-risk (OARs) in radiotherapy (RT) treatment planning.
Resultant contours allow optimization of treatment plans by
delivering the required dose to PTVs whilst minimizing radiation
exposure of the OARs by ensuring that spatial dose constraints
are not exceeded. Magnetic resonance imaging (MRI) offers
excellent soft-tissue contrast and is generally used in
conjunction with CT to improve visualization of the GTV and
surrounding OARs during treatment planning. However,
manual definition of these regions is repetitive, cumbersome
and may be subject to inter- and/or intra-operator variabilities
(1). The recent development of the combined MR-Linac system
(2) provides the potential for accurate treatment adaption
through online MR-imaging acquired prior to each RT
fraction. However, re-definition of contours for each MR-Linac
treatment fraction requires approximately 10 minutes of
downtime whilst the patient remains on the scanner bed,
placing additional capacity pressures on clinicians wishing to
adopt this technology.

Deep learning (DL) is a sub-category of artificial intelligence
(AI), inspired by the human cognition system. In contrast to
traditional machine learning approaches that use hand-
engineered image-processing routines, DL is able to learn
complex information from large datasets. In recent years, DL-
based approaches have shown great promise in medical imaging
applications, including image synthesis (3, 4) and automatic
segmentation (5–7). There is great promise for DL to
drastically accelerate delineation of the GTV and OARs in
MR-Linac studies, yet a major hurdle remains the lack of large
existing pre-contoured MRI datasets for training supervised
segmentation networks. One potential solution is transferring
knowledge from pre-existing RT planning repositories on CT to
MRI in order to facilitate domain adaptive segmentation (8).
Previous studies have reported successful implementation of
GANs in generating realistic CT images from MRI (3, 9–11) as
well as MRI synthesis from CT in the brain (12). To date, few
Frontiers in Oncology | www.frontiersin.org 216
studies have investigated MRI synthesis in the pelvis. Dong et al.
(13) proposed a synthetic MRI-assisted framework for improved
multi-organ segmentation on CT. However, although the
authors suggested that synthetic MR images improved
segmentation results, the quality of synthesis was not
investigated in depth. MR image synthesis from CT is a
challenging task due to large soft-tissue signal intensity
variations. In particular, MRI synthesis in the pelvis offers the
considerable difficulty posed by geometrical differences in patient
anatomy as well as unpredictable discrepancies in bladder and
bowel contents.

In this study, we compare and contrast paired and unpaired
generative techniques for synthesizing T1-weighted (T1W) MR
images from pelvic CT scans as a basis for training algorithms for
OARs and tumor delineation on acquired MRI datasets. We
include in our analysis the use of state-of-the-art UNet (14) and
UNet++ (15) architectures for paired training, testing two
different loss functions [L1 and VGG-19 perceptual loss (16)],
and compare our results with a Cycle-Consistent Generative
Adversarial Network (Cycle-GAN) (17) for unpaired MR image
synthesis. Subsequently, we evaluate our results through blinded
assessment of synthetic and acquired images by expert
radiologists, and demonstrate our approach for pelvic bone
segmentation on acquired T1W MRI from a framework trained
solely on synthetic 1WMR images with CT-propagated contours.
MATERIALS AND METHODS

Patient Population and Imaging Protocols
Our cohort consisted of 26 patients with lymphoma who
underwent routine PET/CT scanning (Gemini, Philips,
Cambridge, United States) and whole-body T1W MRI (1.5T,
Avanto, Siemens Healthcare, Erlangen, Germany) before and
after treatment (see Table 1 for imaging protocols). From this
cohort, image series with large axial slice angle mismatch
between CT and MR images, and those from patients with
metal implants were excluded, leaving 28 paired CT/MRI
datasets from 17 patients. The studies involving human
participants were reviewed and approved by the Committee for
TABLE 1 | Imaging parameters for acquired CT and T1W MR images.

CT parameters T1W MR parameters

Peak Voltage Output (kVp) 120 Acquisition Sequence 2D Spoiled Gradient Echo
Acquisition Type Helical Echo Time (ms) 4.8
Slice Thickness (mm) 3-6.5 Repetition Time (ms) 386
Matrix Size 512 × 512 Phase Encoding Direction Anterior-Posterior
Pixel Spacing (mm2) 0.74 × 0.74-1.17 × 1.17 Acquired Matrix Size (read) 256
Exposure (mAs) 26-80 Reconstructed Matrix Size (read) 512

Reconstructed Pixel Size (mm2) 0.74 × 0.74-0.82 × 0.82
Flip Angle 70°
Slice Orientation Axial
Slice Thickness (mm) 5
Acceleration GRAPPA (R=2)
Bandwidth Pixel
(Hz/pixel) 331
July 2021 | V
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Clinical Research at the Royal Marsden Hospital. The patients/
participants provided written informed consent to participate in
this study.

Model Architectures
We investigated three DL architectures for MR image synthesis: (i)
UNet, (ii) UNet++, and (iii) Cycle-GAN. UNet is one of the most
popular DL architectures for image-to-image translations, with
initial applications in image segmentation (14). In essence, UNet
is an auto-encoder with addition of skip connections between
encoding and decoding sections to maintain spatial resolution. In
this study, a baseline UNet model was designed consisting of 10
consecutive convolutional blocks (5 encoding and 5 decoding
blocks), each using batch normalization and ReLU activation for
CT-to-MR image generation (Figure 1A). Additionally, a UNet++
model with interconnected skip connection pathways, as described
in (15), was developed with the same number of encoder-decoder
sections and kernel filters as the baseline UNet (Figure 1B). UNet+
+ was reported to enhance performance (15), therefore we deployed
this architecture to assess its capabilities for paired image synthesis.

GANs are the state-of-the-art approaches for generating
photo-realistic images based on the principles of game theory
(18). In image synthesis applications, GANs typically consist of
Frontiers in Oncology | www.frontiersin.org 317
two CNNs, a generator and a discriminator. During training, the
generator produces a target synthetic image from an input image
with different modality; the discriminator then attempts to
classify whether the synthetic image is genuine. Training is
successful once the generator is able to synthesize images that
the discriminator is unable to differentiate from real examples.
Progressive co-training of the generator and discriminator leads
to learning of the global conditional probability distribution
from input to target domain. In this study, a Cycle-GAN
model (17) was developed to facilitate unpaired CT-to-MR and
MR-to-CT learning. The baseline UNet model was used as the
network generator, and the discriminator composed of 5 blocks
containing 2D convolutional layers followed by instance
normalization and leaky ReLU activation. This technique offers
the advantage that it does not require spatial alignment between
training T1W MR and CT images. The high-level schematic of
the Cycle-GAN network is shown in Figure 2.

For segmentation, we propose a framework that first
generates synthetic T1W MR images from CT, propagates
ground-truth CT contours and outputs segmentation contours
on acquired T1W MR images. To examine the capability of our
fully-automated DL framework for knowledge transfer from CT
to MRI, we generate ground-truth contours of the bones using a
A

B

FIGURE 1 | Paired image-to-image networks, (A) UNet with symmetrical skip connections between the encoder and decoder, (B) UNet++ with interconnected skip
connection convolutional pathways.
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Gaussian mixture model proposed by Blackledge etal. (19) and
transfer them to synthetic MR images as a basis for our
segmentation training. A similar UNet model to the
architecture presented in Figure 1, with 5 convolutional blocks
(convolution-batchnorm-dropout(p=0.5)-ReLU) in the
encoding and decoding sections was developed to perform
binary bone segmentation from synthetic MR images. The
schematic of our proposed synthesis/segmentation framework
is illustrated in Figure 3.

Image Preprocessing
In preparation for paired training, the corresponding CT and T1W
MR slices from the anatomical pelvic station in each patient were
Frontiers in Oncology | www.frontiersin.org 418
resampled using a 2D affine transformation followed by non-rigid
registration using multi-resolution B-Spline free-form deformation
(loss = Mattes mutual information, histogram bins = 50, gradient
descent line search optimizer parameters: learning rate = 5.0,
number of iterations = 50, convergence window size = 10) (20).
The resulting co-registered images were visually qualified based on
the alignment of rigid pelvic landmarks. In CT images, signal
intensities outside of the range -1000 and 1000 HU were truncated
to limit the dynamic range. The T1W MR images were corrected
using N4 bias-field correction to reduce inter-patient intensity
variations and inhomogeneities (21) and signal intensities above
1500 (corresponding to infrequent high intensity fatty regions)
were truncated. Subsequently, the training images were normalized
FIGURE 2 | Schematic of the Cycle-GAN network. During training, images from CT domain are translated to MRI domain and reconstructed back to CT domain
under the governance of adversarial and cycle consistency loss terms respectively. Co-training of CT-to-MRI and MRI-to-CT models leads to generation of photo-
realistic predictions.
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to intensity ranges (0,1) and (-1,1) prior to paired (UNet, UNet++)
and unpaired (Cycle-GAN) training respectively.

Objective Functions
Common loss functions in image synthesis are mean absolute
error (MAE or L1) and mean squared error (MSE or L2) between
the target domain and the synthetic output. However, such loss
functions ignore complex image features such as texture and
shape. Therefore, for UNet/UNet++ models, we compared L1
loss in the image space with L1 loss calculated based on the
features extracted from a previously-trained object classification
network, deriving the “perceptual loss”. For this purpose, the
VGG-19 classification network was used (16), which is
composed of 5 convolutional layers and 19 layers overall, and
used features extracted from the “block conv2d” layer. For Cycle-
GAN training, the difference between L1 and the structural
similarity index (SSIM) (defined as L1 – SSIM) was used as the
loss to govern the cycle consistency, whilst L1 and L2 losses were
used for the generator and the discriminator respectively. For
segmentation training, the Dice loss (1, 2) was used to perform
binary division of bone on MR images.

DSC =
2 A ∩ Bj j
Aj j + Bj j (1)

Dice loss = 1 − DSC (2)

where A and B denote the generated and ground-truth contours.
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Model Training and Evaluation
The dataset was split to 981, 150 and 116 images from 11, 3 and 3
patients for training, validation and testing respectively. All
models were trained for 150 epochs using the Adam optimizer
(learning rate = 1e-4; UNet and UNet++ models: batch size = 5,
Cycle-GAN: batch size=1) on a NVIDIA RTX6000 GPU (Santa
Clara, California, United States) (Table 2). During paired UNet/
UNet++ training, the peak signal-to-noise ratio (PSNR), SSIM,
L1 and L2 quantitative metrics, as described in (22), were
recorded at each epoch for the validation images. The trained
weights with the lowest validation loss were used to generate
synthetic T1W MR images from the test CT images. Optimal
weights from the Cycle-GAN model were selected based on
visual examination of the network predictions of the validation
data following each epoch. Subsequently, synthetic images from
all models were evaluated against the ground-truth acquired MR
images quantitatively using the above-mentioned imaging
metrics. An additional qualitative test was designed to obtain
unbiased clinical examination of predictions from the Cycle-
GAN model. This test consisted of two sections: (i) to blindly
classify randomly-selected test images as synthetic or acquired,
and outline reasoning for answers (18 synthetic and 18 acquired
test MR slices), and (ii) to describe key differences between
synthetic and acquired test T1W MR images when the input CT
and ground truth acquired MR images were also provided (10
sets of images from 3 test patients). This test was completed by 4
radiologists (two with <5 years and two with >5 years of
FIGURE 3 | Schematic of the proposed fully-automatic combined synthesis and segmentation framework for knowledge transfer from CT scans to MR images. The
intermediate synthesis stage enables segmentation training using CT-based contours and MR signal distributions.
TABLE 2 | Learnable parameters (in millions) of UNet, UNet++ and Cycle-GAN models.

UNet (L1) UNet (VGG) UNet++ (L1) Cycle-GAN

Trainable Parameters (M) 31 31 36 31(G), 11(D)
July 2021 | Volume 11 | Ar
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experience). The segmentation network was trained on Cycle-
GAN generated synthetic MR images (training: 14, validation:
3 patients) for 600 epochs using the Adam optimizer (learning
rate = 1e-4) and batch size of 1. To avoid overfitting, random
linear shear and rotation (range:0, p/60) were applied to images
during training.
RESULTS

Quantitative assessment of synthetic T1W MR images from the
validation dataset during paired algorithm training suggested that
the UNet and UNet++ models with L1 loss displayed higher PSNR
and SSIM, and lower L1 and L2 values compared with the generated
images from the UNet model with the VGG-19 perceptual loss
(Figure 4). Quantitative analysis of synthetic images from the test
patients revealed a similar trend for UNet and UNet++ model
predictions and showed that the Cycle-GAN quantitative values
were the lowest in all metrics but the SSIMwhere it was only higher
than UNet (VGG) predictions (Table 3). Moreover, qualitative
evaluation of predictions from all models revealed a noticeable
difference in sharpness (spatial resolution) between the images
Frontiers in Oncology | www.frontiersin.org 620
generated from paired (UNet and UNet++) and unpaired (Cycle-
GAN) training. It was observed that despite UNet and UNet++
models generating relatively realistic predictions for pelvic slices
consisting of fixed and bony structures (e.g. femoral heads, hip
bone, muscles), they yielded blurry and unrealistic patches for
deformable and variable pelvic structures such as bowel, bladder
and rectum. In contrast, the Cycle-GAN model generated sharp
images for all pelvic slices, yet a disparity in contrast was observed
for soft-tissues with large variabilities in training patient MRI slices
(e.g. bowel content, gas in rectum and bowel, bladder
filling) (Figure 5).

Our expert radiologist qualitative testing on Cycle-GAN
predicted images suggested that there were inter-expert
variabilities in scores from section one of the test, highlighting
the differences in subjective decisions amongst the experts in a
number of test images. Experts 1 and 2 (<5 years of experience)
scored 67% and 100% whilst experts 3 and 4 (>5 years of
experience) correctly identified 86% and 94% of total 36 test
images. Hence, no particular correlation was observed between
the percentage scores and the participants’ years of experience
(Figure 6A). Radiologist comments on the synthetic images
(following unblinding) are presented in Figure 6B.
FIGURE 4 | Quantitative metrics calculated from validation images during training of UNet and UNet++ models for 150 epochs. (A) PSNR, (B) SSIM, (C) L1 loss and
(D) L2 loss.
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The bone segmentation results using our fully-automated
approach showed that our proposed framework successfully
performed unsupervised segmentation of the bone from
acquired T1W MR images, without the requirement of any
manually annotated regions of interest (ROIs). The outcome
from various pelvic slices across 8 patients from our in-house
cohort are presented in Figure 7. The segmentation results from
cases 5 to 8 were from patients not used in the synthesis and
segmentation components of our framework. Test case 8
demonstrates the predicted bone contours from a patient with
metal hip implant.
DISCUSSION AND CONCLUSION

One major limitation in adaptive RT on the MR-Linac system
is the need for manual annotation of OARs and tumors on
patient scans for each RT fraction which requires significant
clinician interaction. DL-based approaches are promising
solutions to automate this task and reduce burden on
clinicians. However, the development of these algorithms is
hindered by the paucity of pre-annotated MRI datasets for
training and validation. In this study, we developed paired and
unpaired training for T1W MR image synthesis from pelvic CT
scans as a data generative tool for training of segmentation
algorithms for MR-Linac RT treatment planning. Our results
suggested that the Cycle-GAN network generated synthetic
images with the greatest visual fidelity across all pelvic slices
whilst the synthetic images from UNet and UNet++ appeared
less sharp, which is likely due to soft-tissue misalignments
during the registration process. The observed disparity in
contrast in Cycle-GAN images for bladder, bone marrow and
bowel loops may be due to large variabilities in our relatively
small training dataset. Although the direct impact of these
contrast discrepancies on MRI segmentation performance is
yet to be evaluated, the Cycle-GAN predictions appeared more
suitable for CT contour propagation to synthetic MRI than
UNet and UNet++ images due to distinctive soft-tissue
boundaries and high-resolution synthesis.

Quantitative analysis of all model predictions indicated that
the imaging metrics did not fully conform with the output image
visual fidelity and apparent sharpness. This finding was in fact in
line previous studies comparing paired and unpaired MRI
synthesis (12, 22). CT-to-MR synthesis in the pelvis offers the
considerable challenge of generating soft-tissue contrasts absent
on acquired CT scans. Although quantitative metrics such as the
Frontiers in Oncology | www.frontiersin.org 721
PSNR, SSIM, L1 and L2 differences are useful measures when
comparing images, they may not directly correspond to photo-
realistic network outcome. This was evident in quantitative
evaluation of the images generated from the UNet and UNet++
models trained with L1 loss in the image space against UNet with
VGG-19 perceptual loss and Cycle-GAN predictions. Therefore,
expert clinician qualitative assessments may provide a more
reliable insight into the performance of medical image
generative networks. In this study, our expert evaluation test
based on Cycle-GAN predictions suggested that despite a number
of suboptimal soft-tissue contrast predictions (e.g. urinary
bladder filling, bone marrow, nerves), there were differences in
radiologist accuracies for correctly identifying synthetic from
acquired MR images. The fact that 3/4 radiologists were unable
to accurately identify synthetic images in all cases highlights the
capability of our model to generate realistic medical images that
may be indistinguishable from acquired MRI.

Our segmentation results demonstrated the capability of our
fully-automated framework in segmenting bones on acquired
MRI images with no manual MR contouring. Domain
adaptation offers a significant clinical value in transferring
knowledge from previously-contoured OARs by experts on CT
to MR-only treatment planning procedures. Additionally, it
potentially enables expanding medical datasets which are
essential for training supervised DL models. Such a technique
is also highly valuable outside the context of radiotherapy, as
body MRI has increasing utility for monitoring patients with
secondary bone disease from primary prostate (23) and breast
(24) cancers, and multiple myeloma (25). Quantitative
assessment of response of these diseases to systemic treatment
using MRI is hindered by the lack of automated skeletal
delineation algorithms to monitor changes in large volume
disease regions (26).

GANs are notoriously difficult to train due to their large
degree of application-based hyper-parameter optimization and
non-standardized training techniques. However, this study
showed that even when trained on relatively small datasets,
GANs may have the potential to generate realistic images to
overcome the challenge of medical image data shortage.
Therefore, fut ure studies will investigate the performance of
the proposed framework on larger datasets and alternative pelvic
OARs, as well as exploring novel techniques to enforce targeted
organ contrast during GAN and segmentation training.
Additionally, future research will examine the performance
sensitivity on the level of manual MRI contours required for
training cross-domain DL algorithms.
TABLE 3 | Quantitative analysis of predictions from the trained models on test patients.

UNet (L1) UNet (VGG) UNet++ (L1) Cycle-GAN PSNR

PSNR 20.169 ± 0.196 19.668 ± 0.189 20.080 ± 0.193 18.279 ± 0.156
SSIM 0.809 ± 0.003 0.728 ± 0.003 0.804 ± 0.003 0.783 ± 0.003
MAE 0.043 ± 0.001 0.047 ± 0.001 0.044 ± 0.001 0.057 ± 0.001
MSE 0.011 ± 0.001 0.011 ± 0.001 0.013 ± 0.001 0.016 ± 0.001
July 2021 | Volume
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FIGURE 5 | T1T1W MRI predictions generated from 3 independent test patients using UNet, UNet++ and Cycle-GAN models (panel A: patient 1, panels B–E, G:
patient 2, panel F: patient 3). Red box: Predictions from pelvic slices with relatively fixed geometries including the bones demonstrate sharp boundaries between
anatomical structures, with visually superior results for the Cycle-GAN architecture (panels A, F). Green box: The superior resolution of the Cycle-GAN architecture is
further exemplified in slices with deformable structures such as the bowel loop (panels F, G). In highly deformable regions, minor contrast disparity in anatomical
structures can be observed in the synthetic MRI; examples include prediction of bladder (red arrows in panel C), lower gastrointestinal region (red arrows in panels
D, E) and rectum (blue arrows in panels C, D).
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FIGURE 6 | (A) Section One: Expert scores for identifying evenly-distributed test patient MRI slices as synthetic or acquired, (B) Section Two: Expert comments on
Cycle-GAN synthetic MRI when presented along with the ground truth CT and acquired T1W MRI (Experts 1 and 2 with <5 years of experience, and experts 3 and 4
with >5 years of experience).
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FIGURE 7 | Bone segmentation results from acquired T1W MRI scans of 8 test patients using the proposed fully-automated framework. The combined synthesis/
segmentation network allows transfer of organ- specific encoded spatial information from CT to MRI without the need to manually define ROIs. Cases 5 to 8 were
patients not included in the synthesis stage of network training. Case 8 shows bone segmentation results from a patient with metal hip.
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Objective: To identify optimal machine-learning methods for the radiomics-based
differentiation of gliosarcoma (GSM) from glioblastoma (GBM).

Materials and Methods: This retrospective study analyzed cerebral magnetic resonance
imaging (MRI) data of 83 patients with pathologically diagnosed GSM (58 men, 25 women;
mean age, 50.5 ± 12.9 years; range, 16-77 years) and 100 patients with GBM (58 men, 42
women; mean age, 53.4 ± 14.1 years; range, 12-77 years) and divided them into a training
and validation set randomly. Radiomics features were extracted from the tumor mass and
peritumoral edema. Three feature selection and classification methods were evaluated in
terms of their performance in distinguishing GSM and GBM: the least absolute shrinkage
and selection operator (LASSO), Relief, and Random Forest (RF); and adaboost classifier
(Ada), support vector machine (SVM), and RF; respectively. The area under the receiver
operating characteristic curve (AUC) and accuracy (ACC) of each method were analyzed.

Results: Based on tumor mass features, the selection method LASSO + classifier SVM
was found to feature the highest AUC (0.85) and ACC (0.77) in the validation set, followed
by Relief + RF (AUC = 0.84, ACC = 0.72) and LASSO + RF (AUC = 0.82, ACC = 0.75).
Based on peritumoral edema features, Relief + SVM was found to have the highest AUC
(0.78) and ACC (0.73) in the validation set. Regardless of the method, tumor mass
features significantly outperformed peritumoral edema features in the differentiation of
GSM from GBM (P < 0.05). Furthermore, the sensitivity, specificity, and accuracy of the
best radiomics model were superior to those obtained by the neuroradiologists.

Conclusion: Our radiomics study identified the selection method LASSO combined with
the classifier SVM as the optimal method for differentiating GSM from GBM based on
tumor mass features.
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INTRODUCTION

Gliosarcoma (GSM), a variant of glioblastoma (GBM), differs
from GBM in many respects (1). GSM is associated with lower
ratios of epidermal growth factor receptor (EGFR) and O6-
methylguanine-DNA methyltransferase (MGMT) promoter
methylation without isocitrate dehydrogenase (IDH) mutations
as well as the expression of the v-raf murine sarcoma viral
oncogene homolog B1(BRAF) gene at codon 600 (BRAF
V600E) (2–6). Clinically, GSM is associated with a higher ratio
of extracranial metastasis (7, 8) and a poorer prognosis (3, 9–11).
These molecular, genetic, and clinical differences between GSM
and GBM indicate that the former may be treated as a
unique entity.

While the similarity in the clinical presentation of the two
types of tumors underscores the importance of their radiological
differentiation, most of the radiological signs of the two tumors
overlap (2, 4). Prior imaging research has therefore sought to find
a method by which to reliably distinguish the two types of
tumors: peritumoral edema seen on routine magnetic
resonance imaging (MRI) is more severe in patients with GSM
(1, 2), and other imaging modalities, including diffusion
weighted imaging (DWI), perfusion weighted imaging (PWI),
and magnetic resonance spectroscopy (MRS), have also proven
to be helpful in the identification of the tumors (7, 12). However,
these imaging methods have not been substantive enough to
guide clinical practice due to some limitations. First, qualitative
radiological features are susceptible to intra and interobserver
variability and lacking reproducibility among evaluators. Second,
these radiological modalities only focus on the tumor masses of
GSM and GBM when peritumoral edema also requires attention.

Radiomics, a new method for imaging data analysis, has been
successfully used for the differentiation of central nervous system
tumors: e.g., differentiation between primary central nervous
system lymphoma and atypical GBM (13), between GBM and
metastasis (14–16), and between GBM and anaplastic
oligodendroglioma (17). Like any high-throughput data-
mining field, the curse of dimensionality presents a challenge
for radiomics analysis. Feature selection is the process of
removing irrelevant features that are most conducive to
reducing the difficulty of learning task and minimizing the risk
of overfitting. This study extracted a large panel of radiomic
features from the tumor masses and peritumoral edema of GSM
and GBM to inform an optimal machine learning-based
algorithm for differentiating GSM from GBM.
MATERIALS AND METHODS

Patient Enrollment
The ethics committee of our hospital approved this retrospective
study. This study enrolled 83 patients with GSM (58 men, 25
women; mean age, 50.5 ± 12.9 years; range, 16-77 years) between
July 2009 and August 2018 and 100 consecutive patients with
GBM (58 men; 42 women; mean age, 53.4 ± 14.1 years; range,
12-77 years) between December 2016 and February 2017.
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The inclusion criteria for this study were as follows: (I)
pathologically confirmed GBM or GSM, as defined by the
World Health Organization (WHO) criteria; (II) available
preoperative multi-parametric MRI data, including T2-
weighted imaging (T2WI) and contrast enhanced (CE) data;
(III) patients with no history of preoperative treatment for the
tumor before receiving MR; and (IV) available clinical data.
Patients were excluded if (I) preoperative MR images were not
available in our institute; (II) the images were inadequate for
image analysis (for example, they featured obvious artifacts); (III)
the lesion showed no enhancement on post-contrast images; or
(IV) the lesion was recurrent or had received previous treatment.
The clinical and imaging characteristics of all patients were
retrospectively assessed, including age, gender, tumor location,
and the identification of intra-tumoral necrosis and cystic
changes and peritumoral edema. The flowchart of 83 patients
with GSM and 100 patients with GBM is presented as
Supplementary Figure 1. The patients were randomly
assigned to either the training (n = 93) or validation groups
(n = 90).

MRI Data Acquisition and Region of
Interest Segmentation
MRI data included pre- and post-contrast scanning. The detailed
scanning parameters are shown in Supplementary Table 1. The
presence of intra-tumoral necrosis and cystic changes and
peritumoral edema were determined for each case. The intra-
tumoral necrosis and cystic changes were defined as low signal
intensity without enhancement on post-contrast images and high
signal on T2WI. The peritumoral edema was defined as low
signal intensity around enhanced tumors and high signal on
T2WI. The identification of intra-tumoral necrosis, cystic
changes, and peritumoral edema were performed by two of the
co-authors; conflicting opinions were resolved with discussion.

Several postprocessing steps following the acquisition of MR
images were performed to reduce data heterogeneity bias. The
adjustment of image resolution was first conducted to resample
all voxel size to 3.00 × 3.00 × 3.00 mm3 without gaps between
consecutive slices for each MRI image. Image intensity
normalization transformed MR imaging intensity into
standardized ranges (0–1). The contour of the tumor on axial
images in the CE sequence and the high signal around the tumor
in the T2 sequence (the tumor itself and peritumoral edema)
were manually segmented into region of interest (ROI) on
multiple slices with the opensource software MRIcro (http://
www.mccauslandcenter.sc.edu/mricro/). The ROI of the
peritumoral edema on CE images was generated by the voxel-
wise subtraction of the contrast enhancement in CE sequence
from high signals on T2WI using FSL (http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/FSL).

Radiomic Feature Extraction and Stability
Evaluation
PyRadiomics (http://readthedocs.org/projects/pyradiomics/)
computed a total of nine feature categories, including first-
order statistics, shape descriptors, texture classes (gray level
August 2021 | Volume 11 | Article 699789
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co-occurrence matrix, GLCM), gray level run length matrix
(GLRLM), and gray level size zone matrix (GLSZM), and six
built-in filters (wavelet, Laplacian of Gaussian (LoG), square,
square root, logarithm, and exponential), resulting in a total of
1,303 radiomic features (13 shape features, 18 first-order
intensity statistics features, 68 texture features, 86 square
features, 86 square root features, 86 logarithm features, 86
exponential features, 172 LoG features, and 688 wavelet
features). First-order features are intensity-based statistical
features describing the distribution of voxel intensities. Shape
features describe the size and shape of the ROIs. GLCM, GLRLM
and GLSZM features are all texture-related features defined by
different computations based on the gray level of the image. All
of the features were defined in compliance with the Imaging
Biomarker Standardization Initiative (IBSI). All the radiomics
features were listed in the Supplementary Table 2.

Feature Selection and Classification
A total of three feature selection methods based on statistical
approaches were applied in this study: least absolute shrinkage
and selection operator (LASSO), Relief and Random Forest (RF).
While LASSO and RF are embedded methods, Relief is a filter
method. The embedded methods (LASSO and RF) and filter
method (Relief) are commonly and effectively used feature
selection methods. From the performance of the final model,
the wrapped feature selection is better than the filtered feature
selection, but the model needs to be trained multiple times, so the
computational cost is relatively large. We chose these methods
mainly because of their efficiency and popularity among previous
studies. In the LASSO algorithm, the shrinkage parameter
lambda was identified when the misclassification error was
smallest in 10-fold cross-validation. The LASSO, Relief, and RF
curve analysis were conducted based on the “glmnet”, “vsurf”,
and “CORElearn” packages by R software (version 3.4.0, R
Foundation for Statistical Computing), respectively. Then,
three machine-learning classifiers were then applied for feature
classification: adaboost classifier (Ada), support vector machine
(SVM), and RF. These classifiers are widely used pattern
recognition tools and imported from the Python (version 3.6.4)
machine learning library named scikit-learn (version 19.0).

Differentiation Performance of the
Radiomics Models
The three subsets of selected features were then used as an input
to each of the three machine-learning classifiers, which generated
nine (3×3 = 9) radiomics models. We applied 5-fold cross-
validation as the criteria for each of the nine radiomics models
in the training cohort. The differentiation performance was
evaluated in the validation cohort. The area under the curve
(AUC) and accuracy (ACC) from the receiver operating
characteristic curve analysis were calculated to evaluate the
differentiation performances of the radiomics models. The
optimal thresholds of the AUCs were determined by
maximizing the sum of the sensitivity and specificity values
calculated for the differentiation of GBM from GSM.
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To compare the differentiation performances of the radiomics
models andneuroradiologists in differentiatingGBMfromGSM,we
employed the two aforementioned neuroradiologists, who were
blinded to the clinical and pathological data, to manually
differentiate the GBM from GSM according to all of the sequences
(T1WI,T2WI, andCET1WI) showingon the PictureArchiving and
Communication Systems (PACS), just as the daily radiological
diagnosis workflow before ROI segmentation. They were allowed
to see the full MRI images used in this study for the first time. The
results of inter-observer variation and concordance with final
histopathology statistics between the two neuroradiologists are
shown in Supplementary Table 3. The chi-square test was
performed to compare the proportion of predicted GBM/GSM
between the neuroradiologists and the best radiomics model. The
entire analysis process is shown in Figure 1.

Statistical Analysis
Differences in the clinical and MRI characteristics between GBM
and GSM were evaluated using the t-test and chi-square test. P-
values of less than 0.05 were considered to indicate statistical
significance. The statistical analysis and figure plots were
performed using R (version 3.0.1; http://www.R-project.org)
and SPSS (SPSS Inc.).
RESULTS

Clinical and Routine MRI Characteristics
GBM and GSM showed no difference in patient age and gender
(P=0.151; c2 = 2.758, P=0.097). The ratio of intra-tumoral
necrosis and cystic changes was 98.8% (82/83) and 95.0% (95/
100) among patients with GSM and GBM, respectively. This
difference was non-significant (Table 1). The prevalence of
peritumoral edema was 94.0% (78/83) and 83.0% (83/100)
among patients with GSM and GBM, respectively. The
difference was significant (c2 = 5.166, P=0.023).

Selection of Stable Features
We calculated intraclass correlation coefficient (ICC) to select for
the robustness of radiomic features in tumor mass and
peritumoral edema. For the tumor mass, 918 of the 1,303
(70.5%) extracted radiomic features showed high stability,
including 13 shape features, 18 first-order intensity statistics
features, 70 texture features, 84 square features, 81 square root
features, 80 logarithm features, 89 exponential features, 179 LoG
features, and 304 wavelet features. For the peritumoral edema,
815 of the 1,303 (62.5%) extracted radiomic features showed high
stability, including 13 shape features, 18 first-order intensity
statistics features, 64 texture features, 70 square features, 89
square root features, 65 logarithm features, 80 exponential
features, 162 LoG features, and 254 wavelet features.

Unsupervised clustering of these stable features was
conducted and presented as a heat map to yield two imaging
subtypes (Figure 2). However, the association between the
imaging and histology subtypes was not obvious.
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Feature Selection and Radiomics Model
Construction
Based on tumor mass features in the training set ,
the selection method LASSO + classifier SVM was found to
feature the highest AUC (0.96) and ACC (0.85), followed by
those of Relief + RF (AUC = 0.94, ACC = 0.81), LASSO + RF
(AUC = 0.91, ACC = 0.84), and LASSO + Ada (AUC = 0.91,
ACC = 0.81; Tables 2–4 and Figures 3, 4). A similar result was
found using the tumor mass features in the validation set:
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the selection method LASSO + classifier SVM featured the
highest AUC (0.85) and ACC (0.77), followed by those of
Relief + RF (AUC = 0.84, ACC = 0.72) and LASSO + RF
(AUC = 0.82, ACC = 0.75). In both the training and validation
set, regardless of the method, tumor mass features significantly
outper formed those of the per i tumora l edema in
the differentiation of GSM from GBM (P< 0.05). The illustration
of the 5-fold cross-validated ROC curve of the LASSO + SVM
radiomics model in the training cohort and ROC curve of the
LASSO + SVM radiomics model in the validation set are shown
in Figure 5.

To avoid biases and confirm the efficacy of the radiomics
model, we compared the performance of the selection method
LASSO + classifier SVM in 90 validation cases with that of
experienced and inexperienced raters. As shown in Table 4, the
clinical performance of the LASSO + SVM radiomics model was
superior to that of the neuroradiologists in terms of sensitivity,
specificity, and accuracy.
DISCUSSION

This retrospective study developed and validated a favorable
predictive model with radiomics features extracted from tumor
mass and peritumoral edema to distinguish GSM from GBM.
Importantly, the trend of the diagnostic performance of this
machine-learning radiomics model was similar in the training
set, validation set, and cross-validation analysis. In our study,
two neuroradiologists independently rendered diagnosis of the
FIGURE 1 | A schematic figure shows the radiomic analysis process. After feature extraction, stable features are selected. Three feature selection and classification
methods are combined with favorable models selected and cross-validated in the training cohort. In an independent validation cohort, the optimal model is identified
by comparing with pathology. The performance of the optimal model is compared with that of the two neuroradiologists.
TABLE 1 | Clinical and MRI characteristics of patients with GSM and GBM.

Training cohort Validaion cohort

GSM
(n=43)

GBM
(n=50)

P
value

GSM
(n=40)

GBM
(n=50)

P
value

Age (years) 51.1 51.6 0.884† 49.8 55.2 0.044†

Sex
Female 9 23 0.011* 16 19 0.847*
Male 34 27 24 31

Localization
Supratentorial 43 47 0.296* 39 50 0.444*
Infratentorial 0 3 1 0

Necrosis
Yes 42 47 0.720* 40 48 0.501*
No 1 3 0 2

Edema
Yes 39 42 0.337* 39 41 0.047*
No 4 8 1 9
*Chi-square test, †Student’s t-test. GBM, glioblastoma; GSM, gliosarcoma; MRI,
magnetic resonance imaging.
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two kinds of tumors based on the routine MRI; their accuracy
was less than 50.0%, lower than the accuracy of the radiomics
analysis, suggesting the superiority of radiomics relative to
human analysis in distinguishing GSM from GBM.

In agreement with previous research (18, 19), our study
indicated that GSM usually showed enhancement on the solid
component with peritumoral edema on routine MRI. These
findings, however, are insufficient to inform the distinction of
GSM from GBM. Some advanced imaging modalities, such as
DWI, PWI, and MRS (7, 12, 20), have therefore been used to
better identify the characteristics of GSM. On DWI, the thicker
or more solid components of GSM show a restricted diffusion
ratio of as high as 72.7% (8/11) (7); on PWI, the tumor featured
high perfusion (7); on MRS, GSM shows a lactate peak indicating
local necrosis and hypoxia of the tumor and a higher lipid-
choline ratio than do GBM (12, 20). These indices obtained from
the advanced MR modalities were all derived from analysis of
the solid part of the tumor. However, due to the fact that GSM
and GBM usually evince necrosis and cystic changes, a
comprehensive differentiation between the two tumors should
FIGURE 2 | A heat map shows the stable radiomic features. Each column and row correspond to one patient and z-score normalized radiomic feature, respectively.
TABLE 2 | The AUC of the cross-combination methods.

AUC Ada RF SVM

TMF
LASSO 0.91 (0.81) 0.89 (0.82) 0.96 (0.85)
Relief 0.85 (0.79) 0.91 (0.84) 0.94 (0.81)
RF 0.87 (0.81) 0.84 (0.77) 0.82 (0.79)

PEF
LASSO 0.84 (0.75) 0.79 (0.71) 0.81 (0.77)
Relief 0.78 (0.76) 0.84 (0.77) 0.84 (0.78)
RF 0.81 (0.69) 0.80 (0.73) 0.76 (0.68)
The AUC of the cross-combination methods based on tumor mass and peritumoral
edema features is showed in the training set (no brackets) and the validation set
(in brackets). Ada, adaboost; AUC, area under the receiver-operating characteristic
curve; LASSO, least absolute shrinkage and selection operator; PEF, peritumoral
edema feature; RF, random forest; SVM, support vector machine; TMF, tumor
mass feature.
TABLE 3 | The ACC of the cross-combination methods.

ACC Ada RF SVM

TMF
LASSO 0.83(0.74) 0.81(0.75) 0.87(0.77)
Relief 0.77(0.70) 0.80(0.72) 0.84(0.75)
RF 0.77(0.71) 0.76(0.70) 0.71(0.65)

PEF
LASSO 0.73(0.68) 0.69(0.63) 0.71(0.67)
Relief 0.72(0.64) 0.75(0.70) 0.79(0.73)
RF 0.74(0.63) 0.71(0.68) 0.71(0.63)
The ACC of the cross-combination methods based on tumor mass and
peritumoral edema features are showed in the training set (no brackets) and the
validation set (in brackets). ACC, accuracy; ACC, accuracy; Ada, adaboost;
LASSO, least absolute shrinkage and selection operator; PEF, peritumoral
edema feature; RF, random forest; SVM, support vector machine; TMF, tumor
mass feature.
TABLE 4 | Comparison of predictive performance between radiomic model and
neuroradiologists in the validation set.

Sensitivity,
P

Specificity,
P

Accuracy,
P

Neuroradiologist with 3 years of
experiences

0.40,
<0.001*

0.44,
<0.001*

0.42,
<0.001*

Neuroradiologist with 10 years of
experiences

0.70, 0.015* 0.34,
<0.001*

0.50,
<0.001*

LASSO_SVM 0.78, — 0.76, — 0.77, —
Au
gust 2021 | V
olume 11 | Ar
*Chi-square test. LASSO, least absolute shrinkage and selection operator; SVM, support
vector machine.
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FIGURE 3 | Scatterplots depict the AUC of the cross-combination methods based on the features derived from the tumor and peritumoral edema, respectively.
AUC, area under the curve.
FIGURE 4 | Scatterplots show the ACC of the cross-combination methods based on the features derived from the tumor and peritumoral edema, respectively.
ACC, accuracy.
A B

FIGURE 5 | ROC curve shows the optimal classifier for differentiating GSM from GBM. (A) The AUC of 5-fold cross-validated ROC is 0.96 in the training set. (B) The
AUC of 5-fold cross-validated ROC is 0.85 in the validation set. AUC, area under the curve; GBM, glioblastoma; GSM, gliosarcoma; ROC, receiver operating characteristic.
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simultaneously involve the solid part and non-solid components.
The peritumoral region, which usually shows as edema, is also
neglected during differentiation.

In our study, the differentiation between GSM and GBM not
only included the whole part of the lesion but also the peritumoral
edema outside of the lesion. Our investigation revealed that, based
on the peritumoral edema region, the two tumors can be
differentiated with the radiomics method of Relief + SVM (AUC,
0.78; ACC, 0.73). Showing as high signal intensity on T2WI, this
region included both vasogenic edema and the infiltration of tumor
cells (21–23). However, compared with this region, analysis of the
tumor mass itself allowed for the more efficient differentiation
between tumor types. This can be explained by the fact that there
are far more tumor cells in the region of tumor mass than in the
peritumoral region. Moreover, the whole region of the tumor mass,
including necrosis, cystic changes, and other non-enhanced
components, was analyzed for its capacity to inform
differentiation. As previous studies that employed PWI, DWI,
and MRS (7, 12), only focused on the solid part of the two kinds
of tumors, our analysis is more factual and practicable.

Radiomics is an emerging non-invasive method that extracts
high-dimensional sets of imaging features to build appropriate
models for survival prediction (24), distant metastasis prediction
(25), and molecular characteristics classification (26). However,
dimensionality is a critical challenge in radiomics analysis and
limits the potential of the radiomics model. Hence, this study
compared three feature selection methods and classification
methods for improving the stability and classification
performance of the radiomics model. After performing nine
cross-combinations comparisons, we found the LASSO
selection method and the classifier SVM to best differentiate of
GSM from GBM. The LASSO is a regularization technique used
to minimize the number of non-zero elements and make the
solution unique (27). It is therefore often used to solve the
problem of large sets of radiomics features derived from a
relatively small sample size. The SVM is a powerful
classification algorithm that can estimate the classification
probabilities and control complexity. These properties account
for its effective application in the fields of neuroimaging and
molecular biology (16, 28) and its superb pairing with the LASSO
selection method in our radiomics analysis.

Our study has several limitations. First, it may be subjective to
selective bias as a retrospective study. Second, the scanning
parameters were not uniform, requiring the preprocessing of
the data. Third, compared with the large radiomic features
dataset, the sample size was relatively small. Therefore, our
results may be caused by overfitting. Fourth, only T2WI and
axial post contrast T1WI were used in our radiomic analysis,
multi-model imaging data (such as DWI, PWI, MRS) needs to be
integrated into our model in the future, to improve its
Frontiers in Oncology | www.frontiersin.org 733
performance. Finally, being a single center study, our study is
lack of external independent validation.

In conclusion, this retrospective study presents the machine
learning-based MR radiomics model as a non-invasive tool for
preoperatively differentiating GSM from GBM with favorable
predictive accuracy and stability. Prospective studies are needed
to further validate its classification ability.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Beijing Tiantan Hospital. Written informed consent
for participation was not provided by the participants’ legal
guardians/next of kin because: As a retrospective study, it was
approved by our institute committee without the informed
consent of the patients.
AUTHOR CONTRIBUTIONS

ZQ and LZ performed study design, information collection,
statistical analysis, and manuscript editing. HC, HS, and XC
guided study design, reviewed images, and revised manuscript.
JH and SC provided technical support. FZ and YZ collected
images and clinical information. All authors contributed to the
article and approved the submitted version.
FUNDING

This work is supported by the National Natural Science
Foundation of China under grant numbers 81772005 and
82001897 and Collaborative innovative major special project
supported by Beijing Municipal Science & Technology
Commission under grant number Z191100006619088.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2021.
699789/full#supplementary-material
REFERENCES
1. Lowder L, Hauenstein J, Woods A, Chen HR, Rupji M, Kowalski J, et al.

Gliosarcoma: Distinct Molecular Pathways and Genomic Alterations
Identified by DNA Copy Number/SNP Microarray Analysis. J Neurooncol
(2019) 143:381–92. doi: 10.1007/s11060-019-03184-1
2. Han SJ, Yang I, Tihan T, Prados MD, Parsa AT. Primary Gliosarcoma: Key
Clinical and Pathologic Distinctions From GlioblastomaWith Implications as
a Unique Oncologic Entity. J Neurooncol (2010) 96:313–20. doi: 10.1007/
s11060-009-9973-6

3. Zhang G, Huang S, Zhang J, Wu Z, Lin S, Wang Y. Clinical Outcome of
Gliosarcoma Compared With Glioblastoma Multiforme: A Clinical Study in
August 2021 | Volume 11 | Article 699789

https://www.frontiersin.org/articles/10.3389/fonc.2021.699789/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.699789/full#supplementary-material
https://doi.org/10.1007/s11060-019-03184-1
https://doi.org/10.1007/s11060-009-9973-6
https://doi.org/10.1007/s11060-009-9973-6
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Qian et al. Differentiation of Gliosarcoma From Glioblastoma
Chinese Patients. J Neurooncol (2016) 127:355–62. doi: 10.1007/s11060-015-
2046-0

4. Peckham ME, Osborn AG, Palmer CA, Tsai A, Salzman KL. Gliosarcoma:
Neuroimaging and Immunohistochemical Findings. J Neuroimaging (2019)
29:126–32. doi: 10.1111/jon.12565

5. Wang L, Sun J, Li Z, Chen L, Fu Y, Zhao L, et al. GliosarcomasWith the BRAF
V600E Mutation: A Report of Two Cases and Review of the Literature. J Clin
Pathol (2017) 70:1079–83. doi: 10.1136/jclinpath-2017-204620

6. Behling F, Barrantes-Freer A, Skardelly M, Nieser M, Christians A,
Stockhammer F, et al. Frequency of BRAF V600E Mutations in 969 Central
Nervous System Neoplasms. Diagn Pathol (2016) 11:55. doi: 10.1186/s13000-
016-0506-2

7. Sampaio L, Linhares P, Fonseca J. Detailed Magnetic Resonance Imaging
Features of a Case Series of Primary Gliosarcoma. Neuroradiol J (2017)
30:546–53. doi: 10.1177/1971400917715879

8. Ramos R, Morais N, Silva AI, Almeida R. Gliosarcoma With Neuroaxis
Metastases. BMJ Case Rep (2015) 2015:bcr2015212970. doi: 10.1136/bcr-
2015-212970

9. Hashmi FA, Salim A, Shamim MS, Bari ME. Biological Characteristics and
Outcomes of Gliosarcoma. J Pak Med Assoc (2018) 68:1273–5.

10. Saadeh F, El IS, Najjar M, Assi HI. Prognosis and Management of
Gliosarcoma Patients: A Review of Literature. Clin Neurol Neurosurg (2019)
182:98–103. doi: 10.1016/j.clineuro.2019.05.008

11. Castelli J, Feuvret L, Haoming QC, Biau J, Jouglar E, Berger A, et al. Prognostic
and Therapeutic Factors of Gliosarcoma From a Multi-Institutional Series.
J Neurooncol (2016) 129:85–92. doi: 10.1007/s11060-016-2142-9

12. Buhl R, Stark AM, Hugo HH, Rohr A, Mehdorn HM. Gliosarcoma: Clinical
Experiences and Additional Information With MR Spectroscopy. Neurol Res
(2009) 31:873–7. doi: 10.1179/174313209X395490

13. Suh HB, Choi YS, Bae S, Ahn SS, Chang JH, Kang SG, et al. Primary Central
Nervous System Lymphoma and Atypical Glioblastoma: Differentiation Using
Radiomics Approach. Eur Radiol (2018) 28:3832–9. doi: 10.1007/s00330-018-
5368-4

14. Artzi M, Bressler I, Ben BD. Differentiation Between Glioblastoma, Brain
Metastasis and Subtypes Using Radiomics Analysis. J Magn Reson Imaging
(2019) 50:519–28. doi: 10.1002/jmri.26643

15. Chen C, Ou X, Wang J, Guo W, Ma X. Radiomics-Based Machine Learning in
Differentiation Between Glioblastoma and Metastatic Brain Tumors. Front
Oncol (2019) 9:806. doi: 10.3389/fonc.2019.00806

16. Qian Z, Li Y, Wang Y, Li L, Li R, Wang K, et al. Differentiation of
Glioblastoma From Solitary Brain Metastases Using Radiomic Machine-
Learning Classifiers. Cancer Lett (2019) 451:128–35. doi: 10.1016/j.canlet.
2019.02.054

17. Fan Y, Chen C, Zhao F, Tian Z, Wang J, Ma X, et al. Radiomics-Based
Machine Learning Technology Enables Better Differentiation Between
Glioblastoma and Anaplastic Oligodendroglioma. Front Oncol (2019)
9:1164. doi: 10.3389/fonc.2019.01164

18. Yi X, Cao H, Tang H, Gong G, Hu Z, Liao W, et al. Gliosarcoma: A Clinical
and Radiological Analysis of 48 Cases. Eur Radiol (2019) 29:429–38.
doi: 10.1007/s00330-018-5398-y
Frontiers in Oncology | www.frontiersin.org 834
19. Han L, Zhang X, Qiu S, Li X, Xiong W, Zhang Y, et al. Magnetic Resonance
Imaging of Primary Cerebral Gliosarcoma: A Report of 15 Cases. Acta Radiol
(2008) 49:1058–67. doi: 10.1080/02841850802314796

20. Raab P, Pilatus U, Hattingen E, Franz K, Hermann E, Zanella FE, et al.
Spectroscopic Characterization of Gliosarcomas-Do They Differ From
Glioblastomas and Metastases? J Comput Assist Tomogr (2016) 40:815–9.
doi: 10.1097/RCT.0000000000000419

21. Farshidfar Z, Faeghi F, Mohseni M, Seddighi A, Kharrazi HH,
Abdolmohammadi J. Diffusion Tensor Tractography in the Presurgical
Assessment of Cerebral Gliomas. Neuroradiol J (2014) 27:75–84.
doi: 10.15274/NRJ-2014-10008

22. Chen XZ, Yin XM, Ai L, Chen Q, Li SW, Dai JP. Differentiation Between Brain
Glioblastoma Multiforme and Solitary Metastasis: Qualitative and
Quantitative Analysis Based on Routine MR Imaging. AJNR Am J
Neuroradiol (2012) 33:1907–12. doi: 10.3174/ajnr.A3106

23. Wang S, Zhou J. Diffusion Tensor Magnetic Resonance Imaging of Rat Glioma
Models: A Correlation Study of MR Imaging and Histology. J Comput Assist
Tomogr (2012) 36:739–44. doi: 10.1097/RCT.0b013e3182685436

24. Qian Z, Li Y, Sun Z, Fan X, Xu K, Wang K, et al. Radiogenomics of Lower-Grade
Gliomas: A Radiomic Signature as a Biological Surrogate for Survival Prediction.
Aging (Albany NY) (2018) 10:2884–99. doi: 10.18632/aging.101594

25. Coroller TP, Grossmann P, Hou Y, Rios VE, Leijenaar RT, Hermann G, et al. CT-
Based Radiomic Signature Predicts Distant Metastasis in Lung Adenocarcinoma.
Radiother Oncol (2015) 114:345–50. doi: 10.1016/j.radonc.2015.02.015

26. Li Y, Qian Z, Xu K,Wang K, Fan X, Li S, et al. MRI Features Predict P53 Status
in Lower-Grade Gliomas via a Machine-Learning Approach. NeuroImage Clin
(2018) 17:306–11. doi: 10.1016/j.nicl.2017.10.030

27. Gui J, Li H. Penalized Cox Regression Analysis in the High-Dimensional and
Low-Sample Size Settings, With Applications to Microarray Gene Expression
Data. Bioinformatics (2005) 21:3001–8. doi: 10.1093/bioinformatics/bti422

28. Han H, Jiang X. Overcome Support Vector Machine Diagnosis Overfitting.
Cancer Inform (2014) 13:145–58. doi: 10.4137/CIN.S13875

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Qian, Zhang, Hu, Chen, Chen, Shen, Zheng, Zang and Chen. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
August 2021 | Volume 11 | Article 699789

https://doi.org/10.1007/s11060-015-2046-0
https://doi.org/10.1007/s11060-015-2046-0
https://doi.org/10.1111/jon.12565
https://doi.org/10.1136/jclinpath-2017-204620
https://doi.org/10.1186/s13000-016-0506-2
https://doi.org/10.1186/s13000-016-0506-2
https://doi.org/10.1177/1971400917715879
https://doi.org/10.1136/bcr-2015-212970
https://doi.org/10.1136/bcr-2015-212970
https://doi.org/10.1016/j.clineuro.2019.05.008
https://doi.org/10.1007/s11060-016-2142-9
https://doi.org/10.1179/174313209X395490
https://doi.org/10.1007/s00330-018-5368-4
https://doi.org/10.1007/s00330-018-5368-4
https://doi.org/10.1002/jmri.26643
https://doi.org/10.3389/fonc.2019.00806
https://doi.org/10.1016/j.canlet.2019.02.054
https://doi.org/10.1016/j.canlet.2019.02.054
https://doi.org/10.3389/fonc.2019.01164
https://doi.org/10.1007/s00330-018-5398-y
https://doi.org/10.1080/02841850802314796
https://doi.org/10.1097/RCT.0000000000000419
https://doi.org/10.15274/NRJ-2014-10008
https://doi.org/10.3174/ajnr.A3106
https://doi.org/10.1097/RCT.0b013e3182685436
https://doi.org/10.18632/aging.101594
https://doi.org/10.1016/j.radonc.2015.02.015
https://doi.org/10.1016/j.nicl.2017.10.030
https://doi.org/10.1093/bioinformatics/bti422
https://doi.org/10.4137/CIN.S13875
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Antonio Napolitano,

Bambino Gesù Children Hospital
(IRCCS), Italy

Reviewed by:
S Senthil Kumaran,

All India Institute of Medical Sciences,
India

Kajari Bhattacharya,
Tata Memorial Hospital, India

*Correspondence:
Xin-Lan Xiao

jx_xiaoxinlan@sina.com

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 24 March 2021
Accepted: 12 August 2021

Published: 02 September 2021

Citation:
Wang ZH, Xiao XL, Zhang ZT,

He K and Hu F (2021) A Radiomics
Model for Predicting Early

Recurrence in Grade II Gliomas
Based on Preoperative

Multiparametric Magnetic
Resonance Imaging.

Front. Oncol. 11:684996.
doi: 10.3389/fonc.2021.684996

ORIGINAL RESEARCH
published: 02 September 2021
doi: 10.3389/fonc.2021.684996
A Radiomics Model for Predicting
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Multiparametric Magnetic
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Zhen-hua Wang, Xin-Lan Xiao*, Zhao-Tao Zhang, Keng He and Feng Hu

Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China

Objective: This study aimed to develop a radiomics model to predict early recurrence (<1
year) in grade II glioma after the first resection.

Methods: The pathological, clinical, and magnetic resonance imaging (MRI) data of
patients diagnosed with grade II glioma who underwent surgery and had a recurrence
between 2017 and 2020 in our hospital were retrospectively analyzed. After a rigorous
selection, 64 patients were eligible and enrolled in the study. Twenty-two cases had a
pathologically confirmed recurrent glioma. The cases were randomly assigned using a
ratio of 7:3 to either the training set or validation set. T1-weighted image (T1WI), T2-
weighted image (T2WI), and contrast-enhanced T1-weighted image (T1CE) were
acquired. The minimum-redundancy-maximum-relevancy (mRMR) method alone or in
combination with univariate logistic analysis were used to identify the most optimal
predictive feature from the three image sequences. Multivariate logistic regression
analysis was then used to develop a predictive model using the screened features. The
performance of each model in both training and validation datasets was assessed using a
receiver operating characteristic (ROC) curve, calibration curve, and decision curve
analysis (DCA).

Results: A total of 396 radiomics features were initially extracted from each image
sequence. After running the mRMR and univariate logistic analysis, nine predictive
features were identified and used to build the multiparametric radiomics model. The
model had a higher AUC when compared with the univariate models in both training and
validation data sets with an AUC of 0.966 (95% confidence interval: 0.949–0.99) and
0.930 (95% confidence interval: 0.905–0.973), respectively. The calibration curves
indicated a good agreement between the predictable and the actual probability of
September 2021 | Volume 11 | Article 684996135
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developing recurrence. The DCA demonstrated that the predictive value of the model
improved when combining the three MRI sequences.

Conclusion: Our multiparametric radiomics model could be used as an efficient and
accurate tool for predicting the recurrence of grade II glioma.
Keywords: radiomics, grade II gliomas, MRI, multiparametric, recurrence
INTRODUCTION

Glioma is a brain tumor originating from central glial cells with a
high mortality rate (1–3). According to the World Health
Organization (WHO), grade I and grade II tumors are
classified as low-grade gliomas (LGG). LGGs are generally
benign, with a recurrence rate of about 36% (4). Nevertheless,
the clinical course of LGGmay be unpredictable, as some of these
tumors recur soon after primary treatment and/or undergo
malignant transformation (5–7). A previous report indicated
that low-grade gliomas (WHO II grade) have a 5-year survival
rate of as high as 50% (8). Surgical resection followed by
chemoradiation is the standard treatment option for gliomas.
However, the risk and timing of recurrence following treatment
in LGG are still difficult to predict accurately (9–12). Therefore,
there is a need to identify accurate indicators for early detection
and recurrence to provide timely, optimal treatment and
improve survival.

Although histological analysis of surgical specimens is still
considered the gold standard to grade gliomas, it may not always
provide an accurate result (13) as the small sample obtained
during the biopsy may not always reflect the grading
heterogeneity within the entire tumor (14, 15). A substantial
assessment would require the acquisition of samples from
multiple regions within the tumor currently not widely
accepted in clinical practice. Furthermore, a biopsy is an
invasive procedure and also carries some risk. The acquisition
of repeated biopsies is not always considered to be ethical as it
may aggravate patient suffering.

The factors leading to poor OS post-surgery in LGG are still
not well understood. Previous studies identified age, the extent of
the tumor resection, and the expression of specific genes,
including Ki-67 and the isocitrate dehydrogenase 1 (IDH1), as
indicators for OS (16). Yet, to our knowledge, there is no accurate
quantitative tool that could be used to predict at an early stage
the risk of recurrence following the first tumor resection,
highlighting the need to develop predictive models.

An alternative method that can be used to assess tumor
recurrence post-surgery is magnetic resonance imaging
(MRI). Previous studies have shown that radiomics could be
used to quantitatively extract and assess numerous imaging
features to effectively differentiate between high and low-
grade gliomas (17, 18) and differentiate tumor recurrence
from radiation necrosis (19). When combined with clinical
data, imaging features could be used to assess the OS and
hence optimize the treatment for the patient. Therefore, this
study aimed to create a radiomics model based on clinical and
236
imaging features to predict the risk of developing recurrence
in grade II glioma after the first resection.
MATERIALS AND METHODS

Participants
Retrospective analyses were performed on the follow-up medical
records of 103 adult patients with histologically confirmed
supratentorial grade II gliomas (according to WHO 2016
classification). All patients who had their first extensive glioma
resection between May 2017 and November 2019 were included
in the study. All patients had a MRI T1-contrast enhanced
(T1CE) examination within 72 h after surgery to exclude the
presence of a conspicuous residual tumor after surgery and
received the same adjuvant chemoradiation treatment using a
radiotherapy dose of 50.4 Gy in 28 fractions and 75 mg/m2 of
temozolomide orally (20). Patients below 18 years with poor MRI
images and tumor hemorrhage were excluded from the study
(Figure 1). A total of 64 patients were ultimately included in
the study.

Data Collection
After being discharged, the patients were regularly followed up
by the neurosurgery group of the hospital. A periodical MRI
examination was performed after treatment, and any tumor
progression was noted in the patient’s medical records
according to the neuro-oncology (RANO) criteria (21). A
biopsy was performed in those patients who had an obvious
tumor progression noted on the MRI to further confirm the
findings. The age, sex, progression-free survival (PFS), Ki-67, and
IDH1 mutations were obtained from the patients’ medical
records. Three magnetic resonance imaging (MRI) sequences,
including T1-weighted (T1W1), T2-weighted (T2WI), and T1-
contrast enhanced (T1CE), were acquired.

MRI Parameters
All the patients underwent multi-sequence imaging protocol on a
3.0 Tesla MRI system (Discovery 750; GE Healthcare, Milwaukee,
WI, USA), with an eight-channel head coil (GE Healthcare,
Chicago, IL, USA). For the T1-weighted image (T1WI)
acquisition, the repetition time/echo time (TR/TE), matrix size,
field-of-view (FOV), slice thickness, slice gap, and acquisition time
were 1,750/25.4 ms; 512 × 512, 220 × 220, 5 mm, 1.5 mm, and 89 s,
respectively. For the T2WI acquisition, the (TR/TE), matrix size,
FOV, layer thickness, layer spacing, and the number of layers were
4600/102 ms, 224 × 320, 220 × 220, 6 mm, 1, and 18, respectively.
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The axial T1CE sequence was acquired by repeating the T1WI
described above after a bolus injection of 0.1 mmol/kg of
gadodiamide (Omniscan, GE Healthcare, Cork, Ireland).

Description of the Region of Interest and
Assessment of the MRI Sequences
The ITK-snap software (www.itk-snap.org) was used to analyze
the MRIs. A region of interest (ROI) was blindly delineated by
two senior radiologists with more than 10 years of work
experience. The boundaries of most low-grade tumors without
contrast enhancement were determined on the T2WI images as
these images are widely accepted in the identification of
hyperintense signals representing the tumor regions (22).
Then, the contours of the tumor delineated on the T2WI were
transferred to the T1WI and T1CE images. In tumors with
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contrast enhancement, the tumor boundaries were delineated
on the T1CE images by selecting the enhanced region. The
delineated region was transferred onto the T1WI and
T2WI images.

After the delineation of the ROI, all the patients were divided
into the recurrent group (RG) and non-recurrent group (NRG)
based on the RANO criteria (indicated in Table 1) and biopsy
findings by two radiologists. In case of any disagreement, a
consensus was reached through discussion, especially when there
was a discrepancy between the two readers, as illustrated
in Figure 2.

Feature Extraction
Radiomic features were extracted using the AK software
(Artificial Intelligence Kit V3.0.0.R, GE Healthcare). A total of
FIGURE 1 | Flow diagram illustrating the patient selection process.
TABLE 1 | RANO criteria used to evaluate treatment response in low-grade gliomas.

Criterion Complete remission Partial remission Stable disease Progress disease

T1CE Not seen Decrease ≥50% Increase or decrease in the range
of -25% ~ +25%

Increase ≥ 25%*

T2WI/FLAIR Stable or diminished Stable or diminished Stable or diminished Increase*
New lesion None (apart from those consistent

with radiation effects, and no new
or increased enhancement)

None (apart from those consistent
with radiation effects, and no new
or increased enhancement)

None (apart from those consistent
with radiation effects, and no new
or increased enhancement)

Present*

Corticosteroids None Stable or diminished Stable or diminished Not apply
Clinical status Stable or improved Stable or improved Stable or improved Deteriorative*(not attributable to other

causes apart from the tumor, or
decrease in corticosteroid dose)

Requirement for
response

All All All Any
Septembe
CE, contrast-enhanced; FLAIR, fluid-attenuated inversion recovery.
*Progress is determined by anyone project.
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396 features were extracted from each MRI sequence, including
the Laplacian of Gaussian (LoG), rotation invariant local binary
patterns (RILBP), the gray level co-occurrence matrix (GLCM),
intensity-based features (IBF), directional Gabor texture features
(DGTF), and rotation invariant circular Gabor features
(RICGF), etc. These features were then used to construct the
multiparametric model.

Data Preprocessing and
Feature Screening
The dataset was randomly categorized into the training or
validation set using a ratio of 7:3. All cases in the training set
were used to train the predictive model, while cases in the
validation set were used to evaluate the model’s performance
independently. Variables with zero variance were excluded from
the analysis. The missing values were substituted with the median
value. Finally, the z-score was used to standardize the data (23).
Feature screening was performed by using the minimum
redundancy-maximum relevance (mRMR) (24) method alone or
in combination with univariate logistic analysis. A p-value below
0.05 was deemed statistically significant.

Development and Validation of Models
Logistic regression analysis was used to construct predictive
models based on the extracted optimal feature subsets of the
training dataset. A receiver operator curve (ROC) was used to
assess the performance of the radiomics models, and the
sensitivity, specificity, and area under the curve (AUC) were
Frontiers in Oncology | www.frontiersin.org 438
calculated using five-fold cross validation. Calibration curves and
decision curve analyses (DCA) were used to assess the clinical
predictive performance of the models. The models were
constructed using the R software (version 4.0.2), and a two-
tailed p-value below 0.05 was deemed statistically significant.

Statistical Analysis
According to the normality of samples based on the Shapiro-
Wilk test, the independent samples t-test, the chi-square (x2) test,
Fisher’s exact test and the Mann-Whitney U-test were used to
identify any differences in age, gender, and other baseline
characteristics between the training set and validation set. This
data was analyzed using the statistical package for the social
sciences (SPSS) version 22.0 software.

Ethical Considerations
Ethical approval was obtained from our hospital ethics
committee. The need to obtain informed consent from patients
was waived due to the retrospective nature of the study.
RESULTS

Patient Characteristics
The characteristics of the tumors and patients are summarized in
Table 2. A total of 64 patients were included in the analysis.
Following the first surgical resection, 64 patients were confirmed
as grade II gliomas. According to the RANO criteria, 29 patients
FIGURE 2 | An example of image segmentation: (A–C) illustrate T1CE, T1WI, and T2WI sequences, respectively. Images (D–F) illustrate the region of interest (ROI)
in red delineated by the radiologists for feature extraction.
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were thought to have a tumor recurrence and underwent a
biopsy. The biopsy confirmed the recurrence in 22 patients,
while the other 7 patients were diagnosed with pseudo-response.

Clinicopathological Characteristics
Among the 64 patients included in the study, 22 had a
pathologically confirmed recurrent tumor, and the rest did not
have any recurrence. The patients were randomly divided into
training and validation datasets using a ratio of 7:3. The baseline
characteristics of the subjects are summarized in Table 2. There
was no significant difference in the age (p = 0.251), gender (p =
0.475), frequency of glioma recurrence (p = 0.845), Ki-67 (p =
0.486), and IDH1 (p = 0.885) mutation status and tumors
crossing the midline (p = 0.307) between the training and
validation group. There was a statistically significant difference
(p < 0.05) in age between the RG and NRG in the training set. All
other clinicopathological features did not differ significantly
between the two groups.

Performance of the Radiomics Models
We extracted 396 features from the ROIs of every sequence. After
running the mRMR algorithm, six features were selected from
the T1WI images, five features from the T2WI images, and four
features from the T1CE images. These three sequences were
subsequently combined to identify the most important predictive
features of the multiparametric model. Based on the univariate
logistic analysis and mRMR, nine predictive features were
eventually identified, and their correlation coefficients are
illustrated in Figure 3. The low correlation coefficient between
the nine features indicates little redundancy among every
feature cluster.

The features screened from the T1WI, T2WI, T1CE, and
multiparametric sequences are summarized in Table 3. Four
radiomics models were established for predicting tumor
recurrence based on the screened optimal predictive features
and their contributing predictive weight for each image
sequence, as illustrated in Table 3. In the T1WI sequence, six
predictive features were included in the model, eventually
resulting in an AUC of 0.842 and 0.79 in the training and
validation datasets, respectively. In the T2WI sequence, five
predictive features were used to construct the models, resulting
in an AUC of 0.785 in the training set and 0.790 in the
Frontiers in Oncology | www.frontiersin.org 539
validation set. In the T1CE sequence, four predictive features
were used to develop the predictive model, which resulted in an
AUC of 0.784 in the training set and 0.803 in the validation set.
The multiparametric MRI model included nine predictive
features from the T1WI, T2WI, and T1CE sequence, resulting
in the best overall performance with an AUC of 0.966 and 0.930
for the training and validation datasets, respectively (Table 4 and
Figure 4). The calibration curves of the model also indicated a
good agreement between the predicted probability and actual
tumor recurrence both in the training set and validation set,
indicating that the model was well-calibrated (Figure 5).

The DCA for the individual T1WI, T2WI, T1CE, and these
combined multiparametric models are illustrated in Figure 6.
The net benefit of the model constructed based on the three
sequences was higher than the one based on the individual
TABLE 2 | Baseline demographics and clinical characteristics of patients in the training and validation datasets.

Clinicopathological Variable Training set (n=44) Validation set (n=20)

NRG RG p-value NRG RG p-value

Numbers of cases 30 14 12 8
Age 40.60 ± 12.20 48.36 ± 9.74 0.047 39.77 ± 14.31 51.25 ± 8.12 0.053
Gender, n(%) Female 15 (50) 6 (42.9) 0.659 4 (30) 4 (50) 0.648

Male 15 (50) 8 (57.1) 8 (70) 4 (50)
IDH1-mutation, n(%) Wild-type 6 (20) 5 (35.7) 0.287 5 (41.7) 3 (37.5) 1.00

Mutation-type 24 (80) 9 (64.3) 7 (58.3) 5 (62.5)
Tumor crossing the midline, n(%) Non 25 (83.3) 10 (71.4) 0.610 9 (75) 6 (75) 1.00

Yes 5 (16.7) 4 (28.6) 3 (25) 2 (25)
Ki-67 [median (IQR)] 5.0 (2.0-8.0) 5.5 (3.0-10.0) 0.533 5.0 (2.25-8.0) 7.0 (5.0-14.75) 0.238
September 2021
 | Volume 11 | Article
NRG, Non-recurrent group; RG, recurrent group; IQR, interquartile range.
FIGURE 3 | Correlation coefficient of the combined multiparametric models.
The correlation coefficients of the selected nine features were low, indicating
that the nine feature clusters were not redundant. The magnitude of the
correlation is illustrated in the color bar on the right.
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imaging sequence, to which it was superior across nearly the
entire range of clinically useful threshold risks.
DISCUSSION

Surgery followed by chemoradiation is the main treatment option
for patients diagnosed with LGG. Tumor recurrence post-treatment
is one of the factors leading to poor OS. Surgical resection is one of
the treatment options for patients diagnosed with recurrent LGG.
Still, guidelines issued by several professional bodies state that there
is limited high-level clinical evidence on the effectiveness of a
secondary invasive resection on survival. A study by Patrizz et al.
(25) indicated that histopathologic findings following
chemoradiation do not always correlate with clinical outcomes in
patients diagnosed with recurrence post-surgery. First of all, the
Frontiers in Oncology | www.frontiersin.org 640
pathological specimens may not always reflect the nature of the
whole tumor. Furthermore, several studies found that other clinical
factors that may have an impact on survival including age,
radiotherapy dose, and the extent of tumor resection (16).
Multiparametric MRI has played an important role in
distinguishing between LGG and HGG as well as recurrence from
radiation-induced necrosis. However, to our knowledge, currently,
there is no suitable clinical and image-based predictive model to
assess the risk of recurrence post-surgery in LGG patients. Therefore
in this study, we made use of the imaging data of 64 LGG patients to
develop a model that could be used to predict recurrence in these
patients and hence enable clinicians to identify the patients that are
most likely to benefit from additional surgery.

In our study, there was no difference in the baseline
characteristics between the RG and NRG except for age.
Consistent with the retrospective study by Li et al. (16), age
TABLE 3 | The screened features and their coefficients in the models for the different imaging sequences.

Modality Variables Coefficient. Std.Err. Z P > |z| [0.025 0.975]

T1CE Intercept -0.3825 0.5451 -0.7017 0.4828 -1.4508 0.6858
GLCMEntropy_AllDirection_offset4_SD 0.5540 0.5905 0.9382 0.3481 -0.6034 1.7114
Compactness2 0.6443 0.6101 1.0560 0.2910 -0.5515 1.8401
ShortRunEmphasis_AllDirection_offset7_SD -1.1118 0.9869 -1.1265 0.2600 -3.0461 0.8226
LongRunEmphasis_angle0_offset1 -1.2584 0.7682 -1.6382 0.1014 -2.7640 0.2472

T1WI intercept 0.0196 0.3750 0.0523 0.9583 -0.7154 0.7546
GLCMEntropy_AllDirection_offset7_SD 0.9189 1.1705 0.7850 0.4324 -1.3753 3.2132
LowGreyLevelRunEmphasis_AllDirection_offset1_SD -3.9480 3.5082 -1.1254 0.2604 -10.8240 2.9279
RunLengthNonuniformity_AllDirection_offset4_SD 0.3930 0.4920 0.7987 0.4245 -0.5714 1.3573
ShortRunEmphasis_AllDirection_offset7_SD -0.3207 0.4130 -0.7765 0.4375 -1.1302 0.4888
ShortRunEmphasis_angle90_offset4 1.0657 2.3549 0.4525 0.6509 -3.5498 5.6812
Variance 1.7391 0.7825 2.2225 0.0262 0.2054 3.2728

T2WI intercept -0.1973 0.4298 -0.4591 0.6461 -1.0397 0.6451
ClusterShade_angle45_offset7 0.0706 0.3401 0.2075 0.8356 -0.5960 0.7372
Correlation_AllDirection_offset1_SD -0.4181 0.4751 -0.8800 0.3788 -1.3494 0.5131
Sphericity -0.6831 0.4032 -1.6941 0.0902 -1.4734 0.1072
HighIntensityLargeAreaEmphasis -0.0726 0.4370 -0.1662 0.8680 -0.9291 0.7838
LongRunEmphasis_angle90_offset1 -1.4411 0.9134 -1.5777 0.1146 -3.2313 0.3491

Multiparametric intercept -0.1338 2.3732 -0.0564 0.9550 -4.7852 4.5176
T1CE_ClusterProminence_angle90_offset7 -2.4287 2.7045 -0.8980 0.3692 -7.7295 2.8721
T1CE_InverseDifferenceMoment_AllDirection_offset7_SD 2.3638 3.4494 0.6853 0.4932 -4.3970 9.1245
T2_GLCMEntropy_AllDirection_offset1_SD 2.0994 2.7421 0.7656 0.4439 -3.2750 7.4739
T2_GLCMEntropy_AllDirection_offset4_SD -1.2254 0.0745 1.683 0.0924 -0.8635 1.5517
T2_LongRunHighGrayLevelEmphasis_AllDirection_offset1_SD 0.9696 1.2682 0.7646 0.4445 -1.5161 3.4553
T2_HaralickCorrelation_AllDirection_offset7_SD -10.1476 6.6254 -1.5316 0.1256 -23.1332 2.8380
T1_HaralickCorrelation_AllDirection_offset4_SD -1.8642 1.6618 -1.1218 0.2620 -5.1213 1.3929
T1_ShortRunEmphasis_AllDirection_offset7_SD -1.9502 1.4283 -1.3654 0.1721 -4.7497 0.8493
T1_HighIntensityLargeAreaEmphasis 2.6325 1.6886 1.5590 0.1190 -0.6770 5.9420
September 2
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TABLE 4 | The performance of the models for predicting tumor recurrence in the training and validation datasets.

Modality Features screening
method

Number of features
after screened

Cohort AUC (95% CI) Sensitivity Specificity Accuracy

T1WI mRMR 6 Training 0.842 (0.674–0.905) 0.7 0.7 0.75
Validation 0.79 (0.687–0.902) 0.778 0.778 0.78

T2WI mRMR 5 Training 0.785 (0.697–0.912) 0.727 0.682 0.705
Validation 0.79 (0.679–0.92) 0.8 0.5 0.65

T1CE mRMR 4 Training 0.784 (0.665–0.913) 0.889 0.556 0.722
Validation 0.802 (0.693–0.911) 0.78 0.778 0.8

Multi-modalities ULA + mRMR 9 Training 0.966 (0.949–0.99) 0.905 0.952 0.929
Validation 0.93 (0.905–0.973) 1 0.8 0.90
ULA, univariate logistic analysis.
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was found to be an important risk factor for recurrence in grade
II gliomas following the first surgery. Jansen et al. (26) conducted
a long-term follow-up of 110 patients with LGG (WHO Grade
II) after resection. Their results demonstrated that the initial
extent of the resection influenced the progression-free survival,
time to malignant transformation, and overall survival.
Moreover, Patrizz et al. (25) indicated that the radiotherapy
dose after surgery has a significant impact on survival in LGG
patients. In our study, all patients had an extensive tumor
resection and received the same radiation dose. Therefore, the
effects of these variables on tumor recurrence could not
be assessed.

Studies have shown a high correlation between certain genetic
alterations, recurrence, and prognosis in grade II and III gliomas.
Mutations of the isocitrate dehydrogenase (IDH)1/2 genes are
common events in gliomas (27), especially among grade II
gliomas, where IDH1 mutations are observed in about 70% to
80% of cases (27, 28). Some studies indicated that IDH1
mutation status could improve OS and PFS in grade II and III
glioma (19, 29). Although the IDH1 mutation has been identified
as an independent positive prognostic biomarker for survival in
patients with glioma (26, 30), the association between the IDH
mutant status and the risk of developing recurrence is still not
clear. In the present study, the proportion of IDH mutation cases
was noticeably higher in NRG compared with RG [31/42(73.8%)
vs 14/22(63.6%)]; however, the statistic results showed that there
was not a significant difference between NRG and RG (Table 2),
which indicated that there might not be a link between the IDHI
mutation and tumor recurrence; nevertheless, due to the
limitation of our relatively small sample size, it still needs a big
sample for further verification.

The RANO criteria are still widely used to assess the tumor
response post-treatment and the need for additional treatment
(31, 32). Despite being used extensively, the accuracy rate of the
RANO criteria in distinguishing between tumor recurrence and
Frontiers in Oncology | www.frontiersin.org 741
pseudo-response (32, 33) in our study was only 75.86%. The
multi-parameters radiomics model developed in our study
resulted in higher prediction accuracy in both testing and
validation datasets.

In order to develop our radiomics model, numerous features
were extracted from each of the three MRI sequences. It is
important to acknowledge that the sample size in our study
was relatively small, potentially over-fitting the model (34). In
order to reduce this risk, mRMR was used for feature
dimensionality reduction. This technique has been widely used
in several studies and involves selecting features from the
mutually correlated distance or similarity score hence
facilitating the data screening process (35, 36).

Numerous studies evaluated the use of radiomics models in
predicting recurrence in glioma after radiotherapy. Wang et al.
(37) proposed a radiomics model based on MRI and PET images
to discriminate between tumor recurrence from radiation
necrosis. The model performed well in both training and
validation datasets with an AUC of 0.988 and 0.914,
FIGURE 4 | The ROC curves of the four imaging prediction models whereby
the green curve represents the T1WI model, the blue curve represents the
T2WI, the purple curve represents T1CE, and the red curve represents the
multiparametric MRI model.
A

B

FIGURE 5 | Performance of the four imaging models for predicting the
recurrence of grade II gliomas. The y-axis represents the actual probability,
and the x-axis represents the predicted probability. Figure (A) shows the
model’s calibration of the training set, and Figure (B) shows the validation set.
A calibration curve describes the consistency between the predicted and
actual tumor recurrence rate. The 45° gray heavy lines represent the ideal
prediction performance, the non-45dotted lines represent the prediction
performance of the model, and non-45° solid lines represent the corrected
prediction performance of the model. The closer the solid line is to the ideal
gray line, the better the prediction accuracy of the model.
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respectively. A similar model based on 51 glioma patients
developed by Quan Zhang et al. (19) achieved outstanding
performance with an AUC of 0.962 following validation.
However, to the best of our knowledge, this is the first
multiparametric model developed to predict recurrence in
LGG before surgery. Our model also achieved an excellent
performance, with an AUC of 0.966 and 0.930 in the testing
and validation dataset, respectively.

In the study, a total of nine optimal features were selected for
the construction of the multiparametric radiomics model.
Among these features, there were three gray level run length
matrix (GLRLM) features (T2_LongRunHighGrayLevel
Emphasis_AllDirection_offset1_SD, T1_ShortRunEmphasis_
AllDirection_offset7_SD, and T1_ShortRunEmphasis_
AllDirection_offset7_SD), one gray level size zone matrix
(GLSZM) feature (T1_HighIntensityLargeAreaEmphasis), and
the rest were gray level co-occurrence matrix (GLCM) features
(Table 3). The above results indicate that GLCM features played
the most important role in the model. In some previous
radiomics studies, the GLCM features also played an important
role in predicting the IDH mutation status. Checkout et al.
developed a new approach to predict IDH mutation status that
outperformed competing methods (38), while Park et al. (39)
found that GLCMwas one of the strongest IDH status prediction
factors. Furthermore, in a study by Chaddad et al. (40), GLCM
had a significant role in predicting survival in patients with
glioblastoma. Combined with these previous studies, we can
reasonably infer that GLCM may convey information that could
potentially be used to predict recurrence.

Both calibration and discrimination are valuable aspects of a
prediction model (41). AUC is a common evaluation index of
discrimination, while calibration reflects the level of agreement
between the actual observed outcomes and the model’s predicted
outcomes (42). However, the AUC focuses merely on the
predictive accuracy of the signature. As such, it does not tell us
Frontiers in Oncology | www.frontiersin.org 842
whether the model is worth using at all. DCA is a statistical
method that incorporate consequences and, thus, can inform the
decision of whether to use this model (43). Therefore to further
complement the AUC findings, a DCA was also performed to
evaluate the clinical value of the models (44). In our study, both
the AUC and calibration curve (Figure 5) showed that our model
has a high prediction accuracy. Furthermore, the DCA curves
showed that within a relatively large threshold range, our
proposed radiomics models could be used to improve the
treatment decision-making process. However, the DCA showed
that multiparametric MRI models had a significantly higher
performance when compared with models based on a single
MRI sequence across nearly the entire range of clinically useful
threshold risks (Figure 6).

This study has some limitations that have to be acknowledged.
The majority of the patients with recurrent LGG at our institution
generally prefer to be treated with radiotherapy and chemotherapy
as opposed to surgery. This limited the sample size in our study and
hence limited the number of clinical, pathological, molecular, and
imaging features that could be used to train the model. In order to
improve the robustness and generalizability of the model, further
studies with a larger sample frommultiple institutions with a longer
follow-up are warranted. A larger sample will also allow us to apply
different machine learning strategies to improve the prediction
performance of the model. Further research is also recommended
to illustrate the relationship between specific imaging features and
pathology. Finally, additional studies are also recommended to
evaluate the impact of early recurrence prediction on the
provision of timely interventions and ultimately survival.
CONCLUSION

The application of our radiomics model-based features extracted
from multiparametric MRI could be used to predict the risk of
early recurrence of grade II gliomas after the first surgical
resection. This model could be used to guide the clinicians’
decision on the need for further invasive treatment such as
biopsy and surgery in LGG patients.
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Comparison of Complex k-Space Data
and Magnitude-Only for Training of
Deep Learning–Based Artifact
Suppression for Real-Time Cine MRI
Hassan Haji-Valizadeh†‡, Rui Guo‡, Selcuk Kucukseymen, Yankama Tuyen,
Jennifer Rodriguez, Amanda Paskavitz, Patrick Pierce, Beth Goddu, Long H. Ngo and
Reza Nezafat*

Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston,
MA, United States

Propose: The purpose of this study was to compare the performance of deep learning
networks trained with complex-valued and magnitude images in suppressing the aliasing
artifact for highly accelerated real-time cine MRI.

Methods: Two3DU-netmodels (Complex-Valued-Net andMagnitude-Net)were implemented
to suppress aliasing artifacts in real-time cine images. ECG-segmented cine images (n � 503)
generated from both complex k-space data and magnitude-only DICOM were used to
synthetize radial real-time cine MRI. Complex-Valued-Net and Magnitude-Net were trained
with fully sampled and synthetized radial real-time cine pairs generated fromhighly undersampled
(12-fold) complex k-space and DICOM images, respectively. Real-time cine was prospectively
acquired in 29 patients with 12-fold accelerated free-breathing tiny golden-angle radial sequence
and reconstructed with both Complex-Valued-Net and Magnitude-Net. Cardiac function, left-
ventricular (LV) structure, and subjective image quality [1(non-diagnostic)-5(excellent)] were
calculated from Complex-Valued-Net– and Magnitude-Net–reconstructed real-time cine
datasets and compared to those of ECG-segmented cine (reference).

Results: Free-breathing real-time cine reconstructed by both networks had high correlation
(all R2 > 0.7) and good agreement (all p > 0.05) with standard clinical ECG-segmented cine
with respect to LV function and structural parameters. Real-time cine reconstructed by
Complex-Valued-Net had superior image quality compared to images from Magnitude-Net
in terms of myocardial edge sharpness (Complex-Valued-Net � 3.5 ± 0.5; Magnitude-Net �
2.6 ± 0.5), temporal fidelity (Complex-Valued-Net � 3.1 ± 0.4; Magnitude-Net � 2.1 ± 0.4), and
artifact suppression (Complex-Valued-Net � 3.1 ± 0.5; Magnitude-Net � 2.0 ± 0.0), which
were all inferior to those of ECG-segmented cine (4.1 ± 1.4, 3.9 ± 1.0, and 4.0 ± 1.1).

Conclusion: Compared to Magnitude-Net, Complex-Valued-Net produced improved
subjective image quality for reconstructed real-time cine images and did not show any
difference in quantitative measures of LV function and structure.

Keywords: real-time cine, artifact suppression, deep learning, complex, magnitude
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INTRODUCTION

Cardiovascular MR (CMR) is the clinical gold-standard imaging
modality for evaluation of cardiac function and structure. Breath-
hold ECG-segmented cine imaging using balanced steady-state
free-procession readout (bSSFP) allows for accurate and
reproducible measurement of left-ventricular (LV) and right-
ventricular (RV) function and volume [1–3]. In this technique,
k-space is divided into different segments collected over
consecutive cardiac cycles within a single breath-hold scan.
However, ECG-segmented cine acquisition has limited spatial
and temporal resolution, is sensitive to changes in heart rate, and
requires repeated breath-holds [4–6]. Alternatively, free-
breathing real-time cine has been proposed and pursued using
rapid real-time imaging or multiple averaging with or without
motion correction [7–12]. Using free-breathing real-time cine is
advantageous because it does not require multiple breath-holds
and is insensitive to heart rate variations. However, real-time cine
has lower temporal and spatial resolution than ECG-segmented
cine [10, 11]. Therefore, there is a need to further accelerate data
collection for real-time cine MRI.

Over the past three decades, there has been considerable
progress in the development of accelerated real-time cine
imaging including parallel imaging and compressed sensing
[13–18]. Parallel imaging is almost always used in cine
imaging for both real-time and ECG-segmented acquisition
with robust and highly reliable image quality [13]. However,
the acceleration rate of parallel imaging cannot be more than
three without compromising image quality [19–21]. Compressed
sensing has recently been integrated into applications by vendors
enabling higher acceleration rates than parallel imaging; however,
reconstruction time is long, and acceleration rates beyond four
can result in degradation of image quality [17]. Alternative
techniques that exploit spatial–temporal correlation and
sparsity of cine data have also been explored [22–26];
however, these approaches can suffer from temporal data
filtering, often removing information that is crucial to cardiac
cine evaluation. Therefore, despite considerable interest from the
image reconstruction community, these techniques are rarely
clinically used.

Deep learning–based reconstruction has been recently
proposed to enable rapid reconstruction of accelerated cine
MRI. Hauptmann et al. [27] showed that a 3D U-net was
capable of reconstructing accelerated (acceleration rate � 13)
real-time cine MRI. Schlemper et al. [28] showed that a trained
cascade network was able to rapidly reconstruct accelerated
(acceleration rate � 11) cine MRI. Kustner et al. [29] showed
that (3 + 1)-dimensional complex-valued spatio-temporal
convolutions and multi-coil data processing (CINENet) could
reconstruct accelerated (9 ≤ acceleration rate ≤15) 3D ECG-
segmented cine. El-Rewaidy et al. [30] reconstructed accelerated
radial cine MRI (acceleration rate � 14) using a complex-valued
network (MD-CNN) designed to process MR data in both
k-space and image space. Daming et al. [31] used a complex
U-net with a combined mean-squared error and perceptual loss
(PCNN) to reconstruct real-time cine MRI (acceleration
rate � 15).

While promising, popular deep learning–based
reconstructions methods [27–32] for cine MRI rely on
supervised learning and, as such, require training with large
and diverse patient datasets. However, prospectively acquiring
large patient datasets within a clinical setting can be difficult
due to long scanning times, respiratory/cardiac motion, or
contrast washout. To overcome these limitations, Hauptmann
et al. proposed training a deep learning network using
synthetic data generated from DICOMs (Digital Imaging
and Communications in Medicine) [27]. The use of
DICOM imaging is advantageous because it is readily
available in large numbers at centers with cardiac MR
expertise. While promising, DICOM usage during training
is theoretically non-optimal given that DICOM images are
magnitude images, which lack phase and multi-coil
information; furthermore, vendors often apply different
filtering techniques to improve image quality in the DICOM
creation process. The effect of using DICOM images for
training on the performance of a deep learning model has
not yet been rigorously studied.

In this study, we sought to investigate differences in
performance between two deep learning–based models trained
to suppress artifacts in 12-fold accelerated real-time cine. Paired
complex-valued k-space data and DICOM images of ECG-
segmented cine (n � 503) were used to synthetize highly
undersampled radial real-time cine data. Both artifact
suppression models were made using 3D U-net architectures.
One model was trained with synthetic radial real-time cine
images generated from complex k-space data (Complex-
Valued-Net), while the other model was trained with synthetic
radial real-time cine images generated from DICOM images
(Magnitude-Net). The performance of the two models was
evaluated against prospectively collected free-breathing real-
time cine CMR with radial acquisition.

METHODS

Figure 1 summarizes our study which was designed to compare
the performance of deep learning–based networks trained to
suppress aliasing artifacts in highly accelerated real-time cine
using complex-valued images (derived from k-space data) and
magnitude-only images (derived from DICOM images). We
prepared a dataset containing both complex k-space data and
corresponding magnitude images (i.e., DICOM) scanned by
breath-holding ECG-segmented cine using a Cartesian
trajectory to synthesize radial real-time cine data (Figure 1A)
[27]. Two 3D U-net models [33], Complex-Valued-Net and
Magnitude-Net, were developed to remove aliasing artifacts in
complex-valued and magnitude images of highly accelerated
radial real-time cine, respectively. Complex-Valued-Net and
Magnitude-Net were trained using synthetized radial real-time
cine with aliasing artifacts generated from complex-valued
k-space and magnitude-only images, respectively. “Artifact-
free” images used to produce synthetized radial cine were used
as the ground truth (Figure 1B). Finally, the performance of both
networks was compared using prospectively acquired free-
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breathing highly accelerated (12x) radial real-time cine in 29
patients. Quantitative functional and structural parameters of the
LV and qualitative visual assessments of the LV were compared
against reference values derived from ECG-segmented cine
images (Figure 1C).

Training Datasets
We retrospectively collected short-axis (SAX) cine data from
503 patients (286 males, 55.4 ± 15.8 years) who underwent
clinical scans at BIDMC from October 2018 to May 2020.
Imaging was performed on a 3T MR scanner (MAGNETOM
Vida Siemens Healthineers, Erlangen, Germany) using a
breath-hold ECG-segmented sequence with the following
parameters: bSSFP readout, FOV � 355 × 370 mm2, in-
plane resolution � 1.7 × 1.4 mm2, slice thickness � 8 mm,
TE/TR � 1.41/3.12 ms, flip angle � 42°, GRAPPA acceleration
rate � 2–3, ∼18 cardiac phases at a temporal resolution of
∼55.3 ms, receiver bandwidth � 1,502 Hz/pixel, Cartesian
sampling pattern, and slices per volume � 11 ± 1 (from 9 to
17). Cine’s paired raw k-space data and DICOM images were
used in this study. This study protocol was approved by the
institutional review board, and written consent was waived.
Patient information was handled in compliance with the
Health Insurance Portability and Accountability Act.

Synthesizing Real-Time Cine Training Data
Supplementary Figure S1 shows the data preparation workflow
for producing synthetic accelerated radial real-time cine datasets
from ECG-segmented cine data acquired using the Cartesian
trajectory. The complex-valued multi-coli k-space data with an

acceleration rate of 2–3 were first reconstructed by GRAPPA [21]
offline. Offline GRAPPA reconstruction was implemented with
the code made available by Dr. Chiew (https://users.fmrib.ox.ac.
uk/∼mchiew/Teaching.html).

Then, GRAPPA-reconstructed images and the original
DICOM images exported from the scanner were interpolated
to achieve 2 × 2 mm2 in-plane resolution with a temporal
resolution of 37.7 ms. We chose these interpolated spatial and
temporal resolutions to match the temporal and spatial
resolutions used during prospective real-time cine scanning
(see below). These GRAPPA-reconstructed or DICOM images
were also used as the ground truth in training of two neural
networks, respectively. Subsequently, backward non-uniform fast
Fourier transform (NUFFT) [34] was applied to GRAPPA-
reconstructed and DICOM images to produce complex-valued
radial k-space. Twelve lines per frame, which were distributed
over the whole k-space with a tiny golden-angle rotation (32.049°)
[35, 36], were chosen to simulate highly accelerated radial k-space
of real-time cine.

For both Complex-Valued-Net andMagnitude-Net, simulated
highly accelerated radial k-space data were transformed into
image space using forward NUFFT. Specifically, for complex-
valued multi-coil k-space, the above procedures were performed
on a coil-by-coil basis. Finally, a coil-combined image was
generated using sensitivity-encoding coil combination [37]. An
auto-calibrated sensitivity profile for each coil was produced as
previously described [38]. Note that a GPU-based implementation of
NUFFT (https://cai2r.net/resources/gpunufft-an-open-source-gpu-
library-for-3d-gridding-with-direct-matlab-interface/) was used for
synthetic MRI generation.

FIGURE 1 |Overview of this study. (A) Cine images of 503 patients with both raw k-space data and DICOMs were collected. These images were scanned using a
breath-holding cine sequence with a Cartesian trajectory. (B) Raw k-space data and DICOMs of ECG-segmented cine were used to synthesize highly accelerated radial
real-time cine datasets for training Complex-Valued-Net and Magnitude-Net, respectively. (C) Performance comparison between the two neural networks. Real-time
radial cine and corresponding ECG-segmented cine images were collected from 29 patients. The left-ventricular function, structural parameters, and subjective
image scores were used to compare the performance of both deep learning models with respect to aliasing artifact suppression. For quantitative and qualitative
evaluation, Magnitude-Net reconstruction, Complex-Valued-Net reconstruction, and ECG-segmented cine were compared to one another in pairs.
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Deep Learning Models and Training
Supplementary Figure S2 presents an in-depth description of the
3D residual U-net architecture used for Complex-Valued-Net
and Magnitude-Net. The U-net architecture of both networks
comprised five million kernels and two max-pooling layers/up-
convolutional layers. Each convolutional processing layer
consisted of 3 × 3 × 3 kernels, batch normalization, and
rectified linear activation function (ReLU) [33].

The input/output of each network consisted of paired artifact-
free ground truth images and their corresponding undersampled,
artifact-contaminated images (size: M ×N × T � 144 × 144 × 20).
Specifically, for Complex-Valued-Net, we concatenated real and
imaginary components of complex-valued input/output pairs to
enable real-valued deep learning model processing of complex-
valued data (size: 2M × N × T � 288 × 144 × 20) [39]. For
Magnitude-Net, a ReLU operator was positioned at the final layer
to force the output to be non-negative [27]. L2 loss function was
used to train both networks.

Both networks were implemented using PyTorch (Facebook,
Menlo Park, California) and trained on a DGX-1 workstation
(NVIDIA Santa Clara, California, United States) equipped with
88 Intel Xeon central processing units (2.20 GHz), eight
NVIDIA Tesla V100 graphics processing units (GPUs), and
504 GB RAM. Each GPU has 32 GB memory and 5120 Tensor
cores. Each network was trained with 2,900 iterations using an
ADAM optimizer and with a 15% drop-out rate. Each iteration
randomly chose cine images of 16 LV slices from different
patients (batch size). For synthetized real-time cine with ≥20
frames, the starting frame was randomly selected to achieve 20
consecutive frames. For <20 timeframes, the dynamic series was
circularly padded to 20. Both input and output images were
normalized by the 95th percentile magnitude pixel intensity
within the central region (i.e., 48 × 48) across 20 frames. The
initial learning rate was 0.001, which decreased by 5% after every
100 iterations. The cost function and optimizer were selected to
match parameters proposed by Hauptmann et al. [27] for neural
network training using DICOM-derived simulated real-
time cine.

Real-Time Cine Performance Evaluation
Twenty-nine patients (16males, 58 ± 16 years) were prospectively
recruited. Free-breathing radial real-time cine research sequences
in addition to clinically indicated CMR sequences were collected
from each patient. Written informed consent was obtained from
each patient prior to CMR imaging. Clinical indications and
characteristics of these patients are listed in Supplementary
Table S1. Breath-hold ECG-segmented cine was performed
using the same imaging parameters as those detailed in
Training Datasets. Free-breathing radial real-time cine was
collected with the following parameters: bSSFP readout,
FOV � 288 × 288 mm2, resolution � 2 × 2 mm2, slice
thickness � 8 mm, TE/TR � 1.3/3.2 ms, flip angle � 43°,
receiver bandwidth � 1,085 Hz/pixel, radial lines per phase �
12, and temporal resolution � 37.7 ms. The rotating angle of
the radial line was 32.049° [36]. Both sequences imaged a stack
of 14 SAX slices covering the entire LV. Breath-holding
ECG-segmented cine was reconstructed by the scanner. For

free-breathing real-time cine, NUFFT first transformed radial
k-space data into complex-valued and magnitude images.
Subsequently, two neural networks were used to remove
aliasing artifacts.

Data Analysis
We used both quantitative imaging parameters and qualitative
assessments of image quality to compare the performance of
both deep learning reconstructions. ECG-segmented cine
images collected using the standard clinical protocol were
used as a reference. For each patient in our independent
validation dataset, one reader (HH), trained by a clinical
reader (SK) with 5 years of experience, calculated the
following cardiac function and structural parameters: LV
ejection fraction (LVEF), LV end-diastolic volume
(LVEDV), LV end-systolic volume (LVESV), LV stroke
volume (LVSV), and LV mass (LVMass). All quantifications
were performed using CVI42 (v5.9.3, Cardiovascular Imaging,
Calgary, Canada). Linear regression and Bland–Altman
analysis were performed to evaluate correlation and
agreement between real-time cine and ECG-segmented cine.
A paired Student’s t-test was conducted to compare the
difference between two approaches in measures of LV
function and structural parameters. p < 0.05 was considered
statistically significant. Three pairwise group comparisons
were assessed using the t-test with Bonferroni correction,
with p less than 0.0167 considered significant.

Subjective image quality was graded by one reader (SK) with
5 years of CMR experience. Cine images of all patients
obtained from the three methods were randomized and de-
identified. For each method, whole LV cine images from each
subject were scored with respect to conspicuity of endocardial
borders (1: non-diagnostic, 2: poor, 3: adequate, 4: good, 5:
excellent), temporal fidelity of wall motion (1: non-diagnostic,
2: poor, 3: adequate, 4: good, 5: excellent), and artifact level on
the myocardium (1: non-diagnostic, 2: severe, 3: moderate, 4:
mild, 5: minimal). Supplementary Figure S3 shows
representative graded images. The z-test was used to
compare image quality between every two methods, and a
p-value < 0.05 was considered significant. SAS version 9.4 (SAS
Institute, Cary, NC, United States) was utilized for all above
analyses. Note that we elected not to quantitatively and
qualitatively analyze real-time cine reconstructed with
gridding because gridding alone did not produce diagnostic
image quality.

RESULTS

Figures 2A,B show images obtained from the basal, mid, and
apical cavities of one subject at end-systole and -diastole by ECG-
segmented cine and free-breathing real-time cine via gridding,
Complex-Valued-Net, and Magnitude-Net reconstruction.
Supplementary Videos S1–S4 show the corresponding movies
for dynamic display. We also show representative end-systolic
images for three patients in Supplementary Figure S4. In both
Figure 2 and Supplementary Figure S4, free-breathing real-time
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cine reconstructed by Magnitude-Net had more artifacts in the
myocardial wall and greater blurring than ECG-segmented cine
and real-time cine by Complex-Valued-Net.

Supplementary Table S2 summarizes LV structure and
cardiac function values from ECG-segmented cine and free-
breathing real-time cine in 29 patients. The mean difference and
95% CI between every two methods are listed in Supplementary
Table S3. According to Bland–Altman analysis (Figures 3A–C),
mean differences between ECG-segmented cine and real-time
cine by Complex-Valued-Net reconstruction were −0.9 ± 6.5%
(p � 0.48) for LVEF, 0.9 ± 13.6 ml (p � 0.73) for LVEDV, and
2.2 ± 12.5 ml (p � 0.34) for LVESV. Correspondingly, mean
differences between real-time cine by Magnitude-Net and ECG-
segmented cine images were −2.3 ± 5.1% (p � 0.02), −0.5 ±
15.5 ml (p � 0.85), and 3.7 ± 9.8 ml (p � 0.05) for LVEF,
LVEDV, and LVESV, respectively (Figures 3D–F).
Supplementary Figure S5 compares real-time cine and ECG-
segmented cine according to LVSV and LVMass using
Bland–Altman analysis. For real-time cine images
reconstructed by Complex-Valued-Net, the mean difference
was −1.4 ± 16.3 ml (p � 0.65) for LVSV and 2.2 ± 15.2 g
(p � 0.43) for LVMass. For Magnitude-Net real-time cine,
the mean difference was −4.2 ± 15.4 ml (p � 0.15) and 1.6 ±
18.0 g (p � 0.64) for LVSV and LVMass, respectively. Free-
breathing real-time cine reconstructed by both Complex-
Valued-Net and Magnitude-Net had high correlation with
ECG-gated segmented cine on quantification of LV function
and structure (all R2 ≥ 0.74 and all slope ≥ 0.88) (Figures 3G–I
and Supplementary Figures S5C, F). The difference between
real-time cine images reconstructed by Complex-Valued-Net
and Magnitude-Net in quantification of LV function and
structure was 1.4 ± 5.1% (p � 0.15) for LVEF, 1.4 ± 8.1 ml
(p � 0.36) for LVEDV, −1.4 ± 8.7 ml (p � 0.39) for LVESV, 2.8 ±
12.1 ml (p � 0.22) for LVSV, and 0.7 ± 10.8 g (p � 0.74) for
LVMass.

Figure 4 shows the mean/standard deviation and distribution
of image quality scores across all patients. Supplementary

Table S4 lists the percentages as two grades (1–3 and 4–5) of
image quality scores across all patients by each method. The
corresponding differences in the percentage of two grade groups
(1–3 and 4–5) among three methods are listed in Table 1. The
table shows that 79% of ECG-segment cine images had good or
excellent scores (>3) for myocardial edge (4.1 ± 1.4) and temporal
fidelity (3.9 ± 1.0). In contrast, 50% of real-time cine images
reconstructed by both Complex-Valued-Net and Magnitude-Net
scored less than or equal to 3 (myocardial edge: 3.5 ± 0.5 vs 2.6 ±
0.5; temporal fidelity: 3.1 ± 0.4 vs 2.1 ± 0.4), suggesting poor
image quality. ECG-segment cine had less artifact (4.0 ± 1.1) than
real-time cine (Complex-Valued-Net: 3.1 ± 0.5; Magnitude-Net:
2.0 ± 0.0). All z-tests were found to be significant (p < 0.05).

DISCUSSION

This study compares the performance of deep learning
approaches for reconstruction of highly accelerated real-time
cine using synthetized training data generated from complex-
valued multi-coil k-space data (Complex-Valued-Net) and real-
valued DICOMs (Magnitude-Net). Our subjective assessment of
image quality demonstrates that Complex-Valued-Net yields
better image quality than Magnitude-Net. However, the
clinically relevant parameters of LV function and structure
extracted from real-time cine reconstructed by both Complex-
Valued-Net and Magnitude-Net were highly correlated and had
excellent agreement with those of clinical breath-holding ECG-
segmented cine.

There is a growing body of literature in deep learning, beyond
CMR, in which magnitude images are used for training a variety
of deep learning techniques [27, 40–42]. However, there is also
concern regarding the impact that discarded phase information
may have on the clinical interpretation of reconstructed images
[27, 29, 43–45]. Our study demonstrates that availability of
complex k-space data improves overall image quality; however,
these improvements in image quality do not necessary impact

FIGURE 2 | Images at end-systolic (A) and end-diastolic (B) phases for three short-axis slices (base, mid, apex) in one patient. Magnitude-Net exhibits more image
artifact (red arrow) and greater blurring (yellow arrow) at the myocardial wall than Complex-Valued-Net. Gridding reconstruction produces non-diagnostic image quality.
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clinical interpretation and quantification. This observation is not
unique, and it is often debated whether “prettier” images
necessarily lead to better diagnostic information. While the
resulting data do not show clinically meaningful differences in
LV function and structural parameters, an improvement in
overall image quality may still be clinically relevant. For
example, we often rely on wall motion abnormality to assess
the presence of ischemia, which can be visually assessed by
reviewing cine images [46]. One can envision that improved
image quality may still be clinically relevant and provide
additional confidence in image assessments. Further studies in
patients with different imaging indications are warranted.

In cine imaging, voxel-values are not meaningful;
however, in quantitative CMR imaging (e.g., T1/T2

mapping, quantitative perfusion, or phase-contrast), voxel-
values represent a tissue-specific meaning [47]. While
qualitative imaging such as cine imaging is more forgiving
in terms of artifact and inaccuracy during image
reconstruction, quantitative CMR imaging is very sensitive
to image artifacts. In addition, complex k-space data carry
crucial information in quantitative imaging and cannot
simply be discarded. Therefore, complex k-space data will
still be needed for quantitative CMR image reconstruction
with deep learning, despite our findings showing that

FIGURE 3 | Comparison between ECG-segmented cine and real-time cine for quantifying left-ventricular ejection fraction (LVEF), left-ventricular end-diastolic
volume (LVEDV), and left-ventricular end-systolic volume (LVESV) using Bland–Altman analysis (A–F) and linear regression (G–I). In Bland–Altman, dotted lines indicate
upper and lower 95% limits of agreement and the red line represents the mean difference. The difference was calculated as real-time cine (Complex-Valued-Net and
Magnitude-Net) minus ECG-segmented cine. In linear regression, X1 and X2 indicate real-time cine reconstructed by Complex-Valued-Net and Magnitude-Net,
respectively. The dashed line shows a reference line with a slope of 1. All three quantifications from real-time cine using both Complex-Valued-Net and Magnitude-Net
had good agreement and high correlation with quantifications by ECG-segmented cine (all p > 0.0167).

Frontiers in Physics | www.frontiersin.org September 2021 | Volume 9 | Article 6841846

Haji-Valizadeh et al. Complex-Valued vs. Magnitude-Only Deep-Learning Reconstruction

50

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


magnitude-only images may be sufficient in real-time cine
imaging. Further studies are needed to rigorously study other
imaging sequences.

For this study, our goal was not necessarily to study or
develop a new architecture but was instead motivated by
Hauptmann et al. and their important contribution of using
readily available DICOMs for network training [27]. Raw
complex k-space data will still be needed for deep learning
models that integrate complex k-space data for image
reconstruction. However, limited availability of complex
k-space data will remain a major challenge for training
such networks on different applications, diseases, scanner
vendors, field strengths, and number of coils. On the

contrary, if one can train the model using only DICOM
images, there are vast amounts of available data for
different organs, sequences, diseases, and vendors that
could greatly impact the adoption of deep learning artifact
reconstruction techniques.

This study has several limitations. Our training data were not
collected using prospectively acquired datasets using radial
k-space filling, but instead training data were synthesized in a
similar manner as proposed by Hauptmann et al. [27]. We used
ECG-gated cine images with Cartesian sampling to extract
reference values for different LV functional and structural
parameters for comparison with real-time radial imaging
[27]. There may be differences between the two approaches

FIGURE 4 |Distribution and average image quality scores across all cine images of 29 patients by threemethods: ECG-segmented cine, Complex-Valued-Net real-
time cine, and Magnitude-Net real-time cine. The P-values of z-tests between every two methods regarding each criterion are labeled. Real-time cine by Complex-
Valued-Net reconstruction yielded superior subjective scores for all three criteria compared to those by Magnitude-Net. ECG-segmented breath-hold cine had the
highest score across all three criteria.

TABLE 1 | Differences in percentage of two grades (1–3 and 4–5) of image quality scores between three methods.

Complex-Valued-Net vs ECG-
segmented cine

Magnitude-Net vs ECG-segmented
cine

Complex-Valued-Net vs
Magnitude-Net

Rate difference
(95% CI)

P Rate difference
(95% CI)

P Rate difference
(95% CI)

P

Myocardial edge −0.31 (−0.54, −0.08) 0.01 −0.79 (−0.94, −0.65) <0.01 0.48 (0.30, 0.66) <0.01
Temporal fidelity −0.69 (−0.87, −0.51) <0.01 −0.79 (−0.94, −0.65) <0.01 0.10 (−0.01, 0.21) 0.08
Artifact −0.62 (−0.82, −0.42) <0.01 −0.76 (−0.91, −0.60) <0.01 0.14 (0.01, 0.26) 0.04

*For myocardial edge and temporal fidelity, 1: non-diagnostic; 2: poor; 3: adequate; 4: good; 5: excellent. For artifact, 1: non-diagnostic; 2: severe; 3: moderate; 4: mild; 5: minimal.
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due to the k-space sampling scheme. Additionally, ECG-
segmented data were collected with breath-holding, while real-
time data were collected during free-breathing. The evaluation of
deep learning reconstruction methodologies was limited to image
quality assessment and quantification of left-ventricular functional
and structural parameters (i.e., EF, LVEDV, LVESV, LVSV, and
LVMass). We chose these metrics because of their clinical
importance. That said, further studies are warranted to evaluate
the capacity of the presented methods (Magnitude-Net and
Complex-Valued-Net) for diagnosis of cardiovascular diseases.
Real-time cine reconstructed with gridding was not quantitatively
or qualitatively analyzed because gridding alone produced non-
diagnostic image quality. Subjective image assessment was
performed by a single reader, and there may be differences in
image perception by different reviewers. Both Magnitude-Net and
Complex-Valued-Net suffer from reduced temporal fidelity
compared to ECG-gated segmented cine. Such a loss of
temporal fidelity can be especially problematic during systolic
phases and may be a source of error during qualitative and
quantitative evaluation. All patients in our testing cohort were
in sinus rhythm. Only a single neural network architecture (i.e., 3D
U-net) was used to compare the performance of magnitude vs
complex-valued synthetic training data. We chose this network
architecture because, to the best of our knowledge, it is the only
architecture shown to be capable of reconstructing radial real-time
cine MRI acquired with bSSFP readout [27, 31]. Other state-of-
the-art approaches such as cascade networks [28, 29] have yet to be
investigated for radial real-time cine reconstruction. Future
collaborations are warranted to first extend other state-of-the-
art methods to radial real-time cine reconstruction and then
compare the performance of different synthetic training data
(i.e., magnitude vs. complex-valued) using these methods.
ECG-segmented cine images used for training were gathered
from one cardiac MR center. As such, trained networks could
contain bias which can prevent generalization. Although we used a
relatively large number of patients for training, our testing cohort
with real-time radial imagingwas relatively small, and images were
acquired at a single clinical center. Future studies with more
patients and imaging from different centers are required to
evaluate proposed deep learning methodologies for real-time
cine reconstruction.

CONCLUSION

Despite improved subjective image quality in real-time cine
images reconstructed using a deep learning model trained with
complex k-space data when compared to magnitude-only data,

there were no differences with respect to quantitative measures of
LV function and structural parameters.
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Background: Apparent diffusion coefficients (ADCs) obtained with diffusion-weighted
imaging (DWI) are highly valuable for the detection and staging of prostate cancer and for
assessing the response to treatment. However, DWI suffers from significant anatomic
distortions and susceptibility artifacts, resulting in reduced accuracy and reproducibility of
the ADC calculations. The current methods for improving the DWI quality are heavily
dependent on software, hardware, and additional scan time. Therefore, their clinical
application is limited. An accelerated ADC generation method that maintains calculation
accuracy and repeatability without heavy dependence on magnetic resonance imaging
scanners is of great clinical value.

Objectives: We aimed to establish and evaluate a supervised learning framework for
synthesizing ADC images using generative adversarial networks.

Methods: This prospective study included 200 patients with suspected prostate cancer
(training set: 150 patients; test set #1: 50 patients) and 10 healthy volunteers (test set #2)
who underwent both full field-of-view (FOV) diffusion-weighted imaging (f-DWI) and
zoomed-FOV DWI (z-DWI) with b-values of 50, 1,000, and 1,500 s/mm2. ADC values
based on f-DWI and z-DWI (f-ADC and z-ADC) were calculated. Herein we propose an
ADC synthesis method based on generative adversarial networks that uses f-DWI with a
single b-value to generate synthesized ADC (s-ADC) values using z-ADC as a reference.
The image quality of the s-ADC sets was evaluated using the peak signal-to-noise ratio
(PSNR), root mean squared error (RMSE), structural similarity (SSIM), and feature similarity
(FSIM). The distortions of each ADC set were evaluated using the T2-weighted image
reference. The calculation reproducibility of the different ADC sets was compared using
the intraclass correlation coefficient. The tumor detection and classification abilities of
each ADC set were evaluated using a receiver operating characteristic curve analysis and
a Spearman correlation coefficient.
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Results: The s-ADCb1000 had a significantly lower RMSE score and higher PSNR, SSIM,
and FSIM scores than the s-ADCb50 and s-ADCb1500 (all P < 0.001). Both z-ADC and s-
ADCb1000 had less distortion and better quantitative ADC value reproducibility for all the
evaluated tissues, and they demonstrated better tumor detection and classification
performance than f-ADC.

