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Editorial on the Research Topic

Cognitive movement ecology
1 Introduction

Papers, dissertations and books devoted to the analysis of animal movement often

invite interest in the subject with the incontrovertible claim that all animals move. It is no

less true and no less obvious that all animals perceive, remember, and think (though

cognitive scientists seem less obligated to remind everyone of the fact). Perception,

memory, orientation, and navigation are all cognitive components that have been

identified, in a zeitgeisty collection of simultaneous independent studies, as central to

animal movement (Mueller and Fagan, 2008; Nathan et al., 2008; Schick et al., 2008). And

yet, the cognitive causes and consequences of animal movement remain nearly as

understudied now (Joo et al., 2022) as then (Holyoak et al., 2008).

There are several reasons behind the apparent chasm dividing these fields. Advances in

movement ecology often “chase” both the data and the telemetry technology, the rapid

development of which is often driven in support of concrete needs to monitor animal

populations for management or conservation. Although biologists are generally aware, and

often in awe, of the cognitive ability of their study species, the very thought of trying to

measure or quantify something as unobservable as cognition is daunting and of limited

apparent practical utility.

In contrast, the history and pedigree of ethological studies on animals is much longer.

One might argue that, as an applied exercise, it includes all human groups that have ever

engaged in the domestication of wild animals. In the Western scientific tradition, notably

contributors include Darwin, Pavlov, and Lorenz. However, as a scientific endeavor,

ethology has focused on animals that are easy to observe and therefore amenable to

controlled experimentation, in almost all cases captive or domesticated (Wynne and Udell,

2020). Much as the wildlife manager may wonder what practical information can be

obtained from considering cognition in a wild deer, an ethologist may wonder what can

possibly be inferred about the cognition of an animal that can only be indirectly observed

through blips of satellite locations and upon whom experimental manipulation is

impractical. With the exception of a handful of neurological phenomena, cognitive
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processes are latent, and there are good reasons to shy away from

studying what we cannot observe.

And yet, in the past decade there has been growing theoretical

and empirical evidence that perception (Fagan et al., 2017), spatial

memory (Fagan et al., 2013; Merkle et al., 2014; Avgar et al., 2015;

Schlagel et al., 2017), and social and experiential learning (Mueller

et al., 2013; Berdahl et al., 2018; Jesmer et al., 2018; Abrahms et al.,

2021) are all fundamental to the way that free-ranging animals use

space. It therefore felt timely and important to collect original

research under the novel rubric of “Cognitive Movement Ecology”

into a single Research Topic. We invited a wide array of conceptual,

theoretical, and empirical papers, reflecting a wide range of

approaches to this relatively new field of study. In so doing, we

hoped to identify common themes, standardize some jargon, and

generally facilitate dialog among cognitive movement ecologists.

The resulting Research Topics includes 15 contributions which

strike an admirable balance between concepts, theory, methods and

applications. Specifically, our Research Topic is comprised of: 2

high-level reviews, 4 explicitly theoretical contributions leaning on

numerical analysis and simulation, 2 articles that propose novel

heuristic approaches to inferring cognition from movement data,

and, finally, 7 articles that bravely seek to make direct inference and

even predictions about cognitive processes of free ranging animals

based primarily on movement data. We provided no explicit

guidelines outside the general rubric and were struck by the ways

in which important themes emerged and similar goals were set in

papers with markedly different approaches. In this editorial, we

summarize the four sections of this Research Topic, making an

effort to link the common themes across sections, and conclude

with our view of the future of this young, but important, branch

of ecology.
2 Reviews and concepts

The Research Topic opens with a comprehensive review of the

cognitive ecology of animal movement (Kashetsky et al.), setting the

stage with a clear definition: that cognition is one of several processes

that deal with the acquisition, retention, and use of information. The

authors further explore several critical mechanisms by which such

acquisition occurs, with an emphasis on the important role of social

learning. The authors consider several observable spatial

phenomena – all direct consequences of movement – that are

exhibited by animals, in particular migration, homing, home

ranging, trail following, and spatial learning. There is emphasis on

the perceptual mechanisms and ranges (e.g. viewsheds, soundscapes,

and smellscapes), including a consideration of the complexity and

“cognitive costs” of different kinds of learning. These themes are laid

out with several compelling published examples, and are all

returned to explicitly and specifically (though largely

independently) in almost every subsequent paper in the Research

Topic. It bears noting, however, that the examples and synthesis

provided are based primarily on experimental studies such as

pigeon (Colomba livia domestica) releases and manipulated

spatial feeding configurations for domestic sheep (Ovis aries).
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The second major conceptual contribution (Lewis et al.)

narrows the focus on learning (i.e. the acquisition and use of

information), while broadening the disciplinary scope by pulling

in vernacular, metaphors, and approaches from such fields as

machine learning and robotics, as well as in psychology and

behavior (their Box 1 provides a comprehensive glossary). Again,

a clear definition rooted in the psychology literature is provided:

that learning is a process of information acquisition that

occurs via experience and leads to consistent and predictable

neurophysiological or behavioral change. In the context of this

Research Topic, the relevant observable behavioral change is

specifically movement data. Much effort goes into covering the

various mechanisms of learning (individual, social, positively

reinforced, negatively reinforced, etc.). A set of rigorous criteria

are proposed to identify whether actual learning is observed in a

given study. Important distinctions are made between the kind of

“fundamental learning” that occurs in a novel, or significantly

perturbed, environment, compared to the kind of “maintenance

learning” that is continuously ongoing in a dynamic but

stochastically stationary environment. The former is more

dramatic and categorical and can occasionally be inferred from

“uncontrolled experiments” like translocations, introductions, or

major environmental perturbations like habitat fragmentation or

destruction. The second kind of learning is more subtle and reflects

the ability of animals to continuously update information and make

decisions. These two papers provide crucial conceptual context for

later contributions in the Research Topic, all of which slot neatly

into themes anticipated by these two overviews.
3 Theoretical contributions

Theoretical studies lean on numerical studies and simulations

and have the freedom to essentially create universes from scratch. In

so doing, researchers can explore processes that are impossible to

observe over a range of conditions that stretch the credible,

potentially leading to profound insights into fundamental

principles that produce patterns that are, in fact, widely observed

in the wild.

Swain et al.– focusing on the evolution of perception – used

millions of agent-based models to incorporate the relatively

unexplored costs of perception to constrain the simulated

emergence of optimal evolutionary scales of perception ranges. In

identifying the conditions under which non-local perception is

selected for, the authors found unintuitive interactions between,

among others, resource density and energetic costs. Notably, low-

resource environments led to the evolution of either zero perceptual

range, or large perceptual ranges – pointing towards two divergent

and apparently contradictory strategies in low-resource

environments, consistent with observations (e.g., deep-water

crustaceans either are entirely blind, or have exceptionally large

eyes). The dramatic evolutionary trade-offs inherent in the

evolution of perception (steep costs, high returns), leading to

the wide range of evolutionary outcomes, is likely mirrored in the

emergence of cognitive properties, like spatial memory and social
frontiersin.or
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learning, and the dizzying range of those adaptations. Indeed, it can

be argued that memory itself is a kind of “temporal perceptual

range”, that uses information from the past to “perceive” the future.

Gurarie et al., ask a complementary question: what possible

non-genetic mechanisms can lead to the emergence, maintenance,

and resilience of seasonal migrations, a very widespread and

successful strategy that involves considerably uncertainty, risk,

and energetic cost. Using a different computational approach

from the other three theoretical studies (partial differential

equations rather than agent-based simulations), the authors

explore how collective memory, sociality, exploration, resource

following, and learning all interact to exploit a highly seasonal and

disconnected resource environment; i.e. one where the “patchiness”

is extreme, but the predictability is high. For migration to emerge,

all these ingredients are required, but mixed in just the right

proportions: social cohesion to share information must

be balanced against exploratory behavior to acquire new

information, and a deep well of reference memory to lean on

must be balanced against the ability to modify that reference in

response to new information. Even in the highly synthetic

conditions of the model, striking optimal balance is not easy;

but, much as in the evolutionary model of Swain et al., the

rewards can be considerable. Furthermore, though there is no

selection in the model per se, it is clear that social learning as a

mechanism can operate at time scales that are much more rapid

than genetic selection.

Cognition is, however, not only about what the animals know

(perception and memory), it is also about what they do not know,

and how they might learn and make movement decision in the face

of uncertainty. In the absence of perfect information, animals must

rely on approximations to update their knowledge of their

environment, as well as the expected outcomes of their decisions.

Using individual-based simulations in a dynamic depleting and

regenerating resource landscape, Avgar and Berger-Tal examine the

role of two types of optimism as adaptive strategy for partially

informed optimal foragers. Using a simple agent-based model, they

show that moderate discounting of information from undesirable

outcomes (‘positivity biased learning’ or ‘valence-dependent

optimism’) results in improved fitness in environments

characterized by high resource variability.

As if expressly to punish any irrationally optimistic foragers,

Bracis and Wirsing introduce predators into a similar simulated

dynamic resource environment to study the widely reported

phenomenon of the “Landscape of Fear”. The authors build on a

versatile continuous-time, continuous-space framework developed

for the exploration of the role of spatial memory in guiding mobile

foragers navigating dynamic landscapes (Bracis et al., 2015; Bracis

et al., 2018). Within this habituated prey/resource system, the

authors then release predators in high resource areas. The prey

are left to learn from near escapes, and eventually to associate high

quality habitat with increased risk. Somewhat analogous to Gurarie

et al. This method of learning relies on two memory streams – a

long-term “reference memory” (e.g. of fundamentally suitable

habitat) and a short-term “working memory” which pushes the

forager from recently depleted patches. Interestingly, these

apparently simplistic two streams of memory are capable of both
Frontiers in Ecology and Evolution 037
fundamentally learning about the new predator element, and of

continuous maintenance learning (sensu Lewis et al.). The authors

find that landscape of fear effects, in particular more time spent

searching and less net consumption, do emerge with the presence of

predators. However, the factors that lead to the most dramatic

effects are primarily intrinsic, i.e. related to memory and personality,

rather than external, i.e. related to the configuration of the

environment. Specifically, the effects are greatest when animals

are initially naïve to their environment and when they are highly

conservative (akin to Avgar and Berger-Tal‘s pessimists). This result

is important as a reminder that in real systems intrinsic states can

easily be as important as the kinds of external, environmental

factors that are most commonly used to model animal movements.

While very different in purpose and technique, a clear theme

emerges from this suite of theoretical explorations: that the value of

perception, memory, and learning for fitness is a direct consequence

of the spatial structure and temporal dynamics of the environment

the animal moves through. Thus, a somewhat unexpected corollary

emerges: cognitive abilities serve above all else to compensate for

constraints and limitations in the ability to move across the

landscape itself.
4 Heuristic innovations

While all the empirical studies rely to varying extents on

methodological innovations, two contributions to this Research

Topic stand out for proposing purely trajectory-based approaches

to analyzing movement data, pointing towards widely observed

spatial patterns that – the authors claim – can only emerge from

memory-driven movement process.

Gautestad explores the topological properties of movement

tracks that emerge from a model of self-reinforcing (i.e. memory-

driven) returns to previously visited locations. This ultimately very

simple model leads to patterns of space use that can be represented

as a “scale-free network”. In other words, it has rare “dominant

nodes” and very many “rarely visited” nodes, distributed in such a

way that the frequency of degree centrality scores has a predictable

log-log relationship. Gautestad shows that – when decomposed to a

node-to-node type – empirical data on black bear movements

(Ursus americanus) consistently show precisely the scale-free

properties expected by this memory-driven random walk. A

fascinating analogy is made with the global internet network,

which is also scale-free and therefore susceptible to targeted

attacks on dominant nodes. In similar ways, Gautestad makes an

unexpectedly applied conclusion: that the movements and habitat-

use of a free-ranging animal is structurally sensitive to disruptions

to dominant nodes of patch use. There is an implicit corollary to

this conclusion: if a movement track lacks these scale-free

properties, this may indicate a perturbation in “normal” memory-

inflected movement patterns.

Alavi et al. have a similar goal: to study the impact that simple

cognitive processes have on the spatial, topological, and statistical

properties of emergent movement tracks. Rather than focus, as

Gautestad, on patches (network nodes) Alavi et al. focus on routes

(network edges). They propose a set of metrics that can be
frontiersin.org
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computed directly from data that capture those properties related to

linearity, absolute directionality, and recursion rates. Using a set of

memory-driven simulations, the authors show the conditions under

which these patterns emerge, and finally apply the methods to a set

of four medium-sized tropical mammals moving in a forest in

Panama. The differences in the movement patterns of these animals

are striking, and well-captured by the metrics the authors proposed.

Those differences are then compellingly related to very specific

hypotheses about the kinds of learning and perceptual capacities

(another recurring theme) that the animals likely rely on.

Notably, both of these highly original analyses depend

entirely on the spatial properties of a movement track, without

any environmental covariates, or even particular regard to

displacement durations. Both lean on the fundamental fact that

movement tracks never actually really resemble the kinds of naïve

random movements that form the basis of most empirical

movement modeling. In an echo of Bracis and Wirsing, they

underscore the fact that a good amount of the structure of the

observed animal movements can, in fact, emerge from purely

intrinsic properties. Furthermore, they point to ways in which the

generally unobservable process of cognition can nevertheless be

inferred from movement data.
5 Empirical studies

Inferring cognitive process based on observational data of free-

ranging animals is a tremendous challenge (Lewis et al.).

Nevertheless, seven contributions to our Research Topic attempt
Frontiers in Ecology and Evolution 048
to do just that for a diverse set of taxa: three ungulate species (elk

Cervus elaphus, mule deer Odocoileus hemionus, and bighorn sheep

Ovis canadensis; Falcón-Cortés et al., Rheault et al., and Berger

et al.), 2 terrestrial carnivores (fisher Pekania pennanti and wolves

Canis lupus; Facka and Powell and Gurarie et al.), 1 flying mammal

(Egyptian fruit bat Rousettus aegyptiacus; Lourie at al.), and 1

swimming fish (salmon Oncorhynchus spp.; Goodwin et al.).

Rather than provide summaries of their findings (the authors do

that in their abstracts much better than we could here), we focus on

areas of notable overlap and divergence (Figure 1).

The processes analyzed in these studies span a range of taxa and

of spatio-temporal scales. But the fundamental question – at the

level of the individual – always boils down to: where to move? At the

extremes, Berger et al. predict seasonal migrations of sheep, while

Goodwin et al focuses on extremely fine-scaled (3 minute) decisions

made by fish in a highly dynamic environment. Rheault et al. and

Falcón-Cortés et al. deal with space use and selection within a

seasonal range – i.e. selection on a temporal scale of hours, while

Gurarie et al. and Lourie at al. examine selection of foraging sites on

the scale of diel departures from a den or roosting site. Lastly, Facka

and Powell were interested less in details of movement than in

large-scale interactions among conspecifics.

Six of the seven empirical contributions consider memory as a

potentially important driver of animal space-use patterns or

movement decisions and directly or indirectly provide a data-

informed estimate of a “memory coefficient”. The most

straightforward form of memory is captured as a tendency to

return to previously visited locations, with or without temporal

decay (Rheault et al., Falcón-Cortés et al., Lourie at al.). In all these
FIGURE 1

Venn diagram of seven empirical studies in the collection across three sets of commonalities. Three papers studied social interactions, four
leveraged inference from “naive” animals (translocated ungulates, reintroduced predators, juvenile fish migrating downstream); four used some form
of discrete choice modeling, whether choosing where to hunt, whether to migrate, where to move out of a discrete set of options.
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cases, accounting for that tendency improved the ability of

respective models to explain the data, or – equivalently – to

match some of its emergent properties. Others add additional

cognitive elements to simple attraction to previously visited

locations; thus Berger et al. explicitly account for and estimate

relevant perception ranges for decision-making, Gurarie et al.

model multiple conflicting streams of memory that positively or

negatively reinforce revisits, and Goodwin et al. incorporate

a complex hierarchy of immediate behavioral responses to

sensory input.

Three contributions are focused primarily on social drivers of

space use (Figure 1, red set); Lourie at al. evaluate alternative

hypotheses for foraging domain partitioning among neighboring

bat colonies, Facka and Powell examine how established home

ranges affected the formation of a newcomer’s home range, and

Berger et al. compare the relative importance of the effect of a social

group’s migratory culture to the effects of individual memory and

sensory information. Inference on social factors requires

simultaneous information on many individuals, an aspect that

most observational studies lack. Each of these studies were able to

examine these questions by using some innovation in their study

design. Lourie at al. applied high-resolution tracking technology;

they used a reverse-GPS system to track ~100 bats for an average of

24 days and at a resolution of 0.125 Hz (8 obs. x sec-1). Berger et al.

and Facka and Powell had the advantage of studying reintroduced

species (incidentally, both in the Sierra Nevada mountains) where

many (Berger et al.) or all (Facka and Powell) individuals

were tracked.

To varying degrees, four of the studies took advantage of naiveté

in the animals (Figure 1, green set). Facka and Powell, Berger et al.,

and Falcón-Cortés et al. leveraged the “uncontrolled experiment” of

releasing animals in novel environments (fisher reintroductions,

and sheep and elk translocations, respectively). Facka and Powell

had the further advantage of having tracked every reintroduced

individual, while Berger et al. augmented their observations with

the intensive monitoring associated with a high-profile

recovery program. Finally, the juvenile fish in Goodwin et al

were migrating downstream and entering environments and

conditions, like dams, that were completely novel to them.

Reintroductions and translocations – common means of

ecological restoration or rewilding, augmenting struggling

populations, or resolving human-wildlife conflicts – are of

incredible value for studying learning in particular (Lewis et al.).

Since relocated animals are naïve to the landscape they find

themselves in, no behaviors can be ascribed to specific prior

experience, only a moving set of expectations. The same is true of

dispersal events (which also describes the juvenile salmon

outmigration), which have the advantage of not requiring any

handling of animals. Dispersal events, however, are generally

much harder to detect in wild populations, mainly because they

are relatively rare and tend to occur among subadult males, an age-

sex class that is generally understudied by wildlife biologists and

managers whose focus is often on adult females. Nonetheless, as

tracking and monitoring efforts increase, dispersal events will be
Frontiers in Ecology and Evolution 059
ever more available for analysis of learning in movement (Barry

et al., 2020).

Two empirical contributions join the theoretical paper of

Gurarie et al. to focus on seasonal migration. Berger et al.

investigated why only some sheep migrate to lower elevation

ranges in the fall while others remain in high-elevation ranges.

Rheault et al. examined the effect of memory gained in the previous

year on the space use of deer returning to their seasonal ranges.

While not as tidy as translocations or dispersal events, seasonal

migration also has particular benefits with respect to cognition.

Beginning and end points of migrations are often well-known, or at

least identifiable from movement data, and questions can focus on

the repeatability of their selection. Furthermore, in some systems,

proximate drivers of migration are more or less known, e.g. niche

tracking or “green-wave surfing” (Merkle et al., 2016; Aikens et al.,

2017), providing a well-understood null model against which the

influence of perception or memory-driven choices can be

compared. Finally, given long-enough tracking durations, we may

have reasonable information on the animal’s prior knowledge and

experience, provides researchers a null expectation about what the

animal may or may not know. Studies where migratory animals are

translocated and tracked as they do (or do not) adopt the migratory

behavior, as was the case for several of the sheep in Berger et al., are

of particular value (see also Mueller et al., 2013; Jesmer et al., 2018).

With respect to methodology, four of the contributions

conducted some form of discrete choice analysis (Figure 1, blue

set), where observed movement ‘decisions’ are contrasted against

one or more alternative decisions that could have been made; e.g. to

migrate or not to migrate (Berger et al.), which foraging area to

move to (Gurarie et al., Falcón-Cortés et al.), or which “step” to take

(Rheault et al.). These discrete-choice models were applied directly

to observed data, and memory effects were assessed by including

prior experience as a predictive covariate of the choice made.

Discrete choice modeling is not often applied to wildlife studies,

but echoes a long history of experimental approaches for studying

memory and learning in animals (Tolman and Honzik, 1930;

Wilkie and Willson, 1992; Thorpe et al., 2004). In contrast, two

contributions constructed individual-based simulation models

where some of the parameters are informed by observed data, but

the simulation as a whole is tuned via likelihood-free (pattern-

oriented) alignment with observed emerging patterns (Lourie at al.;

Goodwin et al). Notably, Lourie at al. used the simulation-based

approach to draw inferences about the relative contributions of

individual memory vs. conformity, whereas Goodwin et al used it as

a predictive tool. Lastly, Facka and Powell leverage the incredible

strength of an experimental design: by simply comparing deliberate

introductions of fishers into areas with and without the presence of

conspecifics, a very strong signal of avoidance was detected without

the need for overly complex analytical machinery.

Gurarie et al. conclude their analysis with a proposed five point

checklist for the inference of memory driven processes from data on

movements of free-ranging animals: (A) an observable behavior

that might be driven by prior experiences; (B) identification of

experienced cues that might influence that behavior; (C) a cognitive
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model; i.e. a plausible functional relationship between movement

response A to experience B; (D) a statistical method (or pattern-

matching heuristic) to estimate the model C; and (E) a metric for

comparing the cognitive model against a non-cognitive model. It is

instructive to apply this checklist to other studies. For example: in

Berger et al. a sheep’s choice to migrate (A) is a consequence of

perception viewsheds (B) which predict the probability of migration

via a linear mixed model (C,D) which takes into account other

potential covariates, and can be compared against a suite of non-

cognitive models using maximum likelihood (E). Or, in Lourie at al.,

the observed property of spatially non-overlapping neighboring bat

colonies (A) is hypothesized to be a consequence of prior visitations

(B), a suite of agent-based models is developed to account for that

behavior (C) and emergent properties of those simulations are

compared to the observations (D) for agent-based simulations with

and without the memory component (E). The empirical studies in

this Research Topic checked off most, if not all, of these

requirements, indicating that the framework may be useful for

further empirical investigation into cognitive roots of movement.
6 Concluding remarks

Editing this Research Topic has reinforced our conviction that

the cognitive processes of perception, memory and learning are

fundamental to understanding any animal movements. But it may

still not be clear why wildlife practitioners should care. Here, it bears

noting that in two of the empirical studies (Rheault et al., Falcón-

Cortés et al.) where time-scales of memory were estimated, memory

was essentially infinite, consistent with prior findings (e.g., Avgar

et al., 2015). Similarly, in both of the heuristic contributions (Alavi

et al., Gautestad), the essential argument was that fundamental

patterns of movements can be explained almost entirely by

memory. These results suggest that, at least in some cases, the

most effective way to predict where an animal might show up (an

important goal for monitoring, conservation, and management) is

not to model movement against some complex set of habitat

covariates, but to simply study where the individual has been

before. With that in mind, the global reality is that environmental

conditions for many populations are changing extremely rapidly,

whether through disturbance, habitat fragmentation, or climate

change. These rapid changes put major pressures on the

adaptability and behavioral plasticity of organisms. Or, to apply

the jargon (and some of the paradigms) of animal cognition, the

question of a population’s persistence can be summarized as its

ability to modify a reference memory with updated working

memories, such that the resulting behavioral innovations are

adaptive with respect to fitness.

The two foundational models that underlie much of

theoretical animal movement ecology are almost diametrically

opposed. On the one extreme, the random walk (Berg, 1993;

Turchin, 1998; Codling et al., 2008) assumes that animals move

blindly and completely randomly in a restricted, slow to “diffuse”

manner. On the other extreme, the ideal-free distribution (Fretwell

and Lucas 1969; Kr ̌ivan et al., 2008; Avgar et al., 2020) assumes
Frontiers in Ecology and Evolution 0610
that completely omniscient and optimal animals can appear

anywhere and anytime, distributing themselves in proportion to

resource availability. The reality is, of course, somewhere between

the two: real animals in real-life scenarios are capable of moving in

directed and informed ways, but not at infinite speed, and only

with partial information about the environment. Cognitive

movement ecology can be viewed as an essential bridge between

these theoretical constructs. What does it mean to be partially

informed? How does an organism act on that partial information?

And how does it distribute itself through space, given its goals and

given its constraints? How, in the end, do organisms manage to

navigate, survive, even thrive in environments that are complex,

heterogeneous, and dynamic? These questions, which are very

much the realm of cognitive movement analysis, are also at the

very foundation of animal ecology.
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Cognition, defined as the processes concerned with the acquisition, retention and use of
information, underlies animals’ abilities to navigate their local surroundings, embark on
long-distance seasonal migrations, and socially learn information relevant to movement.
Hence, in order to fully understand and predict animal movement, researchers must
know the cognitive mechanisms that generate such movement. Work on a few model
systems indicates that most animals possess excellent spatial learning and memory
abilities, meaning that they can acquire and later recall information about distances and
directions among relevant objects. Similarly, field work on several species has revealed
some of the mechanisms that enable them to navigate over distances of up to several
thousand kilometers. Key behaviors related to movement such as the choice of nest
location, home range location and migration route are often affected by parents and
other conspecifics. In some species, such social influence leads to the formation of
aggregations, which in turn may lead to further social learning about food locations
or other resources. Throughout the review, we note a variety of topics at the interface
of cognition and movement that invite further investigation. These include the use of
social information embedded in trails, the likely important roles of soundscapes and
smellscapes, the mechanisms that large mammals rely on for long-distance migration,
and the effects of expertise acquired over extended periods.

Keywords: cognition, expertise, philopatry, spatial learning, social learning, navigation

INTRODUCTION

The factors necessary for maximizing growth, survival and reproduction vary in time and space.
To accommodate this temporal and spatial variation, most animals possess the physical means
for moving toward beneficial resources and away from harm. In addition to the ability to move,
however, animals must frequently decide about the timing, direction and duration of movement
as well as its final destination. To make such decisions, animals rely on their cognitive system,
which consists of the structures and processes concerned with the acquisition, retention and use
of information (Dukas, 2004, 2017). Research in the past few decades has integrated mechanistic
information on animal cognition with functional knowledge on animal ecology and evolution
(Dukas, 1998; Dukas and Ratcliffe, 2009; Morand-Ferron et al., 2016; Ratcliffe and Phelps,
2019). Our contemporary understanding of animal cognitive ecology, however, is still not well
incorporated within the field of movement ecology.
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Scientists across a wide range of disciplines have engaged
in insightful research on organismal movement for a long
time. Examples range from laboratory analyses of movement in
bacteria at the micrometer scale (Adler, 1976; Koshland, 1980;
Eisenbach and Lengeler, 2004) to field work on whale migration
over thousands of kilometers (Pike, 1962; Rasmussen et al., 2007).
The young field of movement ecology adds to this knowledge by
relying both on new technologies for monitoring natural animal
movement over vast areas, and on modern computational tools
for analyzing the large data sets acquired through automated
tracking (Nathan et al., 2008; Abrahms et al., 2021). Only recently,
however, movement ecology has increased the consideration of
animal cognition (Fagan et al., 2013, 2017; Avgar et al., 2015;
Lewis et al., 2021), an approach that typically requires controlled
experimental settings.

Animal cognition can be divided into a few interconnected
categories. The first component is perception, which involves
capturing information from the environment and converting
it into internal representations retained by neuronal networks.
Information acquisition is carried out by receptors specialized
to capture cue attributes emitted by or associated with relevant
objects including patterns of reflected light, sound, odors, flavors
and texture. Newly acquired information may either fade away
immediately, remain for brief periods, or consolidate into
long lasting internal representations that can persist for many
years. The process of adding new representations into neuronal
networks is termed learning, and the information retained is
referred to as memory. The only utility of information acquisition
and retention is to determine and execute action. To this end,
individuals have to continuously assess relevant environmental
features and their experience to decide about their subsequent
action (Rolls, 2014; Anderson, 2015; Dukas, 2017).

The framework of movement ecology laid out by Nathan
et al. (2008) clearly recognized the crucial role of cognition in
general and navigational abilities in particular for the obvious
reason that cognition underlies all animal decisions regarding
when and where to travel. Although one can study movement
while ignoring its underlaying internal mechanisms, a thorough
understanding of individuals’ movement decisions requires us to
quantify the cognitive processes that drive them. Chief among
the cognitive abilities relevant to animal movement are the
mechanisms that enable spatial orientation. Such mechanisms
allow individuals to both navigate their local surrounding while
engaging in their daily routines, and to undertake long-distance
seasonal migrations.

To keep our review within the space constraints, we will
focus here on experimental research in birds and mammals as
these groups have been the subject of most studies in movement
ecology. While we will aid our analyses with a few examples from
insects, we cannot encompass here the rich body of research on
insect navigation (Dyer, 1998; Collett and Collett, 2002; Wehner,
2020). Our review has five parts. In the first two sections, we focus
on individual cognition and ignore social influences. First, we
discuss the roles of learning and memory in movements within
the local settings of one’s home range. Second, we take the broader
perspective of the innate mechanisms, learning and memory
involved in long-distance movements typically associated with

seasonal migration. Most birds and mammals have parental
care, many species live in groups (Wilson, 1975; Clutton-Brock,
2016), and even the ones classified as solitary show rich social
interactions (Caro, 1994; Elbroch et al., 2017). Hence, our third
section assesses the multiple effects of the social environment
on the cognitive features that guide movement. The fourth
part briefly integrates the previous three sections to address the
understudied topic of animal expertise, defined as the traits that
enable individuals to show superior performance after a long
period of individual and social learning (Dukas, 2019). Finally,
our prospects section focusses on a few suggestions for promising
research at the interface of cognition and movement.

INDIVIDUAL LEARNING AND MEMORY
WITHIN THE HOME RANGE

Most animals can benefit from learning about the attributes
of relevant environmental settings, resources and individuals.
Examples include food sources, shelters, temperature, predators
and other hazards, kin, social partners, competitors, and
prospective mates. Key features associated with such variables
include unique, identifying cues such as odor, color, sound, taste,
size and shape, and their location in space and time. It is thus
not surprising that all animals subjected to critical experimental
tests show learning when tested under the controlled conditions
designed to distinguish learning from relevant alternatives
(Dukas, 2008a, 2017). Critical evidence for learning, however,
requires strict experimental protocols because learning can only
be inferred indirectly through a change in behavior. This means
that one has to carefully rule out non-learning alternatives
including changes in perception, satiation, physiology, and
motivation. For example, while GPS movement data on a single
mule deer (Odocoileus hemionus) suggested reliance on spatial
memory (Jakopak et al., 2019), the study could not critically
rule out alternatives including the use of trails or other cues,
or following other individuals. Nevertheless, evidence such as
the ability of an individual to return to its summer range
after moving about 100 km away is instructive regardless of
the mechanism employed. That is, we encourage researchers to
modulate their vocabulary based on their evidence where the
settings and priorities do not allow for critical tests of learning.
Additionally, future research may continue to develop protocols
that allow critical tests of cognitive abilities in the field (Morand-
Ferron et al., 2016). We provide examples of such field tests
throughout our review.

Most relevant for movement ecology is animals’ abilities
to learn and remember the spatial locations of resources and
individuals. Spatial learning and memory merely means having
the ability to acquire and later recall information about distances
and directions among relevant objects. This allows individuals
to navigate, i.e., find their way among these objects. Controlled
laboratory studies indicate robust spatial learning and memory in
key model systems including fruit flies (Drosophila melanogaster)
(Ofstad et al., 2011) and rats (Rattus norvegicus) (O’Keefe and
Dostrovsky, 1971; Moser et al., 2008). Many field studies over the
past several decades, which included controlled experiments as
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well as observations using individually tagged individuals, have
revealed exceptional navigational abilities in honey bees (Apis
mellifera) (von Frisch, 1967; Seeley, 1996; Dyer, 1998; Menzel
et al., 2005; Riley et al., 2005). In addition to routinely traveling to
flower patches up to several km away from their nests, honey bees
communicate to nestmates the direction and distance to both
flower patches and prospective new nests (Dyer, 2002; Visscher,
2007). These skills allow honey bees to dynamically adjust to
changes in the spatial and temporal distribution of floral rewards,
and to locate the best locally available tree cavities for new
nests (Visscher and Seeley, 1982; Beekman and Ratnieks, 2000;
Steffan-Dewenter and Kuhn, 2003; Seeley, 2010).

It is fair to assume that all birds and mammals possess
spatial learning and memory as good as or better than that
experimentally demonstrated for honey bees in the field.
Controlled laboratory and enclosure studies typically confined to
up to several meters indeed demonstrate excellent spatial learning
and memory in a variety of birds and mammals (e.g., Morris,
1981; Sherry et al., 1981; Balda and Kamil, 1992). Much of the
field work is either limited or suggestive owing to the lack of
a large body of controlled experiments. A notable exception
is the homing pigeon (Columba livia domestica) discussed in
the section below (Wallraff, 2005; Wiltschko and Wiltschko,
2015).

Consider the following example for study design that has
enabled strong inference on cognitive processes. A well controlled
field study (Edwards et al., 1996) tested spatial memory in
domestic sheep (Ovis aries) in a 30 by 45 m pasture. There was
a grid of 4 by 8 plastic bowls with randomly chosen 4 bowls
containing food pellets (Figure 1A). The food could not be seen
until a sheep was within 0.5 m of the bowl. Each sheep was
tested individually 11 times over about a week. In trials 1–6, the
position of the bowls containing food remained constant, and
sheep reduced the number of bowl visits required to locate the
four bowls containing food (Figure 1B). In trial 7, half the sheep
had no food in any bowl, and half the sheep had food in four new
randomly chosen bowls. This probe trial tested whether sheep
relied on spatial memory or on cues emanating from the food.
The sheep in both groups mostly searched first in the four bowls
that had previously contained food and then searched randomly
among the other bowls. This resulted in no change in the number
of visits needed to locate the previously food-containing bowls
in the no-food group, and in a large increase in the number of
visits needed to locate the four new food containing bowls in the
location-switching group (Figure 1B). Trials 8–10 consisted of
retraining, where the no-food group from trial 7 received food
again in the same bowls as in trials 1–6, while the location-
switching group received food at the same bowls as in trial
7. Sheep from the previously no-food group maintained their
small number of visits required to locate the four food bowls,
while sheep from the location-switching group reduced again
the number of visits required to find the new locations of the
four food bowls (Figure 1B). Trial 11 tested spatial memory after
longer than the retention period of 12 h used previously. Here half
the sheep were tested after 24 h while the other half were tested
after 72 h. Both groups showed the same high performance as in
the earlier trials (Figure 1B). The sheep study illustrates how one

FIGURE 1 | (A) The layout of food bowls in the sheep spatial memory
experiment. Open circles illustrate empty bowls while filled circles depict the
four bowls containing food. (B) The mean ± SE number of visits required to
locate all food bowls. In trials 1–6, the food was always in the same 4 bowls.
In trial 7, half the sheep encountered food in 4 new bowls (�) and these bowls
also contained food in trials 8–11. The other half of the sheep encountered no
food in any bowl in trial 7 (�) and had food in the same bowls as in trials 1–6
in trials 8–11. In trial 11, half the sheep were tested 24 h after trial 10, and the
other half were tested 72 h after trial 10. The asterisks indicate visit numbers
statistically different from random search in tests conducted in trials 1, 2, and
8. Data from Edwards et al. (1996).

can critically assess spatial memory in the field. Similar work may
be conducted at larger spatial scales with a variety of wild animal
populations that are habituated to feeding near humans.

INNATE BEHAVIOR, INDIVIDUAL
LEARNING AND MEMORY IN SEASONAL
MIGRATION

Seasonal migration occurs in nearly all major animal groups.
Traveling to exploit favorable conditions (e.g., food, warmth,
or mates) and escaping adverse conditions (e.g., parasitism,
predation, or competition) is a beneficial strategy that many
animals adopt (Avgar et al., 2014; Somveille et al., 2015).
To make navigational decisions during migration, animals use
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FIGURE 2 | Illustrated phases of long-distance navigation. (A) During the long-distance phase, individuals rely on celestial and magnetic cues as well as on large
landmarks such as mountains, lakes, and coastlines. (B) During the homing phase, gradients, landmarks, and compasses are important. (C) During the
pinpointing-the-goal phase, residential cues including beacons and the goal itself are valuable. Figure from Mouritsen (2018) with permission.

a combination of innate instructions, information they have
previously learned either individually or gleaned from others,
and cues they currently perceive (Spiegel and Crofoot, 2016).
Seasonal migration consists of three phases in which animals use
different cues to navigate (Mouritsen, 2018; Figure 2). During the
long-distance phase, animals navigate using innate and learned
information, and global/regional cues (Schmidt-Koenig, 1990;
Gwinner, 1996). In the narrowing-in/homing phase, animals use
compasses and landscape information (O’Keefe and Nadel, 1978;
Toledo et al., 2020). For the pinpointing-the-goal phase, animals
follow specific landmarks near the goal or the goal itself. We
will focus on species that live long enough to partake in multiple
migrations throughout their lives, providing good opportunity to
discuss cognitive processes beyond innate instructions.

The vast literature on animal migration has revealed a
multitude of innate mechanisms and learned features that guide
individuals toward their long-distance goals. The number and
complexity of processes involved as well as the variation among
species precludes simple generalizations. We thus detail below
several key elements. We will first assume no social interactions
and focus on the combination of innate mechanisms and
individual learning that guide navigation. Then we will discuss
in the subsequent section social influences and social learning,
which are prevalent in many species.

Compass Orientation
In many cases, orientation toward a long-distance goal can
be aided by a compass mechanism. The three compasses—
magnetic, sun, and stars—provide simple directional information
regardless of the current location (Wiltschko and Wiltschko,
2015). Migratory birds, especially inexperienced individuals,

rely on compasses during the long-distance and homing
phases of long-distance movement (Mouritsen, 2018). The
avian magnetic compass is primarily innate (Wiltschko and
Gwinner, 1974), while celestial compasses are primarily learned
(Wiltschko and Wiltschko, 1980; Michalik et al., 2014).
Birds typically use one compass mechanism to calibrate
another (Pakhomov and Chernetsov, 2020). For example, night-
migratory songbirds update their star compass using their
magnetic compass as a reference (Wiltschko and Wiltschko,
1975). Subsequently, the calibrated star compass can be used
independently (Wiltschko and Wiltschko, 2015).

Information from multiple compasses is usually available
concurrently, depending on the season, time of day, weather,
and magnetic anomalies. Currently, there are various conflicting
theories regarding the hierarchy of the compasses used for
orientation (Johnsen et al., 2020; Pakhomov and Chernetsov,
2020). When multiple cue types are available, birds likely
have preferences for which one to follow based on individual
experience, current environment, and distance to their goal
(Munro and Wiltschko, 1995; Wiltschko and Wiltschko, 2015;
Chernetsov, 2017). If an in-use compass becomes unreliable,
birds switch to cues with more accurate readings. For example,
pigeons initially rely on magnetic cues, then attempt to
compensate for disorientation during magnetic anomalies or
experimental disturbance using celestial cues (Keeton, 1971;
Ioalé, 1984; Wiltschko and Wiltschko, 2001; Schiffner et al., 2011).

Magnetic Compass
Geomagnetic fields stretching from poles to equator remain
relatively consistent over animals’ lifetime, making them
informative for determining direction. Birds may rely on a few
features of magnetic fields including intensity (strength of the
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magnetic field), inclination (the angle between the magnetic
field and earth surface), direction (polarity), and declination (the
difference between true north and magnetic north) (Wallraff,
2005; Wiltschko and Wiltschko, 2005, 2015; Mouritsen, 2018).
While much of the research on magnetic compasses has
been done in birds, there is growing evidence that mammals,
specifically rodents and bats, also possess a magnetic compass
(Holland et al., 2006, 2010; Oliveriusová et al., 2012, 2014; Finn,
2021). Some large terrestrial mammals can spontaneously align
their bodies with magnetic fields (Begall et al., 2013; Obleser et al.,
2016; Painter et al., 2016; Červený et al., 2017), but it is unclear if
they use an established magnetic compass for navigation.

Birds inherit their ability to sense magnetic inclination
(Wiltschko and Wiltschko, 1972, 2005; Wiltschko and Gwinner,
1974). In some cases, they must calibrate this compass using
celestial cues (Able and Able, 1990; Cochran et al., 2004), or vice
versa (Muheim et al., 2007, 2009). Magnetic compass orientation
is dependent on the presence and wavelength of light (Wiltschko
W. and Wiltschko R., 1981; Muheim et al., 2002), although
night-migratory songbirds require less light than diurnal birds
(Wiltschko and Wiltschko, 2015). The avian magnetic compass
works in a functional magnetic intensity window; increasing or
decreasing the magnetic strength by 25–30% is disorienting, until
birds establish a separate functional window (Wiltschko, 1978;
Wiltschko and Wiltschko, 2015). Because magnetic field intensity
changes through space, an adjustable compass is advantageous for
long-distance movements (Wiltschko and Wiltschko, 2015).

Solar Compass
The temporal cycles and perceived movement of the sun make
it an excellent guide for orientation (Guilford and Taylor,
2014). Solar cues are valuable during the long-distance phase of
movement (Wiltschko and Wiltschko, 2015; Mouritsen, 2018).
Birds may use polarized light cues or the azimuth of the sun
itself (Munro and Wiltschko, 1995; Wiltschko and Wiltschko,
2015; Muheim et al., 2016). The sun compass requires learning in
juvenile birds. Pigeons establish their sun compass before they are
12 weeks old, while early experience flying can accelerate learning
to 8–10 weeks (Wiltschko and Wiltschko, 1981).

Birds must integrate the sun’s movements into their internal
clock to orient themselves based on their perceived time-of-
day (Wiltschko and Wiltschko, 1980, 1981; Schmidt-Koenig,
1990; Schmidt-Koenig et al., 1991; Åkesson et al., 2017). The
integrated sun compass and internal clock must constantly
be updated to account for daily and seasonal changes in the
perceived location of the sun (Wiltschko and Wiltschko, 2015).
Improper synchronization between the internal and sun compass
is disorienting. For example, pigeons under experimental settings
in which the light-dark cycles were shifted 6 h ahead flew
90 degrees counter-clockwise compared to control pigeons
(Schmidt-Koenig, 1958). Once individuals recognize that their
compass is shifted, they resynchronize their sun compass and
internal clock. Such synchronization occurs naturally when birds
travel to different locations (Schmidt-Koenig, 1958; Wiltschko
et al., 1998). Yet in some cases, following the sun compass without
updating it can be advantageous. Arctic shorebirds such as
the American golden plover (Pluvialis dominica), semipalmated

sandpiper (Calidris pusilla), pectoral sandpiper (C. melanotos),
and the white-rumped sandpiper (C. fuscicollis) migrate without
synchronizing their internal clock and sun compass. At high
altitudes, non-stop flights attuned to the sun compass result in
orthodomes, traveling the shortest distance between two points
on a sphere (Alerstam et al., 2001).

Star Compass
The other celestial compass, which is based on stars, provides
direction for nighttime navigation. Night-migratory songbirds
learn to locate a north-south directional axis based on the
fact that stars closer to the celestial axis move through smaller
arcs (Emlen, 1970). In order for night-migratory songbirds to
learn the compass, they require 2–3 weeks of exposure to a
rotating star pattern (Able and Able, 1990; Michalik et al., 2014).
Learning occurs during the pre-migratory period before autumn
(Emlen, 1970, 1972), but can take place the following spring if
needed (Zolotareva et al., 2021). Star patterns change seasonally
because of the earth’s rotation around the sun, so migrating birds
must regularly update their celestial information (Wiltschko and
Wiltschko, 2015). On the other hand, because birds learn the
celestial axis rather than the time-dependent celestial location
of stars, shifting birds’ internal clock does not affect their star
compass orientation (Emlen, 1970; Mouritsen and Larsen, 2001;
Pakhomov et al., 2017). Once a star compass is established, it can
be used independently of magnetic and solar cues.

Vector Navigation
Long-distance movement poses a considerable challenge for
young, inexperienced individuals. First year avian migrants
either follow experienced individuals (see Social Learning section
below) or use vector navigation (Gwinner, 1996; Bingman and
Cheng, 2005; Mouritsen, 2018). Vector navigation, also called
the clock-and-compass strategy, uses at least one compass and a
set of genetically encoded instructions for direction and distance
rooted in their internal clock (Mouritsen et al., 2016). Garden
warblers (Sylvia borin) deprived of any seasonal cues for a
year displayed migratory restlessness only at the appropriate
temporal windows for spring and fall migrations (Gwinner,
1996). The inherited migratory instructions are population
specific. Crossbreeding individuals from separate populations
with distinct migration routes results in hybrid offspring with
intermediate migration patterns (Berthold and Querner, 1981;
Helbig, 1991).

Circadian and circannual clocks are responsible for the
onset, distance (duration), and direction of migration (Gwinner,
1996). Before learning alternative navigation strategies, naïve
individuals rely on genetic instructions, effectively demonstrated
by displacement experiments. Experienced birds can correct for
displacement over extraordinary distances, while inexperienced
juveniles typically fail to do this (Perdeck, 1958). For example,
in an experiment involving the displacement of juvenile and
adult white-crowned sparrows (Zonotrichia leucophrys gambelii),
adults corrected for displacement by adjusting their route
toward their usual wintering grounds. Juveniles neglected to
reorient themselves, flying in the direction of the expected
migration route (Figure 3; Thorup et al., 2007). Juveniles fail
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FIGURE 3 | Last observed direction of white-crowned sparrows after
experimental displacement east of their location. Adults (blue, large arrow is
the average) correctly reoriented southwest toward their original wintering
grounds, exhibiting true navigation. Juveniles (red, large arrow is the average)
failed to reorient, continuing southward using vector navigation. Based on
Thorup et al. (2007).

to correct for displacement not because they lack that ability,
but because they lack information required for compensation
(Wiltschko and Wiltschko, 2015).

In some instances, juveniles can correct for displacement.
Surprisingly, juvenile blackcaps (Sylvia atricapilla), willow
warbles (Phylloscopus trochilus) and garden warblers could
reorient themselves after experimental or natural displacement
during their first migration to an unfamiliar goal (Thorup
et al., 2011). Likewise, some juvenile common cuckoos (Cuculus
canorus) corrected for experimental displacement at the same
level as adults, traveling toward their expected wintering grounds
(Thorup et al., 2020). These compensation mechanisms toward
an unfamiliar goal remain unclear—juveniles may be following
magnetic cues or using inherited signposts, which are discussed
next (Thorup et al., 2011, 2020).

Signposts
Signposts are markers that trigger specific responses that aid in
navigation (Wiltschko and Wiltschko, 2005; Freake et al., 2006).
Behavioral responses to signposts can be genetically encoded or
imprinted. Various species respond to signposts. These include
birds (Beck and Wiltschko, 1988; Fransson et al., 2001), turtles
(Lohmann et al., 2001), eels (Schabetsberger et al., 2016; Naisbett-
Jones et al., 2017), salmon (Putman, 2015; Scanlan et al., 2018)
and lobsters (Boles and Lohmann, 2003). Signature magnetic and
physical properties act as signposts. Examples include region-
specific magnetic intensity, temperature, odor, water salinity
or currents (e.g., Fransson et al., 2001; Schabetsberger et al.,
2016). For example, particular magnetic intensities can trigger
animals to change directions during migration (Putman, 2015;
Naisbett-Jones et al., 2017; Scanlan et al., 2018), reorient
themselves to avoid ecological barriers and dangerous conditions

(Beck and Wiltschko, 1988; Lohmann et al., 2001), or land at
stopover sites for refueling (Fransson et al., 2001).

True Navigation
True navigators are individuals that can navigate to a goal
after being displaced to an unknown location, at an unknown
distance and direction (Griffin, 1952; Kramer, 1953; Keeton,
1974; Able, 2001; Thorup et al., 2007, 2020; Wikelski et al.,
2015; Kishkinev et al., 2021). True navigation allows individuals
to reach their goal when familiar landscape information is
absent. Animals must determine their geographic location,
then orient themselves toward the goal using a compass
(Griffin, 1952). As mentioned in the vector navigation section
above, displaced adult white-crowned sparrows flew toward
their usual wintering grounds, exhibiting true navigation, while
inexperienced juveniles relied on vector navigation, flying
according to genetically encoded instructions (Thorup et al.,
2007). Bi-coordinate position fixing, that is, navigation using at
least two gradients, is a prerequisite for true navigation (Griffin,
1952; Freake et al., 2006). True navigation involves at least
one compass and gradient-based or location-based navigation
discussed in the section below.

Navigation Based on Learning and
Memory
Animals may learn distinct information for guiding their
navigation. Such learning may be egocentric, meaning that it is
based on the animal’s own movement, or exocentric, implying
that it is based on features of the landscape (Klatzky, 1998). Based
on the type of information learned, one can distinguish among
four non-mutually exclusive navigation strategies (Fagan et al.,
2013) detailed in the four sub-sections below (Figure 4).

Route-Based Navigation
During route-based navigation, also called path integration
(Figure 4A), individuals record their movements relative to the
starting point using a compass and return by reversing their
net outward movements (Schmidt-Koenig, 1975; Wiltschko and
Wiltschko, 2000, 2015; Wallraff, 2005; Fagan et al., 2013; Bidder
et al., 2015). Learning is egocentric and structured around self-
movement, thus the individual does not need to be familiar
with the landscape because landmarks are not required (Wehner
et al., 1996; Kimchi et al., 2004). Route-based navigation is
a cognitively simple strategy that requires little memorization
(Mittelstaedt and Mittelstaedt, 1982; Wehner and Wehner, 1986;
Fagan et al., 2013). Additional distance and turns increase
the cognitive demand of keeping track of the route, leaving
more room for mistakes. Thus, we can expect route-based
navigation to be used at smaller scales. During route-based
navigation, individuals acquire information of the unfamiliar
area en route to build their exocentric navigation strategies
(Wiltschko and Wiltschko, 2015).

Location-Based Navigation
In location-based navigation (Figure 4B), one learns
the spatial relationships between landmarks and goals
(O’Keefe and Nadel, 1978; Bingman and Cheng, 2005; Wallraff,
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FIGURE 4 | Types of memory-based navigation. (A) In route-based navigation, the individual sums the distance and direction of its outward movements to estimate
its current position and take a direct path to its starting point. (B) In location-based navigation, the individual memorizes spatial relationships between landmarks and
goals. (C) In beacon-based navigation, specifically pilotage, the individual follows sequential landmarks leading to the goal. (D) In gradient-based navigation, the
individual navigates with memorized gradients. In this illustration, both gradients are magnetic (solid and dash lines), with a magnetic anomaly in the southeast
corner, which could initially disorient the individual. The scale of D is over 1000 km. Created with BioRender.com.

2005; Fagan et al., 2013; Wiltschko and Wiltschko, 2015;
Toledo et al., 2020). This strategy may use simple memory
snapshots (Cartwright and Collett, 1982; Alert et al., 2015)
or complex cognitive representations of space (Bingman and
Cheng, 2005). A compass is required for learning geographical
directions in relation to landmarks (Wiltschko and Wiltschko,
1982, 2015). Although learning spatial relationships between
landmarks and goals can produce a heavy memory load,
repeated experience moving throughout the landscape should
reinforce these memories, reducing cognitive load. Migratory
animals probably learn spatial information at a larger scale
but lower acuity compared to non-migratory navigators

(Bingman and Cheng, 2005). This navigation technique is
valuable during the homing phase of long-distance movement.

Beacon-Based Navigation
Individuals using the beacon-based strategy (Figure 4C) are
guided to their goal by at least one familiar beacon, which is a
landmark near the goal (Papi, 1992; Biro et al., 2004; Wallraff,
2005; Fagan et al., 2013; Wiltschko and Wiltschko, 2015). This
includes traveling toward the goal itself or following a series of
landmarks to reach the goal (Collett et al., 1986, 1992; Steck
et al., 2009; Guilford and Biro, 2014; Yovel and Ulanovsky, 2017).
While exploring unfamiliar areas, individuals use a compass to
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navigate until they learn which landmark(s) lead them to their
goal. Once they have established a route, compasses become
unnecessary as they can follow the landmark(s) directly (Papi,
1992; Biro et al., 2007; Guilford and Biro, 2014). Beacon-based
navigation is most applicable during the homing and pinpointing
phases of long-distance movement, as landmarks are typically too
small to perceive at long distances, with the exception of massive
geographical features such as coastlines or mountains.

Gradient-Based Navigation
Individuals that rely on gradient-based navigation (Figure 4D)
have to learn perceptual signatures of at least one feature
that changes gradually over space (e.g., magnetic or olfactory
gradients) (Bingman and Cheng, 2005; Wallraff, 2005; Fagan
et al., 2013; Wiltschko and Wiltschko, 2015). Navigating using
gradients requires a compass (Wiltschko and Wiltschko, 2015).
Magnetic cues provide both compass orientation and gradient-
based navigational information through different perceptual
mechanisms—interfering with magnetic cues for one does not
impair the other (Munro et al., 1997; Deutschlander et al., 2012;
Holland and Helm, 2013; Chernetsov et al., 2017). Gradients
are functional during the homing phase and can be projected
to longer distances beyond an individual’s experience (Gagliardo
et al., 2013; Wikelski et al., 2015). For example, birds learn
the features of the magnetic field throughout their home or
migratory range, then extrapolate that information to spatial
scales beyond what they have experienced (Figure 5; Thorup
et al., 2007; Kishkinev et al., 2021). Extrapolated gradients
are not always accurate representations of nature (Wallraff,
2005). Individuals extrapolate to unknown locations based on
memory of familiar gradients, leaving unfamiliar anomalies
and gradient changes unaccounted for, which could result in
navigation miscalculations. For instance, individuals displaced to
the northwest corner of Figure 5A would move away from their
true home because their extrapolated gradient is signaling them
to fly in the opposite direction (Wallraff, 2005).

Selecting a Navigation Strategy
Strategies of navigation vary among species. In species that
employ multiple strategies, their use depend on individual
experience, preference, available information, distance from
the goal, and energy expenditure (Filannino et al., 2014;
Green et al., 2020). Furthermore, animals may use multiple
navigation strategies simultaneously (Wiltschko and Wiltschko,
2015). Navigation strategies driven by landscape familiarity
(location-, beacon-, or gradient-based, Figure 4) are generally
preferred over route-based navigation (Wiltschko and Wiltschko,
2015), likely because these strategies are less prone to errors,
and allow for short cuts and course corrections. Pigeons
using gradient-based navigation modified their route depending
on their current motivational state. Food deprived pigeons
released at an unknown location flew to a known food
source, while satiated pigeons released at the same location
flew to their home loft (Blaser et al., 2013). Contrarily,
route-based navigation does not allow individuals to revise
their goal, and displacing individuals is disorienting, as their
reversed net outward movements no longer lead to the return

point (Müller and Wehner, 1988; Andel and Wehner, 2004). If
information necessary for a preferred strategy is unavailable,
animals revert to a simpler feasible navigation technique. For
instance, rats revert to route-based navigation when beacons are
unavailable (Shettleworth and Sutton, 2005).

Synthesis
Notwithstanding our precautionary note that both the multitudes
of complex processes involved in navigation and the variation
among species preclude simple generalizations, we wish to end
this section with a synthesis. In many species, naïve individuals
traveling alone can successfully execute long-distance migration
based on innate instructions and one or more compasses. All
three compasses typically include innate as well as learned
information. Overall, navigation is greatly enhanced by learning,
which may be solely based on an individuals’ own movement, but
typically also on a variety of environmental features including
landmarks and gradients. Furthermore, individuals in many
species acquire information related to navigation from others, a
topic we discuss next.

SOCIAL INFLUENCES AND SOCIAL
LEARNING

The traditional separation of animals into solitary and social
species is rapidly fading as we learn to appreciate the
sophisticated social skills of animals historically classified as non-
social (Costa, 2006; Durisko and Dukas, 2013; Elbroch et al.,
2017). It is fair to assume that individuals in most species can
gain from information gleaned from conspecifics, and that such
information may guide their movements. Social influence merely
means that a focal’s behavior is affected by the presence, activity,
or cues left by other individuals. Social learning means that a
focal acquires novel information based on the presence, activity,
or cues left by other individuals. As we discuss below, a dominant
source of information that young individuals should attend to is
parents and other old individuals. While we focus here on species
with parental care, direct or indirect cues left by parents are
highly relevant in species in which young do not encounter their
parents (Dukas, 2010). We begin by discussing philopatry and the
importance of trails. We then review collective navigation, and
the use of social learning for decisions regarding home range and
migratory movement.

Philopatry
In birds and mammals, newborn rely on their parents for
food and protection. When young are sufficiently mature, they
typically travel farther from their nest or shelter and often follow
their parents. The duration of parental feeding of fledgling varies
widely among birds and is positively associated with the duration
of practice required for reaching some threshold of foraging
proficiency (Ashmole and Tovar, 1968; Heinsohn, 1991; Hunt
et al., 2012). In mammals, post-weaning maternal care is brief
in short-lived species but can last for years in long lived species
(Clutton-Brock, 2016). At least in carnivores, the long duration
of post-weaning maternal care is related to the low learning rate
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FIGURE 5 | An example of true and extrapolated magnetic gradients. A single gradient is showed for simplicity with positive (dashed line) and negative (solid line)
values, on a scale over 1000 km. (A) True magnetic gradient values surrounding the individual’s home (black dot) and its familiar range (red circle). (B) The individual
extrapolates gradients based on experience, and incorrectly anticipates the gradient in the northwest and southeast corners. Based on Wallraff (1985).

associated with challenging hunting skills (Caro, 1994; Wachter
et al., 2017). While there is wide variation among species, in
the vast majority of birds and mammals, young have ample
opportunities to learn many features of their natal environment
including the food types preferred by their parents, foraging
skills, and the spatial locations of food, shelters, and hazards
(Slagsvold and Wiebe, 2007, 2011).

In most species, a large proportion of individuals do not
reach reproductive maturity. Of those that reproduce, a large
proportion of parents fail to lead their offspring to independence
owing to either predation or starvation (Clutton-Brock, 1988).
Hence the fact that young have reached independence is
a solid evidence that their parents have chosen well their
natal environment. Given their likely lack of knowledge about
alternative sites and the costs of acquiring such information, the
young should copy their parents’ choice and show philopatry
where possible (Stamps et al., 2009). Several other factors that
promote philopatry include advantages of familiarity with biotic
and abiotic features of the natal habitat, improvements to the
environment by previous generations such as reusable burrow
systems, tree cavities and trails, and the mortality risk associated
with exploration of novel areas (Waser and Jones, 1983). Indeed,
philopatry is prevalent in both birds and mammals (Greenwood,
1980; Waser and Jones, 1983).

A large cross fostering study tested the effects of early
social experience on natal habitat preference in pied flycatchers
(Ficedula hypoleuca) in Spain. Pied flycatchers are long-distance
migrants who breed throughout Europe but spend the winter
south of the Sahara. The experiment involved cross fostering
nestlings between nests in a coniferous habitat and nests in
a deciduous habitat one km away and, as a control, cross
fostering nestling within each of the two distinct habitats. Most
returning young birds came to the forest patch from which
they had fledged, regardless of whether they had been cross-
fostered within or between patches (Figure 6A). These results
indicate a strong effect of early experience on habitat choice

(Camacho et al., 2016), which is consistent with many other bird
studies (Greenwood, 1980; Weatherhead and Forbes, 1994). The
results also illustrate remarkable navigational and spatial memory
abilities, which allowed 1 year old birds to relocate the small patch
of their natal forest after a round trip migration of thousands
of km. While the young birds receive no guidance from their
parents (Mouritsen and Larsen, 1998), some reliance on social
information cannot be ruled out.

Similar effects of early social influence were observed in a
study involving 57 radio-collard moose (Alces alces) in Sweden,
which revealed strong philopatry by calves. Ten of the 14 radio
collard calves returned with their mothers to their summer
range, and 9 out of the 10 subsequently separated from the
mothers but remained within 2 km from them. The female
offspring kept returning to that range in subsequent summers
(Cederlund et al., 1987).

In both birds and mammals, site fidelity is even stronger
in breeding adults than in young. The same reasons listed
above can readily explain why adults remain in their current
home range, or keep returning to it in species that show
seasonal migration. Indeed, adult philopatry tends to increase
with the temporal consistency in conditions, risks, and resources,
and particularly their predictability from year to year (Riotte-
Lambert and Matthiopoulos, 2020; Morrison et al., 2021).
The factor of experience becomes stronger over time, because
individuals can keep learning site-specific relevant information
as discussed in the expertise section below (Dukas, 2019).
Individuals, however, can rely on their experience to decide
whether it pays to show site fidelity. Indeed in many bird species,
individuals are more likely to show site fidelity if they succeed
than fail in reproduction (Greenwood and Harvey, 1982). For
example, an elegant experiment manipulated the nesting success
of prothonotary warblers (Protonotaria citrea) that used nest
boxes in southern Illinois (Hoover, 2003). Birds were randomly
assigned into rearing zero, one or two successful broods within
a season, with the failures manipulated via predation. Success
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FIGURE 6 | (A) The proportions of pied flycatcher nestlings that returned to
breed in the same patch where they had fledged after being cross-fostered
within or between habitats containing either pines or oaks. Data from
Camacho et al. (2016). (B) Territory fidelity of female and male prothonotary
warblers that were experimentally manipulated to have 0, 1, or 2 successful
broods in the previous year. Data from Hoover (2003).

rates strongly affected the return rates of birds in the following
season, after their long-distance migration to Central or South
America (Figure 6B). Intriguingly, males whose nesting attempts
failed were three times more likely to show site fidelity if they had
successful rather than unsuccessful neighbors. Because the males
can monitor and even father offspring in neighboring territories
through extrapair copulations, it is likely that neighbors’ success
affected their subsequent site fidelity (Hoover, 2003). In addition
to their remarkable navigational and spatial memory abilities,
the prothonotary warblers also showed sophisticated skills in
optimizing decisions affecting future reproductive success based
on both their own and their neighbors’ experience.

To synthesize, while there are clear benefits to philopatry and
obvious costs to dispersal, the social and genetic trade-offs vary
among species, leading to a large within and between species
variation in the overall and sex-specific patterns of philopatry

(Greenwood, 1980; Waser and Jones, 1983; Smale et al., 1997;
Clutton-Brock, 2016; Morrison et al., 2021). There are many
unresolved issues ripe for investigation, which can take advantage
of modern movement ecology tools. Specifically, the causes and
consequences of within species variation in philopatry provide
intriguing questions. On the cognitive ecology side, in species
where one sex remains and the other sex disperses, are there
between sex differences in cognitive traits such as spatial abilities,
tendencies to explore, attachment to kin, and openness to new
experiences? On the movement ecology side, current tracking
techniques can help us quantify the sex-specific trade-offs that
underlie philopatry versus dispersal.

Trails
Trails can be perceived as social information left from previous
generations owing to their usefulness in connecting multiple
sites containing resources such as food, water, minerals and
shelters while minimizing effort and perhaps danger. Similarly,
trails may be used for migratory movement. Trails are also a
rich source of contemporary social information, as olfactory and
visual cues left by previous trail users can provide information
on their identity, number, reproductive state, condition, and
the time and direction of travel (Mutinda et al., 2011). Finally,
established and well maintained trails allow fast, efficient travel
between feeding areas, and between feeding patches and shelters.
Indeed, as noted above, an established trail system is one factor
that can promote site fidelity in walking species. For example,
elephant shrews (Elephantulus rufescens) restrict much of their
travel to a network of trails from which they regularly remove
plant material and other obstacles. It has been suggested that
their rapid running along these trails is an effective anti-predatory
strategy (Rankin, 1965; Rathbun, 1979). In larger animals, trails
have been studied primarily in elephants (Loxodonta africana)
(Vanleeuwe and Gautier-Hion, 1998; Mutinda et al., 2011) and
mentioned in a few other studies (Di Fiore and Suarez, 2007;
Noyce and Garshelis, 2014; Trapanese et al., 2019). Despite the
prevalence and potential importance of animal trails in shaping
animal movement, however, they remain understudied.

Aggregations, Information and Individual
Movement
A fair number of animals live their whole or part of their
lives in aggregations. Examples include bird and bat roosts,
and nesting aggregations in solitary bees and birds (Allee,
1931; Michener et al., 1958; Rolland et al., 1998; Beauchamp,
1999; Fenton and Simmons, 2015). Philopatry, discussed above,
can readily lead to aggregation. Additional factors include the
rarity of appropriate sites, anti-predatory advantages and social
information about food and predators (Galef and Giraldeau,
2001; Danchin et al., 2004; Evans et al., 2016). The most
likely effect of social information on movement is via local
enhancement, whereby individuals searching for food join others
whom they observe feeding (Thorpe, 1963; Krebs et al., 1972;
Thiebault et al., 2014). Another possibility is that individuals
from the aggregation follow departing, apparently informed
individuals to food patches. Some field observations agree with
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this possibility while others do not (Brown, 1986; Mock et al.,
1988; Marzluff et al., 1996; Danchin and Richner, 2001; Sonerud
et al., 2001; Harel et al., 2017; Urmy, 2021). It is fair to assume,
however, that socially biased movement occurs in many species.

Both philopatry and the rarity of satisfactory aggregation
sites should lead to large spatial variation in the distribution of
aggregating species. Because members of the aggregation can save
time and energy as well as incur lower mortality by foraging
closer to the aggregation, one would expect lower individual
densities farther from the aggregation (Figure 4 in Dukas and
Edelstein-Keshet, 1998). Bumblebees in the field indeed showed
such pattern of spatial distribution (Figures 3, 4 in Osborne et al.,
2008). Reliance on social information would further increase
the spatial variation in individual densities. This can lead to
cascading spatial effects on other trophic levels. For example,
bumblebee wolves (Philanthus bicinctus), sphecid wasps that prey
on bumblebees, nest in rare, large aggregations that persist over
decades as indicated by the fact that an aggregation studied in the
early 1960s (Armitage, 1965) still existed in 2004 (Dukas, 2005).
Bumblebee densities at flowers were much lower within 4 km
than farther than 5 km from the bumblebee wolf aggregation
(Figure 7A). Consequently, fewer flowers of the bumblebee
pollinated plant, western monkshood (Aconitum columbianum),
set fruit within a few hundred m from the bumblebee wolf
aggregation than 6 km away from the aggregation (Figure 7B;
Dukas, 2005).

COLLECTIVE NAVIGATION AND SOCIAL
LEARNING

Group-living animals balance individually acquired information
with social information to make navigational decisions for home
range and migratory movement. When individual information
is insufficient, social information can reduce uncertainty
(Bergman and Donner, 1964; Hamilton, 1967; Grünbaum,
1998; Couzin, 2018). As we discuss below, collective decision-
making mechanisms consist of sharing information among
group members or following a subset of directed individuals.
Concurrently, knowledge regarding movement patterns can
propagate within the group, reducing individual learning costs
and improving movement efficiency (Mueller et al., 2013; Sasaki
and Biro, 2017; Jesmer et al., 2018).

Collective Navigation Using Shared
Information
Collective navigational accuracy can be increased by comparing
information through social cues (emergent sensing),
pooling information (many wrongs), or communicating
preferences (voting).

Emergent Sensing
In emergent sensing (Figure 8A), group members respond to
environmental gradients. This results in collective navigation
even if all individuals are naïve (Berdahl et al., 2018; Couzin,
2018). Theoretical models suggest that this is a simple collective
decision-making strategy that does not require either memory

FIGURE 7 | (A) The mean ± SE number of bumble bees observed at six
matched pairs of coneflower (Rudbeckia occidentalis) and goldenrod
(Solidago spp.) within 4 km and farther than 5 km from a large bumble bee
wolf aggregation. (B) Fruit-set in the bumble bee pollinated flower, western
monkshood (Aconitum columbianum), within 0.5 km and farther than 5 km
from a large bumble bee wolf aggregation. Left bars: the percentage
(mean ± SE) of marked monkshood flowers that produced fruits. Right bars:
the total number (mean ± SE) of fruits on haphazardly chosen monkshood
plants. Data from Dukas (2005).

or complex cognition (Torney et al., 2009; Berdahl et al., 2013;
Hein et al., 2015). Individuals within the group respond to
environmental information and subsequent social cues. For
example, golden shiners (Notemigonous crysoleucas) were tested
in environments with varying light patches. Golden shiners
prefer dark environments and increase swimming speed as a
function of light, causing individuals to reduce speed in dark
patches, resulting in the group collectively navigating toward
dark areas (Berdahl et al., 2013). There is a trade-off between
sensitivity to environmental gradients and social information.
Greater ability to perceive environmental gradients lessens the
need for social interaction, which could decrease group cohesion
(Puckett et al., 2018). Therefore, an appropriate balance between
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FIGURE 8 | Illustrated examples of collective decision-making strategies.
(A) Emergent sensing in which individuals respond to environmental gradients
(e.g., golden shiners increase swimming speed as a function of light) and
social cues (e.g., responding to movement of neighbors). This results in
collective navigation toward favorable dark areas. (B) Many wrongs in which
the collective pooling of estimates suppresses individual error (e.g., indirect
homing routes in pigeons; dashed arrows) and increases collective
navigational accuracy (large arrow). (C) Voting occurs when individuals
express their preference for initiation or direction of movement (e.g., African
buffalo orienting toward a proposed movement path; small blue and red
arrows). Voting prompts the group to choose the majority (large red arrow) or
average the proposed paths. Created with BioRender.com.

environmental cues and social information can be achieved by
weighing incoming information (Puckett et al., 2018).

Many Wrongs
The many wrongs principle (Figure 8B) emerges from
individuals pooling each imperfect estimate of direction to
improve accuracy, in which group cohesion suppresses individual
noise (Bergman and Donner, 1964; Tamm, 1980; Simons, 2004;
Biro et al., 2006; Codling and Bode, 2014; Nesterova et al., 2014;
Berdahl et al., 2018). For example, homing pigeons released with
a small flock flew faster and more direct routes compared to their
routes when released alone, even in familiar areas (Figure 9;
Dell’Ariccia et al., 2008). When individuals are uncertain about
navigational decisions, averaging group information reduces
error. However, if the difference between individual estimates
becomes too large, the group may split or adopt a leader (Biro
et al., 2006; Nesterova et al., 2014). For example, homing pigeons
with distinct individually established route preferences were
released in pairs. When the distance between the two routes was
small, pairs typically averaged their paths. But if the distance
between each individual’s established route grew beyond a
threshold, pigeons either followed one of the established routes
or split to pursue their own route (Biro et al., 2006). For both
emergent sensing and many wrongs, directional accuracy
increases as group size increases, notably in groups with few
individuals (Bergman and Donner, 1964; Wallraff, 1978; Berdahl
et al., 2013). We can expect these strategies to be especially
advantageous when knowledge among the group members is
low and homogeneous, e.g., a group moving through a novel
landscape or consisting of inexperienced juveniles.

Voting
During the voting strategy (Figure 8C), individuals advertise
their preference and then the group selects the majority or

averages the choices (Norton, 1986; Black, 1988; Sueur et al., 2010,
2011; Walker et al., 2017). For example, it has been suggested
that adult female African buffalo (Syncerus caffer) indicate their
preferred foraging patch by orienting themselves toward a certain
direction while grazing. The herd then departs in the average
direction of individual preferences (Prins, 1996). This widely
cited example requires critical tests. Similarly, individuals in
troops of olive baboons (Papio anubis) propose a movement
path. If the difference between the various prospective paths is
above a threshold, the group follows the majority. But, when
the angle between proposed routes is below the threshold, the
group compromises to average the paths (Strandburg-Peshkin
et al., 2015). Emergent sensing, many wrongs, and voting are not
mutually exclusive. Furthermore, they are frequently combined
with leadership and social learning discussed in the next sections.

Leadership
Group members can have varying degrees of influence on
navigational decisions. Commonly, animal groups consist of a
subset of individuals called “leaders” which guide the remaining
group members deemed “followers” (Chance, 1967; Squires
and Daws, 1975; Wallraff, 1978; Wilson, 2000; Van Vugt,
2006). Leadership can be distributed among multiple animals
or centered around a sole individual (Garland et al., 2018;
Strandburg-Peshkin et al., 2018). Leaders may be aware of their
status, are recognized by the group as leaders, and can even
produce overt signals to lead their group (Raveling, 1969; Poole
et al., 1988; Boinski and Campbell, 1995; Lusseau and Conradt,
2009). Alternatively, leaders could be anonymous and unaware
of their influence, thus followers rely on passive cues, such as the
orientation of neighbors (Couzin et al., 2005; Rosenthal et al.,
2015). The terms leader and follower are relative, as a leader
in one situation may be a follower in another. For example,
leadership may vacillate depending on the area. Homing pigeons
can take turns leading during different segments of the same
route (Biro et al., 2006). Additionally, leadership status depends
on the identity of others in the group. For example, pigeons have
leader hierarchies: if individual A leads B, and B leads C, A will
also lead C (Biro et al., 2006; Nagy et al., 2010).

