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Editorial on the Research Topic

Transcriptional Regulation in Metabolism and Immunology

The regulation of transcription that converts DNA to RNA is a vital process in all living organisms to
orchestrate gene activities (Weingarten-Gabbay and Segal, 2014; Cramer, 2019). Transcription
factors (TFs) are important factors to orchestrate transcription by binding to specific DNA sequences
to activate or repress wide repertoires of downstream target genes that control a wide variety of
biological processes (Spitz and Furlong, 2012; Lambert et al., 2018), includingmetabolic and immune
systems. A large number of TFs that play critical roles in regulating transcription in the metabolic
and immune systems have been investigated and much has been learned about their mechanisms
(Mansueto et al., 2017; Hosokawa and Rothenberg, 2021).

Metabolic homeostasis needs fine tuning to adapt to environmental stimuli, which largely
depends on transcriptional-level regulation (Mouchiroud et al., 2014). Maintenance of energy
homeostasis is critical in all cells, which is mainly perceived and regulated by the highly conserved
AMP-activated protein kinase (AMPK) (Garcia and Shaw, 2017). AMPK has been shown to
phosphorylate specific transcription factors, such as FOXO transcription factors, to restore
energy balance and reprogram many metabolic progresses, including the metabolism of glucose,
lipid, mTOR, and proteins. Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver
disease worldwide, which may progress to fatal cirrhosis or hepatocellular carcinoma (Foulds et al.,
2017). Exposure to endocrine-disrupting chemicals (EDCs) may increase the susceptibility to the
development of NAFLD. Imbalance of hepatic lipid homeostasis may lead to the initiation and
development of NAFLD. EDCs can recruit co-regulator proteins by physically binding nuclear
receptors (NRs), and modulate the transcription of genes involved in hepatic lipid homeostasis.

Trigger of required immune response demands fine transcriptional regulation in cells of the
immune system (Roy, 2019). Wu et al. applied single-cell RNA sequencing to investigate IL-4-
induced I transcription in B cell differentiation (Wu et al., 2017). Their analysis revealed that the
early transcription of Iε could induce class switching to IgE. Thus, the transcription regulation of Iε
directs the early choice of IgE. In addition, various noncoding RNAs have been found to participate
in the regulation of immune processes and immune cells, including circular RNAs and long
noncoding RNAs (Hu W. et al., 2021; Fang et al., 2021).

This Research Topic is dedicated to publishing studies revealing the mechanisms of
transcriptional regulation in metabolic and/or immune systems based on the data sets from
next-generation sequencing and other state-of-art technologies, which will shed light on the
deeper understanding of the underlying mechanisms. A total of 19 articles are included in this
Research Topic.
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Four papers contributed to the transcriptional regulation in
metabolic system. Zhang et al. revealed five metabolism pathway-
related circRNAs in prostate cancer (Zhang et al.). Cheng et al.
found that alterations in lipid metabolism pathway are associated
with prognosis of non-small-cell lung cancer patients that were
treated with immune checkpoint inhibitors (Cheng et al.). One
research performed systematic analysis of nuclear-encoded
mitochondrial genes in hypertrophic cardiomyopathy,
including the regulation of transcription factors (Tan et al.).
Liu et al. examined the dysregulation of immune and
metabolism-related RNAs in uterine corpus endometrial
carcinoma (Liu and Qiu).

For the transcriptional regulation in immune system, two articles
contributed to the transcriptional dysregulation in immune cells and
their roles as biomarkers in diseases, including macrophage M2 cells
(Wang et al.) and neutrophils (Qiu et al.). Several articles identified
immune-related prognostic markers in human complex diseases,
including stromal-immune scores (Liu et al.), lncRNAs (Wang et al.;
Pang et al.; Zhao et al.), immune-related genes (Hu et al.; He et al.; Li
et al.; Xu et al.), and transcriptional regulation factors (He et al.; Zhang
et al.; Chen et al.).

In addition, the Research Topic also included two
methodology articles, one is about a deep learning classifier
for determining disease immune subtypes and related
immunosuppression genes (Ning et al.), and the other is the

comparisons of dimensionality reduction methods in single-cell
transcriptomics data (Xiang et al.).

In conclusion, recent studies have precisely highlighted
dysregulated TFs in specific contexts by adopting high
throughput sequencing and other state-of-the-art technologies.
These studies largely extended our current knowledge of the
complexity of gene regulation circuitry in metabolism and
immunology, and will facilitate further advancement.
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Delayed repair is a serious public health concern for diabetic populations. Intercellular
adhesion molecule 1 (ICAM-1) and Lymphocyte function-associated antigen 1 (LFA-
1) play important roles in orchestrating the repair process. However, little is known
about their effects on endothelial cell (EC) proliferation and neutrophil activity in subjects
with hyperglycemia (HG). We cultured ECs and performed a scratch-closure assay
to determine the relationship between ICAM-1 and EC proliferation. Specific internally
labeled bacteria were used to clarify the effects of ICAM-1 and LFA-1 on neutrophil
phagocytosis. Transwell assay and fluorescence-activated cell sorting analysis evaluated
the roles of ICAM-1 and LFA-1 in neutrophil recruitment. ICAM-1+/+ and ICAM-1−/−

mice were used to confirm the findings in vivo. The results demonstrated that HG
decreased the expression of ICAM-1, which lead to the low proliferation of ECs. HG
also attenuated neutrophil recruitment and phagocytosis by reducing the expression of
ICAM-1 and LFA-1, which were strongly associated with the delayed repair.

Keywords: hyperglycemia, ICAM-1, LFA-1, neutrophil, phagocytosis

INTRODUCTION

Diabetes mellitus is a chronic metabolic disorder characterized by inappropriate hyperglycemia
(HG) (American Diabetes, 2013). Uncontrolled HG can lead to a host of diabetic complications,
including delayed injury repair, which is a serious public health concern for subjects with diabetes.
The tendon injury repair process consists of four phases: coagulation, inflammation, granular tissue
formation, and remodeling (Gosain and DiPietro, 2004; Falanga, 2005). All the phases rely strongly
on cellular and metabolic components of the inflamed microenvironment. However, the diabetic
injury microenvironment is hostile and characterized by markedly elevated levels of inflammatory
cytokines, which contribute to the dysfunction of these components. Recent studies have shown
that endothelial cell (EC) proliferation at sites of injury is crucial for injury repair. Specifically,
intercellular adhesion molecule 1 (ICAM-1) plays a key role in EC proliferation (Nagaoka et al.,
2000; Gay et al., 2011; Sumagin et al., 2016). ICAM-1 regulates EC permeability in inflamed tissues
by inducing the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) (Han et al., 2016).
However, due to the complexity of the immune response under HG conditions, the potential effects
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of ICAM-1 on ECs remain poorly understood. In the present
study, we cultured ECs and performed a scratch-closure assay to
evaluate the effects of ICAM-1 on EC proliferation.

Bacteria at injury sites can cause tissue infection and
generate biofilms, leading to delayed injury repair (Hurlow
et al., 2015; Qiu et al., 2018, 2019). HG is considered the
best culture condition for bacterial growth (Frykberg, 2002).
HG increases pathogen accumulation. This in turn prevents
the proliferation of keratinocytes and angiogenesis at the
site of injury (Gosain and DiPietro, 2004; Bandyk, 2018).
Both type 1 and type 2 diabetes cause HG, indicating a
high risk of insufficient injury repair within the diabetic
population. Neutrophils are the main leukocytes involved in
the defense against invasion by exogenous pathogens (Everett
and Mathioudakis, 2018). Enhanced recruitment of neutrophils
promotes injury repair in subjects with HG. Lymphocyte
function-associated antigen 1 (LFA-1) is an integrin that is
mainly expressed on the surface of lymphocytes (Xingyuan
et al., 2006). ICAM-1 and LFA-1 expression levels are
critical for neutrophil trafficking into inflamed tissues (Basit
et al., 2006). However, the effects of ICAM-1 and LFA-1 on
neutrophil recruitment in subjects with HG remain poorly
understood. Recent studies have strongly associated neutrophil
phagocytosis with ICAM-1/LFA-1 interaction (Lefort and Ley,
2012; Woodfin et al., 2016).

In the present study we explored the effects of ICAM-1
and LFA-1 on neutrophil recruitment and phagocytosis under
HG conditions in vitro and in vivo. The objectives of this
study were to evaluate ICAM-1 expression as well as its
involvement in EC proliferation and the combined effects of
LFA-1 on neutrophil recruitment and phagocytosis under HG
conditions. The findings provide new insights and will inform
novel therapeutic approaches for the repair of diabetic injuries.

MATERIALS AND METHODS

Cell Culture
Injured tissue from C57BL/6 mice was harvested for EC isolation.
The tissue was minced into pieces 0.3–0.4 mm in size. The
pieces were enzymatically digested with trypsin and collagenase
(Witkowska and Borawska, 2004). Neutrophils were freshly
isolated from bone marrow. Overlying muscle and skin were
removed from the tibia and femur, and the tissue was placed
in Hank’s Balanced Salt Solution (HBSS) buffer on ice until
needed. Bone marrow tissue was flushed with fresh HBSS
for 8 min using a 10 mL sterile syringe. After rinsing, a
single-cell suspension was obtained by careful pipetting. ECs
and neutrophils were isolated using a magnetic separator. ECs
were characterized by CD105 and CD31. Neutrophils were
characterized by CD45, Ly6G, and CD11b. ECs were cultured in
500 mL complete mouse endothelial cell medium with a kit (Cell
Biologics Inc., Chicago, IL, United States) supplemented with
15% fetal bovine serum (FBS; Hyclone, Logan, UT, United States),
2 mM L-glutamine, 100 mg/mL heparin, 15 mg/mL EC growth
supplement, 100 mg/mL streptomycin, and 100 U/mL penicillin.
Cells were grown at 37.5◦C in an atmosphere of 5% CO2 and 95%

relative humidity, and seeded in a wells of a 24-well culture plate
at a density of 2× 105 cells/well.

Scratch-Closure Assay
ECs were pre-treated with high (25 mM) or low (5 mM) glucose
concentrations for 6 days. In some cases, anti-ICAM-1/LFA-1
neutralizing antibody (ab109361, ab52895; Abcam, Cambridge,
MA, United States) was added to the culture medium and
confluent monolayer cells were scraped off using a 200-µL pipette
tip. For the in vitro assay, we gently removed the debris, cleaned
the scratch border and replaced the volume with growth medium
(Becker et al., 1991). To determine the number of ECs that
had migrated into the scraped area, photographs were taken at
various times and analyzed using NIS-Elements D image analysis
software (Nikon, Tokyo, Japan).

EC Proliferation Assay
EC proliferation was detected using 5-ethynyl-2-deoxyuridine
(EdU) with a Click-iT Cell Proliferation imaging kit (Thermo
Fisher Scientific, Waltham, MA, United States). Briefly, the
indicated cells were cultured in triplicate in 24-well plates for 24 h
and were then treated with 50 µM of EdU for 2 h at 37◦C. Then
they were fixed in 4% formaldehyde for 10 min and permeabilized
with 0.5% Triton X-100 for 10 min at room temperature, the
cells were treated with 1 × Apollo reaction cocktail for 30 min.
For in vitro analysis, ECs were pre-treated with a low (5 mM) or
high (25 mM) concentration of glucose and incubated with anti-
ICAM-1 neutralizing antibody (15 µg/mL) or isotype IgG as a
control. At least six random fields per subgroup were measured
in three parallel assays. The data are expressed as the percentage
of all proliferating cells in a single field. Triplicate technical
replicates were assigned to each group.

Transwell Migration Assay
Confluent ECs were continuously stimulated for 18 h with
tumor necrosis factor-alpha (TNF-α) to induce EC activation
prior to transmigration assays (Campos, 2012; Kolluru et al.,
2012). Confluent neutrophils were inoculated into the upper
chambers of the Transwell system. ECs were also added into the
lower chamber of the device and incubated in fresh medium. In
some cases, anti-ICAM-1 neutralizing antibody was added to the
culture medium. Transwell inserts were incubated at 37.5◦C in
an atmosphere of 5% CO2 and 95% relative humidity for 20 h.
Cells that migrated to the lower side of the membrane were
attached, fixed with 2% paraformaldehyde (PFA) and stained with
0.5% crystal violet. Cells at the upper side of the membrane were
scraped off using a cotton swab. Digital images were obtained
using a light microscope system.

Western Blotting
Skin injury tissue was isolated using the Mammalian Cell Lysis
Kit (Sigma-Aldrich, St. Louis, MO, United States). Samples
were adjusted to equal total protein amounts and transferred to
polyvinylidene fluoride or polyvinylidene difluoride membranes.
Membranes were blocked with 5% (wt/vol) blocking reagent
(Roche, Basel, Switzerland) in Tris-buffered saline for 1 h. The
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blots were probed with rabbit monoclonal anti-ICAM-1/CD11a
and β-actin antibodies (Thermo Fisher Scientific). Alkaline
phosphatase conjugated to goat anti-mouse/rabbit IgG (Abcam)
was added as the secondary antibody after incubation with the
primary antibody.

Animal Model
ICAM-1+/+ and ICAM-1−/− mice were obtained from the
Jackson Laboratory (Bar Harbor, ME, United States). All mice
were housed under specific pathogen-free conditions in full
compliance with the Animal Use and Care Committee of
Central South University, Changsha, Hunan Province, China.
A type 1 diabetic model was induced by continuous low-dose
streptozotocin (STZ) intraperitoneal injection (50 mg/kg; Sigma-
Aldrich) for 5 days. The normal control (NG) was injected with
an identical dose of phosphate-buffered saline (PBS). Mice were
identified as diabetic based on a blood glucose level > 250 mg/dL.
Skin injury was performed after the mice had maintained a
diabetic status for longer than 3 weeks. Prior to surgery, mice
were anaesthetized by intraperitoneal injection with a ketamine–
xylazine solution (80 mg/kg ketamine, 5 mg/kg xylazine). We
used a 3.0-mm biopsy punch to perform symmetrical full-
thickness excisional injury on the skin. Mice were euthanized
with CO2 and injured tissue was collected 4 and 8 days after
surgery. Seven mice per group were analyzed at each time point.

Histology and Immunofluorescence
Staining
Collected samples were fixed with formalin (10%; Sigma-Aldrich)
for 20 h at 4◦C, followed by slow decalcification in 10% EDTA
solution for 4 weeks. Each specimen was bisected evenly, and half
of the tissues were embedded in paraffin blocks for histological
analysis. Slices of 5 µm thickness were prepared for hematoxylin
and eosin (H&E) staining. For ICAM-1 analysis, paraffin slides
were subjected to immunofluorescence staining. Slides were
incubated with an ICAM-1 monoclonal antibody (Thermo Fisher
Scientific) at 4◦C overnight. The slide was mounted with 4,6-
diamidino-2-phenylindole (DAPI) for nuclear counterstaining.
Histomorphometry of the injured tissue was performed using
a Nikon digital camera coupled to a microscope, followed by
analysis using the associated Nikon AR software.

Flow Cytometry Analysis
The tissue surrounding the injury edge was collected using a 4-
mm punch and minced into pieces 0.1–0.2 mm in size. The pieces
were transferred to conical tubes containing 5 mL digestion
medium (collagenase type IV, DNase, and dispase II). The
suspensions were transferred to a shaking incubator (200 rpm)
at 37◦C for 1 h after digestion. A 70 µm strainer was used
to filter the suspended solution after shaking. The solution was
centrifuged at 4◦C and 400 × g for 8 min. The supernatant was
removed, the pellets were resuspended in 150 µL washing buffer
(3% FBS RPMI) and the cells were counted. Fluorescence-labeled
murine monoclonal antibodies were obtained from BioLegend
(San Diego, CA, United States) and eBioscience (San Diego,
CA, United States). The isolate solution was dispensed in flow

cytometry tubes (100 µL/tube). Anti-CD16/CD32 antibodies
(Fc blocker; BioLegend) and 2c/100 µL cells were added for
10 min. A master mix containing CD45-Pacific Blue, CD11b
allophycocyanin (APC) and Ly6G+ APC was created as a
neutrophil panel. The mixture was centrifuged at 300 × g for
8 min at 4◦C and the supernatant was gently removed. PBS
was added to a volume of 200 µL and run the flow for these
samples. To detect neutrophil phagocytic function, diabetic mice
were intraperitoneally injected with lipopolysaccharide (LPS) to
induce neutrophilia. Fluorescent zymosan-Texas-Red (ZymTR)
or PBS was administered to the mice 8 and 16 h prior to tissue
collection. The enzymatically digested injured tissue was analyzed
by flow cytometry.

Neutrophil Phagocytosis Assay
Bacterial phagocytosis was induced as described previously
(Habas and Shang, 2018), with some modifications. Briefly,
a suspension of 5 × 106 neutrophils/mL was co-cultured
with Staphylococcus aureus labeled with carboxy fluorescein
succinimides (CFSE; Thermo Fisher Scientific). Add 50 µL of
HBSS to at least one tube to create a negative (i.e., no bacteria)
control for flow cytometry gating. Mix solutions very gently
by inverting tubes several times. Place tubes in an incubated
oven and rotate very gently (∼5–10 rpm) for 10 min. Remove
tubes from incubator and immediately place on ice to arrest
the phagocytosis process. Immediately add 0.55 mL of cold 4%
paraformaldehyde to each tube, mix gently by inverting tubes,
and incubate on ice for 30 min. Rinse cells once with cold HBSS
(no Ca/Mg) by centrifugation at 400 × g for 10 min. Resuspend
cells in 0.2 mL of cold HBSS (no Ca/Mg). Measure cell-
associated fluorescence by flow cytometry. Neutrophil-associated
bacterias were evaluated by co-localizing CFSE-labeled S. aureus.
Internalized bacteria and neutrophils associated with the labeled
bacteria were counted using fluorescent microscopy.

Quantitative Real-Time Polymerase
Chain Reaction (qPCR) Analysis
We performed qPCR analysis to detect the expression of
ICAM-1 and LFA-1 (CD11a). Four copies per sample were
analyzed and the results were averaged. The following primers
were used for the PCR reactions: ICAM-1, forward primer:
TTCAAGCTGAGCGACATTGG; reverse primer: CGCTC
TGGGAACGAATACACA; matrix metalloproteinase-1 (MMP-
1), forward primer: AGCTAGCTCAGGATGACATTGATG;
reverse primer: GCCGATGGGCTGGACAG; MMP-2, forward
primer: TGGCGATGGATACCCCTTT; reverse primer:
TCCTCCCAAGGTCCATAGCTCAT and MMP-9, forward
primer: CCTGGGCAGATTCCAAACCT; reverse primer:
GCAACTCTTCCGAGTAGTTTCCAT.

Statistical Analyses
All data are expressed as mean ± standard deviation (SD).
Differences were assessed using Student’s t-test or paired one-
way analysis of variance (ANOVA) using GraphPad Prism ver.
4.0 software (GraphPad, La Jolla, CA, United States). Statistical
significance was indicated at P < 0.05.

Frontiers in Genetics | www.frontiersin.org 3 December 2020 | Volume 11 | Article 6169889

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-616988 December 22, 2020 Time: 10:31 # 4

Qiu et al. Hyperglycemia and Neutrophil Activity

RESULTS

HG Reduces ICAM-1 Expression
ECs increase the release of ICAM-1 during inflammation (van
der Zijpp et al., 2003; Awla et al., 2011). However, little is
known about the expression of ICAM-1 by ECs in subjects with
HG. Since HG has been causally associated with endothelial
dysfunction (Prokopowicz et al., 2012; Rada, 2019), we explored
the release of ICAM-1 under hyperglycemic conditions. ECs
were cultured and incubated for 16 h together with stimulation
by the TNF-α pro-inflammatory cytokine. ICAM-1 expression
was decreased in the HG group. However, no significant
differences were detected among the non-activated counterparts
(Figure 1A). To better assess ICAM-1 release by ECs, we repeated
this assay using a Transwell system, which allowed us to measure
levels of ICAM-1 in independent culture media. ECs were seeded
as a monolayer on the Transwell interfaces. The total amount
of ICAM-1 decreased in the basolateral chamber in the HG
group. The rate of ICAM-1 increase was also lower in this group
(Figure 1B). We inferred that MMPs are involved in ICAM-1
expression in response to ECs. To identify the effects of MMPs
on the induction of ICAM-1 expression in the HG group, we
focussed specifically on MMP-9, MMP-1, and MMP-2, which
have been associated with ICAM-1 expression. In contrast to
previous findings, no difference was detected in the levels of these
MMPs between the HG and control groups (Supplementary
Figures S1A–C). Based on these observations, HG appeared to
reduce the release rate of ICAM-1 in vitro.

HG Decreases EC Proliferation by
Reducing ICAM-1 Expression
Recent studies have demonstrated the critical role played by
ICAM-1 in EC proliferation (Tamanini et al., 2003; Dragoni
et al., 2017). However, little is known about the effects of
ICAM-1 on EC proliferation under hyperglycemic conditions.
Using NG and HG culture media with or without TNF-α
stimulation, we observed decreased EC proliferation in the
HG culture medium as the expression of EdU was reduced
in that group. Accordingly, little proliferation occurred in the
absence of exogenous stimulation (Figures 1C,D). This result
was verified by the introduction of anti-ICAM-1 neutralizing
antibody. ICAM-1 levels decreased in both the NG and HG
groups (Supplementary Figure S1D), indicating the efficiency
of ICAM-1 inhibition. Notably, the proliferation rate markedly
declined in the NG group following exposure to the ICAM-
1 inhibitor. No significant differences were detected between
the NG and HG groups (Figure 1E). Thus, EC proliferation
decreased in the hyperglycemic condition through reduced
expression of ICAM-1. These findings established that increased
EC proliferation is a major step in injury repair (Liang et al.,
2007; Bourland et al., 2019). Given our observation that HG
reduced EC proliferation via ICAM-1, we hypothesized that low
levels of ICAM expression would decrease injury closure in the
HG group. To test this hypothesis, we introduced anti-ICAM-
1 neutralizing antibody to scratch-closure EC monolayers. The
effects were evaluated in terms of scratch-closure area and gap

distance. The closure area was less in the HG group at both 24
and 48 h post-scratching (Figures 1F,G). The gap distance tended
to be wider than that of the NG group (Figure 1H), whereas no
differences in scratch-closure area or gap distance were observed
following treatment with the ICAM-1 inhibitor. The collective
findings indicated that injury closure was markedly delayed in the
HG group due to reduced ICAM-1 expression.

HG Attenuates Neutrophil Migration via
ICAM-1 and LFA-1
Neutrophil recruitment is strongly associated with bacterial
clearance at injury sites. Therefore, efficient neutrophil migration
is an essential step in injury repair. ICAM-1/LFA-1 interaction
stimulates signaling pathways involved in neutrophil migration
to the inflamed tissue (Lefort and Ley, 2012). To explore the
effects of ICAM-1 and LFA-1 on neutrophil migration under
hyperglycemic conditions, we modeled neutrophil migration
under inflammation using the Transwell system. Both ICAM-
1 and LFA-1 were decreased in the HG group (Figures 2A–
C). Concomitantly, the Transwell migration assay revealed
fewer migrating neutrophils in the HG group (P < 0.03)
(Figures 2D,E). To independently explore the role of LFA-1 in
neutrophil migration, we introduced an LFA-1 inhibitor to block
the function of LFA-1. As expected, the level of LFA-1 sharply
decreased in both the NG and HG groups (Figure 2F). Strikingly,
the number of migrating neutrophils in the NG group was
halved following exposure to the LFA-1 inhibitor (Figure 2G). To
elucidate the crosslink between LFA-1 and ICAM-1 in neutrophil
migration, we blocked the function of ICAM-1 using anti-ICAM-
1 neutralizing antibody. As expected, the expression of LFA-1 and
ICAM-1 were both reduced (Figures 2H,I) and little migration
was detected in either group following the administration of the
ICAM-1 inhibitor (Figure 2J). These findings indicated that HG
attenuates neutrophil migration via ICAM-1 and LFA-1.

ICAM-1 and LFA-1 Regulate Neutrophil
Phagocytosis in the HG Group
LFA-1 has been implicated in the regulation of neutrophil
phagocytosis (Sigal et al., 2000). However, little is known
about the role of LFA-1 in neutrophil phagocytosis under
hyperglycemic conditions. Therefore, we introduced internally
labeled bacteria to evaluate neutrophil phagocytosis. As exhibited
in Figure 3A, the CFSE-labeled S. aureus staining were presented
in the left side. The CFSE-labeled S. aureus/DAPI merged
images were presented in the middle. Images in upper side were
from hyperglycemia treated group. Images in lower side were
from normoglycemia treated group. Neutrophil phagocytosis was
evaluated by the clearance index. The results showed that the
clearance index was 60% lower in the HG group (P < 0.05)
(Figures 3A,B). Accordingly, the total number of neutrophils
involved in phagocytosis of bacteria was also lower in the HG
group (P < 0.05) (Figure 3C). These results indicated that
HG attenuates neutrophil phagocytosis of bacterial pathogens.
To further confirm the role of LFA-1 in neutrophil phagocytic
activity, we introduced an LFA-1 inhibitor to block LFA-1
expression. The number of positive phagocytic neutrophils was
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FIGURE 1 | Hyperglycemia (HG) reduces ICAM-1 expression and attenuates endothelial cell (EC) proliferation. (A) ICAM-1 expression was lower in the HG group
(P < 0.01). No significant differences were detected in their non-activated counterparts (NG; P > 0.05). (B) The total amount of ICAM-1 released into the basolateral
chamber was decreased in the HG group. (C) EC proliferation was decreased in HG cultural medium. The contrast nuclear was stained with DAPI (blue) and
presented in the left side. The cell proliferation was measured by 5-Ethynyl-2’-deoxyuridine (EdU) staining (red) and presented in the middle. White arrows indicate
positive staining of EdU. The merged images were presented in the right. Images in upper side were from normoglycemia group. Images in lower side were from
hyperglycemia group. (D) The expression of EdU was reduced in HG group, which indicated the low proliferation in HG culture medium. Little proliferation occurred
in the absence of exogenous stimulation. (E) Proliferation rates declined markedly following exposure to an ICAM-1 inhibitor in the NG group. (F,G) In the HG group,
the closure area was decreased at both 24 and 48 h post-scratching compared with the NG group. (H) The scratch gap distance tended to be wider in the HG
group. The yellow line demarcates the closure area after scratching. Bars represent mean ± SD. *P < 0.05; **P < 0.01.
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FIGURE 2 | HG attenuates neutrophil migration via ICAM-1 and LFA-1. (A–C) Expression of ICAM-1 and LFA-1 was decreased in the HG group. (D,E) A Transwell
migration assay revealed lower numbers of migrating neutrophils in the HG group. Images in left side were from normoglycemia group. Images in right side were from
hyperglycemia group. (F) LFA-1 expression decreased sharply in both the NG and HG groups following exposure to the LFA-1 inhibitor. (G) The number of migrating
neutrophils in the NG group was halved following exposure to the LFA-1 inhibitor. (H,I) ICAM-1 and LFA-1 expression levels decreased in both the HG and NG
groups. (J) Little migration was observed in either group following administration of the ICAM-1 inhibitor (P > 0.05). Bars represent mean ± SD. *P < 0.05;
**P < 0.01.

significantly reduced in the NG group after exposure to the
LFA-1 inhibitor (Figures 3D,E). Neutrophil activation enhances
the efficiency of pathogen clearance, which is associated with
the upregulation of CD11b. As shown in Figures 3G,H, CD11b
expression was lower in the HG group. However, in the absence of
LFA-1, neutrophils exhibited low levels of CD11b in both the NG
and HG groups. Myeloperoxidase (MPO) is another neutrophil
phagocytic biomarker (Muller, 2003; Ley et al., 2007). MPO
generates hypochlorous acid, which aids neutrophil phagocytosis.

Therefore, we extended this experiment by examining MPO
activity in the NG and HG groups. An enzyme activity assay
revealed that MPO activity was 1.2-fold lower in the HG group.
MPO levels were further reduced in the presence of LFA-1
inhibitor (Figure 3F). To elucidate the nature of the association
between LFA-1 and ICAM-1 in neutrophil phagocytosis, we
blocked the function of ICAM-1 using anti-ICAM-1 neutralizing
antibody. Interestingly, the expression of LFA-1was decreased in
both the NG and HG groups (Figure 3I). In addition, neutrophil
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phagocytosis was attenuated following the administration of
the ICAM-1 inhibitor (Figure 3J). These findings provided
direct evidence that ICAM-1 and LFA-1 regulate neutrophil
phagocytosis in hyperglycemic conditions.

HG Decreases ICAM-1 and LFA-1
Expression in vivo
To independently confirm the role of ICAM-1 and LFA-1 in
the regulation of neutrophil phagocytosis in vivo, we induced
injury in ICAM-1+/+ mice. HG was induced by continuous
STZ injection for 5 days. The average blood glucose levels
were 345.1 and 331.5 mg/dL in wild type (ICAM-1+/+) and
ICAM-1 deletion (ICAM-1−/−) mice, respectively (Figure 4A).
Skin injury repair was monitored at 2, 4, and 8 days post-
surgery. Intriguingly, injury closure was significantly delayed
in ICAM-1+/+HG mice (Figure 4B). Microscopy of tissues
stained with H&E showed that ICAM-1+/+-HG mice displayed
delayed injury repair with incomplete re-epithelialization and
greater epithelium distance (Figures 4C,D). The deposition
of new granular tissue was also decreased in the ICAM-
1+/+HG group (Figure 4E), indicating insufficient injury repair
in the hyperglycemic condition. Scratch-injury closure was
markedly attenuated in the HG group due to reduced ICAM-
1 expression. Immunofluorescence staining (Figures 4F–H) and
ELISA analysis (Figure 4I) revealed that ICAM-1 expression
was decreased in ICAM-1+/+HG injury tissue. White arrows
indicated the positive staining of ICAM-1. Similarly, LFA-
1 expression also decreased in ICAM-1+/+HG injury tissue
(Figures 4J,K), suggesting the strong interaction between LFA-1
and ICAM-1 in injury repair in vivo.

HG Impairs Neutrophil Phagocytosis and
Recruitment via ICAM-1/LFA-1
LFA-1 has been shown to induce neutrophil migration in vitro.
Since LFA-1 expression levels were reduced in ICAM-1+/+HG
injury tissue, we hypothesized that decreased LFA-1 expression
would reduce neutrophil infiltration into ICAM-1+/+HG
injury sites. To evaluate neutrophil recruitment in vivo, Ly6G+
granulocytic subsets of CD11b+ myeloid cells were detected
by fluorescence-activated cell sorting (FACS) analysis. The
gating strategy used in this analysis is shown in Figure 5A.
As expected, the proportion of neutrophil granulocytes
(CD45+CD11b+Ly6G+) was decreased in the ICAM-1+/+-HG
group (Figures 5B,C). As LFA-1 expression was implicated in
neutrophil phagocytic activity, we also explored the effects of
LFA-1 on neutrophil phagocytosis in ICAM-1+/+-HG injury
tissue. The ICAM-1+/+-HG and -NG groups were treated with
LPS to induce neutrophilia. Injured tissue was collected 8 and
16 h following injection of ZymTR. The number of ZymTR
positive neutrophils was markedly decreased in the ICAM-
1+/+HG group (Figures 5D,E). To confirm the critical role of
LFA-1 in neutrophil phagocytosis and recruitment in vivo, we
topically injected the LFA-1 inhibitor at both ICAM-1+/+-HG
and ICAM-1+/+-NG injury sites. Blocking LFA-1 decreased
neutrophil infiltration, with no difference detected between the
ICAM-1+/+-HG and -NG groups (P > 0.05) (Figures 6A,B). No

significant difference in ZymTR positive neutrophils was detected
between the groups (P > 0.05) (Figures 6C,D). As described
above, ICAM-1 induced LFA-1 expression and was implicated
in neutrophil migration and phagocytosis in vitro. However, the
exact interactions between ICAM-1 and LFA-1 in vivo required
further elucidation. To clarify the ICAM-1/LFA-1 association
in vivo, we used ICAM-1−/− mice as an injury model. Unlike the
ICAM-1+/+ mice, both the ICAM-1−/−-NG and -HG groups of
mice displayed a decreased frequency of neutrophil infiltration
(Figure 6E), the release of ICAM-1 was also detected by ELISA
analysis, and no difference were detected between ICAM-1−/−-
NG and -HG group (Figure 6F). Parallel results were observed
in ZymTR positive neutrophils (Figure 6G). Thus, although
injury repair was dramatically delayed in ICAM-1−/−-NG mice
(Figures 6H,I), no difference was observed between groups.
Notably, decreased LFA-1 expression was observed in both the
ICAM-1−/−-NG and -HG groups (Figure 6J). The collective
results provided direct evidence that HG affects the expression
of ICAM-1 and LFA-1, which results in insufficient injury
repair. Furthermore, changes in ICAM-1 and LFA-1 expression
levels impair neutrophil phagocytosis and decrease neutrophil
recruitment in the injured tissue.

DISCUSSION

ICAM-1 is a key member of the immunoglobulin superfamily
and is centrally involved in EC proliferation and neutrophil
trafficking (Gay et al., 2011; Sumagin et al., 2016; Qiu et al.,
2020). ICAM-1 is expressed at low levels on the surface of ECs,
but is upregulated in response to a variety of inflammatory
cytokines. ICAM-1 has been recently implicated in the regulation
of injury repair by promoting EC proliferation. However, due
to the complex immune response in HG, the potential effects of
ICAM-1 on EC proliferation remain unclear. While investigating
the natural status of ICAM-1 release, we unexpectedly found
that HG decreased ICAM-1 expression, resulting in the dramatic
attenuation of EC proliferation. These findings were confirmed
by introducing the ICAM-1 inhibitor to rule out other factors
that might contribute to EC proliferation. Similar to the results of
the ICAM-1 release assay, we found that the EC proliferation rate
of the NG group was markedly attenuated following exposure to
the ICAM-1 inhibitor, and injury closure was decreased by HG at
24 and 48 h following creation of the scratch assay. However, no
effect was observed following exposure to the ICAM-1 inhibitor.
Thus, we conclude that HG can reduce the expression of ICAM-
1 and prolong injury closure in vitro. These findings extend our
knowledge of ICAM-1 function in the HG injury repair process.

We also evaluated the potential mechanism of ICAM-1
expression regulation in HG. Previous studies reported the
involvement of MMPs, including MMP-9, MMP-1, and MMP-
2, in the release of ICAM-1. However, a further experiment
revealed no significant differences in these MMPs between the
NG and HG groups, suggesting that MMPs are unlikely to
play a role in ICAM-1 expression in HG. Other important
kinases, such as mitogen-activated protein kinase (MAPK),
c-Jun N-terminal kinase and ERK1/2, are reportedly involved
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FIGURE 3 | ICAM-1 and LFA-1 regulate neutrophil phagocytosis in HG culture. (A,B) The neutrophil clearance index was reduced in the HG group. The
CFSE-labeled S. aureus staining (20x) were presented in the left side. The CFSE-labeled S. aureus/DAPI merged images (20x) were presented in the middle. Images
in upper side were from hyperglycemia treated group. Images in lower side were from normoglycemia treated group. Short black arrows indicate labeled bacteria
cleared by neutrophils. (C) The total number of positive phagocytic neutrophils associated with labeled bacteria was decreased in the HG group. (D,E) The number
of positive phagocytic neutrophils was significantly reduced in the NG group following exposure to the LFA-1 inhibitor. (F) Myeloperoxidase (MPO) enzyme activity
was reduced 1.2-fold in the HG group, and further decreased by exposure to the LFA-1 inhibitor. (G,H) CD11b expression was elevated in the NG group. However,
neutrophils in the absence of LFA-1 exhibited low CD11b levels in both the NG and HG groups. (I) LFA-1 expression levels were decreased in both the HG and NG
groups following exposure to the ICAM-1 inhibitor. (J) Neutrophil phagocytosis was attenuated after administration of the ICAM-1 inhibitor. Bars represent
mean ± SD. *P < 0.05; **P < 0.01.
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FIGURE 4 | HG decreases ICAM-1 and LFA-1 expression in vivo. (A) Blood glucose levels in ICAM-1−/−-HG and ICAM-1+/+-HG mice treated by injection of
streptozotocin injection. (B) Injury closure was significantly delayed in ICAM-1+/+-HG mice. (C,D) H and E staining showed that ICAM-1+/+-HG mice displayed
delayed repair, incomplete re-epithelialization and larger epithelium distance. (E) Deposition of new granular tissue was decreased in the ICAM-1+/+-HG group. Bars
represent mean ± SD. ∗P < 0.05; ∗∗P < 0.01 (F) Immunofluorescence (IF) analysis showed that ICAM-1 expression was decreased in ICAM-1+/+-HG injury tissue.
IF staining for ICAM-1 in injury tissue were red and presented in the left side. Contrast nuclear staining were green. The merged images were presented in the right
side. White arrows indicate positive staining of ICAM-1. Images in upper side were from ICAM-1+/+-HG injury group. Images in lower side were from
ICAM-1+/+-NG injury group. (G,H) ICAM-1 expression was decreased in ICAM-1+/+-HG injury tissue (I) Enzyme-linked immunosorbent assay results revealed
reduced release of ICAM-1 from injured tissue in ICAM-1+/+-HG mice. (J,K) LFA-1 expression was decreased in ICAM-1+/+-HG injured tissue. Bars represent
mean ± SD. ∗P < 0.05; ∗∗P < 0.01.

Frontiers in Genetics | www.frontiersin.org 9 December 2020 | Volume 11 | Article 61698815

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-616988 December 22, 2020 Time: 10:31 # 10

Qiu et al. Hyperglycemia and Neutrophil Activity

FIGURE 5 | HG impairs neutrophil phagocytosis and recruitment via ICAM-1 and LFA-1 in vivo. (A) Gating strategies for neutrophils (CD45+CD11b+Ly6G+). (B,C)
The proportion of neutrophils was decreased in the ICAM-1+/+-HG group. (D,E) The number of ZymTR positive neutrophils was reduced in the ICAM-1+/+-HG
group. Bars represent mean ± SD. *P < 0.05; **P < 0.01.

in ICAM-1 expression (Christensen and Bruggemann, 2014;
Hurabielle et al., 2020). Further studies focussing on these kinases
are required to elucidate the potential mechanisms of ICAM-
1 expression.

LFA-1 is a heterodimeric integrin consisting of αL and β2
subunits expressed on the surface of neutrophils (Lefort and Ley,
2012). Recent studies have shown that the interaction of LFA-1
with its ligand ICAM-1 mediates several important steps in the
cell immune response. For example, LFA-1 integrin is critical for
the firm adhesion of neutrophils to ICAM-1 (Meisel et al., 2018)
and the expression of ICAM-1 and LFA-1 triggers the activation
of myosin light chains, MAPK and Rho GTPase, which enhances
neutrophil transmigration into inflamed tissues (Wolcott et al.,
2016; Bourland et al., 2019). Neutrophil recruitment has been
associated with bacterial clearance at injury sites. Specifically,
ICAM-1 and LFA-1 are essential for neutrophil trafficking to
inflamed tissue. However, the impact of ICAM-1 and LFA-1 on
neutrophil migration in HG remains poorly understood. In this
context, we explored the causative involvement of ICAM-1 and
LFA-1 by modeling neutrophil migration in an inflammatory
stimulation model. As expected, both LFA-1 and ICAM-1 were
attenuated in the HG medium. Intriguingly, the Transwell
migration assay also revealed fewer migrating neutrophils in
the HG group, which was consistent with the low expression

of ICAM-1 and LFA-1. The results indicate that HG attenuates
neutrophil migration by regulating the expression of ICAM-1
and LFA-1. We further identified the association between LFA-
1 and ICAM-1 in neutrophil migration by blocking the function
of ICAM-1. Little migration was observed in the NG or HG
group following exposure to an ICAM-1 inhibitor. Together,
these results provide solid evidence that, under hyperglycemic
conditions, ICAM-1 is involved in neutrophil migration by
inducing LFA-1 expression.

We further analyzed the role of LFA-1 in neutrophil
phagocytosis by introducing internally labeled bacteria.
Interestingly, in HG medium, the ability of neutrophils to
clear the bacteria was dramatically attenuated and the total
number of neutrophils associated with labeled bacteria was
reduced. These findings indicated that HG impairs neutrophil
phagocytosis. To confirm these findings, we introduced an LFA-1
inhibitor to block LFA-1 expression. Surprisingly, the number
of positive phagocytic neutrophils was sharply reduced in the
NG group following exposure to the LFA-1 inhibitor, while no
difference was detected in the HG group. These results support
the hypothesis that HG decreases neutrophil phagocytosis by
reducing LFA-1 expression. The findings suggest that it may be
possible to promote neutrophil phagocytic activity to enhance
LFA-1 expression in subjects with HG. To elucidate the interplay
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FIGURE 6 | Alteration of ICAM-1 and LFA-1 expression levels attenuates neutrophil phagocytosis and decreases neutrophil recruitment in injured tissue. (A,B)
Blocking of LFA-1 decreased neutrophil infiltration in both the ICAM-1+/+-HG and -NG groups (P > 0.05). (C,D) ZymTR positive neutrophil levels did not differ
significantly between ICAM-1+/+-HG and -NG groups following administration of the LFA-1 inhibitor (P > 0.05). (E) No difference was observed between groups in
ICAM-1 releasing. (F) Neutrophil infiltration frequency was decreased in both the ICAM-1−/−-NG and -HG groups. (G) ZymTR positive neutrophil levels were
reduced in both the ICAM-1−/−-NG and -HG groups. (H,I) Open injury area and epithelium gap distance did not differ between the ICAM-1−/−-NG and -HG groups
(P > 0.05). (J) LFA-1 expression was decreased in ICAM-1−/−-NG and -HG injured tissue. Bars represent mean ± SD. ∗P < 0.05; ∗∗P < 0.01.
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between LFA-1 and ICAM-1 in neutrophil phagocytosis, we
blocked the function of ICAM-1 using anti-ICAM-1 neutralizing
antibody. LFA-1 expression was dramatically decreased in both
groups. Neutrophil phagocytosis was also attenuated following
the administration of the ICAM-1 inhibitor. Together, these
findings demonstrate the interconnection between ICAM-1
and LFA-1, neutrophil phagocytosis and HG in an in vitro
model. Both type 1 and type 2 diabetes cause HG, which
contributes to the accumulation of pathogens at injury sites,
leading to insufficient injury repair (Standiford et al., 1990;
Cunningham and Kirby, 1995; Liang et al., 2007; Herrera et al.,
2015). Enhancing neutrophil phagocytosis by the regulation
of ICAM-1/LFA-1 expression may provide novel therapeutic
approaches for diabetic injury repair.

To independently confirm these observations in vivo, we
induced skin injury using ICAM-1+/+ and ICAM-1−/− mouse
models. Consistent with our in vitro results, ICAM-1+/+-
HG mice exhibited delayed injury repair with incomplete
re-epithelialization and larger epithelium distance as well
as decreased neutrophil recruitment and phagocytic activity.
Importantly, the frequency of neutrophil infiltration declined
dramatically in ICAM-1+/+-HG injured tissue. Similar results
were also obtained in ZymTR positive neutrophils, which showed
decreased levels of LFA-1. Together, these findings confirmed
our in vitro results and indicate that HG attenuates skin injury
repair and decreases neutrophil phagocytosis and recruitment by
regulating ICAM-1 and LFA-1 expression.

Notably, plenty of researches showed that HG increased
the expression of ICAM-1 in umbilical vein as well as in
microvascular endothelial cell. In disagree with the previously
findings, our study obtained the opposite results indicating that
HG decreased the ICAM-1 expression in HG condition. The
reasons might be as following: after the skin injury, invading
pathogens and necrotic debris triggers an acute inflammatory
response, which contributed to the pathogen defensing and
the debris removing. Unlike the situation in microvascular
endothelial or umbilical vein endothelial cells, the endothelial
cells in injury tissue was exposure directly to the outside
environment, and the pathogen around the injury site was easily
invading into the internal injury tissue (Grice et al., 2010).
Thus, the acute inflammation in injury area was critical to
defense against the bacterial infections. Therefore, a source of
proinflammatory cytokines, including the ICAM-1, was highly
expressed in injury site to response to exogenous pathogens.
ICAM-1 is constitutively presented on endothelial cells and
reported to be a pro-inflammatory cytokine involved in the
acute inflammatory process. ICAM-1 is also critical for the firm
arrest and transmigration of neutrophil out of blood vessels into
the injury tissue. Neutrophils are efficiently entering tissue and
enable to engulf invading pathogens. Additionally, neutrophil
release antimicrobial peptides, ROS, and cytotoxic enzymes to
defense against extracellular pathogens (Wolcott et al., 2008; Su
and Richmond, 2015). Therefore, the expression of ICAM-1 is
closely related to the recruitment of neutrophil and worked as the
protective factors within the injury repair. Taken together, as the
inflammatory microenvironment was distinctive and complex in
injury tissue, the expression of ICAM-1 might not be the same as

the previous study and could be changed according to the specific
reality. However, although we obtained the valid results based on
rigorous experimental design, more studies are still required to
further confirm it.

CONCLUSION

The scratch-closure assays of NG and HG cultured tissues
demonstrated that HG decreases ICAM-1 expression, which
results in low EC proliferation. A Transwell assay and
FACS analysis further indicated that HG attenuates neutrophil
recruitment and phagocytosis by reducing ICAM-1 and LFA-1
expression. These observations were confirmed in vivo in ICAM-
1+/+ and ICAM-1−/− mouse injury models. Together, these
results highlight the important roles of ICAM-1 and LFA-1 in
EC proliferation and neutrophil activity in HG culture. Targeting
ICAM-1 and/or LFA-1 may provide an alternative approach for
improving injury repair in diabetic populations.
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Dissecting the Invasion-Associated
Long Non-coding RNAs Using
Single-Cell RNA-Seq Data of
Glioblastoma
Bo Pang†, Fei Quan†, Yanyan Ping, Jing Hu, Yujia Lan* and Lin Pang*

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China

Glioblastoma (GBM) is characterized by rapid and lethal infiltration of brain tissue, which
is the primary cause of treatment failure and deaths for GBM. Therefore, understanding
the molecular mechanisms of tumor cell invasion is crucial for the treatment of GBM.
In this study, we dissected the single-cell RNA-seq data of 3345 cells from four
patients and identified dysregulated genes including long non-coding RNAs (lncRNAs),
which were involved in the development and progression of GBM. Based on co-
expression network analysis, we identified a module (M1) that significantly overlapped
with the largest number of dysregulated genes and was confirmed to be associated
with GBM invasion by integrating EMT signature, experiment-validated invasive marker
and pseudotime trajectory analysis. Further, we denoted invasion-associated lncRNAs
which showed significant correlations with M1 and revealed their gradually increased
expression levels along the tumor cell invasion trajectory, such as VIM-AS1, WWTR1-
AS1, and NEAT1. We also observed the contribution of higher expression of these
lncRNAs to poorer survival of GBM patients. These results were mostly recaptured in
another validation data of 7930 single cells from 28 GBM patients. Our findings identified
lncRNAs that played critical roles in regulating or controlling cell invasion and migration
of GBM and provided new insights into the molecular mechanisms underlying GBM
invasion as well as potential targets for the treatment of GBM.

Keywords: single-cell RNA sequencing, glioblastoma, invasion, long non-coding RNA, survival

INTRODUCTION

Glioblastoma (GBM) is the most common primary malignant brain tumor, comprising 16% of all
primary brain and central nervous system neoplasms (Thakkar et al., 2014), with the average age-
adjusted incidence rate of 3.2 per 100,000 population (Ostrom et al., 2015). Due to fast and invasive
growth of the tumor, the current therapeutic option shows many limitations in its efficacy and
almost all patients present the progression of the disease with a mean progression-free survival of
7–10 months (Stupp et al., 2005) and a 5-year survival rate of less than 10% (Yang et al., 2019).
Though great endeavors have been performed in the past few decades, survival has not improved
significantly (Wolf et al., 2019). Therefore, determining the factors which are associated with the
invasion of glioblastoma is of great significance.
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Apart from protein-coding genes (PCGs), long non-coding
RNAs (lncRNAs), as one kind of important regulators in
biological development and disease progression (Batista and
Chang, 2013), were frequently reported to control the invasion
and metastasis of diverse cancer types, including glioblastoma.
For example, epigenetic silencing of LINC00632 could result
in the CDR1as depletion, which promoted invasion in vitro
and metastasis in vivo through a miR-7-independent, IGF2BP3-
mediated mechanism in melanoma (Hanniford et al., 2020).
The lncRNA-ATB was upregulated in hepatocellular carcinoma
and further promoted the upregulation of ZEB1 and ZEB2
by competitively binding the miR-200 family, which finally
induced epithelial-mesenchymal transition (EMT) and invasion
(Yuan et al., 2014). The gain-of-function or loss-of-function
experiments also validated the association of lncRNAs SChLAP1
and Zbtb7a with invasive prostate cancer (Prensner et al., 2013;
Wang et al., 2013). Although these studies contributed to the
understanding of tumor invasion, they mostly focused on few
lncRNAs. Besides, utilizing traditional experiment techniques
including bulk RNA sequencing also has limitations in revealing
the molecular mechanisms underlying GBM invasion.

Instead, single-cell RNA sequencing (scRNA-seq) generates
gene expression profiles at single-cell resolution (Tang et al.,
2009), which has emerged as a powerful tool to comprehensively
determine cellular states in healthy and diseased tissues
(Hovestadt et al., 2019). It has been applied to subtly characterize
the heterogeneity of diverse cancers and identify rare cell
populations as well as key factors associated with tumorigenesis
and progression (Chung et al., 2017; Li et al., 2017), which
also provides an unprecedented chance to capture the important
lncRNAs that participate in GBM invasion and precisely delineate
their roles during GBM progression.

In the current study, we took advantage of scRNA-seq
data to identify modules that showed significant overlap with
differentially expressed genes (DEGs). We integrated multiple
resources including EMT signatures, invasive markers and
pseudotime analysis to determine the GBM invasion-associated
lncRNAs and further validated our findings in an extra scRNA-
seq data set. Finally, our results of the present study could provide
new insights into pathological mechanism research and new
therapeutic target of GBM invasion.

MATERIALS AND METHODS

Quantification and Quality Control
The raw data for most of the analyses in this study were
downloaded from the GEO database (GSE84465). This data was
published by Darmanis et al. (2017) and included 3589 cells
from four primary GBM patients (BT_S1, BT_S2, BT_S4, and
BT_S6). The labels of malignant cells and normal cells were
provided by the authors. Raw reads were mapped to the human
genome (hg19) by Bowtie (version 1.1.1) (Langmead et al., 2009),
and the gene expression levels were quantified as transcripts
per million (TPM) using RSEM (version 1.2.28) (Li and Dewey,
2011) with the option estimate-rspd and default parameters. Log2
transformed TPM values with an offset of 1 were used to denote

expression levels. We excluded low-quality cells with less than
100,000 aligned reads or with less than 2000 detected genes. We
further discarded genes with the number of expressed cells less
than 50. As a result, we retained 998 GBM cells and 2347 normal
cells with 11520 PCGs and 1877 lncRNAs.

The processed data (GSE131928) for validation was
downloaded from the GEO database, which contains 6863
GBM cells and 1067 normal cells from 28 patients. This data was
published by Neftel et al. (2019). We excluded PCGs with less
than 50 expressed cells or lncRNAs with less than 5 expressed
cells. Finally, we retained 11441 PCGs and 585 lncRNAs.

Differential Expression Analysis and
Functional Annotation
We used the MAST software package (version 1.14.0) (Finak
et al., 2015) to identify genes that were differentially expressed
in malignant cells compared with normal cells. Briefly, this
probabilistic method takes log-transformed TPM values as input
and uses the shrinkage variance estimate obtained by the
empirical Bayes method. The genes with an absolute logFC > 1
and FDR < 0.05 were considered as significantly DEGs.

Then, the functional annotation and pathway enrichment
analysis of genes were implemented by ClueGO (Bindea et al.,
2009) with the threshold of FDR < 0.05.

WGCNA Analysis
The co-expression network analysis was performed using
Weighted Gene Co-Expression Network Analysis (WGCNA,
version 1.69) (Langfelder and Horvath, 2008). The TPM values
of PCGs were used as input for module detection. First, the soft
threshold for network construction was selected, which was 6
here. The soft threshold made the adjacency matrix to be the
continuous value between 1 and 20, so that the constructed
network was conformed to be the power-law distribution and
was closer to the real biological network state. Second, the scale-
free network was constructed using blockwiseModules function,
followed by the module partition analysis to identify gene co-
expression modules, which could group genes with similar
patterns of expression. The modules were defined by cutting
the clustering tree into branches using a dynamic tree-cutting
algorithm and assigned to different colors for visualization.
Finally, we obtained three modules containing less than 1000
member genes. The co-expression network of each module was
exported using exportNetworkToCytoscape function and further
visualized by Cytoscape (version 3.6.0) (Shannon et al., 2003).

The Effects of LncRNAs on Clinical
Outcomes of GBM Patients
The expression profiles of 165 GBM samples from TCGA
were downloaded from https://osf.io/gqrz9/ (Tatlow and Piccolo,
2016), with the clinical information for survival analysis obtained
from the public cBio Cancer Genomics Portal1 (Cerami et al.,
2012; Gao et al., 2013). The overall survival and disease-free
survival were used as the end points. The Kaplan–Meier method

1http://www.cbioportal.org
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was used for the visualization purposes and the differences
between survival curves were calculated by log-rank test. The
P values less than 0.05 were considered to be statistically
significant. All of these statistical analyses were performed using
R software2, version 3.4.4.

Clustering of GBM Cells in Validation
Data From Neftel et al. (2019)
Clustering cells was performed using Monocle (version 2.6.4)
(Trapnell et al., 2014) with regressing out the patient effect. We
used the reduceDimension function, which actually used the lmFit
function in R package limma (Ritchie et al., 2015) to remove
the patient effect on gene expression. We selected genes with
average expression level more than 0.1 and high dispersion for
clustering, which were marked using setOrderingFilter function.
Then clusterCells function was used to cluster cells in an
unsupervised manner, with parameters rho_threshold = 2 and
delta_threshold = 4. Monocle employs a density-based approach
(Rodriguez and Laio, 2014) to automatically cluster cells based on
each cell’s local density (rho_threshold) and the nearest distance
(delta_threshold) to another cell with higher distance. Certain
cells with local density and distance more than the thresholds are
considered as the density peaks, which are then used to identify
the clusters for all cells. We finally identified 15 cell clusters in
validation data from Neftel et al. (2019)

Estimation of Activity for
Diverse Signatures
The GSVA scores of EMT were calculated using predefined
gene sets (Supplementary Table 1) extracted from the
Molecular Signatures Database (MSigDB) (Liberzon et al.,
2011). For invasive scores and cell type scores, we calculated
the mean expression levels of GBM invasion-associated
genes which were manually extracted from previous studies
(Supplementary Table 1) and brain cell type-specific markers
defined by Darmanis et al. (2015).

RESULTS

The Characterization of the Dysregulated
Transcriptome in GBM
Although previous studies have reported the close relationships
of PCGs and lncRNAs with cancers using bulk RNA sequencing
data (Chen Q. et al., 2018; Tao et al., 2020), few have focused
on the roles of lncRNAs in tumorigenesis and progression of
GBM at single-cell level. To address this issue, we initially
downloaded the single-cell RNA-seq data of 3589 cells from
four GBM patients [published by Darmanis et al. (2017)]. After
preprocessing and quality control (see section “Materials and
Methods”), we retained 998 GBM cells and 2347 normal cells
with 11520 PCGs and 1877 lncRNAs. Compared with PCGs, most
of lncRNAs showed relatively lower expression levels on average
(Figure 1A). However, we also observed a small part of lncRNAs
had comparably high expression levels with PCGs. And lncRNAs
had more variable expression as shown by the high coefficient of
variation (CV) for averaged expression than PCGs (CV = 2.98

for lncRNAs and CV = 2.09 for PCGs), suggesting their potential
functional relevance. This was supported by the observations that
the Spearman rank correlation coefficients calculated between
any two cell pairs for lncRNAs were significantly lower than those
for PCGs in both GBM cells and normal cells (Wilcoxon rank
sum test, P < 0.001, Figure 1B).

To capture the functional molecules during tumorigenesis,
we further utilized MAST (Finak et al., 2015), which was
specifically designed for single-cell RNA-seq data to identify the
DEGs between GBM and normal cells (see section “Materials
and Methods”). We totally identified 2050 upregulated and 385
downregulated PCGs (Figure 1C and Supplementary Table 2),
among which TNC (Nie et al., 2015; Xia et al., 2016), IGFBP2
(Hsieh et al., 2010; Patil et al., 2015), and EGFR (Giannini
et al., 2005; Beck et al., 2011) ranked in the top 10 DEGs
and were all reported to be associated with gliomagenesis and
GBM invasion. Functional enrichment analysis revealed that the
upregulated PCGs were involved in biological processes like
glial cell differentiation, glial cell proliferation and regulation of
neurotransmitter transport and the downregulated PCGs mainly
participated in defense response and regulation of neurons,
such as myeloid leukocyte mediated immunity, regulation of
leukocyte apoptotic process, cytokine production involved in
immune response and negative regulation of neuron apoptotic
process (Supplementary Figure 1). Moreover, we obtained 72
upregulated and 9 downregulated lncRNAs (Figure 1C and
Supplementary Table 2). Besides some well-known cancer-
associated lncRNAs such as LINC01158 (Li Y. et al., 2018),
LINC00461 (Dong et al., 2019), XIST (Yu et al., 2017), and
HOTAIRM1 (Li Q. et al., 2018), we also identified several
potential GBM progression-associated lncRNAs like POLR2J4,
WWTR1-AS1, and VIM-AS1.

Identification of GBM-Associated
Modules at Single-Cell Level
Since genes usually synergistically play important roles in
tumorigenesis, we performed WGCNA (Langfelder and Horvath,
2008) on the PCG expression profiles of GBM cells to identify
highly co-expressed clusters of genes (see section “Materials and
Methods”). We finally obtained three modules (M1, M2, and
M3), which contained 53, 37, and 30 genes, respectively. The
genes in each module were highly connected to form a tight
network structure (Figure 2A), showing strong correlations of
expression levels with each other (Supplementary Figure 2).
To determine the contribution of each module to gliomagenesis
and progression, we performed the functional enrichment
analysis of module genes. M1 genes were mainly involved
in cell-cell adhesion, wound healing and spreading of cells,
cell migration and positive regulation of lipid localization
(Figure 2B). M2 genes were only enriched into one biological
process of smooth muscle cell migration and there were no
functions enriched by M3 genes. The pathway enrichment
analysis on the genes in the three modules revealed that
M1 genes were involved in human complement system,
zinc homeostasis and senescence and autophagy in cancer
(Supplementary Figure 3). M2 genes were only enriched into
p52 signaling pathway while none pathways were enriched by
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FIGURE 1 | Characterization of dysregulated transcriptome in GBM at single cell level. (A) Scatter plots evaluating the average expression levels of PCGs (left) and
lncRNAs (right) with their variations across cells, respectively. (B) Comparison of correlation coefficients between cells which were calculated based on the
expression levels of PCGs, lncRNAs and housekeepers in GBM cells (left) and normal brain cells (right). (C) Heatmaps showing the top 100 upregulated PCGs and
top 100 downregulated PCGs (left) and all differentially expressed lncRNAs (right). Each row represents one PCG or lncRNA and each column represents a cell.
Orange denotes the GBM cells and blue denotes the normal cells.

M3 genes. Moreover, we found that M1 showed a significant
overlap with DEGs (hypergeometric test, P = 8.76 × 10
−21), accounting for 75.5 percentage (40/53) of module genes
(Figure 2C). M2 contained 11 DEGs, which accounted for 29.7
percentage (11/37) of modules, while there was no significant
overlap between M3 genes and DEGs since M3 contained
only one DEG. These results implied the critical roles of
these modules in the tumorigenesis and progression of GBM,
especially for M1.

Determination of GBM
Invasion-Associated Module
Since M1 was the most significant and largest module that
enriched for DEGs, we further assessed its contribution to GBM

progression. Most M1 genes showed relatively high positive
correlations of expression levels with each other, except for
CD99, MTRNR2L1, and MTRNR2L2 (Figure 3A). Notably,
many DEGs in M1 have been reported to be associated with
migration and invasion. For example, EPAS1 was an important
transcription factor (TF) that was validated to promote the
invasive potential of GBM cells by our previous work (Pang
et al., 2019). Many studies revealed that ANX family proteins
(ANXA1 and ANXA2), especially ANXA2, could promote cancer
progression including proliferation, invasion and metastasis
(Chen C.Y. et al., 2018). The S100 proteins such as S100A11
could promote GBM progression through ANXA2-mediated
NF-κB signaling pathway (Tu et al., 2019) and S100A10 could
form heterotetramers with ANXA2 to promote the activation of
matrix metalloproteases (MMPs) to increase the invasive ability
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FIGURE 2 | Co-expressed modules identified by WGCNA. (A) The co-expression network of module M1, M2, and M3, visualized by Cytoscape. (B) Functional
annotations for genes in M1 and M2, which were implemented by ClueGO. There were no functions enriched by M3 genes. (C) Venn diagrams showed the
significant overlaps of genes in each module with differentially expressed genes, except for M3. P values were calculated by hypergeometric test.

of tumor cells (Chen C.Y. et al., 2018). Interestingly, ANXA1,
ANXA2, S100A10, and S100A11 were all contained in M1 and
represented high correlation, especially for ANXA2 and S100A10.
These observations suggested the potential association of M1
with GBM invasion.

To validate the above observations, we combined the results
from our previous work (Pang et al., 2019), in which we identified
12 cell clusters using the same data set. And cluster 3, 4, 7,
and 9 showed relatively higher expression of EMT-associated
genes. Here, we calculated the mean expression levels of M1
genes as the M1 scores in each cell of clusters and found that

cluster 3 displayed the highest M1 scores, followed by cluster
7 and 9 (Figure 3B), which was consistent with our previous
observations. However, we similarly calculated the M2 and M3
scores and found that cluster 5 and 10 showed higher M2 scores
and cluster 4 and 11 showed higher M3 scores (Supplementary
Figure 4). Further, we collected experimentally validated genes
that could contribute to the invasive ability of glioblastoma cells
(such as ZEB1, HNRNPC, WNT5A, and DRAM1) to evaluate
the invasive scores for each cell (see section “Materials and
Methods”). Similar results were observed that those three cell
clusters were the top-ranked ones with high invasive scores
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FIGURE 3 | The correlation of M1 with GBM invasion. (A) Heatmap showing the Spearman correlation coefficients of expression levels for any gene pair in M1.
(B) Boxplots showing the M1 scores (top) and invasive scores (bottom) of each cell cluster identified by our previous work using the same data. The GBM
invasion-associated markers were manually extracted from previous studies. (C) Barplots in the middle showing the significant Spearman correlation coefficients of
top 100 positively (left) and negatively (right) lncRNAs between their expression levels and M1 scores. In the examples of lncRNAs, boxplots represent the expression
levels of the corresponding lncRNA in tumor cells and normal cells, while barplots represent the proportion of cell with their detected expression.

(Figure 3B), which further supported the contribution of M1
to GBM invasion.

Identification of GBM
Invasion-Associated LncRNAs
Given the close association of M1 with GBM invasion, we
next calculated the Spearman rank correlation coefficients
between the expression levels of each lncRNA and M1 scores

across all GBM cells and identified 1264 significantly correlated
lncRNAs (including 611 positively correlated lncRNAs and
653 negatively correlated lncRNAs, Supplementary Table 3),
which were considered as GBM invasion-associated lncRNAs.
The top 100 positively and negatively correlated lncRNAs
were shown in Figure 3C. For example, among the positively
correlated lncRNAs, VIM-AS1 ranked among the top one with
the correlation coefficient of 0.56, which was upregulated in
GBM cells with a higher expressed proportion (72.7%) compared
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FIGURE 4 | Pseudotime and survival analysis of invasion-associated lncRNAs. (A) Scatter plots showing the expression levels of three example lncRNAs
(RP11-161H23.5, CTD-2369P2.8, and RP11-342D11.2) increase as a function of pseudotime in “stem-to-invasion” path that identified in our previous work,
containing state 1, 2, 3, 5, 6, and 8 cells. A natural spline was used to model gene expression as a smooth, non-linear function over pseudotime. (B) Comparison of
overall survival among patients with high expression levels of these three lncRNAs (red line) and those with low expression levels of corresponding lncRNAs (green
line) by Kaplan–Meier analysis (with log-rank P values) in the cohort of 165 GBM patients. The patients were divided into two groups based on the average
expression level of corresponding lncRNAs across all patients. (C) Comparison of disease-free survival among patients with high expression levels of these three
lncRNAs (red line) and those with low expression levels of corresponding lncRNAs (green line) by Kaplan–Meier analysis (with log-rank P values) in the cohort of 165
GBM patients. The patients were divided into two groups based on the average expression level of corresponding lncRNAs across all patients.

to normal cells (26.2%). Previous studies also revealed that
the high expression of VIM-AS1 was positively associated with
patients’ worse prognosis (Suo et al., 2020). Other lncRNAs
like WWTR1-AS1 and LINC00665 similarly showed significantly
higher expression levels and cell proportions in tumor cells.

For negatively correlated lncRNAs, ENSG00000254528 (RP11-
728F11.4) and ENSG00000267062 (CTD-2659N19.10) ranked
among the top four and ten, both of which showed significantly
higher expression levels in GBM cells and nearly no expression
in normal cells. Notably, VIM-AS1 and WWTR1-AS1 were

Frontiers in Genetics | www.frontiersin.org 7 January 2021 | Volume 11 | Article 63345527

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-633455 December 29, 2020 Time: 17:13 # 8

Pang et al. LncRNAs Contributing to GBM Invasion

the top two lncRNAs with the highest correlations between
their expression levels and pseudotime along the “stem-to-
invasion path” in our previous work (Pang et al., 2019).
These findings promoted us to explore the dynamic changes
of GBM invasion-associated lncRNAs along the “stem-to-
invasion path.” We found that the expression levels of
many lncRNAs such as ENSG00000258232 (RP11-161H23.5),
ENSG00000267607 (CTD-2369P2.8), and ENSG00000238258
(RP11-342D11.2), gradually increased as cells transferred from
cancer stem cell-like state to invasive state (Figure 4A). These
consistent results confirmed the potential roles of these lncRNAs
on GBM invasion.

Given that cancer-associated mortality is principally
attributable to the development of invasion and metastasis,
we speculated that these GBM invasion-associated lncRNAs
might be of importance in determining patient outcomes. Next,
we performed survival analysis using the expression profiles
and clinical information of 165 GBM patients (see section
“Materials and Methods”). Among invasion-associated lncRNAs,
several of them showed significant correlations with prognosis of
patients. For example, the overall survival (OS) of patients with
high expression levels of ENSG00000258232 (RP11-161H23.5),
ENSG00000267607 (CTD-2369P2.8), and ENSG00000238258
(RP11-342D11.2) were significantly shorter than those with
low expression levels (P = 0.014, P = 0.009, and P = 0.0052,
respectively, Figure 4B). Moreover, patients with high expression
levels of these three lncRNAs also had worse disease-free
survival (DFS) than those with low expression levels (P = 0.048,
P = 0.0048, and P = 0.016, respectively, Figure 4C). These results
suggested potential implication of invasion-associated genes in
GBM tumorigenesis, progression and prognosis.

Validation of the Invasion-Associated
Module and LncRNAs by Extra Data
of GBM
To validate the contribution of M1 genes and lncRNAs to
GBM invasion, we downloaded another single-cell RNA-seq
data of 28 GBM patients [published by Neftel et al. (2019)].
After quality control, we retained 6863 GBM cells and 1067
normal cells with 11441 PCGs and 585 lncRNAs, in which the
numbers of commonly detected PCGs and lncRNAs in both
data sets were 11441 and 192, respectively. In this validation
data, we identified 1676 DEGs and 13 dysregulated lncRNAs
(Supplementary Table 4), among which 1066 DEGs and 6
dysregulated lncRNAs were shared by both data sets.

We recaptured the modularity of M1 genes in this validation
data as they showed stronger co-expression pattern compared
to the other two module genes (Figure 5A), suggesting
their functional synergy. The similar patterns were observed
in data from children and adults with GBM, respectively
(Supplementary Figure 5). To determine whether M1 genes were
involved in GBM invasion, we first used Monocle (Trapnell et al.,
2014) to group GBM cells into 15 clusters, excluding patient-
specific effects with linear regression (see section “Materials
and Methods,” Figure 5B and Supplementary Figure 6). Each
cluster consisted of cells from multiple patients (Supplementary

Figure 7). Then we calculated the EMT, invasive and M1 scores
as above for each cell and found that they showed quite similar
distribution patterns (Figures 5B,C). Cluster 5 and 6 consistently
had the highest scores, followed by cluster 4, 14, and 15, which
located adjacent to each other in the transcriptome space of
Figure 5B. These results again confirmed the association of M1
genes with GBM invasion.

Therefore, we calculated the Spearman rank correlation
coefficients between the expression levels of each invasion-
associated lncRNA identified in data from Darmanis et al.
This resulted in 71 significantly correlated lncRNAs (including
49 positively correlated lncRNAs and 22 negatively correlated
lncRNAs, Supplementary Table 5) among the 192 commonly
detected lncRNAs. Notably, NEAT1 was the top one lncRNA
with a positive correlation coefficient of 0.54 in validation data
(Figure 5D), which also ranked among the top 63 in the data from
Darmanis et al. Moreover, the high expression level of NEAT1
was significantly correlated with poor OS and DFS of patients
(Figure 5E), which was accordant with the roles of NEAT1
in promoting malignant phenotypes and progression of GBM
(Chen Q. et al., 2018; Zhou et al., 2019). All these results again
validated the contributions of the identified lncRNAs to GBM
invasion and progression.

DISCUSSION

The fast and invasive growth is the hallmark of GBM, which
is a major factor contributing to dismal outcomes (Du et al.,
2008). Therefore, understanding the molecular mechanisms
underlying tumor cell invasion and migration is crucial for
the treatment of GBM. Although previous studies have made
massive efforts to identify many PCGs and lncRNAs promoting
glioblastoma cell invasion using bulk sequencing data, few have
actually achieved successful clinical application. In this study, we
utilized single-cell RNA-seq data from multiple GBM patients
to dissect invasion-associated factors including lncRNAs, which
provided new insights into the development and progression
of glioblastoma.

Central to our understanding of glioblastoma biology is
the idea that a subpopulation of glioblastoma stem cells
drives tumorigenesis and progression (Singh et al., 2004).
Lan et al. (2017) analyzed the growth dynamics of GBM
clones and revealed that the initiation of human GBM
may result from the aberrant reactivation of a normal
developmental program. Couturier et al. (2020) compared
the lineage hierarchy of the developing human brain to the
transcriptome of 53586 adult glioblastoma cells at single-cell
level and found that glioblastoma development recapitulates a
normal neurodevelopmental hierarchy. These findings suggested
the important roles of the development system in tumorigenesis
and progression of GBM and were also supported by many
other studies (Filbin et al., 2018; Yuan et al., 2018). Consistently,
in this work, we identified dysregulated PCGs and lncRNAs
and the functional enrichment analyses showed that these
PCGs participated in brain development-associated biological
processed, such as glial cell differentiation and glial cell
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FIGURE 5 | Validation of invasion-associated M1 and lncRNAs using data from Neftel et al. (2019) (A) Heatmap showing the Spearman correlation coefficients of
expression levels for any gene pair in M1, M2, and M3. (B) T-SNE plots of tumor cells showing 15 clusters and the EMT scores, invasive scores and M1 scores in
each cell. Red denotes high scores and blue denote low scores. (C) Comparison of EMT scores, invasive scores and M1 scores in cells of each cluster, indicating
the similar distribution as cluster 5, 6, 14, and 15 display relatively higher scores. (D) List of commonly identified positively (left) and negatively (right) lncRNAs as well
as their Spearman correlation coefficient with M1 scores in this validation data. (E) Comparison of overall (top) and disease-free (bottom) survival among patients with
high expression levels (red line) of lncRNA NEAT1 and those with low expression levels (green line) by Kaplan–Meier analysis (with log-rank P values) in the cohort of
165 GBM patients. The patients were divided into two groups based on the average expression level of NEAT1 across all patients.
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proliferation. This implied that we indeed captured the potential
key factors contributing to GBM initiation and progression.

