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Comparison of Different Machine
Models Based on Contrast-Enhanced
Computed Tomography Radiomic
Features to Differentiate High

From Low Grade Clear Cell

Renal Cell Carcinomas

Xu Pei’, Ping Wang, Jia-Liang Ren?, Xiao-Ping Yin ", Lu-Yao Ma’, Yun Wang’, Xi Ma'
and Bu-Lang Gao'

T CT/MRI Room, Affilated Hospital of Hebei University, Baoding, China, 2 Department of Pharmaceutical Diagnostics,
GE Healthcare China (Shanghai) Co Ltd., Shanghai, China, S Key Laboratory of Cancer Radiotherapy and Chemotherapy
Mechanism and Regulations, Baoding, China

Purpose: This study was to investigate the role of different radiomics models with
enhanced computed tomography (CT) scan in differentiating low from high grade renal
clear cell carcinomas.

Materials and Methods: CT data of 190 cases with pathologically confirmed renal cell
carcinomas were collected and divided into the training set and testing set according to
different time periods, with 122 cases in the training set and 68 cases in the testing set.
The region of interest (ROI) was delineated layer by layer.

Results: A total of 402 radiomics features were extracted for analysis. Six of the radiomic
parameters were deemed very valuable by univariate analysis, rank sum test, LASSO
cross validation and correlation analysis. From these six features, multivariate logistic
regression model, support vector machine (SVM), and decision tree model were
established for analysis. The performance of each model was evaluated by AUC value
on the ROC curve and decision curve analysis (DCA). Among the three prediction models,
the SVM model showed a high predictive efficiency. The AUC values of the training set and
the testing set were 0.84 and 0.83, respectively, which were significantly higher than those
of the decision tree model and the multivariate logistic regression model. The DCA
revealed a better predictive performance in the SVM model that possessed the highest
degree of coincidence.

Conclusion: Radiomics analysis using the SVM radiomics model has highly efficiency in
discriminating high- and low-grade clear cell renal cell carcinomas.

Keywords: renal clear cell carcinoma, enhanced computed tomography, imaging histology, logistic
regression, radiomics
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INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) accounts for 70% of
renal cancers (1). Since the long-term survival of clear cell
carcinoma patients correlates negatively to the Fuhrman
grading (2-4), it is crucial to accurately grade clear cell
carcinoma of the kidney as early as possible. Grading ccRCC
through aspiration biopsy is controversial as the operation itself
carries risk of metastatic spread (5, 6). Previous studies on RCC
were mostly based on analysis of images of conventional
computed tomography (CT) (7-9), which was often interfered
by human factors and lack of quantification. Through precise
quantitative analysis of medical images, radiomics provides
researchers an effective way to detect biological characteristic
changes caused by tumor microenvironment (10-12). Classic CT
information or CT-based radiomics has been applied to establish
predictive models for ccRCC grade. In three logistic regression
models of radiomics based on non-texture features, texture
fraction and non-texture feature combined with texture
fraction for identifying high- and low-grade ccRCCs (13), the
area under the operating curve (AUC) values in the three models
were 0.826, 0.878, and 0.843 for the training set and 0.671, 0.771,
and 0.780 for the testing set, respectively. Some image features
like tumor size (TS) and permeability surface-area product (PS)
were helpful in differentiating high- from low-grade ccRCCs
based on conventional CT studies, with the AUC of TS and PS of
0.7 (14). The sensitivity and specificity were 0.8 and 0.6 for TS
and 0.7 and 0.8 for PS, respectively. Moreover, gene fragments
and radiomics can be combined to establish a two-group model
for differentiating ccRCC from non-clear cell RCC (non-ccRCC),
with the AUC of the training set and testing set being 0.969 and
0.900, respectively (15). Some studies confirmed that necrosis
can independently predict the biological invasiveness of ccRCCs
(16, 17). Moreover, only the logistic regression model was
utilized in most of these studies lacking comparison between
different predictive modeling methods. Therefore, in this study,
three models including logistic regression, decision tree and
support vector machine (SVM) were established and compared
for ccRCC grading performance.

MATERIALS AND METHODS

Patients

This retrospective study was approved by the Ethics Review
Committee of Affiliated Hospital of Hebei University with all
patients given their signed informed consent. All methods were
performed in accordance with the relevant guidelines and
regulations. Patients with ccRCC were enrolled between
January, 2017 and December, 2018 in our hospital. Inclusion
criteria were a single lesion with clear grades of RCC and
preoperative enhanced CT images in the cortical phase with
fast-in and fast-out enhancement (cortical phase showed the
clearest). Exclusion criteria were: (I) carcinomar metastasis, (II)
cystic changes in the lesion of carcinoma, (III) necrosis volume
>80% of the maximal lesion volume, and (IV) poor image

quality. In accord with these criteria, 42 unqualified samples
were excluded, and 190 eligible samples were included. In this
study, I-II grade ccRCC was defined as low-grade renal clear cell
carcinoma, and III-IV grade ccRCC was defined as high-grade
renal carcinoma (18) (Figure 1). Among the qualified 190
patients with ccRCC, 133 cases were of grade I-II ccRCC and
57 cases were of grade III-IV ccRCC, including 98 males and 92
females with an age range of 27-88 years (mean 58.30 + 8.70)
(Table 1). Their maximal diameters of the carcinoma ranged 2-
12 cm (mean 5.6 + 4.4) from post-operative pathological exams.

CT Image Acquisition

Abdominal plain and enhancement CT scans were performed
with a 64-row CT scanner (GE Discovery HD 750, GE Health
Care, Chicago, IL, USA). Contrast agent was iodophor alcohol, a
non-ionic iodine contrast agent. The post-injection scanning
time points were 30-35s, 50-60s and 180s, covering the
medullary phase and renal pelvis stage. Scanning parameters
were as follows: cortical phase, pitch: 0.984:1, layer thickness:
5 mm, field of view: 40 cmx40 cm, matrix: 512x512, tube voltage:
100-120 kV, tube current: 134-409 mA, window width: 250-450
HU, and window position: 30-50 HU.

Volumes of Interest (VOIs) Segmentation
The cortical phase images of enhanced CT from 190 subjects
were imported into the ITK-SNAP software (19), and the region
of interest (ROI) was delineated by one radiologist with 8 years of
working experience and checked by another radiologist with 10
years of working experience.

Radiomics Feature Extraction

and Selection

The radiomics features were extracted from the original and
filtered images with the AK software (Artificial Intelligence Kit
V3.0.0.R, GE Healthcare, China). A total of 402 features were
obtained, including 42 histogram features, 144 gray-level co-
occurrence matrices features (GLCM), 180 gray-level run length
matrices features (GLRM), 11 gray-level zone matrices features
(GLSZM), 15 shape-based features, and 10 Haralick features. The
feature selection procedure was as follows: Firstly, the data of
patients from January 2017 to April 2018 were included in the
training set, and the data of patients from April 2018 to December
2018 were included in the testing set, with the data of 122 patients
in the training set (with 81 cases of I-II ccRCC and 41 cases of I1I-
IV ¢cRCC) and 68 patients in the testing set (with 52 cases of I-II
ccRCC and 16 cases of III-IV ¢ccRCC). Secondly, the data were
preprocessed, including replacing missing values with the median
value and standardizing the Z-score of features in all data.
Thirdly, the extracted features were analyzed by one-way
ANOVA and Wilcox rank-sum test, with the significant P value
set at less than 0.05. Then, the least absolute shrinkage and
selection operator (LASSO) method, which has been shown to
be suitable for high dimensional data analysis (13), were used for
further feature screening. The LASSO method selects features
using a tuning parameter (Lambda), with some coefficients in the
covariance can be shrunk to zero when the cross-validation error
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is the smallest. All the feature selection procedure performed on
the training set and applied on the testing set. The finally selected
features were used to construct models.

RADIOMIC MODEL BUILDING AND
VALIDATION

The ROC curves of each model in the training set (data of 122
patients) and testing set (68 patients) were calculated with all
available patients and the AUC values were derived (Figure 3).

TABLE 1 | Demography of patients in two sets.

Variables Training set Testing set
Case no. 122(64%) 68 (36%)
Sex

Male 66(54%) 33(49%)

Female 56(46%) 35(51%)
Age mean (range, y) 55.6(28-85) 56.1(31-87)

<60 59(48%) 35(51%)

260 33(49%) 63(52%)
Subtype

Low-grade ccRCC 81(66%) 52(76%)

High-grade ccRCC 41(34%) 16(24%)
Tumor size (cm, mean + SD)

Low-grade ccRCC 6.48 + 3.46 6.57 + 3.31

High-grade ccRCC 721 £3.13 8.31 + 3.31

Low grade, grades I-Il; High-grade, grades Ill-1V; SD, standard deviation.

FIGURE 1 | Clear cell renal cell carcinomas (ccRCC) with different grades. (A) Grade | ccRCC (arrow) was demonstrated. (B) Grade Il ccRCC was shown (arrow).
(C) Grade Ill ccRCC was revealed (arrow). (D) Grade IV ccRCC (arrow) was displayed.

The predictive performances of three models (logistic regression,
decision tree, and SVM) were compared for analysis. The
decision curve analysis (DCA) was conducted to evaluate the
clinical usefulness of the models for ccRCC prediction. DCA
quantified the net benefits at different threshold probabilities in
the training and testing set (Figure 4).

Statistical Analysis

Statistical analysis was performed with the R software (version:
3.6.3, www.r-project.org). The Chi-square test was used to
evaluate the distribution difference in high and low-grade cc
RCCs. The LASSO, SVM, and decision tree model were
conducted based on ‘glmnet’, ‘€1071’, and ‘rpart’ packages,
respectively. The receiver operating characteristics (ROC)
curve analysis was performed to determine the AUC, accuracy,
specificity and sensitivity for evaluating the performance of the
model. The significance was set at P < 0.05.

RESULTS

The six most valuable features selected by LASSO for radiomics
modelling were GLCMEntropy, GreyLevelNonuniformity,
ShortRunEmphasis, LongRunLowGreyLevelEmphasis,
ShortRunLowGreyLevelEmphasis, and IntensityVariability. The
LASSO regression was shown in Figure 2. The specific
parameters and feature extraction used in the six most valuable
features were demonstrated in Table 2. These features were used
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to establish three models of logistic regression, decision tree and
SVM in the training set with 122 patients. Each model was
trained and assessed using the repeated ten-fold cross-validation
method in the training set. Performance of differentiating high
grade from low grade ccRCC was evaluated with the testing set
(68 patients) (Figure 3).

The AUC values in the training set and testing sets are
respectively 0.63 (95% CI 0.53-0.73) and 0.64 (95% CI 0.48-0.8)
with the logistic regression model, 0.84 (95% CI 0.76-0.92) and 0.83
(95% CI 0.69-0.96) with SVM model, and finally, 0.69 (95% CI
0.60-0.78) and 0.72 (95% CI 0.56-0.87) with the decision tree
model. The cutoff value of each model was obtained from the
Youden index from the ROC curve, with the value being 0.366,
0.38, and 0.276, respectively, in the logistic regression, SVM, and
decision tree for the test set. The results presented in Tables 3 and 4
showed that the SVM model had achieved the best performance.

DCA was conducted to evaluate clinical usefulness of the
models in prediction by quantifying the net benefits (relative
benefits), at different threshold probabilities in both sets
(Figure 4). The SVM model had the best performance in
prediction of low- and high- grade renal cell carcinoma. In the
DCA analysis (Figure 4), the SVM model was shown to obtain
the highest benefit in the range of 0.34-0.49 which contained the

cutoft value 0.38 for the SVM model. The “benefit” was relative
and indicated the efficiency of the models in the test set.

The prediction performance of the three models for low and
high grade RCC was verified and compared (Figures 5-7). There
was no significant (P=0.054) difference in the high and low-grade
distribution of ccRCCs between the training and testing sets.

In verification of the logistic regression model (Figure 5), the
true negative rate (specificity) for predicting grade I-II ccRCC
was 60.5% (49/81) in the training and 53.7% (22/41) in the
testing set, and the true positive rate (sensitivity) for predicting
grade III-IV ccRCC was 65.4% (34/52) in the training and 75%
(12/16) in the testing set. In verification of the SVM model
(Figure 6), the true negative rate (specificity) was 76.5% (62/81)
for predicting grade I-IT ccRCC in the training and 85.4% (35/41)
in the testing set, and the true positive rate (sensitivity) was
84.6% (44/52) in the training set. The testing set also exhibited a
true negative rate of 75% (12/16) for predicting grade III-IV
ccRCC. In verification of the decision tree model (Figure 7), the
true negative rate (specificity) was 77.8% (63/81) for predicting
grade I-II ccRCC with the true positive rate (sensitivity) of 55.8%
(29/52) in the training set. For the testing set, the true negative
rate was 82.9% (34/41) for predicting grade I-II ccRCC and
62.5% (10/16) for predicting grade III-IV ccRCC.
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TABLE 2 | Specific parameters and feature extraction in six features.

ID Class Type Offset Direction
1 GLCM Entropy 7 Angle90
2 RLM GreyLevelNonuniformity 7 All (3D)

3 RLM ShortRunEmphasis 7 AngleO

4 RLM LongRunLowGreylLevelEmphasis 7 AngleO

5 RLM ShortRunLowGreyLevelEmphasis 4 All (3D)

6 Histogram IntensityVariability - -
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The AUC, accuracy, specificity, and sensitivity were used to
evaluate the performance of the model (Tables 1 and 2).
Through comprehensive comparison of the AUC value,
specificity, sensitivity of the three models, the best prediction
efficiency, observed in the sSVM model, was therefore selected
for prediction purpose in this study. The SVM model had the
greatest accuracy (0.797 and 0.825), sensitivity (0.846 and 0.825)
and specificity (0.742 and 0.750) in both the training and testing
set compared with the logistic regression model (0.624 and 0.596,
0.654 and 0.750, 0.605 and 0.537, respectively) and the decision
tree model (0.692 and 0.772, 0.558 and 0.625, 0.778 and
0.829, respectively).

DISCUSSION

The present study was aimed at the differentiation of high- from
low-grade ccRCCs, because pathological grades highly correlate
with ccRCC metastasis and prognosis (20). ccRCC has different
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FIGURE 3 | The receiver operating characteristics (ROC) curve analysis was performed for three models of logistic regression, support vector machine and decision
tree in the training set and testing set.

clinical prognoses at different grades, and early identification of
pathological grade of ccRCCs is valuable for timely clinical
treatment and patient health.

Radiomics analysis is to extract a multitude of features form
medical images to analyze size, shape, and texture, with useful
spatial information on pixel or voxel distribution and modes.
The recent advancements in the study of ccRCCs were based on
imaging histology except for its grading (21). In the modeling
and identification of high- and low-grade ccRCCs, previous
studies (22, 23) used in vivo diffusion-weighted imaging (DWI)
and imaging histology to achieve the AUC value of 0.8, whereas
an AUC value of 0.73 was reached by the Renometric score based
on CT imaging in identification of high-level RCCs (23). The
AUC values for SVM model in the training and testing sets in our
study were 0.84 and 0.83, respectively, higher than 0.8 or 0.73 of
methods described earlier.

Ding et al. (13) applied radiomics to establish three logistic
regression models to identify high and low-grade ccRCCs,
achieving the AUC values in the training sets of the three

TABLE 3 | ROC curve analysis of three models in the training set.

Parameter Logistic (Train) SVM (Train) Decision Tree (Train)
AUC 0.632 (Cl: 0.533-0.730) 0.840 (Cl: 0.653-0.758) 0.688 (Cl: 0.601-0.775)
Accuracy 0.624 (Cl: 0.530-0.707) 0.797 (Cl: 0.719-0.862) 0.692 (Cl: 0.606-0.769)
Sensitivity 0.654 (Cl: 0.462-0.788) 0.846 (Cl: 0.558-0.942) 0.558 (Cl: 0.385-0.681)
Specificity 0.605 (Cl: 0.272-0.741) 0.742 (Cl: 0.284-0.852) 0.778 (Cl: 0.575-0.904)

ROC, Receiver operating characteristic; AUC, area under the operating curve; Cl, confidence interval.

TABLE 4 | ROC curve analysis of three models in the testing set.

Parameter Logistic regression Support vector machine Decision Tree

AUC 0.639 (Cl: 0.476-0.802) 0.826 (Cl: 0.688-0.964) 0.717 (Cl: 0.564-0.871)
Accuracy 0.596 (Cl: 0.458-0.724) 0.825 (Cl: 0.701-0.913) 0.772 (Cl: 0.642-0.873)
Sensitivity 0.750 (Cl: 0.436-0.938) 0.750 (Cl: 0.438-0.938) 0.625 (Cl: 0.320-0.812)
Specificity 0.537 (Cl: 0.195-0.756) 0.854 (Cl: 0.341-0.976) 0.829 (Cl: 0.400-0.951)

ROC, Receiver operating characteristic; AUC, area under the operating curve; Cl, confidence interval.
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predicting grade IllI-IV.

models of 0.826, 0.878, 0.843 compared with the AUC values in
the testing sets of 0.671, 0.771 and 0.780, respectively. Although
the results in training set were better, the scores in testing set
were not as satisfactory probably due to a trend of over-fitting. In
addition, Ding et al. extracted the texture features from the
maximal diameter level of the mass and collected less
heterogeneous information of the mass (13). Compared with
the study by Ding et al, our SVM-based model performed better,
with our SVM-based AUC in the training and testing set being
0.84 and 0.83, respectively. Shu et al. (24) established three
radiomic models based on renal CT enhancement images in
the cortical and parenchymal phases, including cortical phase

model, parenchymal phase model, and in combination. The
corresponding accuracy, AUC value, sensitivity and specificity
were 0.719, 0.766, 0.818 and 0.822) for the cortical phase model,
0.738, 0.602, 0.693 and 0.677 for the parenchymal phase
model, and 0.777, 0.838, 0.838 and 0.839 for the combined
model. Comparing these results to the study with 3D texture
analysis based model by Shu et al. (24), our results have better
accuracy, AUC value, and sensitivity. Although the model
produced by Shu et al. (24) possessed slightly higher specificity
with the combined multi-period model outperforming the one-
period model, their study used full data to build the model
without using independent test data to validate their results.
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FIGURE 7 | Verification and comparison of the decision tree model in predicting low and high grade renal cell carcinoma in the training and testing set. In the
training set, the true negative rate (specificity) was 77.8% (63/81) for predicting grade I-Il clear cell renal cell carcinoma (ccRCC), and the true positive rate (sensitivity)
was 55.8% (29/52). In the testing set, the true negative rate was 82.9% (34/41) for predicting grade I-Il ccRCC and 62.5% (10/16) for predicting grade llI-IV ccRCC.

Radiomics-based grading models demonstrated better
performance than the model based on conventional CT
parameters. Chen et al. (14) pointed out that tumor size (TS) and
permeability surface-area products (PS) were helpful in distinguishing
the high and low grade clear cell renal cancers, with the AUC of both
TS and PS being 0.7 and the sensitivity and specificity being 0.8 and
0.6 for TS and 0.7 and 0.8) for PS. The grading performance in our
study was also better than this study (15).

Heterogeneity is an important feature of malignant tumors
and is closely related to their biological behavior. CT enhanced
imaging can be used to effectively evaluate tumor heterogeneity
(25). After studying low enhancement on multiphase contrast-
enhanced CT images for predicting presence of high tumor grade

of ccRCC (26), Miles et al. found that low tumor enhancement in
the cortico-medullary phases was an independent predictor of
high tumor grade, which may be useful in clinical care of patients
with nonsurgical approaches. It is speculated that the higher the
grade of renal clear cell carcinoma, the more abundant the small
capillaries (27), which is supported by another study by Li et al
(15). In addition, necrosis is highly correlated with heterogeneity
of tumors, which is of great significance (28). In this study (28),
various processing techniques including voxel normalization and
various filtering processes were used to extract a variety of high
and low order features, including gray matrix and 3D
morphological features. Finally, LASSO cross-processing was
used to select the most valuable six histological features.
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After looking into a variety of common first-order features
that reflect tumor heterogeneity, such as average gray level,
kurtosis and entropy, Feng et al. proposed that entropy is an
independent and excellent radiomic feature to describe a degree
of disorder in images (29). In terms of lesion density distribution,
larger entropy values suggest more randomness while smaller
entropy values indicate uniformity. Thus, high-grade tumors
with relatively large liquefaction necrosis volume have reduced
the entropy detectable as a radiomic feature and were
consequently excluded from our study. In our study, we only
studied the primary renal cell carcinoma rather than metastatic
carcinomas from other resources. However, if the renal
cancerous lesions of the primary renal cell carcinoma
contained large-area necrosis or cystic changes, they would be
excluded from the study, because necrosis contained inactive
tissue and cystic changes contained liquid materials. Solid mass
should be retained as much as possible. The radiomics captured
tissues primarily with active and biological behavior, namely
solid mass tissues. Cystic degeneration and necrosis are similar in
nature, and the doping of these changes in the samples may
lower the evaluation efficiency of the results.

In our study, GLCM_entropy, Greylevel Nonuniformity, and
Intensity_Variability of the six features reflect the degree of
random gray distribution in ROI, which is usually used to
demonstrate the tumor heterogeneity. ShortRun_Emphasis and
ShortRunLowGreyLevel Emphasis are used to show the fine
texture of the tumor, whereas LongRunLowGreyLevel _Emphasis
is used to reflect the coarse texture within the tumor. The SVM
model in our study used the RBF kernel with C value 1 and gamma
0.001. The SVM is a nonlinear model which can get greater and
better results than the linear model. The SVM model may be used
for machine learning with small samples, for improving
generalization and solving higher-dimensional problems as well
as for avoiding structural selection in neural networks. There are
some limitations in our study. Firstly, the overall sample size was
relatively small. Secondly, patient data was not comprehensively
collected, with the construction of models having excluded
diagnostic elements from biochemistry, immunohistochemistry
and genetic studies. Thirdly, when the VOI was delineated, the
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CT-Based Pelvic T{-Weighted MR
Image Synthesis Using UNet, UNet++
and Cycle-Consistent Generative
Adversarial Network (Cycle-GAN)

Reza Kalantar', Christina Messiou "2, Jessica M. Winfield "2, Alexandra Renn?,
Arash Latifoltojar?, Kate Downey?, Aslam Sohaib?, Susan Lalondrelle®, Dow-Mu Koh "2
and Matthew D. Blackledge "*

" Division of Radliotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom, 2 Department of
Radliology, The Royal Marsden Hospital, London, United Kingdom, 3 Gynaecological Unit, The Royal Marsden Hospital,
London, United Kingdom

Background: Computed tomography (CT) and magnetic resonance imaging (MRI) are
the mainstay imaging modalities in radiotherapy planning. In MR-Linac treatment, manual
annotation of organs-at-risk (OARs) and clinical volumes requires a significant clinician
interaction and is a major challenge. Currently, there is a lack of available pre-annotated
MRI data for training supervised segmentation algorithms. This study aimed to develop a
deep learning (DL)-based framework to synthesize pelvic T1-weighted MRI from a pre-
existing repository of clinical planning CTs.

Methods: MRI synthesis was performed using UNet++ and cycle-consistent generative
adversarial network (Cycle-GAN), and the predictions were compared qualitatively and
quantitatively against a baseline UNet model using pixel-wise and perceptual loss
functions. Additionally, the Cycle-GAN predictions were evaluated through qualitative
expert testing (4 radiologists), and a pelvic bone segmentation routine based on a UNet
architecture was trained on synthetic MRI using CT-propagated contours and
subsequently tested on real pelvic T4 weighted MRI scans.

Results: In our experiments, Cycle-GAN generated sharp images for all pelvic slices whilst
UNet and UNet++ predictions suffered from poorer spatial resolution within deformable soft-
tissues (e.g. bladder, bowel). Qualitative radiologist assessment showed inter-expert
variabilities in the test scores; each of the four radiologists correctly identified images as
acquired/synthetic with 67%, 100%, 86% and 94% accuracy. Unsupervised segmentation of
pelvic bone on T1-weighted images was successful in a number of test cases

Conclusion: Pelvic MRI synthesis is a challenging task due to the absence of soft-tissue
contrast on CT. Our study showed the potential of deep learning models for synthesizing
realistic MR images from CT, and transferring cross-domain knowledge which may help to
expand training datasets for 21 development of MR-only segmentation models.

Keywords: convolutional neural network (CNN), generative adversarial network (GAN), medical image synthesis,
radiotherapy planning, magnetic resonance imaging (MRI), computed tomography (CT)
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INTRODUCTION

Computed tomography (CT) is conventionally used for the
delineation of the gross tumor volume (GTV) and subsequent
clinical/planning target volumes (CTV/PTV), along with organs-
at-risk (OARs) in radiotherapy (RT) treatment planning.
Resultant contours allow optimization of treatment plans by
delivering the required dose to PTV's whilst minimizing radiation
exposure of the OARs by ensuring that spatial dose constraints
are not exceeded. Magnetic resonance imaging (MRI) offers
excellent soft-tissue contrast and is generally used in
conjunction with CT to improve visualization of the GTV and
surrounding OARs during treatment planning. However,
manual definition of these regions is repetitive, cumbersome
and may be subject to inter- and/or intra-operator variabilities
(1). The recent development of the combined MR-Linac system
(2) provides the potential for accurate treatment adaption
through online MR-imaging acquired prior to each RT
fraction. However, re-definition of contours for each MR-Linac
treatment fraction requires approximately 10 minutes of
downtime whilst the patient remains on the scanner bed,
placing additional capacity pressures on clinicians wishing to
adopt this technology.

Deep learning (DL) is a sub-category of artificial intelligence
(AI), inspired by the human cognition system. In contrast to
traditional machine learning approaches that use hand-
engineered image-processing routines, DL is able to learn
complex information from large datasets. In recent years, DL-
based approaches have shown great promise in medical imaging
applications, including image synthesis (3, 4) and automatic
segmentation (5-7). There is great promise for DL to
drastically accelerate delineation of the GTV and OARs in
MR-Linac studies, yet a major hurdle remains the lack of large
existing pre-contoured MRI datasets for training supervised
segmentation networks. One potential solution is transferring
knowledge from pre-existing RT planning repositories on CT to
MRI in order to facilitate domain adaptive segmentation (8).
Previous studies have reported successful implementation of
GANSs in generating realistic CT images from MRI (3, 9-11) as
well as MRI synthesis from CT in the brain (12). To date, few

studies have investigated MRI synthesis in the pelvis. Dong et al.
(13) proposed a synthetic MRI-assisted framework for improved
multi-organ segmentation on CT. However, although the
authors suggested that synthetic MR images improved
segmentation results, the quality of synthesis was not
investigated in depth. MR image synthesis from CT is a
challenging task due to large soft-tissue signal intensity
variations. In particular, MRI synthesis in the pelvis offers the
considerable difficulty posed by geometrical differences in patient
anatomy as well as unpredictable discrepancies in bladder and
bowel contents.

In this study, we compare and contrast paired and unpaired
generative techniques for synthesizing T,-weighted (T, W) MR
images from pelvic CT scans as a basis for training algorithms for
OARs and tumor delineation on acquired MRI datasets. We
include in our analysis the use of state-of-the-art UNet (14) and
UNet++ (15) architectures for paired training, testing two
different loss functions [L; and VGG-19 perceptual loss (16)],
and compare our results with a Cycle-Consistent Generative
Adversarial Network (Cycle-GAN) (17) for unpaired MR image
synthesis. Subsequently, we evaluate our results through blinded
assessment of synthetic and acquired images by expert
radiologists, and demonstrate our approach for pelvic bone
segmentation on acquired T;W MRI from a framework trained
solely on synthetic ; W MR images with CT-propagated contours.

MATERIALS AND METHODS

Patient Population and Imaging Protocols

Our cohort consisted of 26 patients with lymphoma who
underwent routine PET/CT scanning (Gemini, Philips,
Cambridge, United States) and whole-body T;W MRI (1.5T,
Avanto, Siemens Healthcare, Erlangen, Germany) before and
after treatment (see Table 1 for imaging protocols). From this
cohort, image series with large axial slice angle mismatch
between CT and MR images, and those from patients with
metal implants were excluded, leaving 28 paired CT/MRI
datasets from 17 patients. The studies involving human
participants were reviewed and approved by the Committee for

TABLE 1 | Imaging parameters for acquired CT and T{W MR images.

CT parameters

T+W MR parameters

Peak Voltage Output (kVp) 120
Acquisition Type Helical

Slice Thickness (mm) 3-6.5

Matrix Size 512 x 512

Pixel Spacing (mm?) 0.74 x 0.74-117 x 1.17
Exposure (mAs) 26-80

Acquisition Sequence 2D Spoiled Gradient Echo

Echo Time (ms) 4.8
Repetition Time (ms) 386

Phase Encoding Direction Anterior-Posterior
Acquired Matrix Size (read) 256
Reconstructed Matrix Size (read) 512
Reconstructed Pixel Size (mm?) 0.74 x 0.74-0.82 x 0.82
Flip Angle 70°

Slice Orientation Axial

Slice Thickness (mm) 5
Acceleration GRAPPA (R=2)
Bandwidth Pixel
(Hz/pixel) 331

Some parameters are shown as the range of values (minimum-maximum) existing in the patient datasets.
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Clinical Research at the Royal Marsden Hospital. The patients/
participants provided written informed consent to participate in
this study.

Model Architectures
We investigated three DL architectures for MR image synthesis: (i)
UNet, (ii) UNet++, and (iii) Cycle-GAN. UNet is one of the most
popular DL architectures for image-to-image translations, with
initial applications in image segmentation (14). In essence, UNet
is an auto-encoder with addition of skip connections between
encoding and decoding sections to maintain spatial resolution. In
this study, a baseline UNet model was designed consisting of 10
consecutive convolutional blocks (5 encoding and 5 decoding
blocks), each using batch normalization and ReLU activation for
CT-to-MR image generation (Figure 1A). Additionally, a UNet++
model with interconnected skip connection pathways, as described
in (15), was developed with the same number of encoder-decoder
sections and kernel filters as the baseline UNet (Figure 1B). UNet+
+ was reported to enhance performance (15), therefore we deployed
this architecture to assess its capabilities for paired image synthesis.
GANSs are the state-of-the-art approaches for generating
photo-realistic images based on the principles of game theory
(18). In image synthesis applications, GANSs typically consist of

two CNNss, a generator and a discriminator. During training, the
generator produces a target synthetic image from an input image
with different modality; the discriminator then attempts to
classify whether the synthetic image is genuine. Training is
successful once the generator is able to synthesize images that
the discriminator is unable to differentiate from real examples.
Progressive co-training of the generator and discriminator leads
to learning of the global conditional probability distribution
from input to target domain. In this study, a Cycle-GAN
model (17) was developed to facilitate unpaired CT-to-MR and
MR-to-CT learning. The baseline UNet model was used as the
network generator, and the discriminator composed of 5 blocks
containing 2D convolutional layers followed by instance
normalization and leaky ReLU activation. This technique offers
the advantage that it does not require spatial alignment between
training T;W MR and CT images. The high-level schematic of
the Cycle-GAN network is shown in Figure 2.

For segmentation, we propose a framework that first
generates synthetic TIW MR images from CT, propagates
ground-truth CT contours and outputs segmentation contours
on acquired TIW MR images. To examine the capability of our
fully-automated DL framework for knowledge transfer from CT
to MRI, we generate ground-truth contours of the bones using a

»{|*»| Output sMRI

connection convolutional pathways.

W =128 A
Conv2D 3x3, stride 1
» L> Kernel Regulariser (1e-5)
Batch Normalisation
Relu Activation
x2
V MaxPooling2D
(stride =2)
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- (stride =2)
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B
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FIGURE 1 | Paired image-to-image networks, (A) UNet with symmetrical skip connections between the encoder and decoder, (B) UNet++ with interconnected skip
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Cycle Consistency Loss

Input —»

Real or Synthetic?

Real or Synthetic?

Reconstructed MR Acquired MR

<— Input

Cycle Consistency Loss

FIGURE 2 | Schematic of the Cycle-GAN network. During training, images from CT domain are translated to MRI domain and reconstructed back to CT domain
under the governance of adversarial and cycle consistency loss terms respectively. Co-training of CT-to-MRI and MRI-to-CT models leads to generation of photo-
realistic predictions.

Gaussian mixture model proposed by Blackledge etal. (19) and  resampled using a 2D affine transformation followed by non-rigid
transfer them to synthetic MR images as a basis for our  registration using multi-resolution B-Spline free-form deformation
segmentation training. A similar UNet model to the  (loss = Mattes mutual information, histogram bins = 50, gradient
architecture presented in Figure 1, with 5 convolutional blocks ~ descent line search optimizer parameters: learning rate = 5.0,
(convolution-batchnorm-dropout(p=0.5)-ReLU) in the number of iterations = 50, convergence window size = 10) (20).
encoding and decoding sections was developed to perform  The resulting co-registered images were visually qualified based on
binary bone segmentation from synthetic MR images. The  the alignment of rigid pelvic landmarks. In CT images, signal
schematic of our proposed synthesis/segmentation framework  intensities outside of the range -1000 and 1000 HU were truncated

is illustrated in Figure 3. to limit the dynamic range. The T;W MR images were corrected
using N4 bias-field correction to reduce inter-patient intensity
Image Preprocessing variations and inhomogeneities (21) and signal intensities above

In preparation for paired training, the corresponding CT and T;W 1500 (corresponding to infrequent high intensity fatty regions)
MR slices from the anatomical pelvic station in each patient were ~ were truncated. Subsequently, the training images were normalized
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Bone Mask (CT)

\_/

Acquired CT

Gaussian Mixture Model

Synthetic MRI

Training Stage

to intensity ranges (0,1) and (-1,1) prior to paired (UNet, UNet++)
and unpaired (Cycle-GAN) training respectively.

Objective Functions

Common loss functions in image synthesis are mean absolute
error (MAE or L) and mean squared error (MSE or L,) between
the target domain and the synthetic output. However, such loss
functions ignore complex image features such as texture and
shape. Therefore, for UNet/UNet++ models, we compared L,
loss in the image space with L; loss calculated based on the
features extracted from a previously-trained object classification
network, deriving the “perceptual loss”. For this purpose, the
VGG-19 classification network was used (16), which is
composed of 5 convolutional layers and 19 layers overall, and
used features extracted from the “block conv2d” layer. For Cycle-
GAN training, the difference between L; and the structural
similarity index (SSIM) (defined as L; - SSIM) was used as the
loss to govern the cycle consistency, whilst L; and L, losses were
used for the generator and the discriminator respectively. For
segmentation training, the Dice loss (1, 2) was used to perform
binary division of bone on MR images.

2lIANB
DSC = g (1)
|A| +[B|
Diceloss =1 - DSC 2)

where A and B denote the generated and ground-truth contours.

Predicted Bone Mask (MRI)

UNet
Segmentation

Testing Stage

Acquired MRI

FIGURE 3 | Schematic of the proposed fully-automatic combined synthesis and segmentation framework for knowledge transfer from CT scans to MR images. The
intermediate synthesis stage enables segmentation training using CT-based contours and MR signal distributions.

Model Training and Evaluation

The dataset was split to 981, 150 and 116 images from 11, 3 and 3
patients for training, validation and testing respectively. All
models were trained for 150 epochs using the Adam optimizer
(learning rate = 1e-4; UNet and UNet++ models: batch size = 5,
Cycle-GAN: batch size=1) on a NVIDIA RTX6000 GPU (Santa
Clara, California, United States) (Table 2). During paired UNet/
UNet++ training, the peak signal-to-noise ratio (PSNR), SSIM,
L, and L, quantitative metrics, as described in (22), were
recorded at each epoch for the validation images. The trained
weights with the lowest validation loss were used to generate
synthetic T;W MR images from the test CT images. Optimal
weights from the Cycle-GAN model were selected based on
visual examination of the network predictions of the validation
data following each epoch. Subsequently, synthetic images from
all models were evaluated against the ground-truth acquired MR
images quantitatively using the above-mentioned imaging
metrics. An additional qualitative test was designed to obtain
unbiased clinical examination of predictions from the Cycle-
GAN model. This test consisted of two sections: (i) to blindly
classify randomly-selected test images as synthetic or acquired,
and outline reasoning for answers (18 synthetic and 18 acquired
test MR slices), and (ii) to describe key differences between
synthetic and acquired test T;W MR images when the input CT
and ground truth acquired MR images were also provided (10
sets of images from 3 test patients). This test was completed by 4
radiologists (two with <5 years and two with >5 years of

TABLE 2 | Learnable parameters (in millions) of UNet, UNet++ and Cycle-GAN models.

UNet (L,)

Trainable Parameters (M) 31

UNet (VGG)

UNet++ (L,) Cycle-GAN

31 36 31(G), 11(D)

G and D denote the Cycle-GAN generator and discriminator respectively.
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experience). The segmentation network was trained on Cycle-
GAN generated synthetic MR images (training: 14, validation:
3 patients) for 600 epochs using the Adam optimizer (learning
rate = le-4) and batch size of 1. To avoid overfitting, random
linear shear and rotation (range:0, 77/60) were applied to images
during training.

RESULTS

Quantitative assessment of synthetic T;W MR images from the
validation dataset during paired algorithm training suggested that
the UNet and UNet++ models with L; loss displayed higher PSNR
and SSIM, and lower L; and L, values compared with the generated
images from the UNet model with the VGG-19 perceptual loss
(Figure 4). Quantitative analysis of synthetic images from the test
patients revealed a similar trend for UNet and UNet++ model
predictions and showed that the Cycle-GAN quantitative values
were the lowest in all metrics but the SSIM where it was only higher
than UNet (VGG) predictions (Table 3). Moreover, qualitative
evaluation of predictions from all models revealed a noticeable
difference in sharpness (spatial resolution) between the images

generated from paired (UNet and UNet++) and unpaired (Cycle-
GAN) training. It was observed that despite UNet and UNet++
models generating relatively realistic predictions for pelvic slices
consisting of fixed and bony structures (e.g. femoral heads, hip
bone, muscles), they yielded blurry and unrealistic patches for
deformable and variable pelvic structures such as bowel, bladder
and rectum. In contrast, the Cycle-GAN model generated sharp
images for all pelvic slices, yet a disparity in contrast was observed
for soft-tissues with large variabilities in training patient MRI slices
(e.g. bowel content, gas in rectum and bowel, bladder
filling) (Figure 5).

Our expert radiologist qualitative testing on Cycle-GAN
predicted images suggested that there were inter-expert
variabilities in scores from section one of the test, highlighting
the differences in subjective decisions amongst the experts in a
number of test images. Experts 1 and 2 (<5 years of experience)
scored 67% and 100% whilst experts 3 and 4 (>5 years of
experience) correctly identified 86% and 94% of total 36 test
images. Hence, no particular correlation was observed between
the percentage scores and the participants’ years of experience
(Figure 6A). Radiologist comments on the synthetic images
(following unblinding) are presented in Figure 6B.

—— UNet (L1)

20

19

18

(A) PSNR

17

16

15

80 100 120 140

Epochs

40 60
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(D) L loss.

—— UNet (VGG)

U-Net++ (L1)

80 100 120 140
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40 60
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(D) L2

0.020

0.015
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FIGURE 4 | Quantitative metrics calculated from validation images during training of UNet and UNet++ models for 150 epochs. (A) PSNR, (B) SSIM, (C) L+ loss and
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TABLE 3 | Quantitative analysis of predictions from the trained models on test patients.

UNet (L) UNet (VGG)
PSNR 20.169 = 0.196 19.668 + 0.189
SSIM 0.809 + 0.003 0.728 + 0.003
MAE 0.043 + 0.001 0.047 + 0.001
MSE 0.011 + 0.001 0.011 + 0.001

UNet++ (Ly) Cycle-GAN PSNR

20.080 + 0.193 18.279 + 0.156

0.804 + 0.003 0.783 + 0.003
0.044 + 0.001 0.057 + 0.001
0.013 + 0.001 0.016 + 0.001

The calculated metrics are presented as mean and standard deviation. The pixel intensities outside the body were excluded when deriving these measurements. The best quantitative

metrics are shown in bold.

The bone segmentation results using our fully-automated
approach showed that our proposed framework successfully
performed unsupervised segmentation of the bone from
acquired T;W MR images, without the requirement of any
manually annotated regions of interest (ROIs). The outcome
from various pelvic slices across 8 patients from our in-house
cohort are presented in Figure 7. The segmentation results from
cases 5 to 8 were from patients not used in the synthesis and
segmentation components of our framework. Test case 8
demonstrates the predicted bone contours from a patient with
metal hip implant.

DISCUSSION AND CONCLUSION

One major limitation in adaptive RT on the MR-Linac system
is the need for manual annotation of OARs and tumors on
patient scans for each RT fraction which requires significant
clinician interaction. DL-based approaches are promising
solutions to automate this task and reduce burden on
clinicians. However, the development of these algorithms is
hindered by the paucity of pre-annotated MRI datasets for
training and validation. In this study, we developed paired and
unpaired training for T;W MR image synthesis from pelvic CT
scans as a data generative tool for training of segmentation
algorithms for MR-Linac RT treatment planning. Our results
suggested that the Cycle-GAN network generated synthetic
images with the greatest visual fidelity across all pelvic slices
whilst the synthetic images from UNet and UNet++ appeared
less sharp, which is likely due to soft-tissue misalignments
during the registration process. The observed disparity in
contrast in Cycle-GAN images for bladder, bone marrow and
bowel loops may be due to large variabilities in our relatively
small training dataset. Although the direct impact of these
contrast discrepancies on MRI segmentation performance is
yet to be evaluated, the Cycle-GAN predictions appeared more
suitable for CT contour propagation to synthetic MRI than
UNet and UNet++ images due to distinctive soft-tissue
boundaries and high-resolution synthesis.

Quantitative analysis of all model predictions indicated that
the imaging metrics did not fully conform with the output image
visual fidelity and apparent sharpness. This finding was in fact in
line previous studies comparing paired and unpaired MRI
synthesis (12, 22). CT-to-MR synthesis in the pelvis offers the
considerable challenge of generating soft-tissue contrasts absent
on acquired CT scans. Although quantitative metrics such as the

PSNR, SSIM, L; and L, differences are useful measures when
comparing images, they may not directly correspond to photo-
realistic network outcome. This was evident in quantitative
evaluation of the images generated from the UNet and UNet++
models trained with L, loss in the image space against UNet with
VGG-19 perceptual loss and Cycle-GAN predictions. Therefore,
expert clinician qualitative assessments may provide a more
reliable insight into the performance of medical image
generative networks. In this study, our expert evaluation test
based on Cycle-GAN predictions suggested that despite a number
of suboptimal soft-tissue contrast predictions (e.g. urinary
bladder filling, bone marrow, nerves), there were differences in
radiologist accuracies for correctly identifying synthetic from
acquired MR images. The fact that 3/4 radiologists were unable
to accurately identify synthetic images in all cases highlights the
capability of our model to generate realistic medical images that
may be indistinguishable from acquired MRI.

Our segmentation results demonstrated the capability of our
fully-automated framework in segmenting bones on acquired
MRI images with no manual MR contouring. Domain
adaptation offers a significant clinical value in transferring
knowledge from previously-contoured OARs by experts on CT
to MR-only treatment planning procedures. Additionally, it
potentially enables expanding medical datasets which are
essential for training supervised DL models. Such a technique
is also highly valuable outside the context of radiotherapy, as
body MRI has increasing utility for monitoring patients with
secondary bone disease from primary prostate (23) and breast
(24) cancers, and multiple myeloma (25). Quantitative
assessment of response of these diseases to systemic treatment
using MRI is hindered by the lack of automated skeletal
delineation algorithms to monitor changes in large volume
disease regions (26).

GANs are notoriously difficult to train due to their large
degree of application-based hyper-parameter optimization and
non-standardized training techniques. However, this study
showed that even when trained on relatively small datasets,
GANs may have the potential to generate realistic images to
overcome the challenge of medical image data shortage.
Therefore, fut ure studies will investigate the performance of
the proposed framework on larger datasets and alternative pelvic
OARs, as well as exploring novel techniques to enforce targeted
organ contrast during GAN and segmentation training.
Additionally, future research will examine the performance
sensitivity on the level of manual MRI contours required for
training cross-domain DL algorithms.
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CT Scan Acquired MR UNet (L,) UNet (VGG-19) UNet++ (L,) Cycle-GAN

FIGURE 5 | T{T1W MRI predictions generated from 3 independent test patients using UNet, UNet++ and Cycle-GAN models (panel A: patient 1, panels B-E, G:
patient 2, panel F: patient 3). Red box: Predictions from pelvic slices with relatively fixed geometries including the bones demonstrate sharp boundaries between
anatomical structures, with visually superior results for the Cycle-GAN architecture (panels A, F). Green box: The superior resolution of the Cycle-GAN architecture is
further exemplified in slices with deformable structures such as the bowel loop (panels F, G). In highly deformable regions, minor contrast disparity in anatomical
structures can be observed in the synthetic MRI; examples include prediction of bladder (red arrows in panel C), lower gastrointestinal region (red arrows in panels
D, E) and rectum (blue arrows in panels C, D).
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No. of correctly identified images

A. Section One

18] 67 % 100 % 86 % 94 %
16 16
15
14

10 I:I Ground Truth
91 - Acquired MR
:l Synthetic MR

Expert 1 Expert 2 Expert 3 Expert 4

B. Section Two

Expert 1

« Unrealistic bone contrast (e.g. bone marrow, ileum)
« Lack of bone heterogeneity, they appear ‘too perfect’
» Synthetic and acquired MRI indistinguishable in 5 test slices

Expert 2

+ Bone marrow signal hypointensity

» Muscle appearance (radially-orientated linear hyperintensities)
» Tendon/nerves underrepresentation

« Urinary bladder hyperintensity on synthetic MR

Expert 3

« Unrealistic bone contrast (e.g. bone marrow)

« Cortex appearance (too thick)

« Less motion and susceptibility artifacts on synthetic MR (smoothing effect)
« Soft-tissue contrast good overall

Expert 4

« Unrealistic bone/muscle boundary contrast

- Streak artifact and ‘grainy’ texture on synthetic MR

« Less contrast on bladder and surrounding peritoneal fat

» Less contrast between bowel loops and adjacent sidewall structures
+ Unusual subcutaneous fat appearance

FIGURE 6 | (A) Section One: Expert scores for identifying evenly-distributed test patient MRI slices as synthetic or acquired, (B) Section Two: Expert comments on
Cycle-GAN synthetic MRI when presented along with the ground truth CT and acquired TsW MRI (Experts 1 and 2 with <5 years of experience, and experts 3 and 4

with >5 years of experience).
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Slice 1 Slice 2 Slice 3 Slice 4

Case 7 Case 6 Case 5 Case 4 Case 3 Case 2 Case 1

Case 8

FIGURE 7 | Bone segmentation results from acquired T{W MRI scans of 8 test patients using the proposed fully-automated framework. The combined synthesis/
segmentation network allows transfer of organ- specific encoded spatial information from CT to MRI without the need to manually define ROls. Cases 5 to 8 were
patients not included in the synthesis stage of network training. Case 8 shows bone segmentation results from a patient with metal hip.
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Objective: To identify optimal machine-learning methods for the radiomics-based
differentiation of gliosarcoma (GSM) from glioblastoma (GBM).

Materials and Methods: This retrospective study analyzed cerebral magnetic resonance
imaging (MRI) data of 83 patients with pathologically diagnosed GSM (58 men, 25 women;
mean age, 50.5 + 12.9 years; range, 16-77 years) and 100 patients with GBM (58 men, 42
women; mean age, 53.4 + 14.1 years; range, 12-77 years) and divided them into a training
and validation set randomly. Radiomics features were extracted from the tumor mass and
peritumoral edema. Three feature selection and classification methods were evaluated in
terms of their performance in distinguishing GSM and GBM: the least absolute shrinkage
and selection operator (LASSO), Relief, and Random Forest (RF); and adaboost classifier
(Ada), support vector machine (SVM), and RF; respectively. The area under the receiver
operating characteristic curve (AUC) and accuracy (ACC) of each method were analyzed.

Results: Based on tumor mass features, the selection method LASSO + classifier SVM
was found to feature the highest AUC (0.85) and ACC (0.77) in the validation set, followed
by Relief + RF (AUC = 0.84, ACC = 0.72) and LASSO + RF (AUC = 0.82, ACC = 0.75).
Based on peritumoral edema features, Relief + SVM was found to have the highest AUC
(0.78) and ACC (0.73) in the validation set. Regardless of the method, tumor mass
features significantly outperformed peritumoral edema features in the differentiation of
GSM from GBM (P < 0.05). Furthermore, the sensitivity, specificity, and accuracy of the
best radiomics model were superior to those obtained by the neuroradiologists.

Conclusion: Our radiomics study identified the selection method LASSO combined with
the classifier SVM as the optimal method for differentiating GSM from GBM based on
tumor mass features.

Keywords: gliosarcoma, glioblastoma, machine learning, radiomics, differentiation
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INTRODUCTION

Gliosarcoma (GSM), a variant of glioblastoma (GBM), differs
from GBM in many respects (1). GSM is associated with lower
ratios of epidermal growth factor receptor (EGFR) and O°-
methylguanine-DNA methyltransferase (MGMT) promoter
methylation without isocitrate dehydrogenase (IDH) mutations
as well as the expression of the v-raf murine sarcoma viral
oncogene homolog B1(BRAF) gene at codon 600 (BRAF
V600E) (2-6). Clinically, GSM is associated with a higher ratio
of extracranial metastasis (7, 8) and a poorer prognosis (3, 9-11).
These molecular, genetic, and clinical differences between GSM
and GBM indicate that the former may be treated as a
unique entity.

While the similarity in the clinical presentation of the two
types of tumors underscores the importance of their radiological
differentiation, most of the radiological signs of the two tumors
overlap (2, 4). Prior imaging research has therefore sought to find
a method by which to reliably distinguish the two types of
tumors: peritumoral edema seen on routine magnetic
resonance imaging (MRI) is more severe in patients with GSM
(1, 2), and other imaging modalities, including diffusion
weighted imaging (DWI), perfusion weighted imaging (PWI),
and magnetic resonance spectroscopy (MRS), have also proven
to be helpful in the identification of the tumors (7, 12). However,
these imaging methods have not been substantive enough to
guide clinical practice due to some limitations. First, qualitative
radiological features are susceptible to intra and interobserver
variability and lacking reproducibility among evaluators. Second,
these radiological modalities only focus on the tumor masses of
GSM and GBM when peritumoral edema also requires attention.

Radiomics, a new method for imaging data analysis, has been
successfully used for the differentiation of central nervous system
tumors: e.g., differentiation between primary central nervous
system lymphoma and atypical GBM (13), between GBM and
metastasis (14-16), and between GBM and anaplastic
oligodendroglioma (17). Like any high-throughput data-
mining field, the curse of dimensionality presents a challenge
for radiomics analysis. Feature selection is the process of
removing irrelevant features that are most conducive to
reducing the difficulty of learning task and minimizing the risk
of overfitting. This study extracted a large panel of radiomic
features from the tumor masses and peritumoral edema of GSM
and GBM to inform an optimal machine learning-based
algorithm for differentiating GSM from GBM.

MATERIALS AND METHODS

Patient Enroliment

The ethics committee of our hospital approved this retrospective
study. This study enrolled 83 patients with GSM (58 men, 25
women; mean age, 50.5 + 12.9 years; range, 16-77 years) between
July 2009 and August 2018 and 100 consecutive patients with
GBM (58 men; 42 women; mean age, 53.4 + 14.1 years; range,
12-77 years) between December 2016 and February 2017.

The inclusion criteria for this study were as follows: (I)
pathologically confirmed GBM or GSM, as defined by the
World Health Organization (WHO) criteria; (II) available
preoperative multi-parametric MRI data, including T2-
weighted imaging (T2WI) and contrast enhanced (CE) data;
(IIT) patients with no history of preoperative treatment for the
tumor before receiving MR; and (IV) available clinical data.
Patients were excluded if (I) preoperative MR images were not
available in our institute; (II) the images were inadequate for
image analysis (for example, they featured obvious artifacts); (III)
the lesion showed no enhancement on post-contrast images; or
(IV) the lesion was recurrent or had received previous treatment.
The clinical and imaging characteristics of all patients were
retrospectively assessed, including age, gender, tumor location,
and the identification of intra-tumoral necrosis and cystic
changes and peritumoral edema. The flowchart of 83 patients
with GSM and 100 patients with GBM is presented as
Supplementary Figure 1. The patients were randomly
assigned to either the training (n = 93) or validation groups
(n =90).

MRI Data Acquisition and Region of
Interest Segmentation
MRI data included pre- and post-contrast scanning. The detailed
scanning parameters are shown in Supplementary Table 1. The
presence of intra-tumoral necrosis and cystic changes and
peritumoral edema were determined for each case. The intra-
tumoral necrosis and cystic changes were defined as low signal
intensity without enhancement on post-contrast images and high
signal on T2WI. The peritumoral edema was defined as low
signal intensity around enhanced tumors and high signal on
T2WI. The identification of intra-tumoral necrosis, cystic
changes, and peritumoral edema were performed by two of the
co-authors; conflicting opinions were resolved with discussion.
Several postprocessing steps following the acquisition of MR
images were performed to reduce data heterogeneity bias. The
adjustment of image resolution was first conducted to resample
all voxel size to 3.00 x 3.00 x 3.00 mm® without gaps between
consecutive slices for each MRI image. Image intensity
normalization transformed MR imaging intensity into
standardized ranges (0-1). The contour of the tumor on axial
images in the CE sequence and the high signal around the tumor
in the T2 sequence (the tumor itself and peritumoral edema)
were manually segmented into region of interest (ROI) on
multiple slices with the opensource software MRIcro (http://
www.mccauslandcenter.sc.edu/mricro/). The ROI of the
peritumoral edema on CE images was generated by the voxel-
wise subtraction of the contrast enhancement in CE sequence
from high signals on T2WT using FSL (http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/FSL).

Radiomic Feature Extraction and Stability
Evaluation

PyRadiomics (http://readthedocs.org/projects/pyradiomics/)
computed a total of nine feature categories, including first-
order statistics, shape descriptors, texture classes (gray level
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co-occurrence matrix, GLCM), gray level run length matrix
(GLRLM), and gray level size zone matrix (GLSZM), and six
built-in filters (wavelet, Laplacian of Gaussian (LoG), square,
square root, logarithm, and exponential), resulting in a total of
1,303 radiomic features (13 shape features, 18 first-order
intensity statistics features, 68 texture features, 86 square
features, 86 square root features, 86 logarithm features, 86
exponential features, 172 LoG features, and 688 wavelet
features). First-order features are intensity-based statistical
features describing the distribution of voxel intensities. Shape
features describe the size and shape of the ROIs. GLCM, GLRLM
and GLSZM features are all texture-related features defined by
different computations based on the gray level of the image. All
of the features were defined in compliance with the Imaging
Biomarker Standardization Initiative (IBSI). All the radiomics
features were listed in the Supplementary Table 2.

Feature Selection and Classification

A total of three feature selection methods based on statistical
approaches were applied in this study: least absolute shrinkage
and selection operator (LASSO), Relief and Random Forest (RF).
While LASSO and RF are embedded methods, Relief is a filter
method. The embedded methods (LASSO and RF) and filter
method (Relief) are commonly and effectively used feature
selection methods. From the performance of the final model,
the wrapped feature selection is better than the filtered feature
selection, but the model needs to be trained multiple times, so the
computational cost is relatively large. We chose these methods
mainly because of their efficiency and popularity among previous
studies. In the LASSO algorithm, the shrinkage parameter
lambda was identified when the misclassification error was
smallest in 10-fold cross-validation. The LASSO, Relief, and RF
curve analysis were conducted based on the “glmnet”, “vsurf”,
and “CORElearn” packages by R software (version 3.4.0, R
Foundation for Statistical Computing), respectively. Then,
three machine-learning classifiers were then applied for feature
classification: adaboost classifier (Ada), support vector machine
(SVM), and RF. These classifiers are widely used pattern
recognition tools and imported from the Python (version 3.6.4)
machine learning library named scikit-learn (version 19.0).

Differentiation Performance of the
Radiomics Models

The three subsets of selected features were then used as an input
to each of the three machine-learning classifiers, which generated
nine (3x3 = 9) radiomics models. We applied 5-fold cross-
validation as the criteria for each of the nine radiomics models
in the training cohort. The differentiation performance was
evaluated in the validation cohort. The area under the curve
(AUC) and accuracy (ACC) from the receiver operating
characteristic curve analysis were calculated to evaluate the
differentiation performances of the radiomics models. The
optimal thresholds of the AUCs were determined by
maximizing the sum of the sensitivity and specificity values
calculated for the differentiation of GBM from GSM.

To compare the differentiation performances of the radiomics
models and neuroradiologists in differentiating GBM from GSM, we
employed the two aforementioned neuroradiologists, who were
blinded to the clinical and pathological data, to manually
differentiate the GBM from GSM according to all of the sequences
(T1IWIL, T2WI, and CET1WI) showing on the Picture Archivingand
Communication Systems (PACS), just as the daily radiological
diagnosis workflow before ROI segmentation. They were allowed
to see the full MRI images used in this study for the first time. The
results of inter-observer variation and concordance with final
histopathology statistics between the two neuroradiologists are
shown in Supplementary Table 3. The chi-square test was
performed to compare the proportion of predicted GBM/GSM
between the neuroradiologists and the best radiomics model. The
entire analysis process is shown in Figure 1.

Statistical Analysis

Differences in the clinical and MRI characteristics between GBM
and GSM were evaluated using the ¢-test and chi-square test. P-
values of less than 0.05 were considered to indicate statistical
significance. The statistical analysis and figure plots were
performed using R (version 3.0.1; http://www.R-project.org)
and SPSS (SPSS Inc.).

RESULTS

Clinical and Routine MRI Characteristics
GBM and GSM showed no difference in patient age and gender
(P=0.151; X2 = 2.758, P=0.097). The ratio of intra-tumoral
necrosis and cystic changes was 98.8% (82/83) and 95.0% (95/
100) among patients with GSM and GBM, respectively. This
difference was non-significant (Table 1). The prevalence of
peritumoral edema was 94.0% (78/83) and 83.0% (83/100)
among patients with GSM and GBM, respectively. The
difference was significant (> = 5.166, P=0.023).

Selection of Stable Features
We calculated intraclass correlation coefficient (ICC) to select for
the robustness of radiomic features in tumor mass and
peritumoral edema. For the tumor mass, 918 of the 1,303
(70.5%) extracted radiomic features showed high stability,
including 13 shape features, 18 first-order intensity statistics
features, 70 texture features, 84 square features, 81 square root
features, 80 logarithm features, 89 exponential features, 179 LoG
features, and 304 wavelet features. For the peritumoral edema,
815 of the 1,303 (62.5%) extracted radiomic features showed high
stability, including 13 shape features, 18 first-order intensity
statistics features, 64 texture features, 70 square features, 89
square root features, 65 logarithm features, 80 exponential
features, 162 LoG features, and 254 wavelet features.
Unsupervised clustering of these stable features was
conducted and presented as a heat map to yield two imaging
subtypes (Figure 2). However, the association between the
imaging and histology subtypes was not obvious.
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TABLE 1 | Clinical and MRI characteristics of patients with GSM and GBM.