In some groups, knowledge or experience determines
leadership. Leaders may possess and act on information that
followers do not have, such as knowledge of a migratory route
(Reebs, 2000; Olsen, 2001a,b; Chernetsov et al., 2004; Jesmer
et al., 2018). However, followers are not always naïve. Followers
may hold the same knowledge as leaders, but are more agreeable
(Arnold, 1977; Smith et al., 2016), have lower route fidelity
(Freeman et al., 2011), or are more receptive to social information
(Guttal and Couzin, 2010). In homing pigeons, experience
increases the chance of becoming a leader, but does not predict
it (Flack et al., 2012, 2013; Watts et al., 2016). Factors such as
social status (King et al., 2008), sex (Lusseau and Conradt, 2009),
or age can also drive leadership. For example, pods of killer
whales (Orcinus orca) are led by postreproductive females (Brent
et al., 2015). Likewise, V-formations in families of greater white-
fronted geese (Anser albifrons) are primarily led by the father
(Kölzsch et al., 2020).
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FIGURE 9 | GPS-tracked pigeon routes between a release location (R) and home loft (H). Six pigeons were released six times individually (blue), then six times as a
flock (red; one track per flock release), then pigeons were released another six times individually (green). Pigeons released with a small flock flew faster and more
direct routes compared to their routes when released alone. Figure from Dell’Ariccia et al. (2008) with permission.

Old individuals may possess information on the most efficient
migratory route or the location of a rarely visited site that
provides limited resources such as food or water. Such a site
may be crucial for the group’s success during either a local food
shortage or drought. It has been suggested that old elephant
matriarchs possess exclusive spatial information crucial to group
fitness (Foley et al., 2008; Mutinda et al., 2011). There is indeed
evidence for a positive association between matriarch age and
her social knowledge, which translates into superior leadership
by older matriarchs (McComb et al., 2001, 2011; Mutinda et al.,
2011). The role of spatial information in that superior leadership,
however, is unknown.

In some cases, leadership is much less systematic. For example,
individuals that travel at high speeds (Pettit et al., 2015) or near
the front of the group (Pettit et al., 2013b) can emerge as leaders.
Further, group members may rotate leadership roles frequently.
Alternating leadership roles is fittingly seen in juveniles with
similar demographics and experience (Nesterova et al., 2014).
For example, flocks of juvenile northern bald ibis (Geronticus
eremita) take turns leading their V-formation during migration
(Voelkl et al., 2015; Voelkl and Fritz, 2017). Additionally,
leaders can emerge through simple behavioral rules by followers
following the movements of their neighbors (Herbert-Read et al.,
2011; King et al., 2011; Rosenthal et al., 2015; Torney et al., 2018;

Sankey et al., 2021). Thus, the individuals that initiate movement
may have a large influence on group navigation.

Although followers are less influential than leaders, followers
can participate in and even initiate decisions. However, the
threshold to reach a quorum is higher when followers propose
decisions compared to leaders (Kummer, 1968; Bousquet et al.,
2011; Walker et al., 2017). For example, families of Canada geese
(Branta canadensis) perform vocalizations and head-tossing to
evoke movement in the group, which ensures cohesion for take-
off. If the calls are initiated by a family member other than the
father, the number of calls required to elicit movement increases,
as well as the period of time before departure (Raveling, 1969).

Cognitive abilities are not identical across group members,
leaving some individuals predisposed to become leaders or
followers. The shy–bold dimension of animal personality posits
that bold individuals have a consistent tendency to explore
unfamiliar areas and objects (Gosling and John, 1999; Sih et al.,
2004; Réale et al., 2007). Bold individuals are more likely to be
leaders than shy individuals (Kurvers et al., 2009; Found and
St. Clair, 2016). Compared to shy individuals, leaders are more
likely to explore while navigating (Flack et al., 2018), travel at
faster speeds, and lead in both familiar and unfamiliar locations
(Sasaki et al., 2018). In some cases, leaders may be responsible for
immense changes in collective migratory behavior. For example,
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in elk (Cervus canadensis), bold individuals are three time less
likely to migrate than shy individuals from the same population
(Found and St. Clair, 2016), likely because they better adapt to
changing environments (Found and St. Clair, 2019). Another
dimension of personality, sociability, can also produce leaders.
Chacma baboons (Papio ursinus) follow the movements of
individuals that they are socially affiliated with (King et al., 2011).
Thus, individuals that are highly social are more influential than
their less social peers.

Social Learning
Information can diffuse throughout a population and across
generations via social learning. Accumulated knowledge can act
as a second, non-genetic, inheritance system (Whiten, 2005;
Tennie et al., 2009; Jesmer et al., 2018). Many animals learn
migratory behavior from their parents or older conspecifics in
their population (Olsen, 2001a,b; Agostini, 2004; Chernetsov
et al., 2004; Urbanek et al., 2005; Harrison et al., 2010;
Palacín et al., 2011). Social influences may even override
genetic instructions (Schüz, 1951; Perdeck, 1958; Ferrari et al.,
2009; Mellone et al., 2016). Old individuals possess valuable
information that has helped them survive thus far. Hence,
juveniles profit by learning from old, experienced members
of their group, even if juveniles possess adequate migratory
information. For example, juvenile whooping cranes (Grus
americana) migrate using more direct routes when flying with
older individuals compared to groups consisting only of young
birds (Figure 10; Mueller et al., 2013). It is unclear, however, if
juveniles deviate from direct routes because of either error or
exploration of unfamiliar territory (Mueller et al., 2013; Wolfson
et al., 2020). Additionally, learned migratory behaviors are more
flexible than genetic instructions, allowing changes in migratory
patterns to spread through populations within the lifetimes of
individuals. For example, populations containing older whooping
cranes were more likely to modify their migratory routes by
establishing new wintering grounds closer to their breeding
grounds (Teitelbaum et al., 2016).

Individuals can update socially transmitted information to
filter out inefficient routes. While homing, pigeon followers
actively participate in navigation, learning more direct routes
than that of their leader (Pettit et al., 2013a). Additional
individuals incorporating their own information into the
collective pool of knowledge can further improve group
performance. An experiment by Sasaki and Biro (2017)
investigated the effects of social learning and cumulative
improvement. The experimental group consisted of chains of
homing pigeon pairs, beginning with a single pigeon that had
developed a homing route after 12 releases. The pigeon was then
paired with a naïve individual for another 12 releases. The naïve
individual learned the route throughout those trials, becoming
experienced, then was paired with a new naïve individual for
another 12 releases. This process of pairing a newly experienced
pigeon with a naïve pigeon was repeated an additional two times
for a total of 60 releases per chain. One control group consisted
of solo pigeons and the other control group consisted of fixed
pairs of pigeons. Pigeons in both control groups were released
60 times from the same site as the experimental group. By the

end of the experiment, the experimental group outperformed
both solo and fixed pair controls, which plateaued in efficiency.
This suggests that naïve individuals learn route information via
social learning and contribute to cumulative improvements in
route efficacy, more so than solo or fixed pairs with the same total
amount of experience.

Synthesis
Social groups adopt various strategies, typically coinciding, to
move within and throughout a landscape. Groups can share
information to improve navigational accuracy, during which
opinions from some individuals have more influence than others,
while valuable information can diffuse throughout the group via
social learning. For example, leadership and voting coincide in
packs of African wild dogs (Lycaon pictus) during pre-departure
social rallies. Pack members increase the amount of abrupt nasal
exhales (sneezes) prior to departure. Any pack member can
propose a departure by initiating sneezing, although individuals
other than the highest ranking dominant dogs must have higher
signal frequency in order to succeed (Walker et al., 2017).
Collective navigation, leadership and social learning are difficult
to assess in nature through observation alone. Without controlled
experiments, we can only estimate which process is occurring
without firm conclusions.

EXPERTISE AND MOVEMENT

Individual learning, social influence and social learning are
ubiquitous among animals. Their long term, combined effects
lead to expertise, defined as the features that allow individuals
with extensive experience on a given complex task to show
superior performance on that task compared to novices (Dukas,
2019). While expertise has been studied primarily in humans
(Ericsson and Lehmann, 1996; Ericsson et al., 2006; Vaci et al.,
2019; Strittmatter et al., 2020), it is highly relevant for other
species as it can manifest in many behaviors including movement.
Two domains pertinent to movement ecology are first, mastery
of an individual’s habitat, which may include a vast memory
about the identity, location and occurrence of a variety of
relevant items, events and individuals. Examples include the
location of seasonal food plants, shelters, territorial neighbors,
and predators. Second, individuals can improve their movement
speed and efficiency with practice. This may be owing to
motor learning within a small territory (Stamps, 1995), adopting
optimal routes that avoid challenging terrain in a large home
range (Green et al., 2020), or learning to better handle a variety of
challenges throughout a long travel route. For example, a within
individual comparison in black kites (Milvus migrans) indicated
improvement in migratory performance with age. Part of this
improvement was due to birds enhancing their abilities to exploit
tailwinds and cope with wind drift (Sergio et al., 2014). Other
studies also indicate that birds improve their abilities to handle
winds and rising air currents with experience (Harel et al., 2016;
Wynn et al., 2020).

Critical research on expertise is currently scarce as it requires
comparisons of the same individuals over time while controlling
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FIGURE 10 | Groups of whooping cranes containing old individuals migrate using more direct paths compared to groups consisting of only juveniles. (A) Telemetry
and visually observed locations of whooping cranes throughout their migratory journey. (B) Examples of migratory routes that juveniles performed with (blue) and
without (red) the presence of older individuals. (C) Distance from straight line paths during migration of juvenile groups with and without older individuals. Figure from
Mueller et al. (2013) with permission.

for relevant alternatives that affect performance. These include
correlated changes in anatomy, morphology, physiology and
effort (Dukas, 2019). Furthermore, between individual analyses
are insufficient as they commit selection bias owing to the
likely higher mortality rates of inferior individuals. As far as we
know, only a single program, which combined observations and
controlled experiments in the field, has considered all factors by
quantifying within individual foraging performance in natural
settings, muscle physiology, and effort as functions of experience
(Dukas and Visscher, 1994; Dukas, 2008b,c; Schippers et al., 2006,
2010). Many other species are amenable for long term research
programs that add controlled experiments to information about
within individual changes in performance with age (Clutton-
Brock, 1988, 2016; Wooler et al., 1990; Sand et al., 2006; Daunt
et al., 2007a,b; Leach and Sedinger, 2016).

CONCLUSION AND PROSPECTS

Our three main conclusions are first, that birds and mammals
possess good spatial learning and memory, which enable them to
find their way while engaging in their daily activities. Second, we
have good understanding of the cognitive mechanisms that allow
many species to navigate successfully over distances spanning
up to thousands of km. Third, the movement ecology of many
birds and mammals is heavily determined by social influence and
social learning. While there is large variation among animals,
researchers initiating work on a lesser studied species may assume
that it has good spatial cognitive abilities that are influenced
by social observations. Nevertheless, the strength of evidence

for our three conclusions is rather mixed. Very few controlled
experimental studies assessed spatial learning and memory in
birds and mammals over a large area. On the other hand,
owing to the conspicuousness and ubiquity of animal migration,
we have known for a long time about animals’ abilities to
orient well between their winter and summer grounds. Some of
the mechanisms underlying these navigational skills are mostly
understood, at least for a small selection of species, primarily
birds. Finally, we know that social information influences some
aspects of bird and mammal movement including, for example,
philopatry and migration in some species. There are probably,
however, many other aspects of movement that are under
social influence but understudied. Examples include trails, long-
lasting scents, and cues that indicate recent activity or successful
reproduction by conspecifics.

While we focused on relatively well studied topics, our
review can readily reveal subjects that invite future research.
Most notably, we have not critically addressed specific issues
of both perception and decisions even though they likely have
strong effects on animal movement (Avgar et al., 2013). Some
studies have addressed issues of perception relevant to movement
ecology. For example, the topic of perceptual range, defined
as the maximum distance from which one can detect relevant
landscape features, has been recognized for some time (Zollner,
2000; Schooley and Wiens, 2003), but we still know relatively
little about it. Similarly, while decisions have been implicitly
included within the overall study of animal movement, there
has not been a focus on the exact decision rules employed by
individuals when considering, for example, when and where to
go (Bauer et al., 2011). Finally, our review primarily encompassed
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issues related to movement either within a home range or during
seasonal migration. We have not addressed the two other relevant
categories of dispersal and nomadism (Baguette et al., 2014;
Teitelbaum and Mueller, 2019) even though they can gain from a
synthesis that takes a cognitive ecology approach.

There are various areas that would gain from further
integration of methods and insights from cognitive ecology
into the study of animal movement. First, there is a strong
research bias toward the visual domain. It is thus crucial that we
devote more research effort to the effects of understudied sensory
domains on animal movement. Such domains include olfaction,
electromagnetic radiation beyond the human perceptual range,
and night vision. For example, we perceive the landscape
primarily in the visual domain, but soundscape (Pijanowski et al.,
2011; Van Oosterom et al., 2016) and smellscape (Wallraff and
Andreae, 2000; Nevitt, 2008; Gagliardo et al., 2013; Henshaw,
2013; Buehlmann et al., 2015; Ackels et al., 2021) may be as
or more important for many species. Particularly promising is
the likely possibility that many animals perceive a rich scene
of long-lasting olfactory cues, which inform them about the
location, condition, age and sex of conspecifics, competitors and
predators. Second, enlightening information gathered from GPS-
collard animals has inspired increased interest in the spatial
information that animals learn about, remember and employ
to guide their movement. The GPS data, however, are merely
observations on individuals’ locations over time. Hence they
must be supplemented with controlled field studies that critically
test for the spatial learning and memory of species of interest.
Such work may modify protocols previously employed for critical
tests of spatial memory in the field, such as the one detailed in
Figure 1 (Edwards et al., 1996). Third, a few studies indicate
that the large-scale spatial structure of animal movement affects
species at other trophic levels through competition, predation,
herbivory, pollination and seed dispersal (e.g., Dukas, 2005;
Kohl et al., 2018). We think that further research on the effect
of the movement patterns of one species on other species
can be highly illuminating. Fourth, understandingly, a large
share of movement ecology research has been devoted to large
mammals. However, we have little experimental data on the
mechanisms underlying seasonal migration in these species.
For example, do they rely on all three compasses as birds
do? Fifth, mechanisms of time keeping both within day and
throughout the year have received significant attention in both

animal cognition and physiology (Gallistel, 1989; Shettleworth,
2009; Kumar et al., 2010). While we know that animals possess
excellent biological clocks that guide their short and long term
movement decisions, we know less about how animals time
their revisits to familiar places within and between days and
years (Janmaat et al., 2013, 2014; Berger-Tal and Bar-David,
2015). Finally, there is growing appreciation that non-humans
show long-term improvements in performance similar to those
studied in human experts (see Expertise and Movement section
above). Mechanisms contributing to the superior performance
of experts include greater working and long-term memory,
better allocation of attention among co-occurring tasks, and
quicker and refined decisions (Dukas, 2019). Decisions regarding
movement can benefit from expertise and should be subjected to
future research. Similarly, evidence from humans indicates that
people working together for a long time develop group expertise
primarily owing to enhanced social dynamics (Argote and Epple,
1990; Tindale and Winget, 2017). Similar group expertise likely
occurs in animal groups and probably contributes to superior
movement performance.
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Integrating diverse concepts from animal behavior, movement ecology, and machine
learning, we develop an overview of the ecology of learning and animal movement.
Learning-based movement is clearly relevant to ecological problems, but the subject
is rooted firmly in psychology, including a distinct terminology. We contrast this
psychological origin of learning with the task-oriented perspective on learning that has
emerged from the field of machine learning. We review conceptual frameworks that
characterize the role of learning in movement, discuss emerging trends, and summarize
recent developments in the analysis of movement data. We also discuss the relative
advantages of different modeling approaches for exploring the learning-movement
interface. We explore in depth how individual and social modalities of learning can
matter to the ecology of animal movement, and highlight how diverse kinds of field
studies, ranging from translocation efforts to manipulative experiments, can provide
critical insight into the learning process in animal movement.

Keywords: animal cognition, decision-making, migration, reinforcement statistical learning, translocation

INTRODUCTION

Animal movement, in the form of translocation from one locale to another, takes many forms
and is critical to ecological processes. This understanding has given rise to the rapidly growing
discipline called movement ecology (Nathan, 2008). Concurrently, the subject of learning has been
studied from the perspective of animal behavior, both in the context of ecological interactions and
in the context of movement itself (Box 1 and Table 1). Animal behavior has a well-established
and celebrated history of understanding learning and there has been recent growth in connecting
learning and memory to animal movement behavior (e.g., Fagan et al., 2013). At the same
time, a recent explosion of ideas about machine learning is now creating new perspectives on
understanding animal movement based on algorithms.

Along with these recent developments, the ability of ecologists to track animal movements and
behaviors remotely in the wild has been steadily increasing. The collection of massive amounts
of data on animal movement, primarily via satellite tracking, is now possible at a scale and level
of detail previously unimaginable and can be linked with similarly improving remotely sensed
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or modeled environmental data (e.g., vegetation, anthropogenic
disturbance, terrain, NDVI, snow depth) (Kays et al., 2015).
Furthermore, more recent advances in bio-logging (e.g.,
accelerometers, proximity measures, audio-, and video-
recording devices) provide direct information on some of the
physiological (e.g., jaw movement, heart rate, cortisol, stable
isotopes, reproductive status), and social (e.g., interactions with
conspecifics), contexts of movements (Wilmers et al., 2015).
This coupling of movement patterns with the movement context
has created opportunities to infer learning mechanisms and
meld ideas from animal behavior, movement ecology, and
remote sensing in the context of ecology of learning and animal
movement. We develop such a synthesis here.

We start with a focus on learning as a means for acquiring
information and making decisions. Employing two related
definitions of learning, one from psychology and the other
related to computer science, we evaluate the benefits, costs and
limitations of learning in the context of animal movement. Next,
we address the modality of learning in animal movement, ranging
from individual to social. We then develop links to related
disciplines: psychology, animal cognition, and machine learning.
We close by reviewing approaches to studying the process of
learning and animal movement, whether from experimental or
observational studies, discussing the role that models can play in
this endeavor, and suggesting areas for future developments.

INDIVIDUAL INFORMATION
ACQUISITION AND DECISION MAKING

Definition of Learning
We start with a psychology-based definition of learning,
which states that learning is the information acquisition
that occurs via an individual’s experience that results in a
detectable and consistent change in neurophysiology and/or
behavior (Box 1). Movement intersects with this definition
of learning in several key ways. First, movement will give
rise to learning if the movement facilitates information
acquisition by introducing an animal to a new environment
(e.g., information on forage availability) or state (e.g.,
information from increased vigilance). Second, the learned
information can give rise to new movement decisions if the
information acquired is used to change movement patterns
(e.g., switching to area-restricted search in regions of high
forage availability). Lastly, learning can be about movement
itself, for example, when an animal learns where and when
to migrate by imitating conspecifics (e.g., crane migration).
Figure 1 depicts these connections among movement,
information processing, the environment, and the internal
states of the animal.

Laboratory studies of learning can be used to seek out direct
cellular evidence for neurophysiological changes arising from
information acquisition and storage via functional magnetic
resonance imaging (Marsh et al., 2010). However, these
approaches are impractical in studies of wild animals, for
which most ecologically relevant evidence for learning comes
from observing changes in behavior as a result of experience.

Thus, although the psychology-based definition of learning
above does not strictly involve decision-making, the ecological
implications of learning are often intimately tied to experience
and the decision-making process. This emphasis on process
means that movement-related learning is more similar to
how machine learning is defined: improved performance
for a specific task as a result of prior experience. This
definition, which we refer to as the task-based definition,
differs from the psychological definition because it is directly
tied to experience-based improvements in performance for a
specific task (Box 1).

The Learning Process
The process of learning includes all the steps needed for
information acquisition based on experiences encountered.
Broadly, these steps include attention to relevant information,
perception of the information, acquisition of that information,
and, finally, storage, retention, and retrieval (memory) of that
information. At this point, the information can be acted upon,
for example, to make a movement decision (Figure 1).

Diverse factors may impede or enhance an animal’s attention
to information from its environment or from other individuals.
For example, animals in unfamiliar environments may be more
(or less) observant of environmental cues (Wolfe, 1969) and
certain types of social interaction may increase or decrease
attentiveness, leading to social learning (Heyes, 1994). Other
factors, such as the internal state of an animal (Dorrance and
Zentall, 2001) or its risk sensitivity (Bacon et al., 2010) may also
play a role in determining attentiveness (Figure 1).

The perception and acquisition of information depend
on an animal’s sensory capacities. For most animals, certain
sensory cues will be easier to detect than others, which can
lead to different hierarchies of inputs, which may be altered
contextually. For example, many aural and olfactory cues
may be more important than visual information at night
(Zollner and Lima, 1999). Once acquired, information must be
committed to memory as part of the learning process. Spatially
distributed information may be stored as a cognitive map,
sometimes in a network-based non-Euclidean format (Noser and
Byrne, 2014). Storage and retrieval of learned information is
essential for decision making, which can be based on recent
events or information from long ago (Polansky et al., 2015;
Abrahms et al., 2019).

A test of successful learning is the ability to make a decision
using information from past experiences that discriminates
among alternative strategies. For example, in laboratory studies,
exposure to spatially distributed food rewards in mazes can
affect the movement choices of rats (Leonard and McNaughton,
1990). Similarly, for wolves, memory-related statistical metrics
like “time since last visit” to a location may form the basis for
movement decision discrimination (Schlägel et al., 2017). Of
course, this link between experiences and decision making is both
complex and context-dependent, being modulated by layers of
complexity regarding habitats, social status, and internal states
(Figure 1). The so-called diffusion theory for learning posits that
the brain does not solve decision-making problems exactly but
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BOX 1 | Definitions of terms associated with learning.

This box defines terms central to a synthesis of concepts from animal behavior, ecology, psychology, and certain quantitative methods.
Foundational Concepts
Learning:

Psychology-based definition: the cause-effect process leading to
information acquisition that occurs as a result of an individual’s experience.

Task-based definition: improved performance for a specific task,
based on experience.

Memory: The storage, retention and retrieval of information.
Spatial memory: The memory for where objects/resources/places are in space. Representation of space. Encodes spatial relationships or configurations.
Supervised machine learning: The process by which the machine is trained to perform a task where some input data are already labeled with the correct output.
It can be compared to learning in the presence of a supervisor or teacher.
Statistical learning theory: An unsupervised framework for machine learning that deals with the problem of extracting statistically relevant correlations from data.
Modes of Learning
Associative learning: When an animal makes an association between a stimulus and an outcome. Two forms are:

Classical (Pavlovian) conditioning: an animal associates a biologically
relevant stimulus (e.g., food) with a previously irrelevant stimulus. For
example, a dog presented the sound of a bell rung alongside the
presentation of food, will come to salivate at the sound of the bell in the
absence of food. Another example would be that a raccoon learns that
garbage cans contain food.

Operant (instrumental) conditioning: the behavior of an animal is controlled
by the consequences of that behavior. Typically, this behavior develops
through sequential reinforcement (e.g., a raccoon learns how to open the
garbage can to get food and is rewarded).

Positive reinforcement: Behavior is rewarded and then increases.
Negative reinforcement: Behavior is increased through avoidance of an unpleasant stimulus (also known as instrumental conditioning).
Punishment or Inhibitory learning: Behavior is decreased through avoidance of an unpleasant stimulus. This contrasts with negative reinforcement, where the
behavior increases.
Reinforcement learning: From machine learning: The learner is not told which actions to take, but instead must discover which actions yield the most reward by
trying them. This is synonymous with trial and error learning. As in optimal foraging in ecology, the focus is on the balance between exploration (of unfamiliar
objects/places) and exploitation (of current knowledge).
Online learning: From machine learning: A technique for implementing machine learning based on data becoming available in a sequential order and then being
used to update the best predictor for future data at each step.
Habituation: after repeated exposure, an animal decreasingly responds to a stimulus. The stable end state is the animal’s level of tolerance of a stimulus and the
outcome is higher tolerance.
Sensitization: after repeated exposure, an animal increasingly responds to a stimulus. The stable end state is the animal’s level of tolerance of a stimulus, and the
outcome is decreased tolerance.
Latent learning: an animal learns by gathering and storing information, without immediate reward.
Pathways of Learning
Social learning: Also called “transmission,” this is an umbrella term that includes transfer of skills, concepts, rules and strategies that occur in social contexts and
can affect individual behavior. These include:

Social facilitation: An animal has an increased probability of performing a
behavior in the presence of a conspecific.

Local enhancement: An individual’s interest in an object or location is
mediated by the interest or movement of others.

Imitation: Novel copying of a model behavior through observation that
results in a reliably similar outcome.

Cultural transmission: Social transmission leading to the development of traditions that are passed down from generation to generation.
Vertical vs. horizontal learning: Sometimes referred to as parent vs. peer learning, this dichotomy characterizes the generational source of social information.
Information center: Particular locations or events that provide opportunity for information exchange. For example, a community roost may enable individuals to
follow well-fed peers to new foraging locations.
Direct information exchange: An animal is provided sender-based, actively communicated information by another individual. For example, honeybees tell their
sisters the locations of rewarding flowers.
Optimization-related Terms
Genetic algorithm: A population of candidate solutions to an optimization problem that evolve toward better solutions.
Policy: In machine learning, the mapping of states to actions (e.g., a hungry animal begins to hunt).
Utility function: In machine learning, the assignment of weights or values to agent states. Actions are selected by comparing the values of the predicted states that
derive from particular action. For example, a policy involving search vs. sit-and-wait strategies will yield different outcomes for a hungry animal.
Adaptive movement: When animals modify their movement in response to a change. In models, adaptive implies movement behaviors that confer
fitness/performance benefits.

Frontiers in Ecology and Evolution | www.frontiersin.org 3 July 2021 | Volume 9 | Article 68170437

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-681704 July 3, 2021 Time: 17:35 # 4

Lewis et al. Learning and Animal Movement

uses algorithms that optimize the speed and accuracy of choices
(Bogacz, 2007).

Benefits and Costs of Learning
All mobile organisms face a wide variety of spatial challenges
that influence individual fitness and present opportunities for
decision making shaped by learning. Foraging opportunities and
energetic constraints are patchy in space and time, in large part
because the underlying physical and biotic processes are also
patchy. Optimal foraging theory (McNamara and Houston, 1985;
Stephens and Krebs, 1987; Mangel and Clark, 1988) provides a
framework for understanding how benefits accrue from foraging
in patches that offer the highest returns of energy or nutrient
intake per unit time relative to time or energetic costs. Lost
opportunities for social interaction, breeding, reproductive care,
or shelter, and the risks of mortality due to predation, parasitism,
or disease can then be considered.

When the rate of environmental change varies across time and
space, as is common along elevation or rainfall gradients, theory
suggests an animal may be able to improve its fitness through
appropriate patterns of nomadic or migratory movement (e.g.,
Fryxell and Sinclair, 1988). Field studies support this theory. For
example, migratory ungulates can choose patches at a landscape
scale that yield appreciable improvement in rates of energy
gain, even when such gains are transitory and require continual
nomadic repositioning (Fryxell et al., 2004; Holdo et al., 2009).
Memory can also influence the choice of movement patterns,
such as the balance between range residency and migration

(e.g., Shaw and Couzin, 2013). For example, when undergoing
seasonal transitions between ranges, migratory ungulates can
obtain fitness benefits by remembering previous trajectories
(Bracis and Mueller, 2017; Jesmer et al., 2018; Merkle et al., 2019).

Researchers have investigated how learning can influence and
confer advantages to moving organisms. Agent-based models of
foragers with spatial memory have shown how fitness accrues
from moving to acquire reliable information, even when that
movement samples sub-optimal patches (Bracis et al., 2015). This
is particularly clear when naïve animals are presented with an
unfamiliar environment and movement is exploratory. However,
even experienced individuals can benefit by spatially sampling
a dynamic environment, in particular when resources can be
depleted (Boyer and Walsh, 2010) or predation risk can change
(Bracis et al., 2018). In this case, movement keeps current the
information needed for appropriate decision making.

Given that foraging often results in resource depletion, fitness
may also be improved through informed departure criteria based
on marginal value leaving rules (Charnov, 1976; Arditi and
Dacorogna, 1988; Brown, 1988). The field of “sampling behavior”
(Stephens, 1987) extends ideas originally developed within the
optimal foraging theory framework, which traditionally assumed
that animals are omniscient (Krebs and Inman, 1992; Stephens
et al., 2007). One sampling framework considers when animals
should visit a patch to assess whether it has changed in value
(Green, 1980), whereas another framework focuses on the benefit
accrued by tracking a changing environment (Shettleworth et al.,
1988). Foragers that sample patches or track changing conditions

TABLE 1 | Case studies of learning and animal movement.

References Species Spatial
processes
involved

Individual
learning vs.
social learning

Learning in novel
or familiar
contexts?

Learning linked
to memory?

Simple elapsed
time?

Juvenile vs. adult
compariso?

Barry et al. (2020) Wolves 1. Natal dispersal Individual Novel Y Y N

2. Territory
formation

de Grissac et al.
(2017)

Wandering
Albatross

Foraging Individual Novel N Y Y

Grecian et al.
(2018)

Gannets 1. Foraging Elements of both Novel Y N Y

2. Exploration

Leadbeater and
Chittka (2009)

Bumblebees Foraging Social Novel N Y N

Lihoreau et al.
(2012)

Bumblebees Foraging Individual Familiar Y Y N

Papastamatiou
et al. (2011)

Sharks 1. Orientation Individual Familiar Y N Partly

2. Patch use

Scott et al. (2014) Sea turtles 1. Foraging Individual Novel Y Y Partly

2. Migration

Sigaud et al. (2017) Bison 1. Foraging Social Novel Y Y N

2. Patch Use

Teitelbaum et al.
(2016)

Whooping Cranes 1. Migration Elements of both Familiar Y Y Y

2. Shortstopping

Votier et al. (2017) Gannets 1. Foraging Elements of both Novel Y Y Y

2. Exploration
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FIGURE 1 | A conceptualization of learning in the context of animal movement. An individual’s environment (green, including social context) and its internal state
(gray) can both influence the onset of information gathering via the attention that an individual pays to landscape features (arrows 1 and 2, respectively). As currently
understood by psychologists, the information gathering pathway involving attention, perception, learning, and memory appears inside the animal’s brain (pink,
unlabeled arrows) ultimately providing input to a movement decision (arrow 3). Both the individual’s environment (arrow 4) and its internal state (arrow 5) can then
shape and modify the link between memory and movement. The movement decision has ramifications for the environment (arrow 6) and for the internal state (arrow
7). Lastly, the environment can alter an individual’s internal state directly (arrow 8) without invoking information gathering and memory, often via social interactions.

are learning about the current state of the environment (Stephens,
1987). Informed decision making about which patches to feed in
and how long to do so requires reliable expectations regarding
resource availability, predation risk, and energetic costs across
an individual’s home range, as well as the capacity to estimate
these same variables at a given spatial location. For example,
primates foraging on fruit track the productivity of different trees
and possibly fruit ripeness (Janson and Byrne, 2007). Overall,
environmental predictability appears to be essential for the origin
and success of movements based on learning and the reshaping
of movement strategies based on experience more generally
(Mueller et al., 2011; Riotte-Lambert and Matthiopoulos, 2020).

Learning can also help improve fitness even when spatial
movement processes are not directly tied to foraging (e.g.,
territorial defense, migration, reproduction) (Box 2). For
example, learning can provide advantages in dominance
interactions (Kokko et al., 2006), efficiency of movement
(Stamps, 1995), effective escape from predators (Brown, 2001),
and large-scale dispersal decisions (Barry et al., 2020), all
of which can translate into fitness benefits (Brown et al.,
2008; Patrick and Weimerskirch, 2017). For territorial species,
learning can influence how conflicts drive pattern formation
(Stamps and Krishnan, 1999, 2001; Sih and Mateo, 2001) and
alter strategies for territorial defense (Potts and Lewis, 2014;
Schlägel and Lewis, 2014; Schlägel et al., 2017). For migratory

species, this includes determining least-cost migration corridors
between seasonal ranges (Bischof et al., 2012; Poor et al.,
2012).

While learning may have benefits, acquiring information
based on experience does not come without costs. For example,
information gathering can require substantial investment in time
and/or energy, and may heighten risk (Eliassen et al., 2007) or
come at the expense of lost opportunities for foraging, social
interaction, or search for suitable breeding sites (Dall et al., 2005).
The machinery for learning also exacts an energetic cost (Isler and
Van Schaik, 2006; Niven, 2016). Furthermore, retained memories
may negatively affect the acquisition of new information, and so
there may be a trade-of between memory retention and acquiring
new memories (Tello-Ramos et al., 2019).

Limitations to Measuring Learning From
Animal Movement Patterns
Typical methods for recognizing learning in animal movement
patterns do not measure the acquisition of information directly
but rather rely on the task-based definition of learning,
which requires improved performance for a specific task,
based on acquired experience (Box 1). There are limitations
to such methods, which pose challenges to learning from
uncontrolled field-derived data. Unambiguously explaining a
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particular movement is a general challenge in the study of
wildlife, where context, perception, internal states, and particular
environmental cues all determine an animal’s response, but are
often unobserved. For example, the “time since last visit” behavior
in wolves, mentioned above, may not require memory, but
could be explained by information from decaying scent marks
(Schlägel and Lewis, 2014).

Obvious and obscure alternative explanations to learning
and memory must be carefully considered in uncontrolled field
studies. Table 2 categorizes a number of movement studies
according to the level of evidence for learning—from strong to
simply consistent with learning. For each we provide other, non-
learning interpretations of the data that cannot be definitively
excluded (Table 2).

PATHWAYS OF LEARNING FOR ANIMAL
MOVEMENT

Individuals can experience or gain information about their
environment via different pathways—individually (i.e., by direct
interaction with the environment; Dall et al., 2005) or socially
(i.e., by observing others; Bandura and Walters, 1963; Rendell
et al., 2010)—with learning demonstrated by a change in an
individual’s behavior due to its experience (Box 1).

Individual Learning
Much of an animal’s individual learning is associative; that
is, the individual learns by making an association between
a stimulus and an outcome. Associative learning may arise
either from classical (Pavlovian) conditioning, where an animal
associates a biologically relevant stimulus (e.g., food) with a
previously irrelevant stimulus (e.g., railway tracks), or from

operant (instrumental) conditioning, where the behavior of
the animal is controlled by the consequences of that behavior
(e.g., feeding on grain on tracks leads to a food reward)
(Pearce and Bouton, 2001).

These learning processes can make a behavior more likely
through positive reinforcement (via rewards) or negative
reinforcement (via unpleasant stimuli), or less likely through
punishment or inhibitory learning (again, via unpleasant
stimuli). For example, a bear foraging on railway tracks
(Murray et al., 2017) might be more likely to forage when it
finds grain (positive reinforcement) but less likely to forage
through negative interactions with moving trains (punishment
or inhibitory learning). Additionally, it might increase its
vigilance through negative interactions with moving trains
(negative reinforcement).

One associative learning mode relevant to animal movement
is discrimination learning, where an animal learns to respond
differently to distinct stimuli. For example, because homing
pigeons can discriminate between the presence and absence of
anomalies in magnetic fields, magnetoreception could be used for
navigation (Mora et al., 2004).

Two non-associative learning modes that are relevant to
movement are habituation (decreased response to a stimulus
after repeated exposure) and sensitization (increased response
to a stimulus after repeated exposure). These modes depend
on the strength of association between stimulus and outcome,
rather than the association itself. For example, the sensory
responsiveness of honey bees declines after bees receive low
sucrose sugar solutions (habituation) and increases after offerings
of high sugar solutions (sensitization) (Scheiner, 2004). In turn,
the sensory responsiveness of honey bees constrains individual
foraging plasticity and skews the collective foraging decisions of
colonies (Scheiner, 2004).

BOX 2 | Learning and Movement Processes.

Movement is the spatial consequence of a number of different behaviors by animals. For example, a predator searching for predictable but mobile prey must change
its location in space to increase the chances it will encounter a prey item. In many situations (e.g., predictable environments or regularly available prey), learning can
reduce uncertainty and increase success in such spatial behaviors. We outline a selection of these below:

Search and attack in predation—When prey live in a complex and heterogeneous environment, predators may benefit by adjusting their search and attack
behavior over time (Stephens et al., 2007). When predators detect their prey through visual, auditory, or olfactory cues, they can use associative learning to refine
their “search image” and improve their ability to detect and attack prey (Ishii and Shimada, 2010). For instance, desert ants (Cataglyphis fortis) use associative
learning to connect specific odors to food, and then use this food-odor memory to assist their next foraging journey (Huber and Knaden, 2018).

Escape from a predator—Spending time in familiar space allows animals to learn motor programs that enhance efficient movement within that space (Stamps,
1995). For instance, in response to a pursuing human, Eastern Chipmunks (Tamias striatus) within their home range (i.e., familiar space) take half as much time and
travel half as far to reach a refuge compared to when outside their home range (Clarke et al., 1993).

Foraging bouts—An animal’s rate of energy gain while foraging can increase by collecting information about the environment (Stephens and Krebs, 1987), given
the environment changes in a (at least somewhat) predictive way. In most of these cases, animals use associative learning to connect the reward of a food source
with some aspect (e.g., color, nearby landmark) of that food source. For instance, Rufous Hummingbirds learned the location of flowers that they had emptied in a
foraging trial, and in subsequent trials did not waste time visiting them again (Healy and Hurly, 1995).

Navigation and migration—Migratory movements notably occur at spatial scales that greatly exceed perceptual abilities of animals (mammals: Teitelbaum et al.,
2015; birds: Alerstam et al., 2003). Thus, it is expected that animal migration is at least partly based on memory of past experience (though some migrations appear
to be innate). When migration has a learned component, learning is likely used to improve migratory performance. For instance, social learning of migration helps
ungulates improve energy gain (Jesmer et al., 2018) and helps birds reduce costs (Mueller et al., 2013).

Home range or territory selection—The decision process of choosing the size and location of home range or territories can be thought of as a learning process
of integrating new information about the distribution of resources of a landscape (Mitchell and Powell, 2004). For instance, home range size is often larger in areas
with fewer resources available (e.g., Morellet et al., 2013; Viana et al., 2018). Further, increased exploration events, presumably to sample new locations when others
are unavailable, can result in still larger home ranges (Merkle et al., 2015).
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Another mode of learning, latent learning, is relevant to
animal movement (Franks et al., 2007). Latent learning involves
the gathering and storing of information, without immediate
reward, such as when animals learn their migration route away
from breeding grounds after they are born (e.g., in autumn) and
must use that information to return in springtime. Box 1 provides
further details on these modes of learning.

Social Learning
Social learning is an umbrella term for the learning pathway
that includes transfer of skills, concepts, rules, and strategies
that occur in social contexts and can affect individual
behavior. Types of social learning include (i) social facilitation
(increased probability of performing a behavior in the presence
of a conspecific), (ii) local enhancement (an individual’s
interest in an object or location mediates interest/movement

by others), and (iii) imitation (novel copying of a model
behavior through observation that results in a reliably similar
outcome) (Visalberghi and Fragaszy, 1990). Note that these
are distinct from the transfer of declarative or procedural
information via direct information exchange, such as in bee
dancing, to relay information concerning resource locations
(Leadbeater and Chittka, 2007).

Each type of social learning is relevant to movement ecology.
For example, social facilitation explains bison movement:
individuals are more likely to travel to a given new location
when in a group where another animal had knowledge of that
location (Sigaud et al., 2017). Following behavior occurs in ants
where leaders provide guidance to naïve individuals concerning
the location of resources (Franks and Richardson, 2006), and in
elephants where matriarchs lead herds to waterholes not known
to the rest of the group (Fishlock et al., 2016). Imitation can be

TABLE 2 | Mapping empirical examples of learning to machine learning concepts.

Machine learning
example

Empirical examples

Step AlphaGo Zero (Silver
et al., 2017)

Hummingbird
traplining
(Tello-Ramos et al.,
2015)

Crane migration
(Mueller et al., 2013)

Experimental elk
translocation (Frair
et al., 2007)

Sheep and moose
migration (Jesmer
et al., 2018)

Task Win Forage efficiently Migrate efficiently Exploit environment
optimally

Exploit environment
optimally

Experience Repeated play against
self

Movement within a
controlled array of
feeders

Repeated migration
journeys across years

Movement away from
initial capture/release
location

Movement and
population persistence
over decades

Performance
measure

Victories Path distance per bout Deviations from
straight-line migratory
path

Settlement and survival
rate

1. Proportion of green
wave exploited 2.
Percent of population
migrating

Demonstrated
improvement over
time (or in
comparison to
benchmark)

Increased competitive
ranking

Decreased length of
movement path

Decreased length of
migratory journey

Increased rate of
residency

Increased migratory
tracking and universal
migration

Plausible learning
mechanisms

Reinforcement learning Positive reinforcement 1. Spatial memory 1. Positive
reinforcement (forage)

1. Vertical transmission

2. Social learning 2. Negative 2. Positive
reinforcement

3. Positive reinforcement (individual moose

reinforcement (predation) foraging)

3. Horizontal social
transmission

3. Positive
reinforcement (social
sheep foraging)

4. Cultural transmission

Alternative
explanations

Not necessary Controlled experiment Tested and rejected
wind-mediated
movement and
ontogeny

Mortality-mediated
natural selection

1. Mortality-mediated
natural selection

2. Population growth
and expansion

3. Kinesis

Evidence of
learning?

Yes Yes Yes 1. Consistent with learning but not direct evidence.

2. Population-level rather than individual-level

metrics impede direct evidence for learning.
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seen in fish, where translocation experiments demonstrate how
naïve individuals learn migration routes through association with
experienced individuals (Helfman and Schultz, 1984), as well as in
replacement experiments where the long-term re-use of resting
and mating sites can be socially learned rather than quality-based
(Warner, 1988).

Individual learning can interact with social learning. For
example, independent exploration allows ants to improve
upon the paths they have learned via social learning through
tandem running (Franklin and Franks, 2012). Here, independent
exploration is the basis for improvement of route navigation,
which can then be distributed within a colony via “information
cascades.” More generally, individual learning may be modulated
by associational acquisition, where options for individual
learning are constrained by the individuals with which an animal
associates (Fragaszy and Visalberghi, 2004).

Social learning is emphasized though existing social bonds,
such as parent-offspring relationships. For example, elephants
will learn resource locations in complex landscapes through
both vertical and horizontal transmission (Bowell et al.,
1996) and maternal-offspring pairs of whales may complete
entire migrations together (Hamilton and Cooper, 2010), thus
enhancing the potential for social learning.

However, social learning does not always confer a net benefit
(Giraldeau et al., 2002), and may result in costly strategies of
movement and resource use (Sigaud et al., 2017). For example,
tested alone, adult female guppies that had shoaled with trained
conspecifics as they swam to food used the same route used by
their trained fellows, even if the route taken by the trained shoal
was longer and more energetically costly than were alternative
routes (Laland and Williams, 1997; Giraldeau et al., 2002).

LEARNING AND SPACE USE:
CONNECTIONS TO OTHER DISCIPLINES

We distinguish two fundamental constructs for learning in
conjunction with animal movement: updating the world model
and building a new world model. To understand the difference
between these, it helps to assume that the animal has a cognitive
model of the world (Q̂) and a set of “policy rules” (β) for
mapping conditions—including the snapshot of that cognitive
model and the state or priorities of the animal—into outcomes, in
particular movement decisions. The policy rules can be thought
of as the coefficients of a function governing outcomes in terms
of conditions. Within this construct, updating the world model
refers to the process of movement through a world, acquiring
and storing information about the world, updating the world
model Q̂, and acting upon that knowledge according to the fixed
set of policy rules β. The learning process itself is limited to
updating the world model. Note that this kind of learning is
only meaningful if the world itself is dynamic, with resources or
threats moving, regenerating, or depleting in a way that makes
it necessary to update expectations. When confronted with a
new world, either via dispersal, translocation, or a significant
perturbation to the existing world, the very structure of the
world model and the policy rules both require adjustment by

building a new world model. These two fundamental kinds of
learning are schematized in Figure 2 where an elk’s movement
among three dynamic patches permits constant updating of
information (updating the world model), a process with relies on
moving between those patches. But when a patch is significantly
perturbed, or becomes unusable in a novel way, the fundamental
structure of the world needs to be altered (building a new world
model), and novel policy rules to govern interaction with novel
elements must be developed.

The main distinction between updating the world model and
building a new world model appears in a slightly different form in
the machine-learning literature, where the two kinds of learning
are labeled as base-level and meta-level. Specifically, “The base-
level learning problem is the problem of learning functions, just
like regular supervised learning. The meta-level learning problem is
the problem of learning properties of functions, i.e., learning entire
function spaces” (Thrun and Pratt, 1998). The function spaces
in our analogy comprise Q̂, whereas the learning functions are
the coefficients β. In the neurosciences, the terms model-based
and model-free reinforcement learning are used in analogy with
base-level and meta-level learning (Doll et al., 2012).

Cognitive ecologists typically have stringent experimental
criteria for identifying learning. For example, experimentation
plus control conditions sufficient to rule out alternate
explanations are fundamental to confirming the existence
of social learning (Reader and Biro, 2010). In this framework,
experimentation could involve manipulation of physical aspects
of the environment, individual animals via translocations or
similar means, or the routes governing social transmission
of information. Rare cases where a wild population can be
experimentally manipulated provide the strongest cases for
demonstrating and parameterizing memory-based movements
(Ranc et al., 2020).

It is also interesting to note that complex behaviors that appear
to involve decision-making can arise from other mechanisms
of self-organized behavior. Self-organization occurs when simple
rules lead to emergent behavior (Gros, 2015). A prominent
theoretical example is cellular automata whereby a specific
rule set, such as “the game of life,” gives rise to agent-like
configurations that may travel, replicate, and combine. Self-
organized robots (Box 3) can exhibit emergent behavior, such as
autonomous direction reversal, which an external observer could
mistakenly interpret as decision-making (Kubandt et al., 2019).
Because self-organization is not purposeful, an agent solely based
on self-organizational principles will not be able to improve, or
to “learn” its score in a given task. However, complex, emergent
behavior that appears to be adaptable can confound efforts to
recognize signals of learning in movement data.

Machine Learning Approaches
Machine learning tasks involve an explicit goal, such as parameter
estimation or classification, and require a clear objective function,
such as minimizing a cost function or correctly classifying data.
To the extent that animals also have clear objective functions
(e.g., ultimately: increasing individual fitness; proximally: eating,
avoiding being eaten, reproducing), and that these objectives
might be satisfied by performing a specific movement-related task
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FIGURE 2 | A schematic representation of a forager’s movement rules in a heterogeneous landscape, how a stable set of rules might be applied, and how
landscape disturbance could force an update to the movement rules via learning. In a pre-disturbance world (left three columns), the forager (denoted by the white
elk symbol) occupies a landscape with three depletable and renewable resource patches and a water body. The “real world” is represented in the top row, with all of
its complexity. The second row represents the forager’s model of that world, which distils the complexity to the most relevant information. Shapes indicate different
landscape elements, while colors reflect a quantitative score: darker greens are regenerated, paler greens are depleted. The forager has two movement rules in this
landscape (bottom row): (1) move from depleted resource patch to a regenerated resource patch and (2) avoid the water body. The pre-disturbance movements rely
on a dynamically updated spatial memory, as the forager learns about a changing environment. Post-disturbance, the forager’s world model changes after it gains
information about the loss of a potential foraging area, e.g., a new oil well destroys one of the patches. Accordingly, the forager’s world model is refined to include a
novel categorical element (orange triangle), with its own avoidance rule for movement (dynamic learning).

(e.g., selecting appropriate places to forage), it is useful to draw
a general analogy between a machine-learning algorithm and an
animal that learns. As described above, we use the term task-based
learning when referring to this type of process.

Types of Machine Learning
Machine learning has three main learning paradigms: supervised,
statistical (unsupervised) learning and reinforcement (Box 1).
Training data for supervised learning is labeled with the correct
output (Jordan and Mitchell, 2015). However, statistical and
reinforcement machine learning do not require labeled training
data and thus may be more directly applicable to animal
learning. Statistical learning attempts to extract statistically
relevant correlations from data (Hastie et al., 2009) whereas
reinforcement learning attempts to maximize a cumulative
reward through a balance between exploitation of current
knowledge and exploration of new strategies (Sutton and Barto,
2017; Box 1).

A wide range of machine learning approaches emphasizes
the importance of improvement through experience (Jordan
and Mitchell, 2015), which is close to some definitions of
animal learning. Good examples are artificial neural networks
(ANN), a class of biologically inspired statistical learning

algorithms. The input of an ANN, typically the sensory
perception of the agent or animal, is propagated through
a network of idealized neurons, which can be readjusted
by experience-generated reward signals. The sophistication
of the ANN can be increased via multiple layers (referred
to as deep learning). The output of the ANN induces
observable behavior, although it may suffer from overfitting
the model to the particular data set at hand. Another way to
incorporate the effects of improvement through experience is
via evolutionary computing. This method mimics the trial-and-
error process of natural evolution, with inheritance, mutation,
and crossing over providing the material upon which selection,
via reward signals, acts.

The Bayesian probabilistic model for inference provides
another perspective on learning. While Bayesian reasoning
is most often applied for statistical tasks such as parameter
estimation and complex model fitting, it is also a central,
probabilistic model for human cognition and learning (Chater
et al., 2006; Tenenbaum et al., 2006). In the context of
animal movement, prior information represents existing
knowledge or existing preference sets (e.g., spatial memory
and selection coefficients). Bayesian perspectives readily permit
prior knowledge to be updated with new data (experiences)
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gained by an animal’s movement through the environment. For
example, Michelot et al. (2019) draw an explicit analogy between
stochastic rule-based animal movement and a Gibbs sampler
performing Markov chain Monte Carlo sampling. The resulting
posterior distributions accurately reflect the animal’s resource
selection function (RSF).

As introduced above, reinforcement learning is a paradigm
involving iterated remapping of situations to actions with the
goal of maximizing a numerical reward (Sutton and Barto, 2017).
Learners are not provided with rules, but must instead employ
repeated trials to discover relationships between actions and
rewards. This framework has strong parallels to experience-based
frameworks for animal learning. Indeed, the temporal difference
algorithm from machine learning calculates a reward-prediction
error, reflecting how much better the world is than expected
(Sutton and Barto, 2017). This algorithm closely resembles the
Rescorla-Wagner learning rule (Rescorla and Wagner, 1972), a
mainstay from animal learning theory, which posits the change
in associative strength during learning is proportional to the
difference between the reward received vs. predicted. By way
of example, a schematic of the reinforcement optimizer for
a computer learning to play the game Go is broadly similar
to schematics of animal behavior and learning (Table 2). In
both frameworks, an agent takes actions (movements) in the
environment, and the outcomes of those actions are processed
by an interpreter (cognitive model), which either “rewards” or
“punishes” the agent, thereby modifying its internal state and
modifying its subsequent actions. Additional aspects of realism
are that rewards can be short term or delayed, and that the

appropriateness of actions is not provided initially but must be
learned via exploration.

Criteria of machine learning applied to animal learning
The machine learning literature provides concrete criteria for
identifying if an algorithm has learned (Thrun and Pratt, 1998).
Specifically, given (1) a task, (2) training experience, and (3) a
performance measure, if performance at the task improves with
experience, the algorithm is said to have learned. This is a useful
framework for interpreting observational animal movement
data. For example, for the sheep and moose in Jesmer et al.
(2018) the task was maximizing energy intake and the training
experience was several years of moving around the landscape.
The performance measure was whether the animals adopted
a migratory movement strategy to track variability in energy
availability across space and time. Because of an increase in the
proportion of migrants in the population over time (and, thereby,
an increase in the proportion of individuals with increased energy
intake), the animals likely had “learned”. Other instances of
mapping empirical examples to machine learning concepts, given
in Table 2, include hummingbird traplining, crane migration,
and experimental elk translocation.

A major challenge to applying machine learning criteria to
moving animals involves identifying the task and performance
measure in meaningful ways, given the animals’ spatial context
and scale of movement. Survival and reproduction are the
ultimate tasks, but foraging, resting, finding a mate, and
avoiding predation are all proximal tasks. Nonetheless, the
framework helpfully and unambiguously associates movement

BOX 3 | Robotics: learning by mobile autonomous agents.

Robots that move and act autonomously, learning as they go, are confronted with tasks that parallel, in some ways, the life needs faced by moving animals. As in
living animals, future decisions by a mobile autonomous robot hinge on what the learning robot experiences and encounters. Consequently, it is interesting to
investigate how animal decision making about movement (Figure 1) may be understood using concepts commonly used in robotics and control theory
(Jordan and Mitchell, 2015).
The basic model of an autonomous learner includes the following ingredients:

1) The external environment (e.g., spatial locations of forage).
2) An internal state representation, sometimes termed a world representation

(e.g., an individual’s location, energy level and knowledge of
forage locations).

3) A set of possible actions (e.g., foraging strategies).
4) A policy map that relates state representations to actions (e.g., anticipated

energy gain from each foraging strategy).
5) Information acquisition, which is a consequence of actions interacting with

the environment and the state representations (e.g., accumulated
information on forage locations).

6) Value functions that quantify benefits and consequence of actions as
represented by the internal states (e.g., benefits and consequences of
choosing a foraging strategy, given an individual’s location, energy level and
knowledge of forage locations).

A robot’s state representation simplifies all the information in the environment to a manageable (pruned and stylized) subset of relevant information that can
eventually be linked to actions. Unsupervised state representations (Lesort et al., 2018) in which there are no performance measures, may be particularly relevant as
constructs for how learning operates in animals. State representations allow the policy map to act on a dimensionally reduced decision space (the collection of
states), which dramatically simplifies the task of learning individual policies.
A policy map structures the relationship of the robot’s state representation to possible actions. A policy map may be complete, mapping all possible states to actions,
or calculated on the run. Monte Carlo tree search, as used in the Go program AlphaGo from Google Deepmind (Silver et al., 2017), determines the next move via an
extensive stochastic search. As an additional complication, a robot may possess several policy maps and then select among the alternatives in a rule-based fashion.
Specified in this way, the basic details of a mobile autonomous robot map quite closely onto a formal conceptualization of the learning process in the context of
animal movement (Figure 1).
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in the environment with training experience. Table 2 cross-
references a machine-learning example with field studies that
provided experimental evidence of learning.

Machine learning may suggest new avenues for research in
learning and animal movement. Active topics include feature
extraction, in which derived values are intended to be informative
and non-redundant (for example, preference for exploring as yet
unvisited locations in mice or composition of feeding groups
in jackdaws), and feature selection, which is the choice of
a subset of goal-relevant features (for example, availability of
resources for mice or foraging efficiency for jackdaws) (Valletta
et al., 2017; Maekawa et al., 2020). These subjects must also
play a role in the information processing associated with
learning and animal movement; developing the connections may
provide new insights.

A particularly interesting learning challenge involves updating
the world (as described above) in a familiar rather than novel
landscape. For example, in the foraging models of Bracis et al.
(2015, 2018), the task is maximization of instantaneous energy
intake, the training experience is the movement (together with
the acquisition of information for updating the cognitive map),
and the performance measure is the amount of forage obtained.
This challenge can be connected to that of online statistical
machine learning (Box 1), where data become available in a
sequential order and are used to update the best predictor for
future data at each step.

Could machine learning move beyond an analogy by
providing specific hypotheses about the way animals learn to
move? It has done so, but the cases are few. By way of
example, foraging bumblebees were manipulated in a laboratory
environment by presentation with artificial blue and yellow
flowers dispensing sucrose solution according to probabilistic
reward schedules, and their sampling strategy was compared to
the results under the equivalent two-armed bandit reinforcement
learning decision rules (Keasar et al., 2002). These decision
rules describe optimal behavior of gamblers choosing repeatedly
between options that differ in reward probability, without any
prior information. In this case, the bees’ behaviors were generally
consistent with the decision rule predictions.

LEARNING ABOUT LEARNING:
METHODS AND APPROACHES

Experimental vs. Observational
Frameworks for Gathering Evidence of
Learning in Movement
Researchers have inferred connections between learning and
animal movement via classical experiments, observational
studies, and translocation/reintroduction efforts. These diverse
data types provide distinct insights into how movement can be
used to infer learning.

Experimental Studies
Informative experimental studies of learning and movement
derive from both field and laboratory settings (Jacobs and Menzel,

2014). Many experimental studies involve insects. Indeed, study
of insect navigation propelled much of the early understanding
of animal behavior and movement and includes work by Nobel
Prize winners Tinbergen and von Frisch. Examples range from
moving landmarks to show the effects on navigation to food
sources (Wystrach and Graham, 2012) to displacing individuals
to show the effects on path integration when returning to
an organizing center (Collett and Collett, 2000). Experimental
resource manipulations have been used to demonstrate that
hummingbirds can learn abstract concepts like spatial position
(Henderson et al., 2006) and can encode spatial location on the
basis of surrounding landmarks (Flores-Abreu et al., 2012). When
applied to roe deer, experimental resource manipulation in a field
environment demonstrates that memory, rather than perception,
drives foraging decisions (Ranc et al., 2020). Elsewhere, Preisler
et al. (2006) tracked elk movements in relation to experimental
treatments involving all-terrain vehicles (ATV). They found that
elk were more likely to respond to ATVs when on an ATV route,
even if the ATV was far away. These data suggest that elk have
learned to associate ATV presence with their routes.

In laboratory settings, radial mazes and water mazes (e.g.,
Leonard and McNaughton, 1990) have been used to study how
quickly rodents can learn movement routes and improve their
efficiency. Elsewhere, laboratory arenas built for insects have
demonstrated that pesticide exposure can impair spatial learning
of resource locations by bumblebees (Stanley et al., 2015).

Sometimes field and laboratory experiments can be combined
with great benefit, including comparisons among three classic
model systems (homing pigeons, bees, and rats; Jacobs and
Menzel, 2014). For example, experimental lesioning studies of
young homing pigeons, followed by release in unfamiliar areas,
demonstrate that immature birds are very good at learning
movement routes and that there is a consolidation phase during
which experiences (e.g., encounters with landmarks) are neurally
encoded (Bingman et al., 2005).

Observational Studies
To assess learning in observational studies, researchers must
analyze how an animal behaves at a given time based on
local conditions and past experiences. Observational studies
typically record the location of animals and thus their experiences
over relatively long time-frames (e.g., multiple years, or entire
lifetimes). Remotely sensed geographic and climatological data
then provide the local conditions the animal is experiencing
during movement. Additional information on the behavioral
and physiological states of the animal may also be relevant.
Fortunately, the ongoing evolution in remote animal tracking and
sensing technology means that researchers are increasingly able
to infer physiological and behavioral states over long periods of
time (Kays et al., 2015).

Data on repeated movement patterns can help differentiate
learning hypotheses. For example, data on repeated migration
routes have helped distinguish whether animals follow resource
gradients, rely on memory to navigate, or learn from experience
to shape their movement decisions (Mueller et al., 2013; Merkle
et al., 2019). However, long-term tracking data may also be
sufficient for analysis. For example, wolf movement data have
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identified how animals follow resource levels, but that they
may also rely on the memory of time since last visit to
a location (Schlägel et al., 2017). Augmenting tracking data
with information that the animals might gather, for example
the location of kill sites (Gurarie et al., 2011) or profitable
forage patches (Merkle et al., 2014), can further enhance our
understanding of how animals monitor their environment
(Gurarie et al., 2011).

Comparative studies can be useful for identifying instances
of learning. For example, comparing the movement efficiency
of juveniles and adults shows that seabirds start by exploring
their landscape and then learn to identify the good foraging areas
and cues as adults (de Grissac et al., 2017; Votier et al., 2017;
Grecian et al., 2018; Wakefield et al., 2019). Effects of early-
life experience can be identified by analyzing the site fidelity
of animals to their breeding ground (Weinrich, 1998) and by
comparing the migration patterns of offspring to those of their
mother’s (Colbeck et al., 2013). Finally, comparing the movement
of cultural groups, especially if sympatric, can help to assess the
effect of culturally transmitted information on animals’ space use
(Kendal et al., 2018; Owen et al., 2019).

Translocations and Reintroductions
Some management actions involve human-aided displacements
of animals, either from captivity (reintroductions) or from
wild populations (translocations). Tracking the animals released
in such manipulations can provide unique opportunities to
understand how the animals adapt to their new environments
(He et al., 2019). For example, recurring short displacements
(such as when animals are repeatedly taken to the same sampling
station for physiological samples), can be used to assess how
quickly the animal learns the return route to its home range
(Biro et al., 2007).

Translocations of animals into existing populations can
aid understanding of learning when movement behaviors of
individuals new to the environment can be compared to
those of already-resident individuals. For example, quantifying
the rate of convergence of movement metrics between new
arrivals and residents could help estimate learning rates. In
addition, if translocated animals, such as elk, are sourced
from areas that differ in predation risk (or other factors)
but released in a common space, comparison of the survival
and movement patterns could be useful to understanding
how previous experience shapes learning (Frair et al., 2007).
Translocations of social animals may also create opportunities
for newly arrived individuals to learn from resident conspecifics
(Dolev et al., 2002).

Overall, comparing movements of animals in novel
environments over years or even generations with historical
populations can reveal learning and cultural transmission
and identify the rate at which animals gain knowledge. For
example, Jesmer et al. (2018) found that it took multiple
decades for translocated bighorn sheep and moose to regain
the capacity to identify and follow the optimal forage gradients
that existed in their landscapes as they migrated. Likewise,
tracking the movement of prey species before and after the
introduction of predators into a landscape affords unique

opportunities for investigating how animals learn to avoid
predators (Ford et al., 2015).

Uncontrolled Experiments
Beyond intentional displacements, other management actions
can serve as uncontrolled experiments for learning. For example,
aversive conditioning, which is routinely used in wildlife conflict
management, could provide guidance on the mode of learning
(Bejder et al., 2009) and may provide contrast the efficacy of
different deterrence systems. For example, Ronconi and Clair
(2006) showed that presence-activated deterrent systems were
more useful than were randomly activated systems for limiting
the landing of waterfowl on tailing ponds from oil extraction.
Likewise, fences involving bee hives were more likely to turn away
elephants than were bush fences (King et al., 2011) and problem
elk repeatedly chased by humans and dogs stayed further from
town (Kloppers et al., 2005).

Rapid changes in habitat can also serve as uncontrolled
experiments. For example, because ungulates will select recently
burned areas (Allred et al., 2011), monitoring animal movement
in fire-prone systems could help understand how these animals
learn about and navigate to novel habitats. Studying movement
in the vicinity of new obstacles (e.g., pipelines and roads)
and passageways (e.g., road-crossing structures) could help to
understand how animals change their spatial patterns as they
learn to circumvent barriers and make use of new structures
(McDonald and Clair, 2004; Ford and Clevenger, 2018).

Identifying and Characterizing Learning
Analytical and computational tools have a special role to play in
the context of learning and animal movement. They can be used
both to develop new theory, and in inference regarding actual
movement behaviors.

Modeling Frameworks for Exploring How Learning
Operates
Dynamical systems models are often used to investigate learning
and animal movement in a purely theoretical context (Table 3).
The most common purpose is to investigate possible emergent
patterns, which arise from the inclusion of learning in movement
models. Here spatial location and spatial memory are given by
variables that change in time and space, and dynamical rules
postulate how these variables could change through the interplay
of movement and learning. The actual form of the dynamical
systems ranges from difference equations used to analyze home
ranges (van Moorter et al., 2009), to “record-keeping” models
of cognitive maps based on incremental experiences (Spencer,
2012), to partial differential equations used to analyze searching
ability (Berbert and Lewis, 2018) to stochastic processes used to
investigate patrolling ability (Schlägel and Lewis, 2014). Agent-
based simulations have also been used to track the development
of complex spatial movement behaviors via learning (Tang
and Bennett, 2010; Avgar et al., 2013). A review of the ways
in which decisions can be integrated into agent-based models
is given in DeAngelis and Diaz (2018). Often a balance is
required between current perceptual information vs. memories
of long-term averages and between random exploration vs.
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determinism when exploiting resources (see Boyer and Walsh,
2010; Bracis and Mueller, 2017). When it comes to the sharing of
information between individuals, ephemeral public information
about resource locations can lead to permanent aggregations
of memory-based foragers that move via circuits (traplines)
(Riotte-Lambert and Matthiopoulos, 2019), and sometimes the
rules for near-optimal traplines can be developed based on
simple heuristics (Lihoreau et al., 2013). Theoretical studies can
investigate relationships or feedbacks between movement and
learning that generate patterns similar those seen in nature. They
can also be used to explore the environments in which learning
might confer benefits. Intriguingly, in the face of an uncertain
heterogeneous environment, it may be better for individuals
to overestimate environmental quality, as optimistic animals
can learn the true value of the environment faster, allowing
for a higher rate of exploration (Berger-Tal and Avgar, 2012).
Theoretical explorations are particularly useful for studying the
updating the world model type of learning, where it is more
difficult to make a clear distinction between precipitating events
of experiences and movement outcomes in observational data.

Machine learning is emerging as a powerful paradigm for the
analysis of many biological systems. In the context of learning
and animal movement, these approaches can map environmental
conditions to movement behavior outcomes without necessarily
investigating the learning process itself (see, for example, Mueller
et al., 2011; Wijeyakulasuriya et al., 2020). Furthermore, as
described earlier, machine learning can serve as prototype models
for the process of animal learning itself.

Testing for Change Over Time in Key Movement
Metrics
Across diverse data types, a key indicator of learning is a change
quantified as a function of “time in the environment” (Figure 3).
While not sufficient to say confidently that learning has occurred,

a strong signal that an animal’s movement behavior has changed
with experience suggests that it is learning. For example, the
range occupied by a group of newly translocated animals would
be expected to stay very close to their point of release as they
focus on learning attributes of their new environment, but
wander more widely as time since release increases as they
start to exploit their new environment more widely (e.g., total
daily displacement, He et al., 2019). It has been proposed that
Lévy walks may arise from a learning process wherein animals
attempt to learn optimally from their environment (Namboodiri
et al., 2016). In this situation the change from simple random
(Brownian) motion to a Lévy walk pattern of movement could
be interpreted as learning (but see, for example, Benhamou and
Collet, 2015 for a critique of this type of formalism).

Decreases in the rate of range expansion over time indicates
that translocated individuals may have learned to favor certain
parts of the landscape. In this case, exploration shifts to an
exploitation phase (Berger-Tal et al., 2014) as translocated
animals exhibit a greater probability of revisiting previously
visited areas in a goal-directed manner (Figure 3, top row),
and may ultimately establish home-ranges (Moorcroft and Lewis,
2006). Similarly, exposure to a hostile landscape element (e.g.,
human habitation) may condition wild animals to avoid such
elements, altering their spatial distribution to favor locations far
from habitation (Figure 3, middle row). This issue has been
particularly well-investigated with elephants (Hoare and Du Toit,
1999; Cheptou et al., 2017).

Animals that “sample” different landscapes during exploratory
movements may ultimately settle in landscapes featuring the
kinds of elements they encountered and exploited during
the exploration phase. This can occur during dispersal,
during which animals effectively sample and make decisions
in an environment about which they are completely naïve.
Wolves have been shown to show less avoidance of human

TABLE 3 | Models for learning and animal movement.

Step Bracis et al., 2015 Merkle et al., 2017 Avgar et al., 2016 Schlägel et al., 2017

Task 1. Maximize consumption 2.
Reduce predation

Forage efficiently Forage efficiently and survive Patrol

Experience Movement Movement among patches Movement Movement

Model prediction Consumption and predator
encounter rate

Patch selection Redistribution kernel Entire movement path

Null model Context-dependent behavioral
switching

Connectivity, size, and quality of
patch

Forage quality, predation risk,
competitors, and snow

1. Movement in response to
prey density

2. Distance to territory
boundary

Information
updated

Location and quality of forage and
encounters

1. Location and quality of
patches

Location and quality of habitat Time since last visit to territorial
locations

2. Memory of past patch quality

Improvement via
learning

Learning forager outperforms null
model

Learning forager is more
efficient

Yes Yes

Plausible
connections to
fitness

1. Foraging efficiency Past experience leads to
foraging in higher quality
patches

Past experience leads to better
habitat use

Territorial maintenance and
defense

2. Reducing encounters with
predators

Plausible learning
mechanism

Sampling and trial-and-error plus
reinforcement

Positive reinforcement Positive reinforcement Positive reinforcement
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FIGURE 3 | Exemplar movement patterns associated with learning. We represent clusters of movement activity as squiggles and range displacement events as
periods of directed motion. In each of the three examples, the process of learning alters the pattern of movement in a statistically detectable manner. Exploration
becomes exploitation through repeated visitation (top row). Conditioned responses to habitat elements may manifest as before / after displacement events (middle
row). Information gathering during a juvenile (or otherwise naïve) phase may yield improved efficiency of travel. In all three examples, one or more key metrics will
exhibit time-dependence (right column).

BOX 4 | Grand challenges in the study of animals learning to move.

How animals learn to move in novel environments. As a key form of experimental manipulation on animals in the wild, translocations and reintroductions have
provided unique insights into the role of social learning of migration and the time-lags required to re-establish migration routes (Mueller et al., 2013; Jesmer et al.,
2018). By designing efforts to collect pre-translocation movement that could be compared with post-release data would allow insight into the ways animals learn to
move in novel environments.

Social learning. Social learning is particularly hard to study in the context of animal movement because it requires simultaneous information on the location of
multiple individuals (Fragaszy and Visalberghi, 2004; Sigaud et al., 2017). One promising approach for studies in this area involves the deployment of animal tracking
collars with proximity detectors that can be used to characterize and quantify how known individuals spend their time near or far from other known individuals.

Near-term prediction of movement. Successful prediction of movement, even over modest time horizons of one or a few days, requires a strong, probabilistic
representation of animals’ decision-making process. With such a representation in hand it would become possible to gauge how novel experiences shape
subsequent movements.

Understanding fitness consequences of learning on population interactions. Learning about movement affects interactions with other individuals
(conspecifics, predator, prey and so forth), as well as with the environment. While much has been done to connect individual learning to the environment via optimal
foraging (Stephens and Krebs, 1987) there is not yet a comprehensive theory for the influence of learning about movement on population level interactions and the
subsequent impacts of these interactions on individual fitness. A natural place to start investigating these feedbacks would be social insects.

Machine learning as a source for new testable hypotheses regarding animal learning and movement. This contrasts with simply providing an interesting
analogy for the learning process. While the multi-armed bandit problem has been applied as a model for insect foraging (e.g., Keasar et al., 2002), there are few
other cases. However, ML algorithms (for example, K nearest neighbors, decision trees) provide intriguing hypotheses for how learning could proceed. A good place
to start would be to build on connections between the theory of ML and the theory of learning, such as the similarity of the reward-prediction error rules in the
temporal difference algorithm from machine learning calculates (Sutton and Barto, 2017) and the Rescorla-Wagner learning rule in cognitive science (Rescorla and
Wagner, 1972). To date, little has been done on applying machine learning as a source for new testable hypotheses regarding animal learning and movement, but
this is an intriguing area for future research.
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elements, in particular relatively little-used forest roads,
in new territories after a greater level of exposure and use
during a dispersal phase, suggesting that they might have
learned that the benefits of using those human elements
outweigh the risks (Barry et al., 2020). Translocation, which
can be considered an artificial and more abrupt dispersal,
also requires decision making in novel environments.
Changes in movement behavior (and improved survival)
were recorded following translocation of naïve elk from a
savannah landscape in Alberta to a forested landscape in eastern
Canada (Fryxell et al., 2008).