Conclusion: The deep learning algorithm might be a feasible method for generating ADC
maps, as an alternative to z-ADC maps, without depending on hardware systems and
additional scan time requirements.
Keywords: apparent diffusion coefficient, diffusion magnetic resonance imaging, deep learning, prostatic
neoplasms, supervised machine learning
INTRODUCTION

Diffusion-weighted imaging (DWI) currently constitutes an
integral part of multiparametric magnetic resonance imaging
(MRI) examinations of the prostate. Apparent diffusion
coefficients (ADCs) obtained with DWI are highly valuable for
detecting and staging prostate cancer, evaluating cancer
aggressiveness (1, 2), guiding targeted biopsies, and assessing
the response to treatment (3–10). Clinically, the accuracy of the
ADC measurement depends on the quality of the DWI image.

Single-shot echo-planar imaging (SS-EPI)-based sequences are
preferred for DWI because of its ability to acquire the images rapidly
and the robustness of the technique against motion artifacts.
However, because of its high sensitivity to chemical shifts and
magnetic susceptibilities (11), conventional SS-EPI DWI suffers
from significant anatomic distortions (12) and susceptibility
artifacts, resulting in reduced ADC calculation accuracy and
reproducibility (12–14). Another limitation is the low signal-to-
noise ratios observed during DWI, which result in noise-induced
signal intensity biases (15, 16) and inaccurate ADC maps. These
drawbacks may lead to an error in judgment regarding the
condition of a patient and a potential misdiagnosis of malignant
lesions or over-treatment of benign lesions. Zoomed field-of-view
(FOV) DWI (z-DWI) is an appealing attempt to address these
limitations. This method reduces the scanning time as well as
artifacts, distortions, and blurring of images, and it also has
improved spatial resolution (17, 18). Additionally, z-DWI can
effectively improve the ADC map accuracy (17, 18); however, the
technique depends on radio frequency design and software
platforms (17–19), which can make it unaffordable for many
small- and medium-sized hospitals and their patients. Moreover,
a reduced FOV may prevent the visualization of lymph nodes (3).
Therefore, the clinical application of z-DWI is limited. A method
that can consistently generate high-quality ADC images with
reduced equipment costs will be of more benefit to patients in
clinical practice.

Recently, the advent of generative adversarial networks (GANs)
(20) has shown promise for optimizing medical image quality
without relying on software and equipment conditions (21). As a
generative model, the objective of a GAN is to learn the underlying
training data distributions to generate realistic images that are
indistinguishable from the input datasets (21). With their ability
256
to mimic data distributions, GANs have been used to translate low-
quality images into high-quality counterparts. Previous studies have
successfully used GANs to improve computed tomography (CT) or
MRI quality in terms of de-noising (22), increased resolution (23),
artifact reduction (24), and motion correction (25). Inspired by
these image optimization solutions, we hypothesized that deep
learning algorithms based on GANs might be promising for
generating ADC maps with good image quality and improved
ADC calculation accuracy. The purpose of this study was to
establish and evaluate a supervised learning framework based on
a GAN to synthesize realistic zoomed FOV ADC images using
conventional full FOV SS-EPI DWI images with a single b-value.
MATERIALS AND METHODS

Patients and Healthy Volunteers
This prospective study was approved by the local ethics committee,
and informed consent was obtained from each participant. All the
procedures involving human participants were performed in
accordance with the 1964 Helsinki Declaration and its later
amendments. A total of 200 consecutive patients underwent
preoperative MRI examinations and subsequent MRI fusion
ultrasound-guided biopsies for suspected prostate cancer (PCa)
between December 2018 and May 2020. The inclusion criteria
were as follows: patients with (1) at least one prostate lesion visible
on DWI and ADC maps and (2) complete clinical information and
pathologic examination information, including biopsy reports. Ten
healthy volunteers were also recruited for the study. The study
included four steps: (1) MRI examinations, (2) model training, (3)
image quality assessments, and (4) ADC assessments (Figure 1).

MRI Examinations and Datasets
All the patients and volunteers underwent multiparametric MRI
examinations of the prostate using a 3T MRI scanner
(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany)
equipped with a phased-array 18-channel body coil and an
integrated 32-channel spine coil. Both a transversal single-shot
full FOV-EPI DWI (f-DWI) and a prototypic non-parallel
transmission zoomed EPI DWI (z-DWI) with b-values of 50,
1,000, and 1,500 s/mm2 were performed with the ADC
reconstruction maps (f-ADC and z-ADC) using a standard
September 2021 | Volume 11 | Article 697721
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mono-exponential with all the acquired b-values (14). Axial T2-
weighted images were obtained from all the participants, and the
total examination time was approximately 7 min and 40 s. The
detailed scan parameters are shown in Table 1.

Patient images were randomly divided into two groups
(training set: 150 patients, test set #1: 50 patients). The training
set was used to build the framework and train different models to
synthesize the ADC maps (s-ADCs). Test set #1 was used to test
the reproducibility of the s-ADC prostate lesion measurements,
along with tumor detection. The images of the healthy volunteers
were regarded as test set #2, which was used to test the
reproducibility and consistency of the normal prostate tissue s-
ADC calculations, including the peripheral zone (PZ) and the
transitional zone (TZ).

Data Pre-Processing
Before the model training could occur, image selection, cropping,
and registration were performed on f-DWI with b-values of 50,
1,000, and 1,500 s/mm2 and the z-ADC images. The first and last
Frontiers in Oncology | www.frontiersin.org 357
slices that did not cover the prostate were removed manually.
The images with severe distortion and artifacts were also
removed. Ultimately, there were between five and 20 DWI
images selected for each person. Finally, there were 2,250
images from each set for the 150 patients in the training set,
750 images from each set for the 50 patients in test set #1, and
145 images from each set for the 10 healthy volunteers in test
set #2.

Due to hardware limitations of the graphics cards and the
CPU memory, we used only axial slices of the cropped data to
train the two-dimensional generation models. The f-DWI data
had an original voxel size of 2.13 × 2.13 × 3.3 mm3 and a matrix
size of 178 ×132, whereas the z-ADC data had a voxel size of
0.95 × 0.95 × 3.3 mm3 and a matrix size of 112 × 200. The f-DWI
data were first resampled to a voxel size of 0.95 × 0.95 × 3.3 mm3

with a matrix size of 360 × 267, and both modalities were
cropped at the center to extract the relevant prostate region.
The f-DWI data were then aligned to the z-ADC data using
the affine transformation implemented by the Advanced
TABLE 1 | The magnetic resonance imaging sequence parameters.

Parameter T2-weighted imaging F-DWI Z-DWI

Field-of-view, FOV (mm2) 200 × 200 380 × 280 190 × 106
Imaging matrix 320 × 320 132 × 178 112 × 200
Thickness (mm) 3.5 3 3
Distance fact 0 10% 10%
B-value (s/mm2) n.a. 50, 1,000, 1500 50, 1,000, 1500
Echo time (ms) 101 73 76
Time to repeat (ms) 6,000 4,200 3,800
Bandwidth (Hz/pixel) 200 1,872 1,612
Scan time (min) 2:08 3:05 2:27
September 2021 | Volume 11
f-ADC, mean apparent diffusion coefficient (ADC) map derived from full FOV diffusion-weighted imaging with all available b-values (b = 50, 1,000, and 1,500 mm2/s); z-ADC, ADC map
derived from zoomed FOV diffusion-weighted imaging with all available b-values (b = 50, 1,000, and 1,500 mm2/s), n.a., no available.
FIGURE 1 | Overall study flow diagram. Step 1: All the patients and healthy volunteers underwent multiparametric magnetic resonance imaging examinations of the
prostate, including full field-of-view (FOV) diffusion-weighted imaging (f-DWI) and zoomed FOV diffusion-weighted imaging with b-values of 50, 1,000, and 1,500 s/mm2.
Step 2: The models that used full f-DWI with different b-values (f-DWIb50, f-DWIb1000, and f-DWIb1500) to synthesize the apparent diffusion coefficient (s-ADC) maps (s-
ADCb50, s-ADCb1000, and s-ADCb1500) were trained. Step 3: The image quality of s-ADCb50, s-ADCb1000, and s-ADCb1500 were evaluated using the peak signal-to-
noise ratio, root mean square error, structural similarity, and feature similarity. Step 4: An ADC assessment was performed to determine reproducibility, tumor
detection, and classification.
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Normalization Tools (https://github.com/ANTsX/ANTs). To
facilitate the model training, all the two-dimensional axial
slices were scaled to a unified resolution of 224 × 224 pixels.

To select a suitable b-value for ADC synthesis, we first used
2,250 paired f-DWI images with b-values of 50 s/mm2 and the
ground truth z-ADC maps from the training set as inputs and
references, respectively, to train our framework-based model M50 to
synthesize ADC maps (s-ADCb50). Similarly, the M1000 and M1500

models based on the f-DWI images with b-values of 1,000 and 1,500
s/mm2 were trained to synthesize ADC maps (s-ADCb1000 and
s-ADCb1500).

Model Training
We have proposed a GAN-based framework to generate realistic
z-ADC maps from f-DWI maps (Figure 2).

The generator G translates the input image (f-DWI) X into the
synthesized ADC (s-ADC) S with a quality similar to the ground
truth z-ADC, which is used as reference Y. The discriminator D
takes either the S or the Y as input and determines whether the
input is a real z-ADC map. Specifically, we used a deep residual
network structure with skip connections to construct the generator
G and a full convolution network to construct the discriminator D.
The adversarial loss of the discriminator D is formulated as follows:

LD = EY∼PY ½(D(Y) − 1)2� + ES∼PS ½(D(S))2�
The adversarial loss of the generator G is formulated as follows:

Ladv
G = ES∼PS ½(D(S) − 1)2�

Considering that the standard GAN might not adequately
preserve the tumors/lesions during image-to-image translation
(26), we introduced a multi-level verification (MLV) mechanism,
including a pre-trained recognition model C. This mechanism
promotes the generator G to better retain the features, which
helps in the diagnosis. Using C, the proposed MLV mechanism
Frontiers in Oncology | www.frontiersin.org 458
provides more details about the tumor/lesion features when they
are extracted from the input images. G represents the tumor/
lesion texture, making it better and more robust against changes
in appearance and geometric transformations (27).

We first obtained a recognition model C, which was pre-
trained on a VGG-19-based network using the processed images
from the patients and healthy volunteers with a benign or
malignant label (28). Subsequently, the multiple layers of
model C extracted the multi-level features from the fake
synthetic ADC map S and the ground truth ADC map. The
sum of the mean square errors of the features in each level layer
was used as the multi-level feature loss to supervise the
generator G.

Inspired by the current work (29) and considering the use of
multi-level features, we selected the features in the 0, 1st, 3rd, and
5th level layers. The loss of the multi-level verification
mechanism is formulated as follows:

Lmlv
G = Si=0,1,3,5qi · jjCi(S) − Ci(Y) jj22

where qi ∈ (0, 1) denotes the weight parameter for the loss (Li
mlf )

at different levels, and it is optimized in each epoch to cause a
faster decrease in the loss of the larger items. The qi in the j - th
epoch can be computed as follows:

q j
i = Sn=0,1,3,5

jjCj−1
i (S) − Cj−1

i (Y) jj22
jjCj−1

n (S) − Cj−1
n (Y) jj22

where Cj−1
i ( · ) denotes the feature of the i - th layer in the (j-1)-th

epoch, and Cj−1
n ( · ) indicates the feature of the n - th layer in the

(j-1)-th epoch. We initialized qi to 1/4. The objective function of
generator G is formulated as follows:

LG = Ladv
G + l1Lmlv

G

with g1 set to 10-1.
FIGURE 2 | Illustration of our framework. The proposed framework consists of a generator (G), which was constructed using a deep convolution network with skip
connections, and an image discriminator (D) constructed using a full convolution network. The G transforms the f-DWI into a synthesized apparent diffusion
coefficient (s-ADC) using zoomed field-of-view diffusion-weighted imaging (z-ADC) as a reference. The D takes either s-ADC or z-ADC as the input and determines
whether the input is a real z-ADC. In addition, to promote G in an effort to retain better features for diagnosis, we introduced a multi-level verification mechanism,
including a pre-trained recognition model (C), to extract the multi-level features from the s-ADC and the z-ADC.
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Experimental Settings
The generator consists of three convolution layers, followed by
five residual blocks and three deconvolution layers. Each
convolution or deconvolution layer is followed by an instance-
normalization layer and a ReLu activation layer. The
discriminator consists of five convolution layers. The learning
rate was set to 0.001 for both the generator and the discriminator.
The batch size was set to 5, and the epoch was set to 50. The
details of the generator and discriminator can be found at https://
github.com/huxiaolie/ADC_generation. All the algorithms were
implemented using Python 3.6 (https://www.python.org/
downloads/release/python-362/) and Pytorch 1.6.0 (https://
pytorch.org/get-started/previous-versions/) on an Ubuntu
16.04 system with an NVIDIA TITAN XP GPU.
Image Quality Assessment
The s-ADC sets were synthesized using each model with inputs
from the f -DWI images with b-values of 50, 1,000, and 1,500 s/
mm2 for test set #1 (50 patients) and test set #2 (10 healthy
volunteers), and they were compared using peak signal-to-noise
ratios (PSNRs), root mean square errors (RMSEs), structural
similarities (SSIMs), and feature similarities (FSIMs) (30).

A radiologist with 6 years of experience with prostate MRIs
measured the anterior–posterior (AP) and left–right (LR)
diameters of each prostate on the ADC set on the slice on
which the prostate showed the greatest cross-sectional area. The
differences in the measured AP and LR diameters of the prostate
relative to the T2-weighted image (T2WI) were computed for f-
ADC, z-ADC, and s-ADC, with the best performance from the
above-mentioned quantitative evaluation.
ADC Measurement Assessment
For the patient study, two radiologists with 5 and 10 years of
experience with prostate MRIs and who were unaware of the
clinical, surgical, and histologic findings independently drew a
circular region of interest (ROI) with an area of approximately
0.5–0.8 cm2 in the center of the lesion, excluding its edges. For
the healthy volunteer study, the readers drew circular ROIs with
an area of approximately 0.5 cm2 in the peripheral and
transitional zones on the ADC maps using axial T2-weighted
images as the anatomical reference. The mean ADC values for
each ROI were recorded.

The ADC sets of all the patients and healthy volunteers were
measured twice using Image J (NIH Image, Bethesda, MD) in a
different order, with an interval of 2 weeks. The first
measurement given by the two readers showed the consistency
of the ADC measurements for each ADC set. The second
measurement showed the repeatability of the ADC values for
each ADC set.
Tumor Detection Assessment
The s-ADC set with the best image quality and ADC
measurement assessment among the three s-ADC sets was
Frontiers in Oncology | www.frontiersin.org 559
selected for tumor detection assessments. The selected s-ADC
was compared with the f-ADC and z-ADC in terms of the ability
to differentiate benign from malignant lesions. The correlation
between the ADC values in the different ADC sets and tumor
grades was also evaluated.
Statistical Analyses
Analyses of the baseline characteristics between the training
group and the test group were conducted. An independent t-
test was used to assess normally distributed continuous variables.
The Mann–Whitney U-test was used to assess non-normally
distributed continuous variables.

To assess differences in the image quality metrics (PSNR,
RMSE, SSIM, and FSIM) between any two s-ADC sets, a paired
Student’s t-test was applied. The intraclass correlation coefficient
(ICC) was used to assess the inter-and intra-reader repeatability
of the ADC measurements for each tissue (malignant lesion,
benign lesion, peripheral zone, and transitional zone) in each
ADC set (f-ADC, z-ADC, and s-ADC). The ICC was also used to
evaluate the inter-method reliability of the ADC values for each
tissue between the synthesized image (s-ADC) and the reference
image (z-ADC). A receiver operating characteristic (ROC) curve
analysis was performed to assess the ability to discriminate
between benign and malignant prostate lesions based on the
ADC values. The differences in the area under the curve (AUC)
values were tested using DeLong tests. The statistical analyses
were performed using MedCalc software. Two-tailed tests were
used to calculate all the P-values. Statistical significance was set at
P <0.05.
RESULTS

Demographic Characteristics
The patient characteristics are summarized in Table 2. There
were no significant differences in the mean ages between the
patients with and without PCa (P = 0.557). The mean prostate-
specific antigen (PSA) level was significantly higher in patients
with PCa compared to those without PCa (P < 0.001).

There were no significant differences in mean ages and mean
PSA between the training set and test set #1 (mean ages: 68 ± 10
vs. 68 ± 12 years, P = 0.974; PSA: 29.872 ± 69.461 vs. 39.296 ±
92.604, P = 0.154). The mean age of test set #2 (healthy
volunteers, 24 ± 3 years) is significantly lower than that of the
training set and test set #1 (P < 0.001).
Image Quality Assessment
Visual comparisons of the s-ADC values generated with different
b-value inputs are shown in Figure 3. We observed that the s-
ADCb50 displayed blurred images of the prostate, bladder,
rectum, pelvic floor muscles, and pubic symphysis in both the
patients and the volunteers. Compared with s-ADCb50, s-
ADCb1000 and s-ADCb1500 could delineate normal tissues and
lesions more clearly and sharply, which was in line with the
September 2021 | Volume 11 | Article 697721
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ground truth. According to the magnified images of the local
tissue structures, s-ADCb1000 provided more details than s-
ADCb1500 with reference to z-ADC.

As shown in the violin plots (Figure 4), s-ADCb1000

performed better than the other two s-ADC sets in terms of
the distribution, median, and inter-quartile ranges of the
Frontiers in Oncology | www.frontiersin.org 660
RMSE, SSIM, FSIM, and PSNR scores. The mean RMSE
scores of s-ADCb50, s-ADCb1000, and s-ADCb1500 were 4.1 ×
10-3, 2.5 × 10-3, and 3.1 × 10-3, respectively. The mean PSNR
scores of s-ADCb50, s-ADCb1000, and s-ADCb1500 were 48.0,
53.4, and 51.0, respectively. The mean SSIM scores of s-
ADCb50, s-ADCb1000, and s-ADCb1500 were 0.972, 0.986, and
TABLE 2 | The clinical characteristics of the patient cohort.

Characteristics Patients without cancer (n = 106) Patients with cancer (n = 94) P-value

Mean age (y) [range] 70 (52–87) 71 (48–88) 0.675
total PSA (ng/ml) 11.079 ± 9.013 57.002 ± 125.88 <0.001
Position, no.
Peripheral zone 44 63 <0.001
Transitional zone 62 31
Gleason score (n, %)
6 —— 8
7 —— 46
8 —— 24
9 —— 16
September 2021 | Volume 11 | Article
The data are mean ± standard deviation, unless otherwise indicated.
PSA, prostate-specific antigen.
FIGURE 3 | Comparison of the synthesized apparent diffusion coefficient (s-ADC) maps. Case 1: An 82-year-old man with prostate cancer from test set 1 who had
an initial prostate-specific antigen level of 13.04 ng/ml. Case 2: A 27-year-old healthy man from test set 2. For these two cases, both the s-ADCb1000 and
s-ADCb1500 performed well in displaying the prostate, pelvic floor muscles, pubic symphysis, and the entire cancer lesion. However, the s-ADCb50 images of these
structures are fuzzy. According to the local enlargement of the images (the images in the second and fourth lines), the s-ADCb1000 is more similar to the z-ADC than
to the s-ADCb1500, and it retains more details of the z-ADC (shown as red arrows).
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0.982, respectively. The mean FSIM scores of s-ADCb50. s-
ADCb1000, and s-ADCb1500 were 0.604, 0.728, and 0.690,
respectively. s-ADCb1000 had a significantly lower RMSE
score and higher PSNR, SSIM, and FSIM scores than s-
ADCb50 and s-ADCb1500 (all P < 0.05).

To evaluate the distortion in the ADCmaps, the differences in
the AP and LR diameters of the prostate relative to T2WI were
both significantly lower for s-ADC (AP, 2.734; LR, 3.204) and
z-ADC (AP, 2.755; LR, 3.073) than for f-DWI (AP, 5.916; LR,
5.053) (all P < 0.001).
ADC Measurement Assessment
The measurements of all the ADC sets (f-ADC, z-ADC,
s-ADCb50, ADCb1000, and s-ADCb1500) on various tissues from
both readers are presented in Table 3. For all the ADC sets, the
ADC values of the TZ are significantly lower than those of the
PZ, while the ADC values of the malignant lesions are
significantly lower than those of the benign lesions (all P < 0.05).

Figure 5 presents the results of the intra-reader reproducibility
(Figures 5A, B) and inter-reader consistency (Figure 5C) analyses
for each ADC set calculation. Both readers reported that the
reproducibility of the ADC measurements for f-ADC, z-ADC, s-
ADCb1000, and s-ADCb1500 was excellent for all the tissues,
while the reliability of the ADC measurements for s-ADCb50 was
Frontiers in Oncology | www.frontiersin.org 761
good. The inter-reader consistency of all the ADC set
measurements was excellent for all the tissues. Table 4 shows
the consistency of the ADC values between the z-ADC and s-ADC
sets. The consistency of the ADC values in the transitional zone
between z-DWI and s-DWIb50 was good, and the consistency of
the ADC values between z-ADC and s-ADCb50 for the remaining
tissues was excellent. For the s-ADCb1000 and s-ADCb1500 values,
the consistency of the ADC values for z-ADC for all the tissues
was excellent.
Tumor Detection Assessment
Among the three s-ADC sets, s-ADCb1000 performed the best in
the image quality assessment and ADC evaluation. Therefore, it
was selected for further comparisons with f-ADC and z-ADC in
terms of tumor detection and classification (Figure 6). The ADC
values for patients with malignant lesions and those with benign
lesions measured by the two readers were used to compute the
ROC curves (Figure 7). The comparisons of AUCs for both
readers based on the f-ADC, z-ADC, and s-ADC sets are
summarized in Table 5. Both the z-ADC and s-ADC sets
showed significantly better predictive capabilities than the
f-ADC set (P ≤ 0.027). The differences in AUCs between s-
ADC and z-ADC were not statistically significant (reader 1: z =
0.134, P = 0.893; reader 2: z = 0.094, P = 0.925).
FIGURE 4 | Violin plots of the quantitative metric distributions of the s-ADC sets.
September 2021 | Volume 11 | Article 697721
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DISCUSSION

The main contribution of our study to the literature is the
proposed GAN-based ADC synthesis method that can be used
to generate s-ADC maps using single b-value DWIs with better
image quality and stronger ADC calculation accuracy and
reproducibility than a full FOV ADC, but without dependence
on software, hardware, and additional scanning time that
zoomed FOV ADC technology requires. A shorter scan time
will lead to better patient comfort and fewer motion artifacts due
to involuntary or autonomous motions. The high reproducibility
and accuracy of the ADC calculations may effectively reduce the
risk of delayed treatment or unnecessary overtreatment due to
the misdiagnoses of benign and malignant lesions. Therefore, the
GAN-based ADC synthesis method can increase the clinical
benefits to patients, reduce treatment times, and lower the costs
incurred by patients and hospitals.

In previous studies (31–33), GANs have been used
successfully for image-to-image transformations, such as in
generating MRI or PET images using CT images or
synthesizing CT images from MRI images, and they have
performed well in terms of the traditional pixel-wise metrics.
However, GAN-generated images do not have a physical
meaning, and they can often lead to spurious images (21). As a
result, it is difficult for GANs and their extensions to win the trust
of clinicians. Therefore, we not only compared traditional pixel-
wise metrics, including the RMSE, SSIM, FSIM, and PSNR
scores, between the s-ADC sets and reference images, but we
also compared the s-ADC and ADC values generated by
traditional methods to evaluate the clinical value of GAN-
generated images.

In the present study, we evaluated s-ADC maps that were
based on DWI inputs with different b-values and found that the
choice of b-values influenced the s-ADC values. Based on a
subjective visual evaluation, the s-ADCb1000 maps delineated
Frontiers in Oncology | www.frontiersin.org 862
normal tissues and lesions more clearly than the s-ADCb50

maps, and they provided more details for targeted images than
the s-ADCb1500 set. The quantitative evaluation results are also
consistent with the visual evaluation results. Among the three s-
ADC sets, the s-ADCb1000 set achieved a lower RMSE score and
higher SSIM, FSIM, and PSNR scores than the s-ADCb50 and s-
ADCb1500 sets, indicating that the s-ADCb1000 set is more similar
to the realistic z-ADC in terms of noise distribution, image
structure, and features. Additionally, the s-ADCb1000 set showed
better intra-reader repeatability and inter-reader consistency
than the s-ADCb50 and s-ADCb1500 sets. Moreover, the s-
ADCb1000 set showed the best ADC value inter-method
consistency with the z-ADC set, suggesting that a DWI with a
b-value of 1,000 s/mm2 might be more suitable for synthesizing
ADC maps than one with a b-value of 50 or 1,500 s/mm2. The
similarity between the target image z-DWI and s-DWI strongly
depends on how much useful information the input f-DWI can
provide to the generator for the extraction of meaningful features
to begin the mapping between f-DWI and z-ADC. Low-b-value
DWIs suffer from T2 shine-through or black-through effects,
whereas high-b-value DWIs might be affected by diffusion
kurtosis effects (34). These effects have a negative influence on
image quality and lesion information, causing a relatively lower
similarity between the s-ADCb50 and s-ADCb1500 sets and the z-
ADC set compared to the s-ADCb1000 set (3).

In our study, both the z-ADC and s-ADC sets showed less
distortion and better reproducibility of the quantitative ADC
values for all the evaluated tissues; they also showed better tumor
detection and classification capacity than the f-ADC sets. The
ADC values are generated for most of the current clinical
implementations by calculating the signal intensity decay using
two or more DWI sets with different b-values (1–5, 9–11, 13, 14).
The reproducibility and accuracy of the calculated ADC values
are affected by the choice of b-values (3, 4, 34) and the DWI
image quality (14). The application of a significant number of
TABLE 3 | The mean apparent diffusion coefficient (ADC) values (×10-3 mm2/s) of the different ADC sets.

Parameter ADC value (×10-3 mm2/s)

Peripheral zone (n = 10) Transitional zone (n = 10) Benign lesions (n = 26) Malignant lesions (n = 24)

Reader 1
f-ADC 1.90 ± 0.11 1.41 ± 0.13 1.40 ± 0.28 1.06 ± 0.25
z-ADC 1.43 ± 0.17 1.20 ± 0.16 0.98 ± 0.18 0.61 ± 0.11
s-ADCb50 1.43 ± 0.25 1.20 ± 0.18 1.09 ± 0.23 0.68 ± 0.13
s-ADCb1000 1.43 ± 0.16 1.20 ± 0.16 0.99 ± 0.18 0.61 ± 0.17
s-ADCb1500 1.46 ± 0.18 1.26 ± 0.16 1.01 ± 0.17 0.67 ± 0.18
Reader 2
f-ADC 1.94 ± 0.14 1.39 ± 0.19 1.42 ± 0.29 1.06 ± 0.25
z-ADC 1.49 ± 0.16 1.22 ± 0.14 0.98 ± 0.18 0.61 ± 0.11
s-ADCb50 1.44 ± 0.13 1.18 ± 0.14 1.02 ± 0.24 0.69 ± 0.13
s-ADCb1000 1.48 ± 0.21 1.18 ± 0.13 0.99 ± 0.16 0.61 ± 0.15
s-ADCb1500 1.45 ± 0.12 1.18 ± 0.09 1.00 ± 0.16 0.70 ± 0.10
September 2021 |
The ADC values of the lesions were calculated using images from the patients in test set 1. The ADC values of the normal prostate tissues in the peripheral and transitional zones were
calculated using images from the healthy volunteers in test set 2.
f-ADC, ADC map derived from full field-of-view (FOV) diffusion-weighted imaging (f-DWI) with all available b-values (b =50, 1,000, and 1,500 s/mm2); z-ADC, ADC map derived from the
zoomed FOV diffusion-weighted imaging and all available b-values (b = 50, 1,000, and 1,500 s/mm2); s-ADCb50, ADC map synthesized using our proposed deep learning framework with
input from the f-DWI (b = s/mm2); s-ADCb1000, ADC map synthesized using our proposed deep learning framework with input from the f-DWI (b =1,000 s/mm2); s-ADCb1500, ADC map
synthesized using our proposed deep learning framework with input from the f-DWI (b =1,500 s/mm2).
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b-values improves the reproducibility and accuracy of the
calculated ADC values, although it also increases the scanning
time (3, 35). In contrast to traditional ADC calculation methods,
our proposed method takes advantage of the ability of GAN to
simulate data distribution and synthesize ADC maps that are
highly similar to real zoomed FOV ADC maps that use a full
FOV DWI with a single b-value. Considering the excellent image
quality consistency and similar tumor detection and
Frontiers in Oncology | www.frontiersin.org 963
classification abilities between the s-ADC and z-ADC maps, we
believe that the deep learning algorithm might be a feasible
method for generating ADC maps as an alternative to z-ADC
maps without requiring a strong dependence on software,
hardware, and additional scan time (36).

Our study has several limitations. First, the s-ADCb1000 set
showed the best image quality among the s-ADC sets; however, it
remains unknown whether a DWI set with a b-value of 1,000
A B

C

FIGURE 5 | The reproducibility of the apparent diffusion coefficient (ADC) measurements as evaluated by the intraclass correlation coefficient. (A) The ADC measurement
repeatability of reader 1 and (B) reader 2, and (C) the consistency of the ADC measurements between readers 1 and 2.
TABLE 4 | Comparison between the inter-method intraclass correlation coefficients from the z-DWI and s-DWI sets.

Parameter Inter-method intraclass correlation coefficient

s-apparent diffusion coefficient (ADC)b50 vs. z-ADC s-ADCb1000 vs. z-ADC s-ADCb1500 vs. z-ADC

Reader 1
Peripheral zone (n = 10) 0.87 (0.76–0.98) 0.99 (0.99–1.00) 0.99 (0.94–1.00)
Transitional zone (n = 10) 0.78 (0.58–0.98) 0.98 (0.87–1.00) 0.95 (0.73–0.99)
Benign lesion (n = 50) 0.86 (0.74–0.99) 0.98 (0.94–1.00) 0.98 (0.95–0.99)
Malignant lesion (n = 50) 0.89 (0.76–0.95) 0.90 (0.88–0.98) 0.88 (0.74–0.95)
Reader 2
Peripheral zone (n = 10) 0.81 (0.61–0.99) 0.99 (0.97–1.00) 0.98 (0.88–1.00)
Transitional zone (n = 10) 0.78 (0.58–0.98) 0.99 (0.93–1.00) 0.97 (0.76–1.00)
Benign lesion (n = 50) 0.86 (0.73–0.99) 0.98 (0.95–0.99) 0.97 (0.93–0.99)
Malignant lesion (n = 50) 0.82 (0.70–0.94) 0.88 (0.72–0.95) 0.88 (0.72–0.95)
September 2021 | Volu
z-ADC, ADC map derived from zoomed field-of view (FOV) diffusion-weighted imaging and all the available b-values (b = 50, 1,000, and 1,500 s/mm2); s-ADCb50, ADC map
synthesized using our proposed deep learning framework with input from full FOV diffusion-weighted imaging (f-DWI) (b = 50 s/mm2); s-ADCb1000, ADC map synthesized using our
proposed deep learning framework with input from f-DWI (b = 1,000 s/mm2); s-ADCb1500, ADC map synthesized using our proposed deep learning framework with input from f-DWI
(b = 1500 s/mm2).
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FIGURE 6 | The T2-weighted image, f-ADC, z-ADC, and s-ADCb1000 of four different patients. Case 1: An 85-year-old man with prostate cancer in the right
peripheral zone and an initial prostate-specific antigen level of 0.157 ng/ml. Case 2: An 85-year-old man with prostate cancer in the central zone and an initial
prostate-specific antigen level of 21.44 ng/ml. Case 3: A 67-year-old man with an inflammatory nodule in the right peripheral zone and an initial prostate-specific
antigen level of 14.37 ng/ml. Case 4: A 77-year-old man with prostate cancer in the central zone and an initial prostate-specific antigen level of 56.62 ng/ml.
A B

FIGURE 7 | The receiver operating characteristic comparison of the diagnostic accuracy of the f-ADC, z-ADC, and s-ADCb1000 sets (A: reader 1, B: reader 2).
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s/mm2 is the most appropriate for ADC map synthesis. In future
studies, s-ADC sets generated using DWI sets with more potential
b-values should be compared. Second, as ADC values vary across
vendors, the generalizability of our model across MRI scanners
from different vendors requires multi-center verification.

In conclusion, the GAN-based ADC synthesis method can
generate s-ADCmaps using a single b-value DWI with good image
quality and high reproducibility and ADC calculation accuracy.
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Accurate automatic medical image segmentation technology plays an important role for
the diagnosis and treatment of brain tumor. However, simple deep learning models are
difficult to locate the tumor area and obtain accurate segmentation boundaries. In order to
solve the problems above, we propose a 2D end-to-end model of attention R2U-Net with
multi-task deep supervision (MTDS). MTDS can extract rich semantic information from
images, obtain accurate segmentation boundaries, and prevent overfitting problems in
deep learning. Furthermore, we propose the attention pre-activation residual module
(APR), which is an attention mechanism based on multi-scale fusion methods. APR is
suitable for a deep learning model to help the network locate the tumor area accurately.
Finally, we evaluate our proposed model on the public BraTS 2020 validation dataset
which consists of 125 cases, and got a competitive brain tumor segmentation result.
Compared with the state-of-the-art brain tumor segmentation methods, our method has
the characteristics of a small parameter and low computational cost.

Keywords: brain tumor segmentation, attentionmechanism,multi-task learning, semi-supervised learning,multi-scale
feature fusion, deep supervision
1. INTRODUCTION

Brain tumors are the most common primary malignant tumors of the brain caused by the
canceration of glial cells in the brain and spinal cord. Brain tumors have the characteristics of
high morbidity and mortality. Automatic segmentation technology of brain tumor can assist
professional doctors to diagnose brain lesions and provide imaging technical support for the
diagnosis and treatment of brain tumor patients. With the development of convolutional neural
networks, the brain tumor automatic segmentation technology based on deep learning had achieved
a high segmentation accuracy. However, the location of brain tumor regions and accurate
segmentation of tumor edges have always been the difficulties of deep learning methods. In order
to obtain accurate segmentation results, deep learning methods usually require a numerous
parameters and a long calculation time, which leads to extremely high demands on the
hardware. Therefore, it is of great significance to develop a simple and efficient network architecture.

Since 2015, a variety of Convolutional Neural Networks (CNN) architectures for brain tumor
segmentation have been proposed. Havaei et al. proposed the InputCascadeCNN model (1), which
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used cascaded CNN to segment brain tumor regions. After the
network obtained a small feature map, it used two CNN branches
with different convolution kernel sizes to further extract local
feature and global information, and fused multi-scale
information. Dvorak et al. proposed a 6-layer CNN, the brain
image was cropped into multiple patches, and these patches were
clustered using k-means to obtain N clustering results and
formed a dictionary as the input of network (2). Pereira et al.
used a 3X3 convolution kernel to extract the segmentation features
(3), like VGG (4). When the receptive field of the same size was
obtained, a smaller convolution kernel could effectively reduce the
amount of network parameters and enabled the network to be
designed deeper. At the same time, the author used intensity
normalization in the data preprocessing process. Kamnitsas et al.
proposed DeepMedic (5), using residual block (6) in the CNN
architecture. DeepMedic used images of different resolutions as
the input of two branch networks to obtain multi-scale
information and fused the multi-scale information. Randhawa
et al. (7) used a classification network to classify each input pixel.
Kamnitsas et al. proposed EMMA (8), which merged the outputs
of multiple independent networks through an average confidence.

Although a variety of network structures have been
proposed, the location of tumor regions and accurate
segmentation of tumor boundaries have always been the
difficulties of brain tumor segmentation. The traditional deep
learning method usually used the fully connected layer as the
last layer of the network, but one-dimensional probability
information will lose the spatial structure information of the
image, which is not suitable for image segmentation. Fully
convolutional neural networks (FCN) (9) and U-Net (10) used
a fully convolutional layer as the last layer of network, and used
an up-sampling operation that is symmetrical to down-
sampling to keep the size of the feature map consistent with
the input size of the network. This method effectively improves
the ability of neural network to locate the region of interest
(ROI). However, the shape and pixel intensity of brain tumor
data are affected by differences between patients and data
collection agencies, which makes it difficult for traditional
U-Net and FCN to obtain accurate location and segmentation
accuracy when the number of parameters is small.

In order to further improve the performance of the U-Net
architecture, a variety of improved U-Net architectures have
been proposed. DCSNN (11) extends the architecture of U-Net
with a residual module by adding a symmetric mask in multiple
layers. Isensee et al. proposed an improved U-Net architecture
(12), which used the pre-activation residual block (13) as the
basic unit of network. At the same time, the leaky rectified linear
unit (leaky ReLU) was used to prevent the gradient from
disappearing, and batch normalization (14) was replaced with
instance normalization (15), which improved the stability of the
network for a feature extraction of small batches. nnU-Net (16)
used 2D U-Net, 3D U-Net, and cascaded 3D U-Net to adaptively
segment inputs of different resolutions. Although most of the
improved u-net methods improve the segmentation accuracy,
they also increase the depth, parameters, and computing time of
deep learning network.
Frontiers in Oncology | www.frontiersin.org 268
The depth of the network and the size of the parameters will
directly affect the ability of feature extraction, usually a deeper
network structure and larger parameters will improve the
segmentation accuracy. However, the increase of parameters
will lead to an over fitting problem and reduce the robustness
of the network. Too deep network structure will lead to the
problem of vanishing gradient and exploding gradient in
network training. In order to solve the vanishing gradient
problem and exploding gradient problem of the deep network,
deep supervision methods were introduced (17–19). In theory,
when the size of convolution kernel remains the same, as the
number of network layers becomes deeper, the network gained a
stronger nonlinear expression capability. However, with the
deepening of the network, backpropagation becomes difficult,
resulting in a decrease in network performance. Chen et al.
proposed VoxResNet, which was used in brain segmentation. In
order to solve the problem of automatic segmentation caused by
the difference in the shape of 3D image slices, the author merged
the deep supervision results containing multi-level context
information as the final output of network (20). Zeng et al.
used a multi-level deep supervision of 3D U-Net to alleviate the
potential gradient vanishing problem in a Proximal femur
segmentation (21). Zhang et al. used deep supervision in a
retinal vessel segmentation to learn a better semantically
representation and help convergence (22). Zeng et al. proposed
a multi-scale deep supervision method in infant brain MR image
segmentation, which addresses that the final loss cannot
supervise a shallow fracture extraction (23).

Similarly, a deep supervision method was also used in the
brain tumor segmentation (12). Deep supervision usually used
the same label to perform a single task, mainly focusing on
solving the problem of gradient vanishing. When Resnet was
proposed, the problem of gradient vanishing was effectively
improved. Andriy Myronenko proposed a multi-task learning
method (24), which used U-Net to perform brain tumor
segmentation tasks and used another decoder branch for image
reconstruction. This method was similar to a deep supervision,
replacing the label of a decoder branch with a reconstruction
label, thereby preventing the problem of network overfitting.
Similarly, Chen et al. proposed the Multi-task Attention-based
Semi-Supervised Learning (MASSL) framework, which used soft
segmentation to obtain pseudo-labels of tumor and non-tumor
regions, and used pseudo-labels to supervise the reconstruction
branch (25). They proposed that multi-task learning could
improve the capture of segmentation features in the encoder
part. Jiang et al. used two decoder branches with different up-
sampling structures to help the encoder part to collect more
abundant brain tumor regional features (26). Weninger et al.
used the three tasks of segmentation, classification, and
reconstruction to jointly train the shared encoder part (27).
The methods above used other related tasks as labels for deep
supervision, and obtained accurate brain tumor segmentation
results. It showed that the deep supervision method could not
only improve the vanishing gradient problem of deep network,
but also enabled the network to learn a richer visual
representation and prevented overfitting.
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In the brain MRI image of the patient, the brain tumor area is
small, so the brain tumor segmentation has a problem of class
imbalance. In order to focus on the brain tumor area, the visual
attention mechanism was introduced into the medical image
segmentation network. Hu et al. used the global max-pooling
layer to adaptively calculate the weight of each channel, and feed
the weight back to the feature channel (28). On this basis, Li et al.
designed a dynamic selection mechanism for the convolution
kernel based on the working principle of visual neuron, and
adaptively adjusted the receptive field size obtained by the
convolution kernel through multi-scale information, and used
softmax to Features of different sizes are merged (29). Woo et al.
used the channel attention module and spatial attention module
to adaptively select the beneficial channel features and spatial
features, and used element-wise summation and sigmoid
activation function to fuse the two features (30).

In this paper, we proposed a new end-to-end brain tumor
segmentation network. We made partial modifications to the
Attention U-Net (31) framework and design MTDS and
APR module. Our work aims to enhance the ability of
network to capture the features of brain tumor and reduce the
impact of class imbalance, and improve the accuracy of brain
tumor segmentation.
2. METHODS

The detailed description of our proposed automatic brain tumor
segmentation method will be given in this section. The proposed
deep learning model architecture is presented, including the
UNet-like basic network, APR module, and MTDS.
2.1 Basic Network
The design of the model needs to consider the distribution
characteristics of the dataset. Compared with natural images,
medical images are symmetrical and have a simpler semantic
information and a more fixed image structure. However, medical
images often contain noise and artifacts, and the boundary
information is blurred. In the view of a single structure and
the fuzzy boundary of medical images, the autoencoder structure
with skip connection has become the benchmark for brain tumor
segmentation. The structure of convolutional autoencoder can
reduce the amount of network parameters while obtaining high-
level semantic features, saving computing resources. Skip
connection combines low-level and high-level features to help
the network reconstruct the detailed information of ROI. Our
basic network is similar to Attention U-Net. In order to obtain a
higher tumor segmentation accuracy, we adjusted the structure
of the network.

The model structure is shown in Figure 1, similar to LinkNet
(32), we combined the U-Net structure and the ResNet structure.
According to the statement in (33), the skip connection of U-Net
cannot eliminate the vanishing gradient problem, but the shortcut
of ResNet can prevent the vanishing gradient problem. In
addition, the skip connection of U-Net helps to increase the
Frontiers in Oncology | www.frontiersin.org 369
convergence speed the same as the shortcut of ResNet. The
main structure includes encoder, decoder, and deep supervision.
Encoder consists of 3 down-sampling, 4 APR module, and 4
Squeeze-and-excitation (SE) modules. For the first Residual Units
of the encoder part, the number of convolution kernel is 32, and
doubles with each next residual unit. Decoder includes 3 up-
sampling, 3 pre-activation convolution blocks, 3 SE modules, 1
convolutional layer (1x1), and 1 sigmoid. In the SE module, some
channels are considered to have no important contribution to the
segmentation task, and their weights are very small, which leads to
overfitting and vanishing gradients problem. Therefore, we added
the dropout layer to prevent the network from overfitting and
improve the robustness of the deep learning network. The random
change of channel weight helps the network learn the visual
expression of different channel features in brain tumor
segmentation. The experimental results also prove this
conclusion. The SE module is shown in Figure 2, and Table 1
reports the results of comparative experiments with or without
dropout in the SE module.
2.2 Multi-Task Deep Supervision
In the brain tumor automatic segmentation model, we use the
MTDS method to optimize the training process of deep learning
network and extract richer visual features. In the process of back
propagation, the deep network converges slowly or even hard to
converge due to the problem of vanishing gradient. Deep
supervision techniques are used to alleviate the training difficulty
of deep networks. However, unreasonable network design affects
the hierarchical feature expression ability of the network, and even
disrupt the network optimization goal. Usually, the shallow layers
of the network extract low-level features in the image, such as
boundary information. The deep layers of the network can extract
high-level features, in other words, the semantic information of an
image. When deep supervision is designed in the front of the
network, it forces the network to change the normal learning
process, resulting in an inconsistent loss of optimization goals and
affecting the segmentation accuracy. This impact became more
serious in many deep networks (34).

Based on the problems above, we use the ground truth of
multiple segmentation tasks as the label for deep supervision, and
optimize the training process through multiple associated sub-
segmentation tasks. While solving the vanishing gradient
problem, the ability of the network to extract segmentation
features of a sub-tumor region is improved. The comparison
between our proposed deep supervision method and other
methods is shown in Figure 3. The sub-segmentation task is used
as the regularization item of the network to improve the
generalization ability of the model and prevent overfitting.
Normally, whole tumors consist of the peritumoral edema,
enhancing tumor, and the necrotic and the non-enhancing
tumor. The area of enhancing tumor is smaller than the area of
peritumoral edema and the necrotic and the non-enhancing tumor.
High-level semantic information is not conducive to capturing the
features of the enhancing tumor area, while low-level boundary
information can better express the detailed features of the enhancing
tumor. In our method, the enhancing tumor ground truth is used as
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the label of first deep supervision, and the shallow layers of network
can better capture the boundary details of the enhancing tumor
area. Segmentation of the necrotic area and segmentation of the
peritumoral edema area are respectively used as the other two deep
Frontiers in Oncology | www.frontiersin.org 470
supervision tasks, and the final output of the network is the
segmentation of the whole tumor area. The optimization objective
of whole brain tumor segmentation and multi-task auxiliary
segmentation can be expressed as follows:
FIGURE 1 | The basic 2D convolutional neural network for brain tumor segmentation. It consists of encoding, decoding, and deep supervision. Our approach is an
end-to-end network, the input of the network is a 2D image composed of four modes, and the output is the whole brain tumor prediction result of each 2D image.
Output1, output2, and output3 are the subregions of the brain tumors, which are the peritumoral edema, enhancing tumor, and the necrotic and the non-enhancing
tumor, respectively. Multi-task deep supervision with progressive relationships can help our method accurately extract the visual features of each stage.
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arg max
wm ,wa

 Lm(wm;D) + La (wa ;D) (1)

where D is the brain tumor datasets with annotation, wm is the
learnable weight matrices of whole brain tumor segmentation
network, and wa correspond to the learnable weight matrices of
multi-task auxiliary segmentation network. Lm denotes the total
loss function of whole brain tumor segmentation, and La is the
loss function of multi-task auxiliary segmentation.

2.3 Attention Pre-Activation
Residual Module
In addition to the function of identity mapping, residual module
is a simple multi-scale feature fusion method (36). Multi scale
feature representation is very important for image segmentation.
Except to the pixel intensity, the morphological features of the
tumor region are of great importance for brain tumor segmentation.
Learning the difference between the morphological features of brain
tumor and the surrounding normal brain tissue by deep
convolution network is helpful to the accurate segmentation of
the brain tumor region. The combination of the boundary
information of the tumor region and its high-level semantic
information can make the deep convolution network accurately
locate ROI (31). Based on the residual module, the improved multi-
scale information fusion of deep convolution network is beneficial
to the classification, segmentation, and detection of visual tasks.

Therefore, Res2Net (37) and other network structures are
proposed. Res2Net designed a residual structure, which can
significantly increase the multi-scale information of the residual
module. However, the feature fusion of Res2Net is simple, so that it
is difficult to make full use of the multi-scale information. On this
basis, we propose an APR module, which is used to improve the
attention of the deep network to ROI. This structure combines the
pre-activation residual units (13) and attention gates (AGs) (31).
The APR module can be seen in Figure 4. Thanks to the excellent
performance of the pre-activation residual units in the field of
Frontiers in Oncology | www.frontiersin.org 571
medical image segmentation (24, 26, 33, 38), we use the pre-
activation residual units as the basic module of the segmentation
network. Pre-activation residual units can help information
propagation, which include 2 batch normalization, 2 rectified
linear unit (ReLU), and 2 weight layers. The output xl+1 of the
pre-activation residual units can be expressed as follows:

xl+1 = xl + F(xl ,wl) (2)

F(xl ,wl) = Fr(Fr(xl ,wl)) (3)

Fr(xl ,wl) = Wx(s1(Wb(xl ,wl))) (4)

where xl is the input of the pre-activation residual units, wl is the
learnable weight matrices. F(xl,w1) denotes the pre-activation
residual function, F(xl,w1) consists of two cascaded subunits Fr
(xl,w1). An element-wise addition is used to combine the
feature map of xl and F(xl,w1). Each Fr(xl,w1) includes a batch
normalization wb, a ReLU s1, and a 3X3 convolutional layerWx.
The 3X3 convolution layer enables the pre-activation residual
function to obtain a larger receptive field than the input, which
provides multi-scale visual information for the feature fusion of
the attention gates.

Attention gates, which is like the shortcut-only gating and 1x1
convolutional shortcut (13), have a stronger visual representational
ability. Attention gates consists of a ReLU, 1x1 convolutional layer,
and a sigmoid activation function. ROI is selected by analyzing both
the activations and contextual information. The output yl+1 of
attention gates can be expressed as follows:

yl+1 = yl o ̇ Fa (yl) (5)

Fa(yl) = s2(Wy(s1(yl))) (6)

where yl is the input of attention gates, which is the output of the
pre-activation residual units (yl = xl+1). ȯ is the element-wise
FIGURE 2 | Our proposed SE module with the dropout layer. Adding the dropout layer can prevent overfitting and improve the robustness of the deep learning
network. The SE module assigns different weights to the feature channels to help the network obtain the most effective features of the brain tumor regions.
TABLE 1 | The results of comparative experiments with or without dropout in the SE module on the BraTS 2020.

Method DSC (%) Sensitivity (%) Specificity (%) Hausdroff95

without
dropout

88.59 88.52 99.86 7.74

with dropout 89.18 89.24 99.91 5.77
September 2021 | Volume 11 |
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multiplication. Fa(y1) denotes the attention gates function.Wy is
a 1x1 convolutional layer used to compute linear transformation.
s2 =

1
(1+exp(−yl)) is a sigmoid activation function. ReLU and

sigmoid can improve the nonlinear expression ability of the
attention gates. In addition, sigmoid can make attention gates
parameters have a better convergence.

We combine the pre-activation residual unit and attention
gates, and obtain the APR module as follows:

yl+1 = (xl + Fr(Fr(xl ,wl))) ȯs2(Wy(s1(xl + Fr(Fr(xl ,wl))))) (7)

APR module is a multi-scale feature fusion method based on the
residual unit. This method obtains multi-scale information from
the residual units and generates a gating signal to control the
importance of features in different spatial regions, to suppress the
feature response of irrelevant background regions.
Frontiers in Oncology | www.frontiersin.org 672
3 EXPERIMENTS AND RESULTS

In this section, the brain tumor datasets and the pre-processing
methods are introduced. And then, we provide the training
details of network, including the loss function and optimizer.
Post-processing methods for brain tumor segmentation are also
introduced. Finally, we introduce the evaluation criteria for the
brain tumor segmentation task, and report the results consisting
of the ablation experiment and comparison with the state-of-the-
art methods.

3.1 Brain Tumor Dataset and
Pre-Processing
In this section, we present the details of experimental data, it
includes brain tumor datasets, data preprocessing and
data augmentation.
A B

DC

FIGURE 3 | The comparison between our proposed deep supervision method and other methods. (A) The U-Net model; (B) Use of multiple shortcuts and skip
connections: this method adds a deep supervision method to each level of sub network, which affect the hierarchical feature expression ability of network (35);
(C) Use of image reconstruction task as deep supervision to prevent the network from overfitting (24). (D) Our method with deep supervision.
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FIGURE 4 | Our proposed APR module, which consists of the Pre-activation Residual Units and Attention Gates. Pre-activation Residual Units obtain feature maps
of low-level and high-level scales. Attention Gates obtains the weighted feature map of the 2D image by performing nonlinear processing on the output result of the
Pre-activation Residual Units.
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3.1.1 Brain Tumor Datasets
The brain image dataset is provided by MICCAI Multimodal
Brain Tumor Segmentation Challenge (BraTS) (39, 40). Each
sample of the patient includes four modalities. The brain tumor
datasets were collected from 19 institutions with the same
resolution of 1 mm3, and were unified to the same anatomical
template. The size of each modality was 240x240x155. All BraTS
multimodal datasets include four modals, which are native (T1),
post-contrast T1 weighted (T1Gd), T2 weighted (T2), and T2
fluid attenuation inversion recovery (T2-FLAIR). Table 2
summarizes the dataset of BraTS 2017-2020. The training
datasets of BraTS 2018-2020 are used to train our network.

3.1.2 Pre-Processing
Due to different data collection agencies, there are differences in
the pixel intensity. In order to make the deep learning network
learn more uniform and the segmentation features more
accurate, it is necessary to use image pre-processing methods
to standardize the data.

In the dataset provided by BraTS 2020, the brain area occupies
less than 50% of the total area. A large background area increases
the proportion of negative samples, making it difficult for deep
learning networks to effectively learn brain tumor features (16). In
addition, more tumor pixels are incorrectly classified as background.
Different from (41, 42), which crops images into small patches, we
crop each image to a size of 144x176 to preserve as much brain
region information as possible and reduce the interference of
background regions. Specifically, we keep the center area of each
image and cropped the edge area. Maximizing the preservation of
brain information in non-tumor areas is beneficial for the network
to better learn to distinguish the difference between tumor and
normal brain tissue. After cropping the image, we use min-max
normalization (43) to process the image to reduce the difference
between the data collected by different institutions. Specifically, we
calculated the maximum and minimum pixel intensity of the 3D
brain data of each brain tumor patient in a single modality, and
normalized the value range of each pixel to 0 and 1 through min-
max normalization between. Performing min-max normalization
on a single modality of each sample can not only reduce the
difference between scans from various institutions, but also avoid
the difference of various scans from the same institution. In
addition, normalizing the pixel value between 0 and 1 facilitates
the back propagation of gradient during the training process.

3.1.3. Data Augmentation
In order to solve the problem of less training data, we also carried
out data augmentation operations. Data augmentation can
effectively increase the sample size and prevent the model from
Frontiers in Oncology | www.frontiersin.org 874
overfitting. Commonly used data augmentation methods include
flipping (44), transposing, and rotating (45). In order to ensure
that the pixel intensity of data does not change significantly and to
make the network robust to the shape of tumor, we use the data
augmentation strategy of flipping. This strategy can enable the
deep learning network to learn the shape characteristics of brain
tumors, and use the shape information of brain tumors and non-
tumor regions to help the network distinguish tumor regions with
similar pixel intensity from normal brain tissue regions.

3.2 Loss Function
In the brain tumor images, the proportion of the lesion area is
small, in other words, the foreground area is much smaller than
the background area. Class imbalance makes it difficult for some
commonly used segmentation loss functions to train network
parameters effectively. In order to reduce the impact of class
imbalance on network training, the network is trained with a
combination of dice loss (42) and cross-entropy loss. The joint
loss combining dice loss and cross-entropy loss is proven to have
an excellent performance in medical image segmentation
tasks (46).

Dice loss is a similarity measure method, which is widely used
in medical image segmentation, and its value range is [0, 1]. Dice
loss can be expressed as follows:

Ldice =
2SZ

i=1piqi
SZ
i=1p

2
i + SZ

i=1 q21
, (8)

where Z denotes the sums of voxels, pi∈P is the predicted binary
segmentation volume, and qi∈Q is the ground truth of
segmentation volume.

Dice loss focuses on the segmentation results of the
foreground regions, so it can improve the impact of class
imbalance. But when the foreground area in the image is too
small, the predicted segmentation result has a greater impact on
the calculation result of loss function, making the training
unstable. Therefore, we combine dice loss and cross-entropy to
improve the training stability. The loss function of brain tumor
segmentation network without deep supervision can be
expressed as follows:

Lm(wm;D) = 1 −
1
N
SN
i=1 log  fm(wm; xi)

(yi)

−
2SN

i=1yiby i
SN
i=1y

2
i + SN

i=1by 2i , (9)

where the brain tumor datasetD including N examples, xi is the i
th

image of brain MRI scans, and yi is the ground truth
TABLE 2 | Summary of the BraTS challenge dataset from 2017 to 2020.

Dataset Training Validation Testing

BraTS 2017 285 46 146
BraTS 2018 285 66 191
BraTS 2019 335 125 166
BraTS 2020 369 125 166
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corresponding to xi. ŷ i denotes the predicted binary segmentation
result corresponding to xi.

3.3 Implementation Details
Our framework was constructed using the TensorFlow2 (47)
libraries. The GPU used in the experiment is a virtualized
NVIDIA Tesla V100 with only 16 GB of memory. Its
computing performance is a quarter of that of a physical GPU.
For the training of our method, the total number of epochs is set
to 50 and the batch size is set to 32. Adam optimizer (48) is used
to optimize the training for all experiments. Adam optimizer,
combining the advantages of the AdaGrad and RMSProp
optimization algorithms, comprehensively considers the first
moment estimation (First Moment Estimation, the mean value
of gradient) and the second moment estimation (Second
Moment Estimation, the uncentered variance of gradient), and
calculate the update step size. The update of parameters of the
Adam optimizer is not affected by the scaling transformation of
the gradient. It is suitable for the unstable objective function and
problems with sparse gradients or very noisy gradients. In our
method, the initial learning rate of the Adam optimizer is 1e–4,
the algorithm of learning rate decay is like as (24).

3.4 Post-Processing
In order to further improve the accuracy of the brain tumor
segmentation results, we performed post-processing operations
on the output of the network. Commonly used post-processing
methods for image segmentation include thresholding, erosion,
dilation, open operations, close operations, and CRF. For brain
tumor segmentation tasks, the pixel intensity and the
morphology features of some brain tissues in the brain image
are similar to the tumor area, it is easy to interfere with the
segmentation of the tumor area, resulting in false positives
segmentation results. Through observation, the normal area
that is misclassified as a tumor is usually small. In order to
reduce the influence of false positives on the segmentation
accuracy, we concatenate all the 2D segmentation results of
each patient into 3D voxels. And then, we calculate the volume
of each independent predicted brain tumor area in each 3D voxel
and eliminate the smaller predicted tumor. We keep the largest
predicted tumor in each patient and use its volume as the
baseline. Then, we compare the volume of other predicted
tumors with the baseline. When the volume of other predicted
tumors is less than one-tenth of the baseline, we determine that
these predicted tumors are false positives.

3.5 Evaluation Metrics
In order to evaluate the segmentation performance of brain
tumors more comprehensively, dice similarity coefficient (DSC),
sensitivity, specificity, and hausdorff distance (HD) are used as
evaluation metrics. All evaluation metrics can be expressed as
follows:

Sensitivity =
TP

TP + FN
, (10)
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Specificity =
TN

TN + FP
, (11)

DSC =
2 U ∩ Vj j
Uj j ∪ Vj j , (12)

Hausdorff = max max
u∈U

min
v∈V

(u, v), max
v∈V

min
u∈U

(u, v)

� �
, (13)

where true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) are usually used to calculate the
evaluation metrics in the segmentation methods. Higher values
of sensitivity indicate that the larger tumor area is segmented
correctly. Higher values of specificity indicate that the larger
non-tumor area is segmented correctly. U and V indicate the
ground truth of the lesion area and the prediction of network,
respectively. Higher values of DSC indicate that the
segmentation of the lesion area is more accurate. u and v
indicate the set of points on the boundary of ground truth U
and the set of points on the boundary of prediction V,
respectively. Lower values of Hausdorff distance indicate that
the segmentation of the lesion area is more accurate. In this
paper, we use Hausdorff95, which is based on the calculation of
the 95th percentile of distances between the boundary points in
the ground truth and prediction. Due to the presence of outliers
in the boundary area, hausdorff95 can avoid the interference of
outliers on the segmentation performance.

3.6 Evaluation on Model Architecture
We present a detailed study of the proposed network on the
MICCAI Multimodal Brain Tumor Segmentation Challenge
2020 in this section. The training dataset provided by BraTS
2020 is used to train the network. In order to evaluate the
segmentation performance of our method more objectively, we
upload the predicted results of the validation dataset to the Image
Processing Portal (IPP) of CBICA’s.

Similar to the training dataset, the validation dataset also
includes four modal brain MRI scans. The validation dataset
consists of a total of 125 brain data of patients, and for the axial
axis, each brain MRI scans of the patient consisted of 155 images
with a size of 240x240. The validation dataset contains mixed
glioblastoma (GBM/HGG) and lower grade glioma (LGG). In
order to match the trained network input, we use the same
cropping method as the training dataset to reduce the image size
of each validation dataset to 144x176. After obtaining the
prediction results, we restore each image to its original size
and submit it to the online evaluation system.

3.6.1 Study of Attention Pre-Activation
Residual Module
APR module is modular so that it can be easily added to the
segmentation structures. In our proposed model, the APR
module is used in the encoder part to improve the ability of
extracting tumor features. Three structures are designed to
compare with the APR module. The first structure does not
use the shortcut and attention gates. The second structure adds
September 2021 | Volume 11 | Article 704850
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the shortcut, but there are no attention gates. The third structure
uses the shortcut, and the use of the attention gates is consistent
with (31), in other words, combine attention gates with the
skip connections.

In Table 3, we report the results of the comparative
experiment. The results on whole brain tumor predictions
demonstrate that the APR module has achieved the first place
in three evaluation metrics of dice similarity coefficient,
sensitivity, and Hausdorff distance. Due to the large
proportion of negative samples, the specificity scores of the
four structures are very similar. In addition, the structure of the
Attention U-Net has a better segmentation performance for
brain tumors, which also proves that the attention gates are
helpful for the fusion of multi-scale features. However, for brain
tumor segmentation tasks, too large feature scale differences
cannot make attention gates accurately weight ROI. This result
proves that the APR module contributes to brain tumor
segmentation tasks.

3.6.2 Study of Multi-Task Deep Supervision
MTDS is used to extract richer visual features. It can be applied
to multi-label segmentation tasks similar to brain tumor
segmentation. We design three comparative structures. The
first structure does not use deep supervision. The second
structure adds deep supervision, but only uses the whole brain
tumor mask as the label for all branches. The third structure uses
MTDS, and uses enhancing tumor, the necrotic and the non-
enhancing tumor, and peritumoral edema as the labels of the
three branches, respectively.

Table 4 shows the comparison experiment results of MTDS
and the other two structures. The structure with the MTDS
strategy has achieved the top rank in all evaluation metrics.
Through the comparative experiments, we can find an
interesting phenomenon. The segmentation results of
structure without deep supervision are better than the
structure with single-task deep supervision in the evaluation
metrics of DSC, Sensitivity, and Hausdorff95. Although deep
supervision techniques can alleviate the difficulty of
optimization arising from gradient flow, it interferes with the
Frontiers in Oncology | www.frontiersin.org 1076
hierarchical representation generation process. Due to the
inconsistency of optimization objectives, the positive
optimization effect on the shared shallow parameters is small,
which reduces the accuracy of brain tumor segmentation.

3.7 Comparison with State-of-the-Art Methods
Our proposed model is evaluated on the public BraTS 2020
validation dataset to compare its performance with the state-
of-the-art methods which are on the BraTS2017, BraTS2018,
and BraTS2019 leader board. The results of our method
comparison with the state-of-the-art methods are reported
in Table 5.

Most state-of-the-art methods ensemble the segmentation
results of multiple models, and the segmentation results of
ensemble of multiple models is usually better than a single one.
In order to show the performance of our proposed method more
visual, we did not use the ensemble of multiple models, but only
used the proposed single model to compare with other methods.
For the whole brain tumor segmentation task, the Dice score of
whole tumors reached 0.86-0.90, the Sensitivity score of whole
tumors reached 0.85-0.92. Specificity scores of all methods are
very high, almost over 0.99. The Hausdorff distance is basically
between 4 and 7. The experimental results show that our method
has a strong competitiveness.

In order to make the comparison result more objective, we
retrain several state-of-the-art segmentation models to the brain
tumor dataset and evaluated them on the BraTS2020 dataset. It
can be seen from Table 6 that our method has achieved the first
place in the DSC, Sensitivity, Specificity, and Hausdorff distance.
At the same time, our method has the least number of
parameters. Figure 5 shows a more intuitive comparison
between the segmentation results of our method and state-of-
the-art methods.
4. DISCUSSION AND CONCLUSION

Brain tumor is a disease that threatens human health. Manual
segmentation is time-consuming and subjective. The difficulties
TABLE 3 | Ablation experiment of the APR module without multi-task deep supervision on the BraTS 2020.

Method DSC (%) Sensitivity (%) Specificity (%) Hausdroff95

without shortcut & AGs 88.57 88.56 99.89 7.03
without AGs 88.69 88.01 99.90 6.99
Attention UNet 88.89 89.25 99.88 6.78
APR module 88.95 89.56 99.89 6.51
September 2021 | Volume 11 | A
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TABLE 4 | Ablation experiment of deep supervision on the BraTS 2020.

Method DSC (%) Sensitivity (%) Specificity (%) Hausdroff95

without deep supervision 88.95 89.56 99.89 6.51
single-task deep supervision 88.74 87.95 99.90 6.84
multi-task deep supervision 89.18 89.24 99.91 5.77
The bold values indicate the best results.
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of the automatic brain tumor segmentation technology include
the sensitivity of the algorithm to tumor regions and the
suppression of response to non-tumor regions. In order to
improve the ability of the convolutional neural networks to
locate ROI, we propose the APR module. This module uses the
residual units and attention gates to construct a multi-scale feature
fusion method. The simple fusion of low-level feature and the
high-level feature of residual unit pass the features of non-interest
region to the deeper layers of network. It interferes with the
extraction of important information about brain tumors from the
encoder part. The attention gate added in the residual unit focus
attention on the tumor area, reduced the response of non-interest
areas, thereby improving the ability of the convolutional neural
network to locate the area of interest. This method has proved its
superiority in brain tumor segmentation experiments.

In order to improve the utilization of multi-modal information
in brain tumor segmentation tasks, we propose a MTDS method.
Different modalities have different sensitivities to the tumor area.
In order to fully explore the potential information of multimodal
data, we have designed multiple branches in the network, and each
branch is used to complete a specific task. In order to avoid the
Frontiers in Oncology | www.frontiersin.org 1177
chaotic design from interfering with the ability of the network to
extract tumor features, we designed a MTDS method for the
characteristics of different tumor regions. In addition, MTDS helps
the network to extract richer semantic features and alleviate the
problem of network overfitting. We also tested its performance on
the brain tumor segmentation task, and the results of experiment
proved our hypothesis. The experimental results show that our
model has a generalization ability and extension possibilities.

In this paper, we focus on the segmentation accuracy and
robustness of a single network to the target region. We hope to
design a simple and easy-to-use 2D segmentation method to reduce
the dependence of network training on the hardware and reduce
training time. Due to the few network parameters, our proposed
method is not as good as some segmentation results that integrate
multiple 3D networks. In future work, we will continue to focus on
the improvement of the current method to make it smaller and
more flexible, and at the same time have a higher segmentation
accuracy. In order to achieve this goal, we will improve the currently
proposed attentionmechanism to enable it to integrate richer multi-
scale features. In addition, we will make the architecture muchmore
general to other medical image segmentation datasets.
TABLE 5 | The results of comparison between our proposed method and state-of-the-art methods.

Method Dataset DSC
(%)

Sensitivity
(%)

Specificity
(%)

Hausdroff95

BCVUniandes (49) 2017 86.8 84.2 99.5 18.456
BRATZZ27 (50) 2017 88.0 85.6 99.6 5.72
CISA (50) 2017 87.3 85.4 99.4 5.18
CMR (50) 2017 85.6 81.1 99.6 5.87
MIC_DKFZ (50) 2017 90.2 90.1 99.5 6.77
Zhouch (50) 2017 90.3 90.3 99.5 4.74
RadCNN (51) 2017 89.0 89.1 99.5 6.53
Radiomics-miu (52) 2018 87.6 86.2 99.5 4.90
GBMNet (50) 2018 88.3 93.4 98.9 5.46
Mmonteiro2 (50) 2018 87.0 87.4 99.3 5.79
UNetImage (50) 2018 89.9 91.0 99.4 5.10
RA-UNet (50) 2018 89.1 89.4 99.3 5.87
Voxel-GAN (53) 2018 84.0 86.0 99.0 6.41
S3D-Unet (41) 2018 88.7 90.1 99.4 5.51
3D Dense U-Nets (54) 2018 88.9 88.0 98.0 7.27
3D Attention UNet (55) 2019 89.8 90.0 99.4 6.29
MECU-Net (56) 2019 90.2 90.8 99.5 5.41
Multi-step cascaded network (57) 2019 88.6 92.1 99.2 6.23
3D U-Net (58) 2019 89.4 89.7 99.5 5.68
Our method 2020 89.2 89.2 99.9 5.77
Sep
tember 2021 | Volume 11 |
The bold values indicate the best results.
TABLE 6 | The results of comparison between our proposed method and state-of-the-art methods on the BraTS 2020.

Method DSC (%) Sensitivity
(%)

Specificity
(%)

Hausdroff95 Parameter

U-Net (10) 87.59 87.04 99.89 8.97 34.5M
ResU-Net (59) 87.06 86.63 99.80 9.16 8.2M
ResU-Net++ (60) 88.48 87.98 99.90 7.42 42.2M
DeepLabV3+ (61) 82.99 84.16 99.82 11.05 39.4M
PSPNet (62) 83.74 82.27 99.87 5.99 35.0M
Attention UNet
(31)

87.58 87.26 99.82 8.55 9.3M

Our method 89.18 89.24 99.91 5.77 3.3M
A

The bold values indicate the best results.
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FIGURE 5 | Comparison of brain tumor segmentation results between our method and DeepLabV3+. The differences between the segmentation results of the two
methods are marked by the red boxes.
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Identity Markers for Bone Age Assessment. In: International Conference on
Medical Image Computing and Computer-Assisted Intervention. German:
Springer (2020). p. 753–63.

50. Jin Q, Meng Z, Sun C, Cui H, Su R. Ra-Unet: A Hybrid Deep Attention-Aware
Network to Extract Liver and Tumor in Ct Scans. Front Bioeng Biotechnol
(2020) 8:1471. doi: 10.3389/fbioe.2020.605132
Frontiers in Oncology | www.frontiersin.org 1480
51. Karnawat A, Prasanna P, Madabushi A, Tiwari P. Radiomics-Based
Convolutional Neural Network (Radcnn) for Brain Tumor Segmentation
on Multi-Parametric Mri. In: Proceedings of MICCAI-Brats Conference,
Canada Springer (2017).

52. Banerjee S, Mitra S. Novel Volumetric Sub-Region Segmentation in Brain
Tumors. Front Comput Neurosci (2020) 14:3. doi: 10.3389/fncom.2020.00003

53. Rezaei M, Yang H, Meinel C. Generative Adversarial Framework for Learning
Multiple Clinical Tasks. In: 2018 Digital Image Computing: Techniques and
Applications (DICTA). USA: IEEE (2018). p. 1–8.

54. Zhang X, Jian W, Cheng K. 3D Dense U-Nets for Brain Tumor Segmentation.
German: Springer (2018) p. 562–70.

55. IslamM, VibashanV, Jose VJM,Wijethilake N, UtkarshU, Ren H. Brain Tumor
Segmentation and Survival PredictionUsing 3DAttentionUnet. In: International
Miccai Brainlesion Workshop. German: Springer (2019). p. 262–72.

56. Cheng X, Jiang Z, Sun Q, Zhang J. Memory-Efficient Cascade 3d U-Net for
Brain Tumor Segmentation. In: International Miccai Brainlesion Workshop.
German: Springer (2019). p. 242–53.

57. Li X, Luo G, Wang K. Multi-Step Cascaded Networks for Brain Tumor
Segmentation. In: International Miccai Brainlesion Workshop. German:
Springer (2019b). p. 163–73.

58. Wang F, Jiang R, Zheng L, Meng C, Biswal B. 3d U-Net Based Brain Tumor
Segmentation and Survival Days Prediction. In: International Miccai
Brainlesion Workshop. German: Springer (2019). p. 131–41.

59. Liu Z, Feng R, Wang L, Zhong Y, Cao L. D-Resunet: Resunet and Dilated
Convolution for High Resolution Satellite Imagery Road Extraction. In:
IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing
Symposium. USA: IEEE (2019). p. 3927–30.

60. Jha D, Smedsrud PH, Riegler MA, Johansen D, De Lange T, Halvorsen P, et al.
Resunet++: An Advanced Architecture for Medical Image Segmentation. In:
2019 IEEE International Symposium on Multimedia (ISM). USA: IEEE (2019).
p. 225–2255.

61. Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-Decoder With
Atrous Separable Convolution for Semantic Image Segmentation. In:
Proceedings of the European Conference on Computer Vision (ECCV)
Springer (2018). p. 801–18.

62. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid Scene Parsing Network. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition IEEE (2017). p. 2881–90.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Ma, Tang and Guo. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
September 2021 | Volume 11 | Article 704850

https://doi.org/10.1016/j.neunet.2019.08.025
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.3389/fbioe.2020.605132
https://doi.org/10.3389/fncom.2020.00003
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Natalie Julie Serkova,

University of Colorado, United States

Reviewed by:
Arnaldo Stanzione,

University of Naples Federico II, Italy
Subathra Adithan,

Jawaharlal Institute of Postgraduate
Medical Education and Research

(JIPMER), India

*Correspondence:
Qun-Lin Chen

fychenqunlin@126.com
Xian-long Wang

xwang@fjmu.edu.cn

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 12 May 2021
Accepted: 15 September 2021

Published: 01 October 2021

Citation:
Chen X-Y, Zhang Y, Chen Y-X,
Huang Z-Q, Xia X-Y, Yan Y-X,
Xu M-P, Chen W, Wang X-l

and Chen Q-L (2021) MRI-Based
Grading of Clear Cell

Renal Cell Carcinoma Using a
Machine Learning Classifier.

Front. Oncol. 11:708655.
doi: 10.3389/fonc.2021.708655

ORIGINAL RESEARCH
published: 01 October 2021

doi: 10.3389/fonc.2021.708655
MRI-Based Grading of Clear Cell
Renal Cell Carcinoma Using a
Machine Learning Classifier
Xin-Yuan Chen1†, Yu Zhang2,3†, Yu-Xing Chen4†, Zi-Qiang Huang2, Xiao-Yue Xia2,
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Objective: To develop a machine learning (ML)-based classifier for discriminating
between low-grade (ISUP I-II) and high-grade (ISUP III-IV) clear cell renal cell
carcinomas (ccRCCs) using MRI textures.

Materials andMethods:We retrospectively evaluated a total of 99 patients (with 61 low-
grade and 38 high-grade ccRCCs), who were randomly divided into a training set (n = 70)
and a validation set (n = 29). Regions of interest (ROIs) of all tumors were manually drawn
three times by a radiologist at the maximum lesion level of the cross-sectional CMP
sequence images. The quantitative texture analysis software, MaZda, was used to extract
texture features, including histograms, co-occurrence matrixes, run-length matrixes,
gradient models, and autoregressive models. Reproducibility of the texture features
was assessed with the intra-class correlation coefficient (ICC). Features were chosen
based on their importance coefficients in a random forest model, while the multi-layer
perceptron algorithm was used to build a classifier on the training set, which was later
evaluated with the validation set.

Results: The ICCs of 257 texture features were equal to or higher than 0.80 (0.828–
0.998. Six features, namely Kurtosis, 135dr_RLNonUni, Horzl_GLevNonU,
135dr_GLevNonU, S(4,4)Entropy, and S(0,5)SumEntrp, were chosen to develop the
multi-layer perceptron classifier. A three-layer perceptron model, which has 229 nodes
in the hidden layer, was trained on the training set. The accuracy of the model was 95.7%
with the training set and 86.2% with the validation set. The areas under the receiver
operating curves were 0.997 and 0.758 for the training and validation sets, respectively.

Conclusions: A machine learning-based grading model was developed that can aid in
the clinical diagnosis of clear cell renal cell carcinoma using MRI images.

Keywords: machine learning, magnetic resonance imaging, texture analysis, clear cell renal cell carcinoma, multi-
layer perceptron algorithm
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INTRODUCTION

Renal cell carcinoma (RCC) is the most common malignant
kidney tumor, and the most common pathological type,
accounting for 70–90%, is clear cell renal cell carcinoma
(ccRCC) (1). The latest World Health Organization (WHO)/
International Society of Urological Pathology (ISUP) grading
system divides ccRCC into four grades, in which grades I and II
are low-grade tumors with good prognosis while grades III and
IV are high-grade tumors with poor prognosis (2, 3). Current
studies have shown a relationship between the different nuclear
grades of RCCs and the choice of surgical methods and prognosis
(4, 5). Therefore, preoperative determination of the nuclear
grade of ccRCC is valuable.

The pathological features of renal masses are frequently
evaluated by preoperative percutaneous renal biopsy, but this
invasive technique still suffers from low accuracy. This has
prompted a search for non-invasive methods that can grade
the tumors and aid clinicians in selecting optimal therapeutic
regimens. Several studies have proposed the use of images
generated by computed tomography (CT) or magnetic
resonance imaging (MRI) for identification of potential
biomarkers for tumor grading (6, 7). MRI images have the
advantage of being free from ionizing radiation exposure and
are capable of evaluating both the tumor morphology and the
tumor microenvironment (8), but MRI itself is incapable of
providing sufficient information for differentiating the grades
of ccRCC by most radiologists. However, artificial intelligence
can play an important role in interpreting MRI information in
comprehensive ways by texture analysis. In this way, MRI images
can provide quantitative statistical parameters by identifying
subtle texture information not readily observable with the
human eye (8). These parameters, rather than the original
images, can be then used as the input features for machine
learning algorithms to improve the sensitivity of medical
imaging diagnosis, and they can also circumvent the
requirement for large sample sizes in image-based deep-
learning algorithms. At present, the use of magnetic resonance
texture analysis (MRTA) to predict ccRCC grades is seldom
reported (9–11). The purpose of this study was to explore the
value of using MRI textures and machine learning algorithms for
predicting the grade of ccRCCs before operations.
MATERIALS AND METHODS

Clinical Data
This retrospective study was approved by our Hospital Authority
Review Committee. The requirement for informed consent was
waived because of the study’s retrospective nature. The analysis
included patients who met the following standards hospitalized
from July 2016 to January 2020 at the First Affiliated Hospital of
Fujian Medical University.

The inclusion criteria were: (i) patients surgically confirmed
with ccRCCs; (ii) patients who had undergone preoperative
contrast-enhanced MRI (corticomedullary phase, nephrographic
phase, and delayed phase) in our hospital within one week before
Frontiers in Oncology | www.frontiersin.org 282
operations; and (iii) patientswith single lesionswith shortdiameters
ofmore than 1 centimetermeasured on axial T2weighted imaging.

The exclusion criteria were: (i) patients with MRI images
with artifacts, such as respiratory movement or magnetic
sensitivity; (ii) patients with long lesion diameters ≤ 1cm; (iii)
patients with tumors presenting as obvious cystic degeneration
(cystic degeneration portion >75%); and (iv) patients with
preoperative puncture biopsy, interventions, or other treatments.

We enrolled 99 patients with histologically verified ccRCC.
These patients included 61 cases with low-grade disease (4 grade I
cases and 57 grade II cases) and 38 cases with high-grade disease
(32 grade III cases and 6 grade IV cases). The low-grade group
included 42 males and 19 females, while the high-grade group
included 25 males and 13 females. All MRI images were exported
from the Picture Archiving and Communication System (PACS) of
our hospital.

MRI Examination
All patients underwent a preoperative 3.0 Tesla MR
(MAGNETOM Verio, Siemens, Germany) examination with
the standard protocol using a phased-array body coil. Image
acquisition sequences and parameters were as follows:
(a) coronal half-Fourier acquisition single-shot turbo spin-echo
(HAST) sequences (repetition time msec/echo time msec, 1400/
91; field of view, 340×340 mm; matrix, 224×320; section
thickness, 5mm; intersection gap, 1mm); (b) transverse T2-
weighted single-shot fast spin-echo sequences (repetition time
msec/echo time msec, 2000/91; field of view, 340×340 mm;
matrix 224×320; section thickness, 3 mm; intersection gap,
0.8mm); (c) axial diffusion weighted imaging sequences
(repetition time msec/echo time msec, 6000/73; field of view,
340×340; section thickness, 4 mm; intersection gap, 0.8mm; and
two sets of b values: 50 and 800 sec/mm2); (d) transverse three-
dimensional fat suppressed T1-weighted interpolated spoiled
gradient echo (volumetric interpolated breath-hold
examination, VIBE) sequences (repetition time msec/echo time
msec, 3.92/1.39; field of view, 250×380 mm; matrix, 224×320;
section thickness, 3mm; intersection gap, 0.6 mm). The VIBE
sequences were performed prior to and three times after
intravenous injection of gadopentetate dimeglumine
(MultiHance, Bracco Sine, Shanghai, China; 0.1 mmol per
kilogram of body weight) at a rate of 2 mL/sec with a power
injector (Medrad, Warrendale, USA), followed by a 20 mL saline
flush. Corticomedullary phase images were obtained
approximately 40–50 seconds after administration of the
contrast material using timing, nephrographic phase images
were obtained at 80–100 seconds, and excretory phase images
were obtained 3 minutes later.

Placement of ROIs
All data were stored anonymously in the Digital Imaging and
Communications in Medicine (DICOM) format. The largest
cross-section of the tumor on the axial CMP images was first
determined, and then images of the selected layer were imported
into MaZda (version 4.6, http://www.eletel.p.lodz.pl/mazda/).
The two-dimensional region of interest (ROI) was then
delineated manually by an experienced radiologist (Ziqiang
October 2021 | Volume 11 | Article 708655
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Huang), who was engaged in urogenital system imaging
diagnosis and blinded to the nuclear grade of the ccRCCs.
Note that the edge of the lesion segmentation had shrunk
inward by 1–2 mm.

Feature Extraction
The differences in image brightness and contrast were reduced by
standardizing the gray scale of the images before texture
extraction, so that the image gray scale was within the range of
[µ−3s, µ+3s], where µ and s represent the mean gray value and
the standard deviation, respectively. The MaZda quantitative
texture analysis software package was used to extract texture
features, including the gray-scale histogram, co-occurrence
matrix, run-length matrix, and gradient and autoregressive
models. All 257 radiomics features were extracted from each
ROI for each patient. Three feature data sets (Data 1, Data 2, and
Data 3) were obtained from the same tumor images by
segmenting the data three times.

Reproducibility of Texture Features
The reproducibility of the texture features was evaluated by
calculating the intra-class correlation coefficients (ICCs) of 257
texture features among the three feature datasets. Only features
with an ICC value equal to or higher than 0.80, indicating
excellent reproducibility, were included in further feature
selection processes.

Feature Standardization
Before model development, various features were first
standardized to make them comparable using the ‘robustscale’
method in the Python package of scikit-learn (ver. 0.23.2, https://
scikit-learn.org/) (12). The specific formula is as follows:

zi =
Vi −M
IQR

where Vi is the original feature value, M is the median of the
feature, and IQR is the interquartile range (the difference
between the third quartile and the first quartile). The following
logistic transformation was then performed to minimize the
adverse effects of outliers on the stability of the classifier:

yi = 1= 1 + e−4zi
� �

:

Feature Selection
A random forest model was used to select features for model
development using the Random Forest Classifier function
provided by scikit-learn. A grid search algorithm was then
executed to determine a set of hyperparameters using the
“GridSearchCV” function provided by scikit-learn. The
random forest parameters were the following: ‘class_weight’ =
‘balanced’; ‘max_features’ = ‘log2’; and the rest were default
values. A random forest model was then fitted to the training set,
and the model then assigned each feature an importance
coefficient that represents the information gain for the specific
feature, where a larger value indicates a greater importance of the
feature. The number of features was determined by repeated
Frontiers in Oncology | www.frontiersin.org 383
iterations based on the accuracy of the model on the validation
set, while keeping the number of features as small as possible.
Finally, 6 features, namely Kurtosis, 135dr_RLNonUni,
Horzl_GLevNonU, 135dr_GLevNonU, S(4,4)Entropy, and S
(0,5)SumEntrp, with the largest importance coefficients
were selected.

Model Development
We used a multilayer perceptron algorithm (the MLP Classifier
function in scikit-learn) to develop the classification model. The
model parameters were the following: ‘activation’ = ‘relu’, and
‘solver ’ = ‘ lb fgs ’ , ‘ learning_rate ’ = ‘constant ’ and
‘hidden_layer_sizes’ = ‘(229),’. The most important parameter
was ‘hidden_layer_sizes’, which determines the number of
hidden layers and the number of nodes in each hidden layer.
In this work, we included only one hidden layer, which consisted
of 229 nodes. The number of nodes was optimized by repeated
iterations to achieve optimal accuracy on the validation set.

Statistical Analysis
Univariate analyses were performed with SPSS version 22 (SPSS
Inc.). In the training set, the continuous variables (age, tumor
size) between low-grade and high-grade groups were analyzed
with the Student’s t test or the Mann–Whitney U test. The Chi-
squared test was used to analyze the categorical variables
(gender) between the two groups. A p value less than 0.05 was
considered statistically significant.
RESULTS

Demographic Analysis
The baseline characteristics of the training and validation sets are
presented in Table 1. The training set consisted of 70 patients
with pathologically proven ccRCC lesions (low-grade ccRCCs: 3
grade I lesions and 40 grade II lesions; high-grade ccRCCs: 23
grade III lesions and 4 grade IV lesions). The validation set
consisted of 1 grade I lesion, 17 grade II lesions, 9 grade III
lesions, and 2 grade IV lesions. In the training set, the mean
ages ± standard deviations of the low-grade and high-grade
subgroups were 53.5 ± 11.5 years and 57.1 ± 10.9 years,
respectively. No statistically significant differences were found
for gender and age distribution between the low-grade and high-
grade ccRCC groups (p = 0.751 and 0.124, respectively). The
average tumor sizes were 4.0 cm and 6.1 cm, respectively, in the
low-grade and high-grade subgroups, and the difference was
statistically significant (p<0.001).

MRI Texture Analysis and Feature
Selection
The MRI images of 99 ccRCC tumors were used to extract 257
texture features with the MaZda software package. The features
included 7 histogram features, 220 gray co-occurrence matrix
features, 20 run-length matrix features, 5 gradient features, and 5
autoregressive model features.

The ICC ranges of the histogram features, gray level co-
occurrence matrix features, run-length matrix features, gradient
October 2021 | Volume 11 | Article 708655
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features, and autoregressive model features were (0.968, 0.998),
(0.828, 0.996), (0.880, 0.997), (0.934, 0.986), and (0.863,
0.984), respectively.

Upon obtaining stable texture features, we applied the
RobustScale method to standardize the feature values in the
training set, and we then carried out a logistic transformation on
them to minimize the negative impact of outliers on the model
development (see Materials and Methods for details). The
same formulas were archived and later applied to the
validation set. The 257 processed features were input into a
random forest model and fitted on the training dataset, while the
hyperparameters of the random forest model were optimized
with the grid search method.

The model assigned an importance coefficient to each feature.
The value of the coefficient represents the importance of the
feature. A set of top-ranked probes was selected to develop the
MLP model and to optimize the hyperparameters to achieve
the highest accuracy in the validation set. With the optimized
hyperparameters, the number of features was updated with the
new fitting model. This iteration was repeated manually to obtain
a minimal set of features without appreciably sacrificing the
accuracy. In the final model, 6 texture features were selected for
modeling. The heatmap of the 6 selected features is shown in
Frontiers in Oncology | www.frontiersin.org 484
Figure 1 for the training set. Figure 1 also shows that the low-
grade and high-grade ccRCCs are approximately clustered into
two separate groups, demonstrating the rationality of the
selected features.

Model Development
A multi-layer perceptron algorithm was used for developing the
prediction classifier. The final model has a three-layer structure:
an input layer, a hidden layer, and an output layer (see Figure 2).
The input layer consists of 6 nodes, corresponding to the 6
texture features, and the output layer consists of 2 nodes,
corresponding to the low-grade and high-grade groups. The
hidden layer has 229 nodes in the final model.

Model Validation
The optimized model was evaluated in the validation set. The
predictive indicators of the model in the training set and the
validation set are shown in Table 2. The accuracy was 95.7% and
86.2%, respectively, in the training set and the validation set. The
AUC values were 0.997 and 0.758, respectively, in the two sets
(Figure 3). In the training set, two low-grade tumors were
predicted as high-grade, and one high-grade tumor was
incorrectly classified (Figure 1). In the validation set, only one
FIGURE 1 | Prediction result and the heatmap of the selected 6 features in the training set along the clustering results of the samples and the features.
TABLE 1 | Analysis of baseline data from patients with ccRCCs.

Characteristic Low-grade group High-grade group Statistics P value

Patients (n) 61 38 – –

Age (mean ± SD, years) 53.5 ± 11.5 57.1 ± 10.9 -1.522 0.124
Gender 0.1 0.751
Male (n) 42 25
Female (n) 19 13
Tumor size (mean ± SD, cm) 4.0 ± 2.1 6.1 ± 2.9 -3.869 <0.001
Octob
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low-grade and three high-grade tumors were misclassified
(Figure 4). Figure 5 shows that the misclassified low-grade
tumors show higher similarities with the high-grade tumors
and that, similarly, the misclassified high-grade tumors also
show a higher similarity with the low-grade tumors. This result
suggests that the selected texture features might be inadequate
for discriminating these samples.

Figure 5 shows the distribution of the probabilities predicted
by the MLP model in the validation set. The prediction
probability of the model’s prediction results for the 24/29
samples of the validation set is greater than 0.9, which
indicates that the model is highly confident in the prediction
result and is relatively robust.
DISCUSSION

In this study, we evaluated the applicability of a machine learning
method based on MRI textures for the grade classification of
ccRCCs. A three-layer MLP classifier using 6 features from MRI
texture analysis exhibited satisfactory, reproducible, and reliable
Frontiers in Oncology | www.frontiersin.org 585
performance in discriminating the high-grade ccRCCs from the
low-grade ones, and it outperformed classifiers presented in
previous studies (8, 10, 13).

We adopted the latest WHO/ISUP grading system for renal
cell carcinoma as the classifying criterion. However, most of the
previous studies on the prediction of nuclear grading of ccRCC
by texture analysis have been based on the Fuhrman
classification system, which has some inevitable inadequacies,
such as interpretation difficulties and poor reproducibility in
clinical applications (10, 14). Besides the high application value
for ccRCC, the WHO/ISUP nuclear grading is also a reliable
prognosis indicator of patients with ccRCC (15).

In this study, we attempted to predict the nuclear
classification of ccRCCs by quantitative analysis based on the
texture features of MRI images. However, in current clinical
practice, radiologists estimate the degree of aggressiveness of
renal carcinoma based mainly on radiological findings (16, 17).
For example, Pedrosa et al. found that some MRI features, which
include both qualitative and semiquantitative parameters, can
differentiate low-grade and high-grade ccRCCs (18). However,
the classification is subjective and depends on the radiologist’s
TABLE 2 | Performance of the MLP classifier in the training and validation sets.

AUC ACC SEN SPE PPV NPV

Training set 0.997 0.957 96.30% 95.30% 92.90% 97.60%
Validation set 0.758 0.862 72.70% 94.40% 88.90% 85.00%
October 2
021 | Volume 11 | Article
FIGURE 2 | The topological structure of the 3-layer perceptron classifier.
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FIGURE 4 | Prediction result and the heatmap of the selected 6 features in the validation set along the clustering results of the samples and the features.
FIGURE 3 | The receiver operating characteristics curves of the classifier applied to the training set and validation set. The area under curve is 0.997 in the training
dataset and 0.758 in the validation set.
FIGURE 5 | The prediction probabilities assigned by the classifier in the validation set. The top annotation labels show the ground truth and the predicted result.
Frontiers in Oncology | www.frontiersin.org October 2021 | Volume 11 | Article 708655686
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experience. Quantitative MRI texture analysis is now playing an
increasingly important role in the clinical diagnosis and
treatment of tumors, and it can be used to distinguish the
pathological types and grades of tumors, to evaluate prognosis,
and to predict the therapeutic response of tumors (19–21).
Compared with CT examinations, MRI has multiple
advantages, including multi-parameter imaging, high soft tissue
resolution, high signal-to-noise ratio, and freedom from ionizing
radiation. The texture features of multiple sequence images can
be obtained with MRI, and this provides more feature space for
developing imaging markers for tumors. Therefore, MRI texture
analysis is a useful and promising method for non-invasive
prediction of the ISUP nuclear grade of ccRCCs.

Multiple machine learning models have been successfully
constructed to classify low-grade and high-grade ccRCCs (10,
13, 22). After comparing the performance of different models, we
obtained an optimal prediction result with MLP. The AUC value
of the classifier is 0.997 in the training set, indicating a good
performance of the MLP model. Bektas et al. developed machine
learning models to predict the Fuhrman nuclear grade of ccRCC
based on quantitative CT texture analysis (22). They achieved the
best prediction result using an MLP model with an AUC of 0.86.
We further validated the application value of our model by
creating a validation set to assess the accuracy and stability of the
model. Satisfactory results were obtained, with an AUC of 0.758
in the validation set.

Most studies on machine learning-based CT or MRI texture
analysis have not validated the developed models for predicting
the nuclear grade of ccRCC. A comprehensive review of the
radiomics literature on renal mass characterization in terms of
validation strategies did not reveal any validation performed in
19 (46%) of the 41 papers reviewed (23). In other words, only
slightly more than half of the studies described at least one
validation method, and these were predominantly internal
validation techniques. The wide clinical use of radiomics will
require proper validation strategies for developing machine
learning models. Compared with previous studies (24, 25), an
independent and prospective test set is needed for further
validation of our model in the future.

The current study has some inevitable limitations. One is that it
is a single-center and retrospective study, so selectivity bias may
exist.Another is the small sample size,whichmay lead tooverfitting
and low repeatability of the prediction results. Therefore, further
expansion of the sample size and cross-verification of the model at
multiple centers are needed. There is a slight imbalance in our
dataset where the number of low-grade patients is larger than the
number of high-grade patients. This issue could be addressed by the
SMOTE algorithm (26). However, due the limited sample size we
did not employ the method. Furthermore, the ratio between the
sample size of the low-grade and that of the high-grade is
approximately 3:2 where the class imbalance problem is not
critical to the model performance. A third limitation is that the
texture features extracted in this study are based on the two-
dimensional ROI of MR images at the maximum level of the
tumor, which may be biased by layer selection. Ideally, three-
dimensional radiomic features of the whole lesion should be
Frontiers in Oncology | www.frontiersin.org 787
extracted to obtain comprehensive tumor features. A fourth
limitation is that manual segmentation of MR images may be
affected by the consistency between observers; however, this
method is still widely used in texture analysis and remains the
“gold standard” (27). Here, the stability of the texture features was
evaluated by segmenting the lesions of all patients three times.
Tumor size is generally associated with the tumor grade and
therefore an important factor in tumor grading system. This
information has been encoded in the feature “dr135RLNonUni”
(Spearman’s r = 0.945 between the tumor diameter and
dr135RLNonUni) and therefore it was implicitly used in the final
model. The value of clinical factors other than radiomics signatures
will also be investigated in predicting the grades in future study.
CONCLUSIONS

An MLP model was successfully developed to classify the grades
of clear-cell renal cell carcinomas, thereby demonstrating that
ML-based MRI texture classifiers can be used preoperatively as a
complementary tool to predict the ISUP grade of ccRCCs. This
model can make a potential contribution to personalized
treatment for patients with ccRCCs.
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Ya-qiong Ge2, Jiang-ning Dong1* and Chao Wei1*

1 The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of
China, Hefei, China, 2 Department of the Healthcare, GE of China, Shanghai, China

Objective: This study aims to explore the value of magnetic resonance imaging (MRI) and
texture analysis (TA) in the differential diagnosis of ovarian granulosa cell tumors (OGCTs)
and thecoma-fibrothecoma (OTCA–FTCA).

Methods: The preoperative MRI data of 32 patients with OTCA–FTCA and 14 patients
with OGCTs, confirmed by pathological examination between June 2013 and August
2020, were retrospectively analyzed. The texture data of three-dimensional MRI scans
based on T2-weighted imaging and clinical and conventional MRI features were analyzed
and compared between tumor types. The Mann–Whitney U-test, c2 test/Fisher exact test,
and multivariate logistic regression analysis were used to identify differences between the
OTCA–FTCA and OGCTs groups. A regression model was established by using binary
logistic regression analysis, and receiver operating characteristic curve analysis was
carried out to evaluate diagnostic efficiency.

Results: Amultivariate analysis of the imaging-based features combined with TA revealed
that intratumoral hemorrhage (OR = 0.037), log-sigma-20mm-3D_glszm_SmallAreaEmphasis
(OR = 4.40), and log-sigma-2-0mm-3D_glszm_SmallAreaHighGrayLevelEmphasis (OR =
1.034) were independent features for discriminating between OGCTs and OTCA–FTCA (P <
0.05). An imaging-based diagnosis model, TA-based model, and combination model were
established. The areas under the curve of the three models in predicting OGCTs and OTCA–
FTCA were 0.935, 0.944, and 0.969, respectively; the sensitivities were 93.75, 93.75, and
96.87%, respectively; and the specificities were 85.71, 92.86, and 92.86%, respectively. The
DeLong test indicated that the combination model had the highest predictive efficiency (P <
0.05), with no significant difference among the three models in differentiating between OGCTs
and OTCA–FTCA (P > 0.05).

Conclusions: Compared with OTCA–FTCA, intratumoral hemorrhage may be
characteristic MR imaging features with OGCTs. Texture features can reflect the
microheterogeneity of OGCTs and OTCA–FTCA. MRI signs and texture features can
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help differentiate between OGCTs and OTCA–FTCA and provide a more comprehensive
and accurate basis for clinical treatment.
Keywords: granulosa cell tumor, fibrothecoma, thecoma, sex cord stromal tumors, magnetic resonance imaging,
texture analysis
INTRODUCTION

Ovarian sex cord stromal tumors are rare tumors that account
for approximately 7% of all ovarian tumors. According to the
2014 World Health Organization (WHO) ovarian tumor
histological classification, these tumors are divided into pure
stromal tumors, pure sex cord tumors, luteinized thecoma
associated with sclerosing peritonitis, and mixed sex cord
stromal tumors. Pure stromal tumors include three subtypes:
fibroma, cellular fibroma, and thecoma; these are mainly
distinguished based on whether they comprise theca cells,
lutein cells, fibroblasts, and fibrocytes. This group of tumors
has overlapping features in multidirectional differentiation
through histology, which makes it difficult to obtain a
pathological diagnosis in some cases. Therefore, these tumors
are traditionally named ovarian thecoma-fibrothecoma (OTCA–
FTCA) (1, 2).

OTCA–FTCA and ovarian granulosa cell tumors (OGCTs)
are the most common sex cord stromal tumors and have a low
incidence relative to other ovarian tumors. These tumors are
usually discovered by chance during gynecological examinations
or routine physical examinations as the symptoms are
nonspecific. OTCA–FTCA accounts for 0.5–1.0% of ovarian
tumors, is generally benign, and has an excellent prognosis
after resection, but a small proportion of these tumors (1.0–
5.0%) are malignant (3, 4). OGCTs are rare sex cord stromal
tumors with a low malignant potential and account for only 5%
of all malignant ovarian tumors, with adult and juvenile forms of
subtypes. OGCTs have a low degree of malignancy, show growth
patterns of benign tumors, and have potentially malignant
behaviors, including local invasion, recurrence, and metastasis
(5, 6). OTCA–FTCA is mainly found in menopausal women, and
less than 10% occur before age 30 (7, 8); however, OGCTs are
more common in postmenopausal women, and the juvenile type
is rare and typically occurs before 30 years of age. Sometimes
these tumors share similar clinical manifestations (such as
elevated estrogen levels leading to endometrial hyperplasia and
irregular vaginal bleeding). These tumors can have similar
imaging findings, such as combined with cystic degeneration,
edema, and hemorrhage, which may cause misdiagnosis in
radiography and inappropriate choice of treatment of
clinicians (9–11). Therefore, the preoperative diagnosis of
OTCA–FTCA and OGCTs is particularly important.

Magnetic resonance imaging (MRI) has high resolution in
soft tissues that clearly reveal the lesion characteristics,
relationship between the tumor and surrounding tissues, and
the status of lymph node disease (9). In particular, the
semiquantitative parameters deprived from diffusion-weighted
imaging (DWI) have gradually become one of the important
tools for evaluating ovarian tumors (12). Texture analysis (TA)
290
has been widely adopted in the differential diagnosis of tumors in
recent years and is considered to be an effective means to assess
tumor heterogeneity. Not only MRI-based texture analysis but
also CT texture-based analysis of the whole tumor has
demonstrated high sensitivity and specificity for the
characterization of ovarian tumors and may assist in
characterizing the differences in ovarian tumor patients. The
application of MRI-based texture features combined with
conventional MRI features may assist in improving the
differentiation of ovarian tumors. These findings, in turn, may
guide diagnostic protocols for future patients and can help
radiologists make appropriate follow-up decisions (3, 4, 7).

Therefore, the purpose of this study was to identify the best
features for distinguishing between OTCA–FTCA and OGCTs
through conventional MRI, TA, and the combination of the two
diagnostic methods to improve the accuracy of preoperative
imaging-based diagnoses and help clinicians choose
appropriate treatment methods.
MATERIALS AND METHODS

Clinical Information
This retrospective study was approved by the institutional review
board of The First Affiliated Hospital of University of Science
and Technology of China (USTC), and the requirement of
written informed consent was waived. Between June 2013 and
August 2020, 1,586 patients with clinically suspected adnexal
disease who underwent 3.0-T MR examinations were reviewed
through the picture archiving and communication system at the
First Affiliated Hospital of the USTC. A total of 46 patients with
histologically proven OGCTs (n = 14, 15–71 years of age) and
OTCA–FTCA (n = 32, 24–94 years of age) were included in this
study. The inclusion criteria were as follows: (1) surgically
diagnosed tumor with a known pathological type (according to
the 2014 WHO classification of ovarian tumors), (2) no
intervention before the MRI examination, (3) lesion that could
be measured and segmented on MRI, and (4) signed informed
consent form provided before the examination.

MRI Examination
MRI was performed using a 3.0-T system (Signa HDxT, GE
Healthcare) with an eight-channel phased array coil. The routine
MRI protocols used to assess the pelvic masses included axial T1-
weighted imaging (T1WI), axial/sagittal T2-weighted imaging
(T2WI), axial fat-suppressed T2WI (FS T2WI), DWI (b value =
0, 1,000 s/mm2), and multiple phases of contrast-enhanced
(LAVA-FLEX) MRI. For the axial images, the transverse plane
was perpendicular to the long axis of the uterine body; for the
October 2021 | Volume 11 | Article 758036
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sagittal images, the longitudinal plane was parallel to the main
body of the uterus. If contraindications were excluded, the
patients were often given an intramuscular injection of 20 mg
scopolamine 15 min before the examination to suppress MRI
motion artefacts caused by peristalsis. Contrast-enhanced pelvic
imaging was acquired at the arterial, venous, and delayed phases
of contrast medium enhancement in axial planes, which were
acquired at 25, 60, and 120 s after the intravenous injection of 0.1
mmol/kg gadodiamide (Omniscan, GE Healthcare) using an
Ulrich power injector. Some of the scanning sequences and
parameters are shown in Table 1.

Radiological Evaluation
Two radiologists (YuC and BS, with 10 and 7 years of experience
in gynecological imaging, respectively) who were blinded to the
histological results independently analyzed the MRI data of each
participant, and discrepancies were resolved by consensus. The
following MRI features were recorded and analyzed for the two
groups: size (the maximum diameter of the tumor and the
shortest perpendicular diameter measured on T2WI, the
maximum upper and lower diameter of the tumor measured
on sagittal T2WI, and the average size of the aboved diameters),
endometrial hyperplasia (endometrium thickness greater than 5
mm after menopause and greater than 16 mm in premenopausal
women) (12), apparent diffusion coefficient (ADC) value (103

mm2/s) [mean value obtained from three measurements of a
region of interest (ROI) manually placed in the solid components
of the tumors and myometrium, and the calculated ratio; the ROI
was drawn using GE AW4.5 workstation Functool-MADC
software, and attempts were made to avoid tumor necrosis and
cystic areas], enhancement degree, T2WI signal, and DWI signal
of the solid component of the tumors (hypointense, isointense,
or hyperintense compared with the myometrium at the same
level), location (left or right), degree of cystic components
(graded as 0–4°; grade 0 = no cystic change; grade 1 = area
with cystic changes was ≤25%; 25% < grade 2 ≤ 50%; 50% < grade
3 ≤ 75%; and 75% < grade 4), cystic form (no cyst, mainly small
sac, mainly large and mixed; small sac ≤1.0 cm, large sac >1.0 cm,
or a mix of both), intratumoral hemorrhage (present or absent),
and age (years, mean ± standard deviation, SD).

Texture Feature Extraction
The images of OTCA–FTCA and OGCTs were manually
segmented, and volumes were extracted using ITK Snap software
(3.8.0, http://www.itksnap.org). ROIs were delineated around the
tumor boundary for each section by two radiologists (YuC and BS).
Frontiers in Oncology | www.frontiersin.org 391
After tumor segmentation, AK software (Analysis Kit Version: 3.2.0;
GE Healthcare) was used for texture feature extraction, and 1,316
features, such as the mean, entropy, energy, skewness, kurtosis, and
standard deviation, were obtained in this study.

Statistical Analysis
Continuous and categorical variables were compared using the t-
test and c2/Fisher’s exact test, respectively. Continuous variables
are expressed as the mean ± standard deviation, and categorical
variables are expressed as the frequency and percentage (%).
Continuous variables were first tested for normality to
understand the data distribution, and the variables were tested
as follows: (1) an independent-sample t-test was used to compare
variables both conforming to a normal distribution, and (2) the
Mann–Whitney U-test was used to compare variables
conforming to a skewed distribution and variables conforming
to a skewed distribution with those conforming to a normal
distribution. Continuous and categorical variables showing
significant differences were analyzed by multivariate logistic
regression analysis with the forward step method to screen for
independent discriminant features, which were used to construct
the discriminating model. Receiver operating characteristic
(ROC) curve and area under the curve (AUC) analyses were
performed with MedCalc (version 19.5.3, https://www.medcalc.
org/) to determine the overall diagnostic performance of the
radiographic model, texture model, and combined model. SPSS
26.0 software (version 20.0, IBM, Armonk, NY, USA) was used
for statistical analysis, and P <0.05 was considered statistically
significant. The intraclass correlation coefficient (ICC) was used
to evaluate the consistency between evaluator 1 and evaluator 2,
and an ICC between 0.81 and 1.00 indicated good agreement.
RESULTS

Pathological, Clinical, and Imaging
Findings
The pathological diagnoses of all OTCA–FTCA and OGCTs were
made by a pathologist (YuC, with 8 years of experience in
gynecological tumors) according to the 2014 WHO ovarian sex
cord stromal tumor histological classification. Finally, a total of 32
patients with OTCA–FTCA (mean age, 52.93 ± 12.39 years) and 14
patientswithOGCTs(meanage, 49.93±19.19years)were enrolled in
this study. The 14 patients with OGCTs included 12 adult and two
juvenile patients, with eight patients with tumors in the right ovary,
TABLE 1 | Partial list of MRI parameters.

SEQUENCE TE (ms) TR (ms) Freq × phase Nex FOV Slice thickness Interval Flip angle

FS T2WI 72.5 5,000 320 × 256 2 24 × 24 6 2 90°
T2WI 72.5 4,600 320 × 256 2 24 × 24 6 2 90°
Osag T2WI 72 4,500 320 × 320 2 28 × 28 4 1 90°
T1WI 7.5 500 352 × 192 2 32 × 32 6 2 90°
DWI (b = 0, 1,000 s/mm2) / 5,000 96 × 130 6 32 × 32 6 2 90°
Oax LAVA-FLEX 1.4 5.8 320 × 224 1 34 × 31 4 0 15°
Osag LAVA-FLEX 1.3 6.8 268 × 224 1 28 × 25 4 0 15°
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six patients with tumors in the left ovary, and three patients with
endometrial hyperplasia (21%). There were 11 patients with cystic–
solid changes (two small sacs, one large sac, and eight mixed types)
(Figure 1) and 11 patients with hemorrhage signal (76%) in the
tumor (Figure 2); the enhancement degree of the solid components
of the tumor was mainly mild to moderate (eight patients with mild
enhancement and six patients withmoderate enhancement), with no
patients with marked enhancement. Among the 32 patients with
OTCA–FTCA, 23 patients had tumors in the right ovary, nine
patients had tumors in the left ovary, and three patients had
endometrial hyperplasia (9%); 18 solid masses (Figure 3) were
observed, with 14 showing mainly cystic–solid changes (one small
cyst, 10 large cysts, and three mixed). There were five patients (16%)
with hemorrhage signals in the tumor. As shown in Table 2, the
following four MRI-based characteristics were significantly different
between the OGCTs and OTCA–FTCA groups: (1) the mean ADC
value of the solid component (z= -1.982,P= 0.047), (2) the degree of
enhancement of the solid component (c2/9.084, P = 0.003), (3) the
cystic form (Fisher/0.006, P = 0.008), and (4) the presence of
intratumoral hemorrhage (Fisher/0.000, P=0.000).

Diagnostic Performance of the Texture
Features
Least absolute shrinkage and selection operator (Lasso)
regression was performed in R (3.6.1, http://www.r-probject.
Frontiers in Oncology | www.frontiersin.org 492
org) to reduce the dimensionality of the features and filter and
remove redundancy parameters (|r| > 0.8) to reduce the impact
of data overfitting. First, the Mann–Whitney U-test was applied
to the features to explore whether the features were significantly
different between the two groups, and 123 features with p <0.05
were retained. Second, univariate logistic regression was applied
to explore whether the features were discriminative between the
two groups, and 78 features with p <0.05 were retained. Third,
minimum redundancy and maximum correlation were applied
to eliminate the redundant features and retain the features that
were highly correlated with the label, and 10 features were
retained. Then, the retained features were enrolled in backward
stepwise multivariate logistic regression, and the final model was
constructed. The explanation of the texture analysis features is
shown in Table 3.

The ICC was used to evaluate the consistency between
radiologist 1 and radiologist 2 and was 0.81–1.00 (P < 0.001),
indicating good consistency. Finally, the average of the two sets
of data was used as the new texture data for statistical analysis. As
shown in Table 4, the following six texture features were
significantly different between the OGCTs and OTCA–FTCA
groups: (1) log-sigma-2-0-mm-3D_glszm_SmallAreaEmphasis
(SAE) (z = -4.201, P = 0.000), (2) log-sigma-2-0-mm-
3D_glszm_SmallAreaHighGrayLevelEmphasis (z = -3.187,
P = 0.340), (3) log-sigma-3-0-mm-3D_glcm_InverseVariance
FIGURE 1 | A 61-year-old female patient with an ovarian granulosa cell tumor. (A) Axial T2WI revealed a cystic solid mass in the right adnexal region that manifested
with a “spongy” or “honeycomb” change (white arrow). (B) Sagittal T2WI showed thickening of the endometrium to a thickness of approximately 1.9 cm. (C) Axial
T1WI revealed a cystic solid mass with a hypo–isointense signal. (D) On contrast-enhanced fat-suppressed T1WI, the solid components (red arrow) of the lesion
showed mild and moderate enhancement, with a region resembling the myometrium. (E) On DWI-MRI (b = 1,000 s/mm2), the solid part of the lesion appeared
hyperintense (yellow arrow), and the cystic part appeared hypointense. (F) The apparent diffusion coefficient (ADC) map showed that the average ADC value of the
diffuse high-signal area was approximately 0.7 × 10-3 mm2/s. (G) Hematoxylin and eosin (H&E) staining (×100) showed that the tumor cells appeared as large
islands, diffusely distributed in nests and rich in interstitial separation and blood vessels. (H) The texture analysis target area was delineated throughout the whole
tumor layer by layer.
October 2021 | Volume 11 | Article 758036

http://www.r-probject.org
http://www.r-probject.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Features of OGCTs and OTCA–FTCA
(z = -3.342, P = 0.001), (4) wavelet-LLH_glcm_MCC (z = -4.106, P =
0.001), (5) wavelet-HLH_glszm_SmallAreaHighGrayLevelEmphasis (z
= -2.984, P = 0.003), and (6) wavelet-HLL_glszm_LowGrayLeve
lZoneEmphasis (z = -3.103, P = 0.002).