Training cohort Validaion cohort

GSM GBM P GSM GBM P
(n=43) (n=50) value (n=40) (n=50) value
Age (vears) 51.1 516  0.884T 498 552  0.044"
Sex
Female 9 23 0.011* 16 19 0.847*
Male 34 27 24 31
Localization
Supratentorial 43 a7 0.296* 39 50 0.444*
Infratentorial 0 3 1 0
Necrosis
Yes 42 47 0.720* 40 48 0.501*
No 1 3 0 2
Edema
Yes 39 42 0.337* 39 41 0.047*
No 4 8 1 9

*Chi-square test, 'Student’s t-test. GBM, glioblastoma; GSM, gliosarcoma; MRI,
magnetic resonance imaging.

Feature Selection and Radiomics Model
Construction

Based on tumor mass features in the training set,
the selection method LASSO + classifier SVM was found to
feature the highest AUC (0.96) and ACC (0.85), followed by
those of Relief + RF (AUC = 0.94, ACC = 0.81), LASSO + RF
(AUC = 091, ACC = 0.84), and LASSO + Ada (AUC = 0.91,
ACC = 0.81; Tables 2-4 and Figures 3, 4). A similar result was
found using the tumor mass features in the validation set:

the selection method LASSO + classifier SVM featured the
highest AUC (0.85) and ACC (0.77), followed by those of
Relief + RF (AUC = 0.84, ACC = 0.72) and LASSO + RF
(AUC = 0.82, ACC = 0.75). In both the training and validation
set, regardless of the method, tumor mass features significantly
outperformed those of the peritumoral edema in
the differentiation of GSM from GBM (P< 0.05). The illustration
of the 5-fold cross-validated ROC curve of the LASSO + SVM
radiomics model in the training cohort and ROC curve of the
LASSO + SVM radiomics model in the validation set are shown
in Figure 5.

To avoid biases and confirm the efficacy of the radiomics
model, we compared the performance of the selection method
LASSO + classifier SVM in 90 validation cases with that of
experienced and inexperienced raters. As shown in Table 4, the
clinical performance of the LASSO + SVM radiomics model was
superior to that of the neuroradiologists in terms of sensitivity,
specificity, and accuracy.

DISCUSSION

This retrospective study developed and validated a favorable
predictive model with radiomics features extracted from tumor
mass and peritumoral edema to distinguish GSM from GBM.
Importantly, the trend of the diagnostic performance of this
machine-learning radiomics model was similar in the training
set, validation set, and cross-validation analysis. In our study,
two neuroradiologists independently rendered diagnosis of the
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TABLE 2 | The AUC of the cross-combination methods.

AUC Ada RF SVM
T™F
LASSO 0.91 (0.81) 0.89 (0.82) 0.96 (0.85)
Relief 0.85 (0.79) 0.91 (0.84) 0.94 (0.81)
RF 0.87 (0.81) 0.84 (0.77) 0.82 (0.79)
PEF
LASSO 0.84 (0.75) 0.79 (0.71) 0.81(0.77)
Relief 0.78 (0.76) 0.84 (0.77) 0.84 (0.78)
RF 0.81 (0.69) 0.80 (0.73) 0.76 (0.68)

The AUC of the cross-combination methods based on tumor mass and peritumoral
edema features is showed in the training set (no brackets) and the validation set
(in brackets). Ada, adaboost; AUC, area under the receiver-operating characteristic
curve; LASSO, least absolute shrinkage and selection operator; PEF, peritumoral
edema feature; RF, random forest; SVM, support vector machine; TMF, tumor
mass feature.

TABLE 3 | The ACC of the cross-combination methods.

ACC Ada RF SVM
T™F
LASSO 0.83(0.74) 0.81(0.75) 0.87(0.77)
Relief 0.77(0.70) 0.80(0.72) 0.84(0.75)
RF 0.77(0.71) 0.76(0.70) 0.71(0.65)
PEF
LASSO 0.73(0.68) 0.69(0.63) 0.71(0.67)
Relief 0.72(0.64) 0.75(0.70) 0.79(0.79)
RF 0.74(0.63) 0.71(0.68) 0.71(0.69)

The ACC of the cross-combination methods based on tumor mass and
peritumoral edema features are showed in the training set (no brackets) and the
validation set (in brackets). ACC, accuracy;, ACC, accuracy, Ada, adaboost;
LASSO, least absolute shrinkage and selection operator; PEF, peritumoral
edema feature; RF, random forest; SVM, support vector machine; TMF, tumor
mass feature.

TABLE 4 | Comparison of predictive performance between radiomic model and
neuroradiologists in the validation set.

Sensitivity, Specificity, Accuracy,
P P P
Neuroradiologist with 3 years of 0.40, 0.44, 0.42,
experiences <0.001* <0.001* <0.001*
Neuroradiologist with 10 years of 0.70, 0.015* 0.34, 0.50,
experiences <0.001* <0.001*
LASSO_SVM 0.78, — 0.76, — 0.77, —

*Chi-square test. LASSO, least absolute shrinkage and selection operator; SVM, support
vector machine.

two kinds of tumors based on the routine MRI; their accuracy
was less than 50.0%, lower than the accuracy of the radiomics
analysis, suggesting the superiority of radiomics relative to
human analysis in distinguishing GSM from GBM.

In agreement with previous research (18, 19), our study
indicated that GSM usually showed enhancement on the solid
component with peritumoral edema on routine MRI. These
findings, however, are insufficient to inform the distinction of
GSM from GBM. Some advanced imaging modalities, such as
DWI, PWI, and MRS (7, 12, 20), have therefore been used to
better identify the characteristics of GSM. On DWI, the thicker
or more solid components of GSM show a restricted diffusion
ratio of as high as 72.7% (8/11) (7); on PWI, the tumor featured
high perfusion (7); on MRS, GSM shows a lactate peak indicating
local necrosis and hypoxia of the tumor and a higher lipid-
choline ratio than do GBM (12, 20). These indices obtained from
the advanced MR modalities were all derived from analysis of
the solid part of the tumor. However, due to the fact that GSM
and GBM usually evince necrosis and cystic changes, a
comprehensive differentiation between the two tumors should
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simultaneously involve the solid part and non-solid components.
The peritumoral region, which usually shows as edema, is also
neglected during differentiation.

In our study, the differentiation between GSM and GBM not
only included the whole part of the lesion but also the peritumoral
edema outside of the lesion. Our investigation revealed that, based
on the peritumoral edema region, the two tumors can be
differentiated with the radiomics method of Relief + SVM (AUC,
0.78; ACC, 0.73). Showing as high signal intensity on T2WI, this
region included both vasogenic edema and the infiltration of tumor
cells (21-23). However, compared with this region, analysis of the
tumor mass itself allowed for the more efficient differentiation
between tumor types. This can be explained by the fact that there
are far more tumor cells in the region of tumor mass than in the
peritumoral region. Moreover, the whole region of the tumor mass,
including necrosis, cystic changes, and other non-enhanced
components, was analyzed for its capacity to inform
differentiation. As previous studies that employed PWI, DWI,
and MRS (7, 12), only focused on the solid part of the two kinds
of tumors, our analysis is more factual and practicable.

Radiomics is an emerging non-invasive method that extracts
high-dimensional sets of imaging features to build appropriate
models for survival prediction (24), distant metastasis prediction
(25), and molecular characteristics classification (26). However,
dimensionality is a critical challenge in radiomics analysis and
limits the potential of the radiomics model. Hence, this study
compared three feature selection methods and classification
methods for improving the stability and classification
performance of the radiomics model. After performing nine
cross-combinations comparisons, we found the LASSO
selection method and the classifier SVM to best differentiate of
GSM from GBM. The LASSO is a regularization technique used
to minimize the number of non-zero elements and make the
solution unique (27). It is therefore often used to solve the
problem of large sets of radiomics features derived from a
relatively small sample size. The SVM is a powerful
classification algorithm that can estimate the classification
probabilities and control complexity. These properties account
for its effective application in the fields of neuroimaging and
molecular biology (16, 28) and its superb pairing with the LASSO
selection method in our radiomics analysis.

Our study has several limitations. First, it may be subjective to
selective bias as a retrospective study. Second, the scanning
parameters were not uniform, requiring the preprocessing of
the data. Third, compared with the large radiomic features
dataset, the sample size was relatively small. Therefore, our
results may be caused by overfitting. Fourth, only T2WI and
axial post contrast TIWI were used in our radiomic analysis,
multi-model imaging data (such as DWI, PWI, MRS) needs to be
integrated into our model in the future, to improve its
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A Radiomics Model for Predicting
Early Recurrence in Grade Il Gliomas
Based on Preoperative
Multiparametric Magnetic
Resonance Imaging

Zhen-hua Wang, Xin-Lan Xiao ", Zhao-Tao Zhang, Keng He and Feng Hu

Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China

Objective: This study aimed to develop a radiomics model to predict early recurrence (<1
year) in grade Il glioma after the first resection.

Methods: The pathological, clinical, and magnetic resonance imaging (MRI) data of
patients diagnosed with grade Il glioma who underwent surgery and had a recurrence
between 2017 and 2020 in our hospital were retrospectively analyzed. After a rigorous
selection, 64 patients were eligible and enrolled in the study. Twenty-two cases had a
pathologically confirmed recurrent glioma. The cases were randomly assigned using a
ratio of 7:3 to either the training set or validation set. T1-weighted image (T1WI), T2-
weighted image (T2WI), and contrast-enhanced T1-weighted image (T1CE) were
acquired. The minimum-redundancy-maximum-relevancy (mMRMR) method alone or in
combination with univariate logistic analysis were used to identify the most optimal
predictive feature from the three image sequences. Multivariate logistic regression
analysis was then used to develop a predictive model using the screened features. The
performance of each model in both training and validation datasets was assessed using a
receiver operating characteristic (ROC) curve, calibration curve, and decision curve
analysis (DCA).

Results: A total of 396 radiomics features were initially extracted from each image
sequence. After running the mRMR and univariate logistic analysis, nine predictive
features were identified and used to build the multiparametric radiomics model. The
model had a higher AUC when compared with the univariate models in both training and
validation data sets with an AUC of 0.966 (95% confidence interval: 0.949-0.99) and
0.930 (95% confidence interval: 0.905-0.973), respectively. The calibration curves
indicated a good agreement between the predictable and the actual probability of
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developing recurrence. The DCA demonstrated that the predictive value of the model
improved when combining the three MRI sequences.

Conclusion: Our multiparametric radiomics model could be used as an efficient and
accurate tool for predicting the recurrence of grade Il glioma.

Keywords: radiomics, grade Il gliomas, MRI, multiparametric, recurrence

INTRODUCTION

Glioma is a brain tumor originating from central glial cells with a
high mortality rate (1-3). According to the World Health
Organization (WHO), grade I and grade II tumors are
classified as low-grade gliomas (LGG). LGGs are generally
benign, with a recurrence rate of about 36% (4). Nevertheless,
the clinical course of LGG may be unpredictable, as some of these
tumors recur soon after primary treatment and/or undergo
malignant transformation (5-7). A previous report indicated
that low-grade gliomas (WHO II grade) have a 5-year survival
rate of as high as 50% (8). Surgical resection followed by
chemoradiation is the standard treatment option for gliomas.
However, the risk and timing of recurrence following treatment
in LGG are still difficult to predict accurately (9-12). Therefore,
there is a need to identify accurate indicators for early detection
and recurrence to provide timely, optimal treatment and
improve survival.

Although histological analysis of surgical specimens is still
considered the gold standard to grade gliomas, it may not always
provide an accurate result (13) as the small sample obtained
during the biopsy may not always reflect the grading
heterogeneity within the entire tumor (14, 15). A substantial
assessment would require the acquisition of samples from
multiple regions within the tumor currently not widely
accepted in clinical practice. Furthermore, a biopsy is an
invasive procedure and also carries some risk. The acquisition
of repeated biopsies is not always considered to be ethical as it
may aggravate patient suffering.

The factors leading to poor OS post-surgery in LGG are still
not well understood. Previous studies identified age, the extent of
the tumor resection, and the expression of specific genes,
including Ki-67 and the isocitrate dehydrogenase 1 (IDH1), as
indicators for OS (16). Yet, to our knowledge, there is no accurate
quantitative tool that could be used to predict at an early stage
the risk of recurrence following the first tumor resection,
highlighting the need to develop predictive models.

An alternative method that can be used to assess tumor
recurrence post-surgery is magnetic resonance imaging
(MRI). Previous studies have shown that radiomics could be
used to quantitatively extract and assess numerous imaging
features to effectively differentiate between high and low-
grade gliomas (17, 18) and differentiate tumor recurrence
from radiation necrosis (19). When combined with clinical
data, imaging features could be used to assess the OS and
hence optimize the treatment for the patient. Therefore, this
study aimed to create a radiomics model based on clinical and

imaging features to predict the risk of developing recurrence
in grade II glioma after the first resection.

MATERIALS AND METHODS

Participants

Retrospective analyses were performed on the follow-up medical
records of 103 adult patients with histologically confirmed
supratentorial grade II gliomas (according to WHO 2016
classification). All patients who had their first extensive glioma
resection between May 2017 and November 2019 were included
in the study. All patients had a MRI T1-contrast enhanced
(T1CE) examination within 72 h after surgery to exclude the
presence of a conspicuous residual tumor after surgery and
received the same adjuvant chemoradiation treatment using a
radiotherapy dose of 50.4 Gy in 28 fractions and 75 mg/m” of
temozolomide orally (20). Patients below 18 years with poor MRI
images and tumor hemorrhage were excluded from the study
(Figure 1). A total of 64 patients were ultimately included in
the study.

Data Collection

After being discharged, the patients were regularly followed up
by the neurosurgery group of the hospital. A periodical MRI
examination was performed after treatment, and any tumor
progression was noted in the patient’s medical records
according to the neuro-oncology (RANO) criteria (21). A
biopsy was performed in those patients who had an obvious
tumor progression noted on the MRI to further confirm the
findings. The age, sex, progression-free survival (PFS), Ki-67, and
IDH1 mutations were obtained from the patients’ medical
records. Three magnetic resonance imaging (MRI) sequences,
including T1-weighted (T1W1), T2-weighted (T2WI), and T1-
contrast enhanced (T1CE), were acquired.

MRI Parameters

All the patients underwent multi-sequence imaging protocol on a
3.0 Tesla MRI system (Discovery 750; GE Healthcare, Milwaukee,
WI, USA), with an eight-channel head coil (GE Healthcare,
Chicago, IL, USA). For the T1-weighted image (T1WI)
acquisition, the repetition time/echo time (TR/TE), matrix size,
field-of-view (FOV), slice thickness, slice gap, and acquisition time
were 1,750/25.4 ms; 512 x 512, 220 x 220, 5 mm, 1.5 mm, and 89 s,
respectively. For the T2WT acquisition, the (TR/TE), matrix size,
FOV, layer thickness, layer spacing, and the number of layers were
4600/102 ms, 224 x 320, 220 x 220, 6 mm, 1, and 18, respectively.
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Enrolled Patients(n=103)

Patients with pathologically comfirmed
newly diagnosis grade two gliomas

Excluded patients(n=28)

1,Poor image quality(n=12);
2,With glioma hemorrhage(n=3);

Y

3,The first operation was not
conducted in our hospital(n=10);
4,Age < 18 years(n=3);

Eligible patients in the study(n=75)

Excluded recurrent patients(n=11)

1.Recurrent time exceed one year(n=2);

\

| 2.Patients didn't undergo the same dose
= and course radiotherapy and
chemotherapy after the first

Eligible patients(n=64)

surgery(n=9)

Recurrent cases
(n=22)

A
\

Non-recurrent cases

(n=42)

FIGURE 1 | Flow diagram illustrating the patient selection process.

The axial TICE sequence was acquired by repeating the TIWI
described above after a bolus injection of 0.1 mmol/kg of
gadodiamide (Omniscan, GE Healthcare, Cork, Ireland).

Description of the Region of Interest and
Assessment of the MRI Sequences

The ITK-snap software (www.itk-snap.org) was used to analyze
the MRIs. A region of interest (ROI) was blindly delineated by
two senior radiologists with more than 10 years of work
experience. The boundaries of most low-grade tumors without
contrast enhancement were determined on the T2WI images as
these images are widely accepted in the identification of
hyperintense signals representing the tumor regions (22).
Then, the contours of the tumor delineated on the T2WI were
transferred to the TIWI and TICE images. In tumors with

TABLE 1 | RANO criteria used to evaluate treatment response in low-grade gliomas.

contrast enhancement, the tumor boundaries were delineated
on the TICE images by selecting the enhanced region. The
delineated region was transferred onto the T1WI and
T2WTI images.

After the delineation of the ROJ, all the patients were divided
into the recurrent group (RG) and non-recurrent group (NRG)
based on the RANO criteria (indicated in Table 1) and biopsy
findings by two radiologists. In case of any disagreement, a
consensus was reached through discussion, especially when there
was a discrepancy between the two readers, as illustrated
in Figure 2.

Feature Extraction
Radiomic features were extracted using the AK software
(Artificial Intelligence Kit V3.0.0.R, GE Healthcare). A total of

Criterion Complete remission Partial remission Stable disease Progress disease
T1CE Not seen Decrease >50% Increase or decrease in the range  Increase > 25%*
of -25% ~ +25%

T2WI/FLAIR Stable or diminished Stable or diminished Stable or diminished Increase®
New lesion None (apart from those consistent  None (apart from those consistent  None (apart from those consistent ~ Present*

with radiation effects, and no new  with radiation effects, and no new  with radiation effects, and no new

or increased enhancement) or increased enhancement) or increased enhancement)
Corticosteroids None Stable or diminished Stable or diminished Not apply

Clinical status Stable or improved Stable or improved

Requirement for Al All
response

Stable or improved Deteriorative*(not attributable to other
causes apart from the tumor, or
decrease in corticosteroid dose)

All Any

CE, contrast-enhanced; FLAIR, fluid-attenuated inversion recovery.
*Progress is determined by anyone project.
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in red delineated by the radiologists for feature extraction.

396 features were extracted from each MRI sequence, including
the Laplacian of Gaussian (LoG), rotation invariant local binary
patterns (RILBP), the gray level co-occurrence matrix (GLCM),
intensity-based features (IBF), directional Gabor texture features
(DGTF), and rotation invariant circular Gabor features
(RICGF), etc. These features were then used to construct the
multiparametric model.

Data Preprocessing and

Feature Screening

The dataset was randomly categorized into the training or
validation set using a ratio of 7:3. All cases in the training set
were used to train the predictive model, while cases in the
validation set were used to evaluate the model’s performance
independently. Variables with zero variance were excluded from
the analysis. The missing values were substituted with the median
value. Finally, the z-score was used to standardize the data (23).
Feature screening was performed by using the minimum
redundancy-maximum relevance (mRMR) (24) method alone or
in combination with univariate logistic analysis. A p-value below
0.05 was deemed statistically significant.

Development and Validation of Models

Logistic regression analysis was used to construct predictive
models based on the extracted optimal feature subsets of the
training dataset. A receiver operator curve (ROC) was used to
assess the performance of the radiomics models, and the
sensitivity, specificity, and area under the curve (AUC) were

FIGURE 2 | An example of image segmentation: (A-C) illustrate T1CE, T1WI, and T2WI sequences, respectively. Images (D-F) illustrate the region of interest (ROI)

calculated using five-fold cross validation. Calibration curves and
decision curve analyses (DCA) were used to assess the clinical
predictive performance of the models. The models were
constructed using the R software (version 4.0.2), and a two-
tailed p-value below 0.05 was deemed statistically significant.

Statistical Analysis

According to the normality of samples based on the Shapiro-
Wilk test, the independent samples t-test, the chi-square (x°) test,
Fisher’s exact test and the Mann-Whitney U-test were used to
identify any differences in age, gender, and other baseline
characteristics between the training set and validation set. This
data was analyzed using the statistical package for the social
sciences (SPSS) version 22.0 software.

Ethical Considerations

Ethical approval was obtained from our hospital ethics
committee. The need to obtain informed consent from patients
was waived due to the retrospective nature of the study.

RESULTS

Patient Characteristics

The characteristics of the tumors and patients are summarized in
Table 2. A total of 64 patients were included in the analysis.
Following the first surgical resection, 64 patients were confirmed
as grade II gliomas. According to the RANO criteria, 29 patients
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TABLE 2 | Baseline demographics and clinical characteristics of patients in the training and validation datasets.

Clinicopathological Variable

NRG

Numbers of cases 30
Age 40.60 + 12.20
Gender, n(%) Female 15 (50)

Male 15 (50)
IDH1-mutation, n(%) Wild-type 6 (20)

Mutation-type 24 (80)
Tumor crossing the midline, n(%) Non 25 (83.3)

Yes 5(16.7)
Ki-67 [median (IQR)] 5.0 (2.0-8.0)

Training set (n=44)

Validation set (n=20)

RG p-value NRG RG p-value
14 12 8
48.36 + 9.74 0.047 39.77 + 14.31 51.25 +8.12 0.053
6 (42.9) 0.659 4 (30) 4 (50) 0.648
8(57.1) 8 (70) 4 (50)
5(35.7) 0.287 5(41.7) 3(37.5) 1.00
9 (64.3) 7 (58.3) 5 (62.5)
10 (71.4) 0.610 9 (75) 6 (75) 1.00
4 (28.6) 3 (25) 2 (25)
5.5 (3.0-10.0) 0.533 5.0 (2.25-8.0) 7.0 (5.0-14.75) 0.238

NRG, Non-recurrent group,; RG, recurrent group; IQR, interquartile range.

were thought to have a tumor recurrence and underwent a
biopsy. The biopsy confirmed the recurrence in 22 patients,
while the other 7 patients were diagnosed with pseudo-response.

Clinicopathological Characteristics

Among the 64 patients included in the study, 22 had a
pathologically confirmed recurrent tumor, and the rest did not
have any recurrence. The patients were randomly divided into
training and validation datasets using a ratio of 7:3. The baseline
characteristics of the subjects are summarized in Table 2. There
was no significant difference in the age (p = 0.251), gender (p =
0.475), frequency of glioma recurrence (p = 0.845), Ki-67 (p =
0.486), and IDH1 (p = 0.885) mutation status and tumors
crossing the midline (p = 0.307) between the training and
validation group. There was a statistically significant difference
(p < 0.05) in age between the RG and NRG in the training set. All
other clinicopathological features did not differ significantly
between the two groups.

Performance of the Radiomics Models

We extracted 396 features from the ROIs of every sequence. After
running the mRMR algorithm, six features were selected from
the T1WI images, five features from the T2WTI images, and four
features from the T1CE images. These three sequences were
subsequently combined to identify the most important predictive
features of the multiparametric model. Based on the univariate
logistic analysis and mRMR, nine predictive features were
eventually identified, and their correlation coefficients are
illustrated in Figure 3. The low correlation coefficient between
the nine features indicates little redundancy among every
feature cluster.

The features screened from the TIWI, T2WI, T1CE, and
multiparametric sequences are summarized in Table 3. Four
radiomics models were established for predicting tumor
recurrence based on the screened optimal predictive features
and their contributing predictive weight for each image
sequence, as illustrated in Table 3. In the TIWI sequence, six
predictive features were included in the model, eventually
resulting in an AUC of 0.842 and 0.79 in the training and
validation datasets, respectively. In the T2WI sequence, five
predictive features were used to construct the models, resulting
in an AUC of 0.785 in the training set and 0.790 in the

0.8

0.4

0.026

. -0.8
M 5 & ~\3>\ P
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FIGURE 3 | Correlation coefficient of the combined multiparametric models.
The correlation coefficients of the selected nine features were low, indicating
that the nine feature clusters were not redundant. The magnitude of the
correlation is illustrated in the color bar on the right.

validation set. In the T1CE sequence, four predictive features
were used to develop the predictive model, which resulted in an
AUC of 0.784 in the training set and 0.803 in the validation set.
The multiparametric MRI model included nine predictive
features from the TIWI, T2WI, and T1CE sequence, resulting
in the best overall performance with an AUC of 0.966 and 0.930
for the training and validation datasets, respectively (Table 4 and
Figure 4). The calibration curves of the model also indicated a
good agreement between the predicted probability and actual
tumor recurrence both in the training set and validation set,
indicating that the model was well-calibrated (Figure 5).

The DCA for the individual TIWI, T2WI, T1CE, and these
combined multiparametric models are illustrated in Figure 6.
The net benefit of the model constructed based on the three
sequences was higher than the one based on the individual
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TABLE 3 | The screened features and their coefficients in the models for the different imaging sequences.

Modality Variables Coefficient. Std.Err. z P> |z| [0.025 0.975]
T1CE Intercept -0.3825 0.5451 -0.7017 0.4828 -1.4508 0.6858
GLCMEntropy_AlDirection_offset4_SD 0.5540 0.5905 0.9382 0.3481 -0.6034 1.7114
Compactness?2 0.6443 0.6101 1.0560 0.2910 -0.5515 1.8401
ShortRunEmphasis_AlIDirection_offset7_SD -1.1118 0.9869 -1.1265 0.2600 -3.0461 0.8226
LongRunEmphasis_angle0_offset1 -1.2584 0.7682 -1.6382 0.1014 -2.7640 0.2472
TIWI intercept 0.0196 0.3750 0.0523 0.9583 -0.7154 0.7546
GLCMEntropy_AlDirection_offset7_SD 0.9189 1.1705 0.7850 0.4324 -1.3753 3.2132
LowGreyLevelRunEmphasis_AlDirection_offset1_SD -3.9480 3.5082 -1.1254 0.2604 -10.8240 2.9279
RunLengthNonuniformity_AlDirection_offset4_SD 0.3930 0.4920 0.7987 0.4245 -0.5714 1.3573
ShortRunEmphasis_AlIDirection_offset7_SD -0.3207 0.4130 -0.7765 0.4375 -1.1302 0.4888
ShortRunEmphasis_angle90_offset4 1.0857 2.3549 0.4525 0.6509 -3.5498 5.6812
Variance 1.7391 0.7825 2.2225 0.0262 0.2054 3.2728
T2WI intercept -0.1973 0.4298 -0.4591 0.6461 -1.0397 0.6451
ClusterShade_angle45_offset7 0.0706 0.3401 0.2075 0.8356 -0.5960 0.7372
Correlation_AlDirection_offset1_SD -0.4181 0.4751 -0.8800 0.3788 -1.3494 0.5131
Sphericity -0.6831 0.4032 -1.6941 0.0902 -1.4734 0.1072
HighintensityLargeAreaEmphasis -0.0726 0.4370 -0.1662 0.8680 -0.9291 0.7838
LongRunEmphasis_angle90_offset1 -1.4411 0.9134 -1.6777 0.1146 -3.2313 0.3491
Multiparametric intercept -0.1338 2.3732 -0.0564 0.9550 -4.7852 45176
T1CE_ClusterProminence_angle90_offset? -2.4287 2.7045 -0.8980 0.3692 -7.7295 2.8721
T1CE_InverseDifferenceMoment_AlIDirection_offset7_SD 2.3638 3.4494 0.6853 0.4932 -4.3970 9.1245
T2_GLCMEntropy_AlDirection_offset1_SD 2.0994 2.7421 0.7656 0.4439 -3.2750 7.4739
T2_GLCMEntropy_AlIDirection_offset4_SD -1.2254 0.0745 1.683 0.0924 -0.8635 1.5517
T2_LongRunHighGrayLevelEmphasis_AlDirection_offset1_SD 0.9696 1.2682 0.7646 0.4445 -1.5161 3.4553
T2_HaralickCorrelation_AlDirection_offset7_SD -10.1476 6.6254 -1.5316 0.1256 -23.1332 2.8380
T1_HaralickCorrelation_AlDirection_offset4_SD -1.8642 1.6618 -1.1218 0.2620 -6.1213 1.3929
T1_ShortRunEmphasis_AlIDirection_offset7_SD -1.9502 1.4283 -1.3654 0.1721 -4.7497 0.8493
T1_HighintensityLargeAreaEmphasis 2.6325 1.6886 1.5590 0.1190 -0.6770 5.9420

TABLE 4 | The performance of the models for predicting tumor recurrence in the training and validation datasets.

Modality Features screening Number of features Cohort AUC (95% CI) Sensitivity Specificity Accuracy
method after screened

TIWI mRMR 6 Training 0.842 (0.674-0.905) 0.7 0.7 0.75
Validation 0.79 (0.687-0.902) 0.778 0.778 0.78

T2WI mRMR 5 Training 0.785 (0.697-0.912) 0.727 0.682 0.705
Validation 0.79 (0.679-0.92) 0.8 0.5 0.65

T1CE mRMR 4 Training 0.784 (0.665-0.913) 0.889 0.556 0.722
Validation 0.802 (0.693-0.911) 0.78 0.778 0.8

Multi-modalities ULA + mBRMR 9 Training 0.966 (0.949-0.99) 0.905 0.952 0.929
Validation 0.93 (0.905-0.973) 1 0.8 0.90

ULA, univariate logistic analysis.

imaging sequence, to which it was superior across nearly the  pathological specimens may not always reflect the nature of the
entire range of clinically useful threshold risks. whole tumor. Furthermore, several studies found that other clinical
factors that may have an impact on survival including age,
radiotherapy dose, and the extent of tumor resection (16).
DISCUSSION Multiparametric MRI has played an important role in
distinguishing between LGG and HGG as well as recurrence from
Surgery followed by chemoradiation is the main treatment option  radiation-induced necrosis. However, to our knowledge, currently,
for patients diagnosed with LGG. Tumor recurrence post-treatment  there is no suitable clinical and image-based predictive model to
is one of the factors leading to poor OS. Surgical resection is one of ~ assess the risk of recurrence post-surgery in LGG patients. Therefore
the treatment options for patients diagnosed with recurrent LGG.  in this study, we made use of the imaging data of 64 LGG patients to
Still, guidelines issued by several professional bodies state that there ~ develop a model that could be used to predict recurrence in these
is limited high-level clinical evidence on the effectiveness of a  patients and hence enable clinicians to identify the patients that are
secondary invasive resection on survival. A study by Patrizz et al. ~ most likely to benefit from additional surgery.
(25) indicated that histopathologic findings following In our study, there was no difference in the baseline
chemoradiation do not always correlate with clinical outcomes in ~ characteristics between the RG and NRG except for age.
patients diagnosed with recurrence post-surgery. First of all, the ~ Consistent with the retrospective study by Li et al. (16), age
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FIGURE 4 | The ROC curves of the four imaging prediction models whereby
the green curve represents the T1WI model, the blue curve represents the
T2WI, the purple curve represents T1CE, and the red curve represents the
multiparametric MRI model.

was found to be an important risk factor for recurrence in grade
II gliomas following the first surgery. Jansen et al. (26) conducted
a long-term follow-up of 110 patients with LGG (WHO Grade
II) after resection. Their results demonstrated that the initial
extent of the resection influenced the progression-free survival,
time to malignant transformation, and overall survival.
Moreover, Patrizz et al. (25) indicated that the radiotherapy
dose after surgery has a significant impact on survival in LGG
patients. In our study, all patients had an extensive tumor
resection and received the same radiation dose. Therefore, the
effects of these variables on tumor recurrence could not
be assessed.

Studies have shown a high correlation between certain genetic
alterations, recurrence, and prognosis in grade II and III gliomas.
Mutations of the isocitrate dehydrogenase (IDH)1/2 genes are
common events in gliomas (27), especially among grade II
gliomas, where IDH1 mutations are observed in about 70% to
80% of cases (27, 28). Some studies indicated that IDH1
mutation status could improve OS and PES in grade II and III
glioma (19, 29). Although the IDHI mutation has been identified
as an independent positive prognostic biomarker for survival in
patients with glioma (26, 30), the association between the IDH
mutant status and the risk of developing recurrence is still not
clear. In the present study, the proportion of IDH mutation cases
was noticeably higher in NRG compared with RG [31/42(73.8%)
vs 14/22(63.6%)]; however, the statistic results showed that there
was not a significant difference between NRG and RG (Table 2),
which indicated that there might not be a link between the IDHI
mutation and tumor recurrence; nevertheless, due to the
limitation of our relatively small sample size, it still needs a big
sample for further verification.

The RANO criteria are still widely used to assess the tumor
response post-treatment and the need for additional treatment
(31, 32). Despite being used extensively, the accuracy rate of the
RANO criteria in distinguishing between tumor recurrence and
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FIGURE 5 | Performance of the four imaging models for predicting the
recurrence of grade Il gliomas. The y-axis represents the actual probability,
and the x-axis represents the predicted probability. Figure (A) shows the
model’s calibration of the training set, and Figure (B) shows the validation set.
A calibration curve describes the consistency between the predicted and
actual tumor recurrence rate. The 45° gray heavy lines represent the ideal
prediction performance, the non-45dotted lines represent the prediction
performance of the model, and non-45° solid lines represent the corrected
prediction performance of the model. The closer the solid line is to the ideal
gray line, the better the prediction accuracy of the model.

pseudo-response (32, 33) in our study was only 75.86%. The
multi-parameters radiomics model developed in our study
resulted in higher prediction accuracy in both testing and
validation datasets.

In order to develop our radiomics model, numerous features
were extracted from each of the three MRI sequences. It is
important to acknowledge that the sample size in our study
was relatively small, potentially over-fitting the model (34). In
order to reduce this risk, mRMR was used for feature
dimensionality reduction. This technique has been widely used
in several studies and involves selecting features from the
mutually correlated distance or similarity score hence
facilitating the data screening process (35, 36).

Numerous studies evaluated the use of radiomics models in
predicting recurrence in glioma after radiotherapy. Wang et al.
(37) proposed a radiomics model based on MRI and PET images
to discriminate between tumor recurrence from radiation
necrosis. The model performed well in both training and
validation datasets with an AUC of 0.988 and 0.914,
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respectively. A similar model based on 51 glioma patients
developed by Quan Zhang et al. (19) achieved outstanding
performance with an AUC of 0.962 following validation.
However, to the best of our knowledge, this is the first
multiparametric model developed to predict recurrence in
LGG before surgery. Our model also achieved an excellent
performance, with an AUC of 0.966 and 0.930 in the testing
and validation dataset, respectively.

In the study, a total of nine optimal features were selected for
the construction of the multiparametric radiomics model.
Among these features, there were three gray level run length
matrix (GLRLM) features (T2_LongRunHighGrayLevel
Emphasis_AllDirection_offsetl_SD, T1_ShortRunEmphasis_
AllDirection_offset7_SD, and T1_ShortRunEmphasis_
AllDirection_offset7_SD), one gray level size zone matrix
(GLSZM) feature (T1_HighIntensityLargeAreaEmphasis), and
the rest were gray level co-occurrence matrix (GLCM) features
(Table 3). The above results indicate that GLCM features played
the most important role in the model. In some previous
radiomics studies, the GLCM features also played an important
role in predicting the IDH mutation status. Checkout et al.
developed a new approach to predict IDH mutation status that
outperformed competing methods (38), while Park et al. (39)
found that GLCM was one of the strongest IDH status prediction
factors. Furthermore, in a study by Chaddad et al. (40), GLCM
had a significant role in predicting survival in patients with
glioblastoma. Combined with these previous studies, we can
reasonably infer that GLCM may convey information that could
potentially be used to predict recurrence.

Both calibration and discrimination are valuable aspects of a
prediction model (41). AUC is a common evaluation index of
discrimination, while calibration reflects the level of agreement
between the actual observed outcomes and the model’s predicted
outcomes (42). However, the AUC focuses merely on the
predictive accuracy of the signature. As such, it does not tell us

whether the model is worth using at all. DCA is a statistical
method that incorporate consequences and, thus, can inform the
decision of whether to use this model (43). Therefore to further
complement the AUC findings, a DCA was also performed to
evaluate the clinical value of the models (44). In our study, both
the AUC and calibration curve (Figure 5) showed that our model
has a high prediction accuracy. Furthermore, the DCA curves
showed that within a relatively large threshold range, our
proposed radiomics models could be used to improve the
treatment decision-making process. However, the DCA showed
that multiparametric MRI models had a significantly higher
performance when compared with models based on a single
MRI sequence across nearly the entire range of clinically useful
threshold risks (Figure 6).

This study has some limitations that have to be acknowledged.
The majority of the patients with recurrent LGG at our institution
generally prefer to be treated with radiotherapy and chemotherapy
as opposed to surgery. This limited the sample size in our study and
hence limited the number of clinical, pathological, molecular, and
imaging features that could be used to train the model. In order to
improve the robustness and generalizability of the model, further
studies with a larger sample from multiple institutions with a longer
follow-up are warranted. A larger sample will also allow us to apply
different machine learning strategies to improve the prediction
performance of the model. Further research is also recommended
to illustrate the relationship between specific imaging features and
pathology. Finally, additional studies are also recommended to
evaluate the impact of early recurrence prediction on the
provision of timely interventions and ultimately survival.

CONCLUSION

The application of our radiomics model-based features extracted
from multiparametric MRI could be used to predict the risk of
early recurrence of grade II gliomas after the first surgical
resection. This model could be used to guide the clinicians’
decision on the need for further invasive treatment such as
biopsy and surgery in LGG patients.
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Comparison of Complex k-Space Data
and Magnitude-Only for Training of
Deep Learning-Based Artifact
Suppression for Real-Time Cine MRI

Hassan Haji-Valizadeh™, Rui Guo*, Selcuk Kucukseymen, Yankama Tuyen,
Jennifer Rodriguez, Amanda Paskavitz, Patrick Pierce, Beth Goddu, Long H. Ngo and
Reza Nezafat*

Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston,
MA, United States

Propose: The purpose of this study was to compare the performance of deep learning
networks trained with complex-valued and magnitude images in suppressing the aliasing
artifact for highly accelerated real-time cine MRI.

Methods: Two 3D U-net models (Complex-Valued-Net and Magnitude-Net) were implemented
to suppress aliasing artifacts in real-time cine images. ECG-segmented cine images (n = 503)
generated from both complex k-space data and magnitude-only DICOM were used to
synthetize radial real-time cine MRI. Complex-Valued-Net and Magnitude-Net were trained
with fully sampled and synthetized radial real-time cine pairs generated from highly undersampled
(12-fold) complex k-space and DICOM images, respectively. Real-time cine was prospectively
acquired in 29 patients with 12-fold accelerated free-breathing tiny golden-angle radial sequence
and reconstructed with both Complex-Valued-Net and Magnitude-Net. Cardiac function, left-
ventricular (LV) structure, and subjective image quality [1(non-diagnostic)-5(excellent)] were
calculated from Complex-Valued-Net- and Magnitude-Net-reconstructed real-time cine
datasets and compared to those of ECG-segmented cine (reference).

Results: Free-breathing real-time cine reconstructed by both networks had high correlation
(@l R? > 0.7) and good agreement (all p > 0.05) with standard clinical ECG-segmented cine
with respect to LV function and structural parameters. Real-time cine reconstructed by
Complex-Valued-Net had superior image quality compared to images from Magnitude-Net
in terms of myocardial edge sharpness (Complex-Valued-Net = 3.5 + 0.5; Magnitude-Net =
2.6 + 0.5), temporal fidelity (Complex-Valued-Net = 3.1 + 0.4; Magnitude-Net = 2.1 + 0.4), and
artifact suppression (Complex-Valued-Net = 3.1 + 0.5; Magnitude-Net = 2.0 + 0.0), which
were all inferior to those of ECG-segmented cine (4.1 £ 1.4, 3.9 + 1.0, and 4.0 + 1.1).

Conclusion: Compared to Magnitude-Net, Complex-Valued-Net produced improved
subjective image quality for reconstructed real-time cine images and did not show any
difference in quantitative measures of LV function and structure.

Keywords: real-time cine, artifact suppression, deep learning, complex, magnitude
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INTRODUCTION

Cardiovascular MR (CMR) is the clinical gold-standard imaging
modality for evaluation of cardiac function and structure. Breath-
hold ECG-segmented cine imaging using balanced steady-state
free-procession readout (bSSFP) allows for accurate and
reproducible measurement of left-ventricular (LV) and right-
ventricular (RV) function and volume [1-3]. In this technique,
k-space is divided into different segments collected over
consecutive cardiac cycles within a single breath-hold scan.
However, ECG-segmented cine acquisition has limited spatial
and temporal resolution, is sensitive to changes in heart rate, and
requires repeated breath-holds [4-6]. Alternatively, free-
breathing real-time cine has been proposed and pursued using
rapid real-time imaging or multiple averaging with or without
motion correction [7-12]. Using free-breathing real-time cine is
advantageous because it does not require multiple breath-holds
and is insensitive to heart rate variations. However, real-time cine
has lower temporal and spatial resolution than ECG-segmented
cine [10, 11]. Therefore, there is a need to further accelerate data
collection for real-time cine MRL

Over the past three decades, there has been considerable
progress in the development of accelerated real-time cine
imaging including parallel imaging and compressed sensing
[13-18]. Parallel imaging is almost always used in cine
imaging for both real-time and ECG-segmented acquisition
with robust and highly reliable image quality [13]. However,
the acceleration rate of parallel imaging cannot be more than
three without compromising image quality [19-21]. Compressed
sensing has recently been integrated into applications by vendors
enabling higher acceleration rates than parallel imaging; however,
reconstruction time is long, and acceleration rates beyond four
can result in degradation of image quality [17]. Alternative
techniques that exploit spatial-temporal correlation and
sparsity of cine data have also been explored [22-26];
however, these approaches can suffer from temporal data
filtering, often removing information that is crucial to cardiac
cine evaluation. Therefore, despite considerable interest from the
image reconstruction community, these techniques are rarely
clinically used.

Deep learning-based reconstruction has been recently
proposed to enable rapid reconstruction of accelerated cine
MRI. Hauptmann et al. [27] showed that a 3D U-net was
capable of reconstructing accelerated (acceleration rate = 13)
real-time cine MRI. Schlemper et al. [28] showed that a trained
cascade network was able to rapidly reconstruct accelerated
(acceleration rate = 11) cine MRI. Kustner et al. [29] showed
that (3 + 1)-dimensional complex-valued spatio-temporal
convolutions and multi-coil data processing (CINENet) could
reconstruct accelerated (9 < acceleration rate <15) 3D ECG-
segmented cine. El-Rewaidy et al. [30] reconstructed accelerated
radial cine MRI (acceleration rate = 14) using a complex-valued
network (MD-CNN) designed to process MR data in both
k-space and image space. Daming et al. [31] used a complex
U-net with a combined mean-squared error and perceptual loss
(PCNN) to reconstruct real-time cine MRI (acceleration
rate = 15).

Complex-Valued vs. Magnitude-Only Deep-Learning Reconstruction

While promising, popular deep learning-based
reconstructions methods [27-32] for cine MRI rely on
supervised learning and, as such, require training with large
and diverse patient datasets. However, prospectively acquiring
large patient datasets within a clinical setting can be difficult
due to long scanning times, respiratory/cardiac motion, or
contrast washout. To overcome these limitations, Hauptmann
et al. proposed training a deep learning network using
synthetic data generated from DICOMs (Digital Imaging
and Communications in Medicine) [27]. The use of
DICOM imaging is advantageous because it is readily
available in large numbers at centers with cardiac MR
expertise. While promising, DICOM usage during training
is theoretically non-optimal given that DICOM images are
magnitude images, which lack phase and multi-coil
information; furthermore, vendors often apply different
filtering techniques to improve image quality in the DICOM
creation process. The effect of using DICOM images for
training on the performance of a deep learning model has
not yet been rigorously studied.

In this study, we sought to investigate differences in
performance between two deep learning-based models trained
to suppress artifacts in 12-fold accelerated real-time cine. Paired
complex-valued k-space data and DICOM images of ECG-
segmented cine (n = 503) were used to synthetize highly
undersampled radial real-time cine data. Both artifact
suppression models were made using 3D U-net architectures.
One model was trained with synthetic radial real-time cine
images generated from complex k-space data (Complex-
Valued-Net), while the other model was trained with synthetic
radial real-time cine images generated from DICOM images
(Magnitude-Net). The performance of the two models was
evaluated against prospectively collected free-breathing real-
time cine CMR with radial acquisition.

METHODS

Figure 1 summarizes our study which was designed to compare
the performance of deep learning-based networks trained to
suppress aliasing artifacts in highly accelerated real-time cine
using complex-valued images (derived from k-space data) and
magnitude-only images (derived from DICOM images). We
prepared a dataset containing both complex k-space data and
corresponding magnitude images (ie., DICOM) scanned by
breath-holding ECG-segmented cine using a Cartesian
trajectory to synthesize radial real-time cine data (Figure 1A)
[27]. Two 3D U-net models [33], Complex-Valued-Net and
Magnitude-Net, were developed to remove aliasing artifacts in
complex-valued and magnitude images of highly accelerated
radial real-time cine, respectively. Complex-Valued-Net and
Magnitude-Net were trained using synthetized radial real-time
cine with aliasing artifacts generated from complex-valued
k-space and magnitude-only images, respectively. “Artifact-
free” images used to produce synthetized radial cine were used
as the ground truth (Figure 1B). Finally, the performance of both
networks was compared using prospectively acquired free-
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A
Datasets (n=503)

Deep-learning Models and Training

ECG-segmented Cine

Synthesizing Real-time Cine

1
Ground-Truth

Undersampled Radial Images
12 k-lines per frame
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Undersampled Radial Images
12 k-lines per frame

Magnitude-Net
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Input

Ground-Truth

C Real-time Cine Peformance Evaluation (n=29)

Breath-holding ECG-segmented Cine }

Free-breathing Radial Real-time Cine
12 k-lines per frame (~37.7 ms)

FIGURE 1 | Overview of this study. (A) Cine images of 503 patients with both raw k-space data and DICOMs were collected. These images were scanned using a
breath-holding cine sequence with a Cartesian trajectory. (B) Raw k-space data and DICOMs of ECG-segmented cine were used to synthesize highly accelerated radial
real-time cine datasets for training Complex-Valued-Net and Magnitude-Net, respectively. (C) Performance comparison between the two neural networks. Real-time
radial cine and corresponding ECG-segmented cine images were collected from 29 patients. The left-ventricular function, structural parameters, and subjective
image scores were used to compare the performance of both deep learning models with respect to aliasing artifact suppression. For quantitative and qualitative
evaluation, Magnitude-Net reconstruction, Complex-Valued-Net reconstruction, and ECG-segmented cine were compared to one another in pairs.

LV Structure, .
Function E
and !

Image Qualtiy |

1

breathing highly accelerated (12x) radial real-time cine in 29
patients. Quantitative functional and structural parameters of the
LV and qualitative visual assessments of the LV were compared
against reference values derived from ECG-segmented cine
images (Figure 1C).

Training Datasets

We retrospectively collected short-axis (SAX) cine data from
503 patients (286 males, 55.4 + 15.8 years) who underwent
clinical scans at BIDMC from October 2018 to May 2020.
Imaging was performed on a 3T MR scanner (MAGNETOM
Vida Siemens Healthineers, Erlangen, Germany) using a
breath-hold ECG-segmented sequence with the following
parameters: bSSFP readout, FOV = 355 x 370 mm? in-
plane resolution = 1.7 x 1.4 mm?, slice thickness = 8 mm,
TE/TR = 1.41/3.12 ms, flip angle = 42°, GRAPPA acceleration
rate = 2-3, ~18 cardiac phases at a temporal resolution of
~55.3 ms, receiver bandwidth = 1,502 Hz/pixel, Cartesian
sampling pattern, and slices per volume = 11 + 1 (from 9 to
17). Cine’s paired raw k-space data and DICOM images were
used in this study. This study protocol was approved by the
institutional review board, and written consent was waived.
Patient information was handled in compliance with the
Health Insurance Portability and Accountability Act.

Synthesizing Real-Time Cine Training Data
Supplementary Figure S1 shows the data preparation workflow
for producing synthetic accelerated radial real-time cine datasets
from ECG-segmented cine data acquired using the Cartesian
trajectory. The complex-valued multi-coli k-space data with an

acceleration rate of 2-3 were first reconstructed by GRAPPA [21]
offline. Offline GRAPPA reconstruction was implemented with
the code made available by Dr. Chiew (https://users.fmrib.ox.ac.
uk/~mchiew/Teaching.html).

Then, GRAPPA-reconstructed images and the original
DICOM images exported from the scanner were interpolated
to achieve 2 x 2mm?® in-plane resolution with a temporal
resolution of 37.7 ms. We chose these interpolated spatial and
temporal resolutions to match the temporal and spatial
resolutions used during prospective real-time cine scanning
(see below). These GRAPPA-reconstructed or DICOM images
were also used as the ground truth in training of two neural
networks, respectively. Subsequently, backward non-uniform fast
Fourier transform (NUFFT) [34] was applied to GRAPPA-
reconstructed and DICOM images to produce complex-valued
radial k-space. Twelve lines per frame, which were distributed
over the whole k-space with a tiny golden-angle rotation (32.049°)
[35, 36], were chosen to simulate highly accelerated radial k-space
of real-time cine.

For both Complex-Valued-Net and Magnitude-Net, simulated
highly accelerated radial k-space data were transformed into
image space using forward NUFFT. Specifically, for complex-
valued multi-coil k-space, the above procedures were performed
on a coil-by-coil basis. Finally, a coil-combined image was
generated using sensitivity-encoding coil combination [37]. An
auto-calibrated sensitivity profile for each coil was produced as
previously described [38]. Note that a GPU-based implementation of
NUFFT  (https://cai2r.net/resources/gpunufft-an-open-source-gpu-
library-for-3d-gridding-with-direct-matlab-interface/) was used for
synthetic MRI generation.
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Deep Learning Models and Training
Supplementary Figure S2 presents an in-depth description of the

3D residual U-net architecture used for Complex-Valued-Net
and Magnitude-Net. The U-net architecture of both networks
comprised five million kernels and two max-pooling layers/up-
convolutional layers. Each convolutional processing layer
consisted of 3 x 3 x 3 kernels, batch normalization, and
rectified linear activation function (ReLU) [33].

The input/output of each network consisted of paired artifact-
free ground truth images and their corresponding undersampled,
artifact-contaminated images (size: M x N x T = 144 x 144 x 20).
Specifically, for Complex-Valued-Net, we concatenated real and
imaginary components of complex-valued input/output pairs to
enable real-valued deep learning model processing of complex-
valued data (size: 2M x N x T = 288 x 144 x 20) [39]. For
Magnitude-Net, a ReLU operator was positioned at the final layer
to force the output to be non-negative [27]. L, loss function was
used to train both networks.

Both networks were implemented using PyTorch (Facebook,
Menlo Park, California) and trained on a DGX-1 workstation
(NVIDIA Santa Clara, California, United States) equipped with
88 Intel Xeon central processing units (2.20 GHz), eight
NVIDIA Tesla V100 graphics processing units (GPUs), and
504 GB RAM. Each GPU has 32 GB memory and 5120 Tensor
cores. Each network was trained with 2,900 iterations using an
ADAM optimizer and with a 15% drop-out rate. Each iteration
randomly chose cine images of 16 LV slices from different
patients (batch size). For synthetized real-time cine with >20
frames, the starting frame was randomly selected to achieve 20
consecutive frames. For <20 timeframes, the dynamic series was
circularly padded to 20. Both input and output images were
normalized by the 95th percentile magnitude pixel intensity
within the central region (i.e., 48 x 48) across 20 frames. The
initial learning rate was 0.001, which decreased by 5% after every
100 iterations. The cost function and optimizer were selected to
match parameters proposed by Hauptmann et al. [27] for neural
network training using DICOM-derived simulated real-
time cine.

Real-Time Cine Performance Evaluation

Twenty-nine patients (16 males, 58 + 16 years) were prospectively
recruited. Free-breathing radial real-time cine research sequences
in addition to clinically indicated CMR sequences were collected
from each patient. Written informed consent was obtained from
each patient prior to CMR imaging. Clinical indications and
characteristics of these patients are listed in Supplementary
Table S1. Breath-hold ECG-segmented cine was performed
using the same imaging parameters as those detailed in
Training Datasets. Free-breathing radial real-time cine was
collected with the following parameters: bSSFP readout,
FOV = 288 x 288mm? resolution = 2 x 2mm? slice
thickness = 8 mm, TE/TR = 1.3/3.2ms, flip angle = 43,
receiver bandwidth = 1,085 Hz/pixel, radial lines per phase =
12, and temporal resolution = 37.7 ms. The rotating angle of
the radial line was 32.049° [36]. Both sequences imaged a stack
of 14 SAX slices covering the entire LV. Breath-holding
ECG-segmented cine was reconstructed by the scanner. For

Complex-Valued vs. Magnitude-Only Deep-Learning Reconstruction

free-breathing real-time cine, NUFFT first transformed radial
k-space data into complex-valued and magnitude images.
Subsequently, two neural networks were used to remove
aliasing artifacts.

Data Analysis
We used both quantitative imaging parameters and qualitative
assessments of image quality to compare the performance of
both deep learning reconstructions. ECG-segmented cine
images collected using the standard clinical protocol were
used as a reference. For each patient in our independent
validation dataset, one reader (HH), trained by a clinical
reader (SK) with 5years of experience, calculated the
following cardiac function and structural parameters: LV
ejection fraction (LVEF), LV end-diastolic volume
(LVEDV), LV end-systolic volume (LVESV), LV stroke
volume (LVSV), and LV mass (LVMass). All quantifications
were performed using CVI42 (v5.9.3, Cardiovascular Imaging,
Calgary, Canada). Linear regression and Bland-Altman
analysis were performed to evaluate correlation and
agreement between real-time cine and ECG-segmented cine.
A paired Student’s t-test was conducted to compare the
difference between two approaches in measures of LV
function and structural parameters. p < 0.05 was considered
statistically significant. Three pairwise group comparisons
were assessed using the t-test with Bonferroni correction,
with p less than 0.0167 considered significant.

Subjective image quality was graded by one reader (SK) with
5 years of CMR experience. Cine images of all patients
obtained from the three methods were randomized and de-
identified. For each method, whole LV cine images from each
subject were scored with respect to conspicuity of endocardial
borders (1: non-diagnostic, 2: poor, 3: adequate, 4: good, 5:
excellent), temporal fidelity of wall motion (1: non-diagnostic,
2: poor, 3: adequate, 4: good, 5: excellent), and artifact level on
the myocardium (1: non-diagnostic, 2: severe, 3: moderate, 4:
mild, 5: minimal). Supplementary Figure S3 shows
representative graded images. The z-test was used to
compare image quality between every two methods, and a
p-value < 0.05 was considered significant. SAS version 9.4 (SAS
Institute, Cary, NC, United States) was utilized for all above
analyses. Note that we elected not to quantitatively and
qualitatively analyze real-time cine reconstructed with
gridding because gridding alone did not produce diagnostic
image quality.

RESULTS

Figures 2A,B show images obtained from the basal, mid, and
apical cavities of one subject at end-systole and -diastole by ECG-
segmented cine and free-breathing real-time cine via gridding,
Complex-Valued-Net, and Magnitude-Net reconstruction.
Supplementary Videos S1-S4 show the corresponding movies
for dynamic display. We also show representative end-systolic
images for three patients in Supplementary Figure S4. In both
Figure 2 and Supplementary Figure S4, free-breathing real-time
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FIGURE 2 | Images at end-systolic (A) and end-diastolic (B) phases for three short-axis slices (base, mid, apex) in one patient. Magnitude-Net exhibits more image
artifact (red arrow) and greater blurring (yellow arrow) at the myocardial wall than Complex-Valued-Net. Gridding reconstruction produces non-diagnostic image quality.
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cine reconstructed by Magnitude-Net had more artifacts in the
myocardial wall and greater blurring than ECG-segmented cine
and real-time cine by Complex-Valued-Net.

Supplementary Table S2 summarizes LV structure and
cardiac function values from ECG-segmented cine and free-
breathing real-time cine in 29 patients. The mean difference and
95% CI between every two methods are listed in Supplementary
Table S3. According to Bland-Altman analysis (Figures 3A-C),
mean differences between ECG-segmented cine and real-time
cine by Complex-Valued-Net reconstruction were —0.9 + 6.5%
(p = 0.48) for LVEF, 0.9 + 13.6 ml (p = 0.73) for LVEDV, and
2.2 + 12.5ml (p = 0.34) for LVESV. Correspondingly, mean
differences between real-time cine by Magnitude-Net and ECG-
segmented cine images were -2.3 + 5.1% (p = 0.02), —0.5 +
155ml (p = 0.85), and 3.7 + 9.8 ml (p = 0.05) for LVEEF,
LVEDV, and LVESV, respectively (Figures 3D-F).
Supplementary Figure S5 compares real-time cine and ECG-
segmented cine according to LVSV and LVMass using
Bland-Altman analysis. For real-time cine images
reconstructed by Complex-Valued-Net, the mean difference
was —1.4 + 163 ml (p = 0.65) for LVSV and 2.2 + 152¢g
(p = 0.43) for LVMass. For Magnitude-Net real-time cine,
the mean difference was —4.2 + 154 ml (p = 0.15) and 1.6 +
18.0g (p = 0.64) for LVSV and LVMass, respectively. Free-
breathing real-time cine reconstructed by both Complex-
Valued-Net and Magnitude-Net had high correlation with
ECG-gated segmented cine on quantification of LV function
and structure (all R* > 0.74 and all slope > 0.88) (Figures 3G-I
and Supplementary Figures S5C, F). The difference between
real-time cine images reconstructed by Complex-Valued-Net
and Magnitude-Net in quantification of LV function and
structure was 1.4 + 5.1% (p = 0.15) for LVEF, 1.4 + 8.1ml
(p=0.36) for LVEDV, -1.4 + 8.7 ml (p = 0.39) for LVESV, 2.8 +
12.1ml (p = 0.22) for LVSV, and 0.7 + 10.8 g (p = 0.74) for
LVMass.

Figure 4 shows the mean/standard deviation and distribution
of image quality scores across all patients. Supplementary

Table S4 lists the percentages as two grades (1-3 and 4-5) of
image quality scores across all patients by each method. The
corresponding differences in the percentage of two grade groups
(1-3 and 4-5) among three methods are listed in Table 1. The
table shows that 79% of ECG-segment cine images had good or
excellent scores (>3) for myocardial edge (4.1 + 1.4) and temporal
fidelity (3.9 + 1.0). In contrast, 50% of real-time cine images
reconstructed by both Complex-Valued-Net and Magnitude-Net
scored less than or equal to 3 (myocardial edge: 3.5 + 0.5 vs 2.6 +
0.5; temporal fidelity: 3.1 + 0.4 vs 2.1 + 0.4), suggesting poor
image quality. ECG-segment cine had less artifact (4.0 + 1.1) than
real-time cine (Complex-Valued-Net: 3.1 + 0.5; Magnitude-Net:
2.0 £ 0.0). All z-tests were found to be significant (p < 0.05).