Migration can also feature time-dependence in characteristics
of movement (Figure 3, bottom row). For example, both Mueller
et al. (2013) and Jesmer et al. (2018) report changes in migration
performance as a function of animals’ time in a landscape
(Table 2). On smaller scales, foraging journeys from a central
place and other kinds of daily activity patterns can show the
same kind of performance gains (e.g., reduced tortuosity) as a
function of experience or age (Franklin and Franks, 2012; de
Grissac et al., 2017; Votier et al., 2017; Wakefield et al., 2019;
Table 1). Resulting spatial patterns of movement can be complex,
exhibiting increased speed and goal-directedness (Noser and
Byrne, 2014) and even providing evidence of future-oriented
cognitive mechanisms (Janmaat et al., 2014). Emerging patterns
may include periodic recursions (Riotte-Lambert et al., 2013) as
well as sequential movements, where locations are revisited in a
regular order (Ayers et al., 2015, 2018; De Groeve et al., 2016;
Riotte-Lambert et al., 2017).

Statistical Inference to Identify Learning in Movement
Processes
Analytical and computational tools may also be used to infer
learning processes from data. For example, the step-selection
function (SSF, Fortin et al., 2005) is of particular utility
when it is connected to regular samples of location data and
allows for inference of movement parameters that depend on
different habitat types. Computationally efficient approaches
such as integrated step selection analysis (iSSA) (Avgar et al.,
2016), provide practitioners a straightforward way to evaluate
movement decisions against actual observations. A generalized
form of the SSF, termed the coupled SSF (Potts et al., 2014),
allows for the inclusion of memory and past social interactions.
Here memory and past interactions can be included into
the model, as one or more spatio-temporal maps, sometimes
referred to as cognitive maps. Although superficially similar
to a changing habitat layer, the contents of the cognitive
maps are particular to each individual as they are populated
by information gleaned from the individual’s past experiences
(Fagan et al., 2013). With such an SSF, one can test how the
individual’s movement behavior is governed by cognitive maps
whose contents arise from different types of memories or social
interactions. Coupled SSFs have been used to test for evidence
of memory (Polansky et al., 2015; Oliveira-Santos et al., 2016;
Schlägel et al., 2017) and learning (Merkle et al., 2014) in animal
movement patterns.

Analysis via SSF assumes that animals’ location data
are known without error. If error is significant, as it can

be for marine systems, a different class of model, known
as state space models, are needed. State space models are
hierarchical and feature separate models for the movement
process and the measurement error process. These models can
be modified to include a hidden Markov process, whose
latent state is determined by physiological status (e.g.,
searching or traveling) or by learning (Avgar et al., 2016).
Such models, while flexible, may suffer from parameter
estimability issues (Auger-Méthé et al., 2016) and must be
implemented with care.

CONCLUSION AND NEW HORIZONS

Traditionally, studies of animal learning and movement
have taken place in controlled laboratory environments
or small-scale field studies. Thanks to animal tracking
technologies, increasingly detailed observations of how
free-ranging animals move and interact are possible,
leading to opportunities to formulate and test new ideas
about learning and movement. We summarize a variety
of outstanding new opportunities as grand challenges in
Box 4. However, potential pitfalls accompany this exciting
development. Alternative explanations to learning must be
considered, and if these alternatives cannot be ruled out,
then we can only infer that observations are consistent with
learning (Table 2).

There are two possible approaches to solving this problem.
First, field observations can be transformed into controlled
experiments via manipulations, as in the hummingbird
example in Table 2. While allowing for incisive analysis,
this approach limits the scientific questions to those where
such experiments can be set up. A second possible solution
is to collect more direct data on the individual experiences
over a life-time, including the environmental features
of locations animals visit, physiological measurements,
and sensory data as made possible by daylight sensors
and collar cameras.

Exciting approaches to studying learning and animal
movement arise from “uncontrolled” experiments, specifically
translocations, reintroductions, aversive conditioning, and
rapid environmental change. Understanding learning in
the context of relocations and environmental change may
ultimately help with understanding how animals can adapt to
an increasingly complex world, driven by elevated levels of
anthropogenic impacts.

The emergence of machine learning as a dominant paradigm
for solving human problems provides fertile ground for modeling
and understanding learning from animal movement patterns.
Here, processes such as reinforcement learning have close
natural ties to animals learning to move to maximize fitness
(e.g., optimal foraging). As machine learning algorithms are
currently improving and evolving, we expect this field to
shed light on further possible models for learning and animal
movement. However, as described in the fifth Grand Challenge
of Box 4, machine learning has yet to meet its full promise as
a reliable source for new testable hypotheses regarding animal
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learning and movement. This is despite the recognition that
animal cognition and communication can be closely tied to
computational models (Ma, 2015) and that behavioral decisions
can often be best formulated by simple algorithmic models
(heuristics) (Hutchinson and Gigerenzer, 2005).

Overall, the subject of learning and animal movement is at
a crucial point in development and a host of new possibilities
are on the horizon. Our goal in this review has been to set
the context for these new possibilities and point out some
future directions.
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Perception is central to the survival of an individual for many reasons, especially as it
affects the ability to gather resources. Consequently, costs associated with perception
are partially shaped by resource availability. Understanding the interplay of environmental
factors (such as the density and distribution of resources) with species-specific factors
(such as growth rate, mutation, and metabolic costs) allows the exploration of possible
trajectories by which perception may evolve. Here, we used an agent-based foraging
model with a context-dependent movement strategy in which each agent switches
between undirected and directed movement based on its perception of resources. This
switching behavior is central to our goal of exploring how environmental and species-
specific factors determine the evolution and maintenance of perception in an ecological
system. We observed a non-linear response in the evolved perceptual ranges as a
function of parameters in our model. Overall, we identified two groups of parameters,
one of which promotes evolution of perception and another group that restricts it. We
found that resource density, basal energy cost, perceptual cost and mutation rate
were the best predictors of the resultant perceptual range distribution, but detailed
exploration indicated that individual parameters affect different parts of the distribution
in different ways.

Keywords: perceptual evolution, agent-based model, resource-dependent movement, perceptual range,
perception

INTRODUCTION

Locating resources and gathering information about immediate surroundings are crucial for the
survival of an individual, and this makes perception an important nexus for behavior, ecology and
evolution. What an individual can detect and respond to is dictated by its perceptual or sensory
systems and how these systems are constructed and constrained over species-specific evolution
(Stevens, 2013). This evolution of the perceptual apparatus is regulated by interactions of the species
with its immediate environment and via inter and intra-specific interactions. Such evolution can
sometimes completely redefine the ecological dynamics of a system. This is particularly apparent
in the evolution of sensory systems, in tandem with major evolutionary transitions and species
radiations (Plotnick et al., 2010). For example, a marked increase in spatial heterogeneity of
resources and evolution of mobile organisms as well as new ecological lifestyles changed the
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information landscape of the Cambrian period. This ushered in
a major sensory transition, along with major changes in feeding
and predation modes (Dzik, 2005; Plotnick et al., 2010).

Possessing greater sensory input is always valuable as it gives
a better model of the surrounding world. However, the sensory
apparatus is not without its context and costs: changes in habitat
and surrounding environmental conditions can force organisms
to adapt their perceptual apparatus due to inherent biological
costs (Laughlin, 2001; Niven and Laughlin, 2008; Stevens, 2013).
Loss of eyes in animals dwelling in caves or other light-limited
habitats has been widely documented, especially various forms
of cavefish (Jeffery, 2009; Protas and Jeffery, 2012; Wilkens and
Strecker, 2017). A similar loss of visual acuity has been studied
in Drosophila across multiple generations in captivity (Tan et al.,
2005). Likewise, researchers have investigated the weakening
of electric organ discharges in electric fish in oxygen-stressed
habitats (Salazar and Stoddard, 2008; Stoddard and Salazar,
2011), which may represent an adaptation for saving energy
under adverse conditions. Clearly, interactions between species-
specific and environmental factors mold the sensory systems
of organisms and how they relate to movement and behavior.
A theoretical framework that facilitates systematic exploration
of these costs and benefits would help clarify the process of
perceptual evolution.

Extensive theoretical and empirical work has been undertaken
to explore the interplay of movement and perception at various
spatio-temporal scales, especially in the context of foraging
(Hastings, 1983; Johnson and Gaines, 1990; McPeek and Holt,
1992; Perry and Pianka, 1997; Farnsworth and Beecham, 1999;
Beecham, 2001; Cressman and Křivan, 2006; Cantrell et al.,
2010; Averill et al., 2012; Bracis et al., 2015). Among the
theoretical approaches, there is a great amount of variation in
the assumptions regarding information gathering capabilities
of individuals based on the mathematical frameworks that the
researchers decide to use (Fagan et al., 2017; O’Dwyer, 2020;
Martinez-Garcia et al., 2020). Patch models generally assume
omniscience about the environment (Fretwell, 1969; Pyke,
1984; Pleasants, 1989; Houston and McNamara, 1999) whereas
other modeling frameworks allow for complete environmental
information to be learned through sampling (Cressman and
Křivan, 2006). In contrast, many partial differential equation
(PDE) (Okubo, 1980; Cosner, 2005; Cantrell et al., 2006)
models typically make foragers follow a resource gradient, with
movement dependent on purely local information from their
immediate vicinity. Certain integrodifference/integrodifferential
equation (IDE) frameworks, although permitting for extensive
non-local movement (through longer-tailed dispersal kernels),
allow for the perception of strictly local information, while
some other IDE models use patch-level knowledge or full-
omniscience (Cosner et al., 2012). The same is true for many
agent-based models where agents get information on a strictly
local scale (either spatially, temporally or spatio-temporally; i.e.,
information only about where they currently exist in a model
scenario) and do not have access to any form of non-local
knowledge in the context of foraging and decision-making (Ranta
et al., 2000; Matsumura et al., 2010; Fraker and Luttbeg, 2012;
Nabe-Nielsen et al., 2013; Swain and Fagan, 2019). Between these

extremes, only a few formalisms exploit the concept of limited but
possibly non-local information (Berec, 2000; Hillen et al., 2007;
Barnett and Moorcroft, 2008; Martínez-García et al., 2013; Fagan
et al., 2017). Using these frameworks, past research has described
information gathering and resource tracking in static landscapes
(Viswanathan et al., 1999; Edwards et al., 2007; Vergassola et al.,
2007; Bartumeus and Levin, 2008; Hein and McKinley, 2012), but
equivalent questions in dynamic landscapes remain less explored
(but see Torney et al., 2011; Berdahl et al., 2013).

The limits of information gathering and perception lead to
alterations in behavior and movement strategies over different
spatio-temporal scales, as outlined by previous research (Zollner
and Lima, 1999; Zollner, 2000; Gehring and Swihart, 2003;
Calabrese and Fagan, 2004; Olden et al., 2004; Prevedello
et al., 2011; Fletcher et al., 2013; Fagan et al., 2019). This
limit—the maximum distance at which landscape elements can
be identified by an organism—is often called its perceptual
range (Fagan et al., 2017). The spatial size of the perceptual
range varies widely, with magnitudes depending on species,
individual state, sensory mode, and spatial context (Zollner and
Lima, 1997; Zollner, 2000; Mech and Zollner, 2002; Fletcher
et al., 2013). Encoding and exploration of perceptual ranges in
ecological systems has been done more through agent-based
models (Ranta et al., 2000; Matsumura et al., 2010; Fraker
and Luttbeg, 2012) than through equation-based frameworks
(Skalski and Gilliam, 2003; Tyson et al., 2011; Martinez-Garcia
et al., 2020) due to the complexity of incorporating them
in the latter (Fagan et al., 2019). Both modeling frameworks
have provided important clues about the interplay among
resource detection, movement patterns, swarming dynamics
and other phenomena (Grünbaum and Okubo, 1994; Berec,
2000; Barnett and Moorcroft, 2008; Martínez-García et al., 2013;
Fagan et al., 2017, 2019), but most of these previous models
have focused primarily on changes in perceptual range and
how it affects population-level performance. In this work, our
objective is instead to explore what environmental and species-
specific factors might result in the emergence, evolution, and
maintenance of perception in a species. In other words, we are
more interested in the evolutionary timescale, rather than the
near-term ecology of the system.

We use a simple agent-based model in a semi-dynamic
resource system to understand how the interplay of
environmental factors with species-specific factors can allow
for population trajectories by which perception may evolve.
Environmental factors such as the availability and heterogeneity
of resources help regulate the range of perception in organisms
as well as its usage and efficacy (Plotnick et al., 2010; Stevens,
2013). Metabolic costs to maintain sensory apparatus as well as
basal energy requirement and reproductive costs can affect the
perceptual range and its evolution in organisms (Laughlin, 2001;
Niven and Laughlin, 2008; Stevens, 2013; Tan et al., 2005). We
introduce a basic set of parameters in our model that represent
these environmental and species-specific factors, but we avoid
bringing in too many details to balance biological realism with
breadth of applicability to a variety of organisms with different
sensory modalities. More such details can be added above the
current model in further explorations of the work.
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We incorporate a context-dependent movement strategy for
each agent where it switches between undirected (random walk)
and directed (advective) movement based on its perception of
resources. Behavioral switching has been demonstrated in a wide
range of species at different spatial scales of foraging, such
as opossums (Prevedello et al., 2011), woodpeckers (Vergara
et al., 2019), tuna (Newlands et al., 2004), and even mosquitoes
(Raji and DeGennaro, 2017). Such a switching pattern has
been shown to better describe empirical behavioral patterns
in bees and caribou than a more straightforward blending of
movement strategies (Tyson et al., 2011). We also opted to use a
movement model that involves switching between random walk
and advective motion because models with such switching have
already identified a clear role for non-zero perceptual ranges
to enhance foraging success (Fagan et al., 2019). Alternative
models of movement exist certainly, such as ballistic movement
for agents with no information and increased tortuosity when
near resources (see Gurarie and Ovaskainen, 2013; Bartumeus
et al., 2016), but these and other foraging models are frequently
couched in terms of what is optimal (i.e., what strategy or
combination of strategies will yield the greatest uptake of
resources), which provides a poor baseline for consideration of
issues hypothesized to occur early in evolutionary history. To
supply additional biological realism, we investigated evolution
in a reproductive context, imposing limits on the amount of
resource an individual can gather and store and exploring a wide
range of initial conditions and parametric scenarios.

Focusing on the evolved distribution of perceptual range, we
assigned the parameters in the model to two categories based
on their effects: activation and deactivation parameters (i.e.,
parameters which generally promote evolution of perception
and that restrict it, respectively, in a simulated population). We
observed a non-linear, non-monotonic response as a function
of resource density, which interacts with other parameters.
Resources play a major role in determining the stability of
equilibria of the system, controlling whether or not perceptual
ranges emerge at all. In addition, we found that the system’s
behavior mirrored some biological aspects, with the evolution of
perceptual abilities depending on their costs.

MATERIALS AND METHODS

Model Description
We model the dynamics of the system using an agent-based
approach (see Figure 1). The computational spatial domain
is a 100 unit by 100 unit continuous square with parallel
sides identified (toroidal boundary conditions). Each simulation
starts with all individuals having zero perceptual range.
Through selection (enforced by environmental and species-
specific parameters) and neutral processes (brought about by
mutation) (Table 1), we observe the shape of the perceptual range
distribution in the population over time. Before the simulation
begins, a constant amount of total resource is specified according
to two parameters: resource density and resource quality.

Resource density is defined as the amount of resource patches
per unit area in the domain; thus, the number of patches

where resources are present is equal to the resource density
times the area of the domain. The resource patches are then
distributed randomly on the domain with each patch containing
an amount of resource equal to the resource quality (or the
energy quantity per resource), ensuring a spatial heterogeneity
in resource availability to mimic natural scenarios. At every
time step, the code checks the resource distribution and adds
more resource patches with the same resource quality if the
total amount of resources is less than the initial amount. This
way, the total amount of resources is held constant over time
for simplicity.

Individual agents (foragers) default to undirected movement
(a random walk) until resources enter their perceptual range,
at which point they switch movement modes and move along
a straight line (advective movement) to the nearest resource
patch and gather resources from it (see Figure 1). All foragers
have the same constant movement speed of one spatial unit
per time step. This simulates the mode of movement observed
in organisms in natural settings during foraging (Tyson et al.,
2011). Foragers having a non-zero perceptual range incur
an additional cost every timestep per unit perceptual range,
termed as the perceptual cost. We assume the relation between
perceptual range and its cost to be linear for simplicity: increased
perception translated directly into higher costs (Protas et al.,
2007; Moran et al., 2015). This cost is above the basal metabolic
cost incurred per timestep for survival, irrespective of the
perceptual range. A forager can gather an amount of resources
equal to the gather amount parameter only if the resources
are within its gather distance (irrespective of its perceptual
range) and the forager is not exceeding its energy cap, which
defines the maximum amount of resource that an individual
can consume. A special case arises when the gather distance
is lesser than an agent’s perceptual range, and in such a
case, the gathering action can be understood as a rudimentary
detection, which we assume, can occur irrespective of complex
perceptual systems.

Once a forager has sufficient resources, it can randomly
reproduce asexually according to a threshold growth rate
parameter. Should an individual reproduce, it incurs a one-
time cost associated with reproduction (reproduction cost) and
transfers that energy/resources to the offspring (new individual).
The offspring also undergoes a mutation in its perceptual
range, changing its parent’s perceptual range by an amount
randomly drawn from a uniform distribution on the interval
[−m, m] where m is the maximum mutationsize parameter.
In implementation, we ensured that perceptual ranges were
always non-negative. Death only occurs when the foragers run
out of energy. From our numerical experiments, we found that
this causes the population size to be regulated by the resource
availability (similar to the idea of carrying capacity), although
the exact values can depend upon other parameters such as
metabolic costs.

Model Implementation and Analysis
We implemented the model in the Go programming language
using its standard libraries (see the code and data availability
section for details). A detailed account of all parameters appears
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FIGURE 1 | Conceptual figure of the model.

TABLE 1 | Summary of various parameters used in the model, their definitions and their effects on the perceptual range distribution.

Parameter Definition Observed effect

Resource quality Amount of energy per resource patch Activation parameter; Affects higher percentiles slightly more

Resource density Total energy per unit area Activation parameter; Major predictor of perceptual range distribution; Affects lower
percentiles more

Growth rate Probability to reproduce per timestep Activation parameter; Affects lower percentiles more

Max. mutation size Maximum perceptual mutation per reproduction Activation parameter; Major predictor of perceptual range distribution; Affects
higher percentiles more; influences the variance of the perceptual range distribution.

Reproduction cost Energy cost to reproduce Weak deactivation parameter; Affects all percentiles almost uniformly

Basal energy cost Energy cost to continue living Deactivation parameter; Major predictor of perceptual range distribution; Affects
higher percentiles more; Increases perceptual ranges until a cutoff

Perceptual cost Additional energy cost per unit perceptual radius
per timestep for having a perceptual range

Deactivation parameter; Major predictor of perceptual range distribution; Affects
higher percentiles more

Gather amount The amount of energy an agent can gather at once
(in a given time-step)

Weak deactivation parameter; Affects higher percentiles more

Gather distance The distance within which an agent can gather
resources, irrespective of the perceptual range

Activation parameter; Affects higher percentiles slightly more

Energy cap Maximum amount of energy an agent/forager can
store at any given time

Weak activation parameter; Affects lower percentiles more

The first two rows, resource quality and resource density, control the quality and quantity of resources. The next two, growth rate and maximum mutation size, control the
reproductive and mutation processes. The next three rows are the energy requirements imposed on foragers due to various conditions. The last three rows depict the
limitations on the collection of resources from the environment.

in Supplementary Table 1. To obtain a representative behavior
in the ensemble of simulations, we performed 10 million
runs, involving parameter combinations chosen using a Latin
hypercube sampling (LHS) procedure. Each simulation was
run for 150 time-steps and had a starting population of 100
zero-perceptual range individuals. From a set of preliminary
simulations over a wide variety of parameters, we found
that simulations stabilized to almost a constant distribution
(less than 5 percent difference) in under 150 timesteps and
remained stable afterward (see Supplementary Figure 1 and
Supplementary Video).

Each simulation begins by randomly placing 100 foragers on
the computational domain and initializing their energy levels
to 1.0. At each time step, a sequence of events occur: (1)
all individuals check their perceptual radii for resources; (2)
foragers move in a random manner (if they cannot perceive any
resources) or a directed manner to the closest resource (if they
can perceive one or more resources); (3) If possible, foragers
gather resources from the locations harboring resources; (5)
All foragers pay their cost penalties; (6) if they have sufficient
resources, foragers reproduce with a probability prescribed by the
growth rate parameter with their offspring placed at a random
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location adjacent to their parents (randomly within a distance of
5 units), and lastly, (7)resources are replenished according to the
parameters in the code.

Each parameter combination was replicated 10 times and
then the end time perceptual ranges were aggregated (for
each combination) to obtain an averaged, statistically robust
distribution of perceptual ranges (i.e., 10 replicates times 100
randomly placed individuals at the start of each simulation)
from which we could calculate percentiles of interest (2.5,
25, 50, 75, and 97.5). We focus on these percentiles rather
than a simple mean because we anticipate that different
factors may influence the structure of the perceptual range
distribution in different ways. For example, the degrees to
which the parameters affect the lowest perceptual range values
would be different from how they affect the highest perceptual
ranges in the system. After accumulating all the data, we
performed further analysis in Python and R. Preliminary
analyses justified our choice of 10 replicates per parameter
combination. To do this we ran 100 replicates for 100
randomly selected parameter combinations and then calculated
the Bhattacharyya distance among replicates for various subsets
from 1 to 100, discovering that 10 was an optimal number
with respect to computational time and statistical robustness
(see Supplementary Figure 2 for details). Bhattacharyya distance
is a standard statistical metric for quantifying the similarity
of two probability distributions; it reflects the amount of
overlap between two statistical samples or populations (see
Bhattacharyya, 1943), and is measured between 0 and 1, where
1 denotes complete similarity.

One might argue that assuming the probability of mutation
to be 1 on reproduction, irrespective of mutation size, is not
a biologically relevant scenario, and instead the probability of
mutation should vary depending upon environmental conditions
and species-specific factors. However, we found that a mutation
probability of 1 was appropriate for our purposes, by conducting
a series of numerical experiments in which we considered 1,000
parameter combinations at each of ten mutation probabilities.
These simulations show that the probability of mutations
(independent of the mutation size) only affects the timescale
of the simulations. It does not affect the final distribution of
perceptual ranges (see Supplementary Figure 3 for details).
Therefore, to be computationally efficient we assume mutation
probability to be 1 and focus our analyses of mutational dynamics
on maximum mutation size.

To obtain a simplified dependence structure of various
parameters on the evolution of the perceptual range distribution,
we determined the partial rank correlation coefficient (PRCC)
of various parameters with respect to the 2.5, 25, 50, 75, and
97.5 percentiles of the distribution, using the sensitivity package
(Iooss et al., 2020) in R. We also performed a Random Forest
(RF) regression, using the random Forest package (Liaw and
Wiener, 2002) in R, to identify which parameters are the strongest
predictors of the patterns in different percentiles of the perceptual
distribution. We optimized the number of parameters available
for splitting at each tree node in the RF using out-of-bag error
(OOB) (Liaw and Wiener, 2002). We use the IncNodePurity
statistic (another standard statistical metric defined as the total

decrease in node impurities from splitting on a given parameter,
averaged over all trees; Impurity is measured by residual sum
of squares and is calculated only at the node at which a
given parameter is used for a split; see Liaw and Wiener,
2002) for comparing variable importance scores in RF models.
Higher values of IncNodePurity denote higher importance of a
parameter in predicting a given variable.

To further analyze the details in the patterns of perceptual
evolution and identify how perceptual evolution depended on
resource availability, we fixed a standard set of parameters (see
Supplementary Table 1 for details) and plotted the distributions
by altering one parameter at a time in three different resource
regimes (low, medium, and high; see Supplementary Table 1).

RESULTS

Classifying Parameters and Their Impact
Figure 2A summarizes results from the PRCC analysis
investigating how model parameters affect the percentiles of the
distributions of perceptual ranges. To understand the impact
of various parameters, we categorized all parameters into two
groups: activating, which are the ones with PRCC greater than 0.0
(i.e., a positive effect on the distribution of perceptual ranges) and
deactivating, with PRCC less than 0.0 (i.e., a negative effect). This
categorization groups resource quality, growth rate, maximum
mutation size, resource density, gather distance, and energy cap as
activating parameters because these parameters positively affect
and/or aid the evolution of non-zero perceptual ranges. On the
other hand, basal energy cost, perceptual cost, reproduction cost
and gather amount fall into our deactivating category and affect
the evolution of non-zero perceptual ranges negatively.

Although this broad classification is helpful, the impact
of each parameter within the categories differs substantially,
and for some parameters (e.g., maximum mutation size) the
impact differs across the parts of the perceptual distribution
(Figure 2A). To further elucidate parameter impacts on
perceptual range, we can examine the variable impact scores
from RF regression models and quantify how individual
parameters affect perceptual ranges when all others are
held constant.

Parameters as Predictors of the
Perceptual Distribution
We plot the variable importance scores through the
IncNodePurity statistic from the RF regression models,
with all parameters as predictor variables and percentiles of
the perceptual range distribution as the outcome variable
(Figures 2B–F). See Supplementary Figure 4 for RF
optimization. These results echo the findings from the PRCC
plot (Figure 2A) and describe more than 70% of the variance in
each of the five perceptual percentile levels. Specifically, RF could
explain 74.84, 70.03, 70.25, 70.16, and 72.92% of the variance for
the 2.5, 25, 50, 75, and 97.5 percentiles, respectively).

Perceptual cost, basal energy cost, maximum mutation size,
and resource density, which have the highest PRCC values for
almost all the percentile perceptual values, are consistently the
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FIGURE 2 | Finding critical parameters. (A) Classifying parameters into activating and deactivating groups using partial rank correlation coefficient (PRCC);
parameters where the mean PRCC is above 0.0 are activating and those with mean PRCC below 0.0 are termed deactivating. (B–F) Represent a Random Forest
(RF) Regression of different parts of the resultant perceptual range distribution from the parameter values where (B–F) represent the results for 2.5, 25, 50, 75, and
97.5 percentiles, respectively (and percentage of variance explained: 74.84, 70.03, 70.25, 70.16 and 72.92%, respectively). The labels in green are activating
parameters and those in red are deactivating. The x-axis in (B–F), IncNodePurity, refers to the total decrease in node impurities from splitting on a given parameter,
averaged over all trees. Higher IncNodePurity means higher variable importance.
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best predictors of evolved perceptual range. Only the relative
ranking of the importance of these four parameters changes in
the RF regression across the percentile levels. In the case of the 2.5
percentiles, growth rate approaches a similar range as the top four
parameters listed above, but in all other cases, growth rate’s PRCC
value remains low. Although gather distance positively affects the
perceptual evolution and affects its variation as evident in PRCC
values (Figure 1), it is not a good predictor of the percentile
perceptual values.

Detailed Discussion About Parameters
To gain more insights into the model’s evolutionary dynamics,
we plotted the mean perceptual radius of simulations where we
tuned one parameter and kept the others constant at standard
values (Supplementary Table 1). We did this for each of three
resource regimes in Figure 3 to uncover broad scale patterns
associated with changing resource density. For a more detailed
structure of the distribution, please refer to Supplementary
Figures 5, 6.

Activation Parameters
Activation parameters allow perceptual ranges to evolve and
persist in the population. Resource quality, growth rate, maximum
mutation size, resource density, gather distance, and energy
cap are activating parameters. Each of these parameters
has a threshold value such that when the parameter is
below the threshold, conditions are sufficiently harsh that
no perceptual range evolution is possible. Once above the
threshold, however, the parameter creates a setting that activates
perceptual range evolution (see Figure 3B and Supplementary
Figure 5).

Threshold values vary among the activation parameters, and
across the parameter space. Regimes where positive perceptual
ranges reliably exist are usually characterized by a resource density
of around 0.5 or more, showing an important dependence on
resource availability. In the low resource case (resource density
is 0.25), we see interesting patterns: populations with non-zero
perception exist only sporadically and by chance; but when they
do exist, they create higher mean perceptual ranges than higher
resource density cases for similar parameter values (Figure 3).
The maximum mutation size parameter is unique among the
activation parameters, as it allows populations to thrive more
reliably in low resource regimes than other parameters (Figure 3).
The perceptual range distribution exhibits high variation in
harsh or low resource environments for all parameters as
compared to those in medium and high resource environments
(Supplementary Figure 5).

Deactivation Parameters
Deactivation parameters, such as basal energy cost, perceptual
cost, reproduction cost, and gather amount, make it more difficult
for perceptual ranges to evolve and persist in a population.
Instead of having thresholds, these parameters have cutoffs after
which no non-zero perceptual ranges generally evolve (Figure 3
and Supplementary Figure 6).

The perceptual range distribution is very sensitive to changes
in perceptual cost (Figures 2, 3A2). We see a quick decrease

in perceptual ranges as perceptual costs go up, but greater
perceptual costs are tolerated in high resource scenarios
(Figure 3A2). For basal energy cost, which is another strong
predictor of perceptual range (Figure 2), we see an increase
in perceptual range until the cutoff is reached (Figure 3A3).
Although reproduction cost reduces the distribution of perceptual
ranges, its impacts are relatively small (Figures 2, 3A1). Gather
amount behaves like an activation parameter, in having a
threshold rather than a cutoff, and has a small negative impact
on perceptual evolution (Figure 3A4).

DISCUSSION

Understanding the evolution of perception in a given ecological
setting sheds light on the interplay between environmental
and species-specific factors in structuring the sensory spaces
of organisms. Using our simple agent-based model, with
assumptions pertaining to biological scenarios, we can predict
possible effects of various environmental and biological
factors on perceptual evolution. Moreover, our simulations
include both neutral and adaptive processes of change (i.e.,
through mutation size and selective pressure to survive
and reproduce), which allows for exploration of how such
evolutionary changes may take place.

The simulations draw a stage where the foragers try to
maximize their temporal energy gain while trying to minimize
the risk of running out of energy, under various starting
conditions and a spatially heterogeneous (but controlled)
environment. Although it would be interesting to understand
conditions and evolutionary strategies through which one can
view the emergence and maintenance of various perceptual
range distributions, the complex form of density dependence and
continuous space of possible pathways or strategies present in our
model mean that such investigation is not at all straightforward.
Therefore, we focus here on a higher-level correlative view of the
emergent patterns of perceptual range distributions.

Results from the simulations suggest a few major patterns.
From the RF analysis and PRCC estimation, we found the four
major predictors of perceptual range evolution to be resource
density, maximum mutation size, perceptual cost, and basal energy
cost, with resource density providing the uniformly strongest
effects (Figure 2A). From basic ecological principles, one expects
factors akin to resource density to affect the evolution of
perception, either directly or indirectly. A good example involves
the reduction of sensory apparatus in a variety of organisms in
resource-limited environments in both natural settings and in
well-controlled experimental systems (Stevens, 2013; Brandon
and Dudycha, 2014; Brandon et al., 2015). For example, caves
have resource-limited conditions, and the reduction in visual
organs of cavefish, as compared to their above-ground relatives
(Jeffery, 2009; Borowsky, 2008), may be driven by the relatively
high energetic costs of the visual system coupled with minimal
benefit of vision (Niven and Laughlin, 2008), in addition to other
developmental constraints. Likewise, in benthic decapods, eye
size increases with increasing depth, as expected from the fact
that larger eye size improves vision in dimmer environments
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FIGURE 3 | Mean distribution values of perceptual range for different parameters in three different resource density regimes. Column A (A1–4) represents
deactivation parameters and column B (B1–5) represents activation parameters (The labels in red are deactivation parameters and those in green are activation).
Resource densities of 0.25, 0.75, and 1.5 correspond to the “low,” “medium,” and “high” resource conditions, respectively. Detailed distributions of the perceptual
ranges and how they are affected by various parameters can be found in Supplementary Figures 5, 6.

(Hiller-Adams and Case, 1985). However, the opposite trend
was observed in pelagic crustaceans (Hiller-Adams and Case,
1984, 1988), indicating that large eyes are an energetic burden in
the resource-limited pelagic zone. These comparative examples
suggest the evolution (or loss) of visual apparatus depends not
only on the perceptual environment but may also (directly
or indirectly) depend on resource availability (although a
strong mechanistic link is still lacking). Evolutionary effects
and generational plasticity in perceptual apparatus investment
due to limited resources and allocation to other body parts
have also been observed in a number of organisms including
Daphnia (Brandon and Dudycha, 2014; Brandon et al., 2015),
beetles (Nijhout and Emlen, 1998), and butterflies (Merry et al.,
2011). Although resource availability has been implicated or
hypothesized in perceptual loss or gain in these systems, the
mechanistic link is still missing, and the observed effects might
be due to other secondary factors.

Naively, one might expect that the strongest selection on
perceptual ranges would happen under intermediate resource

densities, because at high densities, there might be little to
no benefit of increased ranges as resources are likely to be
encountered under random movement patterns and at low
resource densities, the benefits of findings resources may
not necessarily offset the costs of the systems necessary to
detect them. Interestingly, in our model lower resource density
environments sometimes produced noticeably larger perceptual
ranges than those of higher resource density environments, even
though the threshold for attaining non-zero perception in the
latter environments was lower (Figure 2 and Supplementary
Figures 5, 6). This effect was, however, sporadic and depended
on chance: low resource environments can also lead to smaller
perceptual ranges. This diversity of successful strategies seems
to be true for some low resource environments like the deep-
sea, where certain organisms have exceptionally well-developed
sensory capabilities whereas others feature extensive reductions
in sensory systems (Drazen and Sutton, 2017). Moreover,
although resource density had an overall positive impact on
the whole perceptual distribution, it had a higher impact
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in increasing the lower percentiles of the perceptual range
distribution (Figure 2A), and therefore might play a critical role
in early stages of perception evolution.

Maximum mutation size facilitated evolution of more diverse
perceptual ranges in all scenarios. The notion that large
mutations might aid in the formation of complex morphological
features, such as sensory systems, is well-developed both
experimentally (Weng, 2014) and theoretically (Lenski et al.,
2003). For example, mutation rate affects the time required
for eye evolution (Nilsson and Pelger, 1994). In addition, we
observed that maximum mutation size allowed for a more stable
persistence of perception in low resource environments and led
to the evolution of larger perceptual ranges (Figure 3B1 and
Supplementary Figure 5). Such an observation may be related
to the fact that there is bistability in the system (here, bistability
corresponds to situations where the equilibrium distribution
of perceptual ranges included both zero and non-zero values;
Supplementary Figures 5A2–A4, 6A3–A4). Bistability would be
expected to emerge only when sufficient temporal and spatial
conditions are met, and near such points, we would expect
to see a transition to situations in which a portion of the
population has non-zero perceptual ranges. For example, under
standard conditions of our model and low resources, mutation
size was the major parameter that led to apparent bistable states.
In this case, sufficiently high mutation size helps create larger
perceptual ranges, which can aid survival under low resource
conditions while also meeting the perceptual costs. Otherwise,
zero-perceptual range is the stable state where random walk
foraging and low energetic costs can sustain the population. In
other scenarios, we might have such bistability as a complex
function of many parameters. As this work provides a path
for thinking about evolution of perceptual ranges and the
parameters that affect their stable distributions under various
conditions, future work, using non-agent-based approaches,
should investigate bistability more fully.

Maximum mutation size affected various parts of the
perceptual distribution differentially (Figure 2A). In particular,
the effect of this parameter increased with increasing percentiles
of the perceptual range distribution, meaning that higher
maximum mutation sizes allowed for higher upper bounds
on the possible perceptual ranges but did not affect the
lower bounds as much.

As expected, an increase in perceptual cost decreased
the prevalence of non-zero perceptual ranges (Figures 2A,
3A2) as the foragers became unable to afford the energy
loss incurred by increasing their perceptual range. Such a
phenomenon is known from a wide range of species in both
natural and captive settings and from physiological experiments
(Niven et al., 2007; Niven and Laughlin, 2008; Stevens, 2013).
For example, the production of electric organ discharges
(EODs) (in weakly electric fish) is metabolically expensive
(Salazar and Stoddard, 2008; Stoddard and Salazar, 2011). Fish
living in waters with sufficient oxygen show no correlation
between metabolic rate and EOD, but those in oxygen
depleted waters show reduced EOD (Reardon et al., 2011). In
sticklebacks, where divergence into two forms occurs during lake
habitat acclimatation—benthic (bottom dwelling, invertivorous)

individuals, which live in lower light conditions and have higher
perceptual costs, possess diminished eyes, whereas limnetic (open
water dwelling, zooplanktivorous) individuals have larger eyes
(Willacker et al., 2010). In ray-finned fish, eye size decreases
as a function of turbidity of waters they inhabit—pointing to
increased perceptual cost in more turbid waters (i.e., reduced
visibility) affecting eye size and acuity (Caves et al., 2017). We
also note that perceptual cost had the strongest effect on the higher
percentiles of the perceptual range distribution (Figure 2A).

Basal energy cost also had an overall intuitive trend. At low
levels, it is easier for foragers to evolve perceptual range, while
at higher levels the foragers are unable to meet the cost; this
cutoff increased with increasing resources (Figure 3A3). But
on a finer scale, we observed an increase in perceptual ranges
with increasing basal energy cost, until the cutoff value, where
it abruptly crashed (Supplementary Figure 5). Increases in
basal energy cost forced foragers to find a better way to gather
resources and thus, perceptual ranges increased (Supplementary
Figure 5). This process continued, in increasing strength, until
the point where foragers cannot sustain themselves due to
a high metabolic cost—which results in the cutoff. Predation
and competitive interactions both increase basal energy costs
(Hawlena and Schmitz, 2010; DeLong et al., 2014), and larger
sensory apparatus can occur in situations featuring greater
predation and competition (Beston and Walsh, 2019). But
beyond a certain threshold rate of predation, reduced visual
apparatus might happen due to higher costs as documented in
Eurasian perch (Svanbäck and Johansson, 2019), similar to our
results (see Figure 3A3 and Supplementary Figure 5). Another
intriguing example of the phenomena involves cylindroleberidid
ostracods, in which species with eyes living in the photic zone
have larger carapaces (and therefore higher basal energy costs)
and may possess a larger number of ommatidia when living at
greater depths were resources are fewer (Juarez et al., 2019).
In the same group, neither body size nor absolute metabolic
rate changes as depth increases in the disphotic zone. However,
food availability does decrease with depth (and therefore, relative
metabolic rate increases) and eyes have more ommatidia (Juarez
et al., 2019). In other words, evolution of better perceptual
apparatus is possible over a range of conditions, even with
increasing relative metabolic costs.

Beyond these four major predictors, the remaining parameters
had smaller or more restricted effects. For example, growth rate
played an important role in determining the lower bound of
the perceptual distribution (Figures 2A,B), although it did not
impact other parts of the distribution as much (Figures 2C–F).
Previous works have reported enhanced growth rate being
correlated with larger eyes in Trinidadian killifish (Beston and
Walsh, 2019) and in amblyopsid fishes (Poulson, 1963).

Reproduction cost negatively affected all percentiles uniformly,
although the impact was weak (Figure 2A). Although we
only modeled asexual reproduction, we take this result as a
weak indicator of reproductive investment affecting perception.
An example of this can be seen in scarab beetles where
there is a strong trade-off between anatomical investments
that help in reproduction, such as horns, and eye size
(Nijhout and Emlen, 1998).
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The rest of the parameters that we introduced to make our
model more biologically realistic gave us important insights
about perceptual evolution but have limited experimental and
observational evidence for validation. For example, resource
quality was a weak activation parameter, which affected the
higher percentiles of perceptual range distribution slightly more
than the lower percentiles (Figure 2A). Energy cap is another
parameter of weak influence, but it impacted perceptual evolution
in a positive way, and had greater impacts on the lower percentiles
of the distribution (Figure 2A).

Gather amount is an intriguing parameter, it behaved like
an activation parameter (in the sense of having a threshold),
but it had a deactivating influence on the perceptual range
distribution (Figure 2A). When gather amount increased beyond
a certain value, larger perceptual ranges were possible as the
foragers were able to meet biological costs. At the same time,
however, foragers with lower perception ranges obtained an
advantage by not having to spend much energy on perception,
leading to a net weak decrease in perceptual ranges (Figure 2A).
This could be evidence that gather amount is leading to
increased greediness among the foragers, resulting in a more
equal spreading of resources and decreased efficacy of the
evolutionary process.

Gather distance improved the foraging ability of larger
perceptual ranges, and therefore affected the higher percentiles
of the perceptual range distribution in a more positive way
than the lower percentiles (Figure 2A). Foragers with small or
zero perceptual ranges also would be able to collect resources
easily with increasing gather distance, but they would do so in
a diffusive movement pattern. This means they would consume
more energy per timestep—making them less competitive than
foragers able to employ advective movement on the basis of
their perceptual ranges. Gather distance is especially useful at
lower resource densities (beyond a threshold which will allow for
survival; Figure 3B3 and Supplementary Figure 5).

Exploring the effects of parameters in our model facilitates
understanding of the evolution of perception by identifying
how environmental and species-specific attributes (and their
interactions) influence the development and maintenance of
perceptual range. Such investigations are also beneficial because
they suggest patterns of perceptual evolution that might have
occurred under various circumstances in the past. In particular,
this work suggests the existence of certain “minimal conditions”
that are necessary for the evolution and persistence of perception.
These conditions, in the form of cut-offs in the case of
deactivation parameters and thresholds in activation ones, give us
a basic framework to hypothesize about evolutionary trajectories
of perception and perceptual ranges. Moreover, given the general
nature of this simple model, it is relevant to the evolution of
perception for organisms of any size and sensory perception
of any modality. Even though we focus on only one type
of perception in our model, it can be easily expanded in a
future work to involve multiple sensory inputs and their relative
trade-offs to better understand the evolutionary trajectories of
multiple sensory modalities (Howarth and Moldovan, 2018;
Keesey et al., 2019).

In addition, we have not explored the ways in which “dispersal
distance” or “mobility” during the reproductive process might
affect the system dynamics in the current set of simulations. This
topic is a complex one and exceeds the scope of the current
paper, but we are able to draw a few conclusions based on pilot
results and extrapolations. Small “dispersal distance” leads to
agents with similar phenotypes being spatially localized. This
does not, however, have a direct impact on the phenotypic
distribution because reproduction is purely asexual in the current
model. In contrast, dispersal distance could have an impact via
resource consumption. Specifically, because agents with higher
perceptual range are more effective at removing resources from
the environment, spatial clustering resulting from “dispersal
distance” can indirectly result in subregions in the simulation
space that are less resource-dense because they are inhabited by
clusters of highly perceptive agents.

In its current form, our work has provided one way of
exploring the evolution of perception in a spatially explicit
agent-based model, something that has not been done in the
past. Instead, past work on the evolution of perception has
used different approaches and considered different themes.
For example, researchers have investigated the evolution of
perception from a Bayesian perspective to explore the formal
link between the statistics of the environment and species-
specific characteristics through the lens of genetics (see Geisler
and Diehl, 2002, 2003). Those authors used the concept
of a maximum fitness ideal observer (a standard Bayesian
ideal observer with a utility function) appropriate for natural
selection (with a utility function for fitness) and a formal
version of natural selection based upon Bayesian statistical
decision theory, to explore perceptual systems (Geisler and Diehl,
2003). Others have approached the evolution of perception
from a sensory ecology perspective – through the interplay of
signals, signaling behaviors and sensory drives (Endler, 1992),
where the focus in on how the environment influences the
production, propagation, and detection of signals. Our work
is complementary to both of these frameworks, as we created
a system incorporating important paradigms from movement
ecology (foraging, perceptual ranges, and switching between
random search and directional movements) to answer the
same questions, but with biologically inspired and tunable
parameters. Our model is very simple in terms of its treatment
of perception and its properties and provides only a crude
representation of forager-resource interactions. Nevertheless, it
is a first step in the direction of building more sophisticated
models of the evolution of perception. Limitations of the
current study include (1) our binary treatment of perceptual
acuity (we model acuity simply as 1 inside the perceptual
range and 0 otherwise, such that a forager isomniscient about
resources inside its perceptual range); (2) our lack of attention
to sexual reproduction (we assume only asexual reproduction for
simplicity because consideration of sexual reproduction would
require attention to a great deal behavioral complexity and many
further assumptions); (3) our lack of a role for memory; and
(4) rudimentary treatment of perception that does differentiates
among different modalities.
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In the future, we plan to investigate speciation as a
function of changing perceptual range. Such inquiry is not
possible here because aggregated data obscures our ability
to distinguish fine patterns that might indicate “perceptual
speciation” and bistability in our scenarios. Understanding
such phenomena might be important in exploring patterns
of sympatric speciation seen in many subterranean habitats
(Segherloo et al., 2018), and perhaps in Drosophila (Keesey
et al., 2019) and hypogean spiders (Mammola and Isaia,
2017). Moreover, due to our focus on foraging in this model,
we did not consider mating signals and interactions, which
also play a major role in perceptual evolution (Endler,
1992). Perception of sexual signaling would be a new
direction in which our model could be remodeled and
explored in the future.

To make this line of modeling more biologically realistic
and explore prey-predator interactions (see Hein and Martin,
2020), future studies will include moving resource (or prey)
items, different foraging strategies and scale of movement
(see Farnsworth and Beecham, 1999; Beecham, 2001). Such
a model can also account for co-evolution of perception
in multiple interacting species such as the coevolution of
hearing in bat-moth systems (Fullard, 1998), and evolution of
alternative “cognitive” strategies for movement and foraging
(Farnsworth and Beecham, 1999; Beecham, 2001). We also
would like to explore more than one type of sensory perception
(and its associated range) and incentivize the development
of perceptual modalities with different resources. Future work
could also explore other properties of perception, such as
acuity and memory to increase the model’s biological realism.
Taken together, such a system of models can help us
understand the evolution of perception and the interplay
between sensory modalities (Howarth and Moldovan, 2018;
Keesey et al., 2019), allowing investigation of the biological
and environmental factors that facilitate or hinder such
evolutionary changes.
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Seasonal migrations are a widespread and broadly successful strategy for animals to

exploit periodic and localized resources over large spatial scales. It remains an open

and largely case-specific question whether long-distance migrations are resilient to

environmental disruptions. High levels of mobility suggest an ability to shift ranges that

can confer resilience. On the other hand, a conservative, hard-wired commitment to

a risky behavior can be costly if conditions change. Mechanisms that contribute to

migration include identification and responsiveness to resources, sociality, and cognitive

processes such as spatial memory and learning. Our goal was to explore the extent to

which these factors interact not only to maintain a migratory behavior but also to provide

resilience against environmental changes. We develop a diffusion-advection model of

animal movement in which an endogenous migratory behavior is modified by recent

experiences via a memory process, and animals have a social swarming-like behavior

over a range of spatial scales. We found that this relatively simple framework was able

to adapt to a stable, seasonal resource dynamic under a broad range of parameter

values. Furthermore, the model was able to acquire an adaptive migration behavior

with time. However, the resilience of the process depended on all the parameters under

consideration, with many complex trade-offs. For example, the spatial scale of sociality

needed to be large enough to capture changes in the resource, but not so large that the

acquired collective information was overly diluted. A long-term reference memory was

important for hedging against a highly stochastic process, but a higher weighting of more

recent memory was needed for adapting to directional changes in resource phenology.

Our model provides a general and versatile framework for exploring the interaction of

memory, movement, social and resource dynamics, even as environmental conditions

globally are undergoing rapid change.

Keywords: PDE model, social learning, climate change resilience, seasonal migration, memory

1. INTRODUCTION

Seasonal migrations are widespread among terrestrial, aquatic, avian and invertebrate species
(Dingle, 2014). For many species, migration is an extremely successful strategy, allowing a far
greater number of individuals to inhabit landscapes which might not otherwise be able to support
large numbers year round (Fryxell et al., 1988). The evolutionary stability of a migratory strategy
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essentially relies on the fitness benefits of accessing seasonal
resources, whether for energetic gain, predator avoidance,
or a suitable environment for reproduction, outweighing the
energetic and survival related costs of migration (Avgar et al.,
2014).

Proximate causes, drivers and mechanisms for migration
vary widely across and even within species (Berthold, 1999;
Shaw, 2016). Some migrants follow a “green wave” of spring
vegetation as it flowers across altitudinal or latitudinal gradients
(Bischof et al., 2012; Kölzsch et al., 2015; Merkle et al., 2016).
These migrations can be considered “tactical,” as they can
occur—as an extreme simplification—purely as response to local
conditions. Other migrants perform long-distance migrations in
anticipation that critical resources will be available at the time
of arrival at the end point of migration (Abrahms et al., 2019).
This second behavior involves the greatest trade-off between
the costs and benefits of accessing those highly seasonal and
localized resources. This approach can be considered “strategic”
in the sense that it is driven not by immediate cues but by an
anticipation based on prior experience (Bracis andMueller, 2017;
Merkle et al., 2019; Bauer et al., 2020).

Migration can be a very successful strategy, with migratory
ecotypes of the same species often outnumbering non-migratory
conspecifics. Migratory caribou and reindeer Rangifer tarandus,
for example, are several orders of magnitude more abundant
than non-migratory woodland, mountain and forest ecotypes
(Festa-Bianchet et al., 2011; Uboni et al., 2016). However, the
question of whether migratory animals are more or less resilient
to environmental disruptions in the environment remains
open and largely case-specific (Moore and Huntington, 2008;
Hardesty-Moore et al., 2018; Xu et al., 2021). On the one hand,
migratory species may be more vulnerable as disruptions in
either of the seasonal ranges or along a migratory corridor
can have significant negative impacts (Wilcove and Wikelski,
2008; Seebacher and Post, 2015; Kauffman et al., 2021). On
the other hand, migratory species might be more resilient
due to their general wide-ranging mobility (Robinson et al.,
2009). The resilience of a migratory population depends on
the plasticity and adaptability of the population, which can
take multiple forms, reflecting variation in where, when and
whether the migration occurs (Gurarie et al., 2017; Xu et al.,
2021).

Cognitive processes, in particular spatial memory, have been
shown to be important mechanisms for the reinforcement and
maintenance of migration (Merkle et al., 2019; Bauer et al.,
2020). Similarly, sociality and social learning are likely essential
to maintaining migration (Guttal and Couzin, 2010; Fagan et al.,
2011; Berdahl et al., 2018; Jesmer et al., 2018). However, the
interacting role of sociality and spatial memory for the plasticity
of migration and the resilience of the behavior when faced
with a changing environment are generally unknown, though
it has been hypothesized that the importance of these cognitive
processes depend on the predictability of these resources (Riotte-
Lambert and Matthiopoulos, 2020). Because the scenarios
underlying migration are manifold and complex, mathematical
modeling may provide some insights and help clarify where,
when, and under what conditions we might expect migration

behavior to emerge, to be adaptive, to be maladaptive, or
to collapse.

Here, we develop a diffusion-advection model with sociality
and memory to explore the resilience of a migratory population
under various dynamic, seasonal resource distributions. In
formulating the model, our goal was to identify the minimum set
of movement and memory parameters required to generate an
adaptive, migratory behavior. This includes the ability to learn
to migrate from non-migratory initial conditions, simulating
the release of naive animals in a seasonal environment (Jesmer
et al., 2018); to lose the propensity to migrate if the resource
distribution does not require it, also a commonly observed
phenomenon (Wilcove and Wikelski, 2008); and to assess the
resilience or fragility of a migratory population against changing
resource distribution dynamics, including both stochasticity and
trends in spatial and temporal distributions, mirroring the effects
of climate change (Park et al., 2020).

We anticipated that under many conditions a blending
of tactical (i.e., direct response to resource availability or
perception) and strategic (i.e., memory-driven and forward-
thinking) behavior will help foragers navigate dynamic, seasonal
environments. Over-reliance on either strategy should be
maladaptive. We further anticipated that a shorter-term memory
updating is needed to navigate trends in resource spatial
distribution and temporal distribution (phenology), but that a
longer-term reference memory is needed to navigate resource
distributions that are stochastic (Lin et al., 2021). Similarly, we
anticipated that a balance between very low sociality and extreme
sociality would lead to the most resilient migratory process.

2. METHODS

2.1. Memory Movement Model
In designing our study, our goal was to develop a minimal
heuristic in which the following processes were explicitly
modeled: (1) Random or exploratory movement, (2) attraction
to resources, (3) sociality in the movements, (4) a long-term
(or reference) memory of large-scale movement behavior, and
(5) a short-term (or working) memory that updates movement
behavior based on recent experience.

A diffusion-advection equation provided a computationally
efficient and versatile framework for examining just such a
system. We consider a population moving in one dimension in
a constrained domain D and distributing itself according to the
following equation:
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where u represents the population distributed in time and space.
The first term is the diffusion term, capturing the fast time-scale
exploration and “random” movements of individuals, with ε is
the diffusion rate.

The second term represents the attraction to a dynamic
resource h, with the proportionality of the advection to the
gradient of the resource given by the parameter α (note, the
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population and resource distributions are functions of both space
and time u(x, t) and h(x, t) - we omit the dependent variables
in the notation for brevity). This is the well-studied standard
chemotaxic resource-following behavior. We borrow the general
notation from earlier related work expanding diffusion-advection
models to incorporate non-local information (Fagan et al., 2017)
and behavioral switching (Fagan et al., 2019).

The third term captures the collective or social advection term
of the population via a non-local, density dependent function
vs(u, x). If this function takes the form of a convolution around
a non-local kernel k, i.e., vs(u) = k(x) ∗ u(x), and if that
kernel is odd, an attractive or “swarming” behavior can be
generated (Mogilner and Edelstein-Keshet, 1999). We use the
kernel analyzed by Mogilner and Edelstein-Keshet (1999):

k(x) =
x

2λ2
exp(−x2/2λ2).

The convolution of uwith this kernel has the property of pushing
the population in a positive direction when x < 〈u〉, and in a
negative direction when x > 〈u〉, where 〈u〉 is the mean location
of the population. The parameter λ is a length scale of sociality,
roughly one-half the size of the swarm, and β is a parameter that
quantifies the overall strength of sociality.

Finally, the last term captures the direct advection that
emerges from a memory-driven migratory behavior. This term
evolves with a set of parameters θy that slowly change each
year y ∈ {0, 1, 2, ...}, i.e., the count of periods τ : y = ⌊t/τ⌋.
The migration is specified by six parameters θ : the timing of
the start and duration of two anticipated seasons (e.g., summer
and winter) t1, 1t1, t2, 1t2, and the spatial coordinates of the
population centroid for each season x1 and x2. The remembered
migratory speed term is a simple step function given by:

vm(t, θy) =





0; t > t1 and t ≤ t1 +1t1

s12; t > t1 +1t1 and t ≤ t2

0; t > t2 and t ≤ t2 +1t2

s21; t > t2 +1t2 or t ≤ t1

(2)

where the migration speeds s12 and s21 from the respective ranges
are set such that they arrive at x1 at t1, depart at t = t1 + 1t1,
arrive at x2 at t = t2, and depart at t2 + 1t2. Thus, s12 = (x2 −
x1)/(t2−(t1+1t1)) and s21 = (x1−x2)/(t1−(t2−τ+1t2)). This
step-like migration function is a one-dimensional version of the
migration parameters estimated for individuals (Gurarie et al.,
2017) and populations (Gurarie et al., 2019) in empirical studies.

We consider these six parameters to be the known or
remembered determinants of the migratory behavior, with an
initial set θ0 determining the reference migration behavior. This
reference migration is updated each year by the experience
of the population. To perform this updating, we estimate a
new set of parameters θ̂y after each year, and combine these
new parameters with the reference parameters according to the
following weighted mean:

θy+1 = κy θo +
(
1− κy

)
θ̂y (3)

where each of the six parameters is updated according to
Equation 3 identically. The estimates θ̂y are obtained via a
least-squares minimization of the migration track (m(t, θ) =∫ t
0 vm(t

′, θy) dt′) against the spatial mean of the population
process in year y (i.e., û(t) =

∫
X uy(t, x)dx). The parameter κ ∈

(0, 1) captures the reliance on that long-termmemory.When κ =
0, all of the actionable memory is from the preceding year. When
κ = 1, the actionable memory is entirely the reference memory.

The model is confined to a one-dimensional bounded domain
[−χ ,χ], with no flux outside of the boundaries. Formally, this
no-flux condition means the following conditions must be met




ε ∂u
∂x − α

(
u ∂h
∂x

)
− β(vx(u))− (uvm(t)) = 0 where x = χ

−ε ∂u
∂x − α

(
u ∂h
∂x

)
− β(vx(u))− (uvm(t)) = 0 where x = −χ

In practice, the design of our resource space (see below) and
other parameterization lead to 0 or near 0 values of both h(x) and
u(x), and the simpler ∂u(−χ , t)/∂t = ∂u(χ , t)/∂t = 0 boundary
condition provides a good approximation.

As there are no birth or death processes, the total population
remains fixed and constant, for convenience integrating to 1.
Furthermore, the parameters remain constant throughout time,
with no adaptation or mutation-selection process. Our interest
is in the ability of a fixed set of movement and memory
parameters to navigate an intra- and interannually dynamic,
seasonal environment.

2.2. Seasonal Resource
We ran this model on a spatial domain x ∈ [−100, 100],
and a periodicity τ = 100 (i.e., 100 day years). We were
interested in an approximately periodic resource dynamic,
i.e., one in which h(x, t) ≈ h(x, t − τ )). We generated two
types of resource distributions. A “non-surfable” resource (island
resource), and weakly surfable resource (drifting resource). Both
are characterized by a peak in time and space centered at mx

at mt , and −mx at τ − mt (for example, locations 30 and
−30 at times 25 and 75, respectively). These pulses have a
shared time scale of duration st and a spatial scale of extent
sx, the standard deviation in the time and space dimension,
respectively. The island resource is simply two uncorrelated
bivariate normal distributions

h(x, t) = K (8(mx,mt , sx, st)+8(−mx, τ −mt , sx, st))

where 8 is the bivariate Gaussian distribution function,
and the normalizing constant K is selected such that the
average total amount of resource throughout the year is 1,
i.e., 1

τ

∫
T

∫
X h(x, t)dx dt = 1.

The drifting resource differs from the island resource in that
the total amount of resource at any given time

∫
X h(x, t)dx = 1.

This property is attained by distributing the resource as a re-
scaled beta distribution, where the shape and scale parameters
vary sinusoidally in such a way as tomake the standard deviations
and means match the desired values of mx,mt , sx, st (see
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Supplementary Materials for details). Both types of resources
are illustrated in Figure 1.

Within a given year, the resource is entirely symmetric:
hy(x, t) = hy(−x, τ − t). However, in scenarios exploring climate
change we allow the peaks to vary with directional trend and
stochasticity according to:mx(y) ∼ N(µx+γx y, σx) andmt(y) ∼
N(µt + γt y, σt), where the µ, γ and σ terms are the mean, slope
and variance, respectively, for the location and time duration
of the pulse. Thus, if γ = 0 and σ = 0, the conditions are
constant across years and if γx > 0 there is a shift of the resource
toward the extremes of the domain. While we did not explore
phenological shifts in timing, those can readily be modeled as
well. These trends model the pole-ward shift of peak resources
and the earlier spring phenology occurring with a warming global
climate (Renner and Zohner, 2018). The spatial and temporal
scales of the resource peak (sx and st) remain constant in all of
our simulations.

2.3. Metrics
The main metrics we were interested in are migration mismatch,
foraging efficiency and adaptation to directional trends.

Migration mismatch captures the combined difference
between the migration phenology and the resource phenology in
time and space. Spatial mismatch MMx is the absolute difference
between the migration targets and the resource peaks: MMx =
|x1 − mx| + |x2 + mx|. Temporal mismatch is the difference
between the arrival time and the peak of the resource if arrival
is post-peak, the difference between the departure time and the
peak of the resource if departure is pre-peak, and 0 if the seasonal
duration spans the peak, i.e., MMt = max{t1 − m1,m1 − (t1 +

1t1), 0} + max{t2 − m2,m2 − (t2 + 1t2), 0}. Thus, the total
mismatch is the sum of these: TM = MMx +MMt . A mismatch
of less than 1 is essentially perfect, a mismatch of 1–5 we consider
excellent, and beyond 50 the system can be said to have failed to
keep track of the resource dynamics.

To quantify the foraging efficiency, i.e., the organisms’ ability
to track the distribution of the resources over space and time,
we use a continuous form of the Bhattacharyya coefficient
(Bhattacharyya, 1943) which quantifies the similarity between
two distributions.We compute this coefficient at every time point
in a given year, and take the mean across the equilibrium year to
determine foraging efficiency (FE). Thus, the foraging efficiency
index is:

FE =
1

τ

∫ τ

0

∫ χ

−χ

√
u(x, t) h(x, t) dx dt

where the spatial integral is taken over the domain. This metric is
constrained to be between 0 and 1.

For simulations with a constant resource, we ran the
model until a quasi-equilibrium (stationary) state was achieved,
i.e., where the Bhattacharya index of the population distribution
across subsequent years reached a value of 0.99999. Once
stationarity was attained, we computed the migration mismatch
and foraging efficiency metrics, as well as the number of years
required to reach stationarity.

For numerical runs with climate change, we first run a
simulation with a given parameter set until stationarity, as above,
and then begin shifting the location of the resource poleward
with a slow, moderate or rapid trend (γx = 0.25, 0.5, and 1,

FIGURE 1 | Examples of various seasonal resource distribution functions, contrasting short duration, but wide pulses (σt = 3, σx = 12; left panels), long duration but

spatially concentrated pulses (σt = 12, σx = 3; right panels), and isolated resource pulses (upper panels) from the weakly drifting resource (lower panels). The total

amount of resource is identical across all scenarios. In the weakly drifting resources, the total amount is constant at all times, and uniform in the middle of the phase

(time = 0, 50, and 100).
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respectively), and/or by adding stochasticity (spatial standard
deviation 3, 6, 9, or 12). For stochasticity analyses, we compare
foraging efficiency across a range of the reference memory
parameter κ . For analyses that included directional trends, with
or without stochasticity, we quantified the ability of the system
to keep track of climate change with a spatial adaptation (SA)
index. This index is the ratio of the slope of the memory-
based migration location over time, i.e., SA = γ̂ /γx where
the adaptation slope estimate is the regression coefficient of the
spatial coordinate of the migration against time (i.e., mx,i =
γ̂xi + mx,0, where i is the year), and γx is the rate of drift of
the resource peak (Table 1). An SA equal to 1 suggests that the
process is keeping up with climate change, an SA of 0 indicates
that the process is not responding at all to climate change. Values
greater than 1 (super-adaptation) are possible, as are values less
than 1, which correspond to a loss of migration behavior. All
movement model parameters, resource parameters, and metrics
are summarized in Table 1.

2.4. Simulation Studies
We explored this model using numerical differencing of a
system of ordinary differential equations (ODE’s) approximating
the PDE in Equation (1) with the Runge-Kutte algorithm
using the deSolve (Soetaert et al., 2010) and ReacTran
(Soetaert and Meysman, 2012) packages in R. We additionally
used the nlsLM function in package minpack.LM (Elzhov
et al., 2016) for robust and fast annual estimation of the
migration parameters. The complete code is available as
an R package (memorymigration) available on GitHub
at https://github.com/EliGurarie/memorymigration and as an
interactive Shiny application at https://spot3512.shinyapps.io/
memorymigrationshinyapp/.

We assessed a wide range of parameter values and resource
geometries and dynamics with the goal of answering the four
main questions: (1) Can this model adapt to a discrete shift in
peak resource location and timing? What is the relative role of
memory and sociality for adaptation? (2) Can this model acquire
a migratory behavior from a non-migratory initial condition? (3)
What is the role of a referencememory for dealing with stochastic
resource dynamics? (4) Can this model adapt when the resource
peaks shifts in space? Details of parameter combinations and
reported metrics are provided in respective results sections.

3. RESULTS

3.1. Adaptation to Resource Phenology
The ability of this system to attain a stable, migratory state that
matches the dynamics of the resource is illustrated in Figure 2.
In the illustrated scenario, it takes nearly 40 years to attain
an equilibrium, and the eventual steady state is one where the
centroid of the migration lines up exactly with the centroid of
the resource, and the arrival timing coincides with the peak of
resource availability. Notably, the path to this equilibrium is
somewhat indirect, with the later winter range taking more time
to stabilize than the earlier summer range. The eventual steady
state is one where the foraging efficiency is relatively high, near
0.6 compared to an initial value of 0.3. However, the increase in

TABLE 1 | Table of parameters, variables and metrics.

MEMORY MIGRATION MODEL

ε Diffusion

α Strength of resource following

β Strength of sociality

λ Spatial scale of sociality

κ Initial weighting of reference vs. working memory

x1, x2 location of population centroids in summer and winter

t1, 1t1 start and duration of summer season

t2, 1t2 start and duration of winter season

(long-term) memory vs. working (short-term) memory

RESOURCE DYNAMICS

τ duration of period (year)

mx , −mx spatial coordinate of resource peak for summer and winter

mt, τ −mt timing of resource peak for the summer and winter

σx , σt time duration and spatial scale of resource pulse

γx , γt rate of change of peak location and timing of resource

ψx , ψt standard deviation of peak location and timing

METRICS

MMx spatial migration mismatch

MMt temporal migration mismatch

TM total mismatch

FE foraging efficiency

SA spatial adaptation index

the foraging efficiency was not entirely monotonic, as the system
moved through some slightly sub-optimal stages in adjusting its
migration behavior.

We ran this process for 8,100 parameter combinations
crossing different values of the movement process (α, β and λ)
and resource characteristics (σx and σt), and present the total
mismatch (TM) against all those combinations in Figure 3. In
all of these simulations, memory was entirely recent (κ = 0),
since there can be no benefit to relying on a sub-optimal reference
memory. We compared a set of diffusion rates ε between 1 and 8,
but only illustrate results for ε = 4.

A well-matched migration phenology (TM < 5) occurred
under very many combinations of parameter values, but all
parameters play interacting roles. Among the more intuitive
results are that greater values of α (resource following) lead
to an improved ability to match the migration. Resource peaks
with larger spatial extent (higher σx) are generally better for
migration matching.

Less intuitive was the high importance of the sociality
parameters, in particular the spatial scale of the swarming. Higher
levels of social attraction (β) led to improvedmigrationmatching
except in those cases where the sociality scale λ was high. Thus,
for example, at λ = 20, no simulations at β ≥ 200 managed to
acquire or maintain a matched migration. However, at λ = 50
or 100, the migration was slightly better matched at high values
of β (Figure 3). The spatial extent of the swarm was a remarkably
significant variable. Smaller swarms were able tomatchmigration
only at low values of social attraction (β = 200), and relatively
high values of resource attraction (α ≥ 600).
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FIGURE 2 | Example of adaptation to a shift in resource peak. The initial (year 0) behavior migrates to locations 50 and –50 at days 15 and 60, whereas the resource

peak is at 30 and –30, peaking at times 25 and 75. The panels show (A) the first 14 years of the simulation; (B) the centroid of the annual movement of the population

is shown in panel b, with dark blue to red colors indicating 0–40 year; (C) annual foraging efficiency across years; (D) migration timing parameters for each year, with

orange segments indicating arrival and departure from the summering (northern) grounds, and the blue segments indicating timing of arrival and departure at the

wintering grounds; (E) migration arrival and departure location across years, with blue and orange indicating winter (southern) and summer (northern) locations.

Random forest analyses, whether on the log of total mismatch
or on the classification of a perfect match, uniformly show that
the most important variables (Breiman, 2001) were α and λ (4.14
and 4.02 proportional increase in MSE), and the least important
was σt , with a 0.5 proportional increase.

Overall, foraging efficiency was strongly correlated with
migration matching, as expected. At high mismatch (> 50),
foraging efficiency was low (mean 0.29, s.d. 0.16) compared
to the near-perfect matching migrations (mean 0.58, s.d. 0.14).
However, somewhat higher mismatch (1 to 5) showed an even
higher overall foraging efficiency (mean 0.62, s.d. 0.18–see also
Figure 4).

3.2. Learning to Migrate
Figure 5 illustrates the ability of the model animals to learn to
migrate in a weakly drifting resource environment with a narrow
pulse of resource peaking at 30 and –30 (at days 25 and 75),
but a uniform distribution of resource at times 0 and 50. In
order to learn to migrate, the system needed to have a higher
exploratory impulse (higher diffusion constant ε), a stronger
resource advection (higher α) and somewhat weaker sociality
(lower β). The qualitative behavior of this process was to start
drifting toward the summer resource, while slowly developing a
weak pulse toward the winter resource as well. After first locking
in on the summer resource, the winter migration, driven both by
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FIGURE 3 | Migration phenology matching across six model parameters. Low and high diffusion (ε = 1 and 8 in upper and lower panel blocks), tight, medium and

loose swarms (λ = 20, 50, 100) left to right panels. Within each of these blocks, high values of the resource following parmaeters α from 0 to 1,000 are left to right,

and higher values of the sociality parameter β are bottom to top. Within each of the combinations of ε, λ,α,β, we show results ranging across 5 values of resource

duration (σt, 3–15 left to right), and 6 values of resource extent (σx , 3–15 bottom to top), as in the zoomed-in panel (bottom right; drawn from α = 200, β = 200,

λ = 100). The color scheme reflects the total mismatch, i.e., the sum of the absolute differences between the migration timing and locations from the resource peak.

The white squares represents parameter combinations where the PDE could not be solved for artifactual numerical reasons, that all correspond to a failed adaptation

(high mismatch).

FIGURE 4 | Box-plots of foraging efficiency against mismatch across several values of foraging patch duration.

high diffusion and high resource following, slowly extended itself
until both narrow peaks of resource were consistently reached.

The model had, in general, a difficult time learning migration
from a non-migratory initial condition. Out of 4,047 successful
runs, only four attained mismatch below 1, and 130 below 5.
Conditions that were more conducive to learning migration were
pulses of longer duration (high σt), but smaller in scope (low σx),
suggesting that the feedback that encourages migration needs to

be compact in space but long enough in duration to lock in to
the memory.

3.3. Directional Climate Change
To assess the ability of the system to adapt to a trending climate,
we generated scenarios with slow, moderate and fast outward
directional shifts in the resource peak (0.25, 0.5, and 1 units/year,
respectively). We then assessed 40 parameter combinations for
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FIGURE 5 | Example of model learning to migrate. The resource is a “weakly drifting” resource and the initial (year 0) condition is non-migratory. The simulation was

run for 100 years, and a sampling of those years (labeled) are presented in (A): all years from 0 to 10, followed by 20, 40 and 100. Otherwise, panels are as in

Figure 2. Additional parameter values were ε = 5, α = 500, β = 50 and λ = 40.

each of those scenarios, high and low values of resource following
(α = 400 and 100), high and low values of sociality (β = 400 and
100) and 10 values of the spatial scale of sociality (λ = 20 to 200).
The spatial and temporal scale of the resource pulses were fixed
to σx = 12 and σt = 6, a combination which analyses in section
3.1 showed were generally “easy” to adapt to. We computed the
adaptation index and foraging efficiency for each of the 120 runs
(Figure 6). We were interested in the dynamics against λ due to
the consistently high importance of this parameter for matching
migration in steady states. Our main index of interest was the
spatial adaptation (SA) to trends.

As Figure 6 shows, higher values of resource following (α =
400; orange circles) are nearly universally better for keeping

up with climate change (SA values near 1). Furthermore, when
combined with high sociality (β = 400; right panels), nearly all
parameter combinations do a good job keeping up with climate
change (SA values ranging between 0.53 and 0.85 for a swarm
size greater than 50). However, that maximum value is still less
than 1, suggesting that truly matching a steadily drifting trend
is very difficult. Smaller social spatial scales (λ < 50) have a
very hard time adapting when the social attraction is high, but
do fairly well when social attraction is low. Larger sized swarms
do progressively worse across more parameterizations, e.g., in the
most rapid climate change scenario, the SA drops from 0.83 to –
0.13 as the swarm increases in size from 40 to 200 (encompassing,
essentially, the entire spatial domain).
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FIGURE 6 | Adaptation to a steadily drifting resource. In three scenarios, the spatial coordinates of the resource drift by 0.25, 0.5, and 1 unit per year (top to bottom,

respectively). The y-axis is the spatial adaptation index (SA), i.e., the trend of the memory-driven migration divided by the resource drift trend. Values near 1 indicate a

behavior that keeps up with climate change, values near 0 indicate no change in migration behavior, and negative values indicate a trend that is opposite to the climate

trend. We compare across spatial scales of sociality (λ–x-axis), for low and high values resource following (α = 400 and 100–orange and blue dots) and low and high

values of sociality (β = 100 and 400, left and right panels). The size of the circles is proportional to the foraging efficiency of the resulting parameter combinations. The

bottom-right boxplots indicate the final year foraging efficiency against SA; purple and blue boxes indicate the highest values, orange and gray lower values.