Since invasion and metastasis are the late events during
the course of multi-step tumor progression (Lambert et al.,
2017), which result in the vast majority of deaths from cancer
(Coghlin and Murray, 2010), we seek to identify critical factors,
especially lncRNAs, that are involved in the regulation of
GBM invasion. Given the lack of functional annotation of
lncRNAs, we first identified co-expressed PCG modules by
WGCNA to determine the invasion-associated genes. Among
the three modules, M1 significantly enriched the largest number
of differentially expressed PCGs, many of which have been
reported the association with GBM invasion, such as EPAS1,
ANXA2 and its target gene OSMR (Matsumoto et al., 2020).
And ANAX2 was also the target of lncRNA LINC00941, which
was one of the invasion-assocaited lncRNAs. Previous studies
have revealed that S100A10 could form a heterotetramer with
ANXA2 to promote tumor cell invasion (Chen C.Y. et al.,
2018) and S100A11 could also interact with ANXA1 which
is a Ca 2+-regulated phospholipid-binding protein (Boudhraa
et al., 2016) to form Ca 2+-dependent heterotetramers. These
genes were all contained in M1 with high expression in GBM
cells, underlying the functions of cellular response to cadmium
ion (Figure 2B) enriched by M1 genes, which might be a
potential molecular mechanism of GBM invasion. Surprisingly,
although most of M1 genes showed positive correlations, CD99,
MTRNR2L1, and MTRNR2L8 were negatively correlated with
others. As it has been widely reported that overexpression of
CD99 could increase the migration and invasiveness of GBM
cells (Seol et al., 2012; Cardoso et al., 2019), we deduced
that although CD99 and other invasion-associated PCGs play
key roles in regulating tumor cell invasion, their mediated
mechanisms were distinct and redundant, resulting in their
mutually exclusive expression patterns. Moreover, combining
our previous work for characterization of cell clusters and
construction of progression trajectory, we further confirmed
the contribution of M1 to GBM invasion as M1 genes showed
relatively high expression in cell clusters with high EMT
and invasive scores. Interestingly, we calculated the average
expression levels of cell type-specific markers defined by
previous study (Darmanis et al., 2015) as the cell type scores
in each cluster and found that cluster 3, 4, 7, and 9 with
higher M1 scores consistently showed the highest expression
levels of microglia cell markers (Supplementary Figure 8),
implying the roles of microglia in GBM invasion. These
observations were also recaptured in another single-cell RNA-
seq data of GBM, suggesting the accuracy and repeatability
of our findings.

Based on the determination of the invasion-associated
module, we further identified the invasion-associated lncRNAs.
In data from Darmanis et al., we found that VIM-AS1 and
WWTR1-AS1 ranked among the top 1 and 6 in positively
correlated lncRNAs with higher expression in GBM cell
compared to normal cells. Notably, their expression gradually
increased along the “stem-to-invasion path” in our previous
work (Pang et al., 2019), confirming their roles in GBM
invasion. In validation data from Neftel et al. (2019) NEAT1

was the top one positively correlated lncRNA and MIAT
was the top one negatively correlated lncRNA, consistent
with their roles in GBM progression that increased NEAT1
could promote proliferation, malignant phenotypes and
TMZ resistance (Bi et al., 2020) and high expression of
MIAT is associated with prolonged survival (Bountali et al.,
2019). However, we did not recapture the top-ranked
lncRNAs like VIM-AS1 and WWTR1-AS1 as they were
not detected in validation data. This may result from the
generally lower expression levels of lncRNAs compared to
PCGs and the inherent limitations of scRNA-seq like high
dropout rates and data sparsity. Actually, among the 192
commonly detected lncRNAs, 71 were consistently identified as
invasion-associated lncRNAs in both data sets, indicating the
robustness of our results.

In summary, our work took advantage of scRNA-seq to
identify and dissect the GBM invasion-associated lncRNAs and
their effect on clinical outcomes at a high resolution, providing
new insights into the molecular mechanism of the development
and progression of GBM and new potential targets for the
treatment of invasive glioblastoma and possibly other solid
malignant tumors.
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Prostate cancer (PCa) is the most common malignant tumor in men, and its incidence
increases with age. Serum prostate-specific antigen and tissue biopsy remain the
standard for diagnosis of suspected PCa. However, these clinical indicators may
lead to aggressive overtreatment in patients who have been treated sufficiently with
active surveillance. Circular RNAs (circRNAs) have been recently recognized as a
new type of regulatory RNA that is not easily degraded by RNases and other
exonucleases because of their covalent closed cyclic structure. Thus, we utilized
high-throughput sequencing data and bioinformatics analysis to identify specifically
expressed circRNAs in PCa and filtered out five specific circRNAs for further analysis—
hsa_circ_0006410, hsa_circ_0003970, hsa_circ_0006754, hsa_circ_0005848, and a
novel circRNA, hsa_circ_AKAP7. We constructed a circRNA-miRNA regulatory network
and used miRNA and differentially expressed mRNA interactions to predict the function
of the selected circRNAs. Furthermore, survival analysis of their cognate genes and PCR
verification of these five circRNAs revealed that they are closely related to well-known
PCa pathways such as the MAPK signaling pathway, P53 pathway, androgen receptor
signaling pathway, cell cycle, hormone-mediated signaling pathway, and cellular lipid
metabolic process. By understanding the related metabolism of circRNAs, these
circRNAs could act as metabolic biomarkers, and monitoring their levels could help
diagnose PCa. Meanwhile, the exact regulatory mechanism for AR-related regulation in
PCa is still unclear. The circRNAs we found can provide new solutions for research in
this field.

Keywords: prostate cancer, circular RNA, miRNA-mRNA, pathways, bioinformatics

INTRODUCTION

Prostate cancer (PCa) is a slow-growing malignant tumor, the incidence of which increases with
age (Carroll and Mohler, 2018; Etzioni and Nyame, 2020). At the beginning of diagnosis, most
patients are asymptomatic; however, it is still among the top three causes of cancer-related deaths
in men (Siegel et al., 2017). Patients with a high risk of PCa must undergo periodic testing for
serum prostate-specific antigen (PSA). Tissue biopsy remains the care standard for diagnosis for
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suspected PCa (Litwin and Tan, 2017). After the tumor is
confirmed by biopsy, the next step is to determine the
invasiveness of tumor cells. The Gleason score is the most
commonly used scale to assess the grade of PCa. When the grade
is high, tumors tend to spread. Most Gleason scores used to
evaluate prostate biopsy samples range from 6 to 10. A score of
6 indicates low-risk PCa; a score of 7 indicates intermediate-risk
PCa; a score of 8 to 10 indicates high-risk PCa (2019). However,
researchers have found that the “normal” PSA level of 0–4 ng/mL
does not guarantee cancer-free status; in approximately 25% of
men with a PSA below 4 ng/mL, a biopsy still reveals PCa
(Kitagawa et al., 2014). Thus, these clinical indexes cannot
guarantee the reliability of diagnosis. New assistant biomarkers
need to be developed for the diagnosis of PCa.

With the development of sequencing technology, circRNAs
are recognized as a new type of regulatory RNA. They were
first identified by analysis using next generation RNA sequencing
(RNA-seq) in a study of pediatric acute lymphoblastic leukemia
(Salzman et al., 2012). Most circRNAs are composed of
protein-coding exons; thus, the expression of these circRNAs
competes with the production of pre-mRNAs. These events
also lead to the expression of circRNAs being higher than
that of their cognate linear RNAs under certain conditions
(Jeck et al., 2013; Jeck and Sharpless, 2014). CircRNAs can
function by directly regulating gene expression or by acting
as miRNA sponges (Tay et al., 2014). They are similar to
competitive endogenous RNAs (ceRNAs) and contain miRNA
response elements (MREs). Therefore, they can function by
competing with mRNAs to bind miRNAs (Hansen et al., 2013).
For example, dysregulation of circRNA-0001946 contributes to
tumor cell proliferation and metastasis in colorectal cancer
by targeting microRNA-135a-5p (Deng et al., 2020). CircRNAs
are not easily degraded by RNases and other exonucleases
due to a covalent closed cyclic structure without free 5′ or
3′ends. They have a longer half-life (>48 h) than linear RNAs
(Suzuki et al., 2006; Jeck and Sharpless, 2014). CircRNAs have
been known to be rich in tumors (Salzman et al., 2012).
Therefore, compared with other RNAs, circRNAs have more
advantages as novel biomarkers of cancer and other diseases
(Arnaiz et al., 2019).

Studies have shown that circRNAs are functional in PCa.
Overexpression of circ0005276 and its host gene X-linked
inhibitor of apoptosis protein (XIAP) can promote cell
proliferation, migration, and epithelial–mesenchymal transition
in PCa tissues compared with that in normal tissues (Feng et al.,
2019). CircRNAs can act as oncogenes in the progression
of PCa and are differentially expressed between cancer
tissues and normal tissues (Feng et al., 2019). It is also
reported that circRNAs can act as therapeutic targets. For
example, the overexpression of circRNA cir-ITCH significantly
inhibits the proliferation, migration, and invasion of PCa
cells. By targeting miR-17 in PC-3 and LNCaP cell lines,
circRNAs could act as therapeutic targets in PCa, especially in
castration-resistant prostate cancer (CRPC) (Li et al., 2020).
CircRNAs also affect carbohydrate, lipid, and amino acid
metabolism in cancer. By regulating transcription factors,
circRNAs can modulate glycolysis (Yu et al., 2019). Thus, it

is important to identify differentially expressed circRNAs in
PCa and explore their potential as diagnostic and therapeutic
targets in cancer.

In this study, we compared circRNAs between four PCa
tissues and two adjacent normal tissues of two PCa patients by
sequencing six sets of RNA-seq. We selected five circRNAs that
were highly expressed in tumor tissues and found that the fold
change in expression of these five circRNAs was significantly
higher than that of their cognate linear RNAs. We verified these
circRNAs by PCR in PCa cell lines and used the circRNA-
miRNA-mRNA method to predict biological pathways regulated
by these circRNAs. Some well-known pathways in PCa were
enriched, such as the p53 signaling pathway, MAPK signaling
pathway, hormone-mediated signaling pathway, and cellular
lipid metabolic process. These pathways also confirmed the
high reliability of the five circRNAs that participated in the
regulation of PCa.

MATERIALS AND METHODS

Patients and Samples
For sequencing samples, two pairs of PCa tissues and adjacent
tissues were derived from surgical samples. Sections from
normal and malignant tissues were examined after staining
with hematoxylin and eosin. The tumor specimen comprised
>80% malignant cells, and the benign specimen comprised
an approximately equal admixture of normal epithelial and
stromal cells. The pathology of the prostate tumor was checked
by a pathologist and established as a combined Gleason
Score of 6 (3 + 3), stage T2a, with focal involvement of
the surgical margin. RNA was purified from minced frozen
tissue using Trizol reagent (Life Technologies, Inc., Rockville,
MD, United States). Total RNA was briefly treated with
DNase I. For each sample, an RNA library was constructed
using 3 µg total RNA. Ribo-Zero Gold Kits were used to
remove rRNA. According to the instructions of the NEB-Next
Ultra Directional RNA Library Prep Kit for Illumina (NEB,
Ispawich, United States), different index tags were selected.
The constructed libraries were sequenced using Illumina; the
sequencing strategy used was PE150.

For qRT-PCR, 20 pairs of PCa tissues and adjacent normal
tissues were collected from the Department of Pathology of
Beijing Hospital with Gleason scores of 6 (14 cases) and 7 (6
cases). All tissues were fixed in phosphate-buffered formalin,
dehydrated with ethanol, and embedded in paraffin. The
malignant status and Gleason score were obtained for these
samples by histological analysis. The work was approved by the
Beijing Hospital Ethics Committee.

None of these patients had undergone hormonal therapy
prior to surgery.

Quality Control and Mapping of
Sequencing Data
The quality of the fastq data of RNA-seq was evaluated using
fastQC (Andrews, 2010). We found some reads mixed with
adapters, and then Trimmomatic (Bolger et al., 2014) was used
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to filter these sequences. The reads with lengths of less than 28
were dropped. The read quality was filtered through a four-base
sliding window with an average quality threshold of 15. After the
reads passed the sequence quality tests, the filtered reads were
mapped to the human hg38 genome (Lander et al., 2001) using
the aligner software STAR (Dobin et al., 2013) with parameter
“–chimSegmentMin 10.”

Differential Expressed circRNAs Filtered
CIRCexplorer2 (Zhang et al., 2016) and CLEAR/CIRCexplorer3
(Ma et al., 2019) were mainly used to obtain circRNAs in our
research. For CIRCexplorer2, we used the parse module to
analyze circRNA fusion junction reads and annotate modules
for circRNA gene information. The expression of circRNAs
was quantified by CIRCscore in CLEAR/CIRCexplorer3, which
indicates the circRNA expression level by linear RNA expression
level adjustment. The expression of fold change between tumor
circRNAs and normal adjacent prostatic tissue circRNAs was
calculated to filter tumor-specific expressed circRNAs.

Bioinformatics Analysis of CircRNAs
All of the interaction binding sites between circRNAs and
miRNAs were downloaded from circBank (Liu et al., 2019).
For the novel circRNAs, we used miRNDB (Chen and Wang,
2020) to predict the related miRNAs. We identified the
function of the predicted miRNAs by manual literature mining.
Then, Cytoscape (Shannon et al., 2003) was used to build
a network between circRNAs and miRNAs. For differentially
expressed mRNAs, we chose featureCounts (Liao et al., 2014) to
quantify read counts for each gene. Based on paired-end data,
“requireBothEndsMapped = TRUE” and “isPairedEnd = TRUE”
were set additionally. Then, we calculated the normalized
expression levels in fragments per kilobase per million mapped

reads (FPKM) by using the DGEList and rpkm function from
edgeR (Robinson et al., 2010).

To predict circRNA-related pathways, we regarded miRNAs as
a middleman to find circRNA-related mRNAs. The interactions
between miRNAs and mRNAs were obtained from miRDB (Chen
and Wang, 2020). Meanwhile, it provided interaction scores to
assess accuracy; only scores higher than 90 and differentially
expressed mRNAs were considered for further analysis.

Functional Enrichment Analysis and
Survival Analysis
The circRNA-related mRNA list was analyzed using the
functional enrichment tool GOseq (Young et al., 2010).
Compared with other tools, GOseq can alleviate selection
bias more effectively. The pathways were drawn using ggplot2
(Wickham, 2016) in the R language. For survival analysis, TCGA
PCa (PRAD) data were selected in UCSC Xena (Goldman et al.,
2020) with progression free intervals to draw Kaplan-Meier plots
of circRNA cognate genes. The expression level of the gene was
used for survival analysis.

RNA Extraction and Real-Time
Quantitative PCR (qPCR)
A total of 20 PCa tissues and 20 adjacent normal tissue
samples were prepared. RNA was extracted from three 10-
µm FPE sections per sample. Paraffin was removed by xylene
extraction followed by washing with ethanol. RNA was isolated
from the sectioned tissue blocks using the purification kit,
total RNA was extracted, and RNA was subjected to DNase I
(Invitrogen, AM2222) treatment. The qRT-PCR was performed
using the TransScript II Green One-Step qRT-PCR SuperMix kit
(TransGen Biotech, AQ311-01) with 100 ng RNA as template in a
20 µL reaction volume on an ABI 7,500 real-time cycler (Qiagen).

FIGURE 1 | Bioinformatics analysis pipeline of our study.
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FIGURE 2 | Information of the five PCa specific circRNAs. (A) Volcano plot of circRNAs in PCa. The red points represent differentially expressed circRNAs in PCa
with fold-change >2 or fold-change <0.5. The paired t-test was used to obtain p-value. (B) The fold-change of circRNAs and its cognate mRNA expression
between tumor tissue and adjacent normal tissue. The fold-change of circRNAs was much higher than its mRNAs especially in hsa_circ_0006410. In both tumor as
well as normal samples, the expression of hsa_circ_0003970 cognate mRNA was 0. Thus, the mRNA fold change of hsa_circ_0003970 was 0. (C) The exon
composition of hsa_circ_0006410, hsa_circ_0003970, hsa_circ_0006754, hsa_circ_0005848, and hsa_circ_AKAP7. (D) Heatmap of the expression of five specific
circRNAs. These five circRNAs are highly expressed in tumor tissues than in normal tissues. The value used in this figure is the expression of circRNAs, and we used
“scale = row” to make the graph more consecutive.
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TABLE 1 | The detailed information of circRNAs.

circRNA ID Chrom Start End Strand Cognate mRNA Cognate gene Pearson correlation

hsa_circ_0006410 chr8 15650696 15673836 + ENST00000382020.8 TUSC3 0.997861

hsa_circ_0003970 chr10 126996747 127000307 + ENST00000280333.9 DOCK1 0.962136

hsa_circ_AKAP7 chr6 131145284 131199573 + ENST00000431975.7 AKAP7 −0.31984

hsa_circ_0006754 chr6 144531051 144539443 + ENST00000367545.7 UTRN 0.841363

hsa_circ_0005848 chr20 35721739 35732135 − ENST00000639702.1 RBM39 0.97713

The genome version is hg38.

PCR cycling was performed as follows: one cycle at 95◦C for
10 min, 95◦C for 20 s, and 40 cycles at 60◦C for 45 s. The threshold
cycle for a given amplification curve during RT-PCR occurs at
the point where the fluorescent signal grows beyond a specified
fluorescence threshold setting.

The results were normalized with beta actin, and
the relative RNA expression was calculated by the 2-
11Ct method. To evaluate the statistical significance
of PCR data, the paired sample t-test was used. The
hsa_circ_0003970 primer sequences were as follows: left
primer 5′-AGCTGAGGGACAACAACACC-3′; right primer
5′-CCTCTTGTAACCTTTCCTCCA-3′. The hsa_circ_0006410
primer sequences were as follows: left primer 5′-GTGGA
ACCATATCCGTGGAC-3′; right primer 5′-GAAAAACGTCT
GTCCCCTCA-3′. The hsa_circ_0006754 primer sequences were
as follows: left primer 5′-CTGAATTGGAGATGCTTTCAGA-
3′; right primer 5′-TGGAGCACAGGTATCAACCA-3′. The
hsa_circ_0005848 primer sequences were as follows: left
primer 5′-GGGAAGTGCTGGACCTATGA-3′; right primer
5′-TCACGGCTTTTGCTCTTTTT-3′. The hsa_circ_AKAP7
primer sequences were as follows: left primer 5′-AGGCA
TCCTGGTAGGAGAGAG-3′; right primer 5′-AGCAAATGG
CATGTCTACCA-3′.

FIGURE 3 | The network between five specific circRNAs and their predicted
interactions of miRNAs. All interactions between circRNAs and miRNAs were
obtained and extracted for hsa_circ_0006410, hsa_circ_0003970,
hsa_circ_0006754, hsa_circ_0005848 and hsa_circ_AKAP7 to build the
network.

RESULTS

Differentially Expressed CircRNAs in PCa
Analysis of RNA-seq data (Figure 1) showed 89 differentially
expressed circRNAs with fold-change >2 or fold-change <0.5.
Due to the small sample size in our sequencing control set, the
p-value was not accurate for initial screening. The differentially
expressed circRNAs included 32 upregulated circRNAs and 57
downregulated circRNAs (Figure 2A). According to this result,
we selected the top five differentially expressed circRNAs for
further analysis—included hsa_circ_0006410, hsa_circ_0003970,
hsa_circ_0006754, hsa_circ_0005848, and a novel circRNA that
we named hsa_circ_AKAP7 (Figure 2C and Table 1). Because of
the circRNA back-splicing feature, an mRNA may correspond to
multiple circRNAs. Figure 2C shows the precise corresponding
exon, enabling the identification of its component. These five
circRNAs were highly expressed in tumor tissues compared with
their cognate mRNAs (Figure 2B). The Pearson correlation
coefficients of circRNAs and mRNAs were consistent with
those found in previous studies; circRNAs and mRNAs tend
to have a high correlation (Yang et al., 2018). The produced
circRNAs and their cognate mRNAs usually inhibit each other
but Figure 2B did not show an opposite trend of circRNA
and mRNA expression. This indicated that these five circRNAs
have key functions in tumor tissue instead of their cognate
mRNAs. The expression of these five circRNAs is depicted
in Figure 2D. The prominent higher expression of these five
specific circRNAs led us to further research. Therefore, we
regarded circRNAs as miRNA sponges to explore the functions
of these five circRNAs.

CircRNA-miRNA Network and
miRNA-Related mRNAs
After obtaining circRNA and miRNA interactions from
circBank and miRNDB, we built five circRNA and miRNA
interaction networks (Figure 3). We found 215 circRNA-
miRNA interactions in the network, and each circRNA had
an average of 43 miRNA interactions. Many of these miRNAs
have been reported to be associated with PCa (Table 2).
Hsa_circ_0003970 and hsa_circ_0005848 interacted with
miRNA-204-5p, which is a tumor suppressor that promotes
apoptosis by targeting BCL2 in PCa cells (Lin et al., 2017).
Hsa_circ_0005848 and hsa_circ_0006754 related miR-
3160-5p is a PCa cell proliferation suppressor that targets
the F-box protein (Lin et al., 2018). MiR-548 acts as an
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anti-oncogenic factor that inhibits the phosphoinositide
three-kinase (PI3K)/AKT signaling pathway in lung cancer
and is associated with high-risk Gleason scores in PCa (Shi
et al., 2015). The PI3K/AKT pathway is involved in tumor
immunological surveillance and immune suppression (Dituri
et al., 2011). Hsa-miR-181b-2-3p and hsa-miR-96-5p were
associated with the androgen receptor and Gleason score
(Mekhail et al., 2014). These results further highlight the
contribution of this study.

The miRNA target prediction based on the short seed
sequence provided many false positive results. Thus, we filtered
differentially expressed mRNAs in PCa to analyze miRNA
and mRNA interactions. Only scores >90 interactions were
selected to predict circRNAs function. Then, we used functional
enrichment analysis to explore the function of the five circRNAs.

CircRNA-Related Pathways in
Metabolism Pathways
Analysis of these five circRNA-related mRNAs showed
that they were all enriched in many well-known PCa
pathways (Figure 4A). Hsa_circ_0006410, hsa_circ_0003970,
hsa_circ_AKAP7, hsa_circ_0006754, and hsa_circ_0005848
were all related to the MAPK signaling pathway. MAPK
signaling is an important regulator of cancer, especially PCa.
It includes three cross-signaling pathways: p38, JNK, and
ERK (Dhillon et al., 2007). Each pathway comprises several
levels of kinases. The p38-MAPK pathway is important
for the production of inflammatory cytokines and IFN-γ.
It can also positively regulate Th1 differentiation instead
of Th2 (Martinez et al., 2009). The JNK–MAPK pathway

plays pro-inflammatory roles in macrophages, inducing M1
differentiation. Activation of the ERK–MAPK pathway favors
cell differentiation into CD4 lineage and is critical for CD4
T cell polarization of Th2 because it is required for IL-4
receptor function (Alessandro et al., 2019). These regulators are
significant in PCa.

Other significant pathways were the hormone-mediated
signaling pathway and cellular lipid-related process, which
were associated with hsa_circ_0006410, hsa_circ_0003970,
hsa_circ_AKAP7, hsa_circ_0006754, and hsa_circ_0005848
(Figures 4B–F). Steroid androgen hormones play key roles in
the progression and treatment of PCa. Androgen deprivation
therapy (ADT) is the first-line treatment used to control cancer
growth (Munkley et al., 2016). It functions by inhibiting the
production of male hormone testosterone and preventing it
from reaching PCa cells. ADT can cause apoptosis of PCa cells
and can make them grow slowly. Studies have indicated that
dietary fat intake is related to PCa development, suggesting
that lipid metabolism plays a role in the carcinogenesis and
progression of PCa (Tamura et al., 2009). Dysregulation of
metabolism of lipids, especially sphingolipid, is a hallmark
of the malignant phenotype. Increased lipid accumulation
leading to changes in levels of lipid metabolic enzymes has
been verified in various tumors, including PCa (Wu et al.,
2014). Castration-resistant PCa (CRPC) is considered to
utilize de novo lipid synthesis to produce fatty acids to obtain
energy (Eidelman et al., 2017). The five circRNAs were related
to both the hormone-mediated signaling pathway and the
lipid-related process, indicating that they are involved in PCa
regulation. Several pathways found to be closely related to
PCa include the chemokine pathway, cell cycle, p53 signaling

TABLE 2 | The literature mining of circRNAs related miRNAs.

circRNA ID miRNA ID miRNA description in PCa or other tumors References

hsa_circ_0003970 hsa-miR-181b-2-3p AR signaling in PCa; cancer stem cell (CSC) formation in PCa Mekhail et al., 2014

hsa_circ_0003970 hsa-miR-196a-5p Associated with SNPs that can be useful in screening for cancer risk Mekhail et al., 2014

hsa_circ_0003970 hsa-miR-203b-3p Anti-metastatic in PCa; epithelial to mesenchymal transition (EMT) in PCa Mekhail et al., 2014

hsa_circ_0003970 hsa-miR-211-5p Tumor suppressor by targeting ACSL4 in Hepatocellular Carcinoma Qin et al., 2020

hsa_circ_0003970 hsa-miR-497-3p Down-regulated in PCa Mekhail et al., 2014

hsa_circ_0003970 hsa-miR-548a-3p Anti-oncogenic factor inhibiting the PI3K/AKT signaling pathway in lung cancer and
associated with high-risk Gleason scores in prostate cancer

Li et al., 2013

hsa_circ_0003970;
hsa_circ_0005848

hsa-miR-204-5p Tumor suppressor miRNA-204-5p promotes apoptosis by targeting
BCL2 in PCa

Mekhail et al., 2014

hsa_circ_0006754 hsa-miR-216a-5p Inhibits malignant progression in small cell lung cancer: involvement of the Bcl-2
family proteins

Sun et al., 2018

hsa_circ_0006754 hsa-miR-370-3p Up-regulated in PCa Mekhail et al., 2014

hsa_circ_0006754;
hsa_circ_AKAP7

hsa-miR-526b-5p hsa_circ_0085539 promotes osteosarcoma progression by regulating miR-526b-5p
and SERP1

Mekhail et al., 2014

hsa_circ_0006410 hsa-miR-16-1-3p Biochemical failure in PCa Mekhail et al., 2014

hsa_circ_0005848 hsa-miR-183-5p Up-regulated in PCa Mekhail et al., 2014

hsa_circ_0005848 hsa-miR-3160-5p Suppressed prostate cancer cell proliferation Lin et al., 2018

hsa_circ_0005848 hsa-miR-96-5p Biochemical failure in PCa;Gleason score in PCa Mekhail et al., 2014

hsa_circ_0005848;
hsa_circ_AKAP7

hsa-miR-623 Suppressed tumor progression in human lung adenocarcinoma Wei et al., 2016

has_circ_AKAP7 hsa-miR-206 Anti-metastatic in PCa Mekhail et al., 2014

has_circ_AKAP7 hsa-miR-29b-2-5p Anti-metastatic in PCa Mekhail et al., 2014
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FIGURE 4 | Five specific circRNA-related pathways. (A) The five circRNA-related pathways. Only differentially expressed mRNAs with prediction score higher than
90 were considered. Well-known PCa-related pathways, such as the MAPK signaling pathway, P53 pathway, AR pathway, cell cycle, steroid hormone-mediated
signaling pathway, and lipid-related process, were all found. (B) hsa_circ_0006410 related pathways. (C) hsa_circ_0003970 related pathways. (D) hsa_circ_AKAP7
related pathways. (E) hsa_circ_0006754 related pathways. (F) hsa_circ_0005848 related pathways. “Count” represents the number of genes in the relevant
categories.
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FIGURE 5 | Survival analysis of the five circRNA cognate genes in PCa. Among these, TUSC3, AKAP7, and RBM39 were significantly related with survival
probability. The red line represents high gene expression, and the blue line represents low gene expression.

FIGURE 6 | qRT-PCR validation for PCa tissues and adjacent normal tissues in 20 samples from patient samples diagnosed with PCa. Only four circRNAs were
significantly validated.
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pathway, apoptosis and transcriptional misregulation in
cancer (Figure 4A).

Survival Analysis of CircRNA Cognate
Genes and qRT-PCR Validation of Five
CircRNAs
To observe the effect of the five circRNAs in PCa patients, survival
analysis of circRNA cognate genes in TCGA data was performed
(Figure 5). TUSC3 (hsa_circ_0006410 cognate gene), AKAP7
(hsa_circ_AKAP7 cognate gene), and RBM39 (hsa_circ_0005848
cognate gene) were all significantly associated with progression-
free survival of PCa patients, as shown by the Kaplan-Meier
plot (P-value < 0.05) (Figure 5A). Patients with high expression
of TUSC3 and AKAP7 showed better overall survival. This is
consistent with the fact that TUSC3 is a tumor suppressor gene
(Yu et al., 2017). Meanwhile, low expression of RBM39 was
found to be associated with low overall survival. RBM39 is
associated with precursor messenger RNA (pre-mRNA) splicing
factors, and inactivation of RBM39 causes aberrant pre-mRNA
splicing. Previous studies have shown that several single amino
acid substitutions in RBM39 confer resistance to the toxic effects
of indisulam in cultured cancer cells and in mice with tumor
xenografts (Han et al., 2017). Since the direction of differential
expression varied among the five mRNAs, we think that circRNAs
might act as oncogenes or tumor suppressor genes in PCa.
The direction of different functional circRNAs is different in its
cognate mRNAs (Figure 5). However, further experiments are
required for confirming this.

We used qRT-PCR to validate the five circRNAs in
20 PCa and normal samples (Figure 6). In our results,
four circRNAs were significantly validated—hsa_circ_0006410,
hsa_circ_0003970, hsa_circ_AKAP7, and hsa_circ_0006754. The
relative expression of circRNAs indicated that these circRNAs
were highly expressed in tumor tissues compared to normal
tissues and validated our analysis.

DISCUSSION

Based on sequencing data of PCa tissues and adjacent normal
tissues, we identified differentially expressed circRNAs in PCa.
We filtered five specific highly expressed circRNAs that had
never been studied in PCa before for further analysis. We
found that the miRNAs and mRNA pathways related to these
circRNAs were related to known metabolic pathways, such as
PI3K-Akt signaling pathway, MAPK signaling pathway, and
lipid metabolic process. This also confirmed the reliability of
our findings. Through bioinformatics analysis, we analyzed
expression levels of circRNA through linear RNA expression
level adjustment using CIRCexplorer3. For these five circRNAs,
the expression of circRNAs and mRNAs in tumor tissue was
highly correlated, which is consistent with the results of previous
studies. However, the fold changes of circRNAs expression
were notably larger than those of their cognate mRNAs,
suggesting that circRNAs play a role in tumor tissues. The
underlying mechanism, however, is still unknown and requires
further research.

We predicted circRNAs function by using circRNA-miRNA-
mRNA interactions and showed that they were all significantly
enriched in the lipid metabolism pathway. The link between
PCa development and lipid metabolism is well established, with
AR intimately involved in a number of lipogenic processes.
Altered lipid signatures may offer insights into metabolic
reprogramming. Lipid pathway deregulation in advanced PCa
is a hot research field to identify a therapeutic pathway.
Several therapeutic agents, such as warfarin, atostatin, and
orlistat, are known to block key processes in lipid metabolism
and negatively influence PCa progression. Lipid metabolism
is also activated by the PI3K-Akt signaling pathway by
sterol regulatory element-binding protein 1 (SREBP1) (Edlind
and Hsieh, 2014). The hsa_circ_0006410, hsa_circ_0003970,
hsa_circ_0006754, hsa_circ_0005848, and hsa_circ_AKAP7 were
all enriched in lipid related pathways, which shows their
potential as targets.

The PI3K-Akt signaling pathway is deregulated in 42% of
localized disease and 100% of advanced-stage disease in PCa.
This implies that the alteration of this pathway is another factor
in the development of CRPC. Gene amplifications, mutations,
and changes in mRNA expression of PI3K signaling pathway are
highly correlated with PCa patients (Edlind and Hsieh, 2014).
Hsa_circ_0006410, hsa_circ_0003970, hsa_circ_0005848, and
hsa_circ_AKAP7 were all related with this pathway. CircRNAs
have been reported to activate the PI3K/Akt signaling pathway by
regulating gene expression in PCa (Wang et al., 2020). Although
the exact mechanism affecting PI3K/Akt signaling pathway is
unclear, the circRNAs identified in this study also provided
support for this field.

We used survival analysis and qRT-PCR to validate our
findings. Survival analysis is a good indicator to assess the
function of genes. Three cognate genes of these five circRNAs
were significantly identified in survival analysis, alluding that
their cognate genes were key genes in regulating tumor
progression. Meanwhile, four circRNAs were well verified by
qRT-PCR, except for hsa_circ_0005848. We inferred that this
may be due to the space structure or the false positive expression
of hsa_circ_0005848.

Our research was based on the bioinformatics analysis
of RNA-seq between prostate tumor tissues and adjacent
normal tissues. We found five specific circRNAs that were
highly related to the AR signaling pathway, MAPK signaling
pathway, hormone-mediated signaling pathway, and cellular
lipid metabolic process. Furthermore, survival analysis and qRT-
PCR validation also verified that the circRNAs were closely
related to tumor progression of PCa. These five circRNAs can
provide new solutions for research in this field.
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A growing amount of evidence has suggested the clinical importance of stromal
and immune cells in the liver cancer microenvironment. However, reliable prognostic
signatures based on assessments of stromal and immune components have not been
well-established. This study aimed to identify stromal-immune score–based potential
prognostic biomarkers for hepatocellular carcinoma. Stromal and immune scores were
estimated from transcriptomic profiles of a liver cancer cohort from The Cancer Genome
Atlas using the ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumors
using Expression data) algorithm. Least absolute shrinkage and selection operator
(LASSO) algorithm was applied to select prognostic genes. Favorable overall survivals
and progression-free interval were found in patients with high stromal score and immune
score, and 828 differentially expressed genes were identified. Functional enrichment
analysis and protein–protein interaction networks further showed that these genes
mainly participated in immune response, extracellular matrix, and cell adhesion. MMP9
(matrix metallopeptidase 9) was identified as a prognostic tumor microenvironment–
associated gene by using LASSO and TIMER (Tumor IMmune Estimation Resource)
algorithms and was found to be positively correlated with immunosuppressive molecules
and drug response.

Keywords: liver cancer, ESTIMATE, bioinformatics analysis, biomarker, tumor-microenvironment

INTRODUCTION

Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. The median
survival of HCC patients in China is about 23 months, and ≥ 60% of patients present with
intermediate-stage or advanced-stage HCC (Kanwal and Singal, 2019; Yang et al., 2019). Currently,
the main treatment for HCC patients in early stages is surgery, combination with transarterial
chemoembolization, ablation, and liver transplantation. For others in advanced stages, the effective
approaches involve molecular targeting agents (sorafenib, lenvatinib, and regorafenib). Although
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these methods have improved the prognosis of HCC patients,
the overall survival (OS) of HCC remains challenging for the
heterogeneity of HCC. And also, there is still a lack of molecular
markers used in determination of prognosis and treatment for
patients (Bruix et al., 2016).

The liver cancer microenvironment consists of not only
tumor cells but also stromal cells, including distinct immune
cell subsets. Tumor-infiltrating immune cells and stromal
cells are associated with angiogenesis, immune suppression,
chemotherapeutic resistance, and tumor cell migration (Affo
et al., 2017; Barry et al., 2020; Jin and Jin, 2020; Son
et al., 2020; Zhang et al., 2020). An increasing amount of
evidence has suggested the clinical importance of stromal cells
and immune cells in the microenvironment of liver cancer
tissues, tumor microenvironment (TME)–associated genes also
have potential as novel biomarkers for a range of cancers
(Yang et al., 2020).

In the present study, the Estimation of STromal and Immune
cells in MAlignant Tumors using Expression data (ESTIMATE)
algorithm (Yoshihara et al., 2013) was applied to estimate the
stromal and immune scores of a series of cancer tissues based
on their transcriptional profiles, to perform a comprehensive
analysis of immune and stromal cells, and to correlate the data
to clinical outcomes of patients.

The least absolute shrinkage and selection operator (LASSO)
method is a compressed estimation used to obtain a refined
model by constructing a penalty function (Korenberg, 2006). It
can help with the selection of variables at the time of parameter
estimation so as to better solve the multicollinearity problem of
regression analysis. A growing body of research confirms that
LASSO is an effective method for gene selection of tumors (Wang
et al., 2020; Xu et al., 2020).

Tumor IMmune Estimation Resource (TIMER) integrates
multiple state-of-the-art algorithms for immune infiltration
estimation, which can explore various associations between
immune infiltrates and genetic features in The Cancer Genome
Atlas (TCGA) cohorts (Li et al., 2017, 2020). Computational
Analysis of REsistance (CARE) is a computational method
focused on targeted therapies, to infer genome-wide
transcriptomic signatures of drug efficacy from cell line
compound screens (Jiang et al., 2018). Previous studies have
confirmed that the efficacy of immunotherapy is strongly
influenced by the composition and abundance of immune cells
in the TME (Boyero et al., 2020).

Thus, we combined LASSO, TIMER algorithms, and CARE to
preliminarily demonstrate that the expression of TME-associated
genes could be new prognostic and reliable drug response
biomarkers for HCC patients.

MATERIALS AND METHODS

Database
In total, data from 365 HCC patients and 18,161 RNAs extracted
from RNA-seq data according to ENSEMBL Genomes (hg38)
were analyzed in this study. All RNA expression data and the
corresponding clinical data were obtained from TCGA (data

version, July 19, 2019)1. The clinicopathological characteristics
of the analyzed patients are listed in Supplementary Table 1.
The progression-free interval (PFI) is characterized as a time
without a new tumor occurrence or a death from cancer. The
Estimation of STromal and Immune cells in MAlignant Tumors
using Expression data (ESTIMATE) algorithm was applied to
the normalized expression matrix for estimating the stromal and
immune scores by using “estimate” R package in R software
(version: 3.6.3) for each HCC sample.

Correlations Between Prognoses and
Stromal/Immune Scores
OS and PFI was used as the primary prognosis endpoint and was
estimated by the GraphPad Prism 8.0. Supplementary Figure 3B
is realized by R package “Survival” (Therneau, 2020),
“Survminer” (Kassambara et al., 2019), and “timeROC”
(Paul Blanche and Jacqmin-Gadda, 2013). Based on the stromal
and immune scores estimated from each sample, patients were
classified into two groups by using X-tile, and prognoses for
each group were examined. The bioinformatics tool, X-tile
(Camp et al., 2004), was used to determine the optimum
cutoff point according to the minimum P-value defined by
the Kaplan–Meier analysis and log-rank test. The principle of
X-tile is “enumeration method that different values are grouped
as truncation values to conduct statistical tests, and the test
result with the lowest P-value can be considered as the best
truncation value. The survival outcomes of the two groups
were compared by log-rank tests. P < 0.05 was considered as
statistically significant.

Identification of Differentially Expressed
Genes
Data analysis was performed using an open-source web tool
NetworkAnalyst2 (Xia et al., 2013a,b; Zhou et al., 2019). Log2
fold change > 1 and adjusted P < 0.05 were set as the cutoffs
to screen for differentially expressed genes (DEGs). A website
Venn diagrams tool (Bardou et al., 2014)3was used to identify the
commonly upregulated or downregulated DEGs in the immune
and stromal groups. Heatmaps and clustering were generated
using the R package “ggplot2” (Wickham, 2016), “ggtree” (Yu,
2020b), and “aplot” (Yu, 2020a).

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analyses
GO (Gene Ontology) enrichment analyses were performed by
the “Goseq” (Young et al., 2010) R package, and visualization
of bubble diagrams used Hiplot4. KEGG (Kyoto Encyclopedia
of Genes and Genomes) enrichment analyses and visualization
of intersection genes were performed by the “clusterProfiler”

1https://xenabrowser.net
2https://www.networkanalyst.ca/NetworkAnalyst/home.xhtml
3http://www.ehbio.com/test/venn/#/
4https://hiplot.com.cn
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(Yu et al., 2012) R package and “enrichplot” (Yu, 2019) R package
with P < 0.05 as the cutoff value.

Protein–Protein Interaction Network
Construction
The protein–protein interaction (PPI) network was retrieved
from Search Tool for the Retrieval of Interaction Gene/Proteins
(STRING) (Szklarczyk et al., 2019) database with high confidence
(0.7) and reconstructed via the Cytoscape software (Shannon
et al., 2003). In Cytoscape, we used Molecular COmplex
DEtection (MCODE) (Bader and Hogue, 2003) to select two
clusters that contained the largest number of nodes. ClueGo
(Bindea et al., 2009) App was used to perform enrichment
analysis of each cluster selected by MCODE.

Identification of TME-Associated
Prognostic Genes
LASSO algorithm was used to identify candidate genes by
“glmnet” (Friedman et al., 2010) R package with the number of
lambda = 1,000. Clinical outcomes and gene expression profiles
were analyzed by LASSO. Lambda.min is the cutoff point that
brings minimum mean cross-validated error. Genes with the
highest lambda values were selected for further analysis.

Identification of TME-Associated
Prognostic Genes
The TIMER algorithm was used to calculate the tumor
abundance of six infiltrating immune cells (CD4+ T cells,
CD8+ T cells, B cells, neutrophils, macrophages, and
dendritic cells) based on RNA-Seq expression profiles data.
The correlation between the selected prognostic genes and
immune cells was calculated by Spearman correlation analysis
by TIMER. The estimation results were calculated by TIMER2.0,
CIBERSORT, quanTIseq, xCell, MCP-counter, and EPIC
methods. Relations between immunoinhibitors and expression
of matrix metallopeptidase 9 (MMP9) were calculated by
Spearman correlation analysis by a web tool TISIDB5 (Ru et al.,
2019). The correlation coefficient value <0.3 indicates that the
correlation is negligible, whereas the correlation coefficient≥ 0.3
indicates a positive/negative correlation. The CARE software6

was used to identify genome-scale biomarkers of targeted therapy
response using compound screen data. For each gene, the CARE
score indicates the association between its molecular alteration
and drug efficacy. A positive score indicates a higher expression
value (or presence of mutation) to be associated with drug
response, whereas a negative score indicates drug resistance.

Statistical Analysis
Unpaired t-test was used to compare two groups of continuously
distributed variables. Jonckheere–Terpstra test was used to
compare three or more groups of continuously distributed
variables. The FDR correction was performed in multiple tests.
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

5http://cis.hku.hk/TISIDB/
6http://care.dfci.harvard.edu/

RESULTS

Association of Stromal and Immune
Scores With HCC Pathology and
Prognosis
A cohort containing 365 liver hepatocellular carcinoma
patients with available expression data and clinical information
in TCGA database was analyzed. The general pipeline of
the data analysis protocol is shown in Figure 1, and the
links of tools are listed in Supplementary Table 6. The
clinicopathological characteristics of the analyzed patients
are listed in Supplementary Table 1. Based on the gene
expression data, immune and stromal scores were calculated
using the ESTIMATE algorithm (Supplementary Table 2).
The associations of stromal and immune scores with HCC
patient pathological characteristics were examined by comparing
the score distributions among different tumor stages and
differentiation grades.

Significant associations were observed between stromal
scores and tumor differentiation grades; tumors with poorer
differentiation yielded higher stromal scores than those
differentiated well (Jonckheere–Terpstra test, P = 0.002)
(Figures 2A,B).

As previously described, serum α-fetoprotein (AFP) values are
not only of diagnostic value but also of prognostic significance
in patients with HCC (Galle et al., 2019). Thus, we compared
changes in immune and stromal scores between AFP low
(AFP ≤ 400 ng/mL) and high (AFP > 400 ng/mL) samples.
The AFP high cases had the lowest stromal scores (unpaired
t-test, P = 0.0204) (Figure 2D). Evidence suggests that AFP
plays an immune-suppressing role (Yang et al., 2018), but we
found that there is no significant difference in the immune
score as shown in Figure 2C. We further used the TIMER
algorithm to evaluate the effect of AFP on the immune
infiltration of HCC, and results showed that the expression
of AFP was weakly correlated with the infiltration abundance
of the six immune cells (Supplementary Figure 1A). AFP
is dynamic in the occurrence and development of HCC,
whereas TCGA patients were only tested for AFP at the
time of initial diagnosis, which may lead to the bias of the
results in our study.

Also, when we compared the immune and stromal scores
between patients with a new tumor event and without new
tumor event after initial treatment, patients without a new tumor
event had higher immune and stromal scores (unpaired t-test,
P = 0.0461 for stromal score and p = 0.1966 for immune score)
(Figures 2E,F).

We also analyzed the correlation between other clinical factors
and the immune profile, but found no statistically significant
difference (Supplementary Figures 1B,C).

The association of stromal and immune scores with HCC
prognosis was evaluated by dividing patients optimally into
two groups based on their scores by using X-tile (see section
“Materials and Methods” for details). We found that the high
immune score and stromal score positively correlated with both
OS and PFI (Figures 3A–D).
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FIGURE 1 | The general pipeline of the data analysis protocol.

Comparison of Gene Expression Profile
With Immune Scores and Stromal Scores
in HCC
To identify the immune-related and stromal-related genes,
differential analysis by using NetworkAnalyst was performed
(Supplementary Table 3). The expression profiles of stromal and
immune score–related DEGs are visualized, respectively, on the
heatmaps (Figures 4A,B).

There were 797 shared DEGs overexpressed in both the
stromal score and immune score groups (Figure 4C), and a total
of 28 common DEGs were found to be underexpressed in both
the stromal score and immune score groups (Figure 4D). Eight

hundred twenty-five intersection genes were selected for further
analysis (overlap zone in Figures 4C,D).

Using the “Goseq” and “clusterProfiler” R packages,
1,371 GO terms and 73 KEGG terms were indicated
(Supplementary Table 4).

The results showed the top 10 biological processes GO terms,
cellular component GO terms, and molecular function GO
terms (Figure 4E). The correlation between the intersection
genes and the top five biological processes is shown in
Supplementary Figure 2A. The top 20 KEGG analysis showed
that the intersection genes were associated with immune
responses (Figure 4F).
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FIGURE 2 | Relationship between immune and stromal scores and HCC clinical and pathological data. (A,B) Distribution of immune and stromal scores of HCC
grades. (C,D) Distribution of immune and stromal scores of AFP value of HCC. AFP is divided into high and low groups at the limit of 400 ng/mL. (E,F) Distribution of
immune and stromal scores of new tumor event after initial treatment of HCC. Unpaired t-test was used to compare two groups of continuously distributed variables.
Jonckheere–Terpstra test was used to compare three or more groups of continuously distributed variables. ∗P < 0.05 and ∗∗P < 0.01.

Protein–Protein Interactions Among
Intersection Genes
To better understand the interplay among the identified
DEGs, we obtained PPI networks using the STRING tool.
Using the MCODE software, we found modules in the
network; the network was made up of eight modules, which

included 408 nodes and 2,702 edges. We selected the top
two significant modules for further analysis (Figure 5A and
Supplementary Figure 2B).

GO analyses of module 1 (Figure 5A) by ClueGo are
shown in Figure 5B. Likewise, GO analyses of module
2 (Supplementary Figure 2B) by ClueGo are shown in
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FIGURE 3 | Kaplan–Meier (KM) survival curve of HCC patients based on their immune-stromal scores. Patients were classified into high immune-stromal scores
groups and low immune/stromal scores groups by using X-tile. (A) The KM curve of overall survival (OS) time of high and low immune score group. (B) The KM curve
of OS time of high and low stromal score group. (C) The KM curve of PFI time according to immune scores. (D) The KM curve of progression-free interval (PFI) time
according to stromal scores. The survival outcomes of the two groups were compared by log-rank tests. P < 0.05 was statistically significant.

Supplementary Figure 2C. The results demonstrated that
module 1 was mainly enriched in regulation of dendritic cell
apoptotic process, regulation of dendritic cell dendrite assembly,
and positive regulation of T cell migration. Module 2 was mainly
enriched in the regulation of phospholipase C activity, cellular
response to interferon-γ (IFN-γ) and IFN-γ–mediated signaling
pathway. Obviously, the top two modules were enriched for
functional terms related to immune response processes, especially
T cell responses.

Identification of Prognostic DEGs in HCC
To enrich for genes with the greatest prognostic values, we
performed LASSO algorithm, and seven genes were identified
(Supplementary Figure 3A). We also analyzed the association
between the seven genes and OS using the Kaplan–Meier
survival analysis. We found that the high levels of GDF10

(P = 0.0484) and MMP9 (P = 0.0143) negatively correlated with
OS (Figure 6A).

Immune Cell Infiltration Analysis
To determine whether there is a correlation between tumor
infiltration with immune cells and immune-related gene
expression, the tumor infiltration with multiple immune
cells was analyzed by TIMER 2.0 and other methods
(Supplementary Table 5). Figure 6B shows the strong
correlation between six types of immune cell infiltration
and the expression of MMP9. The expression of MMP9
positively correlated with the infiltrating levels of B cells
(partial correlation = 0.529, P = 3.05e-26), CD8+ T cells
(partial correlation = 0.421, P = 4.13e-16), CD4+ T cells
(partial correlation = 0.356, P = 9.68e-12), macrophages
(partial correlation = 0.473, P = 2.12e-20), neutrophils
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FIGURE 4 | Expression profiles and biological functions of stromal and immune score–related DEGs. (A,B) Heatmaps showing expression profiles for selected
stromal score (right) and immune score (left)–related DEGs (Log2 fold change ≥ 3 and adjusted P < 0.05) with unsupervised hierarchical clustering analyses, using
the complete linkage method to measure distances between clusters. (C) Shows the commonly upregulated DEGs, and (D) shows the commonly downregulated
DEGs. (E) The top 10 of biological processes GO terms (top), cellular component GO terms (middle), and molecular function GO terms (bottom); (F) KEGG (Kyoto
Encyclopedia of Genes and Genomes) analysis of microenvironment-related DEGs.

(partial correlation = 0.34, P = 8.96e-11), and dendritic
cells (partial correlation = 0.584, P = 1.72e-32). GDF10
expression was weakly associated with different immune cell
infiltrates (Figure 6B).

We analyzed the correlation between MMP9 and immune
checkpoints in liver cancer. MMP9 was found to be correlated
with the expression of a series of immune checkpoints.
Particularly, MMP9 was significantly correlated with
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FIGURE 5 | Protein–protein interaction (PPI) network of microenvironment-related genes. (A) Module 1 is the top module in the PPI network. (B) GO analyses of
module 1 (top 10 of biological processes GO terms). The color and thickness of edges reflect the combined score.

PDCD1 (ρ = 0.576), PDCD1LG2 (ρ = 0.372), and CTLA4
(ρ = 0.672) (Figure 6C).

Besides, identifying reliable drug response biomarkers
is a significant challenge in cancer research. We present
CARE, a computational method that enables large-scale
inference of response biomarkers and drug combinations
for targeted therapies using compound screen data. High
expression of MMP9 has been associated with better response to
immunotherapies on CTRP dataset (Figure 6D).

DISCUSSION

Prognosis prediction for liver cancer patients remains challenging
for clinicians and investigators. Through a specific view of
the microenvironment, this study provides a stromal-immune
score–based gene signature to help answer this important
clinical question.

Using the ESTIMATE algorithm, we revealed the correlation
between the immune-stromal scores and the clinical HCC
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FIGURE 6 | Selection of microenvironment-related prognostic genes and the analysis of immune cell infiltration and immunoinhibitor. (A) Kaplan–Meier (KM) survival
curve of GDF10 and MMP9. Patients were divided into two groups based on the median of gene expression. The survival outcomes of the two groups were
compared by log-rank tests. P < 0.05 was statistically significant. (B) Correlation of microenvironment-related prognostic genes’ expression with immune infiltration
level. (C) Relations between three kinds of immunoinhibitors and expression of MMP9. P < 0.05 was statistically significant, and partial correlation ≥0.3 indicates
strong correlation. (D) The CARE score of MMP9 on CCLE, CGP, CTRP dataset. A positive score indicates a higher expression value to be associated with drug
response.

characteristics obtained from TCGA-CDR. The stromal and
immune scores for tumor tissue were found to be positively
associated with the clinicopathologic characteristics of the tumor
and the patient’s prognosis. By analyzing the correlation between
the immune scores and tumor recurrence, our data show that
high-immune-score patients have a longer PFI and OS rates,
indicating that the TME composition affects the clinical outcomes
of HCC patients, which is consistent with previous studies
(Haider et al., 2020).

Next, we analyzed 825 DEGs yielded from a comparison
of high- versus low-immune-score (or stromal scores) groups
and found that many of them were involved in the TME,

specifically regulate T cell functions (Figure 4E). This is
consistent with previous reports that the functions of immune
cells and extracellular matrix molecules are interrelated in
building TME in HCC (Lu et al., 2019; Yin et al., 2019). Moreover,
we were able to construct two PPI modules (Figure 5 and
Supplementary Figures 2B,C), the major of which were related
to IFN-γ. We infer that these TME-associated genes might affect
the development of HCC by affecting the T cell functions.

Finally, by using the LASSO algorithm
(Supplementary Figure 3A), we identified seven TME-related
genes. Of the seven genes identified, high levels of GDF10 and
MMP9 showed a negative correlation to OS, which has been
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reported to be involved in carcinogenesis and the development of
various cancers (Chang et al., 2017; Reggiani et al., 2017; Tekin
et al., 2020a). We further correlated the degree of infiltration
of six immune cell types with the expression of GDF10 and
MMP9 by using TIMER algorithm. The expression of MMP9
was positively associated with the abundance of six immune in
tumor tissues. It is worth reminding that our results did not
contradict previous findings that high infiltration of CD8+ T
cells indicated beneficial prognosis, but extended and enriched
this conclusion. In the recent literature, tumor with higher
CD8+ T cell infiltration, but T cell dysfunction and increased
immune escape result in a poor prognosis (Hossain et al., 2020;
Saka et al., 2020).

Prior studies have largely focused on MMPs’ ability to
promote the invasion and metastasis of cancer cells (Nart
et al., 2010; Chen et al., 2012), while evidence is mounting
that MMPs are highly associated with the microenvironment
of tumors and immune cells (Kessenbrock et al., 2010;
Li et al., 2016). For example, MMP9-cleaved osteopontin
fragments contribute to tumor immune escape by inducing the
expansion of myeloid-derived suppressor cells (Shao et al., 2017).
Macrophages secrete MMP9 to induce mesenchymal transition,
which supports the tumor-promoting role of macrophage influx
(Tekin et al., 2020b). Besides, MMP9 is associated with neutrophil
migration (Koymans et al., 2016). Our study confirms the
above conclusions and has found that MMP9 might associate
with T cell dysfunction, despite high CD8+ cytotoxic T
lymphocyte infiltration.

In addition, we also observed that high expression
of MMP9 indicated higher levels of immune inhibitors
(immune checkpoints), better response to immunotherapies,
and poor survival in partial HCC patients, which
was in line with our above analysis that some HCC
patients with high CD8+ T cell infiltration but with
dysfunction were immunosuppressed. And previously,
inhibition of MMP9 could modulate immunosuppression
in tumor (Melani et al., 2007). We also compared the
prediction effect between the other factors, such as AFP
(Supplementary Figure 1A) and programmed cell death
protein 1 (PDCD1) (Supplementary Figure 3B), whereas
AFP is not a good predictor of the abundance of immune
invasion in HCC tissues, and PDCD1 is weakly correlated
with the prognosis of HCC. Hence, MMP9 may be an effective
biomarker to evaluate the immune status of patients and
predict the effectiveness of immunotherapy before treatment.
However, this conclusion will need to be confirmed by clinical
trials in the future.

In summary, from comprehensively analyzing the correlation
between microenvironmental and genetic factors of TCGA
database applied by ESTIMATE algorithm-based immune and
stromal scores, we identified MMP9 as a potential TME-
related biomarker of prognostic and immunotherapy response.
However, because of the lack of large sequenced HCC cohort and
prospective clinical trials that have received immunotherapy, the
effect of MMP9 expression on the efficiency of immunotherapy
in HCC patients remains concerned.
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Purpose: In the tumor microenvironment, the functional differences among various

tumor-associated macrophages (TAM) are not completely clear. Tumor-associated

macrophages are thought to promote the progression of cancer. This article focuses on

exploring M2 macrophage-related factors and behaviors of renal clear cell carcinoma.

Method: We obtained renal clear cell carcinoma data from TCGA-KIRC-FPKM,

GSE8050, GSE12606, GSE14762, and GSE3689. We used the “Cibersort” algorithm

to calculate type M2 macrophage proportions among 22 types of immune cells.

M2 macrophage-related co-expression module genes were selected using weighted

gene co-expression network analysis (WGCNA). A renal clear cell carcinoma prognosis

risk score was built based on M2 macrophage-related factors. The ROC curve and

Kaplan–Meier analysis were performed to evacuate the risk score in various subgroups.

The Pearson test was used to calculate correlations among M2 macrophage-related

genes, clinical phenotype, immune phenotype, and tumor mutation burden (TMB). We

measured differences in co-expression of genes at the protein level in clear renal cell

carcinoma tissues.

Results: There were six M2 macrophage co-expressed genes (F13A1, FUCA1,

SDCBP, VSIG4, HLA-E, TAP2) related to infiltration of M2 macrophages; these were

enriched in neutrophil activation and involved in immune responses, antigen processing,

and presentation of exogenous peptide antigen via MHC class I. M2-related factor

frequencies were robust biomarkers for predicting the renal clear cell carcinoma patient

clinical phenotype and immune microenvironment. The Cox regression model, built

based on M2 macrophage-related factors, showed a close prognostic correlation

(AUC = 0.78). The M2 macrophage-related prognosis model also performed well in

various subgroups. Using western blotting, we found that VSIG4 protein expression levels

were higher in clear renal cell carcinoma tissues than in normal tissues.
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Conclusion: These co-expressed genes were most related to the M2 macrophage

phenotype. They correlated with the immune microenvironment and predicted outcomes

of renal clear cell carcinoma. These co-expressed genes and the biological processes

associated with them might provide the basis for new strategies to intervene via

chemotaxis of M2 macrophages.

Keywords: M2 macrophage, weighted gene co-expression network analysis, tumor-associated macrophage,

immune phenotype, risk model

INTRODUCTION

Renal clear cell carcinoma (RCC) accounts for 80–90% of all
renal cell carcinomas; clear cell carcinoma is not sensitive to
chemotherapy and radiotherapy (Hsieh et al., 2017). For this
reason, radical surgery has become the main treatment method.
In clinical practice, although radical nephrectomy can benefit
mostly patients, 30% of patients experience distant metastases
after surgery (Motzer et al., 2013). Although we have adopted
various treatment strategies for these patients with poor status,
the long-term outcomes are not ideal (Linehan and Ricketts,
2019). With the development of immunotherapy in recent
years, there have been studies showing that immunotherapy
can benefit patients with renal clear cell cancer (Chowdhury
and Drake, 2020; Díaz-Montero et al., 2020; Wang C. et al.,
2020).

Renal clear cell carcinoma is characterized by many new
tumor antigen peptides and high mutation burden; it is relatively
sensitive to immunotherapies such as targeting PD1 and PD-
L1 (Wang C. et al., 2020). Immune regulation plays a crucial
role in the renal clear cell carcinoma microenvironment. This
process includes immune checkpoints [mainly programmed
cell death 1 (PD-1) and programmed cell death 1 ligand 1
(PD-L1)], as well as regulatory T cells, the original source of
suppressor cell tumor-associated macrophages, and type 2 innate
and adaptive lymphocytes (Xu W. et al., 2020). Macrophages
in the primary or secondary tumor tissues are called tumor-
associated macrophages (TAMs); these are the largest number
of macrophages in the tumor stroma (Herberman et al., 1979).
In recent years, clinical and experimental evidence has shown
that macrophages promote the progression and metastasis of
solid tumors, and this is somewhat different from our previous
understanding (Pollard, 2004; Karnevi et al., 2014). Tumor-
associated macrophages are divided into two types, M1 and
M2 (Herberman et al., 1979; DeNardo and Ruffell, 2019). The
biological effects of the two types are exact opposites. As
tumors progress, increasing numbers of M2macrophages appear,
resulting in a weaker antigen presentation effect. For this reason,
targeting macrophages has become a new therapeutic strategy
(DeNardo and Ruffell, 2019). M1 type macrophages, namely,
classically activated macrophages, highly express IL-12 and IL-23
that enhance antitumor effects (Lawrence and Natoli, 2011). By

Abbreviations: TCGA, The Cancer Genome Atlas; GEO, Gene Expression

Omnibus; BLCA, Bladder urothelial carcinoma; ROC, Receiver operating

characteristic; AUC, Area under the curve; HR, Hazard ratio; TME, Tumor

microenvironment.

contrast, M2 type macrophages, namely, alternatively activated
macrophages, promote tumor formation and development
(Cervantes-Villagrana et al., 2020). The mechanism of this
polarization of macrophages is not clear. This article focuses
on exploring the M2 macrophage-related genes in renal clear
cell cancer, and constructing co-expression networks of M2
macrophages using the WGCNA method. The results of this
paper revealed the underlying interaction mechanisms of M2
macrophage co-expressing factors and explained the role of
M2 macrophages in the immune microenvironment from the
perspective of bioinformatics.

METHODS

Macrophage M2, Tumor Purity, and Tumor
Mutation Burden Evaluation
We downloaded The Cancer Genome Atlas TCGA—KIRC
FPKM data (http://cancergenome.nih.gov/) containing 539 renal
clear cell cancer tissue samples and 72 normal tissues. GSE8050
(Weinzierl et al., 2008), GSE12606 (Stickel et al., 2009), GSE14762
(Wang et al., 2009), and GSE36895 (Peña-Llopis et al., 2012)
were also downloaded from the GEO (http://www.ncbi.nlm.nih.
gov/geo/) database. The Robust Multi-Array Average (RMA)
algorithm of the “sva” (Leek et al., 2012) package was used to
remove batch effects among the four GEO cohorts. The TCGA
cohort was used to select M2-related genes. Four GEO cohorts
were combined using “sva” packages and to verify the results.
The Cell type Identification By Estimating Relative Subsets Of
RNA Transcripts (CIBERSORT) is a deconvolution algorithm
based on a gene expression profile that characterizes the cell
composition of complex tissues, quantifies immune cells, and
accurately estimates the immune components of tumor samples.
It expands the potential of the genomic database, showing the
pattern of Renal Clear Cell Carcinoma with comprehensive
immune cells. We calculated macrophage M2 cell proportions
based on the LM22 matrix using the CIBERSORT (Chen et al.,
2018) algorithm, Cibersort was used as an obvious method
to evaluate the significance of infiltration of immune cells in
the samples. The assessment results of some samples were
not statistically significant, and we used P < 0.05 to screen
the samples. The Estimation of Stromal and Immune cells in
Malignant Tumor tissues using Expression data (ESTIMATE) is
a method that infers the fraction of stromal and immune cells
using gene expression signatures (Yoshihara et al., 2013). Using
the ESTIMATE package, we calculated tumor purity in each renal
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clear cell cancer sample. TMB (tumor mutation burden) per
megabyte is calculated by dividing the total number of mutations
by the size of the target coding region (Li et al., 2020; Yang et al.,
2020).

Macrophage M2 Co-expression Network
Conduction
Weighted gene co-expression network analysis (WGCNA) is a
system biology approach that converts co-expression correlations

FIGURE 1 | Flowchart of the experimental design. We first calculated immune infiltration to determine the content of M2 macrophages in the immune

microenvironment of RCC. Then, we constructed a co-expression network related to M2 macrophages of RCC and analyzed the enriched pathways in this network.

We then calculated the survival analysis of these co-expressed genes. We constructed a COX regression prognostic model associated with the co-expression genes

of M2 macrophages in RCC and performed a subgroup analysis of this model. We analyzed the relationship between key genes in the model and tumor purity and

CD8+ T cells. Finally, we also verified the feasibility of the model with 4 GEO datasets and conducted western blotting experiments on VSIG4.
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into connection weights or topology overlap values (Langfelder
and Horvath, 2008). We used this method to determine
proportions of co-expressed genes in the M2 macrophage.
The expression patterns are similar for genes with the same
biological process and biological function (Jiang et al., 2017).
We built a scale-free topology network, set the soft threshold
at 5, R square = 0.89, and set the number of genes in the
minimum module at 30. The M2 macrophage cell proportion
was considered for phenotype files in WGCNA. In this manner,
a cluster of M2 macrophage cell proportion-related genes with
similar function were identified in the same module. The factors
with M2 macrophage correlation >0.4 in the most relevant
modules were determined.

M2 Macrophage-Related Module Analysis
The genes were selected using |correlation coefficient| > 0.4. The
Database for Annotation, Visualization and Integrated Discovery
(DAVID, v6.8) is an open-source database that performs

function enrichment (Huang et al., 2007). We used the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (https://www.
genome.jp/kegg/) (Kanehisa et al., 2017) and Gene Ontology
(GO) (http://geneontology.org/) analysis (Ashburner et al., 2000)
to identify the biological function in each co-expression module.
In this way, we identified the biological processes associated with
M2-type macrophage proportion.

M2 Macrophage-Related Genes Analysis
To verify the correlation between these factors and the clinical
phenotype, we measured the overall survival from clear cell
carcinoma as the prognostic indicator. Survival analysis was
performed to evaluate the prognostic value of these co-expressed
factors in M2 macrophages. Subsequently, a Cox regression
hazard model was built based on the M2 macrophage-related
genes. Next, we generated a model validation of clinical
subgroups, which was based on age, gender, tumor metastasis,
tumor stage, tumor purity, and degree of tumor mutation

FIGURE 2 | (A) A hierarchical clustering tree was built using the dynamic hybrid cutting method, where each leaf on the tree represents a gene, and each branch

represents a co-expression module; 21 co-expression models were generated. (B) The correlation coefficients between each phenotype and co-expression module of

TCGA. The purple module had the strongest correlation with M2 macrophage cell proportions in the TCGA–KIRC cohort (Cor = −0.45; P = 4e−15) and had the

strongest correlation with CD8+ T cell proportions in the TCGA–KIRC cohort (Cor = 0.73; P = 6e−47). (C) The relationship between the purple module membership

degree and the gene significance of M2 macrophages (cor = 0.54; P = 1.6e−26). (D) The relationship between the purple module membership degree and the gene

significance of CD8+ T Cells (cor = 0.92; P = 1.3e−68). (E) The relationship between the purple module membership degree and the gene significance of M2/M1

ratio (cor = 0.66; P = 4e−22).
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burden. In different subgroups, we evaluated the predictive
abilities of M2 macrophage-related prognostic models. Finally,
we calculated tumor purity in TCGA samples and explored
the correlations between macrophage-related factors and
tumor purity.

HPA
To verify the protein expression levels of candidate genes in
melanoma and normal tissues, the human protein atlas (HPA,
https://www.proteinatlas.org/) database was used to demonstrate
differences in co-expressed genes at the protein level (Uhlén et al.,
2015).

Western Blotting
Thirty clear renal cell carcinoma tissue samples were obtained
from patients who underwent Nephrectomy at the First Affiliated
Hospital of China Medical University. This study was authorized
by the Ethics Committee of the First Affiliated Hospital of
China Medical University. All patients signed informed consent.
Protein exaction and western blotting were conducted as
described previously (Pripp, 2018). An antibody against VSIG4
was purchased from Sigma-Aldrich.

Statistical Methods
Pearson correlation coefficientsmeasure the strength of the linear
relationship between two variables. The correlation coefficients

are −1 to +1, respectively, indicating negative correlation
and positive correlation, respectively, while 0 indicates no
correlation (Wang Y. et al., 2020). The key factors in the
model score, tumor purity, tumor mutation burden, M2
macrophages, and CD8+ T lymphocytes were assessed using
this test.

RESULTS

M2 Macrophages, Tumor Purity, and Tumor
Mutation Burden
The results of our methodology are explained in Figure 1.

We summed up the following clinical data composed by M2
macrophages, tumor mutation burden, and clinical following
survival data. M2, and M1, and M2/M1 macrophages were
inputted as phenotype files toWGCNA. The detailed information
is displayed in Supplementary Table 1.

M2 Macrophages Co-expression Network
Conduction
We performed WGCNA analysis with TCGA–KIRC. A
hierarchical clustering tree was built using the dynamic hybrid
cuttingmethod, where each leaf on the tree represents a gene, and
each branch represents a co-expressionmodule; 21 co-expression
models were generated (Figure 2A). The correlation coefficients

TABLE 1 | The Module and gene significance for M2 macrophage-related genes in the purple module.

ID moduleColor GS.MacrophagesM2 p.GS.M2 GS.CD8.T p.GS.CD8.

CD27 purple −0.497 1.32E-18 0.774 2.91E-56

PSMB9 purple −0.493 2.94E-18 0.715 1.65E-44

CTSW purple −0.488 7.07E-18 0.787 2.57E-59

CD3E purple −0.483 1.57E-17 0.734 6.70E-48

CST7 purple −0.482 1.77E-17 0.799 2.39E-62

CD3D purple −0.480 2.90E-17 0.755 5.32E-52

SIT1 purple −0.479 3.05E-17 0.753 1.02E-51

HLA-F purple −0.476 5.88E-17 0.689 3.94E-40

IL2RG purple −0.475 6.28E-17 0.649 2.22E-34

GZMA purple −0.468 2.22E-16 0.7789 2.89E-57

NKG7 purple −0.468 2.22E-16 0.762 1.28E-53

CD8B purple −0.467 2.28E-16 0.832 6.65E-72

PRF1 purple −0.466 2.80E-16 0.744 9.06E-50

CD8A purple −0.466 2.93E-16 0.830 3.40E-71

LCK purple −0.465 4.62E-16 0.694 2.54E-42

APOBEC3G purple −0.461 6.88E-16 0.715 2.18E-44

HLA-B purple −0.459 9.61E-16 0.682 4.66E-39

CXCR3 purple −0.458 1.03E-15 0.684 2.29E-39

IRF1 purple −0.457 1.30E-15 0.671 2.24E-37

CD2 purple −0.449 4.11E-15 0.729 6.85E-47

DUSP2 purple −0.449 4.43E-15 0.763 1.13E-53

CCL5 purple −0.447 5.76E-15 0.588 4.94E-27

HLA-E purple −0.423 1.08E-14 0.688 1.58E-35

PSME2 purple −0.409 1.98E-14 0.525 1.11E-43

GS, Gene significance.
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between each phenotype and co-expression module of TCGA are
shown in Figure 2B. The results showed that the purple module
had the strongest negatively correlation with M2 macrophage
cell proportion in the TCGA–KIRC cohort (Cor = −0.45;
P = 4e−15) and had the strongest correlation with CD8+ T cell
proportion in the TCGA–KIRC cohort (Cor = 0.73; P = 6e−47)

(Figure 2B). Based on these findings, we have supplemented the
scatter plots of the correlation between the factors in the purple
module (Figures 2C–E). The horizontal axis is the correlation
between the gene and the module, which is used to measure the
relationship between the gene and the co-expression module,
and the vertical axis is the correlation between the gene and the

FIGURE 3 | (A) Pathway analysis of 24 negatively correlated co-expressed genes in M2 macrophages in the purple module. These genes were most significantly

enriched in the antigen processing and presentation of exogenous peptide antigen via MHC class I, which suggested a declining effect on tumor antigen peptide

process. (B) Pathway analysis of 16 negatively correlated co-expressed genes in M2 macrophages in the brown module. These genes were most significantly

enriched in neutrophil activation involved in immune responses.
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macrophage. By drawing the scatter diagram above, we screened
out genes that are related to both M2 macrophages and the
co-expression module.

M2 Related Genes Function Analysis
Twenty-four M2 macrophage negatively co-expressing genes
were identified with coefficient <-0.4 in the TCGA–KIRC purple
module. The gene significance for M2 macrophage-related genes
in the purplemodule is shown inTable 1. Top 20M2macrophage
cell proportion positively co-expressing genes were identified
in the TCGA–KIRC pink module. The 24 M2 macrophage
negatively co-expressing genes were most significantly enriched
in the antigen processing and presentation of exogenous peptide
antigen via MHC class I, which suggested a declining effect
on the tumor antigen peptide process (Figure 3A). The 20
M2 macrophage negatively co-expressing genes were most
significantly enriched in neutrophil activation involved in
immune responses (Figure 3B).

M2 Related Genes Prognosis Analysis
To analyze their influence on overall survival, we performed
survival analysis. F13A1, FCGR2A, HLA.DOB, ILR2GHLA,
DUSP2, PSME2, CD27, IFI35, LIMD2, NFKB2, IL2RB, CCL5,

VSIG4, APOBEC3G, GZMA, and PSMB10 were prognosis risk

factors for clear renal cell carcinoma. HLA-E, MRC1, GPR34,

KCTD12, LIPA, PSAP, MFSD1, EHD1, FUCA1, and CPVL

TABLE 2 | The Module and gene significance for M2 macrophage-related genes

in the pink module.