DISCUSSION

This study compares the performance of deep learning
approaches for reconstruction of highly accelerated real-time
cine using synthetized training data generated from complex-
valued multi-coil k-space data (Complex-Valued-Net) and real-
valued DICOMs (Magnitude-Net). Our subjective assessment of
image quality demonstrates that Complex-Valued-Net yields
better image quality than Magnitude-Net. However, the
clinically relevant parameters of LV function and structure
extracted from real-time cine reconstructed by both Complex-
Valued-Net and Magnitude-Net were highly correlated and had
excellent agreement with those of clinical breath-holding ECG-
segmented cine.

There is a growing body of literature in deep learning, beyond
CMR, in which magnitude images are used for training a variety
of deep learning techniques [27, 40-42]. However, there is also
concern regarding the impact that discarded phase information
may have on the clinical interpretation of reconstructed images
[27, 29, 43-45]. Our study demonstrates that availability of
complex k-space data improves overall image quality; however,
these improvements in image quality do not necessary impact
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FIGURE 3 | Comparison between ECG-segmented cine and real-time cine for quantifying left-ventricular ejection fraction (LVEF), left-ventricular end-diastolic
volume (LVEDV), and left-ventricular end-systolic volume (LVESV) using Bland-Altman analysis (A-F) and linear regression (G-I). In Bland-Altman, dotted lines indicate
upper and lower 95% limits of agreement and the red line represents the mean difference. The difference was calculated as real-time cine (Complex-Valued-Net and
Magnitude-Net) minus ECG-segmented cine. In linear regression, X; and X, indicate real-time cine reconstructed by Complex-Valued-Net and Magnitude-Net,
respectively. The dashed line shows a reference line with a slope of 1. All three quantifications from real-time cine using both Complex-Valued-Net and Magnitude-Net
had good agreement and high correlation with quantifications by ECG-segmented cine (all p > 0.0167).

clinical interpretation and quantification. This observation is not
unique, and it is often debated whether “prettier” images
necessarily lead to better diagnostic information. While the
resulting data do not show clinically meaningful differences in
LV function and structural parameters, an improvement in
overall image quality may still be clinically relevant. For
example, we often rely on wall motion abnormality to assess
the presence of ischemia, which can be visually assessed by
reviewing cine images [46]. One can envision that improved
image quality may still be clinically relevant and provide
additional confidence in image assessments. Further studies in
patients with different imaging indications are warranted.

In cine imaging, voxel-values are not meaningful;
however, in quantitative CMR imaging (e.g., T,/T,
mapping, quantitative perfusion, or phase-contrast), voxel-
values represent a tissue-specific meaning [47]. While
qualitative imaging such as cine imaging is more forgiving
in terms of artifact and inaccuracy during image
reconstruction, quantitative CMR imaging is very sensitive
to image artifacts. In addition, complex k-space data carry
crucial information in quantitative imaging and cannot
simply be discarded. Therefore, complex k-space data will
still be needed for quantitative CMR image reconstruction
with deep learning, despite our findings showing that
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FIGURE 4 | Distribution and average image quality scores across all cine images of 29 patients by three methods: ECG-segmented cine, Complex-Valued-Net real-
time cine, and Magnitude-Net real-time cine. The P-values of z-tests between every two methods regarding each criterion are labeled. Real-time cine by Complex-
Valued-Net reconstruction yielded superior subjective scores for all three criteria compared to those by Magnitude-Net. ECG-segmented breath-hold cine had the
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TABLE 1 | Differences in percentage of two grades (1-3 and 4-5) of image quality scores between three methods.

Complex-Valued-Net vs ECG-
segmented cine

Magnitude-Net vs ECG-segmented

Complex-Valued-Net vs

Rate difference P
(95% ClI)
Myocardial edge -0.31 (-0.54, -0.08) 0.01
Temporal fidelity -0.69 (-0.87, -0.51) <0.01
Artifact —0.62 (-0.82, -0.42) <0.01

cine Magnitude-Net
Rate difference P Rate difference P
(95% CI) (95% ClI)
-0.79 (-0.94, -0.65) <0.01 0.48 (0.30, 0.66) <0.01
-0.79 (-0.94, -0.65) <0.01 0.10 (-0.01, 0.21) 0.08
-0.76 (-0.91, -0.60) <0.01 0.14 (0.01, 0.26) 0.04

*For myocardial edge and temporal fidelity, 1: non-diagnostic; 2: poor; 3: adequate; 4: good; 5: excellent. For artifact, 1: non-diagnostic; 2: severe; 3: moderate; 4: mild; 5: minimal.

magnitude-only images may be sufficient in real-time cine
imaging. Further studies are needed to rigorously study other
imaging sequences.

For this study, our goal was not necessarily to study or
develop a new architecture but was instead motivated by
Hauptmann et al. and their important contribution of using
readily available DICOMs for network training [27]. Raw
complex k-space data will still be needed for deep learning
models that integrate complex k-space data for image
reconstruction. However, limited availability of complex
k-space data will remain a major challenge for training
such networks on different applications, diseases, scanner
vendors, field strengths, and number of coils. On the

contrary, if one can train the model using only DICOM
images, there are vast amounts of available data for
different organs, sequences, diseases, and vendors that
could greatly impact the adoption of deep learning artifact
reconstruction techniques.

This study has several limitations. Our training data were not
collected using prospectively acquired datasets using radial
k-space filling, but instead training data were synthesized in a
similar manner as proposed by Hauptmann et al. [27]. We used
ECG-gated cine images with Cartesian sampling to extract
reference values for different LV functional and structural
parameters for comparison with real-time radial imaging
[27]. There may be differences between the two approaches
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due to the k-space sampling scheme. Additionally, ECG-
segmented data were collected with breath-holding, while real-
time data were collected during free-breathing. The evaluation of
deep learning reconstruction methodologies was limited to image
quality assessment and quantification of left-ventricular functional
and structural parameters (ie., EF, LVEDV, LVESV, LVSV, and
LVMass). We chose these metrics because of their clinical
importance. That said, further studies are warranted to evaluate
the capacity of the presented methods (Magnitude-Net and
Complex-Valued-Net) for diagnosis of cardiovascular diseases.
Real-time cine reconstructed with gridding was not quantitatively
or qualitatively analyzed because gridding alone produced non-
diagnostic image quality. Subjective image assessment was
performed by a single reader, and there may be differences in
image perception by different reviewers. Both Magnitude-Net and
Complex-Valued-Net suffer from reduced temporal fidelity
compared to ECG-gated segmented cine. Such a loss of
temporal fidelity can be especially problematic during systolic
phases and may be a source of error during qualitative and
quantitative evaluation. All patients in our testing cohort were
in sinus rhythm. Only a single neural network architecture (i.e., 3D
U-net) was used to compare the performance of magnitude vs
complex-valued synthetic training data. We chose this network
architecture because, to the best of our knowledge, it is the only
architecture shown to be capable of reconstructing radial real-time
cine MRI acquired with bSSFP readout [27, 31]. Other state-of-
the-art approaches such as cascade networks [28, 29] have yet to be
investigated for radial real-time cine reconstruction. Future
collaborations are warranted to first extend other state-of-the-
art methods to radial real-time cine reconstruction and then
compare the performance of different synthetic training data
(i.e, magnitude vs. complex-valued) using these methods.
ECG-segmented cine images used for training were gathered
from one cardiac MR center. As such, trained networks could
contain bias which can prevent generalization. Although we used a
relatively large number of patients for training, our testing cohort
with real-time radial imaging was relatively small, and images were
acquired at a single clinical center. Future studies with more
patients and imaging from different centers are required to
evaluate proposed deep learning methodologies for real-time
cine reconstruction.

CONCLUSION

Despite improved subjective image quality in real-time cine
images reconstructed using a deep learning model trained with
complex k-space data when compared to magnitude-only data,
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Background: Apparent diffusion coefficients (ADCs) obtained with diffusion-weighted
imaging (DWI) are highly valuable for the detection and staging of prostate cancer and for
assessing the response to treatment. However, DWI suffers from significant anatomic
distortions and susceptibility artifacts, resulting in reduced accuracy and reproducibility of
the ADC calculations. The current methods for improving the DWI quality are heavily
dependent on software, hardware, and additional scan time. Therefore, their clinical
application is limited. An accelerated ADC generation method that maintains calculation
accuracy and repeatability without heavy dependence on magnetic resonance imaging
scanners is of great clinical value.

Objectives: We aimed to establish and evaluate a supervised learning framework for
synthesizing ADC images using generative adversarial networks.

Methods: This prospective study included 200 patients with suspected prostate cancer
(training set: 150 patients; test set #1: 50 patients) and 10 healthy volunteers (test set #2)
who underwent both full field-of-view (FOV) diffusion-weighted imaging (f-DWI) and
zoomed-FOV DWI (z-DWI) with b-values of 50, 1,000, and 1,500 s/mm?. ADC values
based on f-DWI and z-DWI (f-ADC and z-ADC) were calculated. Herein we propose an
ADC synthesis method based on generative adversarial networks that uses f-DWI with a
single b-value to generate synthesized ADC (s-ADC) values using z-ADC as a reference.
The image quality of the s-ADC sets was evaluated using the peak signal-to-noise ratio
(PSNR), root mean squared error (RMSE), structural similarity (SSIM), and feature similarity
(FSIM). The distortions of each ADC set were evaluated using the T2-weighted image
reference. The calculation reproducibility of the different ADC sets was compared using
the intraclass correlation coefficient. The tumor detection and classification abilities of
each ADC set were evaluated using a receiver operating characteristic curve analysis and
a Spearman correlation coefficient.
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Results: The s-ADCp+000 had a significantly lower RMSE score and higher PSNR, SSIM,
and FSIM scores than the s-ADCp50 and s-ADCp1500 (all P < 0.001). Both z-ADC and s-
ADCp1000 had less distortion and better quantitative ADC value reproducibility for all the
evaluated tissues, and they demonstrated better tumor detection and classification

performance than f-ADC.

Conclusion: The deep learning algorithm might be a feasible method for generating ADC
maps, as an alternative to z-ADC maps, without depending on hardware systems and
additional scan time requirements.

Keywords: apparent diffusion coefficient, diffusion magnetic resonance imaging, deep learning, prostatic
neoplasms, supervised machine learning

INTRODUCTION

Diffusion-weighted imaging (DWI) currently constitutes an
integral part of multiparametric magnetic resonance imaging
(MRI) examinations of the prostate. Apparent diffusion
coefficients (ADCs) obtained with DWT are highly valuable for
detecting and staging prostate cancer, evaluating cancer
aggressiveness (1, 2), guiding targeted biopsies, and assessing
the response to treatment (3-10). Clinically, the accuracy of the
ADC measurement depends on the quality of the DWT image.

Single-shot echo-planar imaging (SS-EPI)-based sequences are
preferred for DWI because of its ability to acquire the images rapidly
and the robustness of the technique against motion artifacts.
However, because of its high sensitivity to chemical shifts and
magnetic susceptibilities (11), conventional SS-EPI DWI suffers
from significant anatomic distortions (12) and susceptibility
artifacts, resulting in reduced ADC calculation accuracy and
reproducibility (12-14). Another limitation is the low signal-to-
noise ratios observed during DWI, which result in noise-induced
signal intensity biases (15, 16) and inaccurate ADC maps. These
drawbacks may lead to an error in judgment regarding the
condition of a patient and a potential misdiagnosis of malignant
lesions or over-treatment of benign lesions. Zoomed field-of-view
(FOV) DWI (z-DWI) is an appealing attempt to address these
limitations. This method reduces the scanning time as well as
artifacts, distortions, and blurring of images, and it also has
improved spatial resolution (17, 18). Additionally, z-DWI can
effectively improve the ADC map accuracy (17, 18); however, the
technique depends on radio frequency design and software
platforms (17-19), which can make it unaffordable for many
small- and medium-sized hospitals and their patients. Moreover,
a reduced FOV may prevent the visualization of lymph nodes (3).
Therefore, the clinical application of z-DWTI is limited. A method
that can consistently generate high-quality ADC images with
reduced equipment costs will be of more benefit to patients in
clinical practice.

Recently, the advent of generative adversarial networks (GANs)
(20) has shown promise for optimizing medical image quality
without relying on software and equipment conditions (21). As a
generative model, the objective of a GAN is to learn the underlying
training data distributions to generate realistic images that are
indistinguishable from the input datasets (21). With their ability

to mimic data distributions, GANs have been used to translate low-
quality images into high-quality counterparts. Previous studies have
successfully used GANSs to improve computed tomography (CT) or
MRI quality in terms of de-noising (22), increased resolution (23),
artifact reduction (24), and motion correction (25). Inspired by
these image optimization solutions, we hypothesized that deep
learning algorithms based on GANs might be promising for
generating ADC maps with good image quality and improved
ADC calculation accuracy. The purpose of this study was to
establish and evaluate a supervised learning framework based on
a GAN to synthesize realistic zoomed FOV ADC images using
conventional full FOV SS-EPI DWI images with a single b-value.

MATERIALS AND METHODS

Patients and Healthy Volunteers

This prospective study was approved by the local ethics committee,
and informed consent was obtained from each participant. All the
procedures involving human participants were performed in
accordance with the 1964 Helsinki Declaration and its later
amendments. A total of 200 consecutive patients underwent
preoperative MRI examinations and subsequent MRI fusion
ultrasound-guided biopsies for suspected prostate cancer (PCa)
between December 2018 and May 2020. The inclusion criteria
were as follows: patients with (1) at least one prostate lesion visible
on DWTI and ADC maps and (2) complete clinical information and
pathologic examination information, including biopsy reports. Ten
healthy volunteers were also recruited for the study. The study
included four steps: (1) MRI examinations, (2) model training, (3)
image quality assessments, and (4) ADC assessments (Figure 1).

MRI Examinations and Datasets

All the patients and volunteers underwent multiparametric MRI
examinations of the prostate using a 3T MRI scanner
(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany)
equipped with a phased-array 18-channel body coil and an
integrated 32-channel spine coil. Both a transversal single-shot
full FOV-EPI DWI (f-DWI) and a prototypic non-parallel
transmission zoomed EPI DWI (z-DWI) with b-values of 50,
1,000, and 1,500 s/mm® were performed with the ADC
reconstruction maps (f~ADC and z-ADC) using a standard
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FIGURE 1 | Overall study flow diagram. Step 1: All the patients and healthy volunteers underwent multiparametric magnetic resonance imaging examinations of the
prostate, including full field-of-view (FOV) diffusion-weighted imaging (f-DWI) and zoomed FOV diffusion-weighted imaging with b-values of 50, 1,000, and 1,500 s/mm?.
Step 2: The models that used full f-DWI with different b-values (f-DWlys0, f-DWls1000, @nd f-DWly1s00) to synthesize the apparent diffusion coefficient (s-ADC) maps (s-
ADCp50, S-ADCp 1000, @and s-ADCp1500) Were trained. Step 3: The image quality of s-ADCps0, S-ADCp1000, @nd s-ADCp 1500 Were evaluated using the peak signal-to-
noise ratio, root mean square error, structural similarity, and feature similarity. Step 4: An ADC assessment was performed to determine reproducibility, tumor

mono-exponential with all the acquired b-values (14). Axial T2-
weighted images were obtained from all the participants, and the
total examination time was approximately 7 min and 40 s. The
detailed scan parameters are shown in Table 1.

Patient images were randomly divided into two groups
(training set: 150 patients, test set #1: 50 patients). The training
set was used to build the framework and train different models to
synthesize the ADC maps (s-ADCs). Test set #1 was used to test
the reproducibility of the s-ADC prostate lesion measurements,
along with tumor detection. The images of the healthy volunteers
were regarded as test set #2, which was used to test the
reproducibility and consistency of the normal prostate tissue s-
ADC calculations, including the peripheral zone (PZ) and the
transitional zone (TZ).

Data Pre-Processing

Before the model training could occur, image selection, cropping,
and registration were performed on f-DWI with b-values of 50,
1,000, and 1,500 s/mm? and the z-ADC images. The first and last

slices that did not cover the prostate were removed manually.
The images with severe distortion and artifacts were also
removed. Ultimately, there were between five and 20 DWI
images selected for each person. Finally, there were 2,250
images from each set for the 150 patients in the training set,
750 images from each set for the 50 patients in test set #1, and
145 images from each set for the 10 healthy volunteers in test
set #2.

Due to hardware limitations of the graphics cards and the
CPU memory, we used only axial slices of the cropped data to
train the two-dimensional generation models. The f-DWTI data
had an original voxel size of 2.13 x 2.13 x 3.3 mm" and a matrix
size of 178 x132, whereas the z-ADC data had a voxel size of
0.95 x 0.95 x 3.3 mm?® and a matrix size of 112 x 200. The f-DWI
data were first resampled to a voxel size of 0.95 x 0.95 x 3.3 mm’
with a matrix size of 360 x 267, and both modalities were
cropped at the center to extract the relevant prostate region.
The f-DWI data were then aligned to the z-ADC data using
the affine transformation implemented by the Advanced

TABLE 1 | The magnetic resonance imaging sequence parameters.

Parameter T2-weighted imaging F-DWI Z-DWI
Field-of-view, FOV (mm?) 200 x 200 380 x 280 190 x 106
Imaging matrix 320 x 320 132 x 178 112 x 200
Thickness (mm) 3.5 3 3
Distance fact 0 10% 10%
B-value (s/mm?) n.a. 50, 1,000, 1500 50, 1,000, 1500
Echo time (ms) 101 73 76

Time to repeat (ms) 6,000 4,200 3,800
Bandwidth (Hz/pixel) 200 1,872 1,612
Scan time (min) 2:08 3:05 2:27

-ADC, mean apparent diffusion coefficient (ADC) map derived from full FOV diffusion-weighted imaging with all available b-values (b = 50, 1,000, and 1,500 mm?/s); z-ADC, ADC map
derived from zoomed FOV diffusion-weighted imaging with all available b-values (b = 50, 1,000, and 1,500 mm?/s), n.a., no available.
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Normalization Tools (https://github.com/ANTsX/ANTs). To
facilitate the model training, all the two-dimensional axial
slices were scaled to a unified resolution of 224 x 224 pixels.

To select a suitable b-value for ADC synthesis, we first used
2,250 paired f-DWI images with b-values of 50 s/mm” and the
ground truth z-ADC maps from the training set as inputs and
references, respectively, to train our framework-based model M5, to
synthesize ADC maps (s-ADCypsp). Similarly, the Mjogo and M;sqg
models based on the f-DWI images with b-values of 1,000 and 1,500
s/mm” were trained to synthesize ADC maps (s-ADCp19g9 and
$-ADCyp1500)-

Model Training
We have proposed a GAN-based framework to generate realistic
z-ADC maps from f-DWI maps (Figure 2).

The generator G translates the input image (f-DWI) X into the
synthesized ADC (s-ADC) S with a quality similar to the ground
truth z-ADC, which is used as reference Y. The discriminator D
takes either the S or the Y as input and determines whether the
input is a real z-ADC map. Specifically, we used a deep residual
network structure with skip connections to construct the generator
G and a full convolution network to construct the discriminator D.
The adversarial loss of the discriminator D is formulated as follows:

Lp =By p [(D(Y) = 1)°] + Es-p [(D(S))’]

The adversarial loss of the generator G is formulated as follows:

LE =By p [(D(S) - 1)*]

Considering that the standard GAN might not adequately
preserve the tumors/lesions during image-to-image translation
(26), we introduced a multi-level verification (MLV) mechanism,
including a pre-trained recognition model C. This mechanism
promotes the generator G to better retain the features, which
helps in the diagnosis. Using C, the proposed MLV mechanism

provides more details about the tumor/lesion features when they
are extracted from the input images. G represents the tumor/
lesion texture, making it better and more robust against changes
in appearance and geometric transformations (27).

We first obtained a recognition model C, which was pre-
trained on a VGG-19-based network using the processed images
from the patients and healthy volunteers with a benign or
malignant label (28). Subsequently, the multiple layers of
model C extracted the multi-level features from the fake
synthetic ADC map S and the ground truth ADC map. The
sum of the mean square errors of the features in each level layer
was used as the multi-level feature loss to supervise the
generator G.

Inspired by the current work (29) and considering the use of
multi-level features, we selected the features in the 0, 1st, 3rd, and
5th level layers. The loss of the multi-level verification
mechanism is formulated as follows:

LEY =%01356,+ ]| C'(S) - C(V) |3

where 6; € (0, 1) denotes the weight parameter for the loss (ﬁfmf)
at different levels, and it is optimized in each epoch to cause a
faster decrease in the loss of the larger items. The 6; in the j - th
epoch can be computed as follows:

ROl
1ai©-cimiis
where Cf:_l( -) denotes the feature of the i - th layer in the (j-1)-th
epoch, and Cjn_l( -) indicates the feature of the n - th layer in the

(j-1)-th epoch. We initialized 6; to 1/4. The objective function of
generator G is formulated as follows:

o

i = “n=0,1,3,5

Lo=LE + 1L
with y; set to 107",

Multi-level verification mechanism

\

=1

> -—»——3 Vv v
Multi-level
> features loss

B )
Syt e e—
images | S
e — )
\ Generator G / & ™\
—>
m down-convolution D up-convolution ARy — reaAlgag:
z- ?
l residue block recognition model C (z-ADC)

Image discriminator D

FIGURE 2 | lllustration of our framework. The proposed framework consists of a generator (G), which was constructed using a deep convolution network with skip
connections, and an image discriminator (D) constructed using a full convolution network. The G transforms the f-DWI into a synthesized apparent diffusion
coefficient (s-ADC) using zoomed field-of-view diffusion-weighted imaging (z-ADC) as a reference. The D takes either s-ADC or z-ADC as the input and determines
whether the input is a real z-ADC. In addition, to promote G in an effort to retain better features for diagnosis, we introduced a multi-level verification mechanism,
including a pre-trained recognition model (C), to extract the multi-level features from the s-ADC and the z-ADC.
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Experimental Settings

The generator consists of three convolution layers, followed by
five residual blocks and three deconvolution layers. Each
convolution or deconvolution layer is followed by an instance-
normalization layer and a ReLu activation layer. The
discriminator consists of five convolution layers. The learning
rate was set to 0.001 for both the generator and the discriminator.
The batch size was set to 5, and the epoch was set to 50. The
details of the generator and discriminator can be found at https://
github.com/huxiaolie/ADC_generation. All the algorithms were
implemented using Python 3.6 (https://www.python.org/
downloads/release/python-362/) and Pytorch 1.6.0 (https://
pytorch.org/get-started/previous-versions/) on an Ubuntu
16.04 system with an NVIDIA TITAN XP GPU.

Image Quality Assessment

The s-ADC sets were synthesized using each model with inputs
from the f -DWI images with b-values of 50, 1,000, and 1,500 s/
mm? for test set #1 (50 patients) and test set #2 (10 healthy
volunteers), and they were compared using peak signal-to-noise
ratios (PSNRs), root mean square errors (RMSEs), structural
similarities (SSIMs), and feature similarities (FSIMs) (30).

A radiologist with 6 years of experience with prostate MRIs
measured the anterior-posterior (AP) and left-right (LR)
diameters of each prostate on the ADC set on the slice on
which the prostate showed the greatest cross-sectional area. The
differences in the measured AP and LR diameters of the prostate
relative to the T2-weighted image (T2WI) were computed for f-
ADC, z-ADC, and s-ADC, with the best performance from the
above-mentioned quantitative evaluation.

ADC Measurement Assessment

For the patient study, two radiologists with 5 and 10 years of
experience with prostate MRIs and who were unaware of the
clinical, surgical, and histologic findings independently drew a
circular region of interest (ROI) with an area of approximately
0.5-0.8 cm” in the center of the lesion, excluding its edges. For
the healthy volunteer study, the readers drew circular ROIs with
an area of approximately 0.5 cm?® in the peripheral and
transitional zones on the ADC maps using axial T2-weighted
images as the anatomical reference. The mean ADC values for
each ROI were recorded.

The ADC sets of all the patients and healthy volunteers were
measured twice using Image ] (NIH Image, Bethesda, MD) in a
different order, with an interval of 2 weeks. The first
measurement given by the two readers showed the consistency
of the ADC measurements for each ADC set. The second
measurement showed the repeatability of the ADC values for
each ADC set.

Tumor Detection Assessment
The s-ADC set with the best image quality and ADC
measurement assessment among the three s-ADC sets was

selected for tumor detection assessments. The selected s-ADC
was compared with the f-ADC and z-ADC in terms of the ability
to differentiate benign from malignant lesions. The correlation
between the ADC values in the different ADC sets and tumor
grades was also evaluated.

Statistical Analyses

Analyses of the baseline characteristics between the training
group and the test group were conducted. An independent ¢-
test was used to assess normally distributed continuous variables.
The Mann-Whitney U-test was used to assess non-normally
distributed continuous variables.

To assess differences in the image quality metrics (PSNR,
RMSE, SSIM, and FSIM) between any two s-ADC sets, a paired
Student’s ¢-test was applied. The intraclass correlation coefficient
(ICC) was used to assess the inter-and intra-reader repeatability
of the ADC measurements for each tissue (malignant lesion,
benign lesion, peripheral zone, and transitional zone) in each
ADC set (f-ADC, z-ADC, and s-ADC). The ICC was also used to
evaluate the inter-method reliability of the ADC values for each
tissue between the synthesized image (s-ADC) and the reference
image (z-ADC). A receiver operating characteristic (ROC) curve
analysis was performed to assess the ability to discriminate
between benign and malignant prostate lesions based on the
ADC values. The differences in the area under the curve (AUC)
values were tested using DeLong tests. The statistical analyses
were performed using MedCalc software. Two-tailed tests were
used to calculate all the P-values. Statistical significance was set at
P <0.05.

RESULTS

Demographic Characteristics

The patient characteristics are summarized in Table 2. There
were no significant differences in the mean ages between the
patients with and without PCa (P = 0.557). The mean prostate-
specific antigen (PSA) level was significantly higher in patients
with PCa compared to those without PCa (P < 0.001).

There were no significant differences in mean ages and mean
PSA between the training set and test set #1 (mean ages: 68 + 10
vs. 68 + 12 years, P = 0.974; PSA: 29.872 + 69.461 vs. 39.296 *
92.604, P = 0.154). The mean age of test set #2 (healthy
volunteers, 24 + 3 years) is significantly lower than that of the
training set and test set #1 (P < 0.001).

Image Quality Assessment

Visual comparisons of the s-ADC values generated with different
b-value inputs are shown in Figure 3. We observed that the s-
ADCs50 displayed blurred images of the prostate, bladder,
rectum, pelvic floor muscles, and pubic symphysis in both the
patients and the volunteers. Compared with s-ADCysg, s-
ADCh1000 and s-ADCp;500 could delineate normal tissues and
lesions more clearly and sharply, which was in line with the
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TABLE 2 | The clinical characteristics of the patient cohort.

Characteristics Patients without cancer (n = 106) Patients with cancer (n = 94) P-value
Mean age (y) [range] 70 (52-87) 71 (48-88) 0.675
total PSA (ng/ml) 11.079 £ 9.013 57.002 + 125.88 <0.001
Position, no.

Peripheral zone 44 63 <0.001
Transitional zone 62 31

Gleason score (n, %)

6 —— 8

7 —— 46

8 —— 24

9 —— 16

The data are mean + standard deviation, unless otherwise indicated.
PSA, prostate-specific antigen.

=

Case 1

Case2 —

S-ADCbs0

MY

FIGURE 3 | Comparison of the synthesized apparent diffusion coefficient (s-ADC) maps. Case 1: An 82-year-old man with prostate cancer from test set 1 who had
an initial prostate-specific antigen level of 13.04 ng/ml. Case 2: A 27-year-old healthy man from test set 2. For these two cases, both the s-ADCy 1000 and

s-ADCy 1500 Performed well in displaying the prostate, pelvic floor muscles, pubic symphysis, and the entire cancer lesion. However, the s-ADCy,50 images of these
structures are fuzzy. According to the local enlargement of the images (the images in the second and fourth lines), the s-ADCp 1000 is more similar to the z-ADC than
to the s-ADCy 1500, @nd it retains more details of the z-ADC (shown as red arrows).

S-ADChb1000

9

L

S-ADCb1500

5

. L

ground truth. According to the magnified images of the local
tissue structures, s-ADCyp1999 provided more details than s-
ADCy,;500 With reference to z-ADC.

As shown in the violin plots (Figure 4), s-ADCy900
performed better than the other two s-ADC sets in terms of
the distribution, median, and inter-quartile ranges of the

RMSE, SSIM, FSIM, and PSNR scores. The mean RMSE
scores of s-ADCyps0, s-ADCy 1000, and s-ADCy;500 Were 4.1 X
107, 2.5 x 107, and 3.1 x 107, respectively. The mean PSNR
scores of s-ADCys0, S-ADCp 000, and s-ADCy 500 were 48.0,
53.4, and 51.0, respectively. The mean SSIM scores of s-
ADCys9, S-ADCp 1000, and s-ADCy;500 were 0.972, 0.986, and
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FIGURE 4 | Violin plots of the quantitative metric distributions of the s-ADC sets.

0.982, respectively. The mean FSIM scores of s-ADCpsg. s-
ADCy1000, and s-ADCy;500 were 0.604, 0.728, and 0.690,
respectively. s-ADCp999 had a significantly lower RMSE
score and higher PSNR, SSIM, and FSIM scores than s-
ADCy50 and s-ADCy 500 (all P < 0.05).

To evaluate the distortion in the ADC maps, the differences in
the AP and LR diameters of the prostate relative to T2WT were
both significantly lower for s-ADC (AP, 2.734; LR, 3.204) and
z-ADC (AP, 2.755; LR, 3.073) than for {-DWI (AP, 5.916; LR,
5.053) (all P < 0.001).

ADC Measurement Assessment
The measurements of all the ADC sets (f~-ADC, z-ADC,
s-ADCs9, ADCp1000» and s-ADCy500) on various tissues from
both readers are presented in Table 3. For all the ADC sets, the
ADC values of the TZ are significantly lower than those of the
PZ, while the ADC values of the malignant lesions are
significantly lower than those of the benign lesions (all P < 0.05).
Figure 5 presents the results of the intra-reader reproducibility
(Figures 5A, B) and inter-reader consistency (Figure 5C) analyses
for each ADC set calculation. Both readers reported that the
reproducibility of the ADC measurements for f-ADC, z-ADC, s-
ADCb1000, and s-ADCDb1500 was excellent for all the tissues,
while the reliability of the ADC measurements for s-ADCys, was

PSNR

57.5

55.0

52.5

50.0

w
D 475
-

<
> 450

42.5

40.0

375

ADCbso

ADCb1000

ADCb1500

FSIM

¢ 77

ADCbso ADCb1000 ADCb1500

good. The inter-reader consistency of all the ADC set
measurements was excellent for all the tissues. Table 4 shows
the consistency of the ADC values between the z-ADC and s-ADC
sets. The consistency of the ADC values in the transitional zone
between z-DWI and s-DWI,,5, was good, and the consistency of
the ADC values between z-ADC and s-ADCs for the remaining
tissues was excellent. For the s-ADCy;090 and s-ADCy ;500 values,
the consistency of the ADC values for z-ADC for all the tissues
was excellent.

Tumor Detection Assessment

Among the three s-ADC sets, s-ADCy,100 performed the best in
the image quality assessment and ADC evaluation. Therefore, it
was selected for further comparisons with f~ADC and z-ADC in
terms of tumor detection and classification (Figure 6). The ADC
values for patients with malignant lesions and those with benign
lesions measured by the two readers were used to compute the
ROC curves (Figure 7). The comparisons of AUCs for both
readers based on the f-ADC, z-ADC, and s-ADC sets are
summarized in Table 5. Both the z-ADC and s-ADC sets
showed significantly better predictive capabilities than the
f-ADC set (P < 0.027). The differences in AUCs between s-
ADC and z-ADC were not statistically significant (reader 1: z =
0.134, P = 0.893; reader 2: z = 0.094, P = 0.925).
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TABLE 3 | The mean apparent diffusion coefficient (ADC) values (x10°® mm?/s) of the different ADC sets.

Parameter
Peripheral zone (n = 10) Transitional zone (n = 10)

Reader 1

f-ADC 1.90 + 0.11 1.41 +0.13
z-ADC 1.43 £0.17 120+ 0.16
$-ADCps0 1.43 £0.25 1.20+0.18
s-ADCp1000 1.43 £0.16 120+ 0.16
s-ADCp1500 1.46 £ 0.18 1.26 £ 0.16
Reader 2

f-ADC 1.94 £0.14 1.39 £ 0.19
z-ADC 1.49 + 0.16 1.22 +0.14
s-ADCps0 1.44 £ 0.13 1.18 £ 0.14
$-ADCp1000 1.48 £ 0.21 1.18£0.13
s-ADCp 1500 1.45 +0.12 1.18 £ 0.09

ADC value (x10 mm?/s)

Benign lesions (n = 26) Malignant lesions (n = 24)

1.40 £ 0.28 1.06 £ 0.25
0.98 +0.18 0.61 +0.11
1.09 £ 0.23 0.68 +0.13
0.99 +0.18 0.61+0.17
1.01 +£0.17 0.67 £0.18
1.42 +0.29 1.06 + 0.25
0.98 +0.18 0.61 +0.11
1.02 £ 0.24 0.69 +0.13
0.99 £ 0.16 0.61£0.15
1.00 £ 0.16 0.70 +0.10

The ADC values of the lesions were calculated using images from the patients in test set 1. The ADC values of the normal prostate tissues in the peripheral and transitional zones were

calculated using images from the healthy volunteers in test set 2.

-ADC, ADC map derived from full field-of-view (FOV) diffusion-weighted imaging (f-DWI) with all available b-values (b =50, 1,000, and 1,500 s/mm?); z-ADC, ADC map derived from the
zoomed FOV diffusion-weighted imaging and all available b-values (b = 50, 1,000, and 1,500 s/mm?); s-ADCs0, ADC map synthesized using our proposed deep learning framework with
input from the f-DWI (b = s/mm?); s-ADChp 1000, ADC map synthesized using our proposed deep learning framework with input from the f-DWI (b =1,000 s/mm?); s-ADChp 1500, ADC map
synthesized using our proposed deep learning framework with input from the -DWI (b =1,500 s/mm?).

DISCUSSION

The main contribution of our study to the literature is the
proposed GAN-based ADC synthesis method that can be used
to generate s-ADC maps using single b-value DWIs with better
image quality and stronger ADC calculation accuracy and
reproducibility than a full FOV ADC, but without dependence
on software, hardware, and additional scanning time that
zoomed FOV ADC technology requires. A shorter scan time
will lead to better patient comfort and fewer motion artifacts due
to involuntary or autonomous motions. The high reproducibility
and accuracy of the ADC calculations may effectively reduce the
risk of delayed treatment or unnecessary overtreatment due to
the misdiagnoses of benign and malignant lesions. Therefore, the
GAN-based ADC synthesis method can increase the clinical
benefits to patients, reduce treatment times, and lower the costs
incurred by patients and hospitals.

In previous studies (31-33), GANs have been used
successfully for image-to-image transformations, such as in
generating MRI or PET images using CT images or
synthesizing CT images from MRI images, and they have
performed well in terms of the traditional pixel-wise metrics.
However, GAN-generated images do not have a physical
meaning, and they can often lead to spurious images (21). As a
result, it is difficult for GANs and their extensions to win the trust
of clinicians. Therefore, we not only compared traditional pixel-
wise metrics, including the RMSE, SSIM, FSIM, and PSNR
scores, between the s-ADC sets and reference images, but we
also compared the s-ADC and ADC values generated by
traditional methods to evaluate the clinical value of GAN-
generated images.

In the present study, we evaluated s-ADC maps that were
based on DWI inputs with different b-values and found that the
choice of b-values influenced the s-ADC values. Based on a
subjective visual evaluation, the s-ADCy;099 maps delineated

normal tissues and lesions more clearly than the s-ADCys,
maps, and they provided more details for targeted images than
the s-ADCy,;500 set. The quantitative evaluation results are also
consistent with the visual evaluation results. Among the three s-
ADC sets, the s-ADCy; 000 set achieved a lower RMSE score and
higher SSIM, FSIM, and PSNR scores than the s-ADCs and s-
ADCGC,;500 Sets, indicating that the s-ADCy000 set is more similar
to the realistic z-ADC in terms of noise distribution, image
structure, and features. Additionally, the s-ADCy;g09 set showed
better intra-reader repeatability and inter-reader consistency
than the s-ADCys9 and s-ADCy500 sets. Moreover, the s-
ADCypi000 set showed the best ADC value inter-method
consistency with the z-ADC set, suggesting that a DWI with a
b-value of 1,000 s/mm* might be more suitable for synthesizing
ADC maps than one with a b-value of 50 or 1,500 s/mm?>. The
similarity between the target image z-DWI and s-DWI strongly
depends on how much useful information the input f-DWI can
provide to the generator for the extraction of meaningful features
to begin the mapping between f-DWI and z-ADC. Low-b-value
DWTIs suffer from T2 shine-through or black-through effects,
whereas high-b-value DWIs might be affected by diffusion
kurtosis effects (34). These effects have a negative influence on
image quality and lesion information, causing a relatively lower
similarity between the s-ADCy;5 and s-ADCy,; 590 sets and the z-
ADC set compared to the s-ADCy; g0 set (3).

In our study, both the z-ADC and s-ADC sets showed less
distortion and better reproducibility of the quantitative ADC
values for all the evaluated tissues; they also showed better tumor
detection and classification capacity than the f-ADC sets. The
ADC values are generated for most of the current clinical
implementations by calculating the signal intensity decay using
two or more DWT sets with different b-values (1-5, 9-11, 13, 14).
The reproducibility and accuracy of the calculated ADC values
are affected by the choice of b-values (3, 4, 34) and the DWI
image quality (14). The application of a significant number of
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FIGURE 5 | The reproducibility of the apparent diffusion coefficient (ADC) measurements as evaluated by the intraclass correlation coefficient. (A) The ADC measurement
repeatability of reader 1 and (B) reader 2, and (C) the consistency of the ADC measurements between readers 1 and 2.

TABLE 4 | Comparison between the inter-method intraclass correlation coefficients from the z-DWI and s-DWI sets.

Parameter Inter-method intraclass correlation coefficient
s-apparent diffusion coefficient (ADC)ys vs. z-ADC s-ADCyp 1000 Vs. z-ADC s-ADCy 1500 VS. z-ADC

Reader 1

Peripheral zone (n = 10) 0.87 (0.76-0.98) 0.99 (0.99-1.00) 0.99 (0.94-1.00)
Transitional zone (n = 10) 0.78 (0.58-0.98) 0.98 (0.87-1.00) 0.95 (0.73-0.99)
Benign lesion (n = 50) 0.86 (0.74-0.99) 0.98 (0.94-1.00) 0.98 (0.95-0.99)
Malignant lesion (n = 50) 0.89 (0.76-0.95) 0.90 (0.88-0.98) 0.88 (0.74-0.95)
Reader 2

Peripheral zone (n = 10) 0.81 (0.61-0.99) 0.99 (0.97-1.00) 0.98 (0.88-1.00)
Transitional zone (n = 10) 0.78 (0.58-0.98) 0.99 (0.93-1.00) 0.97 (0.76-1.00)
Benign lesion (n = 50) 0.86 (0.73-0.99) 0.98 (0.95-0.99) 0.97 (0.93-0.99)
Malignant lesion (n = 50) 0.82 (0.70-0.94) 0.88 (0.72-0.95) 0.88 (0.72-0.95)

2-ADC, ADC map derived from zoomed field-of view (FOV) diffusion-weighted imaging and all the available b-values (b = 50, 1,000, and 1,500 s/mm?); s-ADCps0, ADC map
synthesized using our proposed deep learning framework with input from full FOV diffusion-weighted imaging (-DWI) (b = 50 s/mm?); s-ADCp 1000, ADC map synthesized using our
proposed deep learning framework with input from f-DWI (b = 1,000 s/mm?); s-ADCp 500, ADC map synthesized using our proposed deep learning framework with input from f-DWI

(b = 1500 s/mm?).

b-values improves the reproducibility and accuracy of the
calculated ADC values, although it also increases the scanning
time (3, 35). In contrast to traditional ADC calculation methods,
our proposed method takes advantage of the ability of GAN to
simulate data distribution and synthesize ADC maps that are
highly similar to real zoomed FOV ADC maps that use a full
FOV DWI with a single b-value. Considering the excellent image
quality consistency and similar tumor detection and

classification abilities between the s-ADC and z-ADC maps, we
believe that the deep learning algorithm might be a feasible
method for generating ADC maps as an alternative to z-ADC
maps without requiring a strong dependence on software,
hardware, and additional scan time (36).

Our study has several limitations. First, the s-ADCy00 Set
showed the best image quality among the s-ADC sets; however, it
remains unknown whether a DWI set with a b-value of 1,000
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FIGURE 6 | The T2-weighted image, f-ADC, z-ADC, and s-ADCy+qqo Of four different patients. Case 1: An 85-year-old man with prostate cancer in the right
peripheral zone and an initial prostate-specific antigen level of 0.157 ng/ml. Case 2: An 85-year-old man with prostate cancer in the central zone and an initial
prostate-specific antigen level of 21.44 ng/ml. Case 3: A 67-year-old man with an inflammatory nodule in the right peripheral zone and an initial prostate-specific
antigen level of 14.37 ng/ml. Case 4: A 77-year-old man with prostate cancer in the central zone and an initial prostate-specific antigen level of 56.62 ng/ml.
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FIGURE 7 | The receiver operating characteristic comparison of the diagnostic accuracy of the f-ADC, z-ADC, and s-ADCb1000 sets (A: reader 1, B: reader 2).
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TABLE 5 | The comparison of areas under the curve (AUCs) based on the f-apparent diffusion coefficient (ADC), z-ADC, and s-ADC sets for both readers.

z-ADC vs. S-ADCb1 000

Reader-1 AUC 0.96 vs. 0.95
z value 0.134
P-value 0.893

Reader-2 AUC 0.94 vs. 0.94
z value 0.094
P-value 0.925

z-ADC vs. f-ADC $-ADC p1000 VS. f-ADC

0.96 vs. 0.84 0.95vs. 0.84
2.445 2.207
0.015 0.027

0.94 vs. 0.80 0.94 vs. 0.80
2.652 2.29
0.008 0.022

-ADC, ADC map derived from full field-of-view (FOV) diiffusion-weighted imaging (f-DWI) and all the available b-values (b = 50, 1,000, and 1,500 s/mm?); z-ADC, ADC map derived from
zoomed FOV diffusion-weighted imaging and all the available b-values (b = 50, 1,000, and 1,500 s/mm?); s-ADCp 1000, ADC map synthesized using our proposed deep learning framework

with input from -DWI (b = 1,000 s/mm?).

s/mm” is the most appropriate for ADC map synthesis. In future
studies, s-ADC sets generated using DWTI sets with more potential
b-values should be compared. Second, as ADC values vary across
vendors, the generalizability of our model across MRI scanners
from different vendors requires multi-center verification.

In conclusion, the GAN-based ADC synthesis method can
generate s-ADC maps using a single b-value DWI with good image
quality and high reproducibility and ADC calculation accuracy.
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Accurate automatic medical image segmentation technology plays an important role for
the diagnosis and treatment of brain tumor. However, simple deep learning models are
difficult to locate the tumor area and obtain accurate segmentation boundaries. In order to
solve the problems above, we propose a 2D end-to-end model of attention R2U-Net with
multi-task deep supervision (MTDS). MTDS can extract rich semantic information from
images, obtain accurate segmentation boundaries, and prevent overfitting problems in
deep learning. Furthermore, we propose the attention pre-activation residual module
(APR), which is an attention mechanism based on multi-scale fusion methods. APR is
suitable for a deep learning model to help the network locate the tumor area accurately.
Finally, we evaluate our proposed model on the public BraTS 2020 validation dataset
which consists of 125 cases, and got a competitive brain tumor segmentation result.
Compared with the state-of-the-art brain tumor segmentation methods, our method has
the characteristics of a small parameter and low computational cost.

Keywords: brain tumor segmentation, attention mechanism, multi-task learning, semi-supervised learning, multi-scale
feature fusion, deep supervision

1. INTRODUCTION

Brain tumors are the most common primary malignant tumors of the brain caused by the
canceration of glial cells in the brain and spinal cord. Brain tumors have the characteristics of
high morbidity and mortality. Automatic segmentation technology of brain tumor can assist
professional doctors to diagnose brain lesions and provide imaging technical support for the
diagnosis and treatment of brain tumor patients. With the development of convolutional neural
networks, the brain tumor automatic segmentation technology based on deep learning had achieved
a high segmentation accuracy. However, the location of brain tumor regions and accurate
segmentation of tumor edges have always been the difficulties of deep learning methods. In order
to obtain accurate segmentation results, deep learning methods usually require a numerous
parameters and a long calculation time, which leads to extremely high demands on the
hardware. Therefore, it is of great significance to develop a simple and efficient network architecture.

Since 2015, a variety of Convolutional Neural Networks (CNN) architectures for brain tumor
segmentation have been proposed. Havaei et al. proposed the InputCascadeCNN model (1), which
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used cascaded CNN to segment brain tumor regions. After the
network obtained a small feature map, it used two CNN branches
with different convolution kernel sizes to further extract local
feature and global information, and fused multi-scale
information. Dvorak et al. proposed a 6-layer CNN, the brain
image was cropped into multiple patches, and these patches were
clustered using k-means to obtain N clustering results and
formed a dictionary as the input of network (2). Pereira et al.
used a 3X3 convolution kernel to extract the segmentation features
(3), like VGG (4). When the receptive field of the same size was
obtained, a smaller convolution kernel could effectively reduce the
amount of network parameters and enabled the network to be
designed deeper. At the same time, the author used intensity
normalization in the data preprocessing process. Kamnitsas et al.
proposed DeepMedic (5), using residual block (6) in the CNN
architecture. DeepMedic used images of different resolutions as
the input of two branch networks to obtain multi-scale
information and fused the multi-scale information. Randhawa
et al. (7) used a classification network to classify each input pixel.
Kamnitsas et al. proposed EMMA (8), which merged the outputs
of multiple independent networks through an average confidence.

Although a variety of network structures have been
proposed, the location of tumor regions and accurate
segmentation of tumor boundaries have always been the
difficulties of brain tumor segmentation. The traditional deep
learning method usually used the fully connected layer as the
last layer of the network, but one-dimensional probability
information will lose the spatial structure information of the
image, which is not suitable for image segmentation. Fully
convolutional neural networks (FCN) (9) and U-Net (10) used
a fully convolutional layer as the last layer of network, and used
an up-sampling operation that is symmetrical to down-
sampling to keep the size of the feature map consistent with
the input size of the network. This method effectively improves
the ability of neural network to locate the region of interest
(ROI). However, the shape and pixel intensity of brain tumor
data are affected by differences between patients and data
collection agencies, which makes it difficult for traditional
U-Net and FCN to obtain accurate location and segmentation
accuracy when the number of parameters is small.

In order to further improve the performance of the U-Net
architecture, a variety of improved U-Net architectures have
been proposed. DCSNN (11) extends the architecture of U-Net
with a residual module by adding a symmetric mask in multiple
layers. Isensee et al. proposed an improved U-Net architecture
(12), which used the pre-activation residual block (13) as the
basic unit of network. At the same time, the leaky rectified linear
unit (leaky ReLU) was used to prevent the gradient from
disappearing, and batch normalization (14) was replaced with
instance normalization (15), which improved the stability of the
network for a feature extraction of small batches. nnU-Net (16)
used 2D U-Net, 3D U-Net, and cascaded 3D U-Net to adaptively
segment inputs of different resolutions. Although most of the
improved u-net methods improve the segmentation accuracy,
they also increase the depth, parameters, and computing time of
deep learning network.

The depth of the network and the size of the parameters will
directly affect the ability of feature extraction, usually a deeper
network structure and larger parameters will improve the
segmentation accuracy. However, the increase of parameters
will lead to an over fitting problem and reduce the robustness
of the network. Too deep network structure will lead to the
problem of vanishing gradient and exploding gradient in
network training. In order to solve the vanishing gradient
problem and exploding gradient problem of the deep network,
deep supervision methods were introduced (17-19). In theory,
when the size of convolution kernel remains the same, as the
number of network layers becomes deeper, the network gained a
stronger nonlinear expression capability. However, with the
deepening of the network, backpropagation becomes difficult,
resulting in a decrease in network performance. Chen et al.
proposed VoxResNet, which was used in brain segmentation. In
order to solve the problem of automatic segmentation caused by
the difference in the shape of 3D image slices, the author merged
the deep supervision results containing multi-level context
information as the final output of network (20). Zeng et al.
used a multi-level deep supervision of 3D U-Net to alleviate the
potential gradient vanishing problem in a Proximal femur
segmentation (21). Zhang et al. used deep supervision in a
retinal vessel segmentation to learn a better semantically
representation and help convergence (22). Zeng et al. proposed
a multi-scale deep supervision method in infant brain MR image
segmentation, which addresses that the final loss cannot
supervise a shallow fracture extraction (23).

Similarly, a deep supervision method was also used in the
brain tumor segmentation (12). Deep supervision usually used
the same label to perform a single task, mainly focusing on
solving the problem of gradient vanishing. When Resnet was
proposed, the problem of gradient vanishing was effectively
improved. Andriy Myronenko proposed a multi-task learning
method (24), which used U-Net to perform brain tumor
segmentation tasks and used another decoder branch for image
reconstruction. This method was similar to a deep supervision,
replacing the label of a decoder branch with a reconstruction
label, thereby preventing the problem of network overfitting.
Similarly, Chen et al. proposed the Multi-task Attention-based
Semi-Supervised Learning (MASSL) framework, which used soft
segmentation to obtain pseudo-labels of tumor and non-tumor
regions, and used pseudo-labels to supervise the reconstruction
branch (25). They proposed that multi-task learning could
improve the capture of segmentation features in the encoder
part. Jiang et al. used two decoder branches with different up-
sampling structures to help the encoder part to collect more
abundant brain tumor regional features (26). Weninger et al.
used the three tasks of segmentation, classification, and
reconstruction to jointly train the shared encoder part (27).
The methods above used other related tasks as labels for deep
supervision, and obtained accurate brain tumor segmentation
results. It showed that the deep supervision method could not
only improve the vanishing gradient problem of deep network,
but also enabled the network to learn a richer visual
representation and prevented overfitting.
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In the brain MRI image of the patient, the brain tumor area is
small, so the brain tumor segmentation has a problem of class
imbalance. In order to focus on the brain tumor area, the visual
attention mechanism was introduced into the medical image
segmentation network. Hu et al. used the global max-pooling
layer to adaptively calculate the weight of each channel, and feed
the weight back to the feature channel (28). On this basis, Li et al.
designed a dynamic selection mechanism for the convolution
kernel based on the working principle of visual neuron, and
adaptively adjusted the receptive field size obtained by the
convolution kernel through multi-scale information, and used
softmax to Features of different sizes are merged (29). Woo et al.
used the channel attention module and spatial attention module
to adaptively select the beneficial channel features and spatial
features, and used element-wise summation and sigmoid
activation function to fuse the two features (30).

In this paper, we proposed a new end-to-end brain tumor
segmentation network. We made partial modifications to the
Attention U-Net (31) framework and design MTDS and
APR module. Our work aims to enhance the ability of
network to capture the features of brain tumor and reduce the
impact of class imbalance, and improve the accuracy of brain
tumor segmentation.

2. METHODS

The detailed description of our proposed automatic brain tumor
segmentation method will be given in this section. The proposed
deep learning model architecture is presented, including the
UNet-like basic network, APR module, and MTDS.

2.1 Basic Network

The design of the model needs to consider the distribution
characteristics of the dataset. Compared with natural images,
medical images are symmetrical and have a simpler semantic
information and a more fixed image structure. However, medical
images often contain noise and artifacts, and the boundary
information is blurred. In the view of a single structure and
the fuzzy boundary of medical images, the autoencoder structure
with skip connection has become the benchmark for brain tumor
segmentation. The structure of convolutional autoencoder can
reduce the amount of network parameters while obtaining high-
level semantic features, saving computing resources. Skip
connection combines low-level and high-level features to help
the network reconstruct the detailed information of ROIL Our
basic network is similar to Attention U-Net. In order to obtain a
higher tumor segmentation accuracy, we adjusted the structure
of the network.

The model structure is shown in Figure 1, similar to LinkNet
(32), we combined the U-Net structure and the ResNet structure.
According to the statement in (33), the skip connection of U-Net
cannot eliminate the vanishing gradient problem, but the shortcut
of ResNet can prevent the vanishing gradient problem. In
addition, the skip connection of U-Net helps to increase the

convergence speed the same as the shortcut of ResNet. The
main structure includes encoder, decoder, and deep supervision.
Encoder consists of 3 down-sampling, 4 APR module, and 4
Squeeze-and-excitation (SE) modules. For the first Residual Units
of the encoder part, the number of convolution kernel is 32, and
doubles with each next residual unit. Decoder includes 3 up-
sampling, 3 pre-activation convolution blocks, 3 SE modules, 1
convolutional layer (1x1), and 1 sigmoid. In the SE module, some
channels are considered to have no important contribution to the
segmentation task, and their weights are very small, which leads to
overfitting and vanishing gradients problem. Therefore, we added
the dropout layer to prevent the network from overfitting and
improve the robustness of the deep learning network. The random
change of channel weight helps the network learn the visual
expression of different channel features in brain tumor
segmentation. The experimental results also prove this
conclusion. The SE module is shown in Figure 2, and Table 1
reports the results of comparative experiments with or without
dropout in the SE module.

2.2 Multi-Task Deep Supervision

In the brain tumor automatic segmentation model, we use the
MTDS method to optimize the training process of deep learning
network and extract richer visual features. In the process of back
propagation, the deep network converges slowly or even hard to
converge due to the problem of vanishing gradient. Deep
supervision techniques are used to alleviate the training difficulty
of deep networks. However, unreasonable network design affects
the hierarchical feature expression ability of the network, and even
disrupt the network optimization goal. Usually, the shallow layers
of the network extract low-level features in the image, such as
boundary information. The deep layers of the network can extract
high-level features, in other words, the semantic information of an
image. When deep supervision is designed in the front of the
network, it forces the network to change the normal learning
process, resulting in an inconsistent loss of optimization goals and
affecting the segmentation accuracy. This impact became more
serious in many deep networks (34).

Based on the problems above, we use the ground truth of
multiple segmentation tasks as the label for deep supervision, and
optimize the training process through multiple associated sub-
segmentation tasks. While solving the vanishing gradient
problem, the ability of the network to extract segmentation
features of a sub-tumor region is improved. The comparison
between our proposed deep supervision method and other
methods is shown in Figure 3. The sub-segmentation task is used
as the regularization item of the network to improve the
generalization ability of the model and prevent overfitting.
Normally, whole tumors consist of the peritumoral edema,
enhancing tumor, and the necrotic and the non-enhancing
tumor. The area of enhancing tumor is smaller than the area of
peritumoral edema and the necrotic and the non-enhancing tumor.
High-level semantic information is not conducive to capturing the
features of the enhancing tumor area, while low-level boundary
information can better express the detailed features of the enhancing
tumor. In our method, the enhancing tumor ground truth is used as
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FIGURE 1 | The basic 2D convolutional neural network for brain tumor segmentation. It consists of encoding, decoding, and deep supervision. Our approach is an
end-to-end network, the input of the network is a 2D image composed of four modes, and the output is the whole brain tumor prediction result of each 2D image.

Output1, output2, and output3 are the subregions of the brain tumors, which are th

e peritumoral edema, enhancing tumor, and the necrotic and the non-enhancing

tumor, respectively. Multi-task deep supervision with progressive relationships can help our method accurately extract the visual features of each stage.

the label of first deep supervision, and the shallow layers of network
can better capture the boundary details of the enhancing tumor
area. Segmentation of the necrotic area and segmentation of the
peritumoral edema area are respectively used as the other two deep

supervision tasks, and the final output of the network is the
segmentation of the whole tumor area. The optimization objective
of whole brain tumor segmentation and multi-task auxiliary
segmentation can be expressed as follows:
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where D is the brain tumor datasets with annotation, ®,, is the
learnable weight matrices of whole brain tumor segmentation
network, and @, correspond to the learnable weight matrices of
multi-task auxiliary segmentation network. L,,, denotes the total
loss function of whole brain tumor segmentation, and Lo is the
loss function of multi-task auxiliary segmentation.

2.3 Attention Pre-Activation
Residual Module

In addition to the function of identity mapping, residual module
is a simple multi-scale feature fusion method (36). Multi scale
feature representation is very important for image segmentation.
Except to the pixel intensity, the morphological features of the
tumor region are of great importance for brain tumor segmentation.
Learning the difference between the morphological features of brain
tumor and the surrounding normal brain tissue by deep
convolution network is helpful to the accurate segmentation of
the brain tumor region. The combination of the boundary
information of the tumor region and its high-level semantic
information can make the deep convolution network accurately
locate ROI (31). Based on the residual module, the improved multi-
scale information fusion of deep convolution network is beneficial
to the classification, segmentation, and detection of visual tasks.
Therefore, Res2Net (37) and other network structures are
proposed. Res2Net designed a residual structure, which can
significantly increase the multi-scale information of the residual
module. However, the feature fusion of Res2Net is simple, so that it
is difficult to make full use of the multi-scale information. On this
basis, we propose an APR module, which is used to improve the
attention of the deep network to ROI. This structure combines the
pre-activation residual units (13) and attention gates (AGs) (31).
The APR module can be seen in Figure 4. Thanks to the excellent
performance of the pre-activation residual units in the field of

]x]sz
Ficate()

FIGURE 2 | Our proposed SE module with the dropout layer. Adding the dropout layer can prevent overfitting and improve the robustness of the deep learning
network. The SE module assigns different weights to the feature channels to help the network obtain the most effective features of the brain tumor regions.

medical image segmentation (24, 26, 33, 38), we use the pre-
activation residual units as the basic module of the segmentation
network. Pre-activation residual units can help information
propagation, which include 2 batch normalization, 2 rectified
linear unit (ReLU), and 2 weight layers. The output x;,; of the
pre-activation residual units can be expressed as follows:

X1 = X + F(x, @) ()
F(xl’ (D]) = Fr(Fr(-xl’ (D])) (3)
F.(x;, ay) = Wi (01(Wy(x;, @) 4)

where x; is the input of the pre-activation residual units, w; is the
learnable weight matrices. F(x,w;) denotes the pre-activation
residual function, F(x,w;) consists of two cascaded subunits F,
(xpw;). An element-wise addition is used to combine the
feature map of x; and F(x,w;). Each F,(x,w;) includes a batch
normalization @, a ReLU 07, and a 3X3 convolutional layer W.,.
The 3X3 convolution layer enables the pre-activation residual
function to obtain a larger receptive field than the input, which
provides multi-scale visual information for the feature fusion of
the attention gates.