A rather more dramatic pattern is visible for the lower
foraging attraction scenario (α = 100; blue circles). Notably,
no parameter combination at this value comes close to keeping
up with the rapid climate change (SA range –0.64 to 0.13). For
slower climate change, however, there is a window of values for
the swarm size between 40 and 80, where the SA exceeds 1, but
then crashes quite rapidly to negative values of SA as that swarm
size increases. These “super-adaptive” processes indicate a unique
sweet spot where a swarm is large enough to capture and adapt
to the drifting resource, but not so large that the information
gathered in a given year is too weak to adjust the migratory
behavior in a following year.

As anticipated, better adaptation to the drifting resource
correlated strongly with higher foraging efficiency (inset
boxplots).

3.4. Reference Memory and Stochasticity
While recent memory can be helpful for adapting to a single
novelty or a smoothly changing conditions, we hypothesized that

a more conservative approach that relies on a reference memory
may be beneficial when conditions change stochastically. We
tested this hypothesis by solving a set of models across a range of
κ values fom 0 (all recent memory) to 1 (all reference memory).
In these scenarios, we ran the system for as many years as needed
with no stochasticity to acquire a stationary state (i.e., similarity
index greater than 1-1e-6). We then used the stationary state as
the reference memory, and then ran the process for an additional
50 years with a stochasticity (i.e., standard deviation in peak
location of the resource) ranging from 0 to 12, and present the
resulting average foraging efficiency (Figure 7).

Overall, as expected, the greater the stochasticity, the lower
the foraging efficiency. Further, as we predicted, highest level of
κ can significantly help foraging efficiency, with some variation
across the spatial scale of sociality, especially in more highly
stochastic scenarios. When that scale of sociality is high enough
(λ = 120, blue colors) there is greater probability of overlap with
a stochastic resource, and a conservative, stable migratory regime
is much more beneficial in the long run.
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3.5. Stochasticity and Trends
We added 30 years of directional trends to the variously
stochastic process described above, and assessed the adaptation
index against the reference memory parameter κ (Figure 8).
Over-reliance on reference memory (κ = 1) by definition
does not allow the system to keep up with climate change,
leading to an adaptation index of 0. However, in many cases a
balancing of recent and reference memory (κ value between 0.6
and 0.8) in many cases was slightly but significantly better than
relying entirely on recent memory. The smaller spatial scale (in
the selected parameter space) does a generally better job than
the larger spatial scale at lower stochasticity. At higher level

of stochasticity, however, the larger spatial scale outperforms
the smaller spatial scale, which completely loses track of the
climate change.

4. DISCUSSION

Animals navigate complex, dynamic and patchy environments.
When there is a strongly localized and seasonal component
to the resource dynamics, movement strategies limited to
straightforward resource-following taxis necessarily fail to
efficiently exploit available resources. It is in these cases,
quite common in the natural world, that seasonal migration

FIGURE 7 | Foraging efficiency (FE) across various values of reference memory κ (x-axis) for increasing amounts of interannual stochasticity (ψx , panels left to right),

and two values of sociality spatial scale λ = 80 and 120. For the processes with non-zero stochasticity (ψx > 0), the process was run 90 times for values of κ. Points

represent the average of the FE’s across all 50 years and 90 replicates. In these scenarios, the resource following parameter α = 100, the social attraction β = 400

and diffusion ε = 4. Note that the y-axis scale is constrained over a relatively narrow range (0.6–0.7).

FIGURE 8 | Role of reference memory in adapting to climate change for increasingly stochastic resource dynamics. We ran the model with a moderate rate of climate

change (mean shift: 0.5/year) at five increasing levels of stochasticity (inter-annual standard deviation of resource peak 0, 3, 6, and 12, left to right panels). For

non-zero stochasticity, we ran the process 30 times and present the mean and standard error of the spatial adaptation index across various values of the reference

memory parameter κ: where κ = 0, the system modifies its migration based entirely on recent experiences; at κ = 1, the memory never changes from the reference

memory. Other parameter values are resource following α = 100, social attraction β = 400, and diffusion ε = 4.
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becomes a viable, even necessary, strategy. However, when
resources start shifting in space and time—as is occurring at
an accelerated pace with recent global climate change—the
migration phenology itself must exhibit some plasticity. It is our
conjecture that this plasticity is facilitated by a memory-driven
process in which recent experiences inform strategic behaviors in
subsequent years.

By allowing a population to adjust its migratory behavior
based on recent experiences with the resource location, themodel
we presented here emulated (a) the successful navigation of
an environment with temporally and spatially isolated seasonal
resource patches, (b) the emergence of a migratory behavior from
an essentially resident or naive initial condition, and (c) some
intrinsic robustness to changes in those environmental resources,
whether steadily shifting trends or inter-annual stochasticity. The
relatively simple, social and memory-driven mechanism was able
to adapt to long-term changes in resource dynamics, even with
inter-annual stochasticity, and may thereby provide a framework
with which the interaction of memory, movement, social and
resource dynamics can be further explored.

Importantly, our model was in no ways evolutionary, as it
contained no birth-death processes or selection pressures. Thus,
we used foraging efficiency as a convenient metric of the utility of
migration, though this was not a measure explicitly maximized
by the model. Other metrics, such as foraging efficiency in a
given season, or probability of survival or reproduction relative to
resource availability (Bauer et al., 2020) may respond differently
across model parameters and could be useful in understanding
the relative success of alternative migratory strategies in different
contexts. However, the overall annually averaged foraging
efficiency metric provided the broadest linkage between resource
dynamics and animals’ locations and was consistent with the
minimal biological assumptions and generality of our framework.

4.1. Adaptation and Resiliency
Our goal was to understand the combinations of factors that
lead to a resilient migration behavior. The model we describe
was a final iteration of a sequence of models which failed to
develop or maintain social migration behavior. For example, in
earlier versions memory was modeled as an attractive advection
mathematically identical to the resource attraction, but with
the attractor being the location of the population in previous
years. These models proved to be inefficient at generating a
consistent social migratory behavior, i.e., only under very specific
parameter combinations and “easy” conditions was a migratory
equilibrium attained, and that equilibrium was highly unstable
to perturbations. Only a clear, directed advective process with
an explicit seasonal signal (i.e., the remembered migration
timing, rates, and targets which were remembered in our model)
could generate the patterns we aimed to capture. This suggests,
somewhat indirectly, that migration behavior is unique as a
fundamental, long-term, and risky strategy, profoundly different
from the kind of tactical resource response which governs
shorter-scaled animal redistributions.

Similarly, iterations of the model that did not have some
amount of social cohesion tended to diffuse away without
establishing a consistent, migratory stationary state. In fact,

sociality parameters—in particular, the spatial scale λ—were,
unexpectedly among the most important parameters for
determining the resiliency of the process. Populations with
small spatial scales tended to have a more difficult time locking
in to an adaptive migratory pattern, and only when social
attraction was relatively weak. On the other hand, overly large
spatial scales compromised the ability of the process to track
climate change, due to a dilution of the population’s ability to
concentrate over available resource patches and remember the
corresponding benefits.

The ability to adapt a migration also depended strongly
on properties of the resource dynamics. In particular, the
reinforcement of memory and foraging is strongest when
patches are concentrated in time, but relatively large in space.
Interestingly, in most stable patterns, the eventual targeted
migration arrival time coincided with the peak, rather than the
beginning, of the resource dynamic. This indicates that the long-
distance social migration behavior may be particularly reinforced
when the targeted resource is very sudden. This is the case for the
rapid green-up that occurs in high latitudes as snow recedes in
tandem with extended day lengths leading to an intense green-
up period (Park et al., 2020) or, for example, when resources
are linked to the short-duration early blooming phenology of
very particular plants (Post and Forchhammer, 2007; Renner and
Zohner, 2018).

Even with no strong intrinsic propensity to migrate and
a weak phenological resource pulse to follow, our model
captured the ability to acquire a strong and adaptive migration
behavior (Figure 5). Learningmigration, however, requires a very
strong resource attraction, higher levels of exploratory behavior
(e.g., diffusion, and larger spatial scale of sociliaty), and—often—
many more years, findings that echo empirical observations
(Jesmer et al., 2018).

Despite the ability of the process to adapt under many
stable conditions, our migration model (and, perhaps, migration
behaviors in general) can also be considered somewhat fragile.
Under many shifting conditions, e.g., increasing stochasticity,
rapidly shifting resources, a shift in some of the system
parameters, or even a shift in the spatial and temporal extent of
resources, migration can collapse and turn into a non-migratory,
residential behavior (Figure 3). This sensitivity may explain why
partially migratory populations are so common and, apparently,
evolutionary stable (Berthold, 1999; Chapman et al., 2011), as
well as the wide range of migration plasticity shown in wild
populations, even within a species (Xu et al., 2021).

4.2. Biological Interpretation of Parameters
Diffusion-advection models of animal movement and
redistribution are grounded in the general idea that animal
movements, somewhat like movements of physical particles,
combine random (diffusive) components with directed
(advective) components (Skellam, 1951; Turchin, 1998; Okubo
and Levin, 2001). While direct relationships between diffusion
models and movement data are somewhat tenuous (Gurarie and
Ovaskainen, 2011; Potts and Schlägel, 2020), as a theoretical tool
for exploring processes they are invaluable for their versatility
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and the relative ease of numeric computation of the partial
differential equations (PDEs) that describe themmathematically.

Despite its evident abstraction, our goal was to develop
a model where all parameters have well-defined biological
interpretations. The diffusion (ε) captures short time-scaled
randomness of movement, reflecting exploratory and short-term
dispersive behavior. The foraging advection strength (α) captures
the attraction of the population to better quality resources at a
relatively large scale. These two parameters, the basic ingredients
in diffusion-advection models of animal movement, have direct
parallels to empirically estimated properties of animal behavior:
diffusion is closely related to families of random walk models
(Gurarie and Ovaskainen, 2011) while the advective taxis is
related to the step and resource selection functions that are
routinely estimated from movement data (Potts and Schlägel,
2020). The spatial scale of the social group (λ) captures the spatial
extent of the population, i.e., a population-level home range
(Noonan et al., 2019). Diffusion-advection models can also be
interpreted as a probabilistic description of a single individual’s
movement. In this case, λ would correspond to an individual
home-range and β would be an individual’s tendency to be drawn
to the center of that home range, akin to an individual migratory
Ornstein-Uhlenbeck process (Gurarie et al., 2017).

The sociality parameter (β) quantifies the strength of an
individual’s desire to approach the center of the social group.
While this parameter is not typically measured, it may in
principle be possible to estimate in a manner analogous to a
step-selection function by replacing environmental variables with
presence of conspecifics as a covariate. The ratio between α and
β can be interpreted as the relative importance of foraging to
social cohesion, which appears to be important in predicting the
resilience of migration.

Migration timing, rate, and seasonal range location
parameters can be straightforwardly estimated from movement
data (Cagnacci et al., 2015; Gurarie et al., 2019) and synchrony of
migration timing and site fidelity are well-documented for many
migratory species (Joly et al., 2021). Thus, for example, Gurarie
et al. (2019) explicitly estimated the ranging area, timing, and
seasonal range locations for migratory caribou, identifying the
kind of inter-annual variation that is reflected in the stochastic
scenarios explored here, as well as trends in timing.

The reference memory parameter κ is, of course, impossible
to observe directly. Our model does, however, allow us to explore
in an heuristic way the conditions under which a strong cultural
tendency to migrate with certain fixed patterns can help a
population hedge against stochasticity (Abrahms et al., 2019;
Fagan, 2019). An extremely conservative behavior is the best way
to hedge against stochasticity with no directional changes (high
κ values in Figure 7), as there is no benefit to change behavior
based on recent experiences if they provide no information
about future conditions. However, this extreme conservatism is,
by definition, incapable of adapting when there is a consistent
shift in resource distribution (Figure 8). In cases where both
processes are occurring, we did see a slight improvement in
adaptability when long-term reference memory was balanced
against a strong response to recent experience (see peaks in
Figure 8).

Clearly, our exploration of the model was not exhaustive.
We did not explore, for example, the resilience of the migration
process to changes in resource timing, which would correspond
to the widely observed earlier onset of spring as measured
by green-up and flowering phenology (Cleland et al., 2007).
We hope that making the model available, including via
the interactive interface, will facilitate further independent
exploration of these processes.

4.3. Social Learning and Collective
Knowledge
Models have shown that collective knowledge is important, if
not essential, to the evolution and process of migration (Guttal
and Couzin, 2010; Shaw and Couzin, 2013; Berdahl et al., 2018).
Many migratory organisms are social, and social learning is an
acknowledged, non-genetic method for transmitting information
(Kashetsky et al., 2021). Furthermore, the general role of
social learning for improving a population’s ability to track
resources has been studied not just in animal systems, but in
synthetic systems inspired by social behavior of animals such
as optimization heuristics algorithms and the study of swarm
robotics (Şahin, 2005; Brambilla et al., 2013). Because our
model is not individual-based, we can not identify any specific
mechanism (e.g., leader-follower) of social information transfer.
But, in a generic way, our model assumes that migration is
driven by a collective decision for the timing and locations of
seasonal ranges, consistent with the known social and exogenous
(e.g., daylength related) triggers for migration. Further, the
underlying assumption of the migration “urge” is consistent with
the strong endogenous programs to migrate, e.g., the seasonal
restlessness known as Zugunruhe exhibited by many birds
(Berthold, 1999; Helm, 2006). However, in its generic diffusion-
based approach to randomness, our model indirectly captures
individual-level variation in migration parameters, an inevitable
property of any population-level process (Gurarie et al., 2019).

In contrast to the many individual-based models of the
evolution of migration (e.g., Guttal and Couzin, 2010; Anderson
et al., 2013; Shaw and Couzin, 2013), our model did not
include any selection, inheritance or birth or death processes.
For example, Anderson et al. (2013) explored the resilience of a
population under selective pressure under persistent trends and
increased stochasticity of a drifting optimal resource window,
showing that a certain amount of heritable phenotypic plasticity
is necessary to adapt successfully to climate change even at the
cost of efficiency. Our model underscores the fact that some
level of resilience and adaptability can be attained with a purely
cognitive process that balances sociality with long and short
term collective memory. Importantly, this knowledge can be
transmitted through social and cultural, rather than genetic,
pathways. The high level of sociality among migratory animals,
as well as multi-annual parent offspring bonds, are an evident
pathway for that kind of transmission. As with those evolutionary
models, however, it is clear that when changes are too rapid, no
amount of cognition can help entirely mitigate against adverse
outcomes. Furthermore, if behaviors are not sufficiently plastic
(i.e., if κ is too close to 1), then adaptation is very difficult.
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Given the slow scale of fitness selection and the constant
change in environmental conditions, it is possible that
certain inherent properties of populations, for example the
“conservatism” captured by the κ parameter, are themselves
selected for to maximize resilience over a long time scale in
stochastic environments. The structure of the reference memory
in our model was a rather simplistic approach to introduce
conservatism or lag to the shifting migration parameters. In our
model that reference memory is eventually entirely forgotten,
whereas a more sophisticated approach would separate a
slowly varying cultural memory, perhaps that is transmitted
genetically or culturally, i.e., on the scale of generations,
against shorter-scaled responses. In an evolutionary model,
we might hypothesize that the overall rates of long- and
short-term memory shifts would be related both to the scales
of short and long-term fluctuation of the resource, i.e., the
auto-correlation scale, strength of trends, and stochasticity of the
resource dynamics.

4.4. Summary
Rapid environmental change, both global warming and increased
anthropogenic development, is causing severe and dramatic
impacts to the widespread and generally successful strategy
of seasonal migration for many taxa, and the fate of many
animal migrations is a topic of increasing concern (Wilcove
and Wikelski, 2008; Kauffman et al., 2021). The ability
of animals to respond to these changes depends deeply
on their behavioral plasticity and cognitive abilities. The
importance of those abilities is in direct proportion to
the difficulty in studying them directly. By quantitatively

exploring the properties of a heuristic model that distill
many of the main properties of wild populations in dynamic
and seasonal environments, we hope to have identified
some broad patterns that might guide further empirical
exploration of the cognitive underpinnings of adaptability
and resilience.
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APPENDIX

A. SUPPLEMENTARY MATERIAL

A.1. Drifting Resource
The drifting resource function has the following properties:

1. The total amount of resource across space is constant
throughout the year.

2. At the beginning, middle, and end of the year the resource is
uniformly distributed.

3. At some peak time µt < τ/2, the resource concentrates at a
location µx < χ with a spatial deviation σx and a temporal
deviation σt (where τ is the length of the year and χ is the
extent of the spatial domain).

4. The resource peaks exactly symmetrically at time τ − µt and
location−µx with the same variances.

To generate a resource with these properties, we allocated the
resource in space as a beta distribution, where the two shape and
scale parameters vary sinusoidally in such a way as to fulfill the
criteria above. Thus:

h(x, t, θ) = χB(x/χ , a(t, θ), b(t, θ))

where χ is the maximum value (domain) of x, B(x, a, b)
is the beta distribution, θ represents the set of parameters
tr , xr , σt , σx, and the two shape parameters are given
by:

a(t) =
m

s2
(s2 +m−m2)

b(t, x′, σ ′) = (m− 1)
(
1+

m

s
(m− 1)

)

where m(t) and s(t) describe the dynamic mean
and variance of the resource peak. These equations
are solutions to the mean and variance of the
beta distribution, µ = α/(α + β), σ 2 =

αβ

(α+β)2(α+β+1) .

The means and variances themselves are Gaussian pulses,
with the mean peaking at µx at time µt with standard deviation
σt and at −µx at time τ − µt and the standard deviation
pulsing from 2χ/

√
12 (corresponding to a uniform distribution

over the domain −χ to χ) at times 0, τ/2 and τ down
to σx at tr and τ − tr , with standard deviation (in time)
σt .
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Adaptive cognitive biases, such as “optimism,” may have evolved as heuristic rules
for computationally efficient decision-making, or as error-management tools when
error payoff is asymmetrical. Ecologists typically use the term “optimism” to describe
unrealistically positive expectations from the future that are driven by positively biased
initial belief. Cognitive psychologists on the other hand, focus on valence-dependent
optimism bias, an asymmetric learning process where information about undesirable
outcomes is discounted (sometimes also termed “positivity biased learning”). These
two perspectives are not mutually exclusive, and both may lead to similar emerging
space-use patterns, such as increased exploration. The distinction between these
two biases may becomes important, however, when considering the adaptive value
of balancing the exploitation of known resources with the exploration of an ever-
changing environment. Deepening our theoretical understanding of the adaptive value of
valence-dependent learning, as well as its emerging space-use and foraging patterns,
may be crucial for understanding whether, when and where might species withstand
rapid environmental change. We present the results of an optimal-foraging model
implemented as an individual-based simulation in continuous time and discrete space.
Our forager, equipped with partial knowledge of average patch quality and inter-
patch travel time, iteratively decides whether to stay in the current patch, return to
previously exploited patches, or explore new ones. Every time the forager explores
a new patch, it updates its prior belief using a simple single-parameter model of
valence-dependent learning. We find that valence-dependent optimism results in the
maintenance of positively biased expectations (prior-based optimism), which, depending
on the spatiotemporal variability of the environment, often leads to greater fitness gains.
These results provide insights into the potential ecological and evolutionary significance
of valence-dependent optimism and its interplay with prior-based optimism.

Keywords: movement ecology, giving-up density, marginal-value theorem, optimal foraging, cognition, risk
allocation, landscape of fear, exploration - exploitation

INTRODUCTION

Cognitive biases are “consistent deviations from an accurate perception or judgment of the world”
(Fawcett et al., 2014). Such biases, as well as their associated costs and benefits, are increasingly
studied by biologists, psychologists and neuroscientists (Marshall et al., 2013). The general
consensus is that some cognitive biases may be beneficial under ecologically relevant conditions
and incomplete information, suggesting they are an adaptive product of natural selection. Adaptive
cognitive biases may have evolved as either heuristic rules for computationally efficient decision
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making, i.e., as computational “shortcuts” to avoid information-
processing limitations (Haselton et al., 2015; Trimmer, 2016), or
as error-management tools when error payoff is asymmetrical
(Tversky and Kahneman, 1974; Haselton et al., 2015; Bateson,
2016; Trimmer, 2016; Jefferson, 2017; Trimmer et al., 2017).

The disposition to expect a favorable outcome when faced
with uncertainty is a well-studied cognitive bias, often termed
“optimism”. A behavioral decision can be defined as optimistic
if it is consistent with having a positively biased expectation
of reward, or a negatively biased expectation of punishment
(Bateson, 2016). Ecologists typically use the term “optimism” to
describe a positively biased innate or initial belief (McNamara
et al., 2011; Berger-Tal and Avgar, 2012; Houston et al., 2012;
Marshall et al., 2015; Krakenberg et al., 2019), which we will refer
to hereafter as “prior-based” optimism. Consequently, ecological
research on optimism mostly focuses on the role of prior
knowledge in creating cognitive biases, leading to circumstances
in which animals treat resources that are seemingly identical
as strikingly different, depending on their past experiences
(Stroeymeyt et al., 2011; Berger-Tal et al., 2014a). Notably,
the acquisition of this prior knowledge may range from the
immediate time scale (Bateson et al., 2011; Hui and Williams,
2017), to experiences acquired through the individual’s life,
development or maternal effects, or even evolutionary history
(Murphy et al., 2014; Bateson et al., 2015).

Unlike ecologists, human cognitive psychologists often focus
on valence-dependent learning as the basis for optimism
(sometimes also termed “positivity bias”). Healthy human
subjects are known to display unrealistically positive expectations
about the future that are driven by an asymmetric learning
process, where information about undesirable outcomes is
discounted while information about desirable outcomes in
amplified (Weinstein, 1980; Sharot, 2011; Kuzmanovic et al.,
2015; Gesiarz et al., 2019; Garrett and Daw, 2020). Interestingly,
subjects suffering from depression display valence-dependent
pessimism – due to an overemphasis on information about
undesirable outcomes, their expectations about what the future
holds are typically grimmer than what they should be based
on the information they have (Strunk et al., 2006; Sharot et al.,
2007). The proximate mechanisms underlying this phenomenon
have been extensively studied in humans, as well as its
consequences (Sharot et al., 2007, 2012; Sharot, 2011; Lefebvre
et al., 2017; Dundon et al., 2019). These consequences may
range from positive effects of mild optimism on various aspects
of human wellbeing, to negative effects of extreme optimism
that may extend as far as global financial collapse (Johnson
and Fowler, 2011; Sharot, 2011; Jefferson, 2017). Optimism bias
is thus considered the only form of misbelief in humans that
may have evolved as an adaptive trait (McKay and Dennett,
2009; Johnson and Fowler, 2011; Marshall et al., 2015). To
sum, whereas the ecological perspective on optimism translates
into a biased belief that erodes toward the truth with the
accumulation of experience (a rigid learning process; Berger-Tal
and Avgar, 2012), the psychological perspective translates into
a dynamic learning process, where biased beliefs do not erode
but instead continuously update at a rate that is proportional
to the magnitude of environmental changes (Stankevicius et al.,
2014; Kuzmanovic et al., 2015; Bateson, 2016). Importantly,

valence-dependent optimism (or pessimism) is a plausible
mechanism for the emergence of temporally dynamic prior-
based optimism (or pessimism), even in the absence of
environmental change.

The study of optimism may be particularly relevant to
the well-known trade-off between exploration and exploitation
(Berger-Tal et al., 2014b; Mehlhorn et al., 2015; Addicott et al.,
2017). Consumers, whether they are foraging animals, capital
investment firms, or fishing vessels, are constantly balancing
known resource exploitation with the time and energy devoted
to exploring new resources in order to reduce uncertainty and
broaden their portfolio (Cohen et al., 2007; Berger-Tal et al.,
2014b; Bartumeus et al., 2016; Votier et al., 2017; Kembro
et al., 2019; O’Farrell et al., 2019). The trade-off stems from
the fact that gathering information and exploiting it are, to a
large degree, two mutually exclusive activities (March, 1991).
Exploratory behavior is, however, typically viewed under one
of two contrasting perspectives (Warren et al., 2017). One
assuming that exploration tendencies have evolved as an adaptive
trait in itself, treating information as independently sought-
after currency (Dall et al., 2005; McNamara and Dall, 2010;
Marvin and Shohamy, 2016). The contrasting, and arguably more
mechanistically parsimonious perspective, views exploration as
an emerging pattern rather than an adaptive process. Under
this view, exploratory behavior emerges from the interactions
between simple foraging heuristics, the informational state of
the animal, and the environment (Berger-Tal and Avgar, 2012;
Avgar et al., 2013; Riotte-Lambert et al., 2017; Davidson and
El Hady, 2019). For example, a consumer’s decision to exploit
a known resource or explore a new one would depend on the
perceived likelihood that exploration would lead to improved
long-term payoff (i.e., over multiple consumptive events), which
in turn depends of the consumer’s belief about the availability
and quality of yet unexplored resources. Thus, an optimistic
consumer will tend to “favor” exploration over exploitation
(Berger-Tal and Avgar, 2012), although the adaptive value of
this strategy will depend on the dynamics of the environment
across space and time.

Optimal Foraging Theory, perhaps more than any other
branch of ecology, emphasizes the importance of prior knowledge
in determining animal decision-making in the context of the
exploration-exploitation tradeoff. Optimal foragers are expected
to maximize their long-term intake rate by exploring new
patches when their current exploitation rate falls to a rate
that is equal to the average intake rate in the surrounding
environment (Charnov, 1976; Brown, 1988). However, real-
world environments are constantly changing, and foragers do
not possess perfect information about them. Bayesian Foraging
Theory addresses this reality by assuming that the forager’s
decisions are based on a prior belief about the expected value
of the environment, and about the variability around this
expectation, a belief that is constantly being updated as the
forager acquires new knowledge (Green, 2006; McNamara et al.,
2006; Biernaskie et al., 2009; Berger-Tal and Avgar, 2012).
A positively biased prior belief about the quality of other
patches thus corresponds to “optimism” as it is typically used
by ecologists (prior-based), whereas a positively biased updating
of this belief (learning more from positive compared to negative

Frontiers in Ecology and Evolution | www.frontiersin.org 2 February 2022 | Volume 9 | Article 75913384

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-759133 February 7, 2022 Time: 11:52 # 3

Avgar and Berger-Tal Optimistic Optimal Foraging

reinforcements) corresponds to “optimism” as it is typically
used by psychologists (valence-dependent). If the environment
does not change across space and time, and in the absence of
valence dependence, prior-based optimists would converge to the
optimal exploration rate after learning the true expected value of
the environment.

We have previously shown that, in the absence of valence
dependence, prior-based optimists are expected to outperform
prior-based pessimists (foragers with a negatively biased initial
belief about the expected quality of the environment), and,
when capable of revisiting patches following a resource renewal
process, prior-based optimists should outperform unbiased
foragers (Berger-Tal and Avgar, 2012). As far as we are aware,
the temporal dynamics and foraging performance of valence-
dependent optimists (or pessimists) has not yet been explored
in an ecological context, nor have the emerging space-use
patterns and consequences of such biased learners when faced
with a rapidly changing environment. Our goal here is thus
twofold; first, we aim to map the (theoretical) fitness response
to various degrees of valence-dependencies under different
ecological scenarios, and second, we aim to derive expectations
about the relationship between the two types of optimism bias,
environmental characteristics, and animal space-use patterns.

MATERIALS AND METHODS

Model Description
The model used here is an individual-based, fitness-maximizing
simulation, in continuous time and discrete (albeit implicit)
space. This model builds and expends on a model we developed
a decade ago to explore the role of prior-based optimism
in optimal foraging under uncertainty (Berger-Tal and Avgar,
2012). Simulations start with the forager arriving in a new
patch equipped with some initial energy reserves, E (t = 0),
and prior beliefs about the average quality of patches on the
landscape, Q (t = 0), and the average travel time between
patches,T (t = 0). Energy is gained by consuming discrete “food
units” (a mouthful, a bite, or a single resource item), and the
duration of each such consumption event, 1t, is calculated based
on current food availability in the occupied patch, k, following a
Type II functional response with search rate a and handling time
h (Holling, 1959):

1t =
(
a · k

)−1
+ h

Energy is lost via a constant field metabolic rate, FMR, or
via reproduction, with a per-offspring reproductive cost, Er.
The forager reproduces whenever energy reserves exceeded the
sum of its initial energy reserves and its reproductive cost
(E (t) > E (t = 0)+ Er), at which point its energy reserves
are adjusted accordingly (E (t)← E (t)− Er). If at any time,
the forager’s net energy reserve is insufficient (E (t) ≤ 0), the
forager dies of “starvation”. The forager may also die due
to “predation” with per-unit-time probabilities ptravel (when
traveling between food patches) and pforage (when foraging within
a patch). Simulations end with the forager either dying, or
reaching a predefined longevity threshold, tmax. The forager’s

fitness is its lifetime reproductive success – the total number
of offspring it produced. Fitness is thus a product of two
aspects of the forager’s resource-consumption rate: its long-term
mean (which directly translates into reproductive rate), and its
temporal variability (which enhances the risk of starvation and
predation). The longer a forager lives, and the more it was able to
consume during its lifetime, the greater would be its fitness.

After each consumption event, the forager “decides” (sensu
Leavell and Bernal, 2019) whether to stay in the current patch,
travel to a previously visited (memorized) patch, or travel in
search of a new patch. The decision to leave the current patch is
based on the forager’s expectation regarding the optimal Giving-
Up Density (GUD; the amount of resources left in a departed
patch; Brown, 1988) and associated time and predation costs:

(1) First, assume it is best to leave the current patch; the
current food availability in this patch is the optimal GUD
and so assume that the next patch will be utilized until it
reaches this GUD.

(2) Based on this assumption, calculate expected consumption
rates in each of the alternative patches: n memorized
patches + one yet-unvisited patch. Note that n does
not remain constant through the simulation but rather
increases as the forager visits more and more patches.
The expected consumption rate is calculated by dividing
the expected cumulative food intake in each of these
patches (the patch’s expected quality minus the GUD)
by the expected time it will take to reduce each to the
GUD, τi,GUD (i = 1 : n+ 1) (Olsson and Brown, 2006).
τi,GUD = τi,travel + τi,forage, where τi,travel is the expect
time it will take to travel from the current patch to patch
i, whereas τi,forage is the expected time it will take to deplete
patch i to the GUD (the sum of all 1t’s starting from k =
expected patch quality, and ending at k = GUD+ 1).

(3) For each of these alternative patches, also calculate the
expected survival based on the expected time in each of
two movement states (travel and forage), τi,travel and τi,forage(
τi,GUD = τi,travel + τi,forage

)
. The average per-unit-time

probability of surviving predation (until GUD is reached)
is then given by:

si = τi,GUD
√[

1− ptravel
]τi,travel

·
[
1− pforage

]τi,forage
(4) Next, assume instead that it is best to stay in the

current patch for (at least) the duration of the next
consumption event, and hence the optimal GUD is the
current food availability in this patch, minus one. Under
this assumption, it is best to forage in the current patch
(i = 0) for the duration of the next consumption
event (τi=0,GUD = τi=0,forage = 1t), with an associated
consumption rate of τ−1

i=0,GUD, and average per-unit-time
probability of surviving predation, si=0 = pforage .

(5) “Decide” whether to stay in the current patch or
leave to either of the n+ 1 alternative patches, by
choosing the option that maximizes the product of the
expected consumption rate and the average per-unit-time
probability of surviving predation (si ).
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Once a decision is made, a “starvation mortality”
terminates the simulation if the forager’s energetic reserve
(E (t)) is lower than the product of its FMR and the
time elapsed since its previous bite. The simulation may
also end due to a “predation mortality”, with probability
1−

([
1− ptravel

]τtravel(t)
·
[
1− pforage

]τforage(t)), where τtravel (t)
is the realized duration of traveling (τtravel (t) = 0 if the forager
did not leave the patch), and τforage (t) is the time to consume
the next bite. If the forager survived, the focal patch’s quality
is updated by subtracting one bite, and E (t) is updated by
adding one bite and subtracting FMR expenditure (and, if
E (t) > E (t = 0)+ Er, reproductive cost). If the forager moved
to a previously unvisited patch, then n is updated accordingly
(n← n+ 1). The qualities of the n previously visited patches
are updated after each consumption event based on a stochastic
logistic regrowth model.

The forager is assumed to “know” the concurrent qualities
of all patches it has visited before, as well as the times it
takes to travel between any particular pair of patches, as
long as that particular journey was undertaken at least once
before. What the forager does not know with certainty is
the quality (food abundance) of yet unexplored patches, and
the travel time between pairs of patches it did not visit
sequentially before. Instead, the forager relies on its current
(at time t) beliefs about average patch quality, Q (t) and travel
time, T (t). Once a new inter-patch journey is decided on
or a new patch is visited, the true duration of that journey,
τtravel (t), or the true quality of that patch, k (t), are sampled
from two respective Gamma distributions, each with its own
characteristic mean and variance. The foraging environmental
is characterized by the values of these means and coefficients of
variation

(
CV =

√
variance/mean

)
. The forager’s beliefs about

the expected values of these quantities is then updated using a
simple yet powerful linear approximation to Bayesian learning
(McNamara and Houston, 1987; Lange and Dukas, 2009; Berger-
Tal and Avgar, 2012):

{
T (t + τ) = θT (t) · τtravel (t)+ [1− θT (t)] · T (t)

Q (t + τ) = θQ (t) · k (t)+
[
1− θQ (t)

]
· Q (t)

where θT (t) and θQ (t) are (temporally dynamic) normalized
weights [0, 1].

The novelty of our approach lies in introducing valence-
dependent learning by allowing the θT (t) and θQ (t) to vary with
the difference between the current beliefs, T (t) and Q (t), and
newly acquired information, τtravel (t) and k (t):{

θT (t) = ηT
ηT+(1−ηT)·exp(αT ·[τtravel(t)−T(t)])

θQ (t) = ηQ
ηQ+(1−ηQ)·exp(αQ·[Q(t)−k(t)])

Here, ηT and ηQ [0, 1] are the basal normalized weights
(learning rates in the absence of a valence effect; unitless),
whereas αT and αQ are valence-dependent learning parameters
(with units of time−1 and quality−1, respectively). Positive
values of αT and αQ correspond to an increase in the
respective normalized weights whenever τtravel (t) < T (t)
or Q (t) < k (t), emphasizing new information when this

information exceeds expectations. Negative values of αT and αQ
correspond to an increase in their respective normalized weights
whenever τtravel (t) > T (t) or Q (t) > k (t), emphasizing new
information when this information is disappointing compared to
expectations. Consequently, for each of the two environmental
variables (patch quality and inter-patch travel time), our model
has two “cognitive traits”. The basal normalized weight, η, is
inversely related to the effect of prior-based judgment bias;
in the absence of valence-dependent learning (α = 0), new
information has little effect on the forager’s initial beliefs [i.e.,
Q (t = 0) and T (t = 0)] if it is low (close to 0), whereas new
information is heavily weighted and hence prior beliefs are
quickly eroded if it is high (close to 1). The valence-dependent
learning parameter, α, is our mathematical depiction of valence-
dependent judgment bias; if it is positive, the forager’s beliefs are
affected more by new information if that information is positive
(“optimism”), and vice versa.

Through their effects on the forager’s space-use decisions
(when and where to go), αT and αQ affect the forager’s
resource acquisition rate, risk of starvation, and exposure to
predation. Everything else being equal, those values of αT and
αQ that result in the greatest lifetime reproductive success (a
product of longevity and consumption rate), are expected to be
evolutionary adaptive.

Numerical Experiments
Our numerical experiments consisted of running 1,000 stochastic
realizations of the simulation across a full factorial design
of parameter and variable values, as detailed in Table 1.
While there are many axes along which our model could be
investigated, our focus here is on optimal valence-dependent
learning bias and its dependence on environmental variability
and prior-based bias. Environmental variability is manifested
in our “experiments” along two orthogonal axes. First, we
varied the coefficients of variation of patch qualities and inter-
patch travel times [CV (Q) and CV (T)] while keeping the
mean values constant (variability across space). High CV (Q)
means patches are more heterogeneous in their quality across
space, and an exploring forager is more likely to encounter
either an exceptionally rich patch, or an exceptionally poor
one. High CV (T) means patches are more aggregated in space,
and an exploring forager is more likely to travel either for an
exceptionally short time, or for exceptionally long time, before
encountering a new patch. Second, we varied the prior belief the
forager held with regards to each of these two landscape attributes
at the beginning of the simulation [Q (t = 0) and T (t = 0)],
reflecting a mismatch between the forager’s expectations and
the true environmental characteristics (e.g., due to abrupt
change in mean environmental qualities; variability across time).
By varying Q (t = 0) and T (t = 0), rather than Q̂ and
T̂, we are able to compare foraging performance, and the
resulting fitness, across different scenarios while keeping the
mean characteristics of the environment constant. We envision
a shift into a relatively enriched [Q̂ > Q (t = 0) or T̂ <

T (t = 0)] or degraded [Q̂ < Q (t = 0) or T̂ > T (t = 0)]
environment as one possible cause of prior-based pessimism or
optimism, respectively.
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TABLE 1 | the various parameters and state variables used in our numerical experiments.

Name Description Numerical values

Q̂ and T̂ mean patch quality (in the absence of depletion), and mean
travel time from one patch to another

100 and 10 (respectively)

CV (Q) and CV (T) coefficients of variation of patch quality and travel time 0.1, 0.5, or 1

Q (t = 0) and T (t = 0) initial (prior) belief about mean patch quality and travel time 50%, 100%, or 150% of Q̂ and T̂ respectivaly

FMR field metabolic rate 0.5*

Er energetic cost or producing a single offspring FMR · Q̂

E (t = 0) initial energy reserves Er

tmax maximum longevity 10,000

ptravel predation risk (per-unit-time) while travelling between
patches

tmax
−1, 2 · tmax

−1, or 3 · tmax
−1

pforage predation risk (per-unit-time) while foraging in a patch 0.1 · ptravel

h the Type II functional response’s handling time 1

a the Type II functional response’s search rate 0.02**

r logistic rate of forage regrowth 0.003***

ηQ and ηT basal normalized weights for updating Q(t) and T(t) 0.01

αQ and αT valence-dependent learning parameters for updating Q(t)
and T(t)

−e2, −e1, −e0, −e−1, −e−2, −e−3, −e−4,
−e−5, 0, e−5, e−4, e−3, e−2, e−1, e0, e1, or e2

*FMR was set so as to equal the energetic consumption rate at half Q̂. **Search rate was set so that consumption rate at half Q̂ is half the maximum consumption rate
(h−1). ***Forage growth rate was set so that, at its maximum (i.e., at half Q̂), exactly one bite will regrow in the expected time it takes the forager to consume one bite at
half Q̂ and travel to a new patch.

To reduce dimensionality (and hence make our results as
general as possible), we expressed several non-focal parameters
and variables as functions of others (Table 1). That said, we
acknowledge that the robustness of our results depends on
a comprehensive factorial sensitivity analysis, an analysis that
we view as the next step along this line of investigation. To
summarize our results, the outputs of each scenario (1,000
vectors of the various state variables) were bootstrapped 1,000
times, each time recording the average starvation rate, longevity,
consumption rate, and lifetime reproductive output, as well as
other attributes of the simulated realizations, such as the average
GUD or home range size (number of unique patches utilized over
the forager’s lifetime).

RESULTS

First, we examine the relationship between our valence-
dependent learning parameters and the resulting beliefs held
by the foragers at the end of the simulation (Figure 1 and
Supplementary Figure 1). The terminal belief (held at the
end of the simulation) about the mean patch quality, Q

(
end

)
,

is always biased low (pessimism) at large negative values of
the valence-dependent Q-learning parameter (αQ � 0; valence-
dependent pessimism), and high (optimism) at large positive
values of αQ (valence-dependent optimism). The αQ value at
which an unbiased terminal belief is obtained

(
Q
(
end

)
= Q̂

)
decreases with the initial prior belief (Q (t = 0)), and the strength
of the effect increases with spatial variability in patch quality
(CV(Q)). These results are mirrored in the relationship between
αT and T

(
end

)
(Supplementary Figure 1). Note that, high

spatial variability in either patch quality or inter-patch travel

time translates into skewed distributions of these attributes (for
the Gamma distribution, skewness = 2 · CV). As a result, the
magnitude of terminal optimism at αQ � 0 is much larger than
the magnitude of terminal pessimism at αQ � 0 (Figure 1, lower
panels), and the magnitude of terminal optimism at αT � 0 is
much smaller than the magnitude of terminal pessimism at αT �

0 (Supplementary Figure 1, lower panels).
The fitness-maximizing value of the valence-dependent Q-

learning parameter (αQ), varies with environmental variability
across space and time (Figure 2). Moderate valence-dependent
optimism

(
αQ > 0

)
is adaptive (i.e., it results in greater lifetime

reproductive output) in six out of the nine scenarios depicted in
Figure 2. Valence-dependent optimism is associated with greatest
(relative) fitness gain when the forager is also a “prior-based
pessimist” (which may be interpreted as a shift into an enriched
environment), and when spatial variability in patch quality is
high. Valence-dependent pessimism

(
αQ < 0

)
is adaptive in only

two out of the nine scenarios, when the forager is “prior-
based optimist” (which may be interpreted as a shift into a
degraded environment), and the spatial variability of patch
quality is medium or low. It should be noted that the shape and
magnitude of these response curves vary with values of T (t = 0),
CV (T), and all other variables and parameters (e.g., ptravel;
Supplementary Figure 2). Overall, however, across all scenarios,
moderate valence-dependent optimism with regards to patch
quality is the most common fitness-maximizing strategy (146 out
of 243 scenarios).

The fitness effect of the valence-dependent T-learning
parameter (αT) follows similar trends but is less pronounced
than the effect of αQ (Supplementary Figure 3), which is
to be expected considering the range of T is an order of
magnitude smaller than that of Q. For the same reason, in those
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FIGURE 1 | Terminal belief (at the end of the simulation) about the mean patch quality as function of valence-dependence for patch quality (positive values of αQ

correspond to valence-dependent optimism whereas negative values correspond to valence-dependent pessimism). Vertical dashed lines denote unbiased learning
(αQ = 0), whereas horizontal dashed lines denote an unbiased terminal belief

(
Q (end) = Q̂

)
. Different panels refer to different scenarios: low (Q(t = 0) = 50),

unbiased (Q(t = 0) = 100), and high (Q(t = 0) = 150) initial prior belief (columns), and low (CV (Q) = 0.1), medium (CV (Q) = 0.5), and high (CV (Q) = 1) spatial variability
(rows). In each scenario, αT was kept constant at its optimal (fitness maximizing) value. T (t = 0) = T̂ = 10; CV (T ) = 0.5; Ptravel = tmax

−1 other parameters and
variables were as detailed in Table 1.

scenarios where valence-dependent optimism is adaptive, it is
typically extreme (αT � 0; Supplementary Figure 3). Valence-
dependent optimism is adaptive in unchanged or newly enriched
environments (i.e., for unbiased or pessimistic priors), but only
when CV(T) is moderate or high (patches are aggregated in
space). When CV(T) is low, αT has no significant effect on
lifetime reproductive success. When the environment is newly
degraded (i.e., for prior-based optimists) and CV(T) is high,
lifetime reproductive success is maximized when αT = 0 (i.e.,
unbiased learning; Supplementary Figure 3). Overall, across all
scenarios, valence-dependent optimism with regards to travel
time is the most common fitness-maximizing strategy (121 out
of 243 scenarios).

As for the adaptive value of prior-based biases, optimism is,
most often, the fitness maximizing strategy. For both medium
and high spatial variability in patch quality, absolute fitness is
highest for prior-based optimists, and lowest for prior-based
pessimists, across all levels of valance-dependent learning (lower
panels of Figure 2 and Supplementary Figure 2). This is also
true, albeit to a lesser degree, for prior-based optimism with
regards to travel time; for a given value of αT , the absolute

fitness value is highest when the forager is a prior-based
optimist, and lowest when the forager is a prior-based pessimist
(Supplementary Figure 3).

To gain better understanding of these results, we examine
the effects of our valence-dependent learning parameters on the
components of fitness, namely consumption rate and longevity
(lifetime reproductive success is the product of these two
variables; Figures 3, 4). The effects of the valence-dependent Q-
learning parameter

(
αQ
)

on consumption rates follow similar
trends to those described above for lifetime reproductive
output (Figure 3). Mild valance-dependent optimism is
advantageous in newly enriched environments (i.e., for prior-
based pessimists), whereas valance-dependent pessimism is
only advantageous in relatively homogenous [low CV(Q)] and
newly degraded environments (i.e., for prior-based optimists).
Prior-based optimism about patch quality is associated with
a marked increase in absolute consumption rates across
all αQ values, under both moderate and high values (Figure 3).
As for the effect of our valence-dependent T-learning parameter
(αT) on consumption rates (Supplementary Figure 4), valence-
dependent optimism is advantageous in unchanged or newly

Frontiers in Ecology and Evolution | www.frontiersin.org 6 February 2022 | Volume 9 | Article 75913388

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-759133 February 7, 2022 Time: 11:52 # 7

Avgar and Berger-Tal Optimistic Optimal Foraging

FIGURE 2 | Lifetime reproductive output as function of valence-dependence for patch quality (positive values of αQ correspond to valence-dependent optimism
whereas negative values correspond to valence-dependent pessimism). Vertical dashed lines denote unbiased learning (αQ = 0). Different panels refer to different
scenarios: low (Q(t = 0) = 50), unbiased (Q(t = 0) = 100), and high (Q(t = 0) = 150) initial prior belief (columns), and low (CV (Q) = 0.1), medium (CV (Q) = 0.5), and high
(CV (Q) = 1) spatial variability (rows). In each scenario, αT was kept constant at its optimal (fitness maximizing) value. T (t = 0) = T̂ = 10; CV (T ) = 0.5; Ptravel = tmax

−1;
other parameters and variables were as detailed in Table 1.

enriched environments (i.e., for unbiased or pessimistic priors),
but only whenCV(T) is moderate or high (patches are aggregated
in space). When CV(T) is low, αT has no significant effect on
consumption rate. When the environment is newly degraded
(i.e., for prior-based optimists) and CV(T) is moderate or
high, consumption rates are maximized when αT = 0 (i.e.,
unbiased learning; Supplementary Figure 4). Finally,
prior-based optimism about inter-patch travel times is
associated with small but significant increase in absolute
consumption rates across all αT values, under both moderate and
high CV(T) values (Supplementary Figure 4).

Across all scenarios and parameters values, our simulated
foragers typically “died” of “natural causes” (either predation
or starvation), with less than 0.01% of simulations reaching
tmax (our maximum longevity cutoff). Variability in longevity
(Figure 4) is driven primarily by variability in starvation
mortality (Supplementary Figure 6); individuals that
die young typically die from starvation, whereas those
that live long, eventually die of predation (Figure 4 and
Supplementary Figures 5, 6). When spatial variability in patch
quality is low (CV (Q) = 0.1), valence-dependent optimism
is associated with longer life span (higher probability of

survival) in newly enriched environments (compared to the
forager’s initial expectation, i.e., for prior-based pessimists),
whereas valence-dependent pessimism is associated with longer
life span in newly degraded environments (compared to the
forager’s initial expectation, i.e., for prior-based optimists;
Figure 4). In contrast, when spatial variability in patch quality
is moderate or high (CV (Q) ≥ 0.5), longevity is typically
maximized in the absence of valence-dependent learning
(although slight deviations from αQ = 0 have little effect), with
the exception of prior-based pessimists under intermediate
environmental variability, where mild optimism is associated
with distinctly longer life span (Figure 4). Longevity is otherwise
insensitive to the prior-based bias, and is also unaffected by
the value of the valence-dependent T-learning parameter
(Supplementary Figure 7).

Lastly, we examine the relationship between our valence-
dependent learning parameters and emerging space-use patterns
(Figure 5). Movement rate (% time spent travelling; Figure 5A)
remain mostly unaffected by the valence-dependent Q-learning
parameter, until the latter reaches large positive values (extreme
valence-dependent optimism), where movement rate doubles
and then plateaus. Exploration rate (% patch departures to new
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FIGURE 3 | Consumption (feeding) rate as function of valence-dependence for patch quality (positive values of αQ correspond to valence-dependent optimism
whereas negative values correspond to valence-dependent pessimism). Vertical dashed lines denote unbiased learning (αQ = 0). Different panels refer to different
scenarios: low (Q(t = 0) = 50), unbiased (Q(t = 0) = 100), and high (Q(t = 0) = 150) initial prior belief (columns), and low (CV (Q) = 0.1), medium (CV (Q) = 0.5), and high
(CV (Q) = 1) spatial variability (rows). In each scenario, αT was kept constant at its optimal (fitness maximizing) value. T (t = 0) = T̂ = 10; CV (T ) = 0.5; Ptravel = tmax

−1;
other parameters and variables were as detailed in Table 1.

patches; Figure 5B) show a double sigmoidal increase pattern
with αQ, with an intermediate plateau at moderate αQ values
(mild pessimism or optimism), followed by full saturation (all
patch departures are explorations) at large positive αQ values.
Home-range size (number of unique patches used by a forager
over its lifetime; Figure 5C), and patch giving-up densities (GUD;
Figure 5D) follow a similar pattern as that or exploration rate.
As with other results, these patterns were similar for the effect
of αT , although exploration rate was mostly insensitive to αT .
These patterns also showed slight sensitivities to the values of
other variable and parameters, but were otherwise qualitatively
similar across all scenarios. Overall, valence-dependent optimists
explore more and consequently occupy larger home ranges, and
have higher giving-up densities (exploit less), then unbiased or
pessimistic learners.

DISCUSSION

Throughout their evolutionary history, animals faced novel
environments and situations primarily following dispersal
into new territories (Ronce, 2007; Dingle, 2014). However,

human-induced rapid environmental changes (HIREC; Sih et al.,
2016) makes encountering novel stimuli the rule rather than the
exception under many natural situations. Moreover, conservation
translocations (in which humans deliberately release animals into
novel environments) are increasingly used for the conservation
of species or the restoration of ecosystems (Berger-Tal and Saltz,
2014; Berger-Tal et al., 2020). Successful conservation therefore
depends on understanding how animals might cope with novel
environments and stimuli (Dunlap et al., 2017; Crowley et al.,
2019), and how they balance their exploration and exploitation
needs in an unknown environment. Optimism is likely to play an
important role in decision-making under novel situations, since
it is thought to encourage exploration and increase movement
rates and home range sizes. This seems to be the case regardless
of the suggested mechanism for this cognitive bias – either a
positively biased initial belief (“prior-based” optimism; Berger-
Tal and Avgar, 2012), or an asymmetric learning process where
information about undesirable outcomes is discounted (“valence-
dependent” optimism; Figure 5).

In this manuscript, we examined the adaptive value of
valence-dependent optimism (positivity biased learning).
Valence dependence is the main mechanism used by cognitive
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FIGURE 4 | Longevity (life expectancy) as function of valence-dependence for patch quality (positive values of αQ correspond to valence-dependent optimism
whereas negative values correspond to valence-dependent pessimism). Vertical dashed lines denote unbiased learning (αQ = 0). Different panels refer to different
scenarios: low (Q(t = 0) = 50), unbiased (Q(t = 0) = 100), and high (Q(t = 0) = 150) initial prior belief (columns), and low (CV (Q) = 0.1), medium (CV (Q) = 0.5), and high
(CV (Q) = 1) spatial variability (rows). In each scenario, αT was kept constant at its optimal (fitness maximizing) value. T (t = 0) = T̂ = 10; CV (T ) = 0.5; Ptravel = tmax

−1;
other parameters and variables were as detailed in Table 1.

psychologists to explain the emergence of optimism bias
(Weinstein, 1980; Sharot, 2011; Kuzmanovic et al., 2015; Garrett
and Daw, 2020; Gesiarz et al., 2019), but has rarely been tested
in an ecological framework. More specifically, whereas several
studies demonstrated the existence of “valence-dependent”
optimism in non-human animals, its explicit evolutionary
adaptive value has, to our knowledge, never been evaluated.
We found that moderate valence-dependent optimism is the
most common fitness-maximizing strategy across a wide range
of ecological scenarios. Further, valence-dependent optimism
results in the maintenance of prior-based optimism (Figure 1),
and consequently to enhanced fitness in spatially variable
environments. Lastly, optimism promotes exploration and
consequently always leads to enhanced learning. The resulting
rapid acquisition of information may be advantageous even when
it results in slightly suboptimal short-term foraging patterns.
Taken together, these theoretical explorations suggest we should
expect behavioral responses consistent with having positively
biased expectations to be the rule in many natural systems.

Optimism, whether valence-dependent or prior-based,
promotes exploration. Consistently expecting to find better
resources or condition “out there” leads to spending less time

in familiar places (exploitation) and more time searching, and
consequently learning. We thus expect optimism, which is
generally adaptive even in the absence of HIREC, should play
an important role in species adjusting their behavioral patterns
to new conditions brought about by HIREC. Optimism will
not help a species persist in an environment that is degraded
to the point it cannot support it, but it should accelerate
information-based shifts in behavioral strategies, promoting
post-HIREC population viability. It is worth noting that we
have found a clear fitness advantage of mild valence-dependent
pessimism in scenarios where foragers are (initially) prior-based
optimists, and spatial environmental variability is low (e.g.,
top-right panel of Figure 2). This leads to the prediction that
species with recent evolutionary history dominated by spatially
homogenous yet temporally degrading environments, should be
valence-dependent pessimists. Consequently, such species are
expected to explore less, be slower to learn, and hence be more
vulnerable to HIREC.

In our simulations, mortality was driven primarily by
starvation. Extreme valence-dependent optimists or pessimists
tend to die of starvation early in life due to low resource
consumption rates (except when they are also prior-based
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FIGURE 5 | Emerging space-use patterns as function of valence-dependence for patch quality: (A) “movement rate” (% time spent travelling; 9–23), (B) “exploration
rate” (% patch departures to new patches; 55–100), (C) home-range size (number of unique patches used during the simulation; 5–24), and (D) mean giving-up
density (average number of bites remaining in a patch once departed; 36–80) Q(t = 0) = Q̂ = 100; T (t = 0) = T̂ = 10; CV (Q) = CV (T ) = 0.5; ptravel = 2 tmax

-1; other
parameters and variables were as detailed in Table 1. αT was kept constant at its optimal value (which is 0 in this specific scenario).

pessimists or optimists, respectively, and living in homogenous
environment). Fitness, however, is a product of life expectancy
and reproductive rate, with the latter being tightly linked
to resource consumption rate, which is generally highest for
mild optimists. Hence, we get scenarios (particularly when
environmental spatial heterogeneity is high; e.g., the bottom mid
and left panels in Figures 2–4) where strategies that lead to
longer lives are not necessarily those with the highest fitness.
A useful perspective on this tradeoff may be based on the notion
of “pace of life” (Careau et al., 2011; Nakayama et al., 2017;
Campos-Candela et al., 2018; Mathot and Frankenhuis, 2018;
Betini et al., 2019) – a “fast” (optimistic) forager may not live for
a longer period of time, but it accomplishes more in the time it
has, presumably due to higher exploration rate which allows it to
encounter and utilize high quality patches.

Prior-based (“innate”) expectations about the environment are
an emerging product of the learning process, the prior belief
held at its onset, and the characteristics of the environment.
Consequently, these beliefs should be viewed as a dynamic state
variable (rather than a rigid trait), which continually change
through time, even if the characteristics of the environment do

not (Figure 1 here and Figure 1B in Berger-Tal and Avgar, 2012).
The rate and direction of this change depend on initial beliefs,
environmental heterogeneity, and valence-dependent learning
(Figure 1). There are at least three processes that may give
rise to a prior-based optimism at a certain point in time: an
innate disposition that is unaffected by learning (e.g., due to
genetic effects or early-life imprinting), a history of learning in
a better environment (where expectations would be set high
compared to the current environment), and positively biased
learning (valence-dependent optimism). We have shown here
that the latter is advantageous on its own accord, and is a
plausible mechanism for the emergence of temporally dynamics
prior-based biases.

The initial value of innate expectations (prior-based bias) has
a large effect on both the shape and magnitude of the relationship
between valance-dependent learning bias and fitness (Figure 2).
These interactions deserve an explicitly dynamic investigation,
one that will track the trajectories of innate expectations not only
within, but also across generations. Such an analysis is beyond
the scope of the current work but we would nevertheless like to
speculate here about the nature of these dynamics. Assuming first
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that innate beliefs are passed on from parent to offspring, so that
offspring start their life with the same innate beliefs their parents
held at the end of theirs, and that the environment does not
change across generations. Under these assumptions, the fitness
advantage of mild valence-dependent optimism we have observed
here should lead to the next generation consisting mostly of
prior-based and valence-dependent optimists. These optimists
will then suffer reduced fitness compared to either prior-based
or valence-dependent pessimists (Figure 2). Consequently, we
might then expect an emerging pattern of fluctuating selection
across generations (despite a constant environment); selection
pressure will alternate back and forth between valence-dependent
optimism and pessimism. If, on the other hand, the initial
beliefs held by offspring are independent of the terminal beliefs
of their parents, valence-dependent optimism should maintain
(on average) its adaptive advantage. Lastly, let us assume the
environment itself fluctuates from one generation to the next
(either in terms of its mean quality, or its spatial heterogeneity),
and offspring initial beliefs are affected by their parents’
environment and/or terminal belief. Under these assumptions,
the long-term fitness value of valence-dependent optimism (or
pessimism) should depend on the direction (trend) and temporal
autocorrelation of this environmental change, with long-term
degradation leading to a selection for optimism, and vice versa.
Either way, we believe these dynamics should be further studied
in the context of evolutionary traps (Robertson et al., 2013;
Robertson and Blumstein, 2019), and whether optimism is in fact
such a trap, or rather a way out of it.

Other important aspects of foraging dynamics that were
not addressed here, for the sake of simplicity, are the effects
of competitive interactions, density dependence, and memory
decay. Even in the absence of territoriality or other social
interactions, an optimal forager operating in a shared space
must also consider the effect competitors may have on current
patch qualities (via exploitation), and possibly even predation
risk (due to a dilution effect; Avgar et al., 2020). It is possible
that the effect of resource exploitations by competitors could
be boiled down to increased uncertainty in patch quality across
space and/or time (Riotte-Lambert and Matthiopoulos, 2020).
However, we must consider the possibility that, in the absence
of spatiotemporal-specific information about the foraging activity
of others, the utility of learning and revisiting a set of patches
(known as “traplining”) is critically diminished (but see Riotte-
Lambert et al., 2015, 2017). In that case, memory decay me
be not only more realistic, but also adaptive. Competition may
moreover have qualitative effects on the relationship between
environmental heterogeneity and fitness (Trevail et al., 2019).
At the same time, social information, gained by following or
monitoring competitors, plays a major role in the cognitive
movement ecology of many species (Kashetsky et al., 2021), and
may have non-trivial interactions with the effects of cognitive
biases. Lastly, the presence of other individuals with different
cognitive strategies (e.g., different levels of optimism) could
potentially play an important role in the evolution of an optimal
cognitive strategy, and hence the formation of a cognitive
niches, via either density- or frequency-dependent selection
(Beecham, 2001). The consideration of explicit exploitative

interactions among individual foragers, cognitive limitations
such as memory decay, and the availability and use of social
information are thus important future avenues for research.

Whereas our model focuses on a theoretical exploration of
the roles of prior-based and valence-dependent optimism in
shaping animal behavior and determining population viability
(through their effects on fitness), our model can also serve
as the basis for a slew of predictions that can be empirically
tested in the field. Supplementary Figure 8 details some of
these predictions regarding the space-use patterns of individuals
maintaining an optimal valence-dependent cognitive bias. For
example, an increase in predation risk is expected to lead to a
decrease in home range size, patch giving-up density, and lifetime
reproductive output, but also an increase in both movement and
exploration rates. Reproductive output is expected to increase
with environmental variability, movement rate is expected to be
substantially lower when variability in patch quality is low, but
giving-up density is expected to be highest at an intermediate
degree of patch quality variability. Lastly, exploration rate is
expected to be substantially lower when variability in patch travel
time is high (i.e., when patches are more aggregated in space).
Whereas some of these predictions are consistent with previous
theory (Calcagno et al., 2014; Riotte-Lambert and Matthiopoulos,
2020), some others are counterintuitive and novel, and warrant
further theoretical and empirical investigations.

To summarize, we have shown how cognitive biases can
serve as an adaptive foraging strategy. The question remains on
whether these biases can help individual cope with a rapidly
changing environment, or whether changing environments can
turn such cognitive biases into dangerous evolutionary traps. As
any other model, ours suffers from simplifications, intentional
omissions, and operational assumptions that might or might
not be important. That said, we believe our carful treatment
of “fitness” [considering the effects of predation, starvation,
and reproductive investment; (Houston et al., 1993)], and our
broad consideration of various ecological scenarios, provide solid
foundation for our findings. We are thus optimistic about future
extensions of our investigation.
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Predator reintroductions are often used as a means of restoring the ecosystem services

that these species can provide. The ecosystem consequences of predator reintroduction

depend on how prey species respond. Yet, to date, we lack a general framework for

predicting these responses. To address this knowledge gap, we modeled the impacts

of predator reintroduction on foragers as a function of predator characteristics (habitat

domain; i.e., area threatened) and prey characteristics (knowledge of alternative habitat

and exploratory tendency). Foraging prey had the capacity to both remember and return

to good habitat and to remember and avoid predators. In general, we found that forager

search time increased and consumption decreased after predator introduction. However,

predator habitat domain played a key role in determining how much prey habitat use

changed following reintroduction, and the forager’s knowledge of alternative habitats and

exploratory inclinations affected what types of habitat shifts occurred. Namely, habitat

shifts and consumption sacrifices by prey were extreme in some cases, particularly

when they were pushed far from their starting locations by broad-domain predators,

whereas informed foragers spent less time searching and displayed smaller reductions to

consumption than their naïve counterparts following predator exposure. More exploratory

foragers exhibited larger habitat shifts, thereby sacrificing consumption but reducing

encounters by relocating to refugia, whereas less exploratory foragers managed risk in

place and consequently suffered increased encounters while consumingmore resources.

By implication, reintroductions of predators with broad habitat domains are especially

likely to impose foraging and movements costs on prey, but forager spatial memory state

can mitigate these effects, as informed foragers can better access alternate habitat and

avoid predators with smaller reductions in consumption.

Keywords: habitat domain, behavioral type, predation, memory, individual-based model

1. INTRODUCTION

Predators are declining globally in both marine (MacNeil et al., 2020) and terrestrial ecosystems
(Ripple et al., 2014). Given the myriad ecosystem services that predators can provide (Estes
et al., 2011), these declines have elevated discussion of actions aimed at bolstering predator
populations (Ritchie et al., 2012), including efforts to reintroduce endangered or threatened species
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(Fritts et al., 1997; Hayward et al., 2007a), supplementing small
relict populations to aid species recovery (Weinberger et al.,
2009), managing problematic species and individuals in human–
animal conflict scenarios (Linnell et al., 1997; Athreya et al.,
2011), and assisted colonization to attempt to prevent extinctions
of species threatened by climate change (Shirey and Lamberti,
2010). Notably, however, predator recovery can have undesirable
or unanticipated consequences for ecosystems, as when predators
prey on or compete with other threatened species (Marshall et al.,
2016), negatively impact prey populations (Hayward et al., 2007b;
DeCesare et al., 2010), or fail to elicit expected patterns of anti-
predator behavior (e.g., because of human shielding Muhly et al.,
2011). Given the variability of predator restoration outcomes for
ecosystems, there is need for studies seeking to illuminate the key
factors that mediate competitor and prey responses to recovering
predator populations (Alston et al., 2019).

When they perceive predation risk, prey individuals
commonly sacrifice food in exchange for the safety afforded by
differential space use (e.g., refuging), apprehension, or group
size (Lima and Dill, 1990; Preisser et al., 2005; Cresswell, 2008;
Say-Sallaz et al., 2019). There is growing recognition, however,
that such anti-predator investment can vary in nature and
intensity as a function of context, or, in other words, properties
of the prey experiencing the danger, the predator imposing
the threat, and/or the setting of the interaction (Wirsing et al.,
2021). For example, prey energetic state (i.e., body condition or
hunger), is known to affect risk-taking behavior by mediating
individual differences in the incentive to protect vs. seek assets
(energy stores) linked to residual reproductive value (McNamara
and Houston, 1986; Lima, 1988; Whitham and Mathis, 2000;
Olsson et al., 2002; Heithaus et al., 2007). Accordingly, studies
exploring these context-dependent drivers of variation in prey
defensive behavior should facilitate more reliable prediction of
predator recovery in particular systems.

Memory is a state variable that has often been considered in
the context of foraging and migratory decision-making (Bracis
and Mueller, 2017; Abrahms et al., 2019; Merkle et al., 2019;
Tsalyuk et al., 2019), as supported by experimental evidence
(Kamil and Roitblat, 1985; Shettleworth, 2001; Stephens et al.,
2007). Animals are known to learn from and subsequently
avoid predator encounters (Huntingford and Wright, 1989;
Wisenden et al., 1994; Griffin et al., 2000; Nomikou et al.,
2003). For example, predator-experiencedmice (Mus domesticus)
changed their foraging behavior in response to signals of
increased predation risk while predator-naïve mice did not,
and those differences in foraging behavior correlated with
survival (Dickman, 1992). Thus, memory of predator threats
as well as memory of alternative foraging locations may
both be components of forager state that influence risk-
taking or aid the forager in managing the food–safety
tradeoff. In support of this hypothesis, Bracis et al. (2018)
showed that spatial memory of food and risk allowed
simulated foragers to reduce predator encounters relative
to their naïve counterparts without concomitantly reducing
consumption, particularly when predators were persistent and
weakly correlated with resources across the modeled landscape.
No study to date, however, has explored how memory shapes

prey habitat use decisions following the restoration of a
predator population.

Memory is particularly challenging to study in an ecological
context because it can neither be measured directly nor
inferred reliably from detailed information on an animal’s past
experiences (Fagan et al., 2013; Van Moorter et al., 2013).
While spatial familiarity has been shown to be an important
driver of resource selection and is suggestive of memory (Wolf
et al., 2009), it has also been demonstrated that an apparent
but non-existent preference for familiarity can arise when
habitat models are incomplete (Van Moorter et al., 2013).
Accordingly, modeling, whereby memory state can be controlled
explicitly, is better suited to generating insight into how this
state variable influences predator–prey interactions. Here, in the
interest of moving beyond population dynamics to how broader
ecosystem properties may be mediated by interactions between
recovering predators and prey (Seddon et al., 2007), we used
individual-based modeling to examine the impacts of predator
recolonization on prey foraging behavior and, in particular, how
memory state with respect to the surrounding landscape shapes
subsequent habitat shifts by prey. Thus we specifically examine
prey who shift their behavior to avoid predators among many
other possible antipredator behaviors (Lima and Dill, 1990).
Concretely, we introduced predators to a simulated landscape
and varied the size of their habitat domain as a measure of
the area they threatened. Habitat domain is specifically the
spatial extent over which individuals move while foraging, in
contrast to home range which can encompass resources to meet
other needs, and can also encompass what available microhabitat
is used (Preisser et al., 2007; Schmitz et al., 2017). Foraging
prey in these simulations differed in their knowledge of the
surrounding landscape and how exploratory they were in the
face of new habitat. We analyzed movements of the foragers
before and after predators were introduced to the landscape to
understand how memory influences changes in the behavioral
dimension of space use and how those changes are reflected
in consumption and time budget. Under the hypothesis that
memory facilitates optimization of the trade-off between food
and safety, we predicted that (1) informed foragers would exhibit
smaller reductions in consumption and spend less time searching
for refuge patches than their naïve counterparts following
predator exposure. For all memory states, we also predicted
that (2) changes to consumption and space use would increase
with predator habitat domain, as greater area threatened should
reduce the availability of nearby anti-predator refugia and thus
necessitate more search time. Finally, we predicted that (3)
exploratory behavior would confer greater plasticity to adapt to
newly introduced predators, particularly by enabling larger-scale
spatial shifts.

2. METHODS

We explored the impact of predator introductions on prey
using an existing modeling framework in which foragers move
around a dynamic resource landscape, learning patterns of
heterogeneity in resources and predator encounters (Bracis
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FIGURE 1 | Landscape used in the simulation showing (A) habitat quality and box bounding locations of introduced predators with x marking the forager’s starting

location, (B) predators with an encounter radius of 5, (C) predators with an encounter radius of 10, and (D) predators with an encounter radius of 20.

et al., 2015, 2018). Foragers continuously consume resources
and switch between a more directed, faster searching behavior
and a more tortuous, slower feeding behavior as a function of
the consumption rate. Note that these predator introductions
could represent reintroductions, recolonizations, or colonization,
whether naturally occurring or assisted. These foraging resources
deplete and regenerate, making it advantageous for the forager
to leave recently depleted locations and return to intrinsically
high-quality locations. Resource memory takes the form of two
different resource streams of information that drive attractive
and repulsive tendencies, respectively (Van Moorter et al.,
2009; Bracis et al., 2015). One stream drives the forager away
from recently visited and depleted areas; the other returns the
individual to high-quality areas that have regenerated. We varied
how the resource memory is initialized at the beginning of the
simulation to compare foragers with complete knowledge of the
landscape to those that must learn their surroundings, and we
also varied exploratory potential (see below).

Predators appear at particular locations, remain for one
quarter of the total simulation time, then disappear according
to a Poisson process for timing and location, thus representing
sit-and-wait predators, sit-and-pursue predators, or actively-
hunting predators with a small home range. Predator locations
are correlated with the forager’s resource quality (Williams
and Flaxman, 2012; Courbin et al., 2014). The forager detects
predators within a given encounter radius, then the forager
moves directly away from the predator. Predator encounter
radius varies to represent predators with different-sized habitat
domains. Encounters are tracked, but there is no death, so that
all simulations have the same length. The predation memory is a
single stream and is a spatially explicit map of predator encounter

locations that decays with time (Bracis et al., 2018). Foragers are
attracted to good quality habitat while at the same time seeking
tominimize predator encounters. The forager selects its direction
probabilistically from a circular distribution which is formed by
integrating tracts radiating outward from its position of its spatial
memory of resource quality discounted by distance, which is then
combined with a circular distribution of predator safety.

2.1. Simulations
We endeavored to use a landscape with realistic variation
in vegetation productivity, but where resources were
heterogeneously distributed in space and clumped (Figure 1A).
That is, the forager starts in higher productivity habitat before
predator introduction and then has the option of remaining
in the higher productivity habitat or switching to previously
unused lower productivity habitat. Predators are introduced into
the highest quality quadrant, matching a common practice of
releasing relocated animals in areas of presumed high quality
habitat (e.g., Smith and Clark, 1994; Halsey et al., 2015). The
distribution of resources is 42% in the northeast quadrant,
20% in the southeast quadrant, 14% in the southwest quadrant,
and 24% in the northwest quadrant. The details of the single
landscape used in the simulation can be found in Appendix A.

Simulations begin with no predation, then predators appear
in the northeast quadrant of the landscape halfway through the
simulation. Within this quadrant, containing the best quality
habitat, predator locations are correlated with landscape quality.
That is, the probability of a predator being at a location is
proportional to that location’s quality relative to the quality in
the quadrant. Different predator encounter radii (i.e., habitat
domains) control how much of the northeast quadrant is
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threatened by predators (Figures 1B–D). This variation in
encounter radii affects whether there are refugia within the
northeast quadrant once it is occupied by predators. Predators
relocate, but rarely (predator duration is half the predator period,
see Table B1), to represent relatively stable territories for the
introduced predators, while still allowing for some shifts.