ID moduleColor GS.MacrophagesM2 p.GS.M2

GPR34 pink 0.467 2.31E-16

MS4A4A pink 0.452 2.93E-15

MFSD1 pink 0.446 6.88E-15

FUCA1 pink 0.435 3.55E-14

CD163 pink 0.428 1.07E-13

FOLR2 pink 0.427 1.13E-13

LIPA pink 0.424 1.78E-13

SLCO2B1 pink 0.418 4.43E-13

PSAP pink 0.415 6.44E-13

SDCBP pink 0.404 3.17E-12

C3AR1 pink 0.395 9.95E-12

F13A1 pink 0.391 1.60E-11

KCTD12 pink 0.386 3.14E-11

MSR1 pink 0.384 4.12E-11

CPVL pink 0.365 4.15E-10

FCGR2A pink 0.362 5.48E-10

FPR3 pink 0.358 9.40E-10

GM2A pink 0.353 1.68E-09

VSIG4 pink 0.347 3.12E-09

MRC1 pink 0.337 9.28E-09

GS, Gene significance.

FIGURE 4 | Survival analysis of selected co-expressed genes in purple and pink modules.
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were prognosis-protective factors for clear renal cell carcinoma
(Figure 4).

M2 Macrophage-Related Prognosis
Signature
We then generated a multi-Cox regression risk score model
based on M2 macrophage-related genes (Tables 1, 2). Risk

score = 0.025 ∗ F13A1 – 0.008 ∗ FUCA1 + 0.034 ∗ FCGR2A
– 0.016 ∗ KCTD12 – 0.08 ∗ MFSD1 – 0.003 ∗ HLA-E + 0.012
∗ SDCBP – 0.071 ∗ MRC1 – 0.086 ∗ LCK + 0.02 ∗ PSME2 +

0.016 ∗ VSIG4 + 0.215 ∗ TAP2. Detailed information of the
prognosis model is displayed in Supplementary Table 2. The
patients in high-risk groups for renal clear cell cancer (TCGA:
P < 0.001; HR = 5.31) (Figure 5) showed survival risk vs. low

FIGURE 5 | Validation of the prognostic model in clinical subgroups. The patients in high-risk groups for renal clear cell cancer (TCGA: P < 0.001; HR = 5.31) showed

survival risk against low expression groups, with the area under curve (AUC) = 0.780. The risk score was evaluated in clinical subgroups, including age, gender, stage,

metastasis, tumor purity, and tumor mutation burden. P-values of all subgroups validations were <0.05, indicating that this model has good predictive ability.
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expression groups, with the area under the curve (AUC) = 0.780
(Figure 5). The risk score was evaluated in various subgroups,
including age, gender, stage, metastasis, tumor purity, and tumor
mutation burden. The results were significant in these subgroups
(Figure 5).

Immune Environment Correlation
Significant associations between M2 frequency and the genes
involved in the risk signature are indicated in Figure 6, and
the highest correlation of MFSD1 was 0.49 (Figure 6A); the
correlation of LCK was the lowest at −0.47 (Figure 6B).
TAP2, PSME2, HLA-E, and LCK were negatively related to M2
macrophage proportions. We then analyzed the correlations with
CD8+ T cell and tumor mutation burden of these four genes.
TAP2 (P < 0.001; Cor = 0.60), PSME2 (P < 0.001; Cor = 0.52),
HLA - E (P < 0.001; Cor = 0.69), and LCK (P < 0.001;
Cor = 0.69) (Figure 7A) positively related to CD8+ T cell
and negatively correlated with tumor purity (Figure 7B). This

result suggested that M2 macrophages were negatively related to
antigen processing.

HPA
The prognostic value and immune phenotype correlation
were determined for these M2 macrophage-related genes. We
compared the various expression levels of these genes between
normal and tumor tissues. HPA001804 is an antibody against
F13A1, which showed higher intensity in tumor tissue than
in normal tissue. HPA056371 is an antibody against FUCA1,
which showed higher intensity in the normal tissue than
in tumor tissue. CAB012245 is an antibody against SDCBP,
which showed a higher intensity in tumor tissue than in
normal tissue. HPA003903 is an antibody against VSIG4, which
showed higher intensity in tumor tissue than in normal tissue.
HPA031454 is an antibody against HLA-E, which showed lower
intensity in tumor tissue than in normal tissue. HPA001312
is an antibody against TAP2, which showed lower intensity
in tumor tissue than in normal tissue. The protein levels

FIGURE 6 | (A) Co-expressed genes with a significant positive correlation with M2 macrophages. The correlation coefficients are as follows: F13A1 – M2: Cor = 0.39;

FCGR2A – M2: Cor = 0.37; FUCA1 – M2: Cor = 0.45; KCTD12 – M2: Cor = 0.47; MFSD1 – M2: Cor = 0.49; MRC1 – M2: Cor = 0.34; SDCBP – M2: Cor = 0.44;

VSIG4 – M2: Cor = 0.36. (B) Co-expressed genes with a significant negative correlation with M2 macrophages. The correlation coefficients are as follows: HLA-E –

M2: Cor = −0.42; LCK – M2: Cor = −0.47; PSME2 – M2: Cor = −0.40; TAP2 – M2: Cor = −0.42.
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FIGURE 7 | (A) The correlation between co-expressed gene of M2 macrophage and CD8+ T cell, with significantly positive relations as TAP2 (P < 0.001; Cor = 0.60),

PSME2 (P < 0.001; Cor = 0.52), HLA – E (P < 0.001; Cor = 0.69), and LCK (P < 0.001; Cor = 0.69). (B) The correlation between co-expressed genes of M2

macrophage and tumor purity, with significantly negative relations as TAP2 (P < 0.001; Cor = −0.52), PSME2 (P < 0.001; Cor = −0.32), LCK (P < 0.001;

Cor = −0.67), and HLA-E (P < 0.001; Cor = −0.49).

of these M2 macrophage genes were similar to the results
of prognosis analysis at the transcription level (Figure 8).
Subsequently, the M2 correlations for VSIG4, FUCA1, F13A1,
SDCBP, HLA-E, and TAP2 were verified in the four GEO datasets
(Supplementary Figure 1).

VSIG4
VSIG4 is thought to positively correlate with M2 macrophages;
therefore, we conducted a combined analysis of VSIG4 and M2-
type macrophages. Combining VSIG4 elevated the predictive
accuracy of M2 macrophages even more than either of them
alone; the hazard of the “high VSIG4 expression + high M2
macrophage” group showed more survival risk than the other
group (Kaplan–Meier analysis, low VSIG4 expression + low
M2 macrophage; HR = 1.458; Figure 9A). Subsequently, we
compared VSIG4 protein expression levels between normal
renal tissues and clear renal cell carcinoma and found that
VSIG4 protein expression levels in tumors were higher than
the normal tissues (Figure 9B). Then, various tumor infiltration

deconvolution methods were applied; we found that VSIG4
was one of the most commonly associated M2 macrophage
biomarkers (Figure 9C).

DISCUSSION

In the tumor microenvironment, the chemotactic effects of the
functional differences between the types of tumor-associated
macrophages are not completely clear. The biological cytological
role of M2/M1 macrophages in tumor tissues still needs to
be explored. The present study is based on a bioinformatics
algorithm to determine some of the M2 macrophage co-
expression networks. Through the analysis of various modules,
we tried to explain the biological function of co-expressed genes
with M2 macrophages and related pathway changes from the
perspective of bioinformatics. Our data processing and analysis
processes are shown in the flowchart (Figure 1).

F13A1, FCUA1, HLA-E, VSIG4, SDCBP, and TAP2 were the
most common co-expressed genes in M2 macrophages. In terms
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FIGURE 8 | From the HPA database to verify protein expression-level differences of these candidate genes. Of these, F13A1, SDCBP, and VSIG4, and corresponding

immunohistochemical samples, the degree of renal clear cell carcinoma tissue staining is higher than in normal kidney tissue. In FUCA1, HLA – E, and TAP2, and

corresponding immunohistochemical samples, the degree renal clear cell carcinoma tissue staining is lower than in normal kidney tissue. These M2 macrophage gene

protein levels at the transcription level were similar to those of the prognostic analysis.

of function enrichment, the 24 negatively co-expressed genes in
M2 macrophages were most significantly enriched in antigen
processing and presentation of exogenous peptide antigen via
MHC class I. The 16 negatively co-expressing genes in M2
macrophages were most significantly enriched in neutrophil
activation involved in immune response. M1 macrophages tend
to adopt a Th1 response gene expression pattern and can
secrete various cytokines that present MHC II and B7 molecules
so as to present antigen efficiently (Herberman et al., 1979).
This mechanism resists pathogen invasion, monitors tumor
pathological changes, and generates Th1 immune responses in
macrophages. By contrast, M2 macrophages have poor tumor
antigen processing ability.

F13A1 encodes the coagulation factor XIII A subunit
which has a catalytic function. In a human stem cell
study, mRNA transcription expressed by F13A1 increased
as myeloid progenitors differentiated into macrophages
and erythroblasts (De Paoli et al., 2015). The protein
encoded by FCUA1 is a lysosomal enzyme involved in the
degradation of fucose-containing glycoproteins and glycolipids.
Downregulation of FUCA1 enhances autophagy and inhibits
macrophage infiltration so as to inhibit tumor growth (Xu
L. et al., 2020). VSIG4 is a transmembrane receptor of the

immunoglobulin superfamily that is specifically expressed
in macrophages and mature dendritic cells. It is a newly
discovered B7 family-related macrophage protein that inhibits
T cell activation and has a potential role in cancer (Kim et al.,
2016). VSIG4 negatively regulates macrophage activation by
reprogramming mitochondrial pyruvate metabolism (Li et al.,
2017). HLA-E belongs to the HLA class I heavy chain paralogs.
This class I molecule is a heterodimer consisting of a heavy
chain and a light chain (beta-2 microglobulin). The heavy
chain is anchored in the membrane. HLA-E binds a restricted
subset of peptides derived from the leader peptides of other
class I molecules. HlA-E is a non-classical HLA-I molecule
that is best known for its role in protecting natural killer cells.
Camilli et al. found that HLA-E was significantly increased
during the differentiation of monocytes and macrophages
(Camilli et al., 2016). The expression of HLA-E is related
to the poor clinical results of anti-PD-1 immunotherapy.
From the surface of M2 tumor-associated macrophages
(TAMs), HLA-E antigen binds to the receptor CD94/NKG2A,
which inhibits the expression of NK cell subpopulations and
activated cytotoxic T lymphocytes, protecting cells from being
destroyed (Marchesi et al., 2013). Epithelial-derived cancer
cells, tumor macrophages, and CD141+ traditional dendritic

Frontiers in Genetics | www.frontiersin.org 11 February 2021 | Volume 12 | Article 61565566

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang et al. M2 Macrophages Proportion Evaluation

FIGURE 9 | (A) Combining high VSIG4 and high M2 macrophage showed more survival risk than the other group. (B) The VSIG4 protein expression levels were

higher in clear renal cell carcinoma tissues than in normal tissues according to western blotting. (C) Pan-cancer analysis of VSIG4 in TCGA.

cells promote the enrichment of HLA-E in carcinomas. CD8+

tumor-infiltrating T lymphocytes with high PD-1 content are
prevented from surviving in the tumor microenvironment by
the interaction of enriched HLA-E and CD94/NKG2A inhibition
(Abd Hamid et al., 2019).

This study has some limitations, including lack of
cross-validation of multicenter data. There is also lack of
experimental verification of M2 macrophage biomarkers
in renal clear cell cancer. We found that using the co-
expression method of network-building, we can explicitly
identify biomarkers, demonstrating the correctness of the logic
based on bioinformatics.

In conclusion, we found that F13A1, FCUA1, HLA-E, VSIG4,
SDCBP, and TAP2 were biomarkers of M2-type macrophages
using a co-expression network of infiltrated immune cells,
and we proposed six candidate-related factors. The biomarkers
and related processes of M2 macrophages in the tumor
microenvironment were explained from the perspective of
bioinformatics, providing a strategy to explore the polarization
of macrophages.
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Glioblastoma multiform (GBM) is a malignant central nervous system cancer with
dismal prognosis despite conventional therapies. Scientists have great interest in using
immunotherapy for treating GBM because it has shown remarkable potential in many
solid tumors, including melanoma, non-small cell lung cancer, and renal cell carcinoma.
The gene expression patterns, clinical data of GBM individuals from the Cancer Genome
Atlas database (TCGA), and immune-related genes (IRGs) from ImmPort were used
to identify differentially expressed IRGs through the Wilcoxon rank-sum test. The
association between each IRG and overall survival (OS) of patients was investigated
by the univariate Cox regression analysis. LASSO Cox regression assessment was
conducted to explore the prognostic potential of the IRGs of GBM and construct a
risk score formula. A Kaplan–Meier curve was created to estimate the prognostic role of
IRGs. The efficiency of the model was examined according to the area under the receiver
operating characteristic (ROC) curve. The TCGA internal dataset and two GEO external
datasets were used for model verification. We evaluated IRG expression in GBM and
generated a risk model to estimate the prognosis of GBM individuals with seven optimal
prognostic expressed IRGs. A landscape of 22 types of tumor-infiltrating immune cells
(TIICs) in glioblastoma was identified, and we investigated the link between the seven
IRGs and the immune checkpoints. Furthermore, there was a correlation between the
IRGs and the infiltration level in GBM. Our data suggested that the seven IRGs identified
in this study are not only significant prognostic predictors in GBM patients but can also
be utilized to investigate the developmental mechanisms of GBM and in the design of
personalized treatments for them.

Keywords: glioblastoma, expression profile, immune-related genes, prognosis prediction, overall survival

INTRODUCTION

Glioblastoma constitutes the most recurrent and aggressive primary malignant tumor of the
central nervous system (Yan et al., 2012). In spite of multimodal conventional treatments
consisting of neurosurgical resection as well as radiotherapy with accompanying adjuvant alkylating
agent temozolomide chemotherapy, the prognosis for glioblastoma multiform (GBM) individuals
remains dismal, with a median survival time ranging from 9.4 to 19.0 months (Yang et al., 2014).
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This poor outcome is due to the highly invasive nature,
malignant progression, drug resistance, and tumor recurrence,
which are regulated by a large number of oncogenes and tumor
suppressor genes (Liu et al., 2015; Cao et al., 2019). Next-
generation sequencing technologies have made great progress
recently, enabling scientists to gain profound insights into the
molecular level of GBM pathophysiology (Aldape et al., 2015).
As a consequence, many prospective diagnostic and prognostic
biosignatures have been discovered, which enable a more distinct
classification and a more precise outcome estimation of GBM.
Nonetheless, given the dismal prognosis of GBM, a multiple-
gene signature derived model is still urgently required to
estimate the prognosis and treatment response more accurately
for GBM patients.

The immune microenvironment has been chronicled to play
a pivotal function in tumor biology (Hanahan and Weinberg,
2011), and cancer immunotherapy has been demonstrated to
have a significant preclinical or clinical value to many patients
with some sensitive types of cancer (Schumacher and Schreiber,
2015; Steven et al., 2016; Odunsi, 2017; Morrison et al., 2018;
Christofi et al., 2019). Increasing research evidence supports
the idea that although the brain constitutes an immunologically
specific site, the immune microenvironment provides ample
opportunities for immunotherapy of brain tumors (Lim et al.,
2018). Many kinds of immunotherapy, including GBM vaccines,
oncolytic viral therapies, immune-checkpoint suppressors, and
chimeric antigen receptor T cell therapy, have been tested in
clinical trials, but the results are not satisfactory. Tumors are
insensitive to immunotherapy due to the immunosuppressive
tumor microenvironment, defects in tumor antigen presentation,
and characteristics of the physical microenvironment, including
hypoxia and necrosis (Lim et al., 2018; Pombo Antunes et al.,
2020). The precise mechanism of immune escape is unclear.
Glioblastoma usually has a low mutational load and lower T
cell invasion relative to other tumor types (Li et al., 2016).
Thus, it is imperative to better comprehend the progress and
mechanisms of the GBM immune microenvironment. Multiple
recent studies have suggested that immune gene expression
profile biosignatures may be used as a prediction for clinical
outcomes in many cancers (Bremnes et al., 2016; Campbell et al.,
2017; Öjlert et al., 2019). Li et al. (2017) created a personalized
immune-related gene prognostic biosignature to improve the
prognosis of individuals with NSCLC.

In a previous study, a prognostic immune-related gene
signature with nine IRGs based on a total of 161 samples
from the Cancer Genome Atlas database (TCGA) was generated
(Liang et al., 2020), and the 9-IRG model was identified as
an independent predictor in glioblastoma. These researchers
established a crosstalk network between prognostic immune-
related genes (IRGs) and transcription factors. Correlations
between immune infiltration cells and risk score were also
identified. However, the potential molecular mechanisms were
not clarified in their study. Thus, it is necessary to elucidate
the function of these genes in the risk score and poor survival
outcomes.

Here, we generated a seven immune-linked gene biosignature
to exhibit the connection between gene expression and GBM

prognosis, and we verified this biosignature in the TCGA and
GEO dataset. These data may provide a novel reference for
the prognostic prediction of GBM. We also confirmed the
relevance of the seven IRGs to immune checkpoints, immune
cell infiltration, oncogenesis pathway, and drug sensitivity. As
a result, we not only generated a predictive model for GBM
prognosis but also indicated the potential function of these IRGs
in the occurrence and development of glioblastoma.

MATERIALS AND METHODS

Data Sources and Preliminary
Processing
The RNA-Seq data of 169 GBM samples and five normal brain
samples, as well as the clinical data of these GBM patients, such
as age, gender, molecular subtype, gene mutation status, survival
time, and survival status, were obtained from the TCGA dataset1.
Additionally, the GBM patients’ microarray and clinical data
were collected from independent datasets in the GEO database,
including GSE74187 (n = 60) and GSE4412 (n = 59). These gene
expression data were generated and annotated on GPL6480 or
GPL97 platform. The immune-related gene set, including 2,498
genes, was downloaded from the ImmPort database. The RNA-
Seq and microarray data were normalized using scale method,
and the data were pre-processed through the following steps:
(1) patients with unavailable clinical and/or survival information
were removed, (2) only the expression profiles of IRGs were
preserved, and (3) genes with exceeding low abundance were
filtered out (the expression value was 0 in more than half of
the samples, or the average expression value was less than 0.3 in
the samples). Finally, 1,100 genes were used for univariate Cox
regression analysis and LASSO analysis.

Differential Gene and Functional
Enrichment Analysis
The expression analysis of 2,498 immune-linked genes was
conducted to identify the differentially expressed IRGs by the
limma R package [false discovery rate (FDR) < 0.05 and log2
| fold change| > 1] (Ritchie et al., 2015). We conducted
functional enrichment analyses to identify potential molecular
biomechanisms of the differentially expressed IRGs via GO
analysis and KEGG pathways (Yang et al., 2018). GOplot
package was used for illustrating the relationship between genes
and enriched KEGG pathways. Gene Set Enrichment Analysis
(GSEA) (Mootha et al., 2003; Subramanian et al., 2005) was
employed to examine the signaling cascades in which the IRGs
were enriched between the high- and low-risk subgroups.

Establishment of the
Immune-Associated Gene Biosignature
The univariate Cox regression analysis was applied to investigate
the association between each IRG and OS of patients based on
the TCGA dataset. To build the immune-related risk model,

1https://tcga-data.nci.nih.gov/tcga/
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the genes with p value < 0.01 were considered as candidate
survival-associated IRGs. The LASSO regression model was used
to determine the most significant survival-correlated IRGs. First,
the GBM patients in TCGA dataset were randomly divided
into training and internal validation cohorts at a 4:1 ratio,
forming a training cohort (n = 134) and an internal validation
cohort (n = 33). The LASSO regression was employed based
on 10-fold cross-validation to minimize the risk of overfitting.
LASSO tends to “shrink” the regression coefficients to zero
as λ increases. The optimal λ that yielded minimum cross
validation error in 10-fold cross validation was chosen. The risk
score was calculated by using the sum of normalized expression
weighted by the LASSO regression coefficients (Zhong et al.,
2020):

Risk score = EmRNA1×CmRNA1+EmRNA2×CmRNA2+
EmRNAn×CmRNAn

where E designates the expression level of each gene;
and C designates the lasso regression coefficient
of each gene.

The patients were separated into low- and high-risk groups
according to the median of the risk score. OS of the patients in
the two groups was analyzed by the log-rank test with “survival”
package in R. Receiver operating characteristic (ROC) curve
and the corresponding area under the ROC curve (AUC) were
calculated to evaluate the prognostic value of the risk score by
using “ROC” package.

CIBERSORT and Assessment of
Tumor-Infiltrating Immune Cells
CIBERSORT is a computational technique that predicts the cell
type signature in mix tissues through gene expression levels
(Newman et al., 2015). Cell types can be identified using RNA
mixtures in nearly any tissue (Yang et al., 2019). For this
study, we employed CIBERSORT to examine the 22 types of
immune cells in tumor tissues and show the percentages of 22
sets of tumor-infiltrating immune cells (TIICs) with bar plots
and a corheatmap.

Analysis of Immune Infiltration
To analyze the correlation between the risk signature and
infiltrating levels of six immune cells, including B cells, CD4+
T cells, CD8+ T cells, neutrophils, macrophages, and dendritic
cells, Spearman’s correlation was calculated and the strength of
correlation for the absolute value of r was as follows: r between
0 and 0.3 indicates a weak correlation; r between 0.3 and 0.7
indicates a moderate correlation; r between 0.7 and 1.0 indicates
a strong correlation (Akoglu, 2018).

Statistical Analysis
Boxplot was generated using the “ggplot2” package in R.
Heat map was generated using the “pheatmap” package in R.
A correlation analysis of the seven immune genes was performed
using the R “corrplot” package in the Pearson’s method. Circular
plot was generated using the “circlize” package in R. Student’s
t test was used to compare data from subgroups. Pearson’s

correlation test was used to analyze the correlation between the
IRGs signature and the expression of immune checkpoint genes.
K-M survival curves were compared using log-rank test. All
statistical analyses were conducted on R software (version 3.6.0).
A p value of < 0.05 was considered to indicate significance. Other
statistical methods were described throughout the study.

RESULTS

Identification of Differentially Expressed
IRGs in GBM
The mRNA levels of 2,498 IRGs in GBM (n = 169) and normal
brain tissues (n = 5) from TCGA were compared via the
Wilcoxon rank-sum test. In total, 595 differentially expressed
IRGs comprising 416 upregulated genes and 179 downregulated
genes were identified (Supplementary Table 1). The volcano
plot and heat map of differentially expressed IRGs are shown in
Figures 1A,B.

Functional Characterization of DEIRGs
The gene functional enrichment assessment showed that immune
responses were the most common. The most significant
biological terms were “regulation of leukocyte activation,”
“plasma membrane protein complex” and “receptor ligand
activity” among biological processes, cellular components, and
molecular functions, respectively (Figure 2A). With regard to
the KEGG cascades, most of signaling cascades were linked to
immune reactions, and cytokine-cytokine receptor crosstalk was
the most significantly enriched term (Figure 2B). For better
visualization, two heatmaps of these values were plotted using the
logFC, including one for GO terms (Figure 2C) and the other
for KEGG pathways (Figure 2D). Some GO terms and KEGG
cascades were linked to certain immune processes.

Identification of Prognostic Genes
The univariate Cox regression model was applied to select IRGs
with the patient OS, and a total of 15 IRGs were discovered
to be significantly associated with OS (p < 0.01). These genes
were subjected to the LASSO regression analysis to calculate the
correlation coefficients. The signature performed best when only
seven genes were included (Figures 3A,B). For this analysis, we
used LASSO regression to obtain the following seven optimal
IRGs (risk genes) for incorporation into the prognostic risk
model in TCGA training cohort (Supplementary Figure 1):
Bone Morphogenetic Protein Receptor Type 1A (BMPR1A),
Cathepsin B (CTSB), NFKB Inhibitor Zeta (NFKBIZ), TNF
Superfamily Member 14 (TNFSF14), C-X-C Motif Chemokine
Ligand 2 (CXCL2), Semaphorin-4F (SEMA4F), and Oncostatin
M Receptor (OSMR). Among these genes, CTSB, NFKBIZ,
TNFSF14, CXCL2, SEMA4F, and OSMR were characterized as
high-risk genes (estimating a poor prognosis), whereas BMPR1A
was identified as low-risk genes (functioning as a protective
factor) with regard to the OS of patients (see detailed information
in Table 1).
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FIGURE 1 | Identification of differentially expressed IRGs between GBM and normal brain tissues. (A) Volcano plots showing the log2 (fold change) of mRNA in GBM
compared to normal brain tissues, and the corresponding-log10 (P value) in TCGA datasets. Genes with adjusted P value below 0.05 and fold change above one
(below –1) were marked with red (green) dots. (B) Heatmap of the differentially expressed IRGs in TCGA datasets.

FIGURE 2 | GO terms and Enrichment of KEGG pathways for differentially expressed IRGs. (A) GO biological process analysis for the immune-related DEGs.
(B) KEGG pathway enrichment analysis for the immune-related DEGs. (C) Heatmap of the GO terms by logFC. (D) Heatmap of the KEGG pathways by logFC.

Construction of a Seven-Gene
Prognostic Biosignature
The LASSO regression analysis was used to screen the risk genes
for estimating the prognosis of GBM individuals (Friedman et al.,
2010; Simon et al., 2011). We utilized mRNA contents and
predicted the regression coefficients of the risk genes to compute

a risk score for each GBM individual. The prognostic estimation
model was created, which incorporated seven immune-linked
genes. The following formula was used for the calculation:

Risk score = (−0.194) BMPR1A+0.011 CTSB+0.050 NFKBIZ
+0.081 TNFSF14+ 0.090 CXCL2
+0.217 SEMA4F+0.250 OSMR
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FIGURE 3 | Seven-immune-related gene signature prognostic risk model analysis of GBM patients in TCGA dataset. (A) LASSO coefficient profiles of the 15 IRGs in
TCGA-GBM. (B) A coefficient profile plot was generated against the log (lambda) sequence. Selection of the optimal parameter (lambda) in the LASSO model for
TCGA. (C) Kaplan–Meier survival curves for high-risk and low-risk groups. (D) ROC curves to examine the predictive accuracy of the model for OS at 1-, 2-, and 3-
years.

According to the formula, we calculated the risk scores of each
GBM individual and clustered them into low-risk and high-
risk classes according to the median risk score. According to
the log-rank test, the Kaplan–Meier curve revealed that the
prognosis in the high-risk class was worse compared to the low-
risk class in TCGA training cohort (p = 0.012) (Figure 3C).
We employed the time-dependent ROC curves to explore the
estimation accuracy of the model for OS in TCGA training
cohort. The prognostic model area under the ROC values were
0.71 at 1-year, 0.71 at 2-year, and 0.82 at 3-year (Figure 3D).
Suggesting our 7-gene model had a favorable efficiency in
predicting prognosis.

Verification of the Immune-Linked Gene
Biosignature
The prognostic value of the seven IRGs signature was further
evaluated in three validation sets (TCGA internal validation set,
GSE74187, and GSE4412 datasets). The risk score for each patient
was calculated following the same formula. Patients in three
validation sets were classified into high- and low-risk groups

based on the median of the risk score. Survival analysis in the
three validation sets confirmed a lower survival rate in the high-
risk group (Figures 4A–C). The AUC of ROC curves for 1-,
2-, and 3-year survival rate in the validation dataset were 0.79,
0.91, and 0.93 (TCGA internal validation cohort) 0.64, 0.67, and

TABLE 1 | Risk genes in the prognostic risk model.

Gene Coef HR Low. 95%CI Upp. 95%CI p-value

BMPR1A −0.194 0.691 0.556 0.859 8.86E-4

CTSB 0.011 1.280 1.104 1.484 1.06E-3

NFKBIZ 0.050 1.442 1.200 1.731 9.10E-5

TNFSF14 0.081 1.320 1.138 1.532 2.58E-4

CXCL2 0.090 1.350 1.152 1.583 2.11E-4

SEMA4F 0.217 1.490 1.199 1.852 3.25E-3

OSMR 0.250 1.475 1.239 1.757 1.30E-5

7 prognostic immune-related genes screened out by the univariate Cox regression
and LASSO Cox proportional hazards regression.
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FIGURE 4 | Validation of seven-immune-related gene signature prognostic risk model of GBM patients in validation datasets. (A) Kaplan–Meier survival curves for
high-risk and low-risk groups in TCGA internal validation dataset (p < 0.001). (B) Kaplan–Meier survival curves for high-risk and low-risk groups in GSE74187
dataset (p = 0.048). (C) Kaplan–Meier survival curves for high-risk and low-risk groups in GSE4412 dataset (p = 0.07). (D–F) ROC curves to examine the predictive
accuracy of the model for OS at 1-, 2-, and 3- years in validation cohorts.

0.6 (GSE74187); 0.58, 0.77, and 0.99 (GSE4412) (Figures 4D–
F). In summary, the prognosis model created according to the
expression patterns of these seven prognosis-distinct immune-
linked genes had high estimation accuracy and stability in
identifying immune features. These data demonstrated that
our prognostic risk model precisely estimates the prognosis of
GBM individuals.

Relationship Between the Risk Score
and Clinical Factors
The relationship between the seven IRGs signature and clinical
factors, including age, gender, IDH1 mutation, 1p/19q mutation,
and subtype was further investigated using data from the TCGA
dataset. The results showed that a higher risk score was always
associated with IDH1 mutation, 19q mutation, and subtype. No
differences were observed between the risk score and age, gender,
or 1p mutation (Supplementary Figure 2).

Functional Annotations and Signaling
Pathway Enrichment in High- and
Low-Risk Score Groups
Because the monitoring of disease outcome is imperative
for clinical management, we aimed to identify molecular
biosignatures that could be utilized as viable prognostic
indicators. Functional gene annotation and KEGG enrichment
analyses focused on the above mentioned seven prognosis-
distinct immune-linked genes were conducted (Yu et al.,
2012). We demonstrated that these survival-linked IRGs were
most abundant in gene ontology (GO) terms linked to “cell
adhesion mediated by integrin,” “granulocyte migration,”
“platelet degranulation,” “regulation of leukocyte adhesion to
vascular endothelial cell,” “rna capping” and “transcription
preinitiation complex assembly” (Figure 5A). Gene set
enrichment analysis (GSEA) was performed to identify the
prospective cascades that differentiated the high- or low-risk

Frontiers in Genetics | www.frontiersin.org 6 February 2021 | Volume 12 | Article 63845875

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-638458 February 17, 2021 Time: 20:20 # 7

Hu et al. Immune-Related Gene Signature for Glioblastoma

FIGURE 5 | Functional gene annotations and KEGG enrichment analysis between high and low risk groups. (A) ClusterProfiler was selected for functional gene
annotations. (B) GSEA analysis was performed to identify the potential pathways differentiate the high and low risk groups.

groups. The following cascades were significantly enriched:
“complement and coagulation cascades,” “cytokine cytokine
receptor interaction,” “hematopoietic cell lineage,” “leukocyte
transendothelial migration,” “rna polymerase,” and “spliceosome”
(Figure 5B). These results suggested that the prognosis-specific
immune-related gene risk score using the seven IRGs may affect
these cascades and estimate the survival of GBM patients.

Correlation Between the Risk Score and
Immune Response
To better comprehend the connection between the risk score and
immune response, we calculated the association between the risk
score and the expression levels of core immune checkpoints in
GBM, such as CD28, TIM-3, B7-H3, PD-1, B7-H4, CD40, LAG3,
and PD-L1. Interestingly, the Circos plot (Gu et al., 2014) showed
that the risk score was strongly linked to expression levels of B7-
H3, CD40, and PD-L1 in TCGA cohorts (Figure 6A).

Distribution of Immune Invasion in
Glioblastoma
We first assessed immune invasion in glioma tissue in 22
subpopulations of immune cells by employing the CIBERSORT
algorithm. In Figure 6B, the percentage of immune cells in
each GBM sample is shown in different colors, and the lengths
of the bars indicate the immune cell population levels. We
then speculated that the divergence in TIIC proportions may
function as a critical feature of individual differences and possess
prognostic significance. Based on the chart, we established
that glioma tissues had comparatively high proportions of M1,
M0, and M2 macrophages as well as monocytes, which were
responsible for approximately 70% of the 22 subpopulations of
immune cells. In contrast, B cell and neutrophil proportions were
comparatively low, and they were responsible for approximately
10% of the immune cell subpopulations (Figure 6B). Proportions
of different types of immune cells subsets were weakly and

then moderately correlated (Figure 6C). Populations with a
negative correlation consisted of monocytes/M2 macrophages
(Pearson’s correlation = −0.41) and resting NK cells/activated
NK cells (Pearson’s correlation = −0.43). Given the important
role of these hub immune genes, the genetic variations of five
of them with a mutation rate ≥ 5% were further explored
(Supplementary Figure 3).

Prognostic Model Associates With
Immune Invasion in GBM
Clinical studies on immunotherapy have verified that tumor-
invading lymphocytes in the tumor microenvironment possess
an estimation significance for prognosis and treatment using
immunotherapy in some solid tumors (Bremnes et al., 2016; Lee
et al., 2016; Badalamenti et al., 2019). Given that our risk score
was centered on seven immune-linked genes, we investigated
whether it was linked to the invading levels of six immune
cell types in the TCGA GBM cohort acquired from TIMER.
We examined the link between the expression levels of seven
immune-linked genes and the invading contents of six immune
cell types. The findings demonstrated that the expression of
these seven genes exhibited remarkably positive correlation
with immune cell invasion. The expressions of CTSB, NFKBIZ,
CXCL2, and OSMR were all correlated with the invading levels of
dendritic cells (Supplementary Figure 4). To better understand
the impact of the seven IRGs signature on the infiltration of
immune cells, the relevance of the risk score and six immune
cells was investigated. Results indicated that the risk score was
positively related to neutrophil cells (r = 0.188), dendritic cells
(r = 0.404), and CD4+ T cells (r = 0.169) (Supplementary
Figure 5). Collectively, these data indicated that our model
system is partially linked to the invading level of immune cells
in the tumor microenvironment of GBM. Particularly, BMPR1A
was significantly correlated with the infiltrating levels of CD4+
T cells, macrophages, and dendritic cells. TNFSF14 and OSMR
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FIGURE 6 | Correlation between the risk score and immune response and the distribution of immune infiltration in GBM. (A) Circos plot shows the relationship
between the risk score and the expression levels of some important immune checkpoints in GBM. (B) The proportions of immune cells in each GBM sample are
indicated with different colors, and the lengths of the bars in the bar chart indicate the levels of the immune cell populations. (C) Correlation matrix for all 22 immune
cell proportions. Some immune cells were negatively related, represented in blue, and others were positively related, represented in red. The darker the color, the
higher the correlation.

were significantly correlated with the invading levels of CD4+ T
cells and dendritic cells. CXCL2 was significantly associated with
the invading levels of dendritic cells (Figure 7).

Effects of Prognosis-Specific
Immune-Related Genes on Oncogenic
Pathways
To further elucidate the molecular mechanisms for prognosis-
specific IRGs participating in tumorigenesis, we explored the
link between the expression of individual genes and activation
or repression of 10 core signaling cascades based on a
pathway score computed from the sum of the relative protein
contents for all positive modulatory constituents less that of
all negative modulatory constituents (Akbani et al., 2014). Our
data demonstrated that seven genes were highly correlated to

the activation or suppression of numerous oncogenic cascades
(Supplementary Figure 6). For example, CTSB was highly
correlated with the repression of DNA damage response
and AR hormone, as well as the activation of apoptosis
and EMT signaling pathways. CXCL2 was associated with
the inhibition of cell cycle, DNA damage response, and
AR hormone, as well as activation of apoptosis, EMT, and
RAS/MAPK signaling pathways. These results suggested that
prognosis-specific IRGs are linked to alterations of diverse
oncogenic cascades.

Hub Gene Drug Sensitivity
GSCALite constitutes a web-based analysis portal for gene set
cancer analysis (Liu C. J. et al., 2018), based on which the drug
sensitivity of the hub genes was analyzed to provide support on
drug-targeted therapy (Supplementary Figure 7). Low NFKBIZ
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FIGURE 7 | Correlations of seven immune-related gene copy member with immune infiltration level in GBM. These seven-immune-related gene CNV affects the
infiltrating levels of different immune cells in GBM. *p < 0.05, **p < 0.01, ***p < 0.001.

level is resistant to 11 drugs or small molecules, low BMPR1A
level is resistant to seven drugs or small molecules, low SEMA4F
level is resistant to 16 drugs or small molecules, and low levels of
OSMR, CXCL2, and CTSB are resistant to more than 32 drugs or
small molecules.

DISCUSSION

Glioblastoma is a fatal human cancer. Despite of the years
of research focused on GBM biology and the numerous
clinical trials to evaluate new treatments, the prognosis of
individuals with glioblastoma remains dismal (Thakkar et al.,
2014). Patients diagnosed with GBM undergo treatments,
including neurosurgery, radiotherapy, and chemotherapy, with
unsatisfactory survival.

There has been great advancement in the comprehension
of the genetic and molecular underpinnings of glioblastoma

with the emergence and progression of microarray technology
and sequencing technology. The IDH1 mutant was found in
an integrated genomic analysis in 2008 (Parsons et al., 2008).
Many studies have been performed in recent years and suggest
that mutated IDH1 participates in the pathogenesis of glioma.
According to the WHO categorization of central nervous system
tumors, glioblastoma is divided into IDH-mutant and IDH-
wildtype subtypes (Louis et al., 2016). This categorization is based
entirely on histological features. There are many specific genetic
changes in glioblastoma cases, and the most frequently mutated
or deregulated gene is epidermal growth factor receptor (EGFR),
which is amplified in approximately 60% of glioblastomas
(Huang et al., 2007). Many deregulations with certain pathways,
such as PI3K, P53, and RB, have also been identified. Overall,
these studies show the prospect of the gene signature in tumor
diagnosis and prognosis, and they provide new evidence for
tumor biology. With the progression of bioinformatics and open
access of high-throughput data, researchers have studied multiple
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gene prognostic signatures for GBM, which result in more
accuracy than single gene prognostic signatures (Colman et al.,
2010; Yin et al., 2019).

The CNS has been considered as an immune-favored system
based on the initial experimental data documented more than
50 years ago (Medawar, 1948; Billingham et al., 1954), but many
findings have suggested that the immune microenvironment
provides sufficient opportunities to treat brain tumors with
immunotherapy even though the brain is an immunologically
distinct region (Schiffer et al., 2017). Scientists have great
interest in utilizing immunotherapy to treat glioblastoma because
it has shown considerable improvements in the management
of numerous solid tumors, including melanoma, renal cell
carcinoma, and NSCLC. There are many ongoing clinical
trials for immunotherapy, but the results are not satisfactory.
Thus, we need more knowledge about the GBM immune
microenvironment.

Herein, we constructed a robust seven immune-linked gene
biosignature for risk stratification in glioblastoma patients.
In contrast to a previous studies (Liang et al., 2020), we
used univariate Cox regression analysis and LASSO regression
assessment to classify genes as independent prognostic indicators.
Among them, CTSB, NFKBIZ, TNFSF14, CXCL2, SEMA4F, and
OSMR were characterized as high-risk genes, whereas BMPR1A
was identified as low-risk gene.

The protease cathepsin B (CTSB) has been identified to
highly express in cancer (Mijanovic et al., 2019), and associate
with poor prognosis of a variety of cancers, including breast
cancer, pancreatic cancer, and lung squamous cell carcinoma,
which could be used as an independent predictor of these
tumors (Gong et al., 2013; Zhang et al., 2014). It was previously
found that the absence of CTSB delays the growth and
invasion of pancreatic neuroendocrine tumors (Gocheva et al.,
2006). Here, we identified CTSB as a risk pattern based on
our risk model, which is in consistent with previous studies.
NFKBIZ mutation is associated with ulcerative colitis, and the
repeated inflammation and repair are closely related to the
occurrence of colorectal cancer (Kakiuchi et al., 2020). Thus,
chronic inflammation might be related to GBM. TNFSF14 is
also known as LIGHT, which has been studied at preclinical
level for more than 10 years and has shown the prospect
of strengthening cancer immunotherapy (Skeate et al., 2020).
CXCL2 can promote the recruitment of MDSC and is associated
with the prognosis of bladder cancer (Zhang et al., 2017).
SEMA4F is expressed in adults and related to the neural
guidance of embryos. It can induce neurogenesis in prostate
cancer, thus promoting cancer growth and migration (Ding
et al., 2013). The cytokine receptor for oncostatin M (OSMR)
regulates self-renewing brain tumor stem cells and promotes
the resistance of GBM to ionizing radiation (Sharanek et al.,
2020). In breast cancer, BMPR1-knockdown can inhibit RANKL
production through p38 pathway, thereby inhibiting breast
cancer-induced osteolysis (Liu Y. et al., 2018). Above all, the
above mentioned seven genes play important roles in the
occurrence and development of tumors.

We next created a landscape of 22 subtypes of immune cells
and acquired the status of immune infiltration in the GBM

microenvironment. Our results were similar to those of previous
studies (Lu et al., 2019; Liang et al., 2020). Furthermore, we
analyzed the relationship between the expression levels of seven
immune-linked genes and the invading levels of six immune
cells. The data demonstrated that the expression of these seven
genes exhibited positive correlation with immune cell invasion
(Supplementary Figure 4). All these findings indicated that our
prognostic model may aid in understanding the immune status
of glioblastoma patients. We also generated a circo plot to show
the relationship between the risk score and expression levels of
core immune checkpoints in GBM. This study may provide new
targets or effective biomarkers for glioblastoma immunotherapy.

In summary, the immunotherapy of GBM patients should
be individualized to obtain a better curative effect. Our study
provides a prognosis prediction based on IRGs, which may
reflect the immune status of GBM patients. However, our
study had limitations as our study was based on databases and
bioinformatics analyses. Immunohistochemistry, flow cytometry,
and RT-PCR should be used to verify our research results.

CONCLUSION

In our study, IRGs were identified to generate a prediction
model of glioblastoma patient prognosis. We also explored
the connection between these genes and the immune
cells and immune checkpoints. Further research on these
genes may provide new insights in GBM biology and
promote immunotherapy.
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Lung adenocarcinoma (LUAD) is a major subtype of lung cancer, the prognosis
of patients with which is associated with both lncRNAs and cancer immunity. In
this study, we collected gene expression data of 585 LUAD patients from The
Cancer Genome Atlas (TCGA) database and 605 subjects from the Gene Expression
Omnibus (GEO) database. LUAD patients were divided into high and low immune-
cell-infiltrated groups according to the single sample gene set enrichment analysis
(ssGSEA) algorithm to identify differentially expressed genes (DEGs). Based on the 49
immune-related DE lncRNAs, a four-lncRNA prognostic signature was constructed by
applying least absolute shrinkage and selection operator (LASSO) regression, univariate
Cox regression, and stepwise multivariate Cox regression in sequence. Kaplan–Meier
curve, ROC analysis, and the testing GEO datasets verified the effectiveness of the
signature in predicting overall survival (OS). Univariate Cox regression and multivariate
Cox regression suggested that the signature was an independent prognostic factor. The
correlation analysis revealed that the infiltration immune cell subtypes were related to
these lncRNAs.

Keywords: lung adenocarcinoma, lncRNA, survival analysis, immune infiltrate, GSEA

INTRODUCTION

Lung cancer is one of the most common types of malignancy that is a leading cause of death
worldwide. The frequency of lung adenocarcinoma (LUAD) has exceeded lung squamous cell
carcinoma (LUSC), which makes LUAD the most common histological subtype of primary
lung cancer (Lortet-Tieulent et al., 2014). The high mortality is mainly because lung cancer
is typically diagnosed at an advanced stage. Patients who have mutations in epidermal growth
factor receptor (EGFR) are recommended to receive molecule-targeted therapy by administrating
anti-EGFR inhibitors (Duffy and O’Byrne, 2018). For those who do not have specific mutations,
immunotherapies targeting inhibitory receptors have recently emerged as an effective therapy for
advanced cancer. The most studied way is using antibodies to block the programmed cell death-1
(PD-1)/programmed cell death ligand-1 (PD-L1) pathway, an immune checkpoint that is exploited
by tumor cells (Sacher and Gandhi, 2016). These anti-PD-1/PD-L1 treatments do not need specific
mutations such as EGFR, KRAS, or ALK (Brody et al., 2017) and are available for more patients.
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A large proportion of tumor cells are immune infiltrating
cells (Yu et al., 2018). Tumor immune cell infiltration is vital
for the effect of immunotherapy and therefore the prognosis of
LUAD patients because the tumor-specific antigens need to be
recognized by the antigen–antibody complementary determining
region in immune cells (Sela-Culang et al., 2014; Jiang et al., 2017;
Liu et al., 2018). Higher CD8-T cell infiltration seems to better
respond to anti-PD-1/PD-L1 administration (Pagès et al., 2016).

Long non-coding RNA (lncRNA), a type of non-coding RNA
with a length longer than 200 nucleotides, accounts for a large
proportion of the human genome. Studies have suggested that
lncRNAs regulate gene expression and are associated with many
biological processes such as development (Quinn and Chang,
2016). For example, PTTG3P up-regulation has been discovered
to promote cell viability and contribute to the poor survival of
LUAD patients (Shih et al., 2020). Moreover, lncRNA is related
to many aspects of cancer immunity including the recognition
and killing of cancer cells, cell migration, and T cell infiltration
(Yu et al., 2018).

Therefore, it is reasonable to predict the survival of LUAD
patients and guide clinical treatment using immune-related
lncRNAs. To further explore the possible roles of immune-related
lncRNAs that play in prognosis and immunotherapy, we analyzed
the transcriptome data from The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) database to build an
immune-related lncRNA signature.

MATERIALS AND METHODS

LUAD Data Collection and Grouping
TCGA-LUAD datasets including RNA expression profile
(n = 585) processed by HTcount, patients survival (n = 738),
and phenotype (n = 125) information were downloaded from
TCGA1. RNA expression profiles of GSE19188 (normal: 65;
tumor: 45), GSE27262 (normal: 25; tumor: 25), GSE30219
(normal: 14; tumor: 84), and GSE31210 (normal: 20; tumor: 226)
were downloaded from https://www.ncbi.nlm.nih.gov/ and each
was normalized by RMA algorithm using R package affy. Tumor
and normal tissue samples were selected from the above GEO
datasets and divided into tumor (n = 375) and normal (n = 124)
groups. The survival data of LUAD patients in GSE30219
(n = 84), GSE31210 (n = 226), and GSE50081 (n = 106) were
collected and integrated with RNA expression data (n = 416) for
prognostic model validation.

Metagene of 28 immune cell subtypes was obtained
from https://www.cell.com/cms/10.1016/j.celrep.2016.12.
019/attachment/f353dac9-4bf5-4a52-bb9a-775e74d5e968/
mmc3.xlsx (Charoentong et al., 2017) to evaluate the infiltration
level of immune cells by the single sample gene set enrichment
(ssGSEA) method.

Validation of the Data Grouping
ssGSEA and hierarchical cluster were used to divide the
subjects into a high immune-cell-infiltrated group and a

1https://portal.gdc.cancer.gov/

low immune-cell-infiltrated group. ESTIMATE algorithm was
used to validate the grouping by comparing the stromal
score, immune score, ESTIMATE score, and tumor purity
of the two groups.

Identification of Immune-Related
Differentially Expressed lncRNAs
R package edgeR was used to find the differentially expressed
genes (DEGs) between two pairs: tumor and non-tumor cells
(GSE31210, GSE30219, GSE19188, and GSE27262), and high
immune-infiltrated and low immune-infiltrated cells (TCGA
dataset). | Log fold change| >1 and p < 0.05 were used to choose
the DEGs because the data have been log-transformed. Then,
the lncRNAs that appeared in both groups will be regarded as
immune-related lncRNAs.

Prognostic Signature Construction and
Validation
The least absolute shrinkage and selection operator (LASSO)
regression was used to find out the prognosis-related lncRNAs
in the immune-related lncRNAs because it is a robust feature
selection algorithm. The survival data of 585 TCGA patients
were used. Then univariate Cox regression filtered out those
prognostic lncRNAs with p < 0.005. Finally, stepwise multivariate
Cox regression based on AIC (Akaike information criterion)
value was used on the identified lncRNAs to select the ones that
minimize AIC to attain the best model fit. The eventual risk
score was calculated based on the coefficients of every lncRNAs
as below:

risk score =
n∑

i=1

coefi× id (1)

All the subjects were divided into high-risk and low-risk
groups with respect to the median risk score. Then, the Kaplan–
Meier curve was constructed to compare the overall survival
(OS) between these two groups. Although the sequencing and
processing methods were different for training and testing
datasets, the relative gene expression level should be similar.
Therefore, it is reasonable to use GEO datasets to test the
prognostic lncRNA signature based on the defined coefficients.
The area under the ROC curve (AUC), an evaluation of the
performance of the model based on true-positive rate and false-
positive rate, was plotted to assess the model. Univariate and
multivariate Cox regressions were then used to explore whether
the risk signature was an independent prognostic factor.

Gene Set Enrichment Analysis (GSEA)
Hallmark gene sets were fetched from the MsigDB database using
msigdbr (v7.0.1) package in R. The gene list was ranked by the
Wald test statistics. R package fgsea (v1.14.0) was used to perform
GSEA and visualize the top enriched gene sets.

Pearson Correlation Analysis
Infiltration values of immune cell subtypes for LUAD were
downloaded from the TIMER database2 (Li et al., 2016). The

2http://timer.cistrome.org/
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FIGURE 1 | High and low immune-cell-infiltrated groups. (A) The GSEA scores for 28 types of immune cells from GSVA package using ssGSEA method. Red
represented high GSEA score for high immune cell infiltration, blue represented low GSEA score for low immune cell infiltration. (B) The stromal score, immune
score, and ESTIMATE score for high and low immune-cell-infiltrated groups.

FIGURE 2 | DEGs between high and low immune infiltration groups, and between tumor and normal tissues. (A) The volcano plot of DEGs between the high
immune-cell-infiltrated and low immune-cell-infiltrated group. Red indicated DEGs up-regulated in the high infiltration group, while blue indicated the down-regulated
ones. (B) The yellow circle represented the DE lncRNAs between high and low immune infiltration groups. The purple circle represented the DE lncRNAs between
tumor and normal tissues. Forty-nine lncRNAs appeared in both groups.

Pearson correlation was calculated between risk scores and
infiltration value.

Statistical Analysis
All statistical methods were accomplished by R (4.0.1) using
packages gsva, estimate, glmnet, survival, and fgsea. Two-tailed
p < 0.05 indicated significant difference if not specified.

RESULTS

Gene Expression Data Grouping and
Validation
Single sample gene set enrichment analysis (ssGSEA) and
hierarchical clustering algorithm were used to divide the subjects
into high immune cell infiltration (n = 193) and low immune
cell infiltration (n = 392) groups. R package GSVA was used
to calculate the GSEA score for each sample (Figure 1A).
Then, the hclust package was used to hierarchically cluster
the samples based on the Euclidean distance of these scores.
The two groups derived from clustering were validated by the

ESTIMATE algorithm. Compared with the high immune-cell-
infiltrated group, the tumor purity of the low immune-cell-
infiltrated group was significantly higher while the stromal score,
immune score, and ESTIMATE score were significantly lower
(p < 0.0001; Figure 1B).

Identification of Immune-Related DEGs
R package edgeR was used to figure out the DEGs between tumor
and normal tissues with a threshold of | log2 fold change| >1 and
p < 0.05 using four datasets (GSE31210, GSE19188, GSE30219,
and GSE27262). The DEGs were first identified within each
dataset, and then the genes verified in more than one dataset
were extracted. In total, 2931 DEGs including 342 lncRNAs of
LUAD patients were identified for tumor and normal tissues.
With the same criterion, 1,886 (874 up-regulated and 1,012
down-regulated) immune-related DEGs including 526 lncRNAs
were found using TCGA data between high and low immune-
cell-infiltrated groups (Figure 2A). Two-way Venn analysis
was carried out to filter the immune-related DEGs for LUAD
patients (Figure 2B).
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FIGURE 3 | Construction of the immune-related lncRNA signature. (A) The LASSO coefficient profiles of 19 prognosis-related lncRNAs. Each colored line showed
the change of the coefficient of one lncRNA with the normalization factor. (B) Partial likelihood deviance was plotted against the logarithm of lambda in the 10-fold
cross-validation. The red dots indicated the deviance and the gray vertical lines indicated standard error of the deviance. The gray vertical dotted line corresponded
to the optimal lambda with the lowest partial likelihood deviance. (C) Kaplan–Meier curve of high-risk and low-risk groups. (D) The AUC of 1-, 5-, and 10-year OS.
The x-axis represented the false-positive (FP) rate, and the y-axis represented the true-positive (TP) rate. The signature predicted the 10-year survival best.

FIGURE 4 | Validation of the signature. (A) Kaplan–Meier curve of high-risk and low-risk groups in combined validation dataset. (B) The AUC of 1-, 5-, and 10-year
OS. The validation data also predicted 10-year survival best.

Immune-Related lncRNA Prognostic
Signature Construction Using
Regressions
To avoid overfitting, 19 prognostic lncRNAs were selected
from the 49 DE lncRNAs using LASSO regression with
10-fold cross-validation (Figures 3A,B). Univariate Cox
regression was then carried out to increase the robustness
with a threshold of p < 0.005 and filtered nine lncRNAs
for the subsequent step. The four-lncRNA signature

was finally constructed by a stepwise multivariate Cox
regression with coefficients. The risk score was calculated
as below:

Risk score = −0.088∗HSPC078 − 0.083∗DRAIC −

0.045∗AP004608.1 − 0.125∗MIR223HG, which is the sum
of the multiplication of lncRNA expression and each coefficient.

To determine how well the risk score could predict
OS, LUAD patients were divided into high-risk and low-
risk groups with respect to the median risk score. The
Kaplan–Meier curve showed that the OS of the high-risk
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FIGURE 5 | Verification that the signature is an independent prognostic factor. From left to right, the column represented: factor name, number of subjects, HR
(lower and upper 95% value), the HR plot, and the p-value. The result of multivariate Cox regression showed that risk score and tumor stage are significant
prognostic factors for LUAD patients.

FIGURE 6 | The top enriched gene sets in up- and down-regulated DEGs in the high-risk group. (A) Gene sets enriched in DEGs up-regulated in the high-risk group.
G2M checkpoints and E2F target-related genes were significantly enriched. (B) Gene sets enriched in DEGs down-regulated in the high-risk group. Genes related to
interleukin, STAT, KRAS, and p53 were enriched, while cell mitosis-related genes were significantly deprived.

group was significantly worse than that of the low-risk one
(p < 0.0001) (Figure 3C). Also, the AUC plot suggested
that the signature could predict the survival well in a long
time course (0.661, 0.63, and 0.727 for 1-, 5-, and 10-year
survival) (Figure 3D).

Validation of the Effectiveness of lncRNA
Signature
The model was validated using GSE31210, GSE30219, and
GSE50081 datasets using the coefficients trained previously.
Samples in each dataset were assigned to the high-risk
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FIGURE 7 | Correlation between risk score and immune cell subtype infiltration. The correlation values of B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and myeloid dendritic cells were −0.241, −0.255, −0.006, −0.055, −0.115, and −0.106, respectively. Only B cells, CD4+ T cells, macrophages,
and myeloid dendritic cells were significantly correlated with risk score (p < 0.05).

or low-risk group based on the median risk score. Then,
the assignment results of three datasets were combined to
plot the Kaplan–Meier curve and AUC. From Figure 4A,
the survival time of the high-risk group was significantly
shorter (p < 0.01) than the low-risk group in the combined
validating set, which suggested that the risk score can predict
the OS well. The area under ROC was 0.687, 0.677, and
0.697 for the 1-, 5-, and 10-year OS (Figure 4B). Same
as the training set, the lncRNA signature predicted the 10-
year survival best.

The Immune-Related Signature Could
Serve as an Independent Prognostic
Factor
The risk score was then analyzed by Cox regression along with
age, gender, tumor stage, and smoking history as an independent
factor. The p value of risk score < 0.001 in both univariate and
multivariate (Figure 5). Cox regression indicated that risk score
could serve as an independent prognostic factor. The risk score
and advanced tumor stage were risk factors for LUAD patients
with a hazard ratio (HR) larger than 1 as shown in Figure 5.

Functional Analysis Revealed Related
Signaling Pathways and Micro-RNAs
To identify the enriched gene sets for DEGs ranked by
the Wald test statistics, the fgsea package was used to do

GSEA analysis for up- and down-regulated genes in the
high-risk group separately. Several mitosis-related gene sets
including E2F target (NES = 3.58) and G2M checkpoints
(NES = 3.45) were enriched in the up-regulated DEGs in
the high immune-cell-infiltrated group (Figure 6A). In the
down-regulated DEGs, signaling pathways including IL6-JAK-
STAT3, KRAS (down-regulated), IL2-STAT5, and p53 pathways
were enriched (Figure 6B). These results showed that the
immune-related lncRNAs may promote cancer progression by
advancing cell mitosis.

Also, some micro-RNAs (miRNAs) were related to these
immune-related prognostic lncRNAs. From the LncBase database
(Paraskevopoulou et al., 2016), we found that 21 miRNAs have
been verified to interact with these lncRNAs by experiments.
The genes regulated by these miRNAs were enriched in ECM-
receptor, viral carcinogenesis, p53 signaling, and hippo signaling
pathways (Ioannis et al., 2015; Dimitra et al., 2018). mir-
30, mir-10, and mir-181 played important roles in these
pathways.

The lncRNA Signature Was Associated
With B Cell, CD4+ T Cell, Macrophage,
and Myeloid Dendritic Cell Infiltration
To explore the relationship between lncRNAs and the
infiltration of some representative immune cells, the
Pearson correlation value was calculated between risk
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scores and TIMER estimated infiltration value. As shown
in Figure 7, the infiltration values of B cells, CD4+ T
cells, macrophages, and myeloid dendritic cells were
significantly negatively correlated with risk scores. The negative
coefficients illustrated that the immune-related lncRNA
signature was associated with high infiltration of immune
cell subtypes.

DISCUSSION

We obtained data from TCGA and GEO database to identify
immune-related differentially expressed lncRNAs of LUAD
patients. Patients were grouped into high and low immune-
cell-infiltrated groups by GSVA, which was further validated
by ESTIMATE. LASSO regression, univariate Cox regression,
and stepwise multivariate Cox regression were used to build a
four-lncRNA prognostic signature. The risk score was calculated
using the coefficients of the four lncRNAs, based on which
patients were classified into low-risk and high-risk groups.
The OS of the high-risk group was significantly shorter than
the low-risk group in both the training and the testing
datasets. The AUCs showed that the risk signature has a
good prediction of 10-year survival. The lncRNA signature
was confirmed to be an independent prognostic factor when
analyzed by multivariate Cox regression along with age, gender,
tumor stage, and smoking history. Finally, the functional
GSEA analysis was performed to investigate how the lncRNAs
may affect the OS.

Our model showed consistent results in predicting OS using
both RNA-seq and microarray datasets although the coefficients
were trained only by the RNA-seq data. This could be explained
by the robust prognostic value of the four lncRNAs. All lncRNAs
in the signature, including SIGLEC17P, DRAIC, MIR223HG,
and AP004608.1, are protective for LUAD patients as shown
by the negative coefficients. SIGLEC17P was suppressed in the
advanced stage of cancer (iii and iv), which illustrated that the
dysfunction of it may be associated with cancer progression
(Zhou et al., 2019). Previous studies have implied that DRAIC
may inhibit cell migration and invasion and predict longer
survival time in LUAD patients (Sakurai et al., 2015). AP004608.1
was a protective lncRNA in pancreatic adenocarcinoma (Wang
et al., 2019). MIR223HG has also been identified as a prognostic
lncRNA related to tumor microenvironment in another study
(Jin et al., 2020) with HR < 1, which was consistent
with our results.

The GSEA results indicated that genes highly expressed in
the high-risk group could promote cell mitosis, while genes
expressed lowly seems to promote p53 IL6-JAK-STAT3 and
IL2-STAT5 pathways and decrease KRAS signaling. The tumor
suppressor protein p53 was suggested to regulate cell growth by
promoting apoptosis and DNA repair under stressful conditions
(Kanapathipillai, 2018). KRAS signaling is oncogenic and was
reported to regulate tumor-associated immune responses such
as inducing cancer cell evasion from immunosurveillance (Dias
Carvalho et al., 2017). Therefore, the down-regulation of KRAS
could delay cancer progression and benefit immunotherapy. The

JAK-STAT gene set was enriched in up-regulated DEGs as a
downstream pathway of interferon-gamma signaling, which is
an essential responsive cytokine in cytotoxic T cells mediated
killing of tumor cells (Barnholt et al., 2009; Ni and Lu,
2018). These pathways enriched in down-regulated DEGs in
the high-risk group have contributed to tumor suppression in
various ways that are associated with tumor immunity. Also,
these lncRNAs were correlated with miRNAs including mir-
30, mir-10, and mir-181. Mir-30 was shown to be a tumor
suppressor gene by many studies (Braun et al., 2010; Cheng
et al., 2012). As mir-10 were de-regulated in many cancers
(Lund, 2010), their up-regulation may decrease the progression
of cancer. The down-regulation of mir-181 was suggested to
regulate PTEN expression and thus inhibit tumor development
(Chang et al., 2017).

As shown by the correlation analysis, the negative correlation
between risk scores and infiltration values illustrated that
higher expression of lncRNA signature was correlated with
higher immune cell infiltration and thus longer OS. This
might be explained by the fact that the signaling pathways
correlated with lncRNA expressions that could also affect[
tumor immunity.

In conclusion, we identified a novel four-lncRNA
prognostic signature that was associated with the infiltration of
immune cell subtypes.
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Deep Learning Reveals Key
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Wanchen Ning1, Aneesha Acharya2,3, Zhengyang Sun4,
Anthony Chukwunonso Ogbuehi5, Cong Li6, Shiting Hua6, Qianhua Ou6, Muhui Zeng6,
Xiangqiong Liu7, Yupei Deng7, Rainer Haak8, Dirk Ziebolz8†, Gerhard Schmalz8†,
George Pelekos3* , Yang Wang9* and Xianda Hu7*

1 Department of Conservative Dentistry and Periodontology, Ludwig-Maximilians-University of Munich, Munich, Germany,
2 Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India, 3 Faculty of Dentistry, The University
of Hong Kong, Hong Kong, China, 4 Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz,
Germany, 5 Faculty of Physics, University of Münster, Münster, Germany, 6 Zhujiang Hospital, Southern Medical University,
Guangzhou, China, 7 Laboratory of Cell and Molecular Biology, Beijing Tibetan Hospital, China Tibetology Research Center,
Beijing, China, 8 Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany,
9 State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green
Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China

Background: Periodontitis is a chronic immuno-inflammatory disease characterized
by inflammatory destruction of tooth-supporting tissues. Its pathogenesis involves a
dysregulated local host immune response that is ineffective in combating microbial
challenges. An integrated investigation of genes involved in mediating immune response
suppression in periodontitis, based on multiple studies, can reveal genes pivotal to
periodontitis pathogenesis. Here, we aimed to apply a deep learning (DL)-based
autoencoder (AE) for predicting immunosuppression genes involved in periodontitis by
integrating multiples omics datasets.

Methods: Two periodontitis-related GEO transcriptomic datasets (GSE16134 and
GSE10334) and immunosuppression genes identified from DisGeNET and HisgAtlas
were included. Immunosuppression genes related to periodontitis in GSE16134
were used as input to build an AE, to identify the top disease-representative
immunosuppression gene features. Using K-means clustering and ANOVA, immune
subtype labels were assigned to disease samples and a support vector machine
(SVM) classifier was constructed. This classifier was applied to a validation set
(Immunosuppression genes related to periodontitis in GSE10334) for predicting
sample labels, evaluating the accuracy of the AE. In addition, differentially expressed
genes (DEGs), signaling pathways, and transcription factors (TFs) involved in
immunosuppression and periodontitis were determined with an array of bioinformatics
analysis. Shared DEGs common to DEGs differentiating periodontitis from controls
and those differentiating the immune subtypes were considered as the key
immunosuppression genes in periodontitis.

Results: We produced representative molecular features and identified two immune
subtypes in periodontitis using an AE. Two subtypes were also predicted in the validation
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set with the SVM classifier. Three “master” immunosuppression genes, PECAM1,
FCGR3A, and FOS were identified as candidates pivotal to immunosuppressive
mechanisms in periodontitis. Six transcription factors, NFKB1, FOS, JUN, HIF1A,
STAT5B, and STAT4, were identified as central to the TFs-DEGs interaction network.
The two immune subtypes were distinct in terms of their regulating pathways.

Conclusion: This study applied a DL-based AE for the first time to identify immune
subtypes of periodontitis and pivotal immunosuppression genes that discriminated
periodontitis from the healthy. Key signaling pathways and TF-target DEGs that
putatively mediate immune suppression in periodontitis were identified. PECAM1,
FCGR3A, and FOS emerged as high-value biomarkers and candidate therapeutic
targets for periodontitis.

Keywords: deep learning, autoencoder (AE), periodontitis, immunosuppression genes, therapeutic targets,
bioinformatics

INTRODUCTION

Periodontitis involves the inflammatory destruction of the
supporting tissues of teeth. It involves a perturbed local host
immune response that is ineffective in countering plaque biofilm
microbiota (Meyle and Chapple, 2015). Innate and adaptive
immunity work in tandem to counter the infectious challenge
posed by oral microbiota, limit the spread of infection, and
reestablish periodontal tissue homeostasis (Cekici et al., 2014).
This delicately orchestrated process involves the actions of several
immune regulatory cell types, including oral epithelial cells
(Dutzan et al., 2016), neutrophils (Scott and Krauss, 2011),
macrophages, dendritic cells (Zhou et al., 2019), B cells, and
T cells (Gemmell et al., 2002). Regulatory T cells (Tregs) have
particularly attracted much recent attention as they engender
multiple suppressive mechanisms to inhibit various cells involved
in innate and adaptive immunity. The role of Tregs in controlling
periodontitis due to their immune-suppressive capabilities
has been noted (Alvarez et al., 2018). Immune suppression
demands the tandem action of multiple immunosuppression
genes, several of which have been demonstrated in the context
of periodontal pathology. These include programmed cell
death 1 (PD1), PD-Ligand 1 (PD-L1) (Bailly, 2020), and
Cytotoxic T-Lymphocyte Antigen4 (CTLA4) (Aoyagi et al.,
2000), that function as immune checkpoint inhibitors to
modulate B-cells, CD8+ T-cells, and CD4+ T-cells, which
can amplify infection and promote tissue damage. Therefore,
an immune checkpoint blockade has been proposed as a
modality to manage periodontitis. However, existing reports have
documented very few immunosuppression genes in the context
of periodontitis. It is also recognized that immunosuppressive
agents impose a risk for periodontal diseases, inducing gingival
overgrowth or other alterations in periodontal tissues (Cota
et al., 2010). Immunosuppressive medications for immune-
related disorders such as rheumatoid arthritis or solid organ
transplantation are associated with periodontal disease. However,
the underlying molecular mechanisms remain unclear, and
few genes have been implicated. For instance, specific Human
Leukocyte Antigen (HLA)-DR1 genotype is documented to

protect from gingival overgrowth induced by cyclosporine A
(Cebeci et al., 1996). A more expansive understanding of immune
suppression genes that are relevant to periodontal disease
pathology can lead the identification of candidate genes and
molecular pathways of significant potential translational value.
Such data may enable the development of gene and targeted drug
therapy for multiple periodontal diseases.

Experimental studies are limited by scale, incomplete or
inaccurate existing databases, and the cost-intensive nature
of molecular experiments, so approaches that can predict
previously unidentified gene functions, enable gene function
discovery, and automate the identification of inaccuracies can
be very valuable (Chicco et al., 2014). Deep learning (DL)
computational frameworks are capable of these. In this regard,
an autoencoder (AE), is essentially a dimensionality reduction
tool, as the “building block” of DL, comprises of a three-layered
unsupervised artificial neural network that performs extraction
of representative features (Lee et al., 2009; Wang et al., 2016). The
AE has been implemented as a DL framework to predict survival
in liver cancer (Chaudhary et al., 2018), breast cancer (Tan et al.,
2014), head and neck squamous cell carcinoma (HNSCC) (Zhao
et al., 2019), and when applied to RNA-seq data (Xiao et al., 2018)
has shown value in generating key features from gene expression
data that are linked to clinical outcomes.

To our knowledge, the present study is the first to integrate
multi-omics data pertaining to immunosuppression genes in
periodontitis using a DL-based AE combined with a support
vector machine (SVM) classifier (Ju et al., 2015) confirmed in a
validation set, along with an array of bioinformatic analysis, with
an aim to identify the most significant immunosuppression genes
relevant to the pathogenesis of periodontitis.

MATERIALS AND METHODS

Study Design
An overview of the workflow of this study is depicted in Figure 1.
In brief, two cohorts of periodontitis datasets (GSE16134
and GSE10334) and immunosuppression genes were included.
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FIGURE 1 | Overall workflow. The flowchart depicts the autoencoder (AE) architecture and workflow combining deep learning (DL) techniques to identify key
immunosuppression genes in periodontitis. Immunosuppression genes related to periodontitis from GSE16134 were applied as input features for an AE. The new
transformed features in the bottleneck layer of the AE were clustered into different subtypes using K-mean clustering. Then, based on the clustering labels, we
selected the top 100 most related genes from GSE16134 based on ANOVA F values. The input dataset was split at a 60%/40% ratio (training set/test set) to assess
the robustness of the AE, using a 5-fold CV. Subsequently, based on the above labels of GSE16134, an SVM classifier was built and further applied for prediction in
a validation set (GSE10334). To explore the biological roles of the different identified subtypes, differentially expressed genes (DEGs) and transcription factors (TFs),
differential expression analysis, functional enrichment analysis, and construction of TF-target DEGs interaction network were, respectively, applied. Eventually, to
identify the immunosuppression genes that might be most pertinent to periodontitis, the overlapping DEGs among the DEGs discriminating disease (periodontitis)
and controls and DEGs discriminating the subtypes classified with the AE and SVM models were determined.

First, immunosuppression genes related to periodontitis from
GSE16134 were identified and applied as input features to build
an AE model. Second, each of the new transformed features in the
bottleneck layer of the AE was clustered into different subgroups
using K-mean clustering. In addition, based on the clustering
labels, we selected the top 100 most related genes from GSE16134
based on ANOVA F values. Data partitioning of the inferring
samples of GSE16134 was applied to assess the robustness of
the AE, using a 5-fold CV. The samples were randomly split
into 5 folds, 3 of which were used as the training set (60%) and
the remaining 2 (40%) as the test set. Thereafter, based on the
clustering results and the top 100 genes of GSE16134, a SVM
classifier was built with a 5-fold CV to identify the optimal
hyperparameters, and a validation set (immunosuppression
genes related to periodontitis in GSE10334) was applied for
SVM to predict the subtypes. To explore the biological roles of
the different identified subtypes, differentially expressed genes
(DEGs) and transcription factors (TFs), differential expression
analysis, functional enrichment analysis, and construction of
TF-target DEGs interaction network were, respectively, applied.
Finally, to identify the immunosuppression genes that might be
most pertinent to periodontitis, the overlapping DEGs among

the DEGs discriminating periodontitis and controls and DEGs
discriminating the subtypes classified with the DL-based model
were determined.

Pre-processing of the Dataset
Transcriptomic data from gingival tissue samples affected with
periodontitis and the corresponding controls (GSE16134 and
GSE10334) were obtained from the Gene Expression Omnibus
(GEO) database of NCBI1. Detailed information of the two
datasets is listed in Table 1. Immunosuppression genes were
obtained from databases DisGeNET2 and HisgAtlas3. From
these obtained genes, 1,207 immunosuppression genes related
to periodontitis were extracted. Next, the two datasets were
stacked, and 1,181 immunosuppression genes’ expression profiles
were found matching in the two datasets. Subsequently, the two
datasets were standardized using the “scale” function in R, setting
the parameters as (scale = TRUE and center = FALSE).