Attention gates, which is like the shortcut-only gating and 1x1
convolutional shortcut (13), have a stronger visual representational
ability. Attention gates consists of a ReLU, 1x1 convolutional layer,
and a sigmoid activation function. ROI is selected by analyzing both
the activations and contextual information. The output y;,; of
attention gates can be expressed as follows:

Vi1 =)’10Fa()’z) 5)

Fo(y)) = 02(W,(01(y1))) (6)

where y; is the input of attention gates, which is the output of the
pre-activation residual units (y; = x5,1). 0 is the element-wise

TABLE 1 | The results of comparative experiments with or without dropout in the SE module on the BraTS 2020.

Method DSC (%) Sensitivity (%) Specificity (%) Hausdroff95
without 88.59 88.52 99.86 7.74
dropout

with dropout 89.18 89.24 99.91 5.77

The bold values indicate the best results.
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FIGURE 3 | The comparison between our proposed deep supervision method and other methods. (A) The U-Net model; (B) Use of multiple shortcuts and skip
connections: this method adds a deep supervision method to each level of sub network, which affect the hierarchical feature expression ability of network (35);
(C) Use of image reconstruction task as deep supervision to prevent the network from overfitting (24). (D) Our method with deep supervision.

multiplication. Fo(y;) denotes the attention gates function. W, is
a 1x1 convolutional layer used to compute linear transformation.
o, =m is a sigmoid activation function. ReLU and
sigmoid can improve the nonlinear expression ability of the
attention gates. In addition, sigmoid can make attention gates
parameters have a better convergence.

We combine the pre-activation residual unit and attention
gates, and obtain the APR module as follows:

Yin = (xq+ F(F,(x, @))) 6 0,(W, (01 (x; + F.(F,(x;, @)))))  (7)

APR module is a multi-scale feature fusion method based on the
residual unit. This method obtains multi-scale information from
the residual units and generates a gating signal to control the
importance of features in different spatial regions, to suppress the
feature response of irrelevant background regions.

3 EXPERIMENTS AND RESULTS

In this section, the brain tumor datasets and the pre-processing
methods are introduced. And then, we provide the training
details of network, including the loss function and optimizer.
Post-processing methods for brain tumor segmentation are also
introduced. Finally, we introduce the evaluation criteria for the
brain tumor segmentation task, and report the results consisting
of the ablation experiment and comparison with the state-of-the-
art methods.

3.1 Brain Tumor Dataset and
Pre-Processing

In this section, we present the details of experimental data, it
includes brain tumor datasets, data preprocessing and
data augmentation.
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FIGURE 4 | Our proposed APR module, which consists of the Pre-activation Residual Units and Attention Gates. Pre-activation Residual Units obtain feature maps
of low-level and high-level scales. Attention Gates obtains the weighted feature map of the 2D image by performing nonlinear processing on the output result of the
Pre-activation Residual Units.
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3.1.1 Brain Tumor Datasets

The brain image dataset is provided by MICCAI Multimodal
Brain Tumor Segmentation Challenge (BraTS) (39, 40). Each
sample of the patient includes four modalities. The brain tumor
datasets were collected from 19 institutions with the same
resolution of 1 mm?, and were unified to the same anatomical
template. The size of each modality was 240x240x155. All BraTS
multimodal datasets include four modals, which are native (T1),
post-contrast T1 weighted (T1Gd), T2 weighted (T2), and T2
fluid attenuation inversion recovery (T2-FLAIR). Table 2
summarizes the dataset of BraTS 2017-2020. The training
datasets of BraTS 2018-2020 are used to train our network.

3.1.2 Pre-Processing

Due to different data collection agencies, there are differences in
the pixel intensity. In order to make the deep learning network
learn more uniform and the segmentation features more
accurate, it is necessary to use image pre-processing methods
to standardize the data.

In the dataset provided by BraTS 2020, the brain area occupies
less than 50% of the total area. A large background area increases
the proportion of negative samples, making it difficult for deep
learning networks to effectively learn brain tumor features (16). In
addition, more tumor pixels are incorrectly classified as background.
Different from (41, 42), which crops images into small patches, we
crop each image to a size of 144x176 to preserve as much brain
region information as possible and reduce the interference of
background regions. Specifically, we keep the center area of each
image and cropped the edge area. Maximizing the preservation of
brain information in non-tumor areas is beneficial for the network
to better learn to distinguish the difference between tumor and
normal brain tissue. After cropping the image, we use min-max
normalization (43) to process the image to reduce the difference
between the data collected by different institutions. Specifically, we
calculated the maximum and minimum pixel intensity of the 3D
brain data of each brain tumor patient in a single modality, and
normalized the value range of each pixel to 0 and 1 through min-
max normalization between. Performing min-max normalization
on a single modality of each sample can not only reduce the
difference between scans from various institutions, but also avoid
the difference of various scans from the same institution. In
addition, normalizing the pixel value between 0 and 1 facilitates
the back propagation of gradient during the training process.

3.1.3. Data Augmentation

In order to solve the problem of less training data, we also carried
out data augmentation operations. Data augmentation can
effectively increase the sample size and prevent the model from

overfitting. Commonly used data augmentation methods include
flipping (44), transposing, and rotating (45). In order to ensure
that the pixel intensity of data does not change significantly and to
make the network robust to the shape of tumor, we use the data
augmentation strategy of flipping. This strategy can enable the
deep learning network to learn the shape characteristics of brain
tumors, and use the shape information of brain tumors and non-
tumor regions to help the network distinguish tumor regions with
similar pixel intensity from normal brain tissue regions.

3.2 Loss Function
In the brain tumor images, the proportion of the lesion area is
small, in other words, the foreground area is much smaller than
the background area. Class imbalance makes it difficult for some
commonly used segmentation loss functions to train network
parameters effectively. In order to reduce the impact of class
imbalance on network training, the network is trained with a
combination of dice loss (42) and cross-entropy loss. The joint
loss combining dice loss and cross-entropy loss is proven to have
an excellent performance in medical image segmentation
tasks (46).

Dice loss is a similarity measure method, which is widely used
in medical image segmentation, and its value range is [0, 1]. Dice
loss can be expressed as follows:

z
Liice = % > (8)
TP+ XL 4
where Z denotes the sums of voxels, p,€P is the predicted binary
segmentation volume, and ¢;€Q is the ground truth of
segmentation volume.

Dice loss focuses on the segmentation results of the
foreground regions, so it can improve the impact of class
imbalance. But when the foreground area in the image is too
small, the predicted segmentation result has a greater impact on
the calculation result of loss function, making the training
unstable. Therefore, we combine dice loss and cross-entropy to
improve the training stability. The loss function of brain tumor
segmentation network without deep supervision can be
expressed as follows:

1 _
L,(®,;D) =1~ ﬁEfil 10g fon( @y %)

25y ©)

Ny Ny
where the brain tumor dataset D including N examples, x; is the i
image of brain MRI scans, and y; is the ground truth

TABLE 2 | Summary of the BraTS challenge dataset from 2017 to 2020.

Dataset Training Validation Testing
BraTS 2017 285 46 146
BraTS 2018 285 66 191
BraTS 2019 335 125 166
BraTS 2020 369 125 166
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corresponding to x;. y; denotes the predicted binary segmentation
result corresponding to x;.

3.3 Implementation Details

Our framework was constructed using the TensorFlow2 (47)
libraries. The GPU used in the experiment is a virtualized
NVIDIA Tesla V100 with only 16 GB of memory. Its
computing performance is a quarter of that of a physical GPU.
For the training of our method, the total number of epochs is set
to 50 and the batch size is set to 32. Adam optimizer (48) is used
to optimize the training for all experiments. Adam optimizer,
combining the advantages of the AdaGrad and RMSProp
optimization algorithms, comprehensively considers the first
moment estimation (First Moment Estimation, the mean value
of gradient) and the second moment estimation (Second
Moment Estimation, the uncentered variance of gradient), and
calculate the update step size. The update of parameters of the
Adam optimizer is not affected by the scaling transformation of
the gradient. It is suitable for the unstable objective function and
problems with sparse gradients or very noisy gradients. In our
method, the initial learning rate of the Adam optimizer is let,
the algorithm of learning rate decay is like as (24).

3.4 Post-Processing

In order to further improve the accuracy of the brain tumor
segmentation results, we performed post-processing operations
on the output of the network. Commonly used post-processing
methods for image segmentation include thresholding, erosion,
dilation, open operations, close operations, and CRF. For brain
tumor segmentation tasks, the pixel intensity and the
morphology features of some brain tissues in the brain image
are similar to the tumor area, it is easy to interfere with the
segmentation of the tumor area, resulting in false positives
segmentation results. Through observation, the normal area
that is misclassified as a tumor is usually small. In order to
reduce the influence of false positives on the segmentation
accuracy, we concatenate all the 2D segmentation results of
each patient into 3D voxels. And then, we calculate the volume
of each independent predicted brain tumor area in each 3D voxel
and eliminate the smaller predicted tumor. We keep the largest
predicted tumor in each patient and use its volume as the
baseline. Then, we compare the volume of other predicted
tumors with the baseline. When the volume of other predicted
tumors is less than one-tenth of the baseline, we determine that
these predicted tumors are false positives.

3.5 Evaluation Metrics

In order to evaluate the segmentation performance of brain
tumors more comprehensively, dice similarity coefficient (DSC),
sensitivity, specificity, and hausdorff distance (HD) are used as
evaluation metrics. All evaluation metrics can be expressed as
follows:

TP

SensitiVity = m s (10)

TN
Specificity = ————, 11
pecificity TN + P (11)
2iUN V|
DSC=-———, (12)
Ul U V]
Hausdorff = max{maxmin(u, v), maxmin(u, v)}, (13)
usU veV veEV useU

where true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) are usually used to calculate the
evaluation metrics in the segmentation methods. Higher values
of sensitivity indicate that the larger tumor area is segmented
correctly. Higher values of specificity indicate that the larger
non-tumor area is segmented correctly. U and V indicate the
ground truth of the lesion area and the prediction of network,
respectively. Higher values of DSC indicate that the
segmentation of the lesion area is more accurate. u and v
indicate the set of points on the boundary of ground truth U
and the set of points on the boundary of prediction V,
respectively. Lower values of Hausdorff distance indicate that
the segmentation of the lesion area is more accurate. In this
paper, we use Hausdorff95, which is based on the calculation of
the 95 percentile of distances between the boundary points in
the ground truth and prediction. Due to the presence of outliers
in the boundary area, hausdorff95 can avoid the interference of
outliers on the segmentation performance.

3.6 Evaluation on Model Architecture

We present a detailed study of the proposed network on the
MICCAI Multimodal Brain Tumor Segmentation Challenge
2020 in this section. The training dataset provided by BraTS$
2020 is used to train the network. In order to evaluate the
segmentation performance of our method more objectively, we
upload the predicted results of the validation dataset to the Image
Processing Portal (IPP) of CBICA’s.

Similar to the training dataset, the validation dataset also
includes four modal brain MRI scans. The validation dataset
consists of a total of 125 brain data of patients, and for the axial
axis, each brain MRI scans of the patient consisted of 155 images
with a size of 240x240. The validation dataset contains mixed
glioblastoma (GBM/HGG) and lower grade glioma (LGG). In
order to match the trained network input, we use the same
cropping method as the training dataset to reduce the image size
of each validation dataset to 144x176. After obtaining the
prediction results, we restore each image to its original size
and submit it to the online evaluation system.

3.6.1 Study of Attention Pre-Activation

Residual Module

APR module is modular so that it can be easily added to the
segmentation structures. In our proposed model, the APR
module is used in the encoder part to improve the ability of
extracting tumor features. Three structures are designed to
compare with the APR module. The first structure does not
use the shortcut and attention gates. The second structure adds
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the shortcut, but there are no attention gates. The third structure
uses the shortcut, and the use of the attention gates is consistent
with (31), in other words, combine attention gates with the
skip connections.

In Table 3, we report the results of the comparative
experiment. The results on whole brain tumor predictions
demonstrate that the APR module has achieved the first place
in three evaluation metrics of dice similarity coefficient,
sensitivity, and Hausdorff distance. Due to the large
proportion of negative samples, the specificity scores of the
four structures are very similar. In addition, the structure of the
Attention U-Net has a better segmentation performance for
brain tumors, which also proves that the attention gates are
helpful for the fusion of multi-scale features. However, for brain
tumor segmentation tasks, too large feature scale differences
cannot make attention gates accurately weight ROI. This result
proves that the APR module contributes to brain tumor
segmentation tasks.

3.6.2 Study of Multi-Task Deep Supervision

MTDS is used to extract richer visual features. It can be applied
to multi-label segmentation tasks similar to brain tumor
segmentation. We design three comparative structures. The
first structure does not use deep supervision. The second
structure adds deep supervision, but only uses the whole brain
tumor mask as the label for all branches. The third structure uses
MTDS, and uses enhancing tumor, the necrotic and the non-
enhancing tumor, and peritumoral edema as the labels of the
three branches, respectively.

Table 4 shows the comparison experiment results of MTDS
and the other two structures. The structure with the MTDS
strategy has achieved the top rank in all evaluation metrics.
Through the comparative experiments, we can find an
interesting phenomenon. The segmentation results of
structure without deep supervision are better than the
structure with single-task deep supervision in the evaluation
metrics of DSC, Sensitivity, and Hausdorff95. Although deep
supervision techniques can alleviate the difficulty of
optimization arising from gradient flow, it interferes with the

hierarchical representation generation process. Due to the
inconsistency of optimization objectives, the positive
optimization effect on the shared shallow parameters is small,
which reduces the accuracy of brain tumor segmentation.

3.7 Comparison with State-of-the-Art Methods
Our proposed model is evaluated on the public BraTS 2020
validation dataset to compare its performance with the state-
of-the-art methods which are on the BraTS2017, BraTS2018,
and BraTS2019 leader board. The results of our method
comparison with the state-of-the-art methods are reported
in Table 5.

Most state-of-the-art methods ensemble the segmentation
results of multiple models, and the segmentation results of
ensemble of multiple models is usually better than a single one.
In order to show the performance of our proposed method more
visual, we did not use the ensemble of multiple models, but only
used the proposed single model to compare with other methods.
For the whole brain tumor segmentation task, the Dice score of
whole tumors reached 0.86-0.90, the Sensitivity score of whole
tumors reached 0.85-0.92. Specificity scores of all methods are
very high, almost over 0.99. The Hausdorff distance is basically
between 4 and 7. The experimental results show that our method
has a strong competitiveness.

In order to make the comparison result more objective, we
retrain several state-of-the-art segmentation models to the brain
tumor dataset and evaluated them on the BraT$2020 dataset. It
can be seen from Table 6 that our method has achieved the first
place in the DSC, Sensitivity, Specificity, and Hausdorft distance.
At the same time, our method has the least number of
parameters. Figure 5 shows a more intuitive comparison
between the segmentation results of our method and state-of-
the-art methods.

4. DISCUSSION AND CONCLUSION

Brain tumor is a disease that threatens human health. Manual
segmentation is time-consuming and subjective. The difficulties

TABLE 3 | Ablation experiment of the APR module without multi-task deep supervision on the BraTS 2020.

Method DSC (%) Sensitivity (%) Specificity (%) Hausdroff95
without shortcut & AGs 88.57 88.56 99.89 7.03
without AGs 88.69 88.01 99.90 6.99
Attention UNet 88.89 89.25 99.88 6.78
APR module 88.95 89.56 99.89 6.51

The bold values indicate the best results.

TABLE 4 | Ablation experiment of deep supervision on the BraTS 2020.

Method DSC (%) Sensitivity (%) Specificity (%) Hausdroff95
without deep supervision 88.95 89.56 99.89 6.51
single-task deep supervision 88.74 87.95 99.90 6.84
multi-task deep supervision 89.18 89.24 99.91 5.77

The bold values indicate the best results.
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TABLE 5 | The results of comparison between our proposed method and state-of-the-art methods.

Method Dataset DSC Sensitivity Specificity Hausdroff95
(%) (%) (%)

BCVUniandes (49) 2017 86.8 84.2 99.5 18.456
BRATZZ27 (50) 2017 88.0 85.6 99.6 5.72
CISA (50) 2017 87.3 85.4 99.4 5.18
CMR (50) 2017 85.6 81.1 99.6 5.87
MIC_DKFZ (50) 2017 90.2 90.1 99.5 6.77
Zhouch (50) 2017 90.3 90.3 99.5 4.74
RadCNN (51) 2017 89.0 89.1 99.5 6.53
Radiomics-miu (52) 2018 87.6 86.2 99.5 4.90
GBMNEet (50) 2018 88.3 93.4 98.9 5.46
Mmonteiro2 (50) 2018 87.0 87.4 99.3 5.79
UNetlmage (50) 2018 89.9 91.0 99.4 5.10
RA-UNet (50) 2018 89.1 89.4 99.3 5.87
Voxel-GAN (53) 2018 84.0 86.0 99.0 6.41
S3D-Unet (41) 2018 88.7 90.1 99.4 5.51
3D Dense U-Nets (54) 2018 88.9 88.0 98.0 7.27
3D Attention UNet (55) 2019 89.8 90.0 99.4 6.29
MECU-Net (56) 2019 90.2 90.8 99.5 5.41
Multi-step cascaded network (57) 2019 88.6 92.1 99.2 6.23
3D U-Net (58) 2019 89.4 89.7 99.5 5.68
Our method 2020 89.2 89.2 99.9 5.77

The bold values indicate the best results.

of the automatic brain tumor segmentation technology include
the sensitivity of the algorithm to tumor regions and the
suppression of response to non-tumor regions. In order to
improve the ability of the convolutional neural networks to
locate ROI, we propose the APR module. This module uses the
residual units and attention gates to construct a multi-scale feature
fusion method. The simple fusion of low-level feature and the
high-level feature of residual unit pass the features of non-interest
region to the deeper layers of network. It interferes with the
extraction of important information about brain tumors from the
encoder part. The attention gate added in the residual unit focus
attention on the tumor area, reduced the response of non-interest
areas, thereby improving the ability of the convolutional neural
network to locate the area of interest. This method has proved its
superiority in brain tumor segmentation experiments.

In order to improve the utilization of multi-modal information
in brain tumor segmentation tasks, we propose a MTDS method.
Different modalities have different sensitivities to the tumor area.
In order to fully explore the potential information of multimodal
data, we have designed multiple branches in the network, and each
branch is used to complete a specific task. In order to avoid the

chaotic design from interfering with the ability of the network to
extract tumor features, we designed a MTDS method for the
characteristics of different tumor regions. In addition, MTDS helps
the network to extract richer semantic features and alleviate the
problem of network overfitting. We also tested its performance on
the brain tumor segmentation task, and the results of experiment
proved our hypothesis. The experimental results show that our
model has a generalization ability and extension possibilities.

In this paper, we focus on the segmentation accuracy and
robustness of a single network to the target region. We hope to
design a simple and easy-to-use 2D segmentation method to reduce
the dependence of network training on the hardware and reduce
training time. Due to the few network parameters, our proposed
method is not as good as some segmentation results that integrate
multiple 3D networks. In future work, we will continue to focus on
the improvement of the current method to make it smaller and
more flexible, and at the same time have a higher segmentation
accuracy. In order to achieve this goal, we will improve the currently
proposed attention mechanism to enable it to integrate richer multi-
scale features. In addition, we will make the architecture much more
general to other medical image segmentation datasets.

TABLE 6 | The results of comparison between our proposed method and state-of-the-art methods on the BraTS 2020.

Method DSC (%) Sensitivity Specificity Hausdroff95 Parameter
(%) (%)

U-Net (10) 87.59 87.04 99.89 8.97 34.5M
ResU-Net (59) 87.06 86.63 99.80 9.16 8.2M
ResU-Net++ (60) 88.48 87.98 99.90 7.42 42.2M
DeeplLabV3+ (61) 82.99 84.16 99.82 11.05 39.4M
PSPNet (62) 83.74 82.27 99.87 5.99 35.0M
Attention UNet 87.58 87.26 99.82 8.55 9.3M
31

Our method 89.18 89.24 99.91 5.77 3.3M

The bold values indicate the best results.
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FIGURE 5 | Comparison of brain tumor segmentation results between our method and DeeplLabV3+. The differences between the segmentation results of the two
methods are marked by the red boxes.
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Objective: To develop a machine learning (ML)-based classifier for discriminating
between low-grade (ISUP I-1l) and high-grade (ISUP llI-IV) clear cell renal cell
carcinomas (ccRCCs) using MRI textures.

Materials and Methods: \We retrospectively evaluated a total of 99 patients (with 61 low-
grade and 38 high-grade ccRCCs), who were randomly divided into a training set (n = 70)
and a validation set (n = 29). Regions of interest (ROls) of all tumors were manually drawn
three times by a radiologist at the maximum lesion level of the cross-sectional CMP
sequence images. The quantitative texture analysis software, MaZda, was used to extract
texture features, including histograms, co-occurrence matrixes, run-length matrixes,
gradient models, and autoregressive models. Reproducibility of the texture features
was assessed with the intra-class correlation coefficient (ICC). Features were chosen
based on their importance coefficients in a random forest model, while the multi-layer
perceptron algorithm was used to build a classifier on the training set, which was later
evaluated with the validation set.

Results: The ICCs of 257 texture features were equal to or higher than 0.80 (0.828-
0.998. Six features, namely Kurtosis, 135dr_RLNonUni, Horzl_GLevNonU,
135dr_GLevNonU, S(4,4)Entropy, and S(0,5)SumEntrp, were chosen to develop the
multi-layer perceptron classifier. A three-layer perceptron model, which has 229 nodes
in the hidden layer, was trained on the training set. The accuracy of the model was 95.7%
with the training set and 86.2% with the validation set. The areas under the receiver
operating curves were 0.997 and 0.758 for the training and validation sets, respectively.

Conclusions: A machine learning-based grading model was developed that can aid in
the clinical diagnosis of clear cell renal cell carcinoma using MRI images.

Keywords: machine learning, magnetic resonance imaging, texture analysis, clear cell renal cell carcinoma, multi-
layer perceptron algorithm
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INTRODUCTION

Renal cell carcinoma (RCC) is the most common malignant
kidney tumor, and the most common pathological type,
accounting for 70-90%, is clear cell renal cell carcinoma
(ccRCC) (1). The latest World Health Organization (WHO)/
International Society of Urological Pathology (ISUP) grading
system divides ccRCC into four grades, in which grades I and II
are low-grade tumors with good prognosis while grades III and
IV are high-grade tumors with poor prognosis (2, 3). Current
studies have shown a relationship between the different nuclear
grades of RCCs and the choice of surgical methods and prognosis
(4, 5). Therefore, preoperative determination of the nuclear
grade of ccRCC is valuable.

The pathological features of renal masses are frequently
evaluated by preoperative percutaneous renal biopsy, but this
invasive technique still suffers from low accuracy. This has
prompted a search for non-invasive methods that can grade
the tumors and aid clinicians in selecting optimal therapeutic
regimens. Several studies have proposed the use of images
generated by computed tomography (CT) or magnetic
resonance imaging (MRI) for identification of potential
biomarkers for tumor grading (6, 7). MRI images have the
advantage of being free from ionizing radiation exposure and
are capable of evaluating both the tumor morphology and the
tumor microenvironment (8), but MRI itself is incapable of
providing sufficient information for differentiating the grades
of ccRCC by most radiologists. However, artificial intelligence
can play an important role in interpreting MRI information in
comprehensive ways by texture analysis. In this way, MRI images
can provide quantitative statistical parameters by identifying
subtle texture information not readily observable with the
human eye (8). These parameters, rather than the original
images, can be then used as the input features for machine
learning algorithms to improve the sensitivity of medical
imaging diagnosis, and they can also circumvent the
requirement for large sample sizes in image-based deep-
learning algorithms. At present, the use of magnetic resonance
texture analysis (MRTA) to predict ccRCC grades is seldom
reported (9-11). The purpose of this study was to explore the
value of using MRI textures and machine learning algorithms for
predicting the grade of ccRCCs before operations.

MATERIALS AND METHODS

Clinical Data

This retrospective study was approved by our Hospital Authority
Review Committee. The requirement for informed consent was
waived because of the study’s retrospective nature. The analysis
included patients who met the following standards hospitalized
from July 2016 to January 2020 at the First Affiliated Hospital of
Fujian Medical University.

The inclusion criteria were: (i) patients surgically confirmed
with ccRCCs; (ii) patients who had undergone preoperative
contrast-enhanced MRI (corticomedullary phase, nephrographic
phase, and delayed phase) in our hospital within one week before

operations; and (iii) patients with single lesions with short diameters
of more than 1 centimeter measured on axial T2 weighted imaging.

The exclusion criteria were: (i) patients with MRI images
with artifacts, such as respiratory movement or magnetic
sensitivity; (ii) patients with long lesion diameters < lcm; (iii)
patients with tumors presenting as obvious cystic degeneration
(cystic degeneration portion >75%); and (iv) patients with
preoperative puncture biopsy, interventions, or other treatments.

We enrolled 99 patients with histologically verified ccRCC.
These patients included 61 cases with low-grade disease (4 grade I
cases and 57 grade II cases) and 38 cases with high-grade disease
(32 grade III cases and 6 grade IV cases). The low-grade group
included 42 males and 19 females, while the high-grade group
included 25 males and 13 females. All MRI images were exported
from the Picture Archiving and Communication System (PACS) of
our hospital.

MRI Examination

All patients underwent a preoperative 3.0 Tesla MR
(MAGNETOM Verio, Siemens, Germany) examination with
the standard protocol using a phased-array body coil. Image
acquisition sequences and parameters were as follows:
(a) coronal half-Fourier acquisition single-shot turbo spin-echo
(HAST) sequences (repetition time msec/echo time msec, 1400/
91; field of view, 340x340 mm; matrix, 224x320; section
thickness, 5mm; intersection gap, Imm); (b) transverse T2-
weighted single-shot fast spin-echo sequences (repetition time
msec/echo time msec, 2000/91; field of view, 340x340 mm;
matrix 224x320; section thickness, 3 mm; intersection gap,
0.8mm); (c) axial diffusion weighted imaging sequences
(repetition time msec/echo time msec, 6000/73; field of view,
340x%340; section thickness, 4 mm; intersection gap, 0.8mm; and
two sets of b values: 50 and 800 sec/mm?); (d) transverse three-
dimensional fat suppressed T1-weighted interpolated spoiled
gradient echo (volumetric interpolated breath-hold
examination, VIBE) sequences (repetition time msec/echo time
msec, 3.92/1.39; field of view, 250x380 mm; matrix, 224x320;
section thickness, 3mm; intersection gap, 0.6 mm). The VIBE
sequences were performed prior to and three times after
intravenous injection of gadopentetate dimeglumine
(MultiHance, Bracco Sine, Shanghai, China; 0.1 mmol per
kilogram of body weight) at a rate of 2 mL/sec with a power
injector (Medrad, Warrendale, USA), followed by a 20 mL saline
flush. Corticomedullary phase images were obtained
approximately 40-50 seconds after administration of the
contrast material using timing, nephrographic phase images
were obtained at 80-100 seconds, and excretory phase images
were obtained 3 minutes later.

Placement of ROIs

All data were stored anonymously in the Digital Imaging and
Communications in Medicine (DICOM) format. The largest
cross-section of the tumor on the axial CMP images was first
determined, and then images of the selected layer were imported
into MaZda (version 4.6, http://www.eletel.p.lodz.pl/mazda/).
The two-dimensional region of interest (ROI) was then
delineated manually by an experienced radiologist (Zigiang
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Huang), who was engaged in urogenital system imaging
diagnosis and blinded to the nuclear grade of the ccRCCs.
Note that the edge of the lesion segmentation had shrunk
inward by 1-2 mm.

Feature Extraction

The differences in image brightness and contrast were reduced by
standardizing the gray scale of the images before texture
extraction, so that the image gray scale was within the range of
[u—30, u+30], where p and © represent the mean gray value and
the standard deviation, respectively. The MaZda quantitative
texture analysis software package was used to extract texture
features, including the gray-scale histogram, co-occurrence
matrix, run-length matrix, and gradient and autoregressive
models. All 257 radiomics features were extracted from each
ROI for each patient. Three feature data sets (Data 1, Data 2, and
Data 3) were obtained from the same tumor images by
segmenting the data three times.

Reproducibility of Texture Features

The reproducibility of the texture features was evaluated by
calculating the intra-class correlation coefficients (ICCs) of 257
texture features among the three feature datasets. Only features
with an ICC value equal to or higher than 0.80, indicating
excellent reproducibility, were included in further feature
selection processes.

Feature Standardization

Before model development, various features were first
standardized to make them comparable using the ‘robustscale’
method in the Python package of scikit-learn (ver. 0.23.2, https://
scikit-learn.org/) (12). The specific formula is as follows:

VM
‘T IQR

where V; is the original feature value, M is the median of the
feature, and IQR is the interquartile range (the difference
between the third quartile and the first quartile). The following
logistic transformation was then performed to minimize the
adverse effects of outliers on the stability of the classifier:

y; = 1/(1 +e74z‘) .

Feature Selection

A random forest model was used to select features for model
development using the Random Forest Classifier function
provided by scikit-learn. A grid search algorithm was then
executed to determine a set of hyperparameters using the
“GridSearchCV” function provided by scikit-learn. The
random forest parameters were the following: ‘class_weight’ =
‘balanced’; ‘max_features’ = ‘log2’; and the rest were default
values. A random forest model was then fitted to the training set,
and the model then assigned each feature an importance
coefficient that represents the information gain for the specific
feature, where a larger value indicates a greater importance of the
feature. The number of features was determined by repeated

iterations based on the accuracy of the model on the validation
set, while keeping the number of features as small as possible.
Finally, 6 features, namely Kurtosis, 135dr_RLNonUni,
Horzl_GLevNonU, 135dr_GLevNonU, S(4,4)Entropy, and S
(0,5)SumEntrp, with the largest importance coefficients
were selected.

Model Development

We used a multilayer perceptron algorithm (the MLP Classifier
function in scikit-learn) to develop the classification model. The
model parameters were the following: ‘activation” = ‘relu’, and
‘solver’ = ‘lbfgs’, ‘learning_rate’ = ‘constant’ and
‘hidden_layer_sizes’ = ‘(229),. The most important parameter
was ‘hidden_layer_sizes’, which determines the number of
hidden layers and the number of nodes in each hidden layer.
In this work, we included only one hidden layer, which consisted
of 229 nodes. The number of nodes was optimized by repeated
iterations to achieve optimal accuracy on the validation set.

Statistical Analysis

Univariate analyses were performed with SPSS version 22 (SPSS
Inc.). In the training set, the continuous variables (age, tumor
size) between low-grade and high-grade groups were analyzed
with the Student’s ¢ test or the Mann-Whitney U test. The Chi-
squared test was used to analyze the categorical variables
(gender) between the two groups. A p value less than 0.05 was
considered statistically significant.

RESULTS

Demographic Analysis

The baseline characteristics of the training and validation sets are
presented in Table 1. The training set consisted of 70 patients
with pathologically proven ccRCC lesions (low-grade ccRCCs: 3
grade I lesions and 40 grade II lesions; high-grade ccRCCs: 23
grade III lesions and 4 grade IV lesions). The validation set
consisted of 1 grade I lesion, 17 grade II lesions, 9 grade III
lesions, and 2 grade IV lesions. In the training set, the mean
ages * standard deviations of the low-grade and high-grade
subgroups were 53.5 £ 11.5 years and 57.1 + 10.9 years,
respectively. No statistically significant differences were found
for gender and age distribution between the low-grade and high-
grade ccRCC groups (p = 0.751 and 0.124, respectively). The
average tumor sizes were 4.0 cm and 6.1 cm, respectively, in the
low-grade and high-grade subgroups, and the difference was
statistically significant (p<0.001).

MRI Texture Analysis and Feature
Selection
The MRI images of 99 ccRCC tumors were used to extract 257
texture features with the MaZda software package. The features
included 7 histogram features, 220 gray co-occurrence matrix
features, 20 run-length matrix features, 5 gradient features, and 5
autoregressive model features.

The ICC ranges of the histogram features, gray level co-
occurrence matrix features, run-length matrix features, gradient
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TABLE 1 | Analysis of baseline data from patients with ccRCCs.

Characteristic Low-grade group High-grade group Statistics P value
Patients (n) 61 38 - -
Age (mean + SD, years) 535+ 115 57.1+£10.9 -1.622 0.124
Gender 0.1 0.751
Male (n) 42 25

Female (n) 19 13

Tumor size (mean + SD, cm) 40+21 6.1+29 -3.869 <0.001

features, and autoregressive model features were (0.968, 0.998),
(0.828, 0.996), (0.880, 0.997), (0.934, 0.986), and (0.863,
0.984), respectively.

Upon obtaining stable texture features, we applied the
RobustScale method to standardize the feature values in the
training set, and we then carried out a logistic transformation on
them to minimize the negative impact of outliers on the model
development (see Materials and Methods for details). The
same formulas were archived and later applied to the
validation set. The 257 processed features were input into a
random forest model and fitted on the training dataset, while the
hyperparameters of the random forest model were optimized
with the grid search method.

The model assigned an importance coefficient to each feature.
The value of the coefficient represents the importance of the
feature. A set of top-ranked probes was selected to develop the
MLP model and to optimize the hyperparameters to achieve
the highest accuracy in the validation set. With the optimized
hyperparameters, the number of features was updated with the
new fitting model. This iteration was repeated manually to obtain
a minimal set of features without appreciably sacrificing the
accuracy. In the final model, 6 texture features were selected for
modeling. The heatmap of the 6 selected features is shown in

Figure 1 for the training set. Figure 1 also shows that the low-
grade and high-grade ccRCCs are approximately clustered into
two separate groups, demonstrating the rationality of the
selected features.

Model Development

A multi-layer perceptron algorithm was used for developing the
prediction classifier. The final model has a three-layer structure:
an input layer, a hidden layer, and an output layer (see Figure 2).
The input layer consists of 6 nodes, corresponding to the 6
texture features, and the output layer consists of 2 nodes,
corresponding to the low-grade and high-grade groups. The
hidden layer has 229 nodes in the final model.

Model Validation

The optimized model was evaluated in the validation set. The
predictive indicators of the model in the training set and the
validation set are shown in Table 2. The accuracy was 95.7% and
86.2%, respectively, in the training set and the validation set. The
AUC values were 0.997 and 0.758, respectively, in the two sets
(Figure 3). In the training set, two low-grade tumors were
predicted as high-grade, and one high-grade tumor was
incorrectly classified (Figure 1). In the validation set, only one

FIGURE 1 | Prediction result and the heatmap of the selected 6 features in the training set along the clustering results of the samples and the features.
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FIGURE 2 | The topological structure of the 3-layer perceptron classifier.
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TABLE 2 | Performance of the MLP classifier in the training and validation sets.

AUC ACC SEN SPE PPV NPV
Training set 0.997 0.957 96.30% 95.30% 92.90% 97.60%
Validation set 0.758 0.862 72.70% 94.40% 88.90% 85.00%

low-grade and three high-grade tumors were misclassified
(Figure 4). Figure 5 shows that the misclassified low-grade
tumors show higher similarities with the high-grade tumors
and that, similarly, the misclassified high-grade tumors also
show a higher similarity with the low-grade tumors. This result
suggests that the selected texture features might be inadequate
for discriminating these samples.

Figure 5 shows the distribution of the probabilities predicted
by the MLP model in the validation set. The prediction
probability of the model’s prediction results for the 24/29
samples of the validation set is greater than 0.9, which
indicates that the model is highly confident in the prediction
result and is relatively robust.

DISCUSSION

In this study, we evaluated the applicability of a machine learning
method based on MRI textures for the grade classification of
ccRCCs. A three-layer MLP classifier using 6 features from MRI
texture analysis exhibited satisfactory, reproducible, and reliable

performance in discriminating the high-grade ccRCCs from the
low-grade ones, and it outperformed classifiers presented in
previous studies (8, 10, 13).

We adopted the latest WHO/ISUP grading system for renal
cell carcinoma as the classifying criterion. However, most of the
previous studies on the prediction of nuclear grading of ccRCC
by texture analysis have been based on the Fuhrman
classification system, which has some inevitable inadequacies,
such as interpretation difficulties and poor reproducibility in
clinical applications (10, 14). Besides the high application value
for ccRCC, the WHO/ISUP nuclear grading is also a reliable
prognosis indicator of patients with ccRCC (15).

In this study, we attempted to predict the nuclear
classification of ccRCCs by quantitative analysis based on the
texture features of MRI images. However, in current clinical
practice, radiologists estimate the degree of aggressiveness of
renal carcinoma based mainly on radiological findings (16, 17).
For example, Pedrosa et al. found that some MRI features, which
include both qualitative and semiquantitative parameters, can
differentiate low-grade and high-grade ccRCCs (18). However,
the classification is subjective and depends on the radiologist’s
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FIGURE 3 | The receiver operating characteristics curves of the classifier applied to the training set and validation set. The area under curve is 0.997 in the training
dataset and 0.758 in the validation set.
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experience. Quantitative MRI texture analysis is now playing an
increasingly important role in the clinical diagnosis and
treatment of tumors, and it can be used to distinguish the
pathological types and grades of tumors, to evaluate prognosis,
and to predict the therapeutic response of tumors (19-21).
Compared with CT examinations, MRI has multiple
advantages, including multi-parameter imaging, high soft tissue
resolution, high signal-to-noise ratio, and freedom from ionizing
radiation. The texture features of multiple sequence images can
be obtained with MRI, and this provides more feature space for
developing imaging markers for tumors. Therefore, MRI texture
analysis is a useful and promising method for non-invasive
prediction of the ISUP nuclear grade of ccRCCs.

Multiple machine learning models have been successfully
constructed to classify low-grade and high-grade ccRCCs (10,
13, 22). After comparing the performance of different models, we
obtained an optimal prediction result with MLP. The AUC value
of the classifier is 0.997 in the training set, indicating a good
performance of the MLP model. Bektas et al. developed machine
learning models to predict the Fuhrman nuclear grade of ccRCC
based on quantitative CT texture analysis (22). They achieved the
best prediction result using an MLP model with an AUC of 0.86.
We further validated the application value of our model by
creating a validation set to assess the accuracy and stability of the
model. Satisfactory results were obtained, with an AUC of 0.758
in the validation set.

Most studies on machine learning-based CT or MRI texture
analysis have not validated the developed models for predicting
the nuclear grade of ccRCC. A comprehensive review of the
radiomics literature on renal mass characterization in terms of
validation strategies did not reveal any validation performed in
19 (46%) of the 41 papers reviewed (23). In other words, only
slightly more than half of the studies described at least one
validation method, and these were predominantly internal
validation techniques. The wide clinical use of radiomics will
require proper validation strategies for developing machine
learning models. Compared with previous studies (24, 25), an
independent and prospective test set is needed for further
validation of our model in the future.

The current study has some inevitable limitations. One is that it
is a single-center and retrospective study, so selectivity bias may
exist. Another is the small sample size, which may lead to overfitting
and low repeatability of the prediction results. Therefore, further
expansion of the sample size and cross-verification of the model at
multiple centers are needed. There is a slight imbalance in our
dataset where the number of low-grade patients is larger than the
number of high-grade patients. This issue could be addressed by the
SMOTE algorithm (26). However, due the limited sample size we
did not employ the method. Furthermore, the ratio between the
sample size of the low-grade and that of the high-grade is
approximately 3:2 where the class imbalance problem is not
critical to the model performance. A third limitation is that the
texture features extracted in this study are based on the two-
dimensional ROI of MR images at the maximum level of the
tumor, which may be biased by layer selection. Ideally, three-
dimensional radiomic features of the whole lesion should be

extracted to obtain comprehensive tumor features. A fourth
limitation is that manual segmentation of MR images may be
affected by the consistency between observers; however, this
method is still widely used in texture analysis and remains the
“gold standard” (27). Here, the stability of the texture features was
evaluated by segmenting the lesions of all patients three times.
Tumor size is generally associated with the tumor grade and
therefore an important factor in tumor grading system. This
information has been encoded in the feature “dr135RLNonUni”
(Spearman’s p = 0.945 between the tumor diameter and
dr135RLNonUni) and therefore it was implicitly used in the final
model. The value of clinical factors other than radiomics signatures
will also be investigated in predicting the grades in future study.

CONCLUSIONS

An MLP model was successfully developed to classify the grades
of clear-cell renal cell carcinomas, thereby demonstrating that
ML-based MRI texture classifiers can be used preoperatively as a
complementary tool to predict the ISUP grade of ccRCCs. This
model can make a potential contribution to personalized
treatment for patients with ccRCCs.
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Objective: This study aims to explore the value of magnetic resonance imaging (MRI) and
texture analysis (TA) in the differential diagnosis of ovarian granulosa cell tumors (OGCTSs)
and thecoma-fibrothecoma (OTCA-FTCA).

Methods: The preoperative MRI data of 32 patients with OTCA-FTCA and 14 patients
with OGCTs, confirmed by pathological examination between June 2013 and August
2020, were retrospectively analyzed. The texture data of three-dimensional MRI scans
based on T2-weighted imaging and clinical and conventional MRI features were analyzed
and compared between tumor types. The Mann-Whitney U-test, ;f test/Fisher exact test,
and multivariate logistic regression analysis were used to identify differences between the
OTCA-FTCA and OGCTs groups. A regression model was established by using binary
logistic regression analysis, and receiver operating characteristic curve analysis was
carried out to evaluate diagnostic efficiency.

Results: A multivariate analysis of the imaging-based features combined with TA revealed
that intratumoral hemorrhage (OR = 0.037), log-sigma-20mm-3D_glszm_SmallAreaEmphasis
(OR = 4.40), and log-sigma-2-0mm-3D_glszm_SmallAreaHighGraylLevelEmphasis (OR =
1.034) were independent features for discriminating between OGCTs and OTCA-FTCA (P <
0.05). An imaging-based diagnosis model, TA-based model, and combination model were
established. The areas under the curve of the three models in predicting OGCTs and OTCA-
FTCA were 0.935, 0.944, and 0.969, respectively; the sensitivities were 93.75, 93.75, and
96.87%, respectively; and the specificities were 85.71, 92.86, and 92.86%, respectively. The
Delong test indicated that the combination model had the highest predictive efficiency (P <
0.05), with no significant difference among the three models in differentiating between OGCTs
and OTCA-FTCA (P > 0.05).

Conclusions: Compared with OTCA-FTCA, intratumoral hemorrhage may be
characteristic MR imaging features with OGCTs. Texture features can reflect the
microheterogeneity of OGCTs and OTCA-FTCA. MRI signs and texture features can
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Lietal Features of OGCTs and OTCA-FTCA
help differentiate between OGCTs and OTCA-FTCA and provide a more comprehensive
and accurate basis for clinical treatment.

Keywords: granulosa cell tumor, fibrothecoma, thecoma, sex cord stromal tumors, magnetic resonance imaging,
texture analysis

INTRODUCTION has been widely adopted in the differential diagnosis of tumors in

Ovarian sex cord stromal tumors are rare tumors that account
for approximately 7% of all ovarian tumors. According to the
2014 World Health Organization (WHO) ovarian tumor
histological classification, these tumors are divided into pure
stromal tumors, pure sex cord tumors, luteinized thecoma
associated with sclerosing peritonitis, and mixed sex cord
stromal tumors. Pure stromal tumors include three subtypes:
fibroma, cellular fibroma, and thecoma; these are mainly
distinguished based on whether they comprise theca cells,
lutein cells, fibroblasts, and fibrocytes. This group of tumors
has overlapping features in multidirectional differentiation
through histology, which makes it difficult to obtain a
pathological diagnosis in some cases. Therefore, these tumors
are traditionally named ovarian thecoma-fibrothecoma (OTCA-
FTCA) (1, 2).

OTCA-FTCA and ovarian granulosa cell tumors (OGCTs)
are the most common sex cord stromal tumors and have a low
incidence relative to other ovarian tumors. These tumors are
usually discovered by chance during gynecological examinations
or routine physical examinations as the symptoms are
nonspecific. OTCA-FTCA accounts for 0.5-1.0% of ovarian
tumors, is generally benign, and has an excellent prognosis
after resection, but a small proportion of these tumors (1.0-
5.0%) are malignant (3, 4). OGCTs are rare sex cord stromal
tumors with a low malignant potential and account for only 5%
of all malignant ovarian tumors, with adult and juvenile forms of
subtypes. OGCT's have a low degree of malignancy, show growth
patterns of benign tumors, and have potentially malignant
behaviors, including local invasion, recurrence, and metastasis
(5,6). OTCA-FTCA is mainly found in menopausal women, and
less than 10% occur before age 30 (7, 8); however, OGCTs are
more common in postmenopausal women, and the juvenile type
is rare and typically occurs before 30 years of age. Sometimes
these tumors share similar clinical manifestations (such as
elevated estrogen levels leading to endometrial hyperplasia and
irregular vaginal bleeding). These tumors can have similar
imaging findings, such as combined with cystic degeneration,
edema, and hemorrhage, which may cause misdiagnosis in
radiography and inappropriate choice of treatment of
clinicians (9-11). Therefore, the preoperative diagnosis of
OTCA-FTCA and OGCTs is particularly important.

Magnetic resonance imaging (MRI) has high resolution in
soft tissues that clearly reveal the lesion characteristics,
relationship between the tumor and surrounding tissues, and
the status of lymph node disease (9). In particular, the
semiquantitative parameters deprived from diffusion-weighted
imaging (DWI) have gradually become one of the important
tools for evaluating ovarian tumors (12). Texture analysis (TA)

recent years and is considered to be an effective means to assess
tumor heterogeneity. Not only MRI-based texture analysis but
also CT texture-based analysis of the whole tumor has
demonstrated high sensitivity and specificity for the
characterization of ovarian tumors and may assist in
characterizing the differences in ovarian tumor patients. The
application of MRI-based texture features combined with
conventional MRI features may assist in improving the
differentiation of ovarian tumors. These findings, in turn, may
guide diagnostic protocols for future patients and can help
radiologists make appropriate follow-up decisions (3, 4, 7).

Therefore, the purpose of this study was to identify the best
features for distinguishing between OTCA-FTCA and OGCTs
through conventional MRI, TA, and the combination of the two
diagnostic methods to improve the accuracy of preoperative
imaging-based diagnoses and help clinicians choose
appropriate treatment methods.

MATERIALS AND METHODS

Clinical Information

This retrospective study was approved by the institutional review
board of The First Affiliated Hospital of University of Science
and Technology of China (USTC), and the requirement of
written informed consent was waived. Between June 2013 and
August 2020, 1,586 patients with clinically suspected adnexal
disease who underwent 3.0-T MR examinations were reviewed
through the picture archiving and communication system at the
First Affiliated Hospital of the USTC. A total of 46 patients with
histologically proven OGCTs (n = 14, 15-71 years of age) and
OTCA-FTCA (n = 32, 24-94 years of age) were included in this
study. The inclusion criteria were as follows: (1) surgically
diagnosed tumor with a known pathological type (according to
the 2014 WHO classification of ovarian tumors), (2) no
intervention before the MRI examination, (3) lesion that could
be measured and segmented on MRI, and (4) signed informed
consent form provided before the examination.

MRI Examination

MRI was performed using a 3.0-T system (Signa HDxT, GE
Healthcare) with an eight-channel phased array coil. The routine
MRI protocols used to assess the pelvic masses included axial T1-
weighted imaging (T1WI), axial/sagittal T2-weighted imaging
(T2WI), axial fat-suppressed T2WI (FS T2WI), DWI (b value =
0, 1,000 s/mm?), and multiple phases of contrast-enhanced
(LAVA-FLEX) MRI For the axial images, the transverse plane
was perpendicular to the long axis of the uterine body; for the
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sagittal images, the longitudinal plane was parallel to the main
body of the uterus. If contraindications were excluded, the
patients were often given an intramuscular injection of 20 mg
scopolamine 15 min before the examination to suppress MRI
motion artefacts caused by peristalsis. Contrast-enhanced pelvic
imaging was acquired at the arterial, venous, and delayed phases
of contrast medium enhancement in axial planes, which were
acquired at 25, 60, and 120 s after the intravenous injection of 0.1
mmol/kg gadodiamide (Omniscan, GE Healthcare) using an
Ulrich power injector. Some of the scanning sequences and
parameters are shown in Table 1.

Radiological Evaluation

Two radiologists (YuC and BS, with 10 and 7 years of experience
in gynecological imaging, respectively) who were blinded to the
histological results independently analyzed the MRI data of each
participant, and discrepancies were resolved by consensus. The
following MRI features were recorded and analyzed for the two
groups: size (the maximum diameter of the tumor and the
shortest perpendicular diameter measured on T2WI, the
maximum upper and lower diameter of the tumor measured
on sagittal T2WI, and the average size of the aboved diameters),
endometrial hyperplasia (endometrium thickness greater than 5
mm after menopause and greater than 16 mm in premenopausal
women) (12), apparent diffusion coefficient (ADC) value (10°
mm?/s) [mean value obtained from three measurements of a
region of interest (ROI) manually placed in the solid components
of the tumors and myometrium, and the calculated ratio; the ROI
was drawn using GE AW4.5 workstation Functool-MADC
software, and attempts were made to avoid tumor necrosis and
cystic areas], enhancement degree, T2WI signal, and DWI signal
of the solid component of the tumors (hypointense, isointense,
or hyperintense compared with the myometrium at the same
level), location (left or right), degree of cystic components
(graded as 0-4° grade 0 = no cystic change; grade 1 = area
with cystic changes was <25%; 25% < grade 2 < 50%; 50% < grade
3 < 75%; and 75% < grade 4), cystic form (no cyst, mainly small
sac, mainly large and mixed; small sac <1.0 cm, large sac >1.0 cm,
or a mix of both), intratumoral hemorrhage (present or absent),
and age (years, mean * standard deviation, SD).

Texture Feature Extraction

The images of OTCA-FTCA and OGCTs were manually
segmented, and volumes were extracted using ITK Snap software
(3.8.0, http://www.itksnap.org). ROIs were delineated around the
tumor boundary for each section by two radiologists (YuC and BS).

TABLE 1 | Partial list of MRI parameters.

After tumor segmentation, AK software (Analysis Kit Version: 3.2.0;
GE Healthcare) was used for texture feature extraction, and 1,316
features, such as the mean, entropy, energy, skewness, kurtosis, and
standard deviation, were obtained in this study.

Statistical Analysis

Continuous and categorical variables were compared using the ¢-
test and jy*/Fisher’s exact test, respectively. Continuous variables
are expressed as the mean + standard deviation, and categorical
variables are expressed as the frequency and percentage (%).
Continuous variables were first tested for normality to
understand the data distribution, and the variables were tested
as follows: (1) an independent-sample ¢-test was used to compare
variables both conforming to a normal distribution, and (2) the
Mann-Whitney U-test was used to compare variables
conforming to a skewed distribution and variables conforming
to a skewed distribution with those conforming to a normal
distribution. Continuous and categorical variables showing
significant differences were analyzed by multivariate logistic
regression analysis with the forward step method to screen for
independent discriminant features, which were used to construct
the discriminating model. Receiver operating characteristic
(ROC) curve and area under the curve (AUC) analyses were
performed with MedCalc (version 19.5.3, https://www.medcalc.
org/) to determine the overall diagnostic performance of the
radiographic model, texture model, and combined model. SPSS
26.0 software (version 20.0, IBM, Armonk, NY, USA) was used
for statistical analysis, and P <0.05 was considered statistically
significant. The intraclass correlation coefficient (ICC) was used
to evaluate the consistency between evaluator 1 and evaluator 2,
and an ICC between 0.81 and 1.00 indicated good agreement.

RESULTS

Pathological, Clinical, and Imaging
Findings

The pathological diagnoses of all OTCA-FTCA and OGCT's were
made by a pathologist (YuC, with 8 years of experience in
gynecological tumors) according to the 2014 WHO ovarian sex
cord stromal tumor histological classification. Finally, a total of 32
patients with OTCA-FTCA (mean age, 52.93 + 12.39 years) and 14
patients with OGCT's (mean age, 49.93 + 19.19 years) were enrolled in
this study. The 14 patients with OGCTs included 12 adult and two
juvenile patients, with eight patients with tumors in the right ovary,

SEQUENCE TE (ms) TR (ms) Freq x phase
FS T2wi 72.5 5,000 320 x 256
T2WI 72.5 4,600 320 x 256
Osag T2WI 72 4,500 320 x 320
TIWI 7.5 500 352 x 192
DWI (b = 0, 1,000 s/mm?) / 5,000 96 x 130
Oax LAVA-FLEX 1.4 5.8 320 x 224
Osag LAVA-FLEX 1.3 6.8 268 x 224

Nex FOov Slice thickness Interval Flip angle
2 24 x 24 6 2 90°
2 24 x 24 6 2 90°
2 28 x 28 4 1 90°
2 32 x 32 6 2 90°
6 32 x 32 6 2 90°
1 34 x 31 4 0 156°
1 28 x 25 4 0 15°
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six patients with tumors in the left ovary, and three patients with
endometrial hyperplasia (21%). There were 11 patients with cystic-
solid changes (two small sacs, one large sac, and eight mixed types)
(Figure 1) and 11 patients with hemorrhage signal (76%) in the
tumor (Figure 2); the enhancement degree of the solid components
of the tumor was mainly mild to moderate (eight patients with mild
enhancement and six patients with moderate enhancement), with no
patients with marked enhancement. Among the 32 patients with
OTCA-FTCA, 23 patients had tumors in the right ovary, nine
patients had tumors in the left ovary, and three patients had
endometrial hyperplasia (9%); 18 solid masses (Figure 3) were
observed, with 14 showing mainly cystic-solid changes (one small
cyst, 10 large cysts, and three mixed). There were five patients (16%)
with hemorrhage signals in the tumor. As shown in Table 2, the
following four MRI-based characteristics were significantly different
between the OGCTs and OTCA-FTCA groups: (1) the mean ADC
value of the solid component (z = -1.982, P = 0.047), (2) the degree of
enhancement of the solid component (*19.084, P = 0.003), (3) the
cystic form (Fisher/0.006, P = 0.008), and (4) the presence of
intratumoral hemorrhage (Fisher/0.000, P=0.000).

Diagnostic Performance of the Texture
Features

Least absolute shrinkage and selection operator (Lasso)
regression was performed in R (3.6.1, http://www.r-probject.

org) to reduce the dimensionality of the features and filter and
remove redundancy parameters (|r| > 0.8) to reduce the impact
of data overfitting. First, the Mann-Whitney U-test was applied
to the features to explore whether the features were significantly
different between the two groups, and 123 features with p <0.05
were retained. Second, univariate logistic regression was applied
to explore whether the features were discriminative between the
two groups, and 78 features with p <0.05 were retained. Third,
minimum redundancy and maximum correlation were applied
to eliminate the redundant features and retain the features that
were highly correlated with the label, and 10 features were
retained. Then, the retained features were enrolled in backward
stepwise multivariate logistic regression, and the final model was
constructed. The explanation of the texture analysis features is
shown in Table 3.

The ICC was used to evaluate the consistency between
radiologist 1 and radiologist 2 and was 0.81-1.00 (P < 0.001),
indicating good consistency. Finally, the average of the two sets
of data was used as the new texture data for statistical analysis. As
shown in Table 4, the following six texture features were
significantly different between the OGCTs and OTCA-FTCA
groups: (1) log-sigma-2-0-mm-3D_glszm_SmallAreaEmphasis
(SAE) (z = -4.201, P = 0.000), (2) log-sigma-2-0-mm-
3D_glszm_SmallAreaHighGrayLevelEmphasis (z = -3.187,
P = 0.340), (3) log-sigma-3-0-mm-3D_glcm_InverseVariance

tumor layer by layer.

FIGURE 1 | A 61-year-old female patient with an ovarian granulosa cell tumor. (A) Axial T2WI revealed a cystic solid mass in the right adnexal region that manifested
with a “spongy” or “honeycomb” change (white arrow). (B) Sagittal T2WI showed thickening of the endometrium to a thickness of approximately 1.9 cm. (C) Axial
T1WI revealed a cystic solid mass with a hypo-isointense signal. (D) On contrast-enhanced fat-suppressed T1WI, the solid components (red arrow) of the lesion
showed mild and moderate enhancement, with a region resembling the myometrium. (E) On DWI-MRI (b = 1,000 s/mm?), the solid part of the lesion appeared
hyperintense (yellow arrow), and the cystic part appeared hypointense. (F) The apparent diffusion coefficient (ADC) map showed that the average ADC value of the
diffuse high-signal area was approximately 0.7 x 10°® mm?/s. (G) Hematoxylin and eosin (H&E) staining (x100) showed that the tumor cells appeared as large
islands, diffusely distributed in nests and rich in interstitial separation and blood vessels. (H) The texture analysis target area was delineated throughout the whole
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throughout the whole tumor layer by layer.

(z =-3.342, P=0.001), (4) wavelet-LLH_glem_MCC (z = -4.106, P =
0.001), (5) wavelet-HLH_glszm_SmallAreaHighGrayLevelEmphasis (z
= -2984, P = 0.003), and (6) wavelet-HLL_glszm LowGrayLeve
1ZoneEmphasis (z = -3.103, P = 0.002).

Diagnostic Performance of the Predictive
Models Based on MRI Characteristics,
Texture Features, and Combined Features
The variables with significant differences in the univariate analysis
were included in the multivariate logistic regression analysis for
screening. As shown in Table 5, the overall imaging-based diagnosis
(IBD) and overall TA prediction models based on MRI
characteristics and texture features were established, respectively:
(Y-IBD) = -10.04 + 6.67 x ADC (average) + 4.67 x enhancement
degree (solid) (mild = 0, moderate = 1, marked = 3) - 4.63 x
intratumoral hemorrhage (present = 0, absent = 1), and (Y-TA) =
-11.39 + 33.18 x log-sigma-2-3D_glszm_SmallAreaEmphasis (x + s)
- 0.03 x log- sigma-2-O0mm-3D_glszm_SmallAreaHighGray
LevelEmphasis (x + s). Three IBD and two TA predictive
factors were simultaneously included in the multivariate
logistic regression analysis, and the combined prediction model
was established: (Y-Combine) = -12.33 + 30.76 x log-sigma-
20mm-3D_glszm_SmallAreaEmphasis (x + s) - 0.03 x log-
sigma-2-0mm-3D_glszm_SmallAreaHighGrayLevelEmphasis
(x £s) + 3.31 x intratumoral hemorrhage (present = 0, absent =

FIGURE 2 | A 58-year-old female patient with an ovarian granulosa cell tumor. (A) Axial T2WI revealed a well-defined cystic solid mass in the left adnexal region,
with fluid—fluid levels (hemorrhagic content, white arrow). (B) Sagittal T2WI showed no thickening of the endometrium. (C) Axial T1WI revealed a cystic solid mass
with a hypo-isointense signal. (D) On contrast-enhanced fat-suppressed T1WI, the solid components (red arrow) of the lesion showed mild enhancement. (E) On
DWI-MRI (b = 1,000 s/mm?), the solid part of the lesion (yellow arrow) appeared hyperintense. (F) The apparent diffusion coefficient (ADC) map showed that the
average ADC value of the diffuse high-signal area was approximately 1.1 x 10® mm?/s. (G) Hematoxylin and eosin (H&E) staining (x100) showed that the tumor cells
were solid tubular structures, and the tubules were composed of uniform cells containing Call-Exner bodies. (H) The texture analysis target area was delineated

1). The three prediction models established in this study could
accurately predict OGCTs and OTCA-FTCA (P < 0.05). The
results of the DeLong test showed that the efficacies of Y-IBD, Y-
TA, and Y-Combine were not significantly different (P > 0.05;
Figures 4, 5 and Tables 5, 6).