Foragers vary in their memory initialization, or memory state.
Some foragers start out informed, knowing the spatial pattern
of resource quality for the whole landscape. Other foragers start
out naïve and have a chance to explore the landscape before
predators are introduced. It should be emphasized that “naïve”
refers to the forager being unfamiliar with the surrounding
habitat, not the predator (Sih et al., 2010). That is, it is assumed
that the foragers display effective antipredator behaviors: escape
and memory of encounters. Memory state is set at the beginning
of the simulation by initializing the two-dimensional spatially
explicit slower-decaying attractive resource memory stream, and
the faster-decaying repulsive resource memory stream (Bracis
et al., 2015). In all cases, the repulsive memory stream that
drives foragers away from recently used locations is initialized
to zero. For informed foragers, the attractive resource memory
stream is initialized to the intrinsic resource quality. For naïve
foragers, the attractive resource memory stream is initialized
to unvisited expectation parameter M∗; i.e., how unexplored
habitat is valued. We used three different values for how foragers
could value unexplored habitat: unexploratory (M∗ = 0), less
exploratory (M∗ < mean quality), and highly exploratory (M∗ >

mean quality), with the average habitat quality roughly halfway
between the less and highly exploratory unvisited expectation
parameter. In all cases, it is assumed that the foragers know the
true average consumption rate of the landscape used to switch
between searching and feeding behaviors. Thus, foragers differ
in their knowledge of the landscape outside their starting region
when predators are introduced and how exploratory they are with
new habitat.

Simulations start with the forager located in the center of the
northeast quadrant, the area of highest quality, where predators
are eventually released (Figure 1A). All parameters used in the
simulation are shown in Table B1. Parameters controlling the
resource and predation memories that were not varied are set
based on the results from Bracis et al. (2018) assuming high
survival. We performed 50 replicate simulations for each set
of parameters.

2.2. Metrics
Foragers’ habitat use, consumption, and time budget (i.e.,
division of time between searching and feeding) were tracked
to allow for before–after comparisons of forager behavior with
predator introduction. Foragers’ consumption is a key metric
that provides a measure of the non-consumptive effects of
predation (i.e., food given up for safety). The number of
predator encounters is also important to contextualize resulting
consumption changes after predator introduction and as a
measure of risk. Finally, in order to compare the space use before
and after predators are introduced, trajectories were visually
examined and the utilization distribution was calculated with
kernelUD in the adehabitatHR R package (Calenge, 2006).

3. RESULTS

3.1. Space Use Changes
Space use varied dramatically with memory state, and the
kernel density of space use clearly changed after predators
were introduced across encounter radii for informed foragers
and naïve foragers (Figure 2). How much of the landscape
the naïve foragers explored before predators were introduced
depended on memory state. Namely, unexploratory foragers
remained at the high-quality patches closest to the release site,
while less exploratory foragers exploited the high-quality areas
of the eastern half of the landscape, and highly exploratory
foragers began the simulations using the entire landscape. The
informed forager’s space use most closely resembled that of the
less exploratory forager but was more tightly focused on the
best patches. After predators were introduced, space use changed
across all scenarios as foragers were pushed out of the highest-
quality areas in the northeast section of the landscape.

Unexploratory foragers (Figure 2, row 2) relocated the
least after predator introduction. With the smallest predator
encounter radius, these foragers moved out of the immediate
vicinity of the predators; the utilization distribution for these
foragers closely resembled that for the pre-predator phase as they
exploited gaps between predators, with just the upper portion
of the distribution shifted eastward. As the encounter radius
increased, forager distribution shifted southward but remained in
the northeast quadrant. Finally, with the largest encounter radius,
forager distribution was completely altered, moving into the
southeastern quadrant. Thus, by remaining in the highest-quality
quadrant despite predation risk, unexploratory foragers tended to
maintain high consumption but at the cost of higher encounters.

Less exploratory foragers showed a stronger shift in habitat
use after predator introduction. These foragers (Figure 2, row
3) continued to utilize the better-quality habitat in the gaps
between predators when the encounter radius was small, but
also expanded into patches to the south and west. This pattern
intensified as the predator encounter radius increased, and the
forager shifted to predominately using the patches south and
west of the predators. The highly exploratory forager (Figure 2,
row 4), on the other hand, utilized patches across the landscape
before predators were introduced, and predators served to
move a greater proportion of use to that more distant habitat.
With increasing encounter radius, however, all foragers shifted
from using the margins around the predators to being nearly
completely excluded from most of the northeast quadrant in the
vicinity of the predators.

The space use of informed foragers (Figure 2, row 1) was
most similar to that of less exploratory foragers in how they
relocated in the face of predation. The main difference between
informed and naïve foragers was that the informed forager was
quicker to exploit more distant patches, even when the encounter
radius was small. And while the informed forager also continued
to exploit habitat close to predators, it did so to a lesser extent that
the naïve foragers, especially as the predator encounter radius
became large.

The same patterns can be seen with the full trajectories
(Figures B1, B2). Namely, the unexploratory forager was the
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FIGURE 2 | Space use by foragers quantified by kernel utilization distributions comparing before predators (orange, column 1) to after predators (blue, columns 2–4).

Rows indicate memory state and columns indicate predator encounter radius. Contour lines show 20–90% utilization. Predator center point locations shown with red

x’s (see Figure 1 for radii). Intrinsic habitat quality shown in grayscale.

most constrained with large areas of habitat completely unvisited.
Whereas the space use patterns of the informed and less
exploratory foragers were broadly similar (Figure 2), differences
can be seen between the trajectories with the informed forager
minimally traveling through unproductive habitat but the less
exploratory forager spending more time in unproductive habitat.
Finally, the highly exploratory forager had the most dispersed
space use across the entire landscape. The partitioning of space by
time, with foragers getting pushed out by predators, was clearest
with the large predator encounter radius.

3.2. Consumption Changes
The integration of space use changes can be seen with the changes
in consumption, where predator introductions depressed the
amount consumed relative to the period when predators
were absent in all scenarios (Figure 3). The forager’s memory
state partitioned both the pre-predator and post-predator
consumption amounts, with higher pre-predator consumption
nearly always associated with higher post-predator consumption.
Surprisingly, the naïve unexploratory forager consumed the
most, followed by the informed forager, the naïve less exploratory
forager, and then the naïve highly exploratory forager. Post-
predator consumption was mediated by the predator encounter
radius, with larger radii associated with larger declines in
consumption (Table B3).

In general, higher encounter rates were associated with lower
consumption (per memory state), unlike the food–safety trade-
off frequently observed in Bracis et al. (2018). Within a given
memory state, larger encounter radii led to higher encounters
as more habitat within the most productive quadrant was
threatened (Table B3). Naïve unexploratory foragers experienced

the highest number of encounters with predators, then informed
foragers and naïve less exploratory foragers, followed by naïve
highly exploratory foragers.

3.3. Time Budget and Consumption Rate
Changes
Time spent searching by foragers increased after predators were
introduced, driven by foragers leaving their initial habitat to
avoid predators and searching for new resources (Figure 4A).
This pattern manifested even for informed foragers, which had
knowledge of other resource locations but still had to relocate, but
was more dramatic for naïve foragers that had to initially locate
resources. Overall, increases in search time exhibited the same
rank order as those for decreased consumption. The increase in
time spent searching was also larger with increasing encounter
radius as foragers were more completely displaced from their
previous habitat.

In addition to changes in time budget, foragers’ consumption
rates while feeding declined after predators were introduced
(Figure 4B), implying that foragers shifted to lower quality or
already depleted habitat. Note that while foragers did consume
resources while searching in our simulations, the bulk of
consumption (∼80–90%) occurred while feeding. Declines in
consumption rate were more similar across memory states,
with slightly larger declines with larger encounter radii, though
this was less true for highly exploratory foragers. Thus,
the declines in consumption seen with the introduction of
predators were a function of both foragers needing to spend
more time searching for food as well as selecting lower
quality patches.
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FIGURE 3 | (A) Consumption in the post-predator environment declined in all scenarios compared to the pre-predator environment (i.e., prior to introduction), but was

influenced by memory state and encounter radius. (B) Higher encounters generally also led to decreased consumption in the post-predator environment. Memory

state is indicated by color and encounter radius by symbol.

4. DISCUSSION

Habitat shifts due to changing predation threat have been
observed in a wide variety of both terrestrial and aquatic systems
(Sih, 1980; Heithaus and Dill, 2002; Wirsing et al., 2007; Belovsky
et al., 2011; Dellinger et al., 2019). Yet, previous attempts
to predict ecosystem effects of predator reintroductions have
neglected prey behavior changes (Baker et al., 2017). Here, to
address this information gap, we used individual-based modeling
to understand how both predator and prey traits shape behavioral
outcomes for foraging prey with the addition of predators to
the landscape. Consistent with the non-consumptive effects
predators can exert on prey (Preisser et al., 2005), forager
behavior, as measured by consumption rates, searching time,
and space use, changed after the introduction of predators. The
nature of these changes, however, depended on the interplay
among the memory state of the forager, the spatial domain
threatened by the predator, and the degree to which foragers were
exploratory. Namely, in support of our first prediction, informed
foragers displayed smaller reductions to consumption and spent
less time searching than their naïve counterparts following
predator exposure. Furthermore, consistent with prediction two,
predator habitat domain correlated positively with reductions
to consumption and changes to space use, irrespective of
memory state. Supporting our third prediction, the degree
to which foragers were exploratory shaped their anti-predator
responses, with less exploratory prey managing risk in place and
consequently suffering increased encounters while consuming
more resources, and more exploratory individuals sacrificing

consumption but reducing encounters by relocating to refugia.
Together, these findings highlight how understanding prey
spatial memory and the movement tendencies of both predators
and prey is key to predicting the consequences of predator
recovery for subsequent prey distribution and fitness.

4.1. Memory State Influences Prey
Response to Predator Recovery
Spatial memory has been shown to shape habitat selection
and movements of translocated animals by facilitating location
of high-quality sites (Wolf et al., 2009), and inducing long
dispersals from release sites in search of areas that are similar
to the translocated individual’s natal habitat (Stamps and
Swaisgood, 2007). Here, we varied prey memory state in
terms of their knowledge of alternative foraging locations in
order to explore how it might shape anti-predator responses.
Overall, we found prey with all memory states to spend
more time searching compared to feeding after predator
introduction. Notably, however, changes to consumption differed
markedly as a function of memory state. Namely, reflecting the
advantage of knowing alternate resource locations, informed
foragers exhibited modest increases in search time, and
correspondingly minimal reductions in consumption rates,
after predator introduction relative to most of their naïve
counterparts (but not for naïve unexploratory individuals, see
below). This finding suggests that foragers with knowledge of
habitat beyond the immediate area threatened by introduced
predators might be better adapted to cope with the new
threat. By extension, in group-living species that depend on
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FIGURE 4 | Time budget and consumption rate before and after the

introduction of predators across different values for the encounter radius (top

line x-axis) and for memory state (bottom line x-axis) with lines showing the

standard deviation. (A) Time spent searching as opposed to feeding (a minimal

amount of time was spent in the escape behavior, mean 3–17). (B)

Consumption rate while in the feeding behavior.

decision-making by experienced group members to navigate the
landscape (e.g., elephants, McComb et al., 2011), the loss of
such individuals could affect the vulnerability of the population
to predation danger, human and otherwise, disproportionately.
Conversely, it may also indicate that introduced predators in
this scenario might struggle to find prey. Thus, in accord
with the recommendations of Trainor et al. (2014), predicting
the success of predator translocation programs may be aided
by a functional knowledge of predator–prey interactions that
includes the capacity of the potentially affected prey species to
relocate to alternate and predator-free foraging areas. Although
differentiating between searching and feeding behavior is more
challenging in field situations, this is an active area of research
(e.g., using movement patterns extracted from GPS locations
or accelerometer data; reviewed in Gurarie et al., 2016), thus
permitting measurement of changes in time allocation pre-
and post-predator introduction. Accordingly, we may soon
be in position to test these hypotheses empirically under
field conditions.

4.2. Predator Domain Determines Degree
of Impact on Prey
Our results suggest that the spatial extent of predator threat,
or, in other words, predator habitat domain, influences the
impact of predator risk on forager behavior post-introduction.
An animal’s habitat domain is the part of the available habitat
it uses, with broad-domain species that range throughout much
of the available space (and time) differing from those with
narrow domains that use only some subset of the available space
(and/or time) (Preisser et al., 2007). Applying this paradigm to
our modeling approach, increasing encounter radius removed
potential refugia in the high-quality habitat for prey analogously
to predators switching from a narrow-domain to a broad-
domain (or to the difference between a narrow- and broad-
domain predator in the same system). Not surprisingly, therefore,
predators with large domains induced prey to spend more
time searching for refugia away from the introduction quadrant
and, as a result, to suffer increased penalties to consumption.
Interestingly, when also considering forager memory, our
findings align broadly with the “hunting mode–habitat domain”
concept (Schmitz et al., 2017; Wirsing et al., 2021). Under this
framework, prey with domains that extend beyond those of their
predators should rely on avoidance to minimize encounters,
whereas those whose domains fall within that of a predator are
expected to experience more encounters and utilize defenses
that reduce the likelihood of death given an encounter. In
our modeling scenarios, informed foragers effectively had more
immediate access to a habitat domain that extended beyond
that of the reintroduced predator, and consequently experienced
relatively few predator encounters. By contrast, naïve foragers
were less able to escape the domain of the reintroduced predator,
being ignorant of more distant refugia, and thus encountered
the repatriated predator more frequently. In particular because
of their alignment with theory, our modeling results merit
evaluation under laboratory and field conditions. Further, the
habitat domain concept may also be extended to consider
humans as a potential predator, and thus could fit within the
framework of how humans and wildlife coexistence, that is
the land sparing–land sharing debate (Fischer et al., 2014). For
example, an unexploratory forager combined with a small habitat
domain predator could lead to land sharing, while either more
exploratoriness or a broad habitat domains results in the forager
displacing rather than sharing the land, which would require
land sparing.

We can also consider habitat domain in the context of the
spatial scale of the predator effect. That is, predators with
large domains would be expected to exert a stronger selection
on where the forager locates it home range, which we saw
with larger forager displacements in response to larger domain
predators. Habitat selection and how it gives rise to home
range has been considered in terms of a hierarchical process of
scales, both in space and time. Thus the factor most limiting
fitness would be selected at the largest scale, such as large
scale avoidance of predation risk and fine scale selection of
seasonally available forage (Rettie and Messier, 2000). However,
the processes of habitat selection and home range both emerge
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from individual movements, in particular how foragers exploit
resources through the amount of time spent and the frequency
of visits (Van Moorter et al., 2016). As a consequence of this,
habitat selection at a given scale is driven not only by the most
limiting factor at that scale, but also by which is the most variable
(Van Moorter et al., 2016). Indeed, our results show that the
scale of predator avoidance (i.e., scale of habitat selection: 2nd
vs. 3rd order according to Johnson, 1980) is driven by the scale of
variation in predation risk (i.e., predator habitat domain): a large
habitat domain leads to home range displacement, whereas a
small habitat domain results in smaller shifts in foraging patches.

4.3. Exploratory Tendency Controls Size of
Habitat Shift
Individuals can differ consistently along several behavioral
axes including activity, aggressiveness, exploration–avoidance,
shyness–boldness, and sociability (Réale et al., 2007). These
persistent behavioral differences, or behavioral types, within
populations can have important ecological implications (Sih
et al., 2012), For example, in free-ranging elk (Cervus canadensis)
introduced to a novel environment, dispersal distance and time
varied by individual, with social individuals beingmore sedentary
than solitary conspecifics (Fryxell et al., 2008). Our modeling
results reveal that individual differences in exploratory tendency
can shape prey movements following predator reintroduction
or colonization in ways that influence encounter rates and,
by extension, the probability of predator-inflicted mortality
(Lima and Dill, 1990). Namely, highly exploratory foragers
were minimally affected by degree of predator threat, as they
tended to have the most wide-ranging movements and were
less likely to remain in the initial release location when the
predators were introduced. By contrast, unexploratory foragers
tended to remain in the same area despite the introduction
of predation risk, leading to higher consumption but also
high encounters, a food-safety trade-off also observed in other
contexts (Bracis et al., 2018). When predators were confined
to a small portion of the landscape, this tendency allowed
naïve unexploratory foragers to achieve higher consumption
than even informed foragers. However, when predator search
radii expanded such that informed and exploratory foragers
were pushed out of the high quality and forced to seek new
areas, naïve unexploratory foragers performed poorly from a
fitness perspective, exhibiting both depressed consumption rates
(necessitated by locally searching for refugia) and extremely high
encounters. This pattern may help explain why spatial responses
are not universally observed after predator reintroductions
(Davies et al., 2016). It also highlights the role exploratory
tendency appears to play inmediating how naïve prey individuals
respond to, and are affected by, restored predator populations as a
focus for empirical investigation. Notably, being exploratory may
also help prey to regularly refresh their spatial understanding of
recent resource changes and thus to optimize space use decisions
in the face of predation risk. Here we held resource quality
constant, leaving future work to explore the interplay among
predator introduction, prey memory and exploratory tendency,
and resource dynamics.

4.4. Future Perspectives
Most work on animal movement continues to focus on external
factors rather than underlying processes (Joo et al., 2020). By
contrast, as memory is likely key to understanding patterns
observed in animal foraging (Fagan et al., 2013) and thus an
emerging area of research (e.g., Avgar et al., 2013; Bracis et al.,
2015; Merkle et al., 2017), we utilize a cognitive paradigm
to provide an mechanistic understanding of how animals
make movement decisions. Our current work utilizes a flexible
modeling framework for exploring how memory can modulate a
forager’s response to predator introductions, including individual
differences in exploratory tendency and habitat knowledge.
However, our model utilizes a simple food web comprising
the resource, the prey, and the predator. Extending the model
to include conspecific interactions or additional predators
could provide additional insight, particularly for predator
introductions in ecosystems with more complex community
structure. For example, multiple predators sharing a habitat
domain can reduce the predation risk experienced by the prey, an
important consideration for multi-predator systems (Woodcock
and Heard, 2011). Other conspecifics may limit where a forager
could relocate, particularly for territorial animals (Stamps, 1991;
Potts et al., 2012). Here, we examine habitat changes in response
to predation, but other antipredator behaviors are possible (e.g.,
increased vigilance, counter-attack, herd behavior, etc.). Another
possible model extension would be to consider different predator
hunting modes, such as active hunting vs. ambush/stalking, to
examine how this variability affects forager responses. This could
include allowing predators to relocate dynamically in response
to prey behavior rather than being located solely in response
to the prey’s resource quality as in the current model. Notably,
we differentiated between naïve and informed foragers, but
individuals in both of these categories could also differ with
respect to the scales at which they mentally map both resources
and predation risk. Accordingly, a fruitful avenue for future
simulation work in this area would be to explore how foragers’
behavior for a given memory state is shaped by the scale of
their mental map, before and after predator introduction. Finally,
considering dynamic resources (where their intrinsic quality
changes) would make it possible to situate this work within the
context of environmental change, whether due to habitat loss or
climate change.

5. CONCLUSION

In conclusion, our modeling exercise reveals that predator
introductions can change habitat usage and consumption
rates of foragers to varying degrees that depend on the area
threatened by the predator and thus how critical it is to avoid
encounters. When foragers do shift habitat use in response to
predator introductions, memory state (habitat knowledge) and
exploratory inclination (behavioral type) mediate how foragers
use alternative habitats and experience changes to consumption
rates and predator encounters. Search time increased and
consumption decreased after predator introduction across all
memory states. For foragers with full knowledge of the landscape,
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the increase in search time was relatively modest, reflecting
the advantage of knowing alternate resource locations. Thus,
spatial memory of the surrounding area can mitigate the effect
of introduced predators, as foragers can better access alternate
habitat refugia. Notably, forager naïveté was costly in terms of the
time needed to find refugia, and prey individuals that were both
naïve and unexploratory suffered reduced consumption rates
and high predator encounter rates. Potential changes in foraging
behavior are an important, though often neglected, component
of predator reintroductions, given the far-reaching ecological
consequences of top-predator losses (Estes et al., 2011). While
memory and individual behavioral variation are challenging
to consider in experimental studies of reintroduction (Fagan
et al., 2013), evidence from modeling here suggests that dynamic
interplay among these two factors and key predator traits (habitat
domain) is a critical driver of how forager behavior changes.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

CB designed and executed the study. CB and AW interpreted the
results and wrote the paper.

FUNDING

CB was partially funded through an ERDC BAA at the University
of Washington.

ACKNOWLEDGMENTS

The authors wold like to thank Eliezer Gurarie and R. Andrew
Goodwin for helpful comments on an earlier version of this
manuscript as well as two reviewers for their comments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.
2021.698370/full#supplementary-material

REFERENCES

Abrahms, B., Hazen, E. L., Aikens, E. O., Savoca, M. S., Goldbogen, J. A., Bograd,
S. J., et al. (2019). Memory and resource tracking drive blue whale migrations.
Proc. Natl. Acad. Sci. U.S.A. 116, 5582–5587. doi: 10.1073/pnas.1819031116

Alston, J., Maitland, B., Brito, B., Esmaeili, S., Ford, A., Hays, B.,
et al. (2019). Reciprocity in restoration ecology: When might large
carnivore reintroduction restore ecosystems? Biol. Conserv. 234, 82–89.
doi: 10.1016/j.biocon.2019.03.021

Athreya, V., Odden, M., Linnell, J. D. C., and Karanth, K. U. (2011). Translocation
as a tool for mitigating conflict with leopards in human-dominated landscapes
of India. Conserv. Biol. 25, 133–141. doi: 10.1111/j.1523-1739.2010.01599.x

Avgar, T., Deardon, R., and Fryxell, J. M. (2013). An empirically parameterized
individual based model of animal movement, perception, and memory. Ecol.
Model. 251, 158–172. doi: 10.1016/j.ecolmodel.2012.12.002

Baker, C. M., Gordon, A., and Bode, M. (2017). Ensemble ecosystem modeling for
predicting ecosystem response to predator reintroduction. Conserv. Biol. 31,
376–384. doi: 10.1111/cobi.12798

Belovsky, G. E., Laws, A. N., and Slade, J. B. (2011). Prey change behaviour
with predation threat, but demographic effects vary with prey density:
experiments with grasshoppers and birds. Ecol. Lett. 14, 335–340.
doi: 10.1111/j.1461-0248.2011.01591.x

Bracis, C., Gurarie, E., Rutter, J., and Goodwin, R. A. (2018). Remembering the
good and the bad: memory-based mediation of the food-safety trade-off in
dynamic landscapes. Theor. Ecol. 11, 305–319. doi: 10.1007/s12080-018-0367-2

Bracis, C., Gurarie, E., Van Moorter, B., and Goodwin, R. A. (2015). Memory
effects on movement behavior in animal foraging. PLoS ONE 10:e0136057.
doi: 10.1371/journal.pone.0136057

Bracis, C., andMueller, T. (2017). Memory, not just perception, plays an important
role in terrestrial mammalian migration. Proc. R. Soc. B Biol. Sci. 284:20170449.
doi: 10.1098/rspb.2017.0449

Calenge, C. (2006). The package adehabitat for the R software: tool for
the analysis of space and habitat use by animals. Ecol. Model. 197:1035.
doi: 10.1016/j.ecolmodel.2006.03.017

Courbin, N., Fortin, D., Dussault, C., and Courtois, R. (2014). Logging-induced
changes in habitat network connectivity shape behavioral interactions in the
wolf-caribou-moose system. Ecol. Monogr. 84, 265–285. doi: 10.1890/12-2118.1

Cresswell, W. (2008). Non-lethal effects of predation in birds. Ibis 150, 3–17.
doi: 10.1111/j.1474-919X.2007.00793.x

Davies, A. B., Tambling, C. J., Kerley, G. I., and Asner, G. P. (2016).
Limited spatial response to direct predation risk by African herbivores

following predator reintroduction. Ecol. Evol. 6, 5728–5748. doi: 10.1002/ece3.
2312

DeCesare, N. J., Hebblewhite, M., Robinson, H. S., and Musiani, M.
(2010). Endangered, apparently: the role of apparent competition
in endangered species conservation. Anim. Conserv. 13, 353–362.
doi: 10.1111/j.1469-1795.2009.00328.x

Dellinger, J. A., Shores, C. R., Craig, A., Heithaus, M. R., Ripple, W. J., and
Wirsing, A. J. (2019). Habitat use of sympatric prey suggests divergent anti-
predator responses to recolonizing gray wolves. Oecologia 189, 487–500.
doi: 10.1007/s00442-018-4323-z

Dickman, C. R. (1992). Predation and habitat shift in the house mouse, Mus

domesticus. Ecology 73, 313–322. doi: 10.2307/1938742
Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W.

J., et al. (2011). Trophic downgrading of planet earth. Science 333, 301–306.
doi: 10.1126/science.1205106

Fagan, W. F., Lewis, M. A., Auger-Méthé, M., Avgar, T., Benhamou, S., Breed, G.,
et al. (2013). Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329.
doi: 10.1111/ele.12165

Fischer, J., Abson, D. J., Butsic, V., Chappell, M. J., Ekroos, J., Hanspach, J., et al.
(2014). Land sparing versus land sharing: moving forward. Conserv. Lett. 7,
149–157. doi: 10.1111/conl.12084

Fritts, S. H., Bangs, E. E., Fontaine, J. A., Johnson, M. R., Phillips, M. K.,
Koch, E. D., et al. (1997). Planning and implementing a reintroduction of
wolves to Yellowstone National Park and central Idaho. Restor. Ecol. 5, 7–27.
doi: 10.1046/j.1526-100X.1997.09702.x

Fryxell, J. M., Hazell, M., Börger, L., Dalziel, B. D., Haydon, D. T., Morales,
J. M., et al. (2008). Multiple movement modes by large herbivores at
multiple spatiotemporal scales. Proc. Natl. Acad. Sci. U.S.A 105, 19114–19119.
doi: 10.1073/pnas.0801737105

Griffin, A. S., Blumstein, D. T., and Evans, C. S. (2000). Training captive-bred
or translocated animals to avoid predators. Conserv. Biol. 14, 1317–1326.
doi: 10.1046/j.1523-1739.2000.99326.x

Gurarie, E., Bracis, C., Delgado, M., Meckley, T. D., Kojola, I., and Wagner, C. M.
(2016). What is the animal doing? Tools for exploring behavioural structure
in animal movements. J. Anim. Ecol. 85, 69–84. doi: 10.1111/1365-2656.
12379

Halsey, S. M., Zielinski, W. J., and Scheller, R. M. (2015). Modeling predator
habitat to enhance reintroduction planning. Landsc. Ecol. 30, 1257–1271.
doi: 10.1007/s10980-015-0177-5

Hayward, M. W., Kerley, G. I. H., Adendorff, J., Moolman, L. C., O’Brien, J.,
Sholto-Douglas, A., et al. (2007a). The reintroduction of large carnivores

Frontiers in Ecology and Evolution | www.frontiersin.org 9 October 2021 | Volume 9 | Article 698370104

https://www.frontiersin.org/articles/10.3389/fevo.2021.698370/full#supplementary-material
https://doi.org/10.1073/pnas.1819031116
https://doi.org/10.1016/j.biocon.2019.03.021
https://doi.org/10.1111/j.1523-1739.2010.01599.x
https://doi.org/10.1016/j.ecolmodel.2012.12.002
https://doi.org/10.1111/cobi.12798
https://doi.org/10.1111/j.1461-0248.2011.01591.x
https://doi.org/10.1007/s12080-018-0367-2
https://doi.org/10.1371/journal.pone.0136057
https://doi.org/10.1098/rspb.2017.0449
https://doi.org/10.1016/j.ecolmodel.2006.03.017
https://doi.org/10.1890/12-2118.1
https://doi.org/10.1111/j.1474-919X.2007.00793.x
https://doi.org/10.1002/ece3.2312
https://doi.org/10.1111/j.1469-1795.2009.00328.x
https://doi.org/10.1007/s00442-018-4323-z
https://doi.org/10.2307/1938742
https://doi.org/10.1126/science.1205106
https://doi.org/10.1111/ele.12165
https://doi.org/10.1111/conl.12084
https://doi.org/10.1046/j.1526-100X.1997.09702.x
https://doi.org/10.1073/pnas.0801737105
https://doi.org/10.1046/j.1523-1739.2000.99326.x
https://doi.org/10.1111/1365-2656.12379
https://doi.org/10.1007/s10980-015-0177-5
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Bracis and Wirsing Prey Behavior After Predator Introduction

to the Eastern Cape, South Africa: an assessment. Oryx 41, 205–214.
doi: 10.1017/S0030605307001767

Hayward, M. W., O’Brien, J., and Kerley, G. I. (2007b). Carrying capacity of
large African predators: predictions and tests. Biol. Conserv. 139, 219–229.
doi: 10.1016/j.biocon.2007.06.018

Heithaus, M. R., and Dill, L. M. (2002). Food availability and tiger shark
predation risk influence bottlenose dolphin habitat use. Ecology 83, 480–491.
doi: 10.1890/0012-9658(2002)083[0480:FAATSP]2.0.CO;2

Heithaus, M. R., Frid, A., Wirsing, A. J., Dill, L. M., Fourqurean, J. W., Burkholder,
D., et al. (2007). State-dependent risk-taking by green sea turtles mediates top-
down effects of tiger shark intimidation in a marine ecosystem. J. Anim. Ecol.
76, 837–844. doi: 10.1111/j.1365-2656.2007.01260.x

Huntingford, F., and Wright, P. (1989). How sticklebacks learn to
avoid dangerous feeding patches. Behav. Process. 19, 181–189.
doi: 10.1016/0376-6357(89)90040-5

Johnson, D. H. (1980). The comparison of usage and availability measurements for
evaluating resource preference. Ecology 61, 65–71. doi: 10.2307/1937156

Joo, R., Picardi, S., Boone, M. E., Clay, T. A., Patrick, S. C., Romero-Romero, V. S.,
et al. (2020). A decade of movement ecology. arXiv [preprint] arXiv:2006.00110.
https://arxiv.org/abs/2006.00110

Kamil, A. C., and Roitblat, H. L. (1985). The ecology of foraging behavior:
implications for animal learning andmemory.Annu. Rev. Psychol. 36, 141–169.
doi: 10.1146/annurev.ps.36.020185.001041

Lima, S. L. (1988). Initiation and termination of daily feeding in dark-eyed
juncos: influences of predation risk and energy reserves. Oikos 53, 3–11.
doi: 10.2307/3565656

Lima, S. L., and Dill, L. M. (1990). Behavioral decisions made under the
risk of predation: a review and prospectus. Can. J. Zool. 68, 619–640.
doi: 10.1139/z90-092

Linnell, J. D., Aanes, R., Swenson, J. E., Odden, J., and Smith, M.
E. (1997). Translocation of carnivores as a method for managing
problem animals: a review. Biodivers. Conserv. 6, 1245–1257.
doi: 10.1023/B:BIOC.0000034011.05412.cd

MacNeil, M. A., Chapman, D. D., Heupel, M., Simpfendorfer, C. A., Heithaus,
M., Meekan, M., et al. (2020). Global status and conservation potential of reef
sharks. Nature 583, 801–806. doi: 10.1038/s41586-020-2519-y

Marshall, K. N., Stier, A. C., Samhouri, J. F., Kelly, R. P., and Ward, E. J.
(2016). Conservation challenges of predator recovery. Conserv. Lett. 9, 70–78.
doi: 10.1111/conl.12186

McComb, K., Shannon, G., Durant, S. M., Sayialel, K., Slotow, R., Poole, J., et al.
(2011). Leadership in elephants: the adaptive value of age. Proc. R. Soc. B Biol.

Sci. 278, 3270–3276. doi: 10.1098/rspb.2011.0168
McNamara, J. M., and Houston, A. I. (1986). The common currency for behavioral

decisions. Am. Nat. 127, 358–378. doi: 10.1086/284489
Merkle, J. A., Potts, J. R., and Fortin, D. (2017). Energy benefits and emergent space

use patterns of an empirically parameterized model of memory- based patch
selection. Oikos 126. doi: 10.1111/oik.03356

Merkle, J. A., Sawyer, H., Monteith, K. L., Dwinnell, S. P. H., Fralick, G.
L., and Kauffman, M. J. (2019). Spatial memory shapes migration and
its benefits: evidence from a large herbivore. Ecol. Lett. 22, 1797–1805.
doi: 10.1111/ele.13362

Muhly, T. B., Semeniuk, C., Massolo, A., Hickman, L., and Musiani, M. (2011).
Human activity helps prey win the predator-prey space race. PLoS ONE

6:e17050. doi: 10.1371/journal.pone.0017050
National Research Council (2002). Ecological Dynamics on Yellowstone’s Northern

Range. National Academies Press.
Nomikou, M., Janssen, A., and Sabelis, M. (2003). Herbivore host plant selection:

whitefly learns to avoid host plants that harbour predators of her offspring.
Oecologia 136, 484–488. doi: 10.1007/s00442-003-1289-1

Olsson, O., Brown, J. S., and Smith, H. G. (2002). Long- and short-term state-
dependent foraging under predation risk: an indication of habitat quality.
Anim. Behav. 63, 981–989. doi: 10.1006/anbe.2001.1985

Potts, J. R., Harris, S., and Giuggioli, L. (2012). Territorial dynamics and
stable home range formation for central place foragers. PLoS ONE 7:e34033.
doi: 10.1371/journal.pone.0034033

Preisser, E. L., Bolnick, D. I., and Benard, M. F. (2005). Scared to death? The effects
of intimidation and consumption in predator-prey interactions. Ecology 86,
501–509. doi: 10.1890/04-0719

Preisser, E. L., Orrock, J. L., and Schmitz, O. J. (2007). Predator hunting mode
and habitat domain alter nonconsumptive effects in predator-prey interactions.
Ecology 88, 2744–2751. doi: 10.1890/07-0260.1

Réale, D., Reader, S. M., Sol, D., McDougall, P. T., and Dingemanse, N. J. (2007).
Integrating animal temperament within ecology and evolution. Biol. Rev. 82,
291–318. doi: 10.1111/j.1469-185X.2007.00010.x

Rettie, W. J., and Messier, F. (2000). Hierarchical habitat selection by
woodland caribou: its relationship to limiting factors. Ecography 23, 466–478.
doi: 10.1111/j.1600-0587.2000.tb00303.x

Ripple,W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite,
M., et al. (2014). Status and ecological effects of the world’s largest carnivores.
Science 343:1241484. doi: 10.1126/science.1241484

Ritchie, E. G., Elmhagen, B., Glen, A. S., Letnic, M., Ludwig, G., and McDonald,
R. A. (2012). Ecosystem restoration with teeth: what role for predators? Trends
Ecol. Evol. 27, 265–271. doi: 10.1016/j.tree.2012.01.001

Say-Sallaz, E., Chamaillé-Jammes, S., Fritz, H., and Valeix, M. (2019). Non-
consumptive effects of predation in large terrestrial mammals: mapping our
knowledge and revealing the tip of the iceberg. Biol. Conserv. 235, 36–52.
doi: 10.1016/j.biocon.2019.03.044

Schmitz, O. J., Miller, J. R. B., Trainor, A. M., and Abrahms, B. (2017).
Toward a community ecology of landscapes: predicting multiple predator-
prey interactions across geographic space. Ecology 98, 2281–2292.
doi: 10.1002/ecy.1916

Seddon, P. J., Armstrong, D. P., and Maloney, R. F. (2007). Developing
the science of reintroduction biology. Conserv. Biol. 21, 303–312.
doi: 10.1111/j.1523-1739.2006.00627.x

Shettleworth, S. J. (2001). Animal cognition and animal behaviour. Anim. Behav.
61, 277–286. doi: 10.1006/anbe.2000.1606

Shirey, P. D, and Lamberti, G. A. (2010). Assisted colonization
under the U.S. Endangered Species Act. Conserv. Lett. 3, 45–52.
doi: 10.1111/j.1755-263X.2009.00083.x

Sih, A. (1980). Optimal behavior: can foragers balance two conflicting demands?
Science 210, 1041–1043. doi: 10.1126/science.210.4473.1041

Sih, A., Bolnick, D. I., Luttbeg, B., Orrock, J. L., Peacor, S. D., Pintor, L. M.,
et al. (2010). Predator-prey naïveté, antipredator behavior, and the ecology of
predator invasions. Oikos 119, 610–621. doi: 10.1111/j.1600-0706.2009.18039.x

Sih, A., Cote, J., Evans, M., Fogarty, S., and Pruitt, J. (2012). Ecological
implications of behavioural syndromes. Ecol. Lett. 15, 278–289.
doi: 10.1111/j.1461-0248.2011.01731.x

Smith, K. G., and Clark, J. D. (1994). Black bears in Arkansas: characteristics of a
successful translocation. J. Mammal. 75, 309–320. doi: 10.2307/1382549

Stamps, J. (1991). The effect of conspecifics on habitat selection in territorial
species. Behav. Ecol. Sociobiol. 28, 29–36. doi: 10.1007/BF00172136

Stamps, J. A., and Swaisgood, R. R. (2007). Someplace like home: experience,
habitat selection and conservation biology. Appl. Anim. Behav. Sci. 102,
392–409. doi: 10.1016/j.applanim.2006.05.038

Stephens, D. W., Brown, J. S., and Ydenberg, R. C., editors (2007).
Foraging: Behavior and Ecology. Chicago, IL: University of Chicago Press.
doi: 10.7208/chicago/9780226772653.001.0001

Trainor, A. M., Schmitz, O. J., Ivan, J. S., and Shenk, T. M. (2014). Enhancing
species distribution modeling by characterizing predator-prey interactions.
Ecol. Appl. 24, 204–216. doi: 10.1890/13-0336.1

Tsalyuk, M., Kilian, W., Reineking, B., and Getz, W. M. (2019). Temporal variation
in resource selection of African elephants follows long-term variability in
resource availability. Ecol. Monogr. 89:e01348. doi: 10.1002/ecm.1348

VanMoorter, B., Rolandsen, C.M., Basille, M., and Gaillard, J. (2016).Movement is
the glue connecting home ranges and habitat selection. J. Anim. Ecol. 85, 21–31.
doi: 10.1111/1365-2656.12394

Van Moorter, B., Visscher, D., Benhamou, S., Börger, L., Boyce, M. S., and
Gaillard, J.-M. (2009). Memory keeps you at home: a mechanistic model for
home range emergence. Oikos 118, 641–652. doi: 10.1111/j.1600-0706.2008.
17003.x

Van Moorter, B., Visscher, D., Herfindal, I., Basille, M., and Mysterud, A. (2013).
Inferring behavioural mechanisms in habitat selection studies getting the
null-hypothesis right for functional and familiarity responses. Ecography 36,
323–330. doi: 10.1111/j.1600-0587.2012.07291.x

Weinberger, I. C., Bontadina, F., and Arlettaz, R. (2009). Translocation
as a conservation tool to supplement relict bat colonies: a pioneer

Frontiers in Ecology and Evolution | www.frontiersin.org 10 October 2021 | Volume 9 | Article 698370105

https://doi.org/10.1017/S0030605307001767
https://doi.org/10.1016/j.biocon.2007.06.018
https://doi.org/10.1890/0012-9658(2002)083[0480:FAATSP]2.0.CO;2
https://doi.org/10.1111/j.1365-2656.2007.01260.x
https://doi.org/10.1016/0376-6357(89)90040-5
https://doi.org/10.2307/1937156
https://arxiv.org/abs/2006.00110
https://doi.org/10.1146/annurev.ps.36.020185.001041
https://doi.org/10.2307/3565656
https://doi.org/10.1139/z90-092
https://doi.org/10.1023/B:BIOC.0000034011.05412.cd
https://doi.org/10.1038/s41586-020-2519-y
https://doi.org/10.1111/conl.12186
https://doi.org/10.1098/rspb.2011.0168
https://doi.org/10.1086/284489
https://doi.org/10.1111/oik.03356
https://doi.org/10.1111/ele.13362
https://doi.org/10.1371/journal.pone.0017050
https://doi.org/10.1007/s00442-003-1289-1
https://doi.org/10.1006/anbe.2001.1985
https://doi.org/10.1371/journal.pone.0034033
https://doi.org/10.1890/04-0719
https://doi.org/10.1890/07-0260.1
https://doi.org/10.1111/j.1469-185X.2007.00010.x
https://doi.org/10.1111/j.1600-0587.2000.tb00303.x
https://doi.org/10.1126/science.1241484
https://doi.org/10.1016/j.tree.2012.01.001
https://doi.org/10.1016/j.biocon.2019.03.044
https://doi.org/10.1002/ecy.1916
https://doi.org/10.1111/j.1523-1739.2006.00627.x
https://doi.org/10.1006/anbe.2000.1606
https://doi.org/10.1111/j.1755-263X.2009.00083.x
https://doi.org/10.1126/science.210.4473.1041
https://doi.org/10.1111/j.1600-0706.2009.18039.x
https://doi.org/10.1111/j.1461-0248.2011.01731.x
https://doi.org/10.2307/1382549
https://doi.org/10.1007/BF00172136
https://doi.org/10.1016/j.applanim.2006.05.038
https://doi.org/10.7208/chicago/9780226772653.001.0001
https://doi.org/10.1890/13-0336.1
https://doi.org/10.1002/ecm.1348
https://doi.org/10.1111/1365-2656.12394
https://doi.org/10.1111/j.1600-0706.2008.17003.x
https://doi.org/10.1111/j.1600-0587.2012.07291.x
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Bracis and Wirsing Prey Behavior After Predator Introduction

study with endangered horseshoe bats. Endanger. Species Res. 8, 41–48.
doi: 10.3354/esr00196

Whitham, J., and Mathis, A. (2000). Effects of hunger and predation
risk on foraging behavior of graybelly salamanders, Euryceaurycea

multiplicata. J. Chem. Ecol. 26, 1659–1665. doi: 10.1023/A:10055909
13680

Williams, A. C., and Flaxman, S. M. (2012). Can predators assess the quality of
their prey’s resource? Anim. Behav. 83, 883–890. doi: 10.1016/j.anbehav.2012.
01.008

Wirsing, A. J., Heithaus, M. R., Brown, J. S., Kotler, B. P., and Schmitz, O. J. (2021).
The context dependence of non-consumptive predator effects. Ecol. Lett. 24,
113–129. doi: 10.1111/ele.13614

Wirsing, A. J., Heithaus, M. R., and Dill, L. M. (2007). Fear factor: do dugongs
(Dugong dugon) trade food for safety from tiger sharks (Galeocerdo cuvier)?
Oecologia 153, 1031–1040. doi: 10.1007/s00442-007-0802-3

Wisenden, B. D., Chivers, D. P., and Smith, R. J. F. (1994). Risk-sensitive
habitat use by brook stickleback (Culaea inconstans) in areas associated with
minnow alarm pheromone. J. Chem. Ecol. 20, 2975–2983. doi: 10.1007/BF020
98403

Wolf, M., Frair, J., Merrill, E., and Turchin, P. (2009). The attraction of the known:
the importance of spatial familiarity in habitat selection in wapiti Cervus

elaphus. Ecography 32, 401–410. doi: 10.1111/j.1600-0587.2008.05626.x

Woodcock, B. A., and Heard, M. S. (2011). Disentangling the effects of
predator hunting mode and habitat domain on the top-down control of
insect herbivores. J. Anim. Ecol. 80, 495–503. doi: 10.1111/j.1365-2656.2010.
01790.x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Bracis and Wirsing. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 11 October 2021 | Volume 9 | Article 698370106

https://doi.org/10.3354/esr00196
https://doi.org/10.1023/A:1005590913680
https://doi.org/10.1016/j.anbehav.2012.01.008
https://doi.org/10.1111/ele.13614
https://doi.org/10.1007/s00442-007-0802-3
https://doi.org/10.1007/BF02098403
https://doi.org/10.1111/j.1600-0587.2008.05626.x
https://doi.org/10.1111/j.1365-2656.2010.01790.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-743014 December 29, 2021 Time: 13:41 # 1

METHODS
published: 05 January 2022

doi: 10.3389/fevo.2021.743014

Edited by:
Eliezer Gurarie,

University of Maryland, College Park,
United States

Reviewed by:
Martin Leclerc,

Laval University, Canada
Sang-im Lee,

Daegu Gyeongbuk Institute
of Science and Technology (DGIST),

South Korea

*Correspondence:
Shauhin E. Alavi

salavi@ab.mpg.de

Specialty section:
This article was submitted to

Behavioral and Evolutionary Ecology,
a section of the journal

Frontiers in Ecology and Evolution

Received: 17 July 2021
Accepted: 18 November 2021

Published: 05 January 2022

Citation:
Alavi SE, Vining AQ, Caillaud D,

Hirsch BT, Havmøller RW,
Havmøller LW, Kays R and

Crofoot MC (2022) A Quantitative
Framework for Identifying Patterns
of Route-Use in Animal Movement
Data. Front. Ecol. Evol. 9:743014.

doi: 10.3389/fevo.2021.743014

A Quantitative Framework for
Identifying Patterns of Route-Use in
Animal Movement Data
Shauhin E. Alavi1,2,3* , Alexander Q. Vining1,2,4, Damien Caillaud5, Ben T. Hirsch6,7,
Rasmus Worsøe Havmøller8, Linnea W. Havmøller8, Roland Kays6,9,10 and
Margaret C. Crofoot1,2,3,5,6

1 Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany, 2 Department
of Biology, University of Konstanz, Konstanz, Germany, 3 Center for the Advanced Study of Collective Behavior, University
of Konstanz, Konstanz, Germany, 4 Animal Behavior Graduate Group, University of California, Davis, Davis, CA,
United States, 5 Department of Anthropology, University of California, Davis, Davis, CA, United States, 6 Smithsonian Tropical
Research Institute, Panama City, Panama, 7 College of Science and Engineering, James Cook University, Townsville, QLD,
Australia, 8 Natural History Museum of Denmark, Research and Collections, University of Copenhagen, Copenhagen,
Denmark, 9 North Carolina Museum of Natural Sciences, Raleigh, NC, United States, 10 Department of Forestry
and Environmental Resources, North Carolina State University, Raleigh, NC, United States

Animal movement along repeatedly used, “habitual” routes could emerge from a variety
of cognitive mechanisms, as well as in response to a diverse set of environmental
features. Because of the high conservation value of identifying wildlife movement
corridors, there has been extensive work focusing on environmental factors that
contribute to the emergence of habitual routes between protected habitats. In parallel,
significant work has focused on disentangling the cognitive mechanisms underlying
animal route use, as such movement patterns are of fundamental interest to the study of
decision making and navigation. We reviewed the types of processes that can generate
routine patterns of animal movement, suggested a new methodological workflow for
classifying one of these patterns—high fidelity path reuse—in animal tracking data, and
compared the prevalence of this pattern across four sympatric species of frugivorous
mammals in Panama. We found the highest prevalence of route-use in kinkajous, the
only nocturnal species in our study, and propose that further development of this method
could help to distinguish the processes underlying the presence of specific routes in
animal movement data.

Keywords: travel routes, spatial cognition, animal movement, navigation, corridors, unsupervised clustering,
routine movement, animal cognition

INTRODUCTION

Technological and analytical innovations in animal tracking and remote sensing have led to
increased opportunities in animal movement research (Nathan et al., 2008; Kays et al., 2015).
Tracking data are now available at high sampling rates and researchers are using them to
understand animal movement decisions (Nathan et al., 2008; Fagan et al., 2013; Kays et al., 2015;
Gurarie et al., 2016). One striking feature that emerges in many of these high-resolution datasets
is highly consistent, route-like patterns of movement. While the frequency and fidelity of such
movement patterns varies, route-use, nonetheless, appears to be taxonomically widespread. Routine
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movement is of substantial interest due to its relevance to
conservation action and because of the insight it provides
into animals’ cognition (Riotte-Lambert et al., 2016).
However, few quantitative methods exist for identifying
such patterns of movement.

Routineness, namely, the habitual reuse of the same series
of locations over time, can occur as the result of commuting
(see Glossary) between a set of target destinations. The more
deterministic the ordering of visits to said locations, the
more route-like patterns of movement will be (e.g., trap-lining
honeybees; Lihoreau et al., 2012; Reynolds et al., 2013). The
paths an individual takes during a commute can range from
highly variable to highly congruent (see Glossary). In practice,
researchers working with animal movement tracks are faced
with identifying patterns of spatial behavior, from fully diffusive
and exploratory to highly routine, and attempting to infer the
processes creating this pattern. Areas where animals exhibit
highly routine movement, particularly high path reuse fidelity,
are of particular interest, as the habitual use of these areas likely
indicate their elevated importance to the animals.

Patterns of high-fidelity path reuse can emerge from a
number of environmental and behavioral processes. Routine
movements with low directional variability can be observed
at specific locations in the landscape simply because an
individual was constrained by the geometry of that area.
This could be due to completely unsuitable habitat (e.g., a
narrow strip of forest through a city) or due to more nuanced
relationships between a species and the surrounding habitat.
For example, individuals might move through areas based
on how their motion capacity (i.e., locomotory biomechanics;
Nathan et al., 2008) interfaces with constraints imposed by
substrate characteristics following, for example, paths that
minimize energy expenditure or predation risk (Adriaensen
et al., 2003; McRae et al., 2008; Pullinger and Johnson, 2010;
LaPoint et al., 2013; Bastille-Rousseau et al., 2020). Areas
where routine movements are generated by external factors
are typically referred to as corridors within the conservation
literature (Forman, 1995; Rosenberg et al., 1997; LaPoint et al.,
2013; Bastille-Rousseau and Wittemyer, 2021).

Routine movement can emerge from the cognitive processes
underlying animal search and navigation strategies (Mueller and
Fagan, 2008; Bracis, 2014; Bracis et al., 2015; Polansky et al.,
2015; Riotte-Lambert and Matthiopoulos, 2019). Highly routine
modes of movement behavior can result from an individual’s
decision to navigate toward a known or perceived target location,
and are not necessarily predicted by the physical properties of
the environment, but instead by the individual’s understanding
of the spatial relationships between itself and its targets. When
movement processes rely strictly on perceptual information (i.e.,
oriented mechanisms; Mueller and Fagan, 2008), animals detect
some sensory stimulus within their perceptual range and use
various forms of taxis (Fraenkel and Gunn, 1961; Braitenberg,
1965) to bias their movement toward that target location (Mueller
and Fagan, 2008). Ants and rodents, for example, have been
shown to navigate by following chemical trails left by conspecifics
as well as by reacting to other olfactory stimuli in their
environment (chemotaxis; Kozakiewicz and Kozakiewicz, 2004;

Collett, 2010; Svensson et al., 2014; Buehlmann et al., 2015).
In dynamic landscapes, where the distribution of resources is
variable in time and space, animals that rely purely on taxis will
exhibit directed movements with low path reuse fidelity as a
consequence of navigating directly toward the stimulus. In static
landscapes, however, animals that rely purely on taxis will always
respond the same way to a particular point in space and thus will
move predictably between resources. The resulting movement
will exhibit a high degree of path reuse fidelity and commute
determinism, and produce a similar pattern of routine behavior
as seen in corridors.

Even if animals cannot sense their target, if they remember
where it is, repeated patterns of high-fidelity movement are
expected to arise. These “memory mechanisms” are defined
as movements where an individual has prior information
about the location of its resources (Mueller and Fagan, 2008).
Individuals can then use their prior experience to navigate to
resources beyond their perceptual range. Unfortunately, this
conceptualization does not explain the differences between
patterns generated by oriented mechanisms and memory
mechanisms, or the variation in patterns generated by different
memory systems such as response learning and place learning.
In response learning (see Glossary; reviewed in Goodman, 2021),
behavioral responses to specific cues (landmarks) are reinforced
if they lead to rewards such as food. Under this mechanism,
animals may develop habitual sequences of spatial behavior,
such as traplines, without needing to model or “map” their
environment. Alternatively, with place learning (see Glossary;
reviewed in Goodman, 2021), animals may learn the distances
and directions between important locations and plan routes
between them. Often referred to as a “cognitive map,” consistent
decision-making with the use of place learning may lead to route-
formation, but the use of the memory mechanism by animals
remains debated. Clarifying the differences between memory
systems greatly facilitates an understanding of how routine
movement behavior relates to spatial cognition, but the first step
in this process is accurately and reproducibly identifying patterns
of routine movement.

Within behavioral ecology, and primatology in particular,
areas featuring routine movement behavior are typically referred
to as “routes.” Influenced largely by early work by Tolman (1948)
and O’Keefe and Nadel (1978), these studies point to the repeated
use of routes as evidence for egocentric memory systems. Their
treatment of “routes,” however, presupposes spatial cognition as
the underlying process, and the classification of a path segment
as a route is typically done by eye or by grouping similar
looking path segments together via some arbitrary distance
threshold (Di Fiore and Suarez, 2007; Valero and Byrne, 2007;
Presotto and Izar, 2010; Garber and Porter, 2014; Bebko, 2018;
de Guinea et al., 2019). We define routes as areas exhibiting
sequential behavior with low directional variability and high-
fidelity path reuse. Spatial learning can lead to route-use, but
routes can also emerge from non-cognitive processes (Figure 1).
Furthermore, reliance on expert opinion can lead to challenges
fostering generalizable understandings about the process itself,
can lead to difficulty comparing across systems, and can hinder
reproducibility.
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FIGURE 1 | Multiple processes can lead to route use, dependent on the stability of the environment. When a resource gradient is persistent through time, animals
that perceive that gradient can form routes by consistently following it (Perceptual Capacity). Similarly, when other permanent perceptual cues indicate the direction
of a persistent resource, animals that have learned navigational responses to that cue will generate routes in the cue’s presence (Response Learning). In dynamic
environments, animals may also develop routes through response learning, albeit more slowly, so long as average resource acquisition is spatially heterogenous.
Whether or not resource distributions are stable in an environment, some animals may form routes due to heterogeneity in their ability to use specific substrates,
following paths of least resistance (Movement Capacity). Animals capable of place learning, though less likely to follow routes overall, may consistently infer direct
paths between known locations, generating route-like patterns even in dynamic environments or the absence of local landmarks.

Clearly, routine patterns of movement can arise from a mix of
external and cognitive processes. Determining what explains the
emergence of routine behavior in a given part of an animal’s range
will require developing carefully thought-out analyses. The ability
to design any analysis of routes, however, presupposes that the
routes established by an animal have been previously identified.
Before we can properly design studies that differentiate between
route generating processes, we must first develop approaches to
accurately and reliably identify patterns of routine movement.
Hereby, we introduce a method for quantifying the degree to
which movement is routine from animal tracking data, and
discuss how the results of this approach can be elaborated on to
infer cognition.

QUANTITATIVE APPROACHES

The majority of the quantitative tools for identifying areas
with highly routine movement have been developed to examine
revisits to target destinations (e.g., Riotte-Lambert et al., 2016;
Ayers et al., 2018; Bracis et al., 2018). Examining recursions to
target destinations provides valuable insights into the temporal
dynamics of resource use and can provide insights into
processes such as traplining, however, these methods aren’t
explicitly designed to examine the trajectories animals used
between recursive visits. Methods to detect the actual routes an
animal used have largely come from research on conservation

corridors. These methods may be suitable for recognizing routine
movement when it is generated by external factors, however,
they may not be ideal when the pattern is generated by spatial
cognition. Dynamic Brownian bridges have been used to reveal
shared bird migration corridors (e.g., Buechley et al., 2018).
Dynamic Brownian bridges, however, are kernel approaches
designed for interpolating missing location information in
animal tracks (Bullard, 1999; Calenge, 2006). In some cases,
the resulting density may reveal areas that visually resemble
routes, however, this approach may miss navigation decisions
at very local spatial scales, as well as fail to detect route-like
spatial patterns in non-migratory species with limited home
ranges. Objective comparison across individuals with non-
overlapping ranges, however, is not straight forward, and the
actual deterministic use of those areas are not accounted for.

Promising approaches are available that involve (a) sweeping
through a track with a circular buffer to identify areas of low
directional variability and high speed (LaPoint et al., 2013),
or (b) binning movement data into grid cells and performing
unsupervised clustering on network centrality metrics calculated
for each cell (Bastille-Rousseau et al., 2018; Bastille-Rousseau
et al., 2020). There are potential drawbacks to both approaches.
First, both approaches implicitly assume independence in the
data at the scale at which they segment the movement data.
The circular buffer approach allows for variable step lengths
and sets the buffer radius size to the step length, while the
network approach sets the grid size to the median step length.
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Ideally, an alternative approach would ensure that the scale at
which movement is autocorrelated would be estimated and the
cell/step sizes would be large enough to capture independent
displacements (Fleming et al., 2014; Gurarie et al., 2017, Noonan
et al., 2019). Second, these approaches both define corridor
behavior as fast, repeated movements with very constrained
directional variability (LaPoint et al., 2013; Bastille-Rousseau
et al., 2018; Bastille-Rousseau et al., 2020). The speed assumptions
about corridor behavior are based on the assumption that animals
don’t forage in corridors (Forman, 1995; Rosenberg et al., 1997),
while studies of spatial navigation posit that (a) certain forms
of taxis can result in movement that is necessarily slow (e.g.,
Svensson et al., 2014) and (b) animals will establish routes that
increase their likelihood of encountering food and will forage
along routes (Di Fiore and Suarez, 2007; de Guinea et al., 2019).
We do not dispute this conceptualization of corridor behavior;
rather we acknowledge that corridor use may be a particular
class of route. We define a corridor as a route that emerges
due to external constraints and independent of spatial learning
(see Glossary). Studies of spatial cognition may require methods
designed to detect routes more generally, in order to facilitate
the detection of routine behavior emerging as a function of
spatial cognition. In this case, a method that does not assume
a relationship between route-use and velocity may be more
generally useful. Finally, the approach presented by Bastille-
Rousseau et al. (2018) characterizes locations utilized by an
animal in terms of their graph theoretic properties, some of which
may well capture the persistent and deterministic features of
routine route use. They do not, however, attempt to explicitly
identify or characterize any locations as routes or areas of highly
routine behavior.

Here, we present a workflow using unsupervised-learning to
estimate the degree to which locations exhibit routine behavior
and differentiate habitual routes from other used locations.

MATERIALS AND METHODS

Frugivore Movement Data
Study Site
Data were collected for a larger study on resource selection and
cognition, and were not collected with this paper in mind. Data
were collected at the Smithsonian Tropical Research Institute
field station on Barro Colorado Island (BCI), a 1,560-ha island of
semi-deciduous tropical lowland forest in Lake Gatun, Panama
(9◦ 09′N/79◦ 51′W). For a full description see Leigh (1999).
The island exhibits a distinct dry season from mid-December
to mid-April. Fruit availability during the dry season is largely
restricted to Dipteryx oleifera, resulting in nearly identical
resource distribution for the entire community of frugivorous
mammals on the island.

GPS Collaring and Study Species
We fit GPS/3-D accelerometer collars (e-Obs Digital Telemetry,
Gruenwald, Germany)1 to individuals from four species, two

1http://www.e-obs.de

primates, capuchins (Cebus capucinus), spider monkeys (Ateles
geoffroyi), and two procyonid carnivores, kinkajou (Potos flavus)
and coati (Nasua narica).

Collars were programmed to collect a burst of six consecutive
(1 hz) GPS locations every 4 min during the animal’s active
periods: 06:00–18:00 for capuchins and spider monkeys, 06:00–
18:30 for coatis, and 23:00–6:30 for the nocturnal kinkajous.
3D acceleration was recorded at 1-min intervals to determine
activity profiles. Collaring occurred in 2015 and in 2017, with 20
individuals tagged the first field season and 26 individuals tagged
the second field season. 8 spider monkeys, 7 capuchin monkeys,
16 coatis, and 14 kinkajous were tagged in total. From December
2015 to March 2016, the GPS sampling regime of collars on
kinkajous and coatis was ACC-informed, with collars collecting
data as described above when accelerometer readings were above
a specified threshold (1,000 mV). ACC-informed sampling was
not used in the second field season, from December 2017 to
March 2018. All collars were programmed to timeout if they did
not acquire a fix after 90 s.

One additional kinkajou was collared during a separate field
season in 2019, with GPS programmed to sample every 6 min
from 18:00 to 23:00 and every second from 23:00 to 5:00.

GPS Data Processing
The last fix of each burst consistently had the best horizontal
accuracy measurement, therefore only the last fix of each burst
was used for all analyses. All data were uploaded to Movebank,
an online repository for animal movement data2. Duplicate and
outlier fixes were removed using Movebank’s data filters, filtering
fixes by the height above ellipsoid. All fixes with height above
ellipsoid values less than or equal to 21 or greater than 244 were
marked as outliers. This corresponds to the first quartile minus
twice the interquartile range and the third quartile plus twice
the inter quartile range, respectively. Subsequent outlier detection
was done using the ctmm package in R (Calabrese et al., 2016),
using error information, straight line speeds, and distances from
the median latitude and longitude to manually identify outliers
via the outlie() function. Further, obviously impossible locations,
such as location estimates in the water and clearly outside the
boundaries of the island, were marked as outliers.

For ACC informed collars, GPS locations were interpolated for
times when the animals were below their ACC thresholds. The
error on the interpolated positions was modeled to replicate the
observed GPS error of a stationary collar in a tree, and was drawn
from a negative binomial distribution with a mean of 5. 46 m and
a dispersion parameter of 2.4 m.

Simulations
We simulated animal movement tracks to illustrate our
predictions regarding the spatial patterns we expect to emerge
from each learning mechanism outlined in Figure 1. The
simulated tracks associated with each prediction are presented
in Figure 2. The movement of individuals in this model vary
along three axes related to our movement pattern predictions:
the consistency of the patch selection (choice determinism),

2www.movebank.org
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FIGURE 2 | Examples of animal movement patterns. Variation in three movement parameters can produce movement patterns in simulated foraging agents that
resemble different degrees and types of route use. All agents foraged by (1) selecting from a set of spatially persistent, renewing resource patches about which the
agent had complete information, (2) moving in accordance with the indicated parameter levels until the selected patch was reached, (3) moving at random within the
patch while depleting it, and (4) selecting a new patch. Where directedness is low, movement is random regardless of the other parameter levels (A,D). Where
commute determinism and persistence are both high, agents produce variable commutes (C), blue path. Where commute determinism is high, but persistence is
low, agents produce route-based commutes (C), orange path. Given response learning, animals’ movement patterns ought to resemble paths simulated with high
determinism and decreasing persistence over time [top panels (A–C), orange paths, left to right]. The paths of place learning animals may develop in a number of
ways over time depending on the structure of the environment, including the formation of route-based commutes in highly stable environments (top panels, orange
paths), the formation of routes with low commute determinism in environments where patch values are temporally asynchronous [bottom panels (D–F), orange
paths], or the formation of variable commutes where secondary resources are dynamically distributed (blue paths, left to right, top, and bottom).

the persistence of their movement direction through time
(persistence, a proxy for variable commutes), and the directness
of their movement toward a goal (directedness). Details regarding
the simulation framework, the parameterization of each agent
and the associated environmental constants (including resource
density, patch regeneration functions, extraction rate, giving up
density, etc.) are provided in Supplementary Material 1, along
with R code from which our simulations can be reproduced.

Route Detection Framework
Here, we propose a procedure for differentiating route-based
movement patterns from other patterns of movement within
an animal’s range. Our approach is to identify segments
of movement tracks that exhibit route-like behavior by
calculating a grid cell resolution based on the autocorrelation
structure in the data, binning the sampled locations into
the grid cells, calculating a series of metrics describing the
orientation and determinism of GPS fixes within each cell,

and clustering cells with similar modes of movement using
unsupervised clustering.

Code for this analyses are available on github: https://git.io/
JP1vF.

Path Reconstruction
The first step in the workflow is to reconstruct the original
continuous movement path from the sampled four-min GPS
track. This serves two functions: to more easily reveal segments
with similar modes of behavior, and to maximize the effective
sample size of orientations in each cell. To accomplish this,
we fit the sampled tracks to continuous time stationary
movement models, using the continuous time movement
modeling framework (Fleming et al., 2014; Calabrese et al.,
2016). The semivariance of the movement tracks are used to
estimate the best fit stationary movement process, and model
parameters are estimated via maximum likelihood. The best fit
model is selected using information criterion (AICc and BIC).
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We then used the best fit model to interpolate between real
sampled locations by simulating realistic movement from the
movement model, conditional on the data. Possible trajectories
between each set of locations are simulated several times, and
the average across the simulated trajectories are used as the
interpolated segment of tracks. We simulated 10, 20, 30, 40,
and 50 tracks between observed locations in order to determine
how sensitive the accuracy of the reconstructed tracks are to the
number of iterations used to generate them. All model fitting
and simulations were implemented using the ctmm package in
r (Calabrese et al., 2016).

The limitations of this path reconstruction approach were
assessed by subsampling a 1 hz GPS track to increasingly
coarse sampling rates, reconstructing the resampled tracks to
continuous time using the ctmm package as described above,
and calculating the distance between the location estimates
from reconstructed track and observed locations from the
original 1 hz GPS track.

Binning
The second step in the workflow is to estimate a reasonable grid
cell resolution for each individual. Because animal movement
data is typically autocorrelated, we attempt to determine a
grid size that takes the autocorrelation in the behavior into
account. For individuals where the best fit movement model
exhibits autocorrelated positions and autocorrelated velocities,
the timescale of autocorrelation in the velocity (τv) give us
information about the timescale at which the fine scale behavior
of the animal is independent. In other words, τv is the timescale at
which the movement remains linear, beyond which the behavior
changes (Fleming et al., 2014; Gurarie et al., 2017, Noonan
et al., 2019). Animals exhibiting small τv tend to have highly
tortuous movement, while animals exhibiting large τv exhibit
highly directed movement (Fleming et al., 2014; Gurarie et al.,
2017, Noonan et al., 2019). Given that τv is a timescale, we can
derive a pseudo-step-length by multiplying τv by the average
speed and getting a distance. This distance represents the spatial
scale at which the movement behavior remains the same on
average, thus any changes in orientations happening in locations
at least this distance apart are assumed to be independent from
each other. Therefore, if the best fit movement model is a model
with correlated velocities, then the cell resolution is calculated
by multiplying τv by the root mean squared speed (a convenient
summary statistic obtainable from the movement model). If the
best fit movement model is a model with independent changes
in velocity, then the grid cell resolution is simply set to the
mean step-length. The raster package (Hijmans, 2021) and rgdal
package (Bivand et al., 2021) were used to generate the grid after
the cell resolution was determined.

Cell Level Metrics
We previously defined routes as locations exhibiting movement
with a high degree of path fidelity, specifically high intensity
of sequential use and low directional variability. In the context
of a spatial grid, this translates to a series of connected cells
whereby the overall number of visits to a cell are relatively high,
the distribution of orientations within the cell reflect limited

TABLE 1 | Variables calculated for each cell.

Statistics calculated for each grid cell

Intensity of
use

Directionality Neighboring cell
similarity

Determinism

Density of
points in cell

Hellinger distance MSD Point density Recursions

Number of modes in
distribution of
orientations

MSD Hellinger
distance

Distance between
modes

MSD Number of
modes

Range of orientations MSD distance
between modes

Repeats

Standard deviation of
orientations

MSD Range of
orientations

MSD STDV
orientations

Number of empty
neighbor cells

All variables intended for use in an unsupervised clustering algorithm. The Hellinger
distance is used to determine how different the distribution of cell orientations
is from a uniform distribution. Cell similarity is calculated as the mean squared
difference (MSD) between a focal cell and its surrounding neighbors. Recursions
are calculated as n(n− 1)/2, where is the number of visits to the cell. Repeats
are visits to a given cell that were part of an identical sequence of three or more
cell visits.

and consistent entry and exit points, and the sequence of cells
used preceding entry and following exit of a focal cell are
also consistent. After data are binned, the following metrics
(summarized in Table 1) are calculated for each grid-cell: Density
of points; Hellinger distance; the number of modes in the
distribution of orientations; the standard deviation of headings;
the value range of the orientations; the distance between the
modes of the orientations; the mean squared difference of all
the above metrics to all neighboring cells; the number of empty
neighboring cells; the total number of independent visits to each
cell, and the number of cell sequence repetitions (reoccurrences
within a single path of consecutive visits to three or more cells)
that include the given cell. These metrics were chosen because
of their simplicity, their concordance with our definition of
routes, and because we think they reflect what researchers are
perceiving when classification via expert opinion is attempted.
Relative intensity of use is captured by the density of points
in the cell. The consistency and constraints on entry and exit
points are captured by how significantly different the distribution
of orientations is from uniform (Hellinger distance), number of
modes in the distribution (e.g., bimodal distribution indicating
a bidirectional route and unimodal inticating a unidirectional
route), the distance between the modes (closer to 0 indicating
highly unidirectional, closer to π indicating highly bidirectional),
and the standard deviation and value range of the orientations in
the cell. The similarity to neighbor cells (mean squared difference
of a focal cell to its neighbors for each metric) and the number
of empty neighbors reflect the contrast in relative intensity of
use of a route compared to other locations. Finally, calculating
how deterministic the sequential visits to a cell are was achieved
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FIGURE 3 | Examples of cell level data showing (A) high use, highly deterministic and bi-directional behavior; (B) low use, not deterministic and directionally variable
behavior; and (C) high use, not deterministic and directionally variable behavior.

by adapting methods from Ayers et al. (2018) for identifying
traplining behavior, with the assumption that animals utilize
routes the same way every time. We quantified the degree to
which an animal passed through a given cell while traveling
along particular routes by calculating (1) the number of possible
comparisons between any two times an individual visited the
given cell (recursions, n(n− 1)/2, where n is the number of
visits to the cell) and (2) the number of recursions in which
the compared visits to the given cell were part of an identical
sequence of three or more cell visits (repeats). Examples of cells
with track segments exhibiting different value ranges from the
metrics in Table 1 are visualized in Figure 3.

Unsupervised Clustering
We use a Gaussian mixture model to cluster cells with similar
movement behavior as estimated from the cell level variables

TABLE 2 | Error estimates of the path reconstructions.

Path reconstruction error estimates

Iterations

10 20 30 40 50

Mean (STDV) (m)

4.40
(3.92)

4.30
(3.90)

4.27
(3.91)

4.26
(3.90)

4.25
(3.90)

Sampling rate (min)

4 8 16 32 60 120

Mean (STDV) (m)

4.40
(3.92)

6.72
(5.87)

11.31
(11.16)

19.13
(17.36)

35.25
(35.27)

62.52
(57.24)

Comparison in the mean and standard deviation in the difference from the original
track. Iterations refer to the number of simulations included in the averaged track.
Sampling rate refers to the sampling rate after down sampling the original track.

above in order to identify cells with similar degrees of path fidelity
and sequential behavior. Model based clustering was preferred
over hierarchical and k-means clustering because instead of using
a heuristic approach, the clusters are modeled as mixtures of
distributions and cluster assignment is handled probabilistically.
This enables us to use model selection via information criterion
to determine how many clusters best fit the data, as well as
accounting for variance rather than assume spherical clusters.
Gaussian mixture models were fit using the GMM() function
in the ClusterR package (Mouselimis, 2021). In an attempt to
compare across individuals, all individuals across all species were
included in the same model, and BIC was used to determine the
optimal number of clusters [Optimal_Clusters_GMM() function
in the ClusterR package], resulting in 10 clusters for each
animal. The distribution of values of each covariate were
compared across clusters to determine which covariates were
most distinguishable across cluster categories. The covariates
with the clearest separation (density of points per cell, recursions,
and repeats) were used to construct a “routineness score” for each
cluster. Quartiles for point density, recursions, and repeats were
calculated based on the mean values for each cluster category,
and cluster categories were associated with their corresponding

TABLE 3 | Mean and standard deviation of grid cell size across species.

Summary of grid cell resolutions

Species Mean (m) STDV (m)

Ateles geoffroyi 31.03 9.2

Cebus capucinus 25.01 7.73

Nasua narica 32.29 8.82

Potos flavus 30.18 8.25
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quartile for each covariate (0.25, 0.5, 0.75, and 1). The routineness
score was calculated as

Qdi × Qreci × Qrepi∑
i Qdi × Qreci × Qrepi

Where Q represents the quartile assignment of each cluster
based on point density, recursions, and repeats, respectively.
This provides a continuous score for each cluster category
representing how intensely used a cell is, weighted by how
deterministic visits to that cell are and how predictably sequential
movements in and out of that cell are. Larger values represent
more routine behavior.

We compare the prevalence of routine behavior across our
four study species using hierarchical Bayesian regression. Priors
were improper flat following Student − T(3, 0, 2.5), and the
model was implemented using the brms package (Bürkner, 2017;
Carpenter et al., 2017; Bürkner, 2018).