Diagnostic Performance of the Predictive
Models Based on MRI Characteristics,
Texture Features, and Combined Features
The variables with significant differences in the univariate analysis
were included in the multivariate logistic regression analysis for
screening. As shown in Table 5, the overall imaging-based diagnosis
(IBD) and overall TA prediction models based on MRI
characteristics and texture features were established, respectively:
(Y-IBD) = -10.04 + 6.67 × ADC (average) + 4.67 × enhancement
degree (solid) (mild = 0, moderate = 1, marked = 3) - 4.63 ×
intratumoral hemorrhage (present = 0, absent = 1), and (Y-TA) =
-11.39 + 33.18 × log-sigma-2-3D_glszm_SmallAreaEmphasis (x ± s)
- 0.03 × log- sigma-2-0mm-3D_glszm_SmallAreaHighGray
LevelEmphasis (x ± s). Three IBD and two TA predictive
factors were simultaneously included in the multivariate
logistic regression analysis, and the combined prediction model
was established: (Y-Combine) = -12.33 + 30.76 × log-sigma-
20mm-3D_glszm_SmallAreaEmphasis (x ± s) - 0.03 × log-
sigma-2-0mm-3D_glszm_SmallAreaHighGrayLevelEmphasis
(x ± s) + 3.31 × intratumoral hemorrhage (present = 0, absent =
Frontiers in Oncology | www.frontiersin.org 593
1). The three prediction models established in this study could
accurately predict OGCTs and OTCA–FTCA (P < 0.05). The
results of the DeLong test showed that the efficacies of Y-IBD, Y-
TA, and Y-Combine were not significantly different (P > 0.05;
Figures 4, 5 and Tables 5, 6).
DISCUSSION

OTCA–FTCA and OGCTs are the most common sex cord stromal
tumors and have a low incidence relative to other ovarian tumors.
The radiological knowledge of those rare ovarian tumors is still
limited in the reported literature; furthermore, the imaging findings
of the two entities are similar. Herein we performed a retrospective
review of theMRI findings of 32 patients with OTCA–FTCA and 14
patients with OGCTs in this study at our single institution within 7
years. To the best of our knowledge, this is the first study to describe
the detailed MRI sign and TA characteristic in this samples.

In our study, the clinical characteristics [age (years), size
(maximum), size (average), menopausal status, presence of
endometrial hyperplasia, and location] were compared, and there
were no significant differences between the two tumors, indicating
that they have similar clinical characteristics, as shown in Table 2.
Combined with literature reports, we found the following: (1) The
incidence of intratumoral hemorrhage in this group of OGCTs was
FIGURE 2 | A 58-year-old female patient with an ovarian granulosa cell tumor. (A) Axial T2WI revealed a well-defined cystic solid mass in the left adnexal region,
with fluid–fluid levels (hemorrhagic content, white arrow). (B) Sagittal T2WI showed no thickening of the endometrium. (C) Axial T1WI revealed a cystic solid mass
with a hypo–isointense signal. (D) On contrast-enhanced fat-suppressed T1WI, the solid components (red arrow) of the lesion showed mild enhancement. (E) On
DWI-MRI (b = 1,000 s/mm2), the solid part of the lesion (yellow arrow) appeared hyperintense. (F) The apparent diffusion coefficient (ADC) map showed that the
average ADC value of the diffuse high-signal area was approximately 1.1 × 10-3 mm2/s. (G) Hematoxylin and eosin (H&E) staining (×100) showed that the tumor cells
were solid tubular structures, and the tubules were composed of uniform cells containing Call–Exner bodies. (H) The texture analysis target area was delineated
throughout the whole tumor layer by layer.
October 2021 | Volume 11 | Article 758036
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as high as 76%, which is higher than that reported in the literature
(13). Intratumoral hemorrhage mainly manifested as high signal on
T1WI and high signal or low signal on T2WI, and the fluid–fluid
level due to hemorrhage could be seen in some lesions. In
comparison, the incidence of intratumoral hemorrhage in
OTCA–FTCA was only 16% (5/32). The multivariate logistic
regression analysis found that the presence of intratumoral
hemorrhage could help diagnose OGCTs (OR = 0.12, 95% CI:
0.001–0.284), which is consistent with previous reports that
intratumoral hemorrhage is a typical feature of these tumors (14);
(2) OTCA–FTCA is composed of theca cells, lutein cells, and
fibroblasts. This group of tumors is prone to secondary
degenerative changes, such as tumor stromal edema and
mucinous degeneration, which may lead to high ADC values
(1.50 ± 0.32 × 103 mm2/s). In contrast, OGCTs are low-grade
malignant tumors that histologically show diffuse, island, beam,
follicular, and sarcoma-like growth patterns. These patterns often
exist mixed, and the relatively tight arrangement results in more
restricted water molecule diffusion with lower ADC values (1.27 ±
0.37 × 103 mm2/s) than that of OTCA–FTCA. Therefore, the
average ADC value was significantly different between the two
tumors (Z = -1.982, P = 0.047) (15).When the ADC value was ≤1.34
× 103 mm2/s, its sensitivity for diagnosing OGCTs was 71.34%, and
the specificity was 65.62% (AUC = 0.685, 95% CI: 0.532 to 0.814,
Frontiers in Oncology | www.frontiersin.org 694
P = 0.048); (3) In our group, 94% (30/32) of the OTCA–FTCA
tumors were mildly enhanced, 6% (2/32) were moderately
enhanced, and none showed marked enhancement. In
comparison, 57% (8/14) of the OGCTs were mildly enhanced,
43% were moderately enhanced, and none showed marked
enhancement. There was a significant difference in the degree of
enhancement between the two tumor types (OR = 0.89, 95% CI:
0.015–0.527). It is possible that OTCA–FTCA contains fibrous
components, resulting in a lower blood supply and lower
enhancement than OGCTs. This is also consistent with previous
reports that OTCA–FTCA tumors have a low blood supply,
resulting in mild enhancement on MRI (16–18); (4) OGCTs are
mostly solid or cystic–solid, and it has been reported in the literature
that a “honeycomb” or “sponge” cyst is the characteristic imaging
manifestation (19). OTCA–FTCA is often prone to secondary cystic
transformation when the tumor volume is large. Some scholars have
reported that the cystic transformation rate is 76% (19/25) (20), so
the tumor often appears as a cystic–solid or cystic mass, which may
be preoperatively misdiagnosed as OGCTs or other ovarian tumor.
Other scholars have divided these tumors into solid, cystic, and
cystic–solid masses according to the degree of the cystic component.
Cystic–solid masses are divided into intratumoral cysts and
extratumoral cysts according to whether the cysts are located in
the tumor. Intratumoral cysts are divided into peripheral, central,
FIGURE 3 | A 65-year-old female patient with right ovarian thecoma–fibrothecoma. (A) Axial T2WI revealed a solid mass in the right adnexal region (white arrow),
showing mainly a low-signal mass with a semiarc shape and high signal at the left front edge. (B) Sagittal T2WI showed thickening of the endometrium to a
thickness of approximately 1.2 cm. (C) Axial T1WI revealed a solid mass with hypo–isointense signal (white arrow). (D) On contrast-enhanced fat-suppressed T1WI,
the solid components (red arrow) of the lesion showed mild enhancement. (E) On DWI-MRI (b = 1,000 s/mm2), the solid part of the lesion of the left front edge
appeared hyperintense (yellow arrow). (F) The apparent diffusion coefficient (ADC) map showed that the average ADC value of the diffuse high-signal area was
approximately 1.78 × 10-3 mm2/s. (G) Hematoxylin and eosin (H&E) staining (×100) showed that the tumor was composed of spindle cells and collagen fibers
arranged in a mat-like pattern with interwoven bundles, and hyaline degeneration of fibrous tissue bands and intercellular edema were observed to varying degrees.
The tumor cell nucleus was fusiform to oval, with sparse cytoplasm and containing a small amount of lipids; the mitotic index was <3/10 HPF. (H) The texture
analysis target area was delineated throughout the whole tumor layer by layer.
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and diffuse types according to their location. The study showed that
peritumoral cysts are a characteristic MRI sign (21). In our study,
the types of cysts were divided into five degrees according to the
degree of cystic degeneration (no cyst: 0°, 0–25%: 1°, 25–50%: 2°,
50–75%: 3°, and greater than 75%: 4°), and the forms of cystic
transformation were divided into four forms (no cystic
transformation, small cyst, large cyst, and mixed). Between the
two tumor types, there was no significant difference in the degree of
cystic transformation (Fisher = 0.149, P = 0.229), but there was a
significant difference in the form of cystic transformation (Fisher =
0.006, P = 0.008), indicating that OGCTs mainly demonstrated
mixed cystic changes, while OTCA–FTCA predominantly exhibited
macrocystic changes. In this study, a weak correlation existed
between tumor size and the degree of cystic transformation in the
OGCTs group (Kendall’s tau-b = 0.618, P < 0.001), and no
correlation was observed in the OTCA–FTCA group (Kendall’s
tau-b = -0.025, P = 0.857). It is inconsistent with related reports (17)
and may be caused by the small sample size.

In the multivariate logistic regression analysis, the IBD model
established had an AUC of 0.935, and its sensitivity, specificity,
and Youden index were 85.71%, 93.75%, and 0.794 (95% CI:
0.822 to 0.987, P < 0.0001), respectively, so the significant
features, such as the mean ADC value, enhancement degree,
and presence of intratumoral hemorrhage, were important
predictors to distinguish between OGCTs and OTCA–FTCA.

TA is different from traditional empirical image analysis based
on observations with the naked eye. TA can provide a large amount
Frontiers in Oncology | www.frontiersin.org 795
of imaging information that cannot be recognized by the naked eye
by quantitatively analyzing the grayscale information of medical
images, realizing the conversion from images to data, and
constructing labels to describe the details of the lesion features.
Thus, this information could be of value in helping clinicians
develop reasonable treatment strategies (22). In recent years, TA
has been regarded as an effective means to assess tumor
heterogeneity. This method can be used to evaluate the gray-level
intensity and position of the pixels within an image to derive texture
features that provide a measure of intralesional heterogeneity. TA
data are easy to obtain, and no additional imaging is required. In
addition, TA plays a relatively important role in evaluating clinical
curative effects and predicting prognosis. Many researchers have
conducted excellent research, especially with radiomics, in
predicting the development trends of tumor lesions (23, 24). The
TA in the present study is based on the T2WI sequence because
conventional T2WI can reveal the rich histopathological
characteristics of tumors, for example, by determining the water
content, degree of fibrotic change, necrosis, and hemorrhage (15).

As shown in Table 4, the univariate analysis demonstrated that
six texture features were significantly different between the
OGCTs and OTCA–FTCA groups (P < 0.05). Among the six
features, the log-sigma-2-0-mm-3D_glszm_SmallAreaEmphasis,
log-sigma-2-0-mm-3D_glszm_SmallAreaHighGrayLevel
Emphasis, and log-sigma-3-0-mm-3D_glcm_InverseVariance
were derived from the image transform type of Laplacian of
Gauss ian . The wave le t -LLH_g lcm_MCC, wave le t -
TABLE 2 | Details of the clinical and MR imaging-based characteristics of 14 histologically proven OGCTs and OTCA–FTCA in 32 patients.

Characteristics Category OGCTs (n = 14) OTCA–FTCA (n = 32) 2/Fisher/z value P-value

Age (years) 49.93 ± 19.19 52.93 ± 12.39 z/-0.478 0.632
Size (maximum) / 6.65 ± 4.60 8.08 ± 5.33 z/-0.967 0.333
Size (average) / 6.47 ± 4.74 7.96 ± 5.18 z/-1.146 0.252
Mean ADC (103 s/mm2) / 1.27 ± 0.37 1.50 ± 0.32 z/-1.982 0.047
ADC (103 s/mm2, ratio) / 0.93 ± 0.24 1.05 ± 0.27 z/-1.695 0.090
Menopause Postmenopausal 10 (71%) 21 (66%) c2/0.149 0.699

Premenopausal 4 (29%) 11 (34%)
Endometrial hyperplasia Present 3 (21%) 3 (9%) Fisher/0.350 0.264

Absent 11 (79%) 29 (91%)
T2WI intensity (solid) Hypointense 2 (14%) 12 (38%) Fisher/0.102 0.084

Isointense 6 (43%) 11 (34%)
Hyperintense 5 (36%) 3 (9%)
Mixed signal 1 (7%) 6 (19%)

Location Right 8 (57%) 23 (72%) Fisher/0.495 0.327
Left 6 (43%) 9 (28%)

DWI intensity (solid) Isointense 1 (7%) 5 (16%) Fisher/0.175 0.149
Hyperintense 1 (7%) 9 (28%)

Mixed 12 (86%) 18 (56%)
Enhancement degree (solid) Mild 8 (57%) 30 (94%) c2/9.084 0.003

Moderate 6 (43%) 2 (6%)
Marked 0 (0%) 0 (0%)

Degree of cystic components None 3 (21%) 18 (56%) Fisher/0.149 0.229
<25% 4 (29%) 4 (13%)

25–50% 1 (7%) 3 (9%)
50%~75% 1 (7%) 1 (3%)
>75% 5 (36%) 6 (19%)

Cystic form Small cyst 2 (14%) 1 (3%) Fisher/0.006 0.008
Large cyst 1 (7%) 10 (31%)
Mixed 8 (57%) 3 (9%)

Intratumoral hemorrhage Present 11 (76%) 5 (16%) Fisher/0.000 0.000
Absent 3 (24%) 27 (84%)
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HLH_glszm_SmallAreaHighGrayLevelEmphasis, and wavelet-
HLL_glszm_LowGrayLevelZoneEmphasis were derived from the
image transform type of wavelet. The features belong to the gray
level co-occurrencematrix (GLCM), and the gray level size zonematrix
can assess the second-order joint probability function and quantify gray
level zones in the image (25). A gray level zone is defined as the number
of connected voxels that share the same gray level intensity (26). In the
multivariate logistic regression analysis with the forward step method,
we found that two features from the image transform type of Laplacian
of Gaussian—log-sigma-2-0-mm-3D_glszm_SmallAreaEmphasis and
Frontiers in Oncology | www.frontiersin.org 896
Log-sigma-20mm-3D_glszm_SmallAreaHighGrayLevelEmphasis—
are independent risk predictors for distinguishing betweenOGCTs and
OTCA–FTCA (P < 0.05). The Laplacian operator can highlight areas in
the image where the intensity changes rapidly. The log-sigma-2-0-mm-
3D_glszm_SmallAreaEmphasis and log-sigma-20mm-
3D_glszm_SmallAreaHighGrayLevelEmphasis describe the
distribution of small size zones and the proportion of the joint
distribution of smaller size zones with higher gray level values,
respectively (27). In our study, the log-sigma-2-0-mm-
3D_glszm_SmallAreaEmphasis value of OTCA–FTCA was
TABLE 3 | Explanation of the texture analysis features.

Image type Features Feature explanation

log-sigma-2-0-mm-3D glszm_SmallAreaEmphasis Small area emphasis (SAE): SAE is a measure of the distribution of small size zones, with a
greater value indicative of much smaller size zones and more fine texturesSNg

i=1S
Ns
j=1

p(i,j)
j2

Nz

glszm_SizeZoneNonUniformityNormalized SZNN measures the variability of size zone volumes throughout the image, with a lower value
indicating more homogeneity among zone size volumes in the image. This is the normalized
version of the SZN formula

SNs
j=1(S

Ng

i=1p(i, j)
2)

Nz

glszm_SmallAreaHighGrayLevelEmphasis SAHGLE measures the proportion in the image of the joint distribution of smaller size zones with
higher gray-level valuesSNg

i=1S
Ns
j=1

p(i,j)i2

j2

Nz

log-sigma-3-0-mm-3D glcm_InverseVariance Reflects the local variation of the image texture; so, if more uniformity was found in the different
regions of the image texture, this indicates that the change is slower, the value will be larger, and
vice versao

Ng−1

k=1

px−y (k)

k2

wavelet-LLH glcm_MCC Maximal correlation coefficient (MCC). The maximal correlation coefficient is a measure of
complexity of the texture and 0 ≤ MCC ≤ 1. In case of a flat region, each GLCM matrix has shape
(1, 1), resulting in just 1 eigenvalue.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
Ng

k=0

p(i, k)p(j, k)
px (i)py (k)

s

wavelet-HLH_ glszm_SmallAreaHighGrayLevelEmphasis Measures the proportion in the image of the joint distribution of smaller size zones with higher
gray-level valuesSNg

i=1S
Ns
j=1

p(i,j)i2

j2

Nz

wavelet-HLL glszm_LowGrayLevelZoneEmphasis Measures the distribution of lower gray-level size zones, with a higher value indicating a greater
proportion of lower gray-level values and size zones in the imageSNg

i=1S
Ns
j=1

p(i,j)
i2

Nz

lbp-3D-k glszm_ZonePercentage Measures the coarseness of the texture by taking the ratio of the number of zones and number of
voxels in the region of interest (ROI). Values are in the range 1Np ≤ ZP ≤ 1, with higher values
indicating a larger portion of the ROI consisting of small zones (indicates a finer texture)

Nz

Np

lbp-3D-k firstorder_Kurtosis Kurtosis is a measure of the “peakedness” of the distribution of values in the image region of
interest. A higher kurtosis implies that the mass of the distribution is concentrated towards the tail
(s) rather than towards the mean. A lower kurtosis implies the reverse: that the mass of the
distribution is concentrated towards a spike near the mean value

m4

s4 =
1
Np
SNp

i=1(X(i) −
�X)4

( 1Np
SNp

i=1(X(i) −
�X)2)2

original_shape_Sphericity Sphericity Sphericity is a measure of the roundness of the shape of the tumor region relative to a sphere. It
is a dimensionless measure, independent of scale and orientation. The value range is 0 <
sphericity ≤ 10 <sphericity ≤ 1, where a value of 1 indicates a perfect sphere (a sphere has the
smallest possible surface area for a given volume, compared to other solids)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36pV23

p

A

Reference: https://pyradiomics.readthedocs.io/en/latest/features.html.
TABLE 4 | Results of the univariate analysis of texture features that were significantly different between the OGCTs and OTCA–FTCA groups.

Features OGCTs OTCA–FTCA Mann–Whitney U Z-value P-value

log-sigma-2-0-mm-3D_glszm_SmallAreaEmphasis 0.38 ± 0.094 0.70 ± 0.26 50.000 -4.201 0.000
log-sigma-2-0-mm-3D_glszm_SizeZoneNonUniformityNormalized 0.16 ± 0.059 397.89 ± 676.32 184.000 -0.955 0.340
log-sigma-2-0-mm-3D_glszm_SmallAreaHighGrayLevelEmphasis 92.85 ± 87.99 39.93 ± 73.47 92.000 -3.187 0.001
log-sigma-3-0-mm-3D_glcm_InverseVariance 0.33 ± 0.053 1.55 ± 1.35 84.000 -3.342 0.001
wavelet-LLH_glcm_MCC 0.64 ± 0.12 604.17 ± 873.98 52.000 -4.106 0.000
wavelet-HLH_glszm_SmallAreaHighGrayLevelEmphasis 52.32 ± 29.84 56.13 ± 203.67 99.000 -2.984 0.003
wavelet-HLL_glszm_LowGrayLevelZoneEmphasis 0.04 ± 0.06 3.93 ± 6.73 94.000 -3.103 0.002
lbp-3D-k_glszm_ZonePercentage 0.009 ± 0.003 99.68 ± 195.12 202.000 -0.525 0.599
lbp-3D-k_firstorder_Kurtosis 8.73 ± 4.06 99.65 ± 163.28 206.000 -0.430 0.667
original_shape_Sphericity 0.75 ± 0.04 24.14 ± 34.74 212.000 -0.286 0.775
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significantly lower than that of OGCTs, which means that smaller size
zones and fine textures were observed in the solid lesions of OTCA–
FTCA composed of similar theca cells, lutein cells, and fibroblasts (18).
OTCA–FTCA also had significantly less intratumoral hemorrhage
than OGCTs in the present study (P < 0.05). For the log-sigma-20m
m-3D_glszm_SmallAreaHighGrayLevelEmphasis value, the OGCTs
obviously contained a greater proportion of the joint distribution of
smaller size zones with higher gray level values on T2WI scans than
OTCA–FTCA (P < 0 .05 ) . The log - s i gma-20mm-
3D_glszm_SmallAreaHighGrayLevelEmphasis is a quantitative index
used to compensate for the shortage of MRI findings on T2WI based
on solid or cystic components that can be compared. Then, the TA-
based predictive model was obtained and had a diagnostic
performance/AUC, specificity, and sensitivity of 0.944, 92.86%, and
93.75%, respectively (P < 0.05).

The AUC of the IBD and TA combined prediction model to
distinguish between OGCTs and OTCA–FTCA was 0.969. When
compared with MRI features or TA parameters alone, the
Frontiers in Oncology | www.frontiersin.org 997
combined model showed no significant difference, even though
the sensitivity and specificity of the combination were improved
to some extent. Therefore, it is believed that the diagnostic
performance of the combination model was similar to that of
MRI-IBD or T2WI-TA features alone. Furthermore, the
diagnostic performance of T2WI-TA parameters was similar to
that of MRI-IBD features in helping to distinguish between
OGCTs and OTCA–FTCA, which may be less strongly
associated with the sample size. However, TA can provide
another method to identify OGCTs and OTCA–FTCA.

The present study has several limitations. First of these is the
limited study sample size (14 patients with OGCTs and 32 patients
withOTCA–FTCA)due to the low incidence of these tumors relative
to other ovarian tumors. It might have influence on the final results,
suchas the rigorofROCcurveanalysis. Second, therewasan inherent
selection bias because the retrospective study was conducted in one
institution.We urge the clarification of the imaging findings in larger
population-based studies. Third, the ROIs of the ADC and TA were
TABLE 5 | Multivariate logistic regression and receiver operating characteristic curve analysis for the overall IBD, overall TA, and combined IBD with TA models.

Features Multivariate logistic regression analysis Receiver operating characteristic analysis

B P-value Odds ratio 95% CI AUC Specificity Sensitivity

Overall IBD
Mean ADC (103 s/mm2) 6.67 0.015 0.001 0.000 to 0.232 0.685 71.43 65.62
Presence of intratumoral hemorrhage -4.63 0.020 0.012 0.001 to 0.284 0.815 78.57 84.37
Enhancement degree (solid) 4.67 0.004 102.596 2.055 to 5,121.212 0.683 42.86 93.75
Pre model 0.935 85.71 93.75

Overall TA
Log-sigma-20mm-3D_glszm_SmallAreaEmphasis 33.18 0.009 3.91 6.540 to 0.0002 0.885 85.71 84.37
Log-sigma-20mm-3D_glszm_SmallAreaHighGrayLevelEmphasis -0.03 0.036 1.032 1.002 to 1.062 0.795 100.00 71.87
Pre model 0.944 92.86 93.75

Combined IBD and TA
Presence of intratumoral hemorrhage 3.31 0.030 0.037 0.002 to 0.721 0.815 78.57 84.37
Log-sigma-20mm-3D_glszm_SmallAreaEmphasis 30.76 0.024 4.40 1.089 to 0.018 0.885 85.71 84.37
Log-sigma-20mm-3D_glszm_SmallAreaHighGrayLevelEmphasis -0.03 0.047 1.034 1.000 to 1.068 0.795 100.00 71.87
Combined model 0.969 92.86 96.87
October 2
021 | Volume 11
IBD, imaging-based diagnosis; TA, texture analysis; Pre, prediction.
FIGURE 4 | (A) (ROC) curve analysis of the diagnostic abilities of apparent diffusion coefficient values (average), enhancement degree, presence of intratumoral
hemorrhage, and the prediction models. (B) ROC curve analysis of Log-sigma-2-0mm-3D_glszm_SmallAreaEmphasis, Log-sigma-2-0mm-
3D_glszm_SmallAreaHighGrayLevelEmphasis, and the prediction models. (C) ROC curve analysis of the overall imaging-based diagnosis (IBD), overall texture
analysis (TA), and combined IBD with TA models.
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performed manually by radiologists based on individual habits,
which may also have influence on the final results. In addition, we
did not useMRI images other thanT2-weighted images forTA in the
present study.

In summary, compared with OTCA–FTCA, OGCTs more
commonly exhibit intratumoral hemorrhage, mixed cystic
degeneration, moderate enhancement, and low ADC values.
Particularly, intratumoral hemorrhage may be a common and
characteristic MR finding of OGCTs. When it is difficult to
distinguish between OGCTs and OTCA–FTCA, TA described here
may serve as a supplementarymeans, although thiswill require further
large sample size validation before widespread implementation in
clinical practice.
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and Min-Ying Su2,6

1 Department of Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China, 2 Department of
Radiological Sciences, University of California, Irvine, Irvine, CA, United States, 3 Department of Radiology, E-Da Hospital and
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Objective: To build radiomics models using features extracted from DCE-MRI and
mammography for diagnosis of breast cancer.

Materials and Methods: 266 patients receiving MRI and mammography, who had well-
enhanced lesions on MRI and histologically confirmed diagnosis were analyzed. Training
dataset had 146 malignant and 56 benign, and testing dataset had 48 malignant and 18
benign lesions. Fuzzy-C-means clustering algorithm was used to segment the enhanced
lesion on subtraction MRI maps. Two radiologists manually outlined the corresponding
lesion on mammography by consensus, with the guidance of MRI maximum intensity
projection. Features were extracted using PyRadiomics from three DCE-MRI parametric
maps, and from the lesion and a 2-cm bandshell margin on mammography. The support
vector machine (SVM) was applied for feature selection and model building, using 5
datasets: DCE-MRI, mammography lesion-ROI, mammography margin-ROI,
mammography lesion+margin, and all combined.

Results: In the training dataset evaluated using 10-fold cross-validation, the diagnostic
accuracy of the individual model was 83.2% for DCE-MRI, 75.7% for mammography lesion,
64.4% for mammography margin, and 77.2% for lesion+margin. When all features were
combined, the accuracy was improved to 89.6%. By adding mammography features to MRI,
the specificity was significantly improved from 69.6% (39/56) to 82.1% (46/56), p<0.01.When
the developed models were applied to the independent testing dataset, the accuracy was
78.8% for DCE-MRI and 83.3% for combined MRI+Mammography.

Conclusion: The radiomics model built from the combined MRI and mammography has
the potential to provide a machine learning-based diagnostic tool and decrease the false
positive diagnosis of contrast-enhanced benign lesions on MRI.

Keywords: breast neoplasms, diagnosis, radiomics, machine learning, magnetic resonance imaging, mammography
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INTRODUCTION

Breast cancer is the most common cancer in women, and one
main cause of cancer deaths (1, 2). Mammography, ultrasound,
and magnetic resonance imaging (MRI) are well-established
diagnostic modalities, which are known to reveal different
aspects of underlying abnormalities and provide complementary
information for diagnosis (3, 4). Dynamic contrast-enhanced
MRI (DCE-MRI) can assess angiogenesis (5, 6), which is
essential for cancer development and progression (7, 8). The
high spatial resolution and 3D imaging capability of MRI allow
for detecting early small cancers, and for evaluating the extent of
the disease for pre-operative staging and treatment planning.
However, some benign diseases may show strong contrast
enhancements and lead to a false positive diagnosis (9).

Mammography can detect breast cancer based on the
presence of mass, microcalcifications, architectural distortion,
or asymmetric density. It is a widely used imaging modality for
screening and diagnosis, and crucial for detecting breast cancer
at an early, curable, stage to decrease mortality (10). However,
mammography is limited by breast density, which may
compromise the detection sensitivity. For women with a high-
risk of developing breast cancer, the screening is recommended
to start from a young age, and to mitigate the problem of high
density in mammography MRI is commonly used as a
supplementary modality. Since different imaging can evaluate
different pathological characteristics of the abnormal tissue,
combining them may improve the diagnostic accuracy (3).
MRI is also commonly used for problem-solving when other
imaging shows equivocal findings. For example, in patients with
category 4 mammographic microcalcifications, MRI can
decrease false positive findings and unnecessary biopsy (11).

Breast Imaging Reporting and Data System (BI-RADS) (12) is
used to indicate the level of suspicion in detected abnormality.
However, subjective reading using the BI-RADS lexicon only
achieved moderate levels of inter-reader agreement (13). For
MRI, intra-/inter-observer agreement was particularly worse for
non-mass enhancement compared to mass lesions (14, 15). To
circumvent this problem, computer-aided diagnosis (CAD)
systems have been proposed to develop quantitative models
that are not subject to high variations to serve as potential
diagnostic tools (16, 17).

Artificial intelligence (AI) based radiomics study has been
widely applied for medical applications. The method allows for
high-throughput extraction of quantitative features from
radiographic images (18), and it has been shown as a feasible
approach for diagnosis of breast cancer using mammography
Abbreviations: AI, artificial intelligence; AUC, the area under the curve; BI-
RADS, Breast Imaging Report and Data System; CAD, computer-aided diagnosis;
CC, cranio-caudal; DCE, dynamic contrast enhanced; DCIS, ductal carcinoma in-
situ; GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence
matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone
matrix; IDC, invasive ductal cancer; MIP, maximum intensity projection; MLO,
medio-lateral oblique; MRI, magnetic resonance imaging; NGTDM, neighboring
gray tone difference matrix; NPV, negative predicting value; PPV, positive
predicting value; ROC, receiver operating characteristic; ROI, region of interest;
SE, signal enhancement; SVM, support vector machine.

Frontiers in Oncology | www.frontiersin.org 2101
(19–22) and MRI (23–25). However, the combined model using
different imaging modalities was rarely reported. Features from
corresponding lesions on each modality can be extracted, and
then combined in the selection process to develop better models
based on their complementary information.

The purpose of this study was to evaluate the diagnostic
performance of radiomics models built based on DCE-MRI and
mammography. The motivation was coming from the high false
positive diagnosis of contrast-enhanced benign lesions
commonly seen on MRI. It is anticipated that the
complementary information provided by the radiomics
analysis of the lesion on mammography may help to improve
the diagnostic accuracy. In mammography, features extracted
from the lesion and the margin were used to build separate
models. The complementary role of MRI and mammography
was first evaluated by the selected features, and then by
comparing the performance of final models built using each
modality alone and in combination.
MATERIAL AND METHODS

Study Population
This retrospective study was approved by Institutional Review
Board and written informed consent was waived. Earlier patients
who received DCE-MRI and mammography for diagnosis
between July 2017 and August 2019 and had confirmed
pathology were retrospectively identified as the training set.
Later patients from September 2019 to July 2020 were used as
the independent testing set. The exclusion criteria were: (1) no
pathology result; (2) not visible on MRI or mammography; (3)
having prior surgery, chemotherapy, or other treatment; (4) the
interval between the two examinations longer than one month;
(5) poor image quality. Finally, a total of 268 lesions were
included, 202 lesions (146 malignant and 56 benign) in the
training set, and 66 lesions (48 malignant and 18 benign) in the
testing set. The BI-RADS scores of MRI and mammography were
obtained from the radiology reports, classified into 2, 3, 4A, 4B,
4C, and 5. In our institution, BI-RADS 4MRI cases were routinely
subdivided to 4A, 4B, and 4C, as validated in Strigel et al. (26).
Image Acquisition
Mammography was performed using Fujifilm Amulet Innovality
Digital Mammography System with a resolution of 5828×4728
pixels, including craniocaudal (CC) and mediolateral oblique
(MLO) view. MRI was performed on a 3.0T scanner (GE SIGNA
HDx) using a dedicated 8-channel bilateral breast coil. The
imaging protocol included axial and sagittal T2- and T1-
weighted sequences, and the DCE acquisition performed
using the volume imaging for breast assessment (VIBRANT)
sequence. The parameters were: repetition time= 5msec, echo
time= 2msec, flip angle= 10°, slice thickness= 1.2mm, field of
view= 34×34cm2, matrix size= 416×416, temporal resolution=
90sec, and total scan time= 9min. The DCE series consisted of 6
frames: one pre-contrast and 5 post-contrast. The contrast agent,
0.1 mmol/kg body weight of gadopentetate dimeglumine
November 2021 | Volume 11 | Article 774248
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(Magnevist; Bayer Schering Pharma), was injected after the pre-
contrast images were acquired, with a flow rate of 2 mL/s
followed by a flush of 20 mL saline.

Tumor Segmentation
For MRI, the tumor region of interest (ROI) segmentation was
done using computer algorithms, according to the location and
the range of slices. The fuzzy-C-means clustering algorithm was
applied to perform segmentation on each DCE slice containing
the lesion. The automatic segmentation results were evaluated by
two radiologists separately, and adjusted if necessary. Then, the
ROIs from all slices were combined, and the 3D connected-
component labeling and the hole-filling algorithms were applied
to generate the final 3D mask (27, 28). For the corresponding
mammography, two radiologists manually outlined the lesion on
craniocaudal (CC) or mediolateral oblique (MLO) view by
consensus using ITK-SNAP software (version 3.8, www.
itksnap.org), with the guidance of the lesion shown on the
maximum intensity projection (MIP) of MRI, projected from
different angles. The choice of CC or MLO was determined
according to the lesion visibility, and only one view was used.

MRI and Mammography Radiomics
Feature Extraction
The analysis flowchart is demonstrated in Figure 1. For DCE-
MRI, three heuristic DCE parametric maps were generated
according to: the early wash-in signal enhancement (SE) ratio
((F2-F1)/F1); the maximum SE ratio = ((F3-F1)/F1); the wash-out
slope ((F6-F3)/F3) (25), as illustrated in case examples in
Figures 2–5. The intensity was normalized to mean=0 and
standard deviation=1. In the segmented 3D ROI, pixels were
transformed into isotropic 0.82×0.82×0.82 mm by B-spline
interpolation. The radiomics analysis was performed using the
PyRadiomics, an open-source radiomics library written in Python
Frontiers in Oncology | www.frontiersin.org 3102
(29). On each parametric map, a total of 107 features were
extracted, including 14 shape, 18 first-order, 24 gray-level co-
occurrence matrix (GLCM), 14 gray-level dependence matrix
(GLDM), 16 gray-level run length matrix (GLRLM), 16 gray-
level size zone matrix (GLSZM), and 5 neighboring gray tone
difference matrix (NGTDM) features, so there was a total of 321
parameters from 3 maps. Only 268 features showing intra-class
coefficient (ICC) ≥0.8 were included in the final analysis, which
was determined using two sets of separately segmented tumor ROI
to evaluate the reproducibility of extracted radiomics features (30).

For mammography, two different feature sets were analyzed.
Considering that the ROI was manually drawn by tracing the
visible lesion area based on density, it might not reveal the
margin information. To specifically focus on the margin, a 2-cm
bandshell was created, by shrinking and expanding the
manually-drawn tumor boundary by 1 cm, as shown in
Figure 1. Because the margin could not be well defined on
mammography, shrinking the boundary followed by region
growing has been shown as a feasible segmentation method
(31), and the method was adopted here to generate the bandshell
for analysis of margin features. Similarly, the intensity was
normalized to mean=0 and standard deviation=1, and a total
of 107 PyRadiomics features were extracted from the outlined
lesion mask and also from the bandshell on mammography. The
radiomics model was first performed using lesion features alone,
margin features alone, and then a combined model was built by
considering all lesion and margin features.

Feature Selection and Model
Building in Training Set
The procedures are also shown in Figure 1. In addition to the
normalization on images, each feature extracted from all cases
was normalized to mean=0 and standard deviation=1 before
training. To evaluate the importance of these features in
FIGURE 1 | The analysis flowchart. The training and testing sets are assembled according to the time of case enrollment. The analysis starts with ROI segmentation,
followed by radiomics feature extraction using Pyradiomics, feature selection and model building in the training set using SVM with cross-validation, and lastly, the
testing of the 5 developed models in the testing set.
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diagnosis, a sequential forward feature selection method using
the support vector machine (SVM) was applied (32, 33). In this
process, we used SVM with Gaussian kernel as the objective
function to test the performance of models built with a subset of
features. In the beginning, an empty candidate set was presented,
and features were sequentially added. The 10-fold cross-
validation was applied to test the model performance. In each
iteration, the training process was repeated 1,000 times to
explore the robustness of each feature. After each iteration, the
Frontiers in Oncology | www.frontiersin.org 4103
feature which led to the best performance was added to the
candidate set. When the addition of features no longer met the
criterion, the selection process stopped. Here, we used 10*e^-6 as
termination tolerance for the objective function value.

The selected features were used to build the SVM
classification model with Gaussian kernel to classify the benign
and malignant groups. The diagnostic performance was tested
using 10-fold cross-validation. Each case had only one chance to
be included in the validation set. The probability of all cases in
FIGURE 2 | A 50-year-old patient with invasive ductal cancer, showing a strongly enhanced 1.8 x 1.0 cm lesion, with MRI BI-RADS score of 5. (A) F1 Pre-contrast
image. (B) F2 post-contrast image. (C–I) Magnified images to demonstrate the margin and internal enhancements within the lesion. (C) F1 pre-contrast, (D) F2 post-
contrast, (E) F3 post-contrast, (F) The last F6 post-contrast image. (G) The wash-in signal enhancement map F2-F1, (H) The F3-F1 signal enhancement map,
(I) The wash-out F6-F3 map. (J) A mass lesion with spiculation is clearly noted on mammography as BI-RADS 4C, and manually outlined by a radiologist. The
radiomics malignancy probability predicted by MRI, mammography, and combined models were: 0.83, 0.77, 0.88, respectively, true positive.
FIGURE 3 | A 58-year-old patient with ductal carcinoma in situ, showing a strongly enhanced heterogeneous 1.4 x 0.9 cm lesion, with MRI BI-RADS score of 5.
(A) F1 Pre-contrast image. (B) F2 post-contrast image. (C–I) Magnified images to demonstrate the margin and internal enhancements within the lesion. (C) F1
pre-contrast, (D) F2 post-contrast, (E) F3 post-contrast, (F) The last F6 post-contrast image. (G) The wash-in signal enhancement map F2-F1, (H) The F3-F1 signal
enhancement map, (I) The wash-out F6-F3 map. (J) A suspicious BI-RADS 4A mass is seen on mammography. The lesion ROI is outlined with the guidance of MRI.
The probability predicted by MRI, mammography, and combined radiomics models were: 0.53, 0.49, 0.62, respectively, true positive.
November 2021 | Volume 11 | Article 774248
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the validation set was combined to perform the receiver
operating characteristic curve (ROC) analysis, and the area
under the curve (AUC) was calculated. Five models were built
using features extracted from: 1) DCE-MRI; 2) mammography –
lesion ROI; 3) mammography – margin ROI, i.e., the bandshell;
4) mammography lesion+margin; and 5) all combined. The
developed model gave a radiomics score, i.e., the malignancy
probability, for each case.
Frontiers in Oncology | www.frontiersin.org 5104
Applying the Trained Models
to the Testing Set
The developed models from the training set were applied to test
their performances in the testing set. The model gave each lesion a
radiomics score, and they were used to generate the ROC curves.
The sensitivity, specificity, positive predicting value (PPV), negative
predicting value (NPV), and overall accuracy of each model were
calculated using the threshold of probability ≥0.5 as malignant.
FIGURE 4 | A 63-year-old patient with a 0.7 x 0.7 cm benign adenosis, showing a persistent DCE-MRI enhancement kinetics and determined as BI-RADS 3 on
MRI. (A) F1 Pre-contrast image. (B) F2 post-contrast image. (C–I) Magnified images to demonstrate the margin and internal enhancements within the lesion. (C) F1
pre-contrast, (D) F2 post-contrast, (E) F3 post-contrast, (F) The last F6 post-contrast image. (G) The wash-in signal enhancement map F2-F1, (H) The F3-F1 signal
enhancement map, (I) The wash-out F6-F3 map. (J) The lesion is not seen on mammography, determined as BI-RADS 2, and an area is outlined with the guidance
of MRI. The probability predicted by MRI, mammography, and combined radiomics models were: 0.42, 0.44, 0.15, respectively, true negative.
FIGURE 5 | A 46-year-old patient with a 2.7 x 1.3 cm benign adenosis. This is a young woman with extremely dense breasts showing substantial parenchymal
enhancements. The lesion shows a persistent DCE-MRI pattern and determined as BI-RADS 4A on MRI. (A) F1 Pre-contrast image. (B) F2 post-contrast image.
(C–I) Magnified images to demonstrate the margin and internal enhancements within the lesion. (C) F1 pre-contrast, (D) F2 post-contrast, (E) F3 post-contrast,
(F) The last F6 post-contrast image. (G) The wash-in signal enhancement map F2-F1, (H) The F3-F1 signal enhancement map, (I) The wash-out F6-F3 map. (J) The
lesion is not seen on mammography, determined as BI-RADS 2, and an area is outlined with the guidance of MRI. The probability predicted by MRI, mammography,
and combined radiomics models were: 0.3, 0.41, 0.11, respectively, true negative.
November 2021 | Volume 11 | Article 774248
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The Delong test was used to compare the difference between paired
ROC curves. The difference in proportions between malignant and
benign groups was compared by using the Chi-square (c2) test or
Fisher’s Exact Test.
RESULTS

Patients’ Characteristics and
BI-RADS Scores
In the training set, the mean age was 50.0 ± 9.6 in the malignant,
and 46.6 ± 9.7 in the benign groups. The 1-D longest dimension
tumor size measured on MRI was 2.4 ± 1.4 cm (median 2.0 cm)
in the malignant, and 2.0 ± 2.3 cm (median 1.5 cm) in the benign
groups. In the testing set, the mean age was 51.8 ± 11.2 in the
malignant, and 43.5 ± 10.8 in the benign groups. The 1-D longest
dimension tumor size measured on MRI was 3.2 ± 1.9 cm
(median 2.8 cm) in the malignant, and 2.0 ± 1.4 cm (median
1.5 cm) in the benign groups. The pathological types and BI-
RADS distributions in both datasets are listed in Table 1. In the
training set, the majority of malignant lesions had BI-RADS
scores of 4B, 4C, 5 on MRI (132/146 = 90.4%) and
mammography (120/146 = 82.2%). In the benign group, a
substantial number of patients also had high BI-RADS ≥ 4B
diagnosed by MRI (20/56 = 35.7%) and mammography (16/56 =
28.6%). Although the number of patients with BI-RADS ≥ 4B
lesions was significantly smaller in the benign compared to the
malignant groups (p < 0.001), these cases would be
recommended for biopsy and led to false positive diagnosis.
Similar BI-RADS distributions were also noted in the testing set.

Radiomics Diagnostic Models
in Training Set
The selected radiomics features for each model are listed in
Table 2. The diagnostic sensitivity, specificity, PPV, NPV,
accuracy, and AUC obtained from the cross-validation results
are summarized in Table 3. The overall accuracy was 83.2% for
DCE-MRI. In mammography, the accuracy was 75.7% for lesion-
ROI, 64.4% for margin-ROI, and when combining both of them
it was improved to 77.2%. When all MRI and mammography
features were combined to build a model, the accuracy was
improved to 89.6%, which was significantly better than the
mammography model (77.2%, p=0.001). The combined model
was also better than the MRI model (83.2%, p=0.059), but not
reaching significance. By adding mammography features to MRI,
the specificity was significantly improved from 69.6% (39/56) to
82.1% (46/56) (p<0.01), while sensitivity was also improved from
88.4% (129/146) to 92.5% (135/146). Figure 6 plots the
malignant probability predicted by the combined MRI+
Mammography radiomics model in the training set of 146
malignant and 56 benign lesions. Using the threshold of 0.5 as
the cut-off, there are 135 true positive, 46 true negative, 11 false
negative, and 10 false positive cases, with an overall accuracy of
181/202 = 89.6%.

Four case examples are shown. Figure 2 is an IDC with BI-
RADS 5 MRI and BI-RADS 4C mammography, and the
malignancy probability predicted by MRI, mammography, and
Frontiers in Oncology | www.frontiersin.org 6105
combined models are: 0.83, 0.77, 0.88, respectively; thus, true
positive. Figure 3 is a DCIS, also with BI-RADS 5 MRI and a
lower BI-RADS 4A mammography, and the combined radiomics
probability is 0.62, true positive. Figure 4 is a very small 0.7 cm
benign adenosis with BI-RADS 3 MRI and BI-RADS 2
mammography, and the combined radiomics probability is
0.15, true negative. Figure 5 is another adenosis in a younger
woman with BI-RADS 4A MRI and BI-RADS 2 mammography,
and the combined radiomics probability is 0.11, true negative.
These cases demonstrate that the malignancy probability
predicted by radiomics models was consistent with BI-RADS
reading, and elaborate how the model may help to improve the
diagnostic confidence.

Performance of the Trained
Models in Testing Set
The developed models were then applied to cases in the
independent testing set to test the performance. The results are
TABLE 1 | Pathological types and BI-RADS scores of lesions in training and
testing datasets.

Characteristics Training (N = 202) Testing (N = 66)

Benign 56 18
Fibroadenoma 13 (23.2%) 5 (27.8%)
Adenosis 25 (44.6%) 10 (55.6%)
Intraductal papilloma 10 (17.9%) 1 (5.6%)
Inflammation 2 (3.6%) 0 (0.0%)
Others 6 (10.7%) 2 (11.1%)

MRI BI-RADS
2 9 (16.1%) 1 (5.6%)
3 13 (23.2%) 3 (16.7)
4A 14 (25%) 9 (50%)
4B 14 (25%) 4 (22.2%)
4C 5 (8.9%) 1 (5.6%)
5 1 (1.8%) 0 (0.0%)

Mammography BI-RADS
2 13 (23.2%) 5 (27.8)
3 16 (28.6%) 6 (33.3%)
4A 11 (19.6%) 4 (22.2%)
4B 12 (21.4%) 3 (16.7%)
4C 4 (7.1%) 0 (0.0%)
5 0 (0%) 0 (0.0%)

Malignant 146 48
Invasive ductal cancer 113 (77.4%) 39 (81.3%)
Ductal carcinoma in-situ 23 (15.8%) 3 (6.3%)
Intraductal papillary carcinoma 4 (2.7%) 0 (0.0%)
Mucinous carcinoma 3 (2.1%) 1 (2.1%)
Others 3 (2.1%) 5 (10.4%)

MRI BI-RADS
3 1 (0.7%) 0 (0.0%)
4A 13 (8.9%) 1 (2.1%)
4B 17 (11.6%) 4 (8.3%)
4C 39 (26.7%) 18 (37.5%)
5 76 (52.1%) 25 (52.1%)

Mammography BI-RADS
2 0 4 (8.3%)
3 9 (6.2%) 1 (2.1%)
4A 17 (11.6%) 2 (4.2%)
4B 32 (21.9%) 11 (22.9%)
4C 48 (32.9%) 21 (43.8%)
5 40 (27.4%) 9 (18.8%)
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listed in Table 3. In general, the performance of these 5 models
was consistent with the validation results in the training set. The
accuracy was 78.8% for DCE-MRI, 69.7% for mammography,
and improved to 83.3% when using the combined MRI and
mammography model.

Performance of the Combined Model in
Each BI-RADS Category
In order to further evaluate the performance of the model in each
BI-RADS category, the results from the training and testing sets are
Frontiers in Oncology | www.frontiersin.org 7106
combined and listed in Table 4. The cases with BI-RADS score of 2,
3, 4A, 4B, 4C, and 5 based on MRI and mammography were
separately tabulated. It can be seen clearly that malignant lesions
have higher BI-RADS scores compared to benign lesions, but many
benign lesions also have ≥4B scores. First, in the malignant group, if
we used 2, 3, and 4A as more likely benign, 15 MRI and 33
mammography cases would be diagnosed as benign. The results
showed that the model could reach 14/15 = 93.3% accuracy for MRI
and 31/33 = 93.9% for mammography lesions, still with a high
sensitivity. On the other hand, in the benign group, if we used 4B,
TABLE 2 | Selected radiomics features for modeling using MRI, mammography, and both combined.

Models Selected Radiomic Features Numbers

DCE-MRI Maximum signal enhancement ratio: 8
entropy, GLCM sum average, GLCM IMC1,
GLDM high gray level emphasis, skewness
Wash-in ratio:
GLRLM RLN
Wash-out ratio:
GLRLM small area emphasis, GLCM sum entropy

Mammography 90% value, entropy, GLCM maximum probability, GLDM high gray level emphasis 4
(Lesion)
Mammography 10% value, GLSZM zone entropy, GLCM IDN 3
(Margin)
Combination of DCE-MRI and mammography Maximum signal enhancement ratio: 9

kurtosis, GLCM IMC1
Wash-in ratio:
skewness, GLRLM RLN, NGTDM complexity
Wash-out ratio:
GLCM IMC1, GLCM sum entropy
Mammography lesion:
GLCM maximum probability, GLCM IDN
November 2021 | Volume 11 | Artic
GLCM, gray level co-occurrence matrix; GLDM, gray level dependence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; NGTDM, neighboring gray tone
difference matrix; IMC, informational measure of correlation; IDN, inverse difference normalized; RLN, run length non-uniformity.
TABLE 3 | The diagnostic performance of developed radiomics models in training and testing datasets.

Models Sensitivity Specificity PPV NPV Accuracy AUC

Training Dataset
DCE-MRI 88.4% 69.6% 88.4% 69.6% 83.2% 0.77

(129/146) (39/56) (129/146) (39/56)
Mammography 84.9% 51.8% 82.1% 56.9% 75.7% 0.69
(Lesion) (124/146) (29/56) (124/151) (29/51)
Mammography 73.3% 41.1% 76.4% 37.1% 64.4% 0.62
(Margin) (107/146) (23/56) (107/140) (23/62)
Mammography 84.9% 57.1% 83.8% 59.3% 77.2% 0.70
(Lesion+Margin) (124/146) (32/56) (124/148) (32/54)
All Combination 92.5% 82.1% 93.1% 80.7% 89.6% 0.83

(135/146) (46/56) (135/145) (46/57)
Testing Dataset
DCE-MRI 87.5% 55.6% 84% 62.5% 78.8% 0.80

(42/48) (10/18) (42/50) (10/16)
Mammography 81.3% 38.9% 78% 43.8% 69.7% 0.65
(Lesion) (39/48) (7/18) (39/50) (7/16)
Mammography 66.7% 33.3% 59.3% 27.3% 57.6% 0.53
(Margin) (32/48) (6/18) (32/54) (6/22)
Mammography 81.3% 38.9% 78% 43.8% 69.7% 0.64
(Lesion+Margin) (39/48) (7/18) (39/50) (7/16)
All Combination 91.7% 61.1% 86.3% 73.3% 83.3% 0.81

(44/48) (11/18) (44/51) (11/15)
le 77
PPV, positive predicting value; NPV, negative predicting value; AUC, the area under the curve; DCE, dynamic contrast enhanced.
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4C and 5 as possibly malignant, 25 MRI and 19 mammography
cases would be diagnosed as malignant. The model could achieve
18/25 = 72% accuracy for MRI and 15/19 = 78.9% for
mammography lesions. The correct benign diagnosis for these
cases may help to avoid unnecessary biopsy.

DISCUSSION

In this study, we developed the radiomics models for diagnosis of
breast cancer using DCE-MRI alone, mammography alone, and
the combined MRI and mammography. While quite a few studies
have reported the radiomics models developed usingMRI (23, 24,
34) or mammography (19–22), the combined analysis was rarely
reported (35). We further investigated the complementary role of
MRI and mammography features in diagnostic sensitivity and
specificity. In the training set, the combined model (89.6%) had a
higher accuracy than individual ones (83.2% for mammography,
77.2% for mammography). When mammography features were
added to MRI features, it could significantly improve specificity
from 69.6% (39/56) to 82.1% (46/56); and thus, have the potential
Frontiers in Oncology | www.frontiersin.org 8107
to decrease unnecessary biopsy. Interestingly, the sensitivity was
also improved, so the higher specificity was not at the expense of
compromised sensitivity. Similar findings were seen in the testing
set, with slightly lower overall accuracy from 89.6% to 83.3%.

For mammography, we further separated the analysis using
features extracted from the lesion-ROI alone, and from the
margin-ROI alone by using a bandshell. The results showed
that the accuracy was much better for the lesion model than
the margin model, but the margin information could help to
improve the accuracy. The results were consistent with the
knowledge that margin plays an important role in
characterization of a lesion for diagnosis.

Since MRI is more expensive than mammography, the most
established clinical indication is for pre-operative staging and
high-risk screening. It is not always included in the standard
diagnostic workup. It has been shown that in the mammography
4 category, particularly in non-palpable lesions presenting only
with microcalcifications, MRI can be used to reduce false positives
and avoid unnecessary biopsy (11, 36, 37). On the other hand,
benign lesions may show enhancements on MRI, and the
TABLE 4 | The number of correctly diagnosed cases made by the combined radiomics model in each BI-RADS category.

BI-RADS Score Malignant Cases (N = 194) Benign Cases (N = 74)

MRI Mammography MRI Mammography

2 0 3/4 8/10 15/18
3 1/1 9/10 11/16 18/22
4A 13/14 19/19 20/23 9/15
4B 19/21 38/43 13/18 11/15
4C 51/57 67/69 4/6 4/4
5 95/101 43/49 1/1 0
November 2021 | Volume 11
BI-RADS, Breast Imaging Report and Data System.
FIGURE 6 | The malignant probability predicted by the combined MRI+Mammography radiomics model in 202 lesions, 146 malignant and 56 benign, in the training
set. Using the threshold of 0.5 as the cut-off, there are 135 true positive, 11 false negative, 46 true negative, and 10 false positive cases, with an overall accuracy of
181/202 = 89.6%.
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information from mammography may help to rule out
malignancy (38). As in the case examples shown in Figures 4
and 5, the benign lesions might be inconspicuous on
mammography and had low BI-RADS score of 2, and we had
to use MIP generated from MRI as a reference to locate them.
Since MRI and mammography evaluate different aspects of the
underlying pathology, they should be reviewed together to
determine which information needs to be weighted more.

Radiomics is becoming an active research field in breast cancer
diagnosis. Due to the large number of images acquired using
different MR sequences, radiomics provides an efficient analysis
method to extract information. Therefore, more MRI radiomics
studies were reported than ultrasound, mammography, and 18F
FDG PET/CT (34). MRI radiomics was shown to provide better
discrimination than conventional parameters for the diagnosis of
breast cancer (23, 24). Mammography radiomics analysis has also
been performed in several diagnostic studies (19–22). However,
since the patient cohort is different, the diagnostic accuracy will be
highly dependent on the inclusion/exclusion criteria, and not
directly comparable among studies. Mao et al. (19) used four
modeling algorithms, including SVM, naive Bayes classifier, k-NN
classifier, and logistic regression to differentiate between benign and
malignant cases, and showed a high vibration of 0.629-0.978 in the
obtained accuracy. The radiologists’ reading accuracy was 0.772. Lei
et al. (20) applied radiomics to diagnose patients showing BI-RADS
4 calcifications on mammography, and achieved AUC of 0.80 in
the validation cohort. For characterizing microcalcifications, since
the lesion area was not well-defined, the ROI drawing will affect the
extracted features, and thus, the diagnostic results. Huang et al. (21)
applied mammography radiomics for distinguishing male
malignant and benign lesions, and reported an AUC of 0.82 – a
very unique study in rarely reported male patients. Another study
by Niu et al. (22) also analyzed patients showing abnormal lesions
on mammography and MRI, close to our patient cohort, but their
goal was to evaluate the combined effect of mammography and
digital breast tomosynthesis (DBT), as well as the combined effect of
DCE and diffusion weighted MRI. The reported accuracy based on
the mammography was close to ours, around 0.70. Multi-modal
radiomics combining different imaging modalities are rarely
reported. In a study by Chen et al., the multimodal classifier
achieved a better diagnostic performance than any single modality
(35). Since each imaging modality is unique in its acquisition
method and parameter setting, the extracted features from a
lesion may be different and provide complementary information
to improve diagnostic accuracy.

In this study, the cases were identified from the MRI database
first, and then only those with mammography performed within
one month were further selected for analysis. All lesions showed
strong enhancements on MRI, and the information was used to
determine a corresponding ROI on mammography. Co-
registration of MRI and mammography to ensure that the traced
ROI is indeed coming from the same suspicious tissue is not a
trivial task. We used maximum intensity projection of MRI as
guidance, and it could be projected from different angles to simulate
CC view and MLO view to guide the tracing of the suspicious
tissues on mammography. Some computer techniques have been
proposed for registration between MRI and mammography,
Frontiers in Oncology | www.frontiersin.org 9108
e.g., using finite element methods by Hopp et al. (39) and
Mertzanidou et al. (40), and the thin-plate spline method by
Yang et al. (3). These registration techniques can be considered
in future multi-modality radiomics studies. However, since the
mammography was acquired using heavily compressed breast
tissues in a different body position, it might be difficult to find the
precise correspondence. Therefore, in this study we only analyzed
the CC or MLO view that had more clear presentation of the lesion.

There were several limitations in this study. First, the models
were developed using a dataset from a single institution. The earlier
cases were used for training, and the performance was evaluated
using 10-fold cross-validation. We assembled an independent
testing set using later cases according to time of enrollment, so
the developed models from training can be independently tested.
Another limitation is that the sample size was relatively small. In our
dataset, all benign lesions had to show visible enhancements on
MRI and were histologically confirmed, which were very strict
criteria and limited the number of eligible cases. However, since the
major goal of this study is to investigate whether and howmuch the
addition of mammography radiomics features can complement
MRI, using a strict rule to identify eligible cases with histologically
confirmed lesions is needed. Third, while all lesions showed
enhancements on MRI, lesions not visible with the MRI-guidance
on mammography were not included in this study. Since the
boundary of these lesions could not be clearly defined, the
radiomics features might not be reliably extracted.

In conclusion, the radiomics models built based on combined
MRI and mammography had better diagnostic accuracy than
models built using single modality alone. The combined model
could reach the accuracy of 89.6% in the training and 83.3% in the
testing sets. The motivation of this study is to use the
complementary information extracted from radiomics analysis of
the lesion shown on mammogram to decrease the false positive
diagnosis of contrast-enhanced benign lesions on MRI. In the
western countries, breast MRI is recommended as a clinical
modality for screening of women with a high risk of developing
breast cancer, and the false positive diagnosis in a screening
population will lead to many unnecessary procedures including
biopsy, and patient anxiety. Our study may provide a helpful
computer-aided diagnostic tool for such clinical indications. The
multimodality radiomics analysis by combining mammography
and MRI features has the potential to improve the specificity and
reduce unnecessary biopsies, while maintaining a high sensitivity for
diagnosis of breast cancer.
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Radiomic models outperform clinical data for outcome prediction in high-grade gliomas
(HGG). However, lack of parameter standardization limits clinical applications. Many
machine learning (ML) radiomic models employ single classifiers rather than ensemble
learning, which is known to boost performance, and comparative analyses are lacking in the
literature. We aimed to compare ML classifiers to predict clinically relevant tasks for HGG:
overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-
methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor vIII
(EGFR) amplification, and Ki-67 expression, based on radiomic features from conventional
and advanced magnetic resonance imaging (MRI). Our objective was to identify the best
algorithm for each task. One hundred fifty-six adult patients with pathologic diagnosis of
HGG were included. Three tumoral regions were manually segmented: contrast-enhancing
tumor, necrosis, and non-enhancing tumor. Radiomic features were extracted with a
custom version of Pyradiomics and selected through Boruta algorithm. A Grid Search
algorithm was applied when computing ten times K-fold cross-validation (K=10) to get the
highest mean and lowest spread of accuracy. Model performance was assessed as AUC-
ROC curve mean values with 95% confidence intervals (CI). Extreme Gradient Boosting
(xGB) obtained highest accuracy for OS (74,5%), Adaboost (AB) for IDH mutation (87.5%),
MGMT methylation (70,8%), Ki-67 expression (86%), and EGFR amplification (81%).
Ensemble classifiers showed the best performance across tasks. High-scoring radiomic
features shed light on possible correlations between MRI and tumor histology.
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INTRODUCTION

High-grade gliomas (HGG) are considered the most frequent and
lethal primary malignant brain tumors of the adult (1).
Glioblastoma multiforme is a type of HGG with an estimated
incidence rate of 3.19 per 100,000 persons in the United States, a
median age of 64 years, and a dismally poor overall survival (OS)
despite combined radio-chemotherapy, ranging approximately
between 15 and 17 months (1, 2). Although less frequent, the
outcome of HGG is similarly poor in the pediatric population (3).
Genetic alterations may influence patient outcome, with effects on
survival, disease progression, and treatment response (2, 4). These
considerations inspired the cIMPACT recommendations for
classification of diffused gliomas and the last revision of the
World Health Organization (WHO) classification for central
nervous system (CNS) tumors, which suggested considering
isocitrate dehydrogenase (IDH)-mutant and IDH-wild-type
cancers as two separate entities due to the importance of IDH
mutation for patient survival (5, 6).

Artificial intelligence (AI) is the term used to describe the use of
computers and technology to simulate intelligent behavior and
critical thinking comparable to a human being. Specifically,
machine learning (ML) is a subfield of AI, defined as a set of
methods that can automatically detect a pattern of data, with the
ability of using uncoveredpatterns topredict future data or perform
other kinds of decision-making under uncertainty (7). The learning
process can be classified as supervised and unsupervised.
Unsupervised learning models identify the pattern class
information heuristically, providing clusters without a ground-
truth knowledge. On the contrary, the supervised learning
approach (explored in this article) identifies a pattern that
connects the inputs X to the outputs Y, given a labeled set of
input-output pairs. In recent years, AI applications in medicine
have grown exponentially, involving almost everymedical specialty
(8). In the field of radiology, the conversion of biomedical images
[such as magnetic resonance imaging (MRI), Computerized
Tomography (CT), X-Ray, etc.] to mineable data, and their
analysis with AI techniques is defined as “radiomics” (9). Thanks
to these new developments, it is possible to extractmultiple features
from radiological images reflecting tissue characteristics, and use
them as input for ML models. For example, graytone distribution
and mutual dependencies reflect tissue heterogeneity (10). One of
the most interesting applications of ML to radiology is the creation
of predictive models to estimate clinically relevant variables.
Biomedical images intrinsic parameters (represented by radiomic
features) contain information about tissue structure, molecular
data, and patient outcome, providing important information for
patient care through quantitative image analyses (9, 11). AI-
powered analyses may aid diagnosis and prognostication, with
practical applications in multiple clinical settings, including
emergency care (12).

In brain tumors, radiomic research can identify features that
describe the tumor microenvironment (13) and build predictive
models for tumor variables and patient outcome. Radiomicmodels
have been shown to outperform clinical models based on patient
age, Karnofsky performance scale, surgical resection, genetic
alterations, in glioblastoma (GBM) outcome prediction (14, 15).
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Recent studies proposed several high-performance radiomic
models for predicting OS, progression-free survival, molecular
subtypes of HGG, as well as genetic alterations critical for clinical
practice (16–20). Despite these promising results, clinical
implementation is extremely limited due to wide variations of
model performances (21–23) and controversial findings. For
example, a recent study on 152 patients with GBM concluded
that MRI features were not adequate for providing reliable and
clinically meaningful predictions throughML classificationmodels
(24).A recent review calls for improved standardizationand clinical
application feasibility (25).

Variability in model performance may depend on parameters
optimization. Radiomic workflows comprehend multiple steps
requiring parameter choice: tumor segmentation on radiologic
images to identify regions of interest (ROIs), feature extraction
and selection, training, testing and validation of the AI model,
performance evaluation (26, 27). The lack of radiomic parameters
standardizationmight limit results generalizability across studies.A
possible solution for this limitation is to compare multiple ML
algorithms in the same population for different tasks. In fact, the
classification method was shown to be the dominant source of
performance variation in radiomic analyses (28). Furthermore,
most of radiomic models presented for outcome prediction in
HGG employ classic ML algorithms, such as logistic regression,
support vector machine, and decisional trees (21, 22). Non-
ensemble learners showed inferior performance for small or
imbalanced datasets when compared to the ensemble
counterpart. Few studies have indeed shown comparative results
of single learners vs ensemble models (29–31). This is not
unexpected considering that single classifier approaches try to
learn a single hypothesis from the training set, whereas ensemble
learning tries to construct a set of hypotheses and combine them in
the best way possible (32). In fact, ensemble methods are used to
obtain better predictive performance by reducing both the bias
(representational problem) and the variance (computational
problem) of learning algorithms (33).

In this study, we chose well-established ML classifiers from
previous literature in the field and compared their performance to
predict outcome variables of HGG: OS, IDH mutation, O-6-
methylguanine-DNA-methyltransferase (MGMT) promoter
methylation, epidermal growth factor receptor vIII (EGFR)
amplification, and Ki-67 expression, based on features extracted
from conventional and advanced MRI. Our objectives were (1) to
assess the best algorithm for each prediction task, providing a
benchmark for future clinical applications. Particularly, we wanted
to compare classic and ensemble learners among ML classifiers to
provide a comprehensive viewonmodel performance; (2) to evaluate
highly predictive radiomic features extracted from different tumor
regions, highlighting possible correlations between MR parameters
and tumor molecular/genetic characteristics.
MATERIALS AND METHODS

Subjects
This retrospective observational study was conducted in
accordance to the Helsinki declaration. Approval from the
November 2021 | Volume 11 | Article 601425
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institutional review board (IRB) was obtained with protocol
number: 19 SA_2020. Consecutive patients with pathologically
proven diagnosis of HGG were recruited from March 2005 to
May 2019. Data were collected from two institutions:
Sant’Andrea Hospital La Sapienza University of Rome
(Institution 1) on a 1.5T scanner (Magnetom Sonata, Siemens,
Erlangen, Germany), and Regina Elena Institute of Rome
(Institution 2) on a 3T system (Discovery MR 750w, GE
Healthcare, Milwaukee, WI, USA). We enrolled patients
fulfilling the following inclusion criteria: histopathological
diagnosis of HGG, presurgical MRI with at least one sequence
among structural T1 or T2-weighted images, diffusion or
perfusion-weighted images. Exclusion criteria were causes of
suboptimal images (for example motion artifacts) and loss of
patients’ information during follow-up.

All patients received standard treatment after surgery with the
same protocol, including focal radiotherapy (RT) and
concomitant temozolomide (TMZ), followed by adjuvant TMZ
therapy. RT consisted of fractionated focal irradiation (60 Gy)
started within 4 weeks after surgery. The radiation dose was
delivered in 30 fractions of 2 Gy over 6 weeks. Chemotherapy
with TMZ was administered in a dose of 75 mg/m2, 7 days/week.
Adjuvant TMZ started 4 weeks after radiation with the following
protocol: 150 mg/m2 for the first cycle, increased to 200 mg/m2
for the second cycle; administered 5 days every 28 days up to
12 cycles.

Prediction labels were associated with survival at 12 months
after diagnosis (SURV12), MGMT promoter methylation, IDH
mutation, Ki-67 expression, and EGFR amplification. These
labels were chosen as they usually provide important
prognostic information in HGG. Survival cutoff at 12 months
was set based on previous studies (34–36).

Histopathological Analysis
Each tumor specimen was fixed in formaldehyde (10%) and
embedded in paraffin. Thin sections (2 mm) were mounted and
stained with hematoxylin and eosin. The histopathological
examination, including tumor grading, was performed taking
into account at least three of the following: cellular atypias,
number of mitotes, microvascular proliferation, and/or presence
of necrosis. The histopathological examination was performed
according to the 2016 edition of the WHO classification of
CNS tumors.

Immunohistochemistry
A Dako Envision Flex system was employed for the
immunohistochemical analysis. The immunostaining patterns
of EGFR were evaluated considering both cellular and tissue
distribution. The number of immunopositive cells in 10 high-
power (40×) areas were counted, and the percentage of
immunopositive cells were estimated. The ratio of positive
cells/total number of cells was calculated for each field. The
mean value of the 10 fields obtained from a section was
considered as the estimated percentage of immunoreactivity
assigned to the tumor sample. For IDH-1 mutation analysis,
we performed a test with IDH-1 R132H antibody. A positive
result was defined when a focal or diffuse immunopositivity was
Frontiers in Oncology | www.frontiersin.org 3113
detected, while a negative result was when no immunopositive
tumor cells were found. Negative cases were further analyzed for
IDH-1/2 mutations as previously shown (37). All sequence
reactions were carried out using the GenomeLab DTCS quick-
start kit (Beckman Coulter, Fullerton, CA, USA). The reactions
were carried out in an automated DNA analyzer (CEQ 8000;
Beckman Coulter). All sections were immunostained with Ki-67
antibody. The positivity for Ki67 was determined by counting at
least 1,000 tumor cells in a homogeneously stained area and then
expressed in percentage.

MGMT Methylation Testing
We used EntroGen’s MGMT Methylation Detection Kit
(MSPCR, Cat. No. MGMT-RT44), a semiquantitative real-time
PCR-based essay for detection of MGMT promoter methylation
within the DMR2 locus, distinguishing between methylated and
non-methylated cytosines. Its target region starts at
chr10:131265513 (hg19 genome build) in the MGMT
promoter region and covers CpG sites 75–86. The detection of
the amplification product was done by using fluorescent
hydrolysis fraction. The procedure involves the following steps:
(1) isolation of DNA from tumor biopsies, paraffin-embedded
sections; (2) bisulfite treatment of the isolated DNA using the EZ
DNA methylation-Lightning Kit (Zymo Research, CATD5030);
(3) amplification of treated DNA using the provided reagents in
the MGMT Promoter methylation Detection kit; (4) data
analysis and interpretation using the real-time PCR software.

MRI Acquisition
MRI sequences were acquired with the same protocol including
magnetization-prepared rapid acquisition with gradient echo
(MPRAGE), fluid-attenuated inversion recovery (FLAIR), T1-
weighted, T2-weigthed, diffusion weighted images (DWI), with
apparent diffusion coefficient (ADC) map reconstruction, and
perfusion weighted images (PWI) with dynamic susceptibility
contrast (DSC) technique. Perfusion parametric maps were
obtained through a dedicated software package OleaSphere
software version 3.0 (Olea Medical, La Ciotat, France). A
relative cerebral blood volume (rCBV) map was generated by
using an established tracer kinetic model applied to the first-pass
data (38). As previously shown (39), we applied a mathematical
correction to the dynamic curves to reduce contrast agent
leakage effects. Detailed acquisition parameters can be found in
the Supplementary Material.

Image Processing and Radiomic
Feature Extraction
The radiomic workflow of our analysis was developed following
the white paper of the Image Biomarker Standardization
Initiative (IBSI) (40) and is summarized in Figure 1. For every
patient, we automatically co-registered MR data to the MPRAGE
sequence using FMRIB Linear Image Registration Tool of FSL
(https://fsl.fmrib.ox.ac.uk) (41, 42). Tumors were manually
segmented by a neuroradiologist, with three ROIs drawn on
MPRAGE and FLAIR images using 3D-Slicer (LP, with 7 years of
experience in radiology) (https://www.slicer.org/) (43). Doubtful
cases were solved as for consensus with a senior neuroradiologist
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(AB, with 25 years of experience in radiology). The ROIs were
whole tumor (T2), contrast-enhancing tumor (CET), necrosis
(NEC). A further non-enhancing tumor (NET) ROI was
obtained from the other ROIs as it follows: T2 – (CET+NEC).
Based on recent findings (44), we performed intensity non-
standardness correction on our multi-institutional data by
scaling each image with respect to its mean value within
specific brain structure (i.e., NET ROI) using MATLAB
R2017a environment (MATLAB 2017, Natick, MA, USA: The
MathWorks Inc). The intensity range between 0 and 255 was not
rescaled to prevent information loss due to image
down-sampling.

We extracted a set of 1,871 radiomic features for each patient
from the combination of tumor ROIs (NET, CET, and NEC) and
multiparametric MR data (ADC, FLAIR, MPRAGE, rCBV, T1-
weigthed, and T2-weighted images). The process was carried out
through Pyradiomics package on Python 2.7 (45). Each radiomic
set included 14 shape features, 18 intensity features, and 75
texture features [gray-level co-occurrence matrix (GLCM), gray-
level difference matrix (GLDM), gray-level size zone matrix
(GLSZM), gray- level run length matr ix (GLRLM),
neighborhood gray tone difference matrix (NGTDM)] from
original and filtered images (wavelet decomposition, Laplacian
of Gaussian, exponential, logarithmic, and gradient).
Additionally, three ad-hoc fractal features were computed: box
counting two dimensions (2D), box counting three dimensions
(3D), and differential box counting, which were integrated in the
code of the Pyradiomics pipeline (46). Patients’ age at the time of
Frontiers in Oncology | www.frontiersin.org 4114
diagnosis was considered a feature in our model for survival
prediction only.

Feature Selection and Classification
The pipeline was written in Python and was implemented on
Google Colab (47). Prior to any further analysis, each extracted
feature distribution was standardized by taking out outliers,
removing the mean and scaling it to unit variance with Python
Standard Scaler package. Feature selection was then performed
in order to identify an ensemble of the most predictive features
for each ROI-sequence combination. To this purpose, we used
the Boruta algorithm, a powerful and recently introduced feature
selector method, that trained a Random Forest Classifier on a
duplicated dataset (composed by original and shadow features)
and marked a feature as important comparing its Z-scores with
that of the duplicate (48). The implementation we used in this
work was boruta_py module, freely accessible from github
repository (49). Due to the retrospective nature of this study,
some MRI sequences were not acquired for all the patients, and
some patients lacked full genetic testing, leading to class
imbalance issues. In order to overcome this limitation in
binary classification, we used Synthetic Minority Over-
sampling Technique (SMOTE) approach, which oversamples
data of the minority class, creating new synthesized samples
from the existing ones (24, 50).

To find the best parameter setting, an optimization search
grid algorithm was applied on nine ML classifiers including
ensemble and non-ensemble learners (Figure 2): AdaBoost (AB),
FIGURE 1 | Radiomic workflow followed in the present study.
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Extreme Gradient Boosting (xGB), Gradient Boosting (GB),
Decision Tree (DT) and Random Forest (RF), Logistic
Regressor (LR), two types of Stacking classifiers: stacking (ST)
and stacking with AdaBoost (ST_ABC), and KNeighbors (KN).
Frontiers in Oncology | www.frontiersin.org 5115
AB, xGB, and GB use a set of weak learners and try to boost them
into strong learners. The GB classifier appears in classification
studies (24), as it works well with categorical and numerical data;
we decided to compare GB performance with xGB, that is the
FIGURE 2 | Machine learning classifiers tested in the present study. Non-ensemble learners included KNeighbors, logistic regressor, and decision tree. Ensemble
learners included boosting, stacking, and bagging classifiers.
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fastest implementation of gradient boosted trees (24, 51). The AB
was alsooftenused for brain tumorclassification (52, 53), as itworks
to create a powerful algorithm where instances are reweighted
rather than resampled. A Decision Tree algorithm was used in
AB as a weak learner. Decision Tree (DT) and RandomForest (RF)
are both based upon decision tree algorithms. RF is actually a
collection of DTs attempting to classify a new object based on its
attributes (54). The RF classifier was already used in brain tumor
segmentation problems (55), for the MGMT promoter prediction
model (56), for the IDH status prediction (57), and for the survival
prediction (58). Logistic Regressor (LR) is one of the most used
linear classifiers to disentangle linear relationship between the data
(24). The stacked generalization is an ensemble ML algorithm that
learns how to best combine the predictions from multiple well-
performingMLmodels. Inour case, one classifierwas set on thebest
parameters from GB, RF, and LR (ST), whereas the second was set
on best parameters fromGB, RF, andAB (ST_ABC) (59). KN relies
on distance in data space and is one of the simplest of all the
supervised ML algorithms (31). Apart from the extreme gradient
boosting classifierwhichwas implemented in xgboost package (60),
all classifierswerepart ofScikit-learnpackage (61).Algorithmswere
chosen based on their known performance and extensive use in
the literature.

In order to achieve the most performant and robust model, the
Grid Search algorithm, as implemented in Scikit-learn package,was
applied when computing 10 times K-fold cross-validation (K=10)
and setting the same test split. Given the unbalanced condition for
all molecular predictors and in order to reach the same number of
trials as for SURV12, an iterativeway ofK-fold cross-validationwas
applied. This method made sure that among the possible
combinations of data splitting, only those one having the number
of minority class subjects at least equal to half of the number of
majority classwere included among the eligible reshuffles. TheGrid
Search algorithmwas set to look for the highestmean alongwith the
lowest spread of accuracy. The accuracy mean and standard
deviation were evaluated on 100 different splitting of training and
test data. Once optimal parameters were identified, model
performances were also assessed in terms of AUC-ROC curve
with 95% CI (28, 62). AUC-ROC curves were also useful when
comparing classifiers as they show the trade-off between false
positive and true positive rates in the classification (63).
RESULTS

Subjects
The study included 156 adult patients (mean age = 62 y, range =
35–83 y) with confirmed diagnosis of HGG: 121 patients were
Frontiers in Oncology | www.frontiersin.org 6116
acquired at Institution 1 and 35 patients at Institution 2.
Descriptive statistics performed on genetic variables revealed
an odds ratio of 0.607, 1.186, 0.911, and 5.6 for Ki-67, MGMT,
IDH, and EGFR respectively, evaluated with reference
to SURV12.

Machine Learning Analysis
The distribution of our data is summarized in Table 1. For those
labels suffering from class imbalance issues, SMOTE was always
used. Feature selection produced multiple radiomic signatures
composed by 20 features, ordered by importance for the
predicted label. The best 15 features for every signature are
displayed in the Supplementary Material. Nine ML classifiers
were compared in the present study. We identified the best
classifier and the best ROI-sequence combination in terms of
prediction accuracy for each task (SURV12, MGMT, IDH, KI67,
and EGFR).

Prediction Performance
Regarding SURV12 prediction, the best performance was
achieved by AB and xGB classifiers on ADC radiomic features
from NET ROI and T2 radiomic features from NEC ROI
(Table 2). AB classifier demonstrated accuracy of 73.6% and
AUC-ROC mean value of 73.6% (95% CI 71.6–75.3) based on
ADC features from NET ROI (Figure 3A). xGB classifier
achieved accuracy of 74.5% and AUC-ROC mean value of
74.2% (95% CI 71.9–76.3) with T2 radiomic features from
NEC ROI (Figure 3B). Similarly, xGB classifier provided good
accuracy based on FLAIR features from NET ROI (Acc=72.1%;
AUC-ROC=72.4%; 95% CI 69.6–75) (Figure 3C).

Best results forMGMTprediction (Table 3) were obtained from
CET ROI on FLAIR images by using AB classifier (Acc=70.8%;
AUC-ROC=68.8%; 95% CI 65.9–71.7) (Figure 4). High-scoring
features mainly included texture parameters (Figure S4).

IDH prediction task showed the best performance in our
dataset (Table 4). Highest accuracy was achieved by AB classifier
with rCBV features from NET ROI (Acc= 87.5%; AUC-
ROC=86.7%; 95% CI 84.3–89) (Figure 5A). Similarly, AB
classifier provided good results with T2-based features from
CET ROI (Acc=85.9%; AUC-ROC=85.8%; 95% CI 80–84.6)
(Figure 5B) and NEC ROI (Acc=80.8%; AUC-ROC=80.5%;
95% CI 78.4–82.6) (Figure 5C). Good results were also
achieved by ST classifier based on T1 features from NET ROI
(Acc=84.2%; AUC-ROC=83%; 95% CI 80–85.9) (Figure 5D).

The prediction of Ki-67 expression provided excellent results
from ADC sequence and CET ROI (Table 5). AB classifier
provided the highest accuracy (86%) and AUC-ROC value
(70%; 95% CI 65.3–72.9) (Figure 6).
TABLE 1 | Number of patients and label distributions for label-sequence combination.

ADC FLAIR MPRAGE rCBV T1 T2

SURV12 (0/1) 134 (65/69) 140 (68/72) 138 (66/72) 93 (45/48) 122 (61/61) 122 (60/62)
MGMT (0/1) 110 (41/69) 115 (43/72) 114 (42/72) 80 (33/47) 100 (39/61) 102 (39/63)
IDH (0/1) 86 (71/15) 89 (74/15) 89 (74/15) 60 (51/9) 77 (63/14) 78 (65/13)
KI67 (0/1) 100 (18/82) 106 (21/85) 103 (22/81) 77 (16/61) 97 (17/80) 94 (16/78)
EGFR (0/1) 65 (21/44) 69 (23/46) 66 (23/43) 49 (16/33) 65 (22/43) 62 (20/42)
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EGFR amplification was correctly predicted by radiomic
features extracted from rCBV and T2 images within CET ROI,
in both cases with AB classifier (Table 6). Particularly, rCBV
demonstrated the highest performance (Acc=81%; AUC-
ROC=74.3%; 95% CI 70.8–77.8) (Figure 7A), while T2
sequence achieved accuracy of 77.8% and AUC-ROC equal to
74.1% (95% CI 70.6–77.6) (Figure 7B).

Box-plots figures comparing the best results for each classifier
and tables with high-scoring radiomic features are provided in
the Supplementary Material (Figures S1–S10).
DISCUSSION

AI has proven to be an accurate tool in predicting survival and
molecular profile of gliomas. However, high variability in results
across studies and lack of standardization are limiting its use in
clinical practice. We studied the best ROI-sequence combination
for prediction of clinically relevant variables in HGG, by
comparing multiple ML classifiers including classic and
ensemble learners. Ensemble classifiers achieved the best
performance in every task. The AB was the best classifier
Frontiers in Oncology | www.frontiersin.org 7117
overall, with accuracy of 73.6, 70.8, 87.5, 86, and 81% for
SURV12, MGMT, IDH, Ki-67, and EGFR respectively, while
the LR and KN classifiers always produced suboptimal
prediction performances.

These results are in line with previous literature comparing
boosting and logistic regression-based classifiers (64). Ensemble
models showed high classification performance in different
fields. Similar results were observed by Wang et al. using four
single classifiers combined with three different algorithms
(bagging boosting and stacking) to create ensemble learners for
credit scoring (59). All ensemble types yielded a significant
improvement compared to base learners (59). In line with our
findings, Lu et al. reported higher performances for AdaBoost
compared to bagging ensemble algorithms for cancer
classification with gene expression data. The idea behind this
better performance is that AdaBoost is based on a linear
combination of single learners weighted by their own
performance, being able to filter out redundant training data
attributes and focusing on the important features (65).

Other studies compared ML classifiers in HGG, although with
different methodologies and results. Samara et al. conducted a
study comparing base models (LR, KN, DT, linear support vector
A B C

FIGURE 3 | Best ROC curves for Surv12 prediction: (A) AB classifier with ADC sequence on NET ROI; (B) xGB classifier with T2 sequence on NEC ROI; (C) xGB
classifier with FLAIR sequence on NET ROI.
TABLE 3 | MGMT best results (reported as mean ± standard deviation).

ROI SEQ xGB GB RF LR ST KN DT AB ST_ABC

CET FLAIR Acc % 63,3 ± 11,3 68,1 ± 13,4 70.7 ± 9,3 65,5 ± 11,4,4 67,9 ± 15,7 52,2 ± 12,7 59,4 ± 14,4 70,8 ± 14,1 64,5 ± 15,7
CET FLAIR Roc % 62,8 ± 11,7 66,8 ± 13,4 63,4 ± 12,2 59 ± 10,6 67 ± 16,8 51,4 ± 13,3 55,5 ± 12,1 68,8 ± 14,6 62 ± 14,2
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TABLE 2 | Surv12 best results (reported as mean ± standard deviation).

ROI SEQ xGB GB RF LR ST KN DT AB ST_ABC

NET ADC Acc% 71,8 ± 10 68,8 ± 11,4 67,9 ± 6,5 46,3 ± 5,4 71 ± 9 61,2 ± 12,3 59,2 ± 11,7 73,6 ± 9,3 64,2 ± 12,6
NET ADC Roc % 71,8 ± 9,7 69,1 ± 11,1 67,9 ± 6,5 46,3 ± 5,4 71 ± 9 61,2 ± 12,3 59,2 ± 11,7 73,6 ± 9,3 64,2 ± 12,6
NET FLAIR Acc % 72,1 ± 13,7 67,4 ± 9,9 71,6 ± 8,4 62 ± 13,6 69 ± 12 54,3 ± 15 59 ± 13,7 68,9 ± 7 62,3 ± 14
NET FLAIR Roc % 72,4 ± 14 67 ± 11 72,1 ± 7,6 62,3 ± 13,7 69 ± 12,2 53,9 ± 14,8 58,8 ± 13 69,5 ± 7,7 59 ± 13
NEC T2 Acc % 74,5 ± 11 65,8 ± 12,6 67 ± 16,7 58,7 ± 14,3 73,6 ± 9 52,3 ± 15,2 60,7 ± 11,4 72,7 ± 9,5 58,1 ± 13,9
NEC T2 Roc % 74,2 ± 10,9 65 ± 11,2 66,4 ± 17 58,8 ± 14,4 73 ± 9,4 52 ± 14,9 59 ± 11 72,5 ± 9,6 56,3 ± 14,3
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machine) and ensemble algorithms (Bootstrap aggregating, AB,
RF, and Voting classifier) in a GBM prognostication model based
on clinical data (30). In the study, ensemble classifiers attained
the highest AUC for every dataset, especially when trained on
statistically determined sets or union sets. Osman attempted
GBM patients’ survival stratification based on conventional MRI
sequences with several classifiers. Combining nine selected
radiomic features with clinical factors (e.g., age and resection
status), even the best prediction accuracy of the ensemble
learning classifier appeared low (less than 60%), possibly due
to the multi-institutional nature of the study (31). In our
approach, we made use of advanced sequences and a larger
number of features. Among them we also included fractal
dimension-based features which have rarely been implemented
in previous studies and may help boosting up the accuracy of our
results. Further and important difference regards the use of
Boruta algorithm to reduce the features and select only those
having higher importance for the model. Also, Kickingereder
et al. proposed to evaluate the association of multiparametric
MRI features with molecular characteristics (e.g., global DNA
methylation subgroup, MGMT, EGFR) in GBM patients,
Frontiers in Oncology | www.frontiersin.org 8118
training different models (e.g., stochastic GB, RF, and
penalized LR). The authors found associations between
established MRI features and molecular characteristics
(prediction accuracy of 63% for EGFR with penalized LR).
However, the link between them was not strong enough to
enable generation of ML classification models for reliable and
clinically meaningful predictions (24). In addition to a different
set of predicted outcomes, this result might be due to the type
and amount of imaging features used for prediction:
Kickingereder et al. used 31 imaging parameters for molecular
characteristic prediction, while this study extracted 1,871
radiomic features from each image.

A closer look on best performing features and ROI-sequence
combinations from our results may unravel interesting
associations between MRI parameters and pathologic features of
HGG.The best survival predictionwas achieved byABusingADC
maps from NET ROI. Also, xGB classifiers showed high
performance using T2 images from NEC ROI or FLAIR images
from NET ROI, but with higher spread of accuracy (Table 2).
Previous studies showedheterogeneous results on the samematter
(17, 31, 66), depending on size and source of datasets, type and
number of extracted features, and model parameters. NET is a
common finding in HGG and is considered a combination of
infiltrating tumor cells and vasogenic edema (67), whose
extension correlates with poor prognosis (68). After surgical
resection, recurrence occurs more frequently along the resection
margins, due to populations of malignant cells interspersed in the
NET (69). Recent research demonstrated that peritumoral MRI
textural features from FLAIR and T2 images were predictive of
survival as compared to features from enhancing tumor, necrotic
regions, and known clinical factors (70, 71). Higher performance
ofADC features fromNET is coherentwith studies demonstrating
the inverse correlation between ADC values and tissue cellularity
(72–75). In fact, tissue cellularity as measured by ADC can
differentiate between vasogenic edema and malignant tumoral
tissue within the NET, possibly recognizing patients at higher risk
for recurrence (76). Good survival predictivity onNECROI is also
supported by previous literature. Chaddad et al. reported that
shape features, particularly those extracted from necrotic regions,
can be used to effectively predict OS of GBM patients (77).
Furthermore, our best performing feature for survival prediction
on NECwas related to fractal dimension (Figure S2C), a measure
of shape complexity that has rarely been employed in radiomic
studies but demonstrated interesting correlations with patient
survival (35).
FIGURE 4 | Best ROC curve for MGMT prediction: AB classifier with FLAIR
sequence on CET ROI.
TABLE 4 | IDH best results (reported as mean ± standard deviation).

ROI SEQ xGB GB RF LR ST KN DT AB ST_ABC

NET rCBV Acc % 83,5 ± 12,8 82,8 ± 12 76,2 ± 16,2 77,3 ± 14,4 86,7 ± 11,8 69,2 ± 17,5 78,7 ± 14,5 87,5 ± 11,9 82,8 ± 12,4
NET rCBV Roc % 83,2 ± 12,8 82 ± 13,5 78,3 ± 15,5 78 ± 14,7 85,8 ± 12,3 69 ± 18,3 78,3 ± 15 86,7 ± 12 82 ± 12,4
NET T1 Acc % 80,2 ± 14 81 ± 13,8 80 ± 12,5 68,7 ± 12 84,2 ± 15 66 ± 21 75,2 ± 13,7 85,9 ± 14 80,9 ± 12
NET T1 Roc % 79,4 ± 15 80,7 ± 15 78,2 ± 12,3 67,9 ± 11,4 83 ± 14,7 66,7 ± 21,2 76,3 ± 14,5 85,8 ± 14,9 80 ± 13
CET T2 Acc % 80,2 ± 14 81 ± 13,8 80 ± 12,5 68,7 ± 12 84,2 ± 15 66 ± 21 75,2 ± 13,7 85,9 ± 14 80,9 ± 12
CET T2 Roc % 79,4 ± 15 80,7 ± 15 78,2 ± 12,3 67,9 ± 11,4 83 ± 14,7 66,7 ± 21,2 76,3 ± 14,5 85,8 ± 14,9 80 ± 13
NEC T2 Acc % 77,4 ± 9,8 77,9 ± 11 79 ± 11 70,3 ± 12,5 79,2 ± 10,7 69,3 ± 14,3 75,8 ± 12,6 80,8 ± 10,2 79,5 ± 9,5
NEC T2 Roc % 76,6 ± 10 77 ± 10 78 ± 11,2 70,7 ± 12,6 78,9 ± 9,7 70 ± 14,9 77,5 ± 12,9 80,5 ± 10,6 78,4 ± 9
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Preoperative prediction of MGMT promoter methylation and
IDH mutation represents a crucial objective for radiomic studies
due to their pivotal role in patient outcome (2, 4). On
conventional and advanced MRI, MGMT methylated HGG
may show mixed nodular enhancement, limited edema, lower
rCBV, increased Ktrans, and higher ADC minimum values (78,
79). IDH mutant tumors usually show less enhancement, less
blood flow on perfusion weighted images, higher mean diffusion
values, smaller size, and frontal lobe location (21). Many studies
Frontiers in Oncology | www.frontiersin.org 9119
tried to correlate these characteristics with MGMT and IDH
status, reporting conflicting results (78). Textural features
demonstrated higher accuracy for MGMT promoter
methylation prediction, achieving best performance with
FLAIR features from CET (70.8%, AB classifier) (Figures S3
and S4). These results are coherent with other reports (80) and
confirm that textural features outperform morphological and
intensity features in MGMT status prediction (16). Another
recent study from Sasaki et al. reported accuracy of 67% for
MGMT prediction with textural features (81). A possible
explanation for the performance discrepancy is the choice of
the classification algorithm: prediction accuracy has great
variability depending on the selected model (Table 3), with
higher performance for ensemble learners. Regarding IDH
mutation, our AB classifier achieved an accuracy of 87.5% with
rCBV-derived first-order features (median, skewness) from NET
(Figure S6A), outperforming most of previous models (21, 22).
Besides correlating with patient survival (82), perfusion-based
features were highly predictive of IDH status in another recent
study from our group based on deep-learning (37).
Kieckegereder et al. demonstrated that IDH mutation status is
associated with a specific hypoxia/angiogenesis transcriptome
signature predictable through perfusion MRI (83). Our results
seem to confirm a role for perfusion-based analysis in
discriminating IDH mutation, reflecting the known correlation
with hypoxia inducible factor (HIF) and neoangiogenesis (84).
Also, textural features achieved optimal results in the prediction
of IDH mutation based on T1 images from NET (84.2%, ST
classifier) and T2 images from CET (85.9%, AB classifier). The
accumulation of D-2HG derived from IDH mutation induces
epigenetic changes that lead to abnormal gene expression and
impaired cellular differentiation, possibly contributing to
intratumoral heterogeneity. Hsieh et al. demonstrated that
textural features can differentiate IDH mutation with 85%
A B DC

FIGURE 5 | Best ROC curves for IDH prediction: (A) AB classifier with rCBV sequence on NET ROI; (B) AB classifier with T2 sequence on CET ROI; (C) AB classifier
with T2 sequence on NEC ROI; (D) ST classifier with T1 sequence on NET ROI.
TABLE 5 | KI67 best results (reported as mean ± standard deviation).

ROI SEQ xGB GB RF LR ST KN DT AB ST_ABC

CET ADC Acc % 82,3 ± 8,4 81,6 ± 9,7 83,9 ± 9,8 63,7 ± 13,6 82,6 ± 10,5 67,5 ± 10 76,5 ± 12 86 ± 10,6 83 ± 8,2
CET ADC Roc % 64,6 ± 15 64,5 ± 17,3 67,5 ± 18,9 50,8 ± 17,5 63,2 ± 17,8 60 ± 15,7 60 ± 19 70 ± 20 64,4 ± 17
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FIGURE 6 | Best ROC curve for KI67 prediction: AB classifier with ADC
sequence on CET ROI.
icle 601425

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pasquini et al. Machine Learning Predictions for HGG
accuracy in 39 patients with GBM. The Authors performed
tailored biopsies demonstrating an agreement between
prediction results and biopsy-proven pathology of 0.60 (85).
Shape features of tumor necrosis demonstrated good accuracy
for IDH mutation prediction in our model (Figure S6D). Such
result may partly explain the relation between necrosis shape and
survival as previously discussed (35, 77).

Ki-67 is a nuclear protein expressed by cells entering the
mitotic cycle. In gliomas, the expression of Ki-67 is roughly
proportional to the histologic grade, representing a proliferative
index with prognostic correlation (86). Radiomic models
predictive of Ki-67 expression have not been investigated
before in the literature. In our analysis we achieved an
accuracy of 86% for predicting Ki-67 expression through the
AB. Intriguingly, best performing features were texture-based
parameters extracted from the solid tumor (CET ROI) on ADC
maps (Figure S8). These results perfectly agree with the role of
Ki-67 as proliferative index in HGG, being ADC an MRI
surrogate of cellularity (72, 73).

EGFR is a transmembrane tyrosine-kinase receptor for
different growth factors, whose activation leads to DNA
synthesis and cellular proliferation (87). Amplification of
EGFR (especially EGFRvIII) is a common somatic mutation in
HGG (4), with high relevance for the definition of GBM in the
Frontiers in Oncology | www.frontiersin.org 10120
recent classification (6). Despite failure of initial attempts of
targeting EGFR for therapy, the receptor remains of value for
possible future treatments (87). In our results, EGFR showed best
prediction performance with ST and AB classifiers. Particularly,
rCBV features achieved a performance of 81% with AB classifier
and T2 features achieved a performance of 77.8% with AB
classifier on CET ROI. Highest scoring features were median
intensity values for rCBV and textural features for T2 (Figures
S10A, B). These results are supported by previous evidence. Hu
et al. demonstrated a link between EGFR amplification and rCBV
textural features, with correlation to microvessel volume and
angiogenesis on tumor biopsies (88). Similarly, T2 textural
features were shown to correlate to EGFR amplification (88).

Our study had some limitations. Firstly, even though ML
studies in HGG often rely on limited populations (18, 19, 34, 36,
62, 77, 85, 88, 89), our sample size (156 patients) could be
considered small. Nevertheless, our dataset includes clinical/
genetic information (e.g., survival, MGMT, IDH, EGFR, and
KI67), together with radiomic data from different MRI sequences
(e.g., MPRAGE, FLAIR, ADC, rCBV, T1-wiethed, and T2-
weighted), thus allowing us to combine information from
different sources to better predict clinical and genetic variables.
Due to the retrospective nature of the study, some sequences
were not acquired for all the patients (Table 1). For this reason,
TABLE 6 | EGFR best results (reported as mean ± standard deviation).

ROI SEQ xGB GB RF LR ST KN DT AB ST_ABC

CET rCBV Acc % 69,8 ± 15,1 75,4 ± 15 73,1 ± 16 64,3 ± 16,3 72,9 ± 14,3 61,3 ± 21,4 66,7 ± 19,4 81 ± 13,8 66,5 ± 18,7
CET rCBV Roc % 63,9 ± 19,5 64,6 ± 18,5 64,7 ± 20 62,2 ± 21,8 65,7 ± 18,9 63,4 ± 23,3 59,4 ± 23,2 74,3 ± 17,3 62,6 ± 20
CET T2 Acc % 76,4 ± 15,2 74,7 ± 15 76,4 ± 16 60,8 ± 18,8 76 ± 17,8 59,7 ± 20,4 61,3 ± 18,7 77,8 ± 13,8 71,5 ± 16
CET T2 Roc % 70,4 ± 22,7 69,7 ± 19,8 76,3 ± 17 65,4 ± 15,7 69,8 ± 22,8 60,2 ± 19,5 55,7 ± 20,4 74,1 ± 17,6 65,6 ± 20,6
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FIGURE 7 | Best ROC curves for EGFR prediction: (A) AB classifier with rCBV sequence on CET ROI; (B) AB classifier with T2 sequence on CET ROI.
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prediction accuracy for each label was evaluated separately on
each sequence, thus limiting performance bias. Moreover, some
labels were not available for all the patients; consequently, the
number of subjects split in train and test groups changed for each
label-sequence combination. We tried to overcome this
limitation by employing two well-known and effective
techniques with the aim of balancing the asymmetric labels.
Although undersampling of the majority class was considered a
more effective approach in respect to an oversampling method
(90), we decided to use SMOTE for unbalancing issues. As
demonstrated in other SMOTE-based studies (24, 91), it could
represent a suitable solution for our purposes. In order to
overcome main SMOTE drawbacks (92, 93) we perform ML
analysis with a significant number of cross-validations. Since we
only split subjects into train and test groups, the lack of an
additional validation cohort could represent a limitation of this
study. To overcome this issue, we decided to report range of
performance obtained applying four times stratified K-fold
cross-validation. This approach provides a full accuracy range,
which includes the results that an eventual validation test
would produce.
CONCLUSIONS

In the present study we were able to predict patient OS and
highly relevant molecular features of HGG from preoperative
MRI, comparing different ML classifiers. Ensemble classifiers
(AB, ST, GB, and xGB) showed optimal performance in
prediction tasks for all the studied variables. In particular, AB
and xGB obtained maximum accuracy for survival, AB for IDH
mutation, MGMT promotor methylation status and Ki-67
expression, and EGFR amplification. Ensemble learning
outperformed classic ML algorithms in all tests, in agreement
with previous literature. Best performing features from our
analysis shed light on possible correlations between MRI and
tumor histology, as well as molecular profiles and patient
outcome in HGG. Our results may set a path for ML analysis
standardization and clinical application. Future developments
may include the evaluation of other genetic abnormalities,
prediction of recurrence, and response to therapy.
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Objective: To establish and evaluate the 3D U-Net model for automated segmentation
and detection of pelvic bone metastases in patients with prostate cancer (PCa) using
diffusion-weighted imaging (DWI) and T1 weighted imaging (T1WI) images.

Methods: The model consisted of two 3D U-Net algorithms. A total of 859 patients with
clinically suspected or confirmed PCa between January 2017 and December 2020 were
enrolled for the first 3D U-Net development of pelvic bony structure segmentation. Then,
334 PCa patients were selected for the model development of bone metastases
segmentation. Additionally, 63 patients from January to May 2021 were recruited for
the external evaluation of the network. The network was developed using DWI and T1WI
images as input. Dice similarity coefficient (DSC), volumetric similarity (VS), and Hausdorff
distance (HD) were used to evaluate the segmentation performance. Sensitivity,
specificity, and area under the curve (AUC) were used to evaluate the detection
performance at the patient level; recall, precision, and F1-score were assessed at the
lesion level.

Results: The pelvic bony structures segmentation on DWI and T1WI images had mean
DSC and VS values above 0.85, and the HD values were <15 mm. In the testing set, the
AUC of the metastases detection at the patient level were 0.85 and 0.80 on DWI and T1WI
images. At the lesion level, the F1-score achieved 87.6% and 87.8% concerning
metastases detection on DWI and T1WI images, respectively. In the external dataset,
the AUC of the model for M-staging was 0.94 and 0.89 on DWI and T1WI images.

Conclusion: The deep learning-based 3D U-Net network yields accurate detection and
segmentation of pelvic bone metastases for PCa patients on DWI and T1WI images,
which lays a foundation for the whole-body skeletal metastases assessment.

Keywords: pelvic bones, metastases, prostate cancer, deep learning, magnetic resonance imaging
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INTRODUCTION

The nature of bone marrow makes it a favorite fertile soil into
which prostate tumors incline to colonize and grow (1, 2); up to
84% of patients with advanced prostate cancer (PCa) experience
bone metastases (3), and more than 80% PCa patients developed
relapse in the bone following treatment of the primary site (4).
The mortality of PCa is 6.6-fold for those with bone metastases
compared to those without bone metastases (5). Accurate
detection and assessment of metastatic burden in bone are of
fundamental importance for radiologists.

Bone scintigraphy (BS) and computed tomography (CT) scans
were endorsed as the standard imaging method in the staging and
follow-up of metastatic PCa (6), while it is gradually clear that the
reduced accuracy of BS and CT in the detection and therapeutic
response evaluation of bone metastases reduces their effectiveness
in therapy management (7). Multiparametric magnetic resonance
imaging (mpMRI) is emerging as a powerful alternative for
metastatic PCa. One of the main strengths of mpMRI is to
achieve a precise evaluation of bone metastasis via the
incorporation of anatomic [e.g., T1 weighted imaging (T1WI)]
and functional imaging sequences [e.g., diffusion-weighted imaging
(DWI)] (7, 8). The value of volumetric measurements for assessing
treatment response has been increasingly discussed, and the
measurements of lesion volume on mpMRI should be undertaken
on high-quality T1WI images according to the METastasis
Reporting and Data System (MET-RADS) for PCa (9).
Additionally, the volume of bone metastasis assessed with DWI
was reported to show a correlation with established prognostic
biomarkers and is associated with overall survival in metastatic
castration-resistant PCa (10). In short, the detection and
delineation of metastases and evaluation of volume change
concerning disease progression or therapy on DWI and T1WI
images are key tasks as part of optimal patient management.

HeavyworkloadofmpMRI images evaluation canbe tiresome for
radiologists, hencebearing the riskofmisseddiagnosis for lesions and
leading to decreased sensitivity. The measurements of all the
metastatic lesions are time consuming, in particular, if multiple
metastases are present. In this context, automated and accurate
segmentation of bone metastases would be highly beneficial.

Driven by the rapid growth in computer science, the
performance of deep learning is on par with or even outperforms
radiologists in visual identification, which can perform automated
data-oriented feature extraction and thus learning directly the most
relevant feature representation from the input images (11, 12). The
U-Net algorithm is one of the most commonly used deep learning-
based convolutional neural networks (CNNs) (13), which shows
potential in detection, segmentation, and classification of metastatic
lesions on MRI images such as brain metastases (14, 15) and liver
metastases (16). Concerning the automated bonemetastasis analysis
using the deep learning technique, the research trend is mainly on
BS (17, 18) and single-photon emission computerized tomography
(SPECT) images (19, 20); less attention has been paid to the
diagnosis of mpMRI (21, 22). To this end, we intend to apply the
3D U-Net (23) algorithm for the segmentation of bone metastases
on mpMRI images. For proof-of-concept, we focused on the
detection and segmentation of bone metastases in the pelvic area.
Frontiers in Oncology | www.frontiersin.org 2126
MATERIALS AND METHODS

This retrospective single-center study was approved by the
institutional reviewboard, andwritten informed consentwaswaived.

Patient Cohort
A cohort of 955 consecutive patients who had undergone pelvic
mpMRI for either clinically suspected or confirmed PCa between
January 2017 and December 2020 was reviewed using our
institutional image archiving system. The exclusion criteria were
as follows: (1) poor image quality (significant motion artifact or
chemical shift artifact), (2) uncomplete MR image set, (3) obvious
destruction of bone structure, and (4) patients with a history of
pelvic fractureor surgery.Finally, the images from859patientswere
included for the 3D U-Net model development of pelvic bony
structures segmentation, including a dataset of patients with PI-
RADS score of 1–2 or biopsy-proven benign prostate hyperplasia
(dataset 1, n=349), a dataset of biopsy-provenPCapatientswithout
bonemetastases (dataset 2, n = 280), and a dataset of biopsy-proven
PCa patients with bone metastases (dataset 3, n = 230).

All three datasets were used to develop a pelvic bony structure
segmentationmodel. Then, a 3DU-Netmodel for bonemetastases
segmentation was developed using datasets 2 and 3. The patients
with primary malignant bone tumors (such as osteosarcoma and
myeloma) or definite benign findings (hemangiomas, bone island)
onpelvic bones (n=27) andpatientswhounderwentPCa treatment
(endocrine therapy, chemotherapy, or radiotherapy, n = 149) were
excluded. In total, 334 patients were enrolled for the model
development, including 168 PCa patients with bone metastases
and 166 PCa patients without bone metastases.

Additionally, 77patientswith biopsy-provenPCawhoperformed
pelvic mpMRI scanning from January 2021 and May 2021 were
acquired; according to the above excluding criteria, 63 patients were
finally recruited for the external evaluation of the 3D U-Net model
including a dataset of 31 PCa patients with bone metastases (dataset
4) and a dataset of 32 PCa patients without bone metastases (dataset
5). The workflow of data enrollment is shown in Figure 1.

Image Acquisition
The pelvicmpMRI acquisitions were performed on three 3.0 TMR
units (Achieva, Philips Healthcare; Discovery, GE Healthcare;
Interia, Philips Healthcare). The standard pelvic mpMRI protocol
at our institution included a T1/T2-weighted sequence, DWI with
b-values of 0, 800, or 1,000 s/mm2 along with reconstructed ADC
images, T1W images obtained using the 2-point Dixon technique
with in-phase (T1WI-IP) and out-phase (T1WI-OP), and dynamic
contrast-enhanced imaging. DWI images with high b-values (b =
800 or 1,000 s/mm2) and T1WI-IP images were selected for PCa
bone metastases analyses in this study. Detailed MR imaging
parameters of DWI and T1WI-IP sequence are shown in Table 1.

Manual Annotation
The manual annotations were performed with an image
segmentation software (ITK-SNAP 3.6; Penn Image Computing
and Science Laboratory, Philadelphia, PA). Under the supervision
of a board-certified radiology expert (with more than 15 years of
November 2021 | Volume 11 | Article 773299
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reading experience), a radiology resident with 3 years of reading
experience evaluated all mpMRI examinations and, section by
section, manually annotated eight pelvic bony structures (lumbar
vertebra, sacrococcyx, ilium, acetabulum, femoral head, femoral
neck, ischium, and pubis) on DWI images and T1WI-IP images.
The bone metastases were included in the annotations, which were
recognized as bone tissue in this bony structure segmentationmodel.
Themanual annotations of the pelvic bony structures were regarded
as the reference standard for the 3D U-Net model evaluation.

To establish the reference standard of bone metastases, the
radiology resident and expert radiologist conducted a review of the
original radiology report and double reviewed the included MR
imaging scans and prior/follow-up imaging before annotation. A
bone lesion was considered as a metastasis if it showed an MR
imaging correlated with adequate image contrast (positive image
Frontiers in Oncology | www.frontiersin.org 3127
contrast on DWI images and negative image contrast on those
obtained with the T1WI-IP images). The radiology resident
performed manual annotations of the metastatic lesions on DWI
and T1WI-IP images in a voxel-wise manner (indicated as A1.1).
Then, the expert radiologistmodified the annotations ofA1.1 and the
annotations after modification were indicated as A2.1. Both the
resident and expert radiologist repeated the annotations and
modifications at least 3 weeks later (indicated as A1.2 and A2.2,
respectively). The inter- and intraobserver agreement between the
manual annotations (A1.1 vs. A2.1; A1.1 vs. A1.2; A2.1 vs. A2.2; and
A1.2 vs. A2.2)were estimated usingDice similarity coefficient (DSC).

Thebonymetastatic lesions in the 31PCapatients of the external
dataset were manually annotated by the resident radiology under
the supervision of the expert radiologist, which was taken as the
reference standard for external evaluation of the model.
Model Development
A two-step method for the bone metastases segmentation was
proposed using the 3D U-Net model: the first step with a 3D U-
Net algorithm for pelvic bone segmentation followed by a second
step with a 3D U-Net for bone lesion segmentation within the
segmented pelvic bony structures. Both the CNNs were coded by
Python3.6, Pytorch 0.4.1, Opencv, Numpy, and SimpleITK, and
trained on the GPU NVIDIA Tesla P100 16G.

Model Development for Pelvic Bones Segmentation
The model of the pelvic bony structure segmentation takes the
combination of DWI images and T1WI-IP images as input, and
each image sequence is used as an independent input data
(Figure 2). The 859 patients were randomly divided into either
training (n = 683), validation (n = 88), or testing (n = 88) sets with a
ratio of 8:1:1. During the image preprocessing, the pixel values in
images were scaled between 0 and 65,535. Then, the images were
resized to 64 × 224 × 224 (z, y, x) by resampling to maintain the
optimal image features, and z-score intensity normalization was
applied to all images. Skewing (angel: 0–5), shearing (angel: 0–5),
and translation (scale: −0.1,0.1) of the images were applied for data
TABLE 1 | MR imaging parameters of DWI and T1WI-IP sequence.

Sequences 3.0 T Discovery 3.0 T Intera 3.0 T Achieva

DWI b-value (s/mm2) 800 1000 800
Imaging matrix 256 × 256 240 × 240 156 × 180
Echo time (ms) 60 78 54
Repetition time (ms) 4,000 4,959 3,300
Field of view (mm2) 450 × 366 480 × 360 512 × 356
Section thickness
(mm)

8 7 7

Number of slices 25 28 24
T1WI-IP Imaging matrix 288 × 192 320 × 200 280 × 180

Echo time (ms) 2.0 2.4 2.4
Repetition time (ms) 3.9 7.5 6.7
Field of view 450 × 360 450 × 350 400 × 400
Section thickness 4 5 2
Number of slices 112 112 120
Bandwidth 166.67 300 450
Flip angle(°) 13 10 10
November 2021 | Volume 11 |
T1WI-IP, T1W images obtained using the Dixon technique with in-phase.
FIGURE 1 | The workflow of data enrollment.
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augmentation. To remove small spurious segmentation, the two
largest connected components of each bone were selected as the
final segmentation.A total of300epochsof trainingwereperformed
until validation loss failed to rise. The Adam optimizer was
employed to minimize loss with a learning rate of 0.0001, a batch
size of 2, and a Dice loss function. Other hyperparameters (such as
weight initializationanddropout for regularization)were randomly
searched and automatically executed in the validation set during
model development.

Model Development for BoneMetastases Segmentation
The volume of interest predicted by the model of pelvic bony
structure segmentation was used as the mask for the bone
metastases segmentation (Figure 2). The network configurations
were set as follows: training epoch, 250; learning rate, 0.01; batch
size, 5; optimizer, Adam optimizer; and loss function, Dice loss.

For post-processing, automatically detected metastases
of <0.2 cm3 during inference of testing set were regarded as
image noise and discarded. The threshold was based on the
resolution of T1WI-IP sequences and is determined by referring
to the smallest annotated metastases (0.356 cm3).

Model Evaluation
Model Evaluation for Pelvic Bony Structure Segmentation
The performance of the network was evaluated by comparing the
segmentations generated by the 3D U-Net based on image data
from the testing set to the corresponding reference standard
represented by the manual segmentations on DWI and T1WI-IP
images quantitatively. The evaluation metrics used for the bony
structures segmentation include the overlap-based metric (DSC),
the volume-based metric [volumetric similarity (VS)], and the
spatial distance-based metric [Hausdorff distance (HD)] (24).

Model Evaluation for Bone Metastases Segmentation
The performance of the bone metastases segmentation model
was evaluated both on detection and segmentation. Detection is
defined as the network’s ability to detect a metastasis annotated
Frontiers in Oncology | www.frontiersin.org 4128
by the radiologist. One bone metastasis was considered detected
when the manual annotation and the predicted segmentation
had an overlap >0. Segmentation is defined as its ability to
provide a contour identical to that of the radiologist.