DISCUSSION

OTCA-FTCA and OGCTs are the most common sex cord stromal
tumors and have a low incidence relative to other ovarian tumors.
The radiological knowledge of those rare ovarian tumors is still
limited in the reported literature; furthermore, the imaging findings
of the two entities are similar. Herein we performed a retrospective
review of the MRI findings of 32 patients with OTCA-FTCA and 14
patients with OGCTs in this study at our single institution within 7
years. To the best of our knowledge, this is the first study to describe
the detailed MRI sign and TA characteristic in this samples.

In our study, the clinical characteristics [age (years), size
(maximum), size (average), menopausal status, presence of
endometrial hyperplasia, and location] were compared, and there
were no significant differences between the two tumors, indicating
that they have similar clinical characteristics, as shown in Table 2.
Combined with literature reports, we found the following: (1) The
incidence of intratumoral hemorrhage in this group of OGCTs was
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analysis target area was delineated throughout the whole tumor layer by layer.

as high as 76%, which is higher than that reported in the literature
(13). Intratumoral hemorrhage mainly manifested as high signal on
T1WI and high signal or low signal on T2WI, and the fluid—fluid
level due to hemorrhage could be seen in some lesions. In
comparison, the incidence of intratumoral hemorrhage in
OTCA-FTCA was only 16% (5/32). The multivariate logistic
regression analysis found that the presence of intratumoral
hemorrhage could help diagnose OGCTs (OR = 0.12, 95% CI:
0.001-0.284), which is consistent with previous reports that
intratumoral hemorrhage is a typical feature of these tumors (14);
(2) OTCA-FTCA is composed of theca cells, lutein cells, and
fibroblasts. This group of tumors is prone to secondary
degenerative changes, such as tumor stromal edema and
mucinous degeneration, which may lead to high ADC values
(150 + 032 x 10> mm?s). In contrast, OGCTs are low-grade
malignant tumors that histologically show diftuse, island, beam,
follicular, and sarcoma-like growth patterns. These patterns often
exist mixed, and the relatively tight arrangement results in more
restricted water molecule diffusion with lower ADC values (1.27 +
037 x 10> mm?s) than that of OTCA-FTCA. Therefore, the
average ADC value was significantly different between the two
tumors (Z=-1.982, P=0.047) (15). When the ADC value was <1.34
x 10° mm?/s, its sensitivity for diagnosing OGCTs was 71.34%, and
the specificity was 65.62% (AUC = 0.685, 95% CI: 0.532 to 0.814,

FIGURE 3 | A 65-year-old female patient with right ovarian thecoma-fibrothecoma. (A) Axial T2WI revealed a solid mass in the right adnexal region (white arrow),
showing mainly a low-signal mass with a semiarc shape and high signal at the left front edge. (B) Sagittal T2WI showed thickening of the endometrium to a
thickness of approximately 1.2 cm. (C) Axial TIWI revealed a solid mass with hypo-isointense signal (white arrow). (D) On contrast-enhanced fat-suppressed T1WI,
the solid components (red arrow) of the lesion showed mild enhancement. (E) On DWI-MRI (b = 1,000 s/mm?), the solid part of the lesion of the left front edge
appeared hyperintense (yellow arrow). (F) The apparent diffusion coefficient (ADC) map showed that the average ADC value of the diffuse high-signal area was
approximately 1.78 x 10°° mm?/s. (G) Hematoxylin and eosin (H&E) staining (x100) showed that the tumor was composed of spindle cells and collagen fibers
arranged in a mat-like pattern with interwoven bundles, and hyaline degeneration of fibrous tissue bands and intercellular edema were observed to varying degrees.
The tumor cell nucleus was fusiform to oval, with sparse cytoplasm and containing a small amount of lipids; the mitotic index was <3/10 HPF. (H) The texture

P = 0.048); (3) In our group, 94% (30/32) of the OTCA-FTCA
tumors were mildly enhanced, 6% (2/32) were moderately
enhanced, and none showed marked enhancement. In
comparison, 57% (8/14) of the OGCTs were mildly enhanced,
43% were moderately enhanced, and none showed marked
enhancement. There was a significant difference in the degree of
enhancement between the two tumor types (OR = 0.89, 95% CI:
0.015-0.527). It is possible that OTCA-FTCA contains fibrous
components, resulting in a lower blood supply and lower
enhancement than OGCTs. This is also consistent with previous
reports that OTCA-FTCA tumors have a low blood supply,
resulting in mild enhancement on MRI (16-18); (4) OGCTs are
mostly solid or cystic-solid, and it has been reported in the literature
that a “honeycomb” or “sponge” cyst is the characteristic imaging
manifestation (19). OTCA-FTCA is often prone to secondary cystic
transformation when the tumor volume is large. Some scholars have
reported that the cystic transformation rate is 76% (19/25) (20), so
the tumor often appears as a cystic-solid or cystic mass, which may
be preoperatively misdiagnosed as OGCT's or other ovarian tumor.
Other scholars have divided these tumors into solid, cystic, and
cystic-solid masses according to the degree of the cystic component.
Cystic-solid masses are divided into intratumoral cysts and
extratumoral cysts according to whether the cysts are located in
the tumor. Intratumoral cysts are divided into peripheral, central,
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TABLE 2 | Details of the clinical and MR imaging-based characteristics of 14 histologically proven OGCTs and OTCA-FTCA in 32 patients.

Characteristics Category OGCTs (n = 14)
Age (years) 49.93 + 19.1
Size (maximum) / 6.65 + 4.60
Size (average) / 6.47 + 4.74
Mean ADC (10° s/mm?) / 1.27 +0.37
ADC (10% s/mm?, ratio) / 0.93 + 0.24
Menopause Postmenopausal 10 (71%)
Premenopausal 4 (29%)
Endometrial hyperplasia Present 3 (21%)
Absent 11 (79%)
T2WI intensity (solid) Hypointense 2 (14%)
Isointense 6 (43%)
Hyperintense 5 (36%)
Mixed signal 1(7%)
Location Right 8 (567%)
Left 6 (43%)
DWI intensity (solid) Isointense 1(7%)
Hyperintense 1(7%)
Mixed 12 (86%)
Enhancement degree (solid) Mild 8 (57%)
Moderate 6 (43%)
Marked 0 (0%)
Degree of cystic components None 3 (21%)
<25% 4 (29%)
25-50% 1(7%)
50%~75% 1(7%)
>75% 5 (36%)
Cystic form Small cyst 2 (14%)
Large cyst 1(7%)
Mixed 8 (57%)
Intratumoral hemorrhage Present 11 (76%)
Absent 3 (24%)

9

OTCA-FTCA (n = 32) 2/Fisher/z value P-value
52.93 + 12.39 2/-0.478 0.632
8.08 + 5.33 2/-0.967 0.333
7.96 + 5.18 7/-1.146 0.252
1.50 + 0.32 2/-1.982 0.047
1.05 £ 0.27 2/-1.695 0.090
21 (66%) £°/0.149 0.699
11 (34%)
3 (9%) Fisher/0.350 0.264
29 (91%)
12 (38%) Fisher/0.102 0.084
11 (34%)
3 (9%)
6 (19%)
23 (72%) Fisher/0.495 0.327
9 (28%)
5 (16%) Fisher/0.175 0.149
9 (28%)
18 (56%)
30 (94%) 2°/9.084 0.003
2 (6%)
0 (0%)
18 (56%) Fisher/0.149 0.229
4 (13%)
3 (9%)
1 (3%)
6 (19%)
1 (3%) Fisher/0.006 0.008
10 (31%)
3 (9%)
5 (16%) Fisher/0.000 0.000
27 (84%)

and diffuse types according to their location. The study showed that
peritumoral cysts are a characteristic MRI sign (21). In our study,
the types of cysts were divided into five degrees according to the
degree of cystic degeneration (no cyst: 0°, 0-25%: 1°, 25-50%: 2°,
50-75%: 3°, and greater than 75%: 4°), and the forms of cystic
transformation were divided into four forms (no cystic
transformation, small cyst, large cyst, and mixed). Between the
two tumor types, there was no significant difference in the degree of
cystic transformation (Fisher = 0.149, P = 0.229), but there was a
significant difference in the form of cystic transformation (Fisher =
0.006, P = 0.008), indicating that OGCTs mainly demonstrated
mixed cystic changes, while OTCA-FTCA predominantly exhibited
macrocystic changes. In this study, a weak correlation existed
between tumor size and the degree of cystic transformation in the
OGCTs group (Kendall’s tau-b = 0.618, P < 0.001), and no
correlation was observed in the OTCA-FTCA group (Kendall’s
tau-b = -0.025, P = 0.857). It is inconsistent with related reports (17)
and may be caused by the small sample size.

In the multivariate logistic regression analysis, the IBD model
established had an AUC of 0.935, and its sensitivity, specificity,
and Youden index were 85.71%, 93.75%, and 0.794 (95% CI:
0.822 to 0.987, P < 0.0001), respectively, so the significant
features, such as the mean ADC value, enhancement degree,
and presence of intratumoral hemorrhage, were important
predictors to distinguish between OGCTs and OTCA-FTCA.

TA is different from traditional empirical image analysis based
on observations with the naked eye. TA can provide a large amount

of imaging information that cannot be recognized by the naked eye
by quantitatively analyzing the grayscale information of medical
images, realizing the conversion from images to data, and
constructing labels to describe the details of the lesion features.
Thus, this information could be of value in helping clinicians
develop reasonable treatment strategies (22). In recent years, TA
has been regarded as an effective means to assess tumor
heterogeneity. This method can be used to evaluate the gray-level
intensity and position of the pixels within an image to derive texture
features that provide a measure of intralesional heterogeneity. TA
data are easy to obtain, and no additional imaging is required. In
addition, TA plays a relatively important role in evaluating clinical
curative effects and predicting prognosis. Many researchers have
conducted excellent research, especially with radiomics, in
predicting the development trends of tumor lesions (23, 24). The
TA in the present study is based on the T2WI sequence because
conventional T2WI can reveal the rich histopathological
characteristics of tumors, for example, by determining the water
content, degree of fibrotic change, necrosis, and hemorrhage (15).
As shown in Table 4, the univariate analysis demonstrated that
six texture features were significantly different between the
OGCTs and OTCA-FTCA groups (P < 0.05). Among the six
features, the log-sigma-2-0-mm-3D_glszm_SmallAreaEmphasis,
log-sigma-2-0-mm-3D_glszm_SmallAreaHighGrayLevel
Emphasis, and log-sigma-3-0-mm-3D_glcm_InverseVariance
were derived from the image transform type of Laplacian of
Gaussian. The wavelet-LLH_glem_MCC, wavelet-
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TABLE 3 | Explanation of the texture analysis features.

Image type Features

log-sigma-2-0-mm-3D glszm_SmallAreaEmphasis
sNo s piii)
i=1j=1"72

NZ

Feature explanation

Small area emphasis (SAE): SAE is a measure of the distribution of small size zones, with a
greater value indicative of much smaller size zones and more fine textures

glszm_SizeZoneNonUniformityNormalized SZNN measures the variability of size zone volumes throughout the image, with a lower value

N, P
= (500.1)%)

z

=

indicating more homogeneity among zone size volumes in the image. This is the normalized
version of the SZN formula

glszm_SmallAreaHighGrayLevelEmphasis SAHGLE measures the proportion in the image of the joint distribution of smaller size zones with

ZNi N5 plj? higher gray-level values
i=17=1
N,
log-sigma-3-0-mm-3D glem_InverseVariance Reflects the local variation of the image texture; so, if more uniformity was found in the different
No~1p,y (k) regions of the image texture, this indicates that the change is slower, the value will be larger, and
S K2 vice versa
wavelet-LLH glem_MCC Maximal correlation coefficient (MCC). The maximal correlation coefficient is a measure of
N p(i, k)p(, k) complexity of the texture and 0 < MCC < 1. In case of a flat region, each GLCM matrix has shape
2 plip, ) (1, 1), resulting in just 1 eigenvalue.
wavelet-HLH_ glszm_SmallAreaHighGrayLevelEmphasis Measures the proportion in the image of the joint distribution of smaller size zones with higher
ZN% s el gray-level values
i=17=1"F
N,
wavelet-HLL glszm_LowGraylLevelZoneEmphasis Measures the distribution of lower gray-level size zones, with a higher value indicating a greater
2’_\’? st1 plij) proportion of lower gray-level values and size zones in the image
i=17=1 7
N,
Ibp-3D-k glszm_ZonePercentage Measures the coarseness of the texture by taking the ratio of the number of zones and number of
& voxels in the region of interest (ROI). Values are in the range 1Np < ZP < 1, with higher values
N, indicating a larger portion of the ROI consisting of small zones (indicates a finer texture)
Ibp-3D-k firstorder_Kurtosis Kurtosis is a measure of the “peakedness” of the distribution of values in the image region of

W AEAXO-X*
o LX) - X

original_shape_Sphericity Sphericity

interest. A higher kurtosis implies that the mass of the distribution is concentrated towards the tail
VR VE—— (s) rather than towards the mean. A lower kurtosis implies the reverse: that the mass of the
distribution is concentrated towards a spike near the mean value

Sphericity is a measure of the roundness of the shape of the tumor region relative to a sphere. It

v/361\/?2 is a dimensionless measure, independent of scale and orientation. The value range is 0 <
A sphericity < 10 <sphericity < 1, where a value of 1 indicates a perfect sphere (a sphere has the

smallest possible surface area for a given volume, compared to other solids)

Reference: https://pyradiomics.readthedocs.io/en/latest/features.html.

HLH_glszm_SmallAreaHighGrayLevelEmphasis, and wavelet-
HLL_glszm_LowGrayLevelZoneEmphasis were derived from the
image transform type of wavelet. The features belong to the gray
level co-occurrence matrix (GLCM), and the gray level size zone matrix
can assess the second-order joint probability function and quantify gray
level zones in the image (25). A gray level zone is defined as the number
of connected voxels that share the same gray level intensity (26). In the
multivariate logistic regression analysis with the forward step method,
we found that two features from the image transform type of Laplacian
of Gaussian—log-sigma-2-0-mm-3D_glszm_SmallAreaEmphasis and

Log-sigma-20mm-3D_glszm_SmallAreaHighGrayLevelEmphasis—
are independent risk predictors for distinguishing between OGCT's and
OTCA-FTCA (P < 0.05). The Laplacian operator can highlight areas in
the image where the intensity changes rapidly. The log-sigma-2-0-mm-
3D_glszm_SmallAreaEmphasis and log-sigma-20mm-
3D_glszm_SmallAreaHighGrayLevelEmphasis describe the
distribution of small size zones and the proportion of the joint
distribution of smaller size zones with higher gray level values,
respectively (27). In our study, the log-sigma-2-0-mm-
3D_glszm_SmallAreaEmphasis value of OTCA-FTCA was

TABLE 4 | Results of the univariate analysis of texture features that were significantly different between the OGCTs and OTCA-FTCA groups.

Features OGCTs OTCA-FTCA Mann-Whitney U Z-value P-value
log-sigma-2-0-mm-3D_glszm_SmallAreaEmphasis 0.38 + 0.094 0.70 + 0.26 50.000 -4.201 0.000
log-sigma-2-0-mm-3D_glszm_SizeZoneNonUniformityNormalized 0.16 + 0.059 397.89 + 676.32 184.000 -0.955 0.340
log-sigma-2-0-mm-3D_glszm_SmallAreaHighGrayLevelEmphasis 92.85 + 87.99 39.938 + 73.47 92.000 -3.187 0.001
log-sigma-3-0-mm-3D_glcm_InverseVariance 0.33 £ 0.053 1.65 +1.35 84.000 -3.342 0.001
wavelet-LLH_glem_MCC 0.64 +0.12 604.17 + 873.98 52.000 -4.106 0.000
wavelet-HLH_glszm_SmallAreaHighGraylLevelEmphasis 52.32 + 29.84 56.13 + 203.67 99.000 -2.984 0.008
wavelet-HLL_glszm_LowGraylLevelZoneEmphasis 0.04 + 0.06 3.93+6.73 94.000 -3.103 0.002
Ibp-3D-k_glszm_ZonePercentage 0.009 + 0.003 99.68 + 195.12 202.000 -0.525 0.599
Ibp-3D-k_firstorder_Kurtosis 8.73 + 4.06 99.65 + 163.28 206.000 -0.430 0.667
original_shape_Sphericity 0.75 +0.04 2414 £ 34.74 212.000 -0.286 0.775
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TABLE 5 | Multivariate logistic regression and receiver operating characteristic curve analysis for the overall IBD, overall TA, and combined IBD with TA models.

Features Multivariate logistic regression analysis Receiver operating characteristic analysis
B  P-value Odds ratio 95% CI AUC Specificity Sensitivity
Overall IBD
Mean ADC (10° s/mm?) 6.67  0.015 0.001 0.000 to 0.232 0.685 71.43 65.62
Presence of intratumoral hemorrhage -4.63  0.020 0.012 0.001 t0 0.284 0.815 78.57 84.37
Enhancement degree (solid) 4.67  0.004 102596 2.0551t0 5,121.212 0.683 42.86 93.75
Pre model 0.935 85.71 93.75
Overall TA
Log-sigma-20mm-3D_glszm_SmallAreaEmphasis 33.18 0.009 3.91 6.540 to 0.0002 0.885 85.71 84.37
Log-sigma-20mm-3D_glszm_SmallAreaHighGraylLevelEmphasis -0.03  0.036 1.032 1.002 to 1.062 0.795 100.00 71.87
Pre model 0.944 92.86 93.75
Combined IBD and TA
Presence of intratumoral hemorrhage 3.31 0.030 0.037 0.002 to 0.721 0.815 78.57 84.37
Log-sigma-20mm-3D_glszm_SmallAreaEmphasis 30.76  0.024 4.40 1.089 t0 0.018 0.885 85.71 84.37
Log-sigma-20mm-3D_glszm_SmallAreaHighGrayLevelEmphasis -0.03 ~ 0.047 1.034 1.000 to 1.068 0.795 100.00 71.87
Combined model 0.969 92.86 96.87

IBD, imaging-based diagnosis; TA, texture analysis; Pre, prediction.

significantly lower than that of OGCTs, which means that smaller size
zones and fine textures were observed in the solid lesions of OTCA-
FTCA composed of similar theca cells, lutein cells, and fibroblasts (18).
OTCA-FTCA also had significantly less intratumoral hemorrhage
than OGCTs in the present study (P < 0.05). For the log-sigma-20m
m-3D_glszm_SmallAreaHighGrayLevelEmphasis value, the OGCT's
obviously contained a greater proportion of the joint distribution of
smaller size zones with higher gray level values on T2WI scans than
OTCA-FTCA (P < 0.05). The log-sigma-20mm-
3D_glszm_SmallAreaHighGrayLevelEmphasis is a quantitative index
used to compensate for the shortage of MRI findings on T2WI based
on solid or cystic components that can be compared. Then, the TA-
based predictive model was obtained and had a diagnostic
performance/AUC, specificity, and sensitivity of 0.944, 92.86%, and
93.75%, respectively (P < 0.05).

The AUC of the IBD and TA combined prediction model to
distinguish between OGCTs and OTCA-FTCA was 0.969. When
compared with MRI features or TA parameters alone, the

combined model showed no significant difference, even though
the sensitivity and specificity of the combination were improved
to some extent. Therefore, it is believed that the diagnostic
performance of the combination model was similar to that of
MRI-IBD or T2WI-TA features alone. Furthermore, the
diagnostic performance of T2WI-TA parameters was similar to
that of MRI-IBD features in helping to distinguish between
OGCTs and OTCA-FTCA, which may be less strongly
associated with the sample size. However, TA can provide
another method to identify OGCTs and OTCA-FTCA.

The present study has several limitations. First of these is the
limited study sample size (14 patients with OGCT's and 32 patients
with OTCA-FTCA) due to the low incidence of these tumors relative
to other ovarian tumors. It might have influence on the final results,
such as the rigor of ROC curve analysis. Second, there was an inherent
selection bias because the retrospective study was conducted in one
institution. We urge the clarification of the imaging findings in larger
population-based studies. Third, the ROIs of the ADC and TA were
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FIGURE 4 | (A) (ROC) curve analysis of the diagnostic abilities of apparent diffusion coefficient values (average), enhancement degree, presence of intratumoral
hemorrhage, and the prediction models. (B) ROC curve analysis of Log-sigma-2-0mm-3D_glszm_SmallAreaEmphasis, Log-sigma-2-0mm-
3D_glszm_SmallAreaHighGraylLevelEmphasis, and the prediction models. (C) ROC curve analysis of the overall imaging-based diagnosis (IBD), overall texture

.
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FIGURE 5 | (A) Box-and-whisker plot of the Log-sigma-2-Omm 3D_glszm_SmallAreaEmphasis difference between OGCTs and OTCA-FTCA. (B) Box-and-whisker
plot of the Log-sigma-2-0mm 3D_glszm_SmallAreaHighGraylLevelEmphasis difference between OGCTs and OTCA-FTCA. (C) Box-and-whisker plot of the Mean

TABLE 6 | Receiver operating characteristic analysis of the overall imaging-based diagnosis (IBD), overall texture analysis (TA), and combined IBD with TA models.

Variables Difference between areas Standard error 95% confidence interval z statistic Significance level (P)
Overall_IBD~ Overall_TA 0.009 -0.067 to 0.085 0.23 0.82
Overall_IBD ~ Combine_IBD_and_TA 0.034 -0.017 to 0.084 1.30 0.19
Overall_TA ~ Combine_IBD_and_TA 0.025 -0.020 to 0.067 1.09 0.27

performed manually by radiologists based on individual habits,
which may also have influence on the final results. In addition, we
did not use MRI images other than T2-weighted images for TA in the
present study.

In summary, compared with OTCA-FTCA, OGCTs more
commonly exhibit intratumoral hemorrhage, mixed cystic
degeneration, moderate enhancement, and low ADC values.
Particularly, intratumoral hemorrhage may be a common and
characteristic MR finding of OGCTs. When it is difficult to
distinguish between OGCTs and OTCA-FTCA, TA described here
may serve as a supplementary means, although this will require further
large sample size validation before widespread implementation in
clinical practice.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the ethics committee of the First Affiliated Hospital
of USTC, Division of Life Sciences and Medicine, University of

REFERENCES

1. Kurman R], Carcangiu ML, Herrington CS, Young RH. Classification of Tumors
of the Ovary. In: WHO Classification of Tumors, 4th. Lyon: IARC (2014). p. 44-56.
2. Haroon S, Zia A, Idrees R, Memon A, Fatima S, Kayani N. Clinicopathological
Spectrum of Ovarian Sex Cord-Stromal Tumors; 20 Years” Retrospective Study in
a Developing Country. ] Ovarian Res (2013) 6(1):87. doi: 10.1186/1757-2215-6-87

Science and Technology of China. Written informed consent to
participate in this study was provided by the participants’ legal
guardian/next of kin.

AUTHOR CONTRIBUTIONS

N-YL, J-ND, and C-BW contributed to conception and design.
N-YL organized the database, performed the statistical analysis, and
wrote the first draft of the manuscript. BS, P-PW, Y-LC, C-BW,
and YC contributed to the collection and arrangement of data.
Y-LC, Y-QG and P-PW contributed to data analysis. BS, P-PW, and
C-BW wrote sections of the manuscript. All authors contributed to
manuscript revision and read and approved the submitted version.

FUNDING

This work was supported by the Anhui Provincial Natural
Science Foundation for Youths, China (1908085QH364).

ACKNOWLEDGMENTS

We thank Y-QG from GE Healthcare China for technical assistance.

3. WeiC, Chen YL, Li XX, LiNY, Wu YY, Lin TT, et al. Diagnostic Performance of
MR Imaging-Based Features and Texture Analysis in the Differential Diagnosis
of Ovarian Thecomas/Fibrothecomas and Uterine Fibroids in the Adnexal Area.
AcadRadiol (2020) 27(10):1406-15. doi: 10.1016/j.acra.2019.12.025

4. Nocito AL, Sarancone S, Bacchi C, Tellez T. Ovarian Thecoma:
Clinicopathological Analysis of 50 Cases. Ann Diagn Pathol (2008) 12
(1):12-6. doi: 10.1016/j.anndiagpath.2007.01.011

Frontiers in Oncology | www.frontiersin.org

October 2021 | Volume 11 | Article 758036


https://doi.org/10.1186/1757-2215-6-87
https://doi.org/10.1016/j.acra.2019.12.025
https://doi.org/10.1016/j.anndiagpath.2007.01.011
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Lietal

Features of OGCTs and OTCA-FTCA

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Murkey B, Nadkarni T, Bhalerao S, Jassawalla MJ. Delayed Menopause Due to

Granulosa Cell Tumor of the Ovary. ] Midlife Health (2011) 2(2):86-8.
doi: 10.4103/0976-7800.92536

. Kavuri S, Kulkarni R, Reid-Nicholson M. Granulosa Cell Tumor of the Ovary:

Cytologic Findings. Acta Cytol (2010) 54(4):551-9. doi: 10.1159/000325176

. Li X, Zhang W, Zhu G, Sun C, Liu Q, Shen Y. Imaging Features and

Pathologic Characteristics of Ovarian Thecoma. | Comput Assist Tomogr
(2012) 36(1):46-53. doi: 10.1097/RCT.0b013e31823f6186

. Templeman CL, Fallat ME. Benign Ovarian Masses. Semin Pediatr Surg

(2005) 14(2):93-9. doi: 10.1053/j.sempedsurg.2005.01.004

. Zhang H, Zhang GF, Wang TP, Zhang H. Value of 3.0 T Diffusion-Weighted

Imaging in Discriminating Thecoma and Fibrothecoma From Other Adnexal
Solid Masses. ] Ovarian Res (2013) 6(1):58. doi: 10.1186/1757-2215-6-58
Bremmer F, Behnes CL, Radzun HJ, Bettstetter M, Schweyer S. Tumoren Des
Gonadenstromas [Sex Cord Gonadal Stromal Tumors]. Pathologe (2014) 35
(3):245-51. doi: 10.1007/s00292-014-1901-7

Jung SE, Rha SE, Lee JM, Park SY, Oh SN, Cho KS, et al. CT and MRI Findings
of Sex Cord-Stromal Tumor of the Ovary. AJR Am ] Roentgenol (2005) 185
(1):207-15. doi: 10.2214/ajr.185.1.01850207

Tanaka YO, Tsunoda H, Kitagawa Y, Ueno T, Yoshikawa H, Saida Y.
Functioning Ovarian Tumors: Direct and Indirect Findings at MR Imaging.
Radiographics (2004) 24 Suppl 1:5147-66. doi: 10.1148/rg.24s1045501

Fang M, Dong J, Zhong Q, Fang X, Chen Y, Wang C, et al. Value of Diffusion-
Weighted Imaging Combined With Conventional Magnetic Resonance Imaging in
the Diagnosis of Thecomas and Their Differential Diagnosis With Adult Granulosa
Cell Tumors. Acta Radiol (2019) 60(11):1532-42. doi: 10.1177/0284185119830280
Kim SH, Kim SH. Granulosa Cell Tumor of the Ovary: Common Findings and
Unusual Appearances on CT and MR. J Comput Assist Tomogr (2002) 26
(5):756-61. doi: 10.1097/00004728-200209000-00016

Zhang H, Zhang H, Gu S, Zhang Y, Liu X, Zhang G. MR Findings of Primary Ovarian
Granulosa Cell Tumor With Focus on the Differentiation With Other Ovarian Sex
Cord-Stromal Tumors. ] Ovarian Res (2018) 11(1):46. doi: 10.1186/s13048-018-0416-x
Yin B, Li W, Cui Y, Chu C, Ding M, Chen ], et al. Value of Diffusion-Weighted Imaging
Combined With Conventional Magnetic Resonance Imaging in the Diagnosis of
Thecomas/Fibrothecomas and Their Differential Diagnosis With Malignant Pelvic
Solid Tumors. World J Surg Oncol (2016) 14(1):5. doi: 10.1186/s12957-015-0760-x
Chung BM, Park SB, Lee JB, Park HJ, Kim YS, Oh Y]. Magnetic Resonance
Imaging Features of Ovarian Fibroma, Fibrothecoma, and Thecoma. Abdom
Imaging (2015) 40(5):1263-72. doi: 10.1007/s00261-014-0257-z
ShinagareAB, MeylaertsL], LauryAR, MorteleK]. MRI Features of
Ovarianfibroma and Fibrothecoma With Histopathologic Correlation. AJR
Am ] Roentgenol (2012) 198(3):W296-303. doi: 10.2214/AJR.11.7221

Millet I, Rathat G, Perrochia H, Hoa D, Mérigeaud S, Curros-Doyon F, et al.
Aspect Enimagerie Des Tumeurs De La Granulosa De L'ovaire: A Propos De
Troiscas [Imaging Features of Granulosa Cell Tumors of the Ovary: About
Three Cases]. ] Radiol (2011) 92(3):236-42. doi: 10.1016/j.jradio.2011.02.002

20. Chen J, Wang ], Chen X, Wang Y, Wang Z, Li D. Computed Tomography and
Magnetic Resonance Imaging Features of Ovarian Fibrothecoma. Oncol Lett
(2017) 14(1):1172-8. doi: 10.3892/01.2017.6228

Kato H, Kanematsu M, Ono H, Yano R, Furui T, Morishige K, et al. Ovarian
Fibromas: MR Imaging Findings With Emphasis on Intratumoral Cyst
Formation. Eur ] Radiol (2013) 82(9):e417-21. doi: 10.1016/
j.ejrad.2013.04.010

Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG,
Granton P, et al. Radiomics: Extracting More Information From Medical
Images Using Advanced Feature Analysis. Eur ] Cancer (2012) 48(4):441-6.
doi: 10.1016/j.ejca.2011.11.036

Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Development and
Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph
Node Metastasis in Colorectal Cancer. J Clin Oncol (2016) 34(18):2157-64.
doi: 10.1200/JCO.2015.65.9128

Nie K, Shi L, Chen Q, Hu X, Jabbour SK, Yue N, et al. Rectal Cancer:
Assessment of Neoadjuvant Chemoradiation Outcome Based on Radiomics of
Multiparametric MRI. Clin Cancer Res (2016) 22(21):5256-64. doi: 10.1158/
1078-0432.CCR-15-2997

Haralick RM, Shanmugam K, Dinstein I. Textural Features For Image
Classification. IEEE Syst Man Cy (1973) SMC 3(6):610-21. doi: 10.1109/
TSMC.1973.4309314

She Y, Zhang L, Zhu H, Dai C, Xie D, Xie H, et al. The Predictive Value of CT-
Based Radiomics in Differentiating Indolent From Invasive Lung
Adenocarcinoma in Patients With Pulmonary Nodules. Eur Radiol (2018)
28(12):5121-8. doi: 10.1007/s00330-018-5509-9

Zwanenburg A, Leger S, Vallieres M, Lock S. Image Biomarker Standardisation
Initiative (2019). Available at: https://arxiv.org/pdf/1612.07003.pdf.

21.

22.

23.

24.

25.

26.

27.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Li, Shi, Chen, Wang, Wang, Chen, Ge, Dong and Wei. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Oncology | www.frontiersin.org

October 2021 | Volume 11 | Article 758036


https://doi.org/10.4103/0976-7800.92536
https://doi.org/10.1159/000325176
https://doi.org/10.1097/RCT.0b013e31823f6186
https://doi.org/10.1053/j.sempedsurg.2005.01.004
https://doi.org/10.1186/1757-2215-6-58
https://doi.org/10.1007/s00292-014-1901-7
https://doi.org/10.2214/ajr.185.1.01850207
https://doi.org/10.1148/rg.24si045501
https://doi.org/10.1177/0284185119830280
https://doi.org/10.1097/00004728-200209000-00016
https://doi.org/10.1186/s13048-018-0416-x
https://doi.org/10.1186/s12957-015-0760-x
https://doi.org/10.1007/s00261-014-0257-z
https://doi.org/10.2214/AJR.11.7221
https://doi.org/10.1016/j.jradio.2011.02.002
https://doi.org/10.3892/ol.2017.6228
https://doi.org/10.1016/j.ejrad.2013.04.010
https://doi.org/10.1016/j.ejrad.2013.04.010
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1200/JCO.2015.65.9128
https://doi.org/10.1158/1078-0432.CCR-15-2997
https://doi.org/10.1158/1078-0432.CCR-15-2997
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1007/s00330-018-5509-9
https://arxiv.org/pdf/1612.07003.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

:\' frontiers
in Oncology

ORIGINAL RESEARCH
published: 17 November 2021
doi: 10.3389/fonc.2021.774248

OPEN ACCESS

Edited by:

Daniel Rodriguez Gutierrez,
Nottingham University Hospitals NHS
Trust, United Kingdom

Reviewed by:

Kim Brewer,

Dalhousie University, Canada
Subathra Adithan,

Jawaharlal Institute of Postgraduate
Medical Education and Research
(JIPMER), India

*Correspondence:
Meihao Wang
wzwmh@wmu.edu.cn

TThese authors have contributed
equally to this work

Specialty section:

This article was submitted to
Cancer Imaging and
Image-directed Interventions,
a section of the journal
Frontiers in Oncology

Received: 11 September 2021
Accepted: 29 October 2021
Published: 17 November 2021

Citation:

Zhao Y-F, Chen Z, Zhang Y,
Zhou J, Chen J-H, Lee KE,
Combs FJ, Parajuli R, Mehta RS,
Wang M and Su M-Y (2021)
Diagnosis of Breast Cancer Using
Radiomics Models Built Based on
Dynamic Contrast Enhanced MR
Combined With Mammography.
Front. Oncol. 11:774248.

doi: 10.3389/fonc.2021.774248

Check for
updates
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Radiomics Models Built Based on
Dynamic Contrast Enhanced MRI
Combined With Mammography
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Kyoung Eun Lee?, Freddie J. Combs?2, Ritesh Parajuli®, Rita S. Mehta®, Meihao Wang'*
and Min-Ying Su®¢

" Department of Radliology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China, 2 Department of
Radliological Sciences, University of California, Irvine, Irvine, CA, United States, 3 Department of Radiology, E-Da Hospital and
I-Shou University, Kaohsiung, Taiwan, 4 Department of Radiology, Inje University Seoul Paik Hospital, Inje University,

Seoul, South Korea, 5 Department of Medicine, University of California, Irvine, Irvine, CA, United States, 6 Department of
Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan

Objective: To build radiomics models using features extracted from DCE-MRI and
mammography for diagnosis of breast cancer.

Materials and Methods: 266 patients receiving MRI and mammography, who had well-
enhanced lesions on MRI and histologically confirmed diagnosis were analyzed. Training
dataset had 146 malignant and 56 benign, and testing dataset had 48 malignant and 18
benign lesions. Fuzzy-C-means clustering algorithm was used to segment the enhanced
lesion on subtraction MRI maps. Two radiologists manually outlined the corresponding
lesion on mammography by consensus, with the guidance of MRI maximum intensity
projection. Features were extracted using PyRadiomics from three DCE-MRI parametric
maps, and from the lesion and a 2-cm bandshell margin on mammography. The support
vector machine (SVM) was applied for feature selection and model building, using 5
datasets: DCE-MRI, mammography lesion-ROIl, mammography margin-ROl,
mammography lesion+margin, and all combined.

Results: In the training dataset evaluated using 10-fold cross-validation, the diagnostic
accuracy of the individual model was 83.2% for DCE-MRI, 75.7% for mammography lesion,
64.4% for mammography margin, and 77.2% for lesion+margin. When all features were
combined, the accuracy was improved 1o 89.6%. By adding mammography features to MR,
the specificity was significantly improved from 69.6% (39/56) to 82.1% (46/56), p<0.01. When
the developed models were applied to the independent testing dataset, the accuracy was
78.8% for DCE-MRI and 83.3% for combined MRI+Mammography.

Conclusion: The radiomics model built from the combined MRI and mammography has
the potential to provide a machine learning-based diagnostic tool and decrease the false
positive diagnosis of contrast-enhanced benign lesions on MRI.

Keywords: breast neoplasms, diagnosis, radiomics, machine learning, magnetic resonance imaging, mammography
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INTRODUCTION

Breast cancer is the most common cancer in women, and one
main cause of cancer deaths (1, 2). Mammography, ultrasound,
and magnetic resonance imaging (MRI) are well-established
diagnostic modalities, which are known to reveal different
aspects of underlying abnormalities and provide complementary
information for diagnosis (3, 4). Dynamic contrast-enhanced
MRI (DCE-MRI) can assess angiogenesis (5, 6), which is
essential for cancer development and progression (7, 8). The
high spatial resolution and 3D imaging capability of MRI allow
for detecting early small cancers, and for evaluating the extent of
the disease for pre-operative staging and treatment planning.
However, some benign diseases may show strong contrast
enhancements and lead to a false positive diagnosis (9).

Mammography can detect breast cancer based on the
presence of mass, microcalcifications, architectural distortion,
or asymmetric density. It is a widely used imaging modality for
screening and diagnosis, and crucial for detecting breast cancer
at an early, curable, stage to decrease mortality (10). However,
mammography is limited by breast density, which may
compromise the detection sensitivity. For women with a high-
risk of developing breast cancer, the screening is recommended
to start from a young age, and to mitigate the problem of high
density in mammography MRI is commonly used as a
supplementary modality. Since different imaging can evaluate
different pathological characteristics of the abnormal tissue,
combining them may improve the diagnostic accuracy (3).
MRI is also commonly used for problem-solving when other
imaging shows equivocal findings. For example, in patients with
category 4 mammographic microcalcifications, MRI can
decrease false positive findings and unnecessary biopsy (11).

Breast Imaging Reporting and Data System (BI-RADS) (12) is
used to indicate the level of suspicion in detected abnormality.
However, subjective reading using the BI-RADS lexicon only
achieved moderate levels of inter-reader agreement (13). For
MR, intra-/inter-observer agreement was particularly worse for
non-mass enhancement compared to mass lesions (14, 15). To
circumvent this problem, computer-aided diagnosis (CAD)
systems have been proposed to develop quantitative models
that are not subject to high variations to serve as potential
diagnostic tools (16, 17).

Artificial intelligence (AI) based radiomics study has been
widely applied for medical applications. The method allows for
high-throughput extraction of quantitative features from
radiographic images (18), and it has been shown as a feasible
approach for diagnosis of breast cancer using mammography

Abbreviations: Al artificial intelligence; AUC, the area under the curve; BI-
RADS, Breast Imaging Report and Data System; CAD, computer-aided diagnosis;
CC, cranio-caudal; DCE, dynamic contrast enhanced; DCIS, ductal carcinoma in-
situ; GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence
matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone
matrix; IDC, invasive ductal cancer; MIP, maximum intensity projection; MLO,
medio-lateral oblique; MRI, magnetic resonance imaging; NGTDM, neighboring
gray tone difference matrix; NPV, negative predicting value; PPV, positive
predicting value; ROC, receiver operating characteristic; ROI, region of interest;
SE, signal enhancement; SVM, support vector machine.

(19-22) and MRI (23-25). However, the combined model using
different imaging modalities was rarely reported. Features from
corresponding lesions on each modality can be extracted, and
then combined in the selection process to develop better models
based on their complementary information.

The purpose of this study was to evaluate the diagnostic
performance of radiomics models built based on DCE-MRI and
mammography. The motivation was coming from the high false
positive diagnosis of contrast-enhanced benign lesions
commonly seen on MRI. It is anticipated that the
complementary information provided by the radiomics
analysis of the lesion on mammography may help to improve
the diagnostic accuracy. In mammography, features extracted
from the lesion and the margin were used to build separate
models. The complementary role of MRI and mammography
was first evaluated by the selected features, and then by
comparing the performance of final models built using each
modality alone and in combination.

MATERIAL AND METHODS
Study Population

This retrospective study was approved by Institutional Review
Board and written informed consent was waived. Earlier patients
who received DCE-MRI and mammography for diagnosis
between July 2017 and August 2019 and had confirmed
pathology were retrospectively identified as the training set.
Later patients from September 2019 to July 2020 were used as
the independent testing set. The exclusion criteria were: (1) no
pathology result; (2) not visible on MRI or mammography; (3)
having prior surgery, chemotherapy, or other treatment; (4) the
interval between the two examinations longer than one month;
(5) poor image quality. Finally, a total of 268 lesions were
included, 202 lesions (146 malignant and 56 benign) in the
training set, and 66 lesions (48 malignant and 18 benign) in the
testing set. The BI-RADS scores of MRI and mammography were
obtained from the radiology reports, classified into 2, 3, 4A, 4B,
4C, and 5. In our institution, BI-RADS 4 MRI cases were routinely
subdivided to 4A, 4B, and 4C, as validated in Strigel et al. (26).

Image Acquisition

Mammography was performed using Fujifilm Amulet Innovality
Digital Mammography System with a resolution of 5828x4728
pixels, including craniocaudal (CC) and mediolateral oblique
(MLO) view. MRI was performed on a 3.0T scanner (GE SIGNA
HDx) using a dedicated 8-channel bilateral breast coil. The
imaging protocol included axial and sagittal T2- and T1-
weighted sequences, and the DCE acquisition performed
using the volume imaging for breast assessment (VIBRANT)
sequence. The parameters were: repetition time= 5msec, echo
time= 2msec, flip angle= 10°, slice thickness= 1.2mm, field of
view= 34x34cm?, matrix size= 416x416, temporal resolution=
90sec, and total scan time= 9min. The DCE series consisted of 6
frames: one pre-contrast and 5 post-contrast. The contrast agent,
0.1 mmol/kg body weight of gadopentetate dimeglumine
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(Magnevist; Bayer Schering Pharma), was injected after the pre-
contrast images were acquired, with a flow rate of 2 mL/s
followed by a flush of 20 mL saline.

Tumor Segmentation

For MRI, the tumor region of interest (ROI) segmentation was
done using computer algorithms, according to the location and
the range of slices. The fuzzy-C-means clustering algorithm was
applied to perform segmentation on each DCE slice containing
the lesion. The automatic segmentation results were evaluated by
two radiologists separately, and adjusted if necessary. Then, the
ROIs from all slices were combined, and the 3D connected-
component labeling and the hole-filling algorithms were applied
to generate the final 3D mask (27, 28). For the corresponding
mammography, two radiologists manually outlined the lesion on
craniocaudal (CC) or mediolateral oblique (MLO) view by
consensus using ITK-SNAP software (version 3.8, www.
itksnap.org), with the guidance of the lesion shown on the
maximum intensity projection (MIP) of MRI, projected from
different angles. The choice of CC or MLO was determined
according to the lesion visibility, and only one view was used.

MRI and Mammography Radiomics
Feature Extraction

The analysis flowchart is demonstrated in Figure 1. For DCE-
MRI, three heuristic DCE parametric maps were generated
according to: the early wash-in signal enhancement (SE) ratio
((F2-F1)/F1); the maximum SE ratio = ((F3-F1)/F1); the wash-out
slope ((F6-F3)/F3) (25), as illustrated in case examples in
Figures 2-5. The intensity was normalized to mean=0 and
standard deviation=1. In the segmented 3D ROI, pixels were
transformed into isotropic 0.82x0.82x0.82 mm by B-spline
interpolation. The radiomics analysis was performed using the
PyRadiomics, an open-source radiomics library written in Python

(29). On each parametric map, a total of 107 features were
extracted, including 14 shape, 18 first-order, 24 gray-level co-
occurrence matrix (GLCM), 14 gray-level dependence matrix
(GLDM), 16 gray-level run length matrix (GLRLM), 16 gray-
level size zone matrix (GLSZM), and 5 neighboring gray tone
difference matrix (NGTDM) features, so there was a total of 321
parameters from 3 maps. Only 268 features showing intra-class
coefficient (ICC) 20.8 were included in the final analysis, which
was determined using two sets of separately segmented tumor ROI
to evaluate the reproducibility of extracted radiomics features (30).

For mammography, two different feature sets were analyzed.
Considering that the ROI was manually drawn by tracing the
visible lesion area based on density, it might not reveal the
margin information. To specifically focus on the margin, a 2-cm
bandshell was created, by shrinking and expanding the
manually-drawn tumor boundary by 1 c¢m, as shown in
Figure 1. Because the margin could not be well defined on
mammography, shrinking the boundary followed by region
growing has been shown as a feasible segmentation method
(31), and the method was adopted here to generate the bandshell
for analysis of margin features. Similarly, the intensity was
normalized to mean=0 and standard deviation=1, and a total
of 107 PyRadiomics features were extracted from the outlined
lesion mask and also from the bandshell on mammography. The
radiomics model was first performed using lesion features alone,
margin features alone, and then a combined model was built by
considering all lesion and margin features.

Feature Selection and Model

Building in Training Set

The procedures are also shown in Figure 1. In addition to the
normalization on images, each feature extracted from all cases
was normalized to mean=0 and standard deviation=1 before
training. To evaluate the importance of these features in

Training dataset
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FIGURE 1 | The analysis flowchart. The training and testing sets are assembled according to the time of case enroliment. The analysis starts with ROl segmentation,
followed by radiomics feature extraction using Pyradiomics, feature selection and model building in the training set using SVM with cross-validation, and lastly, the
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diagnosis, a sequential forward feature selection method using
the support vector machine (SVM) was applied (32, 33). In this
process, we used SVM with Gaussian kernel as the objective
function to test the performance of models built with a subset of
features. In the beginning, an empty candidate set was presented,
and features were sequentially added. The 10-fold cross-
validation was applied to test the model performance. In each
iteration, the training process was repeated 1,000 times to
explore the robustness of each feature. After each iteration, the

FIGURE 2 | A 50-year-old patient with invasive ductal cancer, showing a strongly enhanced 1.8 x 1.0 cm lesion, with MRI BI-RADS score of 5. (A) F1 Pre-contrast
image. (B) F2 post-contrast image. (C-I) Magnified images to demonstrate the margin and internal enhancements within the lesion. (C) F1 pre-contrast, (D) F2 post-
contrast, (E) F3 post-contrast, (F) The last F6 post-contrast image. (G) The wash-in signal enhancement map F2-F1, (H) The F3-F1 signal enhancement map,

(I) The wash-out F6-F3 map. (J) A mass lesion with spiculation is clearly noted on mammography as BI-RADS 4C, and manually outlined by a radiologist. The
radiomics malignancy probability predicted by MRI, mammography, and combined models were: 0.83, 0.77, 0.88, respectively, true positive.

feature which led to the best performance was added to the
candidate set. When the addition of features no longer met the
criterion, the selection process stopped. Here, we used 10*e/A-6 as
termination tolerance for the objective function value.

The selected features were used to build the SVM
classification model with Gaussian kernel to classify the benign
and malignant groups. The diagnostic performance was tested
using 10-fold cross-validation. Each case had only one chance to
be included in the validation set. The probability of all cases in

FIGURE 3 | A 58-year-old patient with ductal carcinoma in situ, showing a strongly enhanced heterogeneous 1.4 x 0.9 cm lesion, with MRI BI-RADS score of 5.

(A) F1 Pre-contrast image. (B) F2 post-contrast image. (C~l) Magnified images to demonstrate the margin and internal enhancements within the lesion. (C) F1
pre-contrast, (D) F2 post-contrast, (E) F3 post-contrast, (F) The last F6 post-contrast image. (G) The wash-in signal enhancement map F2-F1, (H) The F3-F1 signal
enhancement map, (I) The wash-out F6-F3 map. (J) A suspicious BI-RADS 4A mass is seen on mammography. The lesion ROI is outlined with the guidance of MRI.
The probability predicted by MRI, mammography, and combined radiomics models were: 0.53, 0.49, 0.62, respectively, true positive.
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FIGURE 4 | A 63-year-old patient with a 0.7 x 0.7 cm benign adenosis, showing a persistent DCE-MRI enhancement kinetics and determined as BI-RADS 3 on
MRI. (A) F1 Pre-contrast image. (B) F2 post-contrast image. (C-l) Magnified images to demonstrate the margin and internal enhancements within the lesion. (C) F1
pre-contrast, (D) F2 post-contrast, (E) F3 post-contrast, (F) The last F6 post-contrast image. (G) The wash-in signal enhancement map F2-F1, (H) The F3-F1 signal
enhancement map, (I) The wash-out F6-F3 map. (J) The lesion is not seen on mammography, determined as BI-RADS 2, and an area is outlined with the guidance
of MRI. The probability predicted by MRI, mammography, and combined radiomics models were: 0.42, 0.44, 0.15, respectively, true negative.

the validation set was combined to perform the receiver
operating characteristic curve (ROC) analysis, and the area
under the curve (AUC) was calculated. Five models were built
using features extracted from: 1) DCE-MRI; 2) mammography -
lesion ROI; 3) mammography — margin RO], i.e., the bandshell;
4) mammography lesion+margin; and 5) all combined. The
developed model gave a radiomics score, i.e., the malignancy
probability, for each case.

Applying the Trained Models

to the Testing Set

The developed models from the training set were applied to test
their performances in the testing set. The model gave each lesion a
radiomics score, and they were used to generate the ROC curves.
The sensitivity, specificity, positive predicting value (PPV), negative
predicting value (NPV), and overall accuracy of each model were
calculated using the threshold of probability >0.5 as malignant.

FIGURE 5 | A 46-year-old patient with a 2.7 x 1.3 cm benign adenosis. This is a young woman with extremely dense breasts showing substantial parenchymal
enhancements. The lesion shows a persistent DCE-MRI pattern and determined as BI-RADS 4A on MRI. (A) F1 Pre-contrast image. (B) F2 post-contrast image.
(C-1) Magnified images to demonstrate the margin and internal enhancements within the lesion. (C) F1 pre-contrast, (D) F2 post-contrast, (E) F3 post-contrast,

(F) The last F6 post-contrast image. (G) The wash-in signal enhancement map F2-F1, (H) The F3-F1 signal enhancement map, () The wash-out F6-F3 map. (J) The
lesion is not seen on mammography, determined as BI-RADS 2, and an area is outlined with the guidance of MRI. The probability predicted by MRI, mammography,
and combined radiomics models were: 0.3, 0.41, 0.11, respectively, true negative.
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The Delong test was used to compare the difference between paired
ROC curves. The difference in proportions between malignant and
benign groups was compared by using the Chi-square ()?) test or
Fisher’s Exact Test.

RESULTS

Patients’ Characteristics and

BI-RADS Scores

In the training set, the mean age was 50.0 + 9.6 in the malignant,
and 46.6 + 9.7 in the benign groups. The 1-D longest dimension
tumor size measured on MRI was 2.4 + 1.4 cm (median 2.0 cm)
in the malignant, and 2.0 + 2.3 cm (median 1.5 cm) in the benign
groups. In the testing set, the mean age was 51.8 + 11.2 in the
malignant, and 43.5 + 10.8 in the benign groups. The 1-D longest
dimension tumor size measured on MRI was 3.2 = 1.9 cm
(median 2.8 cm) in the malignant, and 2.0 + 1.4 cm (median
1.5 cm) in the benign groups. The pathological types and BI-
RADS distributions in both datasets are listed in Table 1. In the
training set, the majority of malignant lesions had BI-RADS
scores of 4B, 4C, 5 on MRI (132/146 90.4%) and
mammography (120/146 = 82.2%). In the benign group, a
substantial number of patients also had high BI-RADS > 4B
diagnosed by MRI (20/56 = 35.7%) and mammography (16/56 =
28.6%). Although the number of patients with BI-RADS > 4B
lesions was significantly smaller in the benign compared to the
malignant groups (p < 0.001), these cases would be
recommended for biopsy and led to false positive diagnosis.
Similar BI-RADS distributions were also noted in the testing set.

Radiomics Diagnostic Models
in Training Set
The selected radiomics features for each model are listed in
Table 2. The diagnostic sensitivity, specificity, PPV, NPV,
accuracy, and AUC obtained from the cross-validation results
are summarized in Table 3. The overall accuracy was 83.2% for
DCE-MRI. In mammography, the accuracy was 75.7% for lesion-
ROI, 64.4% for margin-ROI, and when combining both of them
it was improved to 77.2%. When all MRI and mammography
features were combined to build a model, the accuracy was
improved to 89.6%, which was significantly better than the
mammography model (77.2%, p=0.001). The combined model
was also better than the MRI model (83.2%, p=0.059), but not
reaching significance. By adding mammography features to MRI,
the specificity was significantly improved from 69.6% (39/56) to
82.1% (46/56) (p<0.01), while sensitivity was also improved from
88.4% (129/146) to 92.5% (135/146). Figure 6 plots the
malignant probability predicted by the combined MRI+
Mammography radiomics model in the training set of 146
malignant and 56 benign lesions. Using the threshold of 0.5 as
the cut-off, there are 135 true positive, 46 true negative, 11 false
negative, and 10 false positive cases, with an overall accuracy of
181/202 = 89.6%.

Four case examples are shown. Figure 2 is an IDC with BI-
RADS 5 MRI and BI-RADS 4C mammography, and the
malignancy probability predicted by MRI, mammography, and

TABLE 1 | Pathological types and BI-RADS scores of lesions in training and
testing datasets.
Characteristics

Training (N = 202) Testing (N = 66)

Benign 56 18
Fibroadenoma 3 (23.2%) 5 (27.8%)
Adenosis 5 (44.6%) 10 (55.6%)
Intraductal papilloma 0(17.9%) 1(5.6%)
Inflammation 2 (3.6%) 0 (0.0%)
Others 6 (10.7%) 2 (11.1%)

MRI BI-RADS
2 9 (16.1%) 1(5.6%)
3 13 (23.2%) 3(16.7)
4A 14 (25%) 9 (50%)
4B 14 (25%) 4 (22.2%)
4C 5 (8.9%) 1(5.6%)
5 1(1.8%) 0 (0.0%)

Mammography BI-RADS
2 3 (23.2%) 5 (27.8)
3 6 (28.6%) 6 (33.3%)
4A 11 (19.6%) 4 (22.2%)
4B 2 (21.4%) 3 (16.7%)
4C 4(7.1%) 0 (0.0%)
5 0 (0%) 0 (0.0%)

Malignant 146 48
Invasive ductal cancer 113 (77.4%) 39 (81.3%)
Ductal carcinoma in-situ 3 (15.8%) 3 (6.3%)
Intraductal papillary carcinoma 4 (2.7%) 0 (0.0%)
Mucinous carcinoma 3 (2.1%) 1(2.1%)
Others 3(2.1%) 5 (10.4%)

MRI BI-RADS
3 1(0.7%) 0 (0.0%)
4A 13 (8.9%) 1(2.1%)
4B 17 (11.6%) 4 (8.3%)
4C 39 (26.7%) 18 (37.5%)
5 76 (52.1%) 25 (52.1%)

Mammography BI-RADS
2 0 4 (8.3%)
3 9 (6.2%) 1(21%)
4A 17 (11.6%) 2 (4.2%)
4B 32 (21.9%) 1(22.9%)
4C 48 (32.9%) 1(43.8%)
5 40 (27.4%) (18 8%)

BI-RADS, Breast Imaging Report and Data System.

combined models are: 0.83, 0.77, 0.88, respectively; thus, true
positive. Figure 3 is a DCIS, also with BI-RADS 5 MRI and a
lower BI-RADS 4A mammography, and the combined radiomics
probability is 0.62, true positive. Figure 4 is a very small 0.7 cm
benign adenosis with BI-RADS 3 MRI and BI-RADS 2
mammography, and the combined radiomics probability is
0.15, true negative. Figure 5 is another adenosis in a younger
woman with BI-RADS 4A MRI and BI-RADS 2 mammography,
and the combined radiomics probability is 0.11, true negative.
These cases demonstrate that the malignancy probability
predicted by radiomics models was consistent with BI-RADS
reading, and elaborate how the model may help to improve the
diagnostic confidence.

Performance of the Trained

Models in Testing Set

The developed models were then applied to cases in the
independent testing set to test the performance. The results are
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TABLE 2 | Selected radiomics features for modeling using MRI, mammography, and both combined.

Models Selected Radiomic Features Numbers
DCE-MRI Maximum signal enhancement ratio: 8
entropy, GLCM sum average, GLCM IMC1,
GLDM high gray level emphasis, skewness
Wash-in ratio:
GLRLM RLN
Wash-out ratio:
GLRLM small area emphasis, GLCM sum entropy
Mammography 90% value, entropy, GLCM maximum probability, GLDM high gray level emphasis 4
(Lesion)
Mammography 10% value, GLSZM zone entropy, GLCM IDN 3
(Margin)
Combination of DCE-MRI and mammography Maximum signal enhancement ratio: 9

kurtosis, GLCM IMC1

Wash-in ratio:

skewness, GLRLM RLN, NGTDM complexity

Wash-out ratio:

GLCM IMC1, GLCM sum entropy

Mammography lesion:

GLCM maximum probability, GLCM IDN

GLCM, gray level co-occurrence matrix; GLDM, gray level dependence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; NGTDM, neighboring gray tone
difference matrix; IMC, informational measure of correlation; IDN, inverse difference normalized; RLN, run length non-uniformity.

listed in Table 3. In general, the performance of these 5 models
was consistent with the validation results in the training set. The
accuracy was 78.8% for DCE-MRI, 69.7% for mammography,
and improved to 83.3% when using the combined MRI and
mammography model.

Performance of the Combined Model in
Each BI-RADS Category

In order to further evaluate the performance of the model in each
BI-RADS category, the results from the training and testing sets are

combined and listed in Table 4. The cases with BI-RADS score of 2,
3, 4A, 4B, 4C, and 5 based on MRI and mammography were
separately tabulated. It can be seen clearly that malignant lesions
have higher BI-RADS scores compared to benign lesions, but many
benign lesions also have >4B scores. First, in the malignant group, if
we used 2, 3, and 4A as more likely benign, 15 MRI and 33
mammography cases would be diagnosed as benign. The results
showed that the model could reach 14/15 = 93.3% accuracy for MRI
and 31/33 = 93.9% for mammography lesions, still with a high
sensitivity. On the other hand, in the benign group, if we used 4B,

TABLE 3 | The diagnostic performance of developed radiomics models in training and testing datasets.