RESULTS

Continuous time movement models were able to facilitate high
fidelity and high-resolution path reconstructions. Increasing
the number of simulations did not change the observed
error between the reconstructed tracks and the original 1 hz
track. Coarsening the sampling rate resulted in substantial
increases in error between the reconstructed tracks and original

track (Table 2). Movement models fit to lower resolution
data were not able to recover fine scale movement behavior,
and sampling rates of 30 min or more resulted in error
estimates well beyond that of standard GPS error from animal
tracking collars and handheld GPS units. Sampling intervals
under 30 min had error estimates within or below typical
stationary error exhibited in the real animal movement data,
and at sampling rates under 10 min reconstructed tracks
were nearly indistinguishable from the original 1 hz track.
Supplementary Figure 1 shows the increasing distortion
in the path reconstructions when models are fit to data
resampled to coarse sampling rates, while Supplementary
Figure 2 shows a high-fidelity reconstruction overlaid on
the original track.

The unsupervised clustering was able to reveal varying degrees
of routine behavior across the four focal species. A summary
of grid cell resolutions for each species is provided in Table 3.
The density of points in a cell, total recursions and total
repeats were the variables with the clearest and most consistent
separation between clusters (Figure 4). Figure 5 provides
example trajectories from a spider monkey, capuchin, coati,
and kinkajou plotted against the boundaries of the study area.
Figure 6 shows the outcome of the route detection procedure on
those same individuals, with the tracks colored by the estimated
“routineness score.”

All species show a mix of locations with routine and non-
routine behavior as indicated by their routineness scores. The

FIGURE 4 | Boxplots of the variables with the clearest separation across clusters. (A) The number of fixes in a focal cell; (B) The total number of recursions to that
cell (see “Methods and Materials” section); (C) the total number of repeats (sequential recursions, see “Methods and Materials” section) to that cell.

Frontiers in Ecology and Evolution | www.frontiersin.org 8 January 2022 | Volume 9 | Article 743014114

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-743014 December 29, 2021 Time: 13:41 # 9

Alavi et al. Framework for Identifying Animal Route-Use

FIGURE 5 | Example trajectories from a spider monkey, a capuchin monkey, a coati, and a kinkajou. All tracks plotted relative to the outline of the island to illustrate
any routine behavior due to potential geographical barriers such as the shoreline.

spider monkey and coati both exhibit the highest routineness
scores along the shoreline. In the case of the coati, most of the
locations with high routineness values might be explained by
the fact that the majority of its range falls within a peninsula,
strongly suggesting environmental constraints on movement.
The spider monkey in comparison does demonstrate some
route-like behavior along the shoreline, but also exhibits high
routineness scores at locations unconstrained by the geometry of
the island. The capuchin and the kinkajou both exhibit evidence
of route-use independent of the geometry of the island, with the
capuchin range being far from the shoreline, and the kinkajou
seeming to predominantly rely on routine behavior to navigate
its range. Kinkajous exhibited the highest overall routineness
relative to the any other species (hierarchical Bayesian regression,
Figure 7).

DISCUSSION

The utility of our approach lies in explicitly quantifying the
degree to which behavior in a given location is routine,
providing researchers a means of differentiating potential
habitual travel routes from other locations within an animals’
range. Our routineness score provides a simple and interpretable
means of characterizing a location as route-like, with higher
values indicating habitually high-use, sequential, and directional
behavior. Further analyses can be designed to diagnose whether
the presence of routine behavior at a given location is explainable
by environmental constraints or if there is evidence for a
learned navigation route. This could be achieved by testing the
relationship between the presence of the physical features in
Figure 1 and the routineness score of a region. For example, the
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FIGURE 6 | Example results of the route detection procedure. All individuals are the same individuals presented in Figure 5, however, the axis scales are unique for
each individual to facilitate easier visual comparison. All track segments have been annotated with the “routineness score” of the cells they occupy.

coast of the island in which our data were collected creates a
type of physical corridor; areas closer to the coast tend to have
higher routineness scores for the coati in Figure 5. Researchers
interested an animal’s perceptual capacity might estimate the
distance from important resources at which routineness scores
increase, while those interested in response learning might
estimate the effect of notable landmarks on nearby routineness
scores. Simulations such as those presented in Figure 2 can be
used to create useful references for the routineness scores that
might be expected under different conditions.

Interestingly, our results indicate that among our four study-
species, kinkajous, which are both nocturnal and arboreal,
exhibited the most consistent and pervasive routine behavior
throughout their ranges. One factor that may lead to a greater
degree of routine behavior in kinkajous is the perceptual

limitations of nocturnal activity. Greater reliance on local
landmarks, such as the pattern of foliage against the night sky
(Chaib et al., 2021), may require kinkajous to remain within
narrower regions of space in order to stay oriented. At the same
time, kinkajous may have a greater number of locations that
they visit frequently and consistently than other species in this
study. First, kinkajous typically limit their sleep to a repertoire
of 1–3 secure sleep sites (Kays and Gittleman, 2001), while other
species in this study are more flexible, perhaps due to the added
security of group-living. Second, recent research in another
asocial carnivore, the cheetah, has highlighted the importance of
communication nodes for the transfer of information between
neighboring conspecifics (Melzheimer et al., 2020). Dependence
on a limited number of sleep sites and the routine visitation
of communication hubs could limit the ability for kinkajous
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FIGURE 7 | Results of the hierarchical Bayesian regression model. (A) The conditional effects of species on routineness scores. (B) Posterior intervals of Bayesian
beta regression. The dots are posterior means and intervals are 95% uncertainty intervals.

to flexibly adjust their movement strategies with changing
distributions of food resources. Understanding downstream
effects of nocturnality and asociality on navigation and space-use
strategies will be an important goal for future research.

Elaborations on our method for quantifying routine behavior
may be useful in further distinguishing the cognitive mechanism
that mediate the relationship between an animal’s ecology
and its space-use. Neuropsychologists describe an animal’s
mental representation of space as stemming from two parallel
memory systems, a relative system where space is experienced in
relation to the observer (egocentric), and a geometrically explicit
system where the vectorial relationships between locations are
independent of the observer (allocentric) (O’Keefe and Nadel,
1978; Nadel, 1992; Nadel and Hardt, 2004). Egocentric systems
emerge from the integration of perceptual processing and
response learning, such that individuals learn and remember
the sequence of responses to some reference cues that lead
to successfully acquiring some sought after target (reviewed
in Goodman, 2021). Through response learning, for example,
animals can use unique cues (landmarks) to behaviorally and
neurologically (Knierim and Hamilton, 2011) connect valuable
resources separated by spaces greater than the animal’s perceptual
range. Such learning on its own typically produces highly
routine movements in which both the order of resources visited
and the paths taken between them remain consistent over
time, as in bumblebees (Lihoreau et al., 2012; Reynolds et al.,
2013) and hummingbirds (Garrison and Gass, 1999) foraging
on spatially persistent, renewing sources of nectar. The high
degree of routine behavior in kinkajous may suggest that they
rely more heavily on response learning strategies, relying on

stimulus response behavior to encounter important resources.
This is in contrast to place learning, whereby the animal learns
and remembers the position of some object relative to an
absolute frame of reference, independent from the animal’s
own position (reviewed in Goodman, 2021). In this case, and
with relevant information about its own position relative to
this frame of reference, an animal can navigate toward the
resource on future occasions regardless of the individual’s starting
location, and is not restricted to repeating the exact sequence
of movement behaviors it exhibited previously. In Figure 8,
we identify additional metrics of routine movement paths
that could be used to interrogate the cognitive mechanisms
underlying specific routes. Supplementing applications of this
route-detection workflow with data on perceptual ranges and
resource distributions will aid in determining whether areas of
high routineness are best explained by taxis, response learning,
or place learning (Figure 8).

While the method presented here is a promising step toward
diagnosing these particular patterns of behavior, it is important
to note its limitations. Our approach does not attempt to explain
the paths an animal took as a function of the environment, as
methods like step and path selection facilitate (e.g., Fortin et al.,
2005; Cushman and Lewis, 2010; Zeller et al., 2015). Similarly,
this method is not a tool for estimating unobserved locations
that an animal may have used (e.g., via the Brownian bridge
movement model). Rather, our approach incorporates an already
available continuous time modeling framework as an integral
step in our data processing procedure. Because our approach
is built around reconstructing the data to continuous time, the
accuracy of the reconstructed movement paths are sensitive to the
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FIGURE 8 | Process dependent route characteristics. Not all routes are the same, and they may have different properties depending on the process from which they
arose. (1) When an animal selects a path based on its ability to move, it is less likely to forage in that space and may be able to move faster in that terrain, resulting in
in a route characterized by high speed relative to other locations in which the animal moves. (2) When routes emerge from an animal’s capacity to perceive or move
along local features, those same features should be identifiable via human observation or remote sensing. (3) Animals following a perceptual gradient or developing
learned responses to landmarks should be consistent in the direction of their responses to those cues. (4) Routes emerging from memory processes should show
higher path fidelity over time, as an animal’s movement responses are reinforced or their mental map becomes more accurate. (5) Routes that emerge from place
learning should be linear and direct, as they represent the animal’s ability to consistently select the shortest path between two locations. Additionally, place learning
animals may mix and match route segments as they track temporal changes in resource availability. (6) Routes generated by non-place learning processes should
exhibit minimal branching, with animals moving from location to location in the same order along each path through the region. (7) All routes, as defined by our
framework, should exhibit frequent use with high spatial fidelity and directionality. (8) Routes emerging for their efficiency, either in movement capacity or distance
traveled, may contain paths in either direction through the region.

resolution of the data. Our results show that the reconstructions
stay reasonably accurate at sampling intervals less than 30 min. At
coarser resolutions, the error increases substantially. With high
resolution data, this approach does a remarkable job recovering
the fine scale tactical decisions made by the animals and has the
ability to detect fine scale route use. As sampling rates get more
and more coarse, the autocorrelation in the velocity becomes
difficult or impossible to estimate, and diffusive models that
assume independent velocities must be used (Fleming et al.,
2014, Gurarie et al., 2017). Under these circumstances, the grid
cell size will equal the mean step length, making this approach
analogous to other available approaches. For low resolution
datasets, there may not be an advantage to using this approach
over the approaches presented by LaPoint et al. (2013) and
Bastille-Rousseau et al. (2018).

Areas where animals exhibit routine behavior, particularly
route use, indicate the importance of that area to the animals
either because they have learned that moving through those
locations will lead them to high valued target destinations, or
because external factors have constrained their set of usable
locations to those areas. We have reviewed the cognitive and
non-cognitive mechanisms that can lead to the emergence of
routine behavior, particularly route-use, and have suggested one
potential way of identifying this pattern of behavior in animal

movement data. This conceptual framework and method of
classifying routine behavior should provide a helpful step toward
the study of these cognitive and non-cognitive mechanisms.
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Supplementary Figure 1 | The results of path reconstruction across different
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Supplementary Figure 2 | Reconstructed 1 hz path against the original 1 hz
track. The original unaltered track is plotted in black, and the reconstructed track
is plotted in red. The 1 hz track was down sampled to a four min resolution in
order to reflect the sampling rate of our GPS data. The mean error is reported in
Table 2. Majority of the track was within two meters of the original data.
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GLOSSARY

BOX 1 | Glossary of terms used in the paper.

Exploration: A process of movement determined solely by the internal state of an animal. Results in “random” movement, analogous to the use of “local”
information or internal states.
Taxis: The combined cognitive processes that allow an animal to perceive and categorize perceptual cues and direct its movement relative to specific cue types.
Analogous to the “taxon” system.
Response Learning: The process of mentally associating perceptual cues to physiological outcomes through specific behaviors.
Place Learning: The process of mentally associating one location (or other mental representation) to another by a distance and a direction.
Path: The actual locations an animal occupied over some contiguous period of time.
Track: An animal path that has been subsampled to a time-series of discrete points in space (e.g., by a GPS collar).
Route: A region of space with high path reuse fidelity: relatively high use by one or more animals in which the animals’ movement bearings exhibit low variability
across paths.
Corridor: An environmental feature that causes route-use in the absence of response learning.
Targeted Destination: A region of space with relatively frequent re-use by one or more animals in which movement vectors have low average velocity and relatively
low correlation in bearings.
Commute: A habitual transition between two targeted areas.
Variable Commutes: A set of commutes between two targeted destinations that do not occur along a route.
Route-Based Commutes: A set of commutes between two targeted destinations that occur along one or a few routes.
Commute Determinism: The predictability of an animals next commute given its presence at a specific targeted location.
Trapline: A sequence of targeted locations that frequently occur in the same order due to a series of highly route-based commutes.
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Individual Network Topology of Patch
Selection Under Influence of Drifting
Site Fidelity
Arild O. Gautestad*

Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway

Network theory has led to important insight into statistical-mechanical aspects of
systems showing scaling complexity. I apply this approach to simulate the behavior
of animal space use under the influence of memory and site fidelity. Based on the
parsimonious Multi-scaled random walk model (MRW) an emergent property of self-
reinforcing returns to a subset of historic locations shows how a network of nodes
grows into an increased hierarchical depth of site fidelity. While most locations along
a movement path may have a low revisit probability, habitat selection is maturing
with respect to utilization of the most visited patches, in particular for patches that
emerge during the early phase of node development. Using simulations with default
MRW properties, which have been shown to produce space use in close statistical
compliance with utilization distributions of many species of mammals, I illustrate how a
shifting spatio-temporal mosaic of habitat utilization may be described statistically and
given behavioral-ecological interpretation. The proposed method is illustrated with a pilot
study using black bear Ursus americanus telemetry fixes. One specific parameter, the
Characteristic Scale of Space Use, is here shown to express strong resilience against
shifting site fidelity. This robust result may seem counter-intuitive, but is logical under the
premise of the MRW model and its relationship to site fidelity, whether stable or shifting
spatially over time. Thus, spatial analysis of the dynamics of a gradually drifting site
fidelity using simulated scenarios may indirectly cast light on the dynamics of movement
behavior as preferred patches are shifting over time. Both aspects of complex space
use, network topology and dynamically drifting dispersion of site fidelity, provide in
tandem important descriptors of behavioral ecology with relevance to habitat selection.

Keywords: complex network topology, site fidelity network, multi-scaled random walk, characteristic scale of
space use, home range resilience

INTRODUCTION

Animals’ cognitive capacity to utilize a memory map in their quest for optimizing habitat selection
continues to be verified empirically from data on vertebrate movement, including amphibians
(Pasukonis et al., 2014), ungulates (Gautestad et al., 2013), primates (Boyer et al., 2012) and many
other taxonomic groups (for a review, see Piper, 2011). Individual movement may be considered to
be a mixture of exploratory moves and some occasional events of return, where the latter generate
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site fidelity but depend on spatial memory. Some locations
will over time become more frequently revisited than others;
a property that may be called non-random self-crossing of the
individual’s movement path. In overall terms the animal’s home
range becomes an emergent property of the tendency to revisit
historic locations. Thus, memory map utilization is a key aspect
of cognitive movement ecology.

Memory map utilization invites to study animal space use
from two complementary perspectives, topologically and spatio-
temporally. This report has thus two main objectives; first, I use
simulations involving memory-dependent site fidelity to explore
in phenomenological terms the network-topological aspect of the
emerging network of nodes (targets for return events). Secondly,
I toggle from the topological aspect of networks to the spatio-
temporal aspect of space use under this premise. Based on the
dispersion of large sets of sampled locations (fixes) of simulated
paths using a specific model, the Multi-scaled Random Walk
(MRW) algorithm (Gautestad and Mysterud, 2005; Gautestad,
2021), I specifically propose a new method to analyze the effect
of instability of local and temporal site fidelity in real space use
data and how statistical-behavioral model parameters for the
strength of habitat utilization is influenced under these terms.
Interestingly, the proposed method does not require explicit
knowledge of the physical location and dispersion of active
network nodes, which are verified indirectly and in a statistical-
physical manner.

Exploring the dual nature of MRW both from the network-
topological and the spatio-temporal (Eulerian) angle represents
a novel analysis of this model. A will be shown, it opens for
alternative methods to study behavioral-ecological aspects of site
fidelity and habitat selection within the context of statistical
physics of complex phenomena. Since this report provides the
first introduction to this approach, the theoretical framework is
kept relatively general, and the theory is likewise illustrated by a
simple empirical analysis—a pilot test—of real space use data.

Network Topology
In general terms we are surrounded by networks, both real and
virtual (Watts and Strogatz, 1998; Barabási and Albert, 1999;
Barabási et al., 2003). On the World Wide Web two Websites are
connected if there is a URL pointing from one site to another.
Statistically, most websites are referred to by a few other sites,
while a few sites have a tremendous number or referring sites
(Albert et al., 1999). Mathematically the distribution tends to
self-organize into power law compliance: k times larger Website
popularity is reduced by a factor 1/kγ . The distribution P(k)
≈ k−γ is scale-free over the range of the part of P(k) where
γ is stable, and is said to be complex over this range. Popular
sites apparently grow in popularity in a self-reinforcing, positive
feedback manner (“rich get richer”). Complex network topology
is also found in the distribution of how often scientific papers
are referred by others (Redner, 1998). Human mobility is also
explored by applying network topological analysis (Song et al.,
2010). Other examples regard power grid structure (Watts and
Strogatz, 1998; Strogatz, 2001), inter-colleague collaboration
among actors (Barabási et al., 1999), metabolic processes (Jeong
et al., 2000) and spread of epidemic outbreaks (Barthélemy

et al., 2004). In short, networks are at the center of studying
and ultimately understanding complex systems in very broad
terms. On the other hand, a non-complex (“regular”) distribution
would be expected to comply with an exponential rather than
a power law decline of popularity. In this case γ is not stable
over a large range of k, and the frequency of ultralarge-k events
becomes negligible in comparison to the power law range, which
tends to enlarge the “fat tail” of the distribution. In the context
of animal space use, while most locations have a low revisit
probability, emergence of extreme patch “popularity,” albeit rare,
are also expected.

Distinguishing between true scale-free distributions and look-
alike power law distributions are challenging (Broido and
Clauset, 2019). However, in the present context the main
topological property under scrutiny regards the evolution of
“hierarchical depth” in the emergence of node weights over time,
and how some nodes appear as “super-nodes” due to a positive
feedback process, not if a true power law is satisfied in a strict
statistical sense.

From a network theoretical perspective locations along a
movement path may be said to represent potential nodes. Actual
nodes will emerge from memory-dependent returns to a small
subset of these historic locations. This kind of individual-centric
network topology deviates conceptually and qualitatively from
the geometrically explicit dispersion of patches the animal is
attracted to and the paths the animal follows to commute between
them. For example, the set of the closest patches in the network
may be independent of the Euclidean distance between the
network node and its neighbor nodes (Figure 1). Independence
between physical distance and closeness based on historic re-
visitation events has been supported empirically in American
bison Bison bison (Merkle et al., 2014, 2017) and Fowler’s toads
Anaxyrus fowleri (Marchand et al., 2017).1

For the present context of cognitive movement ecology I label
the scenarios “Site Fidelity Network” (SFN). Analyses of both
the SFN topology and the space use pattern in Euclidean terms
are performed under two premises; a statistical-physical level
of system abstraction, and application of MRW, which embeds
both occasional returns to previous locations and a scale-free
distribution of exploratory step lengths.2

The emerging system of site fidelity from an individual
entering an area, the animal’s home range, is growing in spatial
extent over time due to the mixture of exploratory moves and
occasional return events, but much slower in comparison to
movement in the absence of site fidelity. From the topological
perspective, SFN exemplifies growth of an individual-centric
virtual network where new network nodes appear in two variants;
(a) nodes that immediately connect to the network and contribute
to its growth, and (b) potential nodes. Steps leading to immediate
node growth imply that the individual is revisiting a location,

1See, for example Marchand et al. (2017, p. 68):
“The assumption that toads returning to a previous refuge choose one at random
may seem unrealistic. Yet it fits the data better than two alternative models we
tested, where the probability of return and/or the choice of refuge were distance-
dependent.”
2The present simulations and analyses are performed under the MRW Simulator
2.0, developed by the author (www.gautestad.com).
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FIGURE 1 | In a virtual network, if the animal revisits a node from another
node the topological distance between the two nodes is shortened in an
incremental manner for each such revisit between the two. Such return events
represent inter-node attachment growth. Short-cuts where for example the
individual moves in the node sequence A-B-C-A contributes to increasing the
connectivity strength (called the degree, illustrated as bullet size in the
illustration) of the revisited nodes. When the animal returns directly to A from
C, node A is advancing upwards in the hierarchy of node connectivity
strength, which is shown by the new connecting line segment from C to A.
This new connection means that A and C also move closer in network
topological terms. In contrast, the physical (Euclidean) distance between
nodes A, B and C (the “patches” A’, B’ and C’ in the lower part of the
illustration) remains the same regardless of node degree and respective
topological distances. Along the dotted path only A’, B’ and C’ belong to the
network due to previous revisits, while the rest of the path (dotted line)
represents potential nodes with still unrealized connectivity to the network of
actual nodes.

starting from a location that so far has not been revisited. The
latter then becomes part of the evolving network due to the
return event. Thus, only return events from locations outside
the present network of revisited nodes contribute to network
growth, while returns from an existing node to another node
contribute to strengthening the relative degree of the target node
(Figure 1). In this case both the start and the target locations were
already part of the network. On the other hand, locations that
have been visited only once represent a pool of potential nodes.
These locations do not immediately link to the present network
of actual nodes, but are remembered and may thus connect to
the network later on. This aspect of spatio-temporal memory
makes it necessary to extend the architecture of classic network
topology to the SFN-specific topology, containing both “insiders”
and “outsiders.”

From the topological perspective, compliance with a scale-
free network distribution of node weight (relative popularity
of revisited nodes) regards an emergent property from the
movement model’s definition of return events under a premise of
network growth; i.e., system openness. A wider the distribution
implies a deeper hierarchical depth of node weights. Further, the
topological distance between nodes, as exemplified by the length
of the connecting lines A to B, B to C and C to A between

nodes in Figure 1, is independent of the physical step length
distribution per se (distances between successive steps between
given time increments; exemplified in Figure 1 by the three
distances A’ to B’, B’ to C’ and C’ to A’). Thus, with respect to
the scaling properties of node weights, any movement algorithm
involving memory-based return events could be applied, given
that the properties are studied from the topological side and not
from the Euclidean spatio-temporally side. On the other hand,
in Euclidean terms, “scale-free” is a property of the movement
process in physical space, as defined by the MRW model’s step
length algorithm (see below). Similar to the Internet-related
example above, a distribution of step lengths obeying P(k) ≈
k−γ is scale-free over the range of the part of P(k) where γ is
stable, and is said to be complex over this range. In step length
terms, we study the distribution of binned step lengths. In other
words, when log-tranforming the distribution of step lengths one
should expect a linear relationship. Thus, two complementary
aspects of “scale-free” space use are scrutinized in this report—
topological and Euclidean.

How to link an animal’s emerging network topology to its
spatio-temporal pattern of site fidelity? Distinguishing between
true network nodes from memory-based, intentional return
events and exploratory moves that just happen to revisit a site
by chance (random path crossing) becomes a challenging and
probably unsolvable empirical task, in particular, when these
nodes are shifting positions in space over time (“drifting site
fidelity”). Still, the cognitive process behind targeted returns
leads—in overall terms—to a qualitatively different kind of
space use process than movement where each return happens
by chance; i.e., independent on memory map utilization. In
this report I propose and explore an alternative way to resolve
this empirical challenge to differentiate between intentional and
random returns. I show how simulations involving memory and
site fidelity where properties are known from the given model
conditions may reveal important statistical aspects of this kind
of space use dynamics.

Given the issues just outlined, the aspect of self-reinforcing
use of a subset of nodes in network terms needs to be studied
indirectly from the spatial distribution of fixes in physical space,
including how such pattern of site fidelity may evolve and change
over time. This is where the Euclidean properties of the space use
model become crucial, complementing the topological aspects
of site fidelity as introduced above. In particular, I show how
the abovementioned challenge to pinpoint actual return events
from non-intentional returns to specific locations selection may
be circumvented by analyzing space use in a statistically “coarse-
grained” manner; i.e., from the perspective of statistical physics.
This approach may thereby reveal topological aspects of site
fidelity indirectly, by observing the system’s complementary
properties of the spatio-temporal movement pattern rather than
the network topology directly. However, the applicability of this
approach critically depends on the realism of the space use model
that is applied.

The Multi-Scaled Random Walk Model
MRW simulates movement to be studied at a coarsened
temporal resolution; i.e., at a temporal unit scale which is
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coarse enough to ensure that successive steps are randomly
distributed in directional terms. This satisfies the premise of
a statistical-physical observations of the process in a more
simplified mathematical context, relative to studying the process
at finer (“hybrid”) temporal resolutions where deterministic,
“tactical” behavior and directional step persistence becomes
more influential on the movement path (e.g., correlated random
walk). The return steps are memory-dependent and describe
site fidelity. What regards the statistical-physical aspect, analysis
of individual space use is typically based on fixes that are
collected at large time intervals relative to the temporally fine-
grained deterministic behavioral response time for successive
movement-influencing events within the animal’s current field
of perception. For example, GPS fixes from vertebrate space
use may be collected at intervals of 1–2 h or larger, embedding
much intermediate, tactical and unobserved movement behavior.
Thus, theoretical simulation and the accompanying analysis of
the space use process at this coarsened “strategic” temporal scale
is statistical-physical by nature and in compliance with common
empirical protocols.

Three main arguments support the choice of MRW as the
basic statistical-physical model for memory-implemented space
use. First, based on analyses of real data, area demarcation (home
range, A, using various demarcation methods) has been shown to
satisfy the MRW-characteristic power law A≈N0.5 for all species
we have studied so far, for example including free ranging sheep
Ovis aries (Gautestad and Mysterud, 1993, 2012), black bear
Ursus americanus (Gautestad et al., 1998) and red deer Cervus
elaphus (Gautestad et al., 2013). A similar power law compliance
was also found in a meta-analysis embedding many vertebrate
species (Gautestad and Mysterud, 1995) and recently also in a
pilot study on roe deer Capreolus capreolus, based on data from
Ranc et al. (2020).3

Second, by superimposing a virtual grid on the spatial scatter
of relocations and counting the number of grid cells containing
one or more fixes (incidence, I) as a function of grid resolution
(a common approach to observe complex space use from a
statistical-physical perspective), we have also consistently found
a power law relationship, from which we could estimate the
fix scatter’s fractal dimension, D. Typically, we find D ≈ 1,
which indicates that fixes are statistically distributed in a scale-
free (self-similar) manner. In other words, fixes tend to show
aggregations over a range of spatial resolutions. This range of
the fractal dimension describes a strong aggregative tendency
due to D << 1.5 (Gautestad and Mysterud, 2012; Gautestad
et al., 2013), which again is an indicator of positive feedback
with respect to local habitat utilization and thus behavioral
complexity in statistical-physical terms. Consequently, in our
analyses the overall empirical results are MRW-compliant also
from this perspective. In other words, some parts of the home
range under study were visited more often than others, and
this pattern repeated itself statistically in what is called a self-
similar (“fractal”) manner toward finer resolutions, apparently
not mirroring a simple linear proportionality with local habitat

3See Author’s blog post “Roe Deer Comply With the MRW Model,” dated August
11, 2020, at www.animalspaceuse.net.

attributes like food resources at respective resolutions. In short,
since the estimate of D covers a set of fixes that is collected from a
range of local and temporal conditions, the within-range habitat
heterogeneity effect on D is effectively “averaged away” from the
spatio-temporal pooling of fixes when estimating D.

Third, when the successive fix distances from red deer
movement were analyzed (“step lengths,” L, at 2 h time
resolution), we found that a power law fitted the distribution
F(L) better than the negative exponential, where the latter
would be expected from a scale-specific and classic random
walk-like kind of movement rather than scale-free space use
(Gautestad and Mysterud, 2013; Gautestad et al., 2013). Thus,
both small and very large displacements were more common
than expected from classical movement models, and again in
compliance with MRW properties. A pseudo-scale-free variant
where the animal is switching between different scale-specific
movement modes—making the total distribution look power
law-like (composite random walk) was discarded as explanation
of these data (Gautestad and Mysterud, 2013). Recently these
aspects of complex space use, expansion of space use, A(N),
fractal self-similarity of site fidelity, and the frequency of inter-
step movement lengths F(L), have been verified empirically and
explored theoretically also by other researchers (Boyer et al., 2012;
Boyer and Romo-Cruz, 2014; Boyer and Solis-Salas, 2014; Evans
et al., 2019).

In short, the scale-free property of movement steps follows
from the model premise that the animal under MRW conditions
is assumed to relate to its environment at many spatio-temporal
scales in parallel over a given scale range (Gautestad, 2021).
In contrast, the classical use-availability analysis of habitat
selection is based on a premise of independent revisits to
respective sections of a home range; i.e., a memory-less and
area-constrained process in cognitive movement terms (Boyce
et al., 2002), and the behavior is consequently assumed to
comply with some variant of standard (Brownian motion-like
or Lévy walk-like) random walk properties in statistical-physical
terms. This paradigm premise is neither compatible with an
evolving network of nodes, nor compatible with the MRW model,
which is formulated to be compliant with evolving memory map
utilization and a scale-free kind of space use at the statistical-
physical level.4 Thus, the present analyses not only explore the
feasibility of the MRW model to reveal complex patterns of
site fidelity, but also contribute to highlight the fundamentally
different system premises on which MRW rests, relative to
standard space use models.

To summarize, a theoretical framework to study cognitive
movement ecology under condition of spatial memory and scale-
free habitat utilization is beginning to emerge, and the MRW
seems to be a feasible model platform to study site fidelity in the
context of habitat selection (Gautestad, 2015, 2021). The MRW
model provides opportunities to indirectly reveal the dynamics
of site fidelity under various conditions: both from the network-
topological and the Euclidean (spatially explicit) perspective.

In particular, from behavioral-ecological arguments one
should expect the return probability to specific sites to decline

4For details on the MRW model, visit www.animalspaceuse.net.
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as a function of increased uncertainty of site profitability or
increased risk in connection with return to historic locations; e.g.,
due to increased environmental variability and unpredictability,
or due to a predator’s local search map being influenced by
learning the prey’s habits. On the other hand, site familiarity
provides crucial benefits with respect to utilizing a memory map
(Piper, 2011). These aspects will be scrutinized by the present
simulations by varying the temporal stability of existing memory-
based targets for an individual’s return events. A sub-set of
previously published telemetry data on 15 black bear females
(Gautestad et al., 1998) is also explored with respect to the present
method to reveal degree of (in) stability of site fidelity.

MATERIALS AND METHODS

Network Topology Under Site Fidelity
Network Terms
Within the area traversed by an animal, some locations may
over time be re-utilized in a self-reinforcing manner at the
expense of proportional use of other patches of a priori similar
qualities—owing to the process of occasional but directed returns
to known localities (Gautestad and Mysterud, 2010b). This very
general property of vertebrate movement may be simplified
into parsimonious model algorithms to simulate memory-
enhanced space use.

In general terms; i.e., whether MRW or another kind of
statistical-physical algorithm is applied to simulate memory-
involving animal space use, the model defines a return
step protocol. For example, on average every µth time
increment (µ >> 1) in the simulated series the given step is
followed by a directed return to a randomly and uniformly
distributed chosen previous location in the series (called
“neutral connectivity”). Alternatively, the protocol could define
“preferential connectivity,” where visited locations gain increased
probability for additional revisits. Anyway, the probability for a
revisit to a given site under the chosen connectivity scheme on
average declines geometrically over time, due to an incrementally
larger pool of potential return targets as the total path expands.
A large µ indicates that returns happen at a low frequency relative
to exploratory steps, but from a topological perspective µ does
not influence the distributional form of the actual node weights,
only the relative magnitude of potential nodes in comparison to
the smaller but evolving set of actual nodes (network growth).
The reason is that the size of the network grows as a function
of actual nodes. Thus, the speed of this growth depends on
the frequency of returns, 1/µ; i.e., smaller µ implies relatively
stronger growth, but the distribution of node weights (its power
exponent) does not.

The network topology of actual, inter-connected nodes—
based on the set of return target locations—were studied by
analyzing the so-called degree distribution and the accompanying
weight of nodes (popularity): frequency of nodes as a function of
connectedness (number of returns to a given location), which also
increases some nodes’ weight on expense of less visited nodes.
Gephi version 0.7 alpha2 and version 0.9.2 (Bastian et al., 2009)
were used in these analyses.

In practice, series of simulated return targets and the
respective locations from which the individual initiated a given
return event were successively separated from the developing
path series into a two-column spreadsheet, which was then
imported to Gephi for analysis. In order to reveal the degree of
power law compliance, the degree distribution of node weight
was subject to geometrical binning. Further, the spatial locations
of the most “popular” nodes were superimposed on a dispersion
of a set of fixes, in order to illustrate—in phenomenological
terms—the juxtaposition of these locations with relatively high
return frequency relative to the over-all spatial pattern of fixes.

Only the first 104 return targets in each series of 105 or 106

MRW steps using returns at every µ = 10 time steps on average
were analyzed for scaling properties, due to their strongest
network maturity; in the initial part of the step series had the
longest history of return events and consequently providing
the highest analytical potential to distinguish a scale-free or
approximately scale-free; i.e., an approximately log-log linear
degree distribution, from scale-specific network topology (semi-
log linear). The latter parts of the series consisted mainly of
potential nodes (not yet part of the set of actual nodes due to lack
of becoming return targets). By comparing the network graph of
the first 104 return targets from a 105-step series with the graph
from the first 104 return targets from a 10 times larger series one
gets a qualitative impression of how the “hierarchical depth” of
the graph is progressing as the SFN evolves over time.

Balancing Exploration and Site Fidelity in
Euclidean Space
Above I have already given the three main arguments for
choosing MRW as the basic model when flipping from network
topology to the Euclidean properties of memory-influenced
space use. Under the premise of the MRW framework, space
use emerges from a combination of exploratory moves and
occasional returns within a defined time resolution and spatial
extent. What regards simulation of exploratory steps of space use,
MRW series of length 2∗107 steps, representing successive path
locations at the defined unit time interval t, were simulated in a
homogeneous environment as a set of successively independent
step vectors of length:

LMRW = α(RND)−1/(β−1)
| LMRW < Lmax (1)

with α = 1 and β = 2. RND is a random number between 0
and 1. Hence, median step length is 0.5−1 = 2 length units. The
maximum step length, Lmax, is by default set very large, meaning
that this cut-off of step length does not influence the present
results. Eq. 1 (without the added property of memory inclusion;
see below) is a common formulation of so-called Lévy flight,
representing a true Lévy walk that is simulated at a coarsened
(statistical-physical) temporal scale, defined by a. A constant α

at the unit temporal simulation scale implies a given average step
length for the simulations; i.e., movement speed is for simplicity
assumed constant on average over space and time during the
given time resolution and extent.

From a network perspective, steps from Eq. 1 represent
potential nodes and extending this basic algorithm with return
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steps implements the memory process. This MRW models
give birth to a new actual node (targeting a previously never
revisited location of the historic path) or contributes to increasing
the popularity of an already existing node. Since the first
part of the present analyses is targeting the properties of the
network topology of popular nodes that emerge for memory-
influenced space use, other aspects of habitat interactions (for
example, relations to specific habitat elements in a heterogeneous
environment, including difference in local movement speed as
reflected by differences in the parameter a or difference in the
return frequency 1/µ during respective time periods) are for
simplicity not specified. This simplification is chosen for the
sake of remaining focused on the duality between complexity of
node connectivity in topological terms and site fidelity in explicit
spatial terms. Running the simulations with millions of steps at
statistical-physical resolution is an unrealistically large sample
size to represent real individuals. However, this magnitude is
chosen to allow for a proper study of theoretical aspects of
the system’s network topology and the complementary spatio-
temporal properties of MRW.

Under the implicit premise of a statistical-physical system
simulation even at unit time scale t = 1, successive inter-step
directions of the exploratory steps (Eq. 1) are drawn uniformly
from 0 to 2π radians. Before considering the complication from
return steps, large series of steps LMRW represents scale-free
distribution of moves (“exploratory steps”), sampled at constant
intervals of length t, thus complies with sampling a Lévy walk
(Shlesinger et al., 1993; Reynolds and Rhodes, 2009); thus, de facto
becoming a series of steps called a Lévy flight.

The log-formatted bin width of the distribution of step lengths
from Eq. 1 is set somewhat larger than the median step length in
the sample at time resolution t, to study the functional form of
the long-tail part of the step distribution at the chosen temporal
sampling scale. For example, if median step length is found to be
Lmed, unit bin width is by default set to be 50% larger.

However, MRW deviates from Lévy walk/flight by adding
the effect from spatial memory and site fidelity. This property
makes the process potentially scale-free also in the time domain,
and not only in the spatial domain. On average every µth
time increment in the simulated series the step was followed
by a directed return to a randomly and uniformly distributed
chosen previous location in the series (neutral connectivity; i.e.,
the default condition of MRW), or by preferential connectivity,
where visited locations gain increased probability for additional
revisits. The magnitude of µt (where µ is an integer larger than
one) defines the general strength of this “homing” tendency;
larger µ implies weaker site fidelity due to longer return intervals
on average. Ecologically, a larger µ may for example imply space
use under less favorable conditions than where µ is small. In
the present simulations with respect to network analysis I used
10 < = µ < = 100 under the condition of neutral connectivity (all
historic locations relative to a given instant has equal probability
for a revisit). For Medium preferential connectivity I used
an added condition that returns either takes place with 50%
probability to a randomly chosen target among existing network
nodes; i.e., a location that has already been visited before, and 50%
probability for returning to a randomly picked target regardless of

status. This implies a “preference” to return to already revisited
locations relative to neutral connectivity. For Strong preferential
connectivity I used 90% probability to return to an existing,
actual node and 10% to a randomly picked location (using 100%
return to actual nodes would terminate network growth). Thus,
the choice of 50 and 90% strength of preference represents
two levels of skewedness on the continuum from 0% (neutral
connectivity) toward—but not including—100%). With respect
to spatio-temporally varying site fidelity (next section), I used
µ = 100 for all conditions of connectivity strength.

Further Coarse-Graining of the Process:
Fix Sampling and Analyses
Each series was sampled as one “observed fix” (tobs) pr. 1000t;
i.e., a coarser time resolution than the average return interval
at the scale of steps at unit time resolution, t (tret = µt = 100t)
in the simulations of varying site fidelity. Hence, intrinsic serial
auto-correlation was effectively eliminated at the temporal scale
of tobs >> tret.

Sets of fixes from each series were in the present context
collected at temporal scale tobs = 1000t. Thus, analyses of
movement in physical space represents a small subset of the
original path; in contrast to the introductory study of network
topology (above), which were analyzed at unit scale t = 1.

Incidence, I, which represents the number of virtually
superimposed grid cells embedding at least one fix, is applied
to quantify spatial use in an Eulerian (spatially explicit) manner.
While traditional estimates of home range area A(N) where A is
given by an area-demarcating method, have many complicating
challenges, the I approach allows for a coherent fractal-
geometrical analysis of the spatial fix pattern. The sample size
dependence of incidence as a function of sample size of fixes,
I(N), at a properly chosen resolution of grid cells called the
Characteristic Scale of Space Use (CSSU)5(Gautestad, 2021), can
under MRW be expressed by the power law (Gautestad and
Mysterud, 2005, 2006, 2010a):

I(N) = cNz (2)

where c and z are parameters. The intensity of habitat utilization
is expressed through the combination of c and z; c regards
CSSU, and is—under a given average step length of exploratory
steps—a function of the frequency of returns, 1/µt, to previous
locations (space use intensity). CSSU is thus expressing the
behavioral balance between space use expansion (exploratory
steps; Eq. 1) and contraction (site fidelity from returns at
frequency 1/µ). The parameter z expresses how intensity of
space use is distributed across scales. Stability of z implies a
scale-free kind of relationship to the habitat over a range of
spatial resolutions of the environment. A value of z ≈ 0.5 [I(N)
increasing proportionally with square root of N] implies by a
MRW postulate that the animal is “relating” to its environment
over a range of scales with the same space use intensity; i.e., a
next-step movement to a neighborhood at a k2 times coarser scale
is 1/k2 times less probable (Gautestad and Mysterud, 2005).

5See, for example, http://www.animalspaceuse.net/2017/12/statistical-
mechanical-details-on-space.html
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Theoretical expectancy is z≈0.5 for the idealized MRW
(Gautestad and Mysterud, 2010a), with some variability expected
from so-called space-fill and dilution effects from choosing
too coarse or fine grid resolutions, respectively (Gautestad
and Mysterud, 2012). In other words, the analysis should be
performed after having “zoomed” grid resolution to a magnitude
close to CSSU. Zooming to estimate c is necessary due to the
process’ combined expression of exploratory steps (influenced
by a and β in Eq. 1) and return step effects. Too coarse or too
fine grid resolution relative to the intrinsic CSSU scale will both
lead to observed instability of c and z over the range of N (see a
practical example in Supplementary Material).

The sample size of fixes, N, can be drawn incrementally
from the total series in two ways; either by adding new
fixes in a time-incremental manner (continuous sampling; a
sample size that is proportional with sampling time) or by
increasing sampling frequency within the total time period for the
simulation (including every nth fix within the total time period,
by increasing n until n = N). In the present analysis I—crucially—
applied both protocols, and additionally calculated the geometric
average of I(N) for each magnitude of N from these alternative
sampling schemes.

In this manner, by averaging I(N) over continuous and
frequency sampling and studying the difference between the non-
averaged I(N) series from the two protocols, one may compare
the statistical effects from intrinsic auto-correlation in the data
(tobs <= tret) with the statistics of the non-averaged I(N) series.
The differences will be of key interest to the present topic of
quantifying the effect of extrinsically induced autocorrelation
even when tobs >> tret, due to an environmentally imposed
shifting mosaic of site fidelity.

In addition to the CSSU concept and its relationship with
Eq. 2, memory effects under MRW terms impose yet another
aspect of space use intensity; the property of self-similar (fractal)
dispersion of fixes. In other words, a sample of fixes from
the underlying process combination of Eq. 1 in combination
of targeted return steps will tend to be spatially distributed as
aggregations over a range of resolutions of the superimposed grid
(in contrast, Eq. 2 is expressing the N-dependence of incidence at
given grid resolution; the balance scale of CSSU). For non-auto-
correlated fix samples we have shown theoretically and verified
by simulations (Gautestad and Mysterud, 2010a) that,

z = 1− D/2 | 1 < D < 2, N > Nmin (3)

where D is the fractal dimension of the spatial distribution
of fixes. Nmin approximates a small-sample artifact of N. D
can thus be calculated from D = 2(1-z), as an alternative
approach to zooming over a range of grid resolutions (see section
“Introduction”).

Combining Eq. 2 and Eq. 3 gives,

I(N) = cN1−D/2
| N > Nmin, I ≡ incidence (4)

In particular, D≈2 implies I(N) is constant beyond Nmin.
This satisfies the paradigmic “home range size” concept, where
the size is assumed to expand asymptotically toward the range’s
size as N is passing Nmin from below. On the other hand, D≈1

implies I(N) is increasing proportionally with N1/2 far beyond
Nmin. In practice, Nmin is very small under D≈1 relative to D≈2
dispersions, since the latter is more “dense” in statistical-fractal
terms and thus require a larger set of fixes to minimize the
small-sample artifact of I(N).

In the present context, c is the most important ecological
aspect of the model. Representing CSSU, it reflects the
characteristic scale of space use intensity on average within the
respective spatial and temporal scale extents:

c = I(N)/N1−D/2
= I(N)/Nz (5)

Under condition of z≈0.5, a larger c implies a more coarse-
grained CSSU on average in the spatio-temporal range that is
embedded by the data.

Non-stationary Site Fidelity
In the present simulations the parameter values for a and
β in Eq. 1 (exploratory steps) and the return frequency to
historic locations (relative strength of site fidelity, 1/µ) are kept
constant. However, as indicated above, extrinsically imposed
serial auto-correlation of fixes may influence the observed
statistical properties of space use. Thus, in this report I study to
what extent the resilience of key statistics under the given model
parameters under default (stationary) conditions are influenced
by a shifting mosaic of site fidelity.

To simulate a varying environment with respect to
influencing stability of site fidelity and—in particular—whether
this environmental heterogeneity is influencing c and z (or
conversely, how resilient these parameters are under increased
environmental complexity), three conditions are explored by
varying strength of so-called “punctuated site affinity.” At
regular intervals (the punctuations) the model individual is
narrowing its time horizon for memory-influenced movement
by disregarding utilization of the older parts of its historic path
during return events. At these intervals the movement path is
thus simplistically split into “sections.” Older parts of potential
nodes are not any longer included in the process of return
decisions. However, it continues to return to a given percentage
of the latest part of the foregoing section in addition to all the
new locations in the current section. By varying the length of
the sections and the length of the retained part of the foregoing
section, a variable strength of spatially shifting site fidelity may
be simulated (Gautestad and Mysterud, 2006).

Under the first condition, A, the animal is keeping the last
10% of the path locations in foregoing section of the path, each
of length 1/10 of the total series length of magnitude 107 steps,
as potential return targets on equal footing with the successively
emerging locations in the current section. The simulations are
run under condition of neutral connectivity of return events.

Under the second condition, B, 50 rather than 10 time sections
for partially punctuated site affinity is invoked, and 2% rather
than 10% of the previous section’s path of locations is retained
(section length 2∗105 steps, and last 4∗103 steps of foregoing
section retained). This condition implicitly reflects a situation
where site fidelity is drifting more smoothly but also more
strongly in overall terms than in the foregoing scenario, due to
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a smaller subset of previous locations to select among as return
targets and a more frequent resetting of potential return targets.
The simulations are run under condition of neutral connectivity
of return events.

Under the third condition, C, drifting site fidelity is similar
to A, but with no memory of previous sections. Number of
sections is increased from 10 to 20, but no historic parts of
the path of 1/20 of total length is retained during this fully
expressed “punctuated shift” of site fidelity. The first location in
each of the 20 successive sections is chosen randomly within the
total arena. This scenario reflects the most dramatic shift of site
fidelity. Again, the simulations are run under condition of neutral
connectivity of return events.

From each series of locations in the three variants of shifting
site fidelity, each variant replicated 10 times, fixes are sampled at
frequency 1:1,000 of respective series. Within each sequence of
stationary site affinity; i.e., in the respective sections between the
successive punctuation events during which the conditions for
site fidelity were temporally stable, this situation implies serially
non-autocorrelated steps (Swihart and Slade, 1985). However,
this condition is expected to change to serial autocorrelation
as the data set embeds several re-settings of site fidelity (fixes
covering several sections) and thus a spatially drifting space
use. Thus, auto-correlation may emerge under the respective
conditions of temporally non-stationary space use, because of two
random locations within a section may tend to be closer in space
than two locations from different sections in the total set of fixes.
In short, auto-correlation is expected to occur even under the
condition where tret = µt = 100t is set to be smaller than the fix
sampling interval tobs = 1000t, because of the temporally shifting
pattern of site fidelity (extrinsic forcing).

A resolution of the virtual grid that is superimposed for the
analysis of I(N) is fixed for all simulations (k = 1/40, linearly, of
total arena scale of k = 100,000). This resolution approximates
the CSSU scale under the given model conditions prior to adding
the complexity from drifting site fidelity. In other words, log(c)
approximates zero after normalization to linear grid resolution of
k = 100,000/40 = 2,500 units.

All conditions A, B and C above were simulated under
neutral connectivity. In order to explore the effect of preferential
connectivity in isolation from drifting site fidelity, I(N) for strong
preferential connectivity is also analyzed as condition D; i.e.,
under standard MRW terms for return events (site fidelity not
influenced over time by external forcing).

Pilot Testing on Telemetry Series
With respect to illustrating the new method on empirical data,
a sub-set of previously published telemetry material on female
black bear is presented with respect to I(N), including the
stability and distribution of c and z from Eq. 2. According to
the MRW framework, z should be independent of both c and
N after respective series are zoomed toward best-fit scale for
CSSU estimation. The data is reflecting standard radio telemetry
procedures and equipment from the 1970s, reflecting both
relatively large triangulation errors and subsequent rounding
of fix coordinates to nearest 100 meters. Fixes were collected

at intervals of one or more days. For details of the telemetry
material, see Gautestad et al. (1998).

RESULTS

Network Topology
The MRW simulations with respect to network topology of
nodes and neutral connectivity illustrate compliance with a
gradually emerging hierarchical depth of these nodes. Some of
the initially appearing nodes gain further revisits, in a positive
feedback-resembling growth process (Figure 2A). Over time, an
understory of additional hierarchical layers of nodes with less
revisit frequency appears, while most nodes are visited only once
(Figure 2B). The first 103 links were generated from 104 to105

return events to previous locations along the animal’s path (total
series length 105 and 106 respectively, due to tret = 10t). Under
neutral connectivity, in the early stage of space use (Figure 2A)
most nodes have only one link, and the number of hierarchical
levels is limited to four. By increasing the series length 10-fold
(Figure 2B) the structure of links (the degree) to the initial
103 nodes has become more complex with six levels, and thus
reflecting a more mature network with respect to its hierarchical
property. The temporal drifting toward a scale-free topology is
indicated by the rarity of nodes with a large degree relative to the
large population of low-degree nodes. Whether this is actually
scale-free or not depends of compliance with a power law in
the distribution of connectivity strength (see below). However,
this example illustrates that even neutral connectivity leads to re-
use of sites in a self-reinforcing manner due to the site’s added
statistical weight with respect to the probability of becoming
target for new visits.

Before leaving the topological aspects, Figure 3A exemplifies
a MRW simulation under stationary site fidelity and neutral
connectivity, and how the network of nodes is dispersed in
space. The actual spatial locations of the five dominating nodes—
super-nodes—are marked by colored squares. Hierarchical node
dominance is not clearly correlated with local density of fixes
(local “core areas” of more intense use, called the utilization
distribution in home range theory). This apparent independence
between node degree (connectivity strength) and strength of
the utilization distribution in Euclidean space is illustrated by
the locations of the two peripheral nodes in relatively low-
density regions of the scatter of fixes, which reflects not only
the actual nodes but also the dispersion of potential nodes. This
result may seem counter-intuitive from standard home range
premises, but is in fact expected from the simulation’s condition
of MRW’s independency between a start location for a return
event and the target’s temporal sequence position in the series.
While this example shows super-node distribution under neutral
connectivity, a similar pattern in qualitative terms appeared
under preferential connectivity (not shown).

Figure 3B shows the distribution of node degree for the virtual
network of the data in Figure 3A (upper pane). The super-
nodes represent the right-hand part of the distribution. However,
they are few in number. Thus, they become visible only in the
log-log distribution (inset), which resembles a power law with
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FIGURE 2 | Network graphs (produced in Gephi 0.8.2 and 0.9.2)
(Bastian et al., 2009) illustrate how a site fidelity network (SFN) even under
neutral connectivity becomes increasingly complex by increasing number of
hierarchical levels of connected nodes (re-used locations) over time. Each
series consists of 104 steps with a new potential or realized node creation
every 10 step on average (tret = 10). Node degree is expressed by the size of
the bullets, while colors only serve to distinguish the respective magnitudes of
degree. (A) The center part of the network visualization represents Level 1,
containing nodes with only one connecting link (smallest network fragments).
(B) The link structure of the initial 104 return events of a series of 105 steps
becomes more complex with more levels when studied as the initial
sub-section of a 10 times larger series than in (A). In other words, the network
is more “mature” owing to the longer time span of development of the initial
part of the network.

exponent β = -3.3. Based on additional simulations, the middle
and lower pane give the log-log degree distribution for medium
and strong preferential connectivity, respectively (average result

FIGURE 3 | (A) The scatter shows the spatial dispersion of a set of simulated
MRW locations under neutral connectivity, including both actual nodes (re-
visited locations) and other sampled locations of the actual path (representing
potential nodes). The path is sampled at frequency 1:1,000 relative to unit

(Continued)
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FIGURE 3 | time increments. The return interval was set to tret = 10. The
colored icons locate “super-nodes,” the nodes with the highest node weight;
i.e., with largest connectivity strength in the virtual network. Yellow: 8 return
events to this location; orange, 7 events (2 locations); red, 6 events. In the
latter category only 2 of the 5 locations are shown, since the other 3 were
nearly overlapping with another super-node. (B) The degree distribution of
node weights (connectivity) for the data in (A) (upper panel), with inset
showing log-log transformation. In this inset the super-nodes are included in
the right-hand column and part of the second-right-hand column. Ten
independent series were produced, and the respective replicates were
averaged. The middle and lower panes show the log-log transformed degree
distribution for medium and strong preferential connectivity, respectively.

from 10 replicate series pr. condition). The latter shows an
increased hierarchical depth; i.e., a wider distributional range of
node weight, and consequently a reduced slope with exponent
β = -2.2.

Spatio-Temporal Space Use Under
Drifting Site Fidelity
Under partially punctuated site affinity and neutral connectivity
(10 sequences and 10% overlap of targets for returns; condition
A) a tendency for drifting home range is apparent from the
somewhat lower magnitude of spatial overlap between 100 fixes
from early, middle and late part of the series (Figure 4A).
However, the spatial drift of space use is weak. Within each of
the 10 sequences the animal’s site fidelity is evolving without
extrinsically invoked interruption of side fidelity. When the
10 time sequences are analyzed separately in a regression and
averaged (Figure 4B), the two sampling conditions under intra-
sequence periods give similar-sized average incidence over the
range of log[I(N)], with power exponent close to the expected
z = 0.5 (z = 0.474, SE = 0.008). The total set of fixes shows a similar
average log[I(N)] (z = 0.499, SE = 0.009). These results verifies
absence of visible autocorrelation at the intra-sequence temporal
scale, but—due to the shown divergence of time-continuous and
frequency-based fix sampling for the total set—some magnitude
of auto-correlation in the total series embedding a shifting pattern
of site fidelity. The similar intercept with the y-axis, log(c)
implies stability of the characteristic scale of space use (sequences:
z = 0.344, SE = 0.076; total series: z = 0.431, SE = 0.048), CSSU.

Second, a more continuous shift of site fidelity (condition B) is
shown in Figure 5: returns are limited to a trailing time window
that contains the last 2% of locations over a shift every 1/50
part of the total series. Under this condition, the divergence of
plots between the two sampling schemes is more pronounced
(averaged set: z = 0.57, SE = 0.014).

Third, the most dramatic shift both with respect to space use
and in the pattern of I(N) under the two fix sampling schemes
(condition C) appears where site fidelity is set to re-generate from
scratch at every instance of re-setting of site fidelity (Figure 6).

In Figure 7, where strong preferential connectivity (Condition
D) is simulated under stable (rather than drifting) site fidelity,
shows that the scaling slope z≈0.5 seems to be uninfluenced
by the magnitude of preferential relative to neutral connectivity
(z = 0.535, SE = 0.029). This result is thus similar to the condition
of stable site fidelity under neutral connectivity, as was shown

within the separate sections presented by green and red icons
in Figure 4B. However, CSSU – estimated as c0.5 = 1000k for
medium preferential connectivity and c0.5 = 667k for strong
preferential connectivity—were both smaller than c0.5 = 2500k
under neutral connectivity [not explicitly shown, since in all I(N)
presentations, c is calibrated to unit scale; i.e., log(c)≈0].

Applying the Method on Black Bear
Telemetry Data
Figure 8 illustrates by empirical data some of the basic principles
that are presented by the simulations. Figure 8 shows the
average I(N) for a set of 15 female black bears, showing close
compliance with a power exponent z≈0.5 when averaging over
time-continuous and frequency sampling of N, and thus in line
with the default MRW expectation (z = 0.50, 95% confidence
interval 0.46–0.55; SE = 0.02). Divergence between the two
sampling schemes indicates some level of serial autocorrelation;
i.e., indicating some magnitude of drifting site fidelity. For
all plots where log2(N) > 2; i.e., N > 4, frequency sampling
produced larger I(N) than time-continuous sampling. Further,
Figure 9 shows that the distribution of CSSU estimates for
the 15 series is wide. However, analyses to reveal ecological
correlations (like strength of habitat selection) to study the
pattern behind respective series were not performed. Crucially,
in Figure 9, middle and lower pane, z shows independence of
both c (giving the CSSU estimate) and N, as predicted by the
model’s basic premises.

DISCUSSION

Network Topology in an Site Fidelity
Network Context
With respect to ecological aspects of memory-influenced animal
space use, the difference between a complex and a regular
network topology may have substantial influence on the organic
growth and stability of site fidelity. In general, a scale-free
network topology is expected to show a high resilience against
perturbations. For example, the hierarchical distribution of
routers and inter-domain connectivity of the World Wide Web is
expected to communicate unaffectedly even when experiencing
unrealistic high failure rates given that the errors are randomly
distributed among the nodes (Albert et al., 2002). On the other
hand, if the dominant nodes have a higher degree of failure than
expected from random shutdown both the network resilience
and its hierarchical structure easily breaks down (Albert et al.,
2002). Under such events the most popular nodes are being
specifically attacked rather than being subject to random error
on equal terms with other nodes. Hence, scale-free networks
have an Achilles heel, which may counter-balance the general
advantages from hierarchical system topology: robustness from
such organization of nodes makes the structure vulnerable if the
dominant nodes are specifically targeted and destroyed.

Returning from the general network theory above and back
to ecology, if the nodes that are utilized most intensely are
destroyed, the consequence should be expected to be more severe
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FIGURE 4 | Each scenario in this and the following presentations of simulation results is replicated ten times, and respective plots of I(N) both for time-continuous
and frequency-distributed sampling of N are presented. Using the average log[I(N)] over the range of log(N) for the two sampling schemes time-continuous and
frequency-based sampling is used to quantify the difference between serially non-autocorrelated and autocorrelated series. The influence on c and z as
autocorrelation from extrinsic origin is increased (influencing instability of site fidelity) can also be revealed in each of the three scenarios, by studying log[I(N)] in the
respective sections of stable site fidelity between punctuation events where intrinsic autocorrelation is absent due to tobs >> tret. (A) Under partially punctuated site
affinity (condition A; 10 sequences, see main text) a tendency for drifting home range is apparent from the somewhat lower degree of spatial overlap between
samples of 100 fixes from early, middle and late part of the total series, presented by, respectively, colored dots. (B) The spatial drift under condition (A) is weak,
which is reflected in the relatively narrow difference between sampling N fixes by a frequency-based sampling (open squares) or a continuous time scheme (open
diamonds). The average log[I(N) is shown as blue stars. When the ten time sequences are analyzed separately (green and red-colored icons), the two sampling
conditions give similar-sized incidence over the range of N as the average log[I(N)] from the total set of fixes (the average of the section series is the mid-point
between the respective sets of colored squares and rectangles, but is not shown for the section series). The y-intercept, Log(c), under the two sets of analysis is of
similar magnitude, both within sections and for the overall series containing all sections.
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FIGURE 5 | (A) When only 2% of last-section path is retained and the number of sequences for partially punctuated site affinity is increased from 10 to 50 within the
same magnitude of total series length (condition B), the drift of site fidelity increases in strength. Consequently, overall space use becomes wider (gray dots relative
to the three subsamples shown by colored dots) and the respective N = 100-samples are less overlapping. (B) This effect becomes apparent in the analysis of
incidence, I(N), which owing to the stronger spatial auto-correlation shows a widened difference between log(y-intercept) for a given log(N) the two fix sampling
methods. However, when log(y-intercept) from the two sampling methods continuous and frequency-based are averaged (filled circles) the slope is—as in
(Figure 4—approximately) log-linear and thus power law compliant. As in the foregoing results, log(c) from such averaging seems quite resilient, and thus CSSU
seems to be little influenced even by this strongly shifting pattern of site fidelity.
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FIGURE 6 | Condition C: site fidelity is set to re-generate from scratch at every
instance of re-setting of site fidelity. The inset shows the dispersion of fixes.

FIGURE 7 | Condition D: I(N) under strong preferential connectivity and no
drift of site fidelity (average of 10 series).

than expected from their node degree alone; i.e., the percent
use of given nodes relative to all nodes’ degree, where degree is
synonymous with relative popularity. However, under SFN terms,
which represent a non-classic variant of complex networks,
disruptions may have both external and internal causes. In the
latter case, consider an animal that (gradually or more abruptly)
for ecological reasons is choosing to abandon its present set of
preferred patches in total or in part, for example due to intra-
seasonal habitat phenology or other changes of space use. This
kind of shifting mosaic of site fidelity takes place (under the
premise of the MRW model) at many temporal scales in parallel,
and represents an important aspect of cognitive movement
ecology to be explored. Thus, SFN introduces a qualitatively
different kind of resilience against perturbations than expected
from premises of a classic, scale-free network.

First of all it is interesting that a scale-free kind of node
hierarchy (the degree distribution) is found under memory
utilization and site fidelity, but not necessarily depending on the

MRW scale-free properties of the MRW model [the spatially
explicit step length distribution and the I(N) function]. Space
use complexity in terms of network topology might thus be
expected over a very broad range of environmental conditions
and cognitive processing of spatio-temporal memory, given that
the actual animal complies with site fidelity. What about space use
vulnerability to perturbations? Animals that use spatial memory
to revisit patches in a self-reinforcing manner may as a side-
effect also develop resilience against destruction of even a large
percentage of its revisited patches. Like the stream of data over
the Internet, the traffic simply finds alternative routes and—over
time—swiftly absorbs the perturbations by developing alternative
nodes and links, including shortcuts.

In ecological terms, nodes may represent localized food items
or food-rich localities, which may occasionally be temporally
destroyed or made less attractive either by the individual’s
foraging activity or by competitors. A range of other external
factors may also reduce the assumed profit from returning
to a given locality, in the shorter or longer term. If resource
availability generally becomes less abundant, site fidelity and the
emerging scaling property of space use may even break down,
as illustrated by simulations (Gautestad and Mysterud, 2010b).
Thus, under a combination of general resource depletion and
disruption of resource patches (self-inflicted or not), the animal
may drift (or swiftly move) toward other localities and develop a
modified space use network. The present results indicate how the
degree of site fidelity, from resilience to drifting or re-building,
may be studied in the I(N) function with respect to the difference
between the two sampling schemes for varying N. Stronger degree
of shifting mosaic of utilized patches is expected to show a wider
gap between the two scheme results of I(N) relative to the log-log
line for their geometric mean.

In terms of fitness, a self-reinforcing feedback type of patch use
may lead to fine-scaled habitat auto-facilitation (Gautestad and
Mysterud, 2010b). Habitat facilitation is normally a descriptor
of how a keystone species may facilitate the habitat for other
species (Arsenault and Owen-smith, 2002; Fox et al., 2003; Liess
and Helmut, 2004; Korpinen et al., 2008; Pringle, 2008). However,
a species like a grazing ungulate may also auto-facilitate—self-
facilitate—a given habitat in a self-reinforcing manner, and
thereby improve or maintain the local habitat’s grazing potential
for a given individual, family group, herd or local population.
Mild grazing, i.e., below or at an optimum intensity of patch use,
may induce a higher re-growth rate and/or maintain a high level
of digestibility for some important food plants (Mobæk et al.,
2009).

However, as the utilization rate increases a critical threshold
is always lurking. The positive feedback may then switch into a
negative feedback, at least until the patches may be restored with
respect to their attractive attributes (Gautestad and Mysterud,
2010b). The development of a network of nodes as a consequence
of site fidelity is a two-edged sword also from other reasons: by
becoming increasingly attached to the most utilized super-nodes
(Figure 3) the animal may simultaneously make itself vulnerable.
For example, predators may learn where these nodes are located,
and gradually adapt their search behavior accordingly. The
present simulations may thus open new and interesting directions
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FIGURE 8 | (A) Results of re-analysis fixes from a sample of 15 telemetry series of black bear, where N-dependency for respective series is analyzed by I(N) rather
than R/S (see main text). Plots of log2[I(N)] for time-continuous (diamonds), frequency-distributed sampling (squares) and the log-average of the two schemes (black
circles) shows compliance with power exponent z≈0.5 for the latter (continuous line). All sets from all schemes are superimposed, which implies a mixture of series
with different Nmax. The slight non-linearity of time-continuous and frequency-distributed sampling is visualized by curve-fitting by third order polynomials (blue and
red dashed lines, respectively). (B) The divergence between the two fix sampling schemes over the mid-range of N is better visualized by averaging over respective
series’ N- and I(N)-plots.

of research, based on the various complex aspects that are
successively revealed in a Russian doll manner on the interface
between virtual network theory and animal ecology.

Network Topology in Relation to Local
Density of Fixes
The distribution of node degree (connectedness) in the oldest
part of the Site Fidelity Network (SFN) does not comply with
expectation from a regular (non-complex) network system, but
resembles a complex (hierarchically structured) space use over
a wide range of connectivity conditions. Another interesting

aspect of the present analyses regards the absence of a clear
correlation between spatial locations of the dominating nodes
from the virtual network space—“super-nodes”—relative to the
areas of most intense use. The latter regards the nodes of the
more traditionally considered utilization distribution, which is
based on local density of fixes (for example, core areas from
multi-modal kernel density estimates). In contrast, under MRW
the local density modality emerges as a multi-scale mixture of
network node locations and dispersion of exploratory moves.

The unexpected result in Figure 3 regarding distribution of
“super-nodes” opens for interesting speculations with respect to
cognitive movement ecology and animal space use in general:
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FIGURE 9 | Upper pane: The CSSU estimates for the respective series varies
strongly. Middle pane: z is independent of the parameter CSSU, and varies
little between the series. Lower pane: z is independent also of fix sample size
N, and varies little between the series.

even if a spatial grid cell containing a super-node contains a
low local density of relocations relative to many other parts of
the animal’s home range, the actual super-node may represent a
locality with stronger importance than revealed by the traditional

FIGURE 10 | The movement path from fix locations A to B has the same total
length as the path from locations C to D, but in the latter case the path
includes return events, which curls the path. Since a location along the latter
path has a relative short distance from any other location, the energy
expenditure from returning to an old location (close to C) is of similar
magnitude as revisiting a relatively recent location (close to D). Thus, in the
present simulations return events take place without penalty from time since
last visit to the target location.

utilization distribution alone. However, even if the overview
of complex network properties in Introduction referred to a
network’s susceptibility to perturbations of the most visited
nodes, one may speculate that an animal’s network of site fidelity
may show stronger resilience overall, due to spatial memory. If
a super-node is destroyed of abandoned, the individual may take
advantage of shifting to an alternative location in the understory
of potential nodes in the hierarchy of historically utilized and
remembered locations. In this respect the presently described
SFN, due to its large set of potential nodes, deviates qualitatively
from more traditional network theory, whether complex or
regular. Thus, ecological inference with respect to analysis of
space use under condition of site fidelity should take both the
Euclidean and the virtual network topology into consideration.

While the set of network nodes is small relative to the large
majority of locations that are revisited only 0–1 times, resilience
of nodes determines both the emergence of a “home range”
and its degree of spatial stability. The present results show that
the super-nodes may be surprisingly uncorrelated with a home
range’s core areas, which reflect the utilization distributional
peaks; i.e., the spatial density of relocations of an individual. Thus,
a maturing network of habitat utilization may to a large extent be
determined by the non-trivial dispersion of the rich understory of
less frequently visited nodes relative to the most visited ones.

In this respect the local “peaks” that are represented by
the location of the super-nodes in Figure 3A will typically go
undetected in a standard Kernel Density Estimate function,
which is “smoothing” the utilization distribution under the
statistical premise that the underlying space use process complies
with diffusion-like, scale-specific dynamics in statistical-physical
terms; i.e., the distribution may under this condition be
represented by a multi-modal function of a superposition of
many normal distributions, which then are implicitly expected
to reflect environmental heterogeneity. The node peaks in
Figure 3A will thus easily become “averaged away” due to
applying an erroneous biophysical framework for the analysis.
On the other hand, the super-nodes are also undetectable
by direct visual inspection, as illustrated by the complex
dispersion of fixes in Figure 3A. This aspect of the MRW model
underscores the importance of studying local space use intensity
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from variation in CSSU rather than studying the local density
of fixes directly.

The SFN model may point toward exploring a novel aspect of
animal space use where conditions for site fidelity are satisfied,
by showing how the physical (Euclidean) and the virtual network
of nodes and links represent complementary aspects of memory-
influenced movement. Specific aspects and properties may even
be uncorrelated between these representations. The theory of
network topology may thus spin off new and unexplored
hypotheses, which in a fruitful development in tandem with
ecological field experiments may give further insight with respect
to the dynamics of animal space use and dispersal. For example,
the vulnerability to surgical node destruction in combination
with the present insight that these nodes may be uncorrelated
with a home range’s primary core areas (Figure 3) may lead
to modified protocols with respect to protection of wildlife. It
may also provide guidelines for the opposite: more effective
destruction of the conditions for local persistence of pest species.

Drifting Site Fidelity
In sum, the present simulation conditions for drifting fidelity
cover a wide range of memory horizons. In parsimonious model
terms, they thus cover a wide range of situations where the animal
is utilizing a memory map during adaptation to a temporally
shifting mosaic of habitat heterogeneity.

The similarity between the average log[I(N)] slopes with z
close to 0.5 at the CSSU scale for all punctuation conditions under
neutral connectivity indicates resilience both with respect to
different percentage overlap of locations between successive time
sections and various magnitude of these sections (Figure 4B).
Thus, the difference between continuous-time and frequency-
based sampling in the I(N) scatter plot (stronger divergence in the
medium-N range) is due to the autocorrelation that follows from
the drifting pattern of site fidelity. However, the result showing
similar magnitude of both the power exponent z and the intercept
c reflects stability with respect to how the individual distributed
its space use over the range of scales, whether the site fidelity was
stable of temporally variable during the given time span.

A condition of a partly retained site fidelity leads to a tendency
for a “drifting home range” (Doncaster and Macdonald, 1991),
with some degree of locking toward previous patch use, similar to
the condition that was simulated and discussed in Gautestad and
Mysterud (2006). Behaviorally, punctuated site fidelity illustrates
an animal that is faithful to its environment in landscape-scale
terms, but occasionally is developing partly new local habitat
utilization as time progresses. For example, this scenario could
in model-simplistic terms illustrate GPS sampling of an ungulate
that occasionally is changing its space use in accordance to
changing food distribution during the season (Gautestad and
Mysterud, 2006; Bischof et al., 2012). Punctuated site fidelity
could also illustrate an intrinsic predator avoidance strategy,
whereby fitness may improve by occasional abrupt changes of
patch use, and this may under specific conditions be more
advantageous than the cost of occasionally giving up utilization of
familiar patches. It could also illustrate patch deterioration with
respect to a critical resource; energy profit in utilized patches may
deteriorate owing to foraging, and thus trigger a “reset” of patch

use in conceptual compliance to the marginal value theorem
(Charnov, 1976).

Consequently, for wildlife management and conservation
biology it should be of great importance to clarify whether
individual space use under influence of spatial memory tends
to follow the dynamic principles of scale-free or approximately
scale-free (complex) or a scale-specific (non-complex) networks.
Either way, the emergence of a network of actual and potential
nodes requires that the animal is utilizing a memory map for
occasional, non-random returns.

Model Feasibility
To my knowledge MRW is at present the only model developed
explicitly for GPS relocation sampling scale that has been
shown to reproduce three crucial statistical-physical aspects of
individual space use with properties in accordance to our analyses
of empirical GPS data (op. cit.); power law compliant and non-
trivial sample size dependence on observed home range area
I(N), power law distribution of step lengths F(L) and power
law space use dispersion, as expressed by the fractal dimension
D. Our results from empirical analyses have been coherent
with theory developed for the relationship between these three
aspects, based on the MRW properties (Gautestad and Mysterud,
2010a,b; Gautestad and Mysterud, 2013; Gautestad et al., 2013;
Gautestad, 2021). In the present report we extend the MRW
framework by studying a fourth aspect of the model; the topology
of network nodes.

Owing to the return events, space use becomes very
constrained relative to movement with no site fidelity.
Consequently, the total energy expenditure for a return
step is not expected to be substantially different on average from
an exploratory step. Complications with respect to modeling
energetic cost of short and long steps may thus be ignored in the
present context (Figure 10), a property that is consistent with
some recent empirical studies (Merkle et al., 2014; Marchand
et al., 2017; Merkle et al., 2017). Thus, the energetic aspect lends
additional weight to the feasibility of the MRW framework.
Memory utilization is energy-efficient, relative to the standard
space use paradigm, where the animal is implicitly assumed to
obey the general statistical-physical principles of Markovian
dynamics (see below).