The detection performance of the network was quantified at
the patient and lesion levels. The sensitivity, specificity, accuracy,
positive predictive value (PPV), negative predictive value (NPV),
and area under the receiver operating characteristic curve (AUC)
were used to assess the performance of the model to discriminate
between patients with bone metastases and patients without
bone metastases. To determine the detection accuracy of the
metastases at the lesion level, we compared the lesions obtained
with model predictions and manual annotations to determine
the true-positive (TP), false-negative (FN), and false-positive
(FP) findings. The recall (correctly detected metastases divided
by all metastases contained in reference standard), precision
(correctly detected metastases divided by all the detected
metastases), and F1 score (harmonic mean of precision and
recall) were calculated to assess the detection performance of the
model on a lesion-by-lesion basis. In addition, we determined the
number of distinct metastatic lesions in each case in the testing
set and then divided the data into groups with (a) 1, (b) 2–3, (c)
4–5, and (d) >5 lesions to facilitate subgroup analysis of
metastases detection at lesion level.

The metastases segmentation performance of the network
was assessed using the metrics of DSC, VS, and HD by
comparing the CNN-predicted segmentation and manual
segmentation. Besides, the volume of the bone metastases in
manual annotations and automated segmentations was
calculated to further quantitatively estimate the segmentation
efficacy of the U-Net algorithm.

Model Evaluation on an External Dataset
The external dataset was used to further assess the efficiency of
the model on bone metastases evaluation in the clinical setting.
Given the new mpMRI data of PCa patients, the 3D U-Net was
supposed to determine the existence of bone metastases (M0 or
FIGURE 2 | The two-step 3D U-Net for bone metastases segmentation on DWI and T1WI-IP images. T1WI-IP, T1W images obtained using the Dixon technique with in-phase.
November 2021 | Volume 11 | Article 773299
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M1) and output the number, location, and volume of the bone
metastases with corresponding segmented masks (Figure 2). A
bone lesion was considered as being detected if it was segmented
on at least one of the two MR imaging sequences (DWI/T1WI-
IP). The accuracy of the M-staging of the model was assessed
using the receiver operating characteristic curve analysis, and the
segmentation performance (DSC, VS, HD) and quantitative
measurements (volume) were assessed by comparison with
manual annotations.

Statistical Analysis
MedCalc (version 14.8; MedCalc Software, Ostend, Belgium) and
SPSS (version 22.0, IBMCorp., Armonk, NY, USA) were used for
the statistical analyses. Numerical data of patients’ age were
reported as the mean ± SD (standard deviation), and prostate-
specific antigen (PSA) levels were reported as (median, quartile).
One-way analysis of variance (ANOVA) was used to compare
the characteristics of patients (age, PSA level) among training,
validation, and testing sets. The segmentation performance of the
algorithm (DSC, VS, and HD) between DWI and T1WI-IP
images were compared by paired t-test. The McNemar’s test
was used to compare the detection performance (sensitivity,
specificity, PPV, NPV, recall, and precision) between the two
sequences. Bland–Altman analyses were performed to compare
manual versus automated bone metastases volume. p < 0.05 was
considered indicative of a statistically significant difference.
RESULTS

Characteristics of Patients
The characteristics of patients are shown in Tables 2, 3. The age
and PSA level showed no significant difference among the training,
validation, and testing sets on both models (all with p > 0.05). The
average volume of metastases in the external dataset was 7.39 cm3,
and no difference was found between the external dataset and
Frontiers in Oncology | www.frontiersin.org 5129
model development dataset (p = 0.645). Of the 16 PCa patients
with bone metastases in the testing set, 2 patients (12.50%) had
one metastasis, 5 patients (31.25%) had two to three metastases, 4
patients (25.00%) had four to five metastases, and 5 patients
(31.25%) had more than five metastases.

Assessment of Pelvic Bony
Structures Segmentation
As shown in Table 4 and Figure 3, in the testing set of pelvic bone
segmentation model, the DSC and VS values of eight pelvic bony
structures betweenmodel prediction andmanual annotation are all
above0.85 onbothDWI andT1WI-IP images,while themeanDSC
and VS values on T1WI-IP images are significantly higher than
those onDWI images (all with p < 0.05), and theHD is significantly
lower. Thismay be explained by the higher spatial resolution of the
T1WI-IP images. Additionally, as detailed in the Supplementary
materials (Supplementary Tables S1–S4), no significant difference
was found among the patients from different datasets (dataset 1 vs.
dataset 2 vs. dataset 3) anddifferent scanners (3.0TDiscoveryvs. 3.0
T Achieva vs. 3.0 T Intera) on both DWI and T1WI-IP images.
The Inter- and Intraobserver Agreement
of Bone Metastases Annotations
The interobserver agreement of the manual annotations of bone
metastases was assessed by calculating the DSC values between
A1.1 and A2.1, and A1.2 and A2.2. The intraobserver agreement
was assessed by A1.1 vs. A1.2 and A2.1 vs. A2.2. The DSC values
on DWI images were as follows: A1.1 vs. A2.1, 0.90 ± 0.08; A1.1
vs. A2.1, 0.91 ± 0.09; A2.1 vs. A2.2, 0.94 ± 0.05; A1.2 vs. A2.2,
0.91 ± 0.08. In T1WI-IP images, the DCS values were as follows:
A1.1 vs. A2.1, 0.89 ± 0.09; A1.1 vs. A2.1, 0.90 ± 0.09; A2.1 vs.
A2.2, 0.97 ± 0.04; and A1.2 vs. A2.2, 0.92 ± 0.08. The high DSC
values between A2.1 vs. A2.2 confirmed the reliability of the
manual annotations. A2.2 was regarded as the reference standard
for the lesion segmentation model evaluation.
TABLE 2 | Characteristics of patients for the pelvic bony structure segmentation model.

Characteristics Model development (dataset 1 + dataset 2 + dataset 3) External dataset p-value

Training set Validation set Testing set p-value

Age (mean ± SD) 68.3 ± 10.5 67.6 ± 10.9 67.8 ± 11.7 0.756 70.7 ± 8.1 0.062
No. of patients 683 88 88 – 68 –

No. of patients with bone metastases 184 23 23 – 34 –

No. of patients without bone metastases 224 16 18 – 34 –

PSA (median, quartile, ng/ml)
T-PSA 10.49

(7.11, 15.99)
9.73

(8.46, 12.68)
11.19

(7.44, 15.75)
0.556 12.25

(8.89, 26.92)
0.199

F-PSA 1.95
(1.04, 6.71)

2.07
(1.08, 5.78)

2.19
(1.02, 5.46)

0.266 1.65
(1.05, 5.26)

0.112

F/T-PSA 0.12
(0.09, 0.17)

0.10
(0.07, 0.20)

0.10
(0.08, 0.18)

0.587 0.12
(0.09, 0.18)

0.399

Scanners
3.0 T Discovery 417 56 57 – 31 –

3.0T Achieva 133 17 15 – 13 –

3.0 T Intera 134 15 16 – 24 –
November 2
021 | Volume 11 | Article
PSA, prostate-specific antigen; T-PSA, total PSA; F-PSA, free PSA; SD, standard deviation.
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The Detection Accuracy of Bone Metastases
The detection performance of the CNN on DWI and T1WI-IP
images at the patient and lesion levels are shown in Table 5. The
detectionperformanceof themodelonDWI imageswasbetter than
onT1WI-IP images concerning the valuesof the evaluationmetrics,
whilenosignificantdifferencewas foundbetween the twosequences
(all with p > 0.05). The results of the subgroup analysis of detection
accuracy at lesion level in the testing set showed the highest recall
and precision values in patientswith singlemetastases, andboth the
recall and precision were above 80% for few metastases (≤5
metastases) and multiple metastases (>5 metastases).

TheSegmentationAccuracy of BoneMetastases
The mean DSC, VS, and HD for the automatic metastases
segmentation are 0.79 ± 0.05, 0.84 ± 0.09, and 15.05 ± 3.61
mm on DWI images and 0.80 ± 0.06, 0.85 ± 0.08, and 13.39 ±
3.20 mm on T1WI images (Figure 4A), which showed no
Frontiers in Oncology | www.frontiersin.org 6130
significant difference between the two sequences (p = 0.627,
0.741, and 0.175, respectively).

The volume differences between manual annotation and model
prediction of bone metastases on DWI and T1WI-IP images are
shown inFigures 4B, C. The limit of agreement (LOA) between the
automated and manual segmentation on DWI images was
−8.4–6.6 cm3 and −4.4–4.4 cm3 on T1WI-IP images. Most of the
difference values were within the LOA, which showed that the
volumeofoverallmetastatic lesions in eachpatient betweenmanual
andautomated segmentations agreed closely.Example results of the
automatic bone metastases segmentation are shown in Figure 5.

Detection and Segmentation Accuracy
on the External Dataset
The sensitivity, specificity, and AUC values of the model in
determining the M-staging (M0 or M1) were 93.6% (29/31; 95%
CI, 78.6%–99.2%), 93.8% (30/32; 95%CI, 79.6%–99.2%), and 0.94
TABLE 4 | Segmentation performance of pelvic bony structures.

Bony structures DSC p-value VS p-value HD (mm) p-value

DWI T1WI-IP DWI T1WI-IP DWI T1WI-IP

Lumbar vertebra 0.89 ± 0.05 0.93 ± 0.03 0.001 0.94 ± 0.06 0.96 ± 0.06 0.034 11.45 ± 3.54 10.63 ± 4.66 0.258
Sacrococcyx 0.88 ± 0.04 0.93 ± 0.02 0.001 0.96 ± 0.03 0.98 ± 0.02 0.001 13.36 ± 4.79 9.56 ± 4.53 0.001
Ilium 0.88 ± 0.03 0.94 ± 0.02 0.001 0.97 ± 0.02 0.99 ± 0.02 0.001 13.34 ± 4.15 8.50 ± 3.30 0.001
Acetabulum 0.85 ± 0.04 0.90 ± 0.03 0.001 0.94 ± 0.05 0.96 ± 0.04 0.017 14.95 ± 6.04 10.17 ± 5.60 0.001
Femoral head 0.90 ± 0.04 0.94 ± 0.03 0.001 0.95 ± 0.04 0.97 ± 0.02 0.001 9.00 ± 2.90 4.77 ± 1.51 0.001
Femoral neck 0.88 ± 0.04 0.95 ± 0.03 0.001 0.96 ± 0.04 0.98 ± 0.05 0.015 12.39 ± 4.40 8.50 ± 5.51 0.001
Ischium 0.86 ± 0.04 0.90 ± 0.03 0.001 0.93 ± 0.05 0.96 ± 0.04 0.001 14.88 ± 6.92 14.62 ± 6.27 0.295
Pubis 0.86 ± 0.05 0.88 ± 0.04 0.022 0.92 ± 0.06 0.94 ± 0.05 0.074 14.72 ± 7.08 10.60 ± 4.58 0.001
N
ovember 2021 | Volume 11 | Article
DSC, Dice similarity coefficient; HD, Hausdorff distance; T1WI-IP, T1W images obtained using the Dixon technique with in-phase; VS, volumetric similarity.
TABLE 3 | Characteristics of patients for the bone metastases model.

Characteristics Model development (from dataset 2 and dataset 3) External dataset p-value

Training set Validation set Testing set P value

Age (mean ± SD) 69.6 ± 10.4 65.9 ± 11.2 68.7 ± 8.9 0.548 70.7 ± 8.1 0.268
No. of patients 266 34 34 – 63 –

No. of patients with bone metastases 134 18 16 – 31 –

No. of patients without bone metastases 132 16 18 – 32 –

PSA (median, quartile, ng/ml)
T-PSA 13.04

(9.10, 20.1)
12.65 (10.13,18.50) 13.95

(12.95, 23.5)
0.305 12.25

(8.89, 26.92)
0.941

F-PSA 1.29 (1.01,5.41) 1.36
(1.08, 4.38)

1.48
(1.07, 4.73)

0.993 1.65
(1.05, 5.26)

0.091

F/T-PSA 0.07
(0.09, 0.18)

0.09
(0.07, 0.16)

0.09
(0.04, 0.11)

0.356 0.12
(0.09, 0.18)

0.573

Average volume of metastases (median, quartile, cm3) 7.50
(5.47, 31.60)

7.98
(2.72, 31.75)

8.05
(2.93, 31.03)

0.945 7.39
(1.23, 28.23)

0.645

No. of metastatic lesions
1 30 (22.39%) 4 (22.22%) 2 (12.50%) – 5 (16.13%) –

2-3 36 (26.86%) 6 (33.33%) 5 (31.25%) – 6 (19.35%) –

4-5 24 (17.91%) 4 (22.22%) 4 (25.00%) – 8 (25.81%) –

>5 44 (32.84%) 4 (22.22%) 5 (31.25%) – 12 (38.71%) –

Total lesions 664 86 89 – 144 –

Scanners
3.0 T Discovery 172 17 20 – 31 –

3.0T Achieva 71 10 8 – 13 –

3.0 T Intera 23 7 6 – 24 –
PSA, prostate-specific antigen; T-PSA, total PSA; F-PSA, free PSA; SD, standard deviation.
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(95%CI, 0.85–0.98) on DWI images and 87.1% (27/31; 95%CI,
70.2%–96.4%), 90.6% (29/32; 95%CI, 75.0%–98.0%), and 0.89 (95%
CI, 0.85–0.98) on T1WI-IP images. The AUC values between the
two sequences showed no significant difference (p = 0.368).

At lesion level, the segmentation accuracy of themodel for bone
metastases achieved averageDSC,VS, andHDvalues of 0.79 ± 0.06,
0.83±0.08, and16.03±9.74mmonDWI images, 0.81±0.06, 0.82±
0.07, and 17.20 ± 6.73 mm on T1WI-IP images (Figure 6A). The
mean volumes of manual annotation and model prediction were
15.35 and 14.10 cm3 on DWI images and 15.68 and 14.40 cm3 on
T1WI-IP images. The volume difference is shown in Figures 6B, C.
DISCUSSION

In this work, we developed a two-step deep learning-based 3D
CNN for automated detection and segmentation of bone
metastases in PCa patients using whole 3D MR images (DWI
Frontiers in Oncology | www.frontiersin.org 7131
and T1WI-IP images), in which the first 3D U-Net focuses on the
segmentation of pelvic bony structures and the second one on
bone metastases segmentation. On heterogeneous scanner data,
the first CNN performed excellent segmentation of pelvic bony
structures on both DWI and T1WI-IP images (all with DSC >
0.85), which provides a reliable foundation for the subsequent
bone metastases segmentation. Furthermore, our result showed
that the proposed CNN provided an AUC of 0.854 and 0.795 on
DWI and T1WI-IP images for bone metastases detection at the
patient level, and high overlap between automated and manual
metastases segmentations was observed (DSC = 0.79 and 0.80 on
DWI and T1WI-IP images, respectively). Additionally, by testing
on an external dataset, this work demonstrates the CNN’s
potential ability of M-staging in clinical practice (with AUC of
0.936 and 0.889 on DWI and T1WI-IP images).

mpMRI has been identified as an essential and crucial
imaging modality in PCa diagnosis and metastases evaluation
(25, 26). The importance of DWI and T1WI in the detection and
FIGURE 3 | Split violin plots of DSC, VS, and HD (mm) for pelvic bony structures segmentation. DSC, Dice similarity coefficient; HD, Hausdorff distance; T1WI-IP,
T1W images obtained using the Dixon technique with in-phase; VS, volumetric similarity.
TABLE 5 | Detection accuracy of bone metastases at patient and lesion levels.

Level Metrics DWI T1WI-IP p-value

Patient-level Sensitivity (%) 87.5 (61.7–98.4) 81.3 (54.4–96.0) 0.847
Specificity (%) 83.3 (58.6–96.4) 77.8 (52.4–93.6) 0.852
Accuracy (%) 85.3 (68.9–95.1) 79.4 (62.1–89.9) 0.789

PPV (%) 82.4 (56.6–96.2) 76.5 (50.1–93.2) 0.847
NPV (%) 88.2 (63.6–98.6) 82.4 (56.6–96.2) 0.852
AUC 0.85 (0.69–0.95) 0.80 (0.62–0.91) 0.442

Lesion-level Recall (%) 91.01 (81/89) 88.76 (79/89) 0.874
Precision (%) 84.38 (81/96) 86.81 (79/91) 0.857
F1-score (%) 87.6 87.8 –

Subgroup analysis
1 Recall (%) 100 (2/2) 100 (2/2)

Precision (%) 100 (2/2) 100 (2/2)
2–3 Recall (%) 92.9 (13/14) 85.7 (12/14)

Precision (%) 86.7 (13/15) 85.7 (12/14)
4–5 Recall (%) 94.7 (18/19) 84.2 (16/19)

Precision (%) 85.7 (18/21) 88.9 (16/18)
>5 Recall (%) 88.9 (48/54) 90.7 (49/54)

Precision (%) 82.8 (48/58) 85.9 (49/57)
November 2021 | Volume 11 | Article
AUC, areaunder the receiver operating characteristic curve;NPV,negative predictive value; PPV,positive predictive value; T1WI-IP,T1W imagesobtained using theDixon techniquewith in-phase.
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quantification of osseous metastasis in patients with PCa has
been widely recognized (9, 27). In this study, to avoid the
limitation of the application of the CNN if one of these
sequences is unavailable, we trained the two-step 3D U-Net
CNN using DWI and T1WI-IP images as independent input
data. The enrolled participants performed the mpMRI
examinations on one of the three different 3.0-T MR scanners
with different protocols, and the b-values of the DWI images were
different (b = 0, 800 or 0, 1,000 s/mm2). In a previous publication
(28), we proposed a deep learning-based approach for the
segmentation of normal pelvic bony structures. It was the proof-
Frontiers in Oncology | www.frontiersin.org 8132
of-concept study for the possibility to detect skeletal metastases
located on the pelvic bones. In this study, we used two 3D U-Nets
in cascade. The first model was trained to segment the pelvic bony
structures. Taking the areas predicted by the first model as the
mask, the second model was trained to segment the metastatic
lesions on the pelvic bones. The combination of the two 3D U-
Nets offers the potential for efficient bone metastases location and
quantification. It is important to note that the two-step deep
learning model has been widely used to improve the accuracy and
stability of the system, such as lymph node detection (29) and PCa
segmentation (30).
A

B

D

C

FIGURE 5 | Examples of pelvic bony structure and bone metastases segmentations. (A) Two metastases of acetabulum annotated by radiologists were corrected
segmented by the model on T1WI-IP images (true positive). (B) Four of five metastases annotated by the radiologists were corrected segmented by model on T1WI-
IP images; one metastasis on the right ilium was missed (the white arrow pointed, false negative). (C) All the four metastases of femoral head and ischium annotated
by radiologists were correctly segmented by the model on DWI images (true positive). (D) One metastasis of lumbar vertebra was segmented by the model by error,
which was not annotated by the radiologists (false positive). T1WI-IP, T1W images obtained using the Dixon technique with in-phase.
A B C

FIGURE 4 | The segmentation accuracy of bone metastases in the testing set. (A) Split violin plot of DSC, VS, and HD of the bone metastases on DWI and T1WI-IP
images. (B) The Bland–Altman plot of the volume difference between manual annotation and model prediction on DWI images. (C) The Bland–Altman plot of the
volume difference between manual annotation and model prediction on T1WI-IP images. DSC, Dice similarity coefficient; HD, Hausdorff distance; T1WI-IP, T1W
images obtained using the Dixon technique with in-phase; VS, volumetric similarity.
November 2021 | Volume 11 | Article 773299
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The high number of FP lesions poses a common drawback in
automated detection of metastatic lesions, which has been
reported to be approximately seven to eight per scan for brain
metastases (31, 32). In the present study, by providing high-
quality pelvic bone segmentation masks on DWI and T1WI-IP
images, the FP interference from other tissues within the pelvic
region (such as metastatic lymph nodes, colon, bladder, etc.) can
be effectively eliminated. Moreover, a simple post-processing
step was added to avoid FP findings by rejecting all structures
with a volume <0.2 cm3, which was smaller than the smallest
annotated metastases.

Our CNN not only detects almost all metastases but also
incorrectly marks other objects as metastases. Most of these FPs
were caused by objects that showed a similar radiological
appearance to metastatic lesions on DWI and T1WI-IP images.
As shown in Figure 5D, the high-intensity spinal cord on DWI
images within the mask of the lumbar vertebra was detected as
metastases by mistake. In addition, the objects that were not or
scarcely represented in the training set and thus had an
appearance unknown to the network could result in FP as well.
These unknown appearances could be other lesions or conditions
such as incidental cysts. An inspection of the 15 FP findings on
DWI images showed that nine of the FPs were the spinal cord
and nerve root structure, and six of the FPs were benign lesions:
four cysts and two hemangiomas. The 12 FP objects on T1WI-IP
images included eight spinal cord and nerve root structures,
three cysts, and one blood vessel structure.

The FN metastases missed by the CNN networks were the
small ones, as can be seen in Figure 5A, which might be due to
the few occupied voxels compared with large metastases.
Additionally, on a subgroup analysis, our results suggest that
the networks perform well on patients with few metastases (≤5
metastases) and multiple metastases (>5 metastases) in terms of
recall and precision, which boosts the clinical utility of the CNN.

Automated segmentation can help radiologists in dealing
with an increased number of image interpretations while
maintaining high diagnostic accuracy and, simultaneously, may
also assist in evaluating treatment response during oncological
follow-up. Volumetric assessment proves to be a promising tool
for quantification of tumor burden and treatment response
evaluation, which is superior to user-dependent conventional
Frontiers in Oncology | www.frontiersin.org 9133
linear measurements because metastatic lesions are irregular
(33). Compared with manual segmentation, our proposed
CNN achieved a high volumetric correlation on both the
testing set and the external dataset, which is crucial to help
treatment decision-making and potentially improve patient care.

TNM is considered to be one of the most pivotal factors in
evaluating the prognosis of PCa, and the existence of bone
metastases is a decisive index for the M-staging (34). Concerning
M-staging, on the external dataset, our model achieved an AUC of
0.936 (95%CI, 0.845–0.982) on DWI images and 0.889 (95%CI,
0.845–0.982) on T1WI-IP images, which demonstrated that the
two-step 3D U-Net algorithm could be used in a clinical context.
Besides, the output of the automated segmentation result to the
structure report essentially combines visualization, quantification,
and segmentation into one step, producing results that can be
directly displayed to the radiologists.

U-Net has been proven to possess the potential for bone
metastases segmentation. Lin et al. (19) built two deep learning
networks based on U-Net and Mask R-CNN to segment hotspots
in bone SPECT images for automatic assessment of metastasis.
Their results showed that the U-Net-based model achieved better
segmentation performance with a precision and recall value of
0.76 and 0.67 than the Mask R-CNN model (precision, 0.72;
recall, 0.65). In addition, Chang et al. (35) demonstrated the
capability of U-Net in segmenting spinal sclerotic bone
metastases on CT images with a Dice score of 0.83. In this
study, we explored the feasibility of the 3D U-Net network for
pelvic bone metastases segmentation on DWI and T1WI-IP
images, and our results further confirmed the segmentation
accuracy of the U-Net for bone metastases. However, the
comparisons among a couple of other architectures may be
helpful to choose an optimal model for metastases
segmentation and detection. In the future, we should further
explore the performance of other models.

While this study shows high accuracy and performance using
CNNs for bone metastases segmentation, several potential study
limitations exist. First, the study has a typical drawback of
retrospective setting. Testing of the network performance on
prospective multicenter data remains a key step towards
understanding its clinical value. Second, the relatively small
number of patients needs to be noted. Only patients with PCa
A B C

FIGURE 6 | The segmentation accuracy of bone metastases on an external dataset. (A) Split violin plot of DSC, VS, and HD of the bone metastases on DWI and
T1WI-IP images. (B) The Bland–Altman plot of the volume difference between manual annotation and model prediction on DWI images. (C) The Bland–Altman plot of
the volume difference between manual annotation and model prediction on T1WI-IP images. DSC, Dice similarity coefficient; HD, Hausdorff distance; T1WI-IP, T1W
images obtained using the Dixon technique with in-phase; VS, volumetric similarity.
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were included here, which potentially limits the transferability of
our CNN to a broad range of bone metastases of other primary
tumors (rectal cancer, bladder cancer, etc.). In this context,
future studies are needed to evaluate the feasibility of the CNN
for bone metastases segmentation of other tumors. Third, in
clinical practice, the detection of the lesion by the radiologist is
usually done by simultaneous review of anatomical and
functional MR images. Besides the Dixon T1WI-IP and DWI
images, the Fat or Water images from the Dixon sequence and
the short time inversion recovery sequence may also be helpful
for the bone metastases evaluation (36, 37). Last, the choice of
pelvic examinations as the anatomic target to detect bone
metastases and assess the positive–negative status of the
patients in terms of metastases is insufficient in clinical
practice. The axial and probably whole skeleton, at least from
skull to thighs, is necessary, as metastases affect the red marrow-
containing areas. Future research is needed to allow for the
whole-body bone metastases assessment.
CONCLUSION

In summary, our study shows that the deep learning-based 3D
U-Net network can automatically detect and segment bone
metastases on DWI and T1WI-IP images with high accuracy
and thus illustrates the potential use of this technique in a
clinically relevant setting.
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Colorectal cancer is one common digestive malignancy, and the most common approach
of blood metastasis of colorectal cancer is through the portal vein system to the liver. Early
detection and treatment of liver metastasis is the key to improving the prognosis of the
patients. Radiomics and radiogenomics use non-invasive methods to evaluate the
biological properties of tumors by deeply mining the texture features of images and
quantifying the heterogeneity of metastatic tumors. Radiomics and radiogenomics have
been applied widely in the detection, treatment, and prognostic evaluation of colorectal
cancer liver metastases. Based on the imaging features of the liver, this paper reviews the
current application of radiomics and radiogenomics in the diagnosis, treatment, monitor of
disease progression, and prognosis of patients with colorectal cancer liver metastases.

Keywords: colorectal cancer, liver metastasis, radiomics, gene, treatment, prognosis
1 INTRODUCTION

Colorectal cancer (CRC) is the third most prevalent malignancy and the second commonest cause of
cancer-related deaths throughout the world (1), with the incidence and mortality still on the rise in
recent years (2). Because of the hepatic unique blood circulation characteristics, the liver has become
the most common organ for blood metastasis of cancers, accounting for 25% of all cancer metastasis
(3) and approximately 35%–55% of CRC (4, 5). The liver has uniquely favorable conditions for
stagnation and growth of cancerous cells, with double blood supply from the visceral and portal
vascular systems and natural spaces among adjacent endothelial sinusoidal cells that are deficient of
a typical basement membrane for covering (3, 6, 7). Hepatic metastasis is a critical indicator of
prognosis for patients with primary cancers, and the life expectancy of patients with hepatic
metastases from gastrointestinal cancers is only 6 months without appropriate treatment (8).
Accurate prediction and differentiation of liver metastases from CRC is critical to making an
appropriate therapeutic plan and improving the prognosis of the patients. Ultrasound, computed
tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET)
have been routinely applied to detect and assess liver lesions, including metastases of cancer (9, 10).
Some liver metastatic lesions from primary cancers of different systems may have common
characteristics, including hyperechoic lesions surrounded by a hypoechoic halo (targeted ring
sign) in primary gastrointestinal and vascular carcinomas on ultrasound imaging and presence of
calcification in CRC or ovarian carcinomas (7, 11, 12). Metastatic lesions with typical imaging
features may be easily identified from specific primary carcinomas; however, this kind of lesion
accounts for only a small proportion of metastatic lesions, with most of the metastatic lesions being
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https://www.frontiersin.org/articles/10.3389/fonc.2021.689509/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.689509/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.689509/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:yinxiaoping78@sina.com
https://doi.org/10.3389/fonc.2021.689509
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.689509
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.689509&domain=pdf&date_stamp=2022-01-07


Wang et al. Radiomics of Colorectal Liver Metastasis
atypical on imaging, whose specific origin cannot be identified
easily. Thus, thorough laboratory and physical examinations,
molecular genetic test, and tissue biopsy have been applied to
assess the primary origin of liver metastases even though these
tests and examinations are costly, invasive, or time-consuming
(13, 14).

With the development of great-volume computing capability,
it is currently feasible to quickly extract countless quantitative
characteristics from three-dimensional imaging data of MRI, CT,
ultrasound, and PET for evaluation of the nature of different
lesions, because digital medical images contain considerable
information that reflects potential pathophysiology. This
technology of transforming digital medical imaging data into
high-dimensional data for assessment and decision support is
referred to as radiomics (15). The framework of radiomics
application is shown in Figure 1. The radiomics technology
has been motivated by the notion that biomedical images
comprise information that mirrors and can be used to reveal
basic pathophysiology through quantitative analysis. It has been
applied in many conditions, but the most developed field of
application is in oncology. Quantitative features of imaging are
based on imaging shape, intensity, volume, size, and texture,
which provide detailed information on tumor microenvironment
and phenotype distinct from that offered by laboratory results,
clinical reports, and genomic or proteomic analyses. Combined
with other clinical information, these features can be used for
correlation analysis with clinical results and decision-making,
and radiomics can thus provide countless imaging biomarkers to
potentially help cancer diagnosis, detection, prognosis
evaluation, prediction of treatment response, and monitoring
of disease progression. Radiomics is a young field of study and
will undergo a slow progress because of technical complexity,
datum overfitting, deficiency of standards for outcome
validation, incomplete presentation of outcomes, and
unrecognizable confounding factors in the databases.

Radiogenomics refers to the exploring of radiomics data to
find correlations with genomic modes and has aroused
considerable interest in the research field of oncology (15).
Here, in this paper, radiogenomics only indicates the
Frontiers in Oncology | www.frontiersin.org 2137
combination of genomic information and radiomic features to
enable decision support rather than whole-genome analysis to
determine the genetic causes of radiosensitive variations in the
scope of radiation oncology. Radiogenomics is important
because not all patients have had their cancerous diseases
genomically profiled even though they may undergo imaging
examinations during the course of disease. Radiogenomic data
can provide gene expression or mutation information to increase
diagnostic, predictive, and prognostic capability and to enable
precision therapy because these radiomics data are originated
from the complete tumor lesion rather than a small sample
of tissue.

In patients with CRC, one factor significantly affecting the
prognosis is the proper management of colorectal cancer liver
metastases (CRLM), and surgical treatment stands for the only
opportunity of long-term survival. The 5-year survival rate of
CRC patients with complete resection of liver metastases has
been reported to be approximately 30% higher than that without
appropriate treatment of the liver metastases (16). Therefore, one
of the keys to improving the prognosis of CRC patients is to
detect liver metastases for initiating appropriate treatment as
soon as possible. Currently, few studies have been performed on
radiomics or radiogenomics of CRLM, and this review focused
on the radiomics and radiogenomic features of CRLM, trying to
facilitate early detection and appropriate treatment of CRLM
besides evaluation of its genetic factors and response to
treatment for improving the prognosis. The flow chart of the
content of this paper is shown in Figure 2.
2 RADIOMICS PROGRESS IN THE
DIAGNOSIS AND TREATMENT OF CRLM

In recent years, the field of medical image analysis has developed
rapidly, and the development of pattern recognition tools has
promoted fast progress of quantitative feature extraction. By
extracting a great deal of quantitative features from medical
imaging data, radiomics can be used to analyze image
FIGURE 1 | Framework of radiomics application.
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information in detail. Compared with traditional approaches of
imaging diagnosis, it can significantly improve tumor diagnosis,
grading and staging, evaluation of responses to chemotherapy,
and prognosis prediction (15, 17, 18), providing professional
guidance for treatment planning.

2.1 Radiomics in the Diagnosis of CRLM
With the progress of imaging technology, conventional imaging
approaches can effectively detect large and typical CRLM.
However, due to the complexity of hepatic hemodynamics and
differences of liver parenchymal background on imaging among
patients, different imaging modalities perform differently in
diagnosis of atypical or tiny liver metastases. It is hard to
detect tiny or occult metastases by using the existing imaging
approaches; however, identification of these lesions is crucial to
early management and improved prognoses. Radiomics features,
including entropy, texture and texture ratio, uniformity, and
convolutional neural networks (CNNs), have been effectively
applied for diagnosis of CRLM. In assessing the capability of
whole-liver CT imaging texture analyses of hepatic parenchyma
in distinguishing CRC patients with simultaneous hepatic
Frontiers in Oncology | www.frontiersin.org 3138
metastasis (n = 10), heterochronous hepatic metastasis within
18 months after initial staging (n = 4), or no hepatic metastasis
(n = 15), Rao et al. (19) found that the mean entropy of the whole
liver was significantly (p < 0.05) higher in patients with
synchronous metastases than those without hepatic metastases,
whereas the mean uniformity of the whole liver was significantly
(p < 0.05) lower in patients with synchronous metastases than
those without liver metastases. This study indicated that texture
evaluation of seemingly disease-free liver is promising to
distinguish CRC patients with or without hepatic metastases.
After analyzing the texture in non-enhanced CT imaging in
seemingly non-diseased regions of liver for impact of hepatic
texture by presence of malignant tumors in patients with CRC,
Ganeshan et al. (20) found that the fine to medium texture ratio
after imaging filtration was significantly (p < 0.05) different in
seemingly non-diseased hepatic areas in patients with hepatic
metastasis compared with those without liver metastasis
(entropy, p = 0.0257) or those with extra-liver disease
(uniformity, p = 0.0143). Imaging textures of entropy and
uniformity have been found to be more advantageous to other
features in the diagnosis of CRLM.
FIGURE 2 | Flow chart of this paper.
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CNNs are able to generate useful characteristics from imaging
data and have been proven to have high values in predicting
oncological outcomes (5, 21–23). Lee et al. used CNNs to
generate imaging features from the liver parenchyma in 2019
patients with stage I–III CRC for predicting metachronous liver
metastasis based on preoperative abdominal CT imaging (5).
They found that the radiomics model combining clinical
variables with the top principal components of imaging had
the greatest performance (mean AUC = 0.747) to predict 5-year
metachronous liver metastasis compared with the model using
clinical features only. Even though no hepatic metastasis was
found during the initial colectomy, the radiomics features using
the CNNs could be used to predict possible metachronous
liver metastasis.

2.2 Differentiation of Histopathological
Growth Patterns of CRLM
The heterogeneities of genetic, phenotypic, epigenetic, and
morphological features inside and outside the CRLM lesion
result in different responses to systemic treatment (24, 25). The
histopathological growth pattern (HGP) is one such
heterogeneity with corresponding microvasculatures. Based on
the interface of cancerous cells with adjacent hepatic texture,
CRLM has two primary kinds of HGPs: replacement and
desmoplastic, with other uncommon kinds of mixed and
pushing HGPs (26). The desmoplastic HGP is characterized by
separation of the cancerous cells from the hepatic texture by a
fibrous band with lymphocytic infiltration and sprouting
angiogenesis in the microvasculature. In this pattern, the
cancerous cells initiate a reaction similar to the healing of
wounds: scar tissues are created with presence of inflammation
and new blood vessels. In the replacement HGP, the cancerous
cells constitute cellular plates that are in continuity with the
hepatocytic plate, allowing the cancerous cells to displace
hepatocytes and co-opt the sinusoidal blood vessels at the
cancer–liver interface, without disturbing the hepatic stromal
architecture or inducing sprouting angiogenesis (25, 27, 28).
Desmoplastic metastases are frequently well or moderately
differentiated, whereas replacement liver metastases are of poor
differentiation, lacking immune reaction and secondary
glandular structures (27, 29). The pushing HGP is less
common with the hepatocyte plate being compressed and
pushed away by the metastatic cancer cells, with no
desmoplastic rim around the cancerous cells or direct contact
of the cancerous cells with the hepatocytes.

The HGPs of CRLM can be effectively differentiated using
multidetector CT-based radiomics and MRI-based radiomics
(multi-habitat and multi-sequence) (25, 30). After studying 126
patients with CRLM lesions who had undergone abdominal
contract-enhanced CT imaging fol lowed by partial
hepatectomy with histopathologically confirmed HGPs
including desmoplastic HGP in 68 patients and replacement
HGP in 58, Cheng et al. (30) found that the fused radiomics
signature had the best predictive performance in differentiating
replacement from desmoplastic HGPs (AUC of 0.926 and 0.939,
respectively, in the training and validating set), with good
Frontiers in Oncology | www.frontiersin.org 4139
discrimination demonstrated in the clinical-radiomics
combined model (C-indices of 0.941 and 0.833, respectively, in
the training and validating set). Han et al. (25) investigated MRI
data of 182 resected CRLM lesions in chemotherapy-free patients
including desmoplastic HGPs in 59 patients and replacement
HGPs in 123, with the decision tree algorithm being used for
radiomics modeling, fused radiomics model being reconstructed
from combination of radiomics signatures of all sequences, and
clinical and combined models being constructed viamultivariate
logistic regression analysis. They found that the fused radiomics
model of tumor zone and the radiomics model of tumor–hepatic
interface zone exhibited superior performance to any single
sequence or the clinical model and that the radiomics model of
tumor–liver interface zone was better than that of the tumor
zone (AUC of 0.912 vs. 0.879). The combined model had good
discriminating capability, with the AUC of nomogram being
0.971, 0.909, and 0.905, respectively, in the training, internal
validating, and external validating set. Their study (25) revealed
that MRI-based radiomics is capable of predicting the
predominant CRLM HGPs as a potential biomarker for
therapeutic strategy. Through analysis of the above studies, it
was found that the combination model of radiomics and clinical
information can show better discrimination ability than the
single radiomics model.

2.3 Evaluation of HGPs for Treatment
Effect on CRLM
Metastases are the major death cause in most patients with solid
malignancies, and hepatic metastasis is the critical factor for
survival of patients with advanced malignant tumors (27, 28).
Histological presentations of liver metastases are heterogeneous
and reflected by different HGPs that affect clinical outcomes. The
desmoplastic HGP is a positive prognostic biomarker while the
replacement HGP is a negative one (27). A retrospective study
enrolling 732 patients found that the exclusive desmoplastic
growth serves as a positive prognostic marker for patients with
CRLM, which is not matched by any other factors evaluated (31).
In this study, 19% of patients without chemotherapy (n = 367)
had desmoplastic growth in the whole tumor–hepatic interface
and were independently associated with 50% 5-year survival rate
without progression (hazard ratio or HR: 0.54, p = 0.001) and
78% 5-year overall survival (HR: 0.39, p < 0.001). CRLM lesions
with this kind of HGP are more suitable for regional metastases-
directed treatment. On the contrary, replacement HGP is linked
to poor pathological responses, with the presence of a large
proportion of cancerous cells after chemotherapy, and bad
imaging react ion on CT in pat ients with primary
chemotherapy and anti-angiogenesis therapy before surgery for
CRLM (32). This type of HGP occurs more often in new hepatic
metastatic lesions that grow even during systemic therapy. The
replacement HGP indicates not only worse overall and
progression-free survival (31, 33, 34), but also resistance to
systemic therapy in patients with CRLM (32). A possible
reason for the resistance to systemic therapy of the
replacement type of HGP is vessel co-option, which serves as
an approach of continuous blood supply when the vascular
January 2022 | Volume 11 | Article 689509
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endothelial growth factor is inhibited by treatment (35).
Moreover, different HGPs have varied immune phenotypes
that contribute to varied responses to immune therapy.
Evidence has indicated that tumors with limited numbers of
infiltrated T cells are in essence frequently resistant to immune
therapy (36). Vascular co-opting hepatic lesions of metastasis
usually have low infiltration of immune cells or inflammatory
cells as demonstrated in lesions with the replacement type of
HGP in contrast to those with desmoplastic HGP which are
frequently surrounded by a lot of lymphocytes in the dense rime
(29, 37). Thus, the types of HGPs differentiated using the
multidetector CT-based radiomics and MRI-based radiomics
(25, 30) may indicate the prognosis of patients with relevant
types of HGP in CRLM lesions. In studying the HGP types of
CRLM using MRI-based radiomics in comparison with the
histopathological types, Han et al. (25) found that more tissue
types were presented in the desmoplastic HGP lesion of CRLM,
including inflammatory, fibrosis, tumor, and hepatic cells,
indicating greater heterogeneity than lesions of replacement
HGP. Replacement and desmoplastic HGPs may be able to
predict responses to bevacizumab and long-term prognosis.
Galjart et al. have convincingly demonstrated that patients
with CRLM and an exclusive desmoplastic HGP (100% of the
tumor–hepatic interface) undergoing partial hepatectomy have
outstandingly good outcomes (31).

2.4 Evaluation of Response to
Chemotherapy of CRLM
In CRLM patients, less than 30% were initially resectable (38). In
some patients, the metastatic foci, which could not be removed,
might disappear on imaging after appropriate therapy, but some
metastases could still be detected during radical surgery. Because
radiomics can explore subtle changes of tumor and liver texture
before and after treatment, it can be used to evaluate the response
of CRLM lesions to chemotherapy (39–48). The CRLM lesion
uniformity, entropy, homogeneity (variance and angular second
moment), gray-tone difference, matrix contrast and shape,
skewness, narrowed standard deviation, mean attenuation,
density of major hepatic lesion, and histogram parameters for
apparent diffusion coefficient maps have all be used to predict
responses to chemotherapy. Good responses have been
associated with decreased entropy, increased uniformity, higher
variance, lower angular second moment, lower baseline skewness
value, narrowed standard deviation, high mean attenuation,
mean values of histogram parameters for apparent diffusion
coefficient maps, and high baseline density of dominant
hepatic lesions.

The entropy of CRLM lesions had been reported to decrease
in patients with good responses while the uniformity increased
after chemotherapy (entropy: −5.13 in good responding patients
and +1.27 in non-responding patients, OR = 1.34; uniformity:
+30.84 vs. −0.44, respectively, OR = 0.95) (45). However, a
higher entropy had also been associated slightly with
therapeutic success (6.65 ± 0.26 in patients with good
responses vs. 6.51 ± 0.34 in non-responding patients, P = 0.08)
(41), and a low baseline uniformity was related to a good
Frontiers in Oncology | www.frontiersin.org 5140
response (cutoff ≥ 0.42; OR = 20, 95%CI = 1.85–217.4) (46).
Two measures for homogeneity of lower angular second moment
and a higher variance had been demonstrated to associate with
good responding CRLM lesions rather than non-responding
lesions on T2 MRI imaging, with the variance of 446.07 ±
329.60 in patients with good responses vs. 210.23 ± 183.39 in
non-responding patients (p < 0.001) and the angular second
moment of 0.96 ± 0.02 vs. 0.98 ± 0.01, respectively (p < 0.001).

After investigating therapeutic radiomics features for predicting
tumor sensitivity in 667 patients with CRLM to 5-fluorouracil,
irinotecan, and folinic acid alone or combined with cetuximab,
Dercle et al. (42) found that the radiomics response signature
outperformed known biomarkers of the KRAS mutation status
and tumor contraction rate in the early prediction of therapeutic
sensitivity and for guiding decisions of cetuximab therapy. In
evaluating the significance of pre-treatment CT texture analyses
for predicting treatment responses in 82 patients with CRLM after
combined targeting chemotherapy, Zhang et al. (49) found
significant (p < 0.05) differences in Entropy, Energy, Variance,
Standard deviation, Quantile 95, and sumEntropy between the
response and non-response groups in pre-treatment lesions.
Lesions with higher Entropy, lower Energy, higher Variance,
higher Standard Deviation, and higher sumEntropy seemed to
indicate a better therapeutic response. Good diagnostic efficiency
was obtainedwhen sumEntropy > 0.867, with a sensitivity of 60.5%
and a specificity of 79.5%. Radiomics texture indexes originating
from basic CT imaging data of CRLM lesions had the potential
capability of imaging biomarkers for predicting cancer response to
targeted chemotherapy. By comparing the image features before
and after diagnosis and treatment, we found statistically significant
radiomics features, such as Entropy, Energy, Variance, Standard
deviation, and Quantile, which can all be used to evaluate the
remission effect of drugs on CRLM lesions. In the future, these
radiomics features can be used clinically as a relatively cheap and
noninvasive monitoring means for patients with CRLM or
other malignancies.

Most of the reported studies on radiomics are based on CT
images, and radiomics features from MRI images can also be
used to predict the treatment effect on liver metastases. In order
to determine the predictive value of pre-treated MR texture
features of CRLM lesions for therapeutic response to
chemotherapy, Zhang et al. (48) extracted five histogram
features (variance, mean, kurtosis, skewness, and entropy) and
five co-occurrence matrix features of gray level (GLCM;
entropy), angular second moment, correlation, inverse
difference moment, and contrast) from whole liver MRI T2WI
data of 26 patients with CRLM before chemotherapy. After
careful evaluation, a higher variance, contrast, entropy,
entropy, a lower angular second moment, correlation, and
inverse difference moment were revealed to significantly (p <
0.05) independently associate with good responses to
chemotherapy (AUCs 0.602–0.784). Multivariable logistic
regression demonstrated that variance (p < 0.001) and angular
second moment (p = 0.001) remained predictive parameters to
distinguish responding from non-responding tumors, with the
highest AUC of 0.814 (48).
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2.5 Prognosis Prediction of CRLM
After active surgical resection, radiofrequency, and
chemotherapeutic targeted therapy, some patients with CRLM
can achieve a high-quality survival of up to 10 years, whereas
others only obtain a short tumor-free survival. Individual
differences make the application of personalized treatment
strategy particularly important, and identifying risk factors
allows clinicians to develop surveillance strategies for patients
who are at a higher risk of recurrence. Researchers all over the
world have proposed many scoring systems for grading and
predicting prognosis of CRLM patients with different tumor
loads (17–19), but the ultimate effects on prognosis may be quite
different. The radiomics features of heterogeneity, homogeneity,
uniformity, Graytone difference matrix contrast, spatial
heterogeneity, entropy, texture, and gray level size zone matrix
have been used to evaluate the prognoses of patients with CRLM.

Radiomics features have been used to predict the survival of
patients with CRLM who have undergone chemotherapy or
hepatic surgery because radiomics can assess subtle liver
texture differences on different images (40–43, 46, 47, 50–53).
An association had been revealed between CRLM heterogeneity/
homogeneity and survival. Patients with a greater uniformity of
CRLM on CT imaging (cutoff value ≥ 0.42 with a relative risk of
6.94 for overall survival and a relative risk of 5.05 for
progression-free survival) had been reported to have poor
overall survival and progression-free survival (46). A shorter
overall survival had also been demonstrated to associate with
metastatic homogeneity on CT imaging (HR: 1.5 × 1020–1.3 ×
1049) (40). After comparing with before chemotherapy, a
radiomic signature based on two heterogeneity features,
Graytone Difference Matrix contrast and spatial heterogeneity,
had been related to overall survival (HR = 44.3 for patients with
superior image quality; HR = 6.5 for patients with conventional
image quality) (42), with the radiomic signature having a better
value in predicting survival than the 8-week tumor shrinkage or
KRAS-mutational status assessed in accordance with the RECIST
criteria (AUC 0.80 vs. 0.67 for KRAS and 0.75 for RECIST, p <
0.001) in the validation setting. The CRLM heterogeneity at 18F-
FDG PET/CT was also confirmed to be a predictor of shorter
overall survival (HR 4.29) at multivariant analysis (51), and a
model constructed with numbers of metastases, histogram
uniformity, and metabolic cancer volume was constructed to
predict shorter event-free survival (HR 3.20, p < 0.001) (51).

Entropy of the metastatic lesions had been associated with the
prognosis of patients with CRLM (40, 41, 50). It had been
reported that the overall survival was in a positive correlation
with the entropy of CRLM [HR: 0.16–0.63 (40), and HR = 0.65,
95% CI = 0.44–0.95 (50)]. The value of entropy ratio between
CRLM and liver texture had also been demonstrated to relate to
the prognosis, with a negative correlation between the value and
overall survival (HR 1.9) (41). After studying the tumor and liver
texture on CT portal venous-phase images in 230 patients with
CRLM (120 in the training and 110 in the validation group)
before and 2 months after chemotherapy, Dohan et al. (43)
established a predictive model of efficacy after 6 months of
chemotherapy, which is as effective as the RECIST1.1
Frontiers in Oncology | www.frontiersin.org 6141
evaluation criteria for solid tumors. The radiomic signature
with the combination of decreases in sum of target liver
lesions, density, and texture analyses of dominant liver lesion
at baseline and 2-month CT imaging data could predict the
overall survival and detect tumors with good responses better
than the RECIST1.1 criteria for CRLM treated by bevacizumab
and FOLFIRI as first-line medicines.

Other radiomics features have also been related to the
survival. The combination of CRLM correlation and contrast
into a single texture parameter had been reported to associate
with overall survival (HR 2.35) (53). One texture analysis score
combining three features of high baseline density of dominant
hepatic lesion, reduction in kurtosis, and decrease in the sum of
target hepatic lesions assessed 2 months after chemotherapy had
been demonstrated to strongly associate with overall survival
(SPECTRA score >0.02 vs. ≤0.02, with the HR of 2.82 in the
training set and 2.07 in the validating set) (43). Radiomic
evaluation score 2 months later had the same prediction value
of prognosis as the RECIST criteria following chemotherapy for
6 months. In the gray level size zone matrix, the small area
emphasis (positive parameter of prognosis, HR 0.62) and the
minimal pixel value (negative parameter, HR 1.66) had been
revealed to be related to progression-free survival (52).

In addition to the above mentioned radiomics features,
CRLM density on CT imaging (46), ShapeSI4 (in a radiomic
signature) (42), standard deviation (40), future hepatic residual
energy and entropy combined as a single linear predictor (53),
and AUC of volume histograms at PET-CT (47) have also been
reported to associate with the overall survival.
3 RADIOGENOMICS IN DIAGNOSIS AND
TREATMENT OF CRLM

Radiogenomics can be used to discover the radiomics features
that reflect gene expression or polymorphism for further
understanding the occurrence and development of diseases
(54). Radiogenomics promises to understand gene expression
of diseases through noninvasive and conventional imaging
methods. With continuous progress of the technology,
radiogenomics has been widely studied in systemic diseases in
recent years. Many scholars have reported a correlation between
radiomics features and EGFR (epidermal growth factor receptor)
mutation (55–57) or ALK (anaplastic lymphoma kinase)
rearrangement of lung cancer (58, 59). In detection and
management of breast cancers, many researchers have found
that breast cancer is associated with radiomics features at the
gene sequence level (60), gene expression level (61), and
molecular subtype level (62). Marigliano et al. (63) analyzed
multiphase CT images (arterial phase, portal-venous phase, and
urinary tract phase) of 20 patients with clear cell renal cancer and
found that the radiogenomics data derived from these images
were well correlated with expressions of some microRNAs (miR-
185-5p, miR-21-5p, miR-210-3p, miR-221-3p, and miR-145-5p),
especially between entropy and miR-21-5p. Similarly, progress
has also been made in radiogenomics for prostate cancer (64).
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Currently, there are only limited studies on radiogenomics of
tumors involving the liver. Segal et al. were the first in 2007 to
explore the correlation of gene expression pattern of a
hepatocellular carcinoma with the imaging features, identifying
32 image characteristics from enhanced CT imaging of three
phases to be correlated to the expression degrees of 116 genetic
biomarkers among 6,732 genes confirmed by microarray analysis
(65). However, only three imaging features on average were
required to catch expression variations of any genetic marker,
and the use of 28 image features combined could explain
variations of all 116 genetic markers (65). Moreover, it was
found that the genes in some particular molecular profiles had
common physiological function, including cellular proliferation
and hepatic enzyme syntheses, which could correlate to specific
imaging characteristics. Thus, two image features, presence of
arteries and absence of low-density halos, were found to correlate
with “venous invasion signatures”, which are image patterns to
predict microscopic venous invasion and OS (65). Kuo et al. (66)
also conducted radiogenomic analysis to identify imaging traits
in hepatocellular carcinomas, which were related to a genetic
expression profile of 61 genes to detect tumor responses to
doxorubicin. The enhanced CT imaging data of 30
hepatocellular carcinomas had been studied for six image
features, which were found to correlate with the microarray of
18,000 genes.

CRC is a heterogeneous tumor, and its occurrence and
development are affected by a variety of factors. Lifestyle habits
such as high-fat diet are important risk factors to increase the
incidence of CRC (67). Besides external factors, intrinsic genetic
factors also affect the occurrence and development of CRC (68).
Knowing the status of gene mutation in CRC can effectively
provide guidelines for clinical treatment and prognosis
evaluation, thus formulating a recurrence surveillance strategy
for patients (69).

3.1 Radiogenomics of KRAS/NRAS/BRAF
Mutations in CRLM
3.1.1 Clinical Significance of KRAS/NRAS/BRAF
Mutation in CRLM
The RAS/RAF/MEK/extracellular signal-regulated kinase
signaling cascade is referred to as the pathway of mitogen-
activated protein kinase (MAPK), which controls cellular
differentiation, proliferation, angiogenesis, migration, and
survival. Dysregulation of the pathway constitutes the bases for
tumorigenesis (70). This pathway consists of RAS small
guanidine triphosphatases (GTPase) and can activate the
family proteins of RAF (ARAF, CRAF, and BRAF). Abnormal
activation or signaling of the MAPK pathway had been
demonstrated in many tumors, including CRC, through some
distinctive mechanisms, like mutations in BRAF and RAS (70),
which most frequently occur in human neoplasms.

KRAS, NRAS, and HRAS are the RAS oncogenes to encode a
family of GTP-adjusted switches and can repeatedly mutate in
human cancers (71). Once activated, these genes will cause
pleiotropic effects in cells, leading to cellular differentiation,
proliferation, and survival. KRAS mutations take up
Frontiers in Oncology | www.frontiersin.org 7142
approximately 85% of mutations in the RAS gene in human
malignancies, NRAS accounts for approximately 15%, and
HRAS accounts for below 1% (72). In CRC, RAS mutations
primarily take place in the KRAS gene, and approximately 45%
of metastatic CRCs contain activated KRAS mutations (73).
NRAS mutation happens in 2%–7% patients with metastatic
CRC (71). KRAS gene mutations are related to right-sided
colonic cancers, but NRAS gene mutation is related to left-
sided primary malignancies and female gender, indicating
distinctive biology for NRAS and KRAS mutant molecule
subsets of metastatic CRC (74).

KRAS gene is related to the pathogenesis and progression of
CRC, and mutation of this gene may cause resistance to EGFR
inhibitors and poor tumor response to molecular targeted drugs
(75, 76). De Macedo et al. (77) studied the DNA of primary
tumor and metastatic tissue in 102 cases of CRLM and found that
the KRAS gene was highly homogeneous across the primary
CRC cancer areas and consistent in the original cancer lesion
with the metastatic tissues in the same person. KRAS mutation is
an independent risk factor for the prognosis of patients with
CRC (78). Therefore, understanding the KRAS mutation rate in
patients with CRC will help treatment planning and
prognosis evaluation.

NRAS defines a group of molecules with different clinical
features from KRAS-mutant and wild-type metastatic CRC (71).
NRAS genemutation can cause disorderedmalignant proliferation
and promote metastasis (71), thus associating with worse survival
and outcomes than KRAS-mutant or wild-type metastatic CRC.
Activating mutations in NRAS take place in 30% of cases with skin
melanoma, and BRAF mutation happens at a high incidence in
thesemalignancies (74). BRAForNRAS genemutation is related to
poor survival of metastatic melanoma patients. However, BRAF
mutation is reciprocally exclusive with melanoma NRASmutation
and with CRC KRAS mutation.

BRAF mutations take place in 7% of cancers, and
approximately 8%–12% of metastatic CRC cases contain BRAF
mutations (79). BRAF gene mutation can cause poor drug effect
and worse prognosis, and reduce the effect of cancer cell
apoptosis, thus aggravating the condition of patients with
cancers. Some studies (80) found that the mutation rate of the
BRAF gene is higher in patients with lower tumor differentiation.

3.1.2 Radiogenomics of KRAS/NRAS/BRAF
Mutations in CRLM
Yang et al. (81) studied 346 radiomic features extracted from
portal venous-phase CT imaging data of primary tumors and
KRAS/NRAS/BRAF gene mutation in 117 patients with CRC,
including 61 cases in the training and 56 in the verification group
before treatment. The support vector machine methods and
RELIEFF were constructed to choose important features and
establish the radiomic features. It was found that the radiomic
signature was significantly associated with the KRAS/NRAS/
BRAF mutation (p < 0.001), with the AUC, sensitivity, and
specificity for predicting KRAS/NRAS/BRAF mutation as 0.869,
0.757, and 0.833 in the primary group, and 0.829, 0.686, and
0.857 in the validation group, respectively.
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Lubner et al. (50) investigated tumor texture analysis on single
CRLM lesion on contrast-enhanced CT imaging in 77 patients
before treatment. It was found that entropy (spatial scaling factor
or SSF 4, p = 0.007), mean positive pixels (SSF 3, p = 0.002), and
standard deviation (SSF 3, p = 0.004) of medium filtration were
significantly associated with the tumor stage. Skewness was found
to negatively associate with KRAS mutations (p = 0.02), whereas
the coarse filtration entropy was significantly (p = 0.03) associated
with survival (HR for death 0.65). Therefore, radiogenomics is
expected to understand the gene expression profile of the disease
through noninvasive and routine imaging examination and may
be a breakthrough in the diagnosis, treatment, disease monitor,
and prognosis evaluation of CRC and CRLM.

3.2 Radiogenomics of Microsatellite
Instability in CRLM
3.2.1 Clinical Significance of Microsatellite
Instability of CRLM
Some kinds of genomic instability are able to drive the initiation
and development of CRC. The most common type is
chromosomal instability, which is found in 85% of CRC, and
another is microsatellite instability (MSI) which occurs in 15%
patients with CRC. MSI tumors are a subset of CRC
characterized by malfunction of mismatch repair genes
(MMR), which can cause failure to repair errors in short
tandem repetitive DNA sequences known as microsatellites
(82, 83). In the microsatellite sequences, the DNA replication
stability is poor and is prone to mismatches. MSI is caused by
lack of DNA mismatch repair (MMR) system, arising from
germline mutations in the MMR gene, which is prone to the
Lynch syndrome, or from epigenetic inactivation of MLH1 in
sporadic malignancies. Approximately 5% metastatic CRCs
showed MSI or deficient MMR, and sporadic CRC patients
with MSI were often related to BRAFV600E mutation via its
association with CpG methylator phenotype (84).

High-frequency MSI (MSI-H) refers to the occurrence of MSI
at two or more sites; low-frequency MSI (MSI-L) is MSI
occurring only at one site; microsatellite stability (MSS)
indicates MSI, which does not occur at any site (85, 86). MSI
has a guiding role in predicting the malignant degree and
pathogenesis of tumor, and can also provide direction for
clinical selection of treatment plan and prognosis evaluation.
Studies have shown that MSI-H can be used as a biomarker to
guide clinical immunotherapy for CRLM patients (83, 84, 87).
Through transformation therapy of immune drugs, it is possible
to remove the metastatic foci so as to further improve survival
and quality of life for cancer patients.

3.2.2 Radiomics Combined With MSI in CRLM
Understanding the MSI status is necessary because CRC tissues
with MSI have specific biological behavior and may indicate
better prognoses and benefit from immunotherapy or resistance
to fluorouracil treatment (88). However, the approaches for
evaluating MSI status using polymerase chain reaction and
immunohistochemistry are performed on pathological tissues
from invasive biopsies or surgeries and have not been extensively
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applied. It is therefore necessary to develop non-invasive and
cost-effective methods to predict the MSI status and guide
further therapeutic strategies. By extracting 254 radiomics
features of intensity from CT imaging of the CRC cancer
region in combination with clinical features in 198 patients
including 134 patients with microsatellite stable tumors and
64with MSI tumors, Golia Pernicka et al. (89) were able to
develop three prediction models with clinical features only,
radiomic features only, and combination of radiomic and
clinical features. The combined radiomics model outperformed
the other two models in predicting MSI, with the AUC of 0.80
and 0.79 for the training and testing set, respectively (specificity
96.8% and 92.5%, respectively).

Fan et al. studied 119 patients with stage II CRC confirmed
pathologically, known MSI status, and preoperative enhanced CT
images for extracting radiomics features (90). In their study, the
radiomics features were obtained from the portal-vein phase CT
imaging data of segmented tissues of each complete primary
cancer lesion with the Matrix Laboratory software while the
radiomic signatures were constructed using the selection
operator logistic regression and least absolute shrinkage model.
Six radiomics and 11 clinical features were chosen for predicting
the MSI status. The model combining both radiomic and clinical
features achieved the overall best performance in predicting the
MSI status than either the radiomics or clinical feature model
alone, yielding the AUC, sensitivity, and specificity of 0.752, 0.663,
and 0.841 for the combined model, 0.598, 0.371, and 0.825 for
clinical model alone, and 0.688, 0.517, and 0.858 for radiomics
model alone, respectively. Combined analyses of radiomic and
clinical features improved the predictive efficacy and helped
selecting appropriate patients for personalized therapy.

In exploring the value of radiomics analysis derived from
dual-energy CT imaging to preoperatively evaluate the MSI
status in CRC, Wu et al. (88) investigated 102 CRC patients
with pathologically confirmed MSI status and selected nine top
features to constitute the radiomic model. They found that
radiomic analyses of iodine-based material decomposition
imaging data with dual-energy CT has a great capability to
predict the MSI status in patients with CRC, with the AUC,
accuracy, sensitivity, and specificity of 0.961, 0.875, 1.000, and
0.812 in the training set, and 0.875, 0.788, 0.909, and 0.727 in the
testing set, respectively. Good clinical application and calibration
were demonstrated with the decision curve and calibration
analyses, respectively.

Although there is consistency between CRC MSI status and
liver metastasis, there were currently no correlation studies
between MSI status and radiomics of liver metastasis.
4 SUMMARY

In the diagnosis, treatment, monitor of disease progression, and
prognosis of CRLM, thousands of radiomics features can be
extracted, such as image intensity features, high-order features,
texture features, and shape features. Due to the lack of unified
standards at present, different research teams choose different
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radiomics features in the selection of features. Through review of
published studies in the literature, it is found that the most
widely used radiomics features include entropy, uniformity,
variance, and skewness. At present, the unity of the results is
relatively poor, but all these results show the feasibility and
significance of the application of radiomics and radiogenomics in
the diagnosis, treatment, monitor of disease progression, and
prognosis of CRLM.

Radiomics and radiogenomics can be widely used in clinical
medicine research with noninvasiveness and low cost. However,
as a new field, it is still in its infancy, with many limitations. For
example, the research data for radiomics mostly come from small
samples and single centers, whereas some big data from
multicenters are different because of use of different scanning
equipment and scanning conditions. Moreover, imaging
delineation segmentation approaches may also differ from
center to center or from study to study. Future development
and research in radiomics and radiogenomics will have to solve
these issues for better outcomes.

As an innovative arena in medical imaging, radiomics and
radiogenomics can be used to identify pathological process,
reveal the underlying pathophysiological mechanisms through
medical imaging and clinical data, and identify hidden imaging
patterns that can be used to predict tumor biological behavior
and patients’ prognoses, providing efficient prediction of
Frontiers in Oncology | www.frontiersin.org 9144
responses to chemotherapy and survival in addition to accurate
and early prediction compared to standard biomarkers.
Continuous surveillance of the radiomics and radiogenomics
biomarkers will provide adequate information to monitor cancer
recurrence and individualized treatment to the constantly
changing genome of cancer. The current research results in
radiomics and radiogenomics of CRLM warrant further
exploration into wider application in other fields.
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Deep Learning-Aided Automatic
Contouring of Clinical Target Volumes
for Radiotherapy in Breast Cancer
After Modified Radical Mastectomy
Jinqiang You1†, Qingxin Wang1†, Ruoxi Wang2, Qin An2, Jing Wang1, Zhiyong Yuan1,
Jun Wang1, Haibin Chen2, Ziye Yan2, Jun Wei2 and Wei Wang1*

1Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for
Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China,
2Perception Vision Medical Technologies Co. Ltd, Guangzhou, China

Purpose: The aim of this study is to develop a practicable automatic clinical target volume
(CTV) delineation method for radiotherapy of breast cancer after modified radical
mastectomy.

Methods: Unlike breast conserving surgery, the radiotherapy CTV for modified radical
mastectomy involves several regions, including CTV in the chest wall (CTVcw), supra- and
infra-clavicular region (CTVsc), and internal mammary lymphatic region (CTVim). For
accurate and efficient segmentation of the CTVs in radiotherapy of breast cancer after
modified radical mastectomy, a multi-scale convolutional neural network with an
orientation attention mechanism is proposed to capture the corresponding features in
different perception fields. A channel-specific local Dice loss, alongside several data
augmentation methods, is also designed specifically to stabilize the model training and
improve the generalization performance of the model. The segmentation performance is
quantitatively evaluated by statistical metrics and qualitatively evaluated by clinicians in
terms of consistency and time efficiency.

Results: The proposed method is trained and evaluated on the self-collected dataset,
which contains 110 computed tomography scans from patients with breast cancer who
underwent modified mastectomy. The experimental results show that the proposed
segmentation method achieved superior performance in terms of Dice similarity
coefficient (DSC), Hausdorff distance (HD) and Average symmetric surface distance
(ASSD) compared with baseline approaches.

Conclusion: Both quantitative and qualitative evaluation results demonstrated that the
specifically designed method is practical and effective in automatic contouring of CTVs for
radiotherapy of breast cancer after modified radical mastectomy. Clinicians can
significantly save time on manual delineation while obtaining contouring results with
high consistency by employing this method.

Keywords: modified radical mastectomy breast cancer surgery, auto-contouring, deep learning, clinical target
volume, radiotherapy
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1 INTRODUCTION

According to a report from the World Health Organization,
breast cancer has overtaken lung cancer as the most prevalent
cancer worldwide [1]. Different stages of tumor progression
require different types of surgical treatment, including breast-
conserving surgery (BCS) and Radical Mastectomy (RM).
Modified radical mastectomy (MRM) is widely used in clinical
practice for the treatment of breast cancer to ensure surgical
efficacy while reducing surgical damage and improving the
patient’s quality of life [2]. Specifically, MRM has become a
cornerstone of breast cancer treatment in China. It involves
excising only the mammary gland and clearing the axillary
lymph nodes, while preserving the pectoralis major and minor
muscles, thereby ensuring postoperative mobility and
appearance.

AlthoughMRM is beneficial to patients, it presents a challenge
to clinicians in contouring the clinical target volume (CTV) for
postoperative radiotherapy because the corresponding CTVs
involve several target areas with relatively complex anatomic
structures compared with their counterparts in BCS and HS.
There are three targets in the CTV delineation for radiotherapy of
breast cancer after MRM: CTV in the chest wall (CTVcw),
supraclavicular region (CTVsc), and internal mammary
lymphatic region (CTVim), among which the position and
volume vary significantly. The significant variation between
patients and the inter-intra-observation variability [3, 4] also
results in highly demanding and time-consuming work for
clinicians. Conversely, research has demonstrated that the
incidental doses to regions, such as the contralateral breast
and thyroid caused by contouring errors can affect patients’
quality of life [5–7]. Therefore, there is an urgent need to
develop an automatic CTV delineation method for
radiotherapy of breast cancer after MRM to reduce the burden
on clinicians while improving work efficiency and accuracy.

Currently, most automatic contouring methods are developed
for radiotherapy after breast-conserving surgery because they
only segment the breast with the mammary gland. For example,
atlas-based methods are successful in breast [8] segmentation
under the condition that the amount of data and the inter-data
variation are small. As the volume of data grows, deep-learning-
based approaches have achieved significant development toward
remedying the cases with large deformation and other
considerable variations and have been adopted by an
increasing number of institutes and clinicians.

To the best of our knowledge, this is the first study whose aim
is to develop a deep learning-based automatic CTV delineation
algorithm for radiotherapy of breast cancer after MRM. In this
study, we propose a specifically designed multi-objective
segmentation method for automatic CTV delineation for
radiotherapy of breast cancer after MRM. An orientation
attention mechanism is proposed to tackle the misrecognition
of a similar structure between the breast and back sides caused by
modified radical surgery. To enable the model to segment the
targets correctly with significantly different volumes, an inception
block-based multi-scale convolution architecture is constructed
to obtain different perception fields and capture the

corresponding features. In addition, the model is trained by
local dice loss to handle the imbalance between segmentation
categories and stabilize the training. Furthermore, three
particular data augmentation strategies, namely, attention
position variance, deformation simulation, and breast implant
simulation, are designed to cope with the problem of data scarcity
and differentiation.

The remainder of this paper is organized as follows. 2
introduces related research on automatic breast CTV
delineation. 3 Materials and methods describe the specifically
designed methods. 4 The experimental results show the
quantitative and qualitative results. 5 Discussion and 6
Conclusion and future work.

2 RELATED WORKS

For the past few decades, traditional methods, particularly Atlas-
based methods, have been the preferred solution for automatic
CTV delineation. Atlas-based approaches perform deformable
image registration to match the target and ground truth. Patients
are segmented based on an atlas library, and the most
anatomically similar will be selected as the target to be
transformed into the same coordinate space as the input data.
Anders et al. [9] and Velker et al. [10] collected 9 and 124 cases to
build a library for breast cancer. The method proposed by Velker
achieved good performance on structured CTVs, such as breast
and chest wall, with Dice similarity coefficient (DSC) values of
0.87 and 0.89 for left- and right-side breast, respectively.

Atlas-based solutions have been widely utilized in cancer sites,
such as the head and neck [11], breast [12], and lungs [13].
However, the performance of these approaches is limited by the
degree of deformation, image registration quality, and additional
corrections. For instance, for highly variable structures, such as
internal mammary nodes, Velker’s method achieved poor
performance with a DSC of 0.3. In this case, several deep-
learning-based approaches have been proposed and have made
significant progress in terms of accuracy and consistency [14].

Deep learning methods have demonstrated excellent
performance in several fields. Convolutional neural networks
(CNNs) have become increasingly irreplaceable in the field of
image processing and analysis, producing results by extracting
and learning the features from well-organized training data. Deep
learning-based semantic segmentation is a suitable solution for
automatic CTV delineation. Min et al. [15] proposed a deep
learning-based breast segmentation algorithm (a 3D fully
convolutional DesnseNet) and compared its performance with
the aforementioned atlas-based segmentation methods. The
comparison results demonstrated that the deep learning
method performed more consistently and robustly on the
majority of structures. In addition to the segmentation
accuracy, clinicians are concerned with the inference speed of
the algorithms because the produced segmentation results still
require manual correction. To this end, Jan et al. [16] proposed
BibNet, a novel neural network built by U-Net [17] with a multi-
resolution level processing structure and residual connections,
alongside a full-image processing strategy to increase the
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inference speed while improving the segmentation quality. Kuo
et al. [18] proposed a deep dilated residual network (DD-ResNet)
for auto-segmentation of the clinical target volume for breast
cancer radiotherapy, which outperformed deep dilated
convolutional neural network (DDCNN) and deep
deconvolutional neural network (DDNN). Compared with
those references, we use optimizer U-Net to help doctors
contouring the region of breast cancer.

3 MATERIALS AND METHODS

3.1 Data Acquisition
The data supporting this study comprised 110 CT scans of
patients who underwent modified mastectomy surgery
collected from Tianjin Medical University Cancer Institute and
Hospital. These patients received adjuvant radiotherapy on the
chest wall, supra- and infra-clavicular, and internal mammary
lymphatic regions after lumpectomy. Therefore, the CTVs
delineated for radiotherapy by an experienced clinician
according to the RTOG criteria were set as the ground truth
for model training [19]. The CTVs on both the left and right sides
were delineated to stabilize model training. Patients with breast
implants were also collected in our dataset and extended using the
breast implant simulation data augmentation method. The two-
dimensional size and thickness of the reconstructed CT images
were 512*512 and 5 mm, respectively. The dataset was randomly
split into a training set and testing set with 82 cases and 28 cases,
respectively. For the sake of splitting our dataset for training and
test purpose, the ratio of training and test set about 3:1, which is
slightly higher than the 4:1 for most commonly used, was
adopted, accommodating the limited overall sample size,
resulting in an adequately sized test set.

3.2 Architecture and Strategies
The architecture of the proposed network is illustrated in
Figure 1. The input images are preprocessed using a specific
orientation attention method before being fed into the network.

Each convolution block in the network comprises a inception
module, followed by an activation layer and a batch
normalization layer. The red arrows symbolize max pooling,
whereas the green arrows symbolize transpose convolution.
Black arrows indicate the inputs and outputs of the model.
Local dice loss is employed to train the model for multi-
objective segmentation, followed by a sigmoid activation
function to generate the output mask. In this study, we
focused on the specific characteristics of CTVs after MRM and
designed corresponding solutions to accomplish an automatic
contouring task.

The breast on the affected side is excised inMRMwith only the
pectoralis major and minor muscles preserved, resulting in a flat
structure that is similar to the back. In addition, the collected data
contained patients with left breast cancer and right breast cancer,
and even on both sides; therefore, the model should be
encouraged to focus more on the affected side and perform
delicate segmentation. To this end, an orientation attention
mechanism was designed for preprocessing. Specifically, a
direction attention map is calculated based on the formula APi
� 1 − i/H and LRi � 1 − i/W, where i andH/W are the row/column
index and image resolution along the anterior–posterior (AP) and
left-right (LR) directions, respectively. The input of the model is
the product of the AP and LR direction attention map and the
normalized CT image with a range of [−1, 1]. The values on the
breast and affected sides in the attention map were set to near 1,
whereas the opposite side was set to near 0, thereby assigning
higher importance to the breast and affected sides. This can be
observed in Figure 1; the input attention image has a gray
gradient along the vertical and horizontal directions. The
darker side is emphasized, thus implicitly promoting breast
segmentation.

The segmentation targets of the model contained CTV in the
chest wall (CTVcw), supra-clavicular region (CTVsc), and internal
mammary lymphatic region (CTVim), which vary greatly in
volume. CTVcw and CTVsc have thin and long shapes, whereas
CTVim only occupies a small region. This imbalance may confuse
the model and reduce segmentation performance, especially for

FIGURE 1 | Illustration of the specifically designed deep-learning based multi-objective segmentation method for the automatic delineation of CTVs for
Radiotherapy after Modified Radical Mastectomy. Input attention images are obtained by overlapping an anterior-posterior (AP) direction attention map on to input
images.
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small targets. Therefore, to enable the model to extract features
with different perception fields, thereby performing delicate
segmentation of targets with different scales, a network with a
multi-scale convolution structure is constructed. This is done by
utilizing a refined inception block [20] as a basic convolution
element, which can improve the perception field while
maintaining minimal pooling operations. Specifically, the input
to each convolution block is fed into 1*1, 3*3, and 5*5
convolution layers and a max pooling layer to obtain different
perception fields, and the extracted multi-scale features are then
fused to model higher-level semantic information. In addition, to
overcome the problems of incomplete labels, a novel local loss is
introduced for network optimization, where a local mask is
calculated based on the label. If parts of the targets are not
annotated, the local mask will be initialized by zeros, thereby
avoiding optimization of the model with the segmentation error
outside the local regions. Benefiting from the larger variation in
the breast cancer dataset, this local loss performed excellently in
this study. Moreover, the sigmoid activation function is employed
in the output layer to produce the probability of the categories of
each pixel in the case of overlap among labels.

To cope with individual variations, such as various
deformations and cases with breast implants, we designed
several targeted data augmentation methods. Three specific
data augmentation approaches are exploited to improve data
diversity: Attention position variance, deformation simulation,
and breast implant simulation. The CT scan center may vary
significantly for different patients. Furthermore, the attention
map is calculated based on the body center, whichmay be affected
by the coach and other similar materials in the image. Thus, we
adjusted the body cancer with limited variation and generated the
corresponding input image for training. Breast cancer is a
deformable organ, and small deformation is common in breast
cancer radiotherapy. Thus, a random elastic deformation vector
field was applied to the CT images for deformation augmentation.
In particular, a breast implant simulation method was designed
for data augmentation. Patients who have undergone breast
reconstruction have completely different anatomical structures
compared with other patients, which may confuse the model in
the training process. In this case, we simulated breast implants in
the breast region via morphological processing and density
simulations. In the study, We collected CT images from 110

patients with breast cancer for model training and testing. They
received radiotherapy from June 6, 2016 to January 31, 2020, at
Tianjin Medical University Cancer Hospital. The contouring of
target areas have been examined and modified by senior
radiotherapy doctors. In order to reduce the influence of
individual differences, these CT images are processed by the
above data enhancement methods. From Figure 2, it can be seen
that the simulated images have a relatively similar appearance to
the real data. These approaches increase the amount of data,
reduce overfitting, and improve the generalization performance
of the model.

3.3 Evaluation Metrics
To evaluate this method, the DSC was employed as the
quantitative metric, which is defined as the overlap between
the segmented mask and the manually labeled mask, witch
labled by experienced radiologists. The DSC formula is shown
in Eq. 1, where A denotes the ground truth, and B denotes the
predicted results. Therefore, a higher DSC indicates a more
precise segmentation performance.

DSC � 2|A ∩ B|
|A|∪|B| (1)

In some cases, more attention should be paid to segmentation
boundaries. Therefore, the Hausdorff distance (HD) and average
symmetric surface distance (ASSD) were calculated to evaluate
the segmentation performance on boundaries. HD measures the
surface distance between two point sets X and Y, as defined by Eq.
2. ASSD is the average of all the distances from points on the
boundary of the predicted results to the boundary of the ground
truth, which is calculated by Eq. 3.

HD � max maxx∈Xminy∈Yd x, y( ), maxy∈Yminx∈Xd x, y( ){ } (2)

ASSD � ∑x∈Xminy∈Yd x, y( ) + ∑y∈Yminx∈Xd y, x( )
len X( ) + len Y( ) (3)

where len(X) and len(Y) represent the total number of pixels in
the boundary X and boundary Y respectively.

Although the above metrics could provide a scientific
assessment of the proposed segmentation method, they are not
reliable enough to evaluate the significance of clinical practice

FIGURE 2 | The examples of the proposed data augmentation strategies. The red arrow indicates the position of implanted breast implant.
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[21]. To this end, we conducted a user study to obtain a practical
assessment by three experienced radiologists.

3.4 Statistical Analysis
A paired t-test was conducted to verify the statistical difference
between the quantitative evaluation results of the proposed
method and other approaches. The test was also performed on
the clinicians’ scores. A p value of less than 0.05 can be regarded
as a significant difference between the proposed method and
baseline approaches.

4 RESULTS

4.1 Segmentation Performance
Table 1 presents the quantitative evaluation results of the
proposed method and the baseline (U-Net) in terms of DSC,

HD, and ASSD. It is observed that the proposed method
achieved a mean DSC of 0.92 with standard deviation of
0.04 for CTVcw, a mean DSC of 0.74 with standard
deviation of 0.09 for CTVim, and a mean DSC of 0.76 with
standard deviation of 0.10 for CTVsc. The average DSC over all
categories of the proposed method is 0.81, which
outperformed the baseline significantly. The p value of
0.0001 also demonstrated the significant difference between
the two methods. Figures 3A,B show the proposed method has
larger inter-subject variations in the left CTVs.

The HD and ASSD evaluations illustrated that the proposed
method produced smaller surface discrepancies compared with
U-Net in all the CTVs. Figures 3B,C,E,F revealed that the
proposed method tends to generate segmentation results with
quite small inter-subject diversity compared with U-Net, thereby
demonstrating the inference quality and the robustness of the
proposed method.

TABLE 1 |Quantitative evaluation of the proposed method and U-Net on CTVcw, CTVim, and CTVsc in terms of DSC, HD and ASSD. The p value smaller than 0.05 indicates
that there are significant differences between the two approaches.

DSC HD ASSD

Structures U-net Proposed U-net Proposed U-net Proposed

CTVcw 0.79 ± 0.12 0.92 ± 0.04 13.97 ± 13.33 5.36 ± 3.98 4.7 ± 6.07 1.98 ± 3.15
CTVim 0.66 ± 0.12 0.74 ± 0.09 6.24 ± 5.86 3.86 ± 2.60 1.39 ± 1.38 0.80 ± 0.60
CTVsc 0.60 ± 0.18 0.76 ± 0.10 14.76 ± 11.35 5.67 ± 5.47 3.36 ± 5.36 1.10 ± 0.64
Mean 0.69 ± 0.14 0.81 ± 0.08 11.66 ± 11.18 4.96 ± 3.95 3.15 ± 4.53 1.29 ± 1.41

p value 0.0001 0.0019 0.0015

FIGURE 3 |Box-plots of DSC, HD and ASSD in left CTVs and right CTVs on the test set using the gold standard as reference. Blue means our method result. Green
means U-Net's result. By comparison, we can see that the effect of blue is much better than that of green. Details are given below.
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Specifically, our method can produce significantly better result
with small inter-subject diversity compared with U-Net on
CTVcw and CTVsc, because the multi-scale convolution module
enables the model to extract sufficient features to segment targets
with complex structure, such as CTVcw and CTVsc. As for targets
with small volume like CTVim, the proposed method can also
produce precise results by utilizing receptive fields with
different scale.

Figures 4, 5 compare the segmentation results of U-Net, the
proposed method with the manual segmentation on the cancer
affected side and the contralateral side. The CTV in the chest wall
(CTVcw) has an anatomically different structure on the affected
side and the contralateral side because the mammary gland is
removed. The results produced by U-Net suffer from a moderate
degree of under-segmentation and holes in targets, which is not
acceptable clinically. It can be seen that our proposed method
achieved closer results to the gold standard in terms of shape,
location, and volume than those of the counterpart of U-Net.

4.2 Ablation Study
In this section, we explored the importance and effectiveness of
the orientation attention mechanism and breast implant
simulation.

4.2.1 Importance of Orientation Attention
The input orientation attention strategy is expected to encourage
the model to distinguish the breast region from the back region in
the transverse CT slices and perform segmentation. To verify the
effectiveness of this strategy, we conducted an ablation
experiment by removing the input orientation attention
mechanism and compared the segmentation performance.
Figure 6 shows the segmentation results for a test case
generated by models with and without input orientation
attention preprocessing. The model trained without the
orientation attention mechanism incorrectly performs
segmentation on the back region, whereas the targets are
correctly segmented by the model trained with the orientation
attention strategy.

4.2.2 Importance of Breast Implants Simulation
`Only six patients with breast implants were included in the
training data, which was extremely imbalanced for training.
The different anatomical structures between patients with and
without breast implants can confuse the model during the
training process. Thus, we expect that the proposed breast
implant simulation can handle this problem by increasing the
amount of data with breast implants. We investigated the

FIGURE 4 | Examples of segmentation results of U-Net and the proposed method against gold standard for the affected side. Different colors represent different
segmentation targets. The first row is the result of U-Net,the second row is the result of our method, the third row is the groundtruth of the images. And the different colors
represent dfferent segmentation targets. Blue meas the supra-clavicular region, yellow means internal mammary lymphatic region (CTV im), another means CTV in the
chest wall (CTV cw).
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importance of breast implant simulation by training the model
with only the original data. Figure 7 presents the segmentation
results for the case of breast implants. It was found that the
trained model without specific data augmentation was
confused by processing cases with breast implants, resulting
in poor segmentation results. The proposed method is well
suited to cases with breast implants, whereas U-Net performs
poorly.

4.3 Timing Performance
The time required to train the proposed model on two GTX
1080 GPUs was approximately 24 h. By utilizing the automatic
segmentation method, the time required to delineate a breast
CTV of a patient is drastically reduced from approximately
40 min (manual delineating) to several seconds. Even if some
special cases need doctors correct the delineating result
maunally, the completion of a breast CTV contouring can be

FIGURE 5 | Examples of segmentation results of U-Net and the proposed method against gold standard on the contralateral side. The first image is the result of
U-Net, the seconf is the ground truth while the third is our proposed method.

FIGURE 6 | The illustration of the usefulness of the proposed method in recognizing the breast side correctly. The U-Net model incorrectly segments dorsally
structurally similar regions as target CTVs, while the proposed method successfully identifies the breast side and segments the target CTVs.
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controlled within 10 min with the manual correction time,
demonstrating the feasibility and effectiveness of the
proposed approach.

5 DISCUSSION

In this study, we proposed a specifically-designed deep learning-
based framework for automatic contouring of 10 targets in CT
scans for modified mastectomy RT. The experiment results
indicate that our method performed well, exhibiting excellent
agreement with the CTVs that were manually delineated by
clinicians. In detail, both quantitative and qualitative
evaluations demonstrated the feasibility of the proposed
methods in contouring CTVs for modified mastectomy RT.
The orientation attention provides reliable supervision for the
model to recognize the breast and affect sides in CT images.
Different from simply applying a deep learning-based
segmentation network for automatic CTVs contouring, we
conducted statistic analysis of the CTVs in modified
mastectomy surgery-based radiotherapy and designed the
network according to the statistical characteristics. The multi-
scale convolutional structure constructed by refined inception
module increases both the width of the network and the
adaptability of the network to scales, thereby producing
delicate segmentation results of targets with different volume.
Besides, the local loss drives the optimization for all of the targets
even in the cases with labels missing.

Considering the scarcity of data volume and the variability
among data, we designed three data enhancement methods for
data expansion to improve the generalization performance of the
model while avoiding overfitting. Data augmentation is
particularly essential for medical-related researches, since it
takes long and a lot to collect medical data. Apart from the
attention position and general deformation simulation, we
particularly designed the breast implants simulation method to
increase the number of cases with breast implants. The breast
anatomical structure of patients with breast implants is
completely different from the patients without. So a small
amount of data with breast implants can affect the model
training, resulting in the model not converge. Through the
breast implants simulation, the problem of category imbalance
is alleviated and the model is able to generate more accurate
segmentation results for patients with breast implants.

Although deep learning solutions performs well in producing
contouring results for RT (RT is a file that stores the coordinates
of the region of interest), the nature of deep learning makes it sort
of disputable [22] because it learns how to segment only based on
the ground truth delineated by one clinician. Radiotherapy
requires clinical input and creativity in terms of science and
art [19]. The delineation results of the same case can vary between
clinicians, and it is sometimes difficult to determine which one is
optimal. Therefore, the ground truth used for training the deep
learning model also should have diversity. The reinforcement
learning provides a potential way to enable the DL model to learn
how to optimally segment targets.

FIGURE 7 | The comparison between the segmentation results of U-Net and the proposed method and ground truth on the case with breast implants.
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Manual delineation of OARs and CTVs for RT is a laborious
task for clinicians, which requires not only experience but also
physical exertion. Repetitive work for long periods can lead to
reduced productivity and even errors on the part of clinicians [2].
In this case, automatic segmentation algorithms serve as a useful
tool for reducing the workload of clinicians and producing highly
consistent results. A previous study illustrated that atlas-based
automatic segmentation (ABAS) for loco-regional RT of breast
cancer reduced the time needed for manual delineation by 93%
(before correction) and 32% (after correction) [23]. Our method
reduced the time required for contouring from 40 min (manual)
to 10 min (automatic) on average. With the assistance of deep
learning-based auto-segmentation, radiation oncologists can
work more efficiently.

To evaluate the segmentation results more carefully and
efficiently, and to explore the detailed gap between the deep
learning-based automatic contouring algorithm and manual
contouring, we used both HD and ASSD to evaluate the
performance of the contouring results on the edges and
surfaces. In this case, we further proved the level of
advancement of the proposed method on 3D level rather than
the 2D level only. Table 1 and Figure 3 illustrate that the
proposed method can produce segmentation results with
better agreement with the manually delineated structures in
terms of region and surface.

This study has several limitations. First, we conducted this
research in a single center with limited sample size and diversity,
which will impose a challenge on the generalization power of the
proposed model. The well-performing model may produce
unacceptable segmentation results when applied to other centers
owing to the variance between the data. Therefore, we plan to
validate the proposed method using data from other institutions.
Second, the accuracy and pattern of the segmentation results
depend heavily on the manual annotations used for training,
which can be both advantageous and disadvantageous. As
aforementioned, the model can be trained using a homogeneous
gold standard created by a single clinician. However, there is no
100% gold standard in clinical settings, as inter-intra-observer
variations always exist. Thus, further studies should be
conducted to evaluate the generalization of the gold standard
created by multiple clinicians. Additionally, it may be more
favorable if the OARs are segmented simultaneously. By
extracting corresponding features and segment-related organs
and tissues, the model can obtain a better perception of the
target region. Specifically, the OARs that are most helpful for
segmenting target CTVs in the breast region still need to be
considered. For instance, the importance of coronary vessels has
been increasingly acknowledged.

6 CONCLUSION

Auto-contouring of the CTVs can relieve clinicians from
tedious contouring work while improve the consistency and
reliability of radiotherapy. In this study, a specifically designed
deep learning-based segmentation method was developed to
delineate CTVs for modified mastectomy radiotherapy.
Qualitative and quantitative evaluations demonstrated the
outstanding performance of the proposed method. The
method can also handle cases with breast implants and large
shape variability. The user study also suggests that the proposed
method is practical and beneficial to clinical work by
significantly saving time and improving the consistency of
decisions.
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Preoperative distinction between transitional meningioma and atypical meningioma would
aid the selection of appropriate surgical techniques, as well as the prognosis prediction.
Here, we aimed to differentiate between these two tumors using radiomic signatures
based on preoperative, contrast-enhanced T1-weighted and T2-weighted magnetic
resonance imaging. A total of 141 transitional meningioma and 101 atypical
meningioma cases between January 2014 and December 2018 with a
histopathologically confirmed diagnosis were retrospectively reviewed. All patients
underwent magnetic resonance imaging before surgery. For each patient, 1227
radiomic features were extracted from contrast-enhanced T1-weighted and T2-
weighted images each. Least absolute shrinkage and selection operator regression
analysis was performed to select the most informative features of different modalities.
Subsequently, stepwise multivariate logistic regression was chosen to further select
strongly correlated features and build classification models that can distinguish
transitional from atypical meningioma. The diagnostic abilities were evaluated by
receiver operating characteristic analysis. Furthermore, a nomogram was built by
incorporating clinical characteristics, radiological features, and radiomic signatures, and
decision curve analysis was used to validate the clinical usefulness of the nomogram. Sex,
tumor shape, brain invasion, and four radiomic features differed significantly between
transitional meningioma and atypical meningioma. The clinicoradiomic model derived by
fusing the above features resulted in the best discrimination ability, with areas under the
curves of 0.809 (95% confidence interval, 0.743-0.874) and 0.795 (95% confidence
interval, 0.692-0.899) and sensitivity values of 74.0% and 71.4% in the training and
validation cohorts, respectively. The clinicoradiomic model demonstrated good
performance for the differentiation between transitional and atypical meningioma. It is a
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quantitative tool that can potentially aid the selection of surgical techniques and the
prognosis prediction and can thus be applied in patients with these two
meningioma subtypes.
Keywords: meningioma, clinical decision-making, neoplasm grading, radiomics, retrospective studies
INTRODUCTION

Meningiomas are the most common primary intracranial tumors
in adults, accounting for 36.7% of all intracranial tumors (1).
According to the latest 2016 edition of the World Health
Organization (WHO) classification of central nervous system
tumors (2), meningiomas have been classified into 3 grades and
15 different subtypes. Among these different subtypes, transitional
meningioma (TM) is a common benign meningioma (WHO
grade I), whereas atypical meningioma (AM) is an uncommon
tumor of intermediate grade between benign and malignant forms
(WHO grade II). Pathologically, TM is characterized by the
transitional morphological manifestation between endothelial
meningiomas and fibrous meningiomas (3). AM is defined as a
tumor with increased mitotic activity (≥4 mitoses per 10 high-
power fields), brain invasion, and at least three of the following
minor criteria: increased cellularity, high nucleus-to-cytoplasm
ratio, prominent nucleoli, sheet-like architecture, and spontaneous
necrosis foci (4, 5).

According to the European Association of Neuro-Oncology
(EANO) guidelines, magnetic resonance imaging (MRI) is the
main method used in the provisional diagnosis of meningiomas
(6). At present, several studies have explored imaging features to
assess the tumor grade, and some imaging features (such as
tumor heterogeneity, shape, and tumor-brain interface) may be
used as predictive factors to discriminate between tumors of
different grades (7–9). Zhang et al. used MRI features to
distinguish some subtypes of WHO grade I meningiomas
(angiomatous, meningothelial, fibroblastic, and psammomatous
meningiomas) and found that angiomatous and meningothelial
meningiomas were the most easily identifiable subtypes (10).
However, current image-guided evaluation depends on the
experience of radiologists, which is non-specific and highly
subjective. Recently, our previous study (11) has shown that
among meningiomas, WHO grade I TM and WHO grade II AM
are more aggressive than other subtypes because the frequency of
brain invasion in these two tumors was much higher than in
other subtypes. This study showed that TM was more aggressive
than other subtypes of WHO grade 1 meningioma, and its
biological behavior is close to that of atypical meningioma.
Another study observed that several imaging characteristics,
such as irregular tumor shape, heterogeneous contrast
enhancement, and peritumoral edema were identified as
predictors of brain invasion (12). The above research suggests
that TM and AM may be similar in their imaging presentation,
although the reported data on TM remain scarce, especially
regarding its imaging characteristics. However, the clinical
treatment plan and prognosis of these two tumors are
significantly different due to their different grades. According
2159
to EANO guidelines for the treatment of meningiomas, the
diagnosis of WHO grade II meningioma (such as AM) implies
an increased risk of recurrence, requiring shorter control
intervals (every 6 months instead of annually) than in WHO
grade I TM (6). Han et al. reported that TMs can be treated with
either surgery or external beam radiation, AMs often require a
combination of the two modalities (13). The choice of surgical
technique may be different. Because AM is more prone to
invasive growth and recurrence. Whether to expand the scope
of surgical resection, application of intraoperative navigation and
preoperative blood preparation, this is closely related to the size
of the tumor (AM tends to be slightly larger than TM) and tumor
surrounding tissues Moreover, it has been established that higher
tumor grades are associated with worse prognosis; higher grades
indicate reduced survival and higher rates of tumor recurrence
(14). Therefore, precise distinction between TM and AM before
surgery is desirable.

Given the above reasons, it is necessary to explore the imaging
differences between AM and TM. Radiomic analysis is a reliable
tool that can quantify high-dimensional tumor features that
cannot be observed with the naked eye, such as intensity,
texture, and shape features (15, 16). In recent years, radiomic
analysis has rapidly transformed the field of medical imaging
analysis, since it provides more stable results and is an objective
rather than a subjective assessment. Several studies have
demonstrated the applications of radiomics in meningiomas,
such as the characterization of the grade and histological
subtype, the prediction of brain invasion and recurrence-free
survival, and the identification of differential diagnoses in
meningioma (11, 17–20). These studies show that the MRI-
based radiomics may also be a method for discriminations
between AM and TM.

To the best of our knowledge, this is the first study to
differentiate TM from AM based on texture feature or radiomic
analysis. Therefore, our study aimed first to identify MR and
radiomic features that are associated with these two tumors from
two MRI modalities [T2-weighted (T2) and T1-weighted post-
contrast (T1C)]; second, to combine these two modalities
generating a radiomic signature; and third, to build a nomogram
fusing clinical factors, MR features, and radiomic signatures to
differentiate TM from AM in MRIs of patients with
suspected meningioma.
MATERIALS AND METHODS

Study Population and Semantic Features
For this retrospective analysis, ethical approval was obtained
from the Institutional Review Board of Lanzhou University
January 2022 | Volume 12 | Article 811767
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Second Hospital, and the requirement for informed consent was
waived. In this study, all patients with TM and AM who
underwent surgery in our institute between January 2015 and
December 2019 were enrolled according to the following
inclusion and exclusion criterias. The inclusion criteria were:
(a) histological diagnosis of AM or TM, and (b) MRI, including
T1C and T2 sequences, performed within 1 week before surgical
tumor resection. The exclusion criteria were: (a) cases with
motion artefacts that impacted the assessment; (b) incomplete
MRI sequences; and (c) treatment such as radiotherapy,
chemoradiotherapy, or surgery before surgical tumor resection.

All tumors were resected with the aid of a microscope. Patients
with TM and AM were diagnosed according to the pathological
findings. Finally, a total of 242 patients (TM: 19 men, 122 women,
mean age 52.3 ± 9.2 years; AM: 46 men, 55 women, mean age 51.5
± 10.3 years) were enrolled. All patients were randomly divided
into a training cohort and a validation cohort in a 7:3 ratio. The
patient recruitment flowchart is shown in Figure 1.

Two radiologists (reader 1 JZ and reader 2 YTC, with 12 and 15
years of experience in brain MRI interpretation, respectively)
independently analyzed the MRI characteristics (including
tumor location, maximum diameter, tumor shape, tumor
border, dural tail sign, peritumoral edema, T2 signal, enhanced
features, bone invasion, sinus invasion, and brain invasion). The
image analysis was based on clinical experience. Both readers were
blinded to all personal information and the histopathological
results before analysis. For qualitative data, agreements were
reached after discussion between the two in cases of difference
of opinions. When the two readers were unsure, reader 3 (ZYZ)
Frontiers in Oncology | www.frontiersin.org 3160
with 19 years of experience confirmed the results. For quantitative
data, reader 1 measured the maximum diameter three times on
the maximum level of the tumor, and calculated the average of
three measurements. Reader 2 performed the data measurement
in the same way. The final result was the average of the
measurement values of two readers to minimize the deviation
of the measurement results. Among MR features evaluation,
peritumoral edema was evaluated on T2 images according to the
standardized visually accessible Rembrandt Images (VASARI;
https://wiki.nci.nih.gov/display/CIP/VASARI) feature set. Brain
invasion was diagnosed by pathology. Bone invasion
assessments were performed by pathology and surgeon
assessment intraoperatively. Sinus invasion was evaluated by an
intraoperative neurosurgeon as a diagnostic standard.

Image Acquisition, Segmentation,
and Normalization
The MRIs were obtained at our institution with 3.0-T scanners
(Siemens Verio or Philips Achieva). The MR sequences included
T1C and T2 images, and the detailed parameters of each scanner
are shown in Supplementary Table S1.

Two radiologists (TH and JZ) without prior knowledge of the
pathological records manually segmented MR images using the
open-source software ITK-SNAP (version: 3.8.0, www.itksnap.
org). On both axial T1C and T2 images, the regions of interest
(ROIs) of images were manually delineated on each slice of the
entire tumor including hemorrhagic, necrotic lesions and
without the surrounding brain tissue, and oedema. T2 images
were segmented with reference to T1C images for visual
FIGURE 1 | Inclusion and exclusion criteria.
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guidance. The segmented tissues on each slice were fused
together to generate the volume of interest, as shown in
Supplementary Figure 1.

To obtain a standard normal distribution of the image
intensities, T1C and T2 images were standardized using z-score
normalization and resampling after manual segmentation. MR
scanners and image segmentation of two additional sets (i.e. two
MR scanners set and the re-segmentation set) are described in
Supplementary Material.

Feature Extraction and Selection
The PyRadiomics platform was used to extract standardized
radiomic features from the T1C and T2 imaging data (21). In this
study, feature extraction followed the Image Biomarker
Standardization Initiative (IBSI) guideline (22). T1C features
were extracted from the volume of interest (VOI) of T1C images,
whereas T2 features were extracted from the VOI of T2 images.
Finally, a total of 2454 radiomic features were extracted from the
VOI of two modalities of the MR images.

For both T1C and T2 features, the least absolute shrinkage
and selection operator (LASSO) regression with five-fold cross-
validation was conducted to select the radiomic features highly
correlated with discrimination of TM and AM (Supplementary
Figure 2). Features with a P-value of less than 0.05 were selected.
For clinical factors and MRI features, the correlation between
these two factors and discrimination of AM and TM were tested
via Student’s t-test and the chi-square test with the P-value set to
0.05. Then, stepwise multivariate logistic regression further
selected the most informative features and deleted irrelevant
features. Features with a P-value of less than 0.05 and
preoperative factors were included in the model. Spearman
correlation analysis was conducted to examine the correlation
between the selected radiomic features and clinicoradiological
features to determine whether these features are correlated with
each other.

Fusion of Modalities and Radiomic
Signature Building
T1C represents the blood supply and the integrity of the blood-
brain barrier, whereas T2 is sensitive to peritumoral edema, thus
mainly reflecting tissue edema. Therefore, these two modalities
were fused by combining the selected radiomic features to
increase the performance of the radiomic model. After fusing
the modalities, we used stepwise multivariate logistic regression
to build a radiomic model discrimination of TM and AM based
on the selected radiomic features. The T1C model was built
based on T1C features (two features), and the T2 model was built
based on T2 features (two features), whereas the fusion model
was built based on T1C and T2 fusion features (all four radiomic
features). The clinical model was built based on a clinical factor
(sex) and MRI features (tumor shape and brain invasion). Thus,
the clinicoradiomic model was built by incorporating the clinical
factor, MRI features, and the radiomic signature. In the training
cohort, the maximum area under the receiver operating
characteristic curve (AUC) with three-fold cross-validation
determined the final regularization parameter.
Frontiers in Oncology | www.frontiersin.org 4161
Nomogram Building and Validation
Integrated discrimination improvement (IDI) (23) was used to
quantify performance improvements. The P-values indicated
whether the improvement in reclassification was statistically
significant after the inclusion of a new factor in the model. In
addition, we used the DeLong test to compare the AUC estimates
of the performance between different models.

Afterward, a nomogram for clinical usefulness incorporating
the radiomic signature and the correlated clinicoradiological
features was constructed in the training cohort and validated in
the validation cohort. The calibration curves assessed the
discrimination ability of the nomogram for the training and test
cohorts, and the Hosmer-Lemeshow test evaluated the agreement
between the discrimination of TM from AM and the observed
outcomes. Then, we used decision curve analysis (DCA) to
quantify the net benefits at different threshold probabilities to
evaluate the clinical efficacy of the nomogram (24).

Statistical Analysis
In this study, all statistical analyses were performed with R
software (version 3.6.4, http://www.Rproject.org). R was also
used to assess the prediction models. PyRadiomics was used to
extract and select the radiomic features, as well as to build the
prediction models. The Spearman correlation test was used to
explore differences between clinicoradiological features and
radiomic features. Student’s t-test and the chi-square test were
used to compare continuous and categorical variables, respectively.
Generally, two-sided P-values less than 0.05 were considered
statistically significant. The intra-/inter-class correlation
coefficients (ICCs) were used to assess the agreement of the two
MR scanners and the extracted features by two radiologists.
RESULTS

Clinical Factors and MR Features
The clinical factors and MR features of the patients are shown in
Table 1. For clinical factors, sex was found to be significantly
different (P < 0.001) between the TM and AM groups, whereas
age did not differ significantly (P > 0.05). For MR features, the
parameters maximum diameter, tumor shape, peritumoral
edema, enhanced features, bone invasion, and brain invasion
were significantly different (all P < 0.05) in the univariate
analysis. Among them, tumor shape and brain invasion were
highly correlated with discrimination of TM from AM and can
be used as independent predictive factors according to the
multivariate logistic regression analysis. By contrast, tumor
location, tumor border, dural tail sign, T2 signal, and sinus
invasion were not significantly different (all P > 0.05) between the
TM and AM groups.

Radiomic Features Correlated With TM
and AM
The ICCs were calculated to evaluate the agreement of the twoMR
scanners and the features extracted by two radiologists,
respectively. All values exceeded 0.75, reflecting good agreement.
In total, 2454 radiomic features were extracted from each patient.
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Among them, two T1C features and two T2 features were selected,
and all four radiomic features (T1C_WaveletGLSZMwavelet.
HHL_GraylevelNonUniformity, T1C_SquareRootGLSZM_
squareroot_zoneEntropy, T2_WaveletGLCMwavelet .
LLL_JointEnergy, and T2_SquareRootGLDM_squareroot_
DependenceEntropy) were significantly different between the
TM and AM groups (all P < 0.05; Figure 2). Their odds ratios
are shown in Supplementary Figure 3. The weights of each
selected radiomics features are shown in Supplementary Table 2.

According to the Spearman correlation test, these
four features extracted by algorithms from MR images
were consistent with some clinicoradiological features
evaluated by the radiologists (Supplementary Table 3).
For example, shape was correlated with the parameters
Frontiers in Oncology | www.frontiersin.org 5162
T1C_WaveletGLSZMwavelet.HHL_GraylevelNonUniformity
and T1C_SquareRootGLSZM_squareroot_zoneEntropy in both
training and validation cohorts (Figure 3).

Fusion of Modalities and Model Building
T1C and T2 radiomic features may correspond to different
information. Though fusing the selected radiomic features, the
radiomics signature can reflect the discrimination factors of TM
and AM from different perspectives. Stepwise multivariate
logistic regression analysis showed that sex, tumor shape, and
brain invasion were significantly different between TM and AM
groups (all P < 0.001). Thus, the radiomic signature, sex, tumor
shape, and brain invasion were selected for the clinicoradiomic
model building. The radiomics scores in the AM group were
TABLE 1 | Clinical factors of the patients and magnetic resonance imaging features in the training and validation cohorts.

Characteristics AM (n = 101) TM (n = 141) Univariate analysis (p value) Multivariate analysis (p value)

Clinical factors
Age (years) 51.5 ± 10.3 52.3 ± 9.2 0.543 N/A
Sex <0.001* <0.001*
Female 55 (54.5%) 122 (86.5%)
Male 46 (45.5%) 19 (13.5%)

Imaging features
Tumor location 0.442 N/A
Parasinus and parasial 56 (55.4%) 69 (48.9%)
Skull base 28 (27.8%) 50 (35.5%)
Convexity 17 (16.8%) 22 (15.6%)
Maximum diameter (mm) 47.96 ± 15.89 37.36 ± 15.18 <0.001* N/A
Tumour shape <0.001* <0.001*
Circular or quasi- circular 38 (37.6%) 89 (63.1%)
Irregular 63 (62.4%) 52 (36.9%)

Tumour border 0.106 N/A
Clear 81 (80.2%) 124 (87.9%)
Blur 20 (19.8%) 17 (12.1%)

Dural tail sign 0.175 N/A
Yes 41 (40.6%) 45 (31.9%)
None 60 (59.4%) 96 (68.1%)

Peritumoural oedema <0.001* N/A
None (0%) 27 (27.3%) 83 (58.9%)
≤5% 23 (23.2%) 19 (13.5%)
6-33% 19 (19.2%) 14 (9.9%)
34-67% 17 (17.2%) 19 (13.5%)
68-95% 13 (13.1%) 6 (4.3%)

MRI signal
T2WI 0.056 N/A
Slightly high signal 50 (49.5%) 59 (41.8%)
Iso signal 31 (30.7%) 64 (45.4%)
Mixed signal 20 (19.8%) 18 (12.8%)

Enhanced features <0.001* N/A
Uniform 42 (41.6%) 93 (66.0%)
Uneven enhancement 59 (58.4%) 48 (34.0%)

Bone invasion 0.022* N/A
Yes 38 (37.6%) 33 (23.4%)
No 63 (62.4%) 108 (76.6%)

Sinus invasion 0.469 N/A
Yes 25 (24.8%) 41 (29.1%)
No 76 (75.2%) 100 (70.9%)

Brain invasion 0.014* 0.011*
Yes 21 (20.8%) 13 (9.2%)
No 80 (79.2%) 128 (90.8%)
January 202
Among peritumoural oedema, percentage represents the proportion of peritumoural oedema in the entire abnormality, and the entire abnormality may be comprised of the entire tumour
and oedema component.T2 signal is defined by comparing the signal of the gray matter of the brain. A Student’s t-test was used to compare the difference in age and maximum diameter,
while the chi-square test was used to compare the difference in other features. *P < 0.05. SD, standard deviation. N/A, not available.
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significantly higher than those in the TM group in the different
models, as shown in the Figure 4.

The performance of these models was evaluated in the training
cohort and then validated in the validation cohort. The
discrimination ability of T1C, T2, the radiomic (fusion of T1C
and T2), clinical, and the clinicoradiomic models are shown in
Table 2. The ROC curves for T1C, T2, the radiomic, clinical, and
clinicoradiomic models are plotted in Figure 5. The clinicoradiomic
model (nomogram) demonstrated the best discrimination ability,
resulting in AUCs of 0.809 (95% CI, 0.743-0.874) and 0.795 (95%
CI, 0.692-0.899) with sensitivity values of 74.0% (95% CI, 49.3%-
83.6%) and 71.4% (95% CI, 42.9%-89.3%) for the differentiation of
TM from AM in the training and validation cohorts, respectively.
The formula for calculating the clinicoradiomic model and the
fusion radiomic signature is described respectively in the
Supplementary Results.

Model Comparison
The IDI index was calculated to assess the predictive usefulness
of the different models. The clinicoradiomic model improved
the integrated discrimination by 5.75% (P = 0.002) and 9.96%
(P < 0.001) compared to the radiomic model in the training and
Frontiers in Oncology | www.frontiersin.org 6163
validation cohorts, respectively. The comparisons between
different models are shown in Table 3. In addition, Delong test
showed that compared with Clinical and T2 models, the
discrimination ability of clinicoradiomic model has been
significantly improved in the training cohort, P value was
0.014 and 0.004 respectively, and there is no statistical
significance in the validation cohort.

Assessment of the Clinicoradiomic
Nomogram Performance
The clinicoradiomic model demonstrated the best discrimination
ability and was used to construct the nomogram (Figure 6A). The
calibration curve together with the Hosmer-Lemeshow test were
used to measure the consistency between the probability of TM or
AM being diagnosed by the clinicoradiomic model and the actual
pathological diagnosis. The actual pathological diagnosis was
consistent with the predicted probability of TM and AM in both
the training and validation cohorts, with P-values of 0.361 and
0.472, respectively, as shown in Figures 6B, C.

The DCA assessed the discrimination ability of the
clinicoradiomic model based on clinical applications. The
clinicoradiomic model provided a net benefit in the DCA at a
A B

C D

FIGURE 2 | Boxplots of the four radiomic features (A–D) with significant differences between transitional meningioma (TM) and atypical meningioma (AM) groups in
the training cohort. The symbol **** represents p < 0.001.
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threshold probability of above 20% (Figures 6D, E). This result
indicated that the clinicoradiomic data were clinically useful.
DISCUSSION

This is a preliminary study to develop a clinicoradiomic model
that discriminates TM from AM based on MRI. The
discrimination ability of this fusion model was validated via
DCA, discrimination, and calibration curves in an internal
validation cohort. One clinical factor, two radiological features,
and four radiomic features indicated a high correlation with the
ability of a model to discriminate between TM and AM. A multi-
modality (fusion of T1C and T2) model of radiomics showed
good discrimination ability in both training (AUC: 0.776,
Frontiers in Oncology | www.frontiersin.org 7164
Sensitivity: 0.685) and validation (AUC: 0.734, Sensitivity:
0.679) cohorts. Moreover, the nomogram incorporating
clinicoradiological and radiomic features demonstrated the best
performance in both training (AUC: 0.809, Sensitivity: 0.740)
and validation (AUC: 0.795, Sensitivity: 0.714) cohorts.

Among clinical factors, sex was only the parameter that was
significantly different between TM and AM. Females (86.5%)
were prone to TM, whereas the male-to-female ratio was
balanced in AM (females 54.5%), which is consistent with the
results of other studies (3, 25). Among MR features, tumor shape
and brain invasion were significantly different between TM and
AM, and based on the stepwise multivariate logistic regression
analysis, they can be used as independent discrimination factors.
AMs are more irregular, and TMs are mostly circular or quasi-
circular, which may be related to the grade of the tumor and the
A B

FIGURE 3 | Chord diagram of the correlation between clinicoradiological and selected radiomic features. Correlation analysis of clinicoradiological and selected
radiomic features in the training (A) and validation (B) cohorts. The Spearman correlation test confirms that each link is significantly correlated (P < 0.05). The width
of a link represents the strength of the correlation. For example, the T1C_SquareRootGLSZM_squareroot_zoneEntropy feature (gray) is highly correlated with tumor
shape in both training and validation cohorts.
A B C D E

FIGURE 4 | Plots (A–E) show the boxplots of the corresponding radiomics score in the T1C, T2, combination of T1C and T2, clinical and clinicoradiomics models,
respectively.
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increased brain volume due to the peritumoral edema (26).
Similarly, in most studies, irregular or lobulated tumor growth
was associated with high-grade histology in both uni- and
multivariate analyses (7, 8, 27, 28), presumably showing a
parenchymal reaction of the brain tissue to the extensive
tumors growth and the aggressiveness of the meningioma (27).
Some authors also found that irregular or lobulated
meningiomas were more likely to recur than regular-shaped
ones (7). Zhang et al. have reported that the frequencies of
Frontiers in Oncology | www.frontiersin.org 8165
brain invasion in TM and AM were much higher than those in
other meningioma subtypes. In our study, the incidence of brain
invasion in AM (20.8%) was higher than that in TM (9.2%),
which is consistent with a previous study (4%-19% in all WHO
grade meningiomas) (11, 12, 29). This indicates that WHO grade
II AMs are more aggressive than WHO grade I TMs. Moreover,
the maximum diameter , peri tumoral brain edema,
heterogeneous enhancement, and bone invasion were also
different in these two tumors according to the univariate
TABLE 2 | Performance of the sequence models.