Models Sensitivity Specificity PPV NPV Accuracy AUC
Training Dataset
DCE-MRI 88.4% 69.6% 88.4% 69.6% 83.2% 0.77
(129/146) (39/56) (129/146) (39/56)
Mammography 84.9% 51.8% 82.1% 56.9% 75.7% 0.69
(Lesion) (124/146) (29/56) (124/151) (29/51)
Mammography 73.3% 41.1% 76.4% 37.1% 64.4% 0.62
(Margin) (107/146) (23/56) (107/140) (23/62)
Mammography 84.9% 57.1% 83.8% 59.3% 77.2% 0.70
(Lesion+Margin) (124/146) (32/56) (124/148) (32/54)
All Combination 92.5% 82.1% 93.1% 80.7% 89.6% 0.83
(135/146) (46/56) (135/145) (46/57)
Testing Dataset
DCE-MRI 87.5% 55.6% 84% 62.5% 78.8% 0.80
(42/48) (10/18) (42/50) (10/16)
Mammography 81.3% 38.9% 78% 43.8% 69.7% 0.65
(Lesion) (39/48) (7/18) (39/50) (7/16)
Mammography 66.7% 33.3% 59.3% 27.3% 57.6% 0.53
(Margin) (32/48) (6/18) (32/54) (6/22)
Mammography 81.3% 38.9% 78% 43.8% 69.7% 0.64
(Lesion+Margin) (39/48) (7/18) (89/50) (7/16)
All Combination 91.7% 61.1% 86.3% 73.3% 83.3% 0.81
(44/48) (11/18) (44/51) (11/15)

PPV, positive predicting value; NPV, negative predicting value; AUC, the area under the curve; DCE, dynamic contrast enhanced.
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FIGURE 6 | The malignant probability predicted by the combined MRI+Mammography radiomics model in 202 lesions, 146 malignant and 56 benign, in the training
set. Using the threshold of 0.5 as the cut-off, there are 135 true positive, 11 false negative, 46 true negative, and 10 false positive cases, with an overall accuracy of
181/202 = 89.6%.

4C and 5 as possibly malignant, 25 MRI and 19 mammography
cases would be diagnosed as malignant. The model could achieve
18/25 = 72% accuracy for MRI and 15/19 = 78.9% for
mammography lesions. The correct benign diagnosis for these
cases may help to avoid unnecessary biopsy.

DISCUSSION

In this study, we developed the radiomics models for diagnosis of
breast cancer using DCE-MRI alone, mammography alone, and
the combined MRI and mammography. While quite a few studies
have reported the radiomics models developed using MRI (23, 24,
34) or mammography (19-22), the combined analysis was rarely
reported (35). We further investigated the complementary role of
MRI and mammography features in diagnostic sensitivity and
specificity. In the training set, the combined model (89.6%) had a
higher accuracy than individual ones (83.2% for mammography,
77.2% for mammography). When mammography features were
added to MRI features, it could significantly improve specificity
from 69.6% (39/56) to 82.1% (46/56); and thus, have the potential

to decrease unnecessary biopsy. Interestingly, the sensitivity was
also improved, so the higher specificity was not at the expense of
compromised sensitivity. Similar findings were seen in the testing
set, with slightly lower overall accuracy from 89.6% to 83.3%.

For mammography, we further separated the analysis using
features extracted from the lesion-ROI alone, and from the
margin-ROI alone by using a bandshell. The results showed
that the accuracy was much better for the lesion model than
the margin model, but the margin information could help to
improve the accuracy. The results were consistent with the
knowledge that margin plays an important role in
characterization of a lesion for diagnosis.

Since MRI is more expensive than mammography, the most
established clinical indication is for pre-operative staging and
high-risk screening. It is not always included in the standard
diagnostic workup. It has been shown that in the mammography
4 category, particularly in non-palpable lesions presenting only
with microcalcifications, MRI can be used to reduce false positives
and avoid unnecessary biopsy (11, 36, 37). On the other hand,
benign lesions may show enhancements on MRI, and the

TABLE 4 | The number of correctly diagnosed cases made by the combined radiomics model in each BI-RADS category.

BI-RADS Score Malignant Cases (N = 194)

Benign Cases (N = 74)

MRI Mammography MRI Mammography
2 0 3/4 8/10 15/18
3 11 9/10 11/16 18/22
4A 13/14 19/19 20/23 9/15
4B 19/21 38/43 13/18 11/15
4C 51/57 67/69 4/6 4/4
5 95/101 43/49 il 0
BI-RADS, Breast Imaging Report and Data System.
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information from mammography may help to rule out
malignancy (38). As in the case examples shown in Figures 4
and 5, the benign lesions might be inconspicuous on
mammography and had low BI-RADS score of 2, and we had
to use MIP generated from MRI as a reference to locate them.
Since MRI and mammography evaluate different aspects of the
underlying pathology, they should be reviewed together to
determine which information needs to be weighted more.

Radiomics is becoming an active research field in breast cancer
diagnosis. Due to the large number of images acquired using
different MR sequences, radiomics provides an efficient analysis
method to extract information. Therefore, more MRI radiomics
studies were reported than ultrasound, mammography, and 18F
FDG PET/CT (34). MRI radiomics was shown to provide better
discrimination than conventional parameters for the diagnosis of
breast cancer (23, 24). Mammography radiomics analysis has also
been performed in several diagnostic studies (19-22). However,
since the patient cohort is different, the diagnostic accuracy will be
highly dependent on the inclusion/exclusion criteria, and not
directly comparable among studies. Mao et al. (19) used four
modeling algorithms, including SVM, naive Bayes classifier, k-NN
classifier, and logistic regression to differentiate between benign and
malignant cases, and showed a high vibration of 0.629-0.978 in the
obtained accuracy. The radiologists’ reading accuracy was 0.772. Lei
et al. (20) applied radiomics to diagnose patients showing BI-RADS
4 calcifications on mammography, and achieved AUC of 0.80 in
the validation cohort. For characterizing microcalcifications, since
the lesion area was not well-defined, the ROI drawing will affect the
extracted features, and thus, the diagnostic results. Huang et al. (21)
applied mammography radiomics for distinguishing male
malignant and benign lesions, and reported an AUC of 0.82 - a
very unique study in rarely reported male patients. Another study
by Niu et al. (22) also analyzed patients showing abnormal lesions
on mammography and MR, close to our patient cohort, but their
goal was to evaluate the combined effect of mammography and
digital breast tomosynthesis (DBT), as well as the combined effect of
DCE and diffusion weighted MRI. The reported accuracy based on
the mammography was close to ours, around 0.70. Multi-modal
radiomics combining different imaging modalities are rarely
reported. In a study by Chen et al, the multimodal classifier
achieved a better diagnostic performance than any single modality
(35). Since each imaging modality is unique in its acquisition
method and parameter setting, the extracted features from a
lesion may be different and provide complementary information
to improve diagnostic accuracy.

In this study, the cases were identified from the MRI database
first, and then only those with mammography performed within
one month were further selected for analysis. All lesions showed
strong enhancements on MRI, and the information was used to
determine a corresponding ROI on mammography. Co-
registration of MRI and mammography to ensure that the traced
ROI is indeed coming from the same suspicious tissue is not a
trivial task. We used maximum intensity projection of MRI as
guidance, and it could be projected from different angles to simulate
CC view and MLO view to guide the tracing of the suspicious
tissues on mammography. Some computer techniques have been
proposed for registration between MRI and mammography,

e.g., using finite element methods by Hopp et al. (39) and
Mertzanidou et al. (40), and the thin-plate spline method by
Yang et al. (3). These registration techniques can be considered
in future multi-modality radiomics studies. However, since the
mammography was acquired using heavily compressed breast
tissues in a different body position, it might be difficult to find the
precise correspondence. Therefore, in this study we only analyzed
the CC or MLO view that had more clear presentation of the lesion.

There were several limitations in this study. First, the models
were developed using a dataset from a single institution. The earlier
cases were used for training, and the performance was evaluated
using 10-fold cross-validation. We assembled an independent
testing set using later cases according to time of enrollment, so
the developed models from training can be independently tested.
Another limitation is that the sample size was relatively small. In our
dataset, all benign lesions had to show visible enhancements on
MRI and were histologically confirmed, which were very strict
criteria and limited the number of eligible cases. However, since the
major goal of this study is to investigate whether and how much the
addition of mammography radiomics features can complement
MR, using a strict rule to identify eligible cases with histologically
confirmed lesions is needed. Third, while all lesions showed
enhancements on MR, lesions not visible with the MRI-guidance
on mammography were not included in this study. Since the
boundary of these lesions could not be clearly defined, the
radiomics features might not be reliably extracted.

In conclusion, the radiomics models built based on combined
MRI and mammography had better diagnostic accuracy than
models built using single modality alone. The combined model
could reach the accuracy of 89.6% in the training and 83.3% in the
testing sets. The motivation of this study is to use the
complementary information extracted from radiomics analysis of
the lesion shown on mammogram to decrease the false positive
diagnosis of contrast-enhanced benign lesions on MRIL In the
western countries, breast MRI is recommended as a clinical
modality for screening of women with a high risk of developing
breast cancer, and the false positive diagnosis in a screening
population will lead to many unnecessary procedures including
biopsy, and patient anxiety. Our study may provide a helpful
computer-aided diagnostic tool for such clinical indications. The
multimodality radiomics analysis by combining mammography
and MRI features has the potential to improve the specificity and
reduce unnecessary biopsies, while maintaining a high sensitivity for
diagnosis of breast cancer.
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Radiomic models outperform clinical data for outcome prediction in high-grade gliomas
(HGG). However, lack of parameter standardization limits clinical applications. Many
machine learning (ML) radiomic models employ single classifiers rather than ensemble
learning, which is known to boost performance, and comparative analyses are lacking in the
literature. We aimed to compare ML classifiers to predict clinically relevant tasks for HGG:
overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-
methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor Vil
(EGFR) amplification, and Ki-67 expression, based on radiomic features from conventional
and advanced magnetic resonance imaging (MRI). Our objective was to identify the best
algorithm for each task. One hundred fifty-six adult patients with pathologic diagnosis of
HGG were included. Three tumoral regions were manually segmented: contrast-enhancing
tumor, necrosis, and non-enhancing tumor. Radiomic features were extracted with a
custom version of Pyradiomics and selected through Boruta algorithm. A Grid Search
algorithm was applied when computing ten times K-fold cross-validation (K=10) to get the
highest mean and lowest spread of accuracy. Model performance was assessed as AUC-
ROC curve mean values with 95% confidence intervals (Cl). Extreme Gradient Boosting
(xGB) obtained highest accuracy for OS (74,5%), Adaboost (AB) for IDH mutation (87.5%),
MGMT methylation (70,8%), Ki-67 expression (86%), and EGFR amplification (81%).
Ensemble classifiers showed the best performance across tasks. High-scoring radiomic
features shed light on possible correlations between MRI and tumor histology.

Keywords: glioblastoma, machine learning, radiomics, survival, high-grade glioma (HGG), genetics
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INTRODUCTION

High-grade gliomas (HGG) are considered the most frequent and
lethal primary malignant brain tumors of the adult (1).
Glioblastoma multiforme is a type of HGG with an estimated
incidence rate of 3.19 per 100,000 persons in the United States, a
median age of 64 years, and a dismally poor overall survival (OS)
despite combined radio-chemotherapy, ranging approximately
between 15 and 17 months (1, 2). Although less frequent, the
outcome of HGG is similarly poor in the pediatric population (3).
Genetic alterations may influence patient outcome, with effects on
survival, disease progression, and treatment response (2, 4). These
considerations inspired the cIMPACT recommendations for
classification of diffused gliomas and the last revision of the
World Health Organization (WHO) classification for central
nervous system (CNS) tumors, which suggested considering
isocitrate dehydrogenase (IDH)-mutant and IDH-wild-type
cancers as two separate entities due to the importance of IDH
mutation for patient survival (5, 6).

Artificial intelligence (AI) is the term used to describe the use of
computers and technology to simulate intelligent behavior and
critical thinking comparable to a human being. Specifically,
machine learning (ML) is a subfield of Al defined as a set of
methods that can automatically detect a pattern of data, with the
ability of using uncovered patterns to predict future data or perform
other kinds of decision-making under uncertainty (7). The learning
process can be classified as supervised and unsupervised.
Unsupervised learning models identify the pattern class
information heuristically, providing clusters without a ground-
truth knowledge. On the contrary, the supervised learning
approach (explored in this article) identifies a pattern that
connects the inputs X to the outputs Y, given a labeled set of
input-output pairs. In recent years, Al applications in medicine
have grown exponentially, involving almost every medical specialty
(8). In the field of radiology, the conversion of biomedical images
[such as magnetic resonance imaging (MRI), Computerized
Tomography (CT), X-Ray, etc.] to mineable data, and their
analysis with Al techniques is defined as “radiomics” (9). Thanks
to these new developments, it is possible to extract multiple features
from radiological images reflecting tissue characteristics, and use
them as input for ML models. For example, graytone distribution
and mutual dependencies reflect tissue heterogeneity (10). One of
the most interesting applications of ML to radiology is the creation
of predictive models to estimate clinically relevant variables.
Biomedical images intrinsic parameters (represented by radiomic
features) contain information about tissue structure, molecular
data, and patient outcome, providing important information for
patient care through quantitative image analyses (9, 11). Al-
powered analyses may aid diagnosis and prognostication, with
practical applications in multiple clinical settings, including
emergency care (12).

In brain tumors, radiomic research can identify features that
describe the tumor microenvironment (13) and build predictive
models for tumor variables and patient outcome. Radiomic models
have been shown to outperform clinical models based on patient
age, Karnofsky performance scale, surgical resection, genetic
alterations, in glioblastoma (GBM) outcome prediction (14, 15).

Recent studies proposed several high-performance radiomic
models for predicting OS, progression-free survival, molecular
subtypes of HGG, as well as genetic alterations critical for clinical
practice (16-20). Despite these promising results, clinical
implementation is extremely limited due to wide variations of
model performances (21-23) and controversial findings. For
example, a recent study on 152 patients with GBM concluded
that MRI features were not adequate for providing reliable and
clinically meaningful predictions through ML classification models
(24). A recent review calls for improved standardization and clinical
application feasibility (25).

Variability in model performance may depend on parameters
optimization. Radiomic workflows comprehend multiple steps
requiring parameter choice: tumor segmentation on radiologic
images to identify regions of interest (ROIs), feature extraction
and selection, training, testing and validation of the AI model,
performance evaluation (26, 27). The lack of radiomic parameters
standardization might limit results generalizability across studies. A
possible solution for this limitation is to compare multiple ML
algorithms in the same population for different tasks. In fact, the
classification method was shown to be the dominant source of
performance variation in radiomic analyses (28). Furthermore,
most of radiomic models presented for outcome prediction in
HGG employ classic ML algorithms, such as logistic regression,
support vector machine, and decisional trees (21, 22). Non-
ensemble learners showed inferior performance for small or
imbalanced datasets when compared to the ensemble
counterpart. Few studies have indeed shown comparative results
of single learners vs ensemble models (29-31). This is not
unexpected considering that single classifier approaches try to
learn a single hypothesis from the training set, whereas ensemble
learning tries to construct a set of hypotheses and combine them in
the best way possible (32). In fact, ensemble methods are used to
obtain better predictive performance by reducing both the bias
(representational problem) and the variance (computational
problem) of learning algorithms (33).

In this study, we chose well-established ML classifiers from
previous literature in the field and compared their performance to
predict outcome variables of HGG: OS, IDH mutation, O-6-
methylguanine-DNA-methyltransferase (MGMT) promoter
methylation, epidermal growth factor receptor vIII (EGFR)
amplification, and Ki-67 expression, based on features extracted
from conventional and advanced MRI. Our objectives were (1) to
assess the best algorithm for each prediction task, providing a
benchmark for future clinical applications. Particularly, we wanted
to compare classic and ensemble learners among ML classifiers to
provide a comprehensive view on model performance; (2) to evaluate
highly predictive radiomic features extracted from different tumor
regions, highlighting possible correlations between MR parameters
and tumor molecular/genetic characteristics.

MATERIALS AND METHODS
Subjects

This retrospective observational study was conducted in
accordance to the Helsinki declaration. Approval from the
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institutional review board (IRB) was obtained with protocol
number: 19 SA_2020. Consecutive patients with pathologically
proven diagnosis of HGG were recruited from March 2005 to
May 2019. Data were collected from two institutions:
Sant’Andrea Hospital La Sapienza University of Rome
(Institution 1) on a 1.5T scanner (Magnetom Sonata, Siemens,
Erlangen, Germany), and Regina Elena Institute of Rome
(Institution 2) on a 3T system (Discovery MR 750w, GE
Healthcare, Milwaukee, WI, USA). We enrolled patients
fulfilling the following inclusion criteria: histopathological
diagnosis of HGG, presurgical MRI with at least one sequence
among structural T1 or T2-weighted images, diffusion or
perfusion-weighted images. Exclusion criteria were causes of
suboptimal images (for example motion artifacts) and loss of
patients” information during follow-up.

All patients received standard treatment after surgery with the
same protocol, including focal radiotherapy (RT) and
concomitant temozolomide (TMZ), followed by adjuvant TMZ
therapy. RT consisted of fractionated focal irradiation (60 Gy)
started within 4 weeks after surgery. The radiation dose was
delivered in 30 fractions of 2 Gy over 6 weeks. Chemotherapy
with TMZ was administered in a dose of 75 mg/m2, 7 days/week.
Adjuvant TMZ started 4 weeks after radiation with the following
protocol: 150 mg/m?2 for the first cycle, increased to 200 mg/m2
for the second cycle; administered 5 days every 28 days up to
12 cycles.

Prediction labels were associated with survival at 12 months
after diagnosis (SURV12), MGMT promoter methylation, IDH
mutation, Ki-67 expression, and EGFR amplification. These
labels were chosen as they usually provide important
prognostic information in HGG. Survival cutoff at 12 months
was set based on previous studies (34-36).

Histopathological Analysis

Each tumor specimen was fixed in formaldehyde (10%) and
embedded in paraffin. Thin sections (2 wm) were mounted and
stained with hematoxylin and eosin. The histopathological
examination, including tumor grading, was performed taking
into account at least three of the following: cellular atypias,
number of mitotes, microvascular proliferation, and/or presence
of necrosis. The histopathological examination was performed
according to the 2016 edition of the WHO classification of
CNS tumors.

Immunohistochemistry

A Dako Envision Flex system was employed for the
immunohistochemical analysis. The immunostaining patterns
of EGFR were evaluated considering both cellular and tissue
distribution. The number of immunopositive cells in 10 high-
power (40x) areas were counted, and the percentage of
immunopositive cells were estimated. The ratio of positive
cells/total number of cells was calculated for each field. The
mean value of the 10 fields obtained from a section was
considered as the estimated percentage of immunoreactivity
assigned to the tumor sample. For IDH-1 mutation analysis,
we performed a test with IDH-1 R132H antibody. A positive
result was defined when a focal or diffuse immunopositivity was

detected, while a negative result was when no immunopositive
tumor cells were found. Negative cases were further analyzed for
IDH-1/2 mutations as previously shown (37). All sequence
reactions were carried out using the GenomeLab DTCS quick-
start kit (Beckman Coulter, Fullerton, CA, USA). The reactions
were carried out in an automated DNA analyzer (CEQ 8000;
Beckman Coulter). All sections were immunostained with Ki-67
antibody. The positivity for Ki67 was determined by counting at
least 1,000 tumor cells in a homogeneously stained area and then
expressed in percentage.

MGMT Methylation Testing

We used EntroGen’s MGMT Methylation Detection Kit
(MSPCR, Cat. No. MGMT-RT44), a semiquantitative real-time
PCR-based essay for detection of MGMT promoter methylation
within the DMR2 locus, distinguishing between methylated and
non-methylated cytosines. Its target region starts at
chr10:131265513 (hgl9 genome build) in the MGMT
promoter region and covers CpG sites 75-86. The detection of
the amplification product was done by using fluorescent
hydrolysis fraction. The procedure involves the following steps:
(1) isolation of DNA from tumor biopsies, paraffin-embedded
sections; (2) bisulfite treatment of the isolated DNA using the EZ
DNA methylation-Lightning Kit (Zymo Research, CATD5030);
(3) amplification of treated DNA using the provided reagents in
the MGMT Promoter methylation Detection kit; (4) data
analysis and interpretation using the real-time PCR software.

MRI Acquisition

MRI sequences were acquired with the same protocol including
magnetization-prepared rapid acquisition with gradient echo
(MPRAGE), fluid-attenuated inversion recovery (FLAIR), T1-
weighted, T2-weigthed, diffusion weighted images (DWI), with
apparent diffusion coefficient (ADC) map reconstruction, and
perfusion weighted images (PWI) with dynamic susceptibility
contrast (DSC) technique. Perfusion parametric maps were
obtained through a dedicated software package OleaSphere
software version 3.0 (Olea Medical, La Ciotat, France). A
relative cerebral blood volume (rCBV) map was generated by
using an established tracer kinetic model applied to the first-pass
data (38). As previously shown (39), we applied a mathematical
correction to the dynamic curves to reduce contrast agent
leakage effects. Detailed acquisition parameters can be found in
the Supplementary Material.

Image Processing and Radiomic

Feature Extraction

The radiomic workflow of our analysis was developed following
the white paper of the Image Biomarker Standardization
Initiative (IBSI) (40) and is summarized in Figure 1. For every
patient, we automatically co-registered MR data to the MPRAGE
sequence using FMRIB Linear Image Registration Tool of FSL
(https://fsl.fmrib.ox.ac.uk) (41, 42). Tumors were manually
segmented by a neuroradiologist, with three ROIs drawn on
MPRAGE and FLAIR images using 3D-Slicer (LP, with 7 years of
experience in radiology) (https://www.slicer.org/) (43). Doubtful
cases were solved as for consensus with a senior neuroradiologist
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FIGURE 1 | Radiomic workflow followed in the present study.

(AB, with 25 years of experience in radiology). The ROIs were
whole tumor (T2), contrast-enhancing tumor (CET), necrosis
(NEC). A further non-enhancing tumor (NET) ROI was
obtained from the other ROIs as it follows: T2 — (CET+NEC).
Based on recent findings (44), we performed intensity non-
standardness correction on our multi-institutional data by
scaling each image with respect to its mean value within
specific brain structure (i.e., NET ROI) using MATLAB
R2017a environment (MATLAB 2017, Natick, MA, USA: The
MathWorks Inc). The intensity range between 0 and 255 was not
rescaled to prevent information loss due to image
down-sampling.

We extracted a set of 1,871 radiomic features for each patient
from the combination of tumor ROIs (NET, CET, and NEC) and
multiparametric MR data (ADC, FLAIR, MPRAGE, rCBV, T1-
weigthed, and T2-weighted images). The process was carried out
through Pyradiomics package on Python 2.7 (45). Each radiomic
set included 14 shape features, 18 intensity features, and 75
texture features [gray-level co-occurrence matrix (GLCM), gray-
level difference matrix (GLDM), gray-level size zone matrix
(GLSZM), gray-level run length matrix (GLRLM),
neighborhood gray tone difference matrix (NGTDM)] from
original and filtered images (wavelet decomposition, Laplacian
of Gaussian, exponential, logarithmic, and gradient).
Additionally, three ad-hoc fractal features were computed: box
counting two dimensions (2D), box counting three dimensions
(3D), and differential box counting, which were integrated in the
code of the Pyradiomics pipeline (46). Patients’ age at the time of

diagnosis was considered a feature in our model for survival
prediction only.

Feature Selection and Classification
The pipeline was written in Python and was implemented on
Google Colab (47). Prior to any further analysis, each extracted
feature distribution was standardized by taking out outliers,
removing the mean and scaling it to unit variance with Python
Standard Scaler package. Feature selection was then performed
in order to identify an ensemble of the most predictive features
for each ROI-sequence combination. To this purpose, we used
the Boruta algorithm, a powerful and recently introduced feature
selector method, that trained a Random Forest Classifier on a
duplicated dataset (composed by original and shadow features)
and marked a feature as important comparing its Z-scores with
that of the duplicate (48). The implementation we used in this
work was boruta_py module, freely accessible from github
repository (49). Due to the retrospective nature of this study,
some MRI sequences were not acquired for all the patients, and
some patients lacked full genetic testing, leading to class
imbalance issues. In order to overcome this limitation in
binary classification, we used Synthetic Minority Over-
sampling Technique (SMOTE) approach, which oversamples
data of the minority class, creating new synthesized samples
from the existing ones (24, 50).

To find the best parameter setting, an optimization search
grid algorithm was applied on nine ML classifiers including
ensemble and non-ensemble learners (Figure 2): AdaBoost (AB),
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Extreme Gradient Boosting (xGB), Gradient Boosting (GB),

Decision Tree (DT) and Random Forest (RF), Logis

tic

Regressor (LR), two types of Stacking classifiers: stacking (ST)
and stacking with AdaBoost (ST_ABC), and KNeighbors (KN).

AB, xGB, and GB use a set of weak learners and try to boost them
into strong learners. The GB classifier appears in classification
studies (24), as it works well with categorical and numerical data;
we decided to compare GB performance with xGB, that is the

Boosting classifiers
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fastest implementation of gradient boosted trees (24, 51). The AB
was also often used for brain tumor classification (52, 53), as it works
to create a powerful algorithm where instances are reweighted
rather than resampled. A Decision Tree algorithm was used in
AB as a weak learner. Decision Tree (DT) and Random Forest (RF)
are both based upon decision tree algorithms. RF is actually a
collection of DTs attempting to classify a new object based on its
attributes (54). The RF classifier was already used in brain tumor
segmentation problems (55), for the MGMT promoter prediction
model (56), for the IDH status prediction (57), and for the survival
prediction (58). Logistic Regressor (LR) is one of the most used
linear classifiers to disentangle linear relationship between the data
(24). The stacked generalization is an ensemble ML algorithm that
learns how to best combine the predictions from multiple well-
performing ML models. In our case, one classifier was set on the best
parameters from GB, RF, and LR (ST), whereas the second was set
on best parameters from GB, RF, and AB (ST_ABC) (59). KN relies
on distance in data space and is one of the simplest of all the
supervised ML algorithms (31). Apart from the extreme gradient
boosting classifier which was implemented in xgboost package (60),
all classifiers were part of Scikit-learn package (61). Algorithms were
chosen based on their known performance and extensive use in
the literature.

In order to achieve the most performant and robust model, the
Grid Search algorithm, as implemented in Scikit-learn package, was
applied when computing 10 times K-fold cross-validation (K=10)
and setting the same test split. Given the unbalanced condition for
all molecular predictors and in order to reach the same number of
trials as for SURV12, an iterative way of K-fold cross-validation was
applied. This method made sure that among the possible
combinations of data splitting, only those one having the number
of minority class subjects at least equal to half of the number of
majority class were included among the eligible reshuffles. The Grid
Search algorithm was set to look for the highest mean along with the
lowest spread of accuracy. The accuracy mean and standard
deviation were evaluated on 100 different splitting of training and
test data. Once optimal parameters were identified, model
performances were also assessed in terms of AUC-ROC curve
with 95% CI (28, 62). AUC-ROC curves were also useful when
comparing classifiers as they show the trade-off between false
positive and true positive rates in the classification (63).

RESULTS

Subjects
The study included 156 adult patients (mean age = 62 y, range =
35-83 y) with confirmed diagnosis of HGG: 121 patients were

TABLE 1 | Number of patients and label distributions for label-sequence combination.

acquired at Institution 1 and 35 patients at Institution 2.
Descriptive statistics performed on genetic variables revealed
an odds ratio of 0.607, 1.186, 0.911, and 5.6 for Ki-67, MGMT,
IDH, and EGFR respectively, evaluated with reference
to SURV12.

Machine Learning Analysis

The distribution of our data is summarized in Table 1. For those
labels suffering from class imbalance issues, SMOTE was always
used. Feature selection produced multiple radiomic signatures
composed by 20 features, ordered by importance for the
predicted label. The best 15 features for every signature are
displayed in the Supplementary Material. Nine ML classifiers
were compared in the present study. We identified the best
classifier and the best ROI-sequence combination in terms of
prediction accuracy for each task (SURV12, MGMT, IDH, KI67,
and EGFR).

Prediction Performance

Regarding SURV12 prediction, the best performance was
achieved by AB and xGB classifiers on ADC radiomic features
from NET ROI and T2 radiomic features from NEC ROI
(Table 2). AB classifier demonstrated accuracy of 73.6% and
AUC-ROC mean value of 73.6% (95% CI 71.6-75.3) based on
ADC features from NET ROI (Figure 3A). xGB classifier
achieved accuracy of 74.5% and AUC-ROC mean value of
74.2% (95% CI 71.9-76.3) with T2 radiomic features from
NEC ROI (Figure 3B). Similarly, xGB classifier provided good
accuracy based on FLAIR features from NET ROI (Acc=72.1%;
AUC-ROC=72.4%; 95% CI 69.6-75) (Figure 3C).

Best results for MGMT prediction (Table 3) were obtained from
CET ROI on FLAIR images by using AB classifier (Acc=70.8%;
AUC-ROC=68.8%; 95% CI 65.9-71.7) (Figure 4). High-scoring
features mainly included texture parameters (Figure S4).

IDH prediction task showed the best performance in our
dataset (Table 4). Highest accuracy was achieved by AB classifier
with rCBV features from NET ROI (Acc= 87.5%; AUC-
ROC=86.7%; 95% CI 84.3-89) (Figure 5A). Similarly, AB
classifier provided good results with T2-based features from
CET ROI (Acc=85.9%; AUC-ROC=85.8%; 95% CI 80-84.6)
(Figure 5B) and NEC ROI (Acc=80.8%; AUC-ROC=80.5%;
95% CI 78.4-82.6) (Figure 5C). Good results were also
achieved by ST classifier based on T1 features from NET ROI
(Acc=84.2%; AUC-ROC=83%; 95% CI 80-85.9) (Figure 5D).

The prediction of Ki-67 expression provided excellent results
from ADC sequence and CET ROI (Table 5). AB classifier
provided the highest accuracy (86%) and AUC-ROC value
(70%; 95% CI 65.3-72.9) (Figure 6).

ADC FLAIR MPRAGE rCBV T T2
SURV12 (0/1) 134 (65/69) 140 (68/72) 138 (66/72) 93 (45/48) 122 (61/61) 122 (60/62)
MGMT (0/1) 110 (41/69) 115 (43/72) 114 (42/72) 80 (33/47) 100 (39/61) 102 (39/63)
IDH (0/1) 86 (71/15) 89 (74/15) 89 (74/15) 60 (51/9) 77 (63/14) 78 (65/13)
KI67 (0/1) 100 (18/82) 106 (21/85) 103 (22/81) 77 (16/61) 97 (17/80) 94 (16/78)
EGFR (0/1) 65 (21/44) 69 (23/46) 66 (23/43) 49 (16/33) 65 (22/43) 62 (20/42)

Frontiers in Oncology | www.frontiersin.org

November 2021 | Volume 11 | Article 601425


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Pasquini et al. Machine Learning Predictions for HGG

TABLE 2 | Surv12 best results (reported as mean + standard deviation).

ROI SEQ xGB GB RF LR ST KN DT AB ST_ABC
NET  ADC Acc% 71,8 + 10 68,8 + 11,4 67,9 +6,5 46,3 + 5,4 71+9 612+123 5892+11,7 736+93 642+126
NET  ADC Roc %  71,8+97 69,1 + 11,1 67,9+6,5 46,3 + 5,4 71+9 612+123 6892+11,7 736+93 642+126
NET  FLAR Acc% 721+13,7 67,4+99 71,6 +84 62 + 13,6 69 + 12 54,3 + 15 59+13,7 689+7 62,3 + 14
NET  FLAR Roc% 72,4+ 14 67 £ 11 721+76 62,3 £ 13,7 69+ 122 539+148 588=+13 69,6 +7,7 59 + 13
NEC T2 Acc % 74,5+ 11 65,8 + 12,6 67 +16,7 58,7 + 14,3 73,6 +9 523+152 60, 7+11,4 727+95 681+139
NEC T2 Roc % 74,2 +10,9 65+ 11,2 66,4 + 17 58,8 + 14,4 73+94 52 + 14,9 59 + 11 725+96 56,3+ 14,3
A Cross-Validation ROC of AB B Cross-Validation ROC of xGB c Cross-Validation ROC of xGB
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FIGURE 3 | Best ROC curves for Surv12 prediction: (A) AB classifier with ADC sequence on NET ROI; (B) xGB classifier with T2 sequence on NEC ROI; (C) xGB
classifier with FLAIR sequence on NET ROI.

TABLE 3 | MGMT best results (reported as mean + standard deviation).

ROI SEQ xGB GB RF LR ST KN DT AB ST_ABC

CET  FLAR  Acc % 633+ 11,3 68,1+134 70.7+93 655+11,44 679x157 522+127 594+144 70,8+141 645+157
CET FLAR Roc% 628+11,7 668+134 634+122 59 + 10,6 67 + 16,8 51,4+133 555+ 121 68,8+ 146 62=+142

EGFR amplification was correctly predicted by radiomic  overall, with accuracy of 73.6, 70.8, 87.5, 86, and 81% for
features extracted from rCBV and T2 images within CET ROI, = SURV12, MGMT, IDH, Ki-67, and EGFR respectively, while
in both cases with AB classifier (Table 6). Particularly, rtCBV ~ the LR and KN classifiers always produced suboptimal

demonstrated the highest performance (Acc=81%; AUC-  prediction performances.

ROC=74.3%; 95% CI 70.8-77.8) (Figure 7A), while T2 These results are in line with previous literature comparing
sequence achieved accuracy of 77.8% and AUC-ROC equal to  boosting and logistic regression-based classifiers (64). Ensemble
74.1% (95% CI 70.6-77.6) (Figure 7B). models showed high classification performance in different

Box-plots figures comparing the best results for each classifier ~ fields. Similar results were observed by Wang et al. using four
and tables with high-scoring radiomic features are provided in  single classifiers combined with three different algorithms
the Supplementary Material (Figures S1-S10). (bagging boosting and stacking) to create ensemble learners for

credit scoring (59). All ensemble types yielded a significant

improvement compared to base learners (59). In line with our
DISCUSSION findings, Lu et al. reported higher performances for AdaBoost

compared to bagging ensemble algorithms for cancer
Al has proven to be an accurate tool in predicting survival and  classification with gene expression data. The idea behind this
molecular profile of gliomas. However, high variability in results ~ better performance is that AdaBoost is based on a linear
across studies and lack of standardization are limiting its use in ~ combination of single learners weighted by their own
clinical practice. We studied the best ROI-sequence combination ~ performance, being able to filter out redundant training data
for prediction of clinically relevant variables in HGG, by  attributes and focusing on the important features (65).
comparing multiple ML classifiers including classic and Other studies compared ML classifiers in HGG, although with
ensemble learners. Ensemble classifiers achieved the best  different methodologies and results. Samara et al. conducted a
performance in every task. The AB was the best classifier  study comparing base models (LR, KN, DT, linear support vector
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FIGURE 4 | Best ROC curve for MGMT prediction: AB classifier with FLAIR
sequence on CET ROL.

machine) and ensemble algorithms (Bootstrap aggregating, AB,
RF, and Voting classifier) in a GBM prognostication model based
on clinical data (30). In the study, ensemble classifiers attained
the highest AUC for every dataset, especially when trained on
statistically determined sets or union sets. Osman attempted
GBM patients’ survival stratification based on conventional MRI
sequences with several classifiers. Combining nine selected
radiomic features with clinical factors (e.g., age and resection
status), even the best prediction accuracy of the ensemble
learning classifier appeared low (less than 60%), possibly due
to the multi-institutional nature of the study (31). In our
approach, we made use of advanced sequences and a larger
number of features. Among them we also included fractal
dimension-based features which have rarely been implemented
in previous studies and may help boosting up the accuracy of our
results. Further and important difference regards the use of
Boruta algorithm to reduce the features and select only those
having higher importance for the model. Also, Kickingereder
et al. proposed to evaluate the association of multiparametric
MRI features with molecular characteristics (e.g., global DNA
methylation subgroup, MGMT, EGFR) in GBM patients,

TABLE 4 | IDH best results (reported as mean + standard deviation).

training different models (e.g., stochastic GB, RF, and
penalized LR). The authors found associations between
established MRI features and molecular characteristics
(prediction accuracy of 63% for EGFR with penalized LR).
However, the link between them was not strong enough to
enable generation of ML classification models for reliable and
clinically meaningful predictions (24). In addition to a different
set of predicted outcomes, this result might be due to the type
and amount of imaging features used for prediction:
Kickingereder et al. used 31 imaging parameters for molecular
characteristic prediction, while this study extracted 1,871
radiomic features from each image.

A closer look on best performing features and ROI-sequence
combinations from our results may unravel interesting
associations between MRI parameters and pathologic features of
HGG. The best survival prediction was achieved by AB using ADC
maps from NET ROI. Also, xGB classifiers showed high
performance using T2 images from NEC ROI or FLAIR images
from NET ROI, but with higher spread of accuracy (Table 2).
Previous studies showed heterogeneous results on the same matter
(17, 31, 66), depending on size and source of datasets, type and
number of extracted features, and model parameters. NET is a
common finding in HGG and is considered a combination of
infiltrating tumor cells and vasogenic edema (67), whose
extension correlates with poor prognosis (68). After surgical
resection, recurrence occurs more frequently along the resection
margins, due to populations of malignant cells interspersed in the
NET (69). Recent research demonstrated that peritumoral MRI
textural features from FLAIR and T2 images were predictive of
survival as compared to features from enhancing tumor, necrotic
regions, and known clinical factors (70, 71). Higher performance
of ADC features from NET is coherent with studies demonstrating
the inverse correlation between ADC values and tissue cellularity
(72-75). In fact, tissue cellularity as measured by ADC can
differentiate between vasogenic edema and malignant tumoral
tissue within the NET, possibly recognizing patients at higher risk
for recurrence (76). Good survival predictivity on NEC ROl is also
supported by previous literature. Chaddad et al. reported that
shape features, particularly those extracted from necrotic regions,
can be used to effectively predict OS of GBM patients (77).
Furthermore, our best performing feature for survival prediction
on NEC was related to fractal dimension (Figure S2C), a measure
of shape complexity that has rarely been employed in radiomic
studies but demonstrated interesting correlations with patient
survival (35).

ROl  SEQ XGB GB RF LR ST KN DT AB ST_ABC
NET rCBV Acc% 835%128 828=12  762:162 7783+144 867=118 692%175 787+145 875119 828%124
NET 1CBV Roc% 832+128  82x135 783+155  78+147 858+123  69+183 783«15 86,7 + 12 82+ 12,4
NET T Acc%  802+14 81+138 80125 68712  842+15 66 + 21 752137 859 = 14 80,912
NET  TH Roc% 794+15  807+15  782+123 679+114  83+147 667+212 763+145 858=149 80«13
CET T2 Acc% 802+ 14 814138  80+125 687+12  842:15 66 + 21 7524137 859+14 80912
CET T2 Roc% 794+15  807+15  782:123 679=114  83+147 667212 763:145 858+149  80+13
NEC T2 Acc%  77,4+98 779+ 11 79 + 11 703+125 792+10,7 693+143 758=126 808102 795+95
NEC T2 Roc% 76,6 + 10 77 £ 10 78+112 707+126 789+97 70+149 775+129 805+106 784+9
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FIGURE 5 | Best ROC curves for IDH prediction: (A) AB classifier with rCBV sequence on NET ROI; (B) AB classifier with T2 sequence on CET ROI; (C) AB classifier
with T2 sequence on NEC ROI; (D) ST classifier with T1 sequence on NET ROL.

TABLE 5 | KI67 best results (reported as mean + standard deviation).

ROI SEQ xGB GB RF LR ST KN DT AB ST_ABC
CET ADC Acc % 82,3 + 8,4 81,6 +9,7 83,9+9,8 63,7 + 13,6 82,6 + 10,6 67,5+ 10 76,56 + 12 86 + 10,6 83 +8,2
CET ADC Roc % 64,6 + 15 64,5+ 17,3 67,5+ 18,9 50,8 +17,5 63,2+ 17,8 60 + 15,7 60 + 19 70+ 20 64,4 + 17

Preoperative prediction of MGMT promoter methylation and  tried to correlate these characteristics with MGMT and IDH
IDH mutation represents a crucial objective for radiomic studies  status, reporting conflicting results (78). Textural features
due to their pivotal role in patient outcome (2, 4). On  demonstrated higher accuracy for MGMT promoter
conventional and advanced MRI, MGMT methylated HGG  methylation prediction, achieving best performance with
may show mixed nodular enhancement, limited edema, lower FLAIR features from CET (70.8%, AB classifier) (Figures S3
rCBV, increased Ktrans, and higher ADC minimum values (78, and S4). These results are coherent with other reports (80) and
79). IDH mutant tumors usually show less enhancement, less  confirm that textural features outperform morphological and
blood flow on perfusion weighted images, higher mean diffusion  intensity features in MGMT status prediction (16). Another
values, smaller size, and frontal lobe location (21). Many studies ~ recent study from Sasaki et al. reported accuracy of 67% for
MGMT prediction with textural features (81). A possible
explanation for the performance discrepancy is the choice of
the classification algorithm: prediction accuracy has great
Cross-Validation ROC of AB variability depending on the selected model (Table 3), with
higher performance for ensemble learners. Regarding IDH
mutation, our AB classifier achieved an accuracy of 87.5% with
rCBV-derived first-order features (median, skewness) from NET
(Figure S6A), outperforming most of previous models (21, 22).
Besides correlating with patient survival (82), perfusion-based
features were highly predictive of IDH status in another recent
study from our group based on deep-learning (37).
Kieckegereder et al. demonstrated that IDH mutation status is
associated with a specific hypoxia/angiogenesis transcriptome
signature predictable through perfusion MRI (83). Our results
seem to confirm a role for perfusion-based analysis in
discriminating IDH mutation, reflecting the known correlation
with hypoxia inducible factor (HIF) and neoangiogenesis (84).
Also, textural features achieved optimal results in the prediction
of IDH mutation based on T1 images from NET (84.2%, ST

classifier) and T2 images from CET (85.9%, AB classifier). The

00 02 04 06 08 10 accumulation of D-2HG derived from IDH mutation induces
False Positive Rate epigenetic changes that lead to abnormal gene expression and

impaired cellular differentiation, possibly contributing to
intratumoral heterogeneity. Hsieh et al. demonstrated that
textural features can differentiate IDH mutation with 85%
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FIGURE 6 | Best ROC curve for KI67 prediction: AB classifier with ADC
sequence on CET ROL.
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TABLE 6 | EGFR best results (reported as mean + standard deviation).

ROI SEQ xGB GB RF LR ST KN DT AB ST_ABC
CET rCBV Acc % 69,8 + 15,1 75,4 £ 15 73,116 64,3+ 16,3 72,9+143 61,3 +£21,4 66,7 + 19,4 81+ 138 66,5 + 18,7
CET rCBV Roc % 63,9 + 19,5 64,6 + 18,5 64,7 + 20 62,2+21,8 657+189 63,4 + 23,3 59,4 +23,2 743+173 62,6 £ 20
CET T2 Acc % 76,4 £ 15,2 74,7 £ 15 76,4 + 16 60,8 + 18,8 76 £17,8 59,7 £ 20,4 61,3+ 18,7 77,8+13,8 715 +£16
CET T2 Roc % 70,4 + 22,7 69,7 + 19,8 76,3+ 17 654 + 157 69,8 +22,8 60,2 + 19,5 55,7 +20,4 741176 65,6 + 20,6
A B
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FIGURE 7 | Best ROC curves for EGFR prediction: (A) AB classifier with rCBV sequence on CET ROI; (B) AB classifier with T2 sequence on CET ROI.

accuracy in 39 patients with GBM. The Authors performed
tailored biopsies demonstrating an agreement between
prediction results and biopsy-proven pathology of 0.60 (85).
Shape features of tumor necrosis demonstrated good accuracy
for IDH mutation prediction in our model (Figure S6D). Such
result may partly explain the relation between necrosis shape and
survival as previously discussed (35, 77).

Ki-67 is a nuclear protein expressed by cells entering the
mitotic cycle. In gliomas, the expression of Ki-67 is roughly
proportional to the histologic grade, representing a proliferative
index with prognostic correlation (86). Radiomic models
predictive of Ki-67 expression have not been investigated
before in the literature. In our analysis we achieved an
accuracy of 86% for predicting Ki-67 expression through the
AB. Intriguingly, best performing features were texture-based
parameters extracted from the solid tumor (CET ROI) on ADC
maps (Figure $8). These results perfectly agree with the role of
Ki-67 as proliferative index in HGG, being ADC an MRI
surrogate of cellularity (72, 73).

EGFR is a transmembrane tyrosine-kinase receptor for
different growth factors, whose activation leads to DNA
synthesis and cellular proliferation (87). Amplification of
EGFR (especially EGFRVIII) is a common somatic mutation in
HGG (4), with high relevance for the definition of GBM in the

recent classification (6). Despite failure of initial attempts of
targeting EGFR for therapy, the receptor remains of value for
possible future treatments (87). In our results, EGFR showed best
prediction performance with ST and AB classifiers. Particularly,
rCBYV features achieved a performance of 81% with AB classifier
and T2 features achieved a performance of 77.8% with AB
classifier on CET ROI. Highest scoring features were median
intensity values for rCBV and textural features for T2 (Figures
S10A, B). These results are supported by previous evidence. Hu
et al. demonstrated a link between EGFR amplification and rCBV
textural features, with correlation to microvessel volume and
angiogenesis on tumor biopsies (88). Similarly, T2 textural
features were shown to correlate to EGFR amplification (88).
Our study had some limitations. Firstly, even though ML
studies in HGG often rely on limited populations (18, 19, 34, 36,
62, 77, 85, 88, 89), our sample size (156 patients) could be
considered small. Nevertheless, our dataset includes clinical/
genetic information (e.g., survival, MGMT, IDH, EGFR, and
KI67), together with radiomic data from different MRI sequences
(e.g, MPRAGE, FLAIR, ADC, rCBV, T1-wiethed, and T2-
weighted), thus allowing us to combine information from
different sources to better predict clinical and genetic variables.
Due to the retrospective nature of the study, some sequences
were not acquired for all the patients (Table 1). For this reason,
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prediction accuracy for each label was evaluated separately on
each sequence, thus limiting performance bias. Moreover, some
labels were not available for all the patients; consequently, the
number of subjects split in train and test groups changed for each
label-sequence combination. We tried to overcome this
limitation by employing two well-known and effective
techniques with the aim of balancing the asymmetric labels.
Although undersampling of the majority class was considered a
more effective approach in respect to an oversampling method
(90), we decided to use SMOTE for unbalancing issues. As
demonstrated in other SMOTE-based studies (24, 91), it could
represent a suitable solution for our purposes. In order to
overcome main SMOTE drawbacks (92, 93) we perform ML
analysis with a significant number of cross-validations. Since we
only split subjects into train and test groups, the lack of an
additional validation cohort could represent a limitation of this
study. To overcome this issue, we decided to report range of
performance obtained applying four times stratified K-fold
cross-validation. This approach provides a full accuracy range,
which includes the results that an eventual validation test
would produce.

CONCLUSIONS

In the present study we were able to predict patient OS and
highly relevant molecular features of HGG from preoperative
MRI, comparing different ML classifiers. Ensemble classifiers
(AB, ST, GB, and xGB) showed optimal performance in
prediction tasks for all the studied variables. In particular, AB
and xGB obtained maximum accuracy for survival, AB for IDH
mutation, MGMT promotor methylation status and Ki-67
expression, and EGFR amplification. Ensemble learning
outperformed classic ML algorithms in all tests, in agreement
with previous literature. Best performing features from our
analysis shed light on possible correlations between MRI and
tumor histology, as well as molecular profiles and patient
outcome in HGG. Our results may set a path for ML analysis
standardization and clinical application. Future developments
may include the evaluation of other genetic abnormalities,
prediction of recurrence, and response to therapy.
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Objective: To establish and evaluate the 3D U-Net model for automated segmentation
and detection of pelvic bone metastases in patients with prostate cancer (PCa) using
diffusion-weighted imaging (DWI) and T1 weighted imaging (T1WI) images.

Methods: The model consisted of two 3D U-Net algorithms. A total of 859 patients with
clinically suspected or confirmed PCa between January 2017 and December 2020 were
enrolled for the first 3D U-Net development of pelvic bony structure segmentation. Then,
334 PCa patients were selected for the model development of bone metastases
segmentation. Additionally, 63 patients from January to May 2021 were recruited for
the external evaluation of the network. The network was developed using DWI and T1WI
images as input. Dice similarity coefficient (DSC), volumetric similarity (VS), and Hausdorff
distance (HD) were used to evaluate the segmentation performance. Sensitivity,
specificity, and area under the curve (AUC) were used to evaluate the detection
performance at the patient level; recall, precision, and F1-score were assessed at the
lesion level.

Results: The pelvic bony structures segmentation on DWI and T1WI images had mean
DSC and VS values above 0.85, and the HD values were <15 mm. In the testing set, the
AUC of the metastases detection at the patient level were 0.85 and 0.80 on DWIand T1WI
images. At the lesion level, the F1-score achieved 87.6% and 87.8% concerning
metastases detection on DWI and T1WI images, respectively. In the external dataset,
the AUC of the model for M-staging was 0.94 and 0.89 on DWI and T1WI images.

Conclusion: The deep learning-based 3D U-Net network yields accurate detection and
segmentation of pelvic bone metastases for PCa patients on DWI and T1WI images,
which lays a foundation for the whole-body skeletal metastases assessment.

Keywords: pelvic bones, metastases, prostate cancer, deep learning, magnetic resonance imaging
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INTRODUCTION

The nature of bone marrow makes it a favorite fertile soil into
which prostate tumors incline to colonize and grow (1, 2); up to
84% of patients with advanced prostate cancer (PCa) experience
bone metastases (3), and more than 80% PCa patients developed
relapse in the bone following treatment of the primary site (4).
The mortality of PCa is 6.6-fold for those with bone metastases
compared to those without bone metastases (5). Accurate
detection and assessment of metastatic burden in bone are of
fundamental importance for radiologists.

Bone scintigraphy (BS) and computed tomography (CT) scans
were endorsed as the standard imaging method in the staging and
follow-up of metastatic PCa (6), while it is gradually clear that the
reduced accuracy of BS and CT in the detection and therapeutic
response evaluation of bone metastases reduces their effectiveness
in therapy management (7). Multiparametric magnetic resonance
imaging (mpMRI) is emerging as a powerful alternative for
metastatic PCa. One of the main strengths of mpMRI is to
achieve a precise evaluation of bone metastasis via the
incorporation of anatomic [e.g., T1 weighted imaging (T1TWI)]
and functional imaging sequences [e.g., diffusion-weighted imaging
(DWTI)] (7, 8). The value of volumetric measurements for assessing
treatment response has been increasingly discussed, and the
measurements of lesion volume on mpMRI should be undertaken
on high-quality TIWI images according to the METastasis
Reporting and Data System (MET-RADS) for PCa (9).
Additionally, the volume of bone metastasis assessed with DWI
was reported to show a correlation with established prognostic
biomarkers and is associated with overall survival in metastatic
castration-resistant PCa (10). In short, the detection and
delineation of metastases and evaluation of volume change
concerning disease progression or therapy on DWI and T1WI
images are key tasks as part of optimal patient management.

Heavy workload of mpMRI images evaluation can be tiresome for
radiologists, hence bearing the risk of missed diagnosis for lesions and
leading to decreased sensitivity. The measurements of all the
metastatic lesions are time consuming, in particular, if multiple
metastases are present. In this context, automated and accurate
segmentation of bone metastases would be highly beneficial.

Driven by the rapid growth in computer science, the
performance of deep learning is on par with or even outperforms
radiologists in visual identification, which can perform automated
data-oriented feature extraction and thus learning directly the most
relevant feature representation from the input images (11, 12). The
U-Net algorithm is one of the most commonly used deep learning-
based convolutional neural networks (CNNs) (13), which shows
potential in detection, segmentation, and classification of metastatic
lesions on MRI images such as brain metastases (14, 15) and liver
metastases (16). Concerning the automated bone metastasis analysis
using the deep learning technique, the research trend is mainly on
BS (17, 18) and single-photon emission computerized tomography
(SPECT) images (19, 20); less attention has been paid to the
diagnosis of mpMRI (21, 22). To this end, we intend to apply the
3D U-Net (23) algorithm for the segmentation of bone metastases
on mpMRI images. For proof-of-concept, we focused on the
detection and segmentation of bone metastases in the pelvic area.

MATERIALS AND METHODS

This retrospective single-center study was approved by the
institutional review board, and written informed consent was waived.

Patient Cohort

A cohort of 955 consecutive patients who had undergone pelvic
mpMRI for either clinically suspected or confirmed PCa between
January 2017 and December 2020 was reviewed using our
institutional image archiving system. The exclusion criteria were
as follows: (1) poor image quality (significant motion artifact or
chemical shift artifact), (2) uncomplete MR image set, (3) obvious
destruction of bone structure, and (4) patients with a history of
pelvic fracture or surgery. Finally, the images from 859 patients were
included for the 3D U-Net model development of pelvic bony
structures segmentation, including a dataset of patients with PI-
RADS score of 1-2 or biopsy-proven benign prostate hyperplasia
(dataset 1, n = 349), a dataset of biopsy-proven PCa patients without
bone metastases (dataset 2, n = 280), and a dataset of biopsy-proven
PCa patients with bone metastases (dataset 3, n = 230).

All three datasets were used to develop a pelvic bony structure
segmentation model. Then, a 3D U-Net model for bone metastases
segmentation was developed using datasets 2 and 3. The patients
with primary malignant bone tumors (such as osteosarcoma and
myeloma) or definite benign findings (hemangiomas, bone island)
on pelvic bones (n=27) and patients who underwent PCa treatment
(endocrine therapy, chemotherapy, or radiotherapy, n = 149) were
excluded. In total, 334 patients were enrolled for the model
development, including 168 PCa patients with bone metastases
and 166 PCa patients without bone metastases.

Additionally, 77 patients with biopsy-proven PCa who performed
pelvic mpMRI scanning from January 2021 and May 2021 were
acquired; according to the above excluding criteria, 63 patients were
finally recruited for the external evaluation of the 3D U-Net model
including a dataset of 31 PCa patients with bone metastases (dataset
4) and a dataset of 32 PCa patients without bone metastases (dataset
5). The workflow of data enrollment is shown in Figure 1.

Image Acquisition

The pelvic mpMRI acquisitions were performed on three 3.0 T MR
units (Achieva, Philips Healthcare; Discovery, GE Healthcare;
Interia, Philips Healthcare). The standard pelvic mpMRI protocol
at our institution included a T1/T2-weighted sequence, DWI with
b-values of 0, 800, or 1,000 s/mm? along with reconstructed ADC
images, TIW images obtained using the 2-point Dixon technique
with in-phase (TIWI-IP) and out-phase (TTWI-OP), and dynamic
contrast-enhanced imaging. DWI images with high b-values (b =
800 or 1,000 s/mm?®) and T1WI-IP images were selected for PCa
bone metastases analyses in this study. Detailed MR imaging
parameters of DWT and TIWI-IP sequence are shown in Table 1.

Manual Annotation

The manual annotations were performed with an image
segmentation software (ITK-SNAP 3.6; Penn Image Computing
and Science Laboratory, Philadelphia, PA). Under the supervision
of a board-certified radiology expert (with more than 15 years of
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reading experience), a radiology resident with 3 years of reading
experience evaluated all mpMRI examinations and, section by
section, manually annotated eight pelvic bony structures (lumbar
vertebra, sacrococcyx, ilium, acetabulum, femoral head, femoral
neck, ischium, and pubis) on DWI images and TIWI-IP images.
The bone metastases were included in the annotations, which were
recognized as bone tissue in this bony structure segmentation model.
The manual annotations of the pelvic bony structures were regarded
as the reference standard for the 3D U-Net model evaluation.

To establish the reference standard of bone metastases, the
radiology resident and expert radiologist conducted a review of the
original radiology report and double reviewed the included MR
imaging scans and prior/follow-up imaging before annotation. A
bone lesion was considered as a metastasis if it showed an MR
imaging correlated with adequate image contrast (positive image

TABLE 1 | MR imaging parameters of DWI and T1WI-IP sequence.

contrast on DWI images and negative image contrast on those
obtained with the TIWI-IP images). The radiology resident
performed manual annotations of the metastatic lesions on DWI
and TIWI-IP images in a voxel-wise manner (indicated as Al.1).
Then, the expert radiologist modified the annotations of A1.1 and the
annotations after modification were indicated as A2.1. Both the
resident and expert radiologist repeated the annotations and
modifications at least 3 weeks later (indicated as Al.2 and A2.2,
respectively). The inter- and intraobserver agreement between the
manual annotations (A1.1 vs. A2.1; A1.1 vs. A1.2; A2.1 vs. A2.2; and
A1.2vs. A2.2) were estimated using Dice similarity coefficient (DSC).

The bony metastatic lesions in the 31 PCa patients of the external
dataset were manually annotated by the resident radiology under
the supervision of the expert radiologist, which was taken as the
reference standard for external evaluation of the model.

Model Development

A two-step method for the bone metastases segmentation was
proposed using the 3D U-Net model: the first step with a 3D U-
Net algorithm for pelvic bone segmentation followed by a second
step with a 3D U-Net for bone lesion segmentation within the
segmented pelvic bony structures. Both the CNNs were coded by
Python3.6, Pytorch 0.4.1, Opencv, Numpy, and SimpleITK, and
trained on the GPU NVIDIA Tesla P100 16G.

Model Development for Pelvic Bones Segmentation

The model of the pelvic bony structure segmentation takes the
combination of DWT images and TIWI-IP images as input, and
each image sequence is used as an independent input data
(Figure 2). The 859 patients were randomly divided into either
training (n = 683), validation (n = 88), or testing (n = 88) sets with a
ratio of 8:1:1. During the image preprocessing, the pixel values in
images were scaled between 0 and 65,535. Then, the images were
resized to 64 x 224 x 224 (z, y, x) by resampling to maintain the
optimal image features, and z-score intensity normalization was
applied to all images. Skewing (angel: 0-5), shearing (angel: 0-5),
and translation (scale: —0.1,0.1) of the images were applied for data

Sequences 3.0 T Discovery 3.0 T Intera 3.0 T Achieva
DWI b-value (s/mm?) 800 1000 800
Imaging matrix 256 x 256 240 x 240 156 x 180
Echo time (ms) 60 78 54
Repetition time (ms) 4,000 4,959 3,300
Field of view (mm?) 450 x 366 480 x 360 512 x 356
Section thickness 8 7 7
(mm)
Number of slices 25 28 24
TIWI-IP Imaging matrix 288 x 192 320 x 200 280 x 180
Echo time (ms) 2.0 2.4 2.4
Repetition time (ms) 3.9 7.5 6.7
Field of view 450 x 360 450 x 350 400 x 400
Section thickness 4 5 2
Number of slices 112 112 120
Bandwidth 166.67 300 450
Flip angle(®) 13 10 10
T1WI-IP, T1W images obtained using the Dixon technique with in-phase.
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augmentation. To remove small spurious segmentation, the two
largest connected components of each bone were selected as the
final segmentation. A total of 300 epochs of training were performed
until validation loss failed to rise. The Adam optimizer was
employed to minimize loss with a learning rate of 0.0001, a batch
size of 2, and a Dice loss function. Other hyperparameters (such as
weight initialization and dropout for regularization) were randomly
searched and automatically executed in the validation set during
model development.