It should be emphasized that MRW locations that are
returned to regard exact geometric positions relative to their first
occurrence in the series. However, the present results do not
depend on such exact position. The crucial point is that each
simulation makes an intrinsic distinction between true return
targets (even if these are geometrically rounded to a coarser-
defined site) and exploratory steps that just happen to land at a
given previous site.

Regardless of strength of connectivity, since return steps
in statistical terms may target any previously visited location
irrespective of previous revisits, physical patch distances and
virtual network distances are in this manner set to be independent
a priori. The model choice to return to a randomly picked
location under the given strength of connectivity may be
considered consistent with general principles of statistical
mechanics of movement in a homogeneous environment.
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Heterogeneity and deterministic behavior are under this
approach implicitly confined to finer resolutions (for example,
from varying local strength of site fidelity as a function of local
habitat attributes, as expressed by a in Eq. 1), and averaged
out in the distribution results from the complete set of fixes.
This implicit fine-grained heterogeneity may thus be replaced
by a homogeneous environmental property in the model for the
sake of simplicity.

MRW builds on a non-mechanistic (non-Markovian) kind
of statistical mechanics, as a consequence of implementation
of memory as defined by the model’s premises of “parallel
processing” rather than “serial processing” (Gautestad, 2021).
In order to embed “non-mechanistic” processes, the framework
of mechanical dynamics have been extended to allow for
the originally “peculiar” aspects of animal movement, under
which some specific paradoxes have been theoretically resolved.
The MRW conjecture of non-Markovian processing rests on
the memory property where returns happen independently of
temporal interval since previous visit to a given location. This
property makes the time domain scale-free: a given location has—
on average—a geometrically declining probability for a revisit
due to the maturing of space use over time (“longer path”).
Simultaneously, multiplying this declining revisit probability to
a given location with the number of potential nodes as a path is
growing will compensate this decline. Thus, this product reflects
a uniform (constant) next-step return probability pr. unit time.

From another perspective, the mechanistically unfamiliar
MRW property of Eq. 2, where observed area expansion is a
function of N rather than time as such, also violates a basic
property of a mechanistically driven system. Adding new fixes
may be performed in a time-incremental manner (continuous
sampling; a sample size that is proportional with sampling
time) or by increasing sampling frequency 1/t within the total
time period T (including every nth fix within T, by increasing
n until n = N). This statistical-physical property, originally
termed “The Home range Ghost” (Gautestad and Mysterud,
1995), makes the process time-independent (and thus non-
mechanistic) but temporally scale-range dependent of the ratio
T/t. In other words, a similar change of both T and 1/t gives a
similar change of the expectancy of I(N) when averaging over
the two sampling schemes. The present study lends additional
empirical and simulation-based results in this respect; the power
law in Eq. 2 not only regards serially non-autocorrelated sets of
fixes, but—crucially and non-trivially—also autocorrelated sets.
The latter regards the geometric averaging of continuous and
frequency-based sampling, which (as shown in Figures 4–7)
restores compliance with Eq. 2.

In contrast, in a Marovian system, a given return is a
function of current or recent conditions (first- or n-order
Markov, respectively). Thus, “infinite” memory influence on
next-move decisions (the core of the parallel processing
conjecture) is computationally dismissible. However, mechanistic
implementation of memory-based site fidelity as alternatives
to MRW has also been proposed and explored by others
(Morales et al., 2005; Dalziel et al., 2008; van Moorter et al.,
2009; Boyer and Walsh, 2010; Nabe-Nielsen et al., 2013;
Boyer and Romo-Cruz, 2014; Boyer and Solis-Salas, 2014;

Bracis et al., 2015). It will be interesting to see which of the
two theoretical directions to understand the observations of
complex movement as expressed by Eq. 2 gain further support
in the time ahead; parallel processing under scale-extended
statistical mechanics, or scale-specific (Markovian) processing
under standard biophysical premises.

Characteristic Scale of Space Use:
Expressing the Balance of Exploratory
Moves, Return Frequency and
Preferential Connectivity
In addition to exploring topological aspects of memory-influence
in general terms, the second main part of this report reveals
important properties of various degree of drifting site fidelity in
the Euclidean realm. In particular, I describe how the divergence
between I(N) from continuous and frequency-based sampling
appear as a feasible method to reveal such instability of site
fidelity. Crucially, under a given condition of connectivity
strength, unit step length a and constant average return frequency
tret, both c and z from the total series (Eq. 2) are on average
similar to c and z that are estimated from each of the ten
separate time sections (Figure 4B). This result holds even when
estimating these parameters under subsections of a given section;
i.e., by reducing N within an interval with absence of forced
drift of site fidelity (not shown). This property follows from the
model independence between c, z and N. Hence, when averaging
over spatio-temporal heterogeneity, the results confirm that the
overall property of c and z is maintained. Even when temporal
heterogeneity is further increased within the same total time span
by using 50 sections with 2% overlap of potential nodes for return
step locations, the averaging of time-continuous and frequency-
based sampling verifies the power law with a consistent slope
and intercept (Figure 5B). The drift effect on site fidelity is most
strongly increased when historic locations are abandoned at every
punctuation event (Figure 6). However, this report also shows
that CSSU, as expressed by c, is not only a function of unit step
length a of exploratory steps and tret for return events, but also
influenced by the strength of preferential connectivity. Stronger
preference leads to smaller CSSU; i.e., a more condensed space
use (Figure 7).

However, under a given node connectivity regime, despite
the added complexity of space use under the punctuated site
affinity, a similar magnitude of c and thus CSSU is found. This is
a non-trivial and important statistical-physical result: averaging
over spatial and temporal heterogeneity of space use shows a
similar result with respect to estimating c. The parameter c is
thus confirmed to be very resilient with respect to finer-scaled
heterogeneity relative to the chosen scales in time and space
for the analysis.

The general recognition of spatio-temporal memory as a
crucial aspect of animal space use is currently forcing a rapid
extension of the theoretical foundation of animal movement
modeling, in particular for vertebrates. In the present report I
have deepened our own multi-decennial quest in this regard, by
drilling into the topology aspect of memory-based site fidelity
and how early-phase return events to previously visited locations

Frontiers in Ecology and Evolution | www.frontiersin.org 17 June 2022 | Volume 10 | Article 695854139

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-695854 May 31, 2022 Time: 14:56 # 18

Gautestad Network Topology and Site Fidelity

tend to lock habitat utilization into the emergence of a home
range. Contrary to the classic paradigm, under the present MRW
model the concept of home range size becomes imprecise, due
to the intrinsic scaling property of the mixture of exploratory
bouts and return events. Incidence, I(N), describes a power law
under changing N, in violation of the traditional expectation of
an asymptotic approach toward a stationary home range size with
increasing N. Consequently, the Characteristic Scale of Space Use,
CSSU, is for statistical fractal-compliant fix patterns here (as in
our previous papers) advocated as an alternative expression for
size; i.e., “area pr. square root of N” (Eq. 2) rather than area per
se. Under the MRW framework, the instability of I(N) under a
change of N is not a trivial function of small-sample error (as
under the paradigmic assumptions of a home range utilization),
but is the result of varying observation intensity on a given multi-
scaled and non-Markovian space use process. Obviously, this
statement needs further validation, both theoretically and not at
least empirically.

Figure 7 shows that space use drifts toward becoming more
fine-gained in unit-scale CSSU terms as connectivity drifts from
neutral toward preferential. This is quite logical and to be
expected a priori, since constraining returns to a subset of
previously visited locations by necessity also increases the relative
connectivity to early-phase emergence of nodes. Consequently,
I(N) for a given N becomes more constrained relative to
neutral connectivity conditions. However, the stability of z when
shifting from neutral to preferential connectivity is perhaps
more surprising and supports the broad versatility of the MRW
model as a parsimonious model for memory-influenced habitat
utilization.

Black Bear Data Under the I(N) Analysis
While the previously published analysis of black bear movement
(Gautestad et al., 1998) applied Rescaled Range analysis (R/S)
(Mandelbrot, 1983; Feder, 1988) to test for MRW compliance,
the present result confirms a similar pattern under the I(N)
method where continuous and frequency-based sampling are
averaged. Most relevant for the present context, the separation
of these two fix sampling schemes scatter plots indicate that
on average these individuals expressed some (un-quantified)
magnitude of drifting site fidelity. The present re-analysis
of a sample of black bear telemetry series, albeit very
limited and prone to statistical uncertainty, provides important
support for several aspects of the MRW approach. First, this
pilot study shows that the power law of N-dependence of
observed space use (Eq. 2) holds when shifting from Rescaled
Range analysis (Gautestad et al., 1998) to an I(N) analysis
(Figure 8). Second, independence between key parameters of
the MRW model are supported (Figure 9), and third, the
present result invites to further explorations of the ecological
aspect of drifting site fidelity using the method that has
been presented here.

In general, when analyzing real data; as long as sampling
rate of fixes, tobs, is larger than the average return rate,
tret, and the movement behavior satisfies MRW, neither z
nor c are influenced. In real data, a verification of this
property is thereby indirectly achieved by finding stability of

both parameters in I(N) as grid scale k is "zoomed" over a
scale range. Too small k leads to z > 0.5 (as described in
Supplementary Material 1), and too large k leads to z < 0.5.
Where z approximates 0.5, the actual k-scale squared gives an
estimate of CSSU.

CONCLUSION

As always, scientific progress is achieved by the dual development
of theory and empirical tests. In this report a specific model,
MRW, is applied to propose a novel direction to explore
the evolution of two complementary aspects of animal space
use under memory influence, the topological property of
network graphs and whether the simulation-revealed property
of node popularity may be revealed indirectly by studying
Euclidean dispersion of fixes. The latter approach depends in the
MRW model, which embeds several testable predictions. These
properties come under further scrutiny here, as a side-effect of
exploring topological properties of spatial memory and spatio-
temporal properties of drifting site fidelity. First, the modern view
of home range as an emerging object from occasional returns to
popular sites is gaining additional support. Traditionally, home
range theory has been based on individuals that are expressing
independent local returns within a spatially constrained area (e.g.,
demarcations due to physical borders or territorial behavior). For
example, many statistical methods in tests of habitat selection rest
on an assumption of random and non-intentional self-crossing
of the animal’s path, leading to “re-discovery” of profitable sites
(i.e., a Markovian process). Second, verification of a MRW-like
fix pattern (for example, compliance with Eq. 2) both supports
a cognitive capacity for long term utilization of a memory
map, and also a specific statistical-physical class of movement:
a mixture of scale-free movement in tandem with occasional
returns. Third, an acceptance of MRW-like behavior in statistical-
physical terms has as a consequence that local space use intensity
should preferably be quantified by CSSU and not by local density
of fixes. Thus, two sections of a home range may express different
magnitude of CSSU, despite a similar magnitude of fix density; or
vice versa. Fourth, empirical support for scale-free and memory-
influenced movement means a new direction to study to what
extent an animal is distributing its habitat utilization effort over
a scale range. In Eq. 2, a power exponent close to 0.5 rather than
close to zero implies that—in statistical and over-all terms—the
effort has been quite evenly distributed over this spatial range.
Further, empirical support for long term memory and return
events quite independent of the time span since last visit gives
weight to the hypothesis of scale-free habitat utilization also
in the time domain. Fifth, the MRW framework lends support
to the quest to scrutinize the biophysical aspect of movement,
rather than just taking the classic assumptions of a mechanistic,
Markovian-compliant kind of process as granted.

To conclude, under the present approach site fidelity from
memory utilization under the MRW conjecture should either
be tested using methods that are available for this purpose
(Gautestad, 2012, 2021), or this kind of behavior could be applied
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as a premise for analysis of complex habitat utilization if sufficient
empirical support has accumulated.
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Seasonal migration is a behavioral response to predictable variation in environmental
resources, risks, and conditions. In behaviorally plastic migrants, migration is a
conditional strategy that depends, in part, on an individual’s informational state. The
cognitive processes that underlie how facultative migrants understand and respond to
their environment are not well understood. We compared perception of the present
environment to memory and omniscience as competing cognitive mechanisms driving
altitudinal migratory decisions in an endangered ungulate, the Sierra Nevada bighorn
sheep (Ovis canadensis sierrae) using 1,298 animal years of data, encompassing
460 unique individuals. We built a suite of statistical models to partition variation
in fall migratory status explained by cognitive predictors, while controlling for non-
cognitive drivers. To approximate attribute memory, we included lagged attributes of
the range an individual experienced in the previous year. We quantified perception
by limiting an individual’s knowledge of migratory range to the area and attributes
visible from its summer range, prior to migrating. Our results show that perception,
in addition to the migratory propensity of an individual’s social group, and an individual’s
migratory history are the best predictors of migration in our system. Our findings
suggest that short-distance altitudinal migration is, in part, a response to an individual’s
perception of conditions on alterative winter range. In long-distance partial migrants,
exploration of migratory decision-making has been limited, but it is unlikely that migratory
decisions would be based on sensory cues from a remote target range. Differing
cognitive mechanisms underpinning short and long-distance migratory decisions will
result in differing levels of behavioral plasticity in response to global climate change
and anthropogenic disturbance, with important implications for management and
conservation of migratory species.

Keywords: memory, perception, culture, facultative migration, partial migration, ungulates, reintroduction,
cognitive movement ecology
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INTRODUCTION

Seasonal migration is defined as a regular movement between
two or more discrete seasonal ranges separated in space and
time (Avgar et al., 2014; Berg et al., 2019). Seasonal migration
allows individuals inhabiting environments with temporally
predictable variation to track resources, like forage and mates,
avoid risks associated with predation and parasitism, and mediate
exposure to adverse climatic conditions (Fryxell and Sinclair,
1988; Mysterud et al., 2011; Avgar et al., 2014). Migratory
behavior contributes to the increased growth, survival, and
reproduction of migratory individuals (Hebblewhite and Merrill,
2011; White et al., 2014). Across a population, the improved
demographic performance of migrants contributes to larger
equilibrium population sizes than could be achieved through
resident behavioral strategies (Fryxell et al., 1988; Fryxell and
Sinclair, 1988).The influence of migrants also spans ecosystems
as they transport nutrients, disperse seeds, serve as vectors for
parasites and disease, and participate in trophic interactions,
bridging disjunct habitats (Bauer and Hoye, 2014; Shaw, 2016).
The ecological services and ecotourism industries supported
by migration generate considerable economic value for the
public (Shaw, 2016; Kauffman et al., 2021). The conservation
of migratory behavior is important not only to maintain
sustainable populations of migratory species, but also to protect
the ecological and economic benefits migration confers.

The size of migratory populations and prevalence of migratory
behavior has declined globally across terrestrial herbivores,
particularly among ungulates (Harris et al., 2009; Tucker et al.,
2018; Kauffman et al., 2021). The loss of migrants is primarily
attributed to anthropogenic disturbance and global climate
change (Lendrum et al., 2013). In species such as mule deer
(Odocoileus hemionus) (Sawyer et al., 2019) and caribou (Rangifer
tarandus) (Dalerum et al., 2007), migration is a fixed, innate
behavior arising from genetics or maternal effects (Møller
et al., 2011; Pulido, 2011). However, migration can also be
a conditional strategy with individuals exhibiting behavioral
plasticity in response to changes in their internal state and
external environment, as observed in moose (Alces alces) (Ball
et al., 2001; Singh et al., 2012), roe deer (Capreolus capreolus)
(Cagnacci et al., 2011), pronghorn (Antilocapra americana)
(White et al., 2007), and bighorn sheep (Spitz et al., 2018;
Denryter et al., 2021b). Behaviorally plastic migrants make a
series of choices with respect to their migratory movements. First
individuals decide if they will migrate or remain resident on their
present range. If migrating, they also choose when to leave and
where to go. We consider only the initial decision to migrate in
this manuscript, and refer to this event as a “migratory decision”.
Our objective is to understand why individuals choose to migrate,
rather than where they go or how they get there. Understanding
why terrestrial herbivores decide to migrate is necessary to
predict the conditions under which migratory behavior may
disappear, allowing for the implementation of proactive, rather
than reactive conservation measures.

Plastic migratory behavior is hypothesized to be a response
to the physical environment, conditional on an individual’s
internal state and social environment. Individuals may decide

to migrate to follow ephemeral resources, or avoid risks and
unfavorable conditions in portions of their physical environment.
The forage maturation hypothesis posits that migrants track
phenological gradients of plant growth across the landscape
to maximize energy and nutrient intake (Fryxell and Sinclair,
1988; Hebblewhite et al., 2008; Berg et al., 2019). Conversely,
the predator avoidance hypothesis states that individuals migrate
to escape or mitigate consumptive risk, including predation,
parasitism, and hunting pressure (Bergerud et al., 1990; Barten
et al., 2001; Skov et al., 2011). Migration may also allow
individuals to avoid adverse conditions they cannot tolerate
including extreme temperatures, drought, and precipitation
events (Ketterson and Nolan, 1976; Sabine et al., 2002; Brinkman
et al., 2005). Resources, risks, conditions, and the interactions of
these elements are presumably evaluated by an individual, in the
context of its internal state and social environment, as it decides
whether or not to migrate. Relatively fixed (like age class, sex, or
life history strategy) and continuously variable (like body fat or
lactation status) attributes of an individual’s physical condition
may influence its migratory propensity (Lundberg, 1987; Grayson
and Wilbur, 2009; Chapman et al., 2011; Pulido, 2011; Berg et al.,
2019). The terminal investment hypothesis predicts that older
individuals will be more likely to accept mortality risks associated
with migration to access resources that increase the likelihood of
successful reproduction, compared to younger individuals who
should invest in their future reproductive potential, and hence,
their long-term survival (Clutton-Brock, 1984). These hypotheses
suggest that migration is a behavioral adaptation to optimize
fitness in variable physical environments, and that behavioral
plasticity is a response to shifts in the risk-reward tradeoff over
the lifetime of an individual.

An individual’s internal state is also shaped by its social
environment – here defined as all intraspecific interactions –
through density dependent effects and transmission of
information between individuals. The dominance or competitive
release hypothesis predicts that less dominant individuals will
migrate to avoid intraspecific competition for resources when
populations reach high densities (Gauthreaux, 1982; Nelson,
1995; Mysterud et al., 2011). On the other hand, positive
density dependence (Allee effects) may influence migratory
propensity when remaining part of a group confers a fitness
advantage (Borrello, 2012) through increased predator vigilance
(many eyes) (Lima, 1995; Rieucau and Martin, 2008), reduced
predation risk via dilution and confusion effects (Pulliam,
1973; Krause and Ruxton, 2002; Chapman et al., 2011), or
transmission of knowledge from experienced migrants (Heyes,
1994; Mueller et al., 2013; Jesmer et al., 2018; Lowrey et al.,
2020). The migratory behavior of an individual may mirror
the migratory tendencies of its social group – what we term
migratory “culture” – because behavior matching maintains
group cohesion. These hypothesized mechanisms underpinning
migratory plasticity are heavily focused on external drivers, while
an individual’s knowledge of its internal state and environment
are given little consideration.

An implicit assumption of most research into the
environmental drivers of migration is that individuals are
omniscient, possessing complete and perfect knowledge of their
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surroundings near and far [as approximated by remotely-sensed
environmental covariates, but see cultural transmission (Jesmer
et al., 2018)]. However, behaviorally plastic migrants, particularly
long-distance migrants, are likely making migratory decisions
with less than complete knowledge of the habitat at their
destination. Cognition, the processes concerned with the
acquisition, retention, and use of information (Dukas, 1998,
2004; Kashetsky et al., 2021), is the lens through which an
individual comes to understand its physical environment.
Therefore, migratory behavior arises from an individual’s
‘informational state’- knowledge of its current and alternative
environments, rather than the attributes of the environment
itself (Blumstein and Bouskila, 1996; Avgar et al., 2013; Merkle
et al., 2019).

An individual’s knowledge of its environment may result
from previous experience, which when encoded in the brain and
retained over time is called memory (Fagan et al., 2013; Kashetsky
et al., 2021). Memory encompasses two forms of information:
an individual’s experience of its physical environment (attribute
memory) and the spatial location associated with that experience
(spatial memory) (Fagan et al., 2013). Bracis and Mueller
(2017) found that memory was the best cognitive predictor
of long-distance migration in zebras. Abrahms et al. (2019)
uncovered evidence of blue whale reliance on memory to track
algal blooms. Merkle et al. (2019) were unable to replicate
the migratory trajectories of mule deer without the inclusion
of a spatial memory component in their individual-based
simulations. However, all three of these studies focused on
the cognitive processes underlying navigation during migration,
rather than migratory decision-making. Memory provides
behaviorally plastic migrants with a cognitive mechanism to
evaluate the profitability of alternative behavioral strategies
based on past range conditions. However, memory-driven
migration is a response to a predicted state of the migratory
range based on past experience, rather than a response to
temporally proximate cues. In environments characterized by
high interannual variability of resources, risks and conditions,
memory-driven migration may lead to a mismatch between the
timing of movement and the optimal environmental state of
the target range.

Alternatively, individuals could make migratory decisions in
response to information gathered about the present state of the
physical environment. Individuals perceive their environment
through visual, olfactory, auditory, and other sensory cues,
but the information available to an organism is constrained
by its perceptual range. Therefore, perception may be a more
useful cognitive mechanism for guiding local movements and
short-distance migrations, than for facilitating long-distance
migratory movements (Bracis and Mueller, 2017). Bracis and
Mueller (2017), Abrahms et al. (2019), and Merkle et al. (2019)
evaluated perception as a mechanism facilitating navigation
during migration in their respective systems, but found that
individual responses to local forage conditions did not give rise
to the observed migratory trajectories. Interestingly, all three
studies compared memory and perception as cognitive drivers
of migration in species of long-distance migrants (migratory
destination outside of the perceptual range of an individual). To

our knowledge, a similar comparative analysis has never been
conducted in a population of short-distance migrants (migratory
destination within the perceptual range of an individual).
In focusing on navigation, these previous studies also only
included individuals that had previously made the decision to
migrate. The cognitive drivers of migratory decision-making
have yet to be addressed empirically. Understanding how the
cognitive drivers of short and long-distance migration differ
will be important for predicting the plasticity of migratory
behavior in response to anthropogenic habitat alteration and
global climate change.

While cognition likely underpins migratory behavior,
particularly in behaviorally plastic migrants, cognitive drivers
of migratory decision-making receive much less attention than
other hypothesized mechanisms (Kashetsky et al., 2021). Our
objective is to determine if cognitive processes – specifically
attribute memory and perception – influence the decisions
of large herbivores to undertake short-distance, altitudinal
migrations. We sought to answer this question by investigating
longitudinal location data gathered from Sierra Nevada
bighorn sheep (Ovis canadensis sierrae, hereafter SNBS),
an ideal study species because SNBS exhibit one of the
highest rates of individual switching between resident and
migratory behavior among ungulates (Spitz et al., 2018).
We built a suite of mixed effect logistic regression models
with variation in migratory status explained by cognitive
and non-cognitive predictors. Our goal was to isolate the
contribution of cognitive processes to migratory decision-
making by controlling for the non-cognitive drivers with the
most explanatory power, and then introducing the effects
of cognition. We modeled attribute memory by including
lagged environmental covariates reflecting range conditions
experienced by an individual in the previous year. Since
bighorn are a highly visual species with good long-distance
eyesight (Mooring et al., 2003), we integrated perception
into our models by quantifying the area and attributes of
alternative ranges a bighorn could see at the time it was making
a migratory decision using a viewshed analysis (ESRI, 2020). We
eliminated covariates from the global and nested models using
stepwise model reduction and evaluated model performance
using goodness of fit statistics, finding that perception is
the most important cognitive process influencing migratory
propensity in SNBS.

MATERIALS AND METHODS

Focal Species and Study Site
Sierra Nevada bighorn sheep are a subspecies of partially
(not all members of the population migrate) and facultatively
(individuals are not fixed in their migratory strategy and may
switch between years) migratory wild sheep endemic to the
southern and central portions of the Sierra Nevada mountain
range in eastern California (US Fish and Wildlife Service, 2007).
Due to market hunting and disease transmission from domestic
sheep, by the 1970s only three native SNBS herds remained
(US Fish and Wildlife Service, 2007). Herds are subpopulations
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defined by boundaries in geographic space outlined in the 2007
SNBS Recovery Plan (US Fish and Wildlife Service, 2007).
Between 1979 and 1988, those three herds were used to expand
the geographic range of SNBS throughout much of the species’
historic range. There are presently 14 SNBS herds, ranging in size
from 9 to 138 animals, for a total population of approximately
600 individuals.

The Sierra Nevada (hereafter Sierra) mountains are 650 km
long and between 75 and 125 km wide, with a north-south
elevational gradient (Hill, 2006). The tallest peaks, including the
highest point in the conterminous United States (Mt. Whitney;
4,421 m), are found in the southern part of the range. The western
slope of the Sierra is gentle and mesic in contrast to the steep,
xeric escarpment of the eastern slope (Hill, 2006). During the
winter, most SNBS herds are found to the east of the Sierra
crest in habitat encompassed by the range’s rain shadow. Annual
precipitation is highly variable, but generally falls in the form of
snow between October and May, with snow persisting at high-
elevations until late summer (California Department of Water
Resources, 2019). Snow accumulation at high-elevations ranges
between 500 and 1,500 cm annually (California Department
of Water Resources, 2019). Winds near the crest of the Sierra
average 43 km/h and scour snow from the alpine ridges,
providing snow-free habitat for SNBS (Bair et al., 2015).

Sierra Nevada bighorn sheep summer in the alpine
(elevations > 3,300 m) (Spitz et al., 2018), a habitat spanning the
crest of the Sierra characterized by sparse vegetation interspersed
with meadows. Average temperatures in the alpine range from
daily lows of−2◦C to highs of 15◦C during the summer, and−14
to −1◦C during the winter, with snowfall possible year-round
(California Department of Water Resources, 2019). SNBS
may overwinter in the alpine or at lower elevations (1,525–
2,500 m) (Spitz et al., 2018). The low-elevation winter range is
characterized by sage brush-steppe (Artemisia tridentata) plant
communities. During the winter, average daily temperatures
on these low-elevation ranges are between −2 and 7◦C
(California Department of Water Resources, 2019). SNBS may
travel through mid-elevation (2,500–3,300 m) pinyon-juniper
woodlands, coniferous forests, and subalpine meadows when
migrating from summer to low-elevation winter range. The
straight-line distance between high- and low-elevation ranges is,
however, typically <5 km.

Migratory Delineation
Location data for SNBS are collected by the California
Department of Fish and Wildlife (CDFW) via direct capture,
ground field surveys, and very high frequency (VHF) and global
positioning system (GPS) telemetry (Stephenson et al., 2012).
For the purposes of this study, our animal year begins July
1st (post spring migration and lambing) and ends June 30th.
Our animal years are further divided into 3-month seasons
with summer defined as July–September (months 7–9), fall as
October–December (months 10–12), winter as January–March
(months 1–3), and spring as April–June (months 4–6). Helicopter
net gun captures are conducted in the spring and fall to deploy
GPS and VHF collars and for the purposes of translocating
individuals between herd units. Annual ground surveys are

conducted during the summer or winter seasons for every herd
unit (with seasonal variability in survey timing necessary to
optimize survey success). Observers undertake a full population
census for each herd unit, recording the number, age, and sex
of all bighorn, along with the location of marked individuals
(Johnson et al., 2010a). Monthly fixed wing telemetry flights
gather positional data on VHF-collared bighorn (Stephenson
et al., 2012). GPS-collared animals provide between 2 and 24 daily
locations, uploaded continuously to CDFW via satellite.

We used these four sources of positional data to classify the
migratory behavior of individual SNBS. Migration of SNBS is
altitudinal (2,000–2,500 m) over relatively short distances (4–
10 km), and its fall bout (from high to low-elevation) can occur
any time between November and January of the following year
(Spitz et al., 2018). Spitz et al. (2017) developed an altitudinal
net squared displacement (NSD) method for classifying the
migratory status of SNBS, but the approach is only applicable to
individuals with sufficient telemetry data. We developed a new
technique to delineate migration in SNBS that can accommodate
all forms of positional data, increase sample size, and allow for
the fitting of more complex models. We used an elevational
cutoff of 2,850 m to demarcate ‘migrant’ and ‘resident’ classes
of SNBS. We selected a cutoff of 2,850 m because that elevation
provided a clear separation between used high and low-elevation
winter habitat across herd units based on GPS data. For any given
year, animals detected below 2,850 m one or more times during
the winter season (January–March) were classified as ‘migrant,’
while individuals not detected below 2,850 m, but observed at
higher elevations were classified as ‘resident.’ We deemed a single
detection below the elevational threshold sufficient to classify an
individual as migratory based on a sensitivity analysis of GPS
collared individuals. Removing individuals with few positional
fixes below 2,850 m did not change the number of migrants. We
assigned animals known to be alive, but not detected during a
given year an “unknown” migratory status.

Given that multiple types of location data are often collected
for a single individual during an animal year, we developed a
hierarchical classification structure for migratory behavior based
on the uncertainty of observing an individual below 2,850 m. We
considered data types with the most positional fixes to provide
the most reliable migratory classifications because they minimize
the risk of failing to detect an individual on low-elevation winter
range, if it was present. In our hierarchy, there are four levels;
GPS data provides the most accurate migratory classification,
followed by VHF, ground survey, and capture data. We found
few conflicts between migratory classifications across levels of the
hierarchy so we concluded a migratory designation could arise
from any data type. We validated our migratory classification
via elevational cutoff for GPS-collared bighorn against NSD
classifications of migration and found that our categorizations
only differed by our treatment of flexible migrants. Our classifier
has an intentional migratory bias because our focus is on drivers
of seasonal movements to low-elevation winter range. Our use
of realized migration as a proxy for migratory decision-making
rests on the assumption that all individuals that decide to migrate
complete the migration, and are observed on low-elevation
winter range. We believe this assumption is reasonable given
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that SNBS typically complete their fall migration within the
span of a few days.

Range Delineation
We developed a habitat suitability metric to delineate available
summer, winter high, and winter low-elevation ranges
independent of present SNBS use. We chose to define ranges
independent of present use to (1) accommodate individuals
without GPS data, and (2) to create a temporally-static set of
polygons within which we explore temporally dynamic variables.
We defined three range classes (summer, high-elevation winter,
and low-elevation winter) using the resource selection functions
(RSFs) for SNBS presented in Spitz et al. (2020) (Figure 1). RSFs
provide a continuous characterization of range-specific habitat
based on relative intensity of use. To demarcate summer range,
we used ArcGIS (ESRI, 2021) to select the largest 5% of RSF
values from a raster describing the relative intensity of summer
habitat use, and merged these cells into sub-seasonal range

polygons, excluding areas less than 200,000 m2 (Figure 1C). To
define the winter ranges, we combined the raw RSF values for
high and low-elevation habitat in raster cell x into a single index
using the formula:

[
wRSFlow (x)+ wRSFhigh (x)

]
· ln

[
wRSFlow (x)
wRSFhigh (x)

]

where wRSFlow and wRSFhigh are the winter RSF values for low
and high elevation habitats in x. The index describes high and
low winter habitat in a single raster with high-elevation winter
range having the smallest (negative) values and low-elevation
winter range having the highest (positive) values (Figure 1). The
use of the RSF index, rather than the raw values, ensures that
the classifications of high and low-elevation range are mutually
exclusive. A raster cell must have both a large combined RSF

FIGURE 1 | (A) Baxter herd unit high-elevation winter range RSF with blue and yellow colors representing low and high values of relative selection strength (RSS),
respectively (RSS colors should be interpreted similarly for panels B,C). The purple polygons delineate the Baxter high-elevation winter range considered in our
analysis, and encompass the lowest 5% of RSF index values, excluding polygons with areas less than 200,000 m2. (B) Baxter herd unit low-elevation winter range
RSF with orange polygons delineating the low-elevation winter range considered in our analysis. Polygon boundaries encompass the highest 5% of RSF index
values, excluding areas less than 200,000 m2 in size. (C) Baxter herd unit summer range RSF with pink polygons delineating the summer range considered in our
analysis. Polygon boundaries encompass the highest 5% of RSS values, excluding areas less than 200,000 m2 in size. (D) Baxter herd unit RSF index values plotted
spatially. Orange low-elevation and purple high-elevation winter range raster cells contain values that fall within the highest 5% or lowest 5% of the RSF index,
respectively. Tan raster cells include all index values outside of the most extreme 10% of the data. This index map does not perfectly match the realized range
polygons because areas less than 200,000 m2 are included. (E) A histogram of the RSF index raster values. Orange and purple bars represent the highest and
lowest 5% of values, respectively (corresponding with low and high elevation range in panel D). The tan bars include all values outside of the most extreme 10% of
the data (corresponding with the landscape matrix in panel D). (F) Composite map of Baxter herd unit high and low-elevation winter range and summer range
polygons. High-elevation winter and summer range overlap extensively, hence why the pink and purple polygons are nearly indistinguishable.
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value (wRSFlow (x)+ wRSFhigh (x)), and a large range-specific
RSF value (low or high) to be considered a candidate for inclusion
in a winter range. We selected the largest and smallest 5% of the
values to define the low-elevation and high-elevation winter sub-
seasonal ranges, respectively. Both the RSF (summer range) and
index (winter ranges) threshold values were chosen because the
resultant sub-seasonal ranges encompassed all the GPS points of
range resident (non-transient) individuals. Based on this range
delineation, each herd unit contains between 1 and 35 sub-
seasonal ranges for each combination of season and elevation,
that we refer to in aggregate as the seasonal range (summer,
high-elevation winter, and low-elevation winter). Given that
individuals without GPS data cannot be attributed to a sub-
seasonal range polygon, all individual associations are considered
to occur at the level of the seasonal range.

Covariates
We attempted to explain variation in migratory status between
individuals using cognitive predictors – perception and
memory – while controlling for non-cognitive drivers – an
individual’s internal state and social and physical (conditions,
risks, and resources) environment. The physical environment
of an SNBS is characterized by forage biomass, shrub cover,
snow-free area, distance to steep terrain, lion predation risk,
and distance to migratory range. The biological importance
and methods used to derive each covariate are explored in
detail below. While change in the physical environment may
underlie migration, it is unclear if SNBS are pushed from their
present range by unfavorable conditions or pulled to an alternate
range by favorable conditions. For an individual to be drawn to
an alternative range, it must possess some information about
conditions at that location. An individual may remember what
it experienced at that location in the previous year (memory) or
use its senses to gather information about the present state of the
alternate range (perception). Memory and perception provide
partial information about conditions at a distant location,
but an individual may also possess complete information
(omniscience), as assumed by many ecological models. An
individual’s propensity to migrate may also be influenced by its
internal state (sex and age, as well as previous migratory history)
and social environment. An individual’s social environment is
comprised of the migratory behavior of its social group (deme
culture), the length of time its social group has existed (deme
history), and the size of the group (deme size). Our base model
encapsulates all the information an individual possesses about
itself, its social environment, and present resources, risks, and
conditions at the time it makes the decision to migrate. Our three
cognitive models (omniscient, perception, memory) represent
different degrees and sources of information about alternative
ranges, while controlling for important base model covariates.
All models and the covariates they include are described in detail
below and summarized in Table 1.

Physical Environment Covariates
Access to resources, exposure to risks, and experienced
conditions may influence migratory behavior by either attracting
animals to or repelling them from a seasonal range. For each

season in each sub-seasonal range (polygons delineated using the
approach outlined in Section “Range Delineation”), we extracted
all environmental covariates detailed below and calculated their
average values. To aggregate the covariates to reflect seasonal
range-level measurements (each seasonal range includes 1–35
sub-seasonal polygons), we took the area-weighted means of
these averages across all sub-seasonal polygons in a range. We
adjusted the spatial scaling of all means to correspond to an
average value per hectare of range, and then multiplied by the
aggregated range area in hectares to represent the mean seasonal
quantity of the covariate.

Increased availability of forage on winter range during
the winter season is a resource expected to attract SNBS,
and hence positively affect their tendency to migrate. We
quantified standing residual forage using the Rangeland Analysis
Platform (RAP) biomass tool which combines field, satellite,
meteorological, and land surface data to model vegetation
productivity across the western United States (Jones et al., 2018).
The RAP modeling framework estimates accumulated primary
production according to plant functional type every 16 days at
a spatial resolution of 30 m (Robinson et al., 2019; Jones et al.,
2021). We calculated cumulative annual herbaceous biomass in
kilograms per hectare (kg/ha) by summing the forb and grass
biomass estimates across seasons, beginning in the spring of the
preceding animal year through the winter of the focal animal
year. Although the RAP biomass data suggests new growth occurs
on some high-elevation winter ranges during the winter, we
chose to exclude these values based on expert opinion. We did
include winter biomass accumulation values for low-elevation
winter range because green-up can occur as early as January given
sufficient precipitation (Wehausen, 1992).

Browse comprised of woody shrubs may serve as an important
nutritional resource for SNBS during the winter months when
forage access is restricted by snow cover. We estimated the annual
shrub cover for each sub-seasonal range using RAP’s modeled
fractional cover product (Jones et al., 2018; Allred et al., 2021).
Our range-aggregated shrub cover index is an estimate of the
total hectares of shrub cover within a range based on an area-
weighted mean shrub cover across all sub-seasonal ranges. We
predicted that increases in forage biomass or shrubs on winter
range would increase that range’s attractiveness because of an
increase in nutritional resources.

While SNBS survive extreme winter conditions in the Sierra,
extensive snow cover can impede movement and restrict access
to forage and browse, increasing reliance on body fat reserves
to stave off starvation (Monteith et al., 2013; Stephenson et al.,
2020). We accounted for the potential role of snow-free area
as an attractor to SNBS using daily downscaled 30 m fractional
snow cover layers (Rittger et al., 2021) aggregated to produce
seasonal average percent snow cover estimates per hectare for
each seasonal range. Given that SNBS may migrate during either
fall or winter seasons, and the seasons are of equal length, we
averaged the range-aggregated mean percent snow cover for the
fall and winter to encompass snow attributes at all times of the
year when SNBS make migratory decisions. Finally, to calculate
the total hectares of snow-free area within a range across the fall
and winter seasons, we subtracted the mean percent snow cover
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TABLE 1 | Covariate structure of our full and trimmed base, omniscient, perception, memory, and global models.

Base Omniscient Perception Memory Global

Category Covariate Effect Full Trim Full Trim Full Trim Full Trim Full Trim

Individual Sex 0 X

Sex: age 0 X

Migratory history + X X * * * * * * X X

Translocation status − X

Social envio. Deme culture + X X * * * * * * X X

Deme history − X X * * * * * * X X

Deme size + X

Physical envio. Fall biomass WH − X

Snow-free area WH − X

Dist. steep WH − X X * * * * * * X X

Winter biomass WL + X

Snow-free area WL + X X X

Dist. steep WL − X

Lions WL − X

Cognitive View area WL + X

View biomass WL + X

View snow-free WL + X X X X

View dist. steep WL – X X X X

Snow-free lag WH:Res − X

Snow-free lag WL:Mig + X

Biomass lag WH:Res − X

Biomass lag WL:Mig + X

Dist. steep WH:Res − X

Dist. steep WL:Mig − X

Lions lag WL:Mig − X

Symbols in the effect column represent predictions of how larger covariate values will influence migratory propensity (0 = no prediction, + = positive effect, − = negative
effect). In the covariate names, WH and WL are abbreviations for “winter high-elevation range” and “winter low-elevation range” respectively. “Res” and “Mig” are indicator
variables representing an individual’s resident (Res = 1) or migratory (Mig = 1) status. Detailed descriptions of covariates can be found in the text. Within the model
descriptions ‘X’ demarcates covariates that were considered in the full model and retained in the trimmed model. An asterisk (*) denotes a covariate carried over from the
trimmed base model, and not subjected to stepwise model selection. Gray shading indicates that a covariate was not considered in a model.

from 100% to get the mean percent snow-free area per hectare,
and multiplied by the total range area. We anticipated that as a
range’s snow-free area increased, SNBS attraction to the range
would increase because of access to nutritional resources and
reduced costs of locomotion.

Physical characteristics of high-elevation terrain may facilitate
snow scouring by strong winter winds, improving forage access
for SNBS. Resident SNBS [i.e., those wintering on high-elevation
alpine range have been observed to use large, flat windswept
plateaus (Stephenson et al., 2020)]. Large plateaus provide access
to forage and allow SNBS to distance themselves from precipitous
terrain where avalanches and falls down icy slopes result in
mortality events (Conner et al., 2018). In contrast, on low-
elevation winter range, quick access to steep terrain is important
to permit migratory SNBS to escape predators not commonly
found at higher elevations (Spitz et al., 2020). Hence, we expect
migratory propensity to be negatively associated with increasing
distance to steep terrain on both the high and low-elevation
winter ranges. We calculated distance to steep terrain in meters
for each 30 m DEM pixel in each sub-seasonal range, where steep
terrain was defined as any pixel having >31◦ and <70◦ slope
(Johnson et al., 2007; Spitz et al., 2020). We averaged the distance

to steep terrain across each sub-seasonal range and calculated
the area-weighted mean of the sub-seasonal ranges to produce a
range-aggregated distance. Since our interest was in the amount
of a range close to (low-elevation winter range) or far from
(high-elevation winter range) steep terrain, we multiplied linear
distance in meters by range area in hectares. Given that our
seasonal ranges are similar in size and geometric configuration
across herd units, large values of our proximity to steep terrain
metric represent land area far from escape terrain, while smaller
values characterize ranges with land close to steep terrain.

Predator density on low-elevation winter range may also drive
SNBS migratory decisions in avoidance of predation risk. SNBS
share their low-elevation winter range with mule deer which
serve as the primary food source for mountain lions (Puma
concolor) in the Sierra (Dellinger et al., 2020). Lions consume
migratory SNBS as an alternative prey source on common winter
range, making lion depredation one of the primary causes of adult
mortality in SNBS (Davis et al., 2012; Conner et al., 2018). As
an index of predator abundance, we used annual counts of adult
lions (≥18 months) obtained following the methods described
in Gammons et al. (2021). Lion counts were conducted at a
recovery-unit scale, which encompasses multiple herd units. We
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assumed that the index applies to each herd unit within the
recovery unit, an assumption supported by the extensive home
ranges of lions in the Sierra. To account for noise in total lion
counts arising from changes in survey effort across time, we used
a 5-year moving average to smooth counts. We replaced missing
years with linearly interpolated values, except if the missing year
was at the beginning or end of the time series, in which case we
repeated the first or final value. We approximated predation risk
by calculating the predator density of each herd unit, dividing the
lion count by the area of the low-elevation winter range with the
expectation that predation risk should have a negative effect on
SNBS migratory propensity.

The distance SNBS travel between summer and winter
range also captures a form of risk incurred moving through
unfamiliar or infrequently used portions of the landscape. While
high-elevation winter range is a subsection of an SNBS’s summer
range, reaching low-elevation winter range requires traversing
areas SNBS do not normally inhabit. The landscape matrix
between summer and low-elevation winter ranges may contain
land cover that SNBS avoid, snow that impedes movement,
treacherous topography, predators, or lack resources. We used
the straight-line distance, corrected for change in elevation (using
the Pythagorean theorem), between the centers of summer range
and low-elevation winter range as a proxy for travel-related
migratory risk. We expected that larger inter-range distances
would have a negative effect on SNBS migratory propensity.

Social Environment Covariates
The social environment, as it is defined here, encompasses all
information an individual possesses about itself, its previous
behavior, and intra-specific interactions with members of the
same social group (deme) or herd unit.

SNBS sexually segregate into demes of rams and ewes,
although both may migrate (Schroeder et al., 2010). Males remain
with their mothers in ewe demes until they are 2 years of age
when they are pushed out of their maternal group and join a ram
deme (Geist and Petocz, 1977; Ruckstuhl, 1998; Pelletier, 2005;
Schroeder et al., 2010). To account for ram behavioral variation
between adolescence and sexual maturity, we included sex as a
predictor in our models, with females serving as the reference
category, and an interaction of sex and age for males.

An individual’s migratory history may inform its future
behavior through knowledge of the location of migratory winter
range (spatial memory) and previous range conditions (attribute
memory), as well as its innate inclination to migrate. We included
a migratory lag covariate to account for past behavior. Bighorn
that displayed resident behavior in the previous observation
period (within 2 years of the focal animal year, if unobserved
the prior year) were assigned a value of −1. Migrants were
assigned a value of 1, and individuals previously unobserved
were designated 0. We expected this variable to reflect individual
behavioral persistence, and hence have a positive effect on the
propensity to migrate.

Individuals translocated between ranges during the summer
or fall do not possess spatial or attribute memory of migratory
winter range in their adopted herd unit. If migration is
facilitated by an individual’s prior knowledge of the presence,

location, or attributes of low-elevation winter range in their
current environment, in the absence of cultural transmission
of information, the behavior of translocated animals may
be constrained by a lack of information. We accounted for
the absence of spatial and attribute memory in translocated
individuals in a novel environment by including a binary
translocation covariate, with individuals receiving a value of 1 in
the year they were placed on summer range in a new herd unit,
and a 0 otherwise, with the expectation that this covariate will
negatively affect propensity to migrate.

The behavior of an individual’s social group (deme) may
dictate the behavior of the individual, particularly if group
membership confers a fitness advantage (Festa-Bianchet, 1991).
We classified demes through a combination of expert opinion
and visual review of mapped positional data for individual
bighorn relative to conspecifics and prominent landscape
features. In herd units with small populations where only a
single social group was present, we replaced the deme designation
with the herd unit identifier. To capture group influence on
individual behavior, we included a ‘deme culture’ covariate
that represents the proportion of migrants in a deme during
a given animal year (excluding the focal individual), with
the expectation that this covariate would positively affect an
individual’s propensity to migrate.

The propensity of a deme to migrate likely changes with
time since establishment (typically in a previously unoccupied
area) as collective knowledge of available resources, risks, and
conditions is accumulated, and deme culture solidifies. We
indirectly accounted for this temporal shift by including an
inverse time on the landscape covariate for each deme, which
we will refer to as ‘deme history.’ We recorded the first year a
deme was detected as part of our deme classifications. Any demes
present in our reference year, 1978, were assigned a value of 0.
Demes emerging later than 1978 were assigned a value equal to
the difference between the year they were first documented and
the reference year. We anticipated that the length of time a deme
has existed on the landscape would be positively correlated with
member propensity to migrate due to the cultural transmission of
knowledge (Jesmer et al., 2018; Lowrey et al., 2020).

Theory suggests that deme size (equivalent in our systems
to local population density) should increase member migratory
propensity, as it increases competition for forage (primarily on
high-elevation winter range) and decreases per-capita predation
risk (primarily on low-elevation winter range) (Avgar et al., 2020).
Counts of female SNBS are conducted annually, although the
season (winter vs. summer) during which the surveys take place
varies between herd units and years. Winter counts are pre-birth
pulse surveys and summer counts are post-birth pulse surveys,
meaning they are not directly comparable because counts differ
by the number of female lambs, assuming adult female mortality
is negligible (Johnson et al., 2010b). We adjusted all winter counts
to approximate summer counts by adding half of the lamb count
(assuming a 50/50 sex ratio given that lambs are not identifiable as
male or female) to the female winter count and shifting the count
year to reflect the subsequent animal year (because our animal
year begins in July). To account for noise arising in total female
counts due to changes in survey effort across time, we used a
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five-year moving average to smooth counts. We replaced missing
years with linearly interpolated values, except if the missing year
was at the beginning or end of the time series, in which case we
repeated the first or final value. To create our deme size index,
we divided our smoothed annual female counts for each herd
unit by the number of demes present during a given year. We
assumed all demes were of equal size because we did not have
positional data for all females in a herd to assign them to a deme.
We expected deme size to have a positive effect on the propensity
of its members to migrate.

Modeling
We built a suite of four binomial generalized linear mixed models
(‘base,’ ‘omniscient,’ ‘perception,’ and ‘memory’; detailed below)
using Laplace approximations of maximum likelihood in the R
package lme4 (Bates et al., 2015). We conducted all analyses
described in the methods in R (Version 4.1.1, R Core Team,
2021), unless otherwise noted. Our response variable was the
binary classification of whether a given individual migrated in
a given year, with our random effects accounting for herd-
and individual-level variability in the model’s intercept (the
basal migratory propensity). Our model inputs included 1,298
animal years of data, which encompassed 460 unique individuals
across 14 herd units. We centered the means of all continuous
population-level covariate values at 0 and scaled them in units of
standard deviation from the mean to improve convergence and
facilitate interpretation. The physical environment experienced
by an individual is characterized by cumulative biomass, snow-
free area, and distance to steep terrain. We excluded shrub
cover and migratory distance covariates from all four of our
models because their effects were highly correlated with other
covariates that we deemed of greater biological importance in
our study system.

We trimmed all four models using stepwise AIC model
selection. Beginning with the full models, we excluded a single
covariate during each iterative model run and re-calculated the
AIC score of the model with a reduced fixed effects structure.
The reduced model that received the lowest AIC score served as
the starting model for the next step. We continued the stepwise
reduction until all remaining models scored at least two 4AIC
points higher than our starting model for the step, which we
designated our best model.

Base Model
Our base model fixed-effects structure captures information an
individual possesses about itself, its social environment, and
its present physical range at the time it makes the decision
to migrate. As such, this base model excludes the effects of
perceptual or memorized information about the low-elevation
winter range, and hence serves as an appropriate null model. The
base model includes sex, an interaction of sex and age, migratory
history, and translocation status as covariates representing
the state of an individual (Table 1). The social environment
experienced by an individual is comprised of deme culture,
deme history, and deme size covariates. We assumed that at
the time it makes the decision to migrate, an individual is
located on its high-elevation winter range (a subsection of its

summer range). Therefore, the individual has perfect information
about the physical environment on high-elevation winter range
at that point in time (i.e., the fall season). After trimming our
base model, we carried the remaining fixed effects (and the
random-effects structure) forward in our three other models to
reflect information an individual possesses in the absence of
our cognitive processes of interest. The trimmed base model
covariates were not subject to stepwise model reduction in any
of the cognitive models.

Omniscient Model
The omniscient model represents a common, but likely
unrealistic, ecological assumption – that individuals have perfect
knowledge of their environment (near and far) when making
decisions about habitat use. While SNBS in our base model had
perfect knowledge of the physical environment on high-elevation
winter range, individuals in the omniscient model also had
perfect knowledge of the low-elevation winter range environment
they would experience as migrants in the coming winter. Our
omniscient model thus includes all covariates from the trimmed
base model, in addition to cumulative biomass, snow-free area,
proximity to steep terrain, and predator density on low-elevation
winter range for the focal animal year (Table 1).

Perception Model
Sierra Nevada bighorn sheep likely do not have perfect
information about the conditions on low-elevation winter range
when making migratory decisions, but may possess partial
information based on the amount of migratory range they can
see. While little is known definitively about the eyesight of
bighorn sheep, their visual acuity is much to the chagrin of North
American hunters who have compared it to a man aided by eight-
powered binoculars (Geist, 1971). Bighorn have been observed to
react to predators at distances of over 1 km (Geist, 1971). Bighorn
also forage more efficiently in habitats with greater visibility,
presumably because these landscapes permit early sighting of
predators (Risenhoover and Bailey, 1985; Valdez and Krausman,
1999). While bighorn are traditionally considered to be reliant
on their vision (which may also reflect a human-centric bias,
as we are visual creatures), auditory and olfactory cues may
also influence SNBS migratory decisions. However, non-visual
sensory cues are difficult to quantify retroactively and cannot
be meaningfully interpreted on the seasonal timescale of our
data. Although our perceptual model only explicitly accounts for
visual information available to SNBS, it generally reflects partial
knowledge of the present environment, encompassing non-visual
cues indirectly.

We quantified the visibility of low-elevation winter range
from the summer range in each herd unit using ESRI’s ArcMap
Viewshed Analysis tool (ESRI, 2020) (Figure 2). The tool
calculates the visibility of cells in a raster surface from a
designated point location given line-of-site barriers imposed
by topographic relief, as captured by a digital elevation model
(DEM). We assumed that land cover did not restrict line-of-
site, which is reasonable in our system given the low profile
most vegetation and steepness of the terrain. From our summer
range sub-seasonal polygons, we randomly sampled observation
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FIGURE 2 | Viewshed analysis performed on a subsection of the Olancha
Peak herd unit. Pink high-elevation summer range polygons encompass a
series of random observation points on which a hypothetical bighorn stands,
looking out over the landscape in all directions (evaluating 360 degrees of
visibility). The landscape is represented as a raster, with each raster cell
receiving a binary designation of 1 (seen) or 0 (not seen). This process is
repeated for every random point, with raster cells being assigned a value that
represents the total number of 1 s and 0 s accumulated across all
observations. Higher totals (more 1 s) represent greater visibility and are
depicted in colors closer to white on the gray scale raster. Lower totals (more
0 s) indicate low visibility and are represented by colors closer to black.
Bighorn on the summer range looking down at the orange low-elevation
winter range polygon have good potential visibility (unobstructed by
topography) of attributes on the left-most edge of the range, but visibility
declines moving toward the right-most edge.

points at a density of one point per hectare (Figure 2).
Random observation points characterize locations individuals
could occupy on their summer range and look down-slope at
potential low-elevation winter range. We assumed the eyeline
of an SNBS was 1.75 m above the ground, ArcGIS’s default
observer height, because we did not have a good estimate of
true eyeline height for bighorn. Although an eyeline of 1.75m
may overestimate visibility given that SNBS stand, on average,
1 m at the shoulder (CDFW, 2021), the bias is consistent across
herd units and should not influence our final results. It is also
likely that bighorn use local high-points for visual observation
which our overestimate of eyeline may represent. From a random
observation point, we assigned all raster cells in our low-elevation
winter range polygons a binary classification of 1 (seen) or 0
(not seen). We repeated this classification procedure for each
observation point, and calculated a total visibility score for
each raster cell by summing the binary classifications. We then
summed the visibility score of all raster cells across an entire
seasonal range. To account for differences in range size, we
created a visibility index that scales between 0 and 1, with 1
indicating all raster cells on low elevation range were visible
from every observation point, and 0 representing no visibility
of raster cells from any observation point. We calculated our
visibility index by dividing a range’s total visibility score (sum

of all cell visibility scores) by the total number of raster cells
in a range multiplied by the total number of observed points
(representing the possibility that every raster cell is seen from
every observation point). The visibility index captures the relative
variation in visibility between herd units, but given our numerous
assumptions may not accurately represent what SNBS actually
see. We expected visibility to have a positive effect on migratory
propensity as a main effect (SNBS more likely to migrate when
they can see more of the low-elevation range), but also to enhance
the effects of other low-elevation range attributes.

In our perception model, the covariates characterizing the
low-elevation winter range during the migratory window –
cumulative biomass, snow-free area, and proximity to steep
terrain – are multiplied by the visibility index (before scaling and
centering) to represent visual information about the migratory
range available to SNBS at the time they make a migratory
decision. We also included (in addition to the trimmed base-
model covariates) a range visibility covariate for each herd unit,
taking the product of the herd unit visibility index and the area
of the low-elevation winter range in hectares to capture the
importance of seeing potential migratory range in the absence of
specific information characterizing range attributes (Table 1).

Memory Model
While our first three models sought to capture an individual’s
knowledge of the present and/or future physical environment,
individuals may also remember attributes of the ranges where
they overwintered previously, and this information is expected
to influence their present migratory behavior. We modeled
the influence of attribute memory on migratory behavior
by including interactions between last year’s range-specific
environmental covariates on either high-elevation (for last year’s
resident) or low-elevation range (for last year’s migrants), and
migratory history indicator variables. Animals translocated over
summer/fall were assumed to rely on attribute information from
their natal range. Because this model formulation necessitates
excluding animal years where the migratory status of the
individual in the previous year was unknown, we fit the memory
model using a reduced data set (779 animal years). The memory
model includes lagged cumulative biomass, snow-free area, and
proximity to steep terrain covariates for both high and low-
elevation winter range. We also included a lagged predator
density covariate on low-elevation winter range, as well as
all covariates from the trimmed base model (Table 1). We
trimmed the memory model by removing the high and low-
elevation representations of the same environmental covariate
in pairs because each pair represents a single hypothesized
behavioral driver. We expected that memory of a range would
increase range affinity if the conditions experienced last year
were good, or encourage the opposite behavior if experienced
conditions were poor.

Global Model and Model Goodness of Fit
We then combined the covariates from the trimmed base,
perception, omniscient, and memory models into a global model
which we again trimmed using stepwise AIC model selection to
determine which cognitive processes most strongly influenced
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migratory behavior (Table 1). We calculated conditional and
marginal pseudo-R2 goodness of fit statistics for all trimmed
models using the MuMIn package (Barton, 2020). To evaluate
the predictive capabilities of the trimmed models, we split our
data into five folds based on individual ID, trained our trimmed
models using four folds of the data, tested our trained models on
the remaining fold, and fit ROC-AUC curves in the R package
pROC (Robin et al., 2011) to both the trained and tested models.
A higher ROC-AUC value (range 0–1, with 0.5 representing
random chance) represents better model performance. We
repeated this process until each fold had served as both testing
and training data and reported the mean ROC-AUC values
across all training and testing iterations. Model predictions on
test data arise from the population-level estimates of the fixed
effects because the testing data is an out of sample prediction
containing new levels of the random effect (unique individuals)
not encountered during model training.

RESULTS

The annual percentage of migratory SNBS across the species’
range varied from 56 to 100%, with a mean of 81.6% (SD = 13.6%)
(Figure 3A). The percentage of individuals that changed
behavioral strategies between subsequent years ranged from 0
to 39.3% with a mean of 15.5% (SD = 10.1%) across years
(Figure 3B). We note here that while our study sought to
address the drivers of migratory behavior rather than migratory
switching, Spitz (2015) considers the latter.

The base model covariates retained after stepwise model
selection included migratory history, deme culture, deme history,
and distance to steep terrain on high-elevation winter range.
Individuals that migrated in the recent past were more likely to
migrate in the focal animal year. The propensity of individuals to
migrate increased as the proportion of migrants in an individual’s
social group increased. Individuals that were part of demes with
longer histories on the landscape were more likely to migrate than
those belonging to ‘younger’ demes. Lastly, increasing distance
to steep terrain on high-elevation winter range, capturing the
presence of plateaus, had a negative effect on SNBS migratory
propensity. These effects all agree with our a-priori expectations
based on the ecology of the system.

All cognitive models included the four retained base covariates
(to capture variability unexplained by cognitive processes)
and the suite of cognitive covariates kept after stepwise
model reductions. The only covariate retained in the trimmed
omniscient model was the snow-free area on low-elevation winter
range. As expected, SNBS were more likely to migrate as the
snow-free area on their migratory range increased. The trimmed
perception model included visible snow-free area and visible
distance to steep terrain on low-elevation winter range. SNBS
were more likely to migrate if they could see a greater percentage
of snow-free area and shorter distances to escape terrain on
their potential migratory range. No cognitive covariates were
retained in the trimmed memory model (in addition to the
base covariates).

FIGURE 3 | (A) The annual percentage of migratory (detected below
elevations of 2,850 m) Sierra Nevada bighorn sheep from 1998 to 2020 based
on capture, ground survey, VHF, and GPS telemetry data (black line). The
number of individual bighorn monitored each year varies with time and
population size (gray line). (B) The annual percentage of Sierra bighorn that
switch behavioral strategies (previous resident, present migrant or previous
migrant, present resident) between years (black line). The number of individual
bighorn with longitudinal data (migratory classification in the previous and
present year) varies with time and population size (gray line).

The results of our trimmed global model indicate that
perception is the most important cognitive process underlying
SNBS migratory decision-making. The omniscient snow-free
area covariate was eliminated from the global model during
the stepwise model reduction process, resulting in identical
trimmed global and perception models. Overall, the trimmed
global model reveals that SNBS are more likely to migrate if
they recently migrated (Figure 4A), if their social group includes
a high percentage of migrants (Figure 4B), and if they are
able to see larger amounts of snow-free area on low-elevation
winter range (Figure 4E). SNBS are less likely to migrate if
they are part of a social group that has existed for a shorter
period of time (Figure 4C), if they have access to high-elevation
habitat far from steep terrain (Figure 4D), and if they observe
a lack of habitat close to steep terrain on potential migratory
range (Figure 4F). Lastly, innate differences between individuals
explain a considerable amount of residual variability in migratory
propensity, as evidenced by the magnitude of our random
effects (Table 2).

A comparison of model performance and goodness of
fit statistics across our suite of trimmed models supports
perception as the cognitive process that explains the most
migratory variability in SNBS (Table 3). However, comparing
the marginal R2 values of the perception and base (excluding
cognitive covariates) models, cognitive covariates only explain
∼4% of the variation in SNBS migratory behavior compared to
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FIGURE 4 | (A) The predicted probability (black line) that an individual SNBS will migrate (with 1 representing certainty that migration will occur) given an individual’s
migratory history represented in units of standard deviation (SD) away from mean 0 on the odds ratio scale (back transformed from the logit scale) with the values of
all other covariates held at their population mean. Predictions are made only using population-level fixed effects based on coefficient values from our trimmed global
model to allow for out of sample predictions (random effect variance is excluded). The gray ribbon represents a 95% confidence interval around the prediction. We
allowed each covariate to vary in turn while holding all others at their population mean so (B) captures the probability of migration based on the proportion of
migratory individuals in the subpopulation, (C) depicts the probability of migration given the inverse of the length of time that an individual’s subpopulation has
existed on the landscape (larger values represent a shorter time on the landscape), (D) represents the probability of migration given the distance to steep terrain on
high-elevation winter range, (E) captures the probability of migration based on visible, snow-free area on low-elevation winter range, and (F) shows the probability of
migration given the visible distance to steep terrain on low-elevation winter range.

TABLE 2 | Binomial linear mixed effect model results for our trimmed global model, predicting migratory behavior (0 = resident, 1 = migrant) of Sierra Nevada bighorn
sheep using a suite of base and cognitive (perceptual) fixed effects and a (1| Herd Unit:Individual) random effect structure in the the R package lme4 (Bates et al., 2015).

Model Covariate Coefficient 95% CI p-value

Trimmed global fixed effects Intercept 1.276 0.901, 1.650 < 0.001*

Migratory history 0.400 0.077, 0.723 0.015*

Deme culture 0.835 0.617, 1.052 <0.001*

Deme history −0.328 −0.549, −0.107 0.004*

Distance to steep terrain WH −0.494 −0.753, −0.235 <0.001*

Visible snow-free Area WL 0.839 0.463, 1.215 <0.001*

Visible dist. steep terrain WL −1.416 −2.096, −0.736 <0.001*

Random Effect Variance 1 | Individual:Herd Unit 1.072 Marginal R2 0.384

1 | Herd Unit 0 Conditional R2 0.535

We estimated marginal and conditional pseudo-R2 values using Nakagawa and Schielzeth (2013) method implemented in the MuMIn package (Barton, 2020). * indicates
a statistically significant p-value at an alpha level of 0.05.
Marginal and conditional R2 values appear to the right of the bold text in the body of the table.
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TABLE 3 | Model performance (AICc) and goodness of fit statistics (pseudo-R2 and ROC AUC scores) for the trimmed base and cognitive models.

Trimmed model AICc 1AICc Marginal R2 Conditional R2 Train
ROC AUC

Test
ROC AUC

Perception (global) 1018.061 – 0.384 0.535 0.918 0.830

Omniscient 1022.194 4.133 0.378 0.501 0.906 0.832

Base 1027.993 5.799 0.345 0.477 0.896 0.834

Memory – – 0.368 0.391 0.857 0.847

We calculated AICc scores and marginal and conditional pseudo-R2 values using functions implemented in the MuMIn package (Barton, 2020). The memory model
cannot be directly compared to the other candidate models because it was fit using a reduced data set. We computed ROC AUC scores using the R package pROC
(Robin et al., 2011) and calculated the mean ROC AUC estimate across 5 combinations of test and training data. The model uses population-level means to predict the
migratory status of test individuals not encountered during model training.

∼34% captured by the base model covariates (Table 3). While
our study highlights the influence of cognitive processes on
migratory decision making in SNBS, an individual’s previous
experiences, and present social and physical environment explain
the preponderance of behavioral variation. All models had strong
out-of-sample predictive capacity (Table 3).

DISCUSSION

Our study is the first to evaluate cognitive processes that underpin
migratory decision-making in a population of short-distance,
altitudinal migrants. Our results demonstrate that short-
distance altitudinal migration of SNBS is, in part, a behavioral
response to an individual’s perception of present environmental
conditions on available, low-elevation (migratory) range. An
individual’s sensory informational state (perception model)
explained more variation in migratory behavior than memorized
information (memory model) or perfect environmental
knowledge (omniscient model), illustrating that individuals
make migratory decisions with only partial information
about their target range. While the addition of cognitive
processes to our base model improved model performance,
the availability of high-elevation winter habitat, an individual’s
social environment, and intrinsic factors explained the greatest
amount of behavioral variation within the population. We
refer to SNBS as perceptually-informed migrants to reflect the
limited influence (or our limited ability to detect the influence)
of cognitive drivers on migratory decision-making. We believe
that our findings are encouraging with respect to the future
persistence of SNBS. Perceptually-informed migration may
result in greater behavioral plasticity in response to changes
in resource phenology and distribution arising from global
climate change, while migrants reliant on prediction of future
environmental conditions given past experience may exhibit a
lagged response to climatic variability.

Perception and Memory
Perception of present conditions on low-elevation migratory
range, rather than memory of past conditions or omniscience,
was the strongest cognitive predictor of short-distance altitudinal
migration in SNBS. SNBS migration occurs over large changes
in elevation, but short geographical distances. Steep elevational
gradients in the Sierra likely favor perceptually-informed

migratory decisions because visual range increases with altitude.
Large changes in elevation also give rise to a condensed ecological
gradient where resources, risks, and conditions shift drastically
over short geographic distances (Lomolino, 2001; John and Post,
2021). Unlike long-distance migrants tracking gradual resource
changes over considerable distances, SNBS can likely see a large
proportion of the ecological gradient spanning their migratory
route to destination range, and assess the profitability of
movement. While our model may not accurately represent what
bighorn can see, it captures partial sensory information about the
present state of alternative ranges, which may include sensory
inputs (smell and sound) that we did not explicitly represent. Our
findings support our expectation that perception would be the
cognitive mechanism favored by short-distance migrants because
it is biologically realistic, unlike omniscience, and matches the
timing of movement with changes in the environment.

The spatial scale of migratory movement limits the cognitive
mechanisms available to support migratory decision-making. By
our definition, long distance migrants cannot use perception
of alternative range to make a migratory decision because they
are moving to a location outside of their perceptual range.
Long distance migrants may perceive that the environment
is unfavorable on their present range and decide to migrate,
but they are being pushed from their current location rather
than pulled to a more favorable location, like the SNBS. Long-
distance migrants may also use perception to follow a resource
gradient to an alternate range (Holdo et al., 2015; Merkle
et al., 2019). However, long-distance migrants cannot decide
to move to a specific target destination without invoking non-
perceptual cognitive processes. Individuals could rely on memory
to return to a range they visited previously (Bracis and Mueller,
2017; Abrahms et al., 2019; Merkle et al., 2019), cultural
transmission of knowledge from past migrants (Jesmer et al.,
2018; Lowrey et al., 2020), or an innate encoding of the migratory
destination (Mouritsen, 1998; Kashetsky et al., 2021). None of
these cognitive mechanisms provide long-distance migrants with
information about the present conditions on their destination
range. Global climate change causes phenomenological shifts in
events like green-up that may disproportionately impact long-
distance migrants because they do not possess the information to
match the timing of their movements to environmental changes
on their target range.

The spatial and temporal predictability of resources, risks, and
conditions may also determine which cognitive mechanisms are
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used by migrants. Memory-informed migrants make predictions
about the present/future state of their target range based on
past experience (Bracis and Mueller, 2017; Abrahms et al., 2019;
Merkle et al., 2019). Effective prediction relies on consistency
in the location and timing of environmental variation. High-
altitude environments along steep elevational gradients, like
those found in the Sierra, are not characterized by predictable
variation. Birds, frogs, skinks, snails, and freshwater shrimp
have all been found to adjust their life history strategies at
high altitudes, producing fewer, but larger offspring partially
in response to increased climatic unpredictability (Badyaev and
Ghalambor, 2001). Perceptually-informed migration may be an
adaptive cognitive response to environmental variability within
and between years. The Sierra has the highest variability in snow
events of any mountain range in the western United States,
low correlation of interannual snowpack, and no discernible
directional trend in snow accumulation over a 71-year time
series (Cayan, 1996). If the SNBS attraction to snow-free areas
observed in our system was a memory-informed response to the
previous year’s snow cover, individuals would likely experience a
mismatch between the expected timing and location of snow-free
area and present snow conditions. The timing of the first major
precipitation event that drives green-up on low-elevation winter
range also is highly variable between years, ranging from early
autumn to mid-winter (Wehausen, 1992). If migrants depart for
low-elevation winter range in advance of green-up, they face
increased predation risk and are not compensated with greater
forage availability. Migration in response to a past state of the
environment confers fewer fitness advantages than a behavioral
response to present environmental cues when environmental
variability is unpredictable.

Variation in the timing of SNBS migration between years
(Spitz et al., 2018) suggests that SNBS are responding to
inter-annual environmental variability based on proximate
cues. The existence of vacillating migration in SNBS, where
individuals undertake 2–4 movements between seasonal ranges
during the migratory window (Denryter et al., 2021b), also
suggests that migration is a response to observed intra-
annual variability. Memory may be the cognitive mechanism
that underlies migration in predictable environments, while
perception facilitates migration when the timing and location of
resources, risks, and conditions is variable.

Habitat
An individual’s migratory status is partially determined by the
quality and availability of high and low-elevation winter habitat.
Our results corroborate the findings of Spitz et al. (2020) who
observed that habitat selection by migrant and resident SNBS was
predictive of the local prevalence of migratory behavior. Similar
to our study, Spitz et al. (2020) found that resident bighorn
selected habitats twice as far from steep terrain as migrants.
While our top model included a perceptual contextualization of
low-elevation range attributes, in concurrence with Spitz et al.
(2020) we found that migration is more prevalent in habitat
with less snow near escape terrain. However, Spitz et al. (2020)
also observed that forage availability on both high and low-
elevations ranges helped to explain the frequency of migrant

and resident behaviors. They concluded that migrant SNBS
prioritize access to forage at the cost of increased predation
risk, while residents minimize predation risk but incur increased
energetic costs imposed by limited access to forage and greater
thermoregulatory demands (Johnson et al., 2013; Spitz et al.,
2020; Denryter et al., 2021a). While our results suggest that
avoidance of snow may be of greater importance for migrants
than access to forage, discrepancies between studies may result
from our quantification of vegetative biomass. We used an
annual measure of forage biomass on each range. Spitz et al.
(2020) did not have access to these new remotely sensed
products to incorporate temporally dynamic habitat attributes,
and instead relied on 11-year averages of forage and snow
cover. Observed habitat selection in response to long-term
averages of temporally variable covariates may indicate that
bighorn migration has some dependence on memory that
we did not capture looking at range conditions experienced
only in the previous year. In long-lived species like SNBS,
complex, non-Markovian representations of memory merit
further evaluation.

One habitat attribute that we did not quantify, but warrants
further exploration is connectivity between high and low-
elevation ranges. The distance covariate included in our model
does not capture resistance to movement based on land cover
attributes. Mid-elevations in the Sierra are characterized by
pinyon-juniper scrub and coniferous forests. SNBS avoid forested
landscapes presumably because tree cover conceals predators
and increases predation risk. Contiguous mid-elevation forest
cover may restrict migratory movements. However, the migratory
corridors of Sierra sheep are difficult to delineate because
individuals can move between seasonal ranges within a few
hours. The temporal resolution of GPS fixes from collars is
often too coarse to capture SNBS mid-migration. Establishing a
measure of migratory connectivity in our system is an important
step toward understanding the residual variation in migratory
behavior between herds.