Cohort Model AUC ACC SEN SPE PPV NPV

Training set T1C 0.754 (0.679-0.829) 0.729 (0.656-0.795) 0.726 (0.589-0.822) 0.732 (0.464-0.866) 0.671 (0.623-0.698) 0.780 (0.692-0.808)
T2 0.731 (0.655-0.806) 0.694 (0.619-0.762) 0.644 (0.466-0.767) 0.732 (0.556-0.825) 0.644 (0.567-0.683) 0.732 (0.675-0.755)
Radiomics 0.776 (0.705-0.847) 0.753 (0.681-0.816) 0.685 (0.507-0.795) 0.804 (0.464-0.887) 0.725 (0.661-0.753) 0.772 (0.662-0.789)
Clinical 0.726 (0.651-0.801) 0.688 (0.613-0.757) 0.534 (0.380-0.639) 0.804 (0.685-0.900) 0.672 (0.593-0.711) 0.696 (0.661-0.720)
Nomogram 0.809 (0.743-0.874) 0.771 (0.700-0.831) 0.740 (0.493-0.836) 0.794 (0.567-0.866) 0.730 (0.643-0.753) 0.802 (0.743-0.816)

Test set T1C 0.717 (0.597-0.836) 0.694 (0.575-0.798) 0.750 (0.392-0.893) 0.659 (0.295-0.818) 0.583 (0.423-0.625) 0.806 (0.650-0.837)
T2 0.670 (0.541-0.798) 0.611 (0.489-0.724) 0.607 (0.392-0.858) 0.614 (0.432-0.886) 0.500 (0.392-0.586) 0.711 (0.633-0.780)
Radiomics 0.734 (0.616-0.851) 0.722 (0.604-0.821) 0.679 (0.285-0.857) 0.750 (0.431-0.864) 0.633 (0.420-0.686) 0.786 (0.678-0.809)
Clinical 0.765 (0.653-0.877) 0.736 (0.619-0.833) 0.714 (0.372-0.879) 0.750 (0.499-0.864) 0.645 (0.486-0.691) 0.805 (0.733-0.826)
Nomogram 0.795 (0.692-0.899) 0.750 (0.634-0.845) 0.714 (0.429-0.893) 0.773 (0.477-0.910) 0.667 (0.545-0.714) 0.810 (0.724-0.833)
January 2022 | Volume
T1C, contrast-enhanced T1-weighted imaging; T2WI, T2-weighted imaging; Radiomics, combination of T1C and T2; Clinical, fusion of sex, tumour shape and brain invasion; AUC, area
under receiver operating characteristic curve; ACC, balanced accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
A B

C D

FIGURE 5 | Comparison of the receiver operating characteristic (ROC) curves of the different models. (A, B) ROC curves of the different models in the training and
validation cohorts. The clinicoradiomic model demonstrates the best discrimination ability among these models, with area under the curve (AUC) values of 0.809 and
0.795 in the training and validation cohorts, respectively. (C, D) Radiomic signature histogram of the training and validation cohorts. The red bar shows the sample
with transitional meningioma (TM), and the blue bar shows the sample with atypical meningioma (AM).
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analysis, in agreement with published reports (30). For example,
larger tumor size and tumor volume were more likely to be
observed in high-grade meningiomas, and AM is a WHO grade
II tumor. Heterogeneous enhancement reflects intratumoral
hemorrhage, ischemic necrosis, cystic change, or calcification
and is associated with heterogeneous distribution of tumor cells.
Previous studies have reported that AMs have significantly more
intratumoral necrosis and cystic changes than benign
meningiomas (1, 31).

At present, MR radiomics can reproducibly extract objective
and quantitative data from different sequences (T2, T1, T1C, and
fluid attenuated inversion recovery [FLAIR], among others) to
diagnostically discriminate meningiomas from other tumor
forms, such as craniopharyngioma from meningioma in the
sellar/parasellar area (32) or malignant hemangiopericytoma
from angiomatous meningioma (20, 33). Radiomics can use
visually imperceptible information about the tumor. Given this
background, the radiomics model is a convenient, noninvasive
method that does not require tissue biopsy or gene sequencing
and may be a valuable approach to differentiate TM from AM
since the radiomics model (AUC: 0.776 in the training cohort)
outperformed the clinical model (AUC: 0.726). Additionally, we
developed and validated a clinicoradiomics model to
discriminate between TM and AM. Of the 2454 radiomic
features, four were highly correlated with the discrimination
between these two tumors. These features were textural image
features indicating microscopic descriptions of the tumor
including cellularity and tumor-induced compression of
normal brain tissue. Textural features can neither be identified
by the human visual system nor be easily interpreted to
understand their specific meaning (7, 34, 35). We analyzed the
four identified radiomic features and found that two gray-level
size zone matrix (GLSZM) features, one gray-level dependence
matrix (GLDM) feature, and one gray-level co-occurrence
matrix (GLCM) feature were significantly associated with the
discrimination of TM from AM. According to the definitions of
these texture features (36), GLSZM quantifies gray-level zones in
an image. The GLDM feature measures the difference between
adjacent voxels based on their voxel value, and this feature was
most relevant to the discrimination between these two tumors.
The GLDM features selected by LASSO include entropy features,
where a larger entropy value indicates greater heterogeneity of
the tumor (37). The GLCM feature describes the distance and
angle of each pixel, which includes energy, correlation, entropy,
inertia, and inverse difference (37). Compared to TM, the values
Frontiers in Oncology | www.frontiersin.org 9166
of these features were higher in AM. This indicates that these
features may reflect microscopic heterogeneity within the
tumors. Thus, as a new tool, the radiomic feature could
distinguish TM from AM.

We also analyzed the correlation between clinicoradiological
factors and radiomic features using Spearman’s correlation
analysis. We found that some clinicoradiological factors were
consistent with some radiomic features extracted from MR
images in both training and validation cohorts. This revealed
that clinicoradiological features also reflected some radiomic
MRI features. For example, shape was correlated with
T1C_WaveletGLSZMwavelet.HHL_GraylevelNonUniformity
and T1C_SquareRootGLSZM_squareroot_zoneEntropy in both
training and validation cohorts. This indicated that some
radiomic features corresponded to tumor shape in MR images,
such as entropy in GLSZM. The correlation between these
features revealed that some specific feature combinations may
be explained by some clinicoradiological features to some extent.
Besides, the included four features were extracted from different
sequences, and the combination of T1C and T2 models of
radiomic features indicated a better discrimination ability than
the T1C or T2 models alone. These results indicated that
different sequences provided distinct information, and multiple
sequences could show more information about tumors and
increase the discrimination ability of the model. After Delong
test, we found that the discrimination ability of clinicoradiomic
model is better than that of Clinical and T2 models. However,
there is no statistical significance in the validation cohort, which
may be related to the small sample size of the validation cohort.
This result indicated that we should include more data in future
study to improve the performance and stability of the model. At
present, the clinical application of radiomics is still in the
exploratory research stage, and it needs time to accumulate.
Radiomics-derived data, when combined with other pertinent
data sources (including clinically obtained, treatment-related or
genomic data), can produce accurate robust evidence-based
clinical-decision support systems (38).

The nomogram incorporating clinicoradiological factors and
radiomic features showed the best discrimination ability
compared to radiomic models based on T1C, T2, T1C/T2
images, and clinicoradiological factors. The results indicated
that fusing clinicoradiological factors and radiomic features
significantly improved classification performance. Combining
qualitative and quantitative imaging analyses provided an
additive effect because the information contained in these
TABLE 3 | Comparison of the different models in the validation cohort.

Initial model Model introducing new factor Performance improvement (IDI)

Training cohort Validation cohort

Clinical Clinicoradiomic 11.1% P = 0.00033 7.86% P = 0.0396
Combination of T1C and T2 Clinicoradiomic 5.75% P = 0.00195 9.96% P = 0.00089
T1C Combination of T1C and T2 4.37% P = 0.00538 3.06% P = 0.3425
T2 Combination of T1C and T2 7.04% P = 0.00029 6.91% P = 0.02442
January 2022 | Volume
Compared with the T1C and T2 models, the performance of combination of T1C and T2 model improved by 7.04% and 4.37% in discrimination ability, respectively. Compared with
combination of T1C and T2 model, the performance of clinicoradiomic model improved by 5.75% in discrimination ability. IDI: Integrated discrimination improvement; Clinicoradiomic,
fusion of sex information, tumour shape, brain invasion and radiomic signature.
12 | Article 811767

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics Models for Meningioma Diagnosis
A

B C

D E

FIGURE 6 | Establishment and performance of the clinicoradiomic model. (A) The clinicoradiomic model is used to develop a nomogram. (B, C) Calibration curves
of the clinicoradiomic nomogram for the training and validation cohorts. The x-axis represents the probability of atypical meningioma (AM) and transitional
meningioma (TM) as measured by the clinicoradiomic model, and the y-axis represents the actual rate of AM and TM. The solid line represents the discrimination
ability of the nomogram, and the diagonal dotted line represents the ideal evaluation by a perfect model. The P-values in the Hosmer-Lemeshow test are 0.361 and
0.472 in the training and validation cohorts, respectively. A closer fit to the diagonal dotted line represents a better evaluation. (D, E) Decision curve analysis for the
clinicoradiomic model. The x-axis shows the threshold probability, and the y-axis measures the net benefit. The gray line represents all patients with AM, whereas the
black line represents all patients with TM. The pink line represents the clinicoradiomic model.
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features was complementary (39). Preoperative risk factors were
extracted without postoperative factors to build the nomogram.
This nomogram may be helpful for both clinicians and
radiologists to preoperatively distinguish TM from AM. The
nomogram was better than the radiomics model and could be
applied in clinical practice for meningioma patients undergoing
MRI scans.

Our study has several limitations. First, the analysis of MRI
characteristics was independently performed by two radiologists,
and imaging assessments are subjective. Second, we selected the
T1C and T2 sequences for this study. On T2 images, the tumor
had unclear boundaries in some cases. Although we referred to the
T1C sequences for visual guidance to delineate tumor borders,
there were still deviations. Third, our study was a single-center
study, and a multi-center external validation is needed to test the
generalizability and robustness of the model in the future. In
addition, two neuroradiologists spent plenty of time to manually
delineate two independent VOIs of tumors for eachMRI sequence
in this study, thus, efficient automatic segmentation and co-
registration was available for meningiomas in the future
research. In future, multimodal studies such as DWI and FLAIR
sequences could be combined to improve accuracy.
CONCLUSION

Preoperative identification of TM and AM would aid the clinical
decision-making and prognosis prediction. In the radiomic
analysis, four radiomic features were highly correlated with the
discrimination between these two tumors. After the fusion of
T1C and T2 features, the MRI-based radiomics signature
effectively identified TM and AM on MR images. The
clinicoradiomic model that combined the radiomic signatures
and clinicoradiological factors showed the best discrimination
ability and may be used in patients with TM and AM.
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25. Barthélemy E, Loewenstern J, Konuthula N, Pain M, Hall J, Govindaraj S, et al.
Primary Management of Atypical Meningioma: Treatment Patterns and
Survival Outcomes by Patient Age. J Cancer Res Clin Oncol (2018) 144
(5):969–78. doi: 10.1007/s00432-018-2618-4

26. Thenier-Villa JL, Alejandro Galarraga Campoverde R, Ramon DELALZA,
Conde Alonso C. Predictors of Morbidity and Cleavage Plane in Surgical
Resection of Pure Convexity Meningiomas Using Cerebrospinal Fluid
Sensitive Image Subtraction Magnetic Resonance Imaging. Neurol Med Chir
(Tokyo) (2017) 57(1):35–43. doi: 10.2176/nmc.oa.2016-0169
Frontiers in Oncology | www.frontiersin.org 12169
27. Spille DC, Sporns PB, Hess K, Stummer W, Brokinkel B. Prediction of High-
Grade Histology and Recurrence in Meningiomas Using Routine Preoperative
Magnetic Resonance Imaging: A Systematic Review. World Neurosurg (2019)
128:174–81. doi: 10.1016/j.wneu.2019.05.017

28. Liu H, Zhou J, Li W, Liu G. Comparative Analysis of the Magnetic Resonance
Imaging Features Between Anaplastic Meningioma and Atypical
Meningioma. J Craniofac Surg (2016) 27(3):e229–33. doi: 10.1097/SCS.
0000000000002361

29. Spille DC, Hess K, Sauerland C, Sanai N, Stummer W, Paulus W, et al. Brain
Invasion in Meningiomas: Incidence and Correlations With Clinical Variables
and Prognosis. World Neurosurg (2016) 93:346–54. doi: 10.1016/j.wneu.
2016.06.055

30. Salah F, Tabbarah A, ALArab Y, Asmar K, Tamim H, et al. Can CT and MRI
Features Differentiate Benign From Malignant Meningiomas? Clin Radiol
(2019) 74(11):898.e15–.e23. doi: 10.1016/j.crad.2019.07.020

31. Hsu C-C, Pai C-Y, Kao H-W, Hsueh C-J, Hsu W-L, Lo C-P. Do Aggressive
Imaging Features Correlate With Advanced Histopathological Grade in
Meningiomas? J Clin Neurosci (2010) 17(5):584–7. doi: 10.1016/j.jocn.2009.09.018

32. Tian Z, Chen C, Zhang Y, Fan Y, Feng R, Xu J. Radiomic Analysis of
Craniopharyngioma and Meningioma in the Sellar/Parasellar Area With MR
Images Features and Texture Features: A Feasible Study. Contrast Media Mol
Imaging (2020) 2020:4837156. doi: 10.1155/2020/4837156

33. Kanazawa T, Minami Y, Jinzaki M, Toda M, Yoshida K, Sasaki H.
Preoperative Prediction of Solitary Fibrous Tumor/Hemangiopericytoma
and Angiomatous Meningioma Using Magnetic Resonance Imaging
Texture Analysis. World Neurosurg (2018) 120:e1208–16. doi: 10.1016/
j.wneu.2018.09.044

34. Zhang Y, Chen JH, Chen TY, Lim SW, Wu TC, Kuo YT, et al. Radiomics
Approach for Prediction of Recurrence in Skull Base Meningiomas.
Neuroradiology (2019) 61(12):1355–64. doi: 10.1007/s00234-019-02259-0

35. Wu Q, Yao K, Liu Z, Li L, Zhao X, Wang S, et al. Radiomics Analysis of
Placenta on T2WI Facilitates Prediction of Postpartum Haemorrhage: A
Multicentre Study. EBioMedicine (2019) 50:355–65. doi: 10.1016/j.ebiom.
2019.11.010

36. Laukamp KR, Shakirin G, Baessler B, Thiele F, Zopfs D, Hokamp NG, et al.
Accuracy of Radiomics-Based Feature Analysis on Multiparametric Magnetic
Resonance Images for Noninvasive Meningioma Grading. World Neurosurg
(2019) 132:e366–90. doi: 10.1016/j.wneu.2019.08.148

37. Chu H, Lin X, He J, Pang P, Fan B, Lei P, et al. Value of MRI Radiomics Based
on Enhanced T1WI Images in Prediction of Meningiomas Grade. Acad Radiol
(2020) 28(5):687–93. doi: 10.1016/j.acra.2020.03.034

38. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren
J, et al. Radiomics: The Bridge Between Medical Imaging and Personalized
Medicine. Nat Rev Clin Oncol (2017) 14(12):749–62. doi: 10.1038/nrclinonc.
2017.141

39. Pallud J, Coroller TP, Bi WL, Huynh E, Abedalthagafi M, Aizer AA, et al.
Radiographic Prediction of Meningioma Grade by Semantic and Radiomic
Features. PloS One (2017) 12(11):e0187908. doi: 10.1371/journal.pone.0187908

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhang, Zhang, Cao, Ren, Zhao, Han, Chen and Zhou. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
January 2022 | Volume 12 | Article 811767

https://doi.org/10.3171/2014.7.jns132359
https://doi.org/10.1007/s11060-012-0809-4
https://doi.org/10.1016/j.lfs.2018.08.061
https://doi.org/10.1016/j.ebiom.2020.102933
https://doi.org/10.18632/oncotarget.26313
https://doi.org/10.1016/j.mri.2020.11.009
https://doi.org/10.3171/2014.7.JNS131644
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.wneu.2019.02.109
https://doi.org/10.1016/j.ejrad.2019.04.022
https://doi.org/10.18632/oncotarget.24498
https://doi.org/10.1016/j.neurad.2019.05.013
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1161/CIRCIMAGING.113.000797
https://doi.org/10.1001/jama.2015.37
https://doi.org/10.1007/s00432-018-2618-4
https://doi.org/10.2176/nmc.oa.2016-0169
https://doi.org/10.1016/j.wneu.2019.05.017
https://doi.org/10.1097/SCS.0000000000002361
https://doi.org/10.1097/SCS.0000000000002361
https://doi.org/10.1016/j.wneu.2016.06.055
https://doi.org/10.1016/j.wneu.2016.06.055
https://doi.org/10.1016/j.crad.2019.07.020
https://doi.org/10.1016/j.jocn.2009.09.018
https://doi.org/10.1155/2020/4837156
https://doi.org/10.1016/j.wneu.2018.09.044
https://doi.org/10.1016/j.wneu.2018.09.044
https://doi.org/10.1007/s00234-019-02259-0
https://doi.org/10.1016/j.ebiom.2019.11.010
https://doi.org/10.1016/j.ebiom.2019.11.010
https://doi.org/10.1016/j.wneu.2019.08.148
https://doi.org/10.1016/j.acra.2020.03.034
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1371/journal.pone.0187908
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Natalie Julie Serkova,

University of Colorado, United States

Reviewed by:
Kun Zheng,

Peking Union Medical College Hospital
(CAMS), China

Stefano Marrone,
University of Naples Federico II, Italy

Vishwa S. Parekh,
Johns Hopkins University,

United States

*Correspondence:
Xinming Zhao

zhaoxinming@cicams.ac.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 30 June 2021
Accepted: 08 December 2021
Published: 28 January 2022

Citation:
Zhang R, Wei W, Li R, Li J,
Zhou Z, Ma M, Zhao R and

Zhao X (2022) An MRI-Based
Radiomics Model for Predicting
the Benignity and Malignancy
of BI-RADS 4 Breast Lesions.

Front. Oncol. 11:733260.
doi: 10.3389/fonc.2021.733260

ORIGINAL RESEARCH
published: 28 January 2022

doi: 10.3389/fonc.2021.733260
An MRI-Based Radiomics Model
for Predicting the Benignity and
Malignancy of BI-RADS 4 Breast
Lesions
Renzhi Zhang1†, Wei Wei2†, Rang Li3,4, Jing Li1, Zhuhuang Zhou4, Menghang Ma2,
Rui Zhao2 and Xinming Zhao1*

1 Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 2 School of Electronics and
Information, Xi’an Polytechnic University, Xi’an, China, 3 College of Engineering, Boston University, Boston, MA, United States,
4 Faculty of Environment and Life, Beijing University of Technology, Beijing, China

Objectives: The probability of Breast Imaging Reporting and Data Systems (BI-RADS)
4 lesions being malignant is 2%–95%, which shows the difficulty to make a diagnosis.
Radiomics models based on magnetic resonance imaging (MRI) can replace
clinicopathological diagnosis with high performance. In the present study, we
developed and tested a radiomics model based on MRI images that can predict the
malignancy of BI-RADS 4 breast lesions.

Methods: We retrospective enrolled a total of 216 BI-RADS 4 patients MRI and clinical
information. We extracted 3,474 radiomics features from dynamic contrast-enhanced
(DCE), T2-weighted images (T2WI), and diffusion-weighted imaging (DWI) MRI images.
Least absolute shrinkage and selection operator (LASSO) and logistic regression were
used to select features and build radiomics models based on different sequence
combinations. We built eight radiomics models which were based on DCE, DWI, T2WI,
DCE+DWI, DCE+T2WI, DWI+T2WI, and DCE+DWI+T2WI and a clinical predictive model
built based on the visual assessment of radiologists. A nomogram was constructed with
the best radiomics signature combined with patient characteristics. The calibration curves
for the radiomics signature and nomogram were conducted, combined with the Hosmer-
Lemeshow test.

Results: Pearson’s correlation was used to eliminate 3,329 irrelevant features, and then
LASSO and logistic regression were used to screen the remaining feature coefficients for
each model we built. Finally, 12 related features were obtained in the model which had the
best performance. These 12 features were used to build a radiomics model in
combination with the actual clinical diagnosis of benign or malignant lesion labels we
have obtained. The best model built by 12 features from the 3 sequences has an AUC
value of 0.939 (95% CI, 0.884-0.994) and an accuracy of 0.931 in the testing cohort. The
sensitivity, specificity, precision and Matthews correlation coefficient (MCC) of testing
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cohort are 0.932, 0.923, 0.982, and 0.791, respectively. The nomogram has also been
verified to have calibration curves with good overlap.

Conclusions: Radiomics is beneficial in the malignancy prediction of BI-RADS 4 breast
lesions. The radiomics predictive model built by the combination of DCE, DWI, and T2WI
sequences has great application potential.
Keywords: LASSO, BI-RADS 4, breast lesion, magnetic resonance imaging, radiomics
INTRODUCTION

The 2020 Global Cancer Report released by the International
Agency for Research on Cancer (IARC) shows that female breast
cancer has replaced lung cancer as the most common cancer in
the world with an increase of approximately 2.3 million new
cases (11.7%) throughout the year (1). Breast cancer is also
estimated to top the list of new morbidity and mortality among
all types of cancers in women. During treatment, the diagnosis of
benign or malignant breast lesions has become the most basic
and important step in the treatment of breast diseases.

According to the breast cancer screening guidelines of the
National Comprehensive Cancer Network (NCCN) and BI-
RADS, suspicious lesions can be classified into 6 categories (2).
The fourth category of breast disease is defined as a type of breast
lesions with suspicious malignancy and uncertain pathological
types. The probability of being malignant is 2%–95%, although
this type of breast disease has a further classification of 4a, 4b,
and 4c, because of the large range of the possibility of the
existence of malignant lesion, all patients with BI-RADS 4
breast diseases are recommended to undergo biopsy of
suspicious areas to clarify their pathological properties (3).
Because of the blurry qualitative characteristics of BI-RADS 4
breast diseases, we can see that most patients with BI-RADS 4 of
breast diseases are overdiagnosed and treated with the puncture
case analysis, which requires a certain degree of trauma to the
body. Moreover, the clinical diagnosis inevitably has a certain
false-positive rate and missed diagnosis rate (4, 5). Therefore, we
propose a hypothesis to establish a predictive radiomics model
based on the patients’ preoperative imaging information, thereby
avoiding patients with benign breast lesions from undergoing
invasive pathological testing.

Computer-aided diagnosis methods based on medical imaging
have been increasing in clinical application value in recent years.
This method only needs to mark the abnormal signs, and then
perform common image processing on this basis to get the
diagnosis result. Therefore, the concept of radiomics came into
being (6). Radiomics is a research method that extracts high-
throughput image features from medical images and conducts
quantitative research. DCE, DWI, and T2WI are three routine
methods for the diagnosis and observation of breast diseases.
Breast DCE imaging has high sensitivity in breast cancer screening
for women who have accumulated breast cancer risk for more
than 20%–25% (7). However, its specificity depends on a variety of
external factors, such as the professional skills of the reader or the
method of using quantitative techniques. DWI can characterize
2171
the three-dimensional fluidity of water in the body and indirectly
detect and visualize the microstructure (8). DWI and apparent
diffusion coefficient (ADC) have been successfully applied to the
clinical diagnosis and screening of breast cancer. Compared with
the average specificity of 80% in DCE for breast cancer diagnosis,
the average specificity of the combined diagnosis of DCE and DWI
can reach 89.2% (9). Therefore, radiologists mainly use the
combination of these two technologies in the diagnosis of breast
cancer. T2WI is usually used to exclude cysts, intramammary
lymph nodes, and other benign breast lesions (10). One of the
most advantageous characteristics of T2WI is that signal strength
is directly related to the underlying disease state for most breast
cancer lesions mainly showing uneven or slightly high signal on
T2WI MRI, while the surrounding tissues show low or medium
signal (11). As existing research shows that the T2WI MRI image
has a strong ability to interpret the pathology and diagnosis of
breast diseases (12). Research combining T2WI MRI, DCE MRI,
and DWI MRI to increase the actual diagnosis efficiency also
picture a wider application of combining multiple MRI features in
the field of breast diagnosis (13, 14).

It can be seen from the above results that the combined
application of different MRI images can play a greater practical
role in the diagnosis of breast diseases. This study aims to
establish an auxiliary diagnosis prediction model that can be
used to predict benign and malignant breast lesions by
combining MRI images with three sequences of DCE, DWI,
and T2WI.
MATERIALS AND METHODS

This study had been reviewed and approved by the Ethics
Committee of Cancer Hospital, Chinese Academy of Medical
Sciences, and had been in line with the Declaration of Helsinki.
All patients participating in this study waived the requirement of
informed consent. The image processing methods had met the
terms and conditions mentioned in the Transparent Reporting of
a Multivariable Model for Individual Prognosis or Diagnosis
(TRIPOD), Image Biomarker Standardization Initiative (IBSI),
Checklist for Artificial Intelligence in Medical Imaging (CLAIM).

Patients
The patient information for this research study comes from the
picture archiving and communication system (PACS) of the
Cancer Hospital of the Chinese Academy of Medical Sciences.
Due to the following criteria, we continuously enrolled a total of
January 2022 | Volume 11 | Article 733260
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216 research subjects from 230 patients who received diagnosis
at our hospital from September 2018 to December 2019. Each of
the patients was classified with the fifth version of BI-RADS
guidelines. The criteria for inclusion in the group were as follows:
(i) Patients have been diagnosed with a BI-RADS type IV breast
lesion. (ii) The pathological diagnoses results were confirmed by
puncture pathology diagnoses. (iii) Patients have complete MRI
images in PACS with axial DCE, DWI, and T2WI sequences
obtained before patients underwent biopsy.

All the in-group patients were separated into a training cohort
of 144 patients and a testing cohort of 72 patients divided by scan
time from early to late according to the ratio of 2:1. We use leave-
one-out cross-validation (LOOCV), and the training cohort is
used to train and validate the model. Testing cohort is used to
test the performance of the model.

Semiautomatic Image Segmentation and
Feature Extraction
We collected image information of the 216 enrolled patients,
which were composed of three kinds of MRI images: DCE, DWI,
and T2WI. All patients’ MRI scans were completed before they
underwent biopsy. Patients in training and testing cohorts were
scanned using the same equipment. The DCE sequences were
obtained by a higher axial resolution T1-weighted DCE imaging
with a temporal resolution of 90 s. The DWI sequences were
obtained by a DWI sequence with two b‐values (0–1,000 s/mm2).
The T2WI sequences were obtained from a higher axial
resolution T2WI turbo spin-echo sequence. All scans were
done at a magnetic field strength of 3.0 T.

These MRI images were reviewed by 2 radiologists who were
not aware of the real pathological diagnoses. They calibrated and
refined the segmentation results from Radiomics (www.
radiomics.net.cn) of the breast lesion regions of interest (ROI)
of the patients’ pretreatment images in the DCE, DWI, and T2WI
views. This software is a computerized semiautomatic image
segmentation software with high accuracy trained by using a
deep learning model. It uses the most recognized nnU-Net model
framework, which is a generalized U-net framework and can
obtain better training results through a careful preprocessing
process and diverse network training schemes. An example of
Radiomics software combined with manual fine-tuning for
semiautomatic image segmentation is shown in Figure 1.

The specific operations of feature extraction were all done
through Python (3.7.9), where the “pyradiomics” package
(pyradiomics.readthedocs.io) was used in conjunction. The
hyperparameters of feature extractor set as follows: Laplacian
of Gaussian filter: sigma: [2.0, 3.0, 4.0, 5.0]; normalize: True;
normalize scale: 100; resampled pixel spacing (1, 1, 1):;
interpolator: sitkBSpline; binWidth: 5; and voxelArrayShift:
300. The other settings are default. A total of 3,474
quantitative original image features including first-order
statistics features (18 features), 3D shape-based features (14
features), gray-level cooccurrence matrix features (24 features),
gray-level run length matrix features (16 features), gray-level size
zone matrix features (16 features), and gray-level dependence
matrix features (14 features) were extracted from the
Frontiers in Oncology | www.frontiersin.org 3172
corresponding regions of interest in the original images in the
DCE, DWI, and T2WI views (15). The original images were later
added with wavelet filtering and Laplace of Gaussian (LoG)
filtering respectively to extract the above features. Wavelet
filtering was aimed to yield 8 decompositions per level of the
original images. LoG filtering was used as an edge enhancement
filter which emphasized areas of gray level changes, where sigma
defines how the emphasized textures are supposed to be (16, 17).

Radiomics Signature Building
Due to the same coarse-to-fine strategy, we filtered the features to
prevent the model from overfitting (18–20). First, a mono-factor
analysis was performed on all features, and all features were
ranked in order from smallest to largest p-value, and the top 5%
of features were filtered out. Second, the LASSO algorithm made
the image features most relevant to the BI-RADS 4 breast lesions
to be filtered out by compressing the correlation coefficients of
some of the features and zeroing out another part of the
coefficients. Finally, the LOOCV was performed to select a
model. After the above steps are completed, the coefficients of
most radiomics features were compressed to zero. Then, a
radiomics signature was established based on a linearly
weighted combination of features with nonzero coefficients
(21). The above content is the entire process of our training
model. The feature extraction and selection process were
implemented in Python (3.7.9).

The ability of the model to recognize benign and malignant
lesions is evaluated by the drawn ROC. ROC can directly show
the sensitivity (true-positive rate) and false-positive rate of the
predicted results of the model. Meanwhile, the AUC value and
the accuracy value are two main indicators that can be indirectly
obtained from the curve. In addition, we also calculated precision
and MCC metrics to evaluate the model.

Development and Performance of the
Models Built With Sequences
Combinations
Based on the above modeling steps, we performed prediction
model building using different combinations of the three
sequences, respectively. First, we modeled the three sequences
individually based on the eigenvalue data extracted from each
sequence. Second, the feature data of each two sequences were
combined and modeled based on this data. Finally, we modeled
the data using the combined data of the three sequences. These
seven different models were used to compare performance in the
same computational way.

Development and Performance of the
Radiomics Nomogram
To verify that radiomics signature combined with clinical factor
has a greater predictive ability, we built the radiomics nomogram
(21). Through the progress of organizing the patients’
information and univariate logistic regression analysis, we
selected age as the clinical factor used for radiomics nomogram
building. We constructed a calibration curve for the nomogram
to demonstrate its predictive efficacy.
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FIGURE 1 | Image segmentation and the procedure of developing a predictive model. The experiment is divided into three main parts: image pre-processing, image
radiomic analysis and statistical analysis. Radiomic analysis includes image feature extraction and feature filtering. DCE, dynamic contrast enhanced imaging; DWI,
diffusion weighted imaging; T2WI, 2 weighted imaging; ROC, receiver operating characteristic curve.
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Imaging Diagnosis by the Radiologists
In order to further verify the application value of the prediction
model, we invited two radiologists to participate in our model
verification step. Both radiologists come from the Cancer
Hospital of the Chinese Academy of Medical Sciences and
have more than 10 years of clinical diagnosis experience. The
experiment requires the two experts to combine DCE, DWI, and
T2WI MRI images of each patient without contacting the patient
and completely ignorant of the clinical information and actual
diagnosis results to jointly make their pathological diagnosis of
each case of whether benign or malignant breast lesion
judgments. During the actual experiment, two radiologists
conducted pathological identification of all patients through
visual observation of images. By comparing the prediction
results of our model with the diagnosis results of these two
experts, we can evaluate whether this model has value in
clinical application.

After obtaining the diagnosis results of the two radiologists,
we used the same calculation method to calculate the accuracy,
sensitivity, specificity, precision, and MCC of the radiologist’s
diagnoses and compare them with the corresponding indicators
of the radiomics model.

Data and Statistical Analysis
To further evaluate the results, we plotted nomograms from the
clinical information and plotted calibration curves combined
with the Hosmer-Lemeshow test for the nomograms and the
ROC curves of the radiomics model with the strongest
performance. The p-value was calculated by a two samples t-
test to evaluate the degree of group differentiation of the data.
The above statistical evaluation work was done through R
version 4.0.5 (R Foundation for Statistical Computing,
Vienna, Austria).
RESULTS

Clinical Characteristics of the Patients
The clinical characteristics of the patients in the training cohort
and the testing cohort are shown in Table 1. The benign rate of
Frontiers in Oncology | www.frontiersin.org 5174
breast lesion in the training cohort is 25.69% and that of the
testing cohort is 18.05%. The differences in imaging devices, age,
and other clinical characteristics were not statistically significant
between the two cohorts.

Feature Selection, Radiomics Signature
Development, and Validation
Twelve features were derived from DCE, DWI, and T2WI MRI
images with the principle of coarse-to-fine. The selected features
and corresponding coefficients are listed in Table 2.

Development, Performance, and
Evaluation of the Prediction Models
By comparing the ROC curves obtained after building radiomics
prediction models for single sequences separately and for every
two sequences combined with the ROC curve of radiomics
prediction models built by combining the three sequences, the
radiomics models built by combining the DCE, DWI, and T2WI
sequences obtained a significant performance improvement.
Also, the AUC value of the model based on three sequences
combined is the highest among all AUC values we have got. The
performance of our joint prediction model is significantly
improved, especially in terms of the specificity of the model
prediction. The results are shown in Table 3. The ROC curves
are shown in Figure 2.

Assessment of the Radiomics Nomogram
We conducted the radiomics nomogram by combining the
patients’ ages and the radiomics signature. The nomogram has
achieved an AUC value of 0.965 (95% CI, 0.926–0.999) and an
accuracy of 0.912 in the testing cohort. The radiomics nomogram
is shown in Figure 3. The calibration curves of the radiomics
nomogram and the radiomics model based on DCE, DWI, and
T2WI are shown in Figure 4.

Comparison of the Prediction Results
Between Radiologists and the Radiomics
Prediction Model
Two radiologists who have reviewed the in-group patients’
images reached a good consensus of their visual diagnosis
TABLE 1 | Basic clinical information of enrolled patients.

Characteristics Training (N = 144) Testing (N = 72) Total (N = 216) P-value

Age at surgery (years), median (range) 45 (22-72) 45 (23-78) 45 (22-78) 0.052a

Benign (%) 37 (25.69) 13 (18.06) 50 (23.15) 0.867b

Adenomatosis 9 (6.25) 3 (4.17) 12 (5.56)
Phyllodes tumor 28 (19.44) 10 (13.89) 38 (17.59)

Malignant (%) 107 (74.31) 59 (81.94) 166 (76.85) 0.066b

Invasive ductal carcinoma 67 (46.53) 28 (38.89) 95 (43.98)
Colloid carcinoma 20 (13.89) 11 (15.28) 31 (14.35)
Medullary carcinoma 18 (12.60) 19 (25.39) 37 (17.13)
Neuroendocrine carcinoma 1 (0.69) 1 (1.39) 2 (0.93)
Solid papillary carcinoma 1 (0.69) 0 (0.00) 1 (0.46)
Ja
nuary 2022 | Volume 11 | Article
The differentiation in the characteristics (age when diagnosed, benignity and malignancy, pathological diagnosis) in the training cohort and the Testing cohort were evaluated. P-value less
than 0.05 proves that the groups are significantly different. The above P-values show the training and the Testing cohorts are non-significantly different.
aP-value was calculated by two sample t-test.
bP-values were calculated by Fisher exact test.
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upon the DCE, DWI, and T2WI sequences’ combination. The
results from the radiologists have been used to make a further
assessment. According to the model built with the visual
assessment achieved from the experts, the AUC value is 0.563
(95% CI, 0.470–0.772), and the accuracy is 0.611 in the testing
cohort. The results of the Delong test showed that the predictive
AUC values and accuracy of the radiomics prediction model with
the combination of the three sequences were significantly higher
than those of the prediction model built by the experience
of radiologists.
DISCUSSION

In this study, we conducted a study on the relationship between
the malignancy of BI-RADS 4 breast lesions and the imaging
features in DCE, DWI, and T2WI MRI, and developed a
radiomics prediction model based on MRI. It has been proved
Frontiers in Oncology | www.frontiersin.org 6175
that the model has a stronger predictive ability than radiologists’
empirical predictions and can accurately identify the benign and
malignant BI-RADS 4 breast lesions, which has application
value (22).

Breast MRI has the advantages of good soft-tissue resolution
and no radiation and is significantly better than mammography
and ultrasonography for early diagnosis and local staging of
breast cancer (23, 24). Because MRI is insensitive to
microcalcifications and requires a high degree of magnetic field
homogeneity, it is easy to cause a false-negative diagnosis (25).
Inaccuracies in visual assessment can also lead to overdiagnosis
of patients. As a definition from the NCCN guidelines points out,
the possibility of the occurrence of BI-RADS 4 breast lesion
malignancy range from 2% to 95%, but the actual PPV of breast
lesion ranges from 25.7% to 59.2% (26–28). Also, the radiomics
model we developed combines multimode MRI images to
provide diagnostic doctors and oncologists with a quantitative
evaluation tool with greater reliability.
TABLE 3 | Results of the radiomic models and the models based on the nomogram and visual assessment.

AUC Accuracy Sensitivity/Recall Specificity Precision MCC

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing
(95% CI) (95% CI)

DCE 0.901 0.844 0.806 0.819 0.804 0.864 0.811 0.615 0.925 0.911 0.561 0.444
(0.853-0.949) (0.741-0.946)

DWI 0.871 0.798 0.847 0.801 0.846 0.814 0.865 0.769 0.947 0.941 0.651 0.493
(0.812-0.930) (0.689-0.907)

T2WI 0.877 0.838 0.868 0.777 0.879 0.746 0.838 0.846 0.940 0.957 0.679 0.492
(0.822-0.932) (0.731-0.940)

DCE+DWI 0.932 0.821 0.861 0.708 0.860 0.712 0.865 0.692 0.948 0.913 0.675 0.324
(0.894-0.970) (0.727-0.916)

DCE+T2WI 0.924 0.853 0.889 0.820 0.907 0.813 0.838 0.846 0.942 0.96 0.721 0.551
(0.880-0.968) (0.751-0.957)

DWI+T2WI 0.889 0.834 0.882 0.777 0.869 0.780 0.919 0.769 0.969 0.939 0.730 0.453
(0.837-0.941) (0.731-0.938)

DCE+DWI+T2WI 0.940 0.939 0.924 0.931 0.935 0.932 0.892 0.923 0.961 0.982 0.806 0.791
(0.904-0.975) (0.884-0.994)

Nomogram 0.952 0.965 0.896 0.912 0.887 0.932 0.919 0.846 0.969 0.965 0.756 0.737
(0.922-0.983) (0.926-0.999)

Visual Assessment 0.613 0.563 0.632 0.611 0.644 0.627 0.594 0.538 0.821 0.860 0.21 0.130
(0.528-0.712) (0.470-0.772)
J
anuary 2022 | Volume
 11 | Article
The 9 models contain models based on DCE, DWI, T2WI, DCE+DWI, DCE+T2WI, DWI+T2WI, DCE+DWI+T2WI, nomogram and visual assessment.
TABLE 2 | Results of the feature selection for the model based on DCE, DWI and T2WI.

Sequences Features Coefficients

T2WI Wavelet LHH glrlm long run low gray level emphasis -0.19765
Original glszm Gray Level Non-Uniformity Normalized -0.52642
Wavelet LLL glszm Small Area Low Gray Level Emphasis -1.53857
Wavelet LHL glszm Low Gray Level Zone Emphasis -1.34546
Wavelet LLH glszm Small Area Low Gray Level Emphasis -6.49947
Log sigma 4-0-mm-3D glrlm Long Run Low Gray Level Emphasis -0.00238
Log sigma 4-0-mm-3D glrlm Long Run Emphasis -0.00004
Wavelet LHH glszm Gray Level Non-Uniformity Normalized -1.11352

DCE Original glszm Small Area Emphasis 4.57208
Wavelet LHH glcm Correlation 12.60474
Wavelet LLL glcm Inverse Variance -4.61787

DWI Wavelet HHH glrlm Long Run High Gray Level Emphasis -0.02102
The features were selected by LASSO algorithm. These coefficients show the magnitude of the weight of their corresponding characteristics in the regression model.
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In summary, our study focuses the concentration on
developing a way to predict malignant breast lesions through
imaging data without causing trauma to the patients.

Among the finally obtained features after extraction and
compression by the LASSO logistic regression, the number of
T2WI image features is the largest, the coefficient value of DCE
image features is the largest, and only one DWI feature is selected
and the correlation coefficient of this feature is relatively small,
which shows that the image features of T2WI and DCE have a
greater influence on the benignity and malignancy of breast
lesions. Compared with other parametric images, T2WI MRI
images are more likely to reflect the cyst, the margins of the
Frontiers in Oncology | www.frontiersin.org 7176
lesion, and the surrounding lymph nodes (29). Therefore,
T2WI images are often used to detect benign lesions
(12). DCE scanning is the most common scan used to
diagnose breast disease in clinical practice; it provides higher
sensitivity, however, its specificity is variable (30). It can be
concluded that T2WI scanning and DCE scanning have
some complementary properties, and therefore a prediction
model combining both sequences can yield substantial
performance improvements.

From the features we screened out, wavelet-filtered small area
low gray-level emphasis texture feature in the T2WI sequence
and wavelet-filtered correlation texture feature in the DCE
FIGURE 2 | ROC curves of the models. The ROC curves generated by models based on: DCE, DWI, T2WI, DCE+DWI. DCE+T2WI, DWI+T2WI, DCE+DWI+T2WI,
nomogram combined age and the radiomic signature and the visual assessment of the radiologists. DCE, dynamic contrast enhanced imaging; DWI, diffusion
weighted imaging; T2WI, 2 weighted imaging.
January 2022 | Volume 11 | Article 733260
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sequence was the most descriptive for breast BI-RADS4-like
suspicious lesions. Small area low gray-level emphasis is one of
the gray-level size zone matrix (GLSZM) features, which describe
the amount of homogeneous connected areas within the volume
of a certain size and intensity, thereby describing lesion
heterogeneity at a regional scale (26). The grayscale area size
matrix is the primary form of the Thibault matrix, which is an
advanced statistical matrix of texture features and a powerful tool
for medical image analysis. The more homogeneous the image
Frontiers in Oncology | www.frontiersin.org 8177
texture is, the larger and flatter the matrix width is. Unlike the
stroke and cooccurrence matrices, the GLSZM does not require
multiple directional calculations. Specifically, GLSZM is effective
in characterizing texture consistency, nonperiodic or speckled
textures, and has better performance than granularity, stroke
matrix, and cooccurrence matrix for cell nuclei, and dermis (27).
Wavelet filtered correlation texture feature is one of the gray level
cooccurrence matrix (GLCM) features, which describes the joint
distribution of two pixels that have some spatial location
FIGURE 3 | Radiomic nomogram. The radiomic nomogram was conducted based on the patients’ ages from the clinical information and the radiomic signature
obtained from the best radiomic model which was based on DCE, DWI and T2WI.
FIGURE 4 | Calibration curves of the radiomic model and the radiomic nomogram. Calibration curves of radiomic signature were built by the radiomic model based
on DCE, DWI and T2WI. Calibration curves of radiomic nomogram were built by the nomogram. The diagonal line represents the perfect prediction of the ideal
model. The blue and pink lines represent the performance of the training and testing cohort in the models, where the models closer to the diagonal line represent
better predictions. The calibration curves have gone through the Hosmer-Lemeshow test and have achieved a favorite result.
January 2022 | Volume 11 | Article 733260
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relationship (28). The correlation features to measure the degree
of similarity of the elements of the spatial grayscale cooccurrence
matrix in the row direction. Thus, the local grayscale correlation
in the image can be seen from the correlation value magnitude.
When the values of matrix elements are uniformly equal, the
correlation value is large; contrarily, the correlation value is small
when the matrix pixel values differ significantly. If there is a
horizontal texture in the image, the correlation value of the
horizontal matrix is larger than that of the rest of the matrixes.

Another noteworthy strength of this study is our image
segmentation method. The images used in this study were
automatically segmented by computer using an optimized deep
learning model and then corrected and refined by 2 professional
radiologists, so our regions of interest segmentation have a high
degree of accuracy and precision. This shows that the image
feature values we extracted in this research-based learning are
also more convincing. As for image feature values are the basis
for the establishment of our prediction model, so this is one of
the reasons that can prove that the prediction denseness has
application value.

In addition, to demonstrate that this prediction model can
reach a higher level than physicians’ diagnosis, we invited two
radiologists who have more than 10 years of experience in breast
cancer. The two doctors had no prior information about the
patient’s personal information and real diagnosis; they were able
to determine the benignity or malignancy of the patient’s breast
lesions by combining only three sequences of MRI images. The
results confirmed that the AUC value, accuracy, sensitivity,
specificity precision, and MCC of our developed radiomics
prediction model were much higher than those of the
radiomics experts.

Medical imaging technology is able to captures a vast amount
of information, but most of information was reported in a
qualitative and quantitative way. Prospective studies indicated
that the computer aided detection (CAD) system constructed
using extracted and selected features can effectively distinguish
benign and malignant breast lesions (31, 32). Chen et al. (33)
extracted a large number of dynamic features from the temporal
enhancement pattern of a tumor. Zheng et al. (34) extracted
dynamic enhancement and architectural features and spatial
variations of pixelwise temporal enhancements from MRI
images. Although these studies had also achieved good results,
due to the development of medical imaging technique, these
features cannot contain rich information on tumors. In 2012,
Lambin et al. (17) formally proposed radiomics which attracted
the attention of many computer scientists, radiologists, and
oncologists. Liu et al. (22) used deep learning to extract
features from mammography-based in predicting malignancy.
Karen et al. (35) used datasets that contained 64 lesions DCE-
MRI images and extracted 38 radiomics features from each
image to build SVM models which is able to distinguish the
malignant and benign lesions. However, the datasets in these
reports are all single modality. Extracting more features can
discover the connection between deeper features and the training
task. The higher dimensional radiomics features can more fully
express tumor heterogeneity, and these features can in part
Frontiers in Oncology | www.frontiersin.org 9178
describe the characteristics of breast cancer based on their
usefulness, predictive power and uniqueness. In our research,
we extracted 3,474 radiomics features from a combination of
three sequences (DCE, DWI, T2WI) MRI images to build the
model. Thus, we have achieved a satisfactory result.

Our research results confirmed that the multimodal fusion
models can complement each other. When one modality cannot
obtain obvious information of a single modality, another modality
can provide weak supervision information for it. Among the
single-sequence models, the model constructed based on DCE
scanning technology has the highest AUC. DCE sequence cannot
only clearly show morphologic and hemodynamics features of the
lesion (36) but also have more significance for the sharpening of
the shape and scope of the lesion according to various
manifestations such as enhancement mode, blood supply, and
cell composition of the lesion. In the dual-sequence combined
model, the DCE+T2WI model has higher model evaluation
performance than the single-sequence model in terms of
accuracy, specificity, and sensitivity. The signal intensity of
T2WI is directly related to the shape of the underlying lesion
and is usually used to exclude cysts, intramammary lymph nodes,
and other benign breast lesions to improve the specificity of
diagnosis (37). Among all the models in this study, the best
model effect is DCE+T2WI+DWI. Each model of a single
sequence has advantages and disadvantages, but the fusion of
the three sequences can assist each other (37, 38). By comparing
the single-sequence model with the multisequence model, it was
found that the multimodal fusion models had better performance
in predicting the benign and malignant of BI-RADS 4
breast lesions.

Upon reflection, although this study provides significant
benefits, it also has some limitations worth discussing. Firstly,
this is a single-center study. Therefore, the lack of multicenter
data fusion analysis might affect the generalization ability of the
model to a certain extent. Secondly, this prediction model is
based on three sequences of images from breast MRI and can
combine the characteristics of different images for prediction.
However, breast ultrasonography and mammography are also
two major means of detecting breast disease (39, 40). Because of
the higher cost of MRI, the more restrictive population, and the
limitations of an incomplete examination, mammography, and
ultrasound scans are even more routinely used as clinical tests
(41, 42). So, the absence of these two medical images in this study
could potentially cause our model to be less representative, as our
prediction model could not be applied to these two sequences
of images.

In conclusion, the model based on DCE, DWI, and T2WI
combined is the most effective in predicting the benignity and
malignancy of BI-RADS 4 suspicious lesion.
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Objectives: This study aims to develop and evaluate multiparametric MRI (MP-MRI)-
based radiomic models as a noninvasive diagnostic method to predict several biological
characteristics of prostate cancer.

Methods: A total of 252 patients were retrospectively included who underwent radical
prostatectomy and MP-MRI examinations. The prediction characteristics of this study
were as follows: Ki67, S100, extracapsular extension (ECE), perineural invasion (PNI), and
surgical margin (SM). Patients were divided into training cohorts and validation cohorts in
the ratio of 4:1 for each group. After lesion segmentation manually, radiomic features were
extracted from MP-MRI images and some clinical factors were also included. Max
relevance min redundancy (mRMR) and recursive feature elimination (RFE) based on
random forest (RF) were adopted to select features. Six classifiers were included (SVM,
KNN, RF, decision tree, logistic regression, XGBOOST) to find the best diagnostic
performance among them. The diagnostic efficiency of the construction models was
evaluated by ROC curves and quantified by AUC.

Results: RF performed best among the six classifiers for the four groups according to
AUC values (Ki67 = 0.87, S100 = 0.80, ECE = 0.85, PNI = 0.82). The performance of SVM
was relatively the best for SM (AUC = 0.77). The number and importance of DCE features
ranked first in the models of each group. The combined models of MP-MRI and clinical
characteristics showed no significant difference compared with MP-MRI models
according to Delong’s tests.

Conclusions: Radiomics models based on MP-MRI have the potential to predict
biological characteristics and are expected to be a noninvasive method to evaluate the
risk stratification of prostate cancer.

Keywords: radiomics, prostate cancer, magnetic resonance imaging, biological characteristics, risk stratification
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INTRODUCTION

Prostate cancer (PCa) is the highest incidence cancer and the
second leading cause of death among men according to the latest
statistics in 2021 (1). Early and precise detection of prostate
cancer and subsequent appropriate treatment decisions play an
essential role for patients (2, 3).

Nowadays, some tumor biomarkers and biological
characteristics have been proved to be useful for evaluating the
malignant potential of prostate cancer and may influence the
treatment decision-making (4–6). Ki67 as a biomarker of cell
proliferation, which is expressed in all phases except resting (G0)
phase of the cell cycle, has been demonstrated to be an
independent prognostic factor in low volume and grade
prostate cancer (7). According to the results of the Mayo
model, when the expression of Ki67 increased by 1%, the
cancer-specific mortality would increase by1 2% after radical
prostatectomy (RP) accordingly (8). S100 is a family of acidic
calcium-binding proteins and was found to be upregulated in
various tumors (9). Aberg et al. revealed two subtypes of S100
were significantly correlated with short progression-free survival
in prostate cancer patients with metastases (10). Extracapsular
extension (ECE) could be used as an indication of local advanced
prostate cancer (cT3). The positive ECE would increase the risk
of death to 5 times than the negative ECE for patients after
undergoing radical prostatectomy (11). Surgical margin (SM) is
determined by pathological staining of RP specimens. Numerous
studies have disclosed that positive SM increased cancer-specific
mortality and the likelihood of biochemical recurrence of
patients significantly (12–14). Prostate cancer tends to invade
and grow along nerves, and it is also considered to be a potential
metastatic route, which is called perineural invasion (PNI) (15,
16). PNI has been documented to be associated with biochemical
recurrence (BCR) and promoting tumor aggressiveness (16, 17).
Therefore, judging these biological characteristics before
operation can better evaluate the invasiveness of tumor and
may change the clinical decision-making patterns in the future.

Definitely, biopsy can solve some of the above problems to a
certain extent and is still the mainstream method. It is reported
that the combined technique of fusion targeted and systematic
biology has been proved to be helpful to improve the diagnostic
accuracy (18). However, the defects of sampling errors and a
series of subsequent complications, such as pain and hematuria
(19), limit the real-time monitoring and accurate evaluation of
biological characteristics by biopsy. Multiparametric-magnetic
resonance imaging (MP-MRI) is one of the most accurate
noninvasive methods to evaluate local lesions, which contains
T1 and T2 sequences that provide anatomical and disease
information, as well as other sequences that provide functional
information, such as diffusion-weighted imaging (DWI),
dynamic contrast enhanced (DCE), and magnetic resonance
spectroscopy (MRS) (20). As a routine screening method for
prostate cancer, MP-MRI can reflect the phenotype and
heterogeneity of prostate cancer by signal intensity and
enhancement features (21, 22). Furthermore, MP-MRI images
may contain many clinically valuable information related to the
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different biological characteristics above, such as ECE (23),
which may be hard for radiologists to dig out in clinical practice.

Currently, radiomics serves as a novel approach that extracts
abundant quantitative features with high throughput, and
through machine learning methods to establish prediction
models, which were proved to effectively provide more
potential useful information for the clinical practice in urology
(24, 25). Radiomics of prostate cancer has been widely used in
tumor identification, staging, and prognosis evaluation (26, 27).
However, more comprehensive and accurate prediction models
that can determine the risk stratification and provide references
for clinical decision-making for prostate cancer still need to
be explored.

Thus, in the present study, we attempted to establish and validate
the radiomic predictive models for five biological characteristics
related to aggressiveness (Ki67, S100, ECE, PNI, SM) of prostate
cancer based on MP-MRI. In addition, some clinical information
was also added to establish the corresponding combined models.
MATERIALS AND METHODS

Patients, Pathological Evaluation, and MRI
Acquisition
This work was approved by the Institutional Review Board (IRB)
of Shanghai General Hospital (2021KY107), and the patient’s
informed consent was authorized to be waived according to the
nature of the research. This retrospective study collected patients
who underwent radical prostatectomy from May 2013 to January
2020. The exclusion criteria are as follows: (1) Preoperative
DCE-MRI were unavailable (n = 149); (2) No mass lesion found
on MRI image (n = 9); (3) Missing DWI (n = 3); (4) Poor imaging
quality (n = 10); (5) Missing clinical information (n = 5);
(6) Biopsy before MRI leading to unclear lesions (n = 32); and
(7) Previous treatment before MRI examinations (n = 12). Finally,
we recruited 252 patients as our subjects.

The clinical and pathological information we collected in this
study is as follows: age, prostate serum antigen (PSA), white blood
cell (WBC), red blood cell (RBC), hemoglobin, lymphocyte, platelet,
albumin, alkaline phosphatase (ALP), platelet-to-lymphocyte ratio
(PLR), fibrinogen, surgical Gleason score, immunohistochemistry
(Ki67, S100, AR), SM, ECE, PNI, seminal vesicle invasion (SVI), and
lymphatic vascular invasion (LVI). Details of the above indicators
can be found in Supplementary Table S2. Considering the
importance of biological characteristics of prostate cancer
mentioned above, and the routine indexes of pathological
examination, as well as data distribution (balanced or
imbalanced), we selected five of them (Ki67, S100, ECE, PNI, SM)
as our research indicators. Each of these indicators was classified as
a group, and we divided each group into training cohort and
validation cohort in the ratio of 4:1. All indicators were divided
into positive and negative in the form of binary classification, except
Ki67, which was divided into high expression and low expression
with 10% as the threshold according to previous studies (7). The
gold standard references of this research were based on the results of
radical prostatectomy.
February 2022 | Volume 12 | Article 839621
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Three MRI sequences were included in this study: T2, DWI,
DCE (arterial phase), and this combination also meets the PI-
RADS v2 (Prostate Imaging-Reporting and Data System, Version
2) standard of MP-MRI (28). The protocols of MRI examinations
are described in Supplement A.

Tumor Segmentation
The patient’s images and clinical data were imported into the
Darwin research platform (https://arxiv.org/abs/2009.00908) for
subsequent tumor lesion delineation and model establishment.
The work flow is shown in Figure 1. The boundary of the volume
of interest (VOIs) on each axial-DWI picture was manually
delineated by radiologist 1 (JC, 5 years of experience in urinary
imaging). The ROIs on DWI were then copied to the sequences
of T2 and DCE. If some of the copied results of the two sequences
were not ideal, further modifications were made. Next,
radiologist 2 (RC, 8 years of experience in urinary imaging)
would review the segmentation results. If there was any objection
to the results, the results would be discussed and resegmented
until a consensus was reached.

Feature Extraction
After finishing segmentation, the feature extraction of lesions was
carried out by PyRadiomics package. The original feature classes
contain first-order, shape, and texture features. First-order features
refer to the distribution of voxel intensities through general and basic
metrics, such as range,mean, variance, and kurtosis. Texture features
embody:Gray-LevelCooccurrenceMatrix (GLCM);Gray-LevelRun
Length Matrix (GLRLM); Gray-Level Size Zone Matrix (GLSZM);
Neighboring Gray-Tone Difference Matrix (NGTDM); and Gray-
Frontiers in Oncology | www.frontiersin.org 3183
LevelDependenceMatrix (GLDM). Furthermore, we use eightfilters
and the original images were derived into eight kinds of filtered
transformed images: Laplacian of Gaussian (LoG), wavelet, square,
square root, logarithm,exponential, gradient, and localbinarypattern
(LBP). Except shape features, the first-order and texture features
mentioned above can also be extracted from the derived images. Due
to a single MRI sequence containing 1,781 features, MP-MRI
produced 5,343 features in total for this study. The detailed
description of the image features mentioned above can be found in
https://pyradiomics.readthedocs.io/en/latest/features.html.

Feature Selection
Firstly, the extracted feature data were subtracted by the mean and
then divided by the variance to achieve data normalization for
subsequent comparison. Next, in order to reduce the over fitting of
data and find the optimal correlation features, max relevance min
redundancy (mRMR) was adopted to find the top 20 features for
ECE, PNI, and SM groups and 15 features for Ki67 and S100 groups
in the training cohort. Due to some machine learning, classifiers
themselves can evaluate the importance of features and find the best
feature combination through multiple iterative calculations.
Therefore, the recursive feature elimination (RFE) based on
random forest (RF) was applied to find the best feature
combination step by step based on accuracy.

Model Construction
In this study, six classifiers were included to find the best
diagnostic performance among them: support vector machine
(SVM), K-nearest neighbor (KNN), random forest, decision tree,
logistic regression, and XGBOOST. Support vector machine was
FIGURE 1 | The general workflow of this study.
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based on polynomial kernel function, and the tolerance for
misclassified samples was set by the specific penalty coefficient
C (from 0.0001 to 1,000). The best k value (number of neighbors)
for KNN was found by training in the range of 3–10. For random
forest, decision tree, and XGBOOST, the maximum tree depth
was constrained to avoid overfitting. To find out whether the
clinical data improved the diagnostic performance, several
clinical data (age, PSA, WBC, RBC, hemoglobin, lymphocyte,
platelet, albumin, ALP, PLR, fibrinogen) were selected to build
the clinical models. Meanwhile, they were integrated into the
corresponding MP-MRI radiomic models to construct the
combined models. The parameters used in the model
construction are described in Supplementary Table S1.

Model Evaluation and Statistical Analysis
The diagnostic efficiency of the models was demonstrated by
receiver operating characteristic (ROC) curves and quantified by
the area under the curve (AUC). The calibration curve shows the
consistency between the prediction model and the actuality.
What is more, the decision curve analysis (DCA) illustrated
the clinical net benefits brought by the prediction model.

The diagnostic ability of MP-MRImodels and combined models
was compared by DeLong’s test. The overall comparison of PSA in
each group was through Mann-Whitney U test. The case
distribution between validation cohorts and training cohorts was
compared by Chi-square test. All statistical analysis was performed
by R (version 4.0.2). The statistically significant level was set at 0.05.
RESULTS

Demographics
In this study, a total of 252 PCa patients were included, and the
flowchart of patients’ recruitment is depicted in Supplementary
Frontiers in Oncology | www.frontiersin.org 4184
Figure S1. The baseline characteristics of PCa patients could be
found in Supplementary Table S2. The mean age of the included
patients was 68.4 years (50–84 years), and their surgical Gleason
score is mainly distributed in 7 (64.7%). According to their
pathological results, the included patients were divided into 5
groups: Ki67 (n = 140), S100 (n = 158), ECE (n = 232), PNI (n =
225), and SM (n = 248). As shown in Table 1, the expression of
PSA was significantly different in ECE (p < 0.01), PNI (p = 0.03),
and SM (p < 0.01) groups, and it was relatively not significant in
Ki67 (p = 0.08) and S100 (p = 0.12) groups. Meanwhile, the case
composition between the cohort training and validation cohort
was roughly the same in each group (p > 0.05).

Feature Selection
After applying mRMR to the features extracted from MP-MRI,
the top 20 features in ECE, PNI, and SM groups and 15 features
in Ki67 and S100 groups were obtained in the training cohort.
RFE-RF then selected the resulting features and achieved the best
performing feature combination as shown in Figures 2A–D:
Ki67 (n = 13), S100 (n = 13), ECE (n = 15), PNI (n = 8), and SM
(n = 20). For SM, all its figures are placed in Supplementary
Figure S2 for a better result demonstration. Next, principal
component analysis (PCA) was performed to extract principal
components of features in each group and reduce the
dimensions, which made the division of cases in each group
more intuitive according to their feature values. As displayed in
Figures 2E–H, the selected features could satisfactorily
distinguish the positive and negative cases on PCA (for Ki67,
they were ≥10% and <10%), especially in the ECE and PNI
groups, which successfully divided the cases with different labels
into left sides and right sides. According to the heat maps in
Figure 3, the color of positive cases or high Ki67 expression cases
was generally darker, and the color in heatmaps referred to the
values of the selected feature. This also proved the ability of the
TABLE 1 | Patient profiles of each group.

Characteristic PSA (ng/ml) Training cohort Validation cohort

Ki67 n = 112 n = 28
≥10% 19.0 ± 15.4 38 (33.9%) 9 (32.1%)
<10% 15.6 ± 15.4 74 (66.1%) 19 (67.9%)
p-value 0.08 0.86
S100, n (%) n = 126 n = 32
Positive 16.0 ± 11.9 67 (53.2%) 17 (53.1%)
Negative 14.7 ± 14.4 59 (46.8%) 15 (46.9%)
p-value 0.12 1.00
ECE, n (%) n = 185 n = 47
Positive 25.2 ± 22.5 40 (21.6%) 10 (21.3%)
Negative 13.9 ± 14.5 145 (78.4%) 37 (78.7%)
p-value <0.01 0.96
PNI, n (%) n = 180 n = 45
Positive 18.3 ± 18.9 96 (53.3%) 24 (53.3%)
Negative 13.9 ± 14.3 84 (46.7%) 21 (46.7%)
p-value 0.03 1.00
SM, n (%) n = 198 n = 50
Positive 22.7 ± 22.8 129 (65.2%) 32 (64%)
Negative 12.4 ± 10.6 69 (34.8%) 18 (36%)
p-value <0.01 0.88
February 2022 | Volume 1
The comparison of PSA in each group was by Mann-Whitney U test. The case distribution between validation cohorts and training cohorts was compared by Chi-square test. ECE,
extracapsular extension; PNI, perineural invasion; SM, surgical margins.
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features themselves to distinguish the biological characteristics of
patients. Supplementary Figure S3 showed that the correlation
among radiomics features was weak, indicating there was low
redundancy among selected features.

Comparison of Different Classifiers
The six classifiers (SVM, KNN, random forest, decision tree,
logistic regression, and XGBOOST) and their AUC in each group
are listed in Table 2. In general, the performance of random
forest was the best according to AUC values, and we chose
random forest as the prediction models for the four groups (Ki67 =
0.87, S100 = 0.80, ECE = 0.85, PNI = 0.82). As for SM, the
performance of SVM was relatively the best (AUC = 0.77), so
SVM with polynomial kernel function was selected as the optimal
classifier for SM.

Performance of MP-MRI and Combined
Prediction Models
The optimal MP-MRI models of the five groups performed
satisfactorily both in the training cohorts and validation
cohorts (Figure 4; Table 3). The prediction model of Ki67
performed best among the five groups, whose AUC value
reached 0.88 in the validation cohort. The second-best model
was ECE with AUC value = 0.85. The AUC values of the three
remaining models in the validation cohort were 0.80 for S100,
0.82 for PNI, and 0.77 for SM.

As for clinical factors, after REF-RF selection, 2 characteristics
were included for Ki67 (PSA, PLR), 1 for S100 (PSA), 4 for ECE
(PSA, WBC, PLR, and ALP), 5 for PNI (PLR, age, fibrinogen,
Frontiers in Oncology | www.frontiersin.org 5185
PSA, and albumin), and 4 for SM (PSA, fibrinogen, albumin, and
lymphocyte). This displayed the level of PSA might be helpful to
distinguish five biological characteristics to some extent. Clinical
characteristics were then added to the MP-MRI model to form
the combined models. As a result, in the training cohort, the
combined model was significantly better than the MP-MRI
models except the Ki67 group based on Delong’s tests (p <
0.05). Nevertheless, in the validation cohort, there was no
significant difference between the two groups (p > 0.05).

Furthermore, the importance of the features in the combined
models is demonstrated in Figure 5. The number and
importance of DCE features ranked first in models of each
group, followed by DWI, and finally T2. This also revealed that
DCE sequences could provide more information for predicting
the malignant degree of prostate cancer. In addition, in Figure 6,
calibration curves displayed the consistency between the
prediction model and the actuality was favorable, and when
the risk threshold is greater than about 0.1, the prediction model
could bring more clinical net benefits according to the DCA.
Finally, we provide the examples of VOI delineation on MP-MRI
and the corresponding 3D constructions images in Figure 7.
DISCUSSION

In this study, we constructed the machine-learned radiomic
models based on six classifiers for the five biological
characteristics (Ki67, S100, ECE, PNI, and SM) related to the
invasiveness of prostate cancer. ROC curves showed that the
A B C D

E F G H

FIGURE 2 | The feature selection of RFE-RF and the distribution of different cases on PCA. RFE-RF (A–D) was applied to find the best feature combination step by
step, and the combinations with the highest accuracy will be incorporated into the models. PCA (E–H) showed the selected features could satisfactorily distinguish
the division of cases in each group intuitively according to their feature values. The corresponding figures for SM are shown in Supplementary Figure S2.
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diagnostic abilities of these models were ideal with AUC values
all greater than 0.8 in the validation cohorts (except SM = 0.77).
Meanwhile, we added several clinical characteristics to make the
combined models, though they barely improved the accuracy
of prediction.

For traditional diagnostic methods, like serum PSA test,
digital rectal examinations (DREs), and prostate biopsy, they
inevitably have many major deficiencies (19, 29–31). The main
deficiencies are that they may lead to overdiagnosis of prostate
cancer and missed diagnosis of clinically significant cancer (32–
34). As shown in Supplementary Table S2, 22.6% of patients
showed Gleason score 6 or less, suggesting that a relevant
number of cancers below the threshold which is currently
considered clinically significant cancer and leading to
overdiagnosis and overtreatment. MP-MRI as a noninvasive
method has been recommended as a routine examination of
prostate cancer and proved to be beneficial in the detection of
Frontiers in Oncology | www.frontiersin.org 6186
clinically significant cancer (21, 22). Recently, the NCCN
guidelines clearly pointed out that MP-MRI was helpful to the
staging and risk stratification of prostate cancer, and its
combination with several biomarkers could reduce unnecessary
biopsy (35). Moreover, MP-MRI contains much clinically
valuable information, which has not attracted enough attention
in clinical practice. Recently, artificial intelligence, such as
radiomics, has shown great potential for evaluating the
aggressiveness of urological tumors (36). Therefore, radiomics
could be used as a novel and efficient way to dig out the
information (24). Radiomics has been applied to predict many
aspects of prostate cancer, such as cancer diagnosis, Gleason
score, treatment response, and early biochemical recurrence (37).

Nowadays, using radiomics to predict multiple biological
characteristics of tumors simultaneously has become a trend.
In the research of Meng et al. (38), they proposed the radiomic
models based on MP-MRI have the ability to predict multiple
FIGURE 3 | Heat maps of the selected features. The color of the maps represented the value of the selected features. The color of positive cases or high Ki67
expression cases was generally darker. This proved the ability of the features themselves to distinguish the biological characteristics of patients.
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biological characteristics (HER-2, Ki67, differentiation, lymph
node metastasis, and KRAS-2) of rectal cancers. However, to the
best of our knowledge, there were fever researches to
comprehensively predict various biological characteristics of
Frontiers in Oncology | www.frontiersin.org 7187
prostate cancer using radiomics and achieved good diagnostic
results. Bai et al. (39) reported their radiomic model could
predict the presence of ECE preoperatively, but the AUC value
of their integrated model was only 0.71, much lower than ours
TABLE 2 | Diagnostic performance of optimal models for each group.

Different models Training cohort Validation cohort

AUC SEN SPE ACC p-value AUC SEN SPE ACC p-value

Ki67
MP-MRI 0.91 0.92 0.76 0.81 0.59 0.87 1.00 0.58 0.71 0.60
Clinical 0.73 0.53 0.84 0.73 0.63 0.67 0.74 0.71
Combined 0.91 0.92 0.76 0.81 0.88 0.78 0.84 0.82
S100
MP-MRI 0.88 0.81 0.81 0.81 <0.01 0.80 0.82 0.71 0.75 0.58
Clinical 0.85 0.82 0.69 0.76 0.66 0.62 0.53 0.63
Combined 0.94 0.84 0.92 0.87 0.81 0.94 0.60 0.78
ECE
MP-MRI 0.93 0.88 0.86 0.86 0.01 0.85 1.00 0.62 0.70 0.91
Clinical 0.86 0.98 0.57 0.65 0.57 0.50 0.84 0.77
Combined 0.95 0.88 0.88 0.88 0.85 0.80 0.73 0.74
PNI
MP-MRI 0.87 0.84 0.79 0.82 <0.01 0.82 0.67 0.95 0.80 0.19
Clinical 0.81 0.88 0.68 0.78 0.58 0.67 0.52 0.60
Combined 0.89 0.85 0.80 0.83 0.84 0.71 0.90 0.80
SM
MP-MRI 0.87 0.83 0.78 0.80 0.01 0.77 0.72 0.72 0.72 0.97
Clinical 0.84 0.83 0.74 0.77 0.65 0.71 0.47 0.64
Combined 0.94 0.96 0.81 0.86 0.77 0.61 0.81 0.74
February
 2022 | Volum
e 12 | Article
The p-values were derived from DeLong’s test, and they compare the AUCs of the MP-MRI models with the corresponding combined model. The models of SM were based on SVM; the
others were based on RF.
A B C D
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FIGURE 4 | The ROC curves of the MP-MRI, clinical and combined models in the training cohort (A–D) and validation cohort (E–H).
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(AUC = 0.85). He et al. (40) used MP-MRI radiomics to predict
ECE (AUC = 0.728, also lower than ours) and SM (AUC = 0.76,
similar to ours), yet they did not comprehensively evaluate the
aggressiveness of prostate cancer as ours. Therefore, our
comprehensive radiomic models made it possible to predict
more critical biological characteristics of prostate cancer and
improve the prediction accuracy of some biological
characteristics compared with the other published AI models.

In the present study, we extracted as many features as the
recent literature documented. We then adopted an efficient
feature selection method—mRMR, which has been proved
advanced in a majority of researches (38, 41), to obtain the
Frontiers in Oncology | www.frontiersin.org 8188
most relevant and least redundant features. In addition, the low
redundancy of selected features could be testified by the
correlation maps in Supplementary Figure S3. RFE-RF then
ensured the best combinations of the included features. More
and more studies use RFE-RF to select the best feature
combinations, yet it needs a large amount of computation so
that it is suitable for low-dimensional data after primary
selection (42).

For the resulting radiomic features of each group, wavelet
features account for larger proportions: 6/13 for Ki67, 5/13 for
S100, 9/16 for ECE, 2/8 for PNI, and 7/20 for SM. Wavelet
features are derived from the wavelet transform and represent
TABLE 3 | AUCs of different MP-MRI radiomic classifiers for predicting the five biological characteristics in the validation cohorts.

Classifiers Ki67 S100 ECE PNI SM

Random forest 0.87 0.80 0.85 0.82 0.72
Decision tree 0.75 0.76 0.77 0.72 0.75
SVM 0.84 0.79 0.84 0.78 0.77
KNN 0.74 0.70 0.82 0.72 0.72
Logistic regression 0.75 0.80 0.82 0.81 0.68
XGBOOST 0.76 0.70 0.74 0.73 0.67
February 20
22 | Volume 12 | Article 83
The bold values represent the AUC of the classifiers that perform best in each subgroup.
SVM, support vector machine; KNN, K-nearest neighbor.
FIGURE 5 | The inbuilt feature importance in each combined model.
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A B C D
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FIGURE 6 | The calibration curves and decision curve analysis of the MP-MRI models. The calibration curves (A–D) show the consistency between the prediction
model and the actuality. The dotted reference line indicated perfect calibration. The DCA (E–H) illustrated the clinical net benefits brought by the prediction model.
The gray line indicated “treat all,” and the black horizontal line indicated “treat none”.
A B C D

E F G H

FIGURE 7 | The examples of VOI delineation on MP-MRI. (A–D) A 66-year-old patient was pathologically diagnosed as PNI positive with a typical abnormal signal
lesion in the right front of the prostate. (E–H) A 70-year-old patient was diagnosed as PNI negative with a lesion located in the left peripheral zone, and the DCE
sequence showed moderate enhancement. (D, H) represent the 3-dimensional reconstruction of the VOI.
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high-dimensional features that cannot be easily deciphered by
humans (43). Wavelet features could show the heterogeneity of
tumors, and multiple studies have proved its strong prediction
ability (38, 44). In addition, DCE sequences occupied a large part
of the models. The reason may be that prostate cancer has strong
ability of neovascularization, and the morphology and density of
neovascularization are closely related to metastasis and prognosis
of patients (45, 46). DCE-MRI is exactly a fairly adequate way to
demonstrate neovascularization. Also, because of the increased
vascular permeability of prostate cancer, we chose the arterial
phases of DCE sequences to delineate the lesions (28).

Classifiers play an essential role in machine learning. The six
classifiers that were included in this study: SVM, KNN, random
forest, decision tree, logistic regression, and XGBOOST. As a
result, the classification performance of random forest was
generally the best among them. Random forest is composed of
a large number of decision trees, and its prediction result is
averaged by all the tree predictions, so it can effectively avoid
over fitting. It has been documented that random forest occupied
a large part of the Kaggle Data Science Competitions and ranked
first among 179 classifiers (47).

It is inevitable that there are some coexisting prostatic diseases in
patients with prostate cancer. In our study, coexisting diseases
contained benign prostatic hyperplasia, chronic prostatitis,
prostatic cyst, etc. However, they did not have a great impact on
our study and our models still achieved favorable distinguishing
ability. The reasonmay be that the features selected by our screening
methods have strong specificity for the corresponding biological
characteristics, and many of them reflect the complexity of the
lesions, such as texture features (48). For coexisting diseases like
prostatic hyperplasia, the density of lesions was relatively more
consistent on MP-MRI and they would not make a remarkable
difference to the accuracy of our models. The established model
should be more applicable to clinical reality. If they were only
applied to target diseases and excluding coexisting diseases, the
clinical application of the models would be seriously limited.

Although radiomics shows huge potential for the improvement
of clinical diagnosis and risk stratification, its practical clinical
application is still subject to many difficulties, and its real benefits
are required to be further confirmed in prospective cohort studies
(49). However, radiomics plays an increasingly important role in
medical imaging, and it provides a unique basis for personalized
precision treatment (50). In our study, we proved the applicability of
radiomics in predicting the multiple biological characteristics of
prostate cancer, and we also provided relatively detailed protocol for
MP-MRI and key machine-learning parameters to offer a reference
for the standardization work in the future (51). The next main steps
of radiomics could be to take advantage of deep learning methods
(for example, U-Net) to delineate the ROI automatically and to
prove the robustness of the radiomic models through multicenter,
prospective, randomized-controlled trials (52).

This study had the following limitations: Firstly, this study
was a retrospective and single-center study, and this inevitably
led to selection bias and lack of samples and external verification.
Secondly, some valuable biological characteristics or biomarkers
were not included in the model due to incomplete data, for
Frontiers in Oncology | www.frontiersin.org 10190
example, gene mutation data, which had great guiding
significance for clinical treatment. Thirdly, our models were
not as intuitive as a nomogram due to the algorithm of
random forest and SVM with polynomial kernel function.
Fourthly, the delineation of lesions was performed manually
instead of computer-aided, which may lead to inconsistencies in
clinical practice. Therefore, our next research focus will be put on
multicenter, prospective, more clinically feasible, large-scale, and
valuable indicator-based studies.
CONCLUSION

The present work associated the radiomics features of MP-MRI
with five biological characteristics related to the aggressiveness of
prostate cancer. The established comprehensive models made it
possible to predict more critical biological characteristics of
prostate cancer and achieved favorable prediction abilities.
Therefore, the models are expected to noninvasively evaluate
the risk stratification of prostate cancer and provide valuable
guidance for clinical decision-making.
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Purpose: To establish and verify a predictive model involving multiparameter MRI and
clinical manifestations for predicting synchronous lung metastases (SLM) in osteosarcoma.

Materials and Methods: Seventy-eight consecutive patients with osteosarcoma
(training dataset, n = 54; validation dataset, n = 24) were enrolled in our study. MRI
features were extracted from the T1‐weighted image (T1WI), T2‐weighted image (T2WI),
and contrast-enhanced T1-weighted image (CE-T1WI) of each patient. Least absolute
shrinkage and selection operator (LASSO) regression and multifactor logistic regression
were performed to select key features and build radiomics models in conjunction with
logistic regression (LR) and support vector machine (SVM) classifiers. Eight individual
models based on T1WI, T2WI, CE-T1WI, T1WI+T2WI, T1WI+CE-T1WI, T2WI+CE-T1WI,
T1WI+T2WI+CE-T1WI, and clinical features, as well as two combined models, were built.
The area under the receiver operating characteristic curve (AUC), sensitivity and specificity
were employed to assess the different models.

Results: Tumor size was the most significant univariate clinical indicator (1). The AUC
values of the LR predictive model based on T1WI, T2WI, CE-T1WI, T1WI+T2WI, T1WI
+CE-T1WI, T2WI+CE-T1WI, and T1WI+T2WI+CE-T1WI were 0.686, 0.85, 0.87, 0.879,
0.736, 0.85, and 0.914, respectively (2). The AUC values of the SVM predictive model
based on T1WI, T2WI, CE-T1WI, T1WI+T2WI, T1WI +CE-T1WI, T2WI +CE-T1WI, and
T1WI+T2WI+CE-T1WI were 0.629, 0.829, 0.771, 0.879, 0.643, 0.829, and 0.929,
respectively (3). The AUC values of the clinical, combined 1 (clinical and LR-radiomics)
and combined 2 (clinical and SVM-radiomics) predictive models were 0.779, 0.957, and
0.943, respectively.

Conclusion: The combined model exhibited good performance in predicting
osteosarcoma SLM and may be helpful in clinical decision-making.

Keywords: radiomics, predictive value of tests, magnetic resonance imaging, osteosarcoma, metastasis
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INTRODUCTION

Osteosarcoma is a highly prevalent primary bone malignancy.
Fortunately, complete ablation of nonmetastatic high-grade
osteosarcoma is possible in 60–70% of cases when treated with
adjuvant and neoadjuvant multiagent chemotherapies in
addition to surgery (1). However, the prognoses of
osteosarcoma patients with distant metastasis remain poor.
Among all forms of metastasis, lung metastasis is the most
common, occurring in over 80% of patients. Approximately
20% of osteosarcoma patients also exhibit metastasis at initial
diagnosis (synchronous metastases) (2, 3). The primary tumor is
more resistant to chemotherapy in patients with synchronous
metastases than in patients with localized disease at presentation
(4). Both the number of nodules and lobes are strong indicators
of survival (5). At present, the best indicators of survival are
tumor grade, tumor size, and distal metastases, which can be
detected from biopsies and microscopic evaluations (6).
Predicting individual and early metastases is essential to
osteosarcoma management, as it informs treatment strategies
and increases survival rates. Chest computerized tomography
(CT) has been the most commonly used imaging modality for
the detection of lung nodules. Although there have been great
advancements in imaging technology, particularly in enhancing
the sensitivity of detection, the specificity of the data remains
insufficient. Metastases cannot be properly distinguished from
benign tissue (5). When nodules are detected at diagnosis, it is
usually assumed that these nodules represent metastatic disease.
However, not all pulmonary nodules that develop during tumor
therapy are malignant, which poses additional challenges for
physicians. Hence, the goal of this study was to evaluate the
diagnostic abilities of two distinct classifiers (logistic regression
(LR) and support vector machine (SVM)) and radiomics features
retrieved from different magnetic resonance imaging (MRI)
parameters, including T1-weighted imaging (T1WI), T2-
weighted imaging (T2WI) and contrast-enhanced T1-weighted
imaging (CE-T1WI), and the combinations of two and three of
these parameters. We also developed and validated combined
models according to multiparametric MRI and clinical features
to predict synchronous lung metastases (SLM) in osteosarcoma.
MATERIALS AND METHODS

Our retrospective investigation was approved by the Institutional
Review Board. Participant informed consent was waived due to
the retrospective nature of the study.
Patient Selection
Overall, 360 patients who received MRI evaluations between
January 1, 2014, and December 30, 2020, were recruited for this
study. The following patients were included in the study: (i)
patients with no history of surgical or medical treatment
administered for suspected osteosarcoma; (ii) patients who
underwent multiparametric MRI, including T1WI, T2WI, and
CE-T1WI, prior to treatment; (iii) patients with a osteosarcoma
Frontiers in Oncology | www.frontiersin.org 2194
diagnosis confirmed by surgical resection or CT/ultrasound-
guided needle biopsy and histopathological results; and (iv)
patients diagnosed with SLM according to follow-up chest CT
or confirmed by pathology. The patients in this study had lung
nodules, and the possibility of viral, bacterial or fungal infection
was ruled out. Three criteria were used to identify SLM lung
nodules on follow-up chest CT according to previous studies (7,
8): first, the presence of multiple round nodules with or without
changes in size or number; second, nodule size ≥5 mm and the
presence of calcifications or ossification that remained stable or
increased in size relative to the initial chest CT; third, changes in
size or morphology during chemotherapy. Fifteen and 18
patients with SLM were diagnosed by biopsy and follow-up
chest CT, respectively. The following patients were excluded
from this study: (i) patients who received biopsy and
locoregional therapy before MRI; (ii) patients with low-quality
images rendering analysis difficult (such as images with metallic
artefacts or motion artefacts); and (iii) patients with missing
images or relevant sequences. A schematic diagram of our
patient selection process is provided in Figure 1. After the
application of these criteria, 78 patients were eligible for this
study. The clinical characteristics of the 78 osteosarcoma patients
divided into non-SLM and SLM groups are shown in Table 1.
We next arbitrarily divided the patients into two populations: 54
patients were placed in the training cohort (TC) and 24 were
placed in the validation cohort (VC) based on the seed point set
obtained from programming. The clinical characteristics of the
78 osteosarcoma patients in the TC and VC are shown in
Table 2, and a further breakdown of the clinical characteristics
of these cohorts in terms of SLM and lack of SLM of
osteosarcoma are summarized in Table 3.

Patient clinical features, such as age, sex, tumor size,
pathological type, tumor location, bone destruction type, and
alkaline phosphatase (ALP) and lactate dehydrogenase (LDH)
levels, were recorded.

MR Imaging
All MR imaging was conducted with 1.5- or 3.0-T
superconducting magnet systems. The imaging sequences
included axial T1WI, T2WI and CE-T1WI. The detailed scan
parameters of the four MRI scanners are described in Table 4.
Gadolinium contrast agent was intravenously administered via a
weight-based dosing protocol (0.1 mmol/kg) at an injection rate
of 2.5 mL/s. All the MR data were obtained from the picture
archiving and communication system (PACS) of our institutes
and stored in Digital Imaging and Communications in Medicine
(DICOM) format for additional analyses.

Preprocessing of MR Images
All the images were exported to ITK-SNAP software (version
3.8.0, http://www.itksnap.org/) for segmentation before
radiomics analysis. Lesion segmentation was performed by a
radiologist with over 5 years of MRI diagnostic experience, and
proper segmentation was further confirmed by a separate
radiologist with over 10 years of MRI diagnostic experience. If
disagreements arose about a specific image segmentation, a
revision was made by two radiologists after discussion. The
February 2022 | Volume 12 | Article 802234
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segmentation for 24 randomly selected patients was then
repeated by another radiologist (over 10 years of experience).
A separate region of interest (ROI) was manually selected for all
sequences on each axial T1WI, T2WI and CE-T1WI slice. All the
images were acquired without fat suppression. Delineation of the
ROI, including the entire tumor and necrotic areas, cyst
Frontiers in Oncology | www.frontiersin.org 3195
degeneration, hemorrhage, periosteal reactions, and
peritumoral oedema, was carried out on the images from each
sequence. Figure 2 shows an example of a segmented MRI
image. Image intensity normalization was performed before
feature extraction, including image gray normalization to
uniform grayscale of 0‐255 and resampling to 1 mm ×1 mm×
FIGURE 1 | Flow chart of the study population with exclusion criteria.
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1 mm voxel size using linear interpolation by AK software
(Analysis Kit; GE Healthcare).

Radiomic Feature Extraction
In total, 944 radiomic features, quantifying phenotypic
differences on the basis of shape (reflecting the size and shape
of tumors), first-order (measuring the signal intensity of different
tumors), and texture features (representing the relationship
between each tumor voxel and its surrounding environments)
(9), were automatically extracted from each segmented region of
interest by using in-house software written in Python
(Pyradiomics version: V 3.0; https://github.com/Radiomics/
pyradiomics) (10). All the features were calculated in 3D
directions within the whole-tumor volume and normalized by
transforming the data into standardized intensity ranges (z-score
transformation). Intraclass correlation coefficients (ICCs) based
on a multiple-rating, consistency, 2-way random-effects model
were calculated to assess the stability and reproducibility of
radiomic features. For both tumor ROIs, only features with an
ICC > 0.75 were considered to suggest good agreement and
retained for further radiomic feature selection.

Radiomics Feature Selection
Radiomics features were automatically calculated with the
noncommercial Analysis Kit (A.K. GE Healthcare). First, we
performed least absolute shrinkage and selection operator
(LASSO) regression on all features to grossly choose attributes
with discriminative ability. The goal was to reduce certain attribute
coefficients to zero by regulating parameter l. Subsequently, the
areaunder the receiveroperatingcharacteristic (ROC)curve (AUC)
could be determined versus log(l) by employing tenfold cross-
validation. The advantage of the LASSO technique is that it can
analyse a massive amount of radiomics characteristics from low
numbers of samples. Second, we applied multivariate logistic
regression to select the most predictive features.
Frontiers in Oncology | www.frontiersin.org 4196
Machine Learning Model
This study used two machine learning classifiers: LR and SVM.

An SVM model was generated based on the established
optimal feature subsets of the TC dataset. The kernel, gamma,
degree, coef, and C parameters were set to ‘rbf’, 0.0, 3, 0.0, and
1.0, respectively.

The individual sequence models were constructed by T1WI,
T2WI and CE-T1WI.

Next, four combined models were generated via a combination of
features of dissimilar sequences, namely, T1WI+T2WI, T1WI+CE-
T1WI, T2WI+CE-T1WI, and T1WI+T2WI+CE-T1WI. Clinical
features were analysed by univariate analysis, and variables for
which P < 0.05 were entered into the clinical model.

Two combined models were constructed by combining the
best LR and SVM radiomics models with clinical features.

The models were conditioned with the TC using the repeated
10-fold cross-validation technique, and their performance was
assessed in the VC.

The radiomics framework of our study is shown in Figure 3.
Statistical Analysis
The t-test or Mann-Whitney U-test was employed for the
comparison of continuous variables, whereas the chi-squared test
or Fisher’s exact test was employed for the comparison of
intergroup categorical variables. All the statistical analyses were
two-sided, and a Bonferroni-corrected P value was employed to
determine the feature significance of multiple comparisons. ROC
curves were generated to assess the performance of the machine
learning models, and the sensitivity, specificity and AUC values
were calculated. The AUCs of each twomodels (clinical, radiomics
and combinedmodels) in the two cohorts were compared by using
theDeLong test.All the data analyseswere performed inR3.5.1 and
Python 3.5.6. A two-tailed P value <0.05 was set as the
significance threshold.
TABLE 1 | Clinical characteristics of 78 cases of osteosarcoma.

Characteristic Non-SLM SLM P value

Sex 0.412
Female 15 (33.33%) 14 (42.42%)
Male 30 (66.67%) 19 (57.58%)

Pathology 0.984
Osteoblastic 34 (75.56%) 25 (75.76%)
Others 11 (24.44%) 8 (24.24%)

Location 0.486
Femur 29 (64.44%) 17 (51.52%)
Tibia 8 (17.78%) 7 (21.21%)
Others 8 (17.78%) 9 (27.27%)

Bone destruction 0.067
Mix 21 (46.67%) 14 (42.42%)
Osteolytic 22 (48.89%) 12 (36.36%)
Osteoblastic 2 (4.44%) 7 (21.21%)

Age (years) 19.49 ± 13.86 16.45 ± 7.53 0.258
Tumor size (cm) 6.31 ± 1.32 8.09 ± 2.39 <0.001*
ALP (IU/L) 758.49 ± 2286.19 913.30 ± 1659.41 0.742
LDH (IU/L) 256.81 ± 105.03 347.63 ± 312.71 0.073
February 2022 | Volume 12 | Article
SLM, synchronous lung metastases; ALP, alkaline phosphatase; LDH, lactate dehydrogenase.
*p < 0.05.
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RESULTS

Clinical Characteristics of the Patients
In total, 78 osteosarcoma patients (49 males, 29 females; between
15-83 years of age) were recruited. Based on our univariate
analysis, the tumor size was markedly different between the two
groups (P < 0.05) (Table 1). No obvious differences were
observed in age, sex, pathological type, tumor location, bone
destruction type, and ALP or LDH levels between the SLM and
non-SLM groups. Moreover, no marked differences were
observed between the TC and VC (Table 2). In addition, the
clinical features were not markedly different between the SLM
and non-SLM cohorts, except for age in the VC and tumor size in
the TC (Table 3).
Frontiers in Oncology | www.frontiersin.org 5197
Performance of the Radiomics Models
Overall, 944 radiomics features were obtained from each of the
T1WI, T2WI and CE-T1WI images. A total of 702, 839 and 835
radiomics features from T1WI, T2WI and CE-T1WI were
included, respectively, with ICC greater than 0.75. The
radiomics features with the largest differences between the
models are summarized in Table 5.

In terms of a distinct sequence in the LR classifier, CE-T1WI
features displayed a stronger predictive performance (AUC= 0.87, 95%
CI, 0.655-0.965) than T2WI (AUC = 0.85, 95% CI, 0.699-0.981) and
T1WI (AUC= 0.686, 95%CI, 0.488-0.873) features in theVC. In terms
of combined features, T1WI+T2WI+CE-T1WI had a higher
performance (AUC = 0.914, 95% CI, 0.776-0.998) than T1WI+CE-
T1WI (AUC= 0.736, 95%CI, 0.533-0.902), T2WI+CE-T1WI (AUC=
TABLE 2 | The clinical characteristics of the 78 osteosarcoma patients in the training and validation cohorts.

Characteristic Training cohorts Validation cohorts P value

Sex 0.056
Female 24 (44.44%) 5 (20.83%)
Male 30 (55.56%) 19 (79.17%)

Pathology 0.291
Osteoblastic 39 (72.22%) 20 (83.33%)
Others 15 (27.78%) 4 (16.67%)

Location 0.322
Femur 34 (62.96%) 12 (50.00%)
Tibia 8 (14.81%) 7 (29.17%)
Others 12 (22.22%) 5 (20.83%)

Bone destruction 0.216
Mix 27 (50.00%) 8 (33.33%)
Osteolytic 20 (37.04%) 14 (58.33%)
Osteoblastic 7 (12.96%) 2 (8.33%)

Age (years) 16.52 ± 9.49 22.00 ± 15.00 0.109
Tumor size (cm) 7.25 ± 1.95 6.66 ± 2.19 0.241
ALP (IU/L) 679.24 ± 1335.34 1149.65 ± 3095.32 0.349
LDH (IU/L) 303.17 ± 250.44 277.36 ± 137.72 0.638
February 2022 | Volume 12 | Article
ALP, alkaline phosphatase; LDH, lactate dehydrogenase.
TABLE 3 | The clinical characteristics of these cohorts in terms of SLM and non-SLM of osteosarcoma.

Characteristic Training cohorts P Validation cohorts P

Non-SLM SLM Non-SLM SLM

Sex 0.667 0.615
Female 13 (41.94%) 11 (47.83%) 2 (14.29%) 3 (30.00%)
Male 18 (58.06%) 12 (52.17%) 12 (85.71%) 7 (70.00%)

Pathology 0.707 0.615
Osteoblastic 23 (74.19%) 16 (69.57%) 11 (78.57%) 9 (90.00%)
Others 8 (25.81%) 7 (30.43%) 3 (21.43%) 1 (10.00%)

Location 0.169 0.202
Femur 21 (67.74%) 13 (56.52%) 8 (57.14%) 4 (40.00%)
Tibia 6 (19.35%) 2 (8.70%) 2 (14.29%) 5 (50.00%)
Others 4 (12.90%) 8 (34.78%) 4 (28.57%) 1 (10.00%)

Bone destruction 0.261 0.125
Mix 17 (54.84%) 10 (43.48%) 4 (28.57%) 4 (40.00%)
Osteolytic 12 (38.71%) 8 (34.78%) 10 (71.43%) 4 (40.00%)
Osteoblastic 2 (6.45%) 5 (21.74%) 0 (0.00%) 2 (20.00%)

Age (years) 15.81 ± 10.49 17.48 ± 8.07 0.527 27.64 ± 17.10 14.10 ± 5.78 0.014*
Tumor size (cm) 6.47 ± 1.38 8.29 ± 2.14 0.001* 5.96 ± 1.12 7.64 ± 2.94 0.113
ALP (IU/L) 460.17 ± 455.98 974.52 ± 1963.01 0.164 1419.05 ± 4065.50 772.50 ± 582.77 0.625
LDH (IU/L) 256.58 ± 83.78 365.97 ± 366.54 0.173 257.30 ± 145.39 305.44 ± 128.21 0.411
8

SLM, synchronous lung metastases; ALP, alkaline phosphatase; LDH, lactate dehydrogenase. *p < 0.05.
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0.85, 95% CI, 0.699-0.981) and T1WI+T2WI (AUC = 0.879, 95% CI,
0.746-0.993) (Tables 6, 7 and Figures 4, 5).

Delong-test results in Table 8 showed that there were
significant differences between predictive performance of
T1WI-radiomic model and that of T1WI+T2WI+CE-T1WI
radiomic model in both cohorts.

In terms of a distinct sequence in the SVM classifier, T2WI
features were more enhanced (AUC = 0.829, 95% CI, 0.621-
0.950), compared to CE-T1WI (AUC = 0.771, 95% CI, 0.556-
0.916) and T1WI (AUC = 0.629, 95% CI, 0.409-0.815) features in
the VC. In terms of the combined features, T1WI+T2WI+CE-
T1WI had a higher performance (AUC = 0.929, 95% CI, 0.746-
Frontiers in Oncology | www.frontiersin.org 6198
0.993) than T1WI+CE-T1WI (AUC = 0.643, 95% CI, 0.423-
0.826), T2WI+CE-T1WI (AUC = 0.829, 95% CI, 0.621-0.950)
and T1WI+T2WI (AUC = 0.879, 95% CI, 0.681-0.975) (Tables 9,
10 and Figures 6, 7).

Delong-test results in Table 11 showed that there were
significant differences between predictive performance of
T1WI-radiomic model and that of T1WI+T2WI+CE-T1WI
radiomic model in validation cohort.

Based on our univariate analysis, marked differences were
observed in tumor size between the non-SLM and SLM sets (P <
0.05). Thus, the clinical model was built using tumor size alone,
and this model performed well in the TC (AUC = 0.75, 95% CI,
TABLE 4 | The detailed scan parameters of four MRI scanners.

Sequence Imaging planes Category TR (ms) TE (ms) FOV (mm×mm) Matrix Intersection gap (mm) Slice thickness (mm)

T1WI Axial FSE 457-709 8.4-13.2 180×180~
380×380

320×128~
448×257

0 3-6

T2WI Axial FSE 3,640-7,904 83-95.2 180×180~
380×380

320×128~
448×257

0 3-6

CE-T1WI Axial FSE 457-709 8.4-13.2 180×180~
380×380

320×128~
448×257

0 3-6
February 2022 | Volu
MRI, magnetic resonance imaging; TR, repetition time; TE, echo time; FOV, field of view; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; FSE, fast spin echo; CE, contrast-
enhanced.
FIGURE 2 | An example of a segmented MRI image.
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0.613-0.858) and VC (AUC = 0.779, 95% CI, 0.564-0.921). When
tumor size was combined with radiomics features, the combined
model achieved enhanced prediction compared to the clinical
model. The first combined model involving LR-radiomics
features + clinical features had an AUC of 0.938 (95% CI,
0.838-0.986) in the TC and 0.957 (95% CI, 0.787-0.999) in the
VC. The second combined model based on SVM-radiomics
features + clinical features had an AUC of 0.944 (95% CI,
0.845-0.988) in the TC and 0.943 (95% CI, 0.766-0.997) in the
VC (Tables 12, 13 and Figures 8, 9).

Delong-test results in Table 14 indicated that there were
insignificant differences between predictive performance of
combined mode and that of clinical model, LR-Radiomic
model and SVM-Radiomic model in both cohorts. The
combined model 1 achieved equivalent AUCs compared to
combined model 2. Additionally, the combined model 1
performed better than the clinical model as indicated by AUCs
of borderline statistical significance (p = 0.0619) in the
validation cohort.
DISCUSSION

According to our univariate analysis, tumor size was the most
reliable indicator of SLM in osteosarcoma patients, which is in
accordance with prior findings (11–14). Huang et al (11)
performed a retrospective study examining the characteristics
of 1057 osteosarcoma patients. These authors reported that large
tumors (>5 cm) were at a substantially elevated risk of resulting
Frontiers in Oncology | www.frontiersin.org 7199
in lung metastases in osteosarcoma patients. Munajat et al. (13)
also examined the correlation between lung metastasis and
tumor volume in a population of 70 osteosarcoma patients.
These authors reported that 33 patients (47%), who mostly
exhibited larger tumor volumes, also showed signs of lung
metastasis. However, in contrast to our study, these authors
primari ly concentrated on lung metastasis without
distinguishing synchronous and metachronous metastases. In
our study, we compared tumor size (in terms of diameter)
between the non-SLM (6.31 ± 1.32 cm) and SLM (8.09 ±
2.39 cm) groups and found that the tumor size in the SLM
group was significantly larger than that in the non-SLM group.

Tumor heterogeneity strongly modulates tumor invasion and
prognosis, and a radiomics profile can specifically reflect the
complicated histopathology of tumor (15, 16). Several MRI
radiomics studies conducted on osteosarcoma were recently
reported. Chen H et al. (17, 18) proved that a radiomics
signature based on MRI was useful for predicting the response
to neoadjuvant chemotherapy and early relapse. Zhao SL et al.
(19) showed that a radiomics signature extracted from diffusion-
weighted imaging (DWI)-MRI prior to treatment improved the
estimation of osteosarcoma.

T1WI, T2WI, and CE-T1WI are the most commonly used
MRI sequences for bone tumor. T1WI can be used to observe
anatomical structures, but sometimes it is difficult to distinguish
soft tissue masses from muscle tissues. T2WI can accurately
determine tumor margins and reveal, to a certain extent, the total
lesion cell density, whereas CE-T1WI can reveal lesion
vascularity, establish the degree of malignancy, and identify
FIGURE 3 | The radiomics framework of our study.
February 2022 | Volume 12 | Article 802234
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necrosis and solid components of tumor. Current research has
shown that multiple MRI sequences, such as DWI, T2WI/FS-
T2WI and CE-T1WI images, can enhance tumor information
extraction and thereby augment specificity, and such sequences
for bone and soft tissue tumor radiomics analysis yielded
favorable outcomes (20–23). In addition, several studies
revealed that classifiers originating from varying classifier
families exhibit differing performances for different forms of
tumors (24–28). We used two well-known machine learning
classifiers in this study. The first is LR, which is a machine
learning stratification algorithm used for the prediction of the
class probability of a given categorical dependent variable. The
second is SVM, which generates a decision margin between
two classes to facilitate label estimation from one or more
Frontiers in Oncology | www.frontiersin.org 8200
feature vectors. Seven radiomics models using these three
sequences alone and combined were established in our study
(29). Differences in tumor vessel morphology affect tumor
vascular permeability (30). Increased vessel permeability may
accelerate cancer metastasis and spread; in the absence of blood
vessels, tumors cannot develop beyond a critical volume or
invade other organs (31). Enhancing MRI in neoplasms
represents regions of admixed vascularity and necrosis, in
which contrast permeability is elevated owing to damaged
vascular integrity (32). Among the seven radiomics modes, the
LR and SVM classifiers had excellent performance (AUC=0.914
and 0.929) in the model combining T1WI, T2WI and CE-T1WI.
The combination of T1WI, T2WI, and CE-T1WI allowed the
detection of morphological information and indirectly reflected
TABLE 5 | The most significant radiomics features of different models.

Model Radiomics features Coef.

T1WI Intercept -0.4597
T1WI_wavelet-LLL_glcm_Correlation 1.3060
T1WI_wavelet-LLL_gldm_GrayLevelNonUniformity 0.8114

T2WI Intercept -1.6745
T2WI_wavelet-LLL_glcm_Correlation 3.4374
T2WI_wavelet-HHH_firstorder_Mean -2.7065
T2WI_wavelet-HLH_glcm_MCC -3.5169
T2WI_wavelet-LHL_gldm_LargeDependenceHighGrayLevelEmphasis 2.1317

CE-T1WI Intercept -1.2416
CE-T1WI_wavelet-LLL_glcm_Correlation 1.6253
CE-T1WI_wavelet-LHL_firstorder_Mean -1.4719
CE-T1WI_wavelet-HHL_firstorder_Skewness -1.7320
CE-T1WI_wavelet-HLH_glcm_MCC -1.3359
CE-T1WI_wavelet-LHH_firstorder_Kurtosis 1.1668

T1WI+T2WI Intercept -1.0635
T2WI_wavelet-LLL_glcm_Correlation 2.2998
T2WI_wavelet-HHH_firstorder_Mean -1.5630
T2WI_log-sigma-1-0-mm-3D_ngtdm_Busyness 1.1750
T2WI_wavelet-HHH_gldm_SmallDependenceLowGrayLevelEmphasis -1.2490

T1WI+CE-T1WI Intercept -0.8489
T1WI_wavelet-LLL_glcm_Correlation 1.2206
CE-T1WI_wavelet-LHL_firstorder_Mean -1.6295
CE-T1WI_wavelet-HHL_firstorder_Skewness -1.1276

T2WI+CE-T1WI Intercept -1.6745
T2WI_wavelet-LLL_glcm_Correlation 3.4374
T2WI_wavelet-HHH_firstorder_Mean -2.7065
T2WI_wavelet-HLH_glcm_MCC -3.5169
T2WI_wavelet-LHL_gldm_LargeDependenceHighGrayLevelEmphasis 2.1317

T1WI+T2WI+CE-T1WI Intercept -1.2077
T2WI_wavelet-LLL_glcm_Correlation 2.4347
T2WI_wavelet-HHH_firstorder_Mean -1.6936
CE-T1WI_wavelet-HLH_glcm_MCC -1.5491
February 2022 | Volume 12 | Article
TABLE 6 | The ROC curve of different models of LR-classifier in the training cohort.

Classifiers Model AUC 95% CI Sensitivity Specificity

LR T1WI 0.795 0.663 - 0.893 0.565 0.806
T2WI 0.951 0.855 - 0.991 0.826 0.864
CE-T1WI 0.909 0.799 - 0.970 0.870f 0.871
T1WI+T2WI 0.937 0.836 - 0.985 0.783 0.903
T1WI+CE-T1WI 0.846 0.722 - 0.930 0.739 0.774
T2WI+CE-T1WI 0.951 0.855 - 0.991 0.826 0.864
T1WI+T2WI+CE-T1WI 0.940 0.840 - 0.986 0.913 0.903
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; AUC, area under curve; 95% CI, 95% confidence interval; LR, logistic regression.
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the permeability of tissue microvessels. Although the SVM
classifier in the T1WI, T2WI and CE-T1WI combined model
performed the best (AUC = 0.929), no obvious difference was
observed between the two classifiers of each radiomics model.

In addition, among all radiomics models, those including the
T2WI parameter (T2WI, T2WI+CE-T1WI, T1WI+T2WI, and
T1WI+T2WI+CE-T1WI) exhibited excellent performance
(AUC=0.829-0.929). We found that all of the final features that
included the T2WI parameter after selection contained
‘GLCM_Correlation’ and ‘firstorder_Mean’ features, which
Frontiers in Oncology | www.frontiersin.org 9201
were high-dimensional features that could not be readily
interpreted by humans and included comprehensive tumor
information. Among these features, the mean, which is a first-
order feature, assesses the average grey level intensity within a
specified area of interest. The grey level cooccurrence matrix
(GLCM) is a second-order feature and is a summary of the
frequency of the various combinations of pixel brightness values
that occur between neighboring voxels in a given image. GLCM
represents the similarity of voxel values along a given direction,
whereas homogeneity represents regional grey level uniformity,
TABLE 7 | The ROC curve of different models of LR-classifier in the validation cohort.

Classifiers Model AUC 95% CI Sensitivity Specificity

LR T1WI 0.686 0.488 - 0.873 0.400 0.786
T2WI 0.850 0.699 - 0.981 0.600 0.750
CE-T1WI 0.870 0.655 - 0.965 0.500 0.786
T1WI+T2WI 0.879 0.746 - 0.993 0.700 0.929
T1WI+CE-T1WI 0.736 0.533 - 0.902 0.400 0.786
T2WI+CE-T1WI 0.850 0.699 - 0.981 0.600 0.750
T1WI+T2WI+CE-T1WI 0.914 0.776 - 0.998 0.700 0.929
Februa
ry 2022 | Volume 12 | Arti
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; AUC, area under curve; 95% CI, 95% confidence interval; LR, logistic regression.
FIGURE 4 | LR-classifier in the training cohort.
FIGURE 5 | LR-classifier in the validation cohort.
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and correlation establishes the consistency of image texture
(33, 34). In prior studies, these features established tumor
heterogeneity and were correlated with the histopathological
characteristics and prognosis of numerous tumors, such as
osteosarcoma, rectal cancer, thymic tumors, and breast cancer
(18, 25, 35–37).

Furthermore, we analysed seven discrete radiomics models,
two combined models and one clinical model in osteosarcoma
patients. The AUC of the clinical model (0.779) was lower than
that of the radiomics model. The prediction ability of the
combined model was markedly enhanced relative to that of
other models, namely, the clinical model and radiomics model,
which involved multiple and single sequences. As clinical
information may take into account only some aspects of
tumors, multiparametric MRI may better reflect of all tumor
information (38). Hence, once the clinical and radiomics
characteristics were combined, the performance greatly
improved. Based on our data, machine learning analysis
involving multiparametric MRI radiomics characteristics can
accurately and efficiently predict SLM in osteosarcoma.
Frontiers in Oncology | www.frontiersin.org 10202
Our work encountered certain limitations. First, this work
was retrospective in nature. Radiomic features are heavily
influenced by differences in the acquisition and reconstruction
settings. In the present study, although the most commonly used
MRI sequences (T1WI, T2WI and CE-T1WI) were selected, MRI
image data were acquired from four distinct scanners, which can
also influence the acquired characteristics. Device inconsistency
within a dataset is a challenging issue, particularly in
retrospective analyses. Second, the sample size was quite small,
and all the obtained images were collected over several years. We
eliminated non-long bone extremity osteosarcoma and patients
who did not receive MRI and chest CT prior to surgery, which
accounted for the majority of the enrolled patients. In addition,
few osteosarcomas simultaneously met both the axial plane and
multiparametric MRI requirements. Due to our strict criteria for
patient eligibility, it was difficult to gather large datasets. Despite
a statistically insufficient sample size, the results of this study
may allow for the improvement of future clinical studies with
limited sample sizes. A large sample population with multicentre
validation is warranted to achieve high-level evidence for future
TABLE 9 | The ROC curve of different models of SVM-classifier in the training cohort.

Classifiers Model AUC 95% CI Sensitivity Specificity

SVM T1WI 0.829 0.702 - 0.918 0.957 0.677
T2WI 0.973 0.888 - 0.998 1.000 0.838
CE-T1WI 0.935 0.834 - 0.984 1.000 0.871
T1WI+T2WI 0.930 0.826 - 0.981 0.957 0.839
T1WI+CE-T1WI 0.885 0.769 - 0.956 0.783 0.871
T2WI+CE-T1WI 0.973 0.888 - 0.998 1.000 0.839
T1WI+T2WI+CE-T1WI 0.938 0.838 - 0.986 0.957 0.903
Februa
ry 2022 | Volume 12 | Arti
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; AUC, area under curve; 95% CI, 95% confidence interval; SVM, support vector machine.
TABLE 8 | Delong Test between each two models of LR-classifier in the training and validation cohorts.

Radiomic model T1WI T2WI CE-T1WI T1WI+T2WI T1WI+CE-T1WI T2WI+CE-T1WI T1WI+T2WI+CE-T1WI

T1WI – 0.0063* 0.0725 0.0117* 0.4114 0.0063* 0.0110*
T2WI 0.1391 – 0.2395 0.6474 0.0318* 1.0000 0.6744
CE-T1WI 0.1048 0.7088 – 0.4144 0.1713 0.2395 0.3033
T1WI+T2WI 0.0695 0.5149 0.4838 – 0.0613 0.6474 0.8620
T1WI+CE-T1WI 0.6829 0.2054 0.2238 0.0771 – 0.0318* 0.0545
T2WI+CE-T1WI 0.1391 1.0000 0.7088 0.5149 0.2054 – 0.6744
T1WI+T2WI+
CE-T1WI

0.0465* 0.2542 0.3188 0.6750 0.0720 0.2542 –

Training cohort Validation cohort
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; CE, contrast-enhanced. *p < 0.05.
TABLE 10 | The ROC curve of different models of SVM-classifier in the validation cohort.

Classifiers Model AUC 95% CI Sensitivity Specificity

SVM T1WI 0.629 0.409 - 0.815 1.000 0.429
T2WI 0.829 0.621 - 0.950 0.800 0.786
CE-T1WI 0.771 0.556 - 0.916 1.000 0.500
T1WI+T2WI 0.879 0.681 - 0.975 0.800 0.857
T1WI+CE-T1WI 0.643 0.423 - 0.826 0.800 0.500
T2WI+CE-T1WI 0.829 0.621 - 0.950 0.800 0.786
T1WI+T2WI+CE-T1WI 0.929 0.746 - 0.993 0.900 0.857
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; AUC, area under curve; 95% CI, 95% confidence interval; SVM, support vector machine.
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FIGURE 6 | SVM-classifier in the training cohort.
FIGURE 7 | SVM-classifier in the validation cohort. Figures 4–7 The ROC curve of different models and classifier in the training and validation cohorts.
TABLE 11 | Delong Test between each two models of SVM-classifier in the training and validation cohorts.

Radiomic model T1WI T2WI CE-T1WI T1WI+T2WI T1WI+CE-T1WI T2WI+CE-T1WI T1WI+T2WI+CE-T1WI

T1WI – 0.0084* 0.1247 0.1305 0.2795 0.0084* 0.0956
T2WI 0.0928 – 0.2589 0.1822 0.0449* 1.0000 0.2545
CE-T1WI 0.2519 0.4948 – 0.8594 0.3360 0.2589 0.9250
T1WI+T2WI 0.0306* 0.4472 0.2551 – 0.3718 0.1822 0.5620
T1WI+CE-T1WI 0.8981 0.1217 0.1746 0.0203* – 0.0449* 0.2863
T2WI+CE-T1WI 0.0928 1.0000 0.4948 0.4472 0.1217 – 0.2545
T1WI+T2WI+
CE-T1WI

0.0079* 0.1404 0.0912 0.3870 0.0125* 0.1404 –

Training cohort Validation cohort
Frontiers in Oncology | w
ww.frontiersin.o
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T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; CE, contrast-enhanced. *p < 0.05.
TABLE 12 | The ROC curve of clinical features, radiomic, clinical features + radiomic model in the training cohort.