Model Development for Bone Metastases Segmentation
The volume of interest predicted by the model of pelvic bony
structure segmentation was used as the mask for the bone
metastases segmentation (Figure 2). The network configurations
were set as follows: training epoch, 250; learning rate, 0.01; batch
size, 5; optimizer, Adam optimizer; and loss function, Dice loss.

For post-processing, automatically detected metastases
of <0.2 cm’ during inference of testing set were regarded as
image noise and discarded. The threshold was based on the
resolution of TIWI-IP sequences and is determined by referring
to the smallest annotated metastases (0.356 cm?).

Model Evaluation

Model Evaluation for Pelvic Bony Structure Segmentation

The performance of the network was evaluated by comparing the
segmentations generated by the 3D U-Net based on image data
from the testing set to the corresponding reference standard
represented by the manual segmentations on DWI and T1WI-IP
images quantitatively. The evaluation metrics used for the bony
structures segmentation include the overlap-based metric (DSC),
the volume-based metric [volumetric similarity (VS)], and the
spatial distance-based metric [Hausdorff distance (HD)] (24).

Model Evaluation for Bone Metastases Segmentation

The performance of the bone metastases segmentation model
was evaluated both on detection and segmentation. Detection is
defined as the network’s ability to detect a metastasis annotated

by the radiologist. One bone metastasis was considered detected
when the manual annotation and the predicted segmentation
had an overlap >0. Segmentation is defined as its ability to
provide a contour identical to that of the radiologist.

The detection performance of the network was quantified at
the patient and lesion levels. The sensitivity, specificity, accuracy,
positive predictive value (PPV), negative predictive value (NPV),
and area under the receiver operating characteristic curve (AUC)
were used to assess the performance of the model to discriminate
between patients with bone metastases and patients without
bone metastases. To determine the detection accuracy of the
metastases at the lesion level, we compared the lesions obtained
with model predictions and manual annotations to determine
the true-positive (TP), false-negative (FN), and false-positive
(FP) findings. The recall (correctly detected metastases divided
by all metastases contained in reference standard), precision
(correctly detected metastases divided by all the detected
metastases), and F1 score (harmonic mean of precision and
recall) were calculated to assess the detection performance of the
model on a lesion-by-lesion basis. In addition, we determined the
number of distinct metastatic lesions in each case in the testing
set and then divided the data into groups with (a) 1, (b) 2-3, (c)
4-5, and (d) >5 lesions to facilitate subgroup analysis of
metastases detection at lesion level.

The metastases segmentation performance of the network
was assessed using the metrics of DSC, VS, and HD by
comparing the CNN-predicted segmentation and manual
segmentation. Besides, the volume of the bone metastases in
manual annotations and automated segmentations was
calculated to further quantitatively estimate the segmentation
efficacy of the U-Net algorithm.

Model Evaluation on an External Dataset

The external dataset was used to further assess the efficiency of
the model on bone metastases evaluation in the clinical setting.
Given the new mpMRI data of PCa patients, the 3D U-Net was
supposed to determine the existence of bone metastases (MO0 or
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M1) and output the number, location, and volume of the bone
metastases with corresponding segmented masks (Figure 2). A
bone lesion was considered as being detected if it was segmented
on at least one of the two MR imaging sequences (DWI/T1WI-
IP). The accuracy of the M-staging of the model was assessed
using the receiver operating characteristic curve analysis, and the
segmentation performance (DSC, VS, HD) and quantitative
measurements (volume) were assessed by comparison with
manual annotations.

Statistical Analysis

MedCalc (version 14.8; MedCalc Software, Ostend, Belgium) and
SPSS (version 22.0, IBM Corp., Armonk, NY, USA) were used for
the statistical analyses. Numerical data of patients’ age were
reported as the mean + SD (standard deviation), and prostate-
specific antigen (PSA) levels were reported as (median, quartile).
One-way analysis of variance (ANOVA) was used to compare
the characteristics of patients (age, PSA level) among training,
validation, and testing sets. The segmentation performance of the
algorithm (DSC, VS, and HD) between DWI and TIWI-IP
images were compared by paired t-test. The McNemar’s test
was used to compare the detection performance (sensitivity,
specificity, PPV, NPV, recall, and precision) between the two
sequences. Bland-Altman analyses were performed to compare
manual versus automated bone metastases volume. p < 0.05 was
considered indicative of a statistically significant difference.

RESULTS

Characteristics of Patients

The characteristics of patients are shown in Tables 2, 3. The age
and PSA level showed no significant difference among the training,
validation, and testing sets on both models (all with p > 0.05). The
average volume of metastases in the external dataset was 7.39 cm’,
and no difference was found between the external dataset and

model development dataset (p = 0.645). Of the 16 PCa patients
with bone metastases in the testing set, 2 patients (12.50%) had
one metastasis, 5 patients (31.25%) had two to three metastases, 4
patients (25.00%) had four to five metastases, and 5 patients
(31.25%) had more than five metastases.

Assessment of Pelvic Bony

Structures Segmentation

As shown in Table 4 and Figure 3, in the testing set of pelvic bone
segmentation model, the DSC and VS values of eight pelvic bony
structures between model prediction and manual annotation are all
above 0.85 on both DWIand T1WI-IP images, while the mean DSC
and VS values on TIWI-IP images are significantly higher than
those on DWTimages (all with p < 0.05), and the HD is significantly
lower. This may be explained by the higher spatial resolution of the
TIWI-IP images. Additionally, as detailed in the Supplementary
materials (Supplementary Tables S1-S4), no significant difference
was found among the patients from different datasets (dataset 1 vs.
dataset 2 vs. dataset 3) and different scanners (3.0 T Discovery vs. 3.0
T Achieva vs. 3.0 T Intera) on both DWI and T1WI-IP images.

The Inter- and Intraobserver Agreement

of Bone Metastases Annotations

The interobserver agreement of the manual annotations of bone
metastases was assessed by calculating the DSC values between
Al.1 and A2.1, and A1.2 and A2.2. The intraobserver agreement
was assessed by A1.1 vs. A1.2 and A2.1 vs. A2.2. The DSC values
on DWT images were as follows: Al.1 vs. A2.1, 0.90 + 0.08; Al.1
vs. A2.1, 091 £ 0.09; A2.1 vs. A2.2, 0.94 = 0.05; A1.2 vs. A2.2,
0.91 + 0.08. In TIWI-IP images, the DCS values were as follows:
Al.1 vs. A2.1, 0.89 = 0.09; Al.1 vs. A2.1, 0.90 = 0.09; A2.1 vs.
A22,0.97 £ 0.04; and A1.2 vs. A2.2, 0.92 + 0.08. The high DSC
values between A2.1 vs. A2.2 confirmed the reliability of the
manual annotations. A2.2 was regarded as the reference standard
for the lesion segmentation model evaluation.

TABLE 2 | Characteristics of patients for the pelvic bony structure segmentation model.

Characteristics Model development (dataset 1 + dataset 2 + dataset 3) External dataset p-value
Training set Validation set Testing set p-value
Age (mean + SD) 68.3 + 10.5 67.6 + 10.9 67.8 +11.7 0.756 70.7 + 8.1 0.062
No. of patients 683 88 88 - 68 -
No. of patients with bone metastases 184 23 23 - 34 -
No. of patients without bone metastases 224 16 18 - 34 -
PSA (median, quartile, ng/ml)
T-PSA 10.49 9.73 11.19 0.556 12.25 0.199
(7.11, 15.99) (8.46, 12.68) (7.44,15.75) (8.89, 26.92)
F-PSA 1.95 2.07 219 0.266 1.65 0.112
(1.04, 6.71) (1.08, 5.78) (1.02, 5.46) (1.05, 5.26)
F/T-PSA 0.12 0.10 0.10 0.587 0.12 0.399
(0.09, 0.17) (0.07, 0.20) (0.08, 0.18) (0.09, 0.18)
Scanners
3.0 T Discovery 417 56 57 - 31 -
3.0T Achieva 133 17 15 - 13 -
3.0 T Intera 134 15 16 - 24 -

PSA, prostate-specific antigen; T-PSA, total PSA; F-PSA, free PSA; SD, standard deviation.
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TABLE 3 | Characteristics of patients for the bone metastases model.

Characteristics Model development (from dataset 2 and dataset 3) External dataset p-value
Training set Validation set Testing set P value
Age (mean + SD) 69.6 £ 10.4 65.9 £ 11.2 68.7 £ 8.9 0.548 70.7 £ 8.1 0.268
No. of patients 266 34 34 - 63 -
No. of patients with bone metastases 134 18 16 - 31 -
No. of patients without bone metastases 132 16 18 - 32 -
PSA (median, quartile, ng/ml)
T-PSA 13.04 12.65 (10.13,18.50) 13.95 0.305 12.25 0.941
(9.10, 20.1) (12.95, 23.5) (8.89, 26.92)
F-PSA 1.29 (1.01,5.41) 1.36 1.48 0.993 1.65 0.091
(1.08, 4.38) (1.07, 4.73) (1.05, 5.26)
F/T-PSA 0.07 0.09 0.09 0.356 0.12 0.573
(0.09, 0.18) (0.07, 0.16) (0.04, 0.11) (0.09, 0.18)
Average volume of metastases (median, quartile, cm?®) 7.50 7.98 8.05 0.945 7.39 0.645
(5.47, 31.60) (2.72, 31.75) (2.98, 31.03) (1.23, 28.23)
No. of metastatic lesions
1 30 (22.39%) 4 (22.22%) 2 (12.50%) - 5 (16.13%) -
2-3 36 (26.86%) 6 (33.33%) 5 (31.25%) - 6 (19.35%) -
4-5 24 (17.91%) 4 (22.22%) 4 (25.00%) - 8 (25.81%) -
>5 44 (32.84%) 4 (22.22%) 5 (31.25%) - 12 (38.71%) -
Total lesions 664 86 89 - 144 -
Scanners
3.0 T Discovery 172 17 20 - 31 -
3.0T Achieva 71 10 8 - 13 -
3.0 T Intera 23 7 6 - 24 -
PSA, prostate-specific antigen; T-PSA, total PSA; F-PSA, free PSA; SD, standard deviation.
TABLE 4 | Segmentation performance of pelvic bony structures.
Bony structures DSC p-value VS p-value HD (mm) p-value
DWI T1WI-IP DWI T1WI-IP DWI T1WI-IP
Lumbar vertebra 0.89 £ 0.05 0.93 + 0.03 0.001 0.94 £ 0.06 0.96 + 0.06 0.034 11.45+£3.54 10.63 + 4.66 0.258
Sacrococcyx 0.88 £ 0.04 0.93 £ 0.02 0.001 0.96 + 0.03 0.98 + 0.02 0.001 13.36 £ 4.79 9.56 + 4.53 0.001
llium 0.88 + 0.03 0.94 + 0.02 0.001 0.97 £ 0.02 0.99 + 0.02 0.001 13.34 £+ 4.15 8.50 + 3.30 0.001
Acetabulum 0.85 £ 0.04 0.90 + 0.03 0.001 0.94 £ 0.05 0.96 + 0.04 0.017 14.95 £ 6.04 10.17 £ 5.60 0.001
Femoral head 0.90 £ 0.04 0.94 = 0.03 0.001 0.95 £ 0.04 0.97 £ 0.02 0.001 9.00 = 2.90 477 +1.51 0.001
Femoral neck 0.88 £ 0.04 0.95 + 0.03 0.001 0.96 £ 0.04 0.98 + 0.05 0.015 12.39 £ 4.40 8.50 + 5.51 0.001
Ischium 0.86 + 0.04 0.90 + 0.03 0.001 0.93 £ 0.05 0.96 + 0.04 0.001 14.88 £ 6.92 14.62 £ 6.27 0.295
Pubis 0.86 + 0.05 0.88 + 0.04 0.022 0.92 + 0.06 0.94 + 0.05 0.074 14.72 £ 7.08 10.60 + 4.58 0.001

DSC, Dice similarity coefficient; HD, Hausdorff distance; T1WI-IP, T1W images obtained using the Dixon technique with in-phase; V'S, volumetric similarity.

The Detection Accuracy of Bone Metastases
The detection performance of the CNN on DWI and TIWI-IP
images at the patient and lesion levels are shown in Table 5. The
detection performance of the model on DWIimages was better than
on T1WI-IP images concerning the values of the evaluation metrics,
while no significant difference was found between the two sequences
(all with p > 0.05). The results of the subgroup analysis of detection
accuracy at lesion level in the testing set showed the highest recall
and precision values in patients with single metastases, and both the
recall and precision were above 80% for few metastases (<5
metastases) and multiple metastases (>5 metastases).

The Segmentation Accuracy of Bone Metastases
The mean DSC, VS, and HD for the automatic metastases
segmentation are 0.79 * 0.05, 0.84 + 0.09, and 15.05 * 3.61
mm on DWI images and 0.80 + 0.06, 0.85 + 0.08, and 13.39 +
3.20 mm on TIWI images (Figure 4A), which showed no

significant difference between the two sequences (p = 0.627,
0.741, and 0.175, respectively).

The volume differences between manual annotation and model
prediction of bone metastases on DWI and T1WI-IP images are
shown in Figures 4B, C. The limit of agreement (LOA) between the
automated and manual segmentation on DWI images was
-8.4-6.6 cm” and —4.4-4.4 cm® on TIWI-IP images. Most of the
difference values were within the LOA, which showed that the
volume of overall metastatic lesions in each patient between manual
and automated segmentations agreed closely. Example results of the
automatic bone metastases segmentation are shown in Figure 5.

Detection and Segmentation Accuracy

on the External Dataset

The sensitivity, specificity, and AUC values of the model in
determining the M-staging (MO or M1) were 93.6% (29/31; 95%
CI, 78.6%-99.2%), 93.8% (30/32; 95%CI, 79.6%-99.2%), and 0.94
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FIGURE 3 | Split violin plots of DSC, VS, and HD (mm) for pelvic bony structures segmentation. DSC, Dice similarity coefficient; HD, Hausdorff distance; T1WI-IP,
T1W images obtained using the Dixon technique with in-phase; VS, volumetric similarity.

TABLE 5 | Detection accuracy of bone metastases at patient and lesion levels.

Level Metrics DWI T1WI-IP p-value
Patient-level Sensitivity (%) 87.5 (61.7-98.4) 81.3 (54.4-96.0) 0.847
Specificity (%) 83.3 (568.6-96.4) 77.8 (562.4-93.6) 0.852
Accuracy (%) 85.3 (68.9-95.1) 79.4 (62.1-89.9) 0.789
PPV (%) 82.4 (56.6-96.2) 76.5 (50.1-93.2) 0.847
NPV (%) 88.2 (63.6-98.6) 82.4 (56.6-96.2) 0.852
AUC 0.85 (0.69-0.95) 0.80 (0.62-0.91) 0.442
Lesion-level Recall (%) 91.01 (81/89) 88.76 (79/89) 0.874
Precision (%) 84.38 (81/96) 86.81 (79/91) 0.857
F1-score (%) 87.6 87.8 -
Subgroup analysis
1 Recall (%) 100 (2/2) 100 (2/2)
Precision (%) 100 (2/2) 100 (2/2)
2-3 Recall (%) 92.9 (13/14) 85.7 (12/14)
Precision (%) 86.7 (13/15) 85.7 (12/14)
4-5 Recall (%) 94.7 (18/19) 84.2 (16/19)
Precision (%) 85.7 (18/21) 88.9 (16/18)
>5 Recall (%) 88.9 (48/54) 90.7 (49/54)
Precision (%) 82.8 (48/58) 85.9 (49/57)

AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value; T1WI-IP, T1W images obtained using the Dixon technique with in-phase.

(95%ClI, 0.85-0.98) on DWI images and 87.1% (27/31; 95%CI,
70.2%-96.4%), 90.6% (29/32; 95%CI, 75.0%-98.0%), and 0.89 (95%
CI, 0.85-0.98) on TIWI-IP images. The AUC values between the
two sequences showed no significant difference (p = 0.368).
Atlesion level, the segmentation accuracy of the model for bone
metastases achieved average DSC, VS, and HD values 0of 0.79 + 0.06,
0.83£0.08,and 16.03 +9.74 mm on DWIimages, 0.81 +0.06,0.82 +
0.07, and 17.20 + 6.73 mm on TIWI-IP images (Figure 6A). The
mean volumes of manual annotation and model prediction were
15.35 and 14.10 cm’® on DWT images and 15.68 and 14.40 cm’ on
T1WI-IP images. The volume difference is shown in Figures 6B, C.

DISCUSSION

In this work, we developed a two-step deep learning-based 3D
CNN for automated detection and segmentation of bone
metastases in PCa patients using whole 3D MR images (DWI

and T1WI-IP images), in which the first 3D U-Net focuses on the
segmentation of pelvic bony structures and the second one on
bone metastases segmentation. On heterogeneous scanner data,
the first CNN performed excellent segmentation of pelvic bony
structures on both DWI and TIWI-IP images (all with DSC >
0.85), which provides a reliable foundation for the subsequent
bone metastases segmentation. Furthermore, our result showed
that the proposed CNN provided an AUC of 0.854 and 0.795 on
DWTI and T1WI-IP images for bone metastases detection at the
patient level, and high overlap between automated and manual
metastases segmentations was observed (DSC = 0.79 and 0.80 on
DWI and TIWI-IP images, respectively). Additionally, by testing
on an external dataset, this work demonstrates the CNN’s
potential ability of M-staging in clinical practice (with AUC of
0.936 and 0.889 on DWI and T1WI-IP images).

mpMRI has been identified as an essential and crucial
imaging modality in PCa diagnosis and metastases evaluation
(25, 26). The importance of DWI and TIWTI in the detection and
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FIGURE 4 | The segmentation accuracy of bone metastases in the testing set. (A) Split violin plot of DSC, VS, and HD of the bone metastases on DWI and T1WI-IP
images. (B) The Bland-Altman plot of the volume difference between manual annotation and model prediction on DWI images. (C) The Bland-Altman plot of the
volume difference between manual annotation and model prediction on T1WI-IP images. DSC, Dice similarity coefficient; HD, Hausdorff distance; TIWI-IP, TIW
images obtained using the Dixon technique with in-phase; VS, volumetric similarity.
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FIGURE 5 | Examples of pelvic bony structure and bone metastases segmentations. (A) Two metastases of acetabulum annotated by radiologists were corrected

segmented by the model on T1WI-IP images (true positive). (B) Four of five metastases annotated by the radiologists were corrected segmented by model on T1WI-
IP images; one metastasis on the right ilium was missed (the white arrow pointed, false negative). (C) All the four metastases of femoral head and ischium annotated
by radiologists were correctly segmented by the model on DWI images (true positive). (D) One metastasis of lumbar vertebra was segmented by the model by error,

which was not annotated by the radiologists (false positive). TIWI-IP, T1W images obtained using the Dixon technique with in-phase.

quantification of osseous metastasis in patients with PCa has
been widely recognized (9, 27). In this study, to avoid the
limitation of the application of the CNN if one of these
sequences is unavailable, we trained the two-step 3D U-Net
CNN using DWI and T1WI-IP images as independent input
data. The enrolled participants performed the mpMRI
examinations on one of the three different 3.0-T MR scanners
with different protocols, and the b-values of the DWI images were
different (b = 0, 800 or 0, 1,000 s/mm?). In a previous publication
(28), we proposed a deep learning-based approach for the
segmentation of normal pelvic bony structures. It was the proof-

of-concept study for the possibility to detect skeletal metastases
located on the pelvic bones. In this study, we used two 3D U-Nets
in cascade. The first model was trained to segment the pelvic bony
structures. Taking the areas predicted by the first model as the
mask, the second model was trained to segment the metastatic
lesions on the pelvic bones. The combination of the two 3D U-
Nets offers the potential for efficient bone metastases location and
quantification. It is important to note that the two-step deep
learning model has been widely used to improve the accuracy and
stability of the system, such as lymph node detection (29) and PCa
segmentation (30).
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FIGURE 6 | The segmentation accuracy of bone metastases on an external dataset. (A) Split violin plot of DSC, VS, and HD of the bone metastases on DWI and
T1WI-IP images. (B) The Bland-Altman plot of the volume difference between manual annotation and model prediction on DWI images. (C) The Bland-Altman plot of
the volume difference between manual annotation and model prediction on T1WI-IP images. DSC, Dice similarity coefficient; HD, Hausdorff distance; TIWI-IP, TIW
images obtained using the Dixon technique with in-phase; VS, volumetric similarity.

The high number of FP lesions poses a common drawback in
automated detection of metastatic lesions, which has been
reported to be approximately seven to eight per scan for brain
metastases (31, 32). In the present study, by providing high-
quality pelvic bone segmentation masks on DWI and T1WI-IP
images, the FP interference from other tissues within the pelvic
region (such as metastatic lymph nodes, colon, bladder, etc.) can
be effectively eliminated. Moreover, a simple post-processing
step was added to avoid FP findings by rejecting all structures
with a volume <0.2 cm?, which was smaller than the smallest
annotated metastases.

Our CNN not only detects almost all metastases but also
incorrectly marks other objects as metastases. Most of these FPs
were caused by objects that showed a similar radiological
appearance to metastatic lesions on DWI and TIWI-IP images.
As shown in Figure 5D, the high-intensity spinal cord on DWI
images within the mask of the lumbar vertebra was detected as
metastases by mistake. In addition, the objects that were not or
scarcely represented in the training set and thus had an
appearance unknown to the network could result in FP as well.
These unknown appearances could be other lesions or conditions
such as incidental cysts. An inspection of the 15 FP findings on
DWI images showed that nine of the FPs were the spinal cord
and nerve root structure, and six of the FPs were benign lesions:
four cysts and two hemangiomas. The 12 FP objects on TIWI-IP
images included eight spinal cord and nerve root structures,
three cysts, and one blood vessel structure.

The FN metastases missed by the CNN networks were the
small ones, as can be seen in Figure 5A, which might be due to
the few occupied voxels compared with large metastases.
Additionally, on a subgroup analysis, our results suggest that
the networks perform well on patients with few metastases (<5
metastases) and multiple metastases (>5 metastases) in terms of
recall and precision, which boosts the clinical utility of the CNN.

Automated segmentation can help radiologists in dealing
with an increased number of image interpretations while
maintaining high diagnostic accuracy and, simultaneously, may
also assist in evaluating treatment response during oncological
follow-up. Volumetric assessment proves to be a promising tool
for quantification of tumor burden and treatment response
evaluation, which is superior to user-dependent conventional

linear measurements because metastatic lesions are irregular
(33). Compared with manual segmentation, our proposed
CNN achieved a high volumetric correlation on both the
testing set and the external dataset, which is crucial to help
treatment decision-making and potentially improve patient care.

TNM is considered to be one of the most pivotal factors in
evaluating the prognosis of PCa, and the existence of bone
metastases is a decisive index for the M-staging (34). Concerning
M-staging, on the external dataset, our model achieved an AUC of
0.936 (95%CI, 0.845-0.982) on DWI images and 0.889 (95%CI,
0.845-0.982) on TIWI-IP images, which demonstrated that the
two-step 3D U-Net algorithm could be used in a clinical context.
Besides, the output of the automated segmentation result to the
structure report essentially combines visualization, quantification,
and segmentation into one step, producing results that can be
directly displayed to the radiologists.

U-Net has been proven to possess the potential for bone
metastases segmentation. Lin et al. (19) built two deep learning
networks based on U-Net and Mask R-CNN to segment hotspots
in bone SPECT images for automatic assessment of metastasis.
Their results showed that the U-Net-based model achieved better
segmentation performance with a precision and recall value of
0.76 and 0.67 than the Mask R-CNN model (precision, 0.72;
recall, 0.65). In addition, Chang et al. (35) demonstrated the
capability of U-Net in segmenting spinal sclerotic bone
metastases on CT images with a Dice score of 0.83. In this
study, we explored the feasibility of the 3D U-Net network for
pelvic bone metastases segmentation on DWI and T1WI-IP
images, and our results further confirmed the segmentation
accuracy of the U-Net for bone metastases. However, the
comparisons among a couple of other architectures may be
helpful to choose an optimal model for metastases
segmentation and detection. In the future, we should further
explore the performance of other models.

While this study shows high accuracy and performance using
CNN' s for bone metastases segmentation, several potential study
limitations exist. First, the study has a typical drawback of
retrospective setting. Testing of the network performance on
prospective multicenter data remains a key step towards
understanding its clinical value. Second, the relatively small
number of patients needs to be noted. Only patients with PCa
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were included here, which potentially limits the transferability of
our CNN to a broad range of bone metastases of other primary
tumors (rectal cancer, bladder cancer, etc.). In this context,
future studies are needed to evaluate the feasibility of the CNN
for bone metastases segmentation of other tumors. Third, in
clinical practice, the detection of the lesion by the radiologist is
usually done by simultaneous review of anatomical and
functional MR images. Besides the Dixon TIWI-IP and DWI
images, the Fat or Water images from the Dixon sequence and
the short time inversion recovery sequence may also be helpful
for the bone metastases evaluation (36, 37). Last, the choice of
pelvic examinations as the anatomic target to detect bone
metastases and assess the positive-negative status of the
patients in terms of metastases is insufficient in clinical
practice. The axial and probably whole skeleton, at least from
skull to thighs, is necessary, as metastases affect the red marrow-
containing areas. Future research is needed to allow for the
whole-body bone metastases assessment.

CONCLUSION

In summary, our study shows that the deep learning-based 3D
U-Net network can automatically detect and segment bone
metastases on DWI and T1WI-IP images with high accuracy
and thus illustrates the potential use of this technique in a
clinically relevant setting.
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CT-MRI Room, Affiliated Hospital of Hebei University, Baoding, China

Colorectal cancer is one common digestive malignancy, and the most common approach
of blood metastasis of colorectal cancer is through the portal vein system to the liver. Early
detection and treatment of liver metastasis is the key to improving the prognosis of the
patients. Radiomics and radiogenomics use non-invasive methods to evaluate the
biological properties of tumors by deeply mining the texture features of images and
quantifying the heterogeneity of metastatic tumors. Radiomics and radiogenomics have
been applied widely in the detection, treatment, and prognostic evaluation of colorectal
cancer liver metastases. Based on the imaging features of the liver, this paper reviews the
current application of radiomics and radiogenomics in the diagnosis, treatment, monitor of
disease progression, and prognosis of patients with colorectal cancer liver metastases.

Keywords: colorectal cancer, liver metastasis, radiomics, gene, treatment, prognosis

1 INTRODUCTION

Colorectal cancer (CRC) is the third most prevalent malignancy and the second commonest cause of
cancer-related deaths throughout the world (1), with the incidence and mortality still on the rise in
recent years (2). Because of the hepatic unique blood circulation characteristics, the liver has become
the most common organ for blood metastasis of cancers, accounting for 25% of all cancer metastasis
(3) and approximately 35%-55% of CRC (4, 5). The liver has uniquely favorable conditions for
stagnation and growth of cancerous cells, with double blood supply from the visceral and portal
vascular systems and natural spaces among adjacent endothelial sinusoidal cells that are deficient of
a typical basement membrane for covering (3, 6, 7). Hepatic metastasis is a critical indicator of
prognosis for patients with primary cancers, and the life expectancy of patients with hepatic
metastases from gastrointestinal cancers is only 6 months without appropriate treatment (8).
Accurate prediction and differentiation of liver metastases from CRC is critical to making an
appropriate therapeutic plan and improving the prognosis of the patients. Ultrasound, computed
tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET)
have been routinely applied to detect and assess liver lesions, including metastases of cancer (9, 10).
Some liver metastatic lesions from primary cancers of different systems may have common
characteristics, including hyperechoic lesions surrounded by a hypoechoic halo (targeted ring
sign) in primary gastrointestinal and vascular carcinomas on ultrasound imaging and presence of
calcification in CRC or ovarian carcinomas (7, 11, 12). Metastatic lesions with typical imaging
features may be easily identified from specific primary carcinomas; however, this kind of lesion
accounts for only a small proportion of metastatic lesions, with most of the metastatic lesions being
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atypical on imaging, whose specific origin cannot be identified
easily. Thus, thorough laboratory and physical examinations,
molecular genetic test, and tissue biopsy have been applied to
assess the primary origin of liver metastases even though these
tests and examinations are costly, invasive, or time-consuming
(13, 14).

With the development of great-volume computing capability,
it is currently feasible to quickly extract countless quantitative
characteristics from three-dimensional imaging data of MRI, CT,
ultrasound, and PET for evaluation of the nature of different
lesions, because digital medical images contain considerable
information that reflects potential pathophysiology. This
technology of transforming digital medical imaging data into
high-dimensional data for assessment and decision support is
referred to as radiomics (15). The framework of radiomics
application is shown in Figure 1. The radiomics technology
has been motivated by the notion that biomedical images
comprise information that mirrors and can be used to reveal
basic pathophysiology through quantitative analysis. It has been
applied in many conditions, but the most developed field of
application is in oncology. Quantitative features of imaging are
based on imaging shape, intensity, volume, size, and texture,
which provide detailed information on tumor microenvironment
and phenotype distinct from that offered by laboratory results,
clinical reports, and genomic or proteomic analyses. Combined
with other clinical information, these features can be used for
correlation analysis with clinical results and decision-making,
and radiomics can thus provide countless imaging biomarkers to
potentially help cancer diagnosis, detection, prognosis
evaluation, prediction of treatment response, and monitoring
of disease progression. Radiomics is a young field of study and
will undergo a slow progress because of technical complexity,
datum overfitting, deficiency of standards for outcome
validation, incomplete presentation of outcomes, and
unrecognizable confounding factors in the databases.

Radiogenomics refers to the exploring of radiomics data to
find correlations with genomic modes and has aroused
considerable interest in the research field of oncology (15).
Here, in this paper, radiogenomics only indicates the

Image segmentation

combination of genomic information and radiomic features to
enable decision support rather than whole-genome analysis to
determine the genetic causes of radiosensitive variations in the
scope of radiation oncology. Radiogenomics is important
because not all patients have had their cancerous diseases
genomically profiled even though they may undergo imaging
examinations during the course of disease. Radiogenomic data
can provide gene expression or mutation information to increase
diagnostic, predictive, and prognostic capability and to enable
precision therapy because these radiomics data are originated
from the complete tumor lesion rather than a small sample
of tissue.

In patients with CRC, one factor significantly affecting the
prognosis is the proper management of colorectal cancer liver
metastases (CRLM), and surgical treatment stands for the only
opportunity of long-term survival. The 5-year survival rate of
CRC patients with complete resection of liver metastases has
been reported to be approximately 30% higher than that without
appropriate treatment of the liver metastases (16). Therefore, one
of the keys to improving the prognosis of CRC patients is to
detect liver metastases for initiating appropriate treatment as
soon as possible. Currently, few studies have been performed on
radiomics or radiogenomics of CRLM, and this review focused
on the radiomics and radiogenomic features of CRLM, trying to
facilitate early detection and appropriate treatment of CRLM
besides evaluation of its genetic factors and response to
treatment for improving the prognosis. The flow chart of the
content of this paper is shown in Figure 2.

2 RADIOMICS PROGRESS IN THE
DIAGNOSIS AND TREATMENT OF CRLM

In recent years, the field of medical image analysis has developed
rapidly, and the development of pattern recognition tools has
promoted fast progress of quantitative feature extraction. By
extracting a great deal of quantitative features from medical
imaging data, radiomics can be used to analyze image
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information in detail. Compared with traditional approaches of
imaging diagnosis, it can significantly improve tumor diagnosis,
grading and staging, evaluation of responses to chemotherapy,
and prognosis prediction (15, 17, 18), providing professional
guidance for treatment planning.

2.1 Radiomics in the Diagnosis of CRLM

With the progress of imaging technology, conventional imaging
approaches can effectively detect large and typical CRLM.
However, due to the complexity of hepatic hemodynamics and
differences of liver parenchymal background on imaging among
patients, different imaging modalities perform differently in
diagnosis of atypical or tiny liver metastases. It is hard to
detect tiny or occult metastases by using the existing imaging
approaches; however, identification of these lesions is crucial to
early management and improved prognoses. Radiomics features,
including entropy, texture and texture ratio, uniformity, and
convolutional neural networks (CNNs), have been effectively
applied for diagnosis of CRLM. In assessing the capability of
whole-liver CT imaging texture analyses of hepatic parenchyma
in distinguishing CRC patients with simultaneous hepatic

metastasis (n = 10), heterochronous hepatic metastasis within
18 months after initial staging (n = 4), or no hepatic metastasis
(n=15), Rao et al. (19) found that the mean entropy of the whole
liver was significantly (p < 0.05) higher in patients with
synchronous metastases than those without hepatic metastases,
whereas the mean uniformity of the whole liver was significantly
(p < 0.05) lower in patients with synchronous metastases than
those without liver metastases. This study indicated that texture
evaluation of seemingly disease-free liver is promising to
distinguish CRC patients with or without hepatic metastases.
After analyzing the texture in non-enhanced CT imaging in
seemingly non-diseased regions of liver for impact of hepatic
texture by presence of malignant tumors in patients with CRC,
Ganeshan et al. (20) found that the fine to medium texture ratio
after imaging filtration was significantly (p < 0.05) different in
seemingly non-diseased hepatic areas in patients with hepatic
metastasis compared with those without liver metastasis
(entropy, p = 0.0257) or those with extra-liver disease
(uniformity, p = 0.0143). Imaging textures of entropy and
uniformity have been found to be more advantageous to other
features in the diagnosis of CRLM.
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CNNs are able to generate useful characteristics from imaging
data and have been proven to have high values in predicting
oncological outcomes (5, 21-23). Lee et al. used CNNs to
generate imaging features from the liver parenchyma in 2019
patients with stage I-III CRC for predicting metachronous liver
metastasis based on preoperative abdominal CT imaging (5).
They found that the radiomics model combining clinical
variables with the top principal components of imaging had
the greatest performance (mean AUC = 0.747) to predict 5-year
metachronous liver metastasis compared with the model using
clinical features only. Even though no hepatic metastasis was
found during the initial colectomy, the radiomics features using
the CNNs could be used to predict possible metachronous
liver metastasis.

2.2 Differentiation of Histopathological
Growth Patterns of CRLM

The heterogeneities of genetic, phenotypic, epigenetic, and
morphological features inside and outside the CRLM lesion
result in different responses to systemic treatment (24, 25). The
histopathological growth pattern (HGP) is one such
heterogeneity with corresponding microvasculatures. Based on
the interface of cancerous cells with adjacent hepatic texture,
CRLM has two primary kinds of HGPs: replacement and
desmoplastic, with other uncommon kinds of mixed and
pushing HGPs (26). The desmoplastic HGP is characterized by
separation of the cancerous cells from the hepatic texture by a
fibrous band with lymphocytic infiltration and sprouting
angiogenesis in the microvasculature. In this pattern, the
cancerous cells initiate a reaction similar to the healing of
wounds: scar tissues are created with presence of inflammation
and new blood vessels. In the replacement HGP, the cancerous
cells constitute cellular plates that are in continuity with the
hepatocytic plate, allowing the cancerous cells to displace
hepatocytes and co-opt the sinusoidal blood vessels at the
cancer-liver interface, without disturbing the hepatic stromal
architecture or inducing sprouting angiogenesis (25, 27, 28).
Desmoplastic metastases are frequently well or moderately
differentiated, whereas replacement liver metastases are of poor
differentiation, lacking immune reaction and secondary
glandular structures (27, 29). The pushing HGP is less
common with the hepatocyte plate being compressed and
pushed away by the metastatic cancer cells, with no
desmoplastic rim around the cancerous cells or direct contact
of the cancerous cells with the hepatocytes.

The HGPs of CRLM can be effectively differentiated using
multidetector CT-based radiomics and MRI-based radiomics
(multi-habitat and multi-sequence) (25, 30). After studying 126
patients with CRLM lesions who had undergone abdominal
contract-enhanced CT imaging followed by partial
hepatectomy with histopathologically confirmed HGPs
including desmoplastic HGP in 68 patients and replacement
HGP in 58, Cheng et al. (30) found that the fused radiomics
signature had the best predictive performance in differentiating
replacement from desmoplastic HGPs (AUC of 0.926 and 0.939,
respectively, in the training and validating set), with good

discrimination demonstrated in the clinical-radiomics
combined model (C-indices of 0.941 and 0.833, respectively, in
the training and validating set). Han et al. (25) investigated MRI
data of 182 resected CRLM lesions in chemotherapy-free patients
including desmoplastic HGPs in 59 patients and replacement
HGPs in 123, with the decision tree algorithm being used for
radiomics modeling, fused radiomics model being reconstructed
from combination of radiomics signatures of all sequences, and
clinical and combined models being constructed via multivariate
logistic regression analysis. They found that the fused radiomics
model of tumor zone and the radiomics model of tumor-hepatic
interface zone exhibited superior performance to any single
sequence or the clinical model and that the radiomics model of
tumor-liver interface zone was better than that of the tumor
zone (AUC of 0.912 vs. 0.879). The combined model had good
discriminating capability, with the AUC of nomogram being
0.971, 0.909, and 0.905, respectively, in the training, internal
validating, and external validating set. Their study (25) revealed
that MRI-based radiomics is capable of predicting the
predominant CRLM HGPs as a potential biomarker for
therapeutic strategy. Through analysis of the above studies, it
was found that the combination model of radiomics and clinical
information can show better discrimination ability than the
single radiomics model.

2.3 Evaluation of HGPs for Treatment
Effect on CRLM

Metastases are the major death cause in most patients with solid
malignancies, and hepatic metastasis is the critical factor for
survival of patients with advanced malignant tumors (27, 28).
Histological presentations of liver metastases are heterogeneous
and reflected by different HGPs that affect clinical outcomes. The
desmoplastic HGP is a positive prognostic biomarker while the
replacement HGP is a negative one (27). A retrospective study
enrolling 732 patients found that the exclusive desmoplastic
growth serves as a positive prognostic marker for patients with
CRLM, which is not matched by any other factors evaluated (31).
In this study, 19% of patients without chemotherapy (n = 367)
had desmoplastic growth in the whole tumor-hepatic interface
and were independently associated with 50% 5-year survival rate
without progression (hazard ratio or HR: 0.54, p = 0.001) and
78% 5-year overall survival (HR: 0.39, p < 0.001). CRLM lesions
with this kind of HGP are more suitable for regional metastases-
directed treatment. On the contrary, replacement HGP is linked
to poor pathological responses, with the presence of a large
proportion of cancerous cells after chemotherapy, and bad
imaging reaction on CT in patients with primary
chemotherapy and anti-angiogenesis therapy before surgery for
CRLM (32). This type of HGP occurs more often in new hepatic
metastatic lesions that grow even during systemic therapy. The
replacement HGP indicates not only worse overall and
progression-free survival (31, 33, 34), but also resistance to
systemic therapy in patients with CRLM (32). A possible
reason for the resistance to systemic therapy of the
replacement type of HGP is vessel co-option, which serves as
an approach of continuous blood supply when the vascular
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endothelial growth factor is inhibited by treatment (35).
Moreover, different HGPs have varied immune phenotypes
that contribute to varied responses to immune therapy.
Evidence has indicated that tumors with limited numbers of
infiltrated T cells are in essence frequently resistant to immune
therapy (36). Vascular co-opting hepatic lesions of metastasis
usually have low infiltration of immune cells or inflammatory
cells as demonstrated in lesions with the replacement type of
HGP in contrast to those with desmoplastic HGP which are
frequently surrounded by a lot of lymphocytes in the dense rime
(29, 37). Thus, the types of HGPs differentiated using the
multidetector CT-based radiomics and MRI-based radiomics
(25, 30) may indicate the prognosis of patients with relevant
types of HGP in CRLM lesions. In studying the HGP types of
CRLM using MRI-based radiomics in comparison with the
histopathological types, Han et al. (25) found that more tissue
types were presented in the desmoplastic HGP lesion of CRLM,
including inflammatory, fibrosis, tumor, and hepatic cells,
indicating greater heterogeneity than lesions of replacement
HGP. Replacement and desmoplastic HGPs may be able to
predict responses to bevacizumab and long-term prognosis.
Galjart et al. have convincingly demonstrated that patients
with CRLM and an exclusive desmoplastic HGP (100% of the
tumor-hepatic interface) undergoing partial hepatectomy have
outstandingly good outcomes (31).

2.4 Evaluation of Response to
Chemotherapy of CRLM

In CRLM patients, less than 30% were initially resectable (38). In
some patients, the metastatic foci, which could not be removed,
might disappear on imaging after appropriate therapy, but some
metastases could still be detected during radical surgery. Because
radiomics can explore subtle changes of tumor and liver texture
before and after treatment, it can be used to evaluate the response
of CRLM lesions to chemotherapy (39-48). The CRLM lesion
uniformity, entropy, homogeneity (variance and angular second
moment), gray-tone difference, matrix contrast and shape,
skewness, narrowed standard deviation, mean attenuation,
density of major hepatic lesion, and histogram parameters for
apparent diffusion coefficient maps have all be used to predict
responses to chemotherapy. Good responses have been
associated with decreased entropy, increased uniformity, higher
variance, lower angular second moment, lower baseline skewness
value, narrowed standard deviation, high mean attenuation,
mean values of histogram parameters for apparent diffusion
coefficient maps, and high baseline density of dominant
hepatic lesions.

The entropy of CRLM lesions had been reported to decrease
in patients with good responses while the uniformity increased
after chemotherapy (entropy: —5.13 in good responding patients
and +1.27 in non-responding patients, OR = 1.34; uniformity:
+30.84 vs. —0.44, respectively, OR = 0.95) (45). However, a
higher entropy had also been associated slightly with
therapeutic success (6.65 + 0.26 in patients with good
responses vs. 6.51 + 0.34 in non-responding patients, P = 0.08)
(41), and a low baseline uniformity was related to a good

response (cutoff > 0.42; OR = 20, 95%CI = 1.85-217.4) (46).
Two measures for homogeneity of lower angular second moment
and a higher variance had been demonstrated to associate with
good responding CRLM lesions rather than non-responding
lesions on T2 MRI imaging, with the variance of 446.07 *
329.60 in patients with good responses vs. 210.23 + 183.39 in
non-responding patients (p < 0.001) and the angular second
moment of 0.96 + 0.02 vs. 0.98 £ 0.01, respectively (p < 0.001).

After investigating therapeutic radiomics features for predicting
tumor sensitivity in 667 patients with CRLM to 5-fluorouracil,
irinotecan, and folinic acid alone or combined with cetuximab,
Dercle et al. (42) found that the radiomics response signature
outperformed known biomarkers of the KRAS mutation status
and tumor contraction rate in the early prediction of therapeutic
sensitivity and for guiding decisions of cetuximab therapy. In
evaluating the significance of pre-treatment CT texture analyses
for predicting treatment responses in 82 patients with CRLM after
combined targeting chemotherapy, Zhang et al. (49) found
significant (p < 0.05) differences in Entropy, Energy, Variance,
Standard deviation, Quantile 95, and sumEntropy between the
response and non-response groups in pre-treatment lesions.
Lesions with higher Entropy, lower Energy, higher Variance,
higher Standard Deviation, and higher sumEntropy seemed to
indicate a better therapeutic response. Good diagnostic efficiency
was obtained when sumEntropy > 0.867, with a sensitivity of 60.5%
and a specificity of 79.5%. Radiomics texture indexes originating
from basic CT imaging data of CRLM lesions had the potential
capability of imaging biomarkers for predicting cancer response to
targeted chemotherapy. By comparing the image features before
and after diagnosis and treatment, we found statistically significant
radiomics features, such as Entropy, Energy, Variance, Standard
deviation, and Quantile, which can all be used to evaluate the
remission effect of drugs on CRLM lesions. In the future, these
radiomics features can be used clinically as a relatively cheap and
noninvasive monitoring means for patients with CRLM or
other malignancies.

Most of the reported studies on radiomics are based on CT
images, and radiomics features from MRI images can also be
used to predict the treatment effect on liver metastases. In order
to determine the predictive value of pre-treated MR texture
features of CRLM lesions for therapeutic response to
chemotherapy, Zhang et al. (48) extracted five histogram
features (variance, mean, kurtosis, skewness, and entropy) and
five co-occurrence matrix features of gray level (GLCM;
entropy), angular second moment, correlation, inverse
difference moment, and contrast) from whole liver MRI T2WI
data of 26 patients with CRLM before chemotherapy. After
careful evaluation, a higher variance, contrast, entropy,
entropy, a lower angular second moment, correlation, and
inverse difference moment were revealed to significantly (p <
0.05) independently associate with good responses to
chemotherapy (AUCs 0.602-0.784). Multivariable logistic
regression demonstrated that variance (p < 0.001) and angular
second moment (p = 0.001) remained predictive parameters to
distinguish responding from non-responding tumors, with the
highest AUC of 0.814 (48).
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2.5 Prognosis Prediction of CRLM

After active surgical resection, radiofrequency, and
chemotherapeutic targeted therapy, some patients with CRLM
can achieve a high-quality survival of up to 10 years, whereas
others only obtain a short tumor-free survival. Individual
differences make the application of personalized treatment
strategy particularly important, and identifying risk factors
allows clinicians to develop surveillance strategies for patients
who are at a higher risk of recurrence. Researchers all over the
world have proposed many scoring systems for grading and
predicting prognosis of CRLM patients with different tumor
loads (17-19), but the ultimate effects on prognosis may be quite
different. The radiomics features of heterogeneity, homogeneity,
uniformity, Graytone difference matrix contrast, spatial
heterogeneity, entropy, texture, and gray level size zone matrix
have been used to evaluate the prognoses of patients with CRLM.
Radiomics features have been used to predict the survival of
patients with CRLM who have undergone chemotherapy or
hepatic surgery because radiomics can assess subtle liver
texture differences on different images (40-43, 46, 47, 50-53).
An association had been revealed between CRLM heterogeneity/
homogeneity and survival. Patients with a greater uniformity of
CRLM on CT imaging (cutoff value > 0.42 with a relative risk of
6.94 for overall survival and a relative risk of 5.05 for
progression-free survival) had been reported to have poor
overall survival and progression-free survival (46). A shorter
overall survival had also been demonstrated to associate with
metastatic homogeneity on CT imaging (HR: 1.5 x 10*°-1.3 x
10*°) (40). After comparing with before chemotherapy, a
radiomic signature based on two heterogeneity features,
Graytone Difference Matrix contrast and spatial heterogeneity,
had been related to overall survival (HR = 44.3 for patients with
superior image quality; HR = 6.5 for patients with conventional
image quality) (42), with the radiomic signature having a better
value in predicting survival than the 8-week tumor shrinkage or
KRAS-mutational status assessed in accordance with the RECIST
criteria (AUC 0.80 vs. 0.67 for KRAS and 0.75 for RECIST, p <
0.001) in the validation setting. The CRLM heterogeneity at 18F-
FDG PET/CT was also confirmed to be a predictor of shorter
overall survival (HR 4.29) at multivariant analysis (51), and a
model constructed with numbers of metastases, histogram
uniformity, and metabolic cancer volume was constructed to
predict shorter event-free survival (HR 3.20, p < 0.001) (51).
Entropy of the metastatic lesions had been associated with the
prognosis of patients with CRLM (40, 41, 50). It had been
reported that the overall survival was in a positive correlation
with the entropy of CRLM [HR: 0.16-0.63 (40), and HR = 0.65,
95% CI = 0.44-0.95 (50)]. The value of entropy ratio between
CRLM and liver texture had also been demonstrated to relate to
the prognosis, with a negative correlation between the value and
overall survival (HR 1.9) (41). After studying the tumor and liver
texture on CT portal venous-phase images in 230 patients with
CRLM (120 in the training and 110 in the validation group)
before and 2 months after chemotherapy, Dohan et al. (43)
established a predictive model of efficacy after 6 months of
chemotherapy, which is as effective as the RECISTI1.1

evaluation criteria for solid tumors. The radiomic signature
with the combination of decreases in sum of target liver
lesions, density, and texture analyses of dominant liver lesion
at baseline and 2-month CT imaging data could predict the
overall survival and detect tumors with good responses better
than the RECIST1.1 criteria for CRLM treated by bevacizumab
and FOLFIRI as first-line medicines.

Other radiomics features have also been related to the
survival. The combination of CRLM correlation and contrast
into a single texture parameter had been reported to associate
with overall survival (HR 2.35) (53). One texture analysis score
combining three features of high baseline density of dominant
hepatic lesion, reduction in kurtosis, and decrease in the sum of
target hepatic lesions assessed 2 months after chemotherapy had
been demonstrated to strongly associate with overall survival
(SPECTRA score >0.02 vs. <0.02, with the HR of 2.82 in the
training set and 2.07 in the validating set) (43). Radiomic
evaluation score 2 months later had the same prediction value
of prognosis as the RECIST criteria following chemotherapy for
6 months. In the gray level size zone matrix, the small area
emphasis (positive parameter of prognosis, HR 0.62) and the
minimal pixel value (negative parameter, HR 1.66) had been
revealed to be related to progression-free survival (52).

In addition to the above mentioned radiomics features,
CRLM density on CT imaging (46), ShapeSI4 (in a radiomic
signature) (42), standard deviation (40), future hepatic residual
energy and entropy combined as a single linear predictor (53),
and AUC of volume histograms at PET-CT (47) have also been
reported to associate with the overall survival.

3 RADIOGENOMICS IN DIAGNOSIS AND
TREATMENT OF CRLM

Radiogenomics can be used to discover the radiomics features
that reflect gene expression or polymorphism for further
understanding the occurrence and development of diseases
(54). Radiogenomics promises to understand gene expression
of diseases through noninvasive and conventional imaging
methods. With continuous progress of the technology,
radiogenomics has been widely studied in systemic diseases in
recent years. Many scholars have reported a correlation between
radiomics features and EGFR (epidermal growth factor receptor)
mutation (55-57) or ALK (anaplastic lymphoma kinase)
rearrangement of lung cancer (58, 59). In detection and
management of breast cancers, many researchers have found
that breast cancer is associated with radiomics features at the
gene sequence level (60), gene expression level (61), and
molecular subtype level (62). Marigliano et al. (63) analyzed
multiphase CT images (arterial phase, portal-venous phase, and
urinary tract phase) of 20 patients with clear cell renal cancer and
found that the radiogenomics data derived from these images
were well correlated with expressions of some microRNAs (miR-
185-5p, miR-21-5p, miR-210-3p, miR-221-3p, and miR-145-5p),
especially between entropy and miR-21-5p. Similarly, progress
has also been made in radiogenomics for prostate cancer (64).
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Currently, there are only limited studies on radiogenomics of
tumors involving the liver. Segal et al. were the first in 2007 to
explore the correlation of gene expression pattern of a
hepatocellular carcinoma with the imaging features, identifying
32 image characteristics from enhanced CT imaging of three
phases to be correlated to the expression degrees of 116 genetic
biomarkers among 6,732 genes confirmed by microarray analysis
(65). However, only three imaging features on average were
required to catch expression variations of any genetic marker,
and the use of 28 image features combined could explain
variations of all 116 genetic markers (65). Moreover, it was
found that the genes in some particular molecular profiles had
common physiological function, including cellular proliferation
and hepatic enzyme syntheses, which could correlate to specific
imaging characteristics. Thus, two image features, presence of
arteries and absence of low-density halos, were found to correlate
with “venous invasion signatures”, which are image patterns to
predict microscopic venous invasion and OS (65). Kuo et al. (66)
also conducted radiogenomic analysis to identify imaging traits
in hepatocellular carcinomas, which were related to a genetic
expression profile of 61 genes to detect tumor responses to
doxorubicin. The enhanced CT imaging data of 30
hepatocellular carcinomas had been studied for six image
features, which were found to correlate with the microarray of
18,000 genes.

CRC is a heterogeneous tumor, and its occurrence and
development are affected by a variety of factors. Lifestyle habits
such as high-fat diet are important risk factors to increase the
incidence of CRC (67). Besides external factors, intrinsic genetic
factors also affect the occurrence and development of CRC (68).
Knowing the status of gene mutation in CRC can effectively
provide guidelines for clinical treatment and prognosis
evaluation, thus formulating a recurrence surveillance strategy
for patients (69).

3.1 Radiogenomics of KRAS/NRAS/BRAF
Mutations in CRLM

3.1.1 Clinical Significance of KRAS/NRAS/BRAF
Mutation in CRLM

The RAS/RAF/MEK/extracellular signal-regulated kinase
signaling cascade is referred to as the pathway of mitogen-
activated protein kinase (MAPK), which controls cellular
differentiation, proliferation, angiogenesis, migration, and
survival. Dysregulation of the pathway constitutes the bases for
tumorigenesis (70). This pathway consists of RAS small
guanidine triphosphatases (GTPase) and can activate the
family proteins of RAF (ARAF, CRAF, and BRAF). Abnormal
activation or signaling of the MAPK pathway had been
demonstrated in many tumors, including CRC, through some
distinctive mechanisms, like mutations in BRAF and RAS (70),
which most frequently occur in human neoplasms.

KRAS, NRAS, and HRAS are the RAS oncogenes to encode a
family of GTP-adjusted switches and can repeatedly mutate in
human cancers (71). Once activated, these genes will cause
pleiotropic effects in cells, leading to cellular differentiation,
proliferation, and survival. KRAS mutations take up

approximately 85% of mutations in the RAS gene in human
malignancies, NRAS accounts for approximately 15%, and
HRAS accounts for below 1% (72). In CRC, RAS mutations
primarily take place in the KRAS gene, and approximately 45%
of metastatic CRCs contain activated KRAS mutations (73).
NRAS mutation happens in 2%-7% patients with metastatic
CRC (71). KRAS gene mutations are related to right-sided
colonic cancers, but NRAS gene mutation is related to left-
sided primary malignancies and female gender, indicating
distinctive biology for NRAS and KRAS mutant molecule
subsets of metastatic CRC (74).

KRAS gene is related to the pathogenesis and progression of
CRC, and mutation of this gene may cause resistance to EGFR
inhibitors and poor tumor response to molecular targeted drugs
(75, 76). De Macedo et al. (77) studied the DNA of primary
tumor and metastatic tissue in 102 cases of CRLM and found that
the KRAS gene was highly homogeneous across the primary
CRC cancer areas and consistent in the original cancer lesion
with the metastatic tissues in the same person. KRAS mutation is
an independent risk factor for the prognosis of patients with
CRC (78). Therefore, understanding the KRAS mutation rate in
patients with CRC will help treatment planning and
prognosis evaluation.

NRAS defines a group of molecules with different clinical
features from KRAS-mutant and wild-type metastatic CRC (71).
NRAS gene mutation can cause disordered malignant proliferation
and promote metastasis (71), thus associating with worse survival
and outcomes than KRAS-mutant or wild-type metastatic CRC.
Activating mutations in NRAS take place in 30% of cases with skin
melanoma, and BRAF mutation happens at a high incidence in
these malignancies (74). BRAF or NRAS gene mutation is related to
poor survival of metastatic melanoma patients. However, BRAF
mutation is reciprocally exclusive with melanoma NRAS mutation
and with CRC KRAS mutation.

BRAF mutations take place in 7% of cancers, and
approximately 8%-12% of metastatic CRC cases contain BRAF
mutations (79). BRAF gene mutation can cause poor drug effect
and worse prognosis, and reduce the effect of cancer cell
apoptosis, thus aggravating the condition of patients with
cancers. Some studies (80) found that the mutation rate of the
BRAF gene is higher in patients with lower tumor differentiation.

3.1.2 Radiogenomics of KRAS/NRAS/BRAF
Mutations in CRLM

Yang et al. (81) studied 346 radiomic features extracted from
portal venous-phase CT imaging data of primary tumors and
KRAS/NRAS/BRAF gene mutation in 117 patients with CRC,
including 61 cases in the training and 56 in the verification group
before treatment. The support vector machine methods and
RELIEFF were constructed to choose important features and
establish the radiomic features. It was found that the radiomic
signature was significantly associated with the KRAS/NRAS/
BRAF mutation (p < 0.001), with the AUC, sensitivity, and
specificity for predicting KRAS/NRAS/BRAF mutation as 0.869,
0.757, and 0.833 in the primary group, and 0.829, 0.686, and
0.857 in the validation group, respectively.
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Lubner et al. (50) investigated tumor texture analysis on single
CRLM lesion on contrast-enhanced CT imaging in 77 patients
before treatment. It was found that entropy (spatial scaling factor
or SSF 4, p = 0.007), mean positive pixels (SSF 3, p = 0.002), and
standard deviation (SSF 3, p = 0.004) of medium filtration were
significantly associated with the tumor stage. Skewness was found
to negatively associate with KRAS mutations (p = 0.02), whereas
the coarse filtration entropy was significantly (p = 0.03) associated
with survival (HR for death 0.65). Therefore, radiogenomics is
expected to understand the gene expression profile of the disease
through noninvasive and routine imaging examination and may
be a breakthrough in the diagnosis, treatment, disease monitor,
and prognosis evaluation of CRC and CRLM.

3.2 Radiogenomics of Microsatellite
Instability in CRLM
3.2.1 Clinical Significance of Microsatellite
Instability of CRLM
Some kinds of genomic instability are able to drive the initiation
and development of CRC. The most common type is
chromosomal instability, which is found in 85% of CRC, and
another is microsatellite instability (MSI) which occurs in 15%
patients with CRC. MSI tumors are a subset of CRC
characterized by malfunction of mismatch repair genes
(MMR), which can cause failure to repair errors in short
tandem repetitive DNA sequences known as microsatellites
(82, 83). In the microsatellite sequences, the DNA replication
stability is poor and is prone to mismatches. MSI is caused by
lack of DNA mismatch repair (MMR) system, arising from
germline mutations in the MMR gene, which is prone to the
Lynch syndrome, or from epigenetic inactivation of MLHI1 in
sporadic malignancies. Approximately 5% metastatic CRCs
showed MSI or deficient MMR, and sporadic CRC patients
with MSI were often related to BRAFV600E mutation via its
association with CpG methylator phenotype (84).
High-frequency MSI (MSI-H) refers to the occurrence of MSI
at two or more sites; low-frequency MSI (MSI-L) is MSI
occurring only at one site; microsatellite stability (MSS)
indicates MSI, which does not occur at any site (85, 86). MSI
has a guiding role in predicting the malignant degree and
pathogenesis of tumor, and can also provide direction for
clinical selection of treatment plan and prognosis evaluation.
Studies have shown that MSI-H can be used as a biomarker to
guide clinical immunotherapy for CRLM patients (83, 84, 87).
Through transformation therapy of immune drugs, it is possible
to remove the metastatic foci so as to further improve survival
and quality of life for cancer patients.