1http://www.ncbi.nlm.nih.gov/geo/
2http://www.disgenet.org
3http://biokb.ncpsb.org/HisgAtlas/
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TABLE 1 | Summary of periodontitis related GEO datasets used in this study.

Data GPL (General
public license)

Gene Sample
control

Sample
case

GSE16134 GPL570 24441 69 241

GSE10334 GPL570 24441 64 183

Features Transformation
Immunosuppression gene expression profiles of 241 disease
samples in the GSE16134 dataset were selected as the input for
the AE. The re-coding of the DL algorithms was performed
using the Python library “Keras4”. An AE is a three-layered
neural network consisting of input, hidden, and output layers
(Wang et al., 2016), and here an AE with three hidden layers was
implemented with 200, 100, and 200 nodes per layer each. One
hundred nodes produced by the bottleneck layer were regarded
as the new compressed representative features of the data. In
accordance with previous research, the AE was set up using the
following equations (Chaudhary et al., 2018).

y = fi(x) = tanh (wi.x+ bi)

x′ = F1→k(x) = f o
1 ...of o

k−1
ofk(x)

logloss(x, x′) =
d∑

k=1

(xklog(x′k)+ (1− xk)log (1− x′k))

L(x, x′) = logloss(x, x′)+
k∑

i=1

(∂w||Wi||1 + ∂a||F1→i(x)||22)

To control overfitting, the penalty values αα and αw (the activity
regularizer of layer output) were set to 0.00002 and 0.00001.
In addition, the AE was trained using the gradient descent
algorithm with 20 epochs and 50% dropout. Here, an epoch is an
iteration that indicates the number of passes of the entire training
dataset, while the size 20 is one of the appropriate training cycles
calculated in the evaluation of the model.

K-Means Clustering to Identify Subtypes
of Immunosuppression Genes in
Periodontitis
The 100 nodes from the bottleneck-hidden layer were considered
as new features for the analysis and were clustered with
the K-means algorithm. The optimal number of clusters was
determined based on two metrics: Silhouette index (Rousseeuw,
1987) and Calinski–Harabasz index (Calinski and Harabasz,
1974), using scikit-learn package (Pedregosa et al., 2011).

Comparison of AE With PCA Based
Clustering
Principal component analysis (PCA), a conventional dimension
reduction approach was applied to compare with the AE
performance (Chaudhary et al., 2018). The same number (100)
of the principal components were set as the features in the

4https://github.com/fchollet/keras

bottleneck layer and clustering performances of AE and PCA
were evaluated using the Silhouette index (Rousseeuw, 1987).

Data Partitioning and Robustness
Assessment
Data partitioning of the inferring samples of GSE16134 was done
to assess the robustness of the model, using a cross-validation
(CV)–like procedure, as described in earlier reports (Chaudhary
et al., 2018; Zhao et al., 2019). First, the samples were randomly
split into 5 folds, 3 of which were used as the training set
(60%) and the remaining 2 (40%) as the test set. Using this CV
approach,10 new combinations (folds) were obtained. In each,
a distinct AE and a classifier were constructed in each training
fold and were used for predicting the labels in the test set.
Eventually, category labels were inferred using an AE based on
all the samples, and these labels were used for predicting labels of
the validation dataset.

Supervised Classification
First, the obtained features from GSE16134 were standardized
with the “scale” function in R, setting the scale as (center = TRUE
and scale = TRUE). Then, the top 100 “most relevant”
immunosuppression genes in GSE16134 were selected based
on the clustering labels and analysis of variance (ANOVA) F
values. Since the top 100 genes were also present in GSE10334
dataset, a complementation test for missing genes was not
conducted. Subsequently, based on the labels assigned using
GSE16134, a SVM classifier was built and further applied for
prediction in a validation set (GSE10334). The “scikit-learn”
package (Pedregosa et al., 2011) was used to perform a grid search
for the identification of the optimal hyperparameters for the SVM
model using a 5-fold CV.

Evaluation of the SVM Classifier
Accuracy and area under the curve (AUC) were selected as two
metrics to evaluate the performance of the SVM classifier. The
percentage of accuracy was calculated as: Accuracy (%) = Predict
number / Test number. A receiver operating characteristic (ROC)
curve was plotted for the model using the “pROC” (Robin
et al., 2011) and the “ggplot2” packages in R5. The AUC is the
area under the ROC curve, where an AUC value above 70% is
considered acceptable (Mandrekar, 2010).

Differential Expression Analysis
Differential expression analysis was performed for each of
the datasets (GSE16134 and GSE10334), to identify genes
discriminating between the disease and control samples, using
the “Linear Models for Microarray data” (“limma”) package in R
(Ritchie et al., 2015). Genes with P value < 0.05, and |log FC| ≥ 1
was selected as differentially expressed genes (DEGs). The DEGs
with Log FC ≥ 1 was defined as up-regulated DEGs, while the
DEGs with log FC ≤−1 were defined as down-regulated DEGs.

Differential expression analysis was also similarly conducted
for the classified subtypes. Here, genes with P value < 0.05, and

5https://ggplot2.tidyverse.org
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FIGURE 2 | Performance of the autoencoder (AE) and support vector machine (SVM) model. (A) Clustering results using the Silhouette index. Horizontal axis:
Average silhouette width; Vertical axis: Number of clusters k. The optimal number of clusters is 2. (B) Clustering outcomes using Calinski–Harabasz criterion.
Horizontal axis: Sum of the squared errors; Vertical axis: Number of clusters k. The optimal number of clusters is 2. (C,D) Comparison of AE with principal
component analysis (PCA) based clustering. (C) The performance of AE based on Silhouette index. The optimum cluster number using AE is 2. Dim = dimensions.
(D) The performance of PCA based on Silhouette index. The optimum cluster number using PCA is 6. Dim = dimensions. (E) Receiver operating characteristic (ROC)
curve of the SVM model. Horizontal axis: false discovery rate (FDR); Vertical axis: true positive rate (TPR). The area under the curve (AUC) value of the GSE16134 test
set is 97.72%.

|log FC| ≥ 0.05 were selected as DEGs; The DEGs with Log
FC ≤ 0.05 were defined as up-regulated DEGs, while the DEGs
with log FC ≤−0.05 were defined as down-regulated DEGs.

To identify the most critical immunosuppression genes in
periodontitis, the DEGs discriminating disease and control
samples that overlapped with DEGs discriminating the different
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subtypes were identified and visualized using a Venn diagram.
To evaluate the performance of each such identified gene, a ROC
curve was plotted as described earlier.

Functional Enrichment Analysis
The DEGs overlapping in the two datasets (GSE16134 and
GSE10334) were identified using the “ClusterProfiler” package in
R (Yu et al., 2012). The functions of these DEGs were explored
by investigating their enriched Gene Ontology (GO) terms,
particularly biological processes (BPs) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways. The GO/BP terms and
KEGG pathways with P value < 0.05 were regarded as significant
functions. The top 30 of the enriched GO/BPs and pathways were
chosen to be visualized in a bar plot.

In addition, KEGG pathway analysis was applied to determine
the characteristics of different subtypes in GSE16134 and
GSE10334 each. KEGG pathways with P value < 0.05 were
regarded as significant functions. The top 20 of the enriched
pathways were listed and visualized using the heatmap function
in R (Galili et al., 2017).

Construction of TF-Target DEGs
Interaction Network
TF-target gene interaction pairs were downloaded from multiple
databases, including TRRUST6, cGRNB7, HTRIdb8, ORTI9, and
TRANSFAC10. The TFs targeting DEGs overlapping in the
two datasets (GSE16134 and GSE10334) were extracted and
used for constructing the TFs-target DEGs interaction network.
The network was visualized using Cytoscape (Version 3.7.2)
(Shannon et al., 2003), and the topological characteristics of the
nodes in the TF-target gene network were determined.

RESULTS

Identification of Two Subtypes of
Immunosuppression Genes in GSE16134
by AE
The optimal number of clusters was determined based on two
metrics: Silhouette index (Figure 2A) and Calinski–Harabasz
index (Figure 2B). The value of the silhouette coefficient is
between [−1, 1] and the score near 1 indicates a highly
dense clustering. When k = 2, the average silhouette width
was nearest to 1 (Figure 2A). Using Calinski–Harabasz index,
better performance of clustering depends on a higher score
and at k = 2, the score (sum of the squared errors) was the
highest (Figure 2B). Therefore, the genes were clustered into two
subtypes, defined as S1 and S2.

6https://www.grnpedia.org/trrust/
7https://www.scbit.org/cgrnb
8http://www.lbbc.ibb.unesp.br/htri/
9http://orti.sydney.edu.au/about.html
10http://gene-regulation.com/pub/databases.html

The AE Performed Better Compared to
PCA
The performance of the AE was compared to that of PCA based
clustering using Silhouette index. While two optimal clusters
were extracted by AE (Figure 2C), six optimal clusters were
extracted using PCA (Figure 2D), indicating that the difference
between PCA transformed features was minimal, and it was
difficult to cluster them effectively. Furthermore, the PCA landing
points were concentrated in one zone, and the division was not
clear. Therefore, the AE emerged as more effective and accurate
in clustering features.

SVM Model and Its Validation
Using a 5-fold CV, the input dataset (immunosuppression
genes related to periodontitis from GSE16134) were split at a
60%/40% ratio for the training set and testing set. The SVM
model presented an accuracy of 92.78% (Table 2), and the
AUC score at 97.72%, above 90% (Figure 2E), supporting the
model was efficient in distinguishing between classes and thus
reliable in predicting significant immunosuppression genes in the
GSE10334 dataset (Mandrekar, 2010).

DEGs Involved in Immunosuppression
and Periodontitis
Differential expression analysis was applied to the disease and
control samples, as well as the two classified subtypes. A total
of 236 DEGs consisting of 48 down-regulated DEGs and
188 up-regulated DEGs were identified from the GSE16134
dataset, while a total of 194 DEGs consisting of 42 down-
regulated DEGs and 152 up-regulated DEGs were identified

TABLE 2 | Classifier performance outcomes of SVM.

GSE16134

Test Predict Accuracy (%)

Cluster 1 27 21

Cluster 2 70 69

Total 97 90 92.78%

TABLE 3 | Outcome of differential gene expression analysis for datasets
GSE16134 and GSE10334.

Data
(Disease vs. Normal)

DEG
(Up)

DEG
(Down)

Total Log FC
Abs

P value

GSE16134 188 48 236 >1 <0.05

GSE10334 152 42 194 >1 <0.05

TABLE 4 | Differential expression analysis applied to disease samples based on
identified subtypes.

Data (Subtype1 vs.
Subtype 2)

DEG
(Up)

DEG
(Down)

Total Log FC
Abs

P value

GSE16134 134 85 219 >0.05 <0.05

GSE10334 145 95 240 >0.05 <0.05
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from the GSE10334 dataset (Table 3). For discriminating the
designated subtype labels, a total of 219 DEGs consisting
of 85 down-regulated DEGs and 134 up-regulated DEGs
were identified in the GSE16134, while a total of 240

DEGs consisting of 95 down-regulated DEGs and 145 up-
regulated DEGs were identified in the GSE10334 dataset
(Table 4). As shown in the Venn diagram (Figure 3A), three
significant DEGs, Platelet Endothelial Cell Adhesion Molecule

FIGURE 3 | Identification of the significant DEGs. (A) Intersection of DEGs discriminating sample type (disease vs. normal) (236 DEGs from GSE16134 and 194
DEGs from GSE10334) and DEGs of the disease samples classified into subtypes (subtype 1 vs. subtype 2) (219 DEGs from GSE16134 and 240 DEGs from
GSE10334). (B,C) ROC curve of three significant genes (PECAM1, FCGR3A, and FOS) in GSE16134 (B) and GSE10334 (C). Horizontal axis: false discovery rate
(FDR); Vertical axis: true positive rate (TPR).
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TABLE 5 | AUC values of the three most significant genes.

Gene GSE10334_ROC_AUC
(%)

GSE16134_ROC_AUC
(%)

Mean (%)

PECAM1 87.09 90.45 88.77

FCGR3A 77.66 80.95 79.31

FOS 71.06 72.37 71.72

(PECAM) 1, Fc Gamma Receptor (FCGR) 3A, and FOS were
found intersecting and considered as potentially most robust
immunosuppression genes related to periodontitis. Each of the
three DEGs has an acceptable performance, with an AUC
value above 70%, listed in Table 5. The ROC curves of the
three genes from GSE16134 and GSE10334 are shown in
Figures 3B,C, respectively.

Functional Terms Enriched Among the
DEGs
Significantly enriched biological processes and signaling
pathways related to the immunosuppressive DEGs were
identified from those overlapping between GSE16134 and
GSE10334. The immunosuppressive DEGs involved in
periodontitis were implicated in biological processes, including T
cell activation, regulation of lymphocyte activation, regulation of
T cell activation, regulation of cell-cell adhesion, and leukocyte
cell-cell adhesion (Figure 4A). The immune activities were
mainly regulated by Th17 cell differentiation, cytokine-cytokine
receptor interaction, T cell receptor signaling pathway, Th1
and Th2 cell differentiation, Mitogen-activated Protein Kinase
(MAPK) signaling pathway, osteoclast differentiation, and
Phosphatidylinositol 3-Kinase (PI3K)-Protein Kinase B (Akt)
signaling pathway (Figure 4B).

Most pathways of the two subtypes were evident as distinct in
GSE16134 (Figure 5), indicating significant differences between
the two subtypes in terms of immunosuppressive activities in
periodontitis. This difference was also detected between the two
predicted subtypes in GSE10334 (Figure 6). Specifically, subtype

S1 of immunosuppressive DEGs in periodontitis from both
GSE16134 (Figure 5A) and GSE10334 (Figure 6A) was mainly
enriched in cytokine-cytokine receptor interaction, chemokine
signaling pathway, Janus kinase (JAK)- Signal Transducer and
Activator of Transcription Protein (STAT) signaling pathway,
Hypoxia-inducible Factor (HIF)-1 signaling pathway, and T
cell receptor signaling pathway. Of note, subtype S1 from
GSE16134 was also enriched in PD-L1 expression and PD-1
checkpoint pathway in cancer (Figure 5A). Whereas subtype S2
was mainly associated with MAPK signaling pathway, osteoclast
differentiation, and infection of virus and E. coli bacteria
(Figures 5B, 6B).

Identification of Hub Transcription
Factors That Targeted DEGs
The TFs-target DEGs interaction network of the
immunosuppression genes in periodontitis is shown in Figure 7,
consisting of 197 nodes and 447 edges. Top 30 TFs (Table 6)
with the highest degree were considered to represent those most
critical to this network. Of these, the top 10 TFs in the network
were determined as the hubs, including Androgen Receptor
(AR), Hypoxia-inducible Factor (HIF)1A, Signal Transducer and
Activator of Transcription Protein (STAT) 5B, and STAT4, which
were not only TFs but also up-regulated DEGs, and Nuclear
Factor Kappa B Subunit 1 (NFKB1), MYC, JUN, Tumor Protein
(TP)53, FOS, and Forkhead Box (FOX) O3, which were not only
TFs but also down-regulated DEGs.

DISCUSSION

In this study, we used a DL-based algorithm, the AE, for
identifying the pivotal immunosuppression genes relevant to
periodontitis. With this approach, we re-constructed multi-
omics data and produced representative molecular features
grouped into two immune subtypes and then built an SVM
model based on these, which was confirmed using a validation
set. Besides, significant pathways and TF-target DEGs involved
in immunosuppression during periodontitis were identified.

FIGURE 4 | The functional enrichment analysis of the overlapping DEGs common to the two datasets (GSE16134 and GSE10334). (A) The significantly enriched
biological processes of the overlapped DEGs; (B) The significantly enriched signaling pathways of the overlapped DEGs.

Frontiers in Genetics | www.frontiersin.org 8 March 2021 | Volume 12 | Article 64832997

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-648329 March 8, 2021 Time: 19:27 # 9

Ning et al. Deep Learning in Periodontitis

FIGURE 5 | Pathways enriched in the DEGs characterizing the two subtypes in GSE16134. (A) Top 20 enriched signaling pathways of DEGs in subtype 1. (B) Top
20 enriched signaling pathways of DEGs in subtype 2. (C) Heatmap shows the enriched signaling pathways of DEGs in the two subtypes.

Notably, we identified the key characteristics of two immune
subtypes of periodontitis. We also identified three “master”
immunosuppression genes, PECAM1, FCGR3A, and FOS, as
candidate genes central to immune suppressive pathogenic
mechanisms in periodontitis.

An AE-based DL approach has demonstrated high efficiency
and accuracy in predicting biomarker genes for lung cancer,
breast cancer, and HNSCC (Xiao et al., 2018). Akin to these
studies, CV results indicated this approach was robust
in classifying patients into two subgroups. Furthermore,

the AE was more efficient and precise in clustering the
distinct features, as compared with the commonly utilized
unsupervised ordination method, PCA. In addition, the
robustness and reliability of the model were confirmed in
a validation set.

The central finding of our study is the identification of
three distinct immunosuppression genes, PECAM1, FCGR3A,
and FOS, which could be potentially high-value biomarkers or
candidate therapeutic targets for periodontitis. PECAM1, also
known as CD31, is an immunoglobulin (Ig) gene expressed

Frontiers in Genetics | www.frontiersin.org 9 March 2021 | Volume 12 | Article 64832998

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-648329 March 8, 2021 Time: 19:27 # 10

Ning et al. Deep Learning in Periodontitis

FIGURE 6 | Pathways enriched in the DEGs characterizing the two subtypes in GSE10334. (A) Top 20 enriched signaling pathways of DEGs in subtype1. (B) Top 20
enriched signaling pathways of DEGs in subtype 2. (C) Heatmap shows the enriched signaling pathways of DEGs in the two subtypes.

in various cells, such as endothelial cells (ECs), platelets, and
immune cells. PECAM1 is found to be a co-modulator of T-cell
immunity (Huang et al., 2017) and a promoter of endothelial
junctional integrity (Marelli-Berg et al., 2013). Periodontal
pathogens, particularly P. gingivalis, can induce vascular damage
through the degradation of PECAM1 (Yun et al., 2005;
Farrugia et al., 2020). A protective effect of PECAM1 was also
detected in transplant arteriosclerosis (Ensminger et al., 2002).
FCGR3A is a member of FCGR families, forming a critical link
between humoral and cellular immune responses to periodontal
microbiota (Chai et al., 2010; Pavkovic et al., 2018). Previous

studies have reported single-nucleotide polymorphisms (SNPs)
of FCGR3A (rs396991 and rs4455090) were correlated with
periodontitis and might impact susceptibility to periodontitis
(Kobayashi et al., 2001; Chai et al., 2010). Besides, FCGR3A
polymorphism and the allele rs396991 was identified as an
independent susceptibility marker of allograft rejection in
patients after organ transplants, highly responsive to natural
killer (NK) cells (Paul et al., 2019). FOS was also identified as a
significant TF in the study.

Of the top 10 hub TFs, six “leader” immunosuppressive TF-
target DEGs with plausible literature evidence were identified
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FIGURE 7 | The transcription factor (TF)-target interaction network of GSE16134 and GSE10334 involved in immunosuppression and periodontitis. Top 30 TFs were
visualized in the network. Red and gray dots: up-regulated TF and DEG; Green and gray dots: down-regulated TF and DEG; Red dots: up-regulated DEG; Green
dots: down-regulated DEG.

as key to periodontitis pathogenesis and included the down-
regulated TFs (NFKB1, FOS, and JUN), as well as up-regulated
TFs (HIF1A, STAT5B, and STAT4). NFKB1, also termed NF-
κB, is a core TF implicated in immune and inflammatory
diseases (Tak and Firestein, 2001). Periodontal pathogens
can activate NF-κB, and thus inhibition of NF-κB might be
a therapeutic target for periodontitis (Ambili et al., 2005).
Furthermore, NF-κB is activated in transplanted tissue, and
its blockade may be potent in preventing allograft rejection

after solid organ transplants, considering the role of NF-κB
in T cell activation and differentiation (Molinero and Alegre,
2012). FOS is implicated in periodontitis progression acting
via the regulation of T-cell receptor (TCR) signaling (Maekawa
et al., 2017). C-Jun (encoded by JUN) signaling is activated
by Receptor Activator of Nuclear Factor Kb Ligand (RANKL)
and essential for osteoclast differentiation (Ikeda et al., 2004).
Activator Protein (AP)-1 is a heterodimer composed of the
Fos and Jun subunits, which downregulates osteoprotegerin and

Frontiers in Genetics | www.frontiersin.org 11 March 2021 | Volume 12 | Article 648329100

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-648329 March 8, 2021 Time: 19:27 # 12

Ning et al. Deep Learning in Periodontitis

TABLE 6 | The topological characteristics of the top 30 nodes in the TF-target interaction network.

Name Label Degree Average Shortest
Path Length

Betweenness
Centrality

Closeness
Centrality

Clustering
Coefficient

Topological
Coefficient

AR TF&DEG_Up 87 1.6327 0.4063 0.6125 0.0270 0.0351

NFKB1 TF&DEG_Down 62 1.7143 0.2926 0.5833 0.0518 0.0457

MYC TF&DEG_Down 56 1.7398 0.2342 0.5748 0.0610 0.0497

JUN TF&DEG_Down 49 1.8163 0.1276 0.5506 0.0859 0.0541

TP53 TF&DEG_Down 41 2.0816 0.0906 0.4804 0.0634 0.0603

FOS TF&DEG_Down 40 1.8776 0.0975 0.5326 0.1077 0.0670

HIF1A TF&DEG_Up 17 2.0051 0.0433 0.4987 0.1985 0.1076

STAT5B TF&DEG_Up 16 2.5408 0.0063 0.3936 0.0917 0.1517

FOXO3 TF&DEG_Down 15 2.3418 0.0175 0.4270 0.2000 0.1202

STAT4 TF&DEG_Up 15 2.0459 0.0329 0.4888 0.2190 0.1298

CTNNB1 TF&DEG_Down 14 2.1837 0.0514 0.4579 0.1648 0.1186

BAX TF&DEG_Down 13 2.2857 0.0264 0.4375 0.1795 0.1348

KLF4 TF&DEG_Down 13 1.9949 0.0268 0.5013 0.2821 0.1560

IRF2 TF&DEG_Down 13 2.5918 0.0283 0.3858 0.0385 0.1110

ESR2 TF&DEG_Up 11 2.2092 0.0060 0.4527 0.3455 0.1706

NFKB2 TF&DEG_Down 10 2.3827 0.0182 0.4197 0.2889 0.1806

PLAU TF&DEG_Down 10 2.4694 0.0140 0.4050 0.1556 0.1538

EGFR DEG_Up 9 2.1327 0.0037 0.4689 0.4167 0.2059

VDR TF&DEG_Down 9 2.4388 0.0030 0.4100 0.2500 0.1993

RARB TF&DEG_Up 8 2.2245 0.0083 0.4495 0.3571 0.2083

BCL2L1 DEG_Down 7 2.1531 0.0021 0.4645 0.6190 0.2706

SIM2 TF&DEG_Up 7 2.2245 0.0045 0.4495 0.2857 0.2351

ABL1 TF&DEG_Down 6 2.2959 0.0029 0.4356 0.3333 0.2561

TGFB1 DEG_Down 6 2.0816 0.0005 0.4804 0.8667 0.3209

PRL DEG_Up 6 2.4286 0.0014 0.4118 0.4000 0.2434

CD40LG DEG_Up 6 2.4694 0.0031 0.4050 0.4000 0.2508

IFNG DEG_Up 6 2.5918 0.0013 0.3858 0.3333 0.2405

MMP2 DEG_Up 6 2.4031 0.0003 0.4161 0.8000 0.2670

DUSP1 DEG_Down 5 2.2245 0.0022 0.4495 0.4000 0.3270

MAPK1 DEG_Down 5 2.3061 0.0009 0.4336 0.5000 0.3090

is highly expressed in periodontal ligament cells, suggesting
their role in bone resorption during periodontitis (Suda et al.,
2009). Inhibition of c-Fos/AP-1 by T-5224 (a novel chemical)
could attenuate inflammation, T cell proliferation, and allograft
rejection in pancreatic islet transplantation (PIT) (Yoshida et al.,
2015) and be suggested as a target for immunosuppressive
therapy. HIF1A/HIF1, an oxygen-regulated subunit (Corrado
and Fontana, 2020), is involved in the immune response of
periodontitis, playing a pleitropic role in defending against
macrobiotics and facilitating the progression of periodontitis
(Wang et al., 2017). HIF1 was also suggested to mediate
inflammation and immune responses after organ transplantation,
mediating angiogenesis and allograft in the donor organs
(Xu et al., 2019). STAT5B and STAT4 are members of the
STAT family that play important roles in activating gene
transcription through various cytokines. STAT5B and STAT4
can be activated by a variety of cytokines, including Interleukin
(IL)12, Type I Interferon (IFNI), IL23, IL2, IL27, and IL35
(Garcia de Aquino et al., 2009; Sanpaolo et al., 2020; Yang
et al., 2020), which are prominently involved in mediating
immune responses during periodontitis. IFN-γ could stimulate

the expression of Indoleamine 2,3-Dioxygenase (IDO)1, a critical
immunosuppression protein, in primary human periodontal
ligament stem cells (Andrukhov et al., 2017). Thus, evidence
suggests STAT5B and STAT4 may mediate immunosuppression
during periodontitis.

The immunosuppression DEGs in the two subtypes were
functionally related to multiple immune-related biological
processes and pathways, and the two subtypes were distinct in
their regulating pathways. In subtype S1, PD1/PLL1 checkpoint
signaling, T cell receptor signaling, and signaling pathways
related to immunosuppressive factors, including cytokines,
chemokines, Janus Kinase (JAK) -STAT, and HIF1, are found
to activate up-regulated TFs, such as HIF1A, STAT4, and
STAT5B (de Souza et al., 2012). Whereas the signaling
pathways enriched in subtype S2 primarily regulated the
MAPK signaling pathway and osteoclast differentiation, as
well as the infection of virus and E. coli bacteria, targeting
the down-regulated TFs, such as NFKB1, FOS, and JUN (de
Souza et al., 2012). Immune response-related pathways were
mainly involved in the subtype S1, supporting a hypothesis
that periodontitis patients with molecular subtype S1 may be
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more sensitive to and thus respond comparatively well to the
immune-related target therapy.

Considering PDL1/PD1 signaling that characterized the
subtype S1, it has been found that peptidoglycans from
P. gingivalis can lead to the up-regulation of PDL1 expressed
by gingival keratinocytes, as well as the overexpression of PD1
expressed on T lymphocytes (Bailly, 2020). The interaction
between PDL1 and PD1 can suppress the initial activation
and effector function of T cells and thereby promote the
progression of periodontal inflammation (Yang et al., 2019).
As PDL1-inhibitor has shown significant effects as a cancer
therapy in clinical trials (Kim et al., 2020), it may also
hold potential as immune therapy for periodontitis patients,
especially in the case of immune-compromised patients. The
inhibition of the JAK-STAT pathway has been indicated as
a potential strategy for immunosuppression therapy, targeting
the key cytokines, such as IFNg and IL12 (O’Shea and
Plenge, 2012). HIF1A pathway has been found to modulate
immunosuppressive molecules, typically VEGF, in periodontitis
(Vasconcelos et al., 2016), and tumor microenvironment (El-
Sayed Mohammed Youssef et al., 2015). Manipulation of
the HIF1A pathway has been proposed as a therapeutic
intervention in tumor immunotherapy (Li et al., 2018). The
MAPK pathway identified in subtype S2, consists of three
family sub-members, extracellular regulated kinases (ERK),
c-Jun N-terminal activated kinases (JNK), and p38, and is
closely related to osteoblast differentiation (Rodríguez-Carballo
et al., 2016). Further, inhibition of p38 may particularly have
potential therapeutic value in limiting periodontitis progression
at multiple levels of the immune response via its effects on
different extracellular stimuli (Kirkwood and Rossa, 2009). Of
note, bone resorption, a hallmark of periodontitis, is mainly
affected through RANKL, a vital osteoclast differentiation factor
(Taubman et al., 2005) and Tumor Necrosis Factor (TNF)-a,
majorly activated by MAPK and NF-κB pathways (Ketherin
and Sandra, 2018), indicating a key role of these pathways in
osteoimmunology.

Altogether, using the DL-based predictive model and
bioinformatic analysis, our study provides a predictive and
theoretical description of functions and mechanisms relevant to
immunosuppression genes active in periodontitis pathogenesis.
The validated efficiency and accuracy of the DL-model overcome
the bottlenecks of current evidence and suggest new insights
valuable for potential translation in therapeutic gene targeting.
However, considering our study is the first to apply DL methods
in the periodontal disease context, it is expected that further
well-designed investigations can validate the model considering
other aspects of periodontal disease, where specific and precise
associations between clinical parameters and target genes
might be identified. One caveat of our study is the lack of
phenotype information about the periodontitis cases which
were grouped into two distinct immune subtypes. Periodontitis
is well recognized as a multifactorial disease, where a disease
phenotype may result from multiple factors in a “sufficient cause
model” (Heaton and Dietrich, 2012). Distinct “immunotypes” in
periodontitis may represent heterogeneity in the core biological
mechanisms contributing to disease in different subjects.

A more in-depth understanding of these could support precision
medicine approaches in the future. Besides, the possible clinical
translation of these results may include multiple directions.
For instance, the identification of immunosuppression genes
may direct the development of improved topical drugs for
delivery at diseased periodontal sites, which could avoid side
effects inherent to conventional drugs such as antimicrobials.
Also, these findings support a hypothesis that manipulation
of the identified immunosuppression genes or selection of
the drugs targeting immune checkpoints could be protective
against periodontal diseases in patients who have had long-
time immunosuppressive therapy, such as those with organ
transplantation.

CONCLUSION

The DL-based model applied in this study was reliable and
robust in predicting immunosuppression genes in periodontitis.
An array of pathways and TF-target DEGs were found to
be implicated in the immunosuppressive activity during
periodontitis. Three “master” immunosuppression genes,
PECAM1, FCGR3A, and FOS, were identified as critical to
immune suppression occurring during periodontal pathology.
Taken together, the DL model revealed novel insights into
the molecular mechanisms underpinning periodontitis and
identified key candidate genes for further translation in the
context of risk profiling and therapeutic development.
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Background: Alternative polyadenylation (APA) is a pervasive posttranscriptional
mechanism regulating gene expression. However, the specific dysregulation of APA
events and its potential biological or clinical significance in lung adenocarcinoma (LUAD)
remain unclear.

Methods: Here, we collected RNA-Seq data from two independent datasets:
GSE40419 (n = 146) and The Cancer Genome Atlas (TCGA) LUAD (n = 542). The
DaPars algorithm was employed to characterize the APA profiles in tumor and normal
samples. Spearman correlation was used to assess the effects of APA regulators on
3′ UTR changes in tumors. The Cox proportional hazard model was used to identify
clinically relevant APA events and regulators. We stratified 512 patients with LUAD in the
TCGA cohort through consensus clustering based on the expression of APA factors.

Findings: We identified remarkably consistent alternative 3′ UTR isoforms between the
two cohorts, most of which were shortened in LUAD. Our analyses further suggested
that aberrant usage of proximal polyA sites resulted in escape from miRNA binding, thus
increasing gene expression. Notably, we found that the 3′ UTR lengths of the mRNA
transcriptome were correlated with the expression levels of APA factors. We further
identified that CPSF2 and CPEB3 may serve as key regulators in both datasets. Finally,
four LUAD subtypes according to different APA factor expression patterns displayed
distinct clinical results and oncogenic features related to tumor microenvironment
including immune, metabolic, and hypoxic status.

Interpretation: Our analyses characterize the APA profiles among patients with LUAD
and identify two key regulators for APA events in LUAD, CPSF2 and CPEB3, which
could serve as the potential prognostic genes in LUAD.

Keywords: alternative polyadenylation, lung adenocarcinoma, immunity, metabolism, miRNA
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INTRODUCTION

Non-small cell lung cancer (NSCLC) is the leading cause of
cancer-related mortality worldwide (Herbst et al., 2018). Lung
adenocarcinoma (LUAD) is the most prevalent histologic
subtype of NSCLC and accounts for approximately 40% of
all lung cancer cases (Zappa and Mousa, 2016). The 5-year
survival rate for LUAD still remains poor, owing to the
dismal prognosis and limited effective treatments. Therefore,
elucidating the potential molecular mechanisms underlying
LUAD is necessary. Advances in the characterization of
alterations in the LUAD transcriptome facilitate interpretations
of the complexity of the RNA processing-associated events,
such as alternative splicing and polyadenylation, thus
providing new perspectives on the oncogenic processes and
signaling pathways in cancer development and progression
(Esfahani et al., 2019).

Alternative polyadenylation (APA) has been recognized as
an important factor regulating gene expression. Approximately,
70% of known human genes contain multiple polyA sites,
which produce different lengths of 3′ untranslated regions
(3′ UTR), thereby contributing to transcriptome diversity
(Derti et al., 2012). 3′ UTR accommodates cis elements such
as AU-rich elements (Halees et al., 2008) and microRNA
(miRNA)-binding sites (Lin et al., 2012), which are involved
in various aspects of posttranscriptional RNA processing. Thus,
alternative usage of polyA sites can affect mRNA stability,
translation, and cellular localization (Tian and Manley, 2017).
The polyadenylation of mRNAs is driven by approximately
20 core proteins comprising four complexes: cleavage and
polyadenylation specificity factor, cleavage stimulation factor
(CstF), cleavage factors I and II, and several single proteins
(Gruber and Zavolan, 2019).

Widespread shortening of 3′ UTRs has been identified in
multiple types of cancer (Xia et al., 2014; Xiang et al., 2018)
and cancer cells (Mayr and Bartel, 2009); this shortening
activates oncogenes (Masamha et al., 2014) or represses tumor-
suppressor genes (TSGs) in trans via disruption of the ceRNA
(competing endogenous RNA) network (Park et al., 2018),
thus promoting tumorigenesis. Perturbations in the expression
level of APA factors have been frequently observed in a
variety of cancer types, resulting in aberrant usage of proximal
polyA sites (PAS) (Tan et al., 2018; Chu et al., 2019; Fischl
et al., 2019; Xiong et al., 2019). Several computational tools
utilizing standard RNA-sequencing (RNA-Seq) data for global
APA profiling have been developed (Xia et al., 2014; Arefeen
et al., 2018; Ye et al., 2018) that facilitate the identification
of recurrent and tumor-specific APA events across human
cancers (Xia et al., 2014; Xiang et al., 2018; Venkat et al.,
2020). Nevertheless, in-depth analysis of specific APA changes
in LUAD and their biological or clinical significance in a
sufficiently large cohort remain to be determined. To this
end, we gathered a large collection of RNA-Seq data from
two LUAD cohorts, GSE40419 and TCGA-LUAD, and analyze
their differences and similarities in PAS usage. We performed
a systematical analysis to reveal the potential regulation and
effects of APA in LUAD.

MATERIALS AND METHODS

Data Collection
RNA-Seq data and the corresponding clinical information from
two independent LUAD cohorts including tumor and normal
samples were downloaded from the TCGA data portal1 and
NCBI Gene Expression Omnibus (GEO) under accession number
GSE40419. The numbers of paired samples in those two sets were
57 and 73 for differential analysis. The TCGA dataset contained
484 tumor samples for subsequent analyses. RNAs used in the
TCGA dataset were polyA enriched and those in the GSE40419
dataset were unspecified.

Characterization of APA Events
The DaPars algorithm2 was employed to quantify the relative
polyA site usage in 3′ UTR resulting from APA through the
Percentage of Distal polyA site Usage Index (PDUI), which
indicates lengthening (positive index) or shortening (negative
index) of 3′ UTRs (Xia et al., 2014). To identify the differences
in 3′ UTRs between tumor and normal samples, we utilized the
paired Wilcoxon rank-sum test to determine the significance. The
differential APA events were defined by the Benjamini–Hochberg
adjusted p-value (i.e., false discovery rate) <0.05 and |1PDUI| =
|PDUItumor − PDUInormal| > 0.1.

Analysis of miRNA-Binding Sites and
DEGs
miRNA-predicted targets and binding sites were downloaded
from TargetScanHuman 7.2. High-confidence sites were filtered
by context + score percentile > 90 (Agarwal et al., 2015).
We then applied this genomic feature on the 3′ UTR changes
identified by the DaPars algorithm to acquire the number of
genes that lost miRNA targets. The R package “EdgeR” (version
3.30.3) was employed to identify differentially expressed genes
(DEGs) with a Benjamini and Hochberg adjusted p-value < 0.05
(Robinson et al., 2010).

Analysis of APA Core Regulators
Genes in the GO terms associated with mRNA polyadenylation
(mRNA polyadenylation, mitochondrial mRNA polyadenylation,
regulation of mRNA polyadenylation, negative regulation of
mRNA polyadenylation, and positive regulation of mRNA
polyadenylation) were considered as APA core regulators. All
the somatic mutations of the TCGA-LUAD cohort were obtained
from the publicly available TCGA MAF file which includes 562
patients [3]. This dataset along with the copy number variation
data were directly downloaded from cBioPortal3 (Gao et al.,
2013). APA regulator genes were expected to control the 3′
UTR lengths of targets. The expression levels of those regulators
can be influenced by the copy number variation. Therefore, the
transcripts per kilobase million (TPM) values for APA regulators
were used to calculate the Spearman correlations between each

1https://portal.gdc.cancer.gov/
2https://github.com/ZhengXia/DaPars
3http://www.cbioportal.org/
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PDUI and the copy number change in those regulators in tumors.
A Spearman correlation coefficient | rho| > 0.3 and adjusted
p-value < 0.05 were considered significant.

Survival Analysis for APA Events and
Their Regulators
The univariate Cox proportional-hazard model implemented in
the “coxph” function from the R package “survival” (version 3.1-
12) was used for each differential APA event and regulator gene.
The expression levels of APA regulators were log2(TPM + 0.01)
transformed before analysis. A likelihood ratio test with p < 0.05
was considered significantly associated with survival time.
Hazard ratios >1 indicated survival risks, whereas those <1 were
associated with better outcomes.

Clustering Samples Based on
Transcriptional Profiles of APA
Regulators
Z-score transformation was performed to normalize the
expression of 35 APA regulators. Consensus K-means clustering
of 512 LUAD samples on the basis of the Euclidean distances
of the APA regulators was conducted from k = 2 to k = 9.
For each iteration, 80% of the tumor samples and 100% of
the regulators were selected. This process was repeated for
1,000 times. Empirical cumulative distribution CDF plots were
generated for each k to identify the k at which the CDF
area reached an approximate maximum value. This clustering
analysis was performed in the R package “ConsensusClusterPlus”
(version 1.52.0) (Wilkerson and Hayes, 2010). Kaplan–Meier
survival curve analysis and log-rank tests were used to compare
the survival distributions among the four groups identified by
consensus clustering in the R package “survival” (version 3.1-12).

Calculation of Immune, Hypoxic, and
Metabolic Enrichment Scores
Gene markers of 22 immune cells were downloaded from
CIBERSORT4 (Newman et al., 2015). A 15-gene expression
signature was selected for the hypoxia markers because they
have been shown to classify hypoxia status at best (Ye
et al., 2019). Single sample gene set enrichment analysis
(ssGSEA) implemented in the R package “GSVA” (version 1.24.0)
(Hanzelmann et al., 2013) was conducted to calculate the
normalized enrichment score (NES) for each gene set of the
22 immune cells and the hypoxia status. Genes of 5 metabolic
pathways were downloaded from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database. Gene set variation
analysis (GSVA) was used to calculate the enrichment score of
each metabolic pathway.

RESULTS

Global 3′ UTR Shortening in LUAD
To explore the APA changes between tumor and adjacent normal
samples, we analyzed 57 and 73 paired patients with LUAD

4https://cibersort.stanford.edu/

from the TCGA and Korean cohorts, respectively. Among the
events detected in the tumor group or the normal group, less
than half of samples (occurrence rate < 50%) were discarded.
A total of 4,303 and 7,267 events remained for differential
analysis in those two sets. Among those events, 272 and
1,098 from 263 to 1,074 genes significantly differed (adjusted
p-value < 0.05 and | PDUItumor − PDUInormal| > 0.1)
in the TCGA and Korean datasets, respectively (Figures 1A,B
and Supplementary Figures 1A,B). Notably, the numbers of
shortened 3′ UTR events in tumors far exceeded the numbers
of lengthened 3′ UTR events (Figures 1A,B and Supplementary
Figures 1A,B), in agreement with the patterns observed in
previous pan-cancer analyses (Xia et al., 2014; Xiang et al., 2018).
The significantly changed transcripts showed longer 3′ UTR
lengths than were observed below the threshold (Figure 1C).
Furthermore, we compared the 3′ UTR lengths among oncogenes
(Liu et al., 2017), TSGs (Zhao et al., 2016), and other genes
(Figure 1D). The results indicated that oncogenes tended to
have longer 3′ UTR length than TSGs and other genes. Next, to
determine the recurrent APA alterations in LUAD, we combined
the results from the two studies. As shown in Figure 1E.
A total 114 transcripts were determined to have changed in
both cohorts, thus representing a strongly significant overlap
(p-value = 1.66e−52, hypergeometric test). APA-derived 3′
UTRs have been proposed to affect the mRNA and protein
location (Berkovits and Mayr, 2015). Therefore, we conducted
an overrepresentation analysis of cellular component for those
recurrent APA alterations found in LUAD by using the R package
“clusterProfiler” (version 3.11) (Yu et al., 2012). Strikingly, the
recurrent changed genes were highly enriched in the membrane
(Figure 1F), thus suggesting that APA may be involved in
regulating the localization of membrane proteins (Berkovits and
Mayr, 2015) or the subcellular localization of mRNA transcripts
for cancer-specific genes. For example, we showed the detailed
recurrent alterations in 3′ UTRs located in lysosomal membranes
(Supplementary Figures 1C–F).

3′ UTR Shortening-Mediated Loss of
miRNA-Binding Sites
Independently of mRNA and protein localization, 3′ UTR
shortening through APA during tumorigenesis may escape
miRNA repression, thus increasing gene expression. Therefore,
we calculated the distribution of lost miRNA-binding sites as
a result of shortened 3′ UTR lengths in LUAD (Figure 2A).
As revealed by this analysis, 77.4 and 65.8% of events with
shortened 3′ UTRs from the TCGA and Korean cohorts had
lost at least one predicted miRNA-binding site (Figure 2A).
Furthermore, we compared the miRNA-binding sites for 3′ UTR
shortened transcripts with those below the threshold. Consistent
with a previous pan-cancer analysis (Xia et al., 2014), the results
(Figure 2B) showed that those shortened events in tumors had
overall greater miRNA-binding site density (p-value = 1.34e−10
and 0, Kolmogorov–Smirnov test), suggesting that cancer cells
may maximize the mitigation of miRNA binding by preferentially
shortening the 3′ UTR, in a process strictly regulated by miRNAs.
To examine the effects of miRNA-binding loss mediated by
3′ UTR shortening, we analyzed DEGs between paired normal
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FIGURE 1 | Comprehensive characterization of aberrant APA in LUAD. (A) Scatterplot of PDUIs in normal (x axis) and tumor (y axis) samples from the TCGA cohort.
Significantly (adjusted p-value < 0.05 and | 1PDUI| > 0.1) shortened and lengthened transcripts are indicated in red and blue, respectively, whereas those below
the threshold are gray. (B) Volcano plot showing the significantly altered APA events in the TCGA cohort. (C) Comparison of 3′ UTR lengths between significantly
changed transcripts in tumors and other transcripts detected in both tumor and normal samples that did not pass the threshold. Here, p-values were calculated by
the Wilcoxon rank-sum test. (D) Comparison of 3′ UTR lengths among oncogenes, tumor-suppressor genes, and other genes annotated in databases. Statistical
differences were determined by the Wilcoxon rank-sum test. (E) Venn diagram showing the strong overlap of altered APA events between the two datasets. (F) Dot
plot indicating significantly enriched cellular components of genes with recurrent APA alterations found in both two cohorts.

and tumor tissues. Among genes with shortened 3′ UTR, 103
and 417 were significantly upregulated in the tumors in the
two cohorts, possibly as a consequence of escape from miRNA
repression (Figure 2C). Nevertheless, when compared with all
DEGs, the genes with shortened 3′ UTRs did not tend to be
more upregulated in LUAD (p-value = 0.07 and 1, hypergeometric
test). This result is consistent with prior analyses in pancreatic
ductal adenocarcinoma (Venkat et al., 2020) and other types
of cancer (Xiang et al., 2018), suggesting the presence of other
mechanisms in regulating gene expression. In addition, we found
three genes, COL5A1, COL1A2, and CP with lengthened 3′ UTR
were upregulated in tumors in both the datasets. Several genes
have been reported that their longer 3′ UTR isoform can enhance
expression through trans-regulation mechanism (Allen et al.,
2013; Arake et al., 2019).

Regulators of APA Events in LUAD
To investigate potential regulators governing APA alternations
in LUAD development, we analyzed the differential expression
of 35 genes collected from the GO terms associated with
“mRNA polyadenylation” between normal and tumor sample
pairs. Most of those genes (TCGA, 26/35, and Korean, 25/32)
that were differentially expressed (adjusted p-value < 0.05) in
the two cohorts were upregulated in tumors (Figure 3A and
Supplementary Figure 2A). Moreover, we found that 19 and

2 APA regulators were both upregulated and downregulated in
two datasets (Figure 3A and Supplementary Figure 2A). For
example, CSTF2 has been reported to promote 3′ UTR shortening
of cancer-related genes in NSCLC and was upregulated in both
the TCGA and Korean cohorts. To further explore genetic
alterations in APA regulators in LUAD that may affect their
expression levels, we analyzed somatic mutations and copy
number variations (CNVs) of these genes in the TCGA cohort.
We found that 28.1% (158/562) of the LUAD tumor samples
had at least one protein-affecting mutation (Figure 3B). Most
components of the 3′ end-processing machinery are RNA-
binding proteins; the mutation frequency of these factors ranged
from 0.2 to 2.8%, a percentage not greater than that for
other RNA-binding proteins observed in pan-cancer studies
(Sebestyen et al., 2016; Li et al., 2019). Compared with somatic
mutations, CNVs were highly recurrent across patients with
a range of 32.1–72.8% (Figure 3C). We found that 69.7%
(23/33) of APA factors were positively correlated (rho > 0.3
and adjusted p-value < 0.05) with their mRNA expressions in
tumors (Supplementary Figure 2B). A total of 14 APA regulators
with more than half of CNV gains showed significantly higher
expression in tumors (e.g., CDC73 and ZC3H3), whereas the
two downregulated factors, CPEB1 and CPEB3, both had more
than half of CNV losses (Figure 3C). Our data also indicated
that widespread 3′ UTR shortening in LUAD might be caused

Frontiers in Genetics | www.frontiersin.org 4 March 2021 | Volume 12 | Article 645360108

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-645360 March 12, 2021 Time: 19:5 # 5

Zhang et al. APA Events in Lung Adenocarcinoma

FIGURE 2 | APA mediated loss of miRNA binding sites. (A) Barplots showing the distribution of lost miRNA-binding sites resulting from 3′ UTR shortening. The
percentage of shortening events losing at least one miRNA-binding site is displayed above the bracket. (B) Comparison of miRNA-binding sites between significantly
shortened transcripts in tumors and others below the threshold. (C) Barplots showing the number of upregulated or downregulated that may be affected by APA in
tumors.

FIGURE 3 | Genetic and expression alterations in APA regulators. (A) Violin plot showing the expression of 26 significantly dysregulated APA factors between tumor
(red) and adjacent normal (blue) samples in the TCGA cohort. (B) The mutation landscape of 35 APA regulators in the TCGA cohort. Top panel shows the tumor
mutation rate of each patient. Bottom panel indicates the mutation frequency of individual regulators. Mutation types are shown in the legend at the bottom. (C) The
CNV variation frequency of APA regulators in the TCGA cohort. Gain and loss of CNV are indicated by red and blue dots, respectively. Upregulated and
downregulated APA factors are colored in red and blue.

by the elevated expression of polyadenylation factors through
enhanced usage of PAS, consistent with findings from a study in
proliferating cells (Elkon et al., 2012).

We further investigated the correlation between APA events
and the expression levels of their regulators in tumors.

Remarkably, among these APA events 44.2% (3,165/7,163)
and 79.4% (5,618/7,072) of them were significantly corrected
(|rho| > 0.3 and adjusted p-value < 0.05) with at least one factor
in the TCGA and Korea datasets respectively (Figures 4A,B).
Moreover, we observed strongly negative associations between
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FIGURE 4 | Potential mechanisms for APA regulation in LUAD. (A) Lollipop chart indicating the number of significantly correlated APA events with each regulator
gene in the TCGA dataset. Dot size is proportional to the percentage of negatively correlated events. Numbers in the dots represent the percentages of negatively
correlated events that are greater than 50%. (B) Lollipop chart indicating the number of significantly correlated APA events with each regulator gene in the Korea
dataset. (C) Venn diagram showing the overlap of altered APA events correlated with CPSF2 or CPEB3 between the two datasets. (D) Dot plot indicating
significantly enriched biological processes of events correlated with CPSF2 or CPEB3 in both two cohorts.

3′ UTR lengths and mRNA expression of those factors in
the TCGA dataset (Figure 4A). To define certain factors
dysregulated in tumors that could primarily be responsible for
APA mechanism in LUAD, we filtered APA factors through those
upregulated with more than half of negatively correlated events
or downregulated with more than half of positively correlated
events. Subsequently, CPSF2 and CPEB3 were identified that
correlated with more than 500 APA events in both datasets,
which could be master regulators of APA in LUAD. Moreover,
387 and 349 genes were determined to be correlated with
CPSF2 and CPEB3 in both datasets respectively (Figure 4C),
showing strongly significant overlaps (p-value = 1.39e−43 and
p-value = 5.89e−114, hypergeometric test). Interestingly, no
genes were shared by CPSF2- and CPEB3-correlated APA events
(Figure 4C), suggesting that the two factors may regulate APA
alternations in LUAD independently. To test it, we performed
an overrepresentation analysis of biological processes for 387 and

349 genes correlated with the two factors. As shown in Figure 4D,
they can both regulate the proteasomal protein catabolic process
through the APA mechanism and most other processes enriched
in the two factors were different.

The Prognostic Value of APA Events and
Their Regulators in LUAD
Understanding the widespread alterations in APA events and
their regulators in LUAD could provide important insights
for translational medicine. We performed univariate Cox
regression analyses between survival time and 272 transcripts
with significant 3′ UTR changes in the TCGA dataset. In total, 51
events significantly associated with survival time were identified.
Notably, patients with shortened 3′ UTRs for all those events had
poorer clinical outcomes, thus suggesting that use of a PAS may
exacerbate LUAD malignancy. The top ten significant events are
shown in Figure 5A, whose hazard ratios ranged from 0.026 to
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FIGURE 5 | Survival-associated APA events and their regulators in LUAD. (A) Ranked list of the top ten survival-associated APA events according to the p-values
calculated by the likelihood ratio test. Forest plots showing the hazard ratio and its upper and lower boundary of 95% confidence interval. Hazard ratios > 1 indicated
survival risks, whereas those <1 were associated with better outcomes. (B) Ranked list of the top ten survival-associated APA regulators according to the p-values
calculated by the likelihood ratio test. (C) Scatter plot of C4orf3 PDUI scores (y axis) and survival time (x axis). Each dot represents a tumor sample. (D) Comparison
of C4orf3 PDUI scores between alive and dead patients. (E) Scatter plot of NOL7 expression (y axis) and survival time (x axis). (F) Comparison of NOL7 PDUI scores
between alive and dead patients. (G) Scatter plot of SNRPA TPM values (y axis) and survival time (x axis). (H) Comparison of SNRPA expression between alive and
dead patients. (I) Scatter plot of CPSF2 TPM values (y axis) and survival time (x axis). (J) Comparison of CPSF2 expression between alive and dead patients.

0.15. Scatter plot and box plot (Figures 5C–F) further showed
the positive association between PDUI scores and survival results
(e.g., C4orf3 and NOL7). Furthermore, we focused on the
associations between the expression of APA factors and survival
results. Ten factors were identified to be significantly correlated
with survival time (Figure 5B). Importantly, among them, a high
expression of nine genes that were upregulated in tumors was
associated with poor prognosis of patients with LUAD. Scatter
plot and box plot (Figures 5G–J) further showed the negative
association between the expression levels of most APA factors and
survival results (e.g., SNRPA and CPSF2).

Examination of APA Factors Mediating
Heterogeneity of Proximal PAS Usage
Identifies LUAD Subtypes With Distinct
Clinical and Molecular Features
Next, we explored whether the expression of APA factors might
contribute to the stratification of LUAD. According to the
expression pattern of APA regulators, we identified four subtypes
of 512 patients in the TCGA cohort through consensus clustering

(Figure 6A). The optimal number of subtypes was determined
by an empirical CDF plot (Supplementary Figures 3A,B).
The four subtypes displayed significant differences in overall
survival (Figure 6B). Among them, subtype 4 consisted of
50 patients with the highest expression of APA factors, who
had the worst survival results (Figures 6B,C). To investigate
APA factors mediating heterogeneity of proximal PAS usage in
tumors, we further compared the 3′ UTR differences among
the four subtypes. In agreement with the expression levels of
APA regulators, subtype 1 showed the greatest usage of distal
3′ UTRs whereas subtype 4 displayed the greatest proximal
APAs (Supplementary Figure 3C). Moreover, we compared the
3′ UTR lengths and miRNA-binding sites between the events
significantly shortened in subtype 4 (adjusted p-value < 0.05)
and those below the threshold. As with the differentially
regulated APA events, 3′ UTR-shortened transcripts in subtype
4 showed longer 3′ UTR lengths and greater miRNA-binding
sites (Supplementary Figures 3D,E), suggesting that 3′ UTR
shortening-mediated loss of miRNA-binding sites was associated
with LUAD aggressiveness. To explore whether any distinct
APA patterns can be seen among the four subtypes of LUAD,
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FIGURE 6 | Expression heterogeneity of APA factors reveals LUAD subtypes with distinct APA patterns and clinical features. (A) Consensus clustering of patients
(n = 512) based on expression of APA factors identifies four subtypes in LUAD. The color from white to red represents the consistency ranging from 0 to 1.
(B) Kaplan–Meier survival plot of patients grouped by global expression patterns of APA regulators. The survival difference was determined by the log-rank test.
(C) Heat map of 35 APA factors showing the difference among the four subtypes. The color indicates the scaled expression value (red, high; blue, low). (D) Heat
map of 3,730 APA events displaying the differences among the four subtypes. The color indicates the scaled PDUI value (red, high; blue, low). (E) Venn diagram
showing the overlap between altered APA events correlated with CPSF2 and events lengthened in subgroups 2 and 4. (F) Venn diagram showing the overlap
between altered APA events correlated with CPEB3 and events shortened in subgroups 2 and 4.

we further investigated 3,731 significantly different APA events
(Kruskal–Wallis test, adjusted p-value < 0.001). As shown in
Figure 6D, three distinct patterns that may be regulated by
specific factors were observed in four groups. The APA events
with pattern 1 showed shorter 3′ UTR subtypes 3 and 4, which
may be regulated by the factors upregulated in these two subtypes.
Intriguingly, we found that pattern 2 showed longer 3′ UTR
in subtypes 2 and 4. We hypothesized that pattern 2 could be
caused by CPEB3 that was upregulated in those two subtypes.
To test it, we compared this pattern with CPEB3 positively
correlated events. As shown in Figure 6E, among 251 lengthened
genes, 73.7% (185) may depend on the expression of CPEB3.
Pattern 3 consisted of the largest numbers of APA events that
were shortened in subtypes 2 and 4, which may be caused by
the factors upregulated in these two subtypes. In addition, APA
events negatively correlated with CPSF2 which we identified as a
possible master regulator were all in pattern 3 (Figure 6F).

To investigate the impact of APA heterogeneity on gene
expression, we focused on subtype 4 exhibiting the greatest
APA changes. We found that among 3,669 shortened genes,

2,163 (p-value = 2.24e−6, hypergeometric test) showed a
significantly higher expression level in subtype 4 (Figure 7A).
We further explored the functional implications of the gene
expression heterogeneity among the four subtypes mediated by
APA events. GO and KEGG pathway enrichment analysis of
2,163 overlapping genes identified several highly enriched GO
terms: histone modification, RNA splicing, proteasomal process,
and cell cycle (Figure 7B). Similar biological processes have
been observed in pan-cancer correlation analysis (Xiang et al.,
2018), and our results further suggested APA regulation of
those functions. Remarkably, we also found enriched pathways
related to immune and hypoxia such as NIK/NF-κB, Wnt, and
TNF signaling (Figure 7B). Thus, the infiltration levels of 22
immune cells and hypoxia status in patients were estimated by
using ssGSEA based on the previous reported gene signatures
(Newman et al., 2015; Ye et al., 2019). Strikingly, the four
subtypes displayed marked differences in immune and hypoxia
status (Figures 7C,D). Subtype 1, with the greatest distal PAS
usage, showed the highest innate and adaptive immune cell
infiltration and the lowest hypoxia score (Figures 7C,D). Overall,
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FIGURE 7 | APA heterogeneity contributing to gene expression and TME differences among patients with LUAD. (A) Venn diagram comparison between genes with
shortened 3′ UTRs and those upregulated in subtype 4 (adjusted p-value < 0.05, one-sided Wilcoxon rank-sum test). The color from white to red represents the
consistency ranging from 0 to 1. (B) Significantly enriched (adjusted p-value < 0.05, hypergeometric test) GO terms and KEGG pathways in the 2,163 overlapping
genes. (C) Heat map of 22 immune cell subsets calculated with ssGSEA, indicating the TME differences among the four subtypes. The color indicates the normalized
score value (red, high; blue, low). (D) Differences in hypoxia scores among the four groups. Statistical differences were determined by the Wilcoxon rank-sum test.

these results indicated the role of APA in shaping the tumor
microenvironment (TME) or vice versa.

Heterogeneity of Proximal PAS Usage of
Metabolic Genes in LUAD Patients
We also found that gene expression heterogeneity among
LUAD patients mediated by APA events was enriched in five
metabolic pathways including citrate cycle (TCA cycle), lysine
degradation, cysteine and methionine metabolism, glycolysis
(gluconeogenesis), and fructose and mannose metabolism
(Figure 8A). Therefore, we compared the NESs of five pathways
among four subtypes. As expected, subtype 4, with the greatest
usage of proximal PAS, showed the highest score in all five
metabolic pathways (Figures 8B–F). To examine whether this
heterogeneity is regulated by APA mechanism, we conducted the
correlations between expression levels of genes in the glycolytic
pathway and their 3′ UTR lengths. DLAT, PFKM, and PGAM1
were reported can promote cancer cell growth through the
glycolytic pathway (Tang et al., 2012; Goh et al., 2015; Huang
et al., 2019). As shown in Figures 8G–I, DLAT, PFKM, and
PGAM1 were all negatively correlated with their PDUI values.

Moreover, we found that CPSF2 may regulate APA events of
metabolic genes like DLAT (Figure 8J).

DISCUSSION

Based on the large-scale RNA-seq data from two cohorts,
we provided a systemic and specific portrait of the APA
landscape in LUAD. In agreement with previous studies (Xia
et al., 2014; Xiang et al., 2018), our analyses revealed global
shortening of APA in tumor samples when compared with paired
controls. Notably, we found high consistency in APA alterations
between the two datasets, a result previously unnoticed in pan-
cancer or single-tumor-type analyses. Moreover, genes with
significantly changed 3′ UTRs were enriched in locations
of cell membrane and some organelle membranes, including
those of lysosomes, vacuoles, and late endosomes. A novel
mechanism in which alternative 3′ UTR isoforms of membrane
genes can determine their subcellular protein localization and
function has been identified in a previous study (Berkovits and
Mayr, 2015). CD47, a well-established cell surface molecule,
can produce alternative 3′ UTR isoforms that localize to
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FIGURE 8 | APA heterogeneity contributing to metabolic gene expression differences in LUAD. (A) Significantly enriched (adjusted p-value < 0.05, hypergeometric
test) metabolic pathways in the 2,163 overlapping genes. (B–F) Differences in scores of metabolic pathways among the four groups. Statistical differences were
determined by the Wilcoxon rank-sum test. (G) Correlation between the expression level and the APA event of DLAT. (H) Correlation between the expression level
and the APA event of PFKM. (I) Correlation between the expression level and the APA event of PGAM1. (J) Correlation between the expression level of CPSF2 and
the APA event of DLAT.

different cellular compartments and show opposite functions
in cell survival and cell migration (Berkovits and Mayr, 2015).
Our analyses suggest that alternations of 3′ UTR lengths in
membrane-associated genes may promote cancer cell growth
through APA-dependent protein localization. 3′ UTR shortening-
mediated miRNA binding loss has been found to affect the
expression levels of these genes (Venkat et al., 2020). We
observed a considerable number of genes upregulated in
LUAD after shortening of their 3′ UTRs, but this result was
not statistically significant when compared with the global
pattern of DEGs, which indicates that APA is only one of
the multiple mechanisms that govern mRNA expression levels
(Venkat et al., 2020).

The regulation of alternative 3′ UTR usage in LUAD remains
unclear. Our analyses indicate that most APA factors are
overexpressed and negatively correlated with distal PAS usage
in LUAD. CSTF2 has been recognized as the key factor that
induces 3′ UTR shortening in pan-cancer analysis (Xia et al.,
2014) and has been implicated in contributing to carcinogenesis
of the bladder (Chen et al., 2018), breast (Akman et al., 2015),
and lung (Aragaki et al., 2011). In contrast, we found that several
APA factors may act as master regulators in LUAD, such as
RNF40, CDC73, and VIRMA, which are not core proteins in the
polyadenylation machinery. The methyltransferase component
VIRMA facilitates the selection of proximal PAS through
preferential m6A mRNA methylation in the 3′ UTR and near
the stop codon (Yue et al., 2018). Indeed, depletion of VIRMA
or METTL3 elicits global lengthening of APA events in the
HeLa cell line (Yue et al., 2018). Our analysis further indicated

that a high expression level of VIRMA is associated with poor
survival outcomes in patients with LUAD. These findings provide
a possibility that VIRMA may serve as an oncogene in LUAD that
negatively regulates the 3′ UTR lengths of cancer-associated genes
through m6A mRNA methylation to enhance tumorigenicity.
In addition to the factors that induce 3′ UTR shortening, a
previous study has revealed PABPN1 as a master regulator that
promotes distal PAS usage in pan-cancer analyses including
LUAD (Xiang et al., 2018). We also found that PABPN1 positively
correlates with 17.6% of APA events in the Korean LUAD
cohort (data not shown). Our analysis identified two genes,
CPEB1 and CPEB3, which were both downregulated in the two
datasets. Compared with most upregulated genes, CPEB3 is more
positively correlated with APA events in tumors, thus suggesting
that its regulation of preferential distal poly(A) site usage may be
inhibited in LUAD. We directly calculated correlations between
APA events and factors to define the potential regulations of
those factors in LUAD. This analysis has a limitation in that
identified regulators may be dependent on other co-expressed
factors. Therefore, further experimental validation is necessary
to explore the molecular mechanisms of APA regulations in
LUAD. Together, our results suggest that dysregulated APA
factors in LUAD may be considered as potential biomarkers and
therapeutic targets, which should be further confirmed through
additional experiments.

Several studies have shown the prognostic power of APA
events in different cancers (Xia et al., 2014; Venkat et al.,
2020). Our analyses further revealed that the patients with
shorter 3′ UTR lengths show poor survival in LUAD. Some
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APA events from our analyses provided noteworthy biological
and clinical insights. SMC1A, a core cohesin gene, has been
reported to promote tumor development in some types of
human cancers (Pan et al., 2016; Zhou et al., 2017; Sarogni
et al., 2019). Our results showed that the 3′ UTR of SMC1A is
shortened in tumors and is significantly associated with clinical
prognosis, thus providing a potential mechanism through which
overexpression of SMC1A in human cancers may be contributed
by marked shortening of its 3′ UTR. Expression levels of SPARC
in patients with NSCLC are associated with disease diagnosis
and prognosis (Koukourakis et al., 2003; Huang et al., 2012;
Andriani et al., 2018). Our analyses further indicate that different
poly(A) site usage of SPARC may also serve as a diagnostic and
prognostic factor.

By stratification of patients with LUAD, we identified that
heterogeneity in PAS usage among tumors can be explained by
the mRNA expression levels of APA factors. Furthermore, 3′
UTR differences among the four subtypes considerably affected
the specific mRNA transcriptome. Previous studies have shown
that regulators of 3′ end processing can influence the 3′ UTR
of genes in the Wnt/β-catenin and NF-κB signaling pathways,
thereby determining the cancer phenotype (Ogorodnikov et al.,
2018; Xiong et al., 2019). Consistent with these findings,
our data underscore the crucial roles of APA factors in
governing the patient-specific APA alternations, a process tightly
associated with the activation of oncogenic pathways. Besides
demonstrating the influence on the transcriptome in patients,
our analyses suggest that 3′ UTR changes strikingly affect tumor
immune and hypoxia status or vice versa. Patients with longer
3′ UTRs in global APA characterization showed higher immune
and lower hypoxia scores. This finding may provide insights
into strategies for potential cancer therapies targeting tumor
immunity or hypoxia. Proliferating cells expressing mRNAs with
shortened 3′ UTR has long been recognized (Sandberg et al.,
2008). Our results suggest that APA may contribute to the altered
levels of metabolic genes which in turn create a TME that
promote their survival and propagation.

In summary, we presented the comprehensive landscape of 3′
UTR in LUAD and highlighted 113 recurrent APA alterations and

specific factors especially two key regulators, CPSF2 and CPEB3,
regulating APA patterns. Consistent with previous analyses in
other cancer types, 3′ UTR shortening is frequently associated
with tumor occurrence in APA events, and it may contribute to
elevated gene expression through loss of miRNA-binding sites.
Moreover, APA events and their regulators were found to be
useful for prognosis and cancer stratification in LUAD. The
resources provided herein should be valuable for understanding
and exploring alternative 3′ UTR isoforms in LUAD and are
expected to promote precision medicine in the future.
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Single-cell RNA sequencing (scRNA-seq) is a high-throughput sequencing technology
performed at the level of an individual cell, which can have a potential to understand
cellular heterogeneity. However, scRNA-seq data are high-dimensional, noisy, and
sparse data. Dimension reduction is an important step in downstream analysis of
scRNA-seq. Therefore, several dimension reduction methods have been developed.
We developed a strategy to evaluate the stability, accuracy, and computing cost of 10
dimensionality reduction methods using 30 simulation datasets and five real datasets.
Additionally, we investigated the sensitivity of all the methods to hyperparameter
tuning and gave users appropriate suggestions. We found that t-distributed stochastic
neighbor embedding (t-SNE) yielded the best overall performance with the highest
accuracy and computing cost. Meanwhile, uniform manifold approximation and
projection (UMAP) exhibited the highest stability, as well as moderate accuracy and
the second highest computing cost. UMAP well preserves the original cohesion and
separation of cell populations. In addition, it is worth noting that users need to set
the hyperparameters according to the specific situation before using the dimensionality
reduction methods based on non-linear model and neural network.

Keywords: single-cell RNA-seq, dimension reduction, benchmark, sequences analysis, deep learning

INTRODUCTION

The technological advances in single-cell RNA sequencing (scRNA-seq) have allowed to measure
the DNA and/or RNA molecules in single cells, enabling us to identify novel cell types, cell states,
trace development lineages, and reconstruct the spatial organization of cells (Hedlund and Deng,
2018). Single-cell technology has become a research hotspot. However, such analysis heavily relies
on the accurate similarity assessment of a pair of cells, which poses unique challenges such as
outlier cell populations, transcript amplification noise, and dropout events. Additionally, single-cell
datasets are typically high dimensional in large numbers of measured cells. For example, scRNA-
seq can theoretically measure the expression of all the genes in tens of thousands of cells in a single
experiment (Wagner et al., 2016). Although whole-transcriptome analyses avoid the bias of using a
predefined gene set (Jiang et al., 2015), the dimensionality of such datasets is typically too high for
most modeling algorithms to process directly. Moreover, biological systems own the lower intrinsic
dimensionality. For example, a differentiating hematopoietic cell can be represented by two or more
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dimensions: one denotes how far it has progressed in its
differentiation toward a particular cell type, and at least
another dimension denotes its current cell-cycle stage.
Therefore, dimensionality reduction is necessary to project
high-dimensional data into low-dimensional space to visualize
the cluster structures and development trajectory inference.

Research on data dimension reduction has a long history,
and principal component analysis (PCA), which is still widely
used, can be traced back to 1901. Since the advent of RNA-seq
technology, this linear dimension-reduction method has been
favored by researchers. In addition, there are non-linear methods
such as uniform manifold approximation and projection
(UMAP) and t-distributed stochastic neighbor embedding (t-
SNE) to reduce dimension. After the rise of neural network,
there are many methods of dimensionality reduction based
on neural network such as variational autoencoder (VAE). In
addition, there are some new theoretical frameworks such as the
multikernel learning [single-cell interpretation via multikernel
learning (SIMLR)] based on the above methods that have been
or are being developed to handle increasingly diverse scRNA-
seq data.

In this study, we performed a comprehensive evaluation
of 10 different dimensionality reduction algorithms comprising
the linear method, the non-linear method, the neural network,
model-based method, and ensemble method. These algorithms
were run and compared on simulated and real datasets. The
performance of the algorithms was evaluated based on accuracy,
stability, computing cost, and sensitivity to hyperparameters.
This work will be helpful in developing new algorithms in the
field. The workflow of the benchmark framework is shown in
Figure 1.

MATERIALS AND METHODS

Methods for Dimensionality Reduction
To our knowledge, about 10 methods are now available to obtain
a low-dimensional representation for scRNA-seq data. In this
section, we gave an overview of these 10 methods (Table 1).

PCA
As the most widely used dimensionality reduction algorithm,
PCA (Jolliffe, 2002) identifies dominant patterns and the linear
combinations of the original variables with maximum variance.
The basic idea of PCA is to find the first principal component
with the largest variance in the data and then seek the second
component in the same way, which is uncorrelated with the
first component and accounts for the next largest variance. This
process repeats until the new component is almost ineffective or
reaches the threshold set by users.

ICA
Independent component analysis (ICA) (Liebermeister, 2002),
also known as blind source separation (BSS), is a statistical
calculation technique used to reveal the factors behind random
variables, measured values, and signals. ICA linearly transforms
the variables (corresponding to the cells) into independent

components with minimal statistical dependencies between
them. Unlike PCA, ICA requires the source signal to meet the
following two conditions: (1) source signals are independent of
each other and (2) the values in each source signal have a non-
Gaussian distribution. It assumes that the observed stochastic
signal x obeys the model x = As, where s is the unknown
source signal, its components are independent of each other, and
A is an unknown mixing matrix. The purpose of the ICA is to
estimate the mixing matrix A and the source signal s by and only
by observing x.

ZIFA
The dropout events in scRNA-seq data may make the classic
dimensionality reduction algorithm unsuitable. Pierson and
Yau (2015) modified the factor analysis framework to solve
the dropout problem and provided a method zero-inflated
factor analysis (ZIFA) based on an additional zero-inflation
modulation layer for reducing the dimension of single-cell gene
expression data. Compared with the above two linear methods,
employing the zero-inflation model can give ZIFA more powerful
projection capabilities but will pay a corresponding cost in
computational complexity.

In the statistical model, the expression level of the jth gene in
the ith sample yij (i = 1,. . ., N and j = 1,. . .,D) is described:

zi ∼ Normal (0, I) ,

xi|zi ∼ Normal (Azi + µ, W) ,

hij|xij ∼ Bernoulli
(
p0
)
,

yij =

{
xij, if hij = 0
0, if hij = 1

where zi is a K × 1 data point in a latent low-dimensional space.
A denotes a D× K factor loadings matrix, H is a D× N masking
matrix, W = diag(σ2

1, · · · , σ
2
D) a D × D diagonal matrix, and

µ is a D × 1 mean vector. Dropout probability p0 is a function
of the latent expression level, p0 = exp?(−λx2

ij), where λ is the
exponential decay parameter in the zero-inflation model.

Zero-inflated factor analysis adopted the expectation–
maximization (EM) algorithm to infer model parameters
2 = (A, σ2, µ, λ) that maximize the likelihood p (Y | θ ).