Model AUC 95% CI Sensitivity Specificity

Clinical model 0.750 0.613 - 0.858 0.696 0.839
LR-radiomic 0.940 0.840 - 0.986 0.913 0.903
SVM-radiomic 0.938 0.838 - 0.986 0.957 0.903
Combined 1
(clinical+LR-radiomic)

0.938 0.838 - 0.986 0.957 0.903

Combined 2
(clinical+SVM-radiomic)

0.944 0.845 - 0.988 0.956 0.900
me 12 | Art
AUC, area under curve; LR, logistic regression; 95% CI, 95% confidence interval; SVM, support vector machine.
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TABLE 13 | The ROC curve of clinical features, radiomic, clinical features + radiomic model in the validation cohort.

Model AUC 95% CI Sensitivity Specificity

Clinical model 0.779 0.564 - 0.921 0.600 0.929
LR-radiomic 0.914 0.776 - 0.998 0.700 0.929
SVM-radiomic 0.929 0.746 - 0.993 0.900 0.857
Combined 1
(clinical+LR-radiomic)

0.957 0.787 - 0.999 1.000 0.857

Combined 2
(clinical+SVM-radiomic)

0.943 0.766 - 0.997 0.846 0.929
Frontiers in Oncology | www.frontiersin.org
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AUC, area under curve; LR, logistic regression; 95% CI, 95% confidence interval; SVM, support vector machine.
FIGURE 8 | The training cohort.
FIGURE 9 | The validation cohort. Figures 8, 9 The ROC curve of clinical features, radiomic, clinical features + radiomic model in the training and validation cohorts.
TABLE 14 | Delong Test between each two models (clinical, radiomic, clinical features + radiomic model) in the training and validation cohort.

Model Clinical LR-
Radiomic

SVM-
Radiomic

Clinical +LR-Radiomic Clinical +SVM-Radiomic

Clinical – 0.0140* 0.0161* 0.0138* 0.0085*
LR-Radiomic 0.0966 – 0.9065 0.7927 0.9142
SVM-Radiomic 0.1361 0.5247 – 1.0000 0.8908
Combined 1
(Clinical +LR-Radiomic)

0.0619 0.7807 0.2536 – 0.8798

Combined 2
(Clinical +SVM-
Radiomic)

0.0787 0.8381 0.6251 0.6265 –

Training cohort Validation cohort
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; CE, contrast-enhanced; LR, logistic regression; SVM, support vector machine. *p < 0.05.
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clinical application.Third,wecomparedonlyT1WI,T2WIandCE-
T1WI sequences of MRI. The most commonly used clinical
examination for osteosarcoma is X-ray, and the effectiveness of
X-ray radiomics needs to be investigated in future studies.
Additional MRI functional data must be included in future
evaluations to enhance the accuracy and clinical value of ourmodel.

In conclusion, we established a noninvasive prediction tool
involving radiomics and clinical characteristics to predict SLM in
osteosarcoma patients. The LR and SVM classifiers exhibited an
elevated degree of diagnostic performance while employing a
combination of characteristics for distinguishing SLM and lack
of SLM in osteosarcoma patients. Among all radiomics models,
those including the T2WI parameter exhibited good predictive
performance for the prediction of osteosarcoma SLM. The
constructed model involving the combination of clinical and
radiomics characteristics is more effective in evaluating
osteosarcoma SLM relative to the clinical model and radiomics
model, and the constructed model can provide a new basis for
early clinical intervention in metastasis.
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Background: The presence of microvascular invasion (MVI) is considered an
independent prognostic factor associated with early recurrence and poor survival in
hepatocellular carcinoma (HCC) patients after resection. Artificial intelligence (AI), mainly
consisting of non-deep learning algorithms (NDLAs) and deep learning algorithms (DLAs),
has been widely used for MVI prediction in medical imaging.

Aim: To assess the diagnostic accuracy of AI algorithms for non-invasive, preoperative
prediction of MVI based on imaging data.

Methods: Original studies reporting AI algorithms for non-invasive, preoperative
prediction of MVI based on quantitative imaging data were identified in the databases
PubMed, Embase, and Web of Science. The quality of the included studies was assessed
using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) scale. The
pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio
(NLR) were calculated using a random-effects model with 95% CIs. A summary receiver
operating characteristic curve and the area under the curve (AUC) were generated to
assess the diagnostic accuracy of the deep learning and non-deep learning models. In the
non-deep learning group, we further performed meta-regression and subgroup analyses
to identify the source of heterogeneity.

Results: Data from 16 included studies with 4,759 cases were available for meta-
analysis. Four studies on deep learning models, 12 studies on non-deep learning models,
and two studies compared the efficiency of the two types. For predictive performance of
deep learning models, the pooled sensitivity, specificity, PLR, NLR, and AUC values were
0.84 [0.75–0.90], 0.84 [0.77–0.89], 5.14 [3.53–7.48], 0.2 [0.12–0.31], and 0.90 [0.87–
0.93]; and for non-deep learning models, they were 0.77 [0.71–0.82], 0.77 [0.73–0.80],
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3.30 [2.83–3.84], 0.30 [0.24–0.38], and 0.82 [0.79–0.85], respectively. Subgroup
analyses showed a significant difference between the single tumor subgroup and the
multiple tumor subgroup in the pooled sensitivity, NLR, and AUC.

Conclusion: This meta-analysis demonstrates the high diagnostic accuracy of non-deep
learning and deep learning methods for MVI status prediction and their promising potential
for clinical decision-making. Deep learning models perform better than non-deep learning
models in terms of the accuracy of MVI prediction, methodology, and cost-effectiveness.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_
record.php? RecordID=260891, ID:CRD42021260891.
Keywords: hepatocellular carcinoma, artificial intelligence, deep learning, machine learning, microvascular
invasion (MVI), radiomics
INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common primary
liver malignancy and the fourth most common cause of cancer-
related deaths worldwide (1). Liver transplantation and resection
are the only potentially curative treatments (2). However, a high
risk of recurrence and metastasis after resection leads to a poor
prognosis for patients with HCC (3). HCC is highly
heterogeneous at the histological, molecular, and genetic levels,
making its prognostic stratification and personalized
management challenging.

The presence of microvascular invasion (MVI) is considered
an independent prognostic factor associated with HCC’s early
recurrence and poor survival after resection. For MVI-positive
patients, expanding resection margins can distinctly improve
patient survival by eradicating micrometastases (4, 5). In the
current era of precision medicine, a proportion of patients in
each stage do not fulfill the criteria for the treatment’s allocation
(6). In a recent article, Li et al. reported that surgical resection,
rather than ablation, is more effective in treating small HCC with
MVI. For the MVI patients, cumulative early recurrence rates
were significantly lower in the surgical resection group than in
the radiofrequency ablation group (22.8% vs. 52.5% after 1 year;
30.6% vs. 90.0% after 2 years) (7, 8). For HCC patients with MVI
present, a more aggressive treatment strategy may be preferred,
such as expanding the resection margin or anatomical
resectioning for patients undergoing hepatic resectioning,
minimizing the ablation margin to at least 0.5–1 cm for
patients receiving ablation, and neoadjuvant therapy before
surgery (9, 10). Hence, to better allocate treatment strategies,
predicting the risk of early recurrence of HCC before resection or
ablation is crucial. MVI is not similar to macrovascular invasion,
inoma; MVI, microvascular invasion;
, non-deep learning algorithms; US,
; NLR, negative likelihood ratio; DL,
DLC, the deep learning model with
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which can be evaluated using radiologic images. MVI is defined
as the presence of a tumor in either the portal, hepatic venous
system or the branches surrounding the hepatic tissue lined by
endothelium, which is visible only by microscopy (11). Many
studies have shown that MVI is directly related to the outcomes
of HCC patients after surgery, and many researchers have
attempted to predict MVI using preoperative imaging analysis.

Recently, in the medical imaging domain, radiomics features
extracted through non-deep learning (NDL) algorithms
(NDLAs) have been proposed, which are effective for
predicting MVI (12). Moreover, artificial intelligence (AI)
algorithms have been widely applied in the classification of
skin cancer (13), diagnosis of eye diseases (14), identification
of prostate cancer (15), and brain metastasis detection (16). AI
algorithms show promising performance in the imaging
diagnosis of liver cancer (17–20).

Radiomics is a high-throughput extraction of large amounts
of quantitative imaging features with the assistance of NDLAs
(12). However, manual feature extraction is complicated and
time-consuming and lacks stability and consistent interpretation
(21). Compared with the NDL used by radiomics analysis, deep
learning (DL) algorithms (DLAs) have an advantage in learning
features from the images directly, rather than using artificially
defined features by human experience (22–24). DL in medical
imaging analysis has two properties: multiple layers of non-linear
processing units and supervised or unsupervised learning of
feature presentations on each layer (23). Input data for DLAs
consist of the imaging data itself such as different CT and MRI
sequence sets, whereas output data are the desired parameters
that should be extracted from the imaging data. In general, the
dataset is usually randomly divided into training and testing sets.
The former is used to train the DL model; the DLAs attempt to
calculate the complex relationship between input and output
data. The latter is then used to test the performance of the DL
model on a new dataset that had not been utilized to train the
DL model.

Recently, some reports have utilized DL methods based on
imaging data [MRI, CT, and ultrasound (US)] to predict MVI
with satisfactory performance. However, these reports were
limited to a small sample size. Huang et al. performed a meta-
analysis of radiomics and non-radiomics methods based on
February 2022 | Volume 12 | Article 763842
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medical image data for MVI prediction (25). Currently, there is
no systematic review or meta-analysis of DLmethods concerning
MVI prediction for HCC patients. In addition, studies
comparing DL and NDL methods for MVI prediction are rare.
Hence, to provide a more comprehensive and expansive
summary of these studies and further recognize the prediction
performance of DL for MVI prediction, we conducted a
systematic review and meta-analysis by comparing the
performance of DL and NDL methods for MVI prediction.

Therefore, the objective of this systematic review and meta-
analysis was to assess DL and NDL concerning MVI prediction
and compare their performances.
MATERIALS AND METHODS

This systemic review and meta-analysis was conducted in
accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) statement recommended
by the Cochrane Collaboration. This study was prospectively
registered in PROSPERO (ID: CRD42021260891).

Search Strategy
Papers describing the use of AI, NDL, and DL for the prediction
of HCC were reviewed. We searched the PubMed and Web of
Science databases. All English publications until June 14, 2021,
were searched without any restrictions on countries or article
types. Search terms are available in the Supplementary Search
Strategy and were included when they discussed the use of NDL
or DL methodologies on images in MVI prediction.

Eligibility Criteria
After the removal of duplicates, the articles were reviewed to
identify studies that satisfied the following criteria: 1) population:
pathologically confirmed HCC patients after surgical resection;
2) intervention: evaluation of MVI using AI algorithms based on
quantitative imaging data preoperatively; 3) outcome: diagnostic
accuracy of imaging analysis for diagnosing or predicting MVI in
HCC study; and 4) design: any type of study design, including
observational studies (retrospective or prospective) and clinical
trials. Studies were excluded according to the following criteria:
1) studies with duplicate patients and data; 2) case reports, review
articles, letters, conference abstracts, and editorials; and 3)
studies not in the field of interest. All identified articles were
first screened by title and abstract, and then full-text reviews of
potentially eligible articles were performed.

Data Extraction
The following information was extracted from the eligible
articles: a) study characteristics: authors (years of publication),
study type, study design, and study location; b) subject
characteristics: operation, interval image exam, number of
tumors, etiology of HCC [the number of hepatitis B virus
(HBV) or hepatitis C virus (HCV)], tumor size, the numbers
of MVI-present and MVI-absent, variables with p < 0.05 between
MVI(+) and MVI(−), and variables with p < 0.05 between the
Frontiers in Oncology | www.frontiersin.org 3209
training and testing sets; c) model characteristics: image, region
segmentation, validation method, input data, feature selection,
and modeling method; and d) the performance of the DL or NDL
model: the area under the curve (AUC) value and the numbers of
true positives (TP), false positives (FP), false negatives (FN), and
true negatives (TN). The reference formulas were as follows:
sensitivity = TP/(TP + FN) and specificity = TN/(FP + TN). If
there was no sensitivity or specificity in one study, we used
Engauge Digitizer version 12.1 to calculate sensitivity and
specificity when Youden’s index was max based on the receiver
operating characteristic (ROC) curve in articles. If there were
more than two models in the same group of patients in one
study, the model with a higher AUC value was included in our
meta-analysis. If some models only analyzed imaging data and
others that analyzed both imaging data and clinical parameters,
then only the former were included in this study.

Assessment of Study Quality
Two reviewers independently assessed the quality of the eligible
articles using the Quality Assessment of Diagnostic Accuracy
Studies 2 (QUADAS-2) criteria and the four domains of patient
selection, index test, reference standard, and flow of patients
through the study (26).

Data Synthesis and Statistical Analysis
The pooled sensitivity, specificity, positive likelihood ratio (PLR),
negative likelihood ratio (NLR), and AUC value of the receiver
operating curve were computed. The results are shown in a
forest plot. The presence of a threshold effect was analyzed
by calculating Spearman’s correlation coefficient between
sensitivity and the false-positive rate (when p < 0.05, the
threshold was defined as present). When substantial
heterogeneity was noted, a meta-regression analysis was
performed to identify the causes. The random-effects model
was used to calculate the meta-analytic pooled AUC value, and
Higgins’s I2 test was used to assess the heterogeneity between
included studies with I2 > 75% deemed considerable
heterogeneity. An influence analysis was performed if I2 >
90%. For all NDL and DL models, excluding models using US,
to determine the source of heterogeneity, meta-regression
analysis based on the number of tumors (single or multiple),
image (CT or MRI), region segmentation (manual or
semiautomatic), set (validation or training set), least absolute
shrinkage and selection operator (LASSO), support vector
machine (SVM), convolutional neural network (CNN),
3D-CNN, arterial phase (AP), and portal venous phase
(PVP) sequence was performed. For all NDL models excluding
US, meta-regression analysis based on the number of tumors,
image, region segmentation, set , LASSO, and SVM
was performed.

Publication bias was evaluated using Deeks’ funnel plot and
Deeks’ asymmetry test. The AUC values of 0.5–0.7, 0.7–0.9, and
>0.9 indicate low, moderate, and high diagnostic power,
respectively. All statistical analyses were conducted using
STATA version 14.0 (StataCorp LP, College Station, TX, USA)
and Meta-DiSc version 1.4.
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RESULTS

Search Results and
Qualitative Assessment
The PRISMA flow diagram systematically depicts the study
selection process (Figure 1). A total of 2,280 publications and
four articles identified through a meta-analysis were initially
retrieved through literature searches, 1,819 of them remaining
after the removal of duplicates. After title and abstract screening,
212 articles reported the use of AI in HCC. After a full-text
assessment, 16 studies were included in the systematic review and
meta-analysis. The quality of the included studies was assessed using
the QUADAS-2 scale (26). The results of the qualitative assessment
of the included studies are shown in Supplementary Figure S1.

Review of the Included Studies
Tables 1, 2 present the detailed characteristics of the 16 studies.
Fifteen of the studies were single-center and retrospective studies
that used an internal validation method (random splitting or
cross-validation) to assess the performance of the MVI
prediction model. One study was multicentered and
retrospective and used an external validation method. All
Frontiers in Oncology | www.frontiersin.org 4210
patients were diagnosed with HCC based on postoperative
pathologic specimens and had available preoperative imaging
data including CT, MRI, or US. Fifteen studies were based on a
population from China 4 (27–41) and one from the United
States (42). Concerning the etiology of HCC, at least 78.46% of
patients had HBV or HCV of 4,657 patients across all included
studies. In patient selection, five articles only included HCC
patients with single tumors and excluded multiple tumors (27,
34, 39–41). Based on this diagnostic meta-analysis, 1,946
(40.89%) patients were pathologically diagnosed as MVI-
present and 2,813 patients as MVI-absent after surgical
resection or liver transplantation. In addition to tumor size in
the study by Feng et al. and the hypodense halo in the study by
Jiang et al., no significant differences in clinical variables were
observed between the training and validation groups. Other
characteristics of the included studies are presented in
Tables 1, 2, and the baseline characteristics of this meta-
analysis are presented in Table S1.

Chen et al. compared the predictive performance of five
classifiers in six different MRI sequences, and the analysis
showed that SVM, extreme gradient boosting (XGBoost), and
logistic regression (LR) classifiers in the validation cohort
FIGURE 1 | Flowchart of study selection.
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showed greater diagnostic efficiency for predicting MVI and
NDL models based on delayed hepatobiliary phase (HBP). Due
to a lack of data, the study by Chen et al. was excluded from this
meta-analysis.

In the study by Nebbia et al., the imaging data were artificially
defined as the margin and tumor region before they were used for
training models. The results showed that the model combined with
margin radiomics and tumor radiomics performed generally worse
than single tumor radiomics, contradicting the conclusions of Feng
et al. (33). The probable causes included the small sample size, and
the tumor margin region may have included extrahepatic regions in
the margin segmentation process. Another important reason is that
features of the model that combine with margin radiomics and
tumor radiomics must be features from both margin and tumor
regions, preventing some predictive value features from being
learned. In addition, Xu et al. found that analyzing radiomics
features from peritumoral regions to calculate predictive
performance is not superior to using features from the
intratumoral region.

Owing to the high dimensionality and complexity of imaging
data using different sequences, feature selection was used to
reduce the computational power required to conduct such
complex analyses. The LASSO was frequently used for feature
selection (33, 34, 38–42). Other methods, which were frequently
used for classification, include LASSO regression (33, 34, 40, 43),
SVMs (32, 36, 38, 41), decision trees (27), k-nearest neighbor (30,
32), XGBoost (30, 33), and random forest (30, 35).
Frontiers in Oncology | www.frontiersin.org 5211
In contrast to NDL, feature selection and classification of DL
occur simultaneously in the process of classifier training. Six of
the included studies reported the DL method for the prediction
of MVI. Table S2 summarizes the details of these six studies.
Three of the included studies, each a CNN, was used to build the
MVI prediction model (27, 29, 32). In three of the included
studies, the 3D-CNN model was developed to assess MVI in an
end-to-end training fashion, in which feature extraction and
predictive model construction were automatically processed by a
single neural network (28, 30, 31). While training the DL model,
Wu et al. and Wang et al. proposed a deep supervision network
(DSN) to reduce the loss function and improve the performance
of the DL model by directly supervising the features of the
hidden layer and improving the effectiveness of the hidden layer
during the CNN learning process (29, 30).

It is worth mentioning that Song et al. proposed a CNN model
through MRI analysis of 601 HCC patients with single tumors and
then compared the performances of the CNNmodel and radiomics
model based on the same group. The results showed that the CNN
model achieved an AUC of 0.915 (0.868–0.963) in the testing
cohort as compared to the radiomics model with an AUC of 0.731
(0.645–0.817). In addition, survival analysis demonstrated that
patients with DLC-predicted MVI status were associated with
poor overall survival and recurrence-free survival, suggesting the
strong clinical value of the DLCmodel in preoperatively identifying
HCC patients with poor prognosis and guiding the resection range.
Similarly, through CT imaging analysis of 405 HCC patients, Jiang
TABLE 1 | Characteristics of the included studies.

Authors
(year of
publication)

Study
type

Study
design

Study
location

Operation Interval
image
exam

Number
of

tumors

Validation Image Region
segmentation

Input data Feature
selection

Modeling
method

Song et al.
(2021) (27)

Retro. Single
center

China SR Within 1
month

Single Randomly
split at a
ratio

MRI Manually
drawn

ADC, DWI (b =
0), DWI (b =
500), AP, PVP,
DP, T1WI, T2WI

NA Radiomics
model,
CNN

Jiang et al.
(2021) (28)

Retro. Single
center

China SR or TL Within 2
months

Multiple Randomly
split at a
ratio

CT Manually
drawn with
ITK-SNAP
software

AP, PVP, and DP NA XGBoost,
3D-CNN

Wang et al.
(2020) (29)

Retro. Single
center

China SR Unclear Multiple Randomly
split at a
ratio

MRI Manually
drawn

DWI (b0, b100,
b600, and ADC
images)

CNN CNN with
DSN

Zhou et al.
(2021) (30)

Retro. Single
center

China SR Within 1
month

Multiple Randomly
split at a
ratio

Gd-EOB-
DTPA-
enhanced
MRI

Manually
drawn

Pre-contrast, AP,
PVP

3D-CNN 3D-CNN
with DSN

Zhang et al.
(2021) (31)

Retro. Single
center

China SR Within 1
week

Multiple Randomly
split at a
ratio

MRI Manually
drawn with
ITK-SNAP
software

T2WI, T2-SPIR,
and PVP images

3D-CNN 3D-CNN

Wei et al.
(2021) (32)

T:
Retro.
V: Pro.

Multicenter China SR Within 1
month

Multiple External
validation

MRI Manually
drawn

CT: AP, PVP
MRI: T2W1,
T1WI, AP, PVP,
HBP

CNN CNN
Fe
bruary 2022 | Volu
me 12 | Art
Retro, retrospective; Pro, prospective; CNN, convolutional neural network; AP, arterial phase; PVP, portal venous phase; DP, delayed phase; DSN, deep supervision network; V, validation
set; T, training set; SR, surgical resection; TL, liver transplantation; LASSO, least absolute shrinkage and selection operation; SVM, support vector machine; BPNet, back-propagation
neural network; KNN, k-nearest neighbors; RF, random forest; DT, decision tree; GBDT, gradient boosting decision tree; NRS, neighborhood rough set; PCA, principal component
analysis; XGBoost, extreme gradient boosting; ADC, apparent diffusion coefficient.
NA, not available.
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et al. proposed and compared the 3D-CNN model, radiomics
model, radiological model, and RRC model (model combining
radiological features, radiomics features, and clinical variables),
with the results showing that the DL model achieved the highest
AUC of 0.906 in the validation set. Survival analysis showed that
recurrence-free survival was significantly better in the predicted
MVI-negative group than in the predicted MVI-positive group.
Furthermore, in one multicenter retrospective study, 750 HCCs
were enrolled from five Chinese hospitals, and a CNN model (n =
309) based on CT imaging analysis and another (n = 329) based on
Frontiers in Oncology | www.frontiersin.org 6212
MRI analysis were trained. In the external validation cohort (n =
115), the findings revealed that the MRI-based CNN model
achieved superior prediction performance (AUC: 0.812 vs. 0.736,
p = 0.038; sensitivity: 70.4% vs. 57.4%, p = 0.015; specificity: 80.3%
vs. 86.9%, p = 0.052). Survival analysis showed that both DLmodels
could stratify groups with both high and low risk in terms of
progression-free survival and overall survival. From the three
studies, the high diagnostic power of the CNN model was
validated, and consistent results indicated the potential value in
clinical decision-making.
TABLE 2 | Characteristics of the included studies.

Authors
(year of
publication)

Study
type

Study
design

Study
location

Operation Interval
image
exam

Number
of

tumors

Validation Image Region
segmentation

Input data Feature
selection

Modeling
Method

Feng et al.
(2019) (33)

Retro. Single
center

China SR Within 1
month

Multiple Randomly
split at a
ratio

Gd-EOB-
DTPA-
enhanced
MRI

Manually drawn
with ITK-Snap
software

T1WI in/out
phase,
T1WI-FS,
T1WI+c,
T2WI+c,
T1WI (HBP)

LASSO LASSO
regression
model

Nebbia et al.
(2020) (42)

Retro. Single
center

USA SR Within a
week

Multiple Stratified
5-fold
cross-
validation

MRI Manually drawn DWI, T1,
T2, late AP,
and PVP

LASSO,
feature
stability
analysis

SVM,
decision
trees, KNN,
Bayes

Liu et al.
(2021) (34)

Retro. Single
center

China SR Unclear Single Randomly
split at a
ratio

CT Manually drawn
with 3D-Slice
software

AP Intraclass
correlation
coefficient,
LASSO

logistics
regression

Dong et al.
(2020) (35)

Retro. Single
center

China SR Within 2
weeks

Multiple Split at a
ratio

Ultrasound Manually drawn
with MITK

NA Pearson
correlation
analysis,
minimum
redundancy
maximum
relevance

RF

Xu et al.
(2019) (36)

Retro. Single
center

China SR or TL n
(n = 16)

Unclear Multiple Split at a
ratio

CT Semiautomatically
drawn with
Python

AP, PVP recursive
feature
selection
SVM, step-
wise
multivariate
analysis

Ref-SVM,
multivariate
regression

Hu et al.
(2018) (40)

Retro. Single
center

China SR Within 2
weeks

Single Split at a
ratio

Ultrasound Manually drawn
with the A.K.
software

NA LASSO Logistic
regression

Yao et al.
(2018) (37)

Retro. Single
center

China SR Unclear Unclear Cross-
validation

Ultrasound Manually drawn NA Sparse
representation

SVM

Ni et al.
(2019) (38)

Retro. Single
center

China SR or TL Within 1
month

Unclear Split at a
ratio

CT Manually drawn
with the A.K.
software

PVP LASSO, NRS,
PCA

BPNet,
KNN, SVM,
RF, DT,
Bayes,
GBDT

Peng et al.
(2018) (39)

Retro. Single
center

China SR Within 1
week

Single Split at a
ratio

CT Semiautomatically
drawn with
MATLAB

AP, PVP LASSO logistic
model

Ma et al.
(2018) (41)

Retro. Single
center

China SR Unclear Single Split at a
ratio

CT Manually drawn
with ITK-SNAP
software

AP, PVP,
DP

LASSO SVM
Feb
ruary 2022 |
 Volume 12 | Ar
Retro, retrospective; AP, arterial phase; PVP, portal venous phase; DP, delayed phase; SR, surgical resection; TL, liver transplantation; LASSO, least absolute shrinkage and selection
operation; SVM, support vector machine; BPNet, back-propagation neural network; KNN, k-nearest neighbors; RF, random forest; DT, decision tree; GBDT, gradient boosting decision
tree; NRS, neighborhood rough set; PCA, principal component analysis.
NA, not available.
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Meta-Analysis of the Included Studies
In total, 18 NDL models and 11 DL models with 4,759 cases
described in 16 individual studies were retrieved. Meta-analysis
was performed separately in the subgroups for different
modeling methods in different cohorts.

Deep Learning Model for Preoperative
Microvascular Invasion Evaluation
Based on 11 DL models in all cohorts, there were 2,073 HCC
patients, including 843 MVI-present and 1,230 MVI-absent. The
diagnostic meta-analysis forest plots and the combined results are
shown in Figure 2. Diagnostic threshold analysis showed that there
was no significant threshold effect (Spearman’s correlation coefficient
= −0.082 p = 0.811). The pooled sensitivity, specificity, PLR, and
NLR of the DL model were 0.84 [95% CI: 0.75–0.90, I2 = 85.81%],
0.84 [95% CI: 0.77–0.89, I2 = 91.92%], 5.14 [95% CI: 3.53–7.48, I2 =
88.05%], and 0.2 [95% CI: 0.12–0.31, I2 = 84.83%], respectively. The
Frontiers in Oncology | www.frontiersin.org 7213
AUC based on the summary ROC (sROC) curve was 0.90 [95% CI:
0.87–0.93; Figure 4]. The I2 values of sensitivity, specificity, PLR, and
NLR indicated high heterogeneity. Influence analysis showed that
the models of Jiang et al. andWei et al. in their training sets could be
the cause of the high heterogeneity. After the two models were
excluded, I2 values markedly decreased (Table 3). Based on 9 DL
models, there were 1,443 HCC patients, including 565 MVI-present
and 878 MVI-absent. Analysis of diagnostic threshold showed that
there was no significant threshold effect (Spearman’s correlation
coefficient = −0.150 p = 0.700). The pooled sensitivity, specificity,
PLR, and NLR of the DL model were 0.79 [95% CI: 0.71–0.85, I2 =
70.54%], 0.85 [95% CI: 0.80–0.89, I2 = 69.44%], 5.34 [95% CI: 3.79–
7.52, I2 = 48.71%], and 0.25 [95% CI: 0.18–0.35, I2 = 74.00%],
respectively. The AUC based on the sROC curve was 0.89 [95% CI:
0.86–0.92; Figure 3], which showed moderate diagnostic value.
Studies in the DL group numbered less than ten, and thus meta-
regression analysis could not be performed.
A B

DC

FIGURE 2 | Forest plots based on DL model for preoperative prediction of MVI in HCC. DL, deep learning; MVI, microvascular invasion; HCC, hepatocellular
carcinoma; DL, deep learning; MVI, microvascular invasion; HCC, hepatocellular carcinoma; T, training set; V, validationset; Wei (2021)-T1,model in training set based
on MRI; Wei (2021)-T2, model in validation set based on CT.
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Non-Deep Learning Model for
Preoperative Microvascular
Invasion Evaluation

For the NDL model across all cohorts, there were 2,685 HCC
patients, including 1,128 MVI-present and 1,557 MVI-absent.
The diagnostic meta-analysis forest plots and combined results
are shown in Figure 3. Diagnostic threshold analysis showed that
there was no significant threshold effect (Spearman’s correlation
coefficient = −0.089, p = 0.726). The pooled sensitivity,
specificity, PLR, and NLR of the NDL model were 0.77 [95%
CI: 0.71–0.82, I2 = 73.72%], 0.77 [95% CI: 0.73–0.80, I2 =
48.35%], 3.30 [95% CI: 2.83–3.84, I2 = 33.64%], and 0.30 [95%
CI: 0.24–0.38, I2 = 73.89%], respectively. The AUC based on the
sROC curve was 0.82 [95% CI: 0.79–0.85; Figure 4], which
Frontiers in Oncology | www.frontiersin.org 8214
showed moderate diagnostic value. Heterogeneity between
groups was considered moderate.

US is operator-dependent, and its imaging techniques are
different from those of CT and MRI. To reduce the bias, studies
(Hu, Yao, and Dong) using US were excluded, and a meta-analysis
based on 14 NDL models using CT or MRI was performed. There
were 2,059 HCC patients, consisting of 875 MVI-present and 1,184
MVI-absent. The diagnostic meta-analysis forest plots and
combined results are shown in Supplementary Figure S4 and
Table 3. Diagnostic threshold analysis showed that there was no
significant threshold effect (Spearman’s correlation coefficient =
−0.089, p = 0.726). The pooled sensitivity, specificity, PLR, and
NLR of the NDLmodel were 0.77 [95% CI: 0.71–0.83, I2 = 74.70%],
0.77 [95% CI: 0.75–0.80, I2 = 13.48%], 3.42 [95% CI: 2.98–3.93, I2 =
6.36%], and 0.29 [95% CI: 0.22–0.38, I2 = 76.24%], respectively.
A B

DC

FIGURE 3 | Forest plots based on NDL model for preoperative prediction of MVI in HCC. NDL, non-deep learning; MVI, microvascular invasion; HCC, hepatocellular
carcinoma; T, training set; V, validation set.
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The AUC based on the sROC curve was 0.79 [95% CI: 0.75–0.82;
Figure 4], which showed a moderate diagnostic value.
Heterogeneity between groups was considered moderate. After
studies using US were excluded, the I2 values of PLR were
markedly decreased, but the I2 values of sensitivity, specificity,
and NLR did not noticeably decrease.

Deep Learning Model for Preoperative
Microvascular Invasion Evaluation in
Validation Set
Considering the effect of overfitting in the model training process,
a meta-analysis based on DL models in the validation set was
performed after removing the training set. Within the six included
DL models in the validation set, there were 495 HCC patients,
including 216 MVI-present and 279 MVI-absent. The diagnostic
meta-analysis forest plots and combined results are shown in
Supplementary Figure S2. Diagnostic threshold analysis showed
that there was no significant threshold effect (Spearman’s
correlation coefficient = 0.086, p = 0.872). The pooled
sensitivity, specificity, PLR, and NLR of the DL model were 0.79
[95% CI: 0.67–0.88, I2 = 74.90%], 0.83 [95% CI: 0.78–0.87, I2 =
0.00%], 4.72 [95% CI: 3.46–6.44, I2 = 0.00%], and 0.25 [95% CI:
0.15–0.42, I2 = 76.72%], respectively. The AUC based on the sROC
curve was 0.85 [95% CI: 0.81–0.88; Figure 4], which showed
moderate diagnostic value. After the removal of the training set,
Frontiers in Oncology | www.frontiersin.org 9215
the I2 values were markedly decreased, while heterogeneity
between included models was still considered notable in terms
of NLR. There was no significant difference in all effect sizes
between the models in all cohorts and models in the validation set.

Non-Deep Learning Model for
Preoperative Microvascular Invasion
Evaluation in Validation Set
Considering the effect of overfitting in the model training process, a
meta-analysis based on an NDL model in the validation set was
performed. Of the nine included NDL models in the validation set,
there were 926 HCC patients, composing 381 MVI-present and 545
MVI-absent. The diagnostic meta-analysis forest plots and
combined results are shown in Supplementary Figure S3.
Diagnostic threshold analysis showed that there was no significant
threshold effect (Spearman’s correlation coefficient = 0.192, p =
0.620). The pooled sensitivity, specificity, PLR, and NLR of the NDL
model were 0.77 [95% CI: 0.70–0.83, I2 = 61.59%], 0.77 [95% CI:
0.70–0.83, I2 = 72.85%], 3.42 [95% CI: 2.54–4.62, I2 = 53.76%], and
0.29 [95% CI: 0.22–0.40, I2 = 63.21%], respectively. The AUC based
on the sROC curve was 0.84 [95% CI: 0.81–0.87], which showed
moderate diagnostic value. After the removal of the training set,
heterogeneity between groups was considered moderate. There was
no significant difference in all effect sizes between the models from
all cohorts and models in the validation set.
TABLE 3 | Sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio with subgroup analysis according to the number of tumors in NDL model group.

Analysis No. of
models

Pooled SE
(95% CI)

I2

(%)
Pooled SP
(95% CI)

I2

(%)
Pooled PLR
(95% CI)

I2

(%)
Pooled NLR
(95% CI)

I2

(%)
AUC

NDL model group 18 0.77 [0.71–0.82] 73.72 0.77 [0.73–0.80] 48.35 3.30 [2.83–3.84] 33.64 0.30 [0.24–0.38 73.90 0.82 [0.79–0.85]
NDL model in validation

set
9 0.77 [0.70–0.83] 61.59 0.77 [[0.70–0.83] 72.85 3.42 [2.54–4.62] 53.76 0.29 [0.22–040] 63.21 0.84 [0.81–0.87]

DL model group 11 0.84 [0.75–0.90] 85.81 0.84 [0.77–0.89] 91.92 5.14 [3.53–7.48] 88.05 0.2 [0.12–0.31] 84.83 0.90 [0.87–0.93]
DL model in validation set 6 0.79 [0.56–0.86] 74.90 0.83 [0.78–0.87] 0.00 4.72 [3.46–6.44] 0.00 0.25 [0.15–0.42] 76.72 0.85 [0.81–0.88]

Influence analysis in DL
model group
Without Jiang-T 10 0.80 [0.73–0.86] 74.64 0.83 [0.75–0.88] 91.76 4.69 [3.24–6.78] 85.71 0.24 [0.17–0.33] 74.01 0.88 [0.85–0.91]
Without Wei-T2 10 0.83 [0.73–0.90] 85.95 0.86 [0.81–0.90] 68.70 5.88 [4.19–8.24] 56.24 0.20 [0.12–0.33] 85.23 0.91 [0.88–0.93]
Without both 9 0.79 [0.71–0.85] 70.54 0.85 [0.80–0.89] 69.44 5.34 [3.79–7.52] 48.71 0.25 [0.18–0.35] 74.00 0.89 [0.86–0.92]

Subgroup analysis in
NDL model group
Single tumor 8 0.69 [0.65–0.73] 43.26 0.77 [0.74–0.80] 32.54 2.98 [2.54–3.45] 0.00 0.41 [0.35–0.48] 39.30 0.79 [0.75–0.82]
Multiple tumor 10 0.84 [0.78–0.88] 0.00 0.78 [0.72–0.83] 60.09 3.67 [2.82–4.78] 35.97 0.17 [0.13–0.23] 0.00 0.88 [0.85–0.91]

Subgroup analysis in
NDL without ultrasound

14 0.77 [0.71–0.83] 74.70 0.77 [0.75–0.80 13.48 3.42 [2.98–3.93] 6.36 0.29 [0.22–0.38] 76.24 0.79 [0.75–0.82]

Single tumor 8 0.70 [0.63–0.75] 52 0.78 [0.73–0.82] 44.46 3.10 [2.49–3.86] 4.84 0.39 [0.32–0.48] 51.80 0.81 [0.77–0.84]
Multiple tumor 6 0.87 [0.83–0.90] 0.00 0.78 [0.74–0.81] 0.00 3.93 [3.31–4.68] 0.00 0.17 [0.13–0.23] 0.00 0.90 [0.87–0.92]

Subgroup analysis by AI
algorithms
LASSO 8 0.75 [0.67–0.81] 72.72 0.76 [0.72–0.79] 10.70 3.05 [2.55–3.64] 0.00 0.34 [0.25–0.45] 70.09 0.77 [0.73–0.80]
SVM 6 0.81 [0.71–0.88] 72.65 0.81 [0.76–0.85] 3.48 4.14 [3.33–5.16] 0.00 0.24 [0.16–0.36] 77.04 0.85 [0.81–0.88]
CNN 6 0.82 [0.78–0.86] 57.42 0.84 [0.73–0.92] 95.38 5.28 [3.04–9.19] 91.72 0.21 [0.17–0.25] 40.47 0.87 [0.84–0.90]
3D-CNN 5 0.87 [0.67–0.96] 93.29 0.84 [0.78–0.88] 48.01 5.30 [3.44–8.16] 49.39 0.16 [0.05–0.46] 93.65 0.88 [0.85–0.90]

Subgroup analysis by
image
MRI 5 0.78 [0.67–0.87] 80.99 0.76 [0.70–0.81] 27.70 3.22 [2.48–4.19] 27.90 0.28 [0.18–0.45] 82.36 0.78 [0.74–0.81]
CT 9 0.76 [0.68–0.83] 72.36 0.80 [0.76, 0.83] 13.11 3.73 [3.12–4.45] 0.00 0.30 [0.22–0.41] 73.85 0.82 [0.78–0.85]
February 2022 | V
olume 1
Jiang-T: DL model proposed by Jiang et al. in training set; Wei-T2: DL model based on CT proposed by Wei et al. in validation set; SE, sensitivity; SP, specificity; PLR, positive likelihood
ratio; NLR, negative likelihood ratio; AUC, area under the curve; NDL, non-deep learning; DL, deep learning; AI, artificial intelligence; LASSO, least absolute shrinkage and selection
operator; SVM, support vector machine; CNN, convolutional neural network.
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Meta-Regression Analysis and
Subgroup Analysis
We observed substantial heterogeneity in the performance of the
NDL group, with I2 being 73.72%, 48.35%, 33.64%, and 73.89% for
the pooled sensitivity, specificity, PLR, and NLR, respectively. As US
may result in a noticeable bias, we excluded studies using US and
then performed the meta-regression analysis. The results of meta-
regression analysis are presented in Tables S4, S5. The results
showed that in the univariate meta-regression model, 10 covariates
were significantly associated with study heterogeneity. Therefore, we
believe that these variates may influence prediction accuracy in the
NDL group. In the multivariate meta-regression model, the number
of tumors was strongly associated with study heterogeneity.

We conducted an additional subgroup analysis based on the
number of tumors (Table 3). In it, I2 values of the two subgroups
were markedly decreased. The I2 of the single tumor subgroup was
43.26%, 0%, and 39.28% for the pooled sensitivity, PLR, and NLR,
respectively. The I2 of the multiple tumor subgroup was 0% and 0%
for the pooled sensitivity and NLR, respectively. Except for the
pooled specificity and PLR, significant differences between the two
subgroups were observed in the pooled sensitivity, AUC, and NLR.
The results of subgroup analysis using the AI algorithm (LASSO
and SVM) and image (CT and MRI) are shown in Table 3. There
was no significant difference between the image and AI algorithms
in the NDL group. For AI algorithms in the NDL group, SVM is
significantly superior to LASSO for the pooled AUC (0.77 [0.73–
0.80] vs. 0.85 [0.81–0.88]). There was no significant difference
between CNN and 3D-CNN. Generally, DL models (3D-CNN
and CNN) are significantly superior to LASSO, and there was no
significant difference between DLAs and SVM.

Testing for Publication Bias
Deeks’ funnel plot asymmetry test showed no significant
publication bias with p-values of 0.42 and 0.22 for the DL
group and NDL group, respectively.
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DISCUSSION

Performance of Deep Learning and
Non-Deep Learning Models
In this study, NDL models and DL models were compared. The
NDL models had a moderate diagnostic value for MVI
prediction in HCC, with pooled sensitivity, specificity, PLR,
NLR, and AUC values of 0.77, 0.77, 3.30, 0.30, and 0.82,
respectively. The DL models, including the CNN model and
3D-CNN model, had moderate diagnostic values that were
similar to those of the NDL models, with pooled sensitivity,
specificity, PLR, NLR, and AUC values of 0.84, 0.84, 5.14, 0.2,
and 0.90, respectively. All these effect sizes showed that models
using the DL method had a higher performance for preoperative
prediction of MVI in HCC and had a statistically significant
difference in diagnostic value in terms of AUC. When comparing
DL models with NDL models in the validation set, there was no
significant difference in any of these factors. A reasonable
interpretation is that the sample sizes of the DL model group
were too small, and the heterogeneity in both the NDL and DL
model groups was notable. However, there is reliable evidence to
support that the model using the DL method may have a higher
performance and be more suitable for preoperative
MVI prediction.

By analyzing radiomics features from images, building a
prediction model using NDL methods had been widely applied
in MVI prediction (44–48) and prediction domain of other
cancers (13–16). NDL models based on radiomics features had
been proved to be better than a model based on radiological
characteristics or clinical characteristics (44, 45). For the NDL
models included in this study, analyzing radiomics features
assisted by NDLAs is an advanced technique for MVI
prediction, but one of the shortcomings of radiomics is that
the method is based on handcrafted feature extractors, which
require extensive work and manpower. In addition, the main
A B

FIGURE 4 | The pooled sROC curve of DL model (A) and NDL model (B). sROC, summary receiver operating characteristic; DL, deep learning; NDL, non-deep
learning.
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limitation is that radiomics features are human-designed and
dependent on domain-specific expertise.

A DLmethod, CNN, was proven powerful in medical imaging
(49), with superior performance as compared to NDL based on
radiomics features. The advantage of DL is that feature extraction
in the learning process is not required, avoiding defects in
human-designed features in radiomics analysis. Since classifier
training, feature selection, and classification of DL occur
simultaneously, we needed only input images, rather than
clinical data, radiological features, or radiomics features.
Feature selection and classification of DL occur simultaneously
during classifier training. The main power of a CNN lies in a
CNN architecture consisting of a series of layers of convolution
filters, akin to low-level vision processing in the human brain,
which allows for the extraction of a set of discriminating features
at multiple levels of abstraction. However, training a deep CNN
is challenging. The main difficulties are that CNNs require a large
amount of labeled training data and large computational and
memory requirements and that training a deep CNN is often
complicated by overfitting and convergence issues and the lack of
interpretability. Jiang et al. provided a new means to partly
explain how DL can identify MVI status.

The main difference in 3D-CNNs is that the input data are
three-dimensional image data. In the included studies, Wu et al.
proposed a 3D-CNN model with a DSN based on pre-contrast,
APs, and PVPs in MR images with an AUC value of 0.9255. A
3D-CNNmodel proposed by Song et al. with DSN based on eight
MRI sequences obtained the highest AUC value of 0.915 in the
testing cohort. Another 3D-CNN model proposed by Jiang et al.
based on AP, PVP, and DP CT sequences in the validation set
achieved 0.906 [95% CI: 0.821–0.960]. In the studies by Song
et al. and Jiang et al., the two 3D-CNN models performed
excellently in MVI prediction.

The Value of Artificial Intelligence
Algorithms for Microvascular
Invasion Prediction
For AI algorithms, we performed a subgroup analysis, and results
showed that DL is generally superior to NDL and that in NDL,
SVM is significantly superior to LASSO. The advantage of DL
has been previously discussed. The reason for the better
performance of SVM than LASSO may be that the
combination of modeling by SVM, and feature selection by
LASSO has an advantage over than LASSO regression model
only using LASSO for feature selection. SVM is a good classifier,
but it may not get good performance when it is directly used for
classification, but if it can be combined with a good feature
selection algorithm, the classification performance will be
greatly improved.

The Potential Clinical Value of
Convolutional Neural Network Models
A CNN model proposed by Wei et al. based on T2W1, T1WI,
AP, PVP, and HBP MRI sequences achieved an AUC value of
0.802 in an independent external validation cohort. Furthermore,
in the study by Song et al., survival analysis demonstrated that
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patients with DLC-predicted MVI status were associated with
poor overall survival and recurrence-free survival, whereas in a
study by Jiang et al., based on the MVI status predicted by the
3D-CNN model, the mean recurrence-free survival was
significantly better in the predicted MVI-negative group than
in the predicted MVI-positive group [64.06 vs. 31.05 months, p =
0.027]. In the study by Wei et al., survival analysis indicated that
CNN models could stratify groups with high and low risks in
terms of progression-free survival and overall survival (p < 0.05).
These key findings indicate that the DL model can provide a
non-invasive approach to accurately evaluate MVI, with the
potential to facilitate clinical decision-making and assess
patient prognosis.

Prediction Values of Various Types of
Input Data
CT or MRI data from arterial and portal phases were used to
build the prediction model and proved powerful for MVI
prediction in 13 of the included studies. Jiang et al. proposed a
3D-CNNmodel based on AP, PVP, and DP of CT images, which
achieved an AUC value of 0.906. For five of the included studies,
the AUC value of the prediction model based on AP and PVP of
MR images ranged from 0.80 to 0.94. Five of the included studies
in the DL group used MR images, and three studies in NDL used
MR images. Among them, Wu et al. proposed a 3D-CNN model
with DSN based on pre-contrast, AP, and PVP phases in MR
images with an AUC value of 0.925. A meta-analysis of MRI
features for predicting MVI of HCC performed by Hong et al.
showed a similar conclusion that arterial enhancement and
arterial peritumoral enhancement were significant predictors
for MVI of HCC (50). However, in this study, the results of
meta-regression showed no significant difference in the AP or
PVP. The probable reasons for this were high heterogeneity and
that the number of relevant original studies was small. Diffusion-
weighted imaging (DWI) is an MRI sequence that can reflect the
motion state of water molecules in vivo (51). Nebbia et al. built an
SVM model based on a DWI sequence and performed worse
than the AP or PVP sequence. However, in the study by Song
et al., a CNN model based on eight MRI sequences, including
DWI, AP, and PVP, achieved an AUC value of 0.915. Features
from the DWI sequence, as complementary to AP and PVP,
could further improve the performance of MVI prediction.
Wang et al. suggested that deep features derived from higher b
values yield better performance for MVI prediction, implying
that DWI with a higher b value might be better for MVI
prediction. Chen et al. indicated that the ADC value can also
be used to evaluate MVI and has a diagnostic efficacy similar to
the 20-min T1 relaxation time [AUC, 0.850 vs. 0.846]. Wu et al.
indicated that due to the overflow of contrast agents from the
tumor region in the delayed phase, and the tissue cellularity and
vascularity within the tumor becoming unclear, information
from the delayed phase sequence has worse predictive
performance and may not fit MVI prediction. US was mainly
used for MVI prediction in NDL models, and the results showed
that the AUC value of models based on US ranged from 0.726 to
0.731, lower than that based on CT and MRI (35, 37, 40).
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The HBP of contrast-enhanced liver MRI with gadoxetate
disodium (Gd-EOB-DTPA) has the value of significantly
increasing sensitivity and specificity in liver diagnosis (51, 52)
and predicting MVI in HCC (33). Hong et al. performed a
meta-analysis based on MRI features for MVI prediction, with
the results showing that peritumoral hypointensity on HBP was
the MRI feature most suggestive of MVI with the pooled
diagnostic odds ratio (DOR) and pooled positive LR being 8.2
and 5.0, respectively (50). Chen et al. built an SVMmodel based
on the hepatobiliary phase sequence of Gd-EOB-DTPA MRI,
with a performance of 0.942 AUC value, higher than the AP
and PVP sequences for MVI prediction. In this study, since the
results showed that there was no significant difference between
MRI and CT, analysis based on MRI features for MVI
prediction did not yield significant results.

Within the DL group, the models proposed by Wang et al. and
Zhang et al. obtained lower performance with AUC values of 0.79
and 0.72, respectively. The possible reasons are the differences in
the types of input data. Notably, the input data of the two DL
models did not include the imaging data in AP and PVP.
However, further studies are needed to confirm this hypothesis.

CT vs. MRI in Artificial Intelligence
Algorithms for Microvascular
Invasion Prediction
Compared with CT, MRI can better describe the characteristics
of soft tissue, atomic signal intensity, and lesion enhancement, as
well as provide more information on tissue function.

For models using 3D-CNN algorithms in the DL group, two
studies used MRI techniques (Wu and Zhang), and one study
used a CT imaging technique (Jiang). We observed that the
training set containing 3D-CNN models using CT by Jiang et al.
achieved the highest AUC value of 0.98. In the validation set, Wu
et al. proposed 3D-CNN models using MRI, which had the
highest AUC value of 0.926. Since the number of studies was too
small, a meta-analysis could not be performed. For models using
CNN algorithms in the DL group, two studies used MRI (Song
and Wang), and one study used CT and MRI (Wei). Wei et al.
built DL models for preoperative prediction of MVI based on CT
and MR images. The results of the meta-analysis showed
superior predictive power from MRI compared to CT (AUC:
0.812 vs. 0.736, p = 0.039).

In this study, meta-regression analysis was performed for
models in the NDL group. The results showed that imaging
techniques may be influencing factors of prediction power in the
NDL group but not independently influencing factors. There was
no significant consequence of the predictive power of MRI being
superior to CT (AUC: 0.78 [0.74–0.81] vs. 0.82 [0.78–0.85]).

Overall, our results showed that, in the DL model group,
especially the CNN model, MRI was superior to CT in the
prediction of MVI. However, there was no significant
advantage that MRI had in MVI prediction, compared with
CT. Recently, Meng et al. compared the performance of
radiomics models based on CT and MRI for MVI prediction
(53). The results showed that CT and MRI had a comparable
performance for MVI prediction in a single HCC. Studies
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comparing the performance of AI algorithms based on CT and
MRI for MVI prediction are too small and can be excluded.

Deep Learning Models Combined With
Clinical Characteristics
Previous studies have predicted MVI using clinical
characteristics, such as tumor number and size, alpha
fetoprotein (AFP), protein induced by vitamin K absence or
antagonist (PIVKAII), and serum component index. The AUC of
these predictors varies from 0.529 to 0.81 (18–23). In this study,
some clinical variables [tumor size, AFP, tumor margin, internal
arteries, and International normalized ratio (INR)] that were
recognized as predictive values were selected by statistical
analysis and then integrated with the DL model to further
improve predictive performance. Clinical variables recognized
as MVI-prediction values were tumor size in 11 studies and AFP
in nine studies; others are shown in Table S3. Some studies using
radiomics combined with clinical parameters achieved better
outcomes, ranging from 0.796 to 0.899 for AUC (36, 41, 54).

Number of Tumors as One Source
of Heterogeneity
In addition, we performed a subgroup analysis according to the
number of tumors, and the results showed that the number of
tumors was one of the sources of heterogeneity. Models based
on HCC patients with multiple tumors performed better with
the pooled AUC value of 0.88 [0.85–0.91] and sensitivity of 0.84
[0.78–0.88] than single tumors with 0.79 [0.75–0.82] and 0.69
[0.65–0.73], respectively. In HCC patients, having multiple
tumors was regarded as a variable that had strong
associations with a high risk of MVI. This could cause these
models to more easily identify the MVI status in HCC patients
with multiple tumors than single tumors. However, because the
number of models in the meta-analysis was relatively small, the
results of the subgroup analysis need to be interpreted
with caution.

Trends, Challenges, and Suggestions
According to the analysis of the existing MVI prediction models
presented above, the diagnostic accuracy of CNNs for
preoperative MVI prediction has achieved spectacular progress
in terms of sensitivity, specificity, PLR, NLR, and AUC.
However, there is much room for improvement due to existing
challenges, as well as many options for future research.

Methodological Trends
In six studies using DL in this meta-analysis, CNNs have been
the main methods for MVI prediction. The six studies used
ensemble learners of CNNs, which is an approach for integrating
multiple learner branches into a single fusion model to improve
the prediction of MVI in HCC (55). In each learner branch, fully
convolutional networks and softmax layers were employed to
calculate the predicted results. In the studies by Wang et al. and
Wu et al., a DSN that combines the loss functions of each CNN
learner branch was designed for the proposed DL network. Jiang
et al. and Song et al. designed specific architectures as CNN
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branches for feature extraction, with their final DL models
achieving AUCs of 0.906 and 0.915, respectively.

Challenges and Suggestions
Lack of Datasets With Large Numbers of Cases
One of the critical barriers in the application of DL for MVI
prediction based on medical imaging data is the lack of
datasets with large numbers of samples. It is noted that the
process of training DL models using CNNs requires a huge
amount of data. However, their collection is still very difficult in
clinical practice.

To mitigate this problem, new techniques for generating
synthetic medical images could be developed. For instance,
Zhang et al. generated an augmented training set by randomly
rotating the original imaging dataset at a full 360° angle.
Moreover, Wang et al. used an image resampling method to
generate more samples for training a DL network.

Generalizability
Typically, a specific model that performs very well on a specific
task may not be generalized to other tasks. Heterogeneity could
be one of the major reasons why a specific model cannot be
generalized to other tasks. The sources of heterogeneity are
various imaging modalities, and different medical scanners
operate under different settings and datasets. This issue could
also be alleviated by developing methods that can be validated on
images of different types. In addition, research on the effect of
scanner settings (reconstruction techniques, parameters, etc.) on
MVI prediction is expected.

Lack of Interpretability
The black box problem has been one of the major criticisms of
the deep CNN approach, implying that the system struggles to
provide evidence to support clinical decisions. Better
interpretability would contribute to understanding how the
MVI status is generated. This may lead to more accurate and
reliable clinical decisions.

To improve the accuracy of diagnosis and interpretability of
DL models, new approaches for both radiomics and semantic
feature analysis in screening data can be developed. For example,
to improve the interpretability of the 3D-CNNmodel, Jiang et al.
attempted to predict the 15 most important variables selected by
the XGBoost method, and the results indicated that the CNN
model could predict the status of MVI partly based on the
explainable features utilized in clinical practice.

Potential Value of Clinical Application
Several studies (Song et al., Jiang et al., and Wei et al.) performed
survival analysis that showed that the patients with CNN-
predicted MVI status were associated with poor survival after
resection, suggesting the strong clinical value of the CNN model
in preoperatively identifying HCC patients with poor prognosis
and guiding the resection range. However, there is no evidence
from prospective studies or clinical trials. Thus, in the future,
some prospective research and clinical trials concerning CNN
models for MVI prediction that guide clinical decisions
are expected.
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Contributions and Limitations
Our meta-analysis of DL methods and NDL methods for
preoperative MVI prediction in HCC patients has several
advantages. First, this study involving 16 studies and 4,759
HCC cases is the first systematic review and meta-analysis of
preoperative MVI prediction in HCC patients by comparing DL
and NDLmethods. Second, DL models perform better than NDL
models in terms of the accuracy of MVI prediction,
methodology, and cost-effectiveness.

This study has some limitations. First, all included studies
were retrospective, inevitably causing a patient selection bias.
Second, this study only included six studies for DL methods in
MVI prediction because CNNs are powerful tools for a broad
range of computer vision tasks applied in medical imaging in
recent years, and training a CNN requires a large sample size,
which is difficult in clinical tasks. Third, only one included study
used an independent external validation cohort to assess the
performance of DL models. Finally, study heterogeneity was
significant across the included studies.
CONCLUSIONS

This meta-analysis demonstrates the high diagnostic accuracy of
NDL and DL methods for the prediction of MVI and their
promising potential for application in clinical decision-making.
Multicentral validation and larger sample sizes are required for
more definitive conclusions. DL models perform better than
NDL models in terms of the accuracy of MVI prediction,
methodology, and cost-effectiveness. CT or MRI data from the
arterial and portal phases were used to build a prediction model
and were proved effective for MVI prediction. Clinical variables,
such as tumor size and AFP, were recognized as MVI prediction
values. Studies of DL models for MVI prediction for HCC
patients with single tumors are expected.
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Purpose: Glioma is the most common primary brain tumor, with varying degrees of
aggressiveness and prognosis. Accurate glioma classification is very important for
treatment planning and prognosis prediction. The main purpose of this study is to
design a novel effective algorithm for further improving the performance of glioma
subtype classification using multimodal MRI images.

Method: MRI images of four modalities for 221 glioma patients were collected from
Computational Precision Medicine: Radiology-Pathology 2020 challenge, including T1,
T2, T1ce, and fluid-attenuated inversion recovery (FLAIR) MRI images, to classify
astrocytoma, oligodendroglioma, and glioblastoma. We proposed a multimodal MRI
image decision fusion-based network for improving the glioma classification accuracy.
First, the MRI images of each modality were input into a pre-trained tumor segmentation
model to delineate the regions of tumor lesions. Then, the whole tumor regions were
centrally clipped from original MRI images followed by max–min normalization.
Subsequently, a deep learning-based network was designed based on a unified
DenseNet structure, which extracts features through a series of dense blocks. After
that, two fully connected layers were used to map the features into three glioma subtypes.
During the training stage, we used the images of each modality after tumor segmentation
to train the network to obtain its best accuracy on our testing set. During the inferring
stage, a linear weighted module based on a decision fusion strategy was applied to
assemble the predicted probabilities of the pre-trained models obtained in the training
stage. Finally, the performance of our method was evaluated in terms of accuracy, area
under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), etc.

Results: The proposed method achieved an accuracy of 0.878, an AUC of 0.902, a
sensitivity of 0.772, a specificity of 0.930, a PPV of 0.862, an NPV of 0.949, and a Cohen’s
Kappa of 0.773, which showed a significantly higher performance than existing state-of-
the-art methods.
February 2022 | Volume 12 | Article 8196731222

https://www.frontiersin.org/articles/10.3389/fonc.2022.819673/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.819673/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.819673/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:lhwang2@gzu.edu.cn
mailto:yue-min.zhu@creatis.insa-lyon.fr
https://doi.org/10.3389/fonc.2022.819673
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.819673
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.819673&domain=pdf&date_stamp=2022-02-24


Guo et al. Multimodal MRI Image Decision Fusion

Frontiers in Oncology | www.frontiersin.or
Conclusion: Compared with current studies, this study demonstrated the effectiveness
and superiority in the overall performance of our proposed multimodal MRI image decision
fusion-based network method for glioma subtype classification, which would be of
enormous potential value in clinical practice.
Keywords: glioma classification, multimodal MRI images, decision fusion, tumor segmentation, deep learning
INTRODUCTION

Glioma is the most common primary tumor of the brain and
spine, representing 80% of malignant brain tumors (1) and
having varying degrees of aggressiveness and prognosis. The
clinical manifestations of glioma include increased intracranial
pressure, neurological/cognitive dysfunction, and seizures.
According to the 2016 WHO classification of tumors of the
central nervous system (CNS), glioma can be classified into
astrocytoma (grade II or III), oligodendroglioma or
mesenchymal oligodendroglioma (grade II or III), and
glioblastoma (grade IV), depending on the pathology and
molecular alterations (2). Low-grade glioma is well-
differentiated and presents an aggressive growth pattern in
terms of biological characteristics, whereas high-grade glioma
is a malignant brain tumor that is difficult to identify and has a
poor prognosis (3).

Precise glioma classification or grading is crucial for deciding
the right therapeutic strategies that may further impact the
prognosis process of patients (4, 5). In clinical practice, MRI is
the standard medical imaging technique for brain tumor
diagnosis for its advantages of relative safety and non-
invasiveness as compared to pathological biopsy examinations
(6). With respect to unimodal MRI images, multimodal MRI
images can provide more morphological, functional, and tumor
metabolic status information due to their correlation and
complementary information for all types of brain tumors.
Clinically, the low contrast between tumor masses and
surrounding tissues as well as the varying levels of physicians’
experience may lead to misdiagnosis; more importantly,
diagnosing based on manual analysis is a time-consuming
procedure (7). With the development of artificial intelligence
and computing facilities, computer-aided diagnosis (CAD)
technology based on computer vision has been applied to
many medical fields and provides help for physicians in
visualization and tumor identification to improve the
subjective diagnosis manually (8).

So far, the methods for brain tumor classification in the latest
studies can be loosely classified into two categories: traditional
machine learning methods and deep learning methods (9).
Among the latest traditional machine learning methods (5, 10–
12), the most commonly used one is radiomics. Radiomics uses
data characterization algorithms to extract quantitative features
from MRI images (13, 14), and these features usually contain
complex patterns that are difficult to recognize or quantify by
human eyes, such as tumor heterogeneity, infiltration, and
metastasis (15). The other general method is deep learning,
which was successfully applied to tumor segmentation (16),
g 2223
tumor classification (7, 8, 17), survival prediction (4, 18), and
molecular genetic prediction (19, 20) for its powerful feature
representation in medical imaging fields. Compared with
radiomics-based methods, deep learning-based methods do not
need domain-specific knowledge for feature extraction and
outcompete the formers when experimental data are sufficient.
Furthermore, considering the powerful feature learning
capability of deep learning and the powerful classification
capability of traditional machine learning, researchers have
combined them together for glioma classification or grading
(21–23).

The aim of this study was to diagnose the glioma subtype
preoperatively using MRI images only for assisting in making
appropriate treatment decisions. Misdiagnosis caused by
inaccurate glioma prediction algorithm may lead to severe
injury or death, so prediction accuracy is the most concerned
performance undoubtedly. Since Computational Precision
Medicine- Radiology-Pathology (CPM-RadPath) on Brain
Tumor Classification challenge held in 2018, many studies
have been conducted in glioma subtypes prediction using
multimodal MRI images based on tumor segmentation. Pei
et al. (4) proposed a 3D convolutional neural network (CNN)
model for glioma classification based on tumor segmentation
results from the CANet model, and experimental results
demonstrated the effectiveness of using MRI images only. Xue
et al. (24) trained a 3D residual convolutional network with MRI
images for glioma classification, and the results showed that
using tumor segmentation regions would get higher accuracy. Pei
et al. (25) applied a 3D CNN model with MRI images for brain
tumor segmentation, which distinguished brain tumors from
healthy tissues, and then the segmented tumors were used for
tumor subtype classification with another 3D CNN model. Yin
et al. (26) achieved the first rank in CPM-RadPath 2020 using
both MRI and pathological images. For multimodal MRI images,
they used the pre-trained model on the Brain Tumor
Segmentation (BraTS) challenge 2019 for tumor segmentation
and then built a densely connected convolutional network
(DenseNet) model for glioma prediction in their scheme.
Although promising in their results, they concatenated the
multiple modalities as different input channels such that a
deep learning network could automatically learn to extract the
multimodal features. With such an image fusion strategy, it is
difficult to adjust the contributions of each modality for
prediction results and consequently not easy to get the best
classification accuracy.

Using multimodal MRI images for glioma subtype
classification has great clinical potentiality and guidance value.
In order to further improve the glioma subtypes prediction
February 2022 | Volume 12 | Article 819673
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accuracy in clinical applications, we propose a Multimodal MRI
Image Decision Fusion-based Network (MMIDFNet) based on
the deep learning method. Inspired by image fusion (27), the
proposed method uses a linear weighed module to assemble the
models trained with a single modality together for mining their
complementary predictive capabilities. To evaluate the
effectiveness of our proposed method, we compared the
classification performance between our method and recent
state-of-the-art methods. Additionally, since radiomics-based
methods are also commonly used in recent brain tumor
classification studies, we also implemented a radiomics-based
method as the benchmark for performance comparison with
our MMIDFNet.
MATERIALS AND METHODS

Study Cohort
Our experimental data were obtained from the CPM-RadPath
challenge 2020 dataset1, which is supported by Medical Image
Computing and Computer-Assisted Intervention Society. The
dataset classified patients into three subtypes based on the
WHO-CNS pathomorphological classification criteria, named
Glioblastoma (abbreviated as “G”), Astrocytoma (abbreviated
as “A”), and Oligodendroglioma (abbreviated as “O”) separately
(25, 26). Each patient contained preoperative 3D MRI images
and pathological whole slide images. MRI images comprise four
different modalities of T1-weighted (T1), T2-weighted (T2),
post-contrast T1-weighted (T1ce), and fluid-attenuated
inversion recovery (FLAIR). Considering the purposes of our
study, we just used MRI images to predict pathological subtypes.
According to the dataset description, MRI images were obtained
from multi-parametric MRI scans in routine clinics with 1T to
3T MRI scanners in multi-center institutions and stored in NIfTI
format. All four MRI modalities were preprocessed with bias
field correction, skull stripping, and co-registration into the same
anatomical structure template (24). The volume size of each MRI
modality data is 240 × 240 × 155, where 155 indicates the
number of slices. The cohort in our experiments consisted of
221 patients collected from the original dataset, in which there
were 133, 54, and 34 samples provided for subtype “G”, “A”, and
“O”, respectively. To overcome the bias caused by a particular
selection for the pair of training and testing sets, a 3-fold cross-
validation strategy was used in this work. Specifically, the dataset
was split into 3 smaller sets, the model was trained using 2 of the
folds as training data, and then the trained model was validated
on the remaining part of the data. The performance reported by
3-fold cross-validation was measured with the averaged
evaluation indices.

MMIDFNet Architecture
To improve the accuracy of glioma diagnosis using multimodal
MRI images, we designed the MMIDFNet for glioma subtype
classification, as shown in Figure 1. The MMIDFNet architecture
1https://miccai.westus2.cloudapp.azure.com/competitions/1
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includes two parts: one is the tumor segmentation module
using a pre-trained model, and the other is the two stages of
unimodal model training and multimodal image decision
fusion inferring module. In the training stage, we used the
images of each single modality to train the network to obtain
its best accuracy on the testing set. In the present work, we
used images from four MRI modalities. Thus, we have four
pre-trained models. In inferring stage, a decision fusion
strategy was used; in other words, a linear weighted module
was applied to assemble the predicted probabilities of the
above four pre-trained models for each modality. Adopting
the decision fusion strategy, we can fully take advantage of the
complementary capabilities among unimodal models trained
from different modalities. Note that the weights for the four
MRI modalities in our linear weighted module did not
participate in training in inferring stage.

Tumor Segmentation
Accurate segmentation of brain tumors from MRI images is of
enormous potential value for improved diagnosis (28). It can be
done automatically to cope with the time-consuming
disadvantage of manual segmentation (29, 30). Considering
that the MRI images in our study were also used in the BraTS
challenge and that the ground truth of tumor segmentation for
patients in our cohort are not all available, we used the pre-
trained model on the BraTS challenge 2019 to delineate the
regions of tumor lesions, which achieved the accuracy of 90.45%
on the validation set (31). In the BraTS 2019 dataset, all the
samples in the training set are provided with four ground truth
labels for 4 regions: background (label 0), necrotic and non-
enhanced tumor (label 1), peritumoral edema (label 2), and
enhanced tumor (label 4). We reassigned the non-zero labels
into three combined subregions, representing enhanced tumor
(ET: label 4), tumor core (TC: label 1 + label 4), and whole tumor
(WT: label 1 + label 2 + label 4). The WT, TC, and ET regions of
the MRI images were obtained by the pre-trained segmentation
model. Since glioma grows within the substance of the brain and
often mixes with normal brain tissues, the surrounding area is
also valuable for the assessment. Hence, we used the whole tumor
regions as the segmentation regions of interest (ROIs) and
centrally cropped the original image to 128 × 128 × 80. In
order to make the intensities of the cropped images more
homogeneous, max–min normalization was applied. Besides,
for all the patients having ground truth, after carefully
comparing the pairwise central locations of WT regions
obtained by our tumor segmentation and the ground truth, we
found that they were all consistent or nearby, which also
demonstrates that our tumor segmentation scheme is feasible.
A glioblastoma patient case before and after segmentation with
the pre-trained model is displayed in Figure 2 using the ITK-
SNAP software. The red region indicates the necrotic and non-
enhanced tumor, the yellow region the enhanced tumor, and the
green region the peritumoral edema.

Unimodal Prediction Model Building
Through stacking multiple convolutional layers together, deep
neural networks (DNNs) can automatically learn discriminative
February 2022 | Volume 12 | Article 819673
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FIGURE 1 | The structure of our proposed MMIDFNet.
A

B

D

C

FIGURE 2 | An example of glioma patients on multimodal MRI images (patient ID: CPM19_CBICA_AAB_1, Glioblastoma). (A) Original images. (B) Tumor
segmentation on panel (A). (C) Ground truth on panel (A). (D) Normalized followed centrally clipped from panel (A) based on panel (B).
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features from imaging data. Among different DNN models as
well as their variants, DenseNet has shown superior classification
performance as it strengthens feature propagation from one
dense block to the next and overcomes the problem of
vanishing gradient (32). In the training stage of our
MMIDFNet method, we designed a network based on unified
DenseNet architecture with 121 layers (32), which included four
dense blocks, and each dense block was composed of several
convolutional layers (BN+ReLU+Conv). The number of
convolutional layers in four dense blocks was set as 6, 12, 24,
and 16. The features of images were extracted through these
dense blocks. After that, two fully connected layers were used to
map the features into three glioma subtypes. In order to maintain
the 3D structural features of MRI images, we used them as the
model input directly without converting them into 2D slices. In
the training stage, the model loss used focal loss for handling
class imbalance, the initial learning rate was set to 5 × 10−4 with
the updating strategy of scheduler optimization, the optimizer
used Adam algorithm with impulse, the batch size was set to 8,
and the number of training epoch was set to 100. To overcome
overfitting in the training process, many strategies (e.g., sample
normalization, data augmentation, applying L2 normalization to
model loss, designing dropout layer for the model, and setting
weight decay for optimizer) were employed. Our unimodal
prediction models were implemented by the PyTorch
framework (version 1.4.0, Facebook), and the details of
network architecture can be found in Figure 1. All the data
augmentation strategies of dimension resizing, random rotation,
random scaling, random Gaussian noise adding, and random
contrast adjusting were implemented using the Medical Open
Network for AI (MONAI) toolkit2. Since our model with a large
number of parameters would lead to high computational cost, we
used NVIDIA Tesla A100 GPU to reduce the running time of
model training and validation.

Multimodal Prediction Model Building
Due to the correlation among different modality images,
multimodal MRI can provide help to extract features from
different views and bring complementary information (33). For
exploring richer patterns among multimodal MRI images to
handle the issue of insufficient classification ability and
generalization ability of the unimodal model, we used
multimodal MRI images to build prediction models based on
image decision fusion strategy. In our MMIDFNet method, since
the classification capacity of different pre-trained models using a
single MRI modality in the training stage is usually different and
complementary, we assembled a multimodal prediction model
with multimodal MRI images by calculating the linear weighted
sum of predicted probabilities from the four pre-trained
unimodal models trained in the training stage. Based on the
heuristic searching strategy, the weights of each pre-trained
unimodal model were assigned according to their classification
ability. The final predicted probabilities of our MMIDFNet
model for gliomas subtype classification was calculated as
follows:
2https://github.com/Project-MONAI/MONAI
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fusion _ prob =o
m

i=1
wi*probi (1)

where m is the number of pre-trained models, and wi and probi
are the weight and the prediction probability of the ith pre-
trained model, respectively.

Radiomics-Based Prediction Models
Building
The radiomics-based method mainly includes four stages: tumor
segmentation, radiomics feature extraction, feature selection, and
classification model building (34). The major challenge of the
radiomics-based method is how to extract features from 3D MRI
images. By using the Pyradiomics3 package, for each original 3D
MRI image, a total of 106 radiomics features were extracted
based on the mask obtained in the above tumor segmentation
stage. These features were composed of 18 first-order statistical
features, 14 shape features, and 74 wavelet texture features.
Besides, 12 other types of images (8 wavelets, gradient, mean
square, root mean square, and exponential) transformed from
each 3D MRI image were also used to extract radiomics features.
Finally, the features of the original image as well as its 12
transformed images were concatenated together in an end-to-
end manner, thus forming a total of 1,378 (106 × 13) features for
each MRI image. Similarly, as for multimodal MRI images of
each patient, their features were also concatenated together and
formed the joint features for training a multimodal glioma
prediction model. In the present work, we used the images
from four MRI modalities. Hence, the dimension of the joint
features is 5,512 (1,378 × 4).

Considering that redundant and irrelevant features in high-
dimensional features usually influence learning accuracy (35, 36),
the least absolute shrinkage and selection operator (Lasso)
regression algorithm was performed to reduce feature
dimension by retaining high discriminative features (5, 27).
Based on the selected features, the random forest (RF)
classification model, which is frequently used in the field of
supervised machine learning (5, 11, 12, 30, 37), was built for our
task of glioma diagnosis. The Lasso and RF algorithms were
implemented using the scikit-learn library (version 0.23.1).

Performance Metrics
The performance of our multi-class predictive models was
assessed according to the commonly used accuracy, sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), and the area under the curve (AUC) of the receiver
operating characteristic (ROC). The goal of the CPM-RadPath
challenge is to assess automated brain tumor classification
algorithms using three metrics, namely, F1_score, Cohen’s
Kappa (Kappa), and balanced accuracy (Balanced_Acc), which
are sensitive to the imbalanced distribution of sample classes.
Among the above metrics, F1_score and Balanced_Acc are
defined as accuracy and sensitivity in multi-class metrics,
respectively. The formulas for calculating the performance
metrics of accuracy, sensitivity, specificity, PPV, NPV, and
3https://pyradiomics.readthedocs.io/en/latest/index.html
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Kappa are given by Equations 2–7, respectively:

Accuracy =
o
n

i=1
TPi

Num
(2)

Sensitivity =
o
n

i=1
TPi=(TPi + FNi)

n
(3)

Specificity =
o
n

i=1
TNi=(TNi + FPi)

n
(4)

PPV =
o
n

i=1
TPi=(TPi + FPi)

n
(5)

NPV =
o
n

i=1
TNi=(TNi + FNi)

n
(6)

Kappa =
p0 − pe
1 − pe

(7)

In Equations 2–6, Num is the number of samples, TP the true
positives, TN the true negatives, FP the false positives, FN the
false negatives, and n the number of sample categories. In
Equation 7, p0 denotes the sum of the number of samples for
each correct classification divided by the total number of
samples, and pe the expected agreement when both annotators
assign labels randomly (6). According to the accuracy metric, the
best classifier was chosen as our predictive model for the task of
glioma subtype classification.

Statistical Analysis
Age being the only available clinical factor in the CPM-RadPath
challenge dataset (6), we converted it from days to years for
simplicity before analysis. The differences in age and glioma
subtypes between the training and testing sets were assessed
using the Mann–Whitney rank-sum test. The statistical
quantifications of the performance metrics were demonstrated
with 95% CI, when applicable. All statistical analyses were carried
out with the Scipy module (version 1.3.1), and p-value <0.05
indicated a significant difference.
RESULTS

Among these retrospective patients (age ranges 17 to 85 years),
the mean ± SD of age was approximately 53.8 ± 14.8. In each
fold, the number of subtypes “G”, “A”, and “O” was about 60.2%,
24.4%, and 15.4%, respectively. From the p-value results of the
Mann–Whitney rank-sum test, we found that there was no
significant difference in pathological subtypes (0.439, 0.423,
and 0.48) among each fold.
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Unimodal Prediction Models
After carefully tuning the parameters of unimodal models with
our MMIDFNet method, we obtained the best pre-trained
prediction models for each single modality in the training stage
in turn. The ROC curves of each pre-trained unimodal model for
each fold are plotted in Figure 3. We found that the prediction
performance for each modality among different validation folds
was not significantly different, which validates that the dataset
selection has no significant influence on the prediction
performance of our method.

In addition, the performance of unimodal prediction models
using radiomics and our proposed MMIDFNet method on three
validation folds is summarized in Table 1. We noticed that the
split of the training and validation sets indeed influenced the
prediction performance of both radiomics and our models, but
not significantly. In general, our proposed MMIDFNet method
generated better results than the radiomics method, with the
highest averaged evaluation indices, except for the modalities of
T1 and T2, in which the AUC, or sensitivity, or PPV was a little
lower than that of radiomics. Moreover, we observed that with
either our MMIDFNet method or radiomics method, using
different unimodal MRI images achieved different classification
performances. As for the radiomics method, among the
unimodal prediction models on each fold, using the T1ce
modality achieved the best-averaged accuracy of 0.815. The
averaged AUC, sensitivity, specificity, PPV, and NPV were
0.868, 0.704, 0.882, 0.796, and 0.912, respectively. Meanwhile,
for our MMIDFNet method, using the T1ce MRI modality
achieved the best-averaged accuracy of 0.833. The averaged
AUC, sensitivity, specificity, PPV, and NPV were 0.892, 0.708,
0.894, 0.817, and 0.924, respectively. This demonstrates that T1ce
images may be beneficial to the glioma subtype classification.
Multimodal Prediction Models
Using our proposed MMIDFNet method, through repeatedly
adjusting the weights of each unimodal prediction model in
inferring stage, we obtained the best multimodal prediction
accuracy. After tuning the parameters of our radiomics model
iteratively, we also obtained the best prediction using the fused
features of multimodal images. In this paper, the multimodal
prediction methods obtained with radiomics and MMIDFNet
were named as radiomics model and decision fusion model,
respectively. Specifically, considering our designed network also
supports multi-channel input in the training stage, through
inputting four modalities into four-channel input of our
MMIDFNet simultaneously, we trained and obtained another
multimodal prediction model (named as data fusion model)
based on data fusion strategy for comparing the predictive
performance between data fusion strategy and decision fusion
strategy in our MMIDFNet method. Here, the data fusion strategy
means that the multiple modal images were concatenated as input.
The ROC curves of the radiomics model, data fusion model, and
decision fusion model using multimodal MRI images on each
validation fold are illustrated in Figure 4. We found that for the
glioma subtypes “G”, and “A”, the prediction performance of all
the methods was not greatly influenced by the splitting of the
February 2022 | Volume 12 | Article 819673
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training and validation sets. However, for the glioma subtype “O”,
the data splitting strategy had significant effects on the predicted
AUC. In addition, the overall prediction of our decision fusion
model for a multi-class predictive task is more balanced than the
other two multimodal models.

To further compare the prediction performance of different
fusion strategies, Table 2 summarizes the 3-fold cross-validation
performance of each method on the multimodal dataset. We
found that the overall performance of our proposed fusion
method was much better than radiomics and data fusion
strategy, with the averaged accuracy increased by 4.9% and
3.8%, averaged AUC increased by 3.7% and 2.2%, averaged
sensitivity increased by 9.7% and 5.6%, averaged specificity
Frontiers in Oncology | www.frontiersin.org 7228
increased by 3.4% and 1.5%, averaged PPV increased by 6.8%
and 8.8%, averaged NPV increased by 1.9% and 2.2%, averaged
Kappa increased by 12.2% and 8.0%, respectively. According to
Table 2, the averaged evaluation indices were also demonstrated
with bar plots in Figure 5 for better illustration.

Comparing Table 2 with Table 1, we observed that the overall
performance of multimodal models was superior to that of any
model trained with unimodal MRI images, whether for the
radiomics or our MMIDFNet method. Meanwhile, through using
the multimodal model with multimodal MRI images, the difference
between sensitivity and specificity was significantly reduced.

To further evaluate the effectiveness of our proposed
method, we compared our method with state-of-the-art
A

B

D

C

FIGURE 3 | The receiver operating characteristic (ROC) curves of unimodal prediction models on three validation folds using our MMIDFNet method. (A) T1
modality. (B) T2 modality. (C) T1ce modality. (D) Flair modality.
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methods. The results are provided in Table 3. We observe that
our decision fusion model achieves the highest averaged
F1_score (0.878), Balanced_Acc (0.772), and Kappa (0.773)
compared with the other methods. The F1_score of our
method exceeds the methods of Pei at al (4)., Xue et al. (24),
Pei et al. (25), and Yin et al. (26) at 5.9% (0.878 vs. 0.829), 13.9%
(0.878 vs. 0.771), 13.9% (0.878 vs. 0.771), and 2.5% (0.878 vs.
0.857), respectively.
DISCUSSION

To further improve the performance of glioma subtype
classification using MRI images only, we proposed a multimodal
MRI image decision fusion-based network for glioma classification.
Inourmethod, during the training stage,weused the images of each
MRI modality to train the network to obtain its best accuracy and
obtained four pre-trained unimodal models. During the inferring
Frontiers in Oncology | www.frontiersin.org 8229
stage, considering that different unimodal models have different
predictive performance for three glioma subtypes, we assigned the
weights for each unimodal model according to their classification
capabilities to fully exploit their complementary predictive
information of multi-class classification. Based on the decision
fusion strategy, we assembled the four unimodal models together
by using a linear weighted module and formed our multimodal
prediction model for glioma subtype classification. The final
predicted probabilities of the multimodal model were obtained by
calculating the linear weighted sum of the predicted probabilities of
the four pre-trained unimodal models. Thus, we improved the
overall prediction performance of our multimodal prediction
model by integrating the local predictive decision of each
unimodal prediction model.

Afindingof this study is that thedecision fusionmodelusingour
MMIDFNet method outperformed the radiomics model based on
radiomics in predicting glioma subtypes with multimodal MRI
images (accuracy: 0.878 vs. 0.837). This is consistent with the
TABLE 1 | Three-fold cross-validation performance of unimodal prediction models using radiomics and our proposed MMIDFNet.

Methods Modality Fold ACC AUC SEN SPE PPV NPV

Radiomics T1 1 0.730 0.734 0.546 0.792 0.807 0.865
2 0.689 0.755 0.522 0.765 0.748 0.844
3 0.699 0.737 0.610 0.792 0.682 0.812

Average 0.706 0.742 0.559 0.783 0.746 0.840
95% CI [0.672, 0.740] [0.724, 0.760] [0.487, 0.632] [0.758, 0.808] [0.646, 0.846] [0.798, 0.883]

T2 1 0.703 0.775 0.554 0.787 0.657 0.824
2 0.743 0.827 0.596 0.816 0.722 0.875
3 0.712 0.712 0.560 0.820 0.615 0.843

Average 0.719 0.771 0.570 0.808 0.665 0.847
95% CI [0.686, 0.753] [0.679, 0.863] [0.534, 0.606] [0.779, 0.836] [0.578, 0.751] [0.806, 0.889]

T1ce 1 0.838 0.908 0.706 0.890 0.867 0.928
2 0.784 0.841 0.650 0.854 0.770 0.905
3 0.822 0.856 0.756 0.903 0.752 0.902

Average 0.815 0.868 0.704 0.882 0.796 0.912
95% CI [0.770, 0.859] [0.812, 0.925] [0.619, 0.789] [0.842, 0.923] [0.697, 0.895] [0.889, 0.934]

Flair 1 0.730 0.788 0.570 0.792 0.763 0.881
2 0.685 0.718 0.557 0.787 0.625 0.813
3 0.743 0.740 0.585 0.810 0.756 0.888

Average 0.719 0.749 0.571 0.796 0.715 0.861
95% CI [0.671, 0.768] [0.691, 0.806] [0.548, 0.593] [0.777, 0.816] [0.590, 0.839] [0.794, 0.927]

MMIDFNet T1 1 0.757 0.724 0.572 0.821 0.813 0.894
2 0.689 0.696 0.509 0.767 0.663 0.890
3 0.712 0.780 0.516 0.777 0.701 0.873

Average 0.719 0.733 0.532 0.788 0.726 0.886
95% CI [0.664, 0.775] [0.665, 0.802] [0.477, 0.588] [0.742, 0.834] [0.601, 0.850] [0.868, 0.904]

T2 1 0.743 0.835 0.542 0.794 0.742 0.907
2 0.730 0.749 0.560 0.820 0.687 0.854
3 0.726 0.788 0.591 0.822 0.642 0.853

Average 0.733 0.791 0.564 0.812 0.690 0.871
95% CI [0.719, 0.747] [0.722, 0.860] [0.525, 0.604] [0.787, 0.837] [0.610, 0.770] [0.822, 0.921]

T1ce 1 0.838 0.907 0.764 0.885 0.842 0.909
2 0.824 0.885 0.667 0.897 0.749 0.934
3 0.836 0.883 0.694 0.900 0.859 0.929

Average 0.833 0.892 0.708 0.894 0.817 0.924
95% CI [0.821, 0.845] [0.870, 0.913] [0.628, 0.788] [0.881, 0.907] [0.722, 0.911] [0.903, 0.945]

Flair 1 0.770 0.782 0.669 0.855 0.755 0.866
2 0.703 0.750 0.537 0.767 0.813 0.896
3 0.753 0.752 0.640 0.852 0.673 0.869

Average 0.742 0.761 0.615 0.825 0.747 0.877
95% CI [0.686, 0.798] [0.733, 0.790] [0.504, 0.726] [0.745, 0.905] [0.634, 0.860] [0.851, 0.903]
February 2
022 | Volume 12 |
ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval; Bold Value, average value of 3 folds.
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FIGURE 4 | The receiver operating characteristic (ROC) curves of multimodal prediction models on three validation folds in our study. (A) Radiomics model. (B) Data
fusion model. (C) Decision fusion model.
TABLE 2 | Three-fold cross-validation performance of multimodal prediction models using radiomics, data fusion strategy, and our proposed MMIDFNet methods.

Models Fold ACC AUC SEN SPE PPV NPV Kappa

Radiomics 1 0.851 0.874 0.702 0.885 0.905 0.945 0.699
2 0.824 0.875 0.705 0.897 0.793 0.922 0.672
3 0.836 0.862 0.706 0.914 0.724 0.927 0.695

Average 0.837 0.870 0.704 0.899 0.807 0.931 0.689
95% CI [0.815,0.859] [0.859,0.882] [0.701,

0.708]
[0.875,0.922] [0.661,0.954] [0.912,0.951] [0.665,0.712]

Data
fusion

1 0.865 0.898 0.732 0.913 0.890 0.943 0.740
2 0.838 0.879 0.744 0.926 0.741 0.922 0.713
3 0.836 0.871 0.717 0.908 0.745 0.921 0.695

Average 0.846 0.883 0.731 0.916 0.792 0.929 0.716
95% CI [0.820,0.872] [0.860,0.905] [0.709,

0.753]
[0.901,0.931] [0.656,0.928] [0.909,0.949] [0.680,0.752]

Decision fusion 1 0.892 0.902 0.781 0.919 0.924 0.959 0.789
2 0.865 0.909 0.741 0.926 0.821 0.949 0.749
3 0.877 0.896 0.795 0.946 0.842 0.939 0.780

Average 0.878 0.902 0.772 0.930 0.862 0.949 0.773
95% CI [0.856,0.900] [0.892,0.913] [0.727,

0.817]
[0.908,0.953] [0.775,0.949] [0.933,0.965] [0.739,0.806]
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findings of recent studies (38, 39). Moreover, as for unimodal
models, our proposed MMIDFNet method also generated overall
better results than our radiomics method. As described above, the
radiomics-based methods comprised three tightly coupled stages:
feature extraction, feature selection, and classification model
building. Any small variations in each of the stages may affect the
final prediction accuracy (39). Furthermore, compared to
radiomics-based methods, deep learning-based methods are more
flexible and superior in feature extraction since the hierarchy of
features canbe learnedautomatically fromlow level tohigh level ina
layer-by-layer manner in the training phase (40).

It should be noted that the performance variability of brain
tumor classification based on deep learning methods depends on
the designed network architecture and trained hyper-parameters
(41). Through the comparisons, we found that our MMIDFNet
method performed better than the other four recent state-of-the-
art methods based on the deep learning method (4, 24–26). This
is mainly due to the adopted tumor segmentation algorithm,
classification network, and image fusion strategy.

The region of a tumor lesion may have different image
contrast properties in different imaging modalities (42). In
contrast to other MRI modality images, the tumor boundary in
the T1ce sequence is more significantly different from normal
tissue, which facilitates automatic tumor segmentation. Besides,
the T1ce sequence can better provide the condition of
Frontiers in Oncology | www.frontiersin.org 10231
intratumoral so as to distinguish tumors from non-neoplastic
lesions. Note that in our experimental results, either with the
radiomics method or with our MMIDFNet method, the
classification performance using T1ce modality images was
significantly better than that using the other three modalities.
These results are consistent with previous observations (25) and
indicate that T1ce modality images should not be neglected in
studies of glioma classification using multimodal MRI.

As for the glioma classification with multimodal MRI, how to
mine rich feature representations across multimodal MRI images
is the key factor in improving classification performance. Recent
studies showed that image fusion can be operated at three levels:
data, feature, and decision (27). Actually, as for our three
multimodal prediction models, the radiomics model adopted
the strategy of feature-level fusion, the data fusion model used
the strategy of data-level fusion, and the decision fusion model
employed the strategy of decision-level fusion. Our comparison
results showed that, whatever the level of fusion, the accuracy of
our multimodal models outperforms any models trained using
unimodal MRI images, which indicates that each MRI modality
can provide complementary features. In our radiomics method,
through concatenating the four unimodal MRI features together,
the accuracy of the RF classification model was raised to 0.837.
Besides, as for our MMIDFNet method, the accuracy of the data
fusion model (0.846) is 3.2% lower than that of the decision
TABLE 3 | Performance comparison of other state-of-the-art studies with ours.

Metrics Pei et al. (4) Xue et al. (24) Pei et al. (25) Yin et al. (26) Radiomics Data fusion Decision fusion

F1_score
95% CI

0.829 0.771 0.771 0.857 0.837
[0.815, 0.859]

0.846
[0.820, 0.872]

0.878
[0.856, 0.900]

Balanced_Acc
95% CI

0.749 NA 0.698 0.820 0.704
[0.701, 0.708]

0.731
[0.709, 0.753]

0.772
[0.727, 0.817]

Kappa
95% CI

0.715 NA 0.627 0.767 0.689
[0.665, 0.712]

0.716
[0.680, 0.752]

0.773
[0.739, 0.806]
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FIGURE 5 | Comparison of three-fold cross-validation performance of the three multimodal prediction models.
| Article 819673

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Guo et al. Multimodal MRI Image Decision Fusion
fusion model (0.878) via 3-fold cross-validation. This is mainly
caused by the limitations of the data-level fusion strategy that
does not fully take advantage of the features underlying each
modality data and does not deal with how to fuse the features
from the multimodal MRI images (33, 43, 44). However, in our
decision fusion model, we used the weighting manner to
ensemble the unimodal models in inferr ing stage.
Theoretically, the fraction of each modality should be
positively related to its contribution. From Table 1, we noticed
that T1ce was the most useful modality for the prediction,
followed by Flair, T2, and T1. In our fusion model, the weights
for T1ce, Flair, T2, and T1 modalities are 2, 1, 0.7, and 0.3,
respectively, which conform to the theoretical analysis and
validate that our decision fusion model can fully explore the
complementary information of different imaging modalities.

Brain tumor segmentation in MRI is of crucial importance for
the subsequent diagnosis of brain tumors (45). Our efficient
MMIDFNet method as well as radiomics method for glioma
classification however relies on tumor segmentation performance.
Any small variations in this stage may affect the final prediction
performance and stability of the final prediction models. What
cannot be ignored is that we employed a pre-trained tumor
segmentation model from the BraTS challenge for tumor
segmentation, while we did not use the ground truth delineated
by experienced radiologists to segment the tumor regions from
original MRI images. Although the segmentation result is not as
accurate as the ground truth, we minimized the adverse effects
caused by inaccurate segmentation by adopting the central clipping
manner to segment out the whole tumor regions.

Although encouraging, our method has several limitations.
First, as a retrospective study, the sample size of the dataset used
in the present study was limited, which has an adverse effect on
the robustness of our designed model. Therefore, the few-shot
learning method may be a better choice to handle the problem.
Second, we used only MRI modalities in the present study
without considering other types of data, especially pathological
whole-slide images. To further improve the performance of
glioma subtype classification, in the future, we could try to
combine MRI, pathology images, molecular genetic
information, and other clinical data to conduct a multi-omics
clinical study. Third, the number of subtype “G” in our training
set was about 60.2%, and this resulted in the class imbalance
issue. To handle this issue, we used the focal loss function
through balancing the loss of different subtypes, which indeed
Frontiers in Oncology | www.frontiersin.org 11232
alleviated the issue. However, this scheme might not be optimal
because it ignores the differences in data distribution. Therefore,
to deal with this common problem in medical images
classification, more effective measures for forming more
balanced data will be considered in our future work.

In conclusion, we studied the preoperative glioma subtype
classification by developing a multimodal MRI image decision
fusion-based network based on a deep learning technique.
Through designing a linear weighted module to assemble the
unimodal models trained with unimodal MRI images together,
our mult imodal predict ion model ful ly mined the
complementary information of multimodal MRI images.
Extensive experimental results showed that the proposed
MMIDFNet method was superior to recent state-of-the-art
methods, which suggests its potential use in clinical practice
for glioma subtype classification based on only MRI images.
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Integration of MRI-Based Radiomics
Features, Clinicopathological
Characteristics, and Blood
Parameters: A Nomogram Model for
Predicting Clinical Outcome in
Nasopharyngeal Carcinoma
Zeng-Yi Fang1,2,3, Ke-Zhen Li1,2, Man Yang1,4, Yu-Rou Che1,4, Li-Ping Luo1,3,4,
Zi-Fei Wu1,4, Ming-Quan Gao1,4, Chuan Wu1,4, Cheng Luo1, Xin Lai1, Yi-Yao Zhang1,4,
Mei Wang1,4, Zhu Xu1,2, Si-Ming Li1,4, Jie-Ke Liu1,4, Peng Zhou1,4

and Wei-Dong Wang1,2,3,4*

1 Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China, 2 Department of Oncology,
School of Clinical Medicine, Southwest Medical University, Luzhou, China, 3 Radiation Oncology, Key Laboratory of Sichuan
Province, Chengdu, China, 4 School of Medicine, University of Electronic Science and Technology of China, Chengdu, China

Purpose: This study aimed to develop a nomogram model based on multiparametric
magnetic resonance imaging (MRI) radiomics features, clinicopathological characteristics,
and blood parameters to predict the progression-free survival (PFS) of patients with
nasopharyngeal carcinoma (NPC).

Methods: A total of 462 patients with pathologically confirmed nonkeratinizing NPC
treated at Sichuan Cancer Hospital were recruited from 2015 to 2019 and divided into
training and validation cohorts at a ratio of 7:3. The least absolute shrinkage and selection
operator (LASSO) algorithm was used for radiomics feature dimension reduction and
screening in the training cohort. Rad-score, age, sex, smoking and drinking habits, Ki-67,
monocytes, monocyte ratio, and mean corpuscular volume were incorporated into a
multivariate Cox proportional risk regression model to build a multifactorial nomogram.
The concordance index (C-index) and decision curve analysis (DCA) were applied to
estimate its efficacy.

Results: Nine significant features associated with PFS were selected by LASSO and used
to calculate the rad-score of each patient. The rad-score was verified as an independent
prognostic factor for PFS in NPC. The survival analysis showed that those with lower rad-
scores had longer PFS in both cohorts (p < 0.05). Compared with the tumor–node–
metastasis staging system, the multifactorial nomogram had higher C-indexes (training
cohorts: 0.819 vs. 0.610; validation cohorts: 0.820 vs. 0.602). Moreover, the DCA curve
showed that this model could better predict progression within 50% threshold probability.
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Conclusion: A nomogram that combined MRI-based radiomics with clinicopathological
characteristics and blood parameters improved the ability to predict progression in
patients with NPC.
Keywords: radiomics, progression-free survival, nasopharyngeal carcinoma, Ki-67, blood parameters
1 INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a malignant tumor in the
mucous membrane of the nasopharynx. The incidence and
mortality of NPC vary in regional distribution, especially in
Southeast Asia (1–3). Although intensity-modulated radiotherapy
(IMRT) significantly improved the prognosis of NPC, some
patients still experience progression (4, 5). At present, the risk
assessment of NPC is mainly determined by the tumor–node–
metastasis (TNM) staging system, which only has 61% accuracy for
predicting the local recurrence of NPC (6). While it incorporates
local tumor invasion, positive lymphnodes, and distantmetastases,
TNM cannot explain the temporal and spatial heterogeneity or
changes in the internal and external environments of tumor cells.
Plasma Epstein–Barr virus (EBV) DNA, which may affect the
growth and apoptosis of the NPC cell line, has been used as an
independent prognosticmarker in endemic areas, but the detection
rate of EBV is low in nonendemic areas (7, 8). Therefore, it is urgent
to identify more representative and comprehensive biomarkers to
predict NPC prognosis.

Many studies reported that a large number of clinical biomarkers
suchasmonocytes (MONO),mean corpuscular volume (MCV), and
Ki-67 expression are associated with the tumor microenvironment
and tumor immune escape (9–11). There are no regional differences
in the expression of these markers. Beyond these biomarkers, the
emerging field of radiomics is supposed to be a bridge between
medical imaging and clinical medicine (12). Radiomics features are
used for tumor diagnosis, phenotype, and prognosis (13–15). By
extracting innumerable quantitative imaging features, the differences
in tumor heterogeneity and microenvironment may be explained.
Some recent studies showed thatmagnetic resonance imaging (MRI)
radiomics were significantly associatedwithNPCprognosis (16–18).
However, no publications integrated blood parameters, Ki-67, and
MRI radiomics to predict progression-free survival (PFS) in patients
with NPC.

We built and validated a nomogram prediction model based
on MRI, clinicopathological parameters, and blood parameters
to visually demonstrate the PFS of NPC and guide clinical
diagnosis and treatment.
magnetic resonance imaging; PFS,
aryngeal carcinoma; LASSO, least
tor algorithm; MONO, monocytes;
an corpuscular volume; C-index,
analysis; IMRT, intensity-modulated
sis staging system; EBV, Epstein–Barr
py; IC, induction chemotherapy; AC,
co-occurrence matrix; GLRLM, gray-
l size zone matrix; GLDM, gray-level
od gray tone difference matrix; ROI,
characteristic curve
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2 MATERIALS AND METHODS

2.1 Patients
Data from patients treated in Sichuan Cancer Hospital from
January 2015 to December 2019 were reviewed. The inclusion
and exclusion criteria are presented in the Supplementary Data.
The study workflow is displayed in Figure 1. A total of 462
patients were included and randomly divided into a training
cohort (n = 323) and validation cohort (n = 139) at a 7:3 ratio.
The method and criteria of Ki-67 scoring are detailed in the
Supplementary Data. Clinical data (age, gender, smoking and
drinking habits, TNM, plasma EBV DNA) and blood parameters
were collected. All patients were restaged according to the 8th
Edition American Joint Committee on Cancer TNM Staging
System (19).

2.2 Treatment
2.2.1 Radiotherapy
All patients underwent IMRT. Delineation of the target area and
organs at risk were based on ICRU reports 50 and 62. The
prescribed doses for the target area were GTVnx 66–76 Gy,
GTVnd 66–70 Gy, CTV1 60–62 Gy, CTV2 50–56 Gy, and
CTVnd 50–56 Gy (28–33 fractions).

2.2.2 Chemotherapy
Patients with stage II (n = 23) underwent concurrent
chemoradiotherapy (CCRT). Those with stages III–IV (n =
439) were treated with two cycles of induction chemotherapy
(IC) followed by CCRT. The IC drugs were cisplatin (75 mg/m2,
d1–3) plus paclitaxel (135 mg/m2, d1) every 3 weeks for two
cycles. The CCRT drug was cisplatin (75 mg/m2, d1–3) given
every 3 weeks.

2.3 Follow-Up
After patients completed all treatments, they were followed-up
every 3 months in the first 2 years, every 6 months in years 3–5,
and annually thereafter. The review items included blood
parameters, nasopharyngeal MRI, chest computed tomography,
abdominal ultrasonography, or isotope bone scanning, and each
review item was determined according to the specific situation of
the patient. PFS was set as the primary endpoint.

2.4 MRI Acquisition and Image
Preprocessing
The pretreatment MRI parameters are listed in the Supplementary
Data. To avoid inhomogeneity due to different MRI devices, two
image preprocessing steps were applied. First, we used the N4ITK
algorithm to remove bias field artifacts (20). Second, the intensity
range was adjusted from 0 to 255. In addition to the original images,
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the Gaussian Laplace filter with sigma values of 4 and 5 mm was
used to reconstruct the images, and the features of the multiscale
resolution were extracted (21, 22). Preprocessing was performed in
the SimpleITK 2.0.2, which is an open-source platform for Python
3.8.5 (www.python.org).

2.5 Image Segmentation
We used 3D Slicer 4.11 software (open source and multiplatform
software; www.slicer.org) for manual segmentation (23). A
radiologist with 20 years of experience delineated the region of
interest (ROI), which refers to the margin of the nasopharyngeal
tumor at each level on axial CET1-w and T2-w images.

2.6 Extraction of Radiomics Features
A total of 1,037 radiomics features were obtained by
SlicerRadiomics (an extension for 3D Slicer 4.11 that
encapsulates pyradiomics library) from axial CET1-w and T2-
w images, respectively. Features of different categories were
considered: first-order statistics, shape-based (3D), gray-level
co-occurrence matrix (GLCM), gray-level run length matrix
(GLRLM), gray-level size zone matrix (GLSZM), gray-level
dependence matrix (GLDM), neighborhood gray tone
difference matrix (NGTDM), and wavelet-based features.
Frontiers in Oncology | www.frontiersin.org 3237
2.7 Postprocessing of Radiomics Features
and Building of Radiomics Signature
To ensure the comparability of different features, Z-score
normalization was performed to unify data from different
levels into the same level. Feature selection was conducted in
the training cohort (n = 323). We used the least absolute
shrinkage and selection operator (LASSO) algorithm for
feature dimension reduction and screening. LASSO attempts to
shrink some coefficients of the models and sets others to zero, but
it may lead to overfitting, so we added a 10-fold cross-validation.
Nine noteworthy features were selected. These features were
linearly fitted according to the weights of their coefficients; for
each patient, the rad-score was calculated. The rad-score was
then used to build the radiomics signature.
2.8 Radiomics Survival Model
Development and Validation
To find the rad-score cutoff with the best sensitivity and
specificity, we generated a receiver operating characteristic
curve (ROC) using data from the training cohort. To explore
the potential association between radiomics features and PFS, we
separated patients in both cohorts into high- and low-risk groups
based on the cutoff value of rad-scores (patients below this cutoff
FIGURE 1 | The workflow of MRI-based radiomic analysis. After manual tumor segementation, 2074 features of each patients were extracted. Radiomics features
selection by the LASSO algorithm. These selected features were linearly fitted according to the weights of the coefficients to calculate the rad-score. Decision curve
analysis (DCA) compared the net benefit rate between the TNM stage system (Model 1 ) with our nomogram model (Model 4).
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value were considered low risk). Kaplan–Meier survival analysis
was used to identify PFS differences in both cohorts.

2.9 Evaluation and Comparison
of the Multifactorial Prognostic
Nomogram Model
Four models were set up to compare the prognostic efficacy
(model 1: clinical stage; model 2: radiomics; model 3: clinical
stage + rad-score; model 4: clinical data + rad-score). The
concordance index (C-index) was used to evaluate univariate
or multivariate Cox models. A nomogram was built to visualize
the results of the best prediction model in the training cohort
using the R software (version 4.1.0). We evaluated the uniformity
of the nomogram by plotting 3- and 5-year calibration curves.
Decision curve analysis (DCA) was performed to compare the
net benefit rate between the TNM stage system and this
nomogram for predicting prognosis.

2.10 Statistical Analysis
Statistical analyses were performed with the R software (version
4.1.0; www.r-project.org), SPSS (SPSS version 20.0, IBM Corp,
Armonk, NY, USA), and Python 3.8.5. Clinical data were
compared between the training and validation cohorts with
Independent samples t-tests, Mann–Whitney U tests, or Chi-
square tests. Missing data was processed using the “miceforest”
package from Python. Several R packages were employed:
LASSO in the “glmnet” package was used to select radiomics
features. Kaplan–Meier survival, Cox proportional hazard
regression, and C-index were calculated by the “survival” and
“rms” packages. DCA was performed with the “ggDCA” package.
The “pROC” and “ggplot2” packages were applied to generate
the ROC curve and rad-score histogram, respectively. For all
statistical tests, differences were considered significant at p < 0.05.
3 RESULTS

3.1 Clinical Parameters
This retrospective study included 462 patients with
pathologically confirmed nonkeratinizing NPC who were
treated at Sichuan Cancer Hospital between January 2015 and
December 2019. The clinical parameters of all patients in the
training and validation cohorts are listed in Table 1. The median
age was 49 years (range: 12–82 years), with 329 men and 133
women. The numbers of patients with each clinical stage were 0,
23, 193, 226, and 20 for stages I, II, III, IVA, and IVB,
respectively. The Ki-67 cutoff value from the ROC curve was
37.5% (range: 3%–90%). The cutoff value for classifying EBV
infection status was 400 copies/ml (negative: <400 copies/ml;
positive: ≥400 copies/ml). A total of 330 patients who met the
inclusion criteria underwent plasma EBV DNA tests before
treatment, and 112 were positive. Among them, there were 2
cases of stage II, 24 cases of stage III, and 86 cases of stage IV. The
interpolation of EBV DNAmissing data was performed using the
multiple substitutions in chained equations (MICE) method of
random forest. The Supplementary Data detail the results after
Frontiers in Oncology | www.frontiersin.org 4238
interpolating EBV DNA. The median PFS was 33.15 months
(0.6–76.2 months) for all patients; 45 patients progressed,
including 23 deaths, 14 distant metastases, and 8 recurrences.

3.2 Blood Parameters
All blood parameters in the training and validation cohorts are
shown in Table 2. The cutoff values identified with ROC curves
are shown in the Supplementary Data, as are the values of the
areas under curve (AUCs) for blood parameters. The highest
AUC values were found for MONO, MONO%, and MCV, which
were 0.637, 0.626, and 0.568, respectively. These were
incorporated into model 4.

3.3 Radiomics Signature Development
In total, 2,074 features were obtained from each ROI. The final nine
key features were selected by LASSO ((1) CET1-w_Log-sigma-5-0-
mm_glrlm_HighGrayLevelRunE-mphasis; (2) CET1-w_wavelet-
LLH_glcm_ClusterShade; (3) CET1-w_wavelet-LLH_gl-szm_
GrayLevelNonUniformity; (4) CET1-w_wavelet-HHL_glcm_
Correlation; (5) CE-T1-w_wavelet-HHH_firstorder_Mean; (6)
CET1-w_wavelet-HHH_gldm_LargeDepen-denceHighGray
LevelEmphasis; (7) T2-w_log-sigma-4-0-mm_firstorder_
Maximum; (8) T2-w_wavelet-HHL_firstorder_Maximum; (9) T2-
w_wavelet-HHL_glcm_InverseVar-iance). The rad-score was
calculated for each patient according to the weights of their
coefficients. The formula for calculating the rad-score is detailed in
the Supplementary Data. The features selected by LASSO and the
histogram of every patient’s rad-score are shown in Figures 2A–D.

3.4 Model Predictions and Comparison
The C-indexes of the four models are listed in Table 3. The C-
index of model 2 was significantly higher than that of model 1 in
both cohorts, which suggested that the predictive effect of
radiomics may surpass that of the TNM stage system.
Moreover, when comparing models 1 and 3, we found that
model 3 that included the rad-score could remarkably predict the
prognostic potency of the clinical stage. Model 4 integrating
clinical data and radiomics had the best probability that the
predicted results were consistent with the observed results (C-
index of training and validation: 0.823 (95% CI: 0.745–0.901) vs.
0.812 (95% CI: 0.693–0.930)). The nomogram of model 4 is also
shown in Figure 3A. Notably, the calibration curves of 3–5 years
were very close to the diagonal line (Figures 3B, C). The DCA
results for models 4 and 1 are presented in Figure 3D,
confirming the remarkable effectiveness of model 4.

3.5 Kaplan–Meier Survival Analysis
Kaplan–Meier survival curves were drawn based on rad-scores.
The cutoff value from the ROC curve was −0.021. A rad-score
below this cutoff was considered low risk. In both cohorts, the
low-risk group had significantly longer PFS (p < 0.05) (Figure 4).
4 DISCUSSION

We designed this study to build and validate multimodal
information from MRI-based radiomics as an effective way to
March 2022 | Volume 12 | Article 815952
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estimate PFS in patients with NPC. Our findings suggested that
the multidimensional nomogram combining clinicopathological
characteristics, blood parameters, and rad-score was superior to
the prediction performance of the TNM staging system.
Moreover, using the cutoff value of the rad-score, patients
could be distinguished into high- and low-risk groups, and the
latter had longer PFS.

In recent years, a growing number of studies have reported
that MRI radiomics features can better reflect prognostic
information for NPC because they may explain the inherent
temporal or spatial heterogeneity of tumors on imaging (24–26).
Kim et al. studied CET1-w and T2-w MRI images of 81 patients
with NPC and conclude that MR-based radiomics features
showed better performance than the TNM staging system and
clinical variables. Their model combined radiomics features with
TNM stage and clinical variables to provide the highest AUC
values (27). Shen et al. found that a model that incorporated
radiomics, clinical stage, and EBV DNA status from 327
Frontiers in Oncology | www.frontiersin.org 5239
nonmetastatic NPC, yielded a high C-index in two cohorts
[0.805 (95% CI: 0.768–0.841) vs. 0.874 (95% CI: 0.861–0.877)]
(28). In our study, the model that integrated clinical data with
radiomics features also performed best; the C-index values of
model 4 were 0.823 (95% CI: 0.745–0.901) in the training cohort
and 0.812 (95% CI: 0.693–0.930) in the validation cohort. The C-
index of our validation cohort was lower than that reported in
the study by Shen. A possible explanation may be that we
included metastatic NPC patients and had a larger sample size,
which may have improved the generalizability of the prediction
model. Compared with other research, the parameters included
in our model are more universal, without regional differences, so
the model has a higher degree of applicability. Based on our
nomogram, the probabilities of 3- and 5-year PFS of a given
patient can be visually and easily estimated by using the
corresponding parameters measured before treatment. If
patients with short PFS are identified as early as possible,
clinicians can enhance treatment without increasing side effects
TABLE 1 | Clinical parameters of patients in the training and validation cohorts.

Training cohort (n = 323) Validation cohort (n = 139) p-value

Gender 0.652
Male 228 (70.6%) 101 (72.7%)
Female 95 (29.4%) 38 (27.3%)
Age (years) 0.949
≥49 167 (51.7%) 70 (50.4%)
<49 156 (48.3%) 69 (49.6%)
Overall stage 0.000
I 0 0
II 18 (5.6%) 5 (3.6%)
III 132 (40.9%) 61 (43.9%)
IVA 158 (48.9%) 68 (48.9%)
IVB 15 (4.6%) 5 (3.6%)
T stage 0.000
T1 20 (6.2%) 9 (6.5%)
T2 77 (23.8%) 36 (25.9%)
T3 118 (36.5%) 49 (35.3%)
T4 108 (33.5%) 45 (32.3%)
N stage 0.000
N0 5 (1.5%) 4 (2.9%)
N1 42 (13.0%) 16 (11.5%)
N2 191 (59.1%) 78 (56.1%)
N3 85 (26.4%) 41 (29.5%)
M stage 0.000
M0 308 (95.4%) 134 (96.4%)
M1 15 (4.6%) 5 (3.6%)
Smoking 0.036
No 201 (62.2%) 72 (51.8%)
Yes 122 (37.8%) 67 (48.2%)
Drinking 0.111
No 246 (76.2%) 96 (69.1%)
Yes 77 (23.8%) 43 (30.9%)
Ki-67 (%) 0.680
≥37.5 238 (73.7%) 98 (70.5%)
<37.5 85 (26.3%) 41 (29.5%)
EBV 0.664
Positive 76 (23.5%) 36 (25.9%)
Negative 153 (47.4%) 65 (46.8%)
None 94 (29.1%) 38 (27.3%)
March 2022 | Volume 12 | Article
Statistical comparisons between the training and validation cohorts were performed with Independent samples t-tests, Mann–Whitney U tests, or Chi-square tests. p-values <0.05 were
considered statistically significant.
EBV, Epstein–Barr virus.
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TABLE 2 | Blood parameters in the training and validation cohorts.