3.2.2 Radiomics Combined With MSI in CRLM

Understanding the MSI status is necessary because CRC tissues
with MSI have specific biological behavior and may indicate
better prognoses and benefit from immunotherapy or resistance
to fluorouracil treatment (88). However, the approaches for
evaluating MSI status using polymerase chain reaction and
immunohistochemistry are performed on pathological tissues
from invasive biopsies or surgeries and have not been extensively

applied. It is therefore necessary to develop non-invasive and
cost-effective methods to predict the MSI status and guide
further therapeutic strategies. By extracting 254 radiomics
features of intensity from CT imaging of the CRC cancer
region in combination with clinical features in 198 patients
including 134 patients with microsatellite stable tumors and
64with MSI tumors, Golia Pernicka et al. (89) were able to
develop three prediction models with clinical features only,
radiomic features only, and combination of radiomic and
clinical features. The combined radiomics model outperformed
the other two models in predicting MSI, with the AUC of 0.80
and 0.79 for the training and testing set, respectively (specificity
96.8% and 92.5%, respectively).

Fan et al. studied 119 patients with stage II CRC confirmed
pathologically, known MSI status, and preoperative enhanced CT
images for extracting radiomics features (90). In their study, the
radiomics features were obtained from the portal-vein phase CT
imaging data of segmented tissues of each complete primary
cancer lesion with the Matrix Laboratory software while the
radiomic signatures were constructed using the selection
operator logistic regression and least absolute shrinkage model.
Six radiomics and 11 clinical features were chosen for predicting
the MSI status. The model combining both radiomic and clinical
features achieved the overall best performance in predicting the
MSI status than either the radiomics or clinical feature model
alone, yielding the AUC, sensitivity, and specificity of 0.752, 0.663,
and 0.841 for the combined model, 0.598, 0.371, and 0.825 for
clinical model alone, and 0.688, 0.517, and 0.858 for radiomics
model alone, respectively. Combined analyses of radiomic and
clinical features improved the predictive efficacy and helped
selecting appropriate patients for personalized therapy.

In exploring the value of radiomics analysis derived from
dual-energy CT imaging to preoperatively evaluate the MSI
status in CRC, Wu et al. (88) investigated 102 CRC patients
with pathologically confirmed MSI status and selected nine top
features to constitute the radiomic model. They found that
radiomic analyses of iodine-based material decomposition
imaging data with dual-energy CT has a great capability to
predict the MSI status in patients with CRC, with the AUC,
accuracy, sensitivity, and specificity of 0.961, 0.875, 1.000, and
0.812 in the training set, and 0.875, 0.788, 0.909, and 0.727 in the
testing set, respectively. Good clinical application and calibration
were demonstrated with the decision curve and calibration
analyses, respectively.

Although there is consistency between CRC MSI status and
liver metastasis, there were currently no correlation studies
between MSI status and radiomics of liver metastasis.

4 SUMMARY

In the diagnosis, treatment, monitor of disease progression, and
prognosis of CRLM, thousands of radiomics features can be
extracted, such as image intensity features, high-order features,
texture features, and shape features. Due to the lack of unified
standards at present, different research teams choose different
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radiomics features in the selection of features. Through review of
published studies in the literature, it is found that the most
widely used radiomics features include entropy, uniformity,
variance, and skewness. At present, the unity of the results is
relatively poor, but all these results show the feasibility and
significance of the application of radiomics and radiogenomics in
the diagnosis, treatment, monitor of disease progression, and
prognosis of CRLM.

Radiomics and radiogenomics can be widely used in clinical
medicine research with noninvasiveness and low cost. However,
as a new field, it is still in its infancy, with many limitations. For
example, the research data for radiomics mostly come from small
samples and single centers, whereas some big data from
multicenters are different because of use of different scanning
equipment and scanning conditions. Moreover, imaging
delineation segmentation approaches may also differ from
center to center or from study to study. Future development
and research in radiomics and radiogenomics will have to solve
these issues for better outcomes.

As an innovative arena in medical imaging, radiomics and
radiogenomics can be used to identify pathological process,
reveal the underlying pathophysiological mechanisms through
medical imaging and clinical data, and identify hidden imaging
patterns that can be used to predict tumor biological behavior
and patients’ prognoses, providing efficient prediction of
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Purpose: The aim of this study is to develop a practicable automatic clinical target volume
(CTV) delineation method for radiotherapy of breast cancer after modified radical
mastectomy.

Methods: Unlike breast conserving surgery, the radiotherapy CTV for modified radical
mastectomy involves several regions, including CTV in the chest wall (CTV,,,), supra- and
infra-clavicular region (CTVg.), and internal mammary lymphatic region (CTV;,). For
accurate and efficient segmentation of the CTVs in radiotherapy of breast cancer after
modified radical mastectomy, a multi-scale convolutional neural network with an
orientation attention mechanism is proposed to capture the corresponding features in
different perception fields. A channel-specific local Dice loss, alongside several data
augmentation methods, is also designed specifically to stabilize the model training and
improve the generalization performance of the model. The segmentation performance is
quantitatively evaluated by statistical metrics and qualitatively evaluated by clinicians in
terms of consistency and time efficiency.

Results: The proposed method is trained and evaluated on the self-collected dataset,
which contains 110 computed tomography scans from patients with breast cancer who
underwent modified mastectomy. The experimental results show that the proposed
segmentation method achieved superior performance in terms of Dice similarity
coefficient (DSC), Hausdorff distance (HD) and Average symmetric surface distance
(ASSD) compared with baseline approaches.

Conclusion: Both quantitative and qualitative evaluation results demonstrated that the
specifically designed method is practical and effective in automatic contouring of CTVs for
radiotherapy of breast cancer after modified radical mastectomy. Clinicians can
significantly save time on manual delineation while obtaining contouring results with
high consistency by employing this method.

Keywords: modified radical mastectomy breast cancer surgery, auto-contouring, deep learning, clinical target
volume, radiotherapy
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1 INTRODUCTION

According to a report from the World Health Organization,
breast cancer has overtaken lung cancer as the most prevalent
cancer worldwide [1]. Different stages of tumor progression
require different types of surgical treatment, including breast-
conserving surgery (BCS) and Radical Mastectomy (RM).
Modified radical mastectomy (MRM) is widely used in clinical
practice for the treatment of breast cancer to ensure surgical
efficacy while reducing surgical damage and improving the
patient’s quality of life [2]. Specifically, MRM has become a
cornerstone of breast cancer treatment in China. It involves
excising only the mammary gland and clearing the axillary
lymph nodes, while preserving the pectoralis major and minor
muscles, thereby ensuring postoperative mobility and
appearance.

Although MRM is beneficial to patients, it presents a challenge
to clinicians in contouring the clinical target volume (CTV) for
postoperative radiotherapy because the corresponding CTVs
involve several target areas with relatively complex anatomic
structures compared with their counterparts in BCS and HS.
There are three targets in the CTV delineation for radiotherapy of
breast cancer after MRM: CTV in the chest wall (CTV,,),
supraclavicular region (CTV,), and internal mammary
lymphatic region (CTV,,), among which the position and
volume vary significantly. The significant variation between
patients and the inter-intra-observation variability [3, 4] also
results in highly demanding and time-consuming work for
clinicians. Conversely, research has demonstrated that the
incidental doses to regions, such as the contralateral breast
and thyroid caused by contouring errors can affect patients’
quality of life [5-7]. Therefore, there is an urgent need to
develop an automatic CTV delineation method for
radiotherapy of breast cancer after MRM to reduce the burden
on clinicians while improving work efficiency and accuracy.

Currently, most automatic contouring methods are developed
for radiotherapy after breast-conserving surgery because they
only segment the breast with the mammary gland. For example,
atlas-based methods are successful in breast [8] segmentation
under the condition that the amount of data and the inter-data
variation are small. As the volume of data grows, deep-learning-
based approaches have achieved significant development toward
remedying the cases with large deformation and other
considerable variations and have been adopted by an
increasing number of institutes and clinicians.

To the best of our knowledge, this is the first study whose aim
is to develop a deep learning-based automatic CTV delineation
algorithm for radiotherapy of breast cancer after MRM. In this
study, we propose a specifically designed multi-objective
segmentation method for automatic CTV delineation for
radiotherapy of breast cancer after MRM. An orientation
attention mechanism is proposed to tackle the misrecognition
of a similar structure between the breast and back sides caused by
modified radical surgery. To enable the model to segment the
targets correctly with significantly different volumes, an inception
block-based multi-scale convolution architecture is constructed
to obtain different perception fields and capture the

Auto-Segmentation of Breast CTVs

corresponding features. In addition, the model is trained by
local dice loss to handle the imbalance between segmentation
categories and stabilize the training. Furthermore, three
particular data augmentation strategies, namely, attention
position variance, deformation simulation, and breast implant
simulation, are designed to cope with the problem of data scarcity
and differentiation.

The remainder of this paper is organized as follows. 2
introduces related research on automatic breast CTV
delineation. 3 Materials and methods describe the specifically
designed methods. 4 The experimental results show the
quantitative and qualitative results. 5 Discussion and 6
Conclusion and future work.

2 RELATED WORKS

For the past few decades, traditional methods, particularly Atlas-
based methods, have been the preferred solution for automatic
CTV delineation. Atlas-based approaches perform deformable
image registration to match the target and ground truth. Patients
are segmented based on an atlas library, and the most
anatomically similar will be selected as the target to be
transformed into the same coordinate space as the input data.
Anders et al. [9] and Velker et al. [10] collected 9 and 124 cases to
build a library for breast cancer. The method proposed by Velker
achieved good performance on structured CTVs, such as breast
and chest wall, with Dice similarity coefficient (DSC) values of
0.87 and 0.89 for left- and right-side breast, respectively.
Atlas-based solutions have been widely utilized in cancer sites,
such as the head and neck [11], breast [12], and lungs [13].
However, the performance of these approaches is limited by the
degree of deformation, image registration quality, and additional
corrections. For instance, for highly variable structures, such as
internal mammary nodes, Velker’s method achieved poor
performance with a DSC of 0.3. In this case, several deep-
learning-based approaches have been proposed and have made
significant progress in terms of accuracy and consistency [14].
Deep learning methods have demonstrated excellent
performance in several fields. Convolutional neural networks
(CNNs) have become increasingly irreplaceable in the field of
image processing and analysis, producing results by extracting
and learning the features from well-organized training data. Deep
learning-based semantic segmentation is a suitable solution for
automatic CTV delineation. Min et al. [15] proposed a deep
learning-based breast segmentation algorithm (a 3D fully
convolutional DesnseNet) and compared its performance with
the aforementioned atlas-based segmentation methods. The
comparison results demonstrated that the deep learning
method performed more consistently and robustly on the
majority of structures. In addition to the segmentation
accuracy, clinicians are concerned with the inference speed of
the algorithms because the produced segmentation results still
require manual correction. To this end, Jan et al. [16] proposed
BibNet, a novel neural network built by U-Net [17] with a multi-
resolution level processing structure and residual connections,
alongside a full-image processing strategy to increase the
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FIGURE 1 | lllustration of the specifically designed deep-learning based multi-objective segmentation method for the automatic delineation of CTVs for
Radiotherapy after Modified Radical Mastectomy. Input attention images are obtained by overlapping an anterior-posterior (AP) direction attention map on to input
images.

inference speed while improving the segmentation quality. Kuo ~ Each convolution block in the network comprises a inception
etal. [18] proposed a deep dilated residual network (DD-ResNet) ~ module, followed by an activation layer and a batch
for auto-segmentation of the clinical target volume for breast  normalization layer. The red arrows symbolize max pooling,
cancer radiotherapy, which outperformed deep dilated  whereas the green arrows symbolize transpose convolution.
convolutional neural network (DDCNN) and deep  Black arrows indicate the inputs and outputs of the model.
deconvolutional neural network (DDNN). Compared with  Local dice loss is employed to train the model for multi-
those references, we use optimizer U-Net to help doctors  objective segmentation, followed by a sigmoid activation
contouring the region of breast cancer. function to generate the output mask. In this study, we

focused on the specific characteristics of CTVs after MRM and

designed corresponding solutions to accomplish an automatic

3 MATERIALS AND METHODS contouring task.
The breast on the affected side is excised in MRM with only the
3.1 Data Acquisition pectoralis major and minor muscles preserved, resulting in a flat

The data supporting this study comprised 110 CT scans of  structure that is similar to the back. In addition, the collected data
patients who underwent modified mastectomy surgery  contained patients with left breast cancer and right breast cancer,
collected from Tianjin Medical University Cancer Institute and  and even on both sides; therefore, the model should be
Hospital. These patients received adjuvant radiotherapy on the  encouraged to focus more on the affected side and perform
chest wall, supra- and infra-clavicular, and internal mammary  delicate segmentation. To this end, an orientation attention
lymphatic regions after lumpectomy. Therefore, the CTVs  mechanism was designed for preprocessing. Specifically, a
delineated for radiotherapy by an experienced clinician  direction attention map is calculated based on the formula AP;
according to the RTOG criteria were set as the ground truth ~ =1-i/Hand LR;=1— i/ W, where i and H/W are the row/column
for model training [19]. The CTVs on both the left and right sides  index and image resolution along the anterior-posterior (AP) and
were delineated to stabilize model training. Patients with breast  left-right (LR) directions, respectively. The input of the model is
implants were also collected in our dataset and extended usingthe  the product of the AP and LR direction attention map and the
breast implant simulation data augmentation method. The two- ~ normalized CT image with a range of [-1, 1]. The values on the
dimensional size and thickness of the reconstructed CT images  breast and affected sides in the attention map were set to near 1,
were 512*512 and 5 mm, respectively. The dataset was randomly =~ whereas the opposite side was set to near 0, thereby assigning
split into a training set and testing set with 82 cases and 28 cases, ~ higher importance to the breast and affected sides. This can be
respectively. For the sake of splitting our dataset for training and  observed in Figure 1; the input attention image has a gray
test purpose, the ratio of training and test set about 3:1, which is ~ gradient along the vertical and horizontal directions. The
slightly higher than the 4:1 for most commonly used, was  darker side is emphasized, thus implicitly promoting breast

adopted, accommodating the limited overall sample size, = segmentation.

resulting in an adequately sized test set. The segmentation targets of the model contained CTV in the
chest wall (CTV,,,), supra-clavicular region (CTV,,), and internal

3.2 Architecture and Strategies mammary lymphatic region (CTV,,), which vary greatly in

The architecture of the proposed network is illustrated in volume. CTV,,, and CTV,, have thin and long shapes, whereas
Figure 1. The input images are preprocessed using a specific =~ CTV,, only occupies a small region. This imbalance may confuse
orientation attention method before being fed into the network.  the model and reduce segmentation performance, especially for
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Attention position variance

Deformation simulation

FIGURE 2 | The examples of the proposed data augmentation strategies. The red arrow indicates the position of implanted breast implant.

Breast implants simulation

small targets. Therefore, to enable the model to extract features
with different perception fields, thereby performing delicate
segmentation of targets with different scales, a network with a
multi-scale convolution structure is constructed. This is done by
utilizing a refined inception block [20] as a basic convolution
element, which can improve the perception field while
maintaining minimal pooling operations. Specifically, the input
to each convolution block is fed into 1*1, 3*3, and 5*5
convolution layers and a max pooling layer to obtain different
perception fields, and the extracted multi-scale features are then
fused to model higher-level semantic information. In addition, to
overcome the problems of incomplete labels, a novel local loss is
introduced for network optimization, where a local mask is
calculated based on the label. If parts of the targets are not
annotated, the local mask will be initialized by zeros, thereby
avoiding optimization of the model with the segmentation error
outside the local regions. Benefiting from the larger variation in
the breast cancer dataset, this local loss performed excellently in
this study. Moreover, the sigmoid activation function is employed
in the output layer to produce the probability of the categories of
each pixel in the case of overlap among labels.

To cope with individual variations, such as various
deformations and cases with breast implants, we designed
several targeted data augmentation methods. Three specific
data augmentation approaches are exploited to improve data
diversity: Attention position variance, deformation simulation,
and breast implant simulation. The CT scan center may vary
significantly for different patients. Furthermore, the attention
map is calculated based on the body center, which may be affected
by the coach and other similar materials in the image. Thus, we
adjusted the body cancer with limited variation and generated the
corresponding input image for training. Breast cancer is a
deformable organ, and small deformation is common in breast
cancer radiotherapy. Thus, a random elastic deformation vector
field was applied to the CT images for deformation augmentation.
In particular, a breast implant simulation method was designed
for data augmentation. Patients who have undergone breast
reconstruction have completely different anatomical structures
compared with other patients, which may confuse the model in
the training process. In this case, we simulated breast implants in
the breast region via morphological processing and density
simulations. In the study, We collected CT images from 110

patients with breast cancer for model training and testing. They
received radiotherapy from June 6, 2016 to January 31, 2020, at
Tianjin Medical University Cancer Hospital. The contouring of
target areas have been examined and modified by senior
radiotherapy doctors. In order to reduce the influence of
individual differences, these CT images are processed by the
above data enhancement methods. From Figure 2, it can be seen
that the simulated images have a relatively similar appearance to
the real data. These approaches increase the amount of data,
reduce overfitting, and improve the generalization performance
of the model.

3.3 Evaluation Metrics

To evaluate this method, the DSC was employed as the
quantitative metric, which is defined as the overlap between
the segmented mask and the manually labeled mask, witch
labled by experienced radiologists. The DSC formula is shown
in Eq. 1, where A denotes the ground truth, and B denotes the
predicted results. Therefore, a higher DSC indicates a more
precise segmentation performance.

_2|An B

= TAUIB] w

In some cases, more attention should be paid to segmentation
boundaries. Therefore, the Hausdorff distance (HD) and average
symmetric surface distance (ASSD) were calculated to evaluate
the segmentation performance on boundaries. HD measures the
surface distance between two point sets X and Y, as defined by Eq.
2. ASSD is the average of all the distances from points on the
boundary of the predicted results to the boundary of the ground
truth, which is calculated by Eq. 3.

HD = max{maxxexminyeyd (%, ¥), max yeyminiexd (x, y)} )

LiexMinyeyd (%, y) + 3, eymineexd (3, x)

ASSD = len(X) +len(Y)

(©)

where len(X) and len(Y) represent the total number of pixels in
the boundary X and boundary Y respectively.

Although the above metrics could provide a scientific
assessment of the proposed segmentation method, they are not
reliable enough to evaluate the significance of clinical practice
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TABLE 1 | Quantitative evaluation of the proposed method and U-Net on CTV,,,, CTV,,,, and CTV,. in terms of DSC, HD and ASSD. The p value smaller than 0.05 indicates

that there are significant differences between the two approaches.

DSC HD ASSD
Structures U-net Proposed U-net Proposed U-net Proposed
CTVeow 0.79 + 0.12 0.92 + 0.04 13.97 + 13.33 5.36 + 3.98 4.7 +6.07 1.98 + 3.15
CTVim 0.66 + 0.12 0.74 + 0.09 6.24 + 5.86 3.86 + 2.60 1.39 + 1.38 0.80 + 0.60
CTVye 0.60 + 0.18 0.76 + 0.10 14.76 + 11.35 5.67 + 5.47 3.36 + 5.36 110+ 0.64
Mean 0.69 + 0.14 0.81 +0.08 11.66 + 11.18 4.96 + 3.95 3.15 + 4.53 129 + 1.41
p value 0.0001 0.0019 0.0015
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FIGURE 3| Box-plots of DSC, HD and ASSD in left CTVs and right CTVs on the test set using the gold standard as reference. Blue means our method result. Green
means U-Net's result. By comparison, we can see that the effect of blue is much better than that of green. Details are given below.

[21]. To this end, we conducted a user study to obtain a practical
assessment by three experienced radiologists.

3.4 Statistical Analysis

A paired t-test was conducted to verify the statistical difference
between the quantitative evaluation results of the proposed
method and other approaches. The test was also performed on
the clinicians’ scores. A p value of less than 0.05 can be regarded
as a significant difference between the proposed method and
baseline approaches.

4 RESULTS

4.1 Segmentation Performance
Table 1 presents the quantitative evaluation results of the
proposed method and the baseline (U-Net) in terms of DSC,

HD, and ASSD. It is observed that the proposed method
achieved a mean DSC of 0.92 with standard deviation of
0.04 for CTV,,, a mean DSC of 0.74 with standard
deviation of 0.09 for CTV,,,, and a mean DSC of 0.76 with
standard deviation of 0.10 for CTV,.. The average DSC over all
categories of the proposed method is 0.81, which
outperformed the baseline significantly. The p value of
0.0001 also demonstrated the significant difference between
the two methods. Figures 3A,B show the proposed method has
larger inter-subject variations in the left CTVs.

The HD and ASSD evaluations illustrated that the proposed
method produced smaller surface discrepancies compared with
U-Net in all the CTVs. Figures 3B,C,EF revealed that the
proposed method tends to generate segmentation results with
quite small inter-subject diversity compared with U-Net, thereby
demonstrating the inference quality and the robustness of the
proposed method.
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— TV

chest wall (CTV cw).

FIGURE 4 | Examples of segmentation results of U-Net and the proposed method against gold standard for the affected side. Different colors represent different
segmentation targets. The first row is the result of U-Net,the second row is the result of our method, the third row is the groundtruth of the images. And the different colors
represent dfferent segmentation targets. Blue meas the supra-clavicular region, yellow means internal mammary lymphatic region (CTV im), another means CTV in the

CTVip

Specifically, our method can produce significantly better result
with small inter-subject diversity compared with U-Net on
CTV,, and CTV,, because the multi-scale convolution module
enables the model to extract sufficient features to segment targets
with complex structure, such as CTV,,, and CTVj.. As for targets
with small volume like CTV,,, the proposed method can also
produce precise results by utilizing receptive fields with
different scale.

Figures 4, 5 compare the segmentation results of U-Net, the
proposed method with the manual segmentation on the cancer
affected side and the contralateral side. The CTV in the chest wall
(CTV,,) has an anatomically different structure on the affected
side and the contralateral side because the mammary gland is
removed. The results produced by U-Net suffer from a moderate
degree of under-segmentation and holes in targets, which is not
acceptable clinically. It can be seen that our proposed method
achieved closer results to the gold standard in terms of shape,
location, and volume than those of the counterpart of U-Net.

4.2 Ablation Study

In this section, we explored the importance and effectiveness of
the orientation attention mechanism and breast implant
simulation.

4.2.1 Importance of Orientation Attention

The input orientation attention strategy is expected to encourage
the model to distinguish the breast region from the back region in
the transverse CT slices and perform segmentation. To verify the
effectiveness of this strategy, we conducted an ablation
experiment by removing the input orientation attention
mechanism and compared the segmentation performance.
Figure 6 shows the segmentation results for a test case
generated by models with and without input orientation
attention preprocessing. The model trained without the
orientation  attention mechanism incorrectly performs
segmentation on the back region, whereas the targets are
correctly segmented by the model trained with the orientation
attention strategy.

4.2.2 Importance of Breast Implants Simulation

‘Only six patients with breast implants were included in the
training data, which was extremely imbalanced for training.
The different anatomical structures between patients with and
without breast implants can confuse the model during the
training process. Thus, we expect that the proposed breast
implant simulation can handle this problem by increasing the
amount of data with breast implants. We investigated the
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FIGURE 5 | Examples of segmentation results of U-Net and the proposed method against gold standard on the contralateral side. The first image is the result of

w/0 orientation attention

w. orientation attention

FIGURE 6 | The illustration of the usefulness of the proposed method in recognizing the breast side correctly. The U-Net model incorrectly segments dorsally
structurally similar regions as target CTVs, while the proposed method successfully identifies the breast side and segments the target CTVs.

Ground Truth

importance of breast implant simulation by training the model
with only the original data. Figure 7 presents the segmentation
results for the case of breast implants. It was found that the
trained model without specific data augmentation was
confused by processing cases with breast implants, resulting
in poor segmentation results. The proposed method is well
suited to cases with breast implants, whereas U-Net performs
poorly.

4.3 Timing Performance

The time required to train the proposed model on two GTX
1080 GPUs was approximately 24 h. By utilizing the automatic
segmentation method, the time required to delineate a breast
CTV of a patient is drastically reduced from approximately
40 min (manual delineating) to several seconds. Even if some
special cases need doctors correct the delineating result
maunally, the completion of a breast CTV contouring can be
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w/o breast implants simulation

w. breast implants simulation

FIGURE 7 | The comparison between the segmentation results of U-Net and the proposed method and ground truth on the case with breast implants.

Ground Truth

controlled within 10 min with the manual correction time,
demonstrating the feasibility and effectiveness of the
proposed approach.

5 DISCUSSION

In this study, we proposed a specifically-designed deep learning-
based framework for automatic contouring of 10 targets in CT
scans for modified mastectomy RT. The experiment results
indicate that our method performed well, exhibiting excellent
agreement with the CTVs that were manually delineated by
clinicians. In detail, both quantitative and qualitative
evaluations demonstrated the feasibility of the proposed
methods in contouring CTVs for modified mastectomy RT.
The orientation attention provides reliable supervision for the
model to recognize the breast and affect sides in CT images.
Different from simply applying a deep learning-based
segmentation network for automatic CTVs contouring, we
conducted statistic analysis of the CTVs in modified
mastectomy surgery-based radiotherapy and designed the
network according to the statistical characteristics. The multi-
scale convolutional structure constructed by refined inception
module increases both the width of the network and the
adaptability of the network to scales, thereby producing
delicate segmentation results of targets with different volume.
Besides, the local loss drives the optimization for all of the targets
even in the cases with labels missing.

Considering the scarcity of data volume and the variability
among data, we designed three data enhancement methods for
data expansion to improve the generalization performance of the
model while avoiding overfitting. Data augmentation is
particularly essential for medical-related researches, since it
takes long and a lot to collect medical data. Apart from the
attention position and general deformation simulation, we
particularly designed the breast implants simulation method to
increase the number of cases with breast implants. The breast
anatomical structure of patients with breast implants is
completely different from the patients without. So a small
amount of data with breast implants can affect the model
training, resulting in the model not converge. Through the
breast implants simulation, the problem of category imbalance
is alleviated and the model is able to generate more accurate
segmentation results for patients with breast implants.

Although deep learning solutions performs well in producing
contouring results for RT (RT is a file that stores the coordinates
of the region of interest), the nature of deep learning makes it sort
of disputable [22] because it learns how to segment only based on
the ground truth delineated by one clinician. Radiotherapy
requires clinical input and creativity in terms of science and
art [19]. The delineation results of the same case can vary between
clinicians, and it is sometimes difficult to determine which one is
optimal. Therefore, the ground truth used for training the deep
learning model also should have diversity. The reinforcement
learning provides a potential way to enable the DL model to learn
how to optimally segment targets.
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Manual delineation of OARs and CTVs for RT is a laborious
task for clinicians, which requires not only experience but also
physical exertion. Repetitive work for long periods can lead to
reduced productivity and even errors on the part of clinicians [2].
In this case, automatic segmentation algorithms serve as a useful
tool for reducing the workload of clinicians and producing highly
consistent results. A previous study illustrated that atlas-based
automatic segmentation (ABAS) for loco-regional RT of breast
cancer reduced the time needed for manual delineation by 93%
(before correction) and 32% (after correction) [23]. Our method
reduced the time required for contouring from 40 min (manual)
to 10 min (automatic) on average. With the assistance of deep
learning-based auto-segmentation, radiation oncologists can
work more efficiently.

To evaluate the segmentation results more carefully and
efficiently, and to explore the detailed gap between the deep
learning-based automatic contouring algorithm and manual
contouring, we used both HD and ASSD to evaluate the
performance of the contouring results on the edges and
surfaces. In this case, we further proved the level of
advancement of the proposed method on 3D level rather than
the 2D level only. Table 1 and Figure 3 illustrate that the
proposed method can produce segmentation results with
better agreement with the manually delineated structures in
terms of region and surface.

This study has several limitations. First, we conducted this
research in a single center with limited sample size and diversity,
which will impose a challenge on the generalization power of the
proposed model. The well-performing model may produce
unacceptable segmentation results when applied to other centers
owing to the variance between the data. Therefore, we plan to
validate the proposed method using data from other institutions.
Second, the accuracy and pattern of the segmentation results
depend heavily on the manual annotations used for training,
which can be both advantageous and disadvantageous. As
aforementioned, the model can be trained using a homogeneous
gold standard created by a single clinician. However, there is no
100% gold standard in clinical settings, as inter-intra-observer
variations always exist. Thus, further studies should be
conducted to evaluate the generalization of the gold standard
created by multiple clinicians. Additionally, it may be more
favorable if the OARs are segmented simultaneously. By
extracting corresponding features and segment-related organs
and tissues, the model can obtain a better perception of the
target region. Specifically, the OARs that are most helpful for
segmenting target CTVs in the breast region still need to be
considered. For instance, the importance of coronary vessels has
been increasingly acknowledged.
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Preoperative distinction between transitional meningioma and atypical meningioma would
aid the selection of appropriate surgical techniques, as well as the prognosis prediction.
Here, we aimed to differentiate between these two tumors using radiomic signatures
based on preoperative, contrast-enhanced T1-weighted and T2-weighted magnetic
resonance imaging. A total of 141 transitional meningioma and 101 atypical
meningioma cases between January 2014 and December 2018 with a
histopathologically confirmed diagnosis were retrospectively reviewed. All patients
underwent magnetic resonance imaging before surgery. For each patient, 1227
radiomic features were extracted from contrast-enhanced T1-weighted and T2-
weighted images each. Least absolute shrinkage and selection operator regression
analysis was performed to select the most informative features of different modalities.
Subsequently, stepwise multivariate logistic regression was chosen to further select
strongly correlated features and build classification models that can distinguish
transitional from atypical meningioma. The diagnostic abilities were evaluated by
receiver operating characteristic analysis. Furthermore, a nomogram was built by
incorporating clinical characteristics, radiological features, and radiomic signatures, and
decision curve analysis was used to validate the clinical usefulness of the nomogram. Sex,
tumor shape, brain invasion, and four radiomic features differed significantly between
transitional meningioma and atypical meningioma. The clinicoradiomic model derived by
fusing the above features resulted in the best discrimination ability, with areas under the
curves of 0.809 (95% confidence interval, 0.743-0.874) and 0.795 (95% confidence
interval, 0.692-0.899) and sensitivity values of 74.0% and 71.4% in the training and
validation cohorts, respectively. The clinicoradiomic model demonstrated good
performance for the differentiation between transitional and atypical meningioma. It is a
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quantitative tool that can potentially aid the selection of surgical techniques and the
prognosis prediction and can thus be applied in patients with these two

meningioma subtypes.

Keywords: meningioma, clinical decision-making, neoplasm grading, radiomics, retrospective studies

INTRODUCTION

Meningiomas are the most common primary intracranial tumors
in adults, accounting for 36.7% of all intracranial tumors (1).
According to the latest 2016 edition of the World Health
Organization (WHO) classification of central nervous system
tumors (2), meningiomas have been classified into 3 grades and
15 different subtypes. Among these different subtypes, transitional
meningioma (TM) is a common benign meningioma (WHO
grade I), whereas atypical meningioma (AM) is an uncommon
tumor of intermediate grade between benign and malignant forms
(WHO grade II). Pathologically, TM is characterized by the
transitional morphological manifestation between endothelial
meningiomas and fibrous meningiomas (3). AM is defined as a
tumor with increased mitotic activity (>4 mitoses per 10 high-
power fields), brain invasion, and at least three of the following
minor criteria: increased cellularity, high nucleus-to-cytoplasm
ratio, prominent nucleoli, sheet-like architecture, and spontaneous
necrosis foci (4, 5).

According to the European Association of Neuro-Oncology
(EANO) guidelines, magnetic resonance imaging (MRI) is the
main method used in the provisional diagnosis of meningiomas
(6). At present, several studies have explored imaging features to
assess the tumor grade, and some imaging features (such as
tumor heterogeneity, shape, and tumor-brain interface) may be
used as predictive factors to discriminate between tumors of
different grades (7-9). Zhang et al. used MRI features to
distinguish some subtypes of WHO grade I meningiomas
(angiomatous, meningothelial, fibroblastic, and psammomatous
meningiomas) and found that angiomatous and meningothelial
meningiomas were the most easily identifiable subtypes (10).
However, current image-guided evaluation depends on the
experience of radiologists, which is non-specific and highly
subjective. Recently, our previous study (11) has shown that
among meningiomas, WHO grade I TM and WHO grade Il AM
are more aggressive than other subtypes because the frequency of
brain invasion in these two tumors was much higher than in
other subtypes. This study showed that TM was more aggressive
than other subtypes of WHO grade 1 meningioma, and its
biological behavior is close to that of atypical meningioma.
Another study observed that several imaging characteristics,
such as irregular tumor shape, heterogeneous contrast
enhancement, and peritumoral edema were identified as
predictors of brain invasion (12). The above research suggests
that TM and AM may be similar in their imaging presentation,
although the reported data on TM remain scarce, especially
regarding its imaging characteristics. However, the clinical
treatment plan and prognosis of these two tumors are
significantly different due to their different grades. According

to EANO guidelines for the treatment of meningiomas, the
diagnosis of WHO grade II meningioma (such as AM) implies
an increased risk of recurrence, requiring shorter control
intervals (every 6 months instead of annually) than in WHO
grade I TM (6). Han et al. reported that TMs can be treated with
either surgery or external beam radiation, AMs often require a
combination of the two modalities (13). The choice of surgical
technique may be different. Because AM is more prone to
invasive growth and recurrence. Whether to expand the scope
of surgical resection, application of intraoperative navigation and
preoperative blood preparation, this is closely related to the size
of the tumor (AM tends to be slightly larger than TM) and tumor
surrounding tissues Moreover, it has been established that higher
tumor grades are associated with worse prognosis; higher grades
indicate reduced survival and higher rates of tumor recurrence
(14). Therefore, precise distinction between TM and AM before
surgery is desirable.

Given the above reasons, it is necessary to explore the imaging
differences between AM and TM. Radiomic analysis is a reliable
tool that can quantify high-dimensional tumor features that
cannot be observed with the naked eye, such as intensity,
texture, and shape features (15, 16). In recent years, radiomic
analysis has rapidly transformed the field of medical imaging
analysis, since it provides more stable results and is an objective
rather than a subjective assessment. Several studies have
demonstrated the applications of radiomics in meningiomas,
such as the characterization of the grade and histological
subtype, the prediction of brain invasion and recurrence-free
survival, and the identification of differential diagnoses in
meningioma (11, 17-20). These studies show that the MRI-
based radiomics may also be a method for discriminations
between AM and TM.

To the best of our knowledge, this is the first study to
differentiate TM from AM based on texture feature or radiomic
analysis. Therefore, our study aimed first to identify MR and
radiomic features that are associated with these two tumors from
two MRI modalities [T2-weighted (T2) and T1-weighted post-
contrast (T1C)]; second, to combine these two modalities
generating a radiomic signature; and third, to build a nomogram
fusing clinical factors, MR features, and radiomic signatures to
differentiate TM from AM in MRIs of patients with
suspected meningioma.

MATERIALS AND METHODS

Study Population and Semantic Features
For this retrospective analysis, ethical approval was obtained
from the Institutional Review Board of Lanzhou University
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Second Hospital, and the requirement for informed consent was
waived. In this study, all patients with TM and AM who
underwent surgery in our institute between January 2015 and
December 2019 were enrolled according to the following
inclusion and exclusion criterias. The inclusion criteria were:
(a) histological diagnosis of AM or TM, and (b) MRI, including
T1C and T2 sequences, performed within 1 week before surgical
tumor resection. The exclusion criteria were: (a) cases with
motion artefacts that impacted the assessment; (b) incomplete
MRI sequences; and (c) treatment such as radiotherapy,
chemoradiotherapy, or surgery before surgical tumor resection.

All tumors were resected with the aid of a microscope. Patients
with TM and AM were diagnosed according to the pathological
findings. Finally, a total of 242 patients (TM: 19 men, 122 women,
mean age 52.3 £ 9.2 years; AM: 46 men, 55 women, mean age 51.5
+ 10.3 years) were enrolled. All patients were randomly divided
into a training cohort and a validation cohort in a 7:3 ratio. The
patient recruitment flowchart is shown in Figure 1.

Two radiologists (reader 1 JZ and reader 2 YTC, with 12 and 15
years of experience in brain MRI interpretation, respectively)
independently analyzed the MRI characteristics (including
tumor location, maximum diameter, tumor shape, tumor
border, dural tail sign, peritumoral edema, T2 signal, enhanced
features, bone invasion, sinus invasion, and brain invasion). The
image analysis was based on clinical experience. Both readers were
blinded to all personal information and the histopathological
results before analysis. For qualitative data, agreements were
reached after discussion between the two in cases of difference
of opinions. When the two readers were unsure, reader 3 (2YZ)

with 19 years of experience confirmed the results. For quantitative
data, reader 1 measured the maximum diameter three times on
the maximum level of the tumor, and calculated the average of
three measurements. Reader 2 performed the data measurement
in the same way. The final result was the average of the
measurement values of two readers to minimize the deviation
of the measurement results. Among MR features evaluation,
peritumoral edema was evaluated on T2 images according to the
standardized visually accessible Rembrandt Images (VASARI;
https://wiki.nci.nih.gov/display/CIP/VASARI) feature set. Brain
invasion was diagnosed by pathology. Bone invasion
assessments were performed by pathology and surgeon
assessment intraoperatively. Sinus invasion was evaluated by an
intraoperative neurosurgeon as a diagnostic standard.

Image Acquisition, Segmentation,

and Normalization

The MRIs were obtained at our institution with 3.0-T scanners
(Siemens Verio or Philips Achieva). The MR sequences included
T1C and T2 images, and the detailed parameters of each scanner
are shown in Supplementary Table S1.

Two radiologists (TH and JZ) without prior knowledge of the
pathological records manually segmented MR images using the
open-source software ITK-SNAP (version: 3.8.0, www.itksnap.
org). On both axial T1C and T2 images, the regions of interest
(ROIs) of images were manually delineated on each slice of the
entire tumor including hemorrhagic, necrotic lesions and
without the surrounding brain tissue, and oedema. T2 images
were segmented with reference to T1C images for visual

Patients diagnosed with TM and AM by histology during January 2015 and
December 2019 in our hospital
™ (n=165) AM (n=118)
(n=9) (n=6)
— No MRI scan
(n=1) Patients who received treatment (n=4)
before surgical resection
(n=10) (n=5)
Incomplete MRI sequences
(n=4) The MRI images with obvious (n=2)
‘ artefacts
2 y
Patients in TM included Patients in AM included
(n=141) (n=101)
FIGURE 1 | Inclusion and exclusion criteria.
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guidance. The segmented tissues on each slice were fused
together to generate the volume of interest, as shown in
Supplementary Figure 1.

To obtain a standard normal distribution of the image
intensities, T1C and T2 images were standardized using z-score
normalization and resampling after manual segmentation. MR
scanners and image segmentation of two additional sets (i.e. two
MR scanners set and the re-segmentation set) are described in
Supplementary Material.

Feature Extraction and Selection

The PyRadiomics platform was used to extract standardized
radiomic features from the T1C and T2 imaging data (21). In this
study, feature extraction followed the Image Biomarker
Standardization Initiative (IBSI) guideline (22). T1C features
were extracted from the volume of interest (VOI) of T1C images,
whereas T2 features were extracted from the VOI of T2 images.
Finally, a total of 2454 radiomic features were extracted from the
VOI of two modalities of the MR images.

For both T1C and T2 features, the least absolute shrinkage
and selection operator (LASSO) regression with five-fold cross-
validation was conducted to select the radiomic features highly
correlated with discrimination of TM and AM (Supplementary
Figure 2). Features with a P-value of less than 0.05 were selected.
For clinical factors and MRI features, the correlation between
these two factors and discrimination of AM and TM were tested
via Student’s t-test and the chi-square test with the P-value set to
0.05. Then, stepwise multivariate logistic regression further
selected the most informative features and deleted irrelevant
features. Features with a P-value of less than 0.05 and
preoperative factors were included in the model. Spearman
correlation analysis was conducted to examine the correlation
between the selected radiomic features and clinicoradiological
features to determine whether these features are correlated with
each other.

Fusion of Modalities and Radiomic
Signature Building

T1C represents the blood supply and the integrity of the blood-
brain barrier, whereas T2 is sensitive to peritumoral edema, thus
mainly reflecting tissue edema. Therefore, these two modalities
were fused by combining the selected radiomic features to
increase the performance of the radiomic model. After fusing
the modalities, we used stepwise multivariate logistic regression
to build a radiomic model discrimination of TM and AM based
on the selected radiomic features. The T1C model was built
based on T1C features (two features), and the T2 model was built
based on T2 features (two features), whereas the fusion model
was built based on T1C and T2 fusion features (all four radiomic
features). The clinical model was built based on a clinical factor
(sex) and MRI features (tumor shape and brain invasion). Thus,
the clinicoradiomic model was built by incorporating the clinical
factor, MRI features, and the radiomic signature. In the training
cohort, the maximum area under the receiver operating
characteristic curve (AUC) with three-fold cross-validation
determined the final regularization parameter.

Nomogram Building and Validation

Integrated discrimination improvement (IDI) (23) was used to
quantify performance improvements. The P-values indicated
whether the improvement in reclassification was statistically
significant after the inclusion of a new factor in the model. In
addition, we used the DeLong test to compare the AUC estimates
of the performance between different models.

Afterward, a nomogram for clinical usefulness incorporating
the radiomic signature and the correlated clinicoradiological
features was constructed in the training cohort and validated in
the validation cohort. The calibration curves assessed the
discrimination ability of the nomogram for the training and test
cohorts, and the Hosmer-Lemeshow test evaluated the agreement
between the discrimination of TM from AM and the observed
outcomes. Then, we used decision curve analysis (DCA) to
quantify the net benefits at different threshold probabilities to
evaluate the clinical efficacy of the nomogram (24).

Statistical Analysis

In this study, all statistical analyses were performed with R
software (version 3.6.4, http://www.Rproject.org). R was also
used to assess the prediction models. PyRadiomics was used to
extract and select the radiomic features, as well as to build the
prediction models. The Spearman correlation test was used to
explore differences between clinicoradiological features and
radiomic features. Student’s t-test and the chi-square test were
used to compare continuous and categorical variables, respectively.
Generally, two-sided P-values less than 0.05 were considered
statistically significant. The intra-/inter-class correlation
coefficients (ICCs) were used to assess the agreement of the two
MR scanners and the extracted features by two radiologists.

RESULTS

Clinical Factors and MR Features

The clinical factors and MR features of the patients are shown in
Table 1. For clinical factors, sex was found to be significantly
different (P < 0.001) between the TM and AM groups, whereas
age did not differ significantly (P > 0.05). For MR features, the
parameters maximum diameter, tumor shape, peritumoral
edema, enhanced features, bone invasion, and brain invasion
were significantly different (all P < 0.05) in the univariate
analysis. Among them, tumor shape and brain invasion were
highly correlated with discrimination of TM from AM and can
be used as independent predictive factors according to the
multivariate logistic regression analysis. By contrast, tumor
location, tumor border, dural tail sign, T2 signal, and sinus
invasion were not significantly different (all P > 0.05) between the
TM and AM groups.

Radiomic Features Correlated With TM
and AM

The ICCs were calculated to evaluate the agreement of the two MR
scanners and the features extracted by two radiologists,
respectively. All values exceeded 0.75, reflecting good agreement.
In total, 2454 radiomic features were extracted from each patient.
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TABLE 1 | Clinical factors of the patients and magnetic resonance imaging features in the training and validation cohorts.

Characteristics AM (n = 101) T™M (n =141)
Clinical factors
Age (years) 51.5+10.3 52.3+9.2
Sex
Female 55 (54.5%) 122 (86.5%)
Male 46 (45.5%) 19 (13.5%)
Imaging features
Tumor location
Parasinus and parasial 56 (565.4%) 69 (48.9%)
Skull base 28 (27.8%) 50 (35.5%)
Convexity 17 (16.8%) 22 (15.6%)
Maximum diameter (mm) 47.96 + 15.89 37.36 + 15.18
Tumour shape
Circular or quasi- circular 38 (37.6%) 89 (63.1%)
Irregular 63 (62.4%) 52 (36.9%)
Tumour border
Clear 81 (80.2%) 124 (87.9%)
Blur 20 (19.8%) 17 (12.1%)
Dural tail sign
Yes 41 (40.6%) 45 (31.9%)
None 60 (569.4%) 96 (68.1%)
Peritumoural oedema
None (0%) 27 (27.3%) 83 (568.9%)
<5% 23 (23.2%) 19 (13.5%)
6-33% 19 (19.2%) 14 (9.9%)
34-67% 17 (17.2%) 19 (13.5%)
68-95% 13 (13.1%) 6 (4.3%)
MRI signal
T2WI
Slightly high signal 50 (49.5%) 59 (41.8%)
Iso signal 31 (30.7%) 64 (45.4%)
Mixed signal 20 (19.8%) 18 (12.8%)
Enhanced features
Uniform 42 (41.6%) 93 (66.0%)
Uneven enhancement 59 (58.4%) 48 (34.0%)
Bone invasion
Yes 38 (37.6%) 33 (23.4%)
No 63 (62.4%) 108 (76.6%)
Sinus invasion
Yes 25 (24.8%) 41 (29.1%)
No 76 (75.2%) 100 (70.9%)
Brain invasion
Yes 21 (20.8%) 13 (9.2%)
No 80 (79.2%) 128 (90.8%)

Univariate analysis (p value) Multivariate analysis (p value)

0.543 N/A
<0.001* <0.001*
0.442 N/A
<0.001* N/A
<0.001* <0.001*
0.106 N/A
0.175 N/A
<0.001* N/A
0.056 N/A
<0.001* N/A
0.022~ N/A
0.469 N/A
0.014* 0.011*

Among peritumoural oedema, percentage represents the proportion of peritumoural oedema in the entire abnormality, and the entire abnormality may be comprised of the entire tumour
and oedema component. T2 signal is defined by comparing the signal of the gray matter of the brain. A Student’s t-test was used to compare the difference in age and maximum diameter,
while the chi-square test was used to compare the difference in other features. *P < 0.05. SD, standard deviation. N/A, not available.

Among them, two T1C features and two T2 features were selected,
and all four radiomic features (T1C_WaveletGLSZMwavelet.
HHL_GraylevelNonUniformity, T1C_SquareRootGLSZM _
squareroot_zoneEntropy, T2_WaveletGLCMwavelet.
LLL_JointEnergy, and T2_SquareRootGLDM_squareroot_
DependenceEntropy) were significantly different between the
TM and AM groups (all P < 0.05; Figure 2). Their odds ratios
are shown in Supplementary Figure 3. The weights of each
selected radiomics features are shown in Supplementary Table 2.

According to the Spearman correlation test, these
four features extracted by algorithms from MR images
were consistent with some clinicoradiological features
evaluated by the radiologists (Supplementary Table 3).
For example, shape was correlated with the parameters

T1C_WaveletGLSZMwavelet. HHL_GraylevelNonUniformity
and T1C_SquareRootGLSZM_squareroot_zoneEntropy in both
training and validation cohorts (Figure 3).

Fusion of Modalities and Model Building

T1C and T2 radiomic features may correspond to different
information. Though fusing the selected radiomic features, the
radiomics signature can reflect the discrimination factors of TM
and AM from different perspectives. Stepwise multivariate
logistic regression analysis showed that sex, tumor shape, and
brain invasion were significantly different between TM and AM
groups (all P < 0.001). Thus, the radiomic signature, sex, tumor
shape, and brain invasion were selected for the clinicoradiomic
model building. The radiomics scores in the AM group were
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FIGURE 2 | Boxplots of the four radiomic features (A-D) with significant differences between transitional meningioma (TM) and atypical meningioma (AM) groups in
the training cohort. The symbol *** represents p < 0.001.

significantly higher than those in the TM group in the different
models, as shown in the Figure 4.

The performance of these models was evaluated in the training
cohort and then validated in the validation cohort. The
discrimination ability of T1C, T2, the radiomic (fusion of T1C
and T2), clinical, and the clinicoradiomic models are shown in
Table 2. The ROC curves for T1C, T2, the radiomic, clinical, and
clinicoradiomic models are plotted in Figure 5. The clinicoradiomic
model (nomogram) demonstrated the best discrimination ability,
resulting in AUCs of 0.809 (95% CI, 0.743-0.874) and 0.795 (95%
CI, 0.692-0.899) with sensitivity values of 74.0% (95% CI, 49.3%-
83.6%) and 71.4% (95% CI, 42.9%-89.3%) for the differentiation of
TM from AM in the training and validation cohorts, respectively.
The formula for calculating the clinicoradiomic model and the
fusion radiomic signature is described respectively in the
Supplementary Results.

Model Comparison

The IDI index was calculated to assess the predictive usefulness
of the different models. The clinicoradiomic model improved
the integrated discrimination by 5.75% (P = 0.002) and 9.96%
(P <0.001) compared to the radiomic model in the training and

validation cohorts, respectively. The comparisons between
different models are shown in Table 3. In addition, Delong test
showed that compared with Clinical and T2 models, the
discrimination ability of clinicoradiomic model has been
significantly improved in the training cohort, P value was
0.014 and 0.004 respectively, and there is no statistical
significance in the validation cohort.

Assessment of the Clinicoradiomic
Nomogram Performance
The clinicoradiomic model demonstrated the best discrimination
ability and was used to construct the nomogram (Figure 6A). The
calibration curve together with the Hosmer-Lemeshow test were
used to measure the consistency between the probability of TM or
AM being diagnosed by the clinicoradiomic model and the actual
pathological diagnosis. The actual pathological diagnosis was
consistent with the predicted probability of TM and AM in both
the training and validation cohorts, with P-values of 0.361 and
0.472, respectively, as shown in Figures 6B, C.

The DCA assessed the discrimination ability of the
clinicoradiomic model based on clinical applications. The
clinicoradiomic model provided a net benefit in the DCA at a
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threshold probability of above 20% (Figures 6D, E). This result
indicated that the clinicoradiomic data were clinically useful.

DISCUSSION

This is a preliminary study to develop a clinicoradiomic model
that discriminates TM from AM based on MRI. The
discrimination ability of this fusion model was validated via
DCA, discrimination, and calibration curves in an internal
validation cohort. One clinical factor, two radiological features,
and four radiomic features indicated a high correlation with the
ability of a model to discriminate between TM and AM. A multi-
modality (fusion of T1C and T2) model of radiomics showed
good discrimination ability in both training (AUC: 0.776,

Sensitivity: 0.685) and validation (AUC: 0.734, Sensitivity:
0.679) cohorts. Moreover, the nomogram incorporating
clinicoradiological and radiomic features demonstrated the best
performance in both training (AUC: 0.809, Sensitivity: 0.740)
and validation (AUC: 0.795, Sensitivity: 0.714) cohorts.

Among clinical factors, sex was only the parameter that was
significantly different between TM and AM. Females (86.5%)
were prone to TM, whereas the male-to-female ratio was
balanced in AM (females 54.5%), which is consistent with the
results of other studies (3, 25). Among MR features, tumor shape
and brain invasion were significantly different between TM and
AM, and based on the stepwise multivariate logistic regression
analysis, they can be used as independent discrimination factors.
AMs are more irregular, and TMs are mostly circular or quasi-
circular, which may be related to the grade of the tumor and the
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TABLE 2 | Performance of the sequence models.

Cohort Model AUC ACC

Training set  T1C 0.754 (0.679-0.829)  0.729 (0.656-0.795)
T2 0.731 (0.655-0.806)  0.694 (0.619-0.762)
Radiomics 0.776 (0.705-0.847)  0.753 (0.681-0.816)
Clinical 0.726 (0.651-0.801)  0.688 (0.613-0.757)
Nomogram  0.809 (0.743-0.874)  0.771 (0.700-0.831)

Test set Ti1C 0.717 (0.597-0.836)  0.694 (0.575-0.798)
T2 0.670 (0.541-0.798)  0.611 (0.489-0.724)
Radiomics 0.734 (0.616-0.851)  0.722 (0.604-0.821)
Clinical 0.765 (0.653-0.877)  0.736 (0.619-0.833)
Nomogram  0.795 (0.692-0.899)  0.750 (0.634-0.845)

SEN

0.726 (0.589-0.822
0.644 (0.466-0.767
0.685 (0.507-0.795
0.534 (0.380-0.639
0.740 (0.493-0.836
0.750 (0.392-0.893
0.607 (0.392-0.858
0.679 (0.285-0.857
0.714 (0.372-0.879

(

)
)
)
)
)
)
)
)
)
0.714 (0.429-0.893)

SPE

0.732 (0.464-0.866)
0.732 (0.556-0.825)
0.804 (0.464-0.887)
0.804 (0.685-0.900)
0.794 (0.567-0.866)
0.659 (0.295-0.818)
0.614 (0.432-0.886
0.750 (0.431-0.864
0.750 (0.499-0.864
(

)
)
)
0.773 (0.477-0.910)

PPV

0.671 (0.623-0.698
0.644 (0.567-0.683
0.725 (0.661-0.753
0.672 (0.593-0.711
0.730 (0.643-0.753
0.583 (0.423-0.625
0.500 (0.392-0.586
0.633 (0.420-0.686
0.645 (0.486-0.691

(

)
)
)
)
)
)
)
)
)
0.667 (0.545-0.714)

NPV

0.780 (0.692-0.808)
0.732 (0.675-0.755)
0.772 (0.662-0.789)
0.696 (0.661-0.720)
0.802 (0.743-0.816)
0.806 (0.650-0.837)
0.711 (0.633-0.780
0.786 (0.678-0.809
0.805 (0.733-0.826
(

)
)
)
0.810 (0.724-0.833)

T1C, contrast-enhanced T1-weighted imaging, T2WI, T2-weighted imaging; Radiomics, combination of T1C and T2; Clinical, fusion of sex, tumour shape and brain invasion; AUC, area

under receiver operating characteristic curve; ACC, balanced accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
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with transitional meningioma (TM), and the blue bar shows the sample with atypical meningioma (AM).

increased brain volume due to the peritumoral edema (26).
Similarly, in most studies, irregular or lobulated tumor growth
was associated with high-grade histology in both uni- and
multivariate analyses (7, 8, 27, 28), presumably showing a
parenchymal reaction of the brain tissue to the extensive
tumors growth and the aggressiveness of the meningioma (27).
Some authors also found that irregular or lobulated
meningiomas were more likely to recur than regular-shaped
ones (7). Zhang et al. have reported that the frequencies of

brain invasion in TM and AM were much higher than those in
other meningioma subtypes. In our study, the incidence of brain
invasion in AM (20.8%) was higher than that in TM (9.2%),
which is consistent with a previous study (4%-19% in all WHO
grade meningiomas) (11, 12, 29). This indicates that WHO grade
IT AMs are more aggressive than WHO grade I TMs. Moreover,
the maximum diameter, peritumoral brain edema,
heterogeneous enhancement, and bone invasion were also
different in these two tumors according to the univariate
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TABLE 3 | Comparison of the different models in the validation cohort.

Initial model Model introducing new factor
Clinical Clinicoradiomic

Combination of T1C and T2 Clinicoradiomic

T1C Combination of T1C and T2

T2 Combination of T1C and T2

Performance improvement (IDI)

Training cohort Validation cohort

11.1% P = 0.00033
5.75% P = 0.00195
4.37% P =0.00538
7.04% P = 0.00029

7.86% P = 0.0396
9.96% P = 0.00089
3.06% P = 0.3425
6.91% P = 0.02442

Compared with the T1C and T2 models, the performance of combination of T1C and T2 model improved by 7.04% and 4.37% in discrimination ability, respectively. Compared with
combination of T1C and T2 model, the performance of clinicoradiomic model improved by 5.75% in discrimination ability. IDI: Integrated discrimination improvement; Clinicoradiomic,

fusion of sex information, tumour shape, brain invasion and radiomic signature.

analysis, in agreement with published reports (30). For example,
larger tumor size and tumor volume were more likely to be
observed in high-grade meningiomas, and AM is a WHO grade
II tumor. Heterogeneous enhancement reflects intratumoral
hemorrhage, ischemic necrosis, cystic change, or calcification
and is associated with heterogeneous distribution of tumor cells.
Previous studies have reported that AMs have significantly more
intratumoral necrosis and cystic changes than benign
meningiomas (1, 31).

At present, MR radiomics can reproducibly extract objective
and quantitative data from different sequences (T2, T1, T1C, and
fluid attenuated inversion recovery [FLAIR], among others) to
diagnostically discriminate meningiomas from other tumor
forms, such as craniopharyngioma from meningioma in the
sellar/parasellar area (32) or malignant hemangiopericytoma
from angiomatous meningioma (20, 33). Radiomics can use
visually imperceptible information about the tumor. Given this
background, the radiomics model is a convenient, noninvasive
method that does not require tissue biopsy or gene sequencing
and may be a valuable approach to differentiate TM from AM
since the radiomics model (AUC: 0.776 in the training cohort)
outperformed the clinical model (AUC: 0.726). Additionally, we
developed and validated a clinicoradiomics model to
discriminate between TM and AM. Of the 2454 radiomic
features, four were highly correlated with the discrimination
between these two tumors. These features were textural image
features indicating microscopic descriptions of the tumor
including cellularity and tumor-induced compression of
normal brain tissue. Textural features can neither be identified
by the human visual system nor be easily interpreted to
understand their specific meaning (7, 34, 35). We analyzed the
four identified radiomic features and found that two gray-level
size zone matrix (GLSZM) features, one gray-level dependence
matrix (GLDM) feature, and one gray-level co-occurrence
matrix (GLCM) feature were significantly associated with the
discrimination of TM from AM. According to the definitions of
these texture features (36), GLSZM quantifies gray-level zones in
an image. The GLDM feature measures the difference between
adjacent voxels based on their voxel value, and this feature was
most relevant to the discrimination between these two tumors.
The GLDM features selected by LASSO include entropy features,
where a larger entropy value indicates greater heterogeneity of
the tumor (37). The GLCM feature describes the distance and
angle of each pixel, which includes energy, correlation, entropy,
inertia, and inverse difference (37). Compared to TM, the values

of these features were higher in AM. This indicates that these
features may reflect microscopic heterogeneity within the
tumors. Thus, as a new tool, the radiomic feature could
distinguish TM from AM.

We also analyzed the correlation between clinicoradiological
factors and radiomic features using Spearman’s correlation
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