GrandPrix
GrandPrix (Ahmed et al., 2019) is based on the variational
sparse approximation of the Bayesian Gaussian process latent
variable model (Titsias and Lawrence, 2010) to project data
to lower dimensional spaces. It requires only a small number
of inducing points to efficiently generate a full posterior
distribution. GrandPrix optimizes the coordinate position in the
latent space by maximizing the joint density of the observation
data, and then establishes a mapping from low-dimensional space
to high-dimensional space.

The expression profile of each gene y is modeled as yg
is considered a non-linear function of pseudotime which
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FIGURE 1 | An overview for benchmarking dimensionality reduction methods. The 10 dimensionality reduction methods were evaluated on real scRNA-seq
expression datasets and simulation data. k-means was used to cluster low-dimensional latent space. The accuracy, stability, computing cost, and sensitivity to
hyperparameters were used to systematically evaluate these methods.

TABLE 1 | Summary of dimensionality reduction methods.

Methods Year Method strategy Platform Input Available URL Version References

PCA 1987 Linear R Counts R Package Seurat 3.1.0 Jolliffe, 2002

ICA 2001 Linear R Counts R Package Seurat 3.1.0 Liebermeister, 2002

ZIFA 2015 Model-based Python Counts https://github.com/epierson9/ZIFA 0.1 Pierson and Yau, 2015

GrandPrix 2017 Non-linear Python 1,000 highly
genes

https://github.com/ManchesterBioinference/
GrandPrix

0.1 Ahmed et al., 2019

t-SNE 2008 Non-linear R Counts R Package Rtsne 0.15 Maaten and Hinton, 2008

UMAP 2018 Non-linear R/Python Counts https://github.com/lmcinnes/umap 0.3.1 McInnes et al., 2018

DCA 2019 Neural network Python 1,000 Highly
genes

https://github.com/theislab/dca 0.2.2 Eraslan et al., 2019

scvis 2018 Neural network Python PCA-100 https://bitbucket.org/jerry00/scvis-dev 0.1.0 Ding et al., 2018

VAE 2019 Neural network Python Counts https://github.com/greenelab/CZI-Latent-
Assessment/tree/master/single_cell_analysis

NA Hu and Greene, 2019

SIMLR 2017 Ensemble method R Counts https://github.com/BatzoglouLabSU/SIMLR 1.6.0 Wang et al., 2017

accompanies with some noise ∈:

yg = fg (t, x)+ ∈

where
fg (t, x)∼GP(0, σ2k((t, x) , (t, x)∗))

∈∼ N(0,σ2
noise) is a Gaussian distribution with variance σ2

noise, x is
the extra latent dimension, σ2 is the process variance, and k(t, t∗)

is the covariance function between two distinct pseudotime
points t and t∗. GrandPrix employed the variational free energy
(VFE) approximation for inference.

t-SNE
t-Distributed stochastic neighbor embedding is a state-of-the-
art dimensionality reduction algorithm for non-linear data
representation that produces a low-dimensional distribution
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of high-dimensional data (Maaten and Hinton, 2008; Van
Der Maaten, 2014). It excels at revealing local structure in
high-dimensional data. t-SNE is based on the SNE (Hinton
and Roweis, 2002), which starts from converting the high-
dimensional Euclidean distances between data points into
conditional probabilities that represent similarities. The main
idea and the modifications of t-SNE are (1) the symmetric version
of SNE and (2) using a Student’s t distribution to compute the
similarity between two points in the low-dimensional space.

UMAP
Uniform manifold approximation and projection is a dimension
reduction technique that can be used not only for visualization
similarly to t-SNE but also for general non-linear dimension
reduction. Compared with t-SNE, UMAP retains more global
structure with superior run-time performance (McInnes et al.,
2018; Becht et al., 2019).

The algorithm is based on three assumptions about the
data: (a) the data are uniformly distributed on the Riemannian
manifold; (b) the Riemannian metric is locally constant
(or can be approximated); and (c) the manifold is locally
connected. According to these assumptions, the manifold
with fuzzy topology can be modeled. The embedding is
found by searching the low-dimensional projection of the
data with the closest equivalent fuzzy topology. In terms of
model construction, UMAP includes two steps: (1) building a
particular weighted k-neighbor graph using the nearest-neighbor
descent algorithm (Dong et al., 2011) and (2) computing
a low-dimensional representation which can preserve desired
characteristics of this graph.

DCA
Deep count autoencoder (DCA) can denoise scRNA-seq data
by deep learning (Eraslan et al., 2019). It extends the typical
autoencoder approach to solve denoising and imputation tasks
in in one step. The autoencoder framework of DCA is composed
by default of three hidden layers with neurons of 64, 32, and
64, respectively, with zero-inflated negative binomial (ZINB) loss
functions (Salehi and Roudbari, 2015), learning three parameters
of the negative binomial distribution: mean, dispersion, and
dropout. The inferred mean parameter of the distribution
represents the denoised reconstruction and the main output of
DCA. The deep leaning framework enables DCA to capture the
complexity and non-linearity in scRNA-seq data. Additionally,
DCA can be applied to datasets with more than millions of cells.
DCA is parallelizable through a graphics processing unit (GPU)
to increase the speed.

Scvis
Scvis is a statistical model to capture the low-dimensional
structures in scRNA-seq (Ding et al., 2018). The assumption
of scvis is a high-dimensional gene expression vector xn of
cell n which can be generated by drawing a sample from the
distribution p(x|z, θ). Here, z is a low-dimensional latent vector
which follows a simple distribution, e.g., a two-dimensional
standard normal distribution. The data-point-specific parameters
θ are the output of a feedforward neural network. To better

visualize the manifold structure of an scRNA-seq dataset, scvis
applies t-SNE objective function on the latent z distribution as
a constraint to make cells with similar expression profiles to
be close in the latent space. In addition, scvis also provides log
likelihood ratio to measure the quality of embedding, which can
potentially be used for outlier detection.

VAE
Variational autoencoder is a data-driven, unsupervised model for
dimension reduction using an autoencoding framework, built
in Keras with a TensorFlow backend (Hu and Greene, 2019).
Comparing with a traditional autoencoder, VAE determined non-
linear explanatory features over samples through learning two
different latent representations: a mean and standard deviation
vector encoding.

The model is mainly composed of two connected neural
networks, encoder and decoder. The scRNA-seq data are
compressed by the encoder and reconstructed by the decoder.
The variable probability Q(z|X) is used to approximate the
posterior distribution P(z|X), and it is optimized to minimize
the Kullback–Leibler divergence between Q(z|X) and P(z|X) and
reconstruction loss. Here, the encoder network is designed as a
zero- to two-layer fully connected neural network to generate the
mean and variance of a Gaussian distribution qθ(z|X), and then
the representative latent space z is sampled from this distribution.
The decoder is also a zero- to two-layer fully connected neural
network to reconstruct the count matrix.

SIMLR
Single-cell interpretation via multikernel learning performs
dimension reduction through learning a symmetric matrix
SN × N that captures the cell-to-cell similarity from the input
scRNA-seq data (Wang et al., 2017). The assumption of SIMLR is
that SN = N should have an approximate block-diagonal structure
with C blocks if the input cells have C cell types. SIMLR
learns proper weights for multiple kernels, which are different
measures of cell-to-cell distances, and constructs a symmetric
similarity matrix.

Specifically, developers first define the distance between cell i
and cell j asD

(
ci, cj

)
:

D
(
ci, cj

)
= 2− 2

∑
l

wlKl
(
ci, cj

)
,
∑

l

wl = 1, wl ≥ 0,

where each linear weight w represents the importance of each
kernel K, which is an expression function for cell i and cell j. In
addition, SIMLR applies the following optimization framework
to compute cell-to-cell similarity S:

minimize
S, L, W

−

∑
i,j,l

wlKl
(
ci, cj

)
Sij + β||S||2F + γ · tr

(
LT (IN − S) L

)
+ρ

∑
l

wllogwl

subject to

LTL = IC
∑

j

wl = 1, wl ≥ 0,
∑

j

Sij = 1 andSij = 0
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where IN and IC are N × N and C × C identification matrices,
respectively, and β and γ are non-negative tuning parameters; L
denotes an auxiliary low-dimensional matrix enforcing the low
rank constraint on S, tr(.) denotes the matrix trace, and |S|F
represents the Frobenius norm of S. The optimization problem
has three variables: the similarity matrix S, the weight vector
w, and an N × C rank-enforcing matrix L. SIMLR solves the
optimization problem through updating each variable and fixing
the other two variables.

Single-cell interpretation via multikernel learning used the
stochastic neighbor embedding (SNE) method (Maaten and
Hinton, 2008) to dimension reduction based on the cell-
to-cell similarity S learned from the above optimization
model. However, the objective function of SIMLR involves
large-scale matrix multiplication, which leads to a large
amount of calculation; thus, it is difficult to extend to high-
dimensional datasets.

Simulated scRNA-seq Datasets
To investigate the sensitivity of some characteristics of scRNA-
seq datasets including cell type number, the number of cells
and genes, outliers, and dropout event, we generated simulated
datasets using the Splatter R package (Zappia et al., 2017).
Function splatSimulate() is used to generate simulations, and
setParams() is used to set specific parameters. First, we initialized
the number of cell types as 5, the cell number as 2,000, the
gene numbers as 5,000, and the probability of expression outlier
as 0.05. When generating the simulated scRNA-seq data, we
updated each parameter and fixed other parameters. Specifically,
we generated the simulated data with variable numbers of cell
types (5, 7, 9, 11, 13), cells (100, 500, 1,000, 2,000, 5,000, 10,000,
20,000, 30,000, 40,000, 50,000), genes (10,000, 20,000, 30,000,
40,000, 50,000), and probabilities of expression outliers (0.1, 0.2,
0.3, 0.4, 0.5). In addition, considering the impact of dropout,
we also simulated datasets with five different levels of dropout
(dropout.mid = −1, 0, 1, 2, 3, the larger the parameter, the
more the points will be marked as 0); other parameters are set
as default. Here, the probability of zero value in the data is
41, 53, 62, 71, and 80%, respectively. The detailed parameters
are provided in Supplementary Table 1. In total, we created
30 simulated scRNA-seq datasets. The raw expression count
matrices of these datasets are generated and normalized to suit
for each investigated method.

Real scRNA-seq Datasets
This study analyzed five real scRNA-seq datasets, all of which
were downloaded from the publicly available EMBL or GEO
databases (Supplementary Table 2). They are derived from
different species and organs, covering a variety of cell types
and data dimensions. Cell types of every dataset provided in
original experiments were used as a gold standard to evaluate
dimension reduction methods. The descriptions of all the scRNA-
seq datasets are as follows:

1. Deng dataset: isolated cells from F1 embryos from oocyte to
blastocyst stages of mouse preimplantation development with

six cell types were collected and sequenced by Smart-Seq2
(Deng et al., 2014).

2. Chu dataset: single undifferentiated H1 cells and definitive
endoderm cells (DECs) from human embryonic stem cells
sequenced by SMARTer (Chu et al., 2016).

3. Kolodziejczyk dataset: mouse embryonic stem cells
from different culture conditions with three cell
types (Kolodziejczyk et al., 2015). Each library was
sequenced by SMARTer.

4. Segerstolpe dataset: human pancreatic islet cells with 15 cell
types obtained by Smart-Seq2 (Segerstolpe et al., 2016).

Additionally, we use PBMCs from a healthy human
(PBMC68k dataset) (Zheng et al., 2017) generated by the
10X Genomics platform to assess the scalability of methods.

Evaluation Metrics
To compare different dimension reduction methods, we
performed the iterative k-means clustering on the low-
dimensional representation of scRNA-seq data. Taking into
account the randomness of k-means clustering when setting the
initial cluster centroids, we performed k-means clustering 50
times to obtain a stable metric, and then set the cluster number
k to the true cell type number. The evaluation metrics comparing
the results to the true cell types are adjusted rand index (ARI),
normalized mutual information (NMI), and Silhouette score.

Adjusted rand index (Santos and Embrechts, 2009) is a widely
used metric which calculates the similarity between the two
clustering results, which ranges from 0 to 1. A larger score means
that two clusters are more consistent with each other. Conversely,
when the clustering results are randomly generated, the score
should be close to zero. Given two clustering X and Y,

ARI =

(
n
2

) (
a+ d

)
− [
(
a+ b

)
(a+ c)+ (c+ d)(b+ d)](

n
2

)
− [
(
a+ b

)
(a+ c)+

(
c+ d

)
(b+ d)]

where a is the number of objects in a pair placed in the same
group in X and in the same group in Y; b is the number of objects
in a pair placed in the same group in X and in different groups
in Y; c is the number of objects in a pair placed in the same
group in Y and in different groups in X; and d is the number
of objects in a pair placed in the different groups in Y and in
different groups in X.

Normalized mutual information (Emmons et al., 2016) is used
to estimate the concordance between the obtained clustering and
the true labels of cells. NMI value is from 0 to 1. A higher NMI
refers to higher consistency with the golden standard.

Specifically, given two clustering results X and Y on a dataset,
NMI = I(X, Y/max{H (U) , H(V)}, where

I (X, Y) =
∑
x,y

p(x, y)log
p(x, y)

p(x)p(y)

U (X, Y) =
2 · I (X, Y)

H (X) , H(Y)
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H (X) =

n∑
i = 1

p (xi) I (xi) =

n∑
i = 1

p (xi) logb
1

p (xi)

= −

n∑
i = 1

p (xi) logbp (xi)

Silhouette coefficient (Aranganayagi and Thangavel, 2007)
measures how well each cell lies with its own cluster, which
indicates the separability of each individual cluster. The value of
Silhouette coefficient s (i) is between −1 and 1; 1 means that the
cell is far away from its neighboring clusters, whereas −1 means
that the cell is far away from points of the same cluster.

s (i) =
b (i)− a(i)

max{a (i) , b(i)}

where a(i) is the average distance from cell i to other cells in the
same cluster and b(i) is the average distance from cell i to all
cells in other clusters. Average s(i) over all the cells indicates how
separable each cell type in the low-dimensional representation,
which we call the Silhouette score.

Computing Cost
Computing cost of each method is estimated by monitoring
the running time and peak memory usage. We analyzed the
PBMC68k datasets from 10X Genomics. The raw count matrix
was downsampled to 100, 500, 1,000, 2,000, 5,000, 10,000, 20,000,
30,000, 50,000, and 68,579 cells with 1,000 highly variable genes.
All methods were run on the 10 downsampled datasets. We use
the command pidstat from the sysstat tool to return the peak
memory usage of the process in operation. When calculating the
running time, we used the function system.time() in R. In this
step, only the running time of the model is considered, and other
processes such as data loading are excluded.

Overall Performance Score
To rank methods, the overall scores of the methods were
calculated through aggregating accuracy, stability, and
computing cost (Zhang et al., 2020). After k-means clustering,
we used the known cell populations to calculate the ARI,
NMI, and Silhouette scores for simulated data and real data,
respectively. For accuracy, scaled mean ARI, scaled NMI, and
scaled Silhouette scores obtained from real data were aggregated
to the accuracy score. For stability, aggregated scaled scores
across different simulation datasets were denoted as the stability
score of each method. For the computing cost, we first scale the
running time and memory usage to get a value ranging from 0 to
1. Then, we averaged scaled running time and memory usage to
obtain the computing cost. Finally, we integrated the accuracy,
stability, and computing cost with a ratio of 40:40:20 into the
overall performance score of each method.

RESULTS

We benchmarked a total of 10 methods on 30 simulated and
five real datasets. We normalized scRNA-seq data based on

the corresponding method, and then performed dimensionality
reduction to obtain 2D latent space. k-Means clustering method
was used to perform cluster analysis. Finally, the methods
were compared using accuracy, stability, computing cost, and
sensitivity to hyperparameters (Figure 1).

Evaluation of Stability
We used 30 simulated datasets to assess the stability of the 10
dimensionality reduction methods with respect to the number of
cell type, cells and genes, outliers, and dropout event.

First, we investigated the effect of cell type numbers to
the approaches. We fixed the cell number (n = 2,000), gene
number (n = 5,000), and probability of outliers (p = 0.05),
and then changed the cell type number from 5 to 13
stepped by 2. As the number of cell types increased, the
performance of PCA, ICA, and GrandPrix descended faster
(Figure 2A). While the performance of ZIFA, VAE, SIMLR,
scvis, and DCA decreased slightly, UMAP and t-SNE fluctuated.
Generally, ZIFA, VAE, SIMLR, scvis, DCA, UMAP, and t-SNE
have better stability with respect to cell type number than
PCA, ICA, and GrandPrix, since their standard deviation is
relatively small.

Second, we changed the cell number from 100 to 50,000
and fixed other factors. It was found that too many or
too few cells are not conducive to the construction of low-
dimensional space of single-cell RNA-seq data. All the methods’
performance fluctuated greatly except for PCA and UMAP. PCA
and UMAP have strong adaptability to cell number change
based on standard deviation (Figure 2B). All of the methods
obtained the best performance between 1,000 and 10,000 cells.
It is worth noting that SIMLR has a high computational
complexity as it involves large matrix operations which could
not perform dimensionality reduction on data with a cell count
greater than or equal to 10,000. Additionally, all the methods
except PCA and ZIFA have good stability with respect to gene
number (Figure 2C).

To investigate the effect of the complex cell mixtures to
methods, we simulated expression outliers; it was found that
the performance of all the methods is stable to expression
outliers (Figure 3A). Finally, we randomly dropped expressed
genes in each cell to investigate the ability of methods to
deal with datasets with various library sizes. Generally, ZIFA,
VAE, UMAP, t-SNE, SIMLR, and GrandPrix showed a stable
performance, whereas the performance of scvis, PCA, ICA, and
DCA decreased remarkably with the increase in the dropout
ratio (Figure 3B).

We found that the stability of each method is different with
respect to the number of cell types, cells and genes, outliers,
and dropout rate. To evaluate the overall stability of each
method, we aggregated all the metrics across simulation datasets
to obtain the overall stability score (see section “Materials and
Methods”). In summary, the overall stability scores showed that
the performance of UMAP has shown more stability than the
other methods. Conversely, ICA has poor stability (Figure 4).
It is worth mentioning that the Silhouette score of UMAP is
significantly higher than the other methods in all simulation tests,
indicating that it better separated distinct cell types.
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FIGURE 2 | Evaluation stability of the 10 dimensionality reduction methods on simulated scRNA-seq data with respect to the number of cell type (A), cell number
(B), or gene number (C). The performance is measured by ARI, NMI, and Silhouette score (SIL). Gray indicates that the SIMLR cannot run on data with more than
10,000 cells.

Evaluation of Accuracy
We applied the 10 dimensionality reduction methods to the four
real data and performed k-means cluster analysis based on the
low-dimensional representation and calculated the evaluation
metrics. No single method dominated on all of these datasets,
indicating that there is no “one-size-fits-all” method that works
well on every dataset. Regarding the ARI and NMI measures,

PCA and t-SNE were ranked in the top five performers on all
the four datasets (Figures 5A,B). VAE was ranked in the top five
performers on the three datasets. Consistent with the simulation
dataset, UMAP can separate each individual cluster very well
based on the Silhouette score, compared with other methods
(Figure 5C). In addition, the dataset of Segerstolpe et al. has the
lowest evaluation metrics compared with the other three datasets,
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FIGURE 3 | Evaluation stability of the 10 dimensionality reduction methods on simulated scRNA-seq data with respect to the proportion of outlier (A) or dropout rate
(B). The performance is measured by ARI, NMI, and SIL.

indicating that the dimensionality reduction method should be
improved for the heterogeneous dataset with more cell types. We
also visualized the low-dimensional reductions of all the methods
on the four datasets (Supplementary Figures 1–4). The ability to
separate different cell types of each method is consistent with the
above metrics. Aggregating all the three metrics across datasets,
t-SNE has the best accuracy, followed by VAE (Figure 4).

Sensitivity of Methods to
Hyperparameters
The hyperparameters play a crucial part of the dimension
reduction algorithm, especially the deep machine learning
model. Therefore, we examined the effect of the hyperparameter
settings on the dimensionality reduction in order to guide
the user in making a reasonable choice. Among all the 10
algorithms discussed, there are seven methods whose developers
have added parameter settings. PCA and ICA are based
on linear transformations, so do not require hyperparameter
adjustment. In addition, DCA implements an automatic search
that could identify a set of hyperparameters in minimizing
errors. To decrease time consumption, we used the datasets
of Deng to investigate the effect of the hyperparameters to

the performance of these seven methods. Detailed evaluation
parameters are shown in Supplementary Table 3. Using grid
search strategy, we found that ZIFA is insensitive to their
respective hyperparameters, and the evaluation metrics have little
change in different settings (Figure 6A). The evaluation metrics
of t-SNE and SIMLR increased when their hyperparameters
increased from 2 to 5, after that ARI and NMI tend to
be stable. Silhouette scores are largely reduced when the
hyperparameters are larger than 20 (Figures 6B,C). For those
methods with multiple adjustable hyperparameters including
GrandPrix, scvis, UMAP, and VAE, we noticed a dramatic
change in the results when choosing different hyperparameter
settings (Figures 6D–G). Therefore, we recommend that users
consider the impact of hyperparameter settings before using
these four methods.

Data Preprocessing of All Methods
For the arithmetic design adapting to different algorithms,
we performed the corresponding normalization process
for one raw single-cell RNA-seq data based on the
description of the algorithm. First, PCA, ICA, t-SNE,
UMAP, ZIFA, and SIMLR used the original count
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FIGURE 4 | The overall performance of the 10 dimensionality reduction algorithms. The methods are sorted by overall performance score, which is a weighted
integration of accuracy, stability, and computing cost. The accuracy and stability are the average value of scaled ARI, scaled NMI, and scaled SIL in real data and
simulated data, respectively. Running time and memory are scaled to a value in [0,1] before averaged as computing cost.

FIGURE 5 | Evaluation accuracy of the 10 dimensionality reduction methods on real scRNA-seq data measured by (A) ARI, (B) NMI, and (C) SIL.

matrix of scRNA-seq data as the input. For DCA and
GrandPrix, the input is a feature matrix with all the cells
and 1,000 highly variable genes. Scvis used PCA as a
preprocessing for noise reduction to project the cells into a
100-dimensional space.

The Outputs of All Methods
For some methods, in addition to the low-dimensional
representation of the data, other useful information is also

provided. Specifically, scvis, DCA, and VAE were developed
based on deep learning; thus, a trained model is saved
in the corresponding output folder, containing the loss
parameters and validation for models. Furthermore, being
used as a process of noise reduction, DCA provides an
output file which represents the mean parameter of the ZINB
distribution which has the same dimensions as the input
file. Detailed workflows and explanations are available in the
original publications.
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FIGURE 6 | The effect of hyperparameters to the performance of dimensionality reduction methods. (A) ZIFA. (B) t-SNE. (C) SIMLR. (D) Grandprix. (E) Scvis.
(F) UMAP. (G) VAE.

FIGURE 7 | Evaluation computing cost for each method on metrics of (A) running time and (B) memory limitation. The analyses were run on computing equipment
with Inter i7 4790@3.60 GHz CPU and 16G running memory.

Computing Cost Overview
The current scRNA-seq analysis methods are expected to
cope with hundreds of thousands of cells as the number
of cells profiling by the current protocols increases. We
estimated the computational efficiency of each method using
running time and memory usage. We generated ten datasets
containing different number of cells through downsampling the
PBMC68k data. Overall, the running time and memory usage
of all methods are positively correlated with the cell number.
Most methods except SIMLR and scvis can be completed in
30 min even using all the cells of PBMC68k dataset (Figure 7A).
Most methods except SIMLR and ZIFA can complete all the
processes within 4 GB (Figure 7B). We noted that SIMLR
is difficult to be performed on the dataset with more than
10,000 cells due to its unique multikernel matrix operation.
In general, ICA took the shortest time (3.7 min) and t-SNE
had the lowest memory requirements (2.5 GB) when the
number of cells is 68k. Overall, t-SNE has the best computing
cost (Figure 4).

Overall Performance
By integrating three metrics from measurement of accuracy,
stability, and computing cost, we obtained the overall
performance score for each method (Figure 4). We found
that t-SNE achieved the best overall performance score with
the highest accuracy and computing cost. Meanwhile, UMAP
exhibited the highest stability, as well as moderate accuracy and
the second highest computing cost. However, the performance
score of these methods is different across evaluation criteria. For
example, SIMLR and PCA performed better than UMAP based
on accuracy, while SIMLR showed weaker computing cost and
PCA showed weaker stability.

DISCUSSION

Since 2015, the emergence of 10X Genomics, Drop-seq, Micro-
well, and Split-seq technologies has completely reduced the cost
of single-cell sequencing. This technology has been widely used
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in basic scientific and clinical research. An important application
of single-cell sequencing is to identify and characterize new cell
types and cell states. In this process, the key question is how to
measure the similarity of the expression profiles of a set of cells,
whereas, such similarity analysis can be improved after reducing
dimensionality, which can help in noise reduction.

Here, we performed a comprehensive evaluation of 10
dimensionality reduction methods using simulation and real
dataset to examine the stability, accuracy, computing cost, and
sensitivity to hyperparameters. Taken together, we observed
that the summarized performance of t-SNE outperformed the
performance of other methods. UMAP has the highest stability
and can separate distinct cell types very well. Although, both
methods are not specifically designed for single-cell expression
data. However, the performance of most methods decreased
as cell number and dropout rate increased. Therefore, new
algorithms will likely be needed to effectively deal with dropout
rate and millions of cells. In addition, the dataset from
Segerstolpe et al. containing the lower evaluation metrics
showed that the dimensionality reduction method should
be improved for the heterogeneous dataset with more cell
types. We suggested that users adjust the hyperparameters
when using these non-linear and neural network methods.
Finally, basic linear methods such as PCA and ICA have
shown to be most time saving but perform worse in highly
heterogeneous data.

To conclude, we provide a new procedure for comparing
single-cell dimensionality reduction methods. We hope
that this will be useful in providing and giving method
users and algorithm developers an exhaustive evaluation of
different data and appropriate recommendation guidelines.
At the same time, new dimensionality reduction methods
are being developed which will become more robust and
standardized. These developments will deepen further
exploration and comprehensive understanding of single-cell
RNA-seq applications.
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Periodontitis is a common chronic inflammatory disease of periodontal tissue, mostly
concentrated in people over 30 years old. Statistics show that compared with foreign
countries, the prevalence of periodontitis in China is as high as 40%, and the prevalence
of periodontal disease is more than 90%, which must arouse our great attention.
Diagnosis and treatment of periodontitis currently rely mainly on clinical criteria, and
the exploration of the etiologic criteria is relatively lacking. We, therefore, have explored
the pathogenesis of periodontitis from the perspective of immune imbalance. By
predicting the fraction of 22 immune cells in periodontitis tissues and comparing them
with normal tissues, we found that multiple immune cell infiltration in periodontitis
tissues was inhibited and this feature can clearly distinguish periodontitis from normal
tissues. Further, protein interaction network (PPI) and transcription regulation network
have been constructed based on differentially expressed genes (DEGs) to explore the
interaction function modules and regulation pathways. Three functional modules have
been revealed and top TFs such as EGR1 and ETS1 have been shown to regulate
the expression of periodontitis-related immune genes that play an important role in the
formation of the immunosuppressive microenvironment. The classifier was also used
to verify the reliability of periodontitis features obtained at the cellular and molecular
levels. In conclusion, we have revealed the immune microenvironment and molecular
characteristics of periodontitis, which will help to better understand the mechanism of
periodontitis and its application in clinical diagnosis and treatment.

Keywords: periodontitis, DEGs, crosstalk gene, PPI, immune system

INTRODUCTION

Periodontitis is a chronic inflammatory disease with complex pathogenesis. It will gradually cause
the loss of periodontal ligament and alveolar bone, and eventually cause tooth loss (Hajishengallis,
2015; Hajishengallis and Korostoff, 2017). As one of the most prevalent chronic inflammatory
diseases in the world, periodontitis directly affects more than 11% of the global population.
According to the National Health and Nutrition Examination Survey of the United States, nearly
half of American adults suffer from periodontitis, which is a huge number and seriously affects the
quality of life of individuals (Eke et al., 2015). Recent studies have shown that periodontitis not
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only affects the periodontal area, it is also the cause of other
systemic diseases, such as rheumatoid arthritis, atherosclerosis
and cerebrovascular diseases (Genco and Van Dyke, 2010;
Kebschull et al., 2010; Lundberg et al., 2010). In addition, studies
have found that as many as one-third of the periodontitis
mutations in the population are caused by genetic factors, and
the more severe the periodontitis, the stronger the heritability
(Nibali et al., 2019).

Studies have confirmed that infection of external microbial
flora is an important factor in causing periodontitis. Earlier,
Porphyromonas gingivalis was considered to be the cause of
periodontitis. But with the advancement of science, we have
found that periodontitis induced by Porphyromonas gingivalis
requires the presence of symbiotic flora (Hajishengallis et al.,
2011). Although with the study of the etiology of periodontitis
is more detailed, the most important is the local microbiota
and host immune response (Hajishengallis, 2014a). Under
normal physiological conditions, the host periodontal local
immune response and microbes are in a delicate balance state,
realizing routine monitoring of the flora (Graves et al., 2019).
However, once the pathogen colonizes the periodontal area,
it will significantly increase the number and destructiveness
of the microbial flora, breaking the original dynamic balance
(Hajishengallis et al., 2012). Under this condition, the immunity
will be over-activated and immune invasion will occur, thereby
destroying the activity of periodontal tissues. Different from
the immune evasion of other pathogens (Cyktor and Turner,
2011), the periodontitis flora interacts with the immune response
to improve its adaptability and use the tissues destroyed by
inflammation to obtain nutrients (Hajishengallis, 2014a,b).

After all, the process of periodontitis is caused by the dynamic
imbalance of local immunity and microbial community. Immune
invasion will cause the activation of osteoclasts, which will resorb
alveolar bone (Belibasakis and Bostanci, 2012). The abnormality
of cytokines in the host immune response has been revealed in
previous studies (Pan et al., 2019). Cytokines are key regulators
of local tissue homeostasis and inflammatory processes, playing
a role in the first wave of the host’s response to pathogens and
stimuli, and connect tissue cells with lymphocytes and helper
cell populations to work together (Graves, 2008). The immune
imbalance of periodontitis leads to systemic inflammation
(Hajishengallis, 2015), and a large number of studies on the
pathogenesis of periodontitis involve changes in host immunity.
But so far, no scholar has fully revealed the immune imbalance
of periodontitis from cells to molecules. In this study, we will
reveal the new pathogenesis of periodontitis and the abnormal
molecular mechanism through protein interaction analysis and
targeted regulation analysis of related immune genes.

MATERIALS AND METHODS

Data Collection
The expression profile and sample annotation of periodontitis
diseases was downloaded from the GEO database1, including

1https://www.ncbi.nlm.nih.gov/geo/

three series GSE10334 (183 periodontitis and 64 normal),
GSE16134 (241 periodontitis and 69 normal) and GSE23586 (3
periodontitis and 3 normal, Table 1). Next, we download all
immunosuppressive-related genes from DisGeNET (Pinero et al.,
2017)2 and HisgAtlas (Liu et al., 2017)3. In addition, we searched
for drugs related to immunosuppressive agents from Drugbank
(Wishart et al., 2018)4 obtained 311 immunosuppressive-related
drugs, and then downloaded immunosuppressive-related genes.
We merged the immunosuppressant-related genes obtained from
the above three databases, and obtained a total of 1,332 genes. We
started from BIND (Gilbert, 2005), BioGRID (Oughtred et al.,
2019)5, MINT (Chatr-aryamontri et al., 2007)6, HPRD (Goel
et al., 2012)7, IntAct (Kerrien et al., 2012)8, and OPHID (Brown
and Jurisica, 2005)9 database to download protein interaction
data, and integrate these data. We also downloaded immune-
related genes from the InnateDB (Breuer et al., 2013)10 database.
The transcription factor (TF) and target gene relationship from
the relevant transcription regulation databases TRRUST v2 (Yang
et al., 2018)11 and ORTI (Vafaee et al., 2016)12.

Immune Cell Distribution Analysis
We have preprocessed the expression matrices of the three
series of GSE10334, GSE16134, and GSE23586 and extracted
the expression profiles of immunosuppressant-related genes
in periodontitis diseases for immune invasion analysis.
CIBERSORT (Newman et al., 2015) could be used to
predict the infiltrating immune cells that are highly related
to periodontitis disease. Here, we used the R version of
CIBERSORT instead of the web version, taking into account the
user-friendly operation. CIBERSORT has four parameters
including the reference set that can be downloaded at
https://cibersort.stanford.edu/download.php, the expression
matrix we prepared, perm that is the number of permutations
when calculating the p-value and is set to 1,000, and QN that is

2http://www.disgenet.org
3http://biokb.nb.org/HisgAtlas/
4https://www.drugbank.ca/
5http://thebiogrid.org/
6http://mint.bio.uniroma2.it/mint/
7http://www.hprd. org/
8https://www.ebi.ac.uk/intact/
9http://ophid.utoronto.ca/ophidv2.204/
10https://www.innatedb.ca/
11https://www.grnpedia.org/trrust/
12http://orti.sydney.edu.au/about.html

TABLE 1 | Description of microarray profiles in gingival tissue.

GEO series Periodontitis
Sample

Normal
sample

Tissues Platforms Citation
(PMID)

GSE10334 183 64 Gingival Affymetrix;
GPL570

18980520

GSE16134 241 69 Gingival Affymetrix;
GPL570

19835625,
24646639

GSE23586 6 6 Gingival Affymetrix;
GPL570

21382035
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whether to perform quantile normalization and is set to TRUE
taking into account the microarray expression data. In order
to see more group differences in the fraction of cell types other
than plasma cells, we further transformed the raw cell fractions
into the log ratio of log (plasma_cell_fraction + 1e-3)/log
(cell_fraction + 1e-3). We also combined previous studies on
periodontitis clustering to explore the differences in the immune
microenvironment between periodontitis subtypes.

Differential Expression Analysis and
Functional Enrichment Analysis
We consider the sample size of each series in the downloaded
data, so we only perform differential expression analysis on the
downloaded sample data of GSE10334 and GSE16134. In data
preprocessing, missing values of the expression matrix were filled
by zero value. Further, the gene expression values were log2-
transformed to be suitable for differential expression analysis.
The limma package was used to measure gene expression
variation between periodontitis and normal samples. We defined
the cutoff of gene p-value as 0.05 and the cutoff of fold-change
as 1.5 (Demmer et al., 2008), which filtered out differentially
expressed genes (DEGs). The clinical variables were not include
in the DEG identification pipeline Next, we integrate the
significant DEGs of these two series of samples into a multi-gene
set list, and use the compareCluster_go() function of the latest
clusterProfiler package of the R language to perform GO function
and KEGG enrichment on the data set, and set threshold p< 0.05.

Construction of PPI Network and
Transcriptional Regulatory Network
We extract gene pairs that interact with DEGs from the PPI
data, and use the network rendering tool Cytoscape to map
the differential gene PPI data. Further, the MCODE module of
Cytoscape were used to screen the significant function modules
in the DEG PPI network (parameter selection: Degree cutoff:
5, Node score cutoff: 0.2, K-core: 2, and Max. depth: 100),
and used the network analysis tool to analyze the topological
properties of the network (Degree, Average Shortest Path
Length, Betweenness Centrality, Closeness Centrality, Clustering
Coefficient, Topological Coefficient). We use differentially
expressed immune genes as crosstalk genes, and extract the PPI
relationship pairs of these crosstalk genes, and use Cytoscape
to construct the crosstalk gene PPI network. We defined the
modules identified in the PPI network of immune-related genes
that were masked in the PPI network constructed directly using
DEGs as New-module of immune function. We extracted the
TF-target relationship pairs related to the crosstalk gene and
constructed the TF-target network using Cytoscape software.
We then analyzed the topological properties of the network,
and extracted the top 10 genes of outdegree and indegree,
respectively, as key periodontitis related genes.

Build the Classifier
We constructed periodontitis disease classifiers with significantly
different infiltration of immune cells as the characteristic and
New-module functional gene in the crosstalk gene PPI network

as the characteristic. The former uses the fraction of immune
cell identified by CIBERSORT and the latter uses gene expression
data. Here, we consider two classification algorithms, including
decision tree and SVM, to build the model. We randomly select
70% of the samples in GSE10334 as the training set, and the
remaining 30% as the test set, and use the data of the GSE16134
and GSE23586 series as the validation sets. Further, we combine
the possibility provided by the classifier and the true sample
label to measure the performance of the classifier. In order to
understand the generalization ability of the model, we introduced
fivefold cross-validation. We use the pROC package and plot
function of the R language to display the ROC curve to evaluate
the effectiveness of the model.

RESULTS

Immune System Imbalance at the
Cellular Level
Immune Cell Infiltration in Periodontitis
We developed a computational pipeline to analyze the gene
expression profile of periodontitis disease (Figure 1A). In this
study, we selected microarray profiles of the GSE10334 and
GSE16134 series with sufficient periodontitis and normal samples
for immuno-infiltration analysis of gingival tissue. After quality
control and normalization, we obtained two processed expression
profiles. Here, we used the CIBERSORT method to predict the
infiltration of immune cells in periodontitis disease. We obtained
the fraction of 22 immune cell types in these samples. We
further transformed the raw cell fractions in order to see more
group differences in the fraction of cell types (Figures 1B,C and
Supplementary Table S1). We found decreased levels of immune
infiltration during the malignant transformation of normal tissue
to periodontitis that was verified in both series of samples, which
indicates that periodontitis tissue undergoes immunosuppressive
microenvironment. By combining this with previous studies
(Kebschull et al., 2014), we found that the level of immune
infiltration in type 1 periodontitis was superior to that in type
2 periodontitis (Figure 1B), indicating that type 1 periodontitis
may be more suitable for immune targeted therapy. We found
that the fraction of CD4+/CD8+ T cells in periodontitis tissue
was significantly depressed (Figure 1D), which might be one
of the factors contributing to the suppression of the immune
microenvironment in periodontitis tissues.

Construct a Classifier Based on Immune Cells
In order to consider whether immune cells with significant
changes in fraction can represent the overall difference between
periodontitis and normal patients, we constructed a classifier
based on the significantly different distribution of immune cells.
The two machine learning methods, including Decision tree and
SVM, were used to build the classifier model, and the training
set, test set, and validation set were also scientifically allocated.
In the model constructed by the decision tree, dendritic cell,
neutrophils, and CD4+/CD8+T cell were used as important
screening indicators to control sample filtering (Figure 2A). In
order to predict the accuracy of the model, the data of the test set
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FIGURE 1 | The distribution of 22 types of immune cells in periodontitis and healthy samples. (A) Diagram of the multiple components and workflows of pipeline.
(B) The heatmap represents the fraction of immune cells for the GSE16134 series. The horizontal axis is the immune cell type and the vertical axis is the sample.
(C) The same as in (B) but for GSE10334. (D) The volcano plot represents the immune cells with significantly different gene expression levels between periodontitis
and healthy samples for the GSE10334 and GSE16134 series.

and the validation set were verified by a trained classifier, and the
prediction results are output. Then we use the pROC package and
plot function of the R language to display the ROC curve of the
data set to evaluate the effectiveness of the model.

After the construction of the classifier and the evaluation of the
classification efficiency, we found that the classifier constructed
by the SVM algorithm has a slight advantage over the classifier
constructed by the Decision tree algorithm (Figures 2B,C).
In order to measure the generalization ability of the support
vector machine model, we introduced fivefold cross-validation.
We found that the AUC value of the fivefold verification
result is stable (Supplementary Figure S1), indicating that
the choice of hyperparameters of the model is excellent. We
obtained excellent results in differentiating periodontitis from
normal tissue from the perspective of immune cells, suggesting
that the disruption of the immune microenvironment of the
gingival tissue is an important cause of periodontitis. Further,

the exploration of the molecular mechanisms underlying the
formation of the immunosuppressive microenvironment in
periodontitis is crucial.

Immune System Imbalance at the
Molecular Level
Statistical Analysis of Gene Expression Matrix
First, we performed statistical tests on the expression profile
data of the GSE10334 and GSE16134 series with abundant
sample sizes, and calculated two test indicators P-value and
Fold Change. We obtained 1,571 and 1,680 DEGs from the two
series of GSE10334 and GSE16134, respectively (Figures 3A,B).
From the results, we found that there are a large number of
DEGs between periodontitis samples and normal samples. In
order to evaluate the reliability of the experimental data, we
tested the overlap levels of the up-regulated and down-regulated
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FIGURE 2 | Construct a classifier with significantly different distribution of immune cells. (A) This picture is the decision tree diagram of the decision tree classifier.
(B) The ROC curve represents the area under curve (AUC) of the test set and validation set for SVM classifiers. (C) The same as in (B) but the Decision tree.

genes in GSE10334 and GSE16134, respectively. We found
that the up-regulated and down-regulated genes in GSE10334
and GSE16134 have significant overlap, indicating that the
DEGs we obtained from the analysis of experimental data are
reliable (Figure 3C). Further, there are 1,424 DEGs shared by
GSE10334 and GSE16134.

Next, we conduct preliminary statistics on the functional
effects of DEGs. These two series of DEGs are integrated into
a multi-gene set list, which is used for multi-gene set GO
function enrichment and KEGG pathway enrichment, and the
functional pathway with p < 0.05 is selected as the significant
function. We use dotplot and emapplot to display 15 functional
nodes and pathways in the results of function and pathway
enrichment (Figure 3D). Since the DEGs of the two series of
samples have a large overlap, they are very similar in function

and pathway enrichment. We can see from the enrichment
results that periodontitis disease has significant enrichment in cell
growth and related immune functions. And which DEGs interact
and regulate relationships deserve further analysis.

PPI Network of DEGs
Building a protein interaction network (PPI) is a common
method to reveal the interaction relationships and functional
modules between genes, so we constructed a PPI network of
DEGs (Figure 4A). First, merge these two series of DEGS to
obtain a total of 1,822 DEGs, and then extract the corresponding
interaction relationship pairs to draw the PPI network. In
the biological network, the node with the higher degree plays
a bigger role in the network and has important functions.
Therefore, we extracted the top 30 degree-ranked genes as

Frontiers in Genetics | www.frontiersin.org 5 March 2021 | Volume 12 | Article 653209133

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-653209 March 22, 2021 Time: 13:40 # 6

He et al. Exploring the Imbalance of Periodontitis Immune System

FIGURE 3 | Differential expression analysis and functional enrichment analysis between periodontitis and normal samples. (A) This picture represents the volcano
map of DEGs for the GSE10334 series. (B) This venn diagram describe the intersection of the up- and down-regulated genes in the GSE10334 and GSE16134
series. Fisher’s exact test is used to measure the significance level of overlap. (C–D) This picture represents the dotplot and emapplot of the GO function enrichment
node of DEGs in the GSE10334 and GSE16134 series of samples. e represents the dotplot and emapplot of the DEGs KEGG pathway enrichment in GSE10334
and GSE16134 series samples.

important periodontitis disease-related genes (Supplementary
Table S2). The results show that genes such as FYN, LYN,
LCK, Critical Assessment of Techniques for Protein Structure
Prediction experiment (CASP3), arrestin beta 2 (ARRB2) are the

central node genes with high connectivity in the PPI network.
Among them, FYN, LYN, and LCK are all members of the
protein tyrosine kinase (PTK) family, and they are non-receptor
PTKs. Studies have shown that most proto-oncogenes have PTK
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FIGURE 4 | Analysis of the topological properties and functional modules of the PPI network of DEGs and crosstalk genes. (A) This picture represents the protein
interaction network of two series of integrated DEGs. There are 647 relationship pairs and 515 nodes in the network. (B) This picture is a moderate topological
analysis of the PPI network of DEGs and the five functional modules in the network. (C) This picture shows the PPI network of crosstalk gene, which has 58
relational pairs and 57 nodes. (D) This picture is the three modules in the PPI network of crosstalk gene. (E) Bar graph of enriched terms across TF and target genes
associated with immune pathways, colored by p-values. (F) Network of enriched terms colored by cluster ID, where nodes that share the same cluster ID are
typically close to each other.

activity, and their abnormal expression will lead to disorders
of cell proliferation and eventually tumorigenesis (Drake et al.,
2014). Non-receptor PTK-mediated signal transmission plays an
important role in the activation of T cells, B cells, NK cells and

granulocytes, and the abnormality of its gene structure or gene
expression is the cause of certain immunodeficiency diseases
and immunoproliferative diseases (Vivier et al., 2004; Vasquez
et al., 2019). This means that FYN, LYN and LCK, which are
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highly expressed, play an important role in the imbalance of the
immune system of periodontitis. In addition, we selected five
important functional modules from the PPI network (Figure 4B),
all of which play an important role in cellular immunity (Module
1) and cell growth and proliferation. In order to further study
the relationship between immunity and periodontitis disease, we
extracted genes related to immunity among DEGs and conducted
a series of analysis and research.

Crosstalk Gene in Immune Imbalance
Since crosstalk occurs when TFs regulate multitude of immune-
related genes in periodontitis disease, it is intriguing to
explore the regulatory mechanisms of immune-related genes
(Friedlander et al., 2016; Grah and Friedlander, 2020). We
extracted the immune-related genes from the DEGs and defined
them as crosstalk genes. Then, we obtained 159 crosstalk genes,
which are immune-related genes differentially expressed in
periodontitis diseases. We extracted the PPI relationship pairs
of these crosstalk genes to draw a PPI interaction network, and
analyzed the functional modules and topological properties of
the network (Figure 4C). We obtained 3 functional modules
including a new immune function module (New-module) which
was not recognized in the previous PPI network (Figure 4D).

As we all know, TFs can control gene expression and
expression efficiency (Lambert et al., 2018). Therefore, the
analysis of transcription regulation relationship helps us
understand the process of several gene expression changes.
We collected TF-target relationships from TRRUST and ORTI
database which identify TF-target regulations from small-scale
experimental studies and interrogating gene expression data.
These TF-target relationships were mapped to the transcriptional
regulatory network of DEGs associating with crosstalk genes
(Supplementary Figure S2). There were 19 TFs in this
transcriptional regulatory network, of which 14 were up-
regulated and 5 were down-regulated. A total of 5 TFs were
crosstalk genes that had unbinding event with known target
genes, and they were all up-regulated in expression, including
early growth response 1 (EGR1), ETS proto-oncogene 1 (ETS1),
interferon regulatory factor 4 (IRF4), RUNX family transcription
factor 3 (RUNX3), and X-box binding protein 1 (XBP1). We
combined immune-related genes on the basis of transcriptional
regulatory network to explore the functions of TFs in the

immune microenvironment according to Metascape (Zhou et al.,
2019). We found that these TFs and their targeted genes are
closely related to the activity of T cells (Figures 4E,F), which
may lead to the formation of periodontitis immunosuppressive
microenvironment. By analyzing the topological properties of the
network (Table 2 and Supplementary Table S3), we found that
EGR1, ETS1, RUNX3, and XBP1 were associating with multiple
genes. We also found that most of the up-regulated genes in
the New-module functional module of the cross-talk gene PPI
network are regulated by ETS1 and EGR1.

Explore the Immune Function of New-Module
As an important and novel functional module, New-module
is worthy of our in-depth exploration. We extracted the up-
regulated genes in New-module as a gene set, and analyzed
their biological pathways (BP) and functional pathways, where
ont = ‘BP’ was set in enrichGO, and p < 0.05 was set uniformly.
Through enrichment analysis of the up-regulated target genes
in module3, we have obtained significantly enriched functional
pathways. For the large number of BPs, we used dotplot and
cnetplot to show only the top 30 BPs terms (Figures 5A,B). These
BPs are mainly related to immune cell invasion and activity. In the
cnetplot, we found that these biological pathways mainly involve
7 genes, including INPP5D, LYN, PRKCD, PTK2B, ITGB2,
SLAMF1, and IL2RB. These genes are only significantly enriched
in one pathway, namely the Chemokine Signaling pathway
(hsa04062; chemokine signaling pathway), in which three genes
including LYN, PRKCD and PTK2B are involved (Figures 5C,D).
Studies have found that chemokines play a basic role in the
transport and activation of monocytes and lymphocytes in the
inflammation site. For example, this mechanism can perpetuate
local inflammation in the joints of RA patients (Zhang et al.,
2015). So, in periodontitis disease, it was possible to believe
that the production and persistence of inflammation caused by
immunosuppressive microenvironment is achieved through the
influence on chemokine signaling pathways.

We then used boxplot to show the relationship between these
genes and the expression of TFs, and we found that the expression
changes of TF and target genes are consistent, which is in line
with the transcription regulation relationship (Figures 5E,F). The
TFs involved are the two high-outdegree TFs, ETS1 and EGR1,
which reveals that the TFs ETS1 and EGR1 play a crucial role

TABLE 2 | Top 10 outdegree genes in the transcriptional regulatory network as key genes.

Symbol Out degree Average shortest path Length Betweenness centrality Closeness centrality Regulatory_type EXP_type

ETS1 859 1.022 0.001 0.979 TF_Target Down

EGR1 41 1 3.23E-05 1 TF_Target Down

RUNX3 8 1 1.55E-05 1 TF_Target Down

XBP1 6 1 1.29E-06 1 TF_Target Down

CEBPA 5 1 0 1 TF Down

IRF1 2 1 8.60E-07 1 TF_Target Up

IRF2 2 1 8.60E-07 1 TF_Target Up

POU2F2 2 2.018 1.29E-06 0.495 TF_Target Down

STAT4 2 1.333 0 0.750 TF_Target Down

IRF4 1 1 3.87E-06 1 TF_Target Up
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FIGURE 5 | New-module function and pathway analysis (A). The dotplot of enriched biological pathways (BP) across up-regulated genes in the New-module.
GeneRatio is the number of enriched genes/number of all genes of a GO term. (B) Network of enriched terms, where nodes that share the same genes are typically
link to each other. The size of the dot represents the counts of gene. (C) The pathway diagram is one of the functional pathways enriched by up-regulated genes in
the New-module gene. (D) The mechanism of the New-module up-regulated genes on the chemokine signaling pathway. (E) The boxplot represents the
transcriptional regulatory relationship of the up-regulated genes in the New-module for GSE10334 and GSE16134 series. (F) The same as in (E) but only for
GSE10334 series.

in the invasion and activity of immune cells in periodontitis.
Further, we explored whether these TFs played driver roles in TF-
target relationships by using Chromatin Immunoprecipitation
Sequencing (ChIP-seq) data from ENCODE (v112). Enriched

sequencing read peaks of these TFs have been found in the
transcription factor binding site (TFBS) regions of downstream
target genes. For example, the EGR1-IL2RB relationship of
Figure 5E has been supported by multiple ChIP-seq datasets
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FIGURE 6 | Construct a classifier based on the New-module gene. (A) The ROC curves of the test set and validation set for SVM algorithm constructed with the
New-module functional module gene in the crosstalk gene PPI network. (B) The same as in (A) but for the decision tree algorithm.

(Supplementary Figure S3). The ETS1-target relationships of
Figure 5F has also been supported by multiple ChIP-seq datasets
(Supplementary Figures S4–S8). Since the immune function
module New-module plays an important role in periodontitis
disease, we decided to rebuild the classifier using the gene of
this module as features and compare the performance of the
previous classifiers.

Construct a Classifier Based on
New-Module
To explore whether the new-module can accurately define
periodontitis and normal tissue, we constructed classifiers using
the genes in the module as features. Considering that the
expression values of the GSE10334, GSE16134, and GSE23586
series are of different magnitudes, we normalized them to make
them consistent. We built two classifiers based on decision tree
and SVM and used the classifier to predict the test set and the
validation set (see section “Materials and Methods”). We found
that the classifier constructed with SVM is the best here, and the
AUC values of the test set and the two validation sets are 0.923,
0.957, and 0.889, respectively (Figure 6). The lower AUC value
of GSE23586 as the test set is caused by the small sample size.
Generally speaking, the effect of the classifier is better.

Then we compared the performance evaluation results of this
classifier with the previous ones (Table 3). From the comparison
results, we can clearly see that the effect of constructing a classifier
based on the new-module functional module is better than based
on the different content of immune cells. All these suggesting
that although there are differences in the fraction of immune

cells between periodontitis samples and normal samples, the
differences will be more significant at the level of molecular level.

DISCUSSION

In this study, we systematically analyzed the immune imbalance
of periodontitis from the cellular to molecular level. Measuring
the fraction of immune cells between periodontitis and normal
tissues was used to determine the feature and role of immune cells
in periodontitis. Statistical analysis of gene expression profiles
is used to reveal abnormally expressed genes in periodontitis.
The PPI was constructed to explore potential functional modules
and reveal new molecular mechanisms of immune imbalance in
periodontitis. We have reconstructed the PPI network base on
immune genes and discovered a new immune function module
named New-module. By integrating TF-target relationships and

TABLE 3 | Comparison table of performance evaluation of two
classifiers successively.

Classification
features

Series
number

data sets SVM AUC Decision tree
AUC

Immune cells GSE10334 Test set 0.815 0.656

GSE16134 Validation set 0.918 0.855

GSE23586 Validation set 0.889 0.833

Important
crosstalk genes

GSE10334 Test set 0.923 0.810

GSE16134 Validation set 0.957 0.895

GSE23586 Validation set 0.889 0.833
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ChIP-seq data, we found that EGR1, ETS1, RUNX3, and XBP1
were key TFs that regulate the expression of genes that participate
in the formation of the immunosuppressive microenvironment.
The up-regulated genes are mainly regulated by EGR1 and ETS1
in New-module. In addition, New-module not only plays an
important role in the imbalance of the immune system, but is also
closely related to the occurrence and persistence of periodontal
tissue inflammation.

Periodontitis is mainly a chronic inflammation of periodontal
tissue caused by pathogens, which has the characteristics of
complicated pathogenesis and long duration. Previous studies
have shown that the imbalance of the immune system caused by
pathogen colonization is an important factor in the occurrence
and development of periodontitis. The majority of work has
focused on the external pathogenic factors and clinical treatment
of periodontitis, with limited documentation of indications that
the changes in the molecular mechanism of the immune system
of patients with periodontitis. In addition, more and more
studies have demonstrated the significance of the imbalance of
the immune system for periodontitis, including the abnormality
of cytokines in the host immune response (Pan et al., 2019),
and the immune imbalance of periodontitis leads to systemic
inflammation (Hajishengallis, 2015). Exploring the disease tissue
microenvironment at single-cell resolution is a popular direction,
but the lack of high-throughput data for periodontitis has
forced us to consider other approaches. In order to be able
to further explore the tissue microenvironment and epigenetic
characteristics of periodontitis in future research, TOAST (Li
et al., 2019, 2020; Li and Wu, 2019) tool that offers functions
for detecting cell-type specific differential expression (csDE)
and differential methylation (csDM) brings convenience to our
research. In the current study, we comprehensively assessed the
immune system imbalance of periodontitis from the cellular to
molecular level, which gained a new insight in protein interaction
and transcriptional regulation.

During the construction of PPI networks, usage of
immune genes only will lose many other pathway signals.
Our purpose is to explore the molecular mechanism of the
immune microenvironment reprogramming of periodontitis
disease. Although our selection of immune genes will ignore
other signaling pathways, the formation mechanism of the
immunosuppressive microenvironment of periodontitis disease
is important. In the future, we will integrate more genes into
the PPI networks and perform functional analysis to characterize
periodontitis disease comprehensively.

We successfully determined the immunosuppressive
microenvironment of periodontitis in the measurement of
immune cell distribution. Notably, we measured the distribution
of immune cells and differential gene expression in two series
with rich samples, which can effectively avoid the false negative

problem faced in the research. Our data may discover previously
overlooked pathogenic genes and molecular mechanisms, adding
a new blueprint for periodontitis research. In addition, we also
used a machine learning algorithm to build a classifier model
to consider the reliability and pros and cons of the statistically
obtained disease characteristics. Periodontitis is mainly a local
inflammation caused by pathogen-induced immune invasion.
Therefore, investigation and interpretation of the immune system
would provide novel and useful insights into the mechanisms
underlying the functions of these molecules in periodontitis. In
our further work, we will perform experiments in vitro to validate
key regulators identified from our results. The experimental
strategy will measure the expression levels of risk genes using
qRT-PCR in normal and disease tissues. Further, siRNAs will be
used to knockdown their expression and study gene functions
with cell proliferation assay, wound healing assay.

CONCLUSION

In summary, we provide a comprehensive view of the imbalance
mechanism of the periodontitis immune system from the cellular
to the molecular level. Our findings expand existing knowledge
about immunosuppressive associated with periodontitis. The
integration of multi-platform data comprehensively reveal that
the immune system imbalance mechanism of periodontitis
patients enhances the interpretability of the pathogenesis
of periodontitis, which may help the development of new
periodontitis treatments.
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Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease and
mitochondria plays a key role in the progression in HCM. Here, we analyzed the
expression pattern of nuclear-encoded mitochondrial genes (NMGenes) in HCM and
found that the expression of NMGenes was significantly changed. A total of 316
differentially expressed NMGenes (DE-NMGenes) were identified. Pathway enrichment
analyses showed that energy metabolism-related pathways such as “pyruvate
metabolism” and “fatty acid degradation” were dysregulated, which highlighted the
importance of energy metabolism in HCM. Next, we constructed a protein-protein
interaction network based on 316 DE-NMGenes and identified thirteen hubs. Then,
a total of 17 TFs (transcription factors) were predicted to potentially regulate the
expression of 316 DE-NMGenes according to iRegulon, among which 8 TFs were
already found involved in pathological hypertrophy. The remaining TFs (like GATA1,
GATA5, and NFYA) were good candidates for further experimental verification. Finally,
a mouse model of transverse aortic constriction (TAC) was established to validate
the genes and results showed that DDIT4, TKT, CLIC1, DDOST, and SNCA were all
upregulated in TAC mice. The present study represents the first effort to evaluate the
global expression pattern of NMGenes in HCM and provides innovative insight into the
molecular mechanism of HCM.

Keywords: hypertrophic cardiomyopathy, microarrays, bioinformatics analysis, nuclear-encoded mitochondrial
genes, transcription factors

INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disease that is mainly
characterized by ventricular hypertrophy with asymptomatic or serious complications such as
sudden cardiac death (SCD), heart failure, and thrombosis (Marian and Braunwald, 2017). The
prevalence of HCM in the general population was estimated to be 1/500 (Gersh et al., 2011), which
was underestimated due to the limited HCM diagnostic technology. HCM is considered a leading
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cause of SCD in younger people and the leading cause of
heart failure in cardiac diseases originating primarily from the
myocardium (Weissler-Snir et al., 2019).

Normal myocardial energy metabolism from mitochondria
is also an important material basis for keeping the normal
heart tissue structure and the internal environment stable.
Cardiac function will inevitably be impaired by mitochondrial
dysfunction. Clinical and experimental studies have shown that
the myocardial energy source switching from fatty acid oxidation
to glycolysis is a common event in HCM (Tian, 2003). Mutations
in a wide spectrum of nuclear-encoded mitochondrial genes
(NMGenes) have been reported to be able to cause HCM
characterized by impaired mitochondrial function (Marin-Garcia
and Goldenthal, 2002b). For example, mutations in ELAC2 (ElaC
ribonuclease Z 2) encoding a short form of RNase Z were found
to be associated with HCM (Saoura et al., 2019). Mitochondrial
function depends on proteins encoded by both mitochondrial
DNA (mtDNA) and nuclear DNA (nDNA). The mitochondrial
proteome has been estimated to contain approximately 1000–
1500 proteins, more than 99% of which are encoded by nuclear
DNA (nDNA), while mtDNA refers to only 13 protein-coding
genes (Pfanner et al., 2019). Considering the importance of
mitochondria in HCM and the fact that functional proteins in
mitochondria are encoded mainly by nDNA genes, exploring the
function of NMGenes in HCM would help us better understand
the novel role of mitochondria in the development of HCM.

With the development of genetic studies, high-throughput
omics technologies (such as DNA microarrays and next-
generation sequencing) that investigate gene function and
expression at the genome-wide level have been widely used in
basic research, clinical diagnosis, drug research and other fields.
As a powerful technique, gene expression microarray-based
bioinformatics analyses have also been widely used to identify
HCM-related genes or noncoding RNAs, possible molecular
mechanisms, and biological pathways (Lim et al., 2001; Yang
et al., 2015; Hu et al., 2019; Li et al., 2019; Liu et al., 2019).
For example, microarray analysis was performed to explore the
expression pattern of lncRNAs (long noncoding RNAs) and
mRNAs (messenger RNAs) in HCM, which identified hundreds
of differentially expressed lncRNAs and genes (Yang et al., 2015).
A recent study systemically analyzed RNA-seq data from 28
HCM patients and 9 healthy controls and identified 43 potential
pathogenic variants in 19 genes and four subnetworks with
significant roles in the progression of HCM (Gao et al., 2020).
Although previous studies have highlighted the importance of
integrative gene expression analysis in exploring the molecular
mechanism of HCM, a systemic analysis of the expression pattern
of NMGenes in HCM patients has never been reported.

To investigate the potential role of NMGenes in the
pathogenesis of HCM, in this study, we performed a
computational systems biology analysis based on large-scale
HCM-related transcriptional data. A total of 316 differentially
expressed NMGenes (DE-NMGenes) were identified. Based
on these DE-NMGenes, gene ontology (GO) and pathway
enrichment analyses were performed, and 17 KEGG-
dysregulated pathways were identified. We also constructed
a PPI (protein-protein interaction) network that consisted of 215

DE-NMGenes and 440 interactions. Finally, a total of 17 TFs
(transcription factors) were predicted to potentially regulate the
expression of the 316 DE-NMGenes. We provided a systematic
view of the roles of mitochondrial genes in HCM and revealed
some available candidates for future experimental verification.

RESULTS

Nuclear-Encoded Mitochondrial Genes
Are Significantly Changed in HCM
The normalized gene expression dataset GSE36961 was
downloaded from the GEO (Gene Expression Omnibus)
database1, which included 107 HCM samples and 40 control
samples (Clough and Barrett, 2016). Differentially expressed
genes (DEGs) between HCM and the corresponding control
samples were detected using the “Limma” package from R
software (Ritchie et al., 2015). By keeping genes with a BH
(Benjamini-Hochberg)-corrected p-value less than 0.01 and
fold change (FC) larger than 1.2, we obtained 2927 DEGs,
1499 of which were upregulated and the remaining 1428 were
downregulated (Figure 1A and Supplementary Table 1). To
explore the expression pattern of NMGenes in HCM, we
collected 1943 mitochondrial genes from the MitoCarta (Calvo
et al., 2016), MitoMiner (Smith and Robinson, 2019), IMPI
and UniProt databases (UniProt, 2019) (Figure 1B, see section
“Materials and Methods” for details). After removing 13 mtDNA-
encoded genes, 1930 NMGenes were retained for further analysis.
Among these genes, 1562 genes were detected on microarray,
and 316 genes were differentially expressed. Compared with
the overall genes detected on the microarray, the proportion of
DEGs in NMGenes was significantly higher (Figure 1C, Fisher’s
exact test, p-value < 2.20 × 10−16). The extensive expression
changes of NMGenes in HCM indicate that mitochondria play
critical roles in the progression of HCM. Table 1 lists the top
ten upregulated and downregulated NMGenes in HCM. Among
these genes, four upregulated genes [namely, PDK4 (thpyruvate
dehydrogenase kinase isozyme 4), STAT3 (Signal Transducer
and Activator of Transcription 3), HCLS1 (Hematopoietic Cell-
Specific Lyn Substrate 1) and FKBP11 (FKBP Prolyl Isomerase
11)], and four downregulated genes [namely, GATM (Glycine
Amidinotransferase), ATPIF1 (ATP Synthase Inhibitory Factor
Subunit 1), CPT1B (Carnitine Palmitoyltransferase 1B), and GJA1
(Gap Junction Protein Alpha 1)] have already been proven to play
important roles in pathological hypertrophy (summarized in
Table 1).

Downregulated DE-NMGenes Are More
Functionally Diverse Than Upregulated
DE-NMGenes
GO biological process (BP) and KEGG pathway enrichment
analyses for 316 DE-NMGenes were performed using DAVID
(Database for Annotation, Visualization, and Integrated
Discovery) (da Huang et al., 2009). Although the numbers of

1https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1 | The expression pattern of NMGenes in HCM. (A) A volcano plot shows DEGs in HCM detected from GSE36961. The vertical lines correspond to
1.2-fold up and down, respectively, and the horizontal line represents a BH-corrected p value of 0.05. Therefore, red and blue dots represent upregulated and
downregulated DEGs, respectively. Triangular nodes and circle nodes represent NMGenes and the other genes, respectively. (B) A four-way Venn diagram shows the
number of NMGenes collected from the MitoCarta, MitoMiner, IMPI, and UniProt databases. (C) A bar plot shows the proportion of DEGs in all genes on microarray
and NMGenes. The percentage of DEGs in NMGenes was significantly larger than the percentage of DEGs in overall genes detected on microarray (Fisher’s exact
test, p-value < 2.20 × 10−16). *** represents P-value < 0.001.

upregulated and downregulated DE-NMGenes were similar,
downregulated DE-NMGenes were more functionally diverse
than upregulated DE-NMGenes. By keeping terms with
BH-corrected p-values less than 0.05, we obtained 4 GO
BP terms and 4 KEGG pathways for 141 upregulated DE-
NMGenes and 16 GO BP terms and 17 KEGG pathways
for 175 downregulated DE-NMGenes (Figures 2A,B and
Supplementary Table 2). The top 3 enriched GO terms in
downregulated DE-NMGenes were “oxidation-reduction
process,” “branched-chain amino acid catabolic process” and
“fatty acid beta-oxidation.” The GO terms “oxidation-reduction
process” and “translation” were both enriched in 141 upregulated
and 175 downregulated DE-NMGenes. KEGG pathway
enrichment analysis showed that downregulated DE-NMGenes
were significantly enriched in energy metabolism-related
pathways such as “Carbon metabolism” (15 genes, BH-corrected
p-value = 1.94∗10−9), “Pyruvate metabolism” (7 genes, BH-
corrected p-value = 1.25∗10−4), “Fatty acid metabolism” (7
genes, BH-corrected p-value = 3.24∗10−4), and “Citrate cycle”
(5 genes, BH-corrected p-value = 4.35∗10−3). For upregulated
DE-NMGenes, the KEGG pathways “Biosynthesis of antibiotics”
(15 genes, BH-corrected p-value = 1.75∗10−5) and “Biosynthesis
of amino acids” (7 genes, BH-corrected p-value = 8.88∗10−3)
were significantly enriched.

A Group of 215 DE-NMGenes Are
Biologically Connected to Form a
Network
The 316 DE-NMGenes were analyzed together to construct a PPI
network. Consequently, a PPI network including 440 interactions
and 215 nodes was obtained by using STRING (Search Tool for
the Retrieval of Interacting Genes/proteins database) (Szklarczyk
et al., 2019), with parameters including a minimum required
interaction score larger than 0.7 (high confidence) and only query

proteins being displayed. Thus, 215 out of the 316 DE-NMGenes
were included in the final PPI network (Figure 3A). The 316
DE-NMGenes had significantly more interactions than would
be expected (p-value < 2.2∗10−16) from a randomly chosen
set of proteins of the same size drawn from the genome. In
a PPI network, highly connected nodes are called hubs, which
are expected to play an important role in understanding the
biological mechanism of disease (Barabasi and Oltvai, 2004).
Then, we calculated the degree for each node and selected genes
with the degree ranked in the top 5% as hubs. Of the 215 nodes in
the PPI network, 13 nodes were ranked in the top 5% and selected
as hubs (Table 2). DLD (dihydrolipoamide dehydrogenase) was the
hub gene with the largest degree and interacted with 19 proteins
in the PPI network.

The MCODE (Molecular Complex Detection) plugin in
Cytoscape was used to detect network modules from the PPI
network (Bader and Hogue, 2003). A module is a group of
closely related proteins that act in concert to perform specific
biological functions through a PPI network that occurs in
time and space (Lin et al., 2015). A total of 12 modules
were extracted from the PPI network, of which five modules
(modules 1–5) had nodes ≥ 5 (Figure 3B and Supplementary
Table 3). The associated BPs for module 1, module 2,
module 4 and module 5 were “mitochondrial respiratory
chain complex I assembly,” “mitochondrial translation,” “protein
N-linked glycosylation via asparagine” and “folic acid-containing
compound biosynthetic process,” respectively, but no-GO term
was significantly enriched in module 3.

TFs Potentially Regulating DE-NMGenes
Play Key Roles in HCM
iRegulon (Janky et al., 2014), available as a Cytoscape plugin,
was used to predict TFs potentially regulating the 316
DE-NMGenes. A total of 17 TFs were obtained with the
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TABLE 1 | Top 10 upregulated and top 10 downregulated DE-NMGenes.

Gene symbol logFC P-value Roles in pathological hypertrophy

PDK4 2 6.79E-17 ANG II induced cardiac hypertrophy was associated with a marked
upregulation of PDK4 (Mori et al., 2012)

DDIT4 (DNA-damage-inducible transcript 4) 1.32 3.94E-22 –

STAT3 1.12 2.38E-28 Pharmacologic inhibition of STAT3 with WP1066 could suppress
Ang II-induced myocyte hypertrophy (Chen et al., 2017).

HCLS1 1.12 4.52E-27 Changes in phospholipid metabolism occur in mammalian
hypertrophied myocardium (Reibel et al., 1986).

TKT (Transketolase) 1.04 6.31E-25 –

CLIC1 (Chloride Intracellular Channel 1) 0.88 6.85E-16 –

ACTB (Actin Beta) 0.87 4.59E-17 –

DDOST (Dolichyl-Diphosphooligosaccharide—
Diphosphooligosaccharide-Protein Glycosyltransferase
Non-Catalytic Subunit)

0.86 7.14E-21 –

FKBP11 0.85 1.11E-18 FKBP11 was strongly and acutely induced in cardiac hypertrophy
induced by TAC (Wang et al., 2019).

TUBB (Tubulin Beta Class I) 0.83 1.26E-23 –

GATM −1.19 7.50E-20 In GATM-deficient mouses, hypertrophic marker NPPA expression
was significantly upregulated (Jensen et al., 2020).

SNCA (Synuclein Alpha) −1.01 8.68E-15 –

CASQ1 (Calsequestrin 1) −0.87 2.36E-11 –

LYPLAL1 (Lysophospholipase Like 1) −0.8 2.01E-24 –

ATPIF1 −0.79 4.15E-24 The knockout of ATPIF1 protected the heart from myocardial
hypertrophy induced by transverse aortic constriction or
isoproterenol infusion (Yang et al., 2017).

SDSL (Serine Dehydratase Like) −0.78 2.14E-23 –

KLHDC9 (Kelch Domain Containing 9) −0.77 7.07E-20 –

DPYSL4 (Dihydropyrimidinase Like 4) −0.76 2.80E-08 –

CPT1B −0.75 1.07E-14 CPT1B deficiency could cause lipotoxicity in the heart under
pathological stress, leading to exacerbated cardiac pathology (He
et al., 2012).

GJA1 −0.75 1.28E-12 In HCM patients with valvular aortic stenosis, compensated
hypertrophy had increased levels and increased lateral CJA1
expression (Fontes et al., 2012).

Genes with verified roles in pathological hypertrophy are marked in bold.

FIGURE 2 | GO and KEGG enrichment results of 141 upregulated DE-NMGenes and 175 downregulated DE-NMGenes. Bar graph of the significantly enriched BP
(A) and KEGG (B). Blue and red bars represent the enriched BP terms or KEGG pathways for upregulated and downregulated DE-NMGenes, respectively.

minimum normalized enrichment score >3 and the FDR on
motif similarity <0.001 (Table 3). The TF with the largest
number of targets is PBX3 (pre-B-cell leukemia transcription

factor 3), which regulates 145 DE-NMGenes. Eight of the
17 TFs, namely, BACH1 (BTB Domain and CNC Homolog
1), ATF3 (Activating Transcription Factor 3), XBP1 (X-Box
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FIGURE 3 | Network analysis of 316 DE-NMGenes. (A) The PPI network consists of 440 edges and 215 nodes. Red and blue nodes represent upregulated and
downregulated DE-NMGenes, respectively. (B) The network representation of modules detected from the PPI network. Red and blue nodes represent upregulated
and downregulated NMGenes, respectively.

Binding Protein 1), KLF4 (Kruppel Like Factor 4), MEF2C
(Myocyte Enhancer Factor 2C), JUND (JunD Proto-Oncogene),
MYC (MYC Proto-Oncogene) and YY1 (YY1 Transcription
Factor), have already been proven to play important roles
in pathological hypertrophy. The remaining nine genes with
unknown roles in HCM were good candidates for further
experimental verification.