Training cohort (n = 323) Validation cohort (n = 139) p-value

WBC (109/L) 0.439
≥6.695 111 (34.4%) 45 (32.4%)
<6.695 212 (65.6%) 94 (67.6%)
GR (109/L) 0.833
≥3.105 230 (71.2%) 100 (71.9%)
<3.105 93 (28.8%) 39 (28.1%)
LYMPH (109/L) 0.636
≥1.960 77 (23.8%) 31 (22.3%)
<1.960 246 (76.2%) 108 (77.7%)
MONO (109/L) 0.643
≥0.385 150 (46.4%) 59 (42.4%)
<0.385 173 (53.6%) 80 (57.6%)
EO (109/L) 0.841
≥0.175 95 (29.4%) 38 (27.3%)
<0.175 228 (70.6%) 101 (72.7%)
BASO (109/L) 0.877
≥0.035 76 (23.5%) 35 (25.2%)
<0.035 247 (76.5%) 104 (74.8%)
GR% 0.868
≥69.150 82 (25.4%) 47 (33.8%)
<69.150 241 (74.6%) 92 (66.2%)
LYMPH% 0.944
≥29.850 97 (30%) 46 (33.1%)
<29.850 226 (70%) 93 (66.9%)
MONO% 0.595
≥5.950 168 (52%) 75 (54%)
<5.950 155 (48%) 64 (46%)
EO% 0.856
≥2.050 156 (48.3%) 64 (46%)
<2.050 167 (51.7%) 75 (54%)
BASO% 0.856
≥0.350 224 (69.3%) 89 (64%)
<0.350 99 (30.7%) 50 (36%)
RBC (1012/L) 0.262
≥4.685 132 (40.9%) 62 (44.6%)
<4.685 191 (59.1%) 77 (55.4%)
HGB (g/L) 0.616
≥125 266 (82.4%) 112 (80.6%)
<125 57 (17.6%) 27 (19.4%)
HCT 0.899
≥44.050 114 (35.3%) 50 (36%)
<44.050 209 (64.7%) 89 (64%)
MCV (fl) 0.057
≥95.650 106 (32.8%) 39 (28.1%)
<95.650 217 (67.2%) 100 (71.9%)
MCH (pg) 0.424
≥32.750 34 (10.5%) 10 (7.2%)
<32.750 289 (89.5%) 129 (92.8%)
MCHC (g/L) 0.132
≥337.500 40 (12.4%) 23 (16.5%)
<337.500 283 (87.6%) 116 (83.5%)
RDW_CV 0.454
≥12.950 210 (65%) 94 (67.6%)
<12.950 113 (35%) 45 (32.4%)
RDW_SD (fl) 0.524
≥42.850 176 (54.5%) 71 (51.1%)
<42.850 147 (45.5%) 68 (48.9%)
PLT (109/L) 0.698
≥191 182 (56.3%) 82 (59%)
<191 141 (43.7%) 57 (41%)
MPV (fl) 0.099
≥12.250 98 (30.3%) 28 (20.1%)
<12.250 225 (69.7%) 111 (79.9%)

(Continued)
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(e.g., by combining targeted treatment or immunotherapy), pay
attention to adverse prognostic factors, and ensure an adequate
follow-up period to reduce the risk of disease progression.
Conversely, for patients with a high probability of 3- and 5-
year PFS predicted by the model, it may be possible to reduce the
drug dose and mitigate side effects.
Frontiers in Oncology | www.frontiersin.org 7241
However, several key aspects need to be considered when
developing a clinical radiomics predictive model. Firstly, since
plasma EBV DNA is used as an independent prognostic marker
in endemic areas, many studies have incorporated it in
nomogram construction. The MICE algorithm has the benefit
of fast and efficient memory, which makes the results reliable
TABLE 2 | Continued

Training cohort (n = 323) Validation cohort (n = 139) p-value

PDW 0.615
≥16.050 254 (78.6%) 106 (76.3%)
<16.050 69 (21.4%) 33 (23.7%)
PCT 0.807
≥0.245 110 (34.1%) 47 (33.8%)
<0.245 213 (65.9%) 92 (66.2%)
NLR 0.991
≥2.026 232 (71.8%) 94 (67.6%)
<2.026 91 (28.2%) 45 (32.4%)
PLR 0.990
≥132.020 150 (46.4%) 59 (42.4%)
<132.020 173 (53.6%) 80 (57.6%)
LMR 0.601
≥4.822 113 (35%) 50 (36%)
<4.822 210 (65%) 89 (64%)
March 2022 | Volume 12 | Article
Statistical comparisons between the training and validation cohorts were performed with Independent samples t-tests, Mann–Whitney U tests, or Chi-square tests. p-values of <0.05 were
considered statistically significant.
BASO, basophils; BASO%, ratio of basophils; EO, eosinophils; EO%, ratio of eosinophils; GR, neutrophilic granulocytes; GR%, ratio of neutrophilic granulocytes; HCT, hematocrit; HGB,
hemoglobin; LMR, lymphocyte-to-monocyte ratio; LYMPH, lymphocytes; LYMPH%, ratio of lymphocytes; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin
concentration; MCV, mean corpuscular volume; MONO, monocytes; MONO%, ratio of monocytes; MPV, mean platelet volume; NLR, neutrophil-to-lymphocyte ratio; PCT, plateletcrit;
PDW, platelet distribution width; PLR, platelet to lymphocyte ratio; PLT, platelets; RBC, red blood cells; RDW-CV, variation of RBC distribution width; RDW-SD, standard deviation of RBC
distribution width; WBC, white blood cells.
A B

DC

FIGURE 2 | Radiomics feature selection using the LASSO algorithm. (A) Used the 1O-fold cross validation to identify the optimal penalization coefficient lambda the
minimum was 0.000577, with log (l) = -3.238. (B) The model coefficient trendlines of radiomics features. (C) The histogram of coefficients with 9 features. (D) Rad-
score for each patient. Red bars show scores for patients who survived without progression, while blue bars show scores for patients who happened progression,
metastasis or died.
815952

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fang et al. Clinical-Radiomics Nomogram for NPC Prognosis
TABLE 3 | C-indexes of the four models.

Models Training cohort (n = 323) Validation cohort (n = 139)

1 Clinical stage 0.610 (95% CI: 0.507–0.714) 0.602 (95% CI: 0.474–0.729)
2 Radiomics 0.814 (95% CI: 0.746–0.882) 0.728 (95% CI: 0.618–0.838)
3 Clinical stage + rad-score 0.708 (95% CI: 0.602–0.814) 0.681 (95% CI: 0.562–0.801)
4 Clinical data + rad-score 0.823 (95% CI: 0.745–0.901) 0.812 (95% CI: 0.693–0.930)
Frontiers in Oncology | www.frontiersin.org
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Clinical data included gender, age, Ki-67, smoking and drinking habits, clinical stage, MONO, MONO%, MCV, and EBV DNA.
CI, confidence interval.
A

B

D

C

FIGURE 3 | (A) The nomogram of clinical data and rad-score. (B, C) The calibration curves of the nomogram. (D) Decision curve analysis for Model4 and Model1.
The y-axis measures the net benefit. The red line represents Model 1 (clinical stage). The green line represents Model 4 (clinical data and rad-score). The blue line
assumes that all patients progress. The purple line indicates that no progression is assumed in all patients.
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even with missing ENV DNA data. Currently, we are expanding
the sample size or conducting multicenter studies to address this
issue. Compared with plasma EBV DNA, radiomics features are
more advanced and accurate in predicting prognosis (29). One
study reported that EBV DNA can induce monocytes to produce
interluekin-10, which leads to immune escape (30). Based on
this, we collected easily obtainable blood parameters from NPC,
expecting to find stable markers and incorporate them into the
radiomics nomogram. After drawing the ROC curve for blood
parameters, we found that monocytes had the best sensitivity and
specificity. Two retrospective studies validated age, gender, Ki-
67, and smoking and drinking habits as independent prognostic
factors for NPC (11, 31). Our results showed the model
integrating clinical data and the rad-score was more useful
than those only using radiomics features.

Although we successfully demonstrated the utility of
radiomics data for predicting PFS in patients with NPC, this
study has three major limitations. First, this was a single-center
retrospective study, so the results may not readily be applicable
to other situations and prospective multicenter studies are
needed to confirm our findings. Second, we selected patients
according to strict inclusion criteria, which may have introduced
selection bias. Third, our study only focused on PFS at 3 and 5
years. In the future, we will investigate the long-term overall
survival of NPC and pay more attention to predicting long-term
quality of life using imaging radiomics.

In conclusion, we established an effective clinical-radiomics
nomogram based on MRI findings and several clinical,
pathological, and blood factors. This approach is noninvasive,
visualizable, and individualized and has great potential in
predicting NPC prognosis and treatment. Moreover, we further
confirmed that radiomics features were independent prognostic
factors for NPC.
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March 2022 | Volume 12 | Article 815952

https://www.frontiersin.org/articles/10.3389/fonc.2022.815952/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.815952/full#supplementary-material
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fang et al. Clinical-Radiomics Nomogram for NPC Prognosis
REFERENCES
1. Liang X, Yang J, Gao TNC Center and C Hospital. Nasopharynx Cancer

Epidemiology in China. China Cancer (2016) 25(11):835–40. doi: 10.11735/
j.issn.1004-0242.2016.11.A001

2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global
Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68
(6):394–424. doi: 10.3322/caac.21492

3. Chua ML, Sun Y, Supiot S. Advances in Nasopharyngeal Carcinoma- “West
Meets East.” Br J Radiol (2019) 92(1102):20199004. doi: 10.1259/bjr.20199004

4. Hua YJ, Han F, Lu LX, Mai HQ, Guo X, Hong MH, et al. Long-Term
Treatment Outcome of Recurrent Nasopharyngeal Carcinoma Treated With
Salvage Intensity Modulated Radiotherapy. Eur J Cancer (2012) 48(18):3422–
8. doi: 10.1016/j.ejca.2012.06.016

5. Kong FF, Zhou JJ, Du CR, He XY, Hu CS, Ying HM, et al. Long-Term Survival
and Late Complications of Intensity-Modulated Radiotherapy for Recurrent
Nasopharyngeal Carcinoma. BMC Cancer (2018) 18(1):1139. doi: 10.1186/
s12885-018-5055-5

6. Chen FP, Li L, Qi ZY, Zhou GQ, Rui G, Hu J, et al. Pretreatment Nomograms
for Local and Regional Recurrence After Radical Radiation Therapy for
Primary Nasopharyngeal Carcinoma. J Cancer (2017) 8(13):2595–603.
doi: 10.7150/jca.20255

7. Nilsson JS, Forslund O, Andersson FC, Lindstedt M, Greiff L. Intralesional
EBV-DNA Load as Marker of Prognosis for Nasopharyngeal Cancer. Sci Rep
UK (2019) 9(1):15432. doi: 10.1038/s41598-019-51767-9

8. Prayongrat A, Chakkabat C, Kannarunimit D, Hansasuta P, Lertbutsayanukul
C. Prevalence and Significance of Plasma Epstein-Barr Virus DNA Level in
Nasopharyngeal Carcinoma. J Radiat Res (2017) 58(4):509–16. doi: 10.1093/
jrr/rrw128

9. Kato H, Whiteside TL. Expression of IL-10 and IL-10 Receptors on Peripheral
Blood Lymphocytes and Monocytes in Human Head and Neck Squamous
Cell Carcinoma. Tokai J Exp Clin Med (2011) 36(4):144.

10. BorsettoD,Polesel J, TirelliG,MenegaldoA,Boscolo-RizzoP. PretreatmentHigh
MCVasAdversePrognosticMarker inNonanemicPatientsWithHeadandNeck
Cancer. Laryngoscope (2020) 131(3):E836–45. doi: 10.1002/lary.28882

11. Shi Z, Jiang W, Chen X, Xu M, Zha D. Prognostic and Clinicopathological
Value of Ki-67 Expression in Patients With Nasopharyngeal Carcinoma: A
Meta-Analysis. Ther Adv Med Oncol (2020) 12:175883592095134.
doi: 10.1177/1758835920951346

12. Lambin P, Leijen RTH,Deist TM, Peerlings J, de Jong EEC, vanTimmeren JV, et al.
Radiomics: The Bridge Between Medical Imaging and Personalized Medicine. Nat
Rev Clin Oncol (2017) 14(12):749–62. doi: 10.1038/nrclinonc.2017.141

13. Liu Z, Wang S, Dong D, Wei J, Tian J. The Applications of Radiomics in
Precision Diagnosis and Treatment of Oncology: Opportunities and
Challenges. Theranostics (2019) 9(5):1303–22. doi: 10.7150/thno.30309

14. Aerts HJWH, Velazquez ER, Leijenaar THR, Parmar C, Grossmann P,
Cavalho S, et al. Decoding Tumour Phenotype by Noninvasive Imaging
Using a Quantitative Radiomics Approach. Nat Commun (2014) 5(1):1–8.
doi: 10.138/ncomms5006

15. Haider SP, Burtness B, Yarbrough WG, Payabvash S. Applications of
Radiomics in Precision Diagnosis, Prognostication and Treatment Planning
of Head and Neck Squamous Cell Carcinomas. Cancers Head Neck (2020) 5:6.
doi: 10.1186/s41199-020-00053-7

16. Zhang B, Tian J, Dong D, Gu D, Zhang S. Radiomics Features of
Multiparametric MRI as Novel Prognostic Factors in Advanced
Nasopharyngeal Carcinoma. Clin Cancer Res (2017) 23(15):4259–69.
doi: 10.1158/1078-0432.CCR-16-2910

17. Zhang LL, Huang MY, Li Y, Gao TS, Deng B, Yao JJ, et al. Pretreatment MRI
Radiomics Analysis Allows for Reliable Prediction of Local Recurrence in
Non-Metastatic T4 Nasopharyngeal Carcinoma. EBioMedicine (2019)
42:270–80. doi: 10.1016/j.ebiom.2019.03.050

18. Bologna M, Corino V, Calareso G, Tenconi C, Orlandi E. Baseline MRI-
Radiomics can Predict Overall Survival in Non-Endemic EBV-Related
Nasopharyngeal Carcinoma Patients. Cancers (2020) 12(10):2958.
doi: 10.3390/cancers12102958
Frontiers in Oncology | www.frontiersin.org 10244
19. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, et al.
AJCC Cancer Staging Manual 8th Edition Vol. XVII. New York: Springer
(2017). p. 1032.

20. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al.
N4ITK: Improved N3 Bias Correction. IEEE T Med Imaging (2010) 29
(6):1310–20. doi: 10.1109/TMI.2010.2046908

21. Chaddad A, Sabri S, Niazi T, Abdulkarim B. Prediction of Survival With
Multi-Scale Radiomic Analysis in Glioblastoma Patients. Med Biol Eng
Comput (2018) 56(12):2287–300. doi: 10.1007/s11517-018-1858-4

22. Yu TT, Lam SK, To LH, Tse KY, Cheng NY, Fan YN, et al. Pretreatment
Prediction of Adaptive Radiation Therapy Eligibility Using MRI-Based
Radiomics for Advanced Nasopharyngeal Carcinoma Patients. Front Oncol
(2019) 9:1050. doi: 10.3389/fonc.2019.01050

23. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S,
et al. 3d Slicer as an Image Computing Platform for the Quantitative Imaging
Network. Magn Reson Imaging (2012) 30(9):1323–41. doi: 10.1016/
j.mri.2012.05.001

24. Feng Q, Liang J, Wang L, Niu J, Ding Z. Radiomics Analysis and
Correlation With Metabolic Parameters in Nasopharyngeal Carcinoma
Based on PET/MR Imaging. Front Oncol (2020) 10:1619. doi: 10.3389/
fonc.2020.01619

25. Zhao L, Gong J, Xi YB, Li C, Kang XW, Yin YT, et al. MRI-Based Radiomics
Nomogram may Predict the Response to Induction Chemotherapy and
Survival in Locally Advanced Nasopharyngeal Carcinoma. Eur Radiol
(2020) 30(1):537–46. doi: 10.1007/s00330-019-06211-x

26. Zhuo EH, Zhang WJ, Li HJ, Zhang GY, Jing BZ, Zhou J, et al. Radiomics on
Multi-Modalities MR Sequences can Subtype Patients With Non-Metastatic
Nasopharyngeal Carcinoma (NPC) Into Distinct Survival Subgroups. Eur
Radiol (2019) 29(10):5590–9. doi: 10.1007/s00330-019-06075-1

27. Kim MJ, Choi Y, Sung YE, Lee YS, Kim YS, Ahn KJ, et al. Early Risk-
Assessment of Patients With Nasopharyngeal Carcinoma: The Added
Prognostic Value of MR-Based Radiomics. Transl Oncol (2021) 14
(10):101180. doi: 10.1016/j.tranon.2021.101180

28. Shen H, Wang Y, Liu D, Lv R, Zhang J. Predicting Progression-Free Survival
Using MRI-Based Radiomics for Patients With Nonmetastatic
Nasopharyngeal Carcinoma. Front Oncol (2020) 10:618. doi: 10.3389/
fonc.2020.00618

29. Peng H, Dong D, Fang M, Li L, Tang LL, Chen L, et al. Prognostic Value of
Deep Learning Pet/Ct-Based Radiomics: Potential Role for Future Individual
Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma. Clin
Cancer Res (2019) 25(14):4271–9. doi: 10.1158/1078-0432.CCR-18-3065

30. Lee CH, Yeh TH, Lai HC, Wu SY, Su IJ, Takada K, et al. Epstein-Barr Virus
Zta-Induced Immunomodulators From Nasopharyngeal Carcinoma Cells
Upregulate Interleukin-10 Production From Monocytes. J Virol (2011) 85
(14):7333–42. doi: 10.1128/JVI.00182-11

31. Xiao G, Cao Y, Qiu X, Wang W, Wang Y. Influence of Gender and Age on the
Survival of Patients With Nasopharyngeal Carcinoma. BMC Cancer (2013) 13
(1):226. doi: 10.1186/1471-2407-13-226

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Fang, Li, Yang, Che, Luo, Wu, Gao, Wu, Luo, Lai, Zhang, Wang,
Xu, Li, Liu, Zhou andWang. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
March 2022 | Volume 12 | Article 815952

https://doi.org/10.11735/j.issn.1004-0242.2016.11.A001
https://doi.org/10.11735/j.issn.1004-0242.2016.11.A001
https://doi.org/10.3322/caac.21492
https://doi.org/10.1259/bjr.20199004
https://doi.org/10.1016/j.ejca.2012.06.016
https://doi.org/10.1186/s12885-018-5055-5
https://doi.org/10.1186/s12885-018-5055-5
https://doi.org/10.7150/jca.20255
https://doi.org/10.1038/s41598-019-51767-9
https://doi.org/10.1093/jrr/rrw128
https://doi.org/10.1093/jrr/rrw128
https://doi.org/10.1002/lary.28882
https://doi.org/10.1177/1758835920951346
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.7150/thno.30309
https://doi.org/10.138/ncomms5006
https://doi.org/10.1186/s41199-020-00053-7
https://doi.org/10.1158/1078-0432.CCR-16-2910
https://doi.org/10.1016/j.ebiom.2019.03.050
https://doi.org/10.3390/cancers12102958
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1007/s11517-018-1858-4
https://doi.org/10.3389/fonc.2019.01050
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.3389/fonc.2020.01619
https://doi.org/10.3389/fonc.2020.01619
https://doi.org/10.1007/s00330-019-06211-x
https://doi.org/10.1007/s00330-019-06075-1
https://doi.org/10.1016/j.tranon.2021.101180
https://doi.org/10.3389/fonc.2020.00618
https://doi.org/10.3389/fonc.2020.00618
https://doi.org/10.1158/1078-0432.CCR-18-3065
https://doi.org/10.1128/JVI.00182-11
https://doi.org/10.1186/1471-2407-13-226
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Oliver Diaz,

University of Barcelona, Spain

Reviewed by:
Weiwei Zong,

Henry Ford Health System,
United States

Gökalp Çınarer,
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Objectives: The performance of multiparametric MRI-based radiomics models for
predicting H3 K27M mutant status in diffuse midline glioma (DMG) has not been
thoroughly evaluated. The optimal combination of multiparametric MRI and machine
learning techniques remains undetermined. We compared the performance of various
radiomics models across different MRI sequences and different machine learning
techniques.

Methods: A total of 102 patients with pathologically confirmed DMG were retrospectively
enrolled (27 with H3 K27M-mutant and 75 with H3 K27M wild-type). Radiomics features
were extracted from eight sequences, and 18 feature sets were conducted by
independent combination. There were three feature matrix normalization algorithms,
two dimensionality-reduction methods, four feature selectors, and seven classifiers,
consisting of 168 machine learning pipelines. Radiomics models were established
across different feature sets and machine learning pipelines. The performance of
models was evaluated using receiver operating characteristic curves with area under
the curve (AUC) and compared with DeLong’s test.

Results: The multiparametric MRI-based radiomics models could accurately predict the
H3 K27M mutant status in DMG (highest AUC: 0.807–0.969, for different sequences or
sequence combinations). However, the results varied significantly between different
machine learning techniques. When suitable machine learning techniques were used,
the conventional MRI-based radiomics models shared similar performance to advanced
MRI-based models (highest AUC: 0.875–0.915 vs. 0.807–0.926; DeLong’s test, p >
0.05). Most models had a better performance when generated with a combination of MRI
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sequences. The optimal model in the present study used a combination of all sequences
(AUC = 0.969).

Conclusions: The multiparametric MRI-based radiomics models could be useful for
predicting H3 K27M mutant status in DMG, but the performance varied across different
sequences and machine learning techniques.
Keywords: diffuse midline glioma, H3 K27M mutant, multiparametric MRI, radiomics, machine learning
INTRODUCTION

As a newly defined subtype of the 2016 WHO Classification of
Tumors of the Central Nervous System, “diffuse midline glioma
(DMG), H3 K27M mutant” is characterized by a genetic
alteration pattern in either H3F3A or HIST1H3B/C (1).
Compared to the wild-type group, the group with DMG with
an H3 K27M mutation exhibited a particularly dismal prognosis,
with 3-year overall survival of 5% and 2-year overall survival of
less than 10% (2–5). In addition, the previous studies revealed
that H3 K27M mutant status represented a potential novel
therapeutic target for DMG, which confronts the fact of
resistance to the conventional therapy strategies (6–10).
Identifying H3 K27M mutant status plays an essential role in
tumor diagnosis, survival prediction, and therapeutic decision-
making. Surgical resection or biopsy could provide an accurate
result of H3 K27Mmutant status but is not always feasible due to
tumor tissue’s spatial heterogeneity and unforeseeable
complications. Developing a non-invasive method for
accurately predicting H3 K27M mutant status is critical for
DMG management.

Several recent attempts have been made to use the
multiparametric MRI-based radiomics model to predict H3
K27M mutant status, but the results varied greatly (11–16).
Most of them focused on different kinds of conventional MRI
(cMRI), which could only reflect the tumor’s morphologic
information and benefi t l imitedly to reveal tumor
heterogeneity. The advanced MRI (aMRI) (e.g., diffusion-
weighted imaging [DWI], susceptibility-weighted imaging
[SWI], and dynamic susceptibility contrast perfusion-weighted
imaging [DSC-PWI]), which could provide physiological
information within the tumor, has been proved to be helpful in
radiomics-based glioma genotype prediction (17–19). However,
the utility of an advanced MRI-based radiomics model in
predicting H3 K27M mutant status has not been well
evaluated. On the other hand, previous studies indicated that
arent diffusion coefficient; AE, auto-
F, cerebral blood flow; CBV, cerebral
d T1-weighted imaging; DMG, diffuse
eptibility contrast perfusion-weighted
ion-weighted imaging; FLAIR, fluid-
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the performance of the radiomics model predominantly varied
with the type of image set used (20, 21). As such, it is unclear
whether aMRI or a combination of cMRI and aMRI could make
an equivalent or superior performance as compared to cMRI.

In addition to the heterogeneous sequence used, the previous
studies on H3 K27M mutant status prediction employed a great
diversity of machine learning techniques, including
dimensionality-reduction algorithm, feature selector, and
classifier. It has been well recognized that the radiomics model
established via different machine learning techniques could
achieve diverse results even when the same sequence was used
(22, 23). This could be a potential reason for the inconsistent
prior radiomics-based H3 K27M mutant status prediction
results. Therefore, there is an urgent need for a head-to-head
comparison of the prediction power across different machine
learning techniques and sequence or sequence combinations to
determine the best machine learning techniques with the best
image sets.

The purposes of this study were to 1) detect the best MRI
sequence or sequence combinations for predicting H3 K27M
mutant status in DMG and 2) determine the optimal machine
learning technique for different image sets.
MATERIALS AND METHODS

Study Population
The Ethical Committee of the First Affiliated Hospital of Fujian
Medical University approved this study. The requirement for
written informed consent was waived due to the retrospective
nature. One hundred two patients were consecutively enrolled in
the present study from July 2010 to August 2021. The inclusion
criteria were as follows: 1) patients have a pathological diagnosis
of diffuse glioma and confirmation of H3 K27Mmutant status; 2)
tumor is located in the midline structure of the brain; and 3) full
preoperative MR images were available. Exclusion criteria were
as follows: 1) absence of any required MR images or the image
quality was insufficient for analysis and 2) the tumor volume was
less than 1.5 cm3. The patients were randomly split into training
and test groups with a ratio of 7:3. Extra effort was made to keep
the balance between the training and test cohorts.

MRI Protocol
The neurologic MRI examinations were performed with the 3.0-
Tesla MR scanner (MAGNETOM Verio/Skyra/Prisma, Siemens
Healthcare, Erlangen, Germany). The standard multiparametric
March 2022 | Volume 12 | Article 796583
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MRI sequences in the present study, including T2-weighted
imaging (T2WI), T1-weighted imaging (T1WI), fluid-
attenuated inversion recovery (FLAIR), contrast-enhanced
T1WI (CE-T1WI), SWI, DWI, and DSC-PWI. The details of
MRI acquisition parameters are listed in the Supplementary
Material 1 (Table S1). The apparent diffusion coefficient (ADC)
map was automatically derived fromDWI data with b-values of 0
and 1,000 s/mm2. The DSC-PWI raw data were scrolled into a
dedicated commercial software package (SyngoVia, Siemens),
and the standard perfusion maps (cerebral blood volume [CBV]
and cerebral blood flow [CBF]) were conducted as guidance of
the software. In the 4th phase during the DSC-PWI scanning, a
standard dose (0.1 mmol/kg) of gadobenate dimeglumine (Gd-
BOPTA) followed by 20 ml of saline was injected intravenously
with a flow rate of 3 ml/s. CE-T1WI was scanned after
DSC-PWI.

Image Pre-Processing and
Tumor Segmentation
Before pre-processing, the DICOM images were converted to the
nifti format. The standard image pre-processing included four
steps: 1) all sequences were registered to T2WI initially with a
block matching algorithm; 2) following the co-registration, the
images were resampled into the uniform voxel size of 1 × 1 × 5
mm3; 3) N4 Bias Field Correction package was applied to correct
the bias filed; 4) finally, the image intensities were standardized
to [0, 255] to reduce the influence of imaging intensity
inconsistency. All of the pre-processing procedures were
achieved using G.K software (Glioma kit, version 1.2.1.R, GE
Healthcare, Shanghai, China).

Tumor segmentation was performed by one radiologist (DS,
with 10 years of experience in neuroradiology) and verified by
another radiologist (DC, with 30 years of experience in
neuroradiology) who were unaware of the pathological results.
The volume of interest (VOI) was created to cover the tumor
core (including the enhancing, non-enhancing, and necrotic/
cystic components) on T2WI with ITK-SNAP (http://www.
itksnap.org) by referring to the T1WI, CE-T1WI, and FLAIR
images. According to VASARI guidelines (Visually AcceSAble
Rembrandt Images; https://wiki.nci.nih.gov/display/CIP/
VASARI), the respective portions of the tumor were defined as
described in the previous study (24, 25). As the radiomics feature
extraction differed between VOIs, the intra-observer and inter-
observer reproducibility analyses were achieved to minimize the
influence of segmentation bias. Of intra-observer reproducibility
analysis, the VOIs of 30 randomly chosen patients were
segmented twice by one radiologist (DS). The inter-observer
reproducibility analysis was performed based on the same cohort
above, where the VOIs were segmented by two radiologists (ZX
and DS, both with 10 years of experience in neuroradiology). The
intraclass correlation coefficient (ICC) was calculated to evaluate
the agreement of radiomics feature extraction.

Radiomics Feature Extraction
An open-source software, FeAture Explore (V 0.4.2), was used
for quantitative radiomics feature extraction with the
Frontiers in Oncology | www.frontiersin.org 3247
Pyradiomics module on Python (3.7.6) (26, 27). A total of
851 features were extracted from each sequence image,
consisting of 18 first-order statistics features, 14 shape-based
features, 75 texture features, and 744 wavelet features from
eight wavelet-transformed images (https://pyradiomics.
readthedocs.io/en/latest/features.html). The details of the
extracted features are listed in the Supplementary Material 1
(Table S2). Eight sequences (T2WI, T1WI, FLAIR, CE-T1WI,
ADC, SWI, CBV, and CBF) were used in the present study.
Thus, a total of 6,808 features were extracted for analysis. We
conducted 18 feature sets by the independent combination of
features extracted from these eight sequences. The feature
sets were generally named with the name of sequences.
Especial ly , “cMRI,” “aMRI,” and “ALL” denote the
combination of all cMRI sequences, aMRI sequences, and
eight sequences, respectively.

Radiomics Feature Matrix Pre-Processing
As described above, for the sake of minimizing the influence of
VOI segmentation bias on radiomics feature calculation and
further machine learning analysis, the features with an ICC value
lower than 0.75 in either the intra-observer or inter-observer
reproducibility analysis were removed. Then we applied the
normalization to the remaining feature matrix. Three feature
normalization methods were considered: mean normalization,
min–max normalization, and Z-score normalization. The mean
normalization subtracted each feature vector by the mean value
of the vector and divided each feature by the length of the vector.
For the min–max normalization, we rescaled the minimum and
maximum values of the feature from zero to one. Then the
feature vector was mapped to a unit vector. When the Z-score
method was applied, we calculated each feature vector’s mean
value and SD. Then each feature was subtracted by the mean
value and was divided by the SD. Notably, only one
normal i za t ion method was used in one mach ine
learning pipeline.

Radiomics Feature Dimensionality
Reduction and Feature Selection
Since the feature space dimension was high, we applied two
alternative feature dimensionality-reduction methods in the
presented study, including Pearson’s correlation coefficient
(PCC) and principal component analysis (PCA). The PCC was
calculated for each pair of two normalized features, and we
removed one of them if the PCC was larger than the preset
threshold. By referring to the previous study, the threshold was
set to 0.8 for the model using a single sequence and 0.6 for the
model using a combination of different sequences (20). When the
PCA method was chosen, the high dimension features were
transformed into the relative lower dimension features. The
feature vector of the transformed feature matrix was
independent of each other.

Following feature dimensionality reduction, four optional
methods were provided for feature selection, including
ANOVA, recursive feature elimination (RFE), Kruskal–Wallis
(KW), and Relief.
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Predictive Model Establishment
Seven machine learning classifiers were analyzed to determine
the optimal model. The SVM classifier we used was based on a
linear kernel function , and it may be more appreciated to be
cataloged into the linear classifier. The sentence should be
corrected as "These classifiers could be divided into three
categories: linear (logistic regression [LR], linear discriminant
analysis [LDA], and support vector machine [SVM]), non-linear
classifiers (auto-encoder [AE] and decision tree [DT]), and
ensemble classifiers (random forest [RF] and AdaBoost [AB]).
The five-fold cross-validation was applied on the training dataset
to determine the model’s hyper-parameter, such as the number
of features and specific hyper-parameters of each classifier, which
can be referred on the scikit-learn (https://scikit-learn.org/stable/
index.html). The hyper-parameters were set according to the
model performance on the cross-validation dataset.

Considering different combinations of each procedure during
model development, including sequence used, feature matrix
normalization, dimensionality reduction, and feature selection,
could provide controversial results with different classifiers. We
analyzed models’ performance from 8 single sequences and 10
different sequence combinations with different machine learning
techniques. Thus, a total of 3,024 models were conducted in the
present study (18 [sequence groups] × 3 [feature matrix
Frontiers in Oncology | www.frontiersin.org 4248
normalization] × 2 [dimensionality reduction] × 4 [features
selector] × 7 [classifiers] = 3,024 [models]). The flowchart of
the present study is illustrated in Figure 1. The above processes,
including feature matrix normalization, dimensionality
reduction, feature selection, and classifier fitness, were
implemented with FeAture Explorer (V 0.4.2) on the training
cohort. Then, we evaluated the models’ performance on the
independent test cohort.

Statistical Analysis
The performance of each model was evaluated with receiver
operating characteristic curve analysis. The area under the
receiver operating characteristic curve (AUC) and accuracy
were calculated. We also estimated the 95% CI by bootstrap
with 1,000 samples. To assess the variability in the performance
of different models, we compared the top-one-performing
models and the top-five-performing models of each sequence
or sequence combination. Continuous variables of the baseline
characteristics were described as the mean ± SD and compared
using the Mann–Whitney U test. Categorical variables of the
baseline characteristics were described as number (percentage)
and compared using Pearson’s chi-squared test. The comparison
of AUCs between different models was performed using Delong’s
test. The statistical analyses were performed with R statistical
March 2022 | Volume 12 | Article 796583
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FIGURE 1 | The flowchart of the presented study. (A) Multiparametric MRI data collection, image pre-processing, tumor segmentation, and radiomics feature
extraction. (B) Machine learning and model performance analysis.
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software (version 3.5.3; https://www.r-project.org/). A p-value <0.05
was considered statistically significant.
RESULTS

Baseline Characteristics of Patients
Of the 102 patients, 27 (26.47%) patients were confirmed with an
H3 K27M mutation. The mean age was 41.19 ± 20.64 years, and
the male ratio was 64 (62.75%). No statistically significant
difference was found in the baseline characteristics between the
training and test groups (p > 0.05) (Table 1).

Performance of Sequence
In general, most of the high-performing models (with an AUC
value larger than 0.9 in the test set) were conducted from the
combination of different sequences (Figures 2, 3 and Tables 2
and S3). The ALL model showed the strongest predictive power
among various models for H3 K27M mutant status (AUC =
0.969), while the best single-sequence model was the CBF-based
model (AUC = 0.926), followed by the T2WI-based model (AUC
= 0.915). The CBV-based model yielded the lowest AUC value of
0.807 among the top-one-performing models of different
sequences or sequence combinations (Figure 4).
Frontiers in Oncology | www.frontiersin.org 5249
The cMRI showed comparable performance to aMRI when
suitable machine learning techniques were employed (DeLong’s
test, all p > 0.05) (Table 3). In models based on a single sequence,
the highest AUCs were 0.875–0.915 for cMRI sequences and
0.807–0.926 for aMRI sequences (Table 2 and Figure 4). The
model of cMRI yielded a slightly higher AUC than the model of
aMRI in the test set (AUC: 0.921 vs. 0.915). When combining
limited sequences of cMRI and aMRI, the model of T2WI+CE-
T1WI+SWI+CBF reached the highest AUC of 0.955. No
statistically significant difference of the highest AUC values
between the optimal model (ALL, AUC = 0.969) and other
sequence-based models was found (DeLong’s test, all p >
0.05) (Table 3).

Performance of Machine
Learning Technique
Figures 2 and S1 demonstrate the performance of different
machine learning techniques. The machine learning pipeline of
the optimal model was Z-score_PCA_KW_RF and Z-
score_PCA_ANOVA_RF, both with an AUC value of 0.969
(Figure 2 and Table S3). Among the 90 top-five-performing
models, the Z-score normalization method outperformed others
with darker color lines in Figure 2 and a higher mean AUC value
in Figure S1. In the same way, feature sets applying
TABLE 1 | Baseline characteristics of the training and test groups.

Characteristics All (n = 102) Training (n = 72) Test (n = 30) p-Value

Age (years) 41.19 ± 20.64 41.63 ± 20.80 40.13 ± 20.57 0.649
Gender (%) 0.711
Male 64 (62.75%) 46 (63.89%) 18 (60.00%)
Female 38 (37.25%) 26 (36.11%) 12 (40.00%)
H3 K27M mutant status (%) 0.977
Mutant 27 (26.47%) 19 (26.39%) 8 (26.67%)
Wild type 75 (73.53%) 53 (73.61%) 22 (73.33%)
March 2022 | Volume 12 | Article
A p-value <0.05 indicates the statistical significance of the variate difference between training and test sets. Continuous variables were described as the mean ± SD. Categorical variables
were presented as the number, with percentages in parentheses.
FIGURE 2 | The machine learning pipelines and performance of top-five-performing models of different sequences. The color of lines indicated the performance of
models in the test set.
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dimensionality reduction with the PCA method had a higher
AUC value. Figure 5 shows the best performance across different
sequences and classifiers. The comparison results of the different
classifiers are shown in Table 3. Of ADC-based models, CBF-
based models, and T2WI+CE-T1WI+ADC+CBF-based models,
a significant difference could be found in the AUC values
between the best classifier and worst classifier (DeLong’s test,
p < 0.05) (Table 3). In contrast to the sequence with a suitable
classifier, if the non-optimal classifier was used, the performance
of different sequences varied significantly (DeLong’s test, p <
0.05) (Table 3).

Among the top-five-performing models, the distribution of
machine learning techniques varied considerably in different
categories of MRI sequences (Figures 2, 6). PCA was more
frequently used in the top-five-performing models (66% of all
sequences), especially in the model that simultaneously
combined multiple MR images (86%). Feature selector of KW
has a higher percentage in both single sequence-based (which
have fewer features) and combined sequence-based (which have
more features) models.
DISCUSSION

This study developed and validated various machine learning-
based models with radiomics features extracted from
multiparametric MRI to predict H3 K27M mutant status in
DMG. The model’s performance was compared across different
sequences and machine learning techniques. Radiomics models
derived from multiparametric MRI performed well in
differentiating H3 K27M mutant and wild-type DMGs when a
suitable machine learning technique was used (highest AUC:
0.807–0.969). However, the performance of the models can vary
significantly regarding different machine learning techniques
(DeLong’s test, p < 0.05). Generally, the models developed with
Frontiers in Oncology | www.frontiersin.org 6250
multi-sequence had a better performance than one with a single
sequence. The cMRI-based model showed comparable
performance to aMRI (highest AUC: 0.875–0.915 for cMRI,
0.807–0.926 for aMRI).

In line with the previous study, radiomics models based on
cMRI could accurately predict the H3 K27M mutant status in
DMGs (11–14). As an essential supplement to prior studies, our
result also declared that the radiomics model developed with the
aMRI, including ADC, SWI, CBV, and CBF, could be qualified
for this purpose. Meanwhile, when appropriate machine learning
techniques were used, the cMRI and aMRI shared comparable
performance (DeLong’s test, p > 0.05). A significant difference in
ADC, CBV, and CBF values (measured with the freehand regions
of interest) has been reported between H3 K27M mutant and
wild-type DMGs (28–30). Other studies found that several
semantic and semiquantitative features on cMRI could be used
to predict H3 K27M mutant status in DMG (31, 32). But other
non-radiomics studies using cMRI and DWI to predict H3
K27M mutant status showed converse results (33, 34).
Radiomics has been proved to excavate numerous features
from medical images, and most of these features are
undiscoverable by the naked eye (35, 36). Analyzing medical
images with a non-radiomics method may result in a loss of
information within images. Wu et al. used radiological features
and radiomics features to predict H3 K27M mutant status. Their
results showed that the radiomics model performed significantly
better than the clinical model (developed with radiological
features) (16). The controversial results of non-radiomics
studies and the robust results of radiomics studies supported
that if the diagnostic information had been sufficiently explored
using the radiomics method, the predictive ability of
multiparametric MRI could be improved. This has been
proved again by our results.

Another important observation was that most models that
originated from combined sequences have a better predictive
FIGURE 3 | Box-and-whisker plots illustrate the top-five-performing area under the curve (AUC) values of different sequences.
March 2022 | Volume 12 | Article 796583
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performance, whether the optimal classifier was used (Figures 2,
3) or not (Figure 5). Previous studies using a multiparametric
MRI-based radiomics model to predict glioma molecular subtype
also showed similar results to ours (18, 37). However, only three
multiparametric MRI-based radiomics models were established
previously and achieved the highest AUC value of 0.920 in the
test cohort for H3 K27M mutant status prediction (12, 14, 16).
They only make a direct combination of all sequences used, and
the performance between single and combined sequences was
not compared. Liu et al. developed a machine learning model
based on T1WI images only to predict H3 K27M mutant status
in DMGs, which yielded the highest AUC value of 0.953 (11).
However, the sample size was relatively small (n = 55), and the
final model features were slightly overmuch (n = 30). Another
radiomics model based on FLAIR images showed an AUC value
of 0.903 (13). It is unfair to compare the model’s performance
when different datasets were used. Our study compared the
Frontiers in Oncology | www.frontiersin.org 7251
model performance based on the same dataset. The results
showed that the model had the best predictive power when
combined with all sequences (AUC = 0.969). The reason may be
that complementary information among multiparametric MRI
could provide a more comprehensive understanding of tumor
heterogeneity and discriminate more precisely tumor classes.
Also noteworthy is that the model combined with limited
sequences was sufficient to differentiate H3 K27M-mutant and
K27M-wt DMGs, such as the model based on feature sets from
T2WI+CE-T1WI+SWI+CBF (AUC = 0.955) and T2WI+CE-
T1WI+CBF (AUC = 0.932). This is relevant, as it could guide
model application in various clinical circumstances and make it
more time-efficient.

According to previous results, the feature selector and classifier
were two major determinant factors of radiomics model
performance (20–23, 38, 39). When a suitable classifier was
used, there was no significant difference in the AUC value of
TABLE 2 | The performance of the top-one-performing models.

Sequence Machine learning technique Dataset AUC 95% CI ACC SEN SPE PPV NPV

T2WI Min–max_PCA_RFE_AB Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.915 0.769–1.000 0.900 0.750 0.955 0.857 0.913

T1WI Z-score_PCC_KW_AE Training 0.767 0.631–0.890 0.694 0.842 0.642 0.457 0.919
Test 0.881 0.733–0.984 0.700 1.000 0.591 1.000 0.471

FLAIR Mean_PCC_Relief_AB Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.875 0.722–0.984 0.833 0.625 0.909 0.870 0.714

CE-T1WI Min–max_PCC_Relief_LR Training 0.780 0.669–0.883 0.653 0.947 0.547 0.429 0.967
Test 0.881 0.733–0.984 0.800 1.000 0.727 1.000 0.571

ADC Min–max_PCC_RFE_RF Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.886 0.718–1.000 0.700 0.000 0.955 0.724 0.000

SWI Mean_PCC_RFE_DT Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.869 0.694–0.979 0.867 0.875 0.864 0.950 0.700

CBV Mean_PCA_Relief_AE Training 0.640 0.490–0.779 0.736 0.474 0.830 0.500 0.815
Test 0.807 0.585–0.980 0.700 0.875 0.636 0.933 0.467

CBF Z-score_PCA_RFE_LR Training 0.924 0.844–0.983 0.875 0.842 0.887 0.727 0.940
Test 0.926 0.814–1.000 0.833 0.875 0.818 0.947 0.636

T2WI+CE-T1WI Mean_PCA_ANOVA_SVM Training 0.964 0.919–0.995 0.944 0.895 0.962 0.895 0.962
Test 0.909 0.769–1.000 0.800 0.500 0.909 0.833 0.667

T2WI+CE-T1WI+ADC Z-score_PCA_RFE_AE Training 0.965 0.920–1.000 0.931 0.842 0.962 0.889 0.944
Test 0.869 0.727–0.976 0.733 0.625 0.773 0.850 0.500

T2WI+CE-T1WI+SWI Z-score_PCA_RFE_LDA Training 0.963 0.905–1.000 0.958 0.947 0.962 0.900 0.981
Test 0.898 0.761–0.988 0.800 0.750 0.818 0.900 0.600

T2WI+CE-T1WI+CBF Z-score_PCA_RFE_RF Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.932 0.824–1.000 0.733 0.125 0.955 0.750 0.500

T2WI+CE-T1WI+ADC+SWI Min–max_PCA_KW_SVM Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.892 0.728–0.994 0.867 0.750 0.909 0.909 0.750

T2WI+CE-T1WI+ADC+CBF Mean_PCA_Relief_LR Training 0.555 0.379–0.733 0.736 0.421 0.849 0.500 0.804
Test 0.881 0.701–1.000 0.900 0.750 0.955 0.913 0.857

T2WI+CE-T1WI+SWI+CBF Min–max_PCA_RFE_LDA Training 0.888 0.805–0.957 0.806 0.895 0.774 0.586 0.954
Test 0.955 0.854–1.000 0.767 1.000 0.682 1.000 0.533

cMRI Min–max_PCC_Relief_LR Training 0.833 0.731–0.933 0.778 0.842 0.755 0.552 0.930
Test 0.921 0.778–1.000 0.733 1.000 0.636 1.000 0.500

aMRI Mean_PCA_Relief_AB Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.915 0.800–0.993 0.800 0.875 0.773 0.944 0.583

ALL Z-score_PCA_KW_RF Training 1.000 1.000–1.000 1.000 1.000 1.000 1.000 1.000
Test 0.969 0.904–1.000 0.767 0.125 1.000 0.759 1.000
M
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Machine learning technique was expressed as “feature matrix normalization_dimensionality reduction_feature selector_classifier”.
T2WI, T2-weighted imaging; T1WI, T1-weighted imaging; FLAIR, fluid-attenuated inversion recovery; CE-T1WI, contrast-enhanced T1WI; ADC, apparent diffusion coefficient; SWI,
susceptibility-weighted imaging; CBV, cerebral blood volume; CBF, cerebral blood flow; cMRI, model developed with all of the conventional MRI; aMRI, model developed with all of the
advanced MRI; ALL, model developed with all of the eight sequences; PCC, Pearson’s correlation coefficient; PCA, principal component analysis; RFE, recursive feature elimination; KW,
Kruskal–Wallis; LR, logistic regression; LDA, linear discriminant analysis; SVM, support vector machine; AE, auto-encoder, DT, decision tree; RF, random forest; AB, AdaBoost; AUC, area
under the curve; ACC, accuracy; SEN, sensibility; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
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different sequences. Constantly, when an inappropriate classifier
was used, both intra-sequence and inter-sequence comparisons
yielded a significant difference in AUC values (Table 3). For the
single sequence-based model, SVM, LDA, and LR classifiers were
more frequently to have a lower AUC. The reason may be that the
LR and LAD were both linear classifiers, and the SVM used linear
kernel function in our study; thus, these classifiers were not flexible
enough to fit a non-linear relationship between features and tumor
groups. Furthermore, features extracted from a single sequence
could only offer limited messages on tumor biological
heterogeneity. Of note, the multiparametric MRI-based model
with SVM, LDA, and LR demonstrated more favorable results.
The prior study used various classifiers (e.g., SVM, RF, and
XGBoost) and generated an AUC value of 0.549–0.953, which
were lower than ours (AUC = 0.969) (11–15). Several reasons may
account for this variety, including patient data, MRI data, and
machine learning techniques. Hence, a head-to-head comparison
may be more reliable to reveal the influence of these factors and
determine optimal models when different image data are available.

Apart from the feature selector and classifier, our results
revealed that the feature matrix normalization and
dimensionality-reduction method also played a non-negligible
Frontiers in Oncology | www.frontiersin.org 8252
role in model performance evaluation (Figure S1). The previous
study focused onH3 K27Mmutant status prediction, which rarely
considered these elements. Two of them made an effort to
compare the predictive power of different classifiers and another
for different feature selectors (11, 15). The limitation of these
studies on model development warrants extra caution in terms of
result explanation. Our results demonstrated that the appropriate
machine learning techniques mentioned above could vary greatly
when various image data were used (Figure 6). This reemphasized
that both the type of image data used and the employment of
machine learning techniques will carry a diverse result. Thus, it is
essential and encouraged to seek the optimal machine learning
techniques when different image data are used. The compatible
combination of medical images with machine learning techniques
could maximize and robust the radiomics model’s performance.

There are several limitations in the current study. First, this is
a single-center retrospective study, which results in an
unavoidable selecting bias and relatively small sample size. The
imbalanced proportion of H3 K27M mutant DMG might
influence the development of our models. A prospective and
multi-institution study is needed for confirming our results.
Second, the dataset was randomly split into the training and
A B

DC

FIGURE 4 | The receiver operating characteristic curve of the top-one-performing models of different sequences in the training (A, C) and test sets (B, D).
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test cohorts. To reduce the selection bias with this kind of splitting,
nest cross-validation may be needed in the future. The third is the
lack of extra validation to facilitate the generalization of our
findings. Unlike other gliomas, the morbidity of DMG was
lower. Furthermore, we analyzed eight MR image sets, which
makes it more challenging to match an external validation cohort.
Frontiers in Oncology | www.frontiersin.org 9253
Fourth, we did not compare our model with the human reader as
recommended by a previous study (40). However, the
performance of MRI features evaluated by radiologists with the
non-radiomics method was controversial, and the discriminative
ability was not as well as ours (highest AUC = 0.872) (28). A prior
study showed that the radiomics model was significantly superior
TABLE 3 | Results of DeLong’s test of the best models with different classifiers.

Sequence Highest AUC Lowest AUC p-Valuea p-Valueb p-Valuec

Classifier AUC Classifier AUC

T2WI AB 0.915 RF 0.847 0.4851 0.4508 0.0527
T1WI AB 0.875 AB 0.815 0.5602 0.1908 0.0621
FLAIR AE 0.881 LR 0.767 0.2334 0.1940 0.0108
CE-T1WI LR 0.881 DT 0.744 0.2568 0.1720 0.0437
ADC RF 0.886 SVM 0.727 0.0118 0.1837 0.0144
SWI DT 0.869 AB 0.761 0.2292 0.1834 0.0271
CBV AE 0.807 DT 0.722 0.3579 0.1108 0.0104
CBF LR 0.926 DT 0.761 0.0302 0.4729 0.0437
T2WI+CE-T1WI SVM 0.909 DT 0.790 0.2944 0.3316 0.0756
T2WI+CE-T1WI+ADC AE 0.869 DT 0.807 0.4912 0.1319 0.0867
T2WI+CE-T1WI+SWI LDA 0.898 DT 0.847 0.5049 0.1872 0.5532
T2WI+CE-T1WI+CBF RF 0.932 SVM 0.847 0.3043 0.5163 0.6795
T2WI+CE-T1WI+ADC+SWI SVM 0.892 DT 0.790 0.1657 0.2710 1.0000
T2WI+CE-T1WI+ADC+CBF LR 0.881 DT 0.824 0.0102 0.3280 0.0584
T2WI+CE-T1WI+SWI+CBF LDA 0.955 DT 0.807 0.1121 0.7520 0.8889
cMRI LR 0.921 DT 0.841 0.2765 0.4145 0.0077
aMRI AB 0.915 DT 0.784 0.1715 0.3243 0.0618
ALL RF 0.969 DT 0.790 0.0640 – –
March 2022
 | Volume 12 | Artic
Bold type indicate p < 0.05.
T2WI, T2-weighted imaging; T1WI, T1-weighted imaging; FLAIR, fluid-attenuated inversion recovery; CE-T1WI, contrast-enhanced T1WI; ADC, apparent diffusion coefficient; SWI,
susceptibility-weighted imaging; CBV, cerebral blood volume; CBF, cerebral blood flow; cMRI, model developed with all of the conventional MRI; aMRI, model developed with all of the
advanced MRI; ALL, model developed with all of the eight sequences; LR, logistic regression; LDA, linear discriminant analysis; SVM, support vector machine; AE, auto-encoder, DT,
decision tree; RF, random forest; AB, AdaBoost; AUC, area under the curve.
ap-Value is for the comparison between the best and worst classifiers in the same sequence.
bp-Value is for the comparison of the best classifiers between all sequence-based models (ALL) and other sequence-based models.
cp-Value is for the comparison between the best classifier of all sequence-based models (ALL) and the worst classifier of other sequence-based models.
FIGURE 5 | The optimal performance across different sequences and classifiers.
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to the clinical model (based on radiological features) (16). In this
regard, our radiomics model might be superior to human readers,
although a head-to-head comparison needs to be implemented in
the future. Finally, the performance of deep learning algorithms
was not evaluated and compared in our study. Deep learning
algorithms have been widely used in glioma molecular subtype
prediction (41–45). However, deep learning usually needs a huge
amount of dataset, such as hundreds or thousands of cases, and
the dataset is limited for our approach. More datasets would be
collected, and deep-learning algorithms would be compared to
classical machine learning algorithms in the future.
CONCLUSION

Our results indicated that the H3 K27Mmutant status of DMG can
be effectively predicted with multiparametric MRI radiomics
models. However, the performance of models varies significantly
across different machine learning techniques and sequences used.
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Automatic Detection of Osteochondral
Lesions of the Talus viaDeep Learning
Gang Wang1, Tiefeng Li2, Lei Zhu1, Siyuan Sun3, Juntao Wang1, Yidong Cui1, Ben Liu1,
Yuliang Sun1, Qingjia Xu1*† and Jianmin Li1*†

1Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, China, 2AI Research Group, Ebond (Beijing) Intelligence
Technology Co., Ltd., Beijing, China, 3AI Research Group, Yihui Ebond (Shandong) Medical Technology Co., Ltd., Jinan, China

Screening of osteochondral lesions of the talus (OLTs) from MR imags usually requires
time and efforts, and in most case lesions with small size are often missed in clinical
practice. Thereore, it puts forward higher requirements for a more efficient OLTs
screening method. To develop an automatic screening system for osteochondral
lesions of the talus (OLTs), we collected 92 MRI images of patients with ankle pain
fromQilu Hospital of Shandong University and proposed an AI (artificial intelligence) aided
lesion screening system, which is automatic and based on deep learning method. A two-
stage detection method based on the cascade R-CNN model was proposed to
significantly improve the detection performance by taking advantage of multiple
intersection-over-union thresholds. The backbone network was based on ResNet50,
which was a state-of-art convolutional neural network model in image classification task.
Multiple regression using cascaded detection heads was applied to further improve the
detection precision. The mean average precision (mAP) that is adopted as major metrics
in the paper and mean average recall (mAR) was selected to evaluate the performance of
the model. Our proposed method has an average precision of 0.950, 0.975, and 0.550
for detecting the talus, gaps and lesions, respectively, and the mAP, mAR was 0.825,
0.930. Visualization of our network performance demonstrated the effectiveness of the
model, which implied that accurate detection performance on these tasks could be
further used in real clinical practice.

Keywords: osteochondral lesions, automatic diagnosis system, artificial intelligence, deep learning method,
cascade R-CNN model

1 INTRODUCTION

Osteochondral lesions of the talus (OLTs) represent a common disease that affects about 1.6 million
people per year around the world [1]. The OLT term covers a spectrum of pathological conditions of
articular cartilage and subchondral bone, with multiple treatment options [2, 3]. The proposed
causes for OLT include acute traumatic insult, repetitive chronic microtrauma to the ankle joint and
localized ischemia of the talus [2, 4]. For patients who did not benefit from nonoperative
management, surgical treatment is indicated, depending on the size, location and chronicity of
the lesion. Lesions less than 1 cm in diameter are associated with better outcomes and are amenable
to arthroscopic bone marrow stimulation techniques, such as microfractures or subchondral drilling.
For large OLTs with or without bone loss, osteochondral autograft or allograft transplantation may
be performed. However, disadvantages also emerged such as donor pain, joint surface mismatching
and gap of mosaic bone graft nonunion. Eventually, the patient might need talus replacement or
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ankle replacement which would be a great burden not only for
patients but also for health insurance. Therefore, early screening
and intervention should be given sufficient emphasis.

The diagnosis of OLT requires acknowledging patient’s
comprehensive medical history, physical examination and
radiography examination. MRI was one of the most effective
method to evaluate OLTs due to its application of estimating the
size of the lesion which has been accepted as a fundamental tool
for OLT diagnosis nowadays. However, the MRI-based diagnosis
procedure highly relies on the experience level of the radiologist,
which dramatically introduces interobserver disagreements.
Furthermore, up to 50% of OLTs may not be visualized on
radiographs alone [5]. Subsequently, developing standardized
computer-based methods to detect osteochondral lesions based
on MRI would be beneficial to maximize the diagnostic
performance while reducing the subjectivity, variability and
errors due to distraction and fatigue that are associated with
human interpretation.

Nowadays, deep learning (DL) [6] methods using
convolutional neural networks (CNNs) have become a
standard solution for automatic biomedical image analysis [7].
The use of these methods has been proven to be an efficient way
to overcome the shortcomings of traditional image analysis on
many sub-specialty applications. DL methods in medical image
analysis have been applied in MRI tumor grading [8–10], thyroid
nodule ultrasound classification [11–13] and CT pulmonary
nodule detection [14–16]. However, only a limited number of
studies have been performed to analyze the musculoskeletal
imaging associated with the lesion. In 2018, Liu et al. [17]
proposed a deep learning method to detect cartilage lesions
within the knee joint on T2-weighted 2D fast spin-echo MRI
images and achieved an area under the receiver operating
characteristic (ROC) curve (AUC) of 0.92, with a sensitivity of
84% and a specificity of 85%. In 2019, Pedoia et al. [18] employed
a U-net network to segment patellar cartilage using sagittal fat-
suppression (FS) proton density-weighted 3D fast spin-echo
(FSE) images and achieved an AUC of 0.88 for detecting
cartilage lesions with the sensitivity and specificity both
being 80%.

All these previous works [19–22] focused on independent
training of the disease classification and risk region segmentation.
However, this is not reasonable by nature due to the association
between the risk region and the disease possibility. Besides, as a
common injury, early screening of OLT should be given priority.
In this study, we propose an automatic OLT screening method
based on multi-task deep learning, which could simultaneously
provide the evidence of the disease and detecting risk area.

2 MATERIALS AND METHODS

2.1 Dataset Preparation and Preprocessing
This study was performed in compliance with theHealth Insurance
Portability and Accountability Act regulations, with approval from
our institutional review board. Due to the retrospective nature of
the study, informed consent was waived. MRI data of 119 patients
were recruited into this study. Inclusion criteria:①All the patients
whose main diagnosis was OLT; ② main complaint is ankle pain;
③ First time for medical consultation in our hospital without
surgery. Exclusion criteria: ①infection in ankle; ②tumor in talus;
③ MRI data was missing. ④ Poor image quality or poor
annotation quality. MRI datasets were obtained from 119
patients with ankle pain (67 men and 52 women, with an
average age of 49.84 years and an age range of 24–71 years)
who underwent a clinical MRI examination of the ankle at our
institution between 15 January 2017, and 15 October 2020 (as
shown in Table 1). 27 patients were excluded due to poor image

TABLE 1 | Demographics and clinical characteristics of patients.

Variables Patients (n = 119)

Gender (n/%)
Men 67/56.30
Women 52/43.70
Age (years) 49.84 ± 11.75

Data are expressed as numbers and percentages or as mean ± SD.

FIGURE 1 | Flowchart of OTL detection using deep learning method.
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quality or poor annotation quality, resulting in 92 patients finally
included in this research. The same 1.5-T MRI unit (Lian Ying,
uMR560) and eight-channel phased-array extremity coil were used
for all patients. The MRI datasets consisted of coronal FS proton
density-weighted FSE sequence. All the lesion parts were
determined by hand drawing in order to facilitate the AI to learn.

Before model training, images were preprocessed as following:
Firstly, MR dataset was divided into training dataset and
validation dataset at a ratio of 8:2 at the patient level. As a
result, training dataset contains 73 3D MR images and validation
dataset contains 19 3D MR images. Secondly, in order to expand
the sample size, a total 517 2D slices from 92 MR images with
lesions manually segmented by specialists were used, and the size
of each slice is about 320*320 (Specific may be slightly different).
As a result, our training dataset contained 415 2D slice images
and validation dataset contained 102 2D slice images. All 2D slice
images were then intensity-normalized to a range of 0–255.
Thirdly, to increase the size of the targets in the images, all
2D slice images are resized 512*512 with ratio kept. Fourthly, to
generate 2D object ground-truth bounding boxes, an approach to
get the maximum bounding box of the mask is implemented by

using OpenCV library. Finally, the dataset was reorganized into
COCO format. The whole pipeline is shown in Figure 1.

2.2 Cascade R-CNN Model
Taking the importance of locate target precise into consideration,
we introduced a cascade method to address the problem. Due to
the mechanism of exploiting the cascade information across
multiple cascade layers, cascade learning could refine the object
detection result and make the data distribution of inference closer
to the training and hence is efficient in the scenarios that target is
difficult to locate. In our study, we adopted the Cascade-R-CNN as
the original object detection framework.

The improved Cascade-R-CNN model contains 3 parts:
backbone network, region proposal network and detector. In the
first part, the backbone network of the Cascade-R-CNN is used to
extract feature map from 2D slice images. To improve the detection
performance of the Cascade-R-CNN on muti-scale Object, a
Residual Neural Network (ResNet50) with feature pyramid
network (FPN) is utilized as the backbone of the Cascade-R-
CNN. The ResNet50 consist of 5 stages, and it is called C1, C2,
C3, C4, and C5 respectively. The FPN combined with the ResNet50
could extract feature maps from muti-stages of the backbone, and
the size of feature map is getting smaller from the C2 to C5 and
meanwhile the receptive field of each pixel of the feature map is
getting larger. FPN is composed of 3 parts, and it is bottom-up
pathway, top-down path and lateral connections respectively. The
bottom-up pathway is the feed-forward propagation of the
ResNet50. The feature maps from different stages are employed
to form the feature maps of different size that is also called pyramid

FIGURE 2 | Illustraion of Cascade R-CNN architecture. The backbone network extract feature map from 2D slice images. A Residual Neural Network (ResNet50)
with feature pyramid network (FPN) is utilized as the backbone of the Cascade-R-CNN. After processing by FPN, a 3*3 convolution layer is added after merging feature
maps to get the feature maps, and it is called P2, P3, P4, P5 respectively. In addition, the feature map that is called P6 is got by sub-sampling P5 by a factor 2. The final
feature maps are composed of P2, P3, P4, P5, and P6. A window slide over feature maps of multi-scale to obtain a set of predefined bounding boxes that is also
called anchors. Anchors is 8* 8, 16*16, 32*32, 64*64, and 128*128 respectively. The featuremaps aremapped to a 256-dimensional vector by a 3*3 convolution layer. At
last, the anchors that have Intersection-over-Union (IOU) ratio of the anchors and ground-truth boxes, which is greater than 0.5 are selected as proposals boxes. In the
third part, the feature map of any box’s proposal is transformed into fixed size by the RoIAlign algorithm. The feature map is fed into 2 concatenated fully connected layers
followed by 2 parallel fully connected layers, one of which is used for classification and the other for bounding-box regression.

TABLE 2 | Quantitative prediction result analysis.

Prediction task Average precision

Talus 0.950
Gaps 0.975
Risk Region 0.550
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levels. In the top-down pathway, the feature maps have stronger
semantic information, but the detailed information is coarser. The
feature maps of higher stages are up-sampled by a factor 2 to acquire
larger size feature maps. Then, to make the information of the
feature maps more complete, the feature maps from top-down
pathway are added in element-wise with the feature maps of the
same spatial size from the bottom-up pathway by lateral connections
to get merged feature maps. Finally, a 3*3 convolution layer is added
after merging feature maps to get the feature maps, and it is called
P2, P3, P4, P5 respectively. In addition, the feature map that is called
P6 is got by sub-sampling P5 by a factor 2. The final featuremaps are
composed of P2, P3, P4, P5, and P6. In the start of training model,

the backbone of the Cascade-R-CNN is initialized with a pre-trained
model that was trained on Imagenet-1k.

In the second part, the feature maps from the multi-stages of the
backbone network is used as the input of the region proposal
networks to get region proposals bounding boxes that may
contain lesion, gap or talus. A window slide over feature maps of
multi-scale to obtain a set of predefined bounding boxes that is also
called anchors. Because of the difference of size of the receptive field
across multi-stages, the size of anchors is 8*8, 16*16, 32*32, 64*64
and 128*128 respectively. In addition, to improve Cascade-R-CNN
generalization performance, anchors that havemultiple aspect ratios
1:2, 1:1 and 2:1 is applied at each featuremap frommulti-stages. As a
result, each sliding window on the feature maps can get 5*3 anchors
that have different size simultaneously. Then the featuremaps which
is contained by anchors corresponding sliding window are mapped
to a 256-dimensional vector by a 3*3 convolution layer. The vector is
used as the input of following 2 parallel 1*1 convolution layers to
obtain the results of bounding box regression and binary
classification respectively, and bounding box regression is used to
get the coordinates of the boxes proposal and binary classification is
used to determine whether the box contains an object. Therefore, the
size of outputs of bounding box regression is 4*15 and the size of
outputs of binary classification is 2*15. At last, the anchors that have
Intersection-over-Union (IOU) ratio of the anchors and ground-
truth boxes, which is greater than 0.5 are selected as proposals boxes.

In the third part, the feature map of any box’s proposal is
transformed into fixed size by the RoIAlign algorithm. Then
following 3 cascade layers that each contains 2 branches is
constructed for classification and bounding-box regression. For
each 2 branches of first 2 cascade layers, the feature map is fed into
2 concatenated fully connected layers followed by 2 parallel fully
connected layers, one of which is used for classification and the

FIGURE 3 | ThemAP curve in trainingmodel alongwith epoch. ThemAP
curve rises steadily alongwith the rounds of epoch.

FIGURE 5 | The mAP of different models including the improved
cascade rcnn, the improved cascade rcnn without soft-nms, the improved
cascade rcnn without optimized anchor size. The blue curve indicates the
improved cascade rcnn. The orange curve indicates the improved
cascade rcnn without soft-nms. The green curve indicates the improved
cascade rcnn without optimized anchor size. The red curve indicates the
faster rcnn.

FIGURE 4 | The loss curve in training model along with iters. The loss
denotes the sum of all loss of the model, moreover s0, s1, s2 denote stage1,
stage2 and stage3 of the model detector head, in addition loss_cls and
loss_bbox denote classification loss and bounding box begression loss.
The blue curve is the summary of the other six curves.
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other for bounding-box regression. The outputs of the
classification layer separately are probably different predictions,
and the regression layer is used to refine bounding-box positions
for 4 subgroups and be the input of next layer. The last layer adopts
the previous layer outputs of bounding-box regression and the
feature map as input, and the outputs of the 2 branches of the last
layers is the model last results. The detail of the structure of cascade
R-CNN is shown in Figure 2.

2.3 Training Details
The network was implemented using PyTorch and trained on one
RTX3090 with 24 GB memory. The anchor size of the model is
optimized to the sizes [8*8, 16*16, 32*32, 64*64, 128*128], The
optimizer for the network was set as SGD (stochastic gradient
descent) and the initial learning rate was 0.0125 with a momentum
of 0.9. Furthermore, we sat one weight decay of 0.0001 to help with
the training stability. To achieve a better model performance, we
employed the warm-up training strategy in the training procedure,
using an epoch iteration of 5 with an increasing ratio of 0.01. We
decreased the learning rate with CosineAnnealing decay strategy
and make the learning rate gradually decay from start to finish to
fine-tune the final model. Previous research has shown that soft
non-maximum suppression (soft-nms) could achieve superior
performance on such tasks due to the softer conditions for
filtering out boxes. Thus, we implemented soft non-maximum
suppression in the inference stage to improve the sensitivity of the
model. The property could further help to achieve a good

performance of our model. In training, we use online data
augmentation that image scale ranges from 0.9 to 1.2 and rotate
range from −90 to 90. The total training took 80 epochs to achieve
stable convergence results.

2.4 Model Evaluation
In this study, we employed the mean average precision (mAP) as
the parameter to evaluate the performance of the proposed model.
AP is the area under the precision-recall curve, defined as follows:

AP � ∫
1

0
P(r)dr

where P(r) is the precision-recall curve, and r is the IoU threshold.
Then, mAP corresponds to the mean value of AP for multiple-
class detection, defined as follows:

mAP � 1
N

∑APi

AR is two times the area under the recall-IoU curve and it reflects
the sensitivity of the model to the target, however in the paper AR is
only computed in the case that IoU = 0.5, defined as follows:

AR � Recall(IoU), IoU � 0.5

Then, mAR corresponds to the mean value of AR for multiple-
class detection, defined as follows:

mAR � 1
N

∑ARi

3 RESULTS

Our proposed method for automatic OLT screening based on
Cascade R-CNN showed a good performance in predicting the
possibility of the disease and detecting the risk areas. Here we
detected the osteochondral lesions (Risk Region), the whole talus

TABLE 3 | The comparison of experimental results of optimization method.

mAP in
all

mAP in
small

mAP in
medium

mAP in
large

mAR in
all

mAR in
small

mAR in
medium

mAR in
large

Improved cascade rcnn 0.825 0.225 0.894 1.000 0.930 0.325 0.992 1.000
Above without softnms 0.828 0.223 0.916 1.000 0.908 0.304 0.968 1.000
Above without optimized
anchor

0.820 0.225 0.876 1.000 0.897 0.289 0.968 1.000

Faster rcnn 0.819 0.211 0.904 1.000 0.884 0.271 0.968 1.000

TABLE 4 | The comparison of class-wise AP of optimization method.

Talus AP Gap AP Lesion AP

Improved cascade rcnn 0.950 0.975 0.550
Above without softnms 0.947 0.980 0.557
Above without optimized anchor 0.950 0.980 0.531
Faster rcnn 0.950 0.980 0.526

TABLE 5 | The comparison of experimental results in different conditions.

mAP in
all

mAP in
small

mAP in
medium

mAP in
large

mAR in
all

mAR in
small

mAR in
medium

mAR in
large

Improved cascade rcnn 0.825 0.225 0.894 1.000 0.930 0.325 0.992 1.000
Above without rotate of
data

0.804 0.216 0.861 1.000 0.885 0.280 0.957 1.000

Above with epcoh 24 0.794 0.186 0.887 1.000 0.921 0.313 0.992 1.000
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(Talus) and the gaps (Gaps) at the same time. The AP of
predicting Talus, Gaps and Risk Region reached 0.950, 0.975
and 0.550 respectively (Table 2), and the mAP, mAR was 0.825,
0.930 respectively.

The quantitative results of our model were shown in Table 2.
All these parameters indicate that our model achieved an accurate
detection performance, suggesting that it could be used for real
clinical applications.

The changes of mAP in training model was shown in
Figure 3. There are 414 graphs in the training set. Learning
the 414 graphs once means an epoch. One mAP value is
obtained when each epoch is verified using the verification
set once. We tested epoch for 80 times. When the epoch
reached the 80th time, the mAP value was approaching 1.0.
Figure 3 showed that the rising trend is relatively stable
without much fluctuation indicating that the model has
been approaching the most optimal solution, and there
has been no overfitting phenomenon. In fact, the effect of
learning is not becoming better alongwith more rounds of
verification because overfitting may occur. In this experiment,
because the number of samples is not large, we set the batchsize
to 1 to maintain the largest difference of data to resist
overfitting.

The loss of the training model was shown in Figure 4. The loss
denote the sum of all loss of the model. The s0, s1, s2 denote
stage1, stage2 and stage3 of the model detector head, in addition
loss_cls and loss_bbox denote classification loss and bounding
box begression loss. This figure shows the change of loss function
in the training model. The blue curve is the sum of the other six
curves. So, the blue curve represents the overall loss trend of the
model. It can be seen that the curve shows a downward trend. It
suggested that less and less information is lost in the training
model meaning that the model training is effective. In sumary, we
can know that the model alreadly learned something and
converged. In addition, model got the nice performance on
the validation set.

The comparative data between the improved cascade RCNN,
which without soft-nms, which without optimized anchor size
and faster rcnn was shown in Figure 5 and Tables 3, 4. Small,
medium and large denote area of object in range less than 36,
36–96 and greater than 96 repectively. In Figure 5, improved
cascade RCNN reach higher value than other models in the last
several epochs. In Table 3, the “mAP in all” of “improved cascade
RCNN without soft-nms” is highest (0.828). The “mAP in small”
of both “improved cascade RCNN” and “improved cascade
RCNN without optimized anchor” is heghest (0.225). The
“mAP in all” of “improved cascade RCNN without soft-nms”
is highest (0.916). However, each mAR categories of “improved
cascade RCNN” is highest (0.930, 0.325 and 0.992). In Table 4,

talus AP of “improved cascade RCNN” is highest (0.950).
Meanwhile, the gap AP and lession AP of “improved cascade
RCNNwithout soft-nms” is highest (0.980 and 0.557). The results
showed that the best mAP appeared in training of improved
cascade rcnn without softnms, which is higher than the improved
cascade rcnn slightly. However, improved cascade rcnn has
higher mAR. According to practical application scenarios of
the model, the model sensitivity regarding to lesion is of great
importance as well. Under the condition that mAP of former is
higer than the latter slightly, we can draw a conclusion that the
performance of improved cascade rcnn is better than improved
cascade rcnn without softnms. In addition, the performance of
improved cascade rcnn is better than another model except
improved cascade rcnn without softnms.

Furthermore, In the method we use, there are two changes that
may have a greater impact on the results. One is the random
rotation of data enhancement during training, and the other is the
number of epochs. we also compared the mAP and mAR of
different changes. In Table 5, all the mAP and mAR categories of
“improved cascade RCNN” reached the highest value (0.825,
0.225, 0.894, 0.930, 0.325, 0.992). In Table 6, both talus AP, gap
AP and lession AP of ‘improved cascade RCNN’ is highest (0.950,
0.975 and 0.550). Combined with Tables 5, 6, it can be seen from
the experiment that the final result of the blue line (i.e. the method
we use) is significantly higher than the other two changes
(Figure 6). The epoch number 24, is the number of rounds
commonly used from imagenet-1k data which was used to get
baseline value for training.

From Figures 7–9, we could intuitively observe that our
network provided a comparable detection result (red bounding
boxes) with that of senior radiologists (blue bounding boxes).
Noticeably, our model achieved stable detection results on all
three detection tasks, which shows the effectiveness of our

TABLE 6 | The comparison of class-wise AP in different conditions.

Talus AP Gap AP Lesion AP

Improved cascade rcnn 0.950 0.975 0.550
Above without rotate of data 0.934 0.960 0.519
Above with epcoh 24 0.942 0.972 0.469

FIGURE 6 | The mAP of different models including the
improved_cascade_rcnn, the improved_cascade_rcnn_epoch_24, the
improved_cascade_rcnn_without_rotate. The blue curve indicates the
improved_cascade_rcnn. The orange curve indicates the
improved_cascade_rcnn_epoch_24. The green curve indicates the
improve_cascade_rcnn without_rotate.
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method. More examples are shown in the Supplementary
Figures S1–S3.

4 DISCUSSION

For patients who did not benefit from nonoperative management,
surgical treatment is indicated, depending on the size, location
and chronicity of the lesion. Lesions less than 1 cm in diameter
are associated with better outcomes and are amenable to
arthroscopic bone marrow stimulation techniques, such as
microfractures or subchondral drilling. Autologous
chondrocyte implantation (ACI) is indicated for lesions larger
than 1 cm in diameter, but it requires 2 stages. Arthroscopy or

arthrotomy may be used for the second-stage implantation. For
large OLTs with or without bone loss, osteochondral autograft or
allograft transplantation may be performed which will cause
greater damage and economic burden to patients. Therefore,
early screening and early intervention are particularly important.

The initial evaluation of OLTs includes standard radiographs
of the ankle and MRI. CT scans are also useful as an adjunct to
MRI when evaluating subchondral cysts. Affected by doctors’
experience, the diagnostic accuracy of the same MRI among
doctors at various levels is different, which will lead to
escaping diagnosis and misdiagnosis. If we can interpret MRI
through artificial intelligence, it will greatly improve the
diagnostic efficiency and accuracy of patients and reduce the
error caused by human factors. The application of artificial

FIGURE 7 | The bounding box visualization. Prediction result (red) vs. the ground truth (blue) of the osteochondral lesions. All the images (A–I) were selected from
testing group to determine the AI recognition accuracy of ROI. AI detection result was labeled by red rectangular. The ground truth wasmanually depicted and labeled by
blue rectangular.
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intelligence in the field of medical imaging is gradually increasing.
In foreign countries, it is mainly divided into two parts: one is
image recognition, which is applied to perception whose main
purpose is to analyze image data, ROI (region of interest) of image
acquisition. The second part is deep learning. Applying deep
learning to the studying and analysis is the core segment of AI.
Continuous training and deep learning of neural networks
through a large number of image data and diagnostic data
could achieve a diagnostic model which could enable the AI to
master the ability of “diagnosis.” AI will greatly reduce the
workload of doctors if better accuracy and specificity can be
achieved.

Currently, there are two typical methods to implement the
detection project, including the one-stage and two-stage detection

methods [23]. Compared with the one-stage method, the two-
stage method could achieve a higher detection performance, but
at the expense of speed [24]. In order to achieve a higher detection
performance, we utilized the two-stage detection methods in this
work. Many methods have been proposed in two-stage detection
fields, including Mask-R-CNN [25], Fast-R-CNN [26] and
Faster-R-CNN [27]. For all the two-stage detection methods,
one intersection-over-union (IoU) threshold is required to
classify the predicted positive bounding box with the negative
bounding box. However, it has been shown that a lower IoU
threshold could provide more bounding boxes with a lower
precision, which induces a lower recall rate, while a higher
IoU threshold could provide fewer bounding boxes with a
higher precision, which induces the under detection [28]. To

FIGURE 8 | The bounding box visualization. Prediction result (red) vs. the ground truth (blue) of the talus gaps. All the images (A–I)were selected from testing group
to determine the AI recognition accuracy of talus gap. AI detection result was labeled by red rectangular. The ground truth was manually depicted and labeled by blue
rectangular.
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clarify the concept of these statistical terms, the definitions of
accuracy, precision and recall rate should be well explained. The
predicted condition is usually marked with Positive or Negative.
The actual condition is usually labeled with True or False.
Subsequently, we have four parts in the contingency table:
True positive (TP), False Positive (FP), True Negative (TN)
and False Negative (FN). By the use of multiple IoU
thresholds, the recently proposed two-stage detection method
of the Cascade R-CNN model significantly improved the
detection performance compared with the above-mentioned
two-stage detection methods. Besides, through multiple
regression using cascaded detection heads, the Cascade
R-CNN model could further improve the detection precision.
The backbone network was built using a ResNet-50 network with

pre-trained network weights from the ImageNet dataset, which
allowed to fasten the training of the network and improve the
final performance.

Our study implemented a deep learning-based method for the
automatic detection of osteochondral lesions of the talus for the
first time. Our model has achieved an accurate detection with an
average, mAP of 0.550, 0.975, and 0.950 on the Risk Region, Gaps
and Talus detection tasks, respectively. Compared with other
detection tasks, the mIOU reached a similar value to that in a
previous study on the detection of coronavirus pneumonia [29]
(mIOU, 73.40% ± 2.24%). Furthermore, our model could also
provide accurate detection results on multiple risk region parts in
one single case without missing any of them. All these results
prove that this method could be used by clinical radiologists to

FIGURE 9 | The bounding box visualization. Prediction result (red) vs. the ground truth (blue) of the talus itself. All the images (A–I)were selected from testing group
to determine the AI recognition accuracy of talus itself. AI detection result was labeled by red rectangular. The ground truth was manually depicted and labeled by blue
rectangular.
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overcome the shortness of subjectivity and variability and save the
physician’s valuable time.

5 CONCLUSION

Our research developed a diagnostic model for image
interpretation based on artificial intelligence. The detection
accuracy of this mode reaches mAP = 0.825. It provides a
theoretical basis for the early diagnosis and screening of OLTs
based on artificial intelligence detection in the future.

6 LIMITATION

Although many valuable results have been achieved in this
work, there are still some limitations that need to be
improved in the future. Firstly, only the articular cartilage on
the talar dome was evaluated in our feasibility study, since
evaluating the curved articular surface of the talus on the 3.5-
mm-thick coronal fat-suppressed proton density-weighted FSE
sequence would be challenging. Furthermore, most patients
only accept medical consultation and MRI examination at
outpatient instead of inpatient. They have no chance to get
arthroscopy to make a definite diagnosis. As a result, the
presence or absence of cartilage lesions in each image patch
was interpreted by a musculoskeletal radiologist. Although
arthroscopy has a higher sensitivity for detecting cartilage
lesions, arthroscopy was unable to be used as a reference
standard in this retrospective study. Meanwhile, only the
highest grade of cartilage lesion on each articular surface was
recorded in surgery report. However, the exact location of the
cartilage lesion was not well described. Even though we
extracted 517 slices from 92 patients to implement a deep
learning model in this study, which was sufficient enough to
conduct a detection task, we could have tried some data
augmentation methods to make our model more robust and
avoid overfitting greatly. Additionally, having an accurate
segmentation map is more desired in many clinical
applications to provide a precise treatment plan. However,
due to the low resolution of the lesion parts, it was hard for

the radiologists to acquire accurate boundaries of the risk
region. In future studies, it could be beneficial to include the
unsupervised machine learning methods for segmentation tasks
in the OLT image analysis. Finally, although we performed the
lesions, gaps and talus detection tasks at the same time, some
information that was hidden within this structure was still not
fully explored and the interpretability of our model was still
unknown. In this research, we also conduct a detection task, but
in clinical practice surgeons may be focus on the characteristics
of lesion (XXX for instance) We believe we could further
improve the performance of our model by combining the
clinical information with the current detection methods and
use a multi-task learning method to perform detection,
segmentation, and lesion classification task simultaneously.
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Background: The aim of this study was to explore the feasibility and efficacy of a non-
invasive quantitative imaging evaluation model to assess the lymphatic metastasis of
breast cancer based on a radiomics signature constructed using conventional T1-
weighted image (T1WI) enhanced MRI and molecular biomarkers.

Methods: Patients with breast cancer diagnosed via lymph biopsies between June 2015
and June 2019 were selected for the study. All patients underwent T1WI contrast-
enhancement before treatment; lymph biopsy after surgery; and simultaneous Ki-67,
COX-2, PR, Her2 and proliferating cell nuclear antigen detection. All images were
imported into ITK-SNAP for whole tumor delineation, and AK software was used for
radiomics feature extraction. Next, the radiomics signature Rad-score was constructed
after reduction of specific radiomic features. A multiple regression logistic model was built
by combining the Rad-score and molecular biomarkers based on the minimum AIC.

Results: In all, 100 patients were enrolled in this study, including 45 with non-lymph node
(LN) metastasis and 55 with LN metastasis. A total of 1,051 texture feature parameters
were extracted, and LASSO was used to reduce the dimensionality of the radiomics
features. The log(l) was set to 0.002786, and 19 parameters were retained for the
construction of the radiomics tag Rad-score. ROC was used to evaluate the diagnostic
efficiency of Rad-score: the area under the ROC curve (AUC) of the Rad-score for
identifying non-lymphatic and lymphatic metastases was 0.891 in the training cohort and
0.744 in the validation cohort. With the incorporation of tumor molecular markers, the
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https://www.frontiersin.org/articles/10.3389/fonc.2022.790076/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.790076/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.790076/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.790076/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:caochangjian07@163.com
https://doi.org/10.3389/fonc.2022.790076
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.790076
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.790076&domain=pdf&date_stamp=2022-03-15


Abbreviations: 3D, three-dimensional; A
cyclooxygenase-2; DCA, decision curv
occurrence matrix; GLDM, gray level de
run-length matrix; GLZSM, gray level size
Standardization Initiative; LASSO, least abs
LN, lymph node; MRI, magnetic resonanc
and minimal redundancy; PCNA, prolifer
weighted image; VOI, volume of intervalid

Qiu et al. Metastasis Prediction From Radiomics Data

Frontiers in Oncology | www.frontiersin.org
AUCs of the training cohort and validation cohort of the nomogram were 0.936 and 0.793,
respectively, which were notably higher than the AUCs of the clinical parameters in the
training and validation cohorts (0.719 and 0.588, respectively).

Conclusion: The combined model constructed using the Rad-score and molecular
biomarkers can be used as an effective non-invasive method to assess LN metastasis of
breast cancer. Furthermore, it can be used to quantitatively evaluate the risk of breast
cancer LN metastasis before surgery.
Keywords: lymph node metastasis, breast cancer, molecular biomarkers, radiomics, diagnostics
INTRODUCTION

Breast cancer is the most common malignant tumor in women
globally, with lymphatic metastasis being the main cause of death
(1). According American Society of Clinical Oncology Clinical
Practice Guideline Update, Axillary lymph node dissection
(ALND) is not recommended for patients with breast cancer
without nodal metastases and one or two sentinel lymph node
metastases (2).The five-year survival rate of patients with axillary
lymphatic metastasis is significantly lower than that of patients
without lymphatic metastasis (3). Patients with lymphatic
metastasis require radiotherapy and chemotherapy in addition
to surgery. Pre-treatment method indicating the absence of
lymph node metastasis could provide the earlier stage and
reduce the mortality for better treatment. Evern through
patients under ALND would significant reduce the mortality
rate but also improve the morbidities associated with ALND,
such as seroma formation, impairment of shoulder movement,
neuropathy and arm lymphedema (4). Sentinel lymph node
biopsy (SLNB) was used to staging the axilla before treatment.
SLN is the first lymphatic drainage lymph node in tumor which
lead lymphatic spread (5). But several previous studies have
showed that SLNB is the standard method to predict lymph node
metastasis but the invasive procedure provide the high false
negative rate and other complication (6). For clinical purposes,
using effective markers for the individual conditions of different
patients with lymph node (LN) metastasis can improve the
prognosis of patients by actively adjusting the clinical
treatment plan (7). In the previous study, the patients with
breast cancer widely accepted complete ALND (cALND) for
positive SLN that patients with negative SLN should avoid
ALND (8). Several studies have found some biomarkers to
predict SLN (9), such as tumor size (10), nucleic acid
amplification (CK19) (10), ER status (10) and PR status (11).

Currently, pathological biopsy is the gold standard for
identifying LN metastasis in patients with breast cancer.
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Furthermore, sentinel LN biopsy is a standard clinical
procedure for pathological biopsy of patients with breast
cancer. However, such methods are invasive, are not readily
permitted by patients, and fail to provide comprehensive
information regarding metastasis (12, 13).

Currently, the non-invasive method for evaluating breast cancer
lymphatic metastasis is mainly based on imaging evaluation.
Magnetic resonance imaging (MRI) has high-resolution
characteristics, especially in soft tissue contrast, and can accurately
display LNs. Radiomics is used to build a mathematical model based
on the image data from confirmed cases for high-throughput texture
featuredatamining,which could thenbe added to the clinical cases to
improve model verification, so as to construct a non-invasive
evaluation method for clinical research purposes (14).

In contrast, molecular tumor markers play an important
auxiliary role in the clinical diagnosis of tumors. Among them,
Ki-67 can react with proliferating nuclear antigens during the cell
proliferation cycle and is therefore a marker of rapid tumor
growth. The expression of Ki-67 in breast cancer is significantly
related to pathological grade and LN metastasis (15).
Furthermore, proliferating cell nuclear antigen (PCNA) is an
intranuclear polypeptide synthesized during cell proliferation.
During the malignant proliferation of cancer cells, PCNA
expression is abnormally high. Studies have shown that high
PCNA expression in patients with tumors results in rapid clinical
progress and predisposition to LN metastasis (16). In addition,
the positive expression of cyclooxygenase-2 (COX-2) in
breast cancer tissue is significantly higher than that in other
tumor diseases and is correlated with lymphatic and distant
metastasis (17).

The aim of this study was to explore a feasible, effective, and
non-invasive joint model to assess lymphatic metastasis of
patients with breast cancer based on the radiomic features of
their T1-weighted image (T1WI)-enhanced scans and post-
operative molecular biomarkers. This will contribute to a new
quantitative analysis for evaluating the risk of breast cancer LN
metastasis before surgery.
MATERIALS AND METHODS

Patients
This study was reviewed and approved by the ethics committee
of the Huangshi central hospital. Patients diagnosed with breast
March 2022 | Volume 12 | Article 790076
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cancer via pathology in the hospital between June 2015 and June
2019 were strictly screened according to the following inclusion
and exclusion criteria, inclusion criteria:1) solid masses in the
image of the lesions; 2) maximum diameter of the lesion ≤2 cm;
3) diagnosis of primary breast cancer; 4) MRI shows no axillary
lymph node (ALN); 5) SLN before treatment; 6) post-operative
tumor tissue identified as breast cancer after pathological
examination; 7) twice LN biopsy to confirm the status after
operation; 9) non-metastatic primary lesions on pathological
examination. Exclusion criteria: 1) breast implants such as
silicone; 3) radiotherapy, chemotherapy, drug therapy and
surgical treatment before enhanced MRI scan; 4) poor image
quality of MRI.

MRI Scanning
All images were obtained using enhanced MRI scanning (1.5T
superconducting MRI; Siemens, Munich, Germany). The patient
was required to lie on his back (feet first) and wear noise-
reducing headphones for the MRI; the conventional T1WI
enhancement sequence in the transverse position was selected,
centering on the largest layer of the lesion, and a total of 20 layers
were scanned up–and–down. A bolus injection of the contrast
agent gadolinium diamine (dose: 0.1 mmol/kg; General Electric
Pharmaceuticals, Shanghai, China) was selected, and the
injection rate was set at 2 mL/s. After the bolus injection of the
contrast agent was completed, 20 mL normal saline was injected
at the same rate for flushing. The scanning parameters were set as
follows: TR 3.9 ms, TE 1.4 ms, FOV 380 mm × 280 mm, matrix
256 × 256, layer thickness 5 mm, and 20 slices total per volume.
Molecular Biomarker Analysis
The tissue of breast cancer was collected by needle biopsy. The
tissue of breast cancer was fixed by 4% paraformaldehyde and
then embedded by paraffin. Immunohistochemistry (IHC) was
used to detect the expression of Ki-67, COX-2, PCNA, PR and
Her2. for Ki-67, samples with >20% positive nuclei were
considered to show high Ki-67 expression, while samples with
Frontiers in Oncology | www.frontiersin.org 3270
20% positive nuclei were considered to show low Ki-67
expression (18, 19); for COX-2, samples with >30% positive
cytoplasm were considered to show high COX-2 expression,
while samples with <30% positive cytoplasm were considered to
show low COX-2 expression; for PCNA, samples with >10%
positive nuclei were considered to show high PCNA expression,
while samples with <10% positive nuclei were considered to
show low PCNA expression; for PR, samples with >1% nuclear
staining as PR positive, <1% nuclear staining as PR negative
(20); Her2 positive was detected by IHC that the staining score
was 3+ (21).

Image Analysis
The data were processed by two doctors with 10–15 years of
diagnostic experience in the following steps. The original MR
images were imported into ITK-SNAP (www.itksnap.org), and
the breast cancer lesions were processed by the diagnostician
according to the single-blind principle. The lesions were then
delineated and synthesized in three-dimensions (3D), the whole
tumor was segmented, and the 3D region of interest (volume of
intervalidation, VOI) was saved. The lymph was not delineated
in this study. The image and VOI were then imported into
Anaconda Prompt (version 4.2.0) importing the feature package
of “pyradiomics” (github.com/Radiomics/pyradiomics),
according to the guidelines of the Image Biomarker
Standardization Initiative (IBSI). A total of 1,051 features were
extracted, including shape parameters, first-order parameters,
gray level co-occurrence matrix (GLCM parameters), gray-level
run-length matrix (GLRLM parameters), gray level size zone
matrix (GLZSM parameters), and gray level dependence matrix
(GLDM parameters).

Statistical Analysis
The maximal relevance and minimal redundancy (mRMR)
algorithm with the least absolute shrinkage and selection operator
(LASSO) method were used for feature dimensionality reduction,
whereas the stepwise regression method was used to filter the
radiomics features into the multivariate logistic regression
FIGURE 1 | Flowchart depicting model design.
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analysis to obtain meaningful feature regression coefficients, to
perform feature weighting and construct the radiomics label (Rad-
score) for TNM staging assessment. Next, the meaningful tumor
markers were screened for multiple logistic regression with a Rad-
score, using a joint evaluation model, and a nomogram was drawn
for the scoring system with the best predictive performance
obtained from the above scores. The clinical application value was
evaluated by decision curve analysis (DCA). The general process is
illustrated in Figure 1.

The Kolmogorov-Smirnov test was used to validate normal
distribution of the measurement data. Normally distributed data
were represented as mean ± standard deviation, and non-normal
data were represented by the median. Independent sample t
validation or Mann-Whitney U validation was used for the
measurement data, and X2 validation was used for the count data.
Differences were considered statistically significant at P<0.05. The
performance of the scoring systemwas evaluated based on the area
under the ROC curve (AUC). R studio (version 4.1.1) was used for
processing and analysis, with specific packages: “xml2,” “tidyverse,”
“caret,” “pROC,” “glmnet,” “DMwR,” “rmda,” “ggpubr,”
“ModelGood,” “rms,” “mRMRe,” “DescTools,” and “Publish.”
RESULTS

Clinical Characteristics Between
LN-Positive and -Negative Patients in
the Training and Validation Cohorts
A total of 185 patients were included in this study, whereas 100
were included according to the inclusion criteria: 45 patients
Frontiers in Oncology | www.frontiersin.org 4271
without LN metastasis and 55 patients with LN metastasis
(Table 1). Particularly, 30 patients were excluded due to poor
image quality, and 55 patients were excluded because of unclear
data pertaining to molecular biomarkers. The average age was 52.9
± 11 years for the patients without LN metastasis and 53.6 ± 10
years for the patients with lymph node metastasis in the training
cohort. At same time, the average age was 52.4 ± 12.7 years for the
patients without LN metastasis and 51.2 ± 9.8 years for the
patients with LN metastasis in the validation cohort. There was
no significant difference between the non-LN metastasis and LN
metastasis in the training cohorts and validation cohorts (P=0.769
vs P=0.775). Among the enrolled patients, 59 were positive for Ki-
67 (41negative), 73 were positive for PCNA (27 negative), and 66
were positive for COX-2 (34 negative), and 55 were positive for PR
(45 negative), 66 were positive for Her2 (34 negative) Ki-67
(P=0.050, Table 1) and Her2 (P=0.004, Table 1) showed
significant difference between NLN and LNM in the training
cohort, and COX-2 (P=0.041, Table 1) showed significant
difference between NLM and LNM in the validation cohort.
The Radiomics Signature of LN-Positive
and -Negative Patients in the Training and
Validation Cohorts
Using mRMR to remove redundant features and screen out the
feature combinations that are significantly different for
lymphatic metastasis, a total of 30 features were selected. Next,
LASSO was used to reduce the dimensionality of the radiomics
features, taking log(l) as 0.0027 (Figure 2), and finally 19
parameters were retained to construct the radiomics. The Rad-
score is based on the following formula \(Figure 3):
TABLE 1 | Clinical information of patients in the training and validation cohort.

Training cohort P value Validation cohort P value

NLN LNM NLN LNM

Patients n = 32 n = 39 n = 13 n = 16
Age, years 52.9 ± 11 53.6 ± 10 0.769 52.4 ± 12.7 51.2 ± 9.8 0.775
Histological grade
I 2 3 1 1
II 14 12 7 6
III 16 24 5 9

Molecular status
Ki-67 0.050* 0.061

Positive 23 18 11 7
Negative 9 21 2 9

PCNA 0.099 0.364
Positive 27 25 11 10
Negative 5 14 2 6

COX-2 0.167 0.041*
Positive 24 22 12 8
Negative 8 17 1 8

PR 0.144 0.867
Positive 22 19 7 7
Negative 10 20 6 9

Her2 0.004* 1.000
Positive 15 32 9 10
Negative 17 7 4 6
March 2022 | Volume 12 | Article
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A

B

FIGURE 2 | Feature selection and Rad-score building by LASSO. (A) 10-fold cross validation was used to predict binomial deviance of the Rad-score building by
different lambda values. (B) The coefficient profiles of the radiomics features by different lambda values.
FIGURE 3 | The coefficients of radiomic features to construct the Rad-score.
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After theRad-score calculation for all patients in both the training
andvalidation cohorts, basedon theWilcoxonvalidation, therewas a
significant difference between the non-lymphatic and lymphatic
metastasis groups in the training cohort (P=0.000, Figure 4A) and
the validation cohort (P=0.028, Figure 4B).
Diagnostic Performance of the
Rad-Score in Different LN-Positive
and -Negative Patients in the
Training and Validation Cohorts
After obtaining the Rad-score of patients in the non-lymphatic
and lymphatic metastasis groups, the diagnostic performance of
Frontiers in Oncology | www.frontiersin.org 6273
the Rad-score was evaluated based on the ROC. The Rad-score
distinguished between non-lymphatic and lymphatic metastasis
with an AUC of 0.891 (Figure 4C) in the training cohort and
0.744 (Figure 4D) in the validation cohort (Table 2).

Diagnostic Performance of the
Rad-Score, Clinical Factors, and
Nomogram in Different LN-Positive
and -Negative Patients in the
Training and Validation Cohorts
In the training cohort, Ki67 and Her2 showed significant
difference between NLM and LNM. Backward step logistic
model was used to build clinical model. Ki67 (OR=0.44, 95%
CI: 0.15-1.25) and Her2 (OR=4.41, 95%CI: 1.47-13.24) were used
to construct the clinical model based minimum AIC. Then the
combined model was constructed by molecular biomarker
(ORKi67 = 0.19, 95%CI: 0.03-1.07; ORHer2 = 4.41, 95%CI: 0.97-
26.50) and radscore (OR=2.28, 95%CI:1.50-3.46). The combined
model was visualized by Nomogram (Figure 5A). The evaluation
performance of the clinical model for the training and validation
cohort were 0.642 and 0.773 (Figures 5B, C and Table 2). The
nomogram showed diagnostic performance for the training and
validation cohort were 0.936 (Figure 5B) and 0.793 (Figure 5C
and Table 2).

Evaluation of Lymph Metastasis
via a Nomogram
The nomogram was used to visualize the combine model. The
Rad-score, Ki67 and Her2 score axis were projected vertically to
the Points axis, and the total risk for assessing breast cancer
lymphatic metastasis was given as the total points of lymphatic
metastasis. The greater the risk, the greater is the probability that a
patient would present with lymphatic metastasis (Figures 6A, B).
The DCA analysis for clinical model, Radscore and Nomogram
have indicated the threshold under 0.92 that patient would benefit
from nomogram (Figure 6A). (Figure 6C) Delong test have
showed a significant difference between nomogram and clinical
model in the training cohort (P=0.0001) but not in validation
cohort (P=0.111). At the same time, radscore showed a
statistically significant difference when compared with clinical
model in the training cohort (P=0.027) but also not in validation
cohort (P=0.027).
DISCUSSION

In this study, we performed a non-invasive assessment of
lymphatic metastasis in patients with breast cancer based on a
multiple logistic regression model that combined the radiomic
tag Rad-score extracted from the conventional breast cancer
T1WI-enhanced scan with the tumor biomarkers. The results
demonstrated that the diagnostic efficiency of Rad-score
(training cohort AUC = 0.891; validation cohort AUC =
0.744), was higher than that of the tumor biomarker model
(clinical model, training cohort AUC = 0.642; validation cohort
AUC = 0.773). However, once Rad-score and molecular
March 2022 | Volume 12 | Article 790076
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TABLE 2 | Diagnostic performance of the Rad-score, clinical data, and nomogram in the training and validation cohorts.

Cohort AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

Lower Upper

Rad-score Training 0.891 0.812 0.967 0.845 0.974 0.687 0.792 0.956
Validation 0.744 0.552 0.931 0.689 0.750 0.615 0.705 0.667

Clinics Training 0.719 0.602 0.843 0.690 0.820 0.531 0.680 0.708
Validation 0.588 0.0.379 0.801 0.483 0.625 308 0.526 0.400

Nomogram Training 0.936 0.882 0.992 0.901 0.974 0.812 0.863 0.962
Validation 0.793 0.624 0.959 0.603 0.727 1.000 1.000 0.538
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95% CI, 95% confidence interval; NPV, negative predictive value; PPV, positive predictive value.
A B
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FIGURE 4 | The difference and ROC curves of the Rad-score in the training and validation cohorts. (A, B) Mann-Whitney U validation was used to analyze the
difference between lymph node (LN)-positive and -negative patients in the training and validation cohorts. (C, D) ROC curve of the Rad-score in the training and
validation cohort. AUC was used to predict the diagnostic performance between the LN-positive and -negative patients.
90076
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biomarker model were combined as nomogram, the diagnostic
efficiency was the highest among radiscore and clinical model in
the training cohort (AUC=0.936) and validation cohort
(AUC=0.793). In the current clinical treatments, lymphatic
metastasis is an important prognostic indicator and factor in
selecting the appropriate treatment for patients with breast
cancer. A study by Wang et al. showed that 44% (95/216) of
patients with breast cancer had sentinel lymphatic metastasis
(13). However, both the sentinel lymphatic biopsy and axillary
LN dissection are invasive diagnostic techniques, whereas MRI
can be used as a qualitative imaging assessment method to
determine breast cancer lymphatic metastasis (22, 23).
Therefore, this study aimed to establish a non-invasive and
highly sensitive model for assessment of breast cancer
lymphatic metastasis.

First, the texture feature parameters were extracted based on the
conventional T1WI enhanced scan, and after removing redundant
features, 19 parameters were retained. These parameters can be
understood as follows. Usually, Interia_angle45_offset7 reflects the
definition of the image and the depth of the texture groove—the
higher the groove depth, the higher the image contrast and
Frontiers in Oncology | www.frontiersin.org 8275
definition. GLCMEntropy_ AllDirection_offset1_SD reflects the
entropy value of the image, which represents the image required
for image compression—the higher the entropy value, the higher
the confusion of the image. ShortRunEmphasis_angle90_offset1
reflects all voxel points that arenot often1 at a given angle (90°), and
Correlation_ AllDirection_offset4_SD represents the similarity of
gray levels in adjacent pixels. InverseDifferenceMoment_
AllDirection_ offset4_SD represents local homogeneity, which is
proportional to local gray uniformity. The Rad-score value of all
patients obtained by the Rad-score calculation formula was as
follows: AUC of 0.891 in the training cohort and 0.744 in the
validation cohort. Chai et al. (24) showed that based onT1WI,CE2,
T2WI, and DWI sequences for radiomics feature extraction, the
AUC reached 0.87, which was similar to the results of this study.
Simultaneously, the study showed that the vascular permeability
parameters Ktrans, Kep, Ve, Vp, etc. could improve the diagnostic
performance of the model (accuracy 0.86, AUC 0.91) (24).
Currently, according to breast cancer imaging guidelines,
dynamic enhanced MRI is used as a clinically recommended
protocol for the diagnosis of breast cancer, which suggested that
radiomic features should include dynamic enhancement in future
A B C

FIGURE 5 | Nomogram combining the clinical data and Rad-score. (A) The multiple logistic regression model constructed using the Rad-score and clinical data
visualized by the nomogram. (B, C) The ROC curves of the Rad-score, clinical data, and nomogram in the training and validation cohorts.
A B C

FIGURE 6 | The diagnostic performance of nomogram evaluation. (A) Decision curve analysis of the Rad-score, clinical data, and nomogram. The y-axis indicates the
clinical benefits while the x-axis indicates the clinical risk to predict lymph node (LN) metastasis. The “All line” indicates a randomized evaluation of the LN metastasis. The pink
line indicates no method was used to evaluate the LN metastasis. (A–C)Calibration curves of the nomogram in the training and validation cohorts.
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studies. Previous studies have showed that the short-term survival
didn’t have different between patientswho takenALNDornot. The
Americansocietyof clinical oncology (ASCO)recommendedSLNB
for patient with early-stage breast cancer to reduce the unnecessary
ALND. Previous studied have found that the sensitivity of SLND
was 0.855, the sensitivity of Rad-score were 0.974 (training cohort)
and 0.750 (validation cohort)

In the second, the gender, age, Ki67, COX-2, PCNA, PR and
Her 2 were included in the lymphatic metastasis assessment of
breast cancer in this study. The final screening index with
statistical significance was Ki67 and Her2. Lymphatic
metastasis was assessed based on clinical model combined Ki-
67 and Her2, with an AUC of 0.7192 in the training cohort and
0.588 in the validation cohort, which was lower than the
diagnostic power of radiomics (AUC = 0.891 and 0.744,
respectively). Our results are similar to those of Wang et al.
(16), which reported clinical index parameters of 0.707 and
0.657, respectively, to assess breast cancer lymphatic
metastasis. However, their clinical indicators were tumor
diameter, tumor molecular classification, ER phenotype, etc.,
which differed from the clinical indicators in this study. These
findings suggest that multiple clinical indicators should be
included in the assessment of breast cancer LN metastasis (13).
In our studies, we included 5 type molecular biomarker try to
predict the status of lymph node metastasis. All patients included
in our research are ER positive. Our results showed that Ki67 and
Her2 were the risk factor of lymph node metastasis. The OR of
Ki67 and Her2 were 0.44 and 4.41 which were similar to previous
studies (11, 25). In our model, Her2 overexpression would
improve the risk of lymph node metastasis. Ki-67 positive also
improve the risk of lymph node metastasis. Previous studied
showed that Her2 and Ki67 could help in increasing the
sensitivity to estimate the probability of lymph node positive
(26). Our results showed Ki-67 and Her 2 combined the radscore
have improve the sensitivity and specificity in training and
validation cohorts. However, these results showed that the
nomogram constructed by the Rad-score, integrated with
clinical indicators, was more effective in evaluating breast
cancer lymphatic metastasis than the clinical indicators alone,
although it was the same as the independent Rad-score. This
result indicates that the Rad-score has diagnostic power with or
without clinical indicators. This means that the diagnostic
efficiency of the Rad-score was significantly higher than that of
the clinical indicators, and the evaluation of breast cancer
lymphatic metastasis could be based on the Rad-score
indicators. This result is different from that of the clinical
imaging joint model used to improve the diagnostic efficiency
(27, 28). The procedure of SLNB consumed time and expensive
even through SLNB is the gold standard to diagnosis lymph node
metastasis. SLNB would take adverse event through invasive
procedure. Nomogram, combined molecular biomarker, also
needed invasive biomarker. In our study, Rad-score was
constructed to predict LNM before surgery without
invasive method.

Potential limitations of this study include the small sample
size and the omission of molecular classification of tumors,
Frontiers in Oncology | www.frontiersin.org 9276
which might have led to the low efficiency of the clinical
indicators for breast cancer. The clinical indicators used in this
study were tumor resection and immunohistochemical
detection. This suggests that clinical indicators should be
expanded to establish a more comprehensive clinical joint
model in future studies. In addition, MRI multimodal
sequences should be included in the radiomics feature
extraction, especially multi-phase dynamic enhancement.

In conclusion, a large number of radiomic parameters were
extracted based on conventional T1WI MRI enhancement in this
study, and a radiomics model was constructed to evaluate breast
cancer lymphatic metastasis. The results demonstrated that the
radiomic model had high diagnostic feasibility and efficacy, and
the MRI radiomics model might be helpful in evaluating the
clinical prognosis of patients with breast cancer.
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Background: Relapse is the major cause of mortality in patients with resected
endometrial cancer (EC). There is an urgent need for a feasible method to identify
patients with high risk of relapse.

Purpose: To develop a multi-parameter magnetic resonance imaging (MRI) radiomics-
based nomogram model to predict 5-year progression-free survival (PFS) in EC.

Methods: For this retrospective study, 202 patients with EC followed up for at least 5
years after hysterectomy. A radiomics signature was extracted from T2-weighted imaging
(T2WI), apparent diffusion coefficient (ADC) and a dynamic contrast-enhanced three-
dimensional volumetric interpolated breath-hold examination (3D-VIBE). The radiomics
score (RS) was calculated based on the least absolute shrinkage and selection operator
(LASSO) regression. We have developed a radiomics based nomogram model (ModelN)
incorporating the RS and clinical and conventional MR (cMR) risk factors. The
performance was evaluated by the receiver operating characteristic curve (ROC),
calibration curve and decision curve analysis (DCA).

Results: The ModelN demonstrated a good calibration and satisfactory discrimination,
with a mean area under the curve (AUC) of 0.840 and 0.958 in the training and test
cohorts, respectively. In comparison with clinical prediction model (ModelC), the
discrimination ability of ModelN showed an improvement with P < 0.001 for the training
cohort and P=0.032 for the test cohort. Compared to the radiomics prediction model
(ModelR), ModelN discrimination ability showed an improvement for the training cohort
with P = 0.021, with no statistically significant difference in the test cohort (P = 0.106).
Calibration curves suggested a good fit for probability (Hosmer–Lemeshow test, P =
0.610 and P = 0.956 for the training and test cohorts, respectively).

Conclusion: This multi-parameter nomogram model incorporating clinical and cMR
findings is a valid method to predict 5-year PFS in patients with EC.

Keywords: endometrial cancer, progression-free survival, radiomics, magnetic resonance imaging, nomogram
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INTRODUCTION

Endometrial cancer (EC) is one of the three most common
malignancies of the female reproductive tract (1). Many clinical
studies have shown that deciding whether to conduct
radiotherapy or chemotherapy according to the risk of tumors
can not only avoid unnecessary pain and economic burden
brought by overtreatment of early-stage patients, but also avoid
undertreatment of high-risk tumors, delay recurrence and
improve the quality of life (2–4). Previous studies have
proposed predicting the myometrial invasion and clinical
outcome of EC by combining clinical and pathological
indicators (5, 6). Tumor size, myometrial invasion, lymph
vascular space invasion (LVSI) and other parameters obtained
by postoperative tumor pathology can certainly be used to
evaluate the EC prognosis. However, if we can use accurate,
non-invasive methods to determine the risk and prognosis before
surgery, it is beneficial to select more reasonable treatment
strategies improve the progression-free and overall survival.
Previous studies have found that EC prognosis is not only
related to these pathological features, but also to the patient’s
age, BMI and other clinical indicators (7, 8). Therefore, making
full use of these preoperative indicators is instrumental to a more
accurate prognosis prediction. Furthermore, postoperative
pathological examinations are very invasive but with
appropriate preoperative predictive methods many unnecessary
surgeries could be avoided.

Previous studies have found that preoperative staging,
prognosis, and survival of EC can be predicted by using
clinical standard magnetic resonance imaging (MR) sequences
to assess the deep myometrial invasion, tumor volume or
maximum diameter, and lymph node invasion (9–11). T1-
weighted imaging (T1WI) and T2-weighted imaging (T2WI),
the most commonly used modalities, are mainly used to evaluate
tumor nature and prognosis by observing morphological
characteristics. However, their accuracy is limited by visual
resolution and the observer diagnostic ability (10). Although
functional imaging methods such as quantitative diffusion and
perfusion MRI can help us judge the tumor nature, these
advanced imaging methods have high requirements on the
imaging equipment and post-processing software, which may
limit their accessibility (12). Radiomics represent a set of tools
extracting quantitative features from medical images evaluating
tumor characteristics such as heterogeneity (13). Data mining
through radiomics allows researchers to explore the tumor
heterogeneity, which is closely related to tumor aggressiveness
and prognosis (14, 15). Previous studies have reported radiomics
feasibility in predicting the histologic grade of endometrial
carcinoma, lymph node metastasis or LVSI, and deep
myometrial invasion (DMI) (16–18). However, the correlation
between radiomics parameters and the EC patient survival is still
unknown. Therefore, this study aimed to develop a multi-
parameter MRI radiomics-based nomogram model to predict
5-year progression-free survival (PFS) in EC. In order to assess
what our model achieved using this full sample set, and that it
was not biased by the inclusion of various stages and grades of
Frontiers in Oncology | www.frontiersin.org 2279
EC, we also carried out a sensitivity analysis focused on the
different stages and grades.
MATERIALS AND METHODS

Patients
This retrospective study was approved by our institution’s ethics
committee. Informed consent was waived because analysis was
performed on anonymized images and clinical data. A total of 460
patients with endometrial cancer confirmed by postoperative
histopathology in our hospital from January 2011 to January 2016
were successively identified in the database. Inclusion criteria:
(1) All patients underwent hysterectomy with bilateral salpingo-
oophorectomy andwere pathologically confirmed to be endometrial
carcinoma, regardless of whether they had received radiotherapy or
chemotherapy after surgery. (2) MR was performed within two
weeks before surgery. Exclusion criteria: (1) No lesion that could be
accurately identified inMR images or the maximum diameter of the
lesion was less than 1 cm. (2) Lack of complete imaging data. (3)
There are obvious artifacts in the image, which affect the
observation. (4) Patients with co-malignancies. (5) Patients with
further oncological diseases. (6) Follow-up less than 5 years or lost.
202 patients were enrolled in the study, and patients were randomly
assigned to two separate cohorts, namely the training cohort
(n=141) and the test cohort (n=61), in a 0.7:0.3 ratio (Figure 1).

Clinical Data
Clinical indicators collected preoperatively included patients’
age, Body Mass Index (BMI), hypertension and diabetes,
Carbohydrate Antigen 125 (CA125) and Human Epididymis
Protein 4 (HE4) levels, which were obtained from our Hospital
Information System (HIS). BMI = weight/height2 (kg/m2).
Hypertension is defined as a systolic blood pressure of 140
mmHg or greater and/or a diastolic blood pressure of 90
mmHg or greater. Diabetes is defined as fasting blood glucose
greater than or equal to 7.0 mmol/L and/or postprandial blood
glucose greater than or equal to 11.1 mmol/L. The CA125 and
HE 4 level was detected by chemiluminescence microparticle
immunoassay (Cobas 8000 E602; Roche Holding AG).

Follow-Up
Progression was defined as local recurrence progression in the
pelvis or new metastases in the abdomen or at distant sites,
including nodal, peritoneal, or visceral metastases. All patients
were consistently followed up every 3 to 6 months after surgery
based on the thoracic, abdominal and pelvic CT or abdominal
and pelvic MR imaging to determine if there is progression. The
images were independently evaluated by two radiologists, neither
of whom was aware of the EC stage or subtype. If the two
radiologists cannot agree on the assessment of the metastasis
status, another more experienced radiologist will conduct the
assessment until a consensus is reached.

PFS is defined as the time when a patient receives surgical
treatment until disease progression is observed or death from any
cause occurs. Patients who relapsed or died within 5 years were
March 2022 | Volume 12 | Article 813069
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assigned to the high-risk (HR) group, while those who did not
relapse were assigned to the low-risk (LR) group.

MRI Scan
Images were collected for all patients using a 1.5 T MR scanner
(Avanto, Siemens) equipped with an 8-channel body coil. The
scanning area ranged from the anteroom-superior iliac spine to
the symphysis pubis. The scanning sequence included the
coronal, sagittal, and axial oblique fat-saturation (fs) T2WI;
axial oblique DWI and axial oblique three-dimensional
volumetric interpolated breath-hold examination (3D-VIBE).
DWI was acquired by echo-planar imaging (b-value = 0, 800 s/
mm2). After DWI scanning, the workstation automatically
calculates and generates ADC map. The specific MRI
parameters are shown in Table 1. When 3D-VIBE sequence
Frontiers in Oncology | www.frontiersin.org 3280
was used to obtain DCEI, patients were instructed to hold their
breath at the end of expiratory breath. A high pressure syringe
(Spectris MR injection system, Medrad Inc.) was used to
administer gadolinium diethylenetriamine penta-acetic acid
(Bayer Healthcare Pharmaceuticals) through the cubital vein at
a rate of 2 mL/s. The dosage of Gd-DTPA was 0.1 mmol/kg.
Images of arterial phase, venous phase and delay phase were
obtained by scanning at 25 s, 60 s and 180 s after administration.

MRI Evaluation
Additionally, all EC scans were independently evaluated by two
radiologists with more than 10 years of experience in pelvic MRI
diagnosis. The collected MR indicators included positive/
negative DMI, maximum tumor diameter, positive/negative
pelvic lymph nodes (PLN), and positive/negative abdominal
FIGURE 1 | Recruitment pathway for patients in this study. EC, endometrial cancer.
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para-aortic lymph nodes (PALN). A lymph node with a short
diameter of ≥1cm or with circular enhancement with central
necrosis on enhanced scan is considered positive (19). After the
evaluation, the intra-class correlation coefficient (ICC) and
Kappa value of each index reported by the two radiologists
were calculated. If the two indexes were greater than 0.75, the
parameters were considered to be stable.

Tumor Image Segmentation and
Radiomics Parameter Extraction
First, the axial diffusion fs-T2WI, DWI and 3D-VIBE images
were downloaded from the Picture Archiving and
Communication System (PACS). Axial-T2WI was used as a
reference image, and axial-ADC, axial-3D-VIBE are registered
to T2WI using Statistical Parametric Mapping software 12
(SPM12; University College London). Subsequently, the two
radiologists mentioned above performed a layer-by-layer
manual delineation of the volume of interest (VOI) on T2WI
for all patients, focusing on covering the entire tumor. VOIs and
tumor images, including T2WI, ADC and arterial, venous and
delayed 3D-VIBE are imported one by one into the PyRadiomics
toolkit version 3.0. The ICC of each parameter extracted by the
Frontiers in Oncology | www.frontiersin.org 4281
radiologists was calculated, and the ICC>0.75 parameter was
included. Figure 2 and Supplementary Methods S1 illustrate the
process of VOI delineation, parameter extraction, and modelling
in a patient with EC.

Feature Selection and Radiomics
Signature Construction
The radiomics data is normalized and pre-processed using FAE
software (FAE, https://github.com/salan668/FAE, version 0.3.6).
“Normalise to unit” was used to normalize the data in order to
reduce large differences in the values of the different radiomics
features. Pearson’s correlation coefficients (PCCs) were calculated
for pre-processing. When the PCC is larger than the threshold
value, one of the radiomics feature is removed randomly. See the
Supplementary Methods S2 for specific methods and calculation
formulas. The Using X&Y software (X&Y Solutions, Inc.), the
parameters related to PFS status were selected using the Least
Absolute Shrinkage and Selection Operator (LASSO) regression
method in the training cohort (Supplementary Method S3). The
individualised radiomics based nomogrammodel, incorporating the
radiomics signature and independent clinical risk factors, was
constructed using the logistic regression.
A B C D

FIGURE 2 | Radiomics workflow of model construction. (A) MR images segmentation. The tumor was segmented manually on the axial T2-weighted images.
(B) Texture features extraction. After 3D reconstruction, a total of 100 texture parameters of 6 types were extracted from each set of images. (C) Texture features
selection. After the parameters were normalized and dimensionality reduced, the characteristic parameters were selected and classified by LASSO regression.
(D) Model establishment. Combined with two clinical indicators of location and size, nomogram was developed to establish a preoperative evaluation model, and it
was evaluated according to receiver-operating characteristic, calibration and decision curves.
TABLE 1 | MRI Scanning Protocols.

Sequences Plane FS TR/TE (ms) FA (deg) Slice thickness/Interslice gap (mm) Matrix FOV (mm) Pixel size (mm)

T2TSE SAG Yes 4340/92 150 4/0.4 320×256 280×224 0.9×0.9
T2TSE COR Yes 4340/92 150 4/0.4 320×256 280×224 0.9×0.9
T2TSE AO Yes 4340/92 150 4/0.4 320×256 280×224 0.9×0.9
DWI AO Yes 7000/80 90 4/0.4 256×205 280×224 1.1×1.1
VIBE AO Yes 4.44/2.16 10 4/0 320×256 280×224 0.9×0.9
March 20
22 | Volume 12
AO, axial oblique slice orientation; COR, coronal slice orientation; Deg, degrees; DWI: diffusion weighted imaging; FA, flip angle; FOV, field of view; SAG, sagittal slice orientation; TE, time
echo; TR, repetition time; TSE, turbo spin echo; VIBE, volumetric interpolated breath-hold examination.
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Assessment and Validation
of Model Performance
The area under the curve obtained by ROC analysis was used to
evaluate the differentiating ability of the model (20). Calibration
curves were used to assess the predictive power of the model, and
the actual classification and the Hosmer–Lemeshow test was
performed to assess the goodness-of-fit (21). The clinical efficacy
of the model was evaluated by using the net benefits with
different threshold probabilities obtained from the decision
curve analysis (DCA) in the test cohort (22).

We also conducted sensitivity analysis of for our prediction
ModelN to judge the diagnostic efficiency of the model between
different pathological grades and stages. The FIGO staging
criteria revised in 2009 for EC were used for histological
diagnosis, grading, and pathological staging (23).

Pathological grading subgroup: All patients (including the
training and test cohorts) were divided into two subgroups
according to pathological grades. G1 and G2 endometrioid
adenocarcinoma were classified as low-grade subgroup, and G3 or
non-endometrial carcinoma (clear cell adenocarcinoma, serous
adenocarcinoma, etc.) was classified as high grade subgroup (24).

Pathological staging subgroup: All patients (including
training and test cohorts) were divided into two subgroups
according to their pathological stages. Stage I and II patients
were defined as low stage subgroup, while III and IV patients
were defined as high stage subgroup.

Statistical Analysis
All statistical analyses were conducted using X&Y software based on
R software. Univariable and multivariable logistic regression
analyses were performed to identify the independent clinical risk
factors associated with 5-year PFS. The candidate factors for
univariable analysis were age, BMI, HE4, CA125, hypertension,
diabetes, maximum diameter, DMI, PALN, PLN. Beta value, odds
ratio and their 95% confidence interval (CI) were calculated. The
variables with a P-value <0.10 in the univariable and multivariable
analysis were selected as independent risk factors. A two-tailed P-
value< 0.05 was considered statistically significant.
RESULTS

Clinical and MR Indicators
A total of 202 patients were eventually enrolled and analysed
based on the inclusion and exclusion criteria. According to their
5-year PFS status, there were 49 cases in the high-risk group and
153 cases in the low-risk group. The ICCs of clinical and MR
indicators were greater than 0.75, indicating a good agreement
between the two measurements. Sample sizes, baseline clinical
characteristics and pathological characteristics of the two groups
are shown in Tables 2, 3. Subsequently, univariate and
multivariate analyses showed that there were significant
differences in age, BMI, HE4, maximum diameter, and PALN
between the two groups (all P<0.05, Table 4). These factors could
be independent clinical risk factors for preoperative evaluation of
5-year survival status of EC patients.
Frontiers in Oncology | www.frontiersin.org 5282
Evaluation of Diagnostic Efficacy of
Clinical Indicators
Four independent clinical risk factors including age, BMI, HE4,
maximum diameter and PALN were combined with logistic
regression to construct a clinical prediction model (ModelC)
and develop a ROC curve to evaluate the preoperative prediction
ability of the model for tumors of two different risk grades. The
AUCs were 0.695 [95% confidence interval (CI), 0.612-0.770]
and 0.828 (95% CI, 0.709–0.912) for the training and test
cohorts, respectively (Figure 3).

Radiomics Score (RS) and the Diagnostic
Efficacy for Our Radiomics Model
A total of 4 parameters with a non-zero coefficient are selected by
LASSO regression, namely, ADC entropy, ADC Kurtosis, T2
Kurtosis, and Arterial HGLRE. RS values for each patient
were calculated based on their respective coefficients in
regression equation. Equation is as follows: RS=0.19213
+1.97154* ADC entropy+37.45352* ADC kurtosis+13.73094*
T2 kurtosis+10.94133* Arterial HGLRE.

The RS for each patient was calculated to build radiomics
model (ModelR) to predict 5-PFS. The AUCs for ModelR were
0.788 [95% CI, 0.712-0.853] and 0.887 (95% CI, 0.780–0.954) for
the training and test cohorts, respectively (Figure 3). There was
no statistically significant difference between the AUC of ModelR

and ModelC (P=0.167 and 0.493 for the training and test
cohort, respectively).

Radiomics Based Nomogram Model
(ModelN) Establishment and Performance
The addition of radiomics parameters can improve the
discriminative ability of ModelC. The nomogram achieved
excellent performance in predicting risk grading, with AUC of
0.840 (95% CI: 0.769–0.896) in the training and 0.958 (95% CI:
0.873–0.993) in the test cohort. The predictive ability of the
nomogram was better than that of the ModelC in the training
cohort (P<0.001) and test cohort (P=0.032). The predictive
ability of the nomogram was also better than that of the
ModelR in the training cohort (P=0.021). However, in the test
cohort, there was no statistically significant difference between
the AUC of ModelN and ModelR (P = 0.106). In Figure 4, we
include two representative MRI images illustrating visually
striking differences in tumor heterogeneity between a patient
who survived 26 months and another who succumbed at 8
months. T2WI, ADC and arterial-phased 3D-VIBE images of
two representative cases with their ModelN score and predicted
5-year PFS are shown in Figure 4.

The calibration curve shows that the predicted value of the
model is in good agreement with the actual value (P = 0.610 and
P = 0.956 for the training and test cohorts, respectively). We
calculated the risk scores for all patients in the training set and
the test set to visually display the prediction ability of the model
(Figure 5). The DCA indicates that the clinical application of
ModelN has a better performance than that of ModelC, which
also added more benefit than assuming that all cases are positive
(high-risk EC) or negative (high-risk EC) (Figure 6).
March 2022 | Volume 12 | Article 813069
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In the subgroup analysis, ModelN had a good differential
diagnostic capability in all subgroups divided according to
different criteria and there was no significant difference
between subgroups. The AUC of the low- and high-grade
subgroups were 0.871 and 0.926. The AUC of the low stage
and high stage subgroups were 0.873 and 0.831. There was also
no significant difference between the subgroups of different grade
and stage (Figure S1).
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DISCUSSION

In this study, a radiomics model based on multi-parameter MRI
has been established to predict 5-year PFS in EC patients. The
model combined the radiomics parameters obtained by
preoperative MR examination with those easily obtained
preoperatively to provide predictive information for long-term
prognosis. Compared with clinical and radiomics models, this
TABLE 2 | Patient characteristics in the training and test cohorts.

Characteristics Training cohort (n = 141) Test cohort (n = 61) P-value

LR (n = 107) HR (n = 34) P-value LR (n = 46) HR (n = 15)

Age (years) 0.021 0.729
Mean ± SD 51.1 ± 12.8 57.3 ± 15.0 53.8 ± 12.9 61.1 ± 10.9
Range 30.0-88.0 35.0-90.0 30.0-94.0 45.0-75.0
BMI 0.007 0.009
Mean ± SD 26.4 ± 6.2 29.8 ± 6.6 26.5 ± 6.9 30.3 ± 6.2
Range 19.8-39.5 21.1-40.1 19.1-38.5 21.8-38.3
CA125 0.118 0.586
Mean ± SD 91.7 ± 31.4 327.4 ± 272.9 93.3 ± 26.7 97.2 ± 32.5
Range 16.0-162.0 21.0-160.0 32.0-141.0 39.0-154.0
HE4 0.043 0.041
Mean ± SD 112.7 ± 43.5 130 ± 40.3 111.8 ± 41.6 139.7 ± 54.1
Range 23.0-264.0 58.0-243.0 12.0-257.0 41.0-207.0
Hypertension 0.285 0.493
No 68 (63.6%) 25 (73.5%) 32 (69.6%) 9 (60.0%)
Yes 39 (36.4%) 9 (26.5%) 14 (30.4%) 6 (40.0%)
Diabetes 0.703 0.076
No 73 (68.2%) 22 (64.7%) 33 (71.7%) 7 (46.7%)
Yes 34 (31.8%) 12 (35.3%) 13 (28.3%) 8 (53.3%)
Maximum Diameter 0.002 0.081
Mean ± SD 4.1 ± 1.0 4.8 ± 1.0 4.0 ± 1.1 4.6 ± 1.1
Range 2.1-6.2 3.2-6.5 2.3-6.1 2.5-5.7
DMI 0.363 0.597
No 44 (41.1%) 17 (50.0%) 22 (47.8%) 6 (40.0%)
Yes 63 (58.9%) 17 (50.0%) 24 (52.2%) 9 (60.0%)
PLN 0.132 0.929
No 66 (61.7%) 16 (47.1%) 27 (58.7%) 9 (60.0%)
Yes 41 (38.3%) 18 (52.9%) 19 (41.3%) 6 (40.0%)
PALN 0.019 0.076
No 87 (81.3%) 21 (61.8%) 40 (87.0%) 10 (66.7%)
Yes 20 (18.7%) 13 (38.2%) 6 (13.0%) 5 (33.3%)
March 2022 | Volume 12 | Article
LR, low-risk group; HR, high-risk group; BMI, body mass index; presence of hypertension and diabetes; CA125, carbohydrate antigen 125; HE4, human epididymis protein 4; HBP, high
blood pressure; DMI, deep myometrial invasion; PLN, pelvic lymph nodes; PALN, para-aortic lymph nodes. P value was derived from the student-t or chi-square test. Bold type indicates
statistically significant difference.
TABLE 3 | Pathological characteristics of the patients in our study.

Characteristics LR (n = 153) HR (n = 49) P-value

Pathological staging, n (%) 0.0004
pI 53 (34.6%) 15 (30.6%)
pII 74 (48.4%) 16 (32.7%)
pIII 20 (13.1%) 14 (28.6%)
pIV 6 (3.9%) 4 (8.1%)
Histological grade, n (%) 0.0232
G1 71 (46.4%) 13 (26.5%)
G2
G3 and non-endometrial carcinoma

48 (31.4%) 17 (34.7%)
34 (22.2%) 19 (38.8%)
LR, low-risk group; HR, high-risk group. Bold type indicates statistically significant difference.
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comprehensive model provides better discrimination ability,
enabling clinicians to grade tumor risk preoperatively, which
can be used to guide treatment decisions. The discriminative
ability of nomogram model discrimination ability was also
demonstrated in subgroup analysis.

Four radiomics parameters (ADC entropy, ADC Kurtosis, T2
Kurtosis, Arterial HGLRE) are selected to calculate the RS in this
study. Several previous studies have used radiomics-based
models to predict a prognosis in a variety of tumors (25–27).
For example, recent studies have shown that RS-based models
can predict EC lymph node metastasis and LVSI (16, 28). A
previous CT study has found that a high tumor entropy
independently predicted deep myometrial invasion (odds ratio
[OR] 3.7, p=0.008) and cervical stroma invasion (OR 3.9,
p=0.02) (29). In addition, a high tumor kurtosis tends to
independently predict a reduced recurrence- and PFS (HR 1.1,
p=0.06) (29). Another MR study also found that MR was a
sensitive indicator for PFS. High kurtosis in T1 c images
predicted a reduced recurrence- and progression-free survival
(hazard ratio [HR] 1.5, P < 0.001) after adjusting for MRI-
measured tumor volume and histological risk at biopsy (30).
High tumor entropy in apparent diffusion coefficient (ADC)
maps independently predicted deep myometrial invasion (odds
Frontiers in Oncology | www.frontiersin.org 7284
ratio [OR] 3.2, P < 0.001) (30). It is not difficult to find that the
parameters screened in the above studies are similar to the
radiomics parameters in this study.

The parameters screened in this study also overlapped with
other tumor prognostic parameters. A previous study has shown
that a radiomics model can more accurately predict 3-year and 5-
year PFS for advanced nasopharyngeal carcinoma than a clinical
model based on TNM stage alone (31). A previous breast cancer
study found that entropy can be used as a predictor of benign,
malignant and risk assessment of tumors, with an AUC of 0.8
and a sensitivity of 95% when applied alone (32). A study found
that Kurtosis combined with several clinical and other texture
parameters could predict eight-year event-free survival (EFS) in
Luminal Non-Metastatic Breast Valencia (33). In addition to
adenocarcinoma, another study on anal squamous cell
carcinoma also found that Entropy and Joint Energy can be
independent risk factors for predicting tumor recurrence rate
(34). Therefore, the radiomics indicators screened in this study
are not only reproducible in the evaluation of multiple biological
characteristics and prognosis of endometrial cancer, but also
seem to be similar in other tumors.

Previous studies generally report that the older the onset age,
the higher the risk of endometrial cancer recurrence and death (7).
TABLE 4 | Preoperative clinical risk factors for 5-year PFS in patients with EC.

Variable Univariable analysis Multivariable analysis

OR (95% CI) P-value OR (95% CI) P-value

Age (years) 1.037
(1.012, 1.062)

0.004 1.035
(1.007, 1.064)

0.013

BMI 1.085
(1.032, 1.140)

0.001 1.084
(1.025, 1.146)

0.005

CA125 1.000
(1.000, 1.000)

0.114

HE4 1.010
(1.003, 1.018)

0.006 1.011
(1.003, 1.020)

0.010

Hypertension 0.604
No 1.000
Yes 0.832

(0.416, 1.664)
Diabetes 0.193
No 1.000
Yes 1.555

(0.800, 3.025)
Maximum Diameter 1.934

(1.367, 2.737)
<0.001 2.000

(1.362, 2.936)
<0.001

DMI 0.641
No 1.000
Yes 0.858

(0.450, 1.636)
PLN 0.229
No 1.000
Yes 1.488

(0.779, 2.843)
PALN 0.004 0.023
No 1.000 1.000
Yes 2.836

(1.383, 5.814)
2.590

(1.140, 5.885)
March 2022 | Volume 12 | Article
BMI, body mass index; presence of hypertension and diabetes; CA125, carbohydrate antigen 125; HE4, human epididymis protein 4; HBP, high blood pressure; DMI, deep myometrial
invasion; PLN, pelvic lymph nodes; PALN, para-aortic lymph nodes. Bold type indicates statistically significant difference.
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This may be due to the fact that elderly patients are more prone to
high-grade or specific histological types of EC and to various
complication (35). This study also found that the higher the BMI
for our EC patients, the more likely they were to relapse, which
may be related to the increase of oestrogen level caused by obesity
(8). In addition, HE4 has recently been identified as a potential
biomarker for endometrial cancer with higher sensitivity than
CA125 (36). The high expression of this marker was associated
with International Federation of Gynaecology and Obstetrics
(FIGO) grade, histological stage, and mortality (37). This study
found that this indicator can also be used to assess the risk of
tumor recurrence.

The maximum tumor diameter and para-aortic lymph node
metastasis could also be independent risk factors for predicting
the risk of tumor recurrence. A previous study suggested that
lymph node dissection should be considered for all patients with
Frontiers in Oncology | www.frontiersin.org 8285
the maximum diameter over 35 mm to prevent postoperative
recurrence (38). In addition to being a risk factor for lymph node
metastasis, tumor size is also a risk factor for cervical invasion,
which is more likely to occur when the tumor diameter is larger
than 3 cm (39). This study found that para-aortic lymph node
metastases were associated with EC 5-year PFS, but not with
pelvic lymph node metastases. Although it needs to be carefully
verified, we speculate that lymph metastases at the first site may
not significant affect the prognosis. A previous study found that,
in endometrial cancer with stage IIIC disease, only when the
second lymphatic station, like PALN is invaded it may indicate
that the tumor has a strong invasive ability and a poor
prognosis (40).

The whole tumor profile method was used to obtain all tumor
information in this study, which is more accurate, though more
time consuming than single-layer measurements. Previous
A B

C

FIGURE 3 | (A) Receiver operating characteristic (ROC) of different models in the training cohort. (B) ROC of different models in the test cohort. (C) Nomogram for
predicting risk classification of EC. The nomogram was built in the training cohort with the Radscore, BMI and CA125. The probability of each predictor can be
converted into scores according to the first scale points at the top of the nomogram. After adding up the scores of these predictors in total points, the
corresponding prediction probability at the bottom of the nomogram is the malignancy of the tumor.
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studies have shown that the whole-tumor signatures
outperformed single-slice signatures for prediction of LNM
and advanced FIGO stage (41). Furthermore, we also used
radiomics markers to predict postoperative pathological results
such as DMI, FIGO, lymphatic metastasis and other established
different models to indirectly evaluate the recurrence of tumor.
Frontiers in Oncology | www.frontiersin.org 9286
Based on the patients baseline clinical indicators and
preoperative MR examination, the present study directly
established a model to predict 5-PFS in EC patients, with the
purpose of providing guidance for the clinical practice of
endometrial cancer treatment and follow-up. Therefore,
compared with other previous study, the present study was
A B C

D E F

FIGURE 4 | Representative images of two patients with different survival outcomes. (A–C) axial oblique T2WI, ADC map and arterial phase images of a 55-year-old
woman with low-risk EC. The nomogram model (ModelN) score was -1.37. Using the nomogram, the estimated probability of relapse or death within 5 years was
17%. The tumor did not recur during the 5-year observation period. (D–F) axial oblique T2WI, ADC map and arterial phase images of a 75-year-old woman with
high-risk EC. The ModelN score was 2.92. Using the nomogram, the estimated probability of relapse or death within 5 years was 95%. The tumor relapsed 6 months
after surgery.
A B

FIGURE 5 | (A, B) The calibration curve in the training cohort (A) and test cohort (B). The calibration curve depicted the agreement between the predicted risk
classification score and the actual results confirmed by examination. The red line represents an ideal prediction, and the black line represents the predictive
performance. The closer the fit of the black line to the ideal line, the better the prediction.
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able to assess the tumor risk in the absence of preoperative
pathological results. Based on the nomogram proposed in this
study, we can calculate the patient score and make an accurate
preoperative prediction of the 5-year recurrence and survival
probability for each EC patient. In this way, it is more reasonable
for clinicians to take more active treatment measures as soon as
possible for patients suspected of having a higher risk of
recurrence. Furthermore, more active follow-up should be
carried out after surgery to detect recurrent lesions and
intervene as soon as possible, to prolong and improve the
quality of life. For patients with low risk, the rational
application of this model can avoid overly aggressive surgical
plans formulated by physicians, and also reduce the use of many
unnecessary postoperative treatments (such as chemotherapy
and radiotherapy). This provides a new strategy to avoiding
pain, unnecessary economic loss and waste of medical resources
caused by overtreatment.

This study has the following limitations that should be
considered. First, this is a retrospective study and only includes
those patients who had undergone surgery, which inevitably led
to selective bias. Second, as a single centre study, whether the
model proposed in this study is applicable to other MR systems
remains unknown. Third, the sample size of this study is small,
and the results need to be verified by large sample studies. In
order to ensure the sample size for the training cohort and the
accuracy of the model establishment, the samples have an
unbalanced distribution. The small sample size of the test
cohort may increase the uncertainty of its results. In addition,
there are several extracted features, which may lead to the failure
to include some indicators with strong correlation with PFS.

In conclusion, the radiomics model which incorporates
clinical and cMR indicators was a good predictor of the relapse
Frontiers in Oncology | www.frontiersin.org 10287
risk of EC. Using our radiomic parameter-based model and
nomogram analysis can help guide preoperative non-invasive
individualized evaluation for 5-year PFS and avoid possible
under- or over-treatment.
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10. Otero-Garcıá MM, Mesa-Álvarez A, Nikolic O, Blanco-Lobato P, Basta-
Nikolic M, de Llano-Ortega RM, et al. Role of MRI in Staging and Follow-
Up of Endometrial and Cervical Cancer: Pitfalls and Mimickers. Insights
Imaging (2019) 10(1):19. doi: 10.1186/s13244-019-0696-8

11. Ippolito D, Minutolo O, Cadonici A, Talei Franzesi C, Bonaffini P, Perego P,
et al. Endometrial Cancer: Diagnostic Value of Quantitative Measurements of
Microvascular Changes With DCE-MR Imaging.Magma (2014) 27(6):531–8.
doi: 10.1007/s10334-014-0435-6

12. Satta S, Dolciami M, Celli V, Di Stadio F, Perniola G, Palaia I, et al.
Quantitative Diffusion and Perfusion MRI in the Evaluation of Endometrial
Cancer: Validation With Histopathological Parameters. Br J Radiol (2021) 94
(1125):20210054. doi: 10.1259/bjr.20210054

13. Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ. CT
Texture Analysis: Definitions, Applications, Biologic Correlates, and
Challenges. Radiographics: Rev Publ Radiological Soc North Am Inc (2017)
37(5):1483–503. doi: 10.1148/rg.2017170056

14. Badic B, Tixier F, Cheze Le Rest C, Hatt M, Visvikis D. Radiogenomics in
Colorectal Cancer. Cancers (2021) 13(5):973. doi: 10.3390/cancers13050973

15. Fan M, Chen H, You C, Liu L, Gu Y, Peng W, et al. Radiomics of Tumor
Heterogeneity in Longitudinal Dynamic Contrast-Enhanced Magnetic
Resonance Imaging for Predicting Response to Neoadjuvant Chemotherapy
in Breast Cancer. Front Mol Biosci (2021) 8:622219. doi: 10.3389/
fmolb.2021.622219

16. Luo Y, Mei D, Gong J, Zuo M, Guo X. Multiparametric MRI-Based Radiomics
Nomogram for Predicting Lymphovascular Space Invasion in Endometrial
Carcinoma. J Magn Reson Imaging (2020) 52(4):1257–62. doi: 10.1002/
jmri.27142

17. Ueno Y, Forghani B, Forghani R, Dohan A, Zeng XZ, Chamming’s F, et al.
Endometrial Carcinoma: MR Imaging-Based Texture Model for Preoperative
Risk Stratification-A Preliminary Analysis. Radiology (2017) 284(3):748–57.
doi: 10.1148/radiol.2017161950

18. Han Y, Xu H, Ming Y, Liu Q, Huang C, Xu J, et al. Predicting Myometrial
Invasion in Endometrial Cancer Based on Whole-Uterine Magnetic
Resonance Radiomics. J Cancer Res Ther (2020) 16(7):1648–55. doi:
10.4103/jcrt.JCRT_1393_20

19. Meissnitzer M, Forstner R. MRI of Endometrium Cancer - How We Do It.
Cancer Imaging: Off Publ Int Cancer Imaging Soc (2016) 16:11. doi: 10.1186/
s40644-016-0069-1

20. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the Areas Under Two
or More Correlated Receiver Operating Characteristic Curves: A Nonparametric
Approach. Biometrics (1988) 44(3):837–45. doi: 10.2307/2531595

21. Han DS, Suh YS, Kong SH, Lee HJ, Choi Y, Aikou S, et al. Nomogram
Predicting Long-Term Survival After D2 Gastrectomy for Gastric Cancer.
J Clin Oncol: Off J Am Soc Clin Oncol (2012) 30(31):3834–40. doi: 10.1200/
JCO.2012.41.8343

22. Hijazi Z, Oldgren J, Lindbäck J, Alexander JH, Connolly SJ, Eikelboom JW,
et al. The Novel Biomarker-Based ABC (Age, Biomarkers, Clinical History)-
Bleeding Risk Score for Patients With Atrial Fibrillation: A Derivation and
Validation Study. Lancet (London England) (2016) 387(10035):2302–11.
doi: 10.1016/S0140-6736(16)00741-8

23. FIGO Committee on Gynecologic Oncology. FIGO Staging for Carcinoma of
the Vulva, Cervix, and Corpus Uteri. International Journal of Gynaecology and
Obstetrics: The Official Organ of the International Federation of Gynaecology
and Obstetrics. Amsterdam: Elsevier B.V (2014) 125:97–8.

24. Miyamoto M, Takano M, Aoyama T, Soyama H, Yoshikawa T, Tsuda H, et al.
Seromucinous Component in Endometrioid Endometrial Carcinoma as a
Histological Predictor of Prognosis. J Gynecol Oncol (2018) 29(2):e20. doi:
10.3802/jgo.2018.29.e20

25. Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non-Small
Cell Lung Cancer: Histopathologic Correlates for Texture Parameters at CT.
Radiology (2013) 266(1):326–36. doi: 10.1148/radiol.12112428

26. Ahmed A, Gibbs P, Pickles M, Turnbull L. Texture Analysis in Assessment
and Prediction of Chemotherapy Response in Breast Cancer. J Magn Reson
Imaging (2013) 38(1):89–101. doi: 10.1002/jmri.23971

27. Wibmer A, Hricak H, Gondo T, Matsumoto K, Veeraraghavan H, Fehr D,
et al. Haralick Texture Analysis of Prostate MRI: Utility for Differentiating
non-Cancerous Prostate From Prostate Cancer and Differentiating Prostate
Cancers With Different Gleason Scores. Eur Radiol (2015) 25(10):2840–50.
doi: 10.1007/s00330-015-3701-8

28. Xu X, Li H, Wang S, Fang M, Zhong L, Fan W, et al. Multiplanar MRI-Based
Predictive Model for Preoperative Assessment of Lymph Node Metastasis in
Endometrial Cancer. Front Oncol (2019) 9:1007. doi: 10.3389/fonc.2019.01007

29. Ytre-Hauge S, Salvesen ØO, Krakstad C, Trovik J, Haldorsen IS. Tumour
Texture Features From Preoperative CT Predict High-Risk Disease in
Endometrial Cancer. Clin Radiol (2021) 76(1):79.e13–20. doi: 10.1016/
j.crad.2020.07.037

30. Ytre-Hauge S, Dybvik JA, Lundervold A, Salvesen ØO, Krakstad C, Fasmer
KE, et al. Preoperative Tumor Texture Analysis on MRI Predicts High-Risk
Disease and Reduced Survival in Endometrial Cancer. J Magn Reson Imaging
(2018) 48(6):1637–47. doi: 10.1002/jmri.26184
March 2022 | Volume 12 | Article 813069

https://www.frontiersin.org/articles/10.3389/fonc.2022.813069/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.813069/full#supplementary-material
https://doi.org/10.1056/NEJMra1514010
https://doi.org/10.6004/jnccn.2018.0006
https://doi.org/10.1016/j.ygyno.2003.11.048
https://doi.org/10.1200/JCO.18.01575
https://doi.org/10.3390/diagnostics11040626
https://doi.org/10.1111/aogs.14146
https://doi.org/10.1186/1471-2407-12-128
https://doi.org/10.1677/ERC-07-0064
https://doi.org/10.1186/s40644-019-0196-6
https://doi.org/10.1186/s40644-019-0196-6
https://doi.org/10.1186/s13244-019-0696-8
https://doi.org/10.1007/s10334-014-0435-6
https://doi.org/10.1259/bjr.20210054
https://doi.org/10.1148/rg.2017170056
https://doi.org/10.3390/cancers13050973
https://doi.org/10.3389/fmolb.2021.622219
https://doi.org/10.3389/fmolb.2021.622219
https://doi.org/10.1002/jmri.27142
https://doi.org/10.1002/jmri.27142
https://doi.org/10.1148/radiol.2017161950
https://doi.org/10.4103/jcrt.JCRT_1393_20
https://doi.org/10.1186/s40644-016-0069-1
https://doi.org/10.1186/s40644-016-0069-1
https://doi.org/10.2307/2531595
https://doi.org/10.1200/JCO.2012.41.8343
https://doi.org/10.1200/JCO.2012.41.8343
https://doi.org/10.1016/S0140-6736(16)00741-8
https://doi.org/10.3802/jgo.2018.29.e20
https://doi.org/10.1148/radiol.12112428
https://doi.org/10.1002/jmri.23971
https://doi.org/10.1007/s00330-015-3701-8
https://doi.org/10.3389/fonc.2019.01007
https://doi.org/10.1016/j.crad.2020.07.037
https://doi.org/10.1016/j.crad.2020.07.037
https://doi.org/10.1002/jmri.26184
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Radiomics Analysis in EC
31. Yang K, Tian J, Zhang B, Li M, Xie W, Zou Y, et al. A Multidimensional
Nomogram Combining Overall Stage, Dose Volume Histogram Parameters
and Radiomics to Predict Progression-Free Survival in Patients With
Locoregionally Advanced Nasopharyngeal Carcinoma. Oral Oncol (2019)
98:85–91. doi: 10.1016/j.oraloncology.2019.09.022

32. Brown AL, Jeong J, Wahab RA, Zhang B, Mahoney MC. Diagnostic Accuracy
of MRI Textural Analysis in the Classification of Breast Tumors. Clin Imaging
(2021) 77:86–91. doi: 10.1016/j.clinimag.2021.02.031

33. Aide N, Elie N, Blanc-Fournier C, Levy C, Salomon T, Lasnon C. Hormonal
Receptor Immunochemistry Heterogeneity and (18)F-FDG Metabolic
Heterogeneity: Preliminary Results of Their Relationship and Prognostic
Value in Luminal Non-Metastatic Breast Cancers. Front Oncol (2020)
10:599050. doi: 10.3389/fonc.2020.599050

34. Giraud N, Saut O, Aparicio T, Ronchin P, Bazire LA, Barbier E, et al. MRI-
Based Radiomics Input for Prediction of 2-Year Disease Recurrence in Anal
Squamous Cell Carcinoma. Cancers (2021) 13(2):193. doi: 10.3390/
cancers13020193

35. Wright JD, Lewin SN, Barrena Medel NI, Sun X, Burke WM, Deutsch I, et al.
Endometrial Cancer in the Oldest Old: Tumor Characteristics, Patterns of
Care, and Outcome. Gynecol Oncol (2011) 122(1):69–74. doi: 10.1016/
j.ygyno.2011.02.040

36. Kalogera E, Scholler N, Powless C, Weaver A, Drapkin R, Li J, et al.
Correlation of Serum HE4 With Tumor Size and Myometrial Invasion in
Endometrial Cancer. Gynecol Oncol (2012) 124(2):270–5. doi: 10.1016/
j.ygyno.2011.10.025

37. Karlsen NS, Karlsen MA, Høgdall CK, Høgdall EV. HE4 Tissue Expression
and Serum HE4 Levels in Healthy Individuals and Patients With Benign or
Malignant Tumors: A Systematic Review. Cancer Epidemiol Biomarkers Prev:
Publ Am Assoc Cancer Res Cosponsored by Am Soc Prev Oncol (2014) 23
(11):2285–95. doi: 10.1158/1055-9965.EPI-14-0447

38. Riggs MJ, Cox Bauer CM, Miller CR, Aden JK, Kamelle SA. Validation of an
Endometrial Tumor Diameter Model for Risk Assessment in the Absence of
Frontiers in Oncology | www.frontiersin.org 12289
Lymph Node Mapping. J Patient-Centered Res Rev (2020) 7(4):323–8.
doi: 10.17294/2330-0698.1768

39. Toprak S, Sahin EA, Sahin H, Tohma YA, Yilmaz E, Meydanli MM. Risk
Factors for Cervical Stromal Involvement in Endometrioid-Type Endometrial
Cancer. Int J Gynaecol Obstet: Off Organ Int Fed Gynaecol Obstet (2021) 153
(1):51–5. doi: 10.1002/ijgo.13449

40. Guo J, Qian H, Ma F, Zhang Y, Cui X, Duan H. The Characteristics of Isolated
Para-Aortic Lymph Node Metastases in Endometrial Cancer and Their
Prognostic Significance. Ther Adv Med Oncol (2020) 12:1758835920933036.
doi: 10.1177/1758835920933036

41. Fasmer KE, Hodneland E, Dybvik JA, Wagner-Larsen K, Trovik J, Salvesen Ø,
et al. Whole-Volume Tumor MRI Radiomics for Prognostic Modeling in
Endometrial Cancer. J Magn Reson Imaging (2021) 53(3):928–37. doi:
10.1002/jmri.27444

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Liu, Yang, Du, Zheng, Liu, Wang, Du, Dong, Yi and Cui. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
March 2022 | Volume 12 | Article 813069

https://doi.org/10.1016/j.oraloncology.2019.09.022
https://doi.org/10.1016/j.clinimag.2021.02.031
https://doi.org/10.3389/fonc.2020.599050
https://doi.org/10.3390/cancers13020193
https://doi.org/10.3390/cancers13020193
https://doi.org/10.1016/j.ygyno.2011.02.040
https://doi.org/10.1016/j.ygyno.2011.02.040
https://doi.org/10.1016/j.ygyno.2011.10.025
https://doi.org/10.1016/j.ygyno.2011.10.025
https://doi.org/10.1158/1055-9965.EPI-14-0447
https://doi.org/10.17294/2330-0698.1768
https://doi.org/10.1002/ijgo.13449
https://doi.org/10.1177/1758835920933036
https://doi.org/10.1002/jmri.27444
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Oliver Diaz,

University of Barcelona, Spain

Reviewed by:
Caterina Giannitto,

Humanitas Research Hospital, Italy
Eros Montin,

NYU Grossman School of Medicine,
United States

*Correspondence:
Feng Jiang

jiangfeng@zjcc.org.cn
Zhongxiang Ding

hangzhoudzx73@126.com

†These authors share
first authorship

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 30 November 2021
Accepted: 23 March 2022
Published: 22 April 2022

Citation:
Xi Y, Ge X, Ji H, Wang L, Duan S,

Chen H, Wang M, Hu H, Jiang F and
Ding Z (2022) Prediction of Response

to Induction Chemotherapy Plus
Concurrent Chemoradiotherapy for

Nasopharyngeal Carcinoma Based on
MRI Radiomics and Delta Radiomics:
A Two-Center Retrospective Study.

Front. Oncol. 12:824509.
doi: 10.3389/fonc.2022.824509

ORIGINAL RESEARCH
published: 22 April 2022

doi: 10.3389/fonc.2022.824509
Prediction of Response to Induction
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Nasopharyngeal Carcinoma Based
on MRI Radiomics and Delta
Radiomics: A Two-Center
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2 Department of Radiology, 903rd Hospital of PLA, Hangzhou, China, 3 Department of Radiology, Liangzhu Hospital,
Hangzhou, China, 4 GE Healthcare, Precision Health Institution, Shanghai, China, 5 Zhejiang Chinese Medical University,
Hangzhou, China, 6 Department of Radiology, Sir Run Run Shaw Hospital Affiliated to Medical College Zhejiang University,
Hangzhou, China, 7 Department of Head and Neck Radiotherapy, Zhejiang Cancer Hospital/Zhejiang Province Key
Laboratory of Radiation Oncology, Hangzhou, China

Objective: We aimed to establish an MRI radiomics model and a Delta radiomics model
to predict tumor retraction after induction chemotherapy (IC) combined with concurrent
chemoradiotherapy (CCRT) for primary nasopharyngeal carcinoma (NPC) in non-endemic
areas and to validate its efficacy.

Methods: A total of 272 patients (155 in the training set, 66 in the internal validation set,
and 51 in the external validation set) with biopsy pathologically confirmed primary NPC
who were screened for pretreatment MRI were retrospectively collected. The NPC tumor
was delineated as a region of interest in the two sequenced images of MRI before
treatment and after IC, followed by radiomics feature extraction. With the use of maximum
relevance minimum redundancy (mRMR) and least absolute shrinkage and selection
operator (LASSO) algorithms, logistic regression was performed to establish pretreatment
MRI radiomics and pre- and post-IC Delta radiomics models. The optimal Youden’s index
was taken; the receiver operating characteristic (ROC) curve, calibration curve, and
decision curve were drawn to evaluate the predictive efficacy of different models.

Results: Seven optimal feature subsets were selected from the pretreatment MRI
radiomics model, and twelve optimal subsets were selected from the Delta radiomics
model. The area under the ROC curve, accuracy, sensitivity, specificity, negative
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predictive value (NPV), and positive predictive value (PPV) of the MRI radiomics model
were 0.865, 0.827, 0.837, 0.813, 0.776, and 0.865, respectively; the corresponding
indicators of the Delta radiomics model were 0.941, 0.883, 0.793, 0.968, 0.833, and
0.958, respectively.

Conclusion: The pretreatment MRI radiomics model and pre- and post-IC Delta
radiomics models could predict the IC-CCRT response of NPC in non-epidemic areas.
Keywords: nasopharyngeal carcinoma, magnetic resonance imaging, radiomics, induction chemotherapy,
concurrent chemoradiotherapy
INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a malignant tumor
originating from the nasopharyngeal mucosal epithelium,
which is sensitive to radiotherapy (1). Global Cancer Statistics
of 2020 indicated 133,354 new cases of NPC and 80,008 deaths
worldwide (2, 3). Meanwhile, the incidence and mortality of
NPC in China are higher than the global average estimate.
Radiotherapy is the primary treatment for NPC, and
concurrent chemoradiotherapy (CCRT) can improve the
radiotherapy effect by shrinking the tumor, increasing
radiosensitivity, and reducing the radiation dose (4). The 2019
National Comprehensive Cancer Network Clinical Practice
Guidelines have recommended induction chemotherapy (IC)
combined with CCRT (IC-CCRT) as a class 2A modality for
the treatment of advanced NPC (5). In recent years, there has
been increasing evidence that IC-CCRT or radiotherapy has
clinical value in improving progression-free survival (PFS) and
relapse-free survival (RFS) of NPC patients (6). IC-CCRT is also
effective in the treatment of non-endemic areas of NPC (7).
Although NPC treatment has improved with the advancement of
chemoradiotherapy strategies, the 5-year survival rate of some
patients with advanced disease is about 60%–85%, and the
therapeutic efficacy remains unsatisfactory (8, 9).

The development of treatment options and the evaluation of
prognosis for NPC mainly depend on the tumor node metastasis
(TNM) stage. However, anatomy-based TNM staging only
reflects the tumor shape and invasion into surrounding
structures and ignores the internal characteristics of the tumor
with the same stage. Hence, despite receiving similar treatment
regimens, about 20% of patients show unsatisfactory results due
to individual differences and tumor heterogeneity (10).
Radiochemotherapy resistance remains one of the main causes
of poor prognosis and treatment failure in NPC (11), while
residual mass is an independent factor for poor prognosis (12,
13). Treatment of residual disease is associated with better
survival outcomes compared to the treatment of recurrent
tumors (14). As the tumor shrinks during treatment, adjacent
normal brain tissue, skull base bone, and other tissues will fall
into the high-dose irradiated tumor areas, increasing the risk of
radiation-related injury (15). Therefore, it is necessary to reveal
the heterogeneity of tumors as early as possible, facilitating to
predict tumor shrinkage in individualized and precise treatment
and prognosis of NPC patients.
2291
Radiomics has become a popular method to study tumor
heterogeneity in recent years. It can describe tumor
heterogeneity and other features by mining the high-
dimensional quantitative characteristics of standard medical
images (CT, MRI, PET, etc.), providing clinical and high-
throughput quantitative information and more personalized
treatment options (16). Radiomics characteristics are usually
defined in two ways (17), including single-time point radiology
and Delta radiomics. Single-time point radiology is mostly used
before or during treatment to establish a genomics characteristics
model for diagnosis (18, 19), tumor risk stratification (20–23),
and prognosis prediction (24, 25), associated with higher powers
compared with the TNM staging system. Delta radiomics uses
radiological features during or after treatment to provide a
wealth of information to identify and quantify treatment-
induced changes to guide clinical decisions. It may be more
suitable for assessing tumor treatment efficacy (26). Some studies
have shown that Delta radiomics-based models yield higher
powers than single-time-point-based models (27–29).

Existing radiomics guidelines have recommended the use of
multicenter data to ensure the generalizability of the findings (30,
31). However, for many studies, there are very little external
validation data. In addition, Delta radiomics studies in predicting
adverse events in head and neck squamous cell carcinoma are
mostly based on CT imaging (32, 33). The aim of this study was
to construct a pretreatment MRI radiomics model and Delta
radiomics models before and after IC and to explore their
application values in dynamically predicting chemoradiotherapy
efficacy for the treatment of NPC in non-epidemic regions.
MATERIALS AND METHODS

Patients
The study was approved by the local scientific research ethics
committee, and informed consent was waived due to its
retrospective nature. The study process was in accordance with
the Declaration of Helsinki. The information of 668 included
patients with pathologically confirmed NPCat the Cancer
Hospital of the University of Chinese Academy of Sciences
(Zhejiang Cancer Hospital) was collected between January
2007 and June 2012. Then screening was performed according
to the following conditions: 1) NPC diagnosis was pathologically
confirmed; 2) patients were treated with IC-CCRT; 3) MRI
April 2022 | Volume 12 | Article 824509
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examination was performed within 2 weeks before and after
CCRT treatment; 3) fat-suppressed (FS) T2-weighted imaging
(T2WI) and FS contrast-enhanced T2-weighted imaging (CE-
T1WI) images were available. The patient selection process is
shown in Figure 1. Then the data of patients with primary NPC
in Sir Run Run Shaw Hospital, Zhejiang University, during the
Frontiers in Oncology | www.frontiersin.org 3292
same period were re-screened as external validation data. A total
of 51 qualified cases were identified before treatment, including
33 qualified cases after IC.

According to the Response Evaluation Criteria in Solid
Tumors (RECIST Version 1.1), NPC patients with response to
IC-CCRT were assigned to the complete tumor retraction group.
April 2022 | Volume 12 | Article 8245
FIGURE 1 | The case screening process in the training set and internal validation set. A total of 221 qualified cases were screened before the final treatment,
including 96 qualified cases after IC. IC, induction chemotherapy.
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The total retraction group was defined as no evidence of residual
disease on reexamination of MRI, that is, complete response
(CR). The residual group was defined as residual disease on
reexamination of MRI images after IC-CCRT, including partial
response (PR), stable disease (SD), or progressive disease (PD).

MRI Acquisition
MRI images of all patients were obtained using two different MRI
scanners (Siemens Magnetom Symphony 1.5T and Siemens
SKyra 3.0T, Munich, Germany). Axial FS T2WI images were
initially obtained, followed by axial FS CE-T1WI imaging after
gadolinium-based contrast agent administration at 0.01 mmol/
kg. The acquisition protocol for neck MRI was slightly different
but mainly consisted of the following parameters: 1) axial FS
T2WI, repetition time/echo time (TR/TE) 6,360 ms/95 ms, 90°
flip angle, 256 × 168 matrix, slice thickness 4.68 mm, slice
spacing 4.68 mm; and 2) axial FS CE-T1WI TR/TE 450 ms/8.8
ms, 90° flip angle, 256 × 168 matrix, slice thickness 4.68 mm, slice
spacing 4.68 mm.

MRI Preprocessing and Image
Segmentation
The nasopharyngeal MRI examinations before treatment, after
IC, and after CCRT of each case were searched from the hospital
PACS, and the DICOM format images of FS T2WI and FS CE-
T1WI sequences were exported. DICOM format images were
imported using ITK-SNAP (www.itksnap.org, version 3.8.0)
software. We first selected axial FS CE-T1WI images, in order
to improve the accuracy of lesion delineation, and axial FS T2WI
images were imported in the “Add Another DICOM Series”
option. Two attending radiologists with 7 and 8 years of
experience in head and neck radiological diagnosis manually
segmented the primary NPC tumor bodies layer by layer. The
same approach was used when tumor bodies were delineated on
the axial FS T2WI images. Finally, the original images and
segmented images were stored according to the format
requirements. The same method was applied for tumor
segmentation in 96 patients after IC.

Radiomics Feature Extraction and Delta
Radiomics Feature Calculation
The study used the software of Artificial Intelligence Kit (AK)
V3.4.0.R issued by GE Company (Chicago, IL, USA). This
software has been registered, approved, and applied to medical
radiomics research (34–36). First, the unsegmented original data
were imported into AK software, the original data were
resampled, the resolution was adjusted to 1 mm × 1 mm ×
1 mm, the layer thickness was 1 mm, the image gray level was
uniformly adjusted to 0–255, and then the region of interest
(ROI) image was imported. First Order, Shape, GLCM, GLDM,
GLSZM, GLRLM, and NGTDM were used for feature selection,
and LoG, Wavelet, and LBP were used for filter selection.
Radiomics features were extracted from MRI images of 221
patients before treatment and 96 patients after IC.

For Delta radiology profile estimation, the change in each
radiology profile was calculated by the following equation:
Frontiers in Oncology | www.frontiersin.org 4293
Delta Feature value = Feature value2 − Feature value1ð Þ
Here, Feature value2 represents the post-IC MRI value, and

Feature value1 represents the pretreatment MRI value.

Feature Selection, Model Establishment,
and Statistical Analysis
All statistical analyses were performed using R statistical software
(version 4.0.3). The intraclass correlation coefficient (ICC) was
used to evaluate inter- and intra-observer agreement. Two
attending radiologists randomly selected 40 patients and
segmented the tumor once and twice again to calculate
observer stability for each feature. Radiological features with
ICC greater than 0.75 were defined as stable features. In order to
ensure that the images from different devices were comparable,
the data were normalized before feature selection, that is, Z-score
transformation, and the calculation formula was as follows:

z =
�x − m
s=

ffiffiffi
n

p

Here, m is the mean, s is the standard deviation, and n is the
sample size.

The subjects were divided into the training group and the
validation cohort in a ratio of 7:3. Then, maximum relevance
minimum redundancy (mRMR) and least absolute shrinkage
and selection operator (LASSO) were used to select features. We
first used mRMR to retain 20 features that were maximally
correlated with tags and least redundant with each other and
then used LASSO to select the optimal subset of features for
model construction. In order to avoid overfitting, we used 10
times of cross-validation to select the adjustment parameter l.
According to the screened characteristics and corresponding
coefficients, a logistic regression model of FS T2WI combined
with FS CE-T1WI was established, and the radiomics signature
(Radscore) was obtained. The area under the receiver operating
characteristic (ROC) curve (AUC), diagnostic accuracy,
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) of the training set and the
internal validation set were calculated. ROC analysis was used
to evaluate the diagnostic efficacy of the model. Calibration
analysis was used to evaluate the goodness-of-fit of the model,
and the decision curve was used to evaluate the clinical value of
the model. The radiomics flowchart is shown in Figure 2.
RESULTS

Analysis of Radiomics Results
The ICC results were all greater than 0.75, and finally, the
segmentation results of the senior doctor were selected. First,
we selected 20 features that were most relevant to the tags and
least redundant with each other among more than 2,000 features
of the two sequences of FS T2WI and FS CE-T1WI by the mRMR
method (Figures 3A, B; 4A, B). Then LASSO was performed to
select the optimal feature subset for constructing the model.
After 10 cross-validations, six and twelve optimal subsets were
April 2022 | Volume 12 | Article 824509
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finally retained (Figures 3C, 4C). The Radscore was then
calculated for each patient, and the results were detailed in
the Appendix.

Power Analysis of the Model to Predict the
Efficacy of Induction Chemotherapy
Combined With Concurrent
Chemoradiotherapy
The diagnostic effects of the pretreatment MRI radiomics model
and Delta radiomics model in predicting the efficacy of IC-CCRT
for NPC are summarized in Table 1. The AUC values (Figure 5),
calibration curves (Figure 6), and decision curves (Figure 7) of
both models showed good performance in the training set,
internal validation set, and external validation set.
DISCUSSION

We selected the seven most relevant radiological features (six
from FS T2WI images and one from FS CE-T1WI images) from
the pretreatment MRI radiomics model of NPC and twelve most
relevant radiological features (seven from FS CE-T1WI images
and five from FS T2WI images) from the Delta radiomics model.
The clinical predictive values of the two models after
chemoradiotherapy for NPC were also analyzed. The results
showed that the two constructed models had a high diagnostic
Frontiers in Oncology | www.frontiersin.org 5294
performance for NPC, and there were some differences between
the two models.

In this study, we selected two MRI sequences, FS T2WI and
FS CE-T1WI, for the following three reasons. First, MRI was the
most effective and commonly used method for the diagnosis and
staging of NPC (37). MRI-based radiomics could better define
tumor biology and had immense potential to support oncological
decisions (38, 39). Second, these two sequences were commonly
obtained during conventional MRI scans and might be more
universal. Furthermore, FS sequence and enhanced examination
could enhance the image contrast between the tumor and
surrounding tissues, and lesion delineation was more accurate.
The radiomics characteristics extracted from the combined
images were reported to have better predictive performance
compared with a single sequence.

In recent years, radiomics has been increasingly used in the
diagnosis, tumor stratification, and prognosis prediction of NPC.
For example, our previous study showed that the NPC radiomics
model based on 18F-FDG PET/MRI images had immense value
in the staging evaluation of primary NPC (36). The NPC could
be divided into subtypes with different survival patterns based on
the radiological characteristics of MRI (40). The early metastasis
of NPC could be predicted based on Epstein–Barr virus (EBV),
clinical data, and MRI nomogram. Radiomics could predict the
PFS of NPC (41), and some radiomics characteristics could
identify the patients who needed adaptive radiotherapy (42)
and those who would benefit the most from adjuvant therapy
FIGURE 2 | Flow diagram of radiomics.
April 2022 | Volume 12 | Article 824509
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FIGURE 3 | Feature extraction before treatment. (A) Uses ten-fold cross-validation and minimum criteria to select the adjustment parameter (l). (B) LASSO co
at the selected optimal value in l sequence. (C) Screens seven features. LASSO, least absolute shrinkage and selection operator.

295

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


SSO coefficients of 20 texture features, drawing vertical lines

Xiet
al.

M
R
IR

adiom
ics

ofN
P
C
’s

C
hem

oradiotherapy

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

A
pril2022

|
Volum

e
12

|
A
rticle

824509
BA

C

FIGURE 4 | Feature extraction of Delta radiomics. (A) Uses ten-fold cross-validation and minimum criteria to select the adjustment parameter (l). (B) LA
at the selected optimal value in l sequence. (C) Screens twelve features. LASSO, least absolute shrinkage and selection operator.
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FIGURE 5 | ROC characteristic curves and corresponding AUC values for the pretreatment MRI radiomics model (A) and the Delta radiomics model (B). ROC,
receiver operating characteristic; AUC, area under the receiver operating characteristic curve.
TABLE 1 | The diagnostic effects of the pretreatment MRI radiomics model and Delta radiomics model in predicting the efficacy of IC-CCRT for NPC.

ROC Accuracy Sensitivity Specificity NPV PPV

MRI radiomics Training set 0.865 0.827 0.837 0.812 0.776 0.865
Validation set 0.819 0.788 0.833 0.708 0.708 0.833
External validation 0.983 0.784 0.703 1.000 0.560 1.000

Delta radiomics Training set 0.941 0.883 0.793 0.968 0.833 0.958
Validation set 0.910 0.880 1.000 0.769 1.000 0.800
External validation 0.818 0.781 0.737 0.846 0.688 0.875
Frontiers in Oncology | ww
w.frontiersin.org
 8297
 April 2022 | Volu
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ROC, receiver operating characteristic; NPV, negative predictive value; PPV, positive predictive value.
BA

FIGURE 6 | Calibration curves for MRI radiomics model (A) and Delta radiomics model (B). The thin gray line represents the ideal reference line, the blue line
represents the training set, the yellow line represents the internal validation set, and the thick gray line represents the external validation set. In this reference line,
regardless of the training set, internal validation set, or external validation set, the predicted probability matches the observed proportion, indicating that both models
have good performance in judging the tumor retraction of NPC primary tumors after IC-CCRT treatment. NPC, nasopharyngeal carcinoma; IC-CCRT, induction
chemotherapy combined with concurrent chemoradiotherapy.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xi et al. MRI Radiomics of NPC’s Chemoradiotherapy
or IC (43, 44). A combined model constructed based on EBV,
clinical data, and radiological characteristics can predict NPC
progression (45) and distant metastasis. However, few of these
studies have external validation data, and there have been no
reports on Delta radiomics of tumor retraction after IC-CCRT
for NPC tumors. Our constructed MRI radiomics model at a
single time point before treatment and Delta radiomics before
and after IC could predict the efficacy of IC-CCRT for NPC for
early prediction during treatment.

The optimal features of the pretreatment MRI radiomics
model and Delta radiomics model focused on first-order
characteristics, log and texture features after wavelet filtering,
and morphological features of the original data. First-order
statistics describe the distribution of voxel intensity in the
image area defined by the mask through commonly used and
basic metrics. About 90th percentile of first-order features and
the changes in median and skewness are highly correlated with
tumor retraction. The median value represents the gray intensity
in the ROI, the asymmetry of the distribution of bias
measurement, and the correlation value of the mean value.
Sphericity characteristics of morphology in the MRI radiomics
model, the roundness of the tumor area relative to the sphere
morphology, were significantly correlated with tumor retraction.
Our study showed that GLSM, GLCM, and NGTDM were also
highly correlated with tumor retraction. GLSZM-ZE represented
the uncertainty/randomness of the size of the measurement area
and the gray level; the greater the value, the higher the
heterogeneity. GLSZM-GLZE represented the distribution of
the lower gray level area, and the higher value, the lower the
gray value and the proportion of the size area in the image.
GLCM describes the texture by studying the spatial correlation of
the gray level. Energy represents the uncertainty and randomness
of the image. The value of GLCM Joint Entropy represents the
complexity of the co-occurrence matrix. In addition to first-
order features in the Delta radiomics model, and SALGLE and
LALGLE features in GLCM-IMC1, GLSZM is highly correlated
Frontiers in Oncology | www.frontiersin.org 9298
with tumor retraction, which can quantify the complexity of
texture. SALGLE measures the proportion of smaller sizes with
lower gray values in regional joint distribution images. LALGLE
measures the proportion of larger sizes with lower gray values in
regional joint distribution images. These characteristics were
most pronounced after chemoradiation for NPC in this study.
Therefore, both the pretreatment MRI radiomics model and
Delta radiomics model could predict tumor retraction after
IC-CCRT.

However, this study had several limitations. First, this study
was a retrospective analysis, and there was inevitable selectivity
bias. Second, after IC, the cycle of CCRT was not fixed. We plan
to collect more relevant data at a later stage and do more in-
depth studies in the future. Third, because the data after
treatment of IC were not uniform and the performance of the
two models could not be compared, there was a general problem
of poor refolding in radiomics. We are going to collect more
cases to train the stability of the Delta radiomics model and
increase its general applicability.
CONCLUSION

Pretreatment MRI radiomics at a single time point and Delta
radiomics before and after IC could predict tumor retraction
after IC-CCRT for the treatment of NPC in non-endemic areas.
This study provided a quantitative basis for early intervention
and timely optimization of treatment options.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.
BA
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Radiomics has shown great promise in detecting important genetic markers involved in
cancers such as gliomas, as specific mutations produce subtle but characteristic changes
in tumor texture andmorphology. In particular, mutations in IDH (isocitrate dehydrogenase)
are well-known to be important prognostic markers in glioma patients. Most classification
approaches using radiomics, however, involve complex hand-crafted feature sets or
“black-box” methods such as deep neural networks, and therefore lack interpretability.
Here, we explore the application of simple graph-theoretical methods based on the
minimum-spanning tree (MST) to radiomics data, in order to detect IDH mutations in
gliomas. This is done using a hypothesis testing approach. The methods are applied to an
fMRI dataset on n = 413 patients. We quantify the significance of the group-wise difference
between mutant and wild-type using the MST edge-count testing methodology of
Friedman and Rafsky. We apply network theory-based centrality measures on MSTs
to identify the most representative patients. We also propose a simple and rapid
dimensionality-reduction method based on k-MSTs. Combined with the centrality
measures, the latter method produces readily interpretable 2D maps that reveal
distinct IDH, non-IDH, and IDH-like groupings.

Keywords: medical imaging, biostatistics, genotype-phenotype correlation, tree-based methodology, data
visualization

INTRODUCTION

The advent of widespread medical imaging, large imaging datasets, and large-scale inexpensive
computing power has ushered in an era of unprecedented resources for medical image analysis
[1]. Cancers can now be automatically detected and staged from histopathology images, or
from clinical imaging datasets such as MRI, CT or PET data. In particular, considerable
success has been achieved using complex computer-derived image-analysis features derived
from such data as input for advanced statistical and machinelearning methods. This approach,
known as “radiomics”, offers the potential to take into account multiple features of the image
not detected by human observers and hence also avoiding the issue of inter-observer
variability [2].
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Genotyping of gliomas is difficult and invasive, as it requires
biopsy of brain tissue. While some genetic correlates of cancer
prognosis, such as MGMT promoter methylation, have not
shown strong correlation with radiomics features [3], other
mutation types are associated with marked differences in
radiomic profiles—although considerable variability between
studies exists. In particular, isocitrate dehydrogenase (IDH)
mutations are found in 5–13% of glioblastomas and are
strongly correlated with radiomics features [3].

Current automatedmethods for visual or radiomic genotyping
of gliomas increasingly depend on deep neural network methods
and pipelines, often using off-the-shelf architectures such as
ResNet for detection and then classification [4]. Still other
studies have made use of random forest methods for
genotyping, in combination with CNN-based methods for
tumor segmentation [3]. Alongside neural networks, more
traditional “hand-crafted” features, involving human-defined
combinations of pixel-level image analysis methods such as
gray-level co-occurrence matrices (GLCMs), represent a
second still-vibrant branch of radiomics analysis [5].
Handcrafted features often have the benefit of imparting
greater interpretability to radiomics analyses; on the other
hand, since neural network models are considered by some to
be more free from human bias, current state-of-the-art radiomics
methods frequently combine both [6].The area under the curve
(AUC) is a typical metric for evaluation for these approaches,
with values around 0.85−0.95 representing the state-of-the-art as
of this writing [2]. Other measures such as F1 score, sensitivity
and specificity are also common. However, while useful for
gauging performance, these measures do little to provide an
intuitive understanding of the structure of the underlying data,
or the reasons for the classifier outputs—a problem which is
particularly serious with neural networks, which with their many
millions of automatically learned parameters are often considered
to be “black-boxes” [7]. While deep learning is the current state-
of-the art classification technique, we do note that other modeling
procedures could be used, such as logistic regression, support
vector machines or L1-penalized regression approaches, among
many others.

Minimum spanning trees (MSTs) are graph-theoretic
structures in which a set of data-points or “nodes” are
connected into a single component using the minimum
possible total connection distance [8]. Notably, MSTs, while
easy to compute, are capable of representing key statistical
properties of highly complex datasets in a vastly simplified
format that is also readily amenable to lower-dimensional
(even 2D) visualization. This renders them applicable to
understanding a range of systems, such as gene expression,
transportation networks and brain connectivity [9, 10].
Furthermore, node centrality measures--which aim at
measuring the “importance” of a given node to the overall
network structure--are readily applicable to the MST [11].
Therefore, MST and other graph-based approaches may offer
an appealing and complementary alternative to the ‘blpredictions
given by neural-networks.

In addition to being easy to calculate, the MST of a high-
dimensional dataset also comes with an attendant hypothesis

testing procedure that allows one to assess the significance of the
difference between classes. This is the Friedman-Rafsky
multivariate runs test (here abbreviated “MVR”) [12–14].
Briefly, MVR involves constructing an MST over the pooled
data from two different classes, removing the edges that connect
different classes, and counting the number of connected
components that result. Smaller numbers of connected
components indicate greater significance between the classes;
this significance, furthermore, can be calculated using a
standard normal approximation. Note that our goal here of
inference is substantially different from much of the radiomics
literature described above, which is focused on classification
performance.

The k-MST is a simple extension of the MST, found by
repeating the MST algorithm k times, each time excluding any
connections chosen in prior iterations [14]. This allows a richer
level of connectivity information which in turn can improve
statistical test results such as edge-counting [12, 14]. At the same
time, like an MST, a k-MST is a uniquely defined mathematical
structure that can be calculated from any given point-set without
requiring any user-tuned parameters; thus, use of the k-MSTmay
greatly ameliorate one of the common concerns regarding
“handcrafted” radiomics features, namely that of lower
reproducibility stemming from bias in the feature design [6].

In the present work, we use the k-MST as a representation of
the underlying structure of multivariate radiomics data,
randomly embed it in a 2D region, and apply a simple 2D
force-directed layouts methodology whereby nodes that are
directly connected in the k-MST experience an attractive force.
To avoid the expensive process of calculating repulsive forces
between non-connected nodes, an isotropic expansion or
“reflation” is carried out after each iteration, to counteract the
tendency of a wholly-attractive configuration of forces to collapse
to a point.

Because the k-MST contains only a small fraction of the
possible pairwise connections between nodes, and because
there are no explicit repulsive forces to calculate, our method
allows rapid creation of 2D representations of arbitrarily high-
dimensional radiomics datasets. Importantly, we find this method
consistently converges to configurations which effectively
segregate the IDH and non-IDH patients—especially when
combined with the results of node centrality measures. This
suggests possible wide applications of MST-based methods in
creating “explainable” maps of radiomic data with respect to
tumor genotype.

METHODS

Our analytic workflows are described in Figures 1,2. Our
dataset derives from MRI scans conducted on 413 glioma
patients, genotyped as either IDH-mutated (n = 144) or
IDH wild type (n = 269). The data come from a previously
published study [4]. T2-weighted and fluid-attenuated
inversion recovery (FLAIR) MR images of diffuse gliomas
(WHO grades II, III and IV) were obtained in DICOM
format from After conversion to NIfTI format, T2-weighted
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images were re-sampled to 1 mm isovoxel resolution using the
‘trilinear’ option from the FLIRT function, while FLAIR
images were registered to the T2 images after skull
stripping, all using the FMRIB software library (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FSL). Next, image signal intensity
was normalized using the WhiteStripe R package. Tumor
areas (defined by hyper-intensity in T2 images and edema
on FLAIR images) were segmented with semi-automatic
methods such as region growing, signal intensity
thresholding, and edge detection, with an open-source
software (Medical Image Processing, Analysis and
Visualization, https://mipav.cit.nih.gov/). Segmentations
were manually corrected by a neuroradiologist as deemed
necessary.

Once MRI post-processing was completed, 467 radiomics
features were calculated per patient using the PyRadiomics
suite [15]. A full list of features used is included under
(Supplementary Table S4). All data was centered to zero and
normalized by dividing each column by its standard deviation. To
account for the possibility of redundancy or overlap among the
radiomics features, our MATLAB pipeline provides the option to
perform PCA, retaining only those components which together
comprise >98% of the total variance. This step reduces the
number of components from the original 467 to 48. Example
results of our pipeline using this PCA step are provided in
Supplementary Figures; however, as this step did not
dramatically change the character of the results, it was not
used in the main study.

Next, using the features as dimensions and each patient as
a node, we constructed MSTs over the pooled patient data
from both groups and carried out the multivariate runs
(MVR) test outlined by Friedman and colleagues [12](13)
[14]. The Euclidean distance based on the standardized
radiomics feature vectors was used to calculate distances
between all pairs of subjects. This yields a graph with edge
weights based on the distance which is used to construct an
MST. For the MVR test, edges connecting dissimilar node-
types (i.e., nodes connected from two different groups) are
removed, yielding a number of disjoint trees, R. Given two
MSTs with Na and Nb nodes, (and N = Na + Nb), Friedman
and Rafsky demonstrate that R is normally distributed, with
mean equal to

E[R] � 2NaNb/(N + 1)
and variance (conditioned on C, the number of pairs of edges that
share a common node in the given MST), equal to

var[R|C] � 2NaNb

N(N − 1){
2NaNb −N

N
+ C −N + 2

(N − 2)(N − 3) [N(N − 1) − 4NaNb + 2]}.

This allows rapid, exact, and direct assessment of the degree
of significant similarity between the IDH and non-IDH
groups.

Next, a variety of node centrality measures were calculated for
each node of the MSTs drawn over the IDH and non-IDH groups
separately. Six measures of centrality were assessed for each node
included: 1) degree centrality; 2) total degree count of neighbors;

3) through-space closeness; 4) through-tree closeness; 5)
betweenness; and 6) eigenvector. Degree centralities are simply
the number of other nodes to which the node of interest is directly
attached; closeness is the inverse of average distance to all other
nodes, either through space or through the MST connections;
betweenness indicates the proportion of all the shortest paths
between nodes in the MST that pass through the node of interest;
and eigenvalue centrality, roughly speaking, combines the
concepts of degree and betweenness by relating each MST
node to the entries of the principal eigenvector of the MST
connectivity matrix [16].

The k-MST is an extension of the MST, found by repeating the
MST algorithm k times, each time excluding all the connections
previously chosen. This allows a richer level of connectivity
information which in turn can improve statistical test results
such as edge-counting. Here, we use the k-MST as a
representation of the underlying structure of multivariate data
and apply a simple 2D force-directed layout methodology
whereby nodes that are directly connected in the k-MST
experience an attractive force. “Reflation” is carried out after
each iteration, to counteract the tendency of a wholly-attractive
configuration of forces to collapse to a point. Because the k-MST
contains only a small fraction of the possible pairwise connections
between nodes, and because there are no explicit repulsive forces
to calculate, our method allows rapid creation of 2D
representations of arbitrarily high-dimensional radiomics
datasets.

For the kMST force-directed layouts method for
dimension reduction, the steps are as follows: using the
distance matrix over the pooled patient nodes, the
minimal spanning tree algorithm is iteratively applied,
each time setting the distance matrix entries
corresponding to chosen edges to a high value so that they
are not chosen again. The edges chosen by each successive
MST calculation are then saved. For the present work, we
used a 5-MST, or 5 iterations.

The method is then initialized by assigning the nodes to
random positions within the unit square (we used a uniform
distribution was used for this purpose). Next, position updates are
iteratively calculated, by summing the attractive ‘forces’ exerted
on each node by only its direct neighbors within the MST. The
attractive force is “spring-like” in that it increases linearly with
distance between nodes.

To avoid having to calculate numerous repulsion effects
between all nodes not connected in the kMST, we instead
implemented an ‘inflationary’ step: at the end of each
iteration the coordinates of the nodes are automatically
rescaled to fit just inside the unit square. This inflationary
step preserves the configuration changes of each position
update while preventing the whole configuration from
collapsing to a point.

Two parameters are used to generate the position updates:
dEq, the equilibrium distance where attraction between kMST
neighbors becomes repulsion with decreasing distance; and kAtt,
the relative strength of the attractive force. For this study, we used
values of dEq = 0.025 and kAtt = 0.015.
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All calculations (after MRI acquisition and processing, and
radiomics feature extraction) were implemented directly
using a custom MATLAB pipeline. Scripts used are
available on Github at https://github.com/Ghoshlab/
OSimonScripts.

RESULTS

Node centralities for IDH-mutated and IDH-wildtype patients
are displayed using six different centrality definitions in
Figure 3 and Supplementary Figure S1, using node size and
color to represent centrality. Notably, in this case, the same
small number of nodes were consistently chosen as “most
central”, despite the wide differences in the centrality
definitions applied. Specifically, for the IDH-mutated
gliomas, Patient 24 was the ‘most central’ for node degree,

node neighbor degree, through-space closeness, and eigenvector
centrality, while Patient 80 was the most central in the case of
through-tree closeness and betweenness. Among the IDH wild
type gliomas, three nodes were prominent: Patient 35 (degree
centrality), Patient 37 (neighbor degree, through-tree
closeness), and Patient 39 (through-space closeness,
eigenvector).

These nodes are usually located towards the “center” of the
MST, usually at a junction between several sub-trees. Conversely,
the lowest-centrality nodes are invariably found at the edges of
the MST, among nodes with only one connection (“leaves”).
These observations confirm that these measures do indeed reflect
the intuitive idea of centrality.

Additionally, when PCA reduction was used to decrease the
number of features, nearly all the central nodes remained the
same, with the sole exception that in the IDH-wildtype gliomas
the highest eigenvector centrality shifted from Patient 39 to

FIGURE 1 | Flowchart for analysis using centrality maps.

FIGURE 2 | Flowchart for analysis using k-MST force-directed maps.
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Patient 35 (Supplementary Figure S2). This close
correspondence suggests that the centrality measures and
MST algorithms used are robust to complex manipulations
and changes of coordinates, such as those which occur
using PCA.

The MVR results for our radiomics dataset (Figure 4) showed
a clear distinction between the IDH-mutated and IDH-wildtype
groups, consistent with prior literature reporting the strong effect
of this mutation on radiomics profiles. Beginning with the pooled

MST, the number of separate trees that would be expected in the
null case (188.6) far exceeds the actual number resulting from the
cut (91). This amounts to a difference of −9.82 standard
deviations, effectively excluding the possibility that the groups
differ according to chance. Thus, the MVR test of Friedman and
Rafsky rejects the null hypothesis of no difference between the
two groups with a p-value less than 1 × 10−32.

As was the case with the node centralities, the MVR test
carried out with PCA reduction to 48 features (Supplementary

FIGURE 3 |MSTs for the IDH mutation positive (Figure 3A) and IDH mutation negative tumors (Figure 3B), with node sizes proportional to degree of the nodes.
The X- and Y-axes represent spatial coordinates for visualization of the minimum spanning trees.

FIGURE 4 | (A) The pooled MST before the hybrid-edge cut; (B) A 2-dimensional representation of the subtrees of the MSTs after removing the hybrid edges. The
X- and Y-axes represent spatial coordinates for visualization of the minimum spanning trees.
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Figure S3) yielded results similar to the original dataset. While
the null expectation value of the number of trees remains the
same by definition, number of trees from the actual cut (97), and
the total standard deviations from the expectation value (−9.21)
reveal a change of only half a standard deviation despite the PCA
manipulation. This again helps establish the robustness of these
methods to feature selection.

Applying the kMST-force directed algorithm to the 5-MST
drawn over the pooled data-points, we found that the method
rapidly and effectively produces readily interpretable visual
layouts of the group structure. A representative result is
shown in Figure 5. The results of three randomly-initialized
runs of the algorithm using 3-MST, 5-MST, and 7-MST
respectively (Supplementary Figures 4A–I) show that,
despite the random initialization and the large number of
datapoints involved, the final configurations produced by the
algorithm are remarkably consistent overall (notwithstanding
mirror-symmetry and rotations), and also reveal a clear though
not perfect spatial separation between the two genotype groups.
As might be expected, the runs using the lowest-complexity
k-MST (the 3-MST) show somewhat more variability in the final
structure and also a somewhat different final structure from the
others, whereas the 5-MST and 7-MST show quite good
consistency both between random initializations and between
each other. This strongly indicates that the k-MST, despite its
much-simplified structure with respect to the full graph,
contains the information necessary for meaningful and
reproducible dimension reduction of the data and that its
local minimum under force calculation is likely unique.

Furthermore, as in the previous approaches, the layouts were
consistent and quite similar even when PCA reduction was first
carried out (data not shown).

Given that the k-MST force-directed algorithm did not
perfectly separate the two classes—more non-IDH nodes are
present in the region dominated by IDH than vice-versa--we
wondered whether the centrality measures would reasonably
reflect the location of the nodes with respect to the overall
distribution of class examples within the 2D layout,
i.e., whether the nodes closest to the center of their class
distribution in the layout would have the highest centralities
as well. We found this to be generally the case, though the
choice of centrality measure does have an effect. Interestingly,
we find that eigenvector centrality gives much lower
precedence to the “IDH-like” non-IDH cases found in the
predominantly region, yielding better separation between IDH
and wild-type regions when both centrality and kMST layout
are used (Supplementary Figure 4F). Other measures,
particularly betweenness, seem to be much less effective at
distinguishing ‘IDH-mimics’ from the other wild-types—there
are a few IDH-like cases with relatively high betweenness, but
this centrality also yield an even clearer overall divide between
the main IDH and wild-type than does eigenvector
(Supplementary Figure 4E). Degree-based or closeness-
based centrality measures, on the other hand, do not appear
to be especially effective at discriminating the central regions
of the two classes in the kMST layout, even when the difference
is exaggerated by squaring the centrality (Supplementary
Figures 4A–D).

FIGURE 5 | Representative example of 5-MST force-directed result using PCA-reduced data. IDH-mutated patients are shown in orange, while IDH-wildtype is
blue. The algorithm was run for 1800 iterations, with the values of kEq and kAtt held constant. The X- and Y-axes represent spatial coordinates for visualization of the
minimum spanning trees.
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DISCUSSION

In the foregoing, we have demonstrated the feasibility of a
simple graph-theoretical toolkit to address the problems
presented by large, high-dimensional radiomic datasets. For
the example dataset drawn from IDH-mutated and IDH-
wildtype glioma patients, we were able to use MST-based
methods to establish highly significant differences between
the two groups, to identify patients that are most
“representative” of each group using a combination of
centrality measures, and to use a simple kMST-based force-
directed method to illustrate those centrality measures within
the context of a two-dimensional map of the data. Importantly,
we find this method converges to a very consistent configuration
which can effectively segregate IDH-mutated and IDH wild-
type gliomas, especially when combined with centrality
measures.

Although there is overlap between the two classes, there is a
very clear difference in the overall localization between the two
groups. Particularly focusing on the 5-MST and 7-MST—which
converged consistently to a roughly triangular 2D point
distribution—we see that IDH-wildtype patients tend to
group strongly in one corner of the triangle with almost no
IDH-mutated patients present, while at another corner and
towards the center of the triangle IDH-mutated cases
predominate. Notably, a significant minority of IDH-wildtype
patients exhibit IDH-like localization, suggesting that the IDH
mutation is sufficient but not necessary for an “IDH-like”
phenotype. This means that stratification by radiomic
features alone may be vulnerable to false positives, in the
sense that patients with typically IDH-like radiomic features
(at least according to our mode of analysis) may nonetheless
lack the IDH mutation. Conversely, there might be further
subtypes of IDH-wildtype populations to further characterize,
although our study is not sufficiently powered for this type of
discovery.

We hypothesize this may be due to other mutations or
combinations of mutations that partially phenocopy the IDH
mutation. Future genetic studies may help elucidate these IDH-
mimicking gene combinations, perhaps by looking for epistatic
effects on the IDH pathway [17]. Furthermore, it would be highly
worthwhile to track the outcomes of IDH-like patients, to
determine whether they in fact share the prognosis generally
associated with IDH mutation proper. As noted, our results
suggest that the combination of eigenvector centrality and
k-MST layouts may be especially useful in distinguishing
between wild-type glioma patients that are IDH-like and those
that are more ‘typical’.

Among the force-directed layouts methods, the Barnes-Hut
algorithm, which coalesces sufficiently distant points into a
single center of mass by constructing a quadtree based on a
distance criterion, may be the best-known means of simplifying
force calculations for very large numbers of points [18]. In our
case, however, the use of the k-MST greatly reduces the number
of interactions that need to be calculated at each iteration and
inherently restrains the calculation only to “sufficiently close”
node pairs, so that the Barnes-Hut approach is unnecessary. The

replacement of explicit repulsion term calculations with a
simple “inflationary” step after each iteration also simplifies
the overall calculation while likely reducing the chance of the
configuration becoming trapped in “geometrically-frustrated”
local minima. Notably, for 5-MST and higher, we saw no
evidence of alternative minima for our simulation—in all
conditions tested, the overall arrangement of points did not
differ qualitatively from the overall pattern seen here. It will be
interesting to see if this general pattern is observed for different
datasets.

The choice of k for the k-MST is likely to depend on n, the
number of observations being handled by the simulation, as
Figure 3 suggests that choosing k too low means that the final
configuration will be underdetermined. Arguments based on
stochastic-block models suggest that there is a minimum value
of k below which there is inadequate information to reconstruct
the true underlying class-membership; however, this values grows
only slowly, as Ω (log n) [19].

With respect to other common dimensional-reduction
methods, our “spring-like” approach with stochastic
initialization and gradient descent is related to such familiar
approaches like t-SNE [20], though we do not assign neighbors
using a Gaussian or t-distribution but rather use repeated
application of the MST algorithm itself. One potential future
issue is that the k-MST approach is likely to be sensitive to class
imbalance. If one class comes to be vastly outnumbered by
another its members may be less likely to be connected in the
k-MST, and hence will not experience the attractive forces that
produce strong clustering; conversely, the attraction between
relatively few similar nodes may be overwhelmed by the
attractive force of a much larger number of adjoining, yet
dissimilar nodes.

Even in this case, however, we believe it is likely that the
members of the less-populated class will tend either to have a
higher chance of being connected through the k-MST (by a
similar reasoning to that which motivates the MVR test itself),
or will form part of a larger region containing “similar” nodes
of the other class (as we see with the considerable number of
WT patients whose nodes consistently segregate into the IDH-
dominated region). One possible solution to this potential
limitation, inspired by work for the MVR test [21], might be
simply to weight the attractive forces within the k-MST
simulation in inverse proportion to the number of nodes in
the class, so that “rarer” nodes attract each other most
strongly.

One potential computational limitation of our approach
relates to its dependence on the creation of MST, which
requires creation of a full-graph distance matrix. Since this
contains n2 pairwise distances, the computational overhead
will increase with O (n2), limiting the number of data-points
that can be calculated. However, clustering-based approaches are
known which can be used to generate approximateMSTs that run
in O (n3/2), substantially speeding up the distance-matrix
bottleneck [22]. A natural next step, therefore, will be to
implement and evaluate approximate MSTs, which should
allow the processing of hundreds of thousands of data-points
in reasonable time.
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It is well-known that radiomics approaches can be vulnerable
to false positives, particularly in the case where there are more
radiomic features than there are patients [23]. Furthermore, it has
been noted that “choice of the classification model could lead to
variations in the predictive values of the radiomic features up to
>30%” [23]. While our approach largely avoids feature-selection
issues by effectively condensing the data into a higher-level
statistical, graph-theoretical, indeed structural question, further
validation studies on other types of radiomics and imaging data
are clearly indicated, as such studies can help to eliminate false
positives [23].

Even taking this into account, we believe the centrality/
MVR/k-MST force-directed combination approach presented
here has the potential to greatly simplify the analysis of
radiomics data, while simultaneously rendering it far more
readily interpretable. By relying on the simple, MVR
test—which is parameter-free except with respect to the
variable C, itself derived from the pooled data MST--we
avoid numerous somewhat arbitrary aspects of testing and
analysis with high-dimensional data. Since the MST itself does
not depend on any arbitrary parameters, this too provides a
simpler, possibly more “objective” approach. As raised by a
reviewer, there is an important theoretical question, which
involves our centrality based analysis. It is based on the MST,
and the relationship between MST-based centrality with the
original data-based graph centrality remains an open
problem.

In conclusion, we have developed a combination of graph-
theoretical approaches that provide rapid visualization,
significance testing, and dimensionality reduction for very
high-dimensional radiomics (and other) datasets, with the
potential for considerable streamlining of the workflow and
improved “explainability”. Future investigations will help
gauge the effectiveness of this general approach to other
radiomics use-cases, as well as to other high-dimensional
medical data.
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Aim: The aim of this study is to establish and validate a radiomics-based model using
preoperative Gd-EOB-DTPA-enhanced MRI to predict microvascular invasion (MVI) in
patients with hepatocellular carcinoma ≤ 5 cm.

Methods: Clinicopathologic and MRI data of 178 patients with solitary hepatocellular
carcinoma (HCC) (≤5 cm) were retrospectively collected from a single medical center
between May 2017 and November 2020. Patients were randomly assigned into training
and test subsets by a ratio of 7:3. Imaging features were extracted from the segmented
tumor volume of interest with 1-cm expansion on arterial phase (AP) and hepatobiliary
phase (HBP) images. Different models based on the significant clinical risk factors and/or
selected imaging features were established and the predictive performance of the models
was evaluated.

Results: Three radiomics models, the AP_model, the HBP_model, and the AP+
HBP_model, were constructed for MVI prediction. Among them, the AP+HBP_model
outperformed the other two. When it was combined with a clinical model, consisting of
tumor size and alpha-fetoprotein (AFP), the combined model (AP+HBP+Clin_model)
showed an area under the curve of 0.90 and 0.70 in the training and test subsets,
respectively. Its sensitivity and specificity were 0.91 and 0.76 in the training subset and
0.60 and 0.79 in the test subset, respectively. The calibration curve illustrated that the
combined model possessed a good agreement between the predicted and the actual
probabilities.
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Conclusions: The radiomics-based model combining imaging features from the arterial
and hepatobiliary phases of Gd-EOB-DTPA-enhanced MRI and clinical risk factors
provides an effective and reliable tool for the preoperative prediction of MVI in patients
with HCC ≤ 5 cm.
Keywords: radiomics, microvascular invasion, Gd-EOB-DTPA, magnetic resonance imaging, hepatocellular
carcinoma, prediction model
INTRODUCTION

Hepatocellular carcinoma (HCC) is a common gastrointestinal
malignant tumor, ranks sixth in incidence rate, and is the fourth
leading cause of tumor-related mortality worldwide (1). Liver
resection is one of the curative treatments for HCC. Despite
recent advances in surgical techniques and perioperative
management, HCC still bears a poor prognosis with a 5-year
recurrence of 50%–70% after liver resection (2). This also applies
to inpatients with early-stage HCC, where a 5-year recurrence
rate of as high as approximately 60% has been reported (3).

Microvascular invasion (MVI) has been reported as an
independent, well-established risk factor for HCC recurrence
and poor overall survival rate (4). The reported incidence rate of
MVI ranges between 15% and 57% (5). Patients with MVI
experienced an early recurrence compared with those without
MVI with a mean time to recurrence of 12 months versus 42
months (4). Therefore, it is of importance to preoperatively
identify MVI to optimize the treatment strategy and predict
the prognosis. However, the diagnosis of MVI is mainly made
postoperatively by a histopathology exam on the excised tumor,
which has little or no influence on surgical decision-making.
Although radiological features on computed tomography (CT)
or magnetic resonance imaging (MRI) such as rim arterial
enhancement and non-smooth tumor margin are also applied
to predict MVI, a consensus about the efficacy of these features
has not been reached (6, 7).

With the development of modern imaging and computing
techniques, it might be possible to detect subtle changes in the
tumor or its margin. Radiomics, a technique that can extract
high-throughput imaging features from routine biomedical
images for quantitative analysis, has attracted intensive interest
in recent years (8, 9). Because it may provide additional
information, radiomics has turned out to be a promising tool
for accurate tumor detection, diagnosis, grading, and prognosis
prediction in tumors such as rectal cancer and HCC (10–12).

Gd-EOB-DTPA-enhanced MRI is a commonly used modality
in diagnosis and characterization of HCC, and is noted for the
specific hepatobiliary phase. Taking advantage of radiomics on
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Gd-EOB-DTPA-enhanced MRI, it has shown encouraging
results for MVI prediction at HCC (13, 14). However, previous
studies have not limited their data regarding tumor number and
tumor size of HCC (11, 15, 16). With improved imaging and the
use of screening programs, HCC is increasingly detected at an
early stage. The incidence of MVI in HCC ≤ 5 cm, or within
Milan criteria, has been reported to be as high as 40% (17). By
identifying these patients preoperatively, their management and
long-term survival might be improved as alternative treatment
options could be considered. Therefore, the aim of this study was
to develop and validate a radiomics prediction model based on
preoperative Gd-EOB-DTPA-enhanced MRI to predict MVI in
patients with a single HCC ≤ 5 cm in diameter.
MATERIALS AND METHODS

Study Design and Patients
This retrospective study was performed at a single tertiary
medical center, Southwest Hospital of Army Medical
University, Chongqing, China. The research protocol was
approved by the Institutional Review Board of the hospital
(No. 2017KY50), and written informed consent was waived
due to the retrospective nature of the study.

Through a search in the hospital information system, the records
of all patients undergoing liver resection between May 2017 and
November 2020 were retrieved. Patients were considered eligible in
this study according to the following inclusion criteria: (1) patients
undergoing their first liver resection due to HCC, (2) solitary liver
tumor with a diameter ≤ 5 cm on MRI with no macroscopic sign of
vascular invasion, (3) Gd-EOB-DTPA-enhanced MRI exam within 1
month before liver resection, and (4) available pathology report of
MVI status. The exclusion criteria were as follows: (1) previous
antitumor treatment, such as radiofrequency ablation and
transarterial chemoembolization; (2) intra- or extrahepatic
metastasis; and (3) low-quality imaging, not satisfying analysis
requirement. A total of 178 consecutive patients were included in
the final cohort, and they were randomly split into a training subset
and a test subset by a ratio of 7:3. Figure 1 describes the process of
patient selection and Figure 2 supplies the steps of this study.

Clinicopathologic Variables and MVI
Demographic information, blood biochemistry, and pathology
results were retrieved through the hospital information system.
MVI was diagnosed according to the Chinese guidelines for
standardized diagnosis of primary liver cancer (18). According to
the guidelines, MVI is defined as when cancerous emboli can be
May 2022 | Volume 12 | Article 831795
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observed in the vasculature lined with endothelial cells outside
the tumor margin under microscopy (14, 19). In this study, the
tumors with this finding were classified as MVI (+), regardless of
its number or distance from the tumor. Tumors with no
cancerous emboli detected were classified as MVI (−).

Gd-EOB-DTPA-Enhanced MRI Acquisition
All MRI was performed on the same 3.0-T MRI scanner
(Magnetom Trio, Siemens Healthcare) with a 6-channel body
Frontiers in Oncology | www.frontiersin.org 3312
coil. The contrast agent Gd-EOB-DTPA (Primovist, Bayer
Pharma) was injected through the anterior cubital vein at a
dose of 0.1 ml/kg with an injection rate of 1.0 ml/s, followed by
an immediate injection of 20 ml of saline at the same rate. After
the injection of Gd-EOB-DTPA, arterial phase scanning was
triggered by the signal intensity at the lower end of the
abdominal aorta, followed by portal phase scanning (60 s),
equilibrium phase scanning (180 s), and hepatobiliary phase
scanning (15 min) with three-dimensional volume interpolated
FIGURE 1 | Flowchart of patient selection in this study.
FIGURE 2 | Workflow of key steps in this study.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Qu et al. Radiomics Model for MVI Prediction
breath-hold (3D-VIBE) T1WI. The detailed scanning protocol is
provided in the Supplementary Material.

Tumor Segmentation and Volume of
Interest Dilation
Tumor segmentation on arterial and hepatobiliary phases
(hereafter referred to as AP and HBP, respectively) was
conducted by two radiologists (QX and PC with 8 and 20
years’ experience in abdominal radiology, respectively) who
were blinded to the patients’ clinical information. Tumor
delineation was performed manually using the open-source
software ITK-SNAP (version 3.8.0, http://www.itksnap.org/).
The delineated tumor was further expanded at a radius of 10
mm (20, 21) using a topologic algorithm in Python (version 3.8),
and the expansion would cease automatically if it reached the
liver edge for the marginal liver tumors. The expanded volume of
interest (VOI) was then used for radiomics feature
extraction (Figure 3).

Radiomics Feature Extraction
To increase the reliability of the radiomics features, the image
voxel size was resampled into 1×1×1 mm3 (interpolator: B-
spline) and the bin width of the intensity histogram was
discretized into 25. After preprocessing the images, the
following six categories of imaging features were extracted:

1. Shape, including 2D and 3D (n = 14);
2. First-order statistics (n = 18);
3. Gray-level co-occurrence matrix (GLCM)-derived texture

(n = 22);
4. Gray-level run lengthmatrix (GLRLM)-derived texture (n = 16);
5. Gray-level size zone matrix (GLSZM)-derived texture (n =

16); and
6. Gray-level dependence matrix (GLDM)-derived texture

(n = 14).

Imaging features of categories (2) to (6) were also extracted
from transformed images using the wavelet filter (688 features)
and the Laplacian of Gaussian (LoG) filter with a kernel size of
1.0 mm (86 features). Both imaging preprocessing and feature
extraction were performed by using the pyradiomics package
(version 3.0) (22) in Python (version 3.8).
Frontiers in Oncology | www.frontiersin.org 4313
Imaging features extracted from AP and HBP were labeled
with the prefix “ap_” and “hbp_” to each radiomics feature name,
respectively. Examples are as follows: “ap_original_firstorder_
Skewness” denotes the skewness of first-order features derived
f rom AP image s wh i l e “hbp_ log - s i gma-1 -0 -mm-
3D_glszm_ZoneVariance” describes the zone variance in
GLSZM features derived from LoG fi lter transferred
HBP images.

To evaluate the reproducibility of the radiomics features and
inter-rater agreement, images of 30 randomly chosen patients
were contoured by both radiologists independently. The
interclass correlation coefficient (ICC) estimates were
determined by using the single-rater, absolute-agreement, 2-
way random-effects model. The features were classified into
“poor-to-moderate” (ICC <0.75) and “good-to-excellent”
reliability (ICC ≥ 0.75), and those features with ICC ≥ 0.75
were selected (for the overlapped 30 patients, the measurements
of the senior radiologist were selected) for model
construction (23).

Radiomics Model Development
and Validation
The AP and HBP imaging features with high reproducibility
were adopted for radiomics model establishment. The feature
analysis was performed by open-source software that is available
at https://github.com/salan668/FAE (24). There was no need for
upsampling or downsampling of the data as the percentage of
MVI (−) and MVI (+) in the training subset was roughly
balanced. The imaging features were first standardized using z-
score normalization (subtract the mean value of each feature and
then divide the difference by its standard deviation), followed by
evaluation of the Spearman correlation coefficient of all features.
Among each pair of features with a correlation coefficient > 0.90,
one was randomly removed. The remaining features were
applied for model construction using a recursive feature
elimination (RFE) algorithm. RFE iteratively constructs the
model using smaller and smaller sets of features and ranks the
features according to their importance for the outcome
prediction. To avoid potential overfitting, a desired number of
features (<20) was applied when establishing the radiomics
model using the RFE-logistic regression approach. A 10-fold
cross-validation was applied to obtain a stable and robust model.
A B C

FIGURE 3 | A representative case of tumor segmentation with MVI (+) with 10-mm dilation from the tumor margin. The red area indicates the intratumoral region and the
yellow area indicates the peritumoral region on the arterial phase (A) and hepatobiliary phase (B). (C) 3D effect of the tumor segmentation with 10-mm expansion.
May 2022 | Volume 12 | Article 831795
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Three radiomics models were constructed using either AP
features (AP_model), HBP features (HBP_model), or a
combination of both AP and HBP features (AP+HBP_model).
Radscore, indicating the relative risk of MVI for each patient, was
calculated using each model according to the following formula:

Radscore = intercept + coefficients * features

The predictive performance of the calculated Radscore from
each model to predict MVI in training and test subsets was
then evaluated.

Construction and Evaluation of
Prediction Models
To establish a clinical model, a univariable logistic regression
analysis of the preoperatively clinicopathologic variables
including age, gender, etiology of chronic liver disease,
cirrhosis status, Child–Pugh grade, tumor size, alpha-
fetoprotein (AFP) level, platelet counts, prothrombin time,
albumin, bilirubin, aspartate transaminase (AST), and alanine
transaminase (ALT) was first applied, with significant risk factors
entering the multivariable regression analysis. A clinical model,
hereafter denoted Clin_model, was constructed using the
significant risk factors observed at the multivariable
regression analysis.

The risk factors in the Clin_model and the Radscore were
integrated into the construction of three combined models, i.e.,
AP+Clin_model, HBP+Clin_model, and AP+HBP+Clin_model.
The efficacy of these models was validated in the test subset.
Calibration curves were plotted to evaluate the predictive
performance of the best model in both training and test
subsets. Decision curve analysis was performed to evaluate the
usefulness of the prediction models.

Statistical Analysis
Continuous variables were expressed as median with range and
tested by Mann–Whitney U test to compare the difference
between MVI (−) and MVI (+) groups. Categorical variables
were presented as number (percentage), and chi-square test or
Fisher’s exact test was used to detect the differences between two
groups. ICC was calculated by using the package “Pingouin” in
Python. The performance of the prediction models was evaluated
by receiver operating characteristic curves (ROCs), and the area
under ROC (AUC), sensitivity, specificity, positive predictive
value, negative predictive value, and accuracy were determined.
p-values < 0.05 were considered statistically significant. Statistical
analyses and randomizations were performed by R software
(version 4.0.4, https://www.R-project.org/).
RESULTS

Clinicopathologic Characteristics of
Patients and Clinical Model
The baseline characteristics of the entire cohort (n = 178), the
training subset (n = 125), and the test subset (n = 53) are
summarized in Table 1. There was no statistically significant
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difference between the two subsets. The incidence of MVI in the
entire cohort was 45.5%.

After univariable and multivariable regression analyses, two
risk factors in the training subset, AFP and tumor size, were
selected for clinical model construction (Table 2). Although it
was significant in both regression analyses, tumor differentiation
status was excluded for modeling as it was a postoperative risk
factor for MVI prediction. The AUCs of the Clin_model in
training and test subsets were 0.64 (95% CI: 0.54–0.74) and 0.55
(95% CI: 0.38–0.71), respectively (Figure 5A, Table 3).

Feature Selection and Prediction
Model Construction
Out of the 874 imaging features extracted from each Gd-EOB-
DTPA-enhanced MRI phase, 560 features (64%) had sufficient
reproducibility (ICC ≥ 0.75) for radiomics model construction.
After removal of imaging features with high Pearson correlation
coefficient, 10 AP features, 12 HBP features, and 14 features from
a combination of both AP and HBP features with high ranking
selected through the RFE algorithm were used for radiomics
model construction (Figure 4, Supplementary File). The
detailed features and their corresponding coefficients for the
three radiomics models are described in the Supplementary File.
The performance of the three radiomics models is illustrated in
Table 3 and the Supplementary File.

Performance Evaluation of the Models
Compared with the Clin_model, the overall performance of all
three radiomics models was superior, with an AUC above 0.82 in
the training subset and more than 0.56 in the test subset. Among
the three radiomics models, the AP+HBP_model had the highest
AUC, with 0.89 in the training subset and 0.66 in the test subset
(Table 3). When combined with the clinical variables, the AP+
HBP+Clin_model yielded an AUC of 0.90 (95% CI: 0.85–0.95)
and 0.70 (95% CI: 0.55–0.84) in the training and test subsets,
respectively (Figures 5B, C, the formula of the three combined
models is provided in the Supplementary File). The sensitivity,
specificity, positive predictive value, and negative predictive
value were 0.91, 0.76, 0.77, and 0.91 in the training subset, and
0.60, 0.79, 0.71, and 0.69 in the test subset, respectively (Table 3).
The calibration curves illustrated that the predicted probabilities
of MVI were in good agreement with the observed probabilities
with a C-index of 0.89 and 0.70 in the training and test subsets,
respectively (Figures 5D, E). In terms of the clinical usefulness
evaluation, the decision curve analysis illustrates that the
implementation of the AP+HBP+Clin_model to predict MVI
status should be beneficial compared with treating none or all of
the patients as well as compared with the Clin_model or the AP+
HBP_model (Figure 5F).
DISCUSSION

In this study, a radiomics prediction model based on imaging
features extracted from preoperative Gd-EOB-DTPA-enhanced
MRI to predict MVI in patients with a single HCC ≤ 5 cm in
May 2022 | Volume 12 | Article 831795
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diameter was developed and validated. The best performance
was observed when combining imaging features from the arterial
and hepatobiliary phases of Gd-EOB-DTPA-enhanced MRI with
the two clinical risk factors AFP and tumor size. The predictive
value was high, with an AUC reaching 0.90 in the training cohort
and 0.70 in the test cohort.

Due to the liver specificity of Gd-EOB-DTPA visualizing the
hepatocyte function in the so-called HBP, the differences in
texture characteristics between liver tumor and the adjacent
tissue are improved. Our results showed that the performance
of the HBP_model was better than the AP_model, and
hepatobiliary phase features are predominant in the AP+
HBP_model (5 vs. 9 features), which gave a clue that the
imaging features derived from HBP seem to contain more
Frontiers in Oncology | www.frontiersin.org 6315
predictive information. This finding is consistent with two
previous studies. In their study, Feng et al. extracted imaging
features only from the HBP of Gd-EOB-DTPA-enhanced MRI
and constructed a radiomics model showing an AUC of 0.83 in
the test cohort, higher than ours (0.83 vs. 0.62) (25). Another
research also explored radiomics features on solely HBP images
and constructed a prediction model with an AUC of 0.8 (26).

In the AP+HBP_model, the majority of imaging features were
derived from wavelet-filtered images, which is in line with previous
research (11, 16, 27). This finding implies that the wavelet filter is a
powerful tool to obtain decomposition and approximation
information of the images. Moreover, most of the imaging
features that were included in the model can be categorized into
first-order statistics (representing the distribution of voxel
TABLE 1 | Clinicopathologic characteristics of the patients.

Characteristics Total (n = 178) Training subset (n = 125) Test subset (n = 53) p-value#

MVI (−) (n = 68) MVI (+) (n = 57) p-value MVI (−) (n = 29) MVI (+) (n = 24) p-value

Age (years) † 50 (28–78) 51 (30–72) 50 (31–78) 0.576 52 (29–73) 45 (28–72) 0.125 0.449
Gender
Female 35 (19.7%) 17 (25.0%) 10 (17.5%) 0.429 4 (13.8%) 4 (16.7%) 1.000 0.428
Male 143 (80.3%) 51 (75.0%) 47 (82.5%) 25 (86.2%) 20 (83.3%)

Etiology
HBV 169 (94.9%) 66 (97.1%) 54 (94.7%) 0.659 27 (93.1%) 22 (91.7%) 1.000 0.454
None/Others 9 (5.06%) 2 (2.94%) 3 (5.26%) 2 (6.90%) 2 (8.33%)

Cirrhosis
Absent 35 (19.7%) 8 (11.8%) 15 (26.3%) 0.063 8 (27.6%) 4 (16.7%) 0.538 0.656
Present 143 (80.3%) 60 (88.2%) 42 (73.7%) 21 (72.4%) 20 (83.3%)

Child–Pugh Grade
A 174 (97.8%) 67 (98.5%) 56 (98.2%) 1.000 28 (96.6%) 23 (95.8%) 1.000 0.583
B 4 (2.25%) 1 (1.47%) 1 (1.75%) 1 (3.45%) 1 (4.17%)

Tumor Size (cm) 3.03 ± 1.09 2.87 ± 1.06 3.29 ± 1.12 0.032* 2.94 ± 1.04 2.98 ± 1.13 0.900 0.564
Tumor Differentiation
Poor 15 (8.43%) 3 (4.41%) 8 (14.0%) 0.013* 2 (6.90%) 2 (8.33%) 0.162 1.000
Moderate 145 (81.5%) 57 (83.8%) 46 (80.7%) 21 (72.4%) 21 (87.5%)
Well 14 (7.87%) 8 (11.8%) 1 (1.75%) 5 (17.2%) 0 (0.00%)
None 4 (2.25%) 0 (0.00%) 2 (3.51%) 1 (3.45%) 1 (4.17%)

Platelet (×109/L)
≤125 77 (43.3%) 34 (50.0%) 26 (45.6%) 0.757 9 (31.0%) 8 (33.3%) 1.000 0.073
>125 101 (56.7%) 34 (50.0%) 31 (54.4%) 20 (69.0%) 16 (66.7%)

Prothrombin time (%)
≤65 5 (2.81%) 2 (2.94%) 2 (3.51%) 1.000 1 (3.45%) 0 (0.00%) 1.000 1.000
>65 173 (97.2%) 66 (97.1%) 55 (96.5%) 28 (96.6%) 24 (100%)

Albumin (g/L)
≤38 31 (17.4%) 10 (14.7%) 11 (19.3%) 0.657 5 (17.2%) 5 (20.8%) 1.000 0.907
>38 147 (82.6%) 58 (85.3%) 46 (80.7%) 24 (82.8%) 19 (79.2%)

Bilirubin (mmol/L)
≤21 133 (74.7%) 50 (73.5%) 41 (71.9%) 1.000 23 (79.3%) 19 (79.2%) 1.000 0.474
>21 45 (25.3%) 18 (26.5%) 16 (28.1%) 6 (20.7%) 5 (20.8%)

ALT (IU/L)
≤42 119 (66.9%) 45 (66.2%) 36 (63.2%) 0.870 21 (72.4%) 17 (70.8%) 1.000 0.472
>42 59 (33.1%) 23 (33.8%) 21 (36.8%) 8 (27.6%) 7 (29.2%)

AST (IU/L)
≤42 135 (75.8%) 52 (76.5%) 40 (70.2%) 0.554 23 (79.3%) 20 (83.3%) 1.000 0.378
>42 43 (24.2%) 16 (23.5%) 17 (29.8%) 6 (20.7%) 4 (16.7%)

AFP (ng/ml)
≤400 142 (79.8%) 60 (88.2%) 41 (71.9%) 0.038* 24 (82.8%) 17 (70.8%) 0.482 0.750
>400 36 (20.2%) 8 (11.8%) 16 (28.1%) 5 (17.2%) 7 (29.2%)
May 2022 | Volume 12 | Articl
Data are present as number (percentage) except otherwise specified. † Data are expressed as median with range. # Between training and test subsets. AFP, alpha fetoprotein; ALT,
alanine transaminase; AST, aspartate transaminase; HBV, hepatitis B virus; MVI, microvascular invasion.
*indicates p < 0.05.
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intensities), such as maximum, minimum, skewness, and robust
mean absolute deviation, indicating that the heterogeneity of the
tumor and its surroundings at MRI is associated with MVI
presence. This is also in agreement with the abovementioned
study by Feng et al., where half of the selected features for
modeling belonged to first-order statistics features (25).
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As MVI often occurs at the peritumoral area (28, 29), we
expanded the tumor margin by 10 mm and extracted the imaging
features from intratumoral and peritumoral areas, which we
assumed would improve the MVI prediction. The performance
of the radiomics models confirmed that assumption. In a similar
study, which also constructed models using Gd-EOB-DTPA-
TABLE 2 | Clinical risk factors for MVI presence in patients with hepatocellular carcinoma.

Clinical variable Univariable analysis Multivariable analysis

OR (95% CI) p-value OR (95% CI) p-value

Age (years) 0.88 (0.56–1.39) 0.58
Gender
Male vs. Female 0.64 (0.27–1.53) 0.32

Etiology
HBV vs. None/Others 1.83 (0.30–11.37) 0.52

Cirrhosis
Present vs. Absent 2.68 (1.04–6.89) 0.04* 2.39 (0.85–6.74) 0.10

Child–Pugh Grade
B vs. A 1.20 (0.07–19.57) 0.90

Tumor Size (cm) 1.79 (1.05–3.06) 0.03* 2.06 (1.15–3.70) 0.02*
Tumor Differentiation
Moderate vs. Well 0.15 (0.02–1.28) 0.08
Poor vs. Well 3.30 (0.83–13.17) 0.02* 2.47 (0.54–11.17) 0.03*

Platelet (×109/L)
>125 vs. ≤125 0.84 (0.41–1.70) 0.63

Prothrombin time (%)
>65 vs. ≤65 1.20 (0.16–8.80) 0.86

Albumin (g/L)
>38 vs. ≤38 1.39 (0.54–3.55) 0.50

Bilirubin (mmol/L)
>21 vs. ≤21 1.08 (0.49–2.39) 0.84

ALT (IU/L)
>42 vs. ≤42 1.14 (0.55–2.38) 0.72

AST (IU/L)
>42 vs. ≤42 1.38 (0.62–3.07) 0.43

AFP (ng/ml)
>400 vs. ≤400 2.93 (1.15–7.47) 0.02* 3.31 (1.20–9.11) 0.02*
May 2022 | Volume 12 | Article
AFP, alpha fetoprotein; ALT, alanine transaminase; AST, aspartate transaminase; CI, confidence interval; HBV, hepatitis B virus; MVI, microvascular invasion, OR, odds ratio.
*indicates p < 0.05.
A B

FIGURE 4 | Coefficient of the 14 imaging features (A) and the correlation coefficient heatmap (B) in the AP+HBP_model.
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enhanced MRI for patients with HCC ≤ 5 cm, the tumor margin
was dilated in different diameters, i.e., 5 mm and 10 mm, and also
shrunk by 50% (21). The models in that research using features
extracted from a combination of the tumor and the 10-mm
dilated region yielded an AUC ranging from 0.79 to 0.76 for HBP
by two classifiers, random forest and logistic regression, which is
a little higher than our model.

Previous studies have attempted to exploit preoperative
clinical variables and laboratory tests to predict MVI. Tumor
characteristics such as tumor size and tumor number are well-
established risk factors for MVI incidence (17, 19). One study
with 245 HCC patients undergoing liver transplantation
showed that the MVI incidence was 25% in tumors <2 cm,
31% in 2–4 cm tumors, and 50% in tumors >4 cm (30). Another
study conducted by Kim et al. demonstrated that the incidence
of MVI doubles when there are two or more tumors compared
to when there is a solitary HCC (31). Furthermore, the tumor
biomarker, AFP, has also been recognized as a reliable predictor
for MVI (19, 32, 33). Our Clin_model detected tumor size and
AFP as independent risk factors for the prediction model.
However, the clinical model using these two risk factors only
reached a fair AUC of 0.55 in the test subset. As one of the
strategies to improve the performance of a model is to combine
variables from different aspects (34), we integrated the clinical
risk factors into the AP+HBP_model, improving the AUC
to 0.70.

There are some limitations to be acknowledged when interpreting
the results of the current study. To begin with, our study was limited
by its retrospective nature and sample size. Patient selection bias may
thereby have been introduced. Future prospective research should
include a larger number of participants to confirm our findings.
Moreover, external data from other medical centers are also needed
to prove the generalization of our model. Second, although 10-fold
cross-validation was adopted during modeling, overfitting might still
exist, as seen in the sharp drop of the AUC value in the test subset.
Another interpretation for the lower performance in the test subset
may be the limited sample size of the test subset, only 53 cases, which
makes it sensitive to the performance test. Third, as the current study
focused on solitary HCC with a diameter ≤ 5 cm, the generalization
of the model needs to be confirmed among HCC patients with no
limit for tumor number and size. This should be of special interest
when evaluating patients just outside the current transplantation
criteria. Furthermore, there are incidence differences among
populations due to cirrhosis, viral hepatitis, and nonalcoholic
steatohepatitis. This makes it important to validate the model on
different cohorts. Fourth, the optimal dilation of the tumor needs to
be evaluated as we just dilated the tumor VOIs to 10 mm of the
margin as most previously published studies did (20, 21). Future
research can be designed to compare different dilations of the tumor
diameter when predictingMVI. Fifth, we applied an ICC threshold of
0.75, but the impact of different thresholds on model performance
requires further research. Finally, we did not incorporate semantic
imaging features, such as the tumor margins or arterial peri-tumoral
enhancement, into modeling as we thought those features are more
subjective compared with radiomics features. We also did not
incorporate images from the portal venous phase due to the same
reason as its contrast ratio was inferior to arterial phase. An attempt
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to build a more objective model using a deep learning approach
(without the radiologist’s tumor segmentation) is ongoing in
our team.
CONCLUSIONS

Our radiomics-based model combining imaging features from
the arterial and hepatobiliary phases of Gd-EOB-DTPA-
enhanced MRI and clinical risk factors provides an effective
and reliable tool for the preoperative prediction of MVI in
patients with HCC ≤ 5 cm.
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