TABLE 2 | Hubs in the PPI network.

Gene symbol Full name Degree

DLD Dihydrolipoamide Dehydrogenase 19

ACLY ATP Citrate Lyase 13

CAT Catalase 13

ACADM Acyl-CoA Dehydrogenase Medium Chain 12

HADH Hydroxyacyl-CoA Dehydrogenase 12

MRPL46 Mitochondrial Ribosomal Protein L46 12

MRPL53 Mitochondrial Ribosomal Protein L53 11

MRPL1 Mitochondrial Ribosomal Protein L1 11

MRPL40 Mitochondrial Ribosomal Protein L40 11

MRPS16 Mitochondrial Ribosomal Protein S16 11

ACAT1 Acetyl-CoA Acetyltransferase 1 11

RPLP0 Ribosomal Protein Lateral Stalk Subunit P0 11

OXA1L OXA1L Mitochondrial Inner Membrane Protein 11

DLD, patients with point mutations (p.D479V and p.R482G) at the DLD homodimer
interface were affected with HCM (Shany et al., 1999; Odievre et al., 2005).
CAT, JMJD1A (Jumonji domain containing 1A) represses the development of
cardiomyocyte hypertrophy by upregulating the expression of CAT (Zang et al.,
2020). ACLY, ACLY was associated with TAC (thoracic aortic constriction) induced
cardiac hypertrophy by regulating autophagy (Marino et al., 2014).

Validation of the Differentially Expressed
NMGenes in vivo
To validate the identified genes in vivo, the samples were
extracted from control and transverse aortic constriction (TAC)
mice to identify whether the mRNA levels of the top five genes
that have not been proven to play important roles in cardiac
hypertrophy were consistent with the bioinformatic analysis.
In the TAC group, MYH7, ANP, and BNP expression levels
were increased (Figures 4A–C), indicating that pressure overload
successfully induced cardiac hypertrophy in the mouse TAC
model. Interestingly, the expression of DDIT4, TKT, CLIC1,
DDOST, and SNCA in the mouse TAC model were all increased
compared with the sham operation group (Figures 4D–H).

DISCUSSION

Although many studies have been conducted to explore the
pathogenesis of HCM, the role of mitochondria in HCM
development and progression remains largely unknown. More
than 99% of mitochondrial proteins are encoded by nDNA,
so NMGenes are more responsible for mitochondrial function
(Ferramosca and Zara, 2013). Exploring the expression pattern of
NMGenes in HCM will help us better understand the molecular
mechanism of mitochondria in HCM. Therefore, we performed
a comprehensive comparative analysis of NMGenes in HCM by
comparing transcriptional data in HCM patients and normal
healthy controls.

Differential expression analysis showed that the proportion
of differentially expressed genes in NMGenes was significantly
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TABLE 3 | TFs potentially regulating the expression of 316 DE-NMGenes.

#TF NES #Targets Function in pathological hypertrophy

ATF4 (Activating Transcription Factor 4) 6.73 21 –

BACH1 5.27 101 Deletion of BACH1 caused significant reductions in left ventricular
hypertrophy (Mito et al., 2008).

NFYA (Nuclear Transcription Factor Y Subunit Alpha) 4.77 75 –

PBX3 (PBX Homeobox 3) 4.45 145 –

NFYC (Nuclear Transcription Factor Y Subunit Gamma) 4.34 117 –

ATF3 4.32 46 Ectopic expression of ATF3 was sufficient to promote cardiac
hypertrophy (Koren et al., 2013).

XBP1 3.98 43 Myocardial XBP1s protein was significantly increased in
hypertrophic and failing heart (Duan et al., 2016).

KLF4 3.63 45 Overexpression of KLF4 in neonatal rat ventricular myocytes inhibits
cardiomyocyte hypertrophy (Liao et al., 2010).

MEF2C 3.54 91 MEF2C silencing attenuated load-induced left ventricular
hypertrophy by modulating mTOR/S6K pathway in mice (Pereira
et al., 2009).

GATA1 (GATA Binding Protein 1) 3.37 19 –

JUND 3.27 15 JUND could attenuate phenylephrine-mediated cardiomyocyte
hypertrophy by negatively regulating AP-1 transcriptional activity
(Hilfiker-Kleiner et al., 2006).

IRF2 (Interferon Regulatory Factor 2) 3.27 34 –

MYBL2 (MYB Proto-Oncogene Like 2) 3.27 90 –

MYC 3.17 17 MYC overexpression could induce cardiac hypertrophy (Olson
et al., 2013).

GATA5 (GATA Binding Protein 5) 3.14 13 –

RARA (Retinoic Acid Receptor Alpha) 3.12 9 –

YY1 3.02 39 YY1 could prevent cardiac hypertrophy (Sucharov et al., 2008)and
suppresses dilated cardiomyopathy and cardiac fibrosis (Tan et al.,
2019).

#TFs regulating DE-NMGenes are showed. TFs already proved to play important roles in pathological hypertrophy are marked in bold.

higher than the proportion of overall genes detected on the
microarray, highlighting the importance of NMGenes in HCM.
For the top 10 NMGenes with the highest fold change, four
upregulated genes (i.e., PDK4, STAT3, HCLS1, and FKBP11)
and four downregulated genes (i.e., GATM, ATPIF1, CPT1B,
and GJA1) have already been shown to play important roles in
pathological hypertrophy (Table 1). Importantly, the other genes
with undetermined roles in HCM are good candidates for further
experimental verification. Consistent with the bioinformatic
analysis, DDIT4, TKT, CLIC1 and DDOST mRNA expression
increased in TAC mice compared with the sham operation
group, suggesting that these genes may play an important role
in promoting pathological hypertrophy. However, in contrast
with the bioinformatic analysis, its expression at the mRNA level
increased at 4 weeks after TAC. We speculate that it would
decrease in the earlier or later time of TAC, as the duration
of the pressure overload can affect the expression of associated
genes (Souders et al., 2012). These DE-NMGenes provide a
new perspective on the mechanisms in HCM. For example,
CLIC1, as a metamorphic protein, is abundantly expressed in
the heart (Ponnalagu et al., 2016); however, its function in the
heart is far from fully understood. Direct evidence has shown
that CLIC1 plays a significant role in ischemia-reperfusion (IR)
injury by regulating reactive oxygen species (ROS) generation
(Gururaja Rao et al., 2020). Previous studies have demonstrated

that abnormal production of ROS in cardiomyocytes is closely
related to the occurrence and development of HCM (Hafstad
et al., 2013; Brown and Griendling, 2015). We speculate that
CLIC1 is involved in the progression of HCM by regulating the
generation of ROS and might be a potential therapeutic target for
cardiac hypertrophy. DDIT4 is an inhibitor of mTOR signaling,
which plays a key regulatory role in cardiovascular pathology
(Sciarretta et al., 2014). It is possible that DDIT4 is involved in
the progression of HCM by regulating mTOR signaling.

KEGG pathway analysis showed that abnormal expression
of metabolically related pathways such as pyruvate metabolism
and fatty acid metabolism (Figure 2B) may contribute to the
pathogenesis of HCM. In the normal heart, mitochondrial fatty
acid oxidation is the main (70–80%) source of energy, and
the remaining 20–30% of ATP production derives largely from
glucose oxidation (Sacchetto et al., 2019). Fatty acid metabolism
disturbances are common in HCM patients, and mutations in the
fatty acid oxidation pathway can result in HCM (Marin-Garcia
and Goldenthal, 2002a). Fatty acid oxidation involves two key
steps: fatty acid transfer and ββ-oxidation. Our results showed
that genes involved in fatty acid transport (CPT1B and CPT2)
or β-oxidation (ACADSB, ACADM, ACADL, and HADH) were
all significantly downregulated (Supplementary Table 1). CPT1B
was one of the top 10 downregulated DE-NMGenes and its
deficiency could cause heart lipotoxicity, leading to exacerbated
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FIGURE 4 | Validation of the differentially expressed NMGenes in TAC mice. (A–C) mRNA of the genes indicating cardiac hypertrophy increased. (D–H) mRNA of the
differentially expressed NMGenes also increased. Data are presented as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t-test); n = 5 samples per
group. TAC, transverse aortic constriction.

cardiac pathology (He et al., 2012). ACADM and HADH were two
hubs in the PPI network. Rats with hypertrophic myocardium
showed impaired fatty acid oxidation and decreased expression
of ACADM and ACADL (Doenst et al., 2010). In rats with cardiac
hypertrophy caused by left ventricular volume overload, HADH
activity was significantly reduced (Lachance et al., 2014). Pyruvate
metabolism is a key step in glucose oxidation. Compared
with normal hearts, glucose oxidation was actually lower in
hypertrophied hearts (Allard et al., 1997). Glucose oxidation and
fatty acid oxidation are under fine regulation during disease
progression, although there is still controversy, allowing us to
consider the treatment of HCM from the perspective of energy
metabolism. New treatments include inhibiting enzymes related
to fatty acid oxidation and directly increasing the oxidation of
glucose and pyruvate, which may bring light to patients with
cardiomyopathy in the future.

Genes rarely act alone and usually perform their functions
in connection with other genes. Moreover, genes with relatively
small but significant changes in expression can also contribute
to the phenotypes of interest. However, differential expression
analysis focuses only on individual gene expression without
considering its close connection with other genes. PPI network-
based analysis might largely overcome these limitations by
combining gene expression and connections. In the present
study, we performed PPI network analysis and obtained 440

interactions among 215 DE-NMGenes. We found that compared
with random gene sets from the genome, DE-NMGenes
formed significantly more interactions, which indicated that
DE-NMGenes were biologically connected to form a group.
Our results identified five closely connected modules that
might contribute to the development of HCM. In addition,
we highlighted 13 hub genes with a high level of network
connectivity but relatively modest changes in expression. Hubs
DLD, CAT, ACADM, and HADH have already been proven
to be involved in the progression of HCM or pathological
hypertrophy, and the role of the remaining hubs in HCM
deserves further investigation. The top 2 hub gene, ACLY,
is an essential cytosolic enzyme for generating acetyl-CoA,
a key metabolite for glucose, fatty acid, and amino acid
catabolism. A mendelian randomization study found ACLY to be
a promising target for cardiovascular protection (Ference et al.,
2019). In addition, we also noticed that five of the 13 hubs
were genes encoding mitochondrial ribosomal proteins (MRPs),
which assist protein synthesis within mitochondria. These MRPs
were grouped into module 2 in the network module analysis
(Figure 3B). Mutations in MRPL3, MRPS14, MRPS22, and
MRPL44 could cause HCM accompanied by multiorgan diseases
(Smits et al., 2011; El-Hattab and Scaglia, 2016). Therefore,
these MRPs are functionally connected, and the consistent
downregulation of MRPL46, MRPL53, MRPL1, and MRPL40 may

Frontiers in Genetics | www.frontiersin.org 7 May 2021 | Volume 12 | Article 670787147

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-670787 May 6, 2021 Time: 17:46 # 8

Tan et al. Nuclear-Encoded Mitochondrial Genes in HCM

cause mitochondrial translation deficiency, which would result in
a severe phenotype in HCM.

Generally, gene expression is under the fine turn regulation of
TFs. Among the 17 TFs predicted in this work, more than half
have been shown to be associated with pathological hypertrophy
(Table 3). The remaining 9 TFs (i.e., ATF4, NFYA, PBX3, NFYC,
GATA1, MYBL2, GATA5, and RARA were good candidates for
further experimental verification. NFY (nuclear transcription
factor Y) is a heterotrimeric TF complex consisting of three
subunits, NFYA, NFYB and NFYC. In this work, NFYA and
NFYC were predicted to regulate 75 and 117 DE-NMGenes,
respectively. By analyzing the targets of NFYA and NFYC in DE-
NMGenes, we found that they were both enriched in the GO
term “negative regulation of apoptotic process” with p-values of
4.1∗10−7 and 2.5∗10−4, respectively. Although the role of NFY in
cardiovascular disease has not been reported, NFY is involved in
cancer by regulating apoptosis (Gurtner et al., 2010). Moreover,
NFYA and NFYC were both significantly differentially expressed
in HCM. We speculate that NFYA and NFYC may be involved in
the pathogenesis of HCM by regulating apoptosis, which provides
us with a new perspective to understand the relationship between
NFY and HCM.

The GATA TF family comprises six members (named GATA1-
6) that are involved in the regulation of growth, differentiation,
survival and maintenance of body function. Previous studies
have underscored the pivotal roles of the GATA family in
cardiac hypertrophy (Pikkarainen et al., 2004). Mutations in
GATA2, GATA4, and GATA6 were identified in patients with
HCM (Alonso-Montes et al., 2017). Overexpression of either
GATA4 or GATA6 could induce cardiac hypertrophy both
in vitro and in vivo (Liang et al., 2001). GATA5 and GATA1
are closely related to cardiomyopathy diseases such as dilated
cardiomyopathy, although their role in HCM has not yet
been reported (Zhang et al., 2015). In this work, GATA1 and
GATA5 were predicted to regulate 19 and 13 DE-NMGenes,
respectively (Table 3). Given that the functional characteristics
of GATA5 and GATA1 overlap at least partly with those of
other GATA TFs and that GATA1 and GATA5 regulate DE-
NMGenes, it is reasonable to speculate that GATA1 and GATA5
may contribute to HCM.

CONCLUSION

The present study was the first effort to evaluate the global
expression pattern of NMGenes in HCM. Based on differential
expression analysis, we found that NMGenes were significantly
changed and identified 316 DE-NMGenes. Further GO
enrichment analysis showed that downregulated DE-NMGenes
were more functionally diverse. These DE-NMGenes participated
in 10 significant pathways, and nine of these pathways were
metabolically related. PPI network analysis showed that 13
DE-NMGenes with high node connectivity were selected as
hubs. Finally, a total of 17 TFs were predicted to potentially
regulate the expression of the 316 DE-NMGenes, and TFs (such
as ATF4, NFYA, NFYC, GATA1, and GATA5) might play roles in
HCM. This analysis will provide valuable information for future

research on the molecular mechanisms of HCM and offer clues
for the discovery of novel therapeutic strategies.

MATERIALS AND METHODS

Data Collection
Normalized gene expression data (GSE36961) were collected
from the GEO database (Clough and Barrett, 2016). NMGenes
were collected from the MitoCarta (Version 2.0) (Calvo et al.,
2016), MitoMiner (Version 4.0) (Smith and Robinson, 2019),
IMPI2 and UniProt databases (UniProt, 2019).

Differential Expression Analysis
To identify DEGs between HCM and normal healthy hearts,
limma (Version 3.40.6), an R package in Bioconductor, was
utilized (Ritchie et al., 2015). Genes with BH-corrected p-values
less than 0.01 and fold changes (FCs) larger than 1.2 were selected
as significantly differentially expressed. We have deposited the
analysis code to a public repository3.

Functional Enrichment Analysis
GO BP and KEGG pathway enrichment analyses of DE-
NMGenes were performed using DAVID, an online functional
annotation tool, to understand the biological significance of a
list of genes (da Huang et al., 2009). In this work, GO BP and
KEGG pathways with BH-corrected p-values less than 0.05 were
selected as significant.

PPI Network Construction
The PPI network of DE-NMGenes was constructed using the
STRING database, and an online database provides information
regarding the predicted and experimental protein interactions
(Szklarczyk et al., 2019). In this work, PPIs between DE-
NMGenes with interaction scores larger than 0.7 were retained.

Network Module Analysis
A network module is defined as a group of genes participating in
the same biological function. In this work, we detected network
modules from the constructed PPI network using MCODE
(Bader and Hogue, 2003), a plugin in Cytoscape4. Given the
following parameters: a degree cutoff = 2, node score cutoff = 0.2,
k-score = 2 and max. depth = 100, modules with scores > 3 and a
number of nodes > 5 were selected. GO BP enrichment analysis
of modules was performed using DAVID, and BH-corrected p
values < 0.05 were selected as significant.

Prediction of TFs Regulating
DE-NMGenes
To predict TFs regulating DE-NMGenes, iRegulon (Version:
1.3), a plugin in Cytoscape, was employed (Janky et al.,
2014). The iRegulon plugin uses motif and track discovery

2http://impi.mrc-mbu.cam.ac.uk/
3https://github.com/ZhenhongJiang/Nuclear-encoded-mitochondrial-genes-in-
HCM.git
4https://cytoscape.org/
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in a set of coregulated genes to identify regulons. Given the
following parameters: motif collection (10 kb, 9,713 PWMs),
track collection (1120 ChIP-seq tracks of ENCODE raw signals),
putative regulatory region (20 kb centered around TSS), motif
rankings database (20 kb region centered around TSS, 7 species),
track of rankings database (20 kb centered around TSS, ChIP-seq-
derived), minimum identity between orthologous genes = 0 and
maximum false discovery rate on motif similarity = 0.001, TFs
with the NES (normalized enrichment score) larger than 3 were
selected. The higher the NES was, the more reliable the TFs were.

Animals and Surgical Procedures
All experiments involving animals were approved by the Animal
Ethics and Experimentation Committee of Nanchang University
and carried out according to the “Guide for the Care and Use
of Laboratory Animals.” Male C57BL/6 mice, aged 8 weeks
and weighing 20–25g, were purchased from the SlacJingda
Experimental Animals Company [Changsha, Hunan Province,
China]. A total of 20 mice were divided into two groups (ten
mice per group): the sham operation group and the TAC group.
TAC was performed as previously described (Zhang et al., 2020).
Briefly, mice were induced with 5% isoflurane and intubated
orally and then maintained at 2% isoflurane during surgery with
mechanical ventilation. After a midline sternotomy, the aortic
arch was exposed. Constriction was performed by tying a 5-0
silk suture around a 27-gauge needle overlying the arch between
the origin of the brachiocephalic trunk and left common carotid
artery. For the sham operation group, 10 mice underwent the
same procedure, but the suture was withdrawn without tying.
Then, the thorax and skin were closed by using 6-0 polypropylene
sutures. Four weeks after surgery, the mice were euthanized, and
their hearts were quickly excised for further evaluation.

Quantitative Real-Time PCR Analysis
Total RNA was extracted from mouse cardiac tissues using
TRIzol reagent (Invitrogen, New York, United States), and then
the quality and concentration of RNA were determined using
an Agilent Bioanalyzer 2100 according to the manufacturer’s
instructions. The cDNAs were generated by MMLV transcriptase
(BioRAD, United States), and quantitative real-time PCR assays
were performed as previously described (Yu et al., 2018).
Triplicate PCR amplifications were performed for each sample,
and the mRNA levels were normalized to GAPDH. The
comparative threshold cycle method (2-11CT) was applied to
estimate the relative gene expression of cardiac tissues between
the TAC and sham operation groups. The primer sequences for

CLIC1, DDIT4, TKT, DDOST, SNCA, MYH7, ANP, and BNP are
listed in Supplementary Table 4. The differences in mRNA levels
between the two groups were evaluated by using Student’s t-tests.
A P-value < 0.05 was considered significant.
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Uterine corpus endometrial carcinoma (UCEC) is one of the most common gynecologic
malignancies, but only a few biomarkers have been proven to be effective in
clinical practice. Previous studies have demonstrated the important roles of non-
coding RNAs (ncRNAs) in diagnosis, prognosis, and therapy selection in UCEC and
suggested the significance of integrating molecules at different levels for interpreting
the underlying molecular mechanism. In this study, we collected transcriptome data,
including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger
RNAs (mRNAs), of 570 samples, which were comprised of 537 UCEC samples and
33 normal samples. First, differentially expressed lncRNAs, miRNAs, and mRNAs,
which distinguished invasive carcinoma samples from normal samples, were identified,
and further analysis showed that cancer- and metabolism-related functions were
enriched by these RNAs. Next, an integrated, dysregulated, and scale-free biological
network consisting of differentially expressed lncRNAs, miRNAs, and mRNAs was
constructed. Protein-coding and ncRNA genes in this network showed potential
immune and metabolic functions. A further analysis revealed two clinic-related modules
that showed a close correlation with metabolic and immune functions. RNAs in the two
modules were functionally validated to be associated with UCEC. The findings of this
study demonstrate an important clinical application for improving outcome prediction
for UCEC.

Keywords: dysregulated network, endometrial carcinoma, miRNA, lncRNA, integrative analysis, TCGA, immunity,
metabolism

INTRODUCTION

Cancer is one of the major public health problems worldwide and is the second leading cause
of death in the United States (Siegel et al., 2021). After the rapid development in healthcare,
the total decline in the cancer death rate has reached approximately 31% (Siegel et al., 2021).
Nonetheless, uterine corpus endometrial carcinoma (UCEC) is still one of the most common
gynecologic malignancies in many countries (Matteson et al., 2018). In the United States alone,
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there will be approximately 14,000 new UCEC patients and 4,000
deaths in the 2021, as predicted by Siegel et al. (Siegel et al., 2021).
Generally, UCEC is prevalent among postmenopausal women
due to the unstable level of estrogen (Chen et al., 2015). Different
risk factors, such as smoking, high blood pressure, and being
overweight, also contribute to the generation and development
of UCEC (Zhang et al., 2014). In particular, changes in molecular
levels are one factor contributing the development of UCEC (Li
et al., 2020). However, effective therapeutic targets are still scarce
in clinical practice.

Non-coding RNAs (ncRNAs), including microRNAs
(miRNAs) and long non-coding RNAs (lncRNAs), have been
regarded as transcriptional noise and useless due to their low
effective transcription and expression (Hyashizaki, 2004). Taking
advantage of the large-scale, next-generation transcriptomic
sequencing, more ncRNAs have been identified. In GENCODE
v29, there are 16,066 annotated lncRNA genes, 7,577 annotated
small ncRNA genes (e.g., miRNA) and thousands of other
ncRNA genes. In total, there are more than 30,000 annotated
ncRNA genes, which are more than protein-coding genes whose
annotated number is less than 20,000. Many ncRNAs have been
functionally associated with human diseases, such as cancers
(Gutschner and Diederichs, 2012). HOX antisense intergenic
RNA (HOXAIR), one of the most famous lncRNAs, has been
reported to be associated with metastases in colorectal, liver,
pancreatic, breast, and gastric cancers (Gupta et al., 2010; Kogo
et al., 2011; Yang et al., 2011). Furthermore, some ncRNAs have
been functionally related with UCEC. Wang found a six-miRNA
signature that can predict the survival of UCEC patients (Wang
et al., 2019). Many studies have investigated the pathogenesis
at genomic levels using the combination of different kinds of
molecules and have discovered clinical diagnostic and prognostic
biomarkers. It reported that miR-21 and lncRNA AWPPH are
associated with the poor prognosis of hepatocellular carcinoma
but regulate cancer cell chemosensitivity and proliferation
in triple-negative breast cancer (Liu et al., 2019). Dong et al.
revealed two patient survival-associated RNA sets, including
lncRNAs, miRNAs, and messenger RNAs (mRNAs), in invasive
breast carcinoma (Dong et al., 2020). Moreover, Liu et al.
identified six triplets of mRNA–lncRNA–miRNA that play a
function in UCEC (Liu et al., 2017) based on the expression
profiles. However, their underlying molecular mechanisms still
need to be uncovered.

In this study, to investigate the underlying molecular
mechanisms of the generation and development of UCEC, the
expression profiles of 537 UCEC and their 33 counterpart
normal samples were downloaded from the Cancer Genome
Atlas (TCGA). Three different kinds of RNAs, namely, lncRNAs,
miRNAs, and mRNAs, were extracted from the profiles. First,
a differential expression analysis was performed, followed by
a functional enrichment analysis, including a gene ontology
(GO) analysis, KEGG analysis, and gene set enrichment analysis
(GSEA). Then, a lncRNA–miRNA–mRNA dysregulated network
was constructed, and two modules related with the survival
time, metabolic function, and immune function were identified.
RNAs from each module have showed a functional role
in UCEC.

MATERIALS AND METHODS

Acquisition of RNA Sequencing Datasets
RNA sequencing datasets of 570 samples were downloaded
from TCGA1, including 537 UCEC samples and 33 normal
samples (Supplementary Table 1). Each sample contained
miRNAs, lncRNAs, and mRNAs simultaneously were used
for downstream analyses. The annotation from GENCODE
database (GENCODE v36) was used to extract lncRNAs
from the expression profile. Based on the annotation file, the
following biotypes were regarded as known lncRNAs: antisense,
lincRNA, lncRNA, processed_transcript, sense_intronic,
sense_overlapping, and TEC. The biotype “protein_coding” was
used to extract mRNAs from the expression profile. Finally,
19,597 mRNAs, 15,088 lncRNAs, and 188 miRNAs were used for
the downstream analysis.

Differential Expression Analysis
To remove biases, RNAs with an expression level in less than 10%
of the samples were ignored, followed by a differential expression
analysis with p-value < 0.05 and fold change > 2 using a t-test
(Ye et al., 2018). In total, 648 differentially expressed lncRNAs,
5,831 differentially expressed mRNAs, and 342 differentially
expressed miRNAs were identified (Supplementary Table 2).
Unsupervised clustering was performed, and heat maps were
drawn for differentially expressed lncRNAs, mRNAs, and
miRNAs using the R package pheatmap, separately. Moreover,
the R package Prcomp was used to conduct the principal
component analysis (PCA).

MiRNAs and Their Targets
MiRNA target sites were downloaded from one of the most
popular databases in the field, starBase v3.0 (Li et al., 2014),
which predicts the miRNA target using five algorithms, i.e.,
TargetScan (Lewis et al., 2005), miRanda (Enright et al., 2003),
Pictar2 (Krek et al., 2005), PITA (Kertesz et al., 2007), and RNA22
(Loher and Rigoutsos, 2012). MiRNAs play a function in RNA-
induced silencing complexes (RISCs), or the ribonucleoprotein
complexes (Fabian et al., 2010). The components of RISCs, i.e.,
Argonaute (AGO) family proteins, are the best characterized
protein elements and are central to RISC functions (Chekulaeva
and Filipowicz, 2009). Ultraviolet (UV) crosslinking and
immunoprecipitation (CLIP) is one of the useful techniques
in identifying specific protein–RNA interactions, including
identifying the AGO–RNA–miRNA complex to illustrate miRNA
functions (König et al., 2012). Thus, in this study, AGO CLIP-
Seq datasets downloaded from starBase v3.0 were used to identify
AGO binding sites. MiRNA-target pairs with at least one AGO
binding site were considered. Finally, 40,042 miRNA–lncRNA
and 1224,551 miRNA–mRNA regulatory relationships were used,
which include 3,228 lncRNAs, 413 miRNAs, and 14,645 mRNAs.

Functional Enrichment Analysis
To explore the functional roles of differentially expressed
molecules, GO and KEGG analyses were performed using

1https://portal.gdc.cancer.gov/

Frontiers in Genetics | www.frontiersin.org 2 June 2021 | Volume 12 | Article 673192153

https://portal.gdc.cancer.gov/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-673192 June 23, 2021 Time: 13:3 # 3

Liu and Qiu Dysregulated RNAs in UCEC

clusterProfiler (Yu et al., 2012). For ncRNAs, we first calculated
the Pearson correlation coefficient between each ncRNA-
mRNA pair based on the expression value across the samples,
followed by the calculation of the average Pearson correlation
coefficient for each mRNA across ncRNAs. Then, the top
500 co-expressed mRNAs were used. Barplots were drawn
using ggplot2. To further investigate the functional roles of
the key RNAs, GSEA was also performed using clusterProfiler
(Yu et al., 2012).

To determine if genes in each immune (or metabolism)-
related pathway are enriched in each sample, the Gene Set
Variation Analysis (GSVA) (Hänzelmann et al., 2013) was
performed. Gene sets annotated in immune (or metabolism)-
related pathways were obtained from MSigDB2. GSVA scores
were calculated using the R package GSVA with the single-
sample GSEA method.

Construction of the Dysregulated
lncRNA–miRNA–mRNA Network
First, the miRNA–lncRNA and miRNA–mRNA interactions
from starBase v3.0 (Li et al., 2014) were obtained. Only
differentially expressed miRNAs, lncRNAs, and mRNAs
were considered for the downstream analysis. Then, the
dysregulated lncRNA–miRNA–mRNA network was constructed
based on the interactions. Afterward, a two-step filtering
was used: (1) The correlations between each miRNA-target
pair should be significant (p-value < 0.01 and | correlation
coefficient| > 0.3) across all samples using the Pearson
correlation coefficient. (2) Only miRNAs shared by mRNAs
and lncRNAs were used. Finally, a dysregulated network
was constructed containing 1243 interactions, including
323 mRNAs, 52 miRNAs, and 53 lncRNAs (Supplementary
Table 3). To identify functional modules, CytoCluster (Li et al.,
2017), a graphical algorithm, was used with the hierarchical
clustering algorithm in protein interaction networks (HC-
PIN) and default parameters. CytoCluster is a Cytoscape
plugin integrating six clustering algorithms, i.e., identifying
overlapping and hierarchical modules in protein interaction
networks (OH-PIN), identifying protein complex algorithm
(IPCA), clustering with overlapping neighborhood expansion
(ClusterONE), detecting complexes based on an uncertain
graph model (DCU), identifying protein complexes based on
maximal complex extension (IPC-MCE), and the Biological
Networks Gene Ontology (BinGO) function. CytoCluster is a
very popular algorithm used to identify functional modules,
predict protein complexes and network biomarkers, and visualize
clustering results.

Survival Analysis
The clinical data of all the UCEC and normal samples were
obtained from TCGA, and the survival time was extracted using
a customized Perl script. For each module, the samples were
clustered into two different groups via k-means clustering based
on the expression across the RNAs, followed by the comparison
of the survival durations between the two groups using a log-rank

2http://www.gsea-msigdb.org/gsea/msigdb

test. Finally, an R package survival was used to conduct the
statistical test.

RESULTS

Dysregulated RNAs Can be Used to
Distinguish UCEC Samples From Normal
Ones
The expression profiles of 570 samples for miRNAs, lncRNAs,
and mRNAs were downloaded from TCGA, which include
537 UCEC samples and 33 counterpart normal samples
(Supplementary Table 1). To investigate the underlying
molecular mechanism on how UCEC occurs and develops,
a differential expression analysis was performed for each
expression profile using a t-test with a p-value < 0.05 and
fold change > 2 as the cutoff (see section “Materials and
Methods”). A total of 5831 differentially expressed mRNAs
between the UCEC and normal samples were identified,
which include 2810 upregulated and 3021 downregulated
genes (Supplementary Table 2). Moreover, 648 differentially
expressed lncRNAs were identified, including 219 upregulated
and 428 downregulated lncRNAs (Supplementary Table 2).
We also identified 342 differentially expressed miRNAs, in
which 280 were upregulated and 62 were downregulated
(Supplementary Table 2).

To further investigate the differentially expressed mRNAs,
lncRNAs, and miRNAs between the UCEC and their counterpart
normal samples, an unsupervised hierarchical clustering analysis
was performed using the R package pheatmap. Each molecule can
clearly distinguish UCEC samples from their counterpart normal
samples (Figures 1A–C). Furthermore, PCA was conducted for
the differentially expressed lncRNAs, mRNAs, and miRNAs using
the R function prcomp. Again, the majority of the UCEC samples
and their counterpart normal samples were separated into two
groups (Figures 1D–F).

The known tumor suppressor lncRNA HAND2 Antisense
RNA 1 (HAND2-AS1) was identified as one of the differentially
expressed lncRNAs in high-grade serous ovarian carcinoma
(Yang et al., 2018). The significant downregulation in UCEC
indicated the potential role as a tumor suppressor in UCEC
(Figure 2A). Another lncRNA example is FRMD6 Antisense
RNA 2 (FRMD6-AS2), which is also downregulated in UCEC
(Figure 2B). Wang et al. reported the tumor suppressive effect of
this lncRNA in UCEC, whose expression is consistent here (Wang
et al., 2020). For the protein-coding gene, Homeobox protein
Hox-A11 (HOXA11) was significantly downregulated in UCEC
(Figure 2C) and was reported to play roles in malignant cancer
(Zhang et al., 2018). WT1 was also downregulated in UCEC
(Figure 2D), which was reported to be a prognostic marker in
advanced serous epithelial ovarian carcinoma (Netinatsunthorn
et al., 2006). MicroRNA-21 (miR-21), which was upregulated in
UCEC (Figure 2E), is also a cancer biomarker (Bautista-Sánchez
et al., 2020). The suppression role for the proliferation and
metastasis of miR-522 in non-small cell lung cancer was reported
by Zhang et al. (2016), in which miR-522 was upregulated
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FIGURE 1 | Clustering based on differentially expressed molecules. Heatmap of clustering for UCEC and the normal samples based on differentially expressed
lncRNAs (A) mRNAs (B) and miRNAs (C). PCA analysis for differentially expressed lncRNAs (D) mRNAs (E) and miRNAs (F).

in UCEC (Figure 2F). All these data indicate the potential
functional roles of these key RNA molecules.

Dysregulated Genes Are Highly Enriched
in Cancer- and Metabolism-Related
Pathways
As we mentioned above, genes playing an important function
in tumor generation and development were identified to be up-
or downregulated in UCEC. To determine the functional roles
for all differentially expressed mRNAs, an unbiased functional
enrichment analysis for GO using clusterProfiler (Yu et al.,
2012) was performed. Cancer hallmark-related terms were
enriched (Figure 3A). Apoptotic processes, such as “dendritic
cell apoptotic process,” and cell proliferation-related pathways,
such as “mesenchymal cell proliferation” and “regulation of
mesenchymal cell proliferation,” were enriched. Moreover,
immunity-related terms were enriched, such as “establishment of
T-cell polarity.”

A functional enrichment analysis for KEGG was also
performed by the UCEC-related genes (Figure 3B).
Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein
kinase B (Akt) pathway, which is associated with cellular
quiescence, proliferation, cancer, and longevity, is an
intracellular signaling pathway of great importance in the
cell cycle process. It was enriched by UCEC-related genes.
The pathway “proteoglycans in cancer” was also enriched,
which suggested the functional roles of differentially expressed
mRNAs in cancer.

To further investigate the roles of these UCEC-related genes,
GSEA was performed using clusterProfiler (Yu et al., 2012;
Figures 3C–F). The glycolytic pathway, whose high level in
tumors, including UCEC, exhibits specific driver genes in most
cancer types (Wei et al., 2020), was enriched by upregulated
genes in UCEC (Figure 3D). Upregulated genes in UCEC
were also enriched in a hypoxia-related pathway (Ruan et al.,
2009; Figure 3E). Moreover, known tumor-related pathways,
i.e., G2M checkpoint (Figure 3C) and TNFA (Figure 3F)
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FIGURE 2 | Expression of example molecules in UCEC and the normal samples. The comparison of gene expression between tumor sample and the normal sample
for differentially expressed lncRNAs HAND2-AS1 (A) and FRMD6-AS2 (B), differentially expressed genes HOXA11 (C) and WT1 (D), and differentially expressed
miRNAs miR-21 (E) and miR-522 (F).

related terms, were enriched by up- and downregulated genes,
respectively.

Dysregulated ncRNAs Reveal Immune
and Metabolic Functions
NcRNAs have previously been regarded as useless for a long time.
However, recently, more studies have attempted to explore the
function of ncRNAs (Jiang et al., 2019) and showed functional
ncRNAs in tumors (Dong et al., 2020). To determine the
functional roles of differentially expressed lncRNAs in UCEC,
GO and KEGG analyses were performed (Figures 4A,B). For
the GO analysis, immunity-related terms, such as “neutrophil-
mediated immunity,” “neutrophil degranulation,” “myeloid
leukocyte-mediated immunity,” “leukocyte degranulation,”
“myeloid leukocyte activation” and “interleukin-1-mediated
signaling pathway” were enriched (Figure 4A). For the KEGG
analysis, metabolic pathways, such as “central carbon metabolism

in cancer,” “glycolysis/gluconeogenesis,” “glucagon signaling
pathway,” “oxidative phosphorylation,” and “thermogenesis”
were enriched by these lncRNAs (Figure 4B).

In addition, to further identify the roles of these lncRNAs,
GSEA was also performed (Figures 4C–F). Metabolic features,
such as “TCA cycle,” “Hallmark reactive oxygen species
pathway,” and “myeloid-derived suppressor cell” were enriched
(Figures 4C–E). The immunity-related feature “T-cell memory
(Tcm) CD8” was also enriched (Figure 4F). Interestingly, all these
features were enriched by downregulated lncRNAs in UCEC,
suggesting the immune and metabolic functional roles of these
downregulated lncRNAs.

Besides lncRNAs, miRNAs were also reported to play essential
roles in tumor development (Qiu et al., 2020). Thus, to determine
the functional role of differentially expressed miRNAs, the same
analyses performed on lncRNAs were performed for miRNAs.
Again, metabolism and immunity-related GO terms and KEGG
pathways were enriched (Figures 5A,B). Metabolic GO terms,
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FIGURE 3 | Functional enrichment analysis for differentially expressed mRNAs. (A) Enriched GO terms. (B) Enriched KEGG pathways. (C–F) Results of GSEA
analysis.

such as “positive regulation of MAPK cascade” and “regulation
of ERK1 and ERK2 cascade,” and immunity-related terms,
such as “leukocyte activation involved in immune response,”
“myeloid cell activation involved in immune response” and
“neutrophil-mediated immunity” were enriched. Similarly, GSEA
also showed the enrichment of pathways involving in cancer and
metabolic diseases (Figures 5C–F). The DNA repair pathway,
which has been reported to be the target for cancer therapies

(Helleday et al., 2008) and plays roles in metabolic diseases
(Hoeijmakers, 2009), was enriched by upregulated miRNAs in
UCEC (Figure 5C). The E2F pathway was also enriched by
upregulated miRNAs in UCEC (Figure 5D). E2F plays a key
role in tumor suppression through a specific regulation of tumor
suppressor genes (Kurayoshi et al., 2018). Furthermore, estrogen-
related and G2M pathways were enriched by downregulated
and upregulated miRNAs in UCEC, respectively (Figures 5E,F).
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FIGURE 4 | Functional enrichment analysis for differentially expressed lncRNAs. (A) Enriched GO terms. (B) Enriched KEGG pathways. (C–F) Results of GSEA
analysis.

Estrogens show function in controlling the energy balance and
glucose homeostasis (Mauvais-Jarvis et al., 2013) and play roles
in different cancer types (Whiteside, 2008).

Construction of the Dysregulated
lncRNA–miRNA–mRNA Network
Based on the interactions between miRNA and its targets
downloaded from starBase v3.0 (Li et al., 2014), a dysregulated

network containing differentially expressed lncRNAs, miRNAs,
and mRNAs was constructed. To provide more confident
interactions between miRNA and its targets, AGO CLIP-
Seq was used, followed by several filtering steps (see section
“Materials and Methods”). A final dysregulated lncRNA–
miRNA–mRNA network was constructed with 1243 interactions
and 428 differentially expressed molecules, including 323
mRNAs, 53 miRNAs, and 53 lncRNAs (Figure 6A and
Supplementary Table 3).
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FIGURE 5 | Functional enrichment analysis for differentially expressed miRNAs. (A) Enriched GO terms. (B) Enriched KEGG pathways. (C–F) Results of GSEA
analysis.

A biological network is a small-world network (Latora
and Marchiori, 2001) or scale-free network (Latora and
Marchiori, 2001). To test whether our dysregulated network
is a scale-free network, the degree distribution was analyzed
(Supplementary Figure 1). Approximately 90% of RNAs have
less than five edges, whereas only approximately 5% of RNAs
have more than 10 interactions. The data support that our
dysregulated network is a scale-free network and a meaningful

biological network. To further investigate the network, a GO
analysis was performed. Cancer hallmark-related functions
were enriched, such as the migration-related term “epithelial
cell migration” and proliferation-related term “regulation of
epithelial cell proliferation” (Figure 6B). Moreover, pathways
involved in the metabolism were enriched (Figure 6B). The
Wnt signaling pathway has been shown to direct glycolysis
and angiogenesis in colon cancer (Pate et al., 2014). In
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FIGURE 6 | The dysregulated lncRNA-miRNA-mRNA network. (A) The network containing differentially expression mRNA, lncRNA and miRNA. (B) Enriched GO
terms. (C) Enriched KEGG pathways.

addition, the KEGG pathway analysis was performed. Pathways
playing function in cancers, such as “proteoglycans in cancer,”
“microRNAs in cancer” and “transcriptional misregulation in
cancer” were enriched by the differentially expressed RNAs
in the dysregulated network (Figure 6C). The FoxO pathway
was also enriched (Figure 6C), which was reported to be
a therapeutic target in cancers (Farhan et al., 2017) and
regulate glucose and lipid metabolism (Lee and Dong, 2017). All

these data imply the immune and metabolic functions of our
dysregulated network.

The Dysregulated Networks Showed
Clinical-Related Modules
To maximize the utility of the dysregulated lncRNA–
miRNA–mRNA network, the Cytoscape plugin CytoCluster
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FIGURE 7 | Functional modules identified from the dysregulated network. (A) The first module. (B) The second module. (C) Kaplan-Meier plot of survival for the first
module. (D) Kaplan-Meier plot of survival for the second module. (E) Expression patterns of the first modules in normal and cancer samples. The average expression
value of each molecule crossing all normal/cancer samples was used. (F) Expression patterns of the second modules in normal and cancer samples.

(Li et al., 2017) was used to identify functional modules from
the dysregulated network. CytoCluster is a popular tool used
to identify functional modules by integrating seven clustering
algorithms, namely, HC-PIN (Wang et al., 2011), OH-PIN
(Wang et al., 2012), IPCA (Li et al., 2008), ClusterONE (Nepusz
et al., 2012), DCU (Zhao et al., 2014), IPC-MCE (Li et al., 2010),
and BinGO function. Accordingly, two modules were identified

(Figures 7A,B). The first module contained 7 interactions with 5
mRNAs, 2 lncRNAs, and 1 miRNA. The second one consisted of
14 interactions with 8 mRNAs, 4 lncRNAs, and 3 miRNAs.

To explore the biological function of the two modules, the
associations of the modules with the patient survival time
were evaluated by checking the difference of the survival time
between two subpopulations from all UCEC patients divided
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FIGURE 8 | The modules correlated with immunity and metabolism. (A,B) the correlation between the first module and pathway IL2-STAT5 (A), and inflammatory
(B). Each dot presents a sample. X axis presents the GSVA score, and Y axis presents the normalized expression value. The average expression value of the first
module for each sample was used. (C,D) the comparison between two subpopulations from Figure 7C in fatty acid metabolism pathway (C) and glycolysis pathway
(D). Y axis presents the GSVA score. (E,F) the correlation between the second module and pathway oxidative phosphorylation (E), and unfolded protein (F). (G,H)
the comparison between two sub-populations from Figure 7D in interferon gamma pathway (G) and IL6-JAK-STAT3 pathway (D).

by the k-means clustering. Both modules showed a significant
correlation with the survival time (Figures 7C,D). Next, the
Wilcoxon rank-sum test was performed based on the expression
values of RNAs between the tumor and normal samples. The
results showed that both modules had higher expression in the
UCEC samples compared with their counterpart normal samples
(Figures 7E,F).

The Clinical-Related Modules Are
Correlated With Metabolism and
Immunology
As immunity- and metabolism-related functions were connected
to the dysregulated RNAs in the network, we focused on these
related pathways. To determine if the dysregulated RNAs in the

two modules are correlated with the immune and metabolic
functions, GSVA (Hänzelmann et al., 2013) was performed for
each sample. GSVA provides increased power to detect subtle
pathway activity changes over a sample population in comparison
to corresponding methods.

The first module is positively correlated with interleukin-
2 and STAT5 pathway (Figure 8A), which was reported to
regulate T-cell development and function (Mahmud et al., 2013).
A known immune inflammatory pathway was also positively
correlated in the first module (Figure 8B). Furthermore, two
classical metabolic pathways, i.e., fatty acid metabolism pathway
and glycolysis pathway, showed significantly different GSVA
scores between the two subpopulations with different survival
times in the module shown in Figures 7C, 8C,D. The same
analyses were also performed to the second module. Oxidative
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FIGURE 9 | The correlations between RNAs and pathways. (A,B) Correlations between pathway and RNAs from the first module (A) and the second module (B).

phosphorylation, a classic metabolic pathway, showed a negative
correlation with the second module (Figure 8E). The unfolded
protein pathway, which showed functional roles in different
cancer types (McGrath et al., 2018) and metabolic pathways
(Lee and Ozcan, 2014), was positively correlated with the second
module (Figure 8F). The interferon gamma pathway, which
affects tumor progression and regression in different cancers
(Jorgovanovic et al., 2020) and also metabolic signalings (Siska
and Rathmell, 2016), showed significantly different GSVA scores
between the two subpopulations with different survival times
in the second module shown in Figures 7D, 8G. A similar
scenario occurred in the IL6/JAK/STAT3 pathway, a well-known
pathway playing a significant role in cancers (Johnson et al., 2018;
Figure 8H).

To further check the function of the two modules, the
correlation between each RNA in the modules and the pathways

involved in the immune and metabolic functions was examined
(Figures 9A,B). Overall, SP11, miR-146a, AC006333.2, and TLR4
from the first module showed a negative correlation with the
metabolic and immune functions (Figure 9A). Conversely, the
other four RNAs in the first module more likely have a positive
correlation with the metabolic and immune functions. In the
second module, several RNAs, especially for E2F2, showed a
negative correlation with the metabolic and immune functions
(Figure 9B). E2F2 was highly negatively correlated with pathways
involved in G2M checkpoints, E2F targets, and mitotic spindles.

DISCUSSION

In this study, a dysregulated lncRNA–miRNA–mRNA network
was constructed, in which all RNAs were differentially expressed
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in UCEC and enriched in cancer and metabolic functions. An
integrative analysis on transcriptome data from 570 samples was
performed at three different RNA levels, i.e., lncRNAs, miRNAs,
and mRNAs. Further analysis identified two clinical-related
modules, which showed correlation with metabolic and immune
functions. Importantly, some elements from the two modules
have been functionally related with UCEC. This framework will
help reveal the underlying mechanism for the generation and
development of UCEC.

NcRNAs, which constitute more than 90% of RNAs made
from the human genome, have attracted increasing attention
as more ncRNAs have been functionally validated in different
conditions, particularly in human diseases, such as cancers
(Anastasiadou et al., 2017; Slack and Chinnaiyan, 2019). In this
study, to better determine the potential roles of ncRNAs in
UCEC, we focused on dysregulated lncRNAs and miRNAs. By
taking advantage of state-of-the-art technologies, we integrated
dysregulated lncRNAs, miRNAs, and mRNAs into a single
dysregulated network, which is a scale-free and biologically
meaningful network. Based on the dysregulated lncRNA–
miRNA–mRNA network, a functional enrichment analysis for
GO and KEGG was performed, and the results showed that
metabolic and immune functions that the network may be
involved in were enriched.

Further analysis identified two modules including
dysregulated lncRNAs, miRNAs, and mRNAs using a Cytoscape
plugin CytoCluster. By integrating the corresponding clinical
data, we found that the two modules were survival time related,
and both modules were overexpressed in the UCEC samples,
indicating the potential carcinogenic roles of some overexpressed
elements in the two modules. Through GSVA, we further showed
that both modules were immunity and metabolism related.
Nevertheless, the biggest limitation is that all the conclusions
were drawn without any experiments to support them. Although
some elements in the two modules have been functionally
validated in UCEC, there are genes (i.e., TLR4, FAM110B,
LINC00663, and LINC00261) in the two modules that have not

been reported in UCEC, and further experimental and clinical
validations are necessary for these RNAs with potential functional
roles in UCEC. In the future, we would select one of the genes
for further investigation. The counterpart functional experiments
such as knockdown and overexpression assays to investigate the
mechanism on how the gene paly function in UCEC would be
performed. Our study provides new insights into the outcome
prediction and will help in the precision medicine for UCEC.
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With the increasing incidence of colorectal cancer (CRC) and continued difficulty in
treating it using immunotherapy, there is an urgent need to identify an effective immune-
related biomarker associated with the survival and prognosis of patients with this
disease. DNA methylation plays an essential role in maintaining cellular function, and
changes in methylation patterns may contribute to the development of autoimmunity,
aging, and cancer. In this study, we aimed to identify a novel immune-related methylated
signature to aid in predicting the prognosis of patients with CRC. We investigated
DNA methylation patterns in patients with stage II/III CRC using datasets from The
cancer genome atlas (TCGA). Overall, 182 patients were randomly divided into training
(n = 127) and test groups (n = 55). In the training group, five immune-related methylated
CG sites (cg11621464, cg13565656, cg18976437, cg20505223, and cg20528583)
were identified, and CG site-based risk scores were calculated using univariate Cox
proportional hazards regression in patients with stage II/III CRC. Multivariate Cox
regression analysis indicated that methylated signature was independent of other clinical
parameters. The Kaplan–Meier analysis results showed that CG site-based risk scores
could significantly help distinguish between high- and low-risk patients in both the
training (P = 0.000296) and test groups (P = 0.022). The area under the receiver
operating characteristic curve in the training and test groups were estimated to be
0.771 and 0.724, respectively, for prognosis prediction. Finally, stratified analysis results
suggested the remarkable prognostic value of CG site-based risk scores in CRC
subtypes. We identified five methylated CG sites that could be used as an efficient
overall survival (OS)-related biomarker for stage II/III CRC patients.

Keywords: colorectal cancer, CpG methylated sites, biomarker, prognosis, immunotherapy

Abbreviations: CRC, colorectal cancer; MSS, microsatellite stable; TMB, tumor mutational burden; TMB-H, high tumor
mutational burden; OS, overall survival; CG score, CG site-based risk score; AUC, area under the curve; MSI, microsatellite
instability; DCA, decision curve analysis.
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INTRODUCTION

In China, colorectal cancer (CRC) is the fifth most common
malignancy, and CRC-related deaths have increased in
recent years (Chen, 2015; Fang et al., 2015). Approximately
70% of patients with CRC have stage II/III tumors. At
present, the tumor-node-metastasis classification criteria
are insufficient to predict prognosis and make clinical
decisions, especially in patients with stage II/III CRC (Edge
and Compton, 2010). Considerable progress has been
made in tumor immunotherapy (immuno-oncology) owing
to the enhanced understanding of immune mechanisms.
However, the benefit of immunotherapy in patients with
CRC is limited, and the advancement in clinical research is
relatively lagging (Sun et al., 2016). Programmed cell death
protein 1/programmed death-1 ligand 1 antibody inhibitors
have been reported to be ineffective in immunotherapy
for 85% of patients with microsatellite stable (MSS)
CRC (Sillo et al., 2019). In addition, existing biomarkers,
including programmed death-1 ligand 1 protein expression,
tumor mutational burden (TMB), immune scores, and
gamma-interferon signatures, do not effectively predict the
prognosis of patients with MSS CRC. Consequently, there
is an urgent need to identify immune-related biomarkers
for predicting cancer prognosis, which will improve the
treatment of CRC.

Aberrant DNA methylation results in the downregulation
of various genes and can potentially initiate the pathogenesis
of cancer. It is a promising candidate for the development of
robust diagnostic, predictive, and prognostic biomarkers for
cancer. For instance, hypomethylation of long interspersed
nuclear element-1 is correlated with poor survival in CRC
patients (Antelo et al., 2012; Rhee et al., 2012). Additionally,
long interspersed nuclear element-1 hypomethylation of
cell-free DNA is associated with disease progression in
CRC (Nagai et al., 2017). Moreover, the hypermethylation
level of cyclin-dependent kinase inhibitor 2A predicts
recurrence, distant metastasis, and prognosis in patients
with CRC (Shen et al., 2007; Kim et al., 2010). Interestingly,
cyclin-dependent kinase inhibitor 2A hypermethylation is
associated with the poor survival of patients with rectal
cancer after surgery and adjuvant 5-fluorouracil chemotherapy
(Simpson et al., 1999; Kim et al., 2010). The methylation
states of helicase-like transcription factor and hyperplastic
polyposis 1 are correlated with tumor aggressiveness,
recurrence, and prognosis (Huang et al., 2007). However,
only a few studies have focused on identifying immune-
related methylated signatures for predicting the prognosis
of patients with stage II/III CRC. Therefore, it is necessary
to identify prognosis-related methylated biomarkers for
this deadly disease.

In this study, we aimed to identify and validate a
novel immune-related methylated site-based signature
using CRC datasets from the cancer genome atlas
(TCGA). Based on our results, we proposed a prognosis-
related biomarker that is also effective for patients with
CRC subtypes.

MATERIALS AND METHODS

Patients
We downloaded the epigenome-wide DNA CpG site methylation
scored as a β-value between 0 and 1 (Illumina 450 K
Methylation Beadchip) of stage II/III CRC samples from
the Genomic Data Commons data portal1 (Sanford et al.,
2018). Overall, 182 stage II/III CRC samples and 36 paired
normal samples were included. The summary of patients is
shown in Table 1, and the patients were randomly divided
into training (n = 127) and testing groups (n = 55)
(Figure 1). We obtained the fragments per kilobase of exon
per million mapped fragment formats of 182 stage II/III
CRC samples in the “HTSeq-FPKM” category, which were
further processed, followed by normalized values for gene
expression levels (Robinson et al., 2010; Kruppa and Jung,
2017). The “Masked Somatic Mutation” category included
four types of mutation data based on diverse processing
software, and we selected “MuTect2 Variant” process with
182 stage II/III CRC samples for further mutation analysis.
TMB was determined by analyzing the number of somatic
mutations per megabase. The cut-off value for high TMB
(TMB-H) was determined to be the top 25% of all CRC
patients. We obtained the clinical data of the 182 stage II/III
CRC samples from TCGA-COAD dataset. The CRC samples
gene expression profiles of GSE14333 and GSE103479 were
downloaded from GEO databases2. The expression data of
GSE14333 was based on GPL570 Platforms included 290
primary CRC samples (Submission date: January 08, 2010).
The expression data of GSE103479 was based on GPL23985
Platforms included 363 stage II/III CRC samples (Submission
date: December 31, 2017).

1https://portal.gdc.cancer.gov/
2http://www.ncbi.nlm.nih.gov/geo/

TABLE 1 | Summary of patient demographics and characteristics.

Characteristic Training (N = 127) Test (N = 55)

Gender

Female 58 (45.7%) 26 (47.3%)

Male 69 (54.3%) 29 (52.7%)

Age

<65 years 50 (39.4%) 28 (50.9%)

≥65 years 77 (60.6%) 27 (49.1%)

Stage

II 73 (57.5%) 32 (58.2%)

III 54 (42.5%) 23 (41.8%)

Adjuvant chemotherapy

Adjuvant chemotherapy 49 (38.6%) 25 (45.5%)

None 78 (61.4%) 30 (54.5%)

Vital status

Living 97 (76.4 %) 44 (80.0%)

Dead 30 (23.6%) 11 (20.0%)
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FIGURE 1 | I Dentification of the methylated signature in the training set. Methylated site profiling in tumor and normal tissue samples. Overall, 349 methylated sites
were overlapped between 6450 differentially methylated sites (DMSs) and 2483 immune genes. Correlation between nine methylated sites and the survival of
patients with stage II/III CRC in the training group was observed upon performing Univariate Cox regression analysis. Development of a prognostic classifier for all
combinations of the nine CG sites using the CG Score. For each combination, patients were classified into high- and low-risk groups based on their median CG
Score, and the five-methylated site signature with the largest value of −log(p) was selected as the final signature. DMSs, differentially upregulated methylation sites;
CRC, colorectal cancer; TCGA, the cancer genome atlas; CG score, CG site-based risk score.

Identification of Immune-Related
Differential Methylation Sites
First, 6450 differentially methylated sites (DMSs) between stage
II/III CRC and adjacent normal tissues were identified using the
edgeR package, with | log2 FC| > 1.0 and adjusted P < 0.05 as
thresholds. Thereafter, we focused on the upregulated methylated
sites between CRC and adjacent normal tissues and mapped
them to immune genes. Overall, 2483 immune genes were
downloaded from the immunology database and analysis portal
(ImmPort)3. Finally, through this analysis, we identified 349

3https://www.immport.org/shared/genelists

upregulated immune-related methylated sites in stage II/III CRC
samples (Figure 1).

Statistical Analysis
Machine learning algorithms for predictive models have been
described previously (Hu et al., 2019). First, we used univariate
and multivariate Cox proportional hazards regression to evaluate
the association between overall survival (OS) and the methylation
value of each gene site in the training group (Guo et al., 2018).
Nine candidate CG sites associated with OS were screened
(P < 0.1). We used a stepwise selection algorithm for selecting
signatures to construct a reliable and an efficient predictive
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prognostic model (Figure 1). There are 511 (6Ci
9, i = 1, 2, . . .,9)

combinations of the nine CG sites. For each combination, the
CG site-based risk score (CG Score) was calculated based on the
following equation, where N is the number of methylated sites
of the signature, Methi is the methylation value of the candidate
sites, and Coefi is the univariate Cox regression coefficient:

CG Score =
∑N

i=1
Methi∗Coefi (1)

We calculated the CG Score for each sample and the median
CG Score in the training group was used as the cut-off value
(cut-off = 0.67). Next, we divided all samples into high- and
low-risk groups. The Kaplan-Meier survival method, as well
as the log-rank test, was applied to compare the prognosis
between two groups. In this study, we used area under the
curve (AUC) as the performance measurement method for
predictive models, which was plotted using the "survivalROC"
R package, and all statistical tests were performed using R-
3.6.3.

Immune Cell Infiltration in CRC
We calculated relative percent of 22 immune cells in each sample
by CIBERSORT which included gene expression of 22 leukocyte
subtypes (Newman et al., 2015). Then we compared 22 immune
cells infiltrates level between high- and low- risk group samples
by Wilcoxon ranked-sum test.

RESULTS

A Five-Methylated Site Signature
Predicts the Survival of Patients in the
Training Group
The training group, comprising the complete clinical data, was
used to further explore the association of 349 methylated sites
with prognosis. Survival times were included as dependent
variables in univariate Cox proportional hazard regression
analysis of the 349 methylated sites. Nine methylated sites
were found to be markedly associated with OS (P < 0.1)
(Figure 1). Next, stepwise regression analysis was employed
to provide the most effective predictive prognostic model, we
developed a five-methylated site signature by selecting the best
classification results to construct the final prognostic model
(Supplementary Figure 1). The CG Score combining the five
CG sites (cg11621464, cg13565656, cg18976437, cg20505223, and
cg20528583) was determined as follows:

CG Score=
(
1.87 × methcg11621464

)
+
(
1.11 × methcg13565656

)

+
(
−1.74 × methcg18976437

)
+
(
2.40 × methcg20505223

)
+

(
−1.97 × methcg20528583

)
(2)

Confirmation of OS Based on the
Methylated Signature in the Training and
Test Groups
All patients in the training group were further divided into high-
(n = 64) and low-risk groups (n = 63), and the OS in the low-risk
group was higher than that in the high-risk group in the training
group (HR: 3.18, 95% CI: 1.82–5.56; P = 0.000296, Figure 2A).
Similarly, using the established prognostic model, patients in
the test group were divided into high- (n = 35) and low-risk
(n = 20) groups, and the OS in the low-risk group was higher
than that in the high-risk group in the test group (HR: 1.75, 95%
CI: 1.03–4.165; P = 0.022, Figure 2B). We calculated percent of
22 leukocyte cells of high- and low-risk groups by CIBERSORT
and then compared immune cell fractions. As a result, we found
high-risk group with more naive B cell (p < 0.05, Supplementary
Figure 2B). Su et al. showed that after Chemotherapy-Induced
Immunity, the B cells of patients with good curative effects were
significantly reduced (Lu et al., 2020).

We used AUC to evaluate the accuracy of the prognostic
model. In the training group, the predictive precision of the
prognostic signature was more reliable than that of other
clinical parameters (AUCCGScore = 0.771, Figure 2C). Similar
outcomes were obtained for the test group (AUCCGScore = 0.724,
Figure 2D). The decision curve analysis (DCA) curve showed
that the diagnostic value of CG Score is due to clinical indicators,
such as stage, age, etc., as well as existing immune biomarkers,
such as microsatellite instability (MSI), TMB, etc. The combined
model composed of these markers and CG Score can obtain
a better net return rate ratio (Supplementary Figure 3).
Therefore, our results suggest that CG Score may be an efficient
prognostic biomarker.

Methylated Signature Has Prognostic
Value for CRC Subtypes
Overall, 182 CRC samples were classified into subtypes according
to stage, TMB, MSI status, and adjuvant therapy. Next,
we carried out a stratified analysis in subtypes to evaluate
whether the methylated signature could predict the survival of
patients within the same subtype. Log-rank tests of stage II
(P = 0.0002, Figure 3A) and stage III patients (P = 0.0173,
Figure 3B) showed that the methylated signature could
classify stage II/III patients into high- and low-risk groups.
The standard adjuvant therapy for patients with stage II/III
CRC is oxaliplatin and fluorouracil chemotherapy for more
than 6 months (Iveson et al., 2019). In the non-adjuvant
chemotherapy subtypes, low-risk patients had significantly
longer OS than high-risk patients (log-rank P = 1.3E-05,
Figure 3C).

TMB-H and MSI status are emerging biomarkers associated
with immunotherapy for CRC (Schrock et al., 2019), but there
were no significant differences estimated in OS between TMB
and MSI subgroups (Supplementary Figure 4A,B). According
to CG Score, low-risk MSS patients had significantly longer OS
than high-risk patients (log-rank P = 0.0004, Figure 4A). This
phenomenon was also identified in MSI (log-rank P = 0.0266,
Figure 4B), TMB-L (log-rank P = 0.0002, Figure 4C) and TMB-H
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FIGURE 2 | Prognosis of patients with stage II/III CRC was predicted using the methylated signature. (A,B) Based on Kaplan–Meier survival curves, patients with
stage II/III CRC were classified into high- and low-risk groups using methylation sites as signature in the training and test groups. P-values were calculated via
log-rank test. (C,D) Comparison of the sensitivity and specificity for the prediction of overall survival (OS) based on the CG Score and other clinical parameters.
Receiver operating characteristics (ROC) curves for the (C) training and (D) test groups. CRC, colorectal cancer; MSI, microsatellite instability; TMB, tumor
mutational burden; AUC, area under the curve; CG score, CG site-based risk score.

FIGURE 3 | Survival prediction in patients with CRC subtypes. Kaplan–Meier survival curves classified patients into high- and low-risk groups using the methylated
signature. (A) Stage II group (n = 105). (B) Stage III group (n = 77). (C), non-adjuvant chemotherapy (n = 108). Vertical hash marks indicate censored data. CRC:
colorectal cancer.
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FIGURE 4 | Survival prediction for TMB and MSI subtypes using the methylated signature. Based on Kaplan–Meier survival curves, patients with (A) MSS, (B) MSI,
(C) TMB-L, and (D) TMB-H were classified into high- and low-risk groups using the methylated signature. Vertical hash marks indicate censored data. MSS,
microsatellite stable; MSI, microsatellite instability; TMB-L, low tumor mutational burden; TMB-H, high tumor mutational burden.

groups (log-rank P = 0.0721, Figure 4D). Thus, the results suggest
that CG Score is an efficient prognostic tool for CRC subgroups.

Methylated Signature Is an Independent
Prognostic Factor
A multivariate Cox regression analysis using CG Score and
clinical parameters (e.g., age, sex, tumor stage, TMB, MSI status,
and adjuvant chemotherapy) demonstrated that CG Score was
independent of other clinical characteristics both in the training
and test groups (Figure 5A and Supplementary Figure 5). In
addition, the CG Score (HR: 6.17, 95% CI: 2.37–16.0, P < 0.001,
n = 124, Figure 5A) could be a significant prognostic factor for
patients in the high-risk group. According to the multivariate
model contained clinicopathological information and the CG
site-based risk score, we built a dynamic nomogram (Figure 5B).

Correlations Between the Methylated
Signature and Immune Biomarkers
Previous research showed immune checkpoint genes including
PDL1, interferon-gamma (IFN-γ), PDL2, CTLA4, etc. We found

negative correlations between CG Score and other markers
(Supplementary Figure 6), which indicate the potential of CG
Score to be a novel immune-related prognosis biomarker.

Tumor immune dysfunction and exclusion (TIDE) is a
gene expression biomarker developed for predicting the clinical
response to immune checkpoint blockade (Jiang et al., 2018).
We obtained the TIDE score for 182 TCGA-CRC dataset by the
online webserver4. There is different for TIDE score between high
and low CG Score (t-test p = 0.067) and the AUC for CG Score
under 5 and 3 years are 0.771 and 0.699. In addition, the AUC
for TIDE under 5 and 3 years are 0.599 and 0.551 (Figure 6). The
result indicated that CG Score might be a potential biomarker
for immunotherapy especially for Immune checkpoint inhibitors,
which show the better performance than existing signatures.

RNA Expression Profile of the
Methylated Signature
The five methylated sites were identified on the following genes:
SCTR, PIK3CD, FGF5, PLXNC1, and LTBP4. We observed that

4http://tide.dfci.harvard.edu/
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FIGURE 5 | (A) Multivariate Cox regression analysis depicting the association of the methylated signature with the survival of stage II/III CRC patients in the training
group. (B) The nomogram prediction model was developed by integrating CG Score with the clinical features in the training group. CRC, colorectal cancer; MSI,
microsatellite instability; TMB, tumor mutational burden; CG score, CG site-based risk score.

the high expression levels of PIK3CD, PLXNC1, and LTBP4
were correlated with the MSI and TMB-H groups (Figure 7).
Additionally, Chen J.-S. et al. (2019) found that PIK3CD was
overexpressed in CRC. Li et al. (2019) confirmed that the
overexpression of PLXNC1 could promote cell proliferation and
migration. According to a previous study, LTBP4 acts as a local
regulator of transforming growth factor-β expression during
tissue deposition and signaling in CRC, and the increase in
LTBP4 expression might cause CRC (Berg et al., 2010). Our RNA
expression profile analysis revealed that the above-mentioned
genes could be related to MSI or TMB, and therefore, the

signature has the potential to replace MSI or TMB as a new
prognostic marker.

External Validation of Signature in CRC
Datasets
Due to the incompleteness of the methylation profile with
survival data or receiving ICB treatment of CRC patients, a
large number of studies have confirmed that DNA methylation
can cause changes in chromatin structure and DNA stability,
thereby inhibiting gene expression (Huang et al., 2021)
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FIGURE 6 | (A) Correlation between tumor mmune dysfunction and exclusion (TIDE) and CG Score. (B) The performance of the CG Score and TIDE for overall
survival in CRC.

FIGURE 7 | RNA expression profile based on the methylated signature. (A) Heatmap of expression levels, after z-score transformation, for the genes involved in the
methylated signature. (B) The boxplot summarizes the mRNA expression levels in MSS and MSI samples. (C) The boxplot summarizes the mRNA expression levels
in TMB-H and TMB-L samples. Asterisks indicate genes with significantly (p < 0.05) different expression as calculated by t-test. MSS: microsatellite stable; MSI:
microsatellite instability; TMB-L, low tumor mutational burden; TMB-H, high tumor mutational burden.

(Supplementary Figure 7). We built a gene model based on
CG Score (New CG Score = CG Score∗correlation between
gene expression and methylated sites) to assist in verifying the

prognostic value of CG Score, and found that gene model can
show good prognostic ability in independent verification datasets
(log-rank P-value = 0.043, 0.00021, 0.048) (Figure 8).
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FIGURE 8 | Prognosis of patients with CRC was predicted using the gene signature. Based on Kaplan–Meier survival curves, patients with CRC were classified into
high- and low-risk groups using gene expression as signature in the (A) TCGA, (B) GSE14333 and (C) GSE103479 datasets. P-values were calculated via log-rank
test. (D) Comparison of the sensitivity and specificity for the prediction of overall survival based on the gene-based CG Score. CRC, colorectal cancer; AUC, area
under the curve.

DISCUSSION

A recent study reported that approximately 30% of CRC patients
experience tumor recurrence in the first 3 years after surgery
and adjuvant chemotherapy (Sargent et al., 2009). There is
a close association between cancer recurrence and clinical or
pathological characteristics, such as adjuvant chemotherapy and
tumor-node-metastasis classification. However, due to tumor
heterogeneity, patients harboring identical clinicopathological
features or those undergoing therapeutic interventions present
distinct relapse-free survival (Bathe and Farshidfar, 2014). In
addition, MSI has become a highly effective immunotherapy
biomarker for immune checkpoint inhibitors. About only 15%
of stage II and III CRCs present a MSI or deficiency of
DNA mismatch repair system (dMMR) phenotype, suggesting
that associated with better prognosis than pMMR/MSS tumors
(Sinicrope and Sargent, 2012). Moreover, patients with stage II/III
dMMR/MSI CRC do not benefit from adjuvant fluoropyrimidine
chemotherapy (Tougeron et al., 2016). Thus, it is necessary to

propose a new molecular biomarker for predicting the prognosis
of patients with stage II/III CRC, especially those with the
MSS phenotype. Previous studies have reported that epigenetic
modifications play a critical role in carcinogenesis. Promising
outcomes have been observed with epigenetic drugs for the
treatment of colon cancers (Raynal et al., 2016; Tan et al., 2019).
However, it remains unclear whether epigenetic signatures can
act as prognostic factors for CRC.

We employed various statistical methods to explore the
relationship between methylated signature and prognosis in stage
II/III CRC patients, and high-risk patients showed shorter OS
than low-risk patients. The AUC for CG Score was estimated to
be 0.771 and 0.724 in the training and test groups, respectively.
GSEA analysis found that the most significant enrichment
pathway in the low- risk group is the cell adhesion pathway,
which the results further suggest that process of tumor invasion.
Maurer’s study found that compared with normal tissues adjacent
to cancer, the expression of ICAM-1 (intercellular adhesion
molecular-1) in CRC tissues was significantly increased and
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positively correlated with the infiltration of inflammatory cells
in the tumor microenvironment. The results of in vitro culture
experiments show that the high expression of ICAM-1 depends
on the increased dose of IFN-γ and IL-1β(Maurer et al., 1998;
Xiang et al., 2001), For the high-risk cohort: KEGG analysis
shows that the neuroactive ligand receptor interaction is mainly
signaling pathway,that consistent with recent research (Yu et al.,
2021) (Supplementary Figure 8). Moreover, CG Score was
identified as an independent prognosis predictor for patients with
CRC. We further discovered that CG Score could distinguish the
prognosis of patients in the MSS, TMB-L, and TMB-H subgroups.

The five genes which methylated signature corresponded
to after annotation, included SCTR, PIK3CD, FGF5, PLXNC1,
and LTBP4. The hypermethylation of SCTR is a biomarker
for precursor lesions in CRC detection (Chen J. et al., 2019;
Li et al., 2020). Chen J.-S. et al. (2019) showed that PIK3CD
induces CRC cell growth, migration, and invasion by activating
AKT/GSK-3β/β-catenin signaling, suggesting that PIK3CD could
be a novel prognostic biomarker and potential therapeutic target
for CRC. Recent studies have shown that the methylated FGF5
gene could potentially be used as a blood-based biomarker for
detecting CRC (Mitchell et al., 2014). PLXNC1 is involved in
intracellular transport, cell migration, and activation of epidermal
growth factor receptor and SMAD pathways (Ram et al., 2017).
LTBP4 acts as a structural component of the extracellular matrix
and local regulator of transforming growth factor-β during
tissue deposition and signaling in CRC (Sterner-Kock et al.,
2002). Based on the above-mentioned findings, all genes of the
methylated signature play critical roles in the tumorigenesis and
drug therapy of CRC. To date, only a few studies have investigated
the prediction of prognosis in stage II/III CRC patients at the
epigenomic level. Thus, in the present study, we proposed specific
methylated sites for predicting the prognosis of patients with
stage II/III CRC.

Although our CG Score can effectively aid in predicting the
prognosis of CRC patients, there is a lack of clinical trials.
In addition, there is no definitive evidence to show whether
the five methylation sites we identified affect the usage of
immune drugs. It will be more convincing if there are data to
verify the efficacy of methylated signature and immunotherapy.

Moreover, there is a need to verify the ability of the CG Score
to distinguish the prognosis of stage I/IV CRC patients as well
as the possibility of the CG Score in guiding the immune
medication of these patients. In Genomics of Drug Sensitivity in
Cancer (GDSC), there are no chemotherapeutics Drugs for the
methylation signature. The most sensitive drugs targeting PI3K-
Akt signaling pathway (PIK3CA-D) are Alpelisib and Taselisib. If
future studies find a drug suitable for the CpG site, experiments
can be conducted to verify the sensitivity of the drug.
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Immune checkpoint inhibitors (ICIs) significantly improve the survival of patients
with non-small-cell lung cancer (NSCLC), but only some patients obtain clinical
benefits. Predictive biomarkers for ICIs can accurately identify people who will
benefit from immunotherapy. Lipid metabolism signaling plays a key role in the
tumor microenvironment (TME) and immunotherapy. Hence, we aimed to explore the
association between the mutation status of the lipid metabolism pathway and the
prognosis of patients with NSCLC treated with ICIs. We downloaded the mutation
data and clinical data of a cohort of patients with NSCLC who received ICIs. Univariate
and multivariate Cox regression models were used to analyze the association between
the mutation status of the lipid metabolism signaling and the prognosis of NSCLC
receiving ICIs. Additionally, The Cancer Genome Atlas (TCGA)–NSCLC cohort was used
to explore the relationships between the different mutation statuses of lipid metabolism
pathways and the TME. Additionally, we found that patients with high numbers of
mutations in the lipid metabolism pathway had significantly enriched macrophages (M0-
and M1-type), CD4 + T cells (activated memory), CD8 + T cells, Tfh cells and gamma
delta T cells, significantly increased expression of inflammatory genes [interferon-γ
(IFNG), CD8A, GZMA, GZMB, CXCL9, and CXCL10] and enhanced immunogenic
factors [neoantigen loads (NALs), tumor mutation burden (TMB), and DNA damage
repair pathways]. In the local-NSCLC cohort, we found that the group with a high
number of mutations had a significantly higher tumor mutation burden (TMB) and PD-L1
expression. High mutation status in the lipid metabolism pathway is associated with
significantly prolonged progression-free survival (PFS) in NSCLC, indicating that this
marker can be used as a predictive indicator for patients with NSCLC receiving ICIs.

Keywords: immune checkpoint inhibitors, non-small-cell lung cancer, predictive marker, lipid metabolism
pathway, immune microenvironment

INTRODUCTION

Lung cancer is a malignant tumor with the highest morbidity and mortality worldwide (Bray et al.,
2018). Non-small-cell lung cancer (NSCLC) is the most common pathological type of lung cancer,
and the 5-year survival rate is less than 15% (Herbst et al., 2018; Siegel et al., 2018). Immune
checkpoint inhibitors (ICIs) have an antitumor effect by restoring T cell-mediated antitumor
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immune function and have become a novel clinical treatment
tool for NSCLC; however, growing evidence suggests that not all
NSCLC patients benefit from ICIs. In the unscreened NSCLC
populations, the objective response rate (ORR) to ICIs is
commonly less than 20% (Garon et al., 2015). Thus, predicting
the effectiveness of ICIs, identifying patients who can benefit
from ICIs (Gibney et al., 2016), and maximizing the efficacy
of immunotherapy are of great significance for the precise
treatment of NSCLC.

PD-L1 expression and tumor mutation burden (TMB) are
commonly used markers of immune efficacy. Additionally,
high microsatellite instability (MSI-H), deficient mismatch
repair (dMMR), tumor-infiltrating lymphocytes (TILs), and the
intestinal microbial flora have also show certain predictive value.
Although the research conclusions are constantly evolving, some
limitations remain (Herbst et al., 2016; Langer et al., 2016; Brody
et al., 2017; Chen et al., 2019). For example, a small number
of NSCLC patients with low PD-L1 expression seem to be
“biomarker negative” but still respond to ICI-based treatment. In
contrast, not all patients with high PD-L1 expression can obtain
clinical benefit from ICIs (Langer et al., 2016). Additionally,
there are many challenges for detecting TMB in clinical practice,
including determining the ideal approach for detecting TMB,
determining the appropriate cutoff for high or low TMB, and
reaching a consensus regarding the different numbers of genes
detected by different platforms (Chowell et al., 2018). Moreover,
the incidence of MSI-H in NSCLC is very low, so the values
of MSI-H and dMMR for predicting the efficacy of ICIs in
NSCLC remain to be verified (Warth et al., 2016; Vanderwalde
et al., 2018). Hence, how to identify which patients with NSCLC
should be treated with ICIs has become an urgent problem in
clinical practice.

Metabolic reprogramming processes, such as lipid
metabolism, play an important role in the tumor
microenvironment (TME) and immunotherapy (DeBerardinis
et al., 2008; Yoshida, 2015; Sun, 2016; Baek et al., 2017; Ma
et al., 2019). Tumor cells produce large amounts of fatty acids
through de novo synthesis, and a fatty acid-enriched TME affects
the function of effector T cells and M1-type macrophages and
is conducive to the production of Tregs and M2 macrophages
(Gaber et al., 2017), causing an immunosuppressive TME. Jiang
et al. (2018) found that the overexpression of fatty acid synthase
(FASN) in ovarian cancer contributed to lipid accumulation
in tumor-infiltrating dendritic cells (DCs), causing T cell
dysfunction, which in turn induced an impaired antitumor
immune response and thus inhibited the ability of fatty acid
synthesis to enhance antitumor immunity. Lin et al. (Lin R. et al.,
2020) found that tissue-resident memory T (Trm) cells in gastric
adenocarcinoma do not use glucose but rather rely on fatty acid
oxidation for energy. Cancer cells and Trm cells compete for
lipid metabolism, leading to Trm cell death. Blocking PD-L1 can
regulate Trm cell metabolism, promote lipid uptake, and further
enhance antitumor immune ability. Moreover, several studies
have suggested that alterations in specific signaling pathways
are associated with the prognosis of patients receiving ICIs and
can be used as novel markers to identify patients who will gain
benefit from immunotherapy (Teo et al., 2018; Wang et al., 2018).

Hence, based on the above results, we aimed to illustrate the
association between the mutation status of the lipid metabolism
pathway and the prognosis of NSCLC patients treated with
ICIs to identify a means to further predict which population of
patients with NSCLC will respond to ICIs.

MATERIALS AND METHODS

Immunotherapy Cohort, The Cancer
Genome Atlas Cohort, and Local Cohort
One cohort of NSCLC patients who received ICIs [anti-PD-
(L)1 monotherapy or anti-PD-(L)1 in combination with anti-
CTLA-4 therapy] was derived from a published study reported
by Rizvi et al. (2018). This immunotherapy cohort included a
total of 240 NSCLC patients with clinical data and mutation
data. Additionally, we used the TCGAbiolinks R package to
download mutation data, expression data and clinical data from
the LUAD and LUSC cohorts in The Cancer Genome Atlas
(TCGA) database (Colaprico et al., 2016). The TCGA-LUAD
and TCGA-LUSC cohorts were combined into one cohort in
the subsequent analysis, called the TCGA cohort (Tomczak
et al., 2015). We collected 115 formalin-fixed paraffin-embedded
(FFPE) NSCLC samples from the Thoracic Medicine Department
I, Hunan Cancer Hospital and Thoracic Medicine Department
I, Affiliated Tumor Hospital of Xiangya Medical School of
Central South University and performed panel sequencing.
The human NSCLC tumor specimens, panel sequencing, data
processing, and pathological diagnosis are detailed in the
Supplementary Methods.

Mutation Data Preprocessing
To explore the association between the mutation status of
the lipid metabolism pathway and the prognosis of NSCLC
patients receiving ICIs, we downloaded the lipid metabolism
gene set from MSigDB (Liberzon et al., 2011). First, we filtered
the mutation data and retained only the non-synonymous
mutation data. Next, we counted the non-synonymous mutations
in the lipid metabolism pathway in each sample. According
to the median number of non-synonymous mutations that
occurred in this pathway in each dataset, each sample was
divided into a group with a high number of mutations and
a group with a low number of mutations in lipid metabolism
molecules (Supplementary Table 1). In the subsequent analysis,
we will refer to these two groups as the high mutation group
and the low mutation group for short. Additionally, in the
mutation frequency analysis, we only compared the top 20
mutations in each cohort.

Immune Microenvironment Analysis
We used the CIBERSORT algorithm and LM22.txt to estimate
the proportions of 22 types of TILs from the expression data of
NSCLC patients (Newman et al., 2015). Additionally, immune-
related genes, immune checkpoint genes and immune-related
scores were obtained from published studies (Rooney et al.,
2015; Thorsson et al., 2018). The gene set enrichment analysis
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(GSEA) algorithm was used to determine the pathways that were
significantly enriched or downregulated in the high mutation
and low mutation groups (Subramanian et al., 2007). We
analyzed and compared the gene ontology (GO) terms, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways and
Reactome pathways enriched in the high and low mutation
groups. The enrichment score (ES) and P-value were used to
evaluate the activity of the pathway and whether there was a
significant difference.

Statistical Analysis
The Mann–Whitney U test and Fisher’s exact test were applied
to the comparison of the difference between the continuous
and categorical variables between high-mut and low-mut groups,
respectively. We used the Kaplan–Meier (KM) curve, univariate
and multivariate Cox model, and the log-rank test to evaluate the
effect of the mutation status of lipid metabolism on the prognosis
of NSCLC receiving ICIs. Also, the “ggpubr” R package was used
to visualize boxplots (Kassambara, 2018). P less than 0.05 was
regarded as statistically significant.

RESULTS

A Higher Number of Mutations in the
Lipid Metabolism Pathway Was
Associated With Favorable Prognosis in
Patients Treated With ICIs
In the ICI-treated cohort, we used a univariate-Cox model
to analyze the effects of a high number of mutations in the
lipid metabolism pathway, sex, histological type, and age at the
time of prognosis of NSCLC patients receiving immunotherapy
(Figure 1A). We found that a high number of mutations in
the lipid metabolism pathway, a high TMB and a high number
of alterations in DNA damage repair (DDR) signaling were
associated with prolonged progression-free survival (PFS) in the
ICI-treated cohort; however, the results of the multivariate Cox
analysis showed that a high number of mutations in the lipid
metabolism pathway, a high TMB, or a high number of mutations
in DDR signaling could not be used as an independent predictor
of the prognosis of patients with NSCLC receiving ICIs. Similarly,

FIGURE 1 | The value of clinical characteristics and the number of mutations in the lipid metabolism pathway for predicting ICI efficacy. (A) Forest plot displaying the
results of the univariate and multivariate Cox regression analyses in the ICI-treated cohort (Rizvi et al., 2018). The main portion of the forest plot presents the hazard
ratio (HR) and 95% confidence interval (95% CI), and red dots indicate P < 0.05. Predictors of favorable outcomes have an HR < 1, and predictors of poor outcome
have an HR > 1. (B) KM survival curves for PFS in 240 NSCLC patients from the ICI-treated cohort (Rizvi et al., 2018).
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NSCLC patients with a high number of mutations in the lipid
metabolism pathway had significantly prolonged PFS than those
with a low number of mutations [P = 0.017; HR = 0.68; 95%
confidence interval (95% CI): 0.51–0.92; Figure 1B]. Moreover,
we found that the PFS time of the high number of mutations
in the lipid metabolism pathway combined with the high TMB
group was significantly prolonged than that of the low number
of mutations in the lipid metabolism pathway combined with
the low TMB group (Supplementary Figure 1; P = 0.008;
HR = 0.548). Also, we found that the high-TMB group had
significantly prolonged PFS time compared with the low-TMB
group (Supplementary Figure 2; P = 0.024; HR = 0.73).

Comparison of Mutated Genes Between
the High and low Mutation Groups
To compare the differences in known cancer driver genes
between the high and low mutation groups, we visualized the
top 20 mutated driver genes in each group and used Fisher’s
exact test to calculate the statistical differences. In the ICI-treated
cohort, the high mutation group had more gene mutations
than the low mutation group. Compared with the low mutation
group, the high mutation group had significantly increased TP53
mutations (79.1% vs. 50.9%; P < 0.05), PTPRD mutations (20.9%
vs. 9.2%; P < 0.05), NF1 mutations (17.9% vs. 7.5%; P < 0.05),
and PTPRT mutations (17.9% vs. 7.5%; P < 0.05; Figure 2A).
Among the above-mentioned genetic mutations with significant
differences, most of the mutations were missense mutations,
followed by frameshift mutations. In the TCGA cohort, the
high mutation group had a higher frequency of driver genes
than the low mutation group (P < 0.05; Figure 2B), while
three genes (KRAS, KEAP1, and NFE2L2) showed no significant
difference between high and low mutation groups. The results of
the mutual exclusivity analysis of the lipid metabolism genes in
the high mutation group compared to the low mutation group
showed no significant difference (Supplementary Figure 3). We
also compared lipid metabolism mutation frequency differences
between the high mutation group and the low mutation group
(Supplementary Figure 4). Compared with the low mutation
group, the high mutation group had significantly increased
mutations in PIK3CG (15.0% vs. 5.20%), PIK3CA (15.0% vs.
2.31%), PIK3C2G (13.4% vs. 1.73%), PIK3C3 (11.9% vs. 1.16%),
INPP4B (10.4% vs. 1.16%), NCOR1 (10.4% vs. 1.16%), EP300
(10.4% vs. 1.58%), PTEN (8.96% vs. 1.16%), INPP4A (7.46% vs.
0%), and PIK3R2 (5.97% vs. 0.98%).

Comparison of the Immune
Microenvironment Between the High-
and Low-Mutation Groups
To explore differences in the TME between the high-mutation
group and the low-mutation group, the CIBERSORT algorithm
was applied to evaluate the proportions of twenty-two different
immune cells in the TME. Compared with the low-mutation
group, the high-mutation group had significantly enriched
macrophages (M0- and M1-type), CD4 + T cells (activated
memory), CD8 + T cells, Tfh cells, and gamma delta T cells
(all P < 0.05; Figure 3A). Additionally, as shown in Figure 3B,

the number of mutations in the lipid metabolism pathway
had a significantly positive correlation with the proportion of
macrophages (M1-type), CD4 + T cells (activated memory),
CD8 + T cells, Tfh cells, and gamma delta T cells (R > 0,
P < 0.05). A high proportion of CD8 + T cells was
significantly correlated with a high proportion of Tfh cells,
macrophages (M1-type) and CD4 + T cells (activated memory)
(R > 0, P < 0.05; Figure 3B). In contrast, some activated
immune cells had a significantly negative correlation with the
ratio of resting/suppressive immune cells (R < 0, P < 0.05;
Figure 3B). Moreover, we found that the high-mutation group
had higher expression levels of immune checkpoint molecules
(Figure 3C), such as CD274 (PD-L1), LAG3, CD276, and
PDCD1 (PD-1), than the low-mutation group. In the local-
NSCLC cohort, patients with a high number of mutations
in the lipid metabolism pathway had high levels of PD-L1
(P < 0.05; Figure 3D). Figure 3E shows typical cases for each
TPS level (lipid metabolism: 3 high-mutation vs. 3 low-mutation
cases). Similarly, the expression of inflammatory genes, such
as cytotoxicity markers (CD8A, GZMA, and GZMB), antigen
processing and presentation markers (MICB and TAP1), and
inflammatory cytokines (CXCL9, CXCL10, CCL5, IFNG, IL12A,
and TNFRSF18), was significantly higher in the high-mutation
group than in the low-mutation group (all P < 0.05, Figure 3F).

Comparison of Immunogenicity Between
the High and Low Mutation Groups
Immunogenicity is a vital factor affecting the prognosis of
patients with NSCLC receiving ICIs and the efficacy of ICIs.
We determined the differences in immunogenicity between the
high and low mutation groups. For TMB, in both the ICI-treated
cohort and the TCGA cohort, compared with the low mutation
group, the high mutation group had a significantly enhanced
TMB (all P < 0.05; Figures 4A,B). In the Local-NSCLC cohort,
we found that patients with a high number of mutations in the
lipid metabolism pathway had high levels of TMB (P < 0.05;
Figure 4C). Additionally, the high mutation group had a higher
neoantigen load (NAL) than the low mutation group (P < 0.05;
Figure 4D). DDR signaling pathways play a key role in correcting
DNA damage. We downloaded eight DDR signaling pathway
gene sets from MSigDB and merged these gene sets into one
(the merged DDR pathway gene set). In the ICI-treated cohort,
in most DDR pathways such as homologous recombination
(HR), single-strand break (SSB), double-strand break (DSB),
nucleotide excision repair (NER), non-homologous end joining
(NHEJ), Fanconi anemia (FA), and merged DDR pathways, the
high mutation group had a significantly increased number of
mutations (P < 0.05; Figure 4E). In the TCGA cohort, the
high mutation group had a higher number of non-synonymous
mutations in all DDR pathways than the low mutation group (all
P < 0.05; Figure 4F).

Differences in Pathway Activity Between
the High and Low Mutation Groups
Alterations in functional pathway activity also have impacts
on the efficacy of ICIs and the prognosis of NSCLC patients
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FIGURE 2 | Genomic profiles of NSCLC patients in the ICI-treated cohort (Rizvi et al., 2018) (A) and TCGA-NSCLC (B) cohorts. The top 20 genes with the highest
mutation frequencies and the corresponding clinical information are shown. The top five genes with the highest mutation frequencies in the ICI-treated cohort (Rizvi
et al., 2018) were TP53, KRAS, KEAP1, STK11, and PTPRD. The top five genes with the highest mutation frequencies in the TCGA cohort were TP53, TTN,
MUC16, CSMD3, and RYR2. The mutation types are indicated as follows: yellow indicates splice site mutations, blue indicates missense mutations, orange indicates
frameshift mutations, green indicates in-frame insertions/deletions, and brown indicates nonsense mutations. The clinical characteristics are shown as patient
annotations.

receiving ICIs. We used the ClusterProfiler R package to perform
GSEA with the NSCLC expression data from the high and
low mutation groups. Immune-related pathway terms, such as
lymphocyte recruitment and participation in the inflammatory
response, lymphocyte aggregation, interleukin 1, and BCR
pathway activation, were significantly enriched in the high
mutation group (Figure 5A). In contrast, some pathway terms
related to immune depletion, such as fatty acid synthesis,
fatty acid metabolism and regulation of fibroblast proliferation,
were significantly downregulated in the high mutation group
(Figure 5B). Additionally, some carcinogenic pathways, such as
the canonical WNT pathway and the NOTCH pathway, were
significantly upregulated in the low mutation group compared
with the high mutation group (Figure 5C).

DISCUSSION

To date, with the gradual increase in in-depth research on
immune checkpoints, breakthroughs have been made in the

research of ICIs, which have revolutionized the diagnosis
and treatment of NSCLC; however, many challenges remain
in clinical application, such as the limited population that
benefits and the lack of effective biomarkers (Garon et al.,
2019; Garassino et al., 2020). In the TME, both tumor cells
and immune cells can undergo metabolic reorganization to
adapt to a microenvironment with low oxygen, acidity and
low nutrition (Wu and Dai, 2017). The activity of the lipid
metabolism pathway can affect the recruitment, infiltration
and activation of TILs (Yang et al., 2016; Saleh and Elkord,
2019; Jiang et al., 2020). Novel treatments that regulate lipid
metabolism may effectively improve the immunotherapy efficacy
and patient prognosis. In this study, we found that a high
number of mutations in the lipid metabolism pathway was
related to a favorable prognosis in patients with NSCLC
receiving ICIs. Next, we analyzed the potential relationships
between the number of mutations in the lipid metabolism
pathway and immunogenicity and the TME. Patients with a
high number of mutations in the lipid metabolism pathway
had significantly enhanced immunogenic factors (such as
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FIGURE 3 | (A) Comparison of the fractions of 22 types of immune cells as estimated by the CIBERSORT algorithm between the high and low mutation groups in
the TCGA cohort. (B) The correlations between the number of mutations in the lipid metabolism pathway and the proportions of immune cells. (C) Comparison of
the expression of immune-related genes between the high and low mutation groups in the TCGA cohort. (D) Comparison of the expression of PD-L1 (TPS) between
the high and low mutation groups in the Local-NSCLC cohort. (E) The typical cases for each TPS level between the high (three samples; high PD-L1 TPS) and low
mutation (three samples; no PD-L1 TPS) groups in the Local-NSCLC. Using HE and PD-L1 stained slides, we manually assessed the number of tumor cells, the
sample size (diameter), the crush rate with a cut-off value of <1% (no PD-L1 TPS), 1–50% (low PD-L1 TPS), 50% < (high PD-L1 TPS), and the TPS for each biopsy
sample using the slide that contained the most tumor cells. The TPS level was evaluated by pathologists who completed training courses in TPS estimation.
(F) Heatmap depicting the mean differences in the expression of proinflammatory and antigen presentation genes between the high and low mutation groups in the
TCGA cohort. Each square represents the fold change or the mean difference in the expression of these genes between the high and low mutation groups in the
TCGA cohort. Red indicates upregulation.
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FIGURE 4 | (A) Comparison of TMB scores between the high and low mutation groups in the ICI-treated cohort (Rizvi et al., 2018). (B) Comparison of TMB between
the high and low mutation groups in the TCGA cohort. (C) Comparison of TMB between the high and low mutation groups in the Local-NSCLC cohort.
(D) Comparison of NAL between the high and low mutation groups in the TCGA cohort. (E) Comparison of DNA damage-related gene set alterations between the
high and low mutation groups in the ICI-treated cohort (Rizvi et al., 2018). (F) Comparison of DNA damage-related gene set alterations between the high and low
mutation groups in the TCGA cohort.
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FIGURE 5 | Comparison of GSEA results between the high and low mutation
groups in the TCGA cohort. GSEA-identified differences in immune cell (A),
exhaustion-related (B), and oncogenic pathway activities (C) between the
high and low mutation groups in the TCGA cohort.

TMB, NAL, and DDR pathway mutations) and enriched
activated immune cells with upregulated inflammatory gene
expression profiles.

The inflammatory TME in patients with a high number of
mutations in the lipid metabolism pathway may be related to
a better prognosis with ICI treatment. Compared with patients
with a low number of mutations in the lipid metabolism pathway,
patients with a high number of mutations had significantly
increased proportions of infiltrating activated immune cells
[macrophages (M0- and M1-type), CD4 + T cells (activated
memory), CD8 + T cells, Tfh cells, and gamma delta T cells]
and upregulated inflammatory expression profiles (IFNG, CD8A,
GZMA, GZMB, CXCL9, and CXCL10). Tumor cell necrosis
induced by the perforin-granzyme pathway and tumor cell
apoptosis induced by the Fas-FasL pathway are regarded as
two vital mechanisms by which CD8 + T cells exert antitumor
immunity. Additionally, CD8 + T cells can also induce iron-
mediated tumor cell death by secreting IFN-γ, which is a
newly identified method of cell death that differs from apoptosis
and necrosis (Dixon et al., 2012). IFN-γ can downregulate the
expression of two subunits of the glutamate-cystine antiporter
on the surface of tumor cells, namely, solute carrier family 3
member 2 (SLC3A2) and SLC7A11, thereby inhibiting tumors.
Cystine uptake by the cell reduces glutathione synthesis and
ultimately leads to insufficient synthesis of glutathione peroxidase
4 (GPX4), which inhibits the cell from effectively removing
peroxide. Lipids cause iron-induced death in cells under iron-
dependent conditions (Friedmann Angeli et al., 2019; Wang
et al., 2019). IFNγ is mainly derived from CD8 + T cells and
is also an important cytokine for CD8 + T cells to complete
immune-mediated killing. In addition to mediating iron-induced
cell death, IFN-γ can also promote antigen presentation and
tumor cell killing. IFN-γ can activate the JAK-STAT signaling
pathway through interferon receptors acting on tumor cells,
thereby upregulating the expression of interferon-stimulated
genes (ISGs) and enhancing major histocompatibility complex
I (MHC-I) expression on the cell membrane. The expression
of MHC-I molecules and intracellular immune proteasomes
promotes the recognition of tumor cells by immune cells and
simultaneously sensitizes tumor cells to apoptosis signals, which
ultimately leads to tumor cell death (Quail and Joyce, 2013;
Schneider et al., 2014). M1-type macrophages highly express
TNF, inducible nitric oxide synthase (iNOS), MHCII and other
proteins, which play an antitumor effect. Chemokines (CXCL9
and CXCL10) play an important role in recruiting CD8 + T
cells and NK cells to the TME. The above results suggest the
presence of an inflammatory immune microenvironment in the
high mutation group (Lin et al., 2019).

The significantly enhanced immunogenicity in patients with a
high number of mutations in the lipid metabolism signaling may
be associated with a favorable prognosis with ICIs. Mutations
in the DDR signaling can contribute to the up-regulation of
genome instability and cause accumulated DNA damage, which
may be a biomarker for identifying potential ICI responders in
multiple cancer types (Teo et al., 2018; Wang et al., 2018). Patients
with advanced urothelial cancers with mutations in the DDR
pathway had a significantly increased ORR to immunotherapy
(67.9% vs. 18.8%; P < 0.001) (Teo et al., 2018). Additionally,
Wang et al. (2018) found that patients with co-mutations in
the DDR pathway had significantly prolonged OS and PFS
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compared with patients without co-mutations. The TMB has
been regarded as a potential molecular marker for predicting
ICI response, and its utility has been gradually confirmed
(Jessurun et al., 2017). An increased TMB can promote the
production of more tumor neoantigens (McGranahan et al.,
2016). Neoantigens are presented to DCs, which can promote
the transformation of T cells into mature and activated T cells,
and high NAL is associated with sensitivity to anti-PD-1/CTLA-
4 treatments (Lin A. et al., 2020). In this study, we found
that patients with a high number of mutations in the lipid
metabolism pathway had a significantly increased TMB, NAL,
and mutations of the DDR pathway. Therefore, the above results
suggest that up-regulated immunogenicity may be a strategy
generating favorable prognoses for NSCLC patients with a high
number of mutations in the lipid metabolism pathway. This
study analyzed the prognosis of ICI treatment and mutation
status of lipid metabolism in patients with non-small cell lung
cancer and attempted to elucidate the potential role of a high
number of lipid metabolism mutations as a biomarker for
screening the predominant population of NSCLC preferred for
immunotherapy; however, this study still has several limitations.
First, this work included only one ICI-treated cohort of NSCLC,
which may introduce bias when screening biomarkers for the
prognosis of ICIs of NSCLC. Second, targeted sequencing (MSK-
IMPACT) was used to detect somatic mutations in the ICI-
treated cohort and included significantly fewer gene mutations
compared to whole-exome sequencing (WES). Third, this study
cannot separate the effect of the TMB or the mutation counts
of DDR signaling from the effect of the mutation status of
lipid metabolism on the prognosis of NSCLC patients receiving
ICIs. We hope to conduct relevant cell or animal experiments
in the future to verify how a high number of lipid metabolism
mutations affect the efficacy of immunotherapy and explore
their relationship with the TME. We also hope to study NSCLC
patients receiving ICIs to separate the effect of the TMB or the
mutation counts of DDR signaling.

CONCLUSION

Our study provided solid evidence that high-mutated lipid
metabolism signaling was associated with prolonged PFS in
NSCLC patients receiving ICIs. Hence, high-mutated lipid
metabolism signaling can act as a potential biomarker for
ICIs among NSCLC.
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Numerous studies have identified various prognostic long non-coding RNAs (LncRNAs) 
in a specific cancer type, but a comprehensive pan-cancer analysis for prediction of 
LncRNAs that may serve as prognostic biomarkers is of great significance to be performed. 
Glioblastoma multiforme (GBM) is the most common and aggressive malignant adult 
primary brain tumor. There is an urgent need to identify novel therapies for GBM due to 
its poor prognosis and universal recurrence. Using available LncRNA expression data of 
12 cancer types and survival data of 30 cancer types from online databases, we identified 
48 differentially expressed LncRNAs in cancers as potential pan-cancer prognostic 
biomarkers. Two candidate LncRNAs were selected for validation in GBM. By the 
expression detection in GBM cell lines and survival analysis in GBM patients, 
we demonstrated the reliability of the list of pan-cancer prognostic LncRNAs obtained 
above. By constructing LncRNA-mRNA-drug network in GBM, we predicted novel drug-
target interactions for GBM correlated LncRNA. This analysis has revealed common 
prognostic LncRNAs among cancers, which may provide insights into cancer pathogenesis 
and novel drug target in GBM.

Keywords: pan-cancer, long noncoding RNA, prognosis, biomarker, glioblastoma multiforme

INTRODUCTION

Non-coding RNAs (ncRNAs), including microRNA (miRNA), circRNA, long non-coding RNA 
(LncRNA), and many other kind of RNAs, are non-protein coding transcripts, which had 
been regarded as useless molecules, accounting for more than 95% of human genome (Tao 
et  al., 2015). However, accumulating evidence indicates that ncRNAs have multiple functions 
in physiological and pathological processes, including cell growth, proliferation and apoptosis 
(Penna et  al., 2015).
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LncRNAs are a novel class of ncRNAs that are longer than 
200 nucleotides, with no protein-coding capability (Ulitsky and 
Bartel, 2013). It has been shown that LncRNAs can elicit gene 
activation or suppression by interacting with proteins, DNAs 
and RNAs including miRNAs (Kataoka and Wang, 2014). They 
can also act as molecular signals, decoys, guides, and scaffolds 
for transcription factors and epigenetic modifiers (Wang and 
Chang, 2011).

A number of studies have revealed that LncRNAs are 
dysregulated in many cancer types. Several common LncRNAs 
have been investigated in cancers and the results revealed that 
they can function as potential biomarkers associated with tumor 
initiation, progression, and prognosis. For example, 
neuroblastoma associated transcript 1 (NBAT1) is demonstrated 
as a tumor-suppressing LncRNA and habitually downregulated 
in several cancers including neuroblastoma, osteosarcoma, 
ovarian cancer, and breast cancer. Loss of NBAT1 induces 
tumor cell proliferation, differentiation, migration, and invasion 
through interaction with EZH2 and miR-21, or targeting 
ERK1/2- and AKT-mediated signaling pathway (Pandey et  al., 
2014; Hu et  al., 2015; Yan et  al., 2017; Yang et  al., 2017). 
NBAT1 can also inhibit autophagy by suppressing the 
transcription of ATG7  in non-small cell lung cancer (Zheng 
et  al., 2018). Colon cancer-associated transcript-1 (CCAT1) is 
found to be  consistently elevated in multiple types of cancer 
and plays a critical role in various biological processes such 
as proliferation, invasion, migration, drug resistance, and survival 
(Nissan et  al., 2012; He et  al., 2014; Kim et  al., 2014; Deng 
et al., 2015; Wang et al., 2019b). CCAT1 has been demonstrated 
to enhance the expression of c-Myc (Xiang et al., 2014; Younger 
and Rinn, 2014). CCAT1 can also stimulate EGFR expression, 
thereby activating MEK/ERK1/2 and PI3K/AKT signaling 
pathways (Jiang et  al., 2018). Metastasis-associated lung 
adenocarcinoma transcript 1 (MALAT1) plays an important 
role in the pathogenesis and development of various cancers 
(Amodio et  al., 2018; Liu et  al., 2018; Zhao et  al., 2018). 
Previous studies revealed that MALAT1 is upregulated in lung 
cancer, breast cancer, colorectal cancer, bladder cancer, and 
hepatocellular carcinoma (Goyal et  al., 2021). MALAT1 
epigenetically repress TSC2 transcription via recruiting EZH2 
to TSC2 promoter regions and thus enhances the apoptosis 
of cardiomyocytes through autophagy inhibition by regulating 
TSC2-mTOR signaling (Hu et  al., 2019). Although increasing 
prognostic LncRNAs were identified exclusively in a specific 
cancer type, a comprehensive pan-cancer analysis is of great 
significance to be  performed for prediction of LncRNAs that 
may serve as prognostic biomarkers. Identifying new prognostic 
LncRNA biomarkers is of extreme importance for revealing 
tumorigenesis underlying mechanisms. Although demonstrating 
LncRNA’s exact function in cancers is difficult at present, it 
is possible to evaluate their role in prognosis, which is one 
of the main goals of cancer research.

Glioma is the most common malignant tumor in central 
nervous system and accounts for approximately 80% of primary 
intracranial tumors (Zhou et al., 2013). Based on World Health 
Organization (WHO) classification, glioma is classified into 
WHO grade I, II, III, and IV (Agnihotri et  al., 2013). 

Among  all  types of glioma, glioblastoma multiforme (GBM) 
is the most aggressive type (a WHO grade IV glioma; Lieberman, 
2017; Szopa et al., 2017), with a median survival of 15 months. 
GBM is characterized by chemoradiotherapy resistance and 
high risk of recurrence (Abbruzzese et  al., 2017; Tian et  al., 
2019). Temozolomide (TMZ) resistance severely limits the 
efficacy and has become an important cause of poor prognosis. 
The 5-year recurrence for GBM is nearly universal. Therefore, 
there is an urgent need to identify novel therapies for GBM 
(Clarke et  al., 2013; Szopa et  al., 2017; Tan et  al., 2018).

In our study, in order to get more rigorous analysis, 
we  integrated both TANRIC database and ENCORI database, 
performed a step-by-step filtering and identified a list of 48 
pan-cancer prognostic LncRNAs. Through LncRNA expression 
detection by qPCR and survival analysis on database in GBM, 
the reliability of our findings is confirmed. Previous pan-cancer 
analysis commonly aims to discover novel biomarkers across 
boundaries between tumor types (Weinstein et  al., 2013). 
We  took more concentrations on GBM, because there is few 
LncRNA targeted drugs for GBM therapy. We  constructed an 
LncRNA-mRNA-drug interaction network to give advice to 
further drug-related LncRNA research and provide guideline 
for targeted therapeutics.

MATERIALS AND METHODS

Cell Lines
HUVEC, U87MG, and U251MG GBM cell lines were cultured 
in DMEM (Lot No. 8119284) supplemented with 10% fetal 
bovine serum (FBS, Lot No. 42G2095K) at 37°C in a humidified 
air atmosphere containing 5% CO2. GSC23 GBM stem cell 
line was cultured in DMEM F-12 (Lot No. RNBG2219) 
supplemented with EGF (20  ng/ml, Lot No. PHG0311), bFGF 
(20  ng/ml, Lot No. PHG0368), B27 (1×, Lot No. 17504044), 
and NEAA (1×, Lot No. 11140050) at 37°C in a humidified 
air atmosphere containing 5% CO2. DMEM F-12 was purchased 
from SIGMA, other reagents were purchased from Gibco.

Data Collection and Preprocessing
Gene expression data (LncRNA sequencing profiles) and 
corresponding clinical data of 12 cancer types were obtained 
from the Atlas of ncRNA in Cancer (TANRIC) database based 
on The Cancer Genome Atlas Data (TCGA) and Cancer Cell 
Line Encyclopedia (CCLE).1 We focused on 12 types of cancers, 
each with more than 10 normal control samples, including 
bladder urothelial carcinoma (BLCA, 252 tumor samples and 
19 normal samples), breast invasive carcinoma (BRCA, 837 
tumor samples and 105 normal samples), head and neck 
squamous cell carcinoma (HSNC, 426 tumor samples and 42 
normal samples), kidney chromophobe (KICH, 66 tumor samples 
and 25 normal samples), kidney renal clear cell carcinoma 
(KIRC, 448 tumor samples and 67 normal samples), kidney 
renal papillary cell carcinoma (KIRP, 198 tumor samples and 

1�https://ibl.mdanderson.org/tanric/_design/basic/main.html
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30 normal samples), liver hepatocellular carcinoma (LIHC, 200 
tumor samples and 50 normal samples), lung adenocarcinoma 
(LUAD, 488 tumor samples and 58 normal samples), lung 
squamous cell carcinoma (LUSC, 220 tumor samples and 17 
normal samples), prostate adenocarcinoma (PRAD, 374 tumor 
samples and 52 normal samples), stomach adenocarcinoma 
(STAD, 285 tumor samples and 33 normal samples), and thyroid 
carcinoma (THCA, 497 tumor samples and 59 normal samples; 
Table  1). LncRNA ID was annotated according to GENCODE 
Release 29 (GRCh38.p12).2

Identification of Differentially Expressed 
LncRNAs in Pan-Cancer
The differentially expressed LncRNAs (DELncs) between 
tumor samples and normal samples were identified using 
DESeq2 package of R software. The value of p was adjusted 
by multiple significant tests with Bonferroni method. |log2 
fold change (FC) | > 1 and p  <  0.05 were set as the cutoff 
criteria. Hierarchical Cluster analysis was performed according 
to the expression values of DELncs. The heatmaps and 
volcano maps were plotted based on ggplot2 package of 
R software.

Survival Analysis of Differentially 
Expressed LncRNAs in Pan-Cancer
The survival data of the 30 TCGA cancer types and GBM 
were obtained from ENCORI Pan-Cancer Analysis Platform 
(Li et  al., 2014) and TANRIC database, respectively. Besides 
the 12 types of cancers in Table 1, we also downloaded overall 
survival information of adrenocortical carcinoma (ACC), cervical 
squamous cell carcinoma and endocervical adenocarcinoma 
(CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma 
(COAD), lymphoid neoplasm diffuse large B-cell lymphoma 
(DLBC), esophageal carcinoma (ESCA), acute myeloid leukemia 
(LAML), brain lower grade glioma (LGG), mesothelioma (MESO), 
ovarian serous cystadenocarcinoma (OV), pheochromocytoma 
and paraganglioma (PCPG), prostate adenocarcinoma (PRAD), 
rectum adenocarcinoma (READ), sarcoma (SARC), skin 
cutaneous melanoma (SKCM), testicular germ cell tumors 
(TGCT), thymoma (THYM), uterine corpus endometrial 
carcinoma (UCEC). The survival data of GBM was obtained 
from The Atlas of ncRNA in Cancer (TANRIC) based on 
TCGA and Cancer Cell Line Encyclopedia (CCLE). Patients 
were separated into higher and lower risk groups by median 
LncRNA expression. By Kaplan–Meier survival analysis, LncRNAs 
with Log-rank p  <  0.05 were considered to be  significantly 
associated with prognosis of patients.

Functional Enrichment Analysis of GO 
Annotation and KEGG Pathways
The Pearson correlation coefficient was used to evaluate 
co-expression relationship between LncRNA and mRNA. Cluster 
Profiler v3.8 package of R was used to analyze and visualize 

2�https://www.gencodegenes.org/human/

functional profiles [Gene Ontology, (GO) annotation and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway] of 
the co-expressed genes with DELncs. The GO terms and KEGG 
pathways with p < 0.05 was considered as significantly enriched 
function terms or pathways.

Quantitative RT-PCR (qRT-PCR) Analysis
Total RNA from HUVEC, U87MG, U251MG, and GSC23 cell 
lines was isolated using RNAiso Plus (TaKaRa, code: 9109). 
RNA was transcribed to cDNA using PrimeScript™ RT Reagent 
Kit with gDNA Eraser (TaKaRa) following the manufacturer’s 
instructions. Real-time quantitative PCR (qPCR) was performed 
using SYBR Green Real-time PCR Master Mix (TOYOBO, Lot 
No.857300) with primers against selected LncRNAs (primer 
sequences are listed in Table  2). Amplification and real time 
measurement of PCR products was performed with QuantStudio 
Real-Time PCR System (Thermo Fisher Scientific). The 
comparative Ct method was used to quantify the expression 
levels of LncRNAs. GAPDH gene expression served as an 
internal control.

Predicting lncRNA-mRNA-Drug 
Interactions for GBM
In the drug discovery and repositioning process, computational 
prediction of drug-target interactions (DTIs) plays a key role 
in identifying putative new drugs or novel targets for existing 
drugs (Savitski et al., 2014; Chernobrovkin et al., 2015; Franken 
et  al., 2015; Cheng et  al., 2016; Guney et  al., 2016; Mehmood 
et al., 2016). Among multiple computational approaches, DTINET 
is a new computational pipeline, which can integrate 
heterogeneous information to predict new DTIs and repurpose 
existing drugs (Luo et  al., 2017).

TABLE 1  |  LncRNA expression data of 12 cancer types in TANRIC database.

Data source Cancer type Normal samples Tumor samples

TCGA BLCA 19 252
TCGA BRCA 105 837
TCGA HNSC 42 426
TCGA KICH 25 66
TCGA KIRC 67 448
TCGA KIRP 30 198
TCGA LIHC 50 200
TCGA LUAD 58 488
TCGA LUSC 17 220
TCGA PRAD 52 374
TCGA STAD 33 285
TCGA THCA 59 497

TABLE 2  |  Primer sequences of LINC0008 and RP11-399O19.9.

LncRNA Primer

LINC00087 F: 5'-GGCTTGGCGGTTCGGCTGTC-3'
LINC00087 R: 5'-GCACTTGCAGGCGGACGTTGA-3'
RP11-399O19.9 F: 5'-CAGAAGTAGGGCAAGTTAGG-3'
RP11-399O19.9 R: 5'-CTCCACTGTCTTCCTCCC-3'
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RESULTS

The Integrative Pipeline for Identification 
of Pan-Cancer Prognostic DELncs
Figure 1 shows a scheme of the integrative pipeline containing 
multi-step of data integration and analysis for the identification 
of pan-cancer prognostic DELncs, together with its validation 
and application in GBM. First, we performed differential analysis 
on LncRNA expression profiles in TANRIC database and found 
2,561 DELncs across 12 cancer types. Then we  identified 161 
of these overall DELncs as common DELncs because of their 
common changing trends in more than five cancer types. Based 
on the survival information in ENCORI database, we  filtered 
out more than half of common DELncs with Log-rank 
p  <  0.05  in less than six cancer types and acquired a list of 
48 pan-cancer prognostic DELncs. Afterward, we  validate the 
reliability of our list in GBM using both qPCR and database 
analysis. Finally, we construct an LncRNA-mRNA-drug network 
in GBM and predicted potential LncRNA associated 
drugs in GBM.

Comparison of Differentially Expressed 
LncRNAs in Pan-Cancer
To identify common DELncs in different cancer types, 
we  compared the LncRNA expression profiles between tumor 
samples and paired normal samples in 12 cancer types from 
TCGA database, including BLCA, BRCA, HSNC, KICH, KIRC, 
KIRP, LIHC, LUAD, LUSC, PRAD, STAD, and THCA. The result 

of differential analysis indicated that there were 2,561 DELncs 
across 12 cancer types altogether, where 859 DELncs were 
identified in KIRC samples and only 181 DELncs in STAD 
samples (Figure 2A). Among these 2,561 overall DELncs, we found 
that most of them showed similar tendency in more than one 
or two cancer types. Here we  showed the top list of 10 
most  common DELncs (Figure  2B). The most representative 
up-regulated LncRNA is FGF14-AS2 (Ensembl ID: 
ENSG00000272143.1) and the most downregulated LncRNA is 
RP11-196G18.24 (Ensembl ID: ENSG00000272993.1). FGF14-AS2 
was consistently upregulated in nine cancer types, including 
BRCA, KIRC, BLCA, LIHC, LUAD, LUSC, KICH, HNSC, and 
PRAD (Figure  2C). RP11-196G18.24 showed downregulation 
in almost all the cancer types except KIRC and THCA (Figure 2D).

Survival Analysis and Functional 
Annotation of DELnc in Pan-Cancer
In order to acquire those LncRNAs that may serve as potential 
prognostic biomarkers of pan-cancer, we  perform a step-by-
step filtering (Figure  3A). In the initial loose screening step, 
161 DELncs were selected due to their similar expression trends 
in more than five among 12 cancer types. Then the survival 
analysis in 30 cancer types in online tool ENCORI was performed 
to examine the relationship between 161 LncRNAs and the 
prognosis of cancer patients. In a more stringent step, 48 
DELncs with Log-rank p  <  0.05  in more than six cancer types 
were considered to be  associated with prognosis of pan-cancer 
and were selected for further investigation (Figure  3B). In 
this way, we were able to take more LncRNAs in consideration 
and acquire a concise list of pan-cancer prognotic DELncs for 
further research.

Cluster analysis and heatmap were performed according to 
the value of p of Log-rank of the overall survival analysis of 
these 48 LncRNAs in 30 cancer types (Figure  3B). Among 
the 48 candidates, the top one LncRNA MIR4435-2HG (Ensembl 
ID: ENSG00000172965.10) was significantly associated with the 
10 cancer types (Log-rank p value < 0.05), including ACC, 
COAD, HNSC, KIRC, KIRP, LGG, LIHC, LUAD, MESO, and 
PAAD. Kaplan–Meier survival estimate in ENCORI Pan-Cancer 
Analysis Platform revealed that higher expression of 
MIR4435-2HG in 10 cancer types was robustly associated with 
worse prognosis (Figure 3C). In order to uncover the biological 
functions of MIR4435-2HG, we  performed the GO annotation 
and KEGG pathway enrichment analysis. As shown in 
Figures  3D,E, the MIR4435-2HG co-expressed genes were 
associated with the category of morphogenesis of an epithelium, 
regulation of protein complex assembly, Wnt signaling pathway, 
and cell-substrate adhesion (Figure  3D). KEGG pathway 
enrichment analysis revealed that the genes associated with 
MIR4435-2HG were mainly enriched in focal adhesion, leukocyte 
trans-endothelial migration, and pathway in cancer (Figure 3E).

Evaluation of DELncs’ Expression 
and Prognostic Value in GBM
To further validate the expression of 48 DELncs from 
Pan-cancer analysis, we  selected two (RP11-399O19.9 

FIGURE 1  |  The integrative pipeline for identification of pan-cancer 
prognostic DELncs.
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and LINC00087) of them that have not been well studied 
to assess the reliability of differentially expression analysis 
in pan-cancer. Here, we  chose GBM as our validation set. 
GBM is highly aggressive grade 4 glioma and is the most 
common type of malignant glioma, with 10,000 new 
diagnoses each year. However, there were few LncRNA 
revealed to be  associated with the diagnosis and 
prognosis of GBM.

The relative expression of RP11-399O19.9 (Ensembl ID: 
ENSG00000261438.1) and LINC00087 (Ensembl ID: 
ENSG00000196972.6) in U87MG, U251MG, and GSC23 was 
up regulated compared with normal cell line HUVEC 
(Figures  4A,B). GO annotation was performed to predict 
the potential biological processes of RP11-399O19.9 and 
LINC00087. Based on TANRIC database, RP11-399O19.9 
co-expressed genes were correlated with the categorical terms 
of neutrophil activation, neutrophil degranulation, and 
neutrophil activation involved in immune response and many 

other processes of immune system (Figure 4C). This indicated 
that RP11-399O19.9 may play an important role in the 
regulation of immune system, especially neutrophil activation. 
Genes associated with LINC00087 were enriched in the 
modulation of chemical synaptic transmission, the regulation 
of trans-synaptic signaling, and synaptic vesicle cycle 
(Figure  4D), indicating that LINC00087 might be  involved 
in intercellular signal transmission.

Finally, to investigate the prognostic significance of RP11-
399O19.9 and LINC00087 expression in GBM patients, 
we  obtained the overall survival information from TANRIC 
database. The Kaplan–Meier survival analysis showed that RP11-
399O19.9 and LINC00087 are able to separate patients into 
higher and lower risk groups by median PI, with the value 
of p of Log-rank of 0.043875 and 0.024661 for GBM. High 
expression of both RP11-399O19.9 and LINC00087 are 
significantly associated with poor prognosis for GBM patients 
(Log-rank p  <  0.05, Figures  4E,F).

A

C D

B

FIGURE 2  |  Differentially expressed LncRNAs analysis in 12 TCGA cancer types between tumor samples and normal samples. (A) The number of identified 
DELncs in each cancer type in TANRIC database. (B) A list of top 10 common DELncs in 12 cancer types. (C) The relative expression of FGF14-AS2 in BRCA, 
KIRC, BLCA, LIHC, LUAD, LUSC, KICH, HNSC, and PRAD samples compared with normal samples. (D) The relative expression of RP11-196G18.24 in KIRP, 
BRCA, KIRC, BLCA, LIHC, LUAD, LUSC, HNSC, PRAD, and STAD samples compared with normal samples.
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FIGURE 3  |  Survival analysis and functional annotation of DELncs. (A) Identification of common DELncs and pan-cancer prognostic DELncs. (B) Clustering 
and heatmap of 48 DELncs’ prognostic value by the value of p of Log-rank survival analysis in 30 cancer types. (C) Kaplan–Meier survival analysis of 
MIR4435-2HG in ACC, COAD, HNSC, KIRC, KIRP, LGG, LIHC, LUAD, MESO, and PAAD. (D) Gene Ontology (GO) annotation of MIR4435-2HG by its 
correlation mRNA expression. (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of MIR4435-2HG by its correlation 
mRNA expression.
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Prediction of LncRNAs as Novel Targets 
for Existing Drugs in GBM Therapy
Based on the list of top  150 novel drug-target interactions 
(Supplementary Table 1) predicted by DTINet, we constructed 
an LncRNA-mRNA-drug network to identify the GBM correlated 
drugs. GBM related LncRNA-mRNA-drug network was visualized 
using Cytoscape software (Version 3.7.1; Figure  5). In the 
network, LINC00087 (Ensembl ID: ENSG00000196972.6) has 
the most interactions with a large amount of drug targets 
(mRNA), showing the most relevant with existing drugs including 
Clozapine, Zolmitriptan, Bethanechol, etc. We  find several 
Extrasynaptic γ-aminobutyric acid type A (GABAA) receptors 
family (GABR) targets, which have interaction with LINC00087 
including GABRA1, GABRB2, GABRD, GABRG1,GABRG2, 
and GABRG3. GABAA receptor family contributes to memory 
performance. Dysregulation of GABAA receptor expression, 
which occurs in some neurological disorders, is associated with 
memory impairment (Whissell et al., 2016). Their related drug, 
Clozapine (CZP), a dibenzodiazepine atypical antipsychotic 
drug, was introduced for treatment of schizophrenia in Europe 
in 1971, rapidly gaining popularity due to its efficacy and 
virtual absence of extrapyramidal side effects (Mijovic and 
MacCabe, 2020). Clozapine may be  a potential drug for 
GBM treatment.

DISCUSSION

Evaluating prognostic value of factors associated with tumorigenesis 
and progression is an important part of cancer research. Numerous 
studies have demonstrated that many factors have implication in 
tumor progression or clinical prognosis in pan-cancer including 
gene expression, DNA methylation, mutation, etc. Although several 
LncRNAs have been identified as diagnostic or prognostic markers 
(Prensner et  al., 2011; Sun et  al., 2013), a pan-cancer analysis of 
prognostic LncRNA has rarely been performed. At the same time, 
there are variations across different cancers in terms of prognosis 
related LncRNAs, which leads to inconvenience in its utility in 
clinical oncology. In this study, we  analyzed LncRNA expression 
profiles of 4,848 samples from 12 TCGA cancer types in TANRIC 
database. We systematically analyzed DELncs between tumor and 
normal samples in each cancer type and found 2,561 LncRNAs 
that were simultaneously dysregulated in 12 cancer types. Afterward, 
we  evaluated the prognostic effect of 161 LncRNAs in 30 cancer 
type and ultimately identified 48 DELncs as our pan-cancer 
prognostic LncRNAs. MIR4435-2HG, as one of the 48 DELncs, 
showed prognostic importance in 10 cancer types. Previous studies 
have demonstrated that upregulation of MIR4435-2HG is associated 
with bad prognosis of patients with prostate carcinoma (Zhang 
et  al., 2019), breast  cancer (Deng et  al., 2016), gastric cancer 

A

B

C

D

E

F

FIGURE 4  |  Assess the reliability of candidate LncRNAs by the examination of RP11-399O19.9 and LINC00087 in GBM. (A) mRNA expression of RP11-399O19.9 
and (B) LINC00087 in HUVEC, U87MG, U251MG, and GSC23 cell lines (*means p < 0.05, **means p < 0.01, and ***means p < 0.001). (C) GO annotation of 
RP11-399O19.9 and (D) LINC00087. (E) Kaplan–Meier survival analysis of RP11-399O19.9 and (F) LINC00087 in GBM patients.
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(Wang et al., 2019a), lung cancer (Qian et al., 2018), and colorectal 
cancer (Ouyang et  al., 2019). Consistent with these studies, the 
functional annotation of MIR4435-2HG in our study indicates 
that it may play a leading role in cancer cell metastasis and 
invasion and thus leads to bad prognosis of patients. Although 
many other LncRNAs in our list have not been demonstrated 
to have association with tumorigenesis, the analysis we performed 
above is helpful to predict LncRNAs as cancer markers and may 
provide directions in cancer research.

Evaluating gene expression in cancer cell lines and association 
with patients’ prognosis are common methods in cancer research. 
We  did not perform differential expression analysis of LncRNAs 
in GBM in the first part of results because of lacking LncRNA 
expression of normal samples of GBM in TANRIC database. 
We  also wanted to acquire common differentially expressed 
LncRNAs that can give advice to multiple cancer therapies and 
drug discoveries through pan-cancer analysis. By selecting two 
of DELncs, detecting their expression in GBM cell lines and 
analyzing prognosis of GBM patients, we  were able to validate 
the reliability of our 48-DELncs-list. RP11-399O19.9 and 
LINC00087 have not been well studied, but their dysregulated 
expressions and prognostic values intimate their importance in 
tumorigenesis and prognosis. Even if lacking LncRNA transcriptome 
profile of normal samples of GBM in TCGA database, this study 
provides a novel method of LncRNA research in GBM.

GBM is considered as incurable intracranial malignant tumor, 
with a median survival of 15  months following aggressive 
combination of therapies including maximal-safe surgical 
resection, adjuvant radiation therapy (RT) with concurrent, 
and adjuvant temozolomide (TMZ) treatment (Stupp et  al., 
2009). However, TMZ resistance severely limits the efficacy 
and has become an important cause of poor prognosis. As 
TMZ is the only chemotherapy drug available for GBM, it is 
urgent to look for new drugs or repurpose existing drugs for 
GBM. Several previous studies indicate that LncRNA may play 
an important role in GBM. HOTAIR could promote glioblastoma 
cell cycle progression (Zhang et  al., 2015); FOXM1-AS could 
enhance self-renewal and tumorigenesis of glioblastoma stem-
like cells (Zhang et al., 2017); H19 could promote glioblastoma 
cell invasion, angiogenesis, and tube formation (Jia et al., 2016); 
MALAT1 could decrease the sensitivity of glioblastoma cells 
to TMZ (Li et  al., 2017). Althogh many LncRNAs have been 
identified as biomarkers of GBM, there is few LncRNA targeted 
drugs for GBM therapy. The future of LncRNA-based drug 
discovery is bright. However, it is still an emerging concept 
and strategy compared with the traditional drug targets and 
proteins (Chen et  al., 2021). Target selection is a key element 
of drug development; therefore, identifying the most potential 
LncRNAs is the first step and the most important process. 
Further advances in LncRNA-targeted drugs are clearly dependent 
on the in-depth basic research into the function and mechanisms 
of LncRNAs. Our study provided a list of 48 LncRNAs by 
differential expression analysis and survival analysis in pan 
cancer, which will give advice to the selection of the most 
potential LncRNAs for further in-depth basic research and 
LncRNA-based drug discovery. Computational prediction of 
drug-target interactions (DTIs) is a useful tool for researchers 

to identify new drugs or novel targets for existing drugs. 
According to prognostic LncRNA candidates identified, we built 
LncRNA-mRNA-drug interaction network, which may 
be beneficial in the treatment of GBM. LINC00087 and Clozapine 
might be  the most valuable LncRNA target and drug in our 
network for GBM therapy, respectively. In addition, Clomipramine 
is one of the most widely used tricyclic antidepressants in 
Western Europe (Balant-Gorgia et al., 1991). Flumazenil appears 
to act at CNS. It is an antagonist synthesized to competitively 
block the effects of benzodiazepines on GABAergic pathway-
mediated inhibition in the CNS (Votey et al., 1991). Ziprasidone 
is a recently approved atypical antipsychotic agent (available 
in oral and short-acting intramuscular formulations) effective 
in the treatment of schizophrenia in an outpatient setting and 
in the treatment of acute psychotic episodes (Beedham et  al., 
2003). These drugs that have been proved to be  effective in 
the treatment of CNS diseases may be effective in GBM treatment.

Since 2012, multiple efforts have launched toward TCGA 
pan-cancer analysis across many different tumor types (Han 
et  al., 2014; Ching et  al., 2016; Luo et  al., 2019; Cui et  al., 
2020). They mainly focused on the mutational landscape 
(Kandoth et  al., 2013). The aim of TCGA pan-cancer initiative 
is to discover novel intervention strategies, such as discovering 
novel biomarkers among different tumor samples (Weinstein 
et  al., 2013; Danaher et  al., 2018; Gobin et  al., 2019). These 
studies did not make efforts to the LncRNA-based drug discovery. 
Our research integrated pan cancer analysis with the 
computational prediction of drug-target interactions together 
to get 48 DELnc list and its related drugs, which will be  of 
value to both prognostic comments and drug discovery. In 
our study, we took both LncRNA expression level and prognostic 
value in consideration and identified a list of 48 pan-cancer 
prognostic LncRNAs by referring to previous studies. To ensure 
the reliability of our findings, we  validated it in GBM in two 
aspects: expression level detection by QPCR and survival analysis 
based on database. We  identified these LncRNA not only as 
biomarkers of pan-cancer but also as novel targets of existing 
drugs because of their interaction with mRNAs.

In summary, this study provided a list of 48 LncRNAs by 
differential expression analysis and survival analysis, together 
with the LncRNA-mRNA-drug interaction network in GBM. 
The findings also highlighted the prognostic value of LncRNA 
in pan-cancer research and provided a new perspective for 
GBM drug target identification. Although we  have identified 
many potential prognostic LncRNAs in multiple cancer types, 
further research is needed for the evaluation of their function 
in cancers. Despite limitations of current work, it is a good 
way to integrate clinical information into LncRNA research 
in pan-cancer to seek for potential LncRNA targets of cancer 
therapy and further studies.
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Hongbo Zhao and Li Yin*

Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Background: Osteoarthritis (OA) is one of the most common age-related degenerative
diseases. In recent years, some studies have shown that pathological changes in
the synovial membrane occur earlier than those in the cartilage in OA. However, the
molecular mechanism of synovitis in the pathological process of OA has not been
elucidated. This study aimed to identify novel biomarkers associated with OA and to
emphasize the role of immune cells in the pathogenesis of OA.

Methods: Microarray datasets were obtained from the Gene Expression Omnibus
(GEO) and ArrayExpress databases and were then analyzed using R software. To
determine differential immune cell subtype infiltration, the CIBERSORT deconvolution
algorithm was used. Quantitative reverse transcription PCR (qRT-PCR) was used to
determine the relative expressions of selected genes. Besides, Western blotting was
used to assess the protein expression levels in osteoarthritic chondrocytes.

Results: After analyzing the database profiles, two potential biomarkers, collagen type
3 alpha 1 chain (COL3A1), and matrix metalloproteinase 9 (MMP9), associated with OA
were discovered, which were confirmed by qRT-PCR and Western blotting. Specifically,
the results revealed that, as the concentration of IL-1β increased, so did the gene and
protein expression levels of COL3A1 and MMP9.

Conclusion: The findings provide valuable information and direction for future research
into novel targets for OA immunotherapy and diagnosis and aids in the discovery of the
underlying biological mechanisms of OA pathogenesis.

Keywords: osteoarthritis, immune cell infiltration, bioinformatics, GEO, diagnostic markers

INTRODUCTION

Osteoarthritis (OA), one of the most common age-related degenerative diseases, is characterized by
osteophyte formation, cartilage degeneration, and synovial inflammation (Luo et al., 2018; Wang
et al., 2018), which eventually lead to loss of joint function due to the limited repair capacity of
the cartilage (Kim et al., 2018). However, the pathology of OA is not fully understood, and there

Frontiers in Genetics | www.frontiersin.org 1 August 2021 | Volume 12 | Article 721258200

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.721258
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.721258
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.721258&domain=pdf&date_stamp=2021-08-27
https://www.frontiersin.org/articles/10.3389/fgene.2021.721258/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-721258 August 23, 2021 Time: 14:49 # 2

Li et al. Diagnostic Biomarker, Osteoarthritis, Immune Filtration

is no treatment available to prevent or slow its progression
(Wang et al., 2019). As a result, early diagnosis and treatment are
preferred to improve joint function and alleviate joint pain.

According to recent research, the degenerative changes in
the synovial membrane in OA occur earlier than those in
the cartilage (Sakurai et al., 2019). OA synovitis is most
likely caused by an innate immune response and is mediated
by the expression of matrix-degrading enzymes, inflammatory
cytokines, and chemokines (Gómez et al., 2015; Qadri et al.,
2020). In several studies, the degree of synovitis has been
validated as a strong predictor of OA, particularly in its early
stages (Conaghan et al., 2010; Mathiessen and Conaghan, 2017).
Immune responses are widely acknowledged to play an important
role in the pathogenesis of OA (Daheshia and Yao, 2008;
Han et al., 2018; Jenei-Lanzl et al., 2019). Pro-inflammatory
cytokines promote chondrocyte apoptosis and cartilage matrix
proteolysis (Utomo et al., 2016; Mobasheri et al., 2017).
Furthermore, inflammatory suppression may aid in alleviating
cartilage degradation in OA (Kapoor et al., 2011). However, the
molecular mechanism of synovitis in the pathological process of
OA has not been elucidated.

In the present study, microarray data from synovial membrane
and cartilage samples in aged OA patients were integrated
and the diagnostic biomarkers of OA were determined. The
CIBERSORT algorithm method was then used to analyze
immune cell infiltration in “normal” synovial membrane and OA
synovial membrane. Furthermore, osteoarthritic chondrocytes
(OA-CH) were stimulated with interleukin 1β (IL-1β) to establish
a standardized in vitro OA model; the relationship between
IL-1β and diagnostic biomarkers [collagen type 3 alpha 1
chain (COL3A1) and matrix metalloproteinase 9 (MMP9)] was
determined by quantitative reverse transcription PCR (qRT-
PCR) and Western blotting. This study aimed to identify novel
biomarkers associated with OA and to emphasize the importance
of immune cells in the pathogenesis of OA. The findings of the
current study could lead to new OA diagnostic targets.

MATERIALS AND METHODS

Identification of Differentially Expressed
Genes
Figure 1 depicts the study workflow. Microarray datasets of
synovial membrane (GSE55235 and GSE55457) and cartilage
(GSE117999, GSE1919, GSE51588, and E-MTAB-5564) samples
were obtained from the Gene Expression Omnibus (GEO)1

and ArrayExpress2 databases. The ComBat function in the sva
R package3 was used to correct inter-batch differences in the
different datasets. The limma package4 in R was used to normalize
and screen differentially expressed genes (DEGs) by comparing
the expression levels in the synovial membrane from normal

1http://www.ncbi.nlm.nih.gov/geo/
2https://www.ebi.ac.uk/arrayexpress/
3https://bioconductor.org/packages/release/bioc/html/sva.html
4http://bioconductor.org/packages/release/bioc/html/limma.html

joints to those from OA joints. DEGs with | logFC| > 2 and an
adjusted p-value < 0.05 were considered significantly expressed.

GO and KEGG Pathway Enrichment
The cluster Profiler5 in R package was used to perform Gene
Ontology (GO) annotation and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of the enriched
DEGs. A value of p< 0.05 was considered statistically significant.

Construction of a PPI Network and
Analysis of Hub Genes
A protein–protein interaction (PPI) network was established
using STRING,6 an online PPI establishment tool. The genes
with a combined score of 0.4 were selected and used to establish
the PPI network. Furthermore, the Cytohub plugin in Cytoscape
version 3.8.07 was used to identify hub genes using the degree
method (degree > 4).

CIBERSORT Analysis of Immune Cell
Infiltration
The CIBERSORT deconvolution algorithm8 was used to
determine differential immune cell subtype infiltration between
normal and OA synovial membrane samples. The difference
in immune cell density between the normal and rheumatoid
arthritis (RA) groups was visualized using a heatmap package
in R version 3.6.0. The Wilcoxon signed-rank test was used
to determine the statistical significance of the differences in
immune cell infiltration between the two groups as depicted
by violin plots.

Ethical Statement
The use of human material was approved by the local ethics
committee of The First Affiliated Hospital of Zhengzhou
University (reference no. 2021-KY-0338-002), and all patients
provided written consent.

IL-1β Stimulation of OA Chondrocytes
Osteoarthritic chondrocytes (2 × 105, passages 2–4) were
cultured in six-well plates with DMEM F12 medium
[supplemented with 10% normal fetal calf serum (FCS) and
1% penicillin–streptomycin], stimulated with IL-1β (1, 5, and
10 ng/ml) (MAN0004230; Thermo Fisher Scientific, Waltham,
MA, United States), and harvested for RNA and protein isolation
after 24 and 48 h, respectively.

RNA Extraction and Real-Time PCR
Analysis
Total RNA was isolated from the cells using the Absolutely
RNA Miniprep Kit (Agilent Technologies, Santa Clara, CA,
United States) according to the manufacturer’s instructions and
reverse-transcribed into complementary DNA (cDNA) using

5https://www.bioconductor.org/help/search/index.html?q=clusterProfiler/
6http://string-db.org
7https://cytoscape.org/
8https://cibersort.stanford.edu/
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FIGURE 1 | Workflow of the entire study.

the AffinityScript QPCR cDNA Synthesis Kit (#600559; Agilent
Technologies, Santa Clara, CA, United States). Subsequently, an
MX3005P QPCR System (Agilent Technologies, Santa Clara, CA,
United States) was used to perform real-time PCR for messenger
RNA (mRNA) expression with Brilliant III Ultra-Fast SYBR R©

Green QPCR Master Mix (#600882; Agilent Technologies, Santa
Clara, CA, United States). The primer sequences of the target
genes were as follows: MMP9 (Fwd: 5′-GTA CCA CGG CCA
ACT ACG AC-3′; Rev: 5′-GCC TTG GAA GAT GAA TGG
AA-3′), COL3A1 (Fwd: 5′-CTTCTCTCCAGCCGAGCTTC-
3′; Rev: 5′-TGTGTTTCGTGCAACCATCC-3′), TBP (Fwd:
5′-TTGTAC CGCAGCTGCAAA AT-3′; Rev: 5′-
TATATTC GGCGTTTCGGGCA-3′), and GAPDH
(Fwd: 5′-CT GACTTCAACAGCGACACC-3′; Rev: 5′-CC
CTGTTGCTGTAGCCAAAT-3′). All genes were analyzed
relatively, calibrated to the expression of the control cell culture
groups, and normalized to GAPDH and TBP.

Protein Extraction and Western Blotting
Analysis
Osteoarthritic chondrocytes were washed twice with cold
phosphate-buffered saline (PBS) and lysed with RIPA buffer
(Thermo Fisher Scientific, Waltham, MA, United States)
containing proteinase inhibitors (Roche, Basel, Switzerland). The
concentration of cellular protein was determined using a BCA
protein kit assay. Cell lysates were mixed with sodium dodecyl
sulfate (SDS) sample loading buffer (#B7053; Sigma-Aldrich,
Taufkirchen, Germany), boiled for 5 min at 95◦C, and then

subjected to 10% SDS-PAGE. After electrophoretic separation,
the proteins were transferred to 0.22-mm polyvinylidene
fluoride (PVDF) membranes (Roche, Penzberg, Germany).
Blot membranes were blocked with 5% bovine serum albumin
(BSA) for 1 h at room temperature and incubated with primary
antibodies on a shaker overnight at 4◦C. The membranes
were then washed and incubated with the appropriate
horseradish peroxidase-coupled secondary antibodies (Santa
Cruz Biotechnology and Jackson ImmunoResearch, West Grove,
PA, United States). The proteins were examined using enhanced
chemiluminescence (ECL) detection reagents (Thermo Scientific,
Waltham, MA, United States) and signals were normalized to
β-actin. The following primary antibodies were used in this
study: COL3A1 (1:1,000, #ab838292; Abcam, Cambridge,
MA, United States), MMP9 (1:200, #sc-393859; Santa Cruz,
Heidelberg, Germany), and β-actin (1:5,000, #ab8227; Abcam,
Cambridge, MA, United States).

Statistical Analysis
R version 3.6.0 was used to perform bioinformatics analyses,
and a p-value < 0.05 was considered statistically significant.
Correlations were determined using Pearson’s correlation
coefficient, with | R| < 0.5 indicating a weak correlation. For
qRT-PCR and Western blotting analyses, an unpaired Student’s
t-test was used for two groups and one-way ANOVA was used for
groups of more than two. Each assay was replicated and repeated
in at least three independent experiments. A value of p< 0.05 was
considered statistically significant.
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FIGURE 2 | Functional enrichment of the differentially expressed genes (DEGs) in the synovial membrane and cartilage samples. (A,B) Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis of the DEGs in synovial membrane samples. (C,D) KEGG pathway enrichment and
GO analysis of the DEGs in cartilage samples.

RESULTS

Identification of DEGs
Microarray datasets of synovial membrane (GSE55235 and
GSE55457) and cartilage samples (GSE117999, GSE1919,
GSE51588, and E-MTAB-5564) were obtained from the GEO
and ArrayExpress databases. Before analyzing the DEGs, raw
data were preprocessed for batch correction and normalization.
Gene expression levels with | logFC| > 1 and an adjusted
p-value < 0.05 were considered differentially expressed. As
a result, 253 upregulated and 240 downregulated DEGs were
identified in synovial membrane samples when compared to
normal samples, while 60 upregulated and 58 downregulated

DEGs were identified in cartilage samples, as shown in
Figure 1.

Function Annotation of DEGs
Kyoto Encyclopedia of Genes and Genomes pathway enrichment
and GO functional enrichment of DEGs were performed
to investigate the mechanisms involved in the pathogenesis
of OA. KEGG pathway enrichment revealed that synovial
membrane DEGs were mainly enriched in cytokine–cytokine
receptor interaction, mitogen-activated protein kinase (MAPK)
pathway, and tumor necrosis factor (TNF) pathway (Figure 2A),
while DEGs from cartilage samples were enriched in the
PI3K/AKT pathway, cytokine–cytokine receptor interaction,
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FIGURE 3 | Screening of hub genes and functional analysis. (A) Twenty-one differentially expressed genes (DEGs) intersected between the cartilage samples and
the synovial membrane samples. (B) Protein–protein interaction (PPI) network of the 21 DEGs and two hub genes screened by the degree method (degree > 4)
using cytoHubba. A higher ranking is represented by a redder color. (C) MMP9 and COL3A1 interacting genes indicated using Funrich software. (D) Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of MMP9 and COL3A1 interacting genes.

and the chemokine pathway (Figure 2C). Furthermore,
GO functional enrichment analysis revealed that synovial
membrane DEGs were mainly involved in leukocyte migration,
regulation of inflammatory response, and collagen-containing
extracellular matrix (Figure 2B), while cartilage DEGs were
mainly involved in the collagen-containing extracellular matrix,
neutrophil degranulation, and neutrophil activation involved
in immune response (Figure 2D). These findings suggest
that DEGs in both the synovial membrane and cartilage are

involved in immune response signaling pathways and that
the immune system plays a critical role in the pathological
processes of OA.

Screening and Validation of MMP9 and
COL3A1 Hub Genes
The Venn diagram showed that 21 DEGs from the synovial
membrane and cartilage samples overlapped (Figure 3A). The
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TABLE 1 | Signaling pathway enrichment of MMP9 and COL3A1 interacting genes.

ID Description p-value padjust Count

hsa04151 PI3K–Akt signaling pathway 4.70E–11 6.11E–10 14

hsa04512 ECM–receptor interaction 9.39E–18 8.55E–16 13

hsa05146 Amoebiasis 7.07E–17 3.22E–15 13

hsa04933 AGE–RAGE signaling pathway in diabetic complications 2.89E–15 8.77E–14 12

hsa04510 Focal adhesion 1.38E–11 2.09E–10 12

hsa05165 Human papillomavirus infection 4.48E–09 4.53E–08 12

hsa04926 Relaxin signaling pathway 2.35E–12 5.35E–11 11

hsa04974 Protein digestion and absorption 7.43E–12 1.35E–10 10

hsa05205 Proteoglycans in cancer 1.11E–07 1.01E–06 9

hsa05222 Small cell lung cancer 2.97E–09 3.38E–08 8

hsa04657 IL–17 signaling pathway 2.19E–06 1.81E–05 6

hsa05323 Rheumatoid arthritis 3.88E–05 0.000295 5

hsa04060 Cytokine–cytokine receptor interaction 0.007225 0.034604 5

hsa05206 MicroRNAs in cancer 0.008991 0.03896 5

hsa05144 Malaria 5.26E–05 0.000368 4

hsa05133 Pertussis 0.000271 0.001763 4

hsa04061 Viral protein interaction with cytokine and cytokine receptor 0.000772 0.004389 4

hsa04668 TNF signaling pathway 0.00118 0.006314 4

hsa04611 Platelet activation 0.001719 0.008692 4

hsa04062 Chemokine signaling pathway 0.008221 0.037406 4

hsa05219 Bladder cancer 0.000652 0.003953 3

PPI network between the overlapping DEGs was constructed and
two hub genes,MMP9 andCOL3A1, were filtered out (Figure 3B)
by the degree method (degree > 4) using cytoHubba. The Funrich
software was used to display the 41 interacting genes to better
understand the functions of MMP9 and COL3A1 (Figure 3C).
In addition, KEGG enrichment revealed that 41 MMP9 and
COL3A1 interacting genes were involved in the PI3K/AKT
pathway, IL-17 pathway, TNF pathway, and other immune-
related pathways (Figure 3D and Table 1). These findings imply
that MMP9 and COL3A1 are involved in the pathophysiological
inflammatory processes that lead to OA.

Analysis of Immune Cell Infiltration in
Normal and OA Synovial Membrane
Samples
The CIBERSORT algorithm was, for the first time, used to
reveal the landscape of the differentially infiltrated immune
cells in “normal” versus OA synovial membrane samples in
22 subpopulations of immune cells. The heatmap shows the
proportion of immune cells in the two groups (Figure 4A).

The correlation heatmap of the 22 immune cell subtypes
showed that two pairs of immune cells [active natural killer (NK)
cells and eosinophils, and naive CD4 T cells and resting NK cells]
were positively correlated and that two immune cell subtypes
(activated mast cells and resting mast cells) were negatively
correlated (Figure 4B).

Furthermore, the violin plot of the differentially infiltrated
immune cells showed that regulatory T cells (Tregs) and
resting mast cells had the highest infiltration rates in OA
samples compared with “normal” samples, whereas resting CD4+

memory T cells, activated NK cells, activated mast cells, and
eosinophils were less prominent in OA samples (Figures 5A, 6B).

Correlation Between Hub Genes (MMP9
and COL3A1) and Immune Cell
Infiltration
Spearman’s correlation analysis was performed to determine
the association between the hub genes (MMP9 and COL3A1)
and the infiltrated immune cell subtypes in the synovial
membranes of both groups (Figure 5B). MMP9 and COL3A1
were found to be negatively correlated with resting CD4
memory T cells, whereas MMP9 was found to be positively
correlated with M0 macrophages and negatively correlated with
activated NK cells.

Validation of Hub Genes (COL3A1 and
MMP9) by qRT-PCR and Western Blotting
The fragments per kilobase of exon model per million mapped
fragments (FPKM) values of COL3A1 and MMP9 were
significantly higher in the OA cartilage and synovial membrane
compared with those in normal samples (Figures 6A,B).
To validate the expressions of COL3A1 and MMP9 in
chondrocytes, qRT-PCR and Western blotting were used
to determine the gene and protein expressions in non-
osteoarthritic chondrocytes (NCH), OA–CH, and OA–CH
treated with different concentrations of IL-1β. As shown in
Figures 6C,D, the gene expression levels of both COL3A1
and MMP9 increased in the OA-CH group, and IL-1β

promoted the expressions of COL3A1 and MMP9. Notably,
the expressions of COL3A1 and MMP9 increased as the
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FIGURE 4 | The landscape and correlation heatmap of immune infiltration in synovial membrane samples between the normal and osteoarthritis (OA) groups.
(A) Relative distribution of 22 immune cells in all samples. (B) Correlation heatmap of immune cells in all samples. Red squares indicate positive correlation and blue
squares indicate negative correlation; the deeper colored squares indicate stronger correlations.

concentration of IL-1β increased. Furthermore, in the presence
of IL-1β, the protein levels of COL3A1 and MMP9 increased
(Figures 6E–G). These findings suggest that the gene and

protein expression levels of COL3A1 and MMP9 were
positively correlated with the degree of inflammation and
the inflammatory activity.
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FIGURE 5 | Characterization of immune cell infiltration in normal and osteoarthritis (OA) samples and the correlation between hub gene expression and immune cell
infiltration. (A) Violin plot showing the differentially infiltrated immune cells of a proportion of the 22 immune cell types. The red underline shows significant difference
in the immune cell infiltration between the normal and rheumatoid arthritis (RA) groups. A value of p < 0.05 was considered to be statistically significant.
(B) Correlation coefficient (R) > 0.5; p < 0.05 was considered statistically significant.

DISCUSSION

Osteoarthritic is a type of chronic joint disease that is
characterized by cartilage degeneration, hyperosteogenia, and
synovitis (Xie and Chen, 2019). Accumulating evidence suggests
that pro-inflammatory cytokines, such as IL-1β, TNF, and
IL-6, play a role in the pathophysiology of OA (Robinson
et al., 2016; Urban and Little, 2018). Previous research has
focused on the molecular mechanism of OA in the cartilage
or chondrocytes while ignoring the synovial membrane. In
recent years, an increasing number of studies have shown that
synovitis plays a critical role in the pathological process of
OA, from the early to the end stages (Atukorala et al., 2016;
Huang et al., 2018; Griffin and Scanzello, 2019). Additional
research has revealed changes in immune cell infiltration in
OA synovial membrane samples (Moradi et al., 2014; Penatti
et al., 2017; Rosshirt et al., 2019). However, no study has been
conducted to investigate the inflammatory relationship between
the synovial membrane and cartilage. In the present study, the
gene expression profiles of the synovial membrane and cartilage

were combined to identify the important hub genes associated
with synovitis in OA.

Differentially expressed genes in the synovial membrane and
cartilage were separately analyzed; GO annotation and KEGG
pathway enrichment were used to reveal the functions of these
DEGs. Our results also showed that both synovial membrane and
cartilage DEGs were mainly involved in inflammatory pathways
and pathological processes, which was consistent with previous
studies (Qin et al., 2012; Hou et al., 2013; Chen et al., 2018).
Furthermore, the immune response occurred in the synovial
membrane and cartilage, indicating that synovitis plays a critical
role in the pathological process of OA.

The hub genes COL3A1 and MMP9 were identified and
their function validated using Funrich software and by KEGG
pathway enrichment, respectively. Besides, COL3A1 and
MMP9 interacting genes were found to be mainly involved
in the PI3K/AKT signaling pathway, extracellular matrix
(ECM) receptor interaction, and other inflammatory signaling
pathways (IL-17 signaling pathway, cytokine–cytokine receptor
interaction, TNF signaling pathway, and chemokine signaling
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FIGURE 6 | Validation of the hub genes (COL3A1 and MMP9) by quantitative reverse transcription PCR (qRT-PCR) and Western blotting. (A,B) Fragments per
kilobase of exon model per million mapped fragments (FPKM) of COL3A1 and MMP9 in synovial membrane and cartilage samples. ∗p < 0.05; ∗∗∗∗p < 0.001,
unpaired Student’s t-test. (C,D) Gene expression levels of COL3A1 and MMP9 in non-osteoarthritic chondrocytes (NCH) and osteoarthritic chondrocytes (OA-CH)
treated with different concentrations of IL-1β. (E–G) Western blotting was used to determine the protein expression levels of COL3A1 and MMP9 in NCH and OA-CH
treated with different concentrations of IL-1β. Significant difference to control (NCH): #p < 0.05; ##p < 0.01; ###p < 0.001. ∗Significant difference between groups:
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. One-way ANOVA with Newman–Keuls multiple comparison test. All values represent the mean ± standard deviation (n = 4).

pathway). Numerous studies have reported that inflammatory
signaling pathways, including the PI3K/AKT, IL-17, TNF, NF-κB,
and MAPK signaling pathways, are involved in the osteoarthritic
process (Balabko et al., 2015; Zhang et al., 2018; Han et al.,
2019; Li and Zheng, 2019). These findings suggest that COL3A1
and MMP9 play important roles in the inflammatory signaling
pathways linked to OA.

To further investigate the effect of immune cell infiltration
in OA, CIBERSORT was used to perform a comprehensive
analysis of OA immune infiltration. The results showed increased
infiltration of Tregs and resting mast cells, which contributed
to the occurrence and development of OA. Moradi et al. (2014)
found that Tregs are enriched in the synovial membrane of OA
patients and correlated with the levels of inflammatory factors
(IL-10 and TGF-β) (Xia et al., 2017). Resting mast cells were
found in high numbers in OA synovial tissue, which is associated
with structural damage in OA patients (de Lange-Brokaar et al.,
2016). These findings and other related research indicate that
Tregs and resting mast cells play an important role in OA. In

this study, the relationship between the immune cell subtypes
in OA was investigated; the results showed that two pairs of
immune cells (activated NK cells and eosinophils, and naive
CD4 T cells and resting NK cells) were positively correlated and
that two immune cell subtypes (activated and resting mast cells)
were negatively correlated. However, the correlation between the
immune cell subtypes requires further experimental validation.

The relationship between hub gene expression and immune
cell infiltration was also analyzed. The results showed that
the expressions of both MMP9 and COL3A1 were negatively
correlated with resting CD4 memory T cells, while the expression
of MMP9 was positively correlated with M0 macrophages and
negatively correlated with activated NK cells. We hypothesized
that MMP9 and COL3A1 inhibited the immune response by
reducing the resting CD4 memory T cells and activated NK
cells and that MMP9 increased M0 macrophages to induce
inflammation in the course of OA. However, further research is
needed to validate these assumptions on the relationship between
hub genes and immune cells.
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To investigate the correlation between the hub genes (MMP9
and COL3A1) and OA, qRT-PCR, and Western blotting were
used to determine the gene and protein expression levels in
chondrocytes. The results indicated that the gene expression
levels of MMP9 and COL3A1 increased in OA–CH compared
with those in NCH. Notably, the gene and protein expression
levels of COL3A1 and MMP9 increased with an increase in IL-1β

concentration. Evidence suggests that the expression levels of
COL3A1 increased in the early stages of OA and decreased in the
later stages (Rai et al., 2019). Tang et al. (2018) also discovered
that IL-1 increased the protein levels of COL3A1 in synoviocytes.
MMP9, also known as gelatinase B, is an enzyme that degrades
the ECM components such as collagen, fibronectin, and laminin.
MMP9 was found to be upregulated at the mRNA and protein
levels in the cartilage and synovial membrane, as well as in the
synovial fluid, and was found to be related to the severity of OA
(Bollmann et al., 2021). These findings suggest that COL3A1 and
MMP9 could be used as OA diagnostic biomarkers. However,
more research is needed to determine the roles of COL3A1 and
MMP9 in the progression of OA.

CONCLUSION

In conclusion, the present study identified two potential OA
biomarkers,COL3A1, andMMP9, which were confirmed by qRT-
PCR and Western blotting analysis. Notably, the gene and protein
expression levels of COL3A1 and MMP9 increased with an
increase in IL-1β concentration. These findings provide valuable
information and direction for future research into novel targets
for OA immunotherapy and diagnosis and aid in the discovery of
the underlying biological mechanisms of OA pathogenesis.
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Cystatin E/M (CST6), a representative cysteine protease inhibitor, plays both tumor-
promoting and tumor-suppressing functions and is pursued as an epigenetically
therapeutic target in special cancer types. However, a comprehensive and systematic
analysis for CST6 in pan-cancer level is still lacking. In the present study, we explored
the expression pattern of CST6 in multiple cancer types across ∼10,000 samples
from TCGA (The Cancer Genome Atlas) and ∼8,000 samples from MMDs (Merged
Microarray-acquired Datasets). We found that the dynamic expression alteration of
CST6 was consistent with dual function in different types of cancer. In addition, we
observed that the expression of CST6 was globally regulated by the DNA methylation
in its promoter region. CST6 expression was positively correlated with the epithelial
cell infiltration involved in epithelial-to-mesenchymal transition (EMT) and proliferation.
The relationship between CST6 and tumor microenvironment was also explored. In
particular, we found that CST6 serves a protective function in the process of melanoma
metastasis. Finally, the clinical association analysis further revealed the dual function of
CST6 in cancer, and a combination of the epithelial cell infiltration and CST6 expression
could predict the prognosis for SKCM patients. In summary, this first CST6 pan-cancer
study improves the understanding of the dual functional effects on CST6 in different
types of human cancer.

Keywords: CST6, pan-cancer, DNA methylation, epithelial cell, EMT, tumor microenvironment, prognosis

INTRODUCTION

Cystatin E/M (also known as CST6) is a member of the cystatin superfamily that performs
physiological inhibitors of lysosomal cysteine proteases through forming high-affinity reversible
complexes (Turk and Bode, 1991). The dysfunction of CST6 contributed to the alterations in
proteolysis of tissue architecture, which might accelerate the spread of cancer cells (Shridhar
et al., 2004; Keppler, 2006). Increasing evidence has demonstrated the dual functional effects
of CST6 in cancer progress (Lalmanach et al., 2021). For instance, the overexpression of CST6
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could rescue mice from bone metastasis by suppressing
proliferation, migration, and invasion (Jin et al., 2012).
Moreover, the loss of CST6 expression has been observed
in lung and cervical cancer, and its recovery expression
resulted in growth suppression in culture (Zhong et al.,
2007; Veena et al., 2008). In contrast to the protective
function, Hosokawa et al. (2008) found that the upregulated
expression of CST6 promoted tumor growth in vitro and
in vivo in pancreatic ductal adenocarcinoma. CST6 was also
shown overexpressed in triple-negative breast cancer and oral
cancer, facilitating the tumor metastatic process (Vigneswaran
et al., 2003; Li et al., 2018). Collectively, CST6 played crucial
and disparate roles in the pathogenesis and development of
cancer. However, a comprehensive research about the expression
pattern and functional effects of CST6 in pan-cancer level
is still lacking.

As an important epigenetically regulatory factor, DNA
methylation has been implicated in the dysfunction of
CST6. One study has shown that the hypermethylation
status of CST6 promoter resulted in CST6 deficiency in
glioma tumor-initiating cells, while the promoter was
hypomethylated in normal brain tissues (Qiu et al., 2008).
The aberrant methylation and downregulated expression
of CST6 were also found in breast cancer patients, and
the expression could reactivate after DNA demethylating
agent treatment (Ai et al., 2006; Schagdarsurengin et al.,
2007). However, the relationship between the expression
and the DNA methylation of CST6 in pan-cancer level
remains unclear.

Numerous studies have shown the important roles of
tumor microenvironment in cancer therapy and diagnosis
(Wu and Dai, 2017; Hinshaw and Shevde, 2019). CST6 is
an epithelium-specific protease inhibitor with essential roles
in epidermal differentiation (Zeeuwen et al., 2010). Zhang
et al. (2004) found that CST6 was consistently expressed in
normal human breast epithelial cells, while it was decreased
in breast invasive carcinoma samples, and the expression of
CST6 was associated with cell proliferation, migration, and
invasion. The CST6 promoter was found highly methylated in
cfDNA of breast cancer plasma cells but not in healthy samples
(Chimonidou et al., 2013). Moreover, IL-17A, an immunotherapy
targeting, could affect keratinocyte differentiation by regulating
the expression of CST6 (Sato et al., 2020). However, there
has been limited research that comprehensively explored the
relationship between CST6 and tumor microenvironment in pan-
cancer level.

In this study, we performed a systematic evaluation
of the expression pattern of CST6 across cancer types
from TCGA and MMDs. Consistent with the known dual
role of CST6, we found that there was a broad spectrum
of CST6 expression across cancer types. Through DNA
methylation analysis, we found that the expression of CST6
was globally regulated by the methylation level of its promoter
region. Moreover, the expression of CST6 was related to
epithelial cell infiltration, EMT, and proliferation. Finally,
the association between the CST6 expression and patient
survival was also investigated. Our first pan-cancer study for

CST6 provided novel insights into its dual function in the
development of cancer.

MATERIALS AND METHODS

Analysis of Gene Expression
We entered CST6 in the "Gene_DE" module of the TIMER2
website1 (Li et al., 2021) and explored the expression of
CST6 between different tumors and adjacent normal tissues
in TCGA items. For some tumors with no normal sample or
the number of normal tissue specimens was less than 5, we
used the "Expression Analysis-Expression DIY" module of the
GEPIA22 to compare the expression level of CST6 between
tumor tissues and GTEx (Genotype-Tissue Expression) datasets
(Tang et al., 2019). The gene with | log2FC| > 1 and
p-value < 0.05 was considered as significantly differentially
expressed by the ANOVA method. In addition, we used the
pathological stage module and subtype filter module in GEPIA2
to obtain the expression of CST6 in different tumors at different
stages and different subtypes. In order to verify the expression
pattern of CST6 in different cancer types, we collected gene
expression data of more than 8,000 samples from 11 cancers
(Supplementary Table 1; Lim et al., 2019). To avoid differences
between platforms to the greatest extent, only the dataset
generated from the Affymetrix Human Genome U133 Plus 2.0
array was processed to develop the MMDs dataset. All datasets
were processed uniformly through RMA normalization, and
batch effect were corrected through the Combat R package
(Leek et al., 2012). Moreover, the protein level of CST6 between
tumor and normal tissue was obtained from the CPTAC analysis
module of the UALCAN portal3 (Chandrashekar et al., 2017).
An external validation dataset was obtained with GEO accession
GSE46517, which included 73 metastatic and 31 primary
melanoma patients.

DNA Methylation Analysis
We downloaded the gene expression and HM450 DNA
methylation profiles across cancer types of TCGA Pan-
Cancer (PANCAN) cohort through UCSC Xena.4 The full
name, abbreviation, and sample number of cancer types
for TCGA are shown in Supplementary Tables 2, 3. The
methylation level of CST6 was quantified by averaging
the beta values of CpGs located in the promoter region
(upstream 2 kb to TSS). Then, Wilcoxon rank test was
used to identify differentially methylated CST6 between
tumor and normal tissue. In addition, the correlation
between DNA methylation and expression of CST6 was
calculated using the Pearson correlation method. The results of
correlation coefficient less than −0.3 and p-value < 0.05 were
identified as significant.

1http://timer.cistrome.org/
2http://gepia2.cancer-pku.cn/
3http://ualcan.path.uab.edu/analysis-prot.html
4http://xena.ucsc.edu/
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Cystatin E/M-Related Gene Functional
Enrichment Analysis
The CST6-related genes were obtained from the “Similar
Gene Detection” module of GEPIA2 by Pearson correlation
method. We selected the datasets of all TCGA tumors and
finally screened out the top 500 CST6-correlated genes. For a
specific cancer type in TCGA and MMDs datasets, we used
the Pearson correlation method to obtain CST6-related genes
(Pearson correlation > 0.3). To explore the potential biological
function that CST6 regulated, we passed the CST6-related genes
to Metascape5 with the setting of species (“Homo sapiens”)
(Zhou et al., 2019).

Estimation of the Relationship Between
Cystatin E/M and Tumor
Microenvironment,
Epithelial-to-Mesenchymal Transition,
and Tumor Proliferation
In order to assess the infiltration levels of epithelial cells in
diverse cancers, we downloaded the precalculated TCGA data
from xCell,6 a method that yielded cell type enrichment score for
64 immune and stroma cell types, which included epithelial cell
infiltration score (Aran et al., 2017).

We estimated the EMT score for an independent cancer type
according to the method of Zhang et al. (2020). The epithelial and
mesenchymal genes were obtained from a previous study (Mak
et al., 2016). Then, the EMT score, which could reflect the EMT
level for each sample, was calculated according to the following
formula:

SEMT =

N∑
i

Mi

N
−

n∑
j

Ej

n

where N represents the number of mesenchymal genes, and n
represents the number of epithelial genes.

The expression level of the proliferation marker ki67
(MKI67) was used to reflect tumor proliferation in TCGA
samples. Then, the correlation between CST6, cell infiltration,
and proliferation score were estimated through Spearman’s
rank-order correlation method. The relationship between
EMT score and CST6 was calculated by partial correlation
through “ggm” R packages considering tumor purity as
concomitant variable.

Survival Prognosis Analysis
The survival analysis of OS (overall survival) and RFS
(disease-free survival) for CST6 in TCGA tumors were
performed through GEPIA2. The median expression of CST6
was used to divide the patients into high-expression and
low-expression groups. Then, the OS and RFS of these
groups were compared by log-rank test. In addition, the
survival interaction between CST6 expression and epithelial cell

5https://metascape.org/gp/index.html#/main/step1
6https://xcell.ucsf.edu/

(positive genes obtained from xCell) was explored using siGCD7

(Cui et al., 2021).

RESULTS

Gene Expression Analysis of Cystatin
E/M in the the Cancer Genome Atlas
Datasets
CST6 could serve as a biomarker for tumor diagnosis and
play a dual functional effect across cancer types (Lalmanach
et al., 2021). Previous studies of CST6 expression in cancer
were limited to sample sizes and focused on a single cancer
type. To comprehensively characterize the expression pattern
of CST6, we first applied the “Gene_DE” module of TIMER2
portal for TCGA datasets. As shown in Figure 1A, the
expression level of CST6 in bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), cervical and
endocervical cancer (CESC), cholangiocarcinoma (CHOL),
colon adenocarcinoma (COAD), esophageal carcinoma (ESCA),
rectum adenocarcinoma (READ), thyroid carcinoma (THCA),
and uterine corpus endometrioid carcinoma (UCEC) is
significantly higher than in normal samples, while the
expression level of CST6 in kidney chromophobe (KICH),
kidney clear cell carcinoma (KIRC), lung adenocarcinoma
(LUAD), and lung squamous cell adenocarcinoma (LUSC)
is significantly decreased than adjacent normal samples.
Moreover, the patients with HPV infection showed a lower
expression level of CST6 in head and neck squamous
cell carcinoma (HNSC), and the patients with metastasis
status showed a lower expression in skin cutaneous
melanoma (SKCM).

Due to the limited normal sample size for several cancer
types, we included the normal tissue of the GTEx datasets
and evaluated the expression difference of CST6. As shown in
Figure 1B, we found that the expression of CST6 was significantly
different in CESC, ovarian serous cystadenocarcinoma (OV),
pancreatic adenocarcinoma (PAAD), and SKCM. These results
were consistent with the tumor-promoting function of CST6
in breast cancer (Li et al., 2018), pancreatic cancer (Hosokawa
et al., 2008), and papillary thyroid carcinoma (Oler et al.,
2008). The tumor-suppressive function of CST6 has also been
reported in lung cancer (Zhong et al., 2007), melanoma
(Briggs et al., 2010), and renal cell carcinoma (Morris et al.,
2010), which agreed with the loss expression of CST6 in
these cancer types.

The results of the CPTAC dataset showed that the expression
of CST6 total protein in BRCA and KIRC was lower than
that of normal tissues (Figure 1C, t-test, p-value < 0.001).
To extend the expression pattern of CST6 with tumor
pathological information, we applied the “Stage Plot” and
“Subtype Filter” functions of GEPIA2. The expression of
CST6 was related to the stage of BLCA, COAD, kidney
papillary cell carcinoma (KIRP), OV, READ, SKCM, THCA, and
uterine carcinosarcoma (UCS) (Figure 1D). In addition, the

7http://sigcd.idrug.net.cn/Home
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FIGURE 1 | Expression level of cystatin E/M (CST6) in different cancer types and pathological stages. (A) The expression level of CST6 in different cancer types from
The Cancer Genome Atlas datasets. *p < 0.05; **p < 0.01; ***p < 0.001. The symbol with red represents upregulated, and the symbol with blue represents
downregulated. (B) The expression level of CST6 in cervical and endocervical cancer (CESC), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma
(PAAD), and skin cutaneous melanoma (SKCM). The corresponding normal samples of the GTEx datasets were included. (C) The expression level of CST6 total
protein for breast invasive carcinoma (BRCA) and kidney clear cell carcinoma (KIRC) cancer types in the CPTAC dataset. (D) The expression level of CST6 was
associated with the pathological stages of bladder urothelial carcinoma (BLCA), colon adenocarcinoma (COAD), kidney papillary cell carcinoma (KIRP), OV, rectum
adenocarcinoma (READ), SKCM, thyroid carcinoma (THCA), and uterine carcinosarcoma (UCS) cancer types.
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FIGURE 2 | Expression level of CST6 in Merged Microarray-acquired Datasets (MMDs) datasets. (A) The expression level of CST6 in different cancer types from
MMDs.*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant. (B) The comparison and functional analysis of CST6-related genes between MMDs
lung cancer and TCGA lung adenocarcinoma (LUAD) and lung squamous cell adenocarcinoma (LUSC) datasets. (C,D) The correlation between the expression of
CST6 and integrin α3 (ITGA3) for lung cancer in MMDs and TCGA datasets.

expression of CST6 was significantly different in the subtypes
of CESC, HNSC, KIRP, LUAD, LUSC, PAAD, and THCA
(Supplementary Figure 1).

Gene Expression Analysis of Cystatin
E/M in the Merged Microarray-Acquired
Datasets
To verify the expression pattern of CST6 across cancer types,
we collected the MMDs of more than 7,000 samples from 11
cancers with a standard process. Particularly, we revealed that
CST6 showed a higher expression in breast cancer, pancreatic
cancer, and prostate cancer, while the expression level of CST6
significantly decreased in liver cancer, lung cancer, melanoma,
ovarian cancer, and renal cancer (Figure 2A). We found that the
expression pattern of CST6 was consistent in breast, pancreatic,
lung, melanoma, and renal cancer between TCGA and MMDs

datasets. The expression of CST6 was upregulated in BLCA,
COAD, and READ for TCGA datasets, while no significantly
differently expressed was observed in bladder and colorectal
cancer for the MMDs. Moreover, the expression of CST6 was
specifically dysregulated in liver, ovarian, and prostate cancer
for the MMDs. Regarding the most downregulated cancer
type in the two datasets, the coexpression genes of CST6
(Pearson correlation > 0.3) were commonly shared between
MMDs lung cancer and TCGA LUAD/LUSC datasets, showing a
statistically significant overlap (Figure 2B, hypergeometric test,
p-value < 2.2e-16). We also found that the overlap of CST6-
related genes was enriched in the tumor microenvironment-
related processes (such as positive regulation of cell junction
assembly and protein localization to the plasma membrane,
Figure 2B).

In addition, integrin α3 (ITGA3) was the most related gene
in the two datasets, which showed a positively correlation

Frontiers in Genetics | www.frontiersin.org 5 September 2021 | Volume 12 | Article 733211215

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-733211 September 13, 2021 Time: 12:48 # 6

Xu et al. Function of CST6 in Tumors

FIGURE 3 | The expression of CST6 was globally regulated by DNA methylation. (A) The DNA methylation level of CST6 in different cancer types from TCGA
datasets. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant. (B) The Pearson correlation coefficients between the expression and methylation
level of CST6 in TCGA cancer types. (C) The correlation between the expression and methylation level of CST6 in BRCA, CHOL, KIRP, MESO, STAD, THCA, THYM,
and UCS cancer types (Pearson correlation coefficient < -0.3, p-value < 0.01).

with the expression of CST6 (Figures 2C,D). Moreover,
a recent study revealed the important prognostic role of
ITGA3 in patients with non-small cell lung cancer (Li et al.,
2020). Thus, CST6 and ITGA3 may be potential therapeutic
targets for lung cancer. Similar results were obtained in
melanoma and renal cancer samples. We found that kallikrein-
related peptidase 7 (KLK7) and keratin 7 (KRT7) were the
most related genes in melanoma and renal cancer separately

(Supplementary Figure 2). Aberrant expression of KLK7 has
found to be related to melanoma aggressiveness by stimulating
cell migration and adhesion (Delaunay et al., 2017; Haddada et al.,
2018). KRT7 could distinguish the precursor lesions of papillary
renal cell tumors, mucinous tubular and spindle cell carcinomas
(Szponar and Kovacs, 2012). The detailed information of
CST6-related genes list is shown in Supplementary Table 4.
These results indicated the conservative expression pattern
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FIGURE 4 | The functional analysis of CST6. (A) The functional enrichment analysis based on the top 500 CST6-related genes through Metascape. (B) The
distribution of epithelial infiltrate score obtained from xCell across TCGA cancer types. (C) The Spearman correlation between the expression of CST6 and epithelial
cell infiltration, epithelial-to-mesenchymal transition (EMT) score, and proliferation. (D) The correlation between the expression of CST6 and the epithelial cell infiltrate
score for SKCM in TCGA. (E) The violin plot of EMT score between CST6-low and CST6-high groups for SKCM in TCGA. (F,G) The violin plot of expression level of
CST6 between primary tumor and metastatic samples for SKCM in TCGA and external validation dataset.

and important interactive function of CST6 in different
types of cancer.

The Cystatin E/M Expression Was
Regulated by DNA Methylation
CST6 expression has been previously associated with its
epigenetic regulation by methylation of the promoter region
in several cancer types (Rivenbark et al., 2006; Pulukuri et al.,
2009; Peters et al., 2014). To explore the relationship between
its expression and DNA methylation in TCGA datasets, we
first quantified the methylation level of CST6 by averaging the
CpG beta value in its promoter region. Then the Wilcoxon
test was used to evaluate differentially methylated status
between tumor and adjacent normal samples. In contrast to
the expression pattern, we found that the methylation level
of CST6 was significantly lower in BLCA, CESC, COAD,
ESCA, HNSC, KIRP, LUAD, PAAD, READ, THCA, and UCEC
tumor samples, while it was higher in BRCA, KIRC, liver
hepatocellular carcinoma (LIHC), and prostate adenocarcinoma

(PRAD) (Wilcoxon test, p-value < 0.05, Figure 3A). Next,
we observed a significant negative correlation of CST6
methylation and its expression in more than half (21 out
of 32, Pearson correlation < 0 and p-value < 0.05) of the
cancer types (Figure 3B). The relationship of methylation and
expression level of CST6 for the top correlated cancer types
(BRCA, CHOL, KIRP, MESO, STAD, THCA, THYM, and USC,
Pearson correlation < -0.3 and p-value < 0.01) is shown in
Figure 3C. All these results further proved the capacity of DNA
methylation in regulating the gene expression of CST6.

Functional Analysis of Cystatin E/M in
Cancer
Taking advantage of integration of transcriptome and DNA
methylation resource, we characterized the expression pattern
and DNA methylation regulatory mechanism of CST6. To further
investigate the function of CST6 across cancer types, we first
obtained 500 CST6-related genes (Supplementary Table 4) for all
TCGA tumor samples from the GEPIA2 “Correlation Analysis”
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FIGURE 5 | Association analysis between the expression of CST6 and tumor microenvironment in TCGA datasets. Histogram height represents the number of
cancer types with significant correlation between CST6 and cell infiltration score. Red- and purple-colored bubbles denote positive and negative correlation. Colored
bar on the bottom denotes cell subgroup obtained from xCell.

module. Then, the functional enrichment analysis was performed
through Metascape based on the CST6-related gene list. CST6-
related genes were significantly enriched in keratinization and
positive regulation of epithelial cell migration (Figure 4A).
Given that the strong correlation between keratin genes and
epithelial cell has been reported (Heatley, 2002; Moll et al.,
2008), we next explored the relationship of CST6 and epithelial
cell in detail. The expression level of CST6 and epithelial cell
infiltrate score were varied in cancer types (Figure 4B and
Supplementary Figure 3), while the positive correlation between
the two variables was observed in most cancers (Figure 4C and
Supplementary Table 5).

Considering the fact that CST6 has been previously associated
with the GO term “positive regulation of mesenchymal stem
cell proliferation,” we next explored the role that CST6 plays
in EMT and proliferation. At first, we downloaded tumor
purity for TCGA samples from a previous study (Thorsson
et al., 2018). As the EMT score was significantly influenced
by tumor purity (Supplementary Table 6), we estimated the
relationship between EMT and CST6 using partial correlation to
remove the confounder. In contrast to epithelial cell infiltration,

CST6 showed dual functional effects on EMT and proliferation
(Figure 4C and Supplementary Table 5). Particularly, the
correlation coefficients of epithelial cell and EMT score in SKCM
were reversed (Figures 4D,E), which indicated a potential role
of CST6 in the metastasis of melanoma. Given that SKCM
has the maximum number of metastatic samples in TCGA, we
next compared the expression level of CST6 between metastasis
samples and primary tumor tissues. As shown in Figure 4F, the
expression of CST6 was significantly higher in SKCM primary
tumor tissues than that of metastatic samples. Consistent with
this finding, a similar pattern was observed in another SKCM
metastatic dataset (GSE46517, Figure 4G), which further proved
the protective effect of CST6 in melanoma metastasis. Taken
together, all these results suggest that CST6 was related to
epithelial cell infiltration and tumor EMT process.

As evidence has shown the positive correlation between
CST6 and epithelial cell, we next explored its relationship with
other cells. As shown in Figure 5, the expression of CST6 was
positively related to most epithelial cells, while the negative
correlation between CST6 and plasma cell was observed in most
cancer types. A previous study has found that CST6 promoter
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FIGURE 6 | Clinical association analysis between the expression of CST6 and survival prognosis across TCGA cancer types. (A) The survival map and Kaplan–Meier
estimates of overall survival by CST6 expression in TCGA datasets. (B) The survival map and Kaplan–Meier estimates of disease-free survival by CST6 expression in
TCGA datasets. (C) The Kaplan–Meier estimates of overall survival by ITGA3, KLK7, and KRT7 expression in TCGA lung cancer, melanoma, and renal cancer
datasets. (D) The Kaplan–Meier estimates of disease-free survival by ITGA3 and keratin 7 (KRT7) expression in TCGA lung and renal cancer datasets.

is highly methylated in cfDNA of BRCA plasma cells but not
in healthy samples (Chimonidou et al., 2013). These results
suggest the potential regulatory roles of CST6 in the tumor
microenvironment.

Clinical Associations of Cystatin E/M in
Cancer
We next explored the critical efficiency of CST6 in the survival
of tumor patients. Tumor samples were divided into high-
expression and low-expression groups based on CST6 expression
for each TCGA tumor type. Patients with a higher expression
of CST6 had worse survival in brain lower-grade glioma (LGG),
LUAD, PAAD, PRAD, and stomach adenocarcinoma (STAD)

(HR > 1 and log-rank p < 0.05, Figures 6A,B), while
they indicated a favorable prognosis in KIRP, uveal melanoma
(UVM), and diffuse large B-cell lymphoma (DLBC) (HR < 1
and log-rank p < 0.05, Figures 6A,B). The multivariate
Cox regression model was also performed with several clinical
factors (Supplementary Figure 4). In addition, the CST6-
related genes mentioned above (ITGA3, LKL7, and KRT7
corresponding to TCGA lung cancer, SKCM, and renal cancer
separately) were found to be associated with clinical outcomes
(Figures 6C,D). These results revealed the dual effects of CST6
on the survival of patient.

The association between epithelial and CST6 for SKCM
has been examined herein before. Next, we explored whether
these two important elements affected the clinical survival of
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FIGURE 7 | The combination of CST6 expression and epithelial cell infiltration predicted the prognosis for SKCM patients. (A) Kaplan–Meier estimates of overall
survival (OS) for the total SKCM cohort based on CST6 expression. (B) Kaplan–Meier estimates of OS for the SKCM epithelial cell high subcohort based on CST6
expression. (C) Kaplan–Meier estimates of OS for the SKCM epithelial cell low subcohort based on CST6 expression.

melanoma patients. The expression of CST6 could not well
predict the prognosis of SKCM patients (log-rank p = 0.0547,
Figure 7A) using siGCD. Meanwhile, we found that the
epithelial cell infiltration score of SKCM primary tumor was

significantly higher than the metastatic patients (Wilcoxon test,
p-value < 0.05, Supplementary Figure 5A). Moreover, the
expression of CST6 could serve as a protective factor for the
clinical survival of metastatic patients, which indicates the
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important roles of epithelial cell and CST6 in SKCM survival
(Supplementary Figures 5B,C). Thus, we took the epithelial
marker from xCell into consideration. In the case of the epithelial
cell low subcohort, the OS of patients with high CST6 expression
showed significantly better than those with low scores, while the
results did not occur in the epithelial cell high subcohort (Figures
7B,C). These results implied that the combination of molecular
expression and cell infiltration could better predict the survival of
cancer patients.

DISCUSSION AND CONCLUSION

The dual function of CST6 as both tumor suppressing and tumor
promoting has been well appreciated (Lalmanach et al., 2021),
but its global function and expression pattern in the development
of cancer remain largely unknown. Here, we comprehensively
characterized the expression pattern of CST6 in cancer from
TCGA, and the result was verified from another large sample
dataset. Consistent with prior knowledge, the expression of
CST6 showed that it was downregulated with tumor-suppressing
function, while it showed a reverse level with tumor-promoting
function. Evidence has shown the EMT and metastasis functions
of ITGA3 in lung cancer, which were similar to the function of
CST6 (Li et al., 2020). Meanwhile, we observed a conservative
correlation between CST6 and ITGA3 in two datasets (TCGA
and MMDs), providing potential therapeutic targets for lung
cancer. Apart from ITGA3, we also identified KLK7 and KRT7
as CST6-related genes in melanoma and renal cancer datasets.
Overexpression of KLK7 induced a significant reduction in
melanoma cell proliferation and colony formation (Delaunay
et al., 2017). KRT7 has been proven to be an important biomarker
for kidney cancer (Williamson et al., 2017). Taken together, these
results indicate the conservative expression pattern and essential
interactive function of CST6 in human tumors.

Given that the expression of CST6 exhibited epigenetic
inactivation in special cancer types, we explored the relationship
between DNA methylation and its expression across cancer
types. We found that the expression of CST6 was globally
regulated by DNA methylation, especially in BRCA, KIRP, MESO,
STAD, THCA, and THYM cancer types. Although we revealed
the essential roles of DNA methylation in regulating CST6
expression, we cannot explain its differential expression in some
cancer types. Previously, two SNPs in the 5’UTR region of CST6
have been found to be associated with fluconazole susceptibility
through a genome-wide association study (Guo et al., 2020).
Thus, we counted the number of SNVs located in the CST6
gene region from cBioPortal. Thirteen cancer types with CST6
mutation were identified. Among them, SKCM has the highest
alteration frequency (range from 0.19 to 1.36%, Supplementary
Figure 6A). To explore the effect of SNV on the alteration of
CST6 expression, we search the PancanQTL to obtain the CST6-
related cis-eQTLs (within 1 Mb from the gene transcriptional
start site) (Gong et al., 2018). We found more than 30 cis-eQTLs
in STAD and THCA, and the alternation of rs619701 could
improve the expression level of CST6 in THCA (Supplementary
Figures 6B,C and Supplementary Table 7). Integration of SNV

data may provide a novel insight for understanding the regulatory
mechanism of CST6 in cancer.

Moreover, we found that the expression of CST6 was
globally positively correlated with epithelial cell infiltration,
suggesting its important roles in the epithelium. Rivenbark et al.
(2007) have observed a strong immunostaining phenomenon
for CST6 in normal breast epithelial and myoepithelial cells,
while it was negative in primary breast tumors. The relevance
between CST6 and epithelium encourages us to further explore
its relationship with EMT. As the EMT process plays an
essential role in cancer metastasis (Brabletz et al., 2018),
we found the protective function of CST6 in melanoma
metastasis considering the negative correlation between CST6
and EMT score. Although the low-level internalization of
CST6 that could affect the migration of melanoma cell has
been proven (Wallin et al., 2017), we first revealed the
potential mechanism between CST6 and EMT in the melanoma
metastasis. Besides, we also found that the combination of
epithelium infiltration and CST6 expression could well predict
the survival of SKCM patients. Our results suggested the
necessity to consider molecular and tumor microenvironment in
tumor prognostics.

Our results have been partially limited by the nature of
the datasets. Although the variation trend in expression and
DNA methylation of CST6 was adverse in most cancer types,
a few discordant events were also observed. For instance,
the expression and DNA methylation level of CST6 were all
upregulated in BRCA tumor samples. This may due to the
unbalanced sample size between tumor and normal samples.
The discordant of CST6 expression in transcriptome and
proteome has also been observed (KIRC was the only cancer
type that CST6 showed to be downregulated in both TCGA
and CPTAC datasets). Meanwhile, there was a considerable
number of lncRNA involved in the CST6-related genes. Thus,
the posttranscriptional regulation like non-coding RNA may be
another explanation, and this will be the further direction that
we will analyze.

In summary, our comprehensive analysis of the expression
pattern and dual functional effects of CST6 in pan-cancer
level reveals its essential roles. The expression of CST6 was
globally regulated by DNA methylation and related to epithelium
infiltration. Particularly, CST6 performed a protective function in
melanoma metastasis. Dysfunction of CST6 has also shown dual
effects in clinical survival in different cancer types.
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Genetic and Epigenetic Impact of
Chronic Inflammation on Colon
Mucosa Cells
Jia He1,2†, Jimin Han2†, Jia Liu2†, Ronghua Yang1, Jingru Wang1, Xusheng Wang2* and
Xiaodong Chen1*

1Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China, 2School of Pharmaceutical Sciences
(Shenzhen), Sun Yat-sen University, Guangzhou, China

Chronic inflammation increases cancer risk, and cancer development is characterized by
stepwise accumulation of genetic and epigenetic alterations. During chronic inflammation,
infectious agents and intrinsic mediators of inflammatory responses can induce genetic
and epigenetic changes. This study tried to evaluate both the genetic and epigenetic
influence of chronic inflammation on colon mucosa cells. Repetitive dextran sulfate sodium
(DSS) treatment induced chronic colitis model. Whole-exome sequencing (WES) (200×
coverage) was performed to detect somatic variations in colon mucosa cells. With the use
of whole-genome bisulfite sequencing (BS) at 34-fold coverage (17-fold per strand), the
methylome of both the colitis and control tissue was comparatively analyzed.
Bioinformatics assay showed that there was no significant single-nucleotide
polymorphism/insertion or deletion (SNP/InDel) mutation accumulation in colitis tissue,
while it accumulated in aged mice. Forty-eight genes with SNP/InDel mutation were
overlapped in the three colitis tissues, two (Wnt3a and Lama2) of which are in the cancer
development-related signaling pathway. Differentially methylated region (DMR) assay
showed that many genes in the colitis tissue are enriched in the cancer development-
related signaling pathway, such as PI3K–AKT, Ras, Wnt, TGF-beta, and MAPK signaling
pathway. Together, these data suggested that even though chronic inflammation did not
obviously increase genetic mutation accumulation, it could both genetically and
epigenetically alter some genes related to cancer development.

Keywords: chronic colitis, chronic inflammation, SNP/indel, DNA methylation, cancer, aging

INTRODUCTION

Chronic inflammation has been indicated as an important risk factor for cancer; one of the best
examples of the association between chronic inflammation and cancer is found in the heightened
predisposition for cancer of patients suffering from ulcerative colitis (UC) and Crohn’s disease of the
colon, the major forms of idiopathic inflammatory bowel disease (McLarnon, 2011; Risques et al.,
2011). Extensive and chronic UC leads to a 19-fold increase in risk for colon cancer, and about 5% of
UC patients develop tumors (Gillen et al., 1994). And pancreatic inflammation is a key risk factor for
pancreatic cancer (Maisonneuve and Lowenfels, 2002; Raimondi et al., 2010). Another major disease
linked to chronic inflammation is gastric cancer, the second leading cause of cancer death worldwide
(Qadri et al., 2014; Senol et al., 2014), in which the predisposing inflammation is most often caused
by colonization of the gastric epithelium by Helicobacter pylori, and chronically infected individuals
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have an increased risk of developing gastric cancer (Helicobacter
and Cancer C, 2001; Meira et al., 2008).

During inflammation, there are increased levels of reactive
oxygen and nitrogen species (RONS), which can induce cytotoxic
andmutagenic DNA lesions, including abasic sites, oxidized bases
(e.g., 8oxoG), deaminated bases (e.g., uracil and hypoxanthine),
and ethenoadenine (εA) (Lonkar and Dedon, 2011). In addition
to base damage, RONS could also induce DNA double-strand
breaks (DSBs). DSBs are among the most toxic of DNA lesions.
Moreover, DSBs can also be potently mutagenic due to the
potential loss of vast stretches of chromosomes if not
accurately repaired (Hoeijmakers, 2009; Maynard et al., 2009).
As an unwanted result, these wide range of genomic alterations,
including point mutations, copy number changes, and
rearrangements, can lead to the development of cancer
(Meyerson et al., 2010).

Genomic sequencing has developed to be an effective
alternative to locus-specific and gene-panel tests in a research
setting for establishing a new genetic basis of disease (de Ligt et al.,
2012; Yang et al., 2013). Whole-exome sequencing (WES) is a
next-generation technology to determine the variations of the
coding regions (exons) of a genome. WES provides coverage of
more than 95% exons, which contains 85% disease-causing
mutations in many disease-predisposing single-nucleotide
polymorphisms (SNPs) throughout the genome (Kaname
et al., 2014; Rabbani et al., 2014). Somatic mutations in tumor
genome are extensively explored, while the characterization of
chronic inflammation-induced somatic mutation via WES
approaches is not deeply explored yet, especially the
quantitative expansion of different types of genomic alteration
during a certain period of inflammation.

Epigenetic alterations, in particular alterations in DNA
methylation, are involved in inflammation-associated
carcinogenesis (Hartnett and Egan, 2012). Studies have found
hypermethylation for p14ARF, p16INK4a, estrogen receptor, and
many other genes in human patients with colitis-associated
cancers (Tominaga et al., 2005; Dhir et al., 2008; Wang et al.,
2008; Yu et al., 2014). However, how DNA methylation
alterations contribute to inflammation-associated
carcinogenesis is still unclear. Reports showed that
methylation in the promoter region of the upstream area
could inhibit gene expression, while gene body methylation
was positively correlated with gene expression, which
prevented transcription from being too active and related to
gene disorder (Ehrlich, 2009; Ndlovu et al., 2011). Therefore,
it is valuable to understand the mechanism of upstream cell signal
and gene body methylation crosstalk. It can be a guide to
understand the pathological and regulation mechanism in the
process of inflammation to carcinogenesis.

Here, we present the characteristic of the somatic variation
of exome in colon mucosa cells of three chronic colitis mice via
WES approaches, the colitis was induced via dextran sulfate
sodium (DSS) repeatedly for 40 weeks, and age-matched and
no-DSS-treated mice serve as the control mice. In addition, the
exome of 8-week-old mouse colon mucosa cells was also
sequenced, which is compared with the exome of the 56-
week-old (56W) mice to evaluate accumulation of somatic

mutation through aging. Our data showed that there was no
significant difference in quantification of SNP/insertion or
deletion (InDel) mutation between colitis and the control
mice, and the similar result appeared in the copy number
variation (CNV) number. Furthermore, we found that the
SNP/InDel number was obviously elevated in the older mice
compared with the young mice, suggesting that aging could
make significant contribution to accumulation of somatic
mutation. We also performed the DNA methylation
sequencing between control and DSS group in 56W mice to
explore how DNA methylation alterations in chronic
inflammation act upon carcinogenesis. Differentially
methylated region (DMR) assay indicated methylation in
the upstream, downstream, and gene body regions was
significant different. Subsequently, functional analysis
showed that differentially methylated genes in chronic
inflammation are enriched in the signal pathways related to
carcinogenesis. These all suggest that a part of genes related to
cancer development appears to have both genetic and
epigenetic alterations by chronic inflammation.

METHODS

Dextran Sulfate Sodium-Induced Chronic
Colitis
Distilled water with 2.5% DSS replaced the distilled water for
7 days, during which colitis was induced and the mouse body
weight decreased by about 18–20%. Then at the 8 day, DSS
water was replaced by distilled water for another 7 days, and
then the distilled water was replaced by 2.5% DSS water
again. This kind of procedure (7 days of water with 2.5% DSS/
7 days of distilled water) was repeatedly performed for 20
times, and the mouse body weight is monitored weekly. Eight
weeks after the last DSS treatment procedure, mice were
sacrificed for colon mucosa cells and muscularis mucosae
isolation.

DNA Quantification and Qualification
DNA degradation and contamination were monitored on 1%
agarose gels. Then DNA purity was checked using the
NanoPhotometer spectrophotometer (IMPLEN, Westlake
Village, CA, United States). Subsequently, DNA
concentration was measured using Qubit DNA Assay Kit in
Qubit 2.0 Flurometer (Life Technologies, Carlsbad, CA,
United States). Fragment distribution of DNA library was
measured using the DNA Nano 6000 Assay Kit of Agilent
Bioanalyzer 2,100 system (Agilent Technologies, Santa Clara,
CA, United States).

Whole-Exome Sequencing Library
Generation
A total amount of 1 μg of genomic DNA per sample was used as
input material for the DNA sample preparation. Sequencing
libraries were generated using Agilent SureSelect Mouse All
Exon Kit (Agilent Technologies, Santa Clara, CA,
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United States) following the manufacturer’s
recommendations, and index codes were added to attribute
sequences to each sample. Briefly, fragmentation was carried
out by hydrodynamic shearing system (Covaris, Woburn, MA,
United States) to generate fragments of 180–280 bp.
Remaining overhangs were converted into blunt ends via
exonuclease/polymerase activities, and enzymes were
removed. After adenylation of 3′ ends of DNA fragments,
adapter oligonucleotides were ligated. DNA fragments with
ligated adapter molecules on both ends were selectively
enriched in a PCR. After PCR, library hybridize with liquid
phase with a biotin-labeled probe and then use magnetic beads
with streptomycin to capture the 220,000 exons within 24,000
genes. Captured libraries were enriched in a PCR to add index
tags to prepare for hybridization. Products were purified using
AMPure XP system (Beckman Coulter, Beverly, MA,
United States) and quantified using the Agilent high-
sensitivity DNA assay on the Agilent Bioanalyzer 2,100 system.

Whole-Exome Sequencing and Quality
Control
The original image data generated by the sequencing machine
were converted into sequence data via base calling (Illumina
pipeline CASAVA v1.8.2) and then subjected to quality control
(QC) procedure to remove unusable reads: 1) the reads contain
the Illumina library construction adapters; 2) the reads contain
more than 10% unknown bases (N bases); and 3) one end of the
read contains more than 50% of low-quality bases (sequencing
quality value ≤ 5).

Whole-Exome Sequencing Read Mapping
Sequencing reads were aligned to the reference genome using
BWA with default parameters. Subsequent processing, including
duplicate removal was performed using samtools and PICARD
(http://picard.sourceforge.net).

Variant Detection and Annotation
The raw SNP/InDel sets are called by samtools with the
parameters as “-q 1 -C 50 -m 2 -F 0.002 -d 1,000.” Then we
filtered these sets using the following criteria: 1) the mapping
quality >20 and 2) the depth of the variate position >4.
BreakDancer and CNVnator were used for structural
variation (SV) and CNV detections, respectively. ANNOVAR
was used for functional annotation of variants. The UCSC
known genes were used for gene and region annotations.

Library Construction and Methylated
Sequencing
After extraction of genomic DNAs of samples, first, the
sample is tested for quality. After the sample quality is
qualified, the DNA libraries for bisulfite sequencing were
carried out. Specific steps are as follows: the genomic DNA
first ultrasound interrupted into the 100–300 bp by Sonication
(Covaris) and purified with MiniElute PCR Purification Kit
(QIAGEN, Valencia, CA, United States). DNA fragment

terminal repaired, 3′ end plus “A” nucleotide base connect
the sequencing connector. Methylated sequencing adapters
ligate to the genomic fragments. Using ZYMO EZ DNA
Methylation-Gold kit ligates methylated sequencing
adapters. After desalting treatment, the adhesive is
recycled, and the library fragment size selection was
performed. Select library fragment size again after PCR
amplification. After the construction of the library was
completed, the quality inspection of the library was
performed. The qualified library will be used for
sequencing, which uses Illumina HiSeq™ 2,500 by Gene
Denovo Biotechnology Co (Guangzhou, China). The
original reads were filtered based on the following rules for
getting high-quality clean reads: 1) if reads contain more than
10% unknown nucleotides (N), they will be removed; 2) if
reads contain more than 40% of low-quality (Q-value ≤20)
bases, low-quality reads will be removed.

Methylation Level Analysis
The standard clean reading map obtained by BSMAP
software (version 2.90) was mapped to the mouse
reference genome. Self-defined Perl script to call
methylated cytosine and the methylation level was
calculated based on the percentage of methylated cytosine
in the whole genome, in each chromosome (CG) and in
different regions of the genome in each sequence context
(CHG and CHH). Subsequently, a 2-kb region methylation
profile was drawn based on the average methylation level of
each 100-bp interval in order to evaluate different
methylation patterns in different genomic regions.

Differentially Methylated Region Analysis
DMRs for each sequence context (CG, CHG, and CHH)
between two samples were identified according to the
following stringent criteria: 1) more than five methylated
cytosines in at least one sample; 2) more than 10 read’s
coverage for each cytosine, and more than four reads for
each methylated cytosine; 3) region length is between 40 bp
and 10 kb; 4) the distance between adjacent methylated sites
<200 bp; 5) the fold change of the average methylation level >2;
and 6) Pearson’s chi-square test (χ2) value p ≤ 0.05. The
putative DMRs overlapping at adjacent 2 kb (upstream or
downstream) or body regions of genes or transposable
elements (TEs) were sorted out for further study.

Enrichment Analysis of Functional
Differently Methylated Region-Related
Genes
Significant enrichment analysis was based on Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
(http://www.kegg.jp/), and hypergeometric test was applied
to find the pathway of significant enrichment in the DMR-
related genes compared with the whole genome background.
After multiple examination and correction, the pathway of
Q-value 0.05 was defined as the pathway of significant
enrichment in the differential expression gene. Pathway
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(p-value ≤0.05, q-value <0.05) was used to analyze whether
specific DMRs affect gene’s enrichment.

RESULT

Establishing Chronic Inflammation Model
and Strategies for Genomic Sequencing
Assay
DSS-induced colitis is a wildly used model for the colitis study, in
which the chronic DSS colitis could last over 2 months (Wirtz
et al., 2007). While a much longer period of chronic colitis that
could last over 10 months was desired in this study, to achieve this
kind of chronic colitis, we adjusted DSS administration
procedure, as follows: distilled water with 2.5% DSS replaced
the distilled water for 7 days, during which colitis was induced
and the mouse body weight decreased about 20%; and at the

eighth day, DSS water was replaced by distilled water for another
7 days, the mouse body weight was restored, and the distilled
water was replaced by 2.5% DSS water again. This kind of
procedure (7 days of water with 2.5% DSS/7 days of distilled
water) was repeatedly performed for 20 times, the mouse body
weight was monitored weekly, and 48 weeks later, the mice were
sacrificed for colon mucosa and muscularis mucosae isolation
(Figures 1A,B). Colons were separated in both DSS-treated mice
and the age-matched control mice. To separate the colon mucosa
tissue from the muscularis mucosae tissue, we digested the colon
tissue in 0.4% Dispase II at 37°C for 1.5 h and separated the
mucosa and muscularis mucosae layer via dissecting forceps.
Then tissue section and immunofluorescence staining were
performed on the isolated mucosa and muscularis mucosae
layer to validate that the mucosa and muscularis mucosae
layer are isolated completely and clearly (Figure 1C). No
obvious morphological difference was found between the two
groups assayed by dissecting microscope, neither

FIGURE 1 | Establishing chronic inflammation model for genomic sequencing assay. (A, B) Schematic for dextran sulfate sodium (DSS)-induced colitis, and the
procedure of DSS treatment to induce chronic colitis. n � 12 for DSS-treated mice and n � 10 for control mice. (C) The procedure of colon mucosa and muscularis
isolation, and the isolated mucosa and muscularis were subjected to whole-exome sequencing (WES). Scale bar: 50 μm. (D) Colons were separated in both DSS-
treated mice and the age-matched control mice; no obvious morphological difference was found the two groups with dissecting microscope, neither in
histopathology. n � 6 for both control and DSS-treated mice, and representative results are shown. Scale bar: 50 μm. (E) Circos imaging of the overview result of WES,
showing (from outside to inside) the length of the genome, the number of genes within 10 M, the frequency of single-nucleotide polymorphisms (SNPs) within 1M (red
squares over 0.0015 and green triangles below 0.0005), INS (insertion), INV (inversion), ITX (intrachromosomal translocation), and CTX (interchromosomal translocation).
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histopathologically with H and E assay (Figure 1D). And then the
tissues were subjected to DNA isolation andWES. Approximately
20G clean data were generated for each sample, and the average
depth is over 200 (>200X). And then the generated reads were
compared with reference genome (mm9 mouse genome, related
to Agilent mouse exon kit), to evaluate the genomic variations in
each individual. The genomic variations of individuals include
SNPs, small InDels, and larger-scale variations; and CNV, which
generally refers to large-scale (>1 kb) chromosomal copy number
changes, e.g., amplifications or deletions, were compared with a
reference genome. A overall analysis graph is presented in
Figure 1E, which includes the SNP frequency in 1 M, and also

the INS (insertion), INV (inversion), ITX (intrachromosomal
translocation), and CTX (interchromosomal translocation).

Quantitative Assay of Single-Nucleotide
Polymorphism/Insertion or Deletion in the
Colitis Tissue
Ten samples from five mice were prepared for WES in this study;
the five mice (close breeding and same generation) included an 8-
week-old mouse (young mouse), a 56W mouse (old mouse, also
served as the age-matched mouse for colitis mice), and three
colitis mice (56W). The mucosa (Mc) and muscularis mucosae

FIGURE 2 |Comparative and quantitative assays of single-nucleotide polymorphism/insertion or deletion (SNP/InDel) in the colitis tissue. (A) Ten samples from five
mice were used for whole-exome sequencing (WES), mucosa (Mc) and muscularis (Ms) isolation and sequenced individually. (B) Comparative assay strategy for the
WES result; SNP/InDel from theMc andMs of samemice was compared to wipe off the germline mutation. Both statistical and annotative assays were performed on the
SNP/InDel specific in Mc from different mice. (C) The total SNP/InDel number in the mucosa of three dextran sulfate sodium (DSS)-induced colitis mice is 3,521/
3,570/3,400; for the no colitis mouse, the SNP/InDel number is 3,456. The novel somatic SNP/InDel number in the three DSS-induced colitis mice is 769/753/687; in
age-matched (56W) no-colitis control mouse, the SNP/InDel number is 860. (D) SNP/InDel frequency SUM is 179/162/170 in three DSS-induced colitis mice and is 195
in the control mice. (E) The SNP/InDel number is obviously elevated in the older mouse (56 weeks, SNP/InDel: 860) compared with the young mouse (8 weeks, SNP/
InDel: 629). (F) The SNP/InDel frequency SUM in 56W mouse was obviously increased compared with that in the 8W mouse.
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(Ms) tissue were separated from the colon of the
abovementioned five mice (Figure 2A). And concerning the
germline mutation contained in the total SNP/InDel, the
exome of muscularis mucosae was also sequenced to
exclude the germline mutation and then to highlight the
somatic mutation generated in the mucosa (the mutations
existing in both the mucosa and muscularis were taken as
the germline mutation). The SNP/InDel in the mucosa
excluded the SNP/InDel muscularis of the same mice and
was defined as the SNP/InDel specific in the mucosa
(Figure 2B). And then the number and annotation of SNP/

InDel specific in different mucosae were comparatively
assessed (Figure 2B). The total SNP/InDel number
(compared with the reference sequence) in the mucosa of
three colitis mice is 3,521, 3,570, and 3,400, respectively,
while in the age-matched no-colitis mouse, the SNP/InDel
number is 3,456, indicating that there was no significant
quantitative difference in total SNP/InDel mutation between
the colitis and control tissues (Figure 2C). The somatic (novel)
SNP/InDel number in the three DSS-induced colitis mice is
769/753/687, while in the age-matched (56W) control mouse,
the SNP/InDel number is 860 (Figure 2C). To show an SNP/

FIGURE 3 | Annotation of single-nucleotide polymorphism/insertion or deletion (SNP/InDel) accumulated in the old and dextran sulfate sodium (DSS)-treated mice.
(A) There were 310 SNP/InDel unique in 56W mice mucosa. (B) Gene Ontology (GO) enrichment showed that these genes were classified into the cellular function of
biological process, cellular component, and molecular function. (C) There were 769/753/687 somatic (novel) SNP/InDel in the three colitis mice, and this SNP/InDel was
annotated into 474/495/527 genes; among these genes from different mice, 48 genes were overlapped. (D, E) The 48 genes that were overlapped in three colitis
mice. Among these 48 genes, Wnt3a, Lama2, and Fst exert signal transduction function in the Wnt/mTOR, PI3K–AKT, and TGF-beta signaling pathways, respectively.
(F) Lama2 mutation among the three DSS-treated mice mucosa, two of them were GT deletion mutation, and the other was SNP, while all the Wnt3a mutations in three
DSS-treated mucosa were deletion mutation.
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InDel profile that could take the SNP/InDel frequency into
account, we calculated the summation (SUM) of all the
somatic SNP/InDel frequencies in each individual, and we
compared the SNP/InDel frequency SUM between different
individuals. Similar to the SNP/InDel number, the SNP/InDel
frequency SUM in three DSS-induced colitis mice was not
obviously different from that of the control mouse, as SNP/
InDel frequency SUM is 179/162/170 in three DSS-induced
colitis mice and 195 in the control mice (Figure 2D). These
data suggest that chronic inflammation could not significantly
increase the accumulation of SNP/InDel number as well as its
frequency. Similarly, the somatic CNV number in the mucosa
of the colitis mice was also not significantly different from that
of the control mice (Figure 2E).

Even though somatic SNP/InDel/CNV number was not
increased by chronic inflammation, we found that the SNP/
InDel number was obviously elevated in the older mouse
(56W, SNP/InDel: 860) compared with the young mouse
(8 weeks old, SNP/InDel: 629) (Figure 2F). Thus, this result

suggests that aging makes significant contribution to the
accumulation of somatic mutation in the individuals.

Annotation of Single-Nucleotide
Polymorphism/Insertion or Deletion
Accumulated in the Old and Dextran Sulfate
Sodium-Treated Mice
To get a further insight on the functional profile of SNP/InDel
that uniquely accumulated in old (56W) or DSS-treated mouse
colonmucosa, further assay was performed. Comparative assay of
the SNP/InDel showed that there were 310 SNP/InDel unique in
56W mouse mucosa; Gene Ontology (GO) enrichment showed
that these genes were classified into the cellular function of
biological process, cellular component, and molecular function
(Figures 3A,B). There were 769/753/687 somatic (novel) SNP/
InDel in the three colitis mice, and this SNP/InDel was annotated
into 474/495/527 genes; among these genes from different mice,
48 genes were overlapped (Figure 3C), listed in Figure 3D.

FIGURE 4 | The impact of chronic inflammation upon the DNAmethylation profile in colon mucosa. (A) The ratio of different types of mC (mCG, mCHG, andmCHH)
in dextran sulfate sodium (DSS)-treated and control mice were assessed, in which mCG was 82.43 and 80.56% in control and DSS-treated mice, respectively. (B) The
sequence characterization of the nucleotides near methylation C of CG, by counting the 9-bp base near CG bases and comparing the base of CG andmCG in the whole
genome. (C)mC density in control and DSS-treated mice chromosome 1. (D) The characteristics of methylation patterns in different gene regions are represented
by heat map.
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Various signaling pathways regulate cellular proliferation,
differentiation, and immortalization of colorectal cancer,
especially Wnt/β-catenin, PI3K/AKT/mTOR and TGF-beta/
Smad signaling (Pandurangan et al., 2018). Among these 48
genes, Wnt3a, Lama2, and Fst exert signal transduction
function in the Wnt/mTOR, PI3K–AKT, and TGF-beta
signaling pathways, respectively (Figure 3E). Lama2 is a
tumor suppressor by changes in its expression and
methylation patterns and can modulate PTEN to exert effects
on PI3K/AKT signaling (Wang et al., 2019). For Lama2 mutation
among the three DSS-treated mouse mucosae, two of them were
GT deletion mutation, and the other was SNP (A–C). Wnt3a is a
Wnt protein that activates the canonical Wnt pathway and
promotes colon cancer progression (Clevers, 2006; Qi et al.,
2014), while all the Wnt3a mutations in three DSS-treated

mucosae were deletion mutation (one is C deletion and other
two is CT deletion) (Figure 3F).

The Impact of Chronic Inflammation Upon
the DNA Methylation Profile in Colon
Mucosa
To explore the epigenetic profile in the colon mucosa with
chronic inflammation, bisulfite sequencing was performed. In
the genomic DNA, C bases can be classified into three groups
according to their sequence features as CG, CHG, and CHH. In
methylated C, the proportions of these three sequence types vary
among species. Thus, the number of each type of mC (mCG,
mCHG, and mCHH), and their share of total mC sites, could
reflect the characteristics of the genome-wide methylation profile.

FIGURE 5 | The overview of DNA methylation in control and dextran sulfate sodium (DSS)-treated mice and the conjoint analysis of DNA methylation and gene
mutation. (A, B) The genomic distribution of mCG, mCHG, and mCHH in two different groups of mice was presented in a Circos graphs. (C, D) The conjoint analysis of
the DNA methylation and whole-exome sequencing (WES) result.
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The ratio of different types of mC in DSS-treated and control
mice was assessed, in which mCG was 82.43 and 80.56% in
control and DSS-treated mice, respectively (Figure 4A). The
sequence features of the bases near the methylation sites
within the whole genome are instructive to reflect the
sequence bias of methylation. Counting the 9-bp base near CG
bases and comparing the base of CG and mCG in the whole
genome enabled to obtain the sequence bias characteristic of
methylation. The sequence characterization of the nucleotides
near methylation C of CG is presented in Figure 4B. In addition,
by analyzing the density distribution of mC at the chromosome
level, we obtained the centralization bias of the methylation at the
macro level. The mC density in each chromosome was assessed
individually, and the result of mC density in control and DSS-
treated mouse chromosome 1 is presented (Figure 4C). Different
genomic regions have different biological functions; to get further
insight on the mC distribution feature, the distribution of
methylation status is represented by heat map, which
visualized the characteristics of methylation patterns in
different gene regions (Figure 4D). The genomic distribution

of mCG, mCHG, and mCHH in two different groups of mice is
presented in circle graphs (Figures 5A,B). In addition, the
conjoint analysis of the DNA methylation and WES result was
performed; the profile of both DNA methylation and gene
mutation in control and DSS-treated mice is presented
(Figures 5C,D).

Annotation of the Differently Methylated
Regions in Chronic Inflammation Mouse
Genomic
To further interpret the DNA methylation result, analysis of the
DMR was performed. The DMRs that meet a certain condition in
the same position of both control and DSS-treated mice were
searched, and the difference in methylation level in this region is
greater than 2 as DMRs in this study. Finally, according to the
DMR and gene region (including 2 kb upstream of the gene and
2 kb downstream of the gene) on each chromosome, the genes
related to differential methylation were determined, and GO and
pathway enrichment analysis of these genes were performed. GO

FIGURE 6 | Annotation of the differently methylated regions (DMRs) in chronic inflammation mice genomic. (A) Gene Ontology (GO) enrichment result showed the
DMRs enriched in biological process, cellular component, and molecular function. (B) The top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of
upstream DMR (CG)-related genes. (C) The top 20 KEGG pathway of downstream DMR (CG)-related genes.
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enrichment result showed the genes that most significantly
enriched in biological process including cellular process,
metabolic process, and single-organism process. And the genes
in cell, cell part, and organelle were significantly enriched in
cellular component. Genes of binding and catalytic activity were
significantly enriched in molecular function (Figure 6A).
Different genes interact with each other to executive certain
biological function, pathway assay helps understand gene
function, and KEGG is the major public database for pathway
assay. KEGG pathway enrichment could determine biochemical
and metabolic participation of DMR-related genes. In this study,
the KEGG assay showed that upstream DMR (CG)-related genes
are enriched to pathways including Jak-STAT signaling pathway,
TGF-beta signaling pathway, and Ras signaling pathway
(Figure 6B). And the downstream DMR (CG)-related genes
are enriched to pathways including Wnt signaling pathway,
MAPK signaling pathway, and mTOR signaling pathway
(Figure 6C). The KEGG enrichment of DMR-related genes in
different signaling pathways was assessed independently. DNA
methylation in different genes of PI3K/AKT signaling pathways
and network of gene regulation is shown in Figure 7. In
conclusion, the data of this study suggest that chronic
inflammation showed little influence on genetic stability; no

significant mutations were accumulated in chronic tissue,
while the chronic inflammation did have a certain impact on
the DNA methylation of colon mucosa tissue.

DISCUSSION

The relationship between inflammation and cancers has been
studied for over 150 years, and accumulated researches support
that chronic inflammatory diseases are related to cancers
(Balkwill and Mantovani, 2001; Coussens and Werb, 2002;
Philip et al., 2004). As early as 1,863, Virchow indicated that
cancers tended to occur at sites of chronic inflammation. Lately,
it turned out that acute inflammation contributed to the
regression of cancer. However, accumulated epidemiologic
studies support that chronic inflammatory diseases are
frequently associated with increased risk of cancers. Our
understanding of the association between chronic
inflammation and cancer is mostly illustrated by
inflammatory bowel disease and colon carcinogenesis.
Previous report shows that there was an 18-fold increase in
the risk of developing colorectal cancer in extensive Crohn’s
colitis and a 19-fold increase in risk in extensive UC when

FIGURE 7 | DNA methylation in different genes of PI3K/AKT signaling pathways. The network shows differentially DNA methylated genes of PI3K/AKT signaling
pathways. The gene regions (CK.gene body and DSS. gene body), 2 kb upstream of the gene regions (CK.up2k and DSS. up2k), and downstream of the gene regions
(CK.down2k and DSS. down2k) in control and dextran sulfate sodium (DSS)-treated mice are analyzed. The differentially DNA methylated genes are marked in
red boxes.
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compared with the general population, matched for age, sex, and
years at risk (Gillen et al., 1994). And increased cancer incidence
is associated with increased duration of the inflammation. On
basis of the toxic effect of inflammation/RONS on DNA, in this
study, we hypothesize that chronic inflammation would result in
somatic mutation accumulation, which thereby increases the
risk of carcinogenesis. While inconsistent with highly increased
cancer development risk in inflammation, there was no somatic
mutation increase observed during chronic inflammation, thus
increasing the somatic mutation dislike to be the mediator of
inflammation-induced cancer developing risk.

Previous reports indicate that the number of ε-base lesions and
8oxoG increased in the colons of mice following a single DSS
treatment; in addition, consistent with the ability of Aag
(alkyladenine DNA glycosylase) to excise both εA and 8oxoG
(Bartsch and Nair, 2002; Meira et al., 2008), inflammation-
induced εA, εC, and 8oxoG increased more dramatically in the
Aag-deficient mice, since Aag could recognize the DNA damage
and initiate base excision repair. Moreover, in the mice with
deficiency in three DNA repair proteins (Aag−/−/Alkbh2−/
−/Alkbh3−/− triple-knockout), a single cycle of DSS-induced
colitis resulted in absolute lethality of these mice (Calvo et al.,
2012). These studies indicate the crucial role of the DNA repair
proteins in both tumor suppression and tissue homeostasis.
Despite the increased levels of toxic and mutagenic εA and 1,
N2-εG in colon mucosa cells following DSS treatment, our data
suggest that these DNA lesions do not ultimately contribute to the
accumulation of somatic genomic alteration, including the SNP/
InDel and CNV; presumably, there is redundant potential of
DNA repair proteins, which is enough to compensate the
increased DNA damage/repair activity during the
inflammation, thus finally not resulting in the obviously
increased DNA mutation. Collectively, increasing the
accumulation of somatic gene mutations does not seem to be
the major mechanism of chronic inflammation in promoting the
neoplasia; and we proposed that the DNA repair mechanism is
efficient enough to repair the increased DNA damage induced by
inflammation, thus eliminating the risk of DNA mutation
accumulation.

The methylation CpG islands in the promoter region of tumor
suppressor genes can silence gene expression and lead to
tumorigenesis (Baylin and Jones, 2011). In this process, the
activation status of several cancer-related pathways are
changed, including Ras, Wnt/β-catenin, PI3K/AKT, and
MAPK signaling pathways (Jones and Baylin, 2007; Ying and
Tao, 2009; Fattahi et al., 2020). In our study, the differentially
methylated genes and gene region (including 2 kb upstream of the
gene and 2 kb downstream of the gene) were determined, and GO
and KEGG enrichment analysis of these genes were performed.
We found that upstream DMR (CG) and downstream DMR
(CG)-related genes were enriched to different cancer-related
pathways, which pointed their different functions on
carcinogenesis.

Tumor formation is a complex process involving many
genes and procedures. The process of chronic inflammatory
models may be a transition between inflammation and cancer.
Our research presents how chronic inflammation transitions
to a tumor, what happens on the exon, what goes on in the
epigenetic methylation. And our results provide a train of
thoughts. The process of studying methylation can predict in
advance which proteins will be disorganized. We may be able
to reverse the transformation cells by correcting DNA
methylation abnormalities. In conclusion, to study
methylation and exon sites SNPs in the human disease
model is significant for the diagnosis and treatment of
chronic inflammation and tumors.
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