Culture
Our results show that membership to a social group with
a large proportion of migrants is the strongest predictor of
migratory behavior in SNBS, but time since establishment of
the group determines the group’s propensity to migrate, in
line with the findings of Jesmer et al. (2018) and Lowrey
et al. (2020). While time since establishment may also capture
behavioral variation resulting from changes in group size and
experienced density, the independent group density covariate in
our analysis did not receive support. The increase in migratory
propensity over time has been hypothesized to arise from
social learning, a process grounded in shared memory across
generations (Jesmer et al., 2018). When SNBS colonize or
are translocated to a new area of the landscape, they possess
no knowledge of migratory ranges or routes accrued from
experience on their new range, other than a general awareness of
previously overwintering at a high or low elevation in their natal
range (migratory history). As individuals explore new habitat,
they accumulate information about their surroundings, which
if retained, becomes memory (Fagan et al., 2013). The strong
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group cohesion of SNBS permits dissemination of information
within social groups between individuals. The group’s collective
knowledge of the landscape is a compilation of individual
knowledge, and increases over time with the contribution of
subsequent generations. Social learning provides a form of
collective memory that is not represented in our individualistic
characterization of memory.

While attribute memory did not inform SNBS migratory
decision-making, the importance of a deme’s history on
the landscape (representative of collective memory) suggests
memory is necessary to support migration. Similar to Bracis
and Mueller (2017), Abrahms et al. (2019), and Merkle
et al. (2019) who found memory underpinned navigation of
migratory mule deer, whales, and zebras, respectively, SNBS
may rely on memory to navigate to low-elevation winter range,
particularly over longer geographic distances. Although we
did not explicitly consider drivers of the navigation process,
navigation is implicit in our model. We used an individual’s
migratory status in a given year as our response variable which
encompasses both halves of the migratory process – decision-
making and navigation. By treating a completed migration –
a realization of a migratory decision – as representative of
a migratory decision, we don’t account for individuals who
decide to migrate, but fail to navigate to an alternative range.
However, it is possible that SNBS migration in a novel
landscape requires numerous failed attempts before enough
knowledge is accumulated to permit successful navigation
to low-elevation winter range. Translocated bighorn with
an abbreviated history on the landscape are less migratory
than native populations, a behavioral trend attributed to an
absence of collective memory (Lowrey et al., 2020). Given the
prevalence of translocation as a management strategy in our
system to establish SNBS in historic habitat, further study of
the importance of memory for navigation between migratory
ranges is warranted.

We sought to represent deme culture by quantifying the
proportion of migrants in each social group in the absence
of the focal individual, which may serve as a proxy for
accumulated knowledge or opportunities for social learning
if each migrant individual has previous experience. However,
an increase in an individual’s probability of migration as the
migratory propensity of the group increases may simply represent
the importance of remaining part of a group. Predator vigilance
is important for SNBS survival, particularly while foraging,
and being part of a group with “many eyes” confers a safety
advantage (Lima, 1995; Rieucau and Martin, 2008). Group
membership also reduces predation risk through confusion
and dilution effects (Pulliam, 1973; Krause and Ruxton, 2002).
While there is limited predation risk on high-elevation range
during the winter, mountain lion predation events on low-
elevation range are the greatest source of adult mortality for
SNBS (US Fish and Wildlife Service, 2007; Johnson et al., 2013;
Gammons et al., 2021). Migration to low-elevation range may
become safer as the number of migrants increases for which
proportion of migrants serves as a proxy. However, our deme
culture covariate captures all factors common to a migratory or
resident portion of a social group that explain some behavioral

variation. The cultural effect size from our analysis should be
interpreted with caution.

In agreement with Lowrey et al. (2020), our findings indicate
that individual variability and the social environment are
stronger determinants of migratory behavior than attributes of
the physical environment. Our base model covariates capture
47.7% of the variability in our system and the addition of
cognitive mechanisms only slightly improves model performance
(pseudo-R2 0.535). When translocating animals to establish new
herds or augment existing populations, wildlife practitioners
should be mindful of who they are moving if the emergence of
migratory behavior is a priority. The identity of a translocated
individual and migratory proclivity of its new deme are stronger
determinants of migratory behavior than habitat. However, a
limited understanding of the structure and composition of
the social groups in our system means that changes in social
dynamics when adding or removing individuals to a herd are
unpredictable. If a single dominant individual is responsible
for initiating migration, the behavior of a group may change
with augmentations made to the social hierarchy. Translocated
individuals may adopt or disrupt the social hierarchy of their
new herd. Improving our understanding of SNBS social structure
and migratory initiation will allow resource managers to optimize
their selection of individuals for translocation to achieve desired
behavioral outcomes.

Individual History
Our results agree with the findings of Spitz et al. (2018) that
migratory behavior in SNBS is highly plastic. Compared to
Spitz et al. (2018), we detected a higher frequency of migratory
behavior (with an average of 81% vs. 63% of individual SNBS
migrating each year) and a lower facultative switching rate (with
an average of 15.5% vs. 25% of individuals changing migratory
strategies between years). Discrepancies between studies likely
arise from differences in the types and quantity of data used,
as well as migratory classification techniques. Spitz et al. (2018)
analyzed 262 animal years of GPS data collected between
2005 and 2016. Our study incorporated 1,298 animal years
of data spanning from 1999 to 2020. We integrated multiple
sources of positional data into our analysis including GPS,
VHF, visual survey and capture information. Spitz et al. (2018)
also used elevation-based net squared displacement to classify
migration and chose to categorize individuals that exhibit
vacillating or abbreviated migration (Denryter et al., 2021b) as
residents. These same individuals are classified as migrants in
our study because of their presence below the elevational cutoff
during the migratory window. We may have detected a lower
migratory switching rate than observed previously because non-
traditional migrants who may more readily adopt conventional
migratory strategies are already classified as migrants in our
study. Our classification would indicate that no behavioral
switching occurred. It should be noted that embedded in our
data is an inherent migratory bias because visual counts and
captures during the migratory window most often take place
on low-elevation winter range where all observed individuals
are migrants. While this may over-represent the prevalence of
migratory behavior in the population relative to GPS-based
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classifications, we believe it does not affect our ability to quantify
the drivers of migration.

The migratory switching rate of SNBS is one of the highest
known among ungulates (Spitz et al., 2018) and this behavioral
plasticity likely arises because migratory decisions are partially
informed by perception of conditions on alternative ranges.
SNBS may switch between migrant and resident behaviors more
often than other taxa because they possess real-time information
about alternative ranges that allows individuals to assess the
profitability of migration relative to residency on their current
range. SNBS should choose to occupy the range that affords
the greatest fitness gains if the risk incurred in moving between
ranges is negligible (Fryxell and Sinclair, 1988; Mysterud et al.,
2011; Spitz et al., 2018). Given the short distance that SNBS
travel between ranges, migration may reflect a comparative
evaluation of high and low-elevation range quality based on
perceptual information. Repeated comparative evaluations of
habitat quality during the migratory window may explain the
behavior of vacillating migrants. Interannual variation in range
quality may also provide an alternative explanation for low-
elevation range abandonment observed in SNBS in the 1980s and
attributed to predation (Wehausen, 1996). In comparison, long-
distance migrants, like caribou (Rangifer tarandus), have been
observed to exhibit strong range fidelity even in habitat that has
undergone extensive anthropogenic alteration (Dalerum et al.,
2007). Given that caribou rely on spatial memory to navigate the
landscape (Avgar et al., 2015), it is likely that this species’ lack
of behavioral plasticity in selection of migratory range is due to
the predominance of memory as a cognitive driver. Sawyer et al.
(2019) also found an absence of migratory plasticity among mule
deer, a species reliant on spatial memory to facilitate migration
(Merkle et al., 2019). The asymmetry of behavioral plasticity
between cognitive drivers means that perceptually-informed
migrants will be better able to tolerate the increased climatic
variability that accompanies global climate change (assuming
no significant loss of habitat). However, additional research
is necessary to validate our hypothesized drivers of migratory
switching in SNBS because the scope of our study is limited to
the drivers of migration.

Our study recorded high migratory switching rates in SNBS
in addition to behavioral inertia. Individuals that migrated
the previous year were more likely to migrate in the present
year. Spitz et al. (2018) also noted that individuals only
changed migratory strategies approximately every 4 years. While
this periodicity may be driven by environmental factors, it
may also be a consequence of an individual’s physiological
condition or reproductive status. Some species reproduce and
migrate in alternate years to compensate for the energetic
demands of reproduction (Morrison and Bolger, 2012). Lactating
SNBS ewes enter the winter season with lower body fat
reserves than females who lost a lamb early or did not
reproduce (Stephenson et al., 2020). Lactation may necessitate
migration given the high energetic cost of residency on high-
elevation range because of a lack of forage and increased
thermoregulatory demands. Presently, we have little information
on body condition and lambing status that could be explored in
relation to migratory behavior for SNBS. However, those data,

when available, should be incorporated into future studies of
migratory drivers.

Management
Predicting when migratory behavior will arise in novel landscapes
is a challenge for wildlife practitioners as they work to re-
establish migratory populations via translocation in unoccupied
native range. The frequency of facultative migration is predictable
in species where perception and habitat attributes explain
significant behavioral variability. For SNBS, resource managers
can apply the perception and physical environment covariate
predictions from our model to areas of the landscape where
they are considering translocation to estimate the probability of
migratory behavior emerging in an established herd. However,
culture and characteristics of individuals are better predictors of
migratory behavior than perception or attributes of the physical
environment. Known migrants should be placed with individuals
from the same social group into habitat with characteristics
corresponding to migratory behavior to maximize chances of
behavioral continuity in a new environment, if desirable. Re-
establishing “lost” short-distance migration (Wehausen, 1996)
will be easier to accomplish in species like SNBS, where
perception is the primary cognitive mechanism influencing
migratory decisions, because individuals (or social groups) are
not reliant on prior knowledge of where and when to move.
It may prove more challenging to re-establish long-distance
migration to low-elevation winter range on the eastern slope of
the Sierra in populations of SNBS translocated to the western
slope. The Sierra crest prevents SNBS reliance on perceptual
cues to evaluate range quality on the opposite slope and
collective memory of this historical migration is absent in
translocated populations. Environmental drivers and trial and
error may be important for recovering migratory movements
that span the Sierra crest. Persistent changes in the resources,
risks, and conditions that drive migratory behavior, if detectable
through a sensory-perceptual mechanism, may still lead to the
disappearance of migration in perceptually-informed species.
The disappearance of migration is of concern if it decreases
a species’ fitness or results in the loss of collective memory
important for future migratory movements.

Conclusion
Perception is indicated as the primary cognitive mechanism
underlying short-distance altitudinal migratory decisions in
Sierra Nevada bighorn sheep. Perceptually-informed migrants
are behaviorally plastic and able to respond to changes in resource
phenology and distribution in unpredictable environments.
Migrants that depend on perception will likely be more resilient
to climatic unpredictability arising from global climate change
than species that must rely on past experience to predict
future conditions on migratory range. Perceptually-informed
migration allows for the possibility of predicting the emergence
of migratory behavior in novel landscapes based on habitat
attributes that enhance or limit sensory perception. However,
accurate predictions will require a better understanding of the
interplay of habitat, culture, and individual behavioral variation
and the magnitude of their influence on migratory behavior.
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Future studies should focus on cognitive drivers of migratory
decision-making across taxa to determine if a sensory perceptual
mechanism is unique to short-distance, altitudinal migrants.
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The use of spatial memory is well-documented in many animal species and has been

shown to be critical for the emergence of spatial learning. Adaptive behaviors based

on learning can emerge thanks to an interdependence between the acquisition of

information over time and movement decisions. The study of how spatio-ecological

knowledge is constructed throughout the life of an individual has not been carried out

in a quantitative and comprehensive way, hindered by the lack of knowledge of the

information an animal already has of its environment at the time monitoring begins.

Identifying how animals use memory to make beneficial decisions is fundamental to

developing a general theory of animal movement and space use. Here we propose

several mobility models based on memory and perform hierarchical Bayesian inference

on 11-month trajectories of 21 elk after they were released in a completely new

environment. Almost all the observed animals exhibited preferential returns to previously

visited patches, such that memory and random exploration phases occurred. Memory

decay was mild or negligible over the study period. The fact that individual elk rapidly

become used to a relatively small number of patches was consistent with the hypothesis

that they seek places with predictable resources and reduced mortality risks such

as predation.

Keywords: memory-based movement models, spatial memory, attribute memory, animal learning, translocated

elk, hierarchal Bayesian inference

1. INTRODUCTION

The use of spatial memory is well-documented in many animal species. For example, humans, non-
human primates and other large-brained vertebrates make movement decisions based on spatial
representations of their environments (Wills et al., 2010). These representations may allow animals
to move directly to important sites in their environment that lie outside of their perceptual range
(Normand and Boesch, 2009; Presotto and Izar, 2010), such as resource patches, sites that connect
with other high quality sites in space, or safe spots to avoid predators, and may also allow them to
estimate the travel cost to reach a particular place (Lanner, 1996; Janson, 2007; Janson and Byrne,
2007; Noser and Byrne, 2007). Another type of memory, described for the first time by Schacter
(1992) and retaken by Fagan et al. (2013), encodes the attributes of landscape features under the
name of attribute memory. While spatial memory allows animals to reduce uncertainty about
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the location of geographical features, attribute memory reduces
uncertainty concerning location-independent features of objects
(Fagan et al., 2013). The information stored as attribute memory
may be the abundance or types of food, and can be linked
to spatial information. For example, food patch quality can be
spatially encoded: patch quality is an attribute and its location
is spatial information (Fagan et al., 2013). The combination of
these two types of information allows animals to choose among
alternative movement paths as has been observed in bumblebees
(Lihoreau et al., 2011) or large herbivores (Avgar et al., 2013;
Merkle et al., 2014). Identifying how animals use memory to
make decisions is fundamental to developing a general theory of
animal movement and space use (Gautestad andMysterud, 2005;
Morales et al., 2010; Spencer, 2012).

Memory is also critical in the emergence of spatial learning,
which results from interactions with the environment and can
be detected through changes in movement patterns (Mueller
and Fagan, 2008). Adaptive behaviors based on learning can
occur thanks to an interdependence between the acquisition of
information over time and movement decisions (Falcón-Cortés
et al., 2017, 2019). For instance, an animal can make decisions
based on past successful experiences, resulting in a change of
behavior and improved resource exploitation (Leonard, 1990;
Bracis and Mueller, 2017; Jesmer et al., 2018; Merkle et al.,
2019). Learning is consistent, for example, with frequent visits
to certain locations, or site fidelity (Bonnell et al., 2013; Falcón-
Cortés et al., 2017), and with the emergence of home range
behavior or preferential travel routes (Van Moorter et al., 2009;
Boyer and Walsh, 2010). The capability of learning can also
bring other benefits beyond improved foraging; e.g., providing
advantage in territorial defense (Potts and Lewis, 2014; Schlägel
and Lewis, 2014; Schlägel et al., 2017), more effective escape
from predators (Brown, 2001), and improving the route choice
in migration (Bischof et al., 2012; Poor et al., 2012). Nevertheless,
the connections between memory and spatial learning is not
well understood. Theoretical models bring useful insights by
predicting, for instance, how often memory should be used for
the emergence of recurrent movements to a particular resource
patch (Falcón-Cortés et al., 2017; Boyer et al., 2019).

Several theoretical studies have highlighted the role played
by memory and cognitive abilities for foraging success (Boyer
and Walsh, 2010), home range formation (Börger et al., 2008;
Van Moorter et al., 2009; Berger-Tal and Avgar, 2012), and
paved the way for inferring individual memory capacities
from movement and environmental data (Avgar et al., 2013).
The applications of these theoretical approaches to free-
ranging animals are varied. For example, predictions of a
simple memory model based on linear reinforcement through
preferential revisits have been compared with the movements
of capuchin monkeys, revealing movement rules found to
generate very slow diffusion and heterogeneous space use
(Boyer and Solis-Salas, 2014). On the other hand, Merkle
et al. (2014) applied a patch-to-patch model to ranging data of
American bison, finding that these animals remember valuable
information about the location and quality of meadows (spatial
and attribute memory) and use this information to revisit
profitable locations.

The study of how spatio-ecological knowledge is constructed
throughout the life of an individual has not been developed
thoroughly. Data analyses that employ memory based models
are promising but are often difficult to implement due to the
short observation periods available, and the fact that the animals
are observed in an environment already familiar to them. If
memory is long-ranged, the above limitations may affect the
results. To avoid these shortcomings, we used data from relocated
animals. This means that the observed animals explored an
unknown landscape at the start of their movement trajectories.
In this new environment the spatial locations of different
environmental features and patches were initially unknown to
them. We analyzed the movement data from 21 relocated elk
(Cervus canadensis) as described in Frair et al. (2007) and Wolf
et al. (2009). We expected elk to show an initial exploratory
phase in which the animals were getting familiarized with their
new environment and collecting information about the location
and quality of different habitat patches. We then expected an
exploitation phase showing less random space use, eventually
leading to the formation of home ranges. Furthermore, as
the relocated animals came from three different sources with
different degrees of similarity with the release site (see below),
it is possible that some animals would show different strategies.

In a recent study, a memory-based movement model similar
to the ones that we propose below was fitted to roe deer
reintroduced into a novel environment, showing that home
ranges in the absence of territoriality could emerge from the
benefits of using memory during foraging (Ranc et al., 2020).
Here we followed a similar approach, but placed emphasis on
comparisons among alternative movement models. This allowed
us to reveal possible differences in behaviors across individuals.
We also paid special attention to the estimates of certain key
parameters characterizing informed movement, such as the rate
at which an animal used memory, and whether memory decayed
over time and how.

We present four simple patch-to-patch movement models,
defined through the probabilities of transiting from one patch to
another. The simplest model is memoryless as it assumes that the
transition probabilities only depend on the distance between the
two patches and on the size of the target patch. For simplicity,
we do not consider other patch variables such as patch quality.
The remaining three models consider the role of memory. The
manner in whichwe introducememory in the dynamics is similar
to that of Boyer and Solis-Salas (2014) and Falcón-Cortés et al.
(2017): the probability to revisit a particular patch is modified by
a factor which depends on the accumulated number of past visits
to this patch, such that the most visited patches have a higher
probability to be revisited. In these memory-based models we
assume that animals remember patch locations (spatial memory)
and the number of past visits to each patch (attribute memory).
The main difference between these three models is the way in
which animals use their memory. In the simplest case we suppose
that animals have infinite memory, i.e., they can remember all
the patches previously visited, and they use their memory at
a constant rate. In another model we assume infinite memory
but the rate at which the animal decides to use its experience
increases with the number of explored patches. In the last model
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we relax the assumption of infinite memory by introducing a
memory decay associated to each patch visit (McNamara and
Houston, 1985), whereas the rate of memory use increases as in
the previous model.

2. METHODS

2.1. Ranging Data
We used data collected and presented by Frair et al. (2007);
see also Wolf et al. (2009). The study area consisted of 15,800
km2 along the eastern slopes of the Rocky Mountains in central
Alberta, Canada. Approximately 2,000 elk inhabited the area
during the study period, from December 2000 to September 2002
(Frair et al., 2007). Elevation was 500–1,500 m and the area
was largely forested (68.7% of the total area). Dominant tree
species included lodgepole pine Pinus Contorta, white spruce
Picea Glauca, and aspen/poplar Populus Tremuloides and P.
Balsamea. Interspersed throughout the forested matrix were wet
and dry meadows (7.1%), cutover forest following timber harvest
(4.3%), bare soil/rock outcrops (12.3%), rivers and lakes (2.1%),
and areas regenerating from wildfire or site reclamation (<1%)
(Frair et al., 2007; Wolf et al., 2009).

Over the study period, female elk were translocated to the
study area from three source sites within Alberta: (1) Banff and
Jasper National Parks, mountainous areas with the full suite of
predators present in the study area but protected from hunting,
(2) Cross Ranch Conservation Area (ca 20 km southwest of
Calgary), a hunted area of foothills and agricultural lands largely
without predators, and (3) Elk Island National Park, a flat aspen
parkland without predators or hunters, see Frair et al. (2007) for
more details about these three sites. Collared animals included
six females from the town site of Banff released in February
2001. Nine females were released from the Cross Area, six during
December 2000 and three in December 2001, and six females
were released from Elk Island between January and February
2002. The animals were captured primarily using corral traps
baited with hay. These animals were transported to release areas
in livestock trailers that held between 9 and 16 animals depending
on the sex and age class composition. Elk were released directly
from the trailers into the study area. The animals were released in
a number of separate locations to increase independence between
results from different individuals (Frair et al., 2007; Wolf et al.,
2009).

Prior to release, translocated elk were fitted with GPS collars
(LMRT4 and GPS2200, Lotek Wireless, ON, Canada) that
collected locations every 2 h for up to 11 months. We used
all locations of each collared animal during a season or until
radio-contact was lost, the animal died, or GPS collars were
retrieved via breakaway device (11 months post-release). All
collars were equipped withmortality sensors that activated after 7
h of immobility. Collar tests across the range of cover and terrain
conditions encountered within the study area indicated a high
fix rate and positional accuracy of ≤50 m 80% of the time (Frair
et al., 2007; Wolf et al., 2009).

Foraging patches were defined based on a 27-class landcover
grid developed for this region (see Frair et al., 2005). The grid
had a 28.5 m cell size, and an overall classification accuracy of

82.7%. Using ArcGIS (Environmental Systems Research Institute,
Redlands, California), we combined those classes where elk can
find forage [dry/mesic and wet meadows, shrubland, clearcuts,
and reclaimed herbaceous (pipeline)] into a single foraging
habitat class. Then, we converted the grid to a polygon layer
without simplifying lines, which is equivalent to an 8-cell
neighborhood rule for patch definition. We eliminated polygons
<0.27 ha in size (essentially <3 contiguous pixels), and retained
16,782 patches for analysis. The resulting foraging patches
averaged 6.93 ± 29.4 ha in size. For each elk GPS location
occurring within a patch, we recorded the unique number for that
patch, which allowed us to derive information on the time spent
moving between foraging patches, the residency time within
patches, and the return time to previously visited patches. Thus,
we transformed the original GPS trajectories into a time series of
patch to patch visits which included the time spent in each patch
and the time traveling between patches. We assumed that most
foraging occurred in these high biomass patches. Figure 1 shows
the map of the study area with the distribution of the foraging
patches, as well as four representative trajectories during summer
and winter for two elk.

2.2. Models
For each model below, we made the following assumptions:

• The animals were moving in a stationary 2d environment
which consisted of a set of N available patches (resource sites),
N is obtained from environmental data as detailed in the
previous subsection. Patches were characterized by their area
an, with n in {1, ...,N}. The Euclidean distance between the
centroids of the patches n andm is denoted by dn,m.

• We modeled discrete movement events: at each time step
t → t + 1 an animal decides to move to another patch
(patch-to-patch movement) following a set of rules that we
will explain below. The model does not take into account the
actual time spent in a patch or between patches, and consider
each trajectory as a whole without making distinction between
seasons.

• An animal will go from patch n to patch m with probability
Pn,m. This probability were computed in different ways for
each model.

• All the parameters to estimate were positive numbers.

2.2.1. Model I

The first model is Markovian as it assumes that the forager
chooses to visit a patch (m) in the environment by considering
the distance (dn,m) from its current patch (n) and the area (am)
of the patch m. We define a probability vector k = (k1, ..., kN)
whosem-th entry denotes the probability that the animal goes to
patchm from patch n. Each entry is defined by:

km = dm ∗ cm/
∑

r

dr ∗ cr , r = 1, ...,N (1)

with,

dm = exp(−(dn,m/α)β )
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FIGURE 1 | Map of the study area with the distribution of the foraging patches. As an illustrative example, the trajectories between patches of two representative elk

are displayed, in summer (white circles) and in winter (black circles).

and

cm = exp(xm)/(1+ exp(xm))

where xm = λam + κ , i.e., we assume that the probability to
visit patch m decays exponentially with the distance to patch n
(dn,m) and increases with the area of patchm (am). This model (as
well as the others below) does not specifically consider a variable
for the patch quality, but assumes that the animals have a higher
probability to cross a large patch than a small one. We aim at
obtaining a hierarchical estimation for the parameters α, β , λ,
and κ (see Table 1).

2.2.2. Model II

We next incorporate memory effects through a parameter q ∈
(0, 1) that defines the probability with which an animal decides
to use its experience to revisit a patch. In this Model II, we
assume that the forager has infinite memory, i.e., is capable of
remembering all previously visited sites. Linear reinforcement is
implemented by setting that the probability to choose a particular
site for revisit is proportional to the accumulated number of visits
to that site. This model has two types of movement decisions:

◦ With probability q the forager moves from patch n to patch
m considering, besides the distance and area, the number of
visits that patchm has received in the past. The entrym of the
probability vector k is now defined by:

km = dm ∗ cm ∗mm/
∑

r

dr ∗ cr ∗mr , r = 1, ...,N (2)

with dm and cm defined as in (1) and mm = nm, where nm is
the number of visits at site m until the present time t. Hence,
mm = 0 if the animal has never visitedm.

◦ With probability 1−q the forager does not use its memory and
will choose a patchm using the probability vector k defined in
(1). Hence the forager performs an exploratory movement.

2.2.3. Model III

Given that the data trajectories belong to animals that were
released in an unfamiliar environment, it is reasonable to
hypothesize that movements were dominated by exploration at
early times and by memory at later times. In such case, one may
allow the memory parameter q to vary with time.

In this model, the memory parameter depends on the number
of unique visited sites (UVS) of the forager up to time t. To this
end, we define u = (u1, ..., uT) as a vector of length T, with T the
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TABLE 1 | Prior distributions.

Parameter Prior distribution Interpretation

α Normal (0, 10) Scale parameter for the exponential function that defines the probability decay with distance.

β Normal (0, 1) Shape parameter for the exponential function that defines the probability decay with distance.

λ Normal (0, 1) Slope parameter for the logit function that defines the probability increase as function of patch area.

κ Normal (0, 1) Intercept parameter for the logit function that defines the probability increase as function of patch area.

q Beta (1, 1) Parameter that defines the memory use frequency.

ρ Normal (0, 10) Scale parameter for the exponential function that defines the increase of probability memory use

as function of the number of unique visited sites.

ǫ Normal (0, 1) Shape parameter for the exponential function that defines the increase of probability memory use

as function of the number of unique visited sites.

ν Normal (0, 10) Scale parameter for the exponential function that defines memory decay as function of time since

last visit for each patch.

θ Normal (0, 10) Shape parameter for the exponential function that defines memory decay as function of time since

last visit for each patch.

trajectory length and uT the number of distinct patches visited by
the forager up to time T (u1 = 1). This vector is an observed data
and q will depend on it as follows:

q(ut) = 1− exp(−(ut/ρ)
ǫ) (3)

In this model the total number of parameters to estimate is six,
four of them already considered in Model I, plus two parameters
for the increase of memory use as function of the UVS (ρ and ǫ,
see Table 1).

2.2.4. Model IV

So far we have considered inModel II and III that foragers possess
infinite memory. Besides, we have considered that reinforcement
is linear, i.e., that an animal chooses a site for revisit with
probability proportional to the total number of visits to that site.
To incorporate memory decay, we assume in Model IV that the
weight of any visit decays exponentially in time, from the value
unity. Hence, the animal will forget those visits that are far away
in the past and will remember very well those that are recent.
Therefore, the recently visited sites have a larger probability to
be visited again.

The memory factor defined in Model II now takes the form:

mm(t) =
nm∑

i=1

exp{−[(t − ti)/ν]
θ } (4)

with nm the number of visits to patch m until time t, and ti the
time at which the i-th visit to this patch occurred. It is important
to note that mm defined in Equation (4) will be characterized by
an exponential memory decay for θ = 1, a stretched exponential
decay for θ < 1, and a super-exponential decay for θ > 1.
In this model, one needs to estimate eight parameters. The
six parameters already considered in Model III and two more
describing memory decay (ν and θ , see Table 1).

We fitted these fourmodels to the data and then we performed
a model comparison. We used two different tools to perform

this comparison: a Posterior Predictive Check (PPC) to asses
the model’s ability to “predict” the data used to parameterize
it, and the Watanabe-Akaike Information Criterion (WAIC)
(Watanabe and Opper, 2010) as an approximation for out of
sample predicting capacity of each model. These two tools help
us to compare the four models above. Specifications about fitting
and comparison are shown in the next sections.

2.3. Model Fitting
For some parameters such as q, the frequency of memory use, we
used non-informative priors while for other parameters we used
weakly informative priors (Table 1). All priors were truncated to
take only non-negative values.

The models were fitted by using a two-stage approach as
proposed by Hooten and Hefley (2019). Such fitting procedure
was necessary because fitting the hierarchical level in only one
stage would have been intractable computationally, regarding
both memory and execution time. The first stage involves
fitting the set of individual-level models independently using
placeholder priors for all model parameters. Each individual has
its own set of parameters for each model. This first-stage was
achieved using Hamiltonian Monte Carlo (HMC) techniques
implemented within the software Stan (Carpenter et al., 2017)
and accessed via RStan (Stan Development Team, 2018). For all
models we ran three HMC chains with 5,000 iterations for Model
I and II, 10,000 iterations for Model III and IV. We discarded the
first half of the iterations for warm-up, and obtained a Rhat< 1.1
and a reasonable number of effective samples (n_eff), fromwhich
the posterior distribution of all parameters were obtained. For
each animal, the starting point of the fitting simulation was taken
as the first visited patch observed. More details about how we
performed the simulations are given in Supplementary Material

(A Guide Example).
The second stage involved a simple MCMC algorithm to

fit the full hierarchical Gaussian model using the posteriors
from the first stage as priors (Hooten and Hefley, 2019). This
second stage ran only one chain with 7,500 (15,000) iterations
(the union of the three chains from the first stage) with 3,750
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(7,500) iterations for warmup, a p−value pv > 0.05 for the
Geweke’s statistic and a reasonable n_eff for all the relevant
parameters in the different model dynamics. With this second
step, we obtained the posterior distributions at the individual-
level for the parameters of each animal (this fit takes into account
the variability between individuals) as well as the posterior
distributions of the parameters at the population-level.

2.4. Model Assessment and Comparison
In order to assess and compare the descriptive and predictive
capacity of the different models, we use two kinds of tools: one
qualitative and the other quantitative.

As qualitative assessments, we performed PPC on the number
of unique patches visited by the animals through time. That is,
for each animal we determined the number of unique patches
visited (or UVS) as a function of the number of between-patch
movements and compared this quantity with the predictions
of simulated trajectories from the different models. For each
simulated trajectory, we used parameter combinations sampled
from the joint posterior of each of the corresponding model.
For each model and individual animal, we simulated 1,000
trajectories, with initial position as same as the observed one,
and we checked whether the observed change in number of UVS
fell within the credible interval of the simulated ones. We thus
could asses whether the observed pattern was consistent with the
parameterized model.

As a quantitative assessment of model predictive capacity
we used WAIC (Watanabe and Opper, 2010). This quantity
is computed from the log-pointwise-predictive-density of each
model, which was calculated from the posterior distributions
obtained from the second-stage algorithm. This quantity helped
us to suggest the best model for each individual: we say that a
model is the best when it obtained the lowest WAIC and when
the difference between this and other model’s WAIC were >2.

3. RESULTS

3.1. Model Comparison
Considering the PPC for all individuals and models
(Supplementary Figure 9), we found that six trajectories
(out of the 21 individuals) were contained within the 95%
credible interval (CI) of Model I, while 17 did so for Model II, 10
for Model III and 15 for Model IV.

The WAIC comparisons displayed in Table 2 show us that
Model I was not the best model for any individual, i.e., the
calculated WAIC for Model I was never the smallest one for
any animal. Model II had the smallest WAIC for 12 individuals.
Model III was the best for nine animals, andModel IVwas not the
best for any individual. Therefore, in most cases, a constant rate
ofmemory use and a linear reinforcement withoutmemory decay
provided a good description of their trajectories. These results
agree qualitatively with those of the PPC.

To illustrate these general results, we present a closer analysis
of the PPC and WAIC for four representative individuals that
portray different kinds of behaviors on a trajectory. Figure 2
displays the PPC for each model and animals 1, 7, 11, and
17. Table 2 shows WAIC for all models and the same four
representative animals in gray. The lowest WAIC between

models for each individual is indicated in bold. We denoted as
δ the difference between the WAIC of each model and the lowest
one, and PW as the effective number of parameters.

Figure 2-first Row shows the PPC results for individual 1
from Banff. Model I fitted well only the first steps of the
trajectory, indicating that the animal was probably in exploration
phase. Later on, the trajectory is no longer contained within
Model I credible interval. Model II fitted well the final steps
of the trajectory from this animal, suggesting that it followed
an exploitation phase with q = 0.68 (from here on, all
reported parameters values are the mean from their correspond
posterior distribution). However, like Model I, neither Model
II OR IV described the entire time series. Thus, Model III was
the only acceptable model for animal 1, indicating that this
particular individual increased its memory use as it explored the
environment. In agreement with this finding, Model III had the
lowest WAIC for this animal (Table 2).

Figure 2-second Row displays the PPCs for animal 7 from
Cross Ranch. Here, Models I and III fitted well just the first
trajectory steps, indicating a exploration phase, but overall, they
were not acceptable for animal 7. In contrast, Model IV contained
all the observed trajectory within its CI, suggesting that this
particular individual increased its memory use as it explored
the space and its memory decayed over time. Model II was also
acceptable for animal 7, with a constant rate of memory use
of q = 0.38. Therefore, animal 7 had two possible acceptable
models. However, the lowest WAIC for individual 7 was for
Model II, and the δ for Model IV was quite large (Table 2).

Figure 2-third Row corresponds to animal 11, also fromCross
Ranch. Models I, III, and IV fitted well only the first steps of
the observed trajectory. Model II contained within its CI the
entire observed data, indicating that this particular animal used
its memory at a constant and very high rate (q = 0.80), being
most of the time visiting known patches. Table 2 indicated the
lowest WAIC for Model II, confirming the conclusion drawn
from the PPC.

Figure 2-fourth Row corresponds to animal 17 from Elk
Island. Model III fitted well just the first steps of the trajectory
and it was not acceptable for this individual. Otherwise Models
I, II, and IV contained within their respective CI all the observed
trajectory. This give us three possible interpretations for animal
17: (i) The animal was always in exploratory phase. (ii) The
individual used its memory at constant rate q = 0.25. (iii)
The animal increased its memory use with time and its memory
decayed over the time. Table 2 shows that Model II actually had
the lowest WAIC. Therefore, Model II can be considered as fairly
good to describe and predict the trajectory of animal 17.

Table 2 summarizes models fit to each elk by their source
population. Elk from 1 to 6 belong to the Banff and Jasper Source,
animals from 7 to 15 to Cross Ranch, and elk from 16 to 21 to Elk
Island. Models having the lowest WAIC are bolded. We can see
that for all animals from Banff and Jasper, Model III was the best
according toWAIC. For animals fromCross Ranch,Model II was
the best for most of them. And for 66% of elk from Elk Island,
Model II was the best. This suggests that animals from different
source populations reacted differently to the new environment.

We discuss in the following the different parameters obtained
from the fits.
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TABLE 2 | WAIC from the pointwise log-likelihood for each model and each individual.

Model I Model II Model III Model IV

Source ID WAIC PW WAIC PW WAIC PW WAIC PW

Est δ Est Est δ Est Est δ Est Est δ Est

1 916.51 148.28 12.06 788.51 20.28 7.27 768.23 0.00 7.05 801.51 33.28 11.23

2 1864.50 221.87 8.50 1645.72 3.09 8.46 1642.63 0.00 9.50 1724.00 81.37 13.08

3 2751.13 342.30 5.60 2410.23 1.40 5.73 2408.83 0.00 10.16 2499.04 94.21 14.99

Banff and Jasper 4 295.62 38.37 13.92 263.21 6.32 7.25 256.89 0.00 5.80 267.09 10.20 6.98

5 611.20 57.11 21.75 561.77 7.68 33.43 554.09 0.00 29.81 653.32 99.23 76.39

6 1161.61 169.74 21.04 994.70 2.83 31.52 991.87 0.00 29.74 1031.30 39.43 33.59

7 1670.40 70.08 8.93 1600.32 0.00 11.42 1654.73 54.41 18.34 1689.76 89.44 24.60

8 398.77 33.54 8.78 370.41 5.18 2.83 365.23 0.00 1.70 372.14 6.91 2.32

9 846.68 54.29 11.59 792.39 0.00 9.40 812.27 19.88 9.68 834.13 41.74 11.40

10 793.78 21.14 10.00 772.64 0.00 5.81 857.71 85.07 16.11 846.62 73.98 9.43

Cross Ranch 11 3406.23 677.88 6.71 2728.35 0.00 7.34 2755.67 27.32 5.99 2868.43 140.08 18.11

12 1259.08 98.78 7.88 1160.30 0.00 11.72 1193.49 33.19 18.01 1223.01 62.71 15.93

13 1732.02 160.37 7.32 1571.65 0.00 10.58 1577.72 6.07 9.88 1627.82 56.17 14.03

14 1020.30 102.70 7.39 917.60 0.00 7.29 921.85 4.25 7.55 951.79 34.19 9.45

15 2561.35 213.99 7.37 2347.36 0.00 5.49 2394.94 47.58 18.72 2467.82 120.46 23.22

16 289.98 3.03 13.39 286.95 0.00 15.68 295.28 8.33 16.24 296.51 9.56 18.12

17 499.80 34.65 27.65 465.15 0.00 10.51 468.45 3.30 8.85 469.82 4.67 10.55

Elk Island 18 1604.57 118.75 6.80 1485.82 0.00 7.30 1485.86 0.04 5.80 1540.36 54.54 10.08

National Park 19 130.98 106.86 53.14 27.41 3.29 2.84 24.12 0.00 1.40 26.20 1.21 1.81

20 23.02 5.18 0.78 18.05 0.21 0.69 17.84 0.00 0.24 18.92 1.08 0.27

21 241.79 72.34 50.91 169.45 0.00 12.35 176.70 7.25 13.92 178.27 8.82 15.73

Table shows point estimates (Est) for information criterion WAIC, the effective number of parameters (PW ), and difference between WAIC’s models as δ. In bold the lowest WAIC for

each individual.

3.2. Spatial Parameters
The spatial parameters α, β , λ, and κ are present in all models.
The estimated values for these parameters do not vary too much
between the four different models. We present here a common
interpretation for these parameters. From now on the analysis
focuses on the individual-level estimate of each parameter [say
pj (j = 1 : 21)] as well as on the population-level parameter p.

Parameter α, which controls the scale of the exponential decay
with distance between patches (see Supplementary Tables 6–9)
fluctuated little among individuals and across the four models
[0.60 ≤ αj ≤ 2.57 (km)], with a population average between
models of α = 1.71. Parameter β , which controls the shape
of the exponential decay, varied between 0.64 and 1.50 among
individuals, with a population average of β = 1.09, i.e., close to
the exponential shape. These values mean that distance played
an important role in patch selection; the animals did not choose
patches beyond one or two kilometers from their actual positions
(maybe due to the patchiness of the environment) as shown by
the posterior curve in Figure 3 (Top). These results highlight the
importance of “distance discounting” in movement choices, even
when memory was involved.

Parameter λ, which controls the slope of the logit increase with
patch area, also fluctuated little among individuals and models
[2.34 ≤ λj ≤ 3.70 (ha)], with a population average of λ =
2.90. Whereas, parameter κ , which controls the intercept of the

logit increase, had fluctuations between 0.02 and 0.42 among
individuals, and a population average of κ = 0.14. We conclude
that patch area played a significant role during patch use: the
probability increased rapidly for patches of area around 1 ha, and
saturated for patches with area >2 ha as shown by the posterior
curve in Figure 3 (Bottom).

3.3. Memory Use
Figure 4 displays the marginal posterior distributions of the
parameter q, that defines the probability of memory use in Model
II. As mentioned earlier, this model was considered the best for
12 individuals. For these individuals q had a minimum value of
0.18 and a maximum of 0.80, but most of them had a q ≈ 0.5.
Hence, according to this model, roughly half of the moves from
patch to patch performed by most of the animals are informed by
memory, while the other half can be considered as exploratory.
For those animals with values of q far from 0.5, the trajectories
are either dominated by memory (e.g., ID 11) or by exploratory
movements (e.g., ID 10 and 21) .

Model III assumes that q grows from zero with the number
of UVS at time t (ut), as defined by Equation (3). Figure 5
(Top) displays the marginal posterior distributions of the
parameter ρ. This parameter defines the number of visited
sites needed for the onset of important memory effects. For
those individuals for which this Model III was considered
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FIGURE 2 | Posterior predictive check (PPC) of models I–IV for elk with ID 1 (1st row), 7 (2nd row), 11 (3rd row), and 17 (4th row). The number of unique patches

visited (UVS) is shown as a function of time. The PPC curves (obtained from simulating movement using parameters sampled from their posterior distributions) are in

light gray, with the 95% CI in dark gray. The red curves were obtained from the real trajectories. The y-scale for each graph in the same row is different in order to

clearly show which parts of the observed trajectory are inside of the CI.

the best ρ had values between 12.87 and 12.93. Likewise, the
shape parameter ǫ Figure 5 (Center) of the exponential ranged
between 0.03 and 0.86. Figure 5 (Bottom) displays the growth
of memory use as a function of u at the population-level.
Memory use increased rapidly to 0.5 when the unique visited
sites were between 5 and 10, before slowly tending to its
asymptotic value.

3.4. Memory Decay
Model IV takes into account all the assumptions of Model III,
with the addition of a decay in memory. Figure 6 (Top) displays
the marginal posterior distribution of the scale parameter ν that
defines the time scale of memory decay. For the population-
level this parameter was estimated as ν = 10.78. The mean
shape parameter θ was estimated as θ = 0.30, thus, memory
decayed on average more slowly than exponentially, namely, as
a stretched exponential [Figure 6 (Center)]. Actually, Figure 6
(Bottom) reveals that the weight of a visit to a patch (whose
initial value is 1) often decayed very slowly in time. In many
realizations, this weight remained significant (> 0.2) even after
a number of steps (t ∼ 100) much larger than the mean
half-time (estimated as ∼ 5 steps, or ∼ 30 h in physical
time). Therefore, the half-time of memory decay is not very
meaningful here.

4. DISCUSSION

We have presented four simple models to fit a set of movement
data collected in western Canada for 21 elk relocated into a new
environment. In a first stage, Bayesian estimates were carried out
at the individual-level using Hamiltonian Monte Carlo sampling.
A hierarchical analysis was next implemented following the
algorithm proposed in Hooten and Hefley (2019), allowing us
to infer how the population as a whole is adapting to a new
environment. All the results obtained at the individual-level
can be found in the Supplementary Material. To compare and
evaluate these four different models we used two tools, one
quantitative the other qualitative. We used, on the one hand
the Watanabe Akaike Information Criterion (WAIC) and on the
other hand, a Posterior Predictive Check (PPC) based on the
number of unique patches visited by the animals. The results
obtained by these two tests were in agreement. We found that
the trajectories of all animals were far from being described
by a memoryless random walk and rather exhibited patterns of
recurrent revisits to patches. Although it is possible that some
unquantified patch feature makes them more attractive to the
animals and hence more likely to be revisited, it is unlikely
that the pattern of patch use described by the time series of
unique patches visited can result from memoryless movement.
In other words, unobserved patch features will have to have a
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FIGURE 3 | Probability weights (see Equation 1) for choosing a patch as a

function of distance (Top) and area (Bottom) at the population-level for Model

I. The curves (obtained from sampling the parameters posterior distributions)

are in light gray, with the 95% CI in dark gray. Very similar results were

obtained for Models II–IV (see Supplementary Figures 6–8).

very particular distribution in order to match observed changes
in patch use with time.

Our Models II and III, that consider an infinite memory
capability (with constant and dynamic rate of use, respectively)
combined with a linear reinforcement of the visited patches, fitted
and predicted well all the trajectories. This is consistent with
the results exposed by Wolf et al. (2009) in which a thorough
statistical study of habitat selection found that elk had a strong
tendency to select the most recently visited locations to forage
instead of selecting locations only by their quality. Moreover,
the values of our spatial parameters, and the dispersion curves
that they defined, corresponded well with resident elk movement
scales reported in Frair et al. (2005). Foraging movements were
of the order of hundreds of meters and relocating moves of the
order of 1.6 km. Our fourth model, that considered a dynamic
use of memory as well as memory decay, was not considered as
the best model for any individual. That model therefore seems
too sophisticated for this population over the observation period.

The exploitation-exploration paradigm is a well known
concept in ecology. There are several models that have focused on

FIGURE 4 | Mean marginal posteriors (points) and 95% CI (vertical lines) for

individuals (denoted by ID number) and the population (denoted by “pop”) for

the parameter q of Model II which controls the probability of using memory

when making a movement decision. The black intervals correspond to the

results of the first-stage algorithm and the solid light gray intervals correspond

to the results of the hierarchical, second-stage algorithm across all animals.

Dashed gray interval correspond to the population-level.

identifying and predicting these two phases from single animal
trajectories (Morales et al., 2004; Jonsen et al., 2007) but they
are often based on memoryless dynamics and the exploitation-
exploration phases are the result of different types of random
walks movements. Our Model II is memory-based and the use
of memory is governed by a constant parameter q. While the
exploration phase corresponds to random decisions unrelated
with experience, the exploitation phase is ruled by the use of
memory and the reinforcement learning acquired by experience.
These simple assumptions were enough to adequately represent
the temporal changes in the number of unique patches visited
(Supplementary Figure 9) by twelve animals and therefore to
identify the presence of these two phases. It is important to
note that those twelve individuals for which Model II was
considered the best model, as well as the nine animals for which
Model III gave the best results, had a high value of q (near
1/2, typically). This suggests that these animals used memory
intensively, instead of performing pure random walks (which
correspond to the limit q → 0). A previous study on capuchin
monkeys that used a similar model found a value of q near 0.12
over a 6-month period (Boyer and Solis-Salas, 2014). In that
model the environment was represented as a regular discrete
lattice in which each point was a site to visit. The high values of q
observed in our study could be explained by frequent decisions to
return to high-resource patches or safe places, for instance those
where the predation risk (by wolves or humans) is lower. The
movement patterns produced by these high values of q is also
consistent with the scale movement results exposed in Frair et al.
(2005) that shows that elk make use of certain patches and do not
explore beyond them, possibly to reduce their mortality rate and
predation risk.

We also found that animals from the same source population
tended to behave similarly: for most of the animals relocated
from Banff and Jasper, Model III was considered the best model,
whereas most of the elk coming from Cross Ranch and Elk Island
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FIGURE 5 | (Top and middle) Same as Figure 4 but for parameters ρ and ǫ

(resp.) of Model III. (Bottom) Increase of the probability of memory use q as a

function of the number of unique visited sites u at the population-level. The

curves (obtained from sampling parameters from the joint posterior

distributions) are in light gray, with the 95% CI in dark gray.

were best described byModel II. These results might be explained
by the experience animals had before translocation: we speculate
that if the original environment was similar to the new one or the
animal was not naive to predators, the animal relied more heavily
onmemory as they visited new patches (Model III). Conversely, if
the original environment was very different or the animals naive
to predators, then the they kept high rates of exploration (Model

FIGURE 6 | Same as Figure 4 for the parameters ν (Top) and θ (middle) of

Model IV. (Bottom) Decay of the weight of a visit to a patch, exp{−[(t− ti )/ν]
θ }

vs. t, with , ti = 1, sampled from the joint posterior distribution of ν and θ .

II). This hypothesis stems from the fact that Banff and Jasper
are mountainous with similar kinds of valley meadows as the
new habitat, and that the animals were familiar with predators,
while Cross Ranch and Elk Island have quite different habitat
backgrounds, mostly wide-open areas dominated by agriculture
and flatland, respectively, and with animals naive to predators.

It is noteworthy that the model in which memory decays with
time (Model IV) was not supported as the best model for any of
the animals during the period of this study. This suggests that elk
remember very well the places they have visited at least within
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1 year. Similar findings have been reported for other species
such as American bison (Merkle et al., 2014), sheep (Gautestad
and Mysterud, 2005), woodland caribou (Avgar et al., 2015),
or chimpanzees (Janmaat et al., 2013). These works reported
evidence of long-term or very slowly decaying memory, with
individuals having the ability to return sometimes to locations
which had not been visited for months, or even years.

Studying the movement trajectories of translocated animals
provides a promising way to understand how animals use
memory. Our findings are qualitatively consistent with those
recently reported by Ranc et al. (2020) on reintroduced roe deer.
The movements of those animals were described by a model
including both memory and resource preferences, somehow
similarly to ours in the memory mode, with a reinforcement that
saturated to a limiting value instead of growing linearly as here.
Their fitted model was able to predict the dynamics of home
range formation observed in roe deer, thus bringing support to
the hypothesis that memory constitutes an important mechanism
for home range emergence (Börger et al., 2008; Van Moorter
et al., 2009). Although not analyzed in detail here, it is very likely
that the models that we have fitted would also predict several
movement properties indicative of limited space use and home
range behavior in elk, but it would be important to have longer
observation periods to verify this.

Our models and data analysis show a clear effect of distance
and patch area on the probability of a patch being used in the
next move. Thus, the configuration of patches in the landscape
will affect how space is used and how memory is built. Several
extensions would make these models more realistic and complex.
For example, the probability ofmoving from one patch to another
could be affected not only by distance and patch area but also by
more realistic estimates of movement costs due to topography
and other landscape variables such as different habitat types
and predation risk between patches. Furthermore, it would be
interesting to include properties of patches that wouldmake them
more or less attractive, and also to consider potential seasonal
changes in these attributes.

Compared to previous work that studied habitat selection in
these animals (Frair et al., 2007), our model is quite coarse as
we are only considering moves from patch to patch without
taking into account how animals go from one patch to another
or how they move inside patches. It would also be possible
to consider continuous time modeling taking into account the
time that an animal spend going from one patch to another,
as well as the residence time within patches. The residence
time is a key movement component, which can exhibit high
variations within home ranges due to a higher selectivity among
habitat types (Van Moorter et al., 2016). Our modeling approach
also ignored the fact that in a network of patches, nearby
patches can compete as possible destinations due to their spatial
configuration (Ovaskainen and Cornell, 2003). This effect can
be approximated by considered all possible ways in which an
individual leaving a particular patch can eventually reach another
patch in the network, although the computational costs are
substantial (Morales et al., 2017).

Our models could capture features of the movement
patterns of the study animals with a minimum number of

parameters and rather simple dynamical rules. Such simplicity
is advantageous if one wishes to apply the same models to
other data sets. Particularly, a single parameter q quantifies
the behavior of an animal memory-wise, and can serve as a
basis for comparisons between individuals or between species.
Substantial variations of this parameter among individuals
of a same species and in a same environment, as observed
here, indicate that the movement strategies employed are
quite flexible.
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Understanding how animals use information about their environment to make movement
decisions underpins our ability to explain drivers of and predict animal movement.
Memory is the cognitive process that allows species to store information about
experienced landscapes, however, remains an understudied topic in movement ecology.
By studying how species select for familiar locations, visited recently and in the past,
we can gain insight to how they store and use local information in multiple memory
types. In this study, we analyzed the movements of a migratory mule deer (Odocoileus
hemionus) population in the Piceance Basin of Colorado, United States to investigate
the influence of spatial experience over different time scales on seasonal range habitat
selection. We inferred the influence of short and long-term memory from the contribution
to habitat selection of previous space use within the same season and during the prior
year, respectively. We fit step-selection functions to GPS collar data from 32 female
deer and tested the predictive ability of covariates representing current environmental
conditions and both metrics of previous space use on habitat selection, inferring the
latter as the influence of memory within and between seasons (summer vs. winter).
Across individuals, models incorporating covariates representing both recent and past
experience and environmental covariates performed best. In the top model, locations
that had been previously visited within the same season and locations from previous
seasons were more strongly selected relative to environmental covariates, which we
interpret as evidence for the strong influence of both short- and long-term memory
in driving seasonal range habitat selection. Further, the influence of previous space
uses was stronger in the summer relative to winter, which is when deer in this
population demonstrated strongest philopatry to their range. Our results suggest that
mule deer update their seasonal range cognitive map in real time and retain long-term
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information about seasonal ranges, which supports the existing theory that memory is
a mechanism leading to emergent space-use patterns such as site fidelity. Lastly, these
findings provide novel insight into how species store and use information over different
time scales.

Keywords: short-term memory, movement ecology, mule deer, step-selection functions, space use, Odocoileus
hemionus, cognition, long-term memory

INTRODUCTION

Animal movement is a fundamental process that underpins the
relationship between species and their environment (Nathan
et al., 2008; Morales et al., 2010). For decades, the study of
animal movement has informed our understanding of important
ecological processes, including patterns of distribution and
abundance (Turchin, 1989, 1991), optimal foraging (Owen-
Smith et al., 2010; Middleton et al., 2018), species interactions
(Schlaegel et al., 2019), and habitat selection (Byrne et al.,
2014; Avgar et al., 2016). By quantifying the factors that drive
animal movement, we can better understand these ecological
processes and improve predictions of when and where we
observe species, which has important applications for species
management and conservation (Jeltsch et al., 2013; Berger-Tal
and Saltz, 2014; Allen and Singh, 2016; Tucker et al., 2018).
Thus, the study of animal movement is central to both basic and
applied ecology.

Animal movement is the direct result of the complicated
interplay between the physiological state of the animal, the
influence of abiotic and biotic environmental factors, and the
constraints of the cognitive and physical capacities of the
individual (Nathan et al., 2008). Animals move to fulfill basic
biological needs that promote fitness (e.g., finding a mate,
locating forage, avoiding risk, etc.), and these movements
are directly influenced by environmental conditions (e.g., the
locations of conspecifics, distribution of resources, predator
abundance etc.; Nathan et al., 2008; Avgar et al., 2013b). Although
the influence of environmental factors has been a primary focus
of movement ecology, in recent years, studies have increasingly
recognized the importance of quantifying the influence of
cognition on animal movement (Schmidt et al., 2010; Avgar et al.,
2013a; Fagan et al., 2013; Bracis et al., 2015; Spiegel and Crofoot,
2016). Cognitive processes, such as learning and memory, are the
mechanisms that allow species to store and use information about
their environment (Shettleworth, 2001). By tracking experience
with their environment, animals can adjust their movements
to better exploit local environments to fulfill biological needs
(Benhamou, 1994). Thus, accurate explanations and predictions
of movement depend on appropriately quantifying the cognitive
capabilities of animals and accounting for the influence of
cognition on movement decisions.

Due to advancements in field technology and analytical
techniques, our ability to infer memory and its effect on
movement of free-ranging animals has improved in recent years
(Fagan et al., 2013). Research integrating cognitive processes into
studies of animal movement has yielded important discoveries
about space-use behavior, habitat selection, and foraging theory

(Van Moorter et al., 2009; Wolf et al., 2009; Avgar et al., 2015;
Bracis et al., 2015). This work has demonstrated that species
use memory to follow annual migration routes (Bracis and
Mueller, 2017; Merkle et al., 2019), and generate and maintain
home range boundaries (Boerger et al., 2008; Van Moorter et al.,
2009; Spencer, 2012). Further, memory can reinforce territoriality
through routine patrolling of territory boundaries (Schlaegel
et al., 2017). Cognition allows species to remember locations
of resources (i.e., spatial memory) and their relative quality
(i.e., attribute memory; Fagan et al., 2013; Merkle et al., 2014).
Species that use memory optimize resource gain by increasing
access to high quality forage and reducing the energetic costs
associated with movement (Mcnamara and Houston, 1985;
Mitchell and Powell, 2012; Merkle et al., 2014; Bracis et al., 2015;
Polansky et al., 2015).

Despite the documented benefits of using memory in making
movement decisions, theory suggests that memory only provides
an adaptive advantage under specific environmental contexts and
the use of memory is limited by physiological constraints (Dukas,
1999; Riotte-Lambert and Matthiopoulos, 2020). Species are
more likely to use memory to make movement decisions in semi-
heterogeneous and semi-predictable environments (Barraquand
and Benhamou, 2008; Boyer and Walsh, 2010; Esposito et al.,
2010; Bracis et al., 2015). When environments are highly
predictable or unpredictable, there is little benefit to memory,
and other factors are more likely to guide movement decisions
including reliance on ingrained behaviors and the transfer
of socially acquired information (Mcnamara and Houston,
1987; Riotte-Lambert and Matthiopoulos, 2020). Furthermore,
processing and storing information in memory induces an
energetic cost, therefore, memory is limited by storage capacities,
and the accuracy and availability of information decays over time
(Dukas, 1999; Burns et al., 2011). Species are regularly exposed
to an abundance of information; therefore, the information that
gets stored in memory must be prioritized by its relevance
and how long it is useful to the individual. Memory can
be compartmentalized into different memory types: short-term
(or working) memory and long-term (or reference) memory
(Howery et al., 1999; Cowan, 2008). Information in short-
term memory decays quickly, meaning new information can
be processed without reaching storage capacity. In contrast,
long-term memory has minimal decay, but exacts a greater
physiological cost for retaining the accuracy of information
(Cowan, 2008). Although uncommon in the animal ecology
literature, a few empirical studies have demonstrated that species
can rely on different memory types when making movement
decisions (Mettke-Hofmann and Gwinner, 2003; Oliveira-Santos
et al., 2016; Vergara et al., 2019).
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The above suggests that the influence of memory on animal
movement will depend on the environmental and physiological
constraints on cognition, and therefore it is important that
we account for how these constraints might limit or promote
how species use memory to make movement decisions. Within
and among species, individuals are likely to rely on memory
differently depending on life stage, season, life history strategies,
internal state (e.g., hunger, reproduction), other animals
(e.g., conspecifics, predation risk), and current environmental
conditions (Mettke-Hofmann and Gwinner, 2003; Sulikowski
and Burke, 2011; Morand-Ferron et al., 2019; Snell-Rood and
Steck, 2019). Furthermore, given these conditions, species are
likely to use memory differently depending on their physiological
capacity, for example relying on different memory types
or experiencing accelerated or slowed decay of information
(Mettke-Hofmann, 2014). Therefore, by studying the conditions
and constraints that influence how and when species use
memory when making movement decisions, we can deepen our
understanding of how animal cognition has evolved and gain a
more mechanistic understanding of how cognition drives habitat
selection, optimal foraging theory, and gives rise to emergent
space-use patterns.

Our objective was to assess the influence of short- and
long-term memory on habitat selection of a migratory mule
deer population (Odocoileus hemionus) when occupying seasonal
ranges. Memory typically cannot be directly observed from
animal movement data, but in several past studies, memory
was inferred by measuring the influence of past experience on
current movement decisions (e.g., return to previously visited
locations; Fagan et al., 2013; Merkle et al., 2014; Oliveira-
Santos et al., 2016; Jakopak et al., 2019). To address our
objectives, we inferred short- and long-term memory effects on
habitat selection from utilization distributions (UDs) measured
from recent (e.g., short-term) and past (e.g., long-term) space
use of deer. We incorporated the UDs, which represented
landscape experience, and current environmental covariates into
step-selection functions, which provided inference to habitat
selection by comparing locations used by animals to those
deemed immediately available to them in a spatially restricted
area (SSF; Fortin et al., 2005; Thurfjell et al., 2014). First, we
aimed to establish if experience with the landscape, relative
to environmental covariates, was an important driver of mule
deer seasonal range movement. Then we assessed the degree
to which covariates representing recent and past experience
(i.e., use) with the landscape influenced mule deer habitat
selection within and between seasons. From these results,
we can gain insight to the underlying cognitive processes
driving seasonal range movement. Mule deer were ideally
suited for this analysis because they display strong fidelity
across multiple spatial scales (e.g., return to locations, repeat
migration routes, and return to seasonal ranges), which
supports the likely role of memory in driving seasonal habitat
selection (Northrup et al., 2016; Jakopak et al., 2019; Merkle
et al., 2019; Sawyer et al., 2019). Furthermore, mule deer
in this system migrate annually between summer and winter
ranges, which divides the experience an animal has with
the landscape and allows for assessment of the degree to

which deer rely on recent compared to past experience when
selecting habitat.

If memory is an important driver of habitat selection,
then covariates representing previous experience should show
stronger effects on habitat selection compared to environmental
covariates alone in both seasons. Further, we can infer the
relative influence of short- and long-term memory on deer
habitat selection based on how deer select for recent experience
(e.g., short-term memory) and past experience (e.g., long-
term memory) with a location. We also expected that deer
would demonstrate stronger selection for familiar locations in
the summer compared to winter because during the summer
deer birth and raise fawns and must maximize forage intake
to cope with a comparatively resource-poor environment on
winter ranges. Thus, we expected that the value of selecting
familiar locations would be greater when there is increased
pressure to maximize access to forage and offspring are most
vulnerable to predation. Further, we expected that past experience
would be more important in the summer based on past work
showing higher fidelity on summer ranges (Northrup et al., 2021;
see Figure 1).

MATERIALS AND METHODS

Study Area
This study took place in the Piceance Basin of northwestern
Colorado, United States, near the town of Meeker (Figure 2).
This area is topographically diverse, and the dominant vegetation
consists of big sagebrush (Artemisia tridentata), and a pinyon
pine (Pinus edulis)-Utah juniper (Juniperus osteosperma)
shrubland complex at lower elevations and a mix of mountain
shrublands, quaking aspen (Populus tremuloides), big sagebrush
and a variety of coniferous trees at higher elevations. The region
experiences warm, dry summers and cold winters, with most
of the moisture falling as snow during the winter. The area is
popular for hunting and over the last 15 years has seen extensive
exploration for and development of natural gas resources
(Northrup et al., 2021). Mule deer in this area are migratory,
moving between low elevation winter range and high elevation
summer range. Deer typically occupy winter ranges between
October and April and occupy summer ranges between May and
September, though this time can vary substantially (Lendrum
et al., 2014; Northrup et al., 2014b).

Mule Deer Data
Adult female mule deer were captured as a part of a larger
research program that took place between January 2008 and
April 2018. Throughout this time, deer were captured during
December and March for a variety of project objectives. For
initial captures, winter range study area boundaries were flown
in a helicopter and deer were captured opportunistically using
net gunning (Krausman et al., 1985). Upon capture, deer were
blindfolded, hobbled, and administered 0.5 mg/kg of midazolam
and 0.25 mg/kg of Azaperone. Deer were then transferred to
a central processing site, where a suite of standard measures
and samples were taken, deer were fit with global positioning
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FIGURE 1 | Annual migration between seasonal ranges effectively resets the experience an animal has with the landscape, allowing for an assessment of the relative
effects of previous spatial experience across multiple scales (i.e., recent experience, measured from current season space use, and past experience, measured from
previous season space use) on current season habitat selection. From the influence of covariates measuring spatial experience and current environmental
conditions, we infer how mule deer store and use information in both their short-term (i.e., recent experience) and long-term (i.e., past experience) memory. We
expected that if memory is an important driver of habitat selection, covariates measuring both types of experience would show stronger effects on habitat selection
than environmental covariates. Summer rangers have greater resource availability than winter ranges, and deer birth and raise fawns during the summer months.
Accordingly, we expected that deer would demonstrate stronger selection for covariates measuring experience in the summer compared to winter, and the influence
of past experience would be greater in the summer.

system radio collars (G2110D Advanced Telemetry Systems,
Isanti, MN, United States) and released on site. Northrup et al.
(2014a) provide more in-depth detail on the capture procedure
and the suite of measures and samples taken. All procedures
were approved by the Colorado Parks and Wildlife Institutional
Animal Care and Use Committee (protocol numbers 17-2008 and
01-2012) and followed the guidelines of the American Society of
Mammalogists (Sikes, 2016).

Between 2010 and 2013, we aimed to track individual deer over
multiple years by recapturing them and replacing collars. In the
years following the initial capture, 40 previously captured deer
were located using very high frequency (VHF) radio telemetry
and captured using net guns. All procedures described above
were followed, but collars were replaced each December. For this
current analysis, we focused on data collected between October
2011 and September 2013. During this time, collars were set to
attempt a relocation every 30 min between October and April
and every hour between May and September. We divided data
into summer or winter range based on a visual assessment of the
migrations of each individual deer because mule deer sometimes
demonstrate irregular movements that other standard methods
of defining migrations, such as net square displacement, would
not accurately capture. We determined that a deer had left their
summer or winter range when they made consistent movement
away from their established range and did not return until the

following season. We similarly determined that a deer had arrived
on their winter or summer range when, after migration initiation,
they showed localized movements in an area that eventually
became part of their range. For the below analyses, we excluded
all locations deemed to be during migration.

General Statistical Framework
We examined the habitat selection patterns of mule deer on
their winter and summer ranges using step-selection functions.
Following Avgar et al. (2016), we generated random movements
by drawing step lengths (the distance between relocations) from
a gamma distribution with mean and standard deviation for each
individual equal to the empirical mean and standard deviation of
step lengths. We drew turn angles (i.e., the difference in bearing
between the previous and current movement) from a uniform
circular distribution. For each used location, we drew 10 available
locations and intersected them with the below environmental and
memory covariates.

Environmental Covariates
Past research on mule deer in this area has found deer to
respond to a number of natural and anthropogenic factors when
selecting habitat (Northrup et al., 2015, 2021). Because our
intent was to understand how previous experience, quantified
through previous space use, influenced deer habitat selection
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FIGURE 2 | Winter (blue) and summer (yellow) ranges for mule deer in the Piceance Basin, Colorado, United States. Map was produced using QGIS 3.6.3 (QGIS
Development Team, 2019. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://www.qgis.osgeo.org/). Base map by
OpenTopoMap (Kartendarstellung: © OpenTopoMap; http://www.opentopomap.org) under creative common license CC BY-SA 3.0
(https://creativecommons.org/licenses/by-sa/3.0/).

while accounting for other environmental factors, we chose
covariates based on these analyses. Specifically, for winter models,
we assessed habitat selection relative to a terrain ruggedness index
(TRI), elevation (elev), distance to treed edges (edge), snow depth
(snow), and the land cover categories representing barren land
(barren), shrublands (shrub), and grasslands (grass) with treed
land cover as the reference category. For summer models, we
examined habitat selection relative to TRI, elev, and edge as in
the winter models, but also examined the normalized difference
vegetation index (NDVI). Further, because there was little barren
land cover, we combined barren and grass into a single category
(open). In addition, because this area had ongoing active natural
gas exploration and development, we also assessed the response
of deer to the distance to well pads (dpads) and the distance to
roads (drds) for models fit to both seasons.

Covariates Representing Recent and
Past Spatial Experience
To meet our objectives, we aimed to quantify covariates
representing recent and past experience with a location. Previous
analysis of the deer movement data (Northrup et al., 2016)
derived a UD for each individual in our sample by fitting

continuous time correlated random walk models using the
“crawl” package (Johnson et al., 2008; Johnson and London,
2018) in the R statistical software (R Core Team, 2020). These
UDs were calculated at a 5 m × 5 m resolution and provide
an estimate of the probability that an animal had been within a
given 5 m× 5 m cell during the previous year, which we assumed
equated to the relative amount of experience each deer had with
that cell. Because deer migrate each year, the previous year’s UD
should capture their past experience with each seasonal range.
We used UDs fit to winter range data for winter 2011/2012 as a
representation of past experience for habitat selection models (see
below) fit to data from winter 2012/2013 and UDs fit to summer
range data for summer 2012 for habitat selection models fit to
data for summer 2013. We extracted these UD values for every
used and available location and termed this covariate prev_ud.

To quantify recent experience, we undertook a procedure
that calculates metrics equivalent to a daily UD. To do this,
we estimated the probability that a deer had been at a given
used or available location for every day during the current
season prior to the day the focal fix was taken on. To do
this, we followed the same general approach as Northrup
et al. (2016). Using the “crawl” package (Johnson et al., 2008;
Johnson and London, 2018), we fit continuous time correlated
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random walk models to data from each individual and season.
Next, we used these models to predict the location of each
animal for every minute they were on their seasonal range.
Under this approach, for each minute, the model produces a
bivariate normal distribution, which can be used to calculate the
probability that the animal was at any location in the study area
at that minute. By summing over every distribution for each
minute prior to the focal location, we can obtain the probability
that the animal had been at that location previously. We thus
calculated this probability for each used and available location.
To avoid overly weighting very recent experiences, we excluded
distributions from the 24 h prior to the focal location from these
calculations. Further, to ensure that our results were robust to
our choice of the amount of time to exclude, we conducted a
sensitivity analysis by also fitting our models excluding locations
from the previous 7 days. We termed the covariate representing
recent experience curr_ud to indicate that it represents the
current year’s UD to that point in time.

Model Fitting
Previous research in this area has shown mule deer to have
strong differences in habitat selection patterns by time of day
(Northrup et al., 2015). Thus, we split data by summer and
winter range and time of day, with nighttime determined to
be the time between sunset and sunrise. Sunrise and sunset
were calculated using geographical position and time of day.
We then took a tiered approach to model fitting. We expected
recent experience should decay over time because, presumably,
recent experience should be stored in short-term memory, which
has a limited capacity and the availability and accuracy of
information decays quickly (Cowan, 2008; Merkle et al., 2014).
To estimate decay of recent experience, we followed the general
approach of Merkle et al. (2014), who used the following decay
function for memory: 1

1+k × t where k is the decay coefficient,
with larger values equating to faster decay of memory, and
t representing the time since the animal was at a location.
For each used and available location, we applied the decay
function to discount the probability that the animal had been
at a given location for each minute previous to that location.
These probabilities were calculated as described above and after
applying the decay function, we aggregated these discounted
probabilities. For a given used or available location, this approach
provides the probability that the animal had been there previously
during that season, discounted according to the decay function
such that more recent experience could be weighted more. To
find the optimal k value for each individual, we fit individual
models including all of the environmental and experience-based
covariates outlined above, iterating through all possible values
of k between 0 and 1 following the general approach of Merkle
et al. (2014). We estimated k using maximum likelihood in a
two-stage process with the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) optimizer in R. First, a k value was chosen, the probability
values were discounted using the decay function above, and
models were fit using maximum likelihood for the current value
of k (see below for model specification). Then, “optim” was
used to iterate through this process to estimate the value of k
corresponding to the maximum likelihood. In this approach,

k and the selection coefficients are estimated separately. We
attempted to estimate these parameters simultaneously but were
unable to achieve convergence. k parameters were estimated
using this approach separately for each individual animal, with
step-selection functions fit using conditional logistic regression
in the “survival” package in R (Therneau and Grambsch,
2000; Therneau, 2015). In addition, we were interested in
understanding how the importance of both recent and past
experience changed throughout the season. Thus, we fit the
models with an interaction between the landscape experience
covariates and the time since the animal arrived on their summer
or winter range, which provides inference to whether and
how their selection for areas they were familiar with changed
over the season.

After determining the optimal k value for each individual,
we recalculated the recent experience covariate using this value,
which should more appropriately represent a deer’s ability to
remember recently visited locations, and we fit a hierarchical
SSF where all coefficients (i.e., slopes) were allowed to vary
by individual. Prior to model fitting, we calculated pairwise
correlations among all covariates to ensure they were below
0.7 (see Supplementary Information). We fit models using
integrated nested Laplace approximation (INLA) in R (Lindgren
and Rue, 2015) with the addition of the PARDISO solver
(Bollhöfer et al., 2019, 2020; Alappat et al., 2020) to reduce
computation time and followed the guidance and coded examples
in Muff et al. (2020). For comparison, we fit additional models:
one excluding both recent and past experience, one excluding
only recent experience, one excluding only past experience,
and one excluding the environmental covariates. We compared
models using Bayes Factor (Gelman et al., 2013), which we
derived from the marginal likelihood by taking the difference
between complex models and a reference model where no
covariates were included (Gomez-Rubio, 2020). Bayes Factor
represents the strength of evidence provided by the data in favor
of one theory among two competing theories (Kass and Raftery,
1995). All continuous covariates except curr_ud were centered
and scaled by subtracting the mean and dividing by the standard
deviation. Covariates were scaled using means and standard
deviations calculated over all used and available locations for
all individuals. We refit the model with both experience types
and all environmental covariates, but using the curr_ud covariate
calculated excluding the most recent 7 days of experience to assess
the sensitivity of our results to the most recently experienced
locations (note that the entire model fitting process including
the estimation of the decay parameters k was repeated for
these models excluding the most recent 7 days). Due to the
computational requirements, we fit all models using the Cedar
cluster (computecanada.ca, RRG: hyf-453-ab).

RESULTS

We fit models to 29 individual deer in summer and 31 individual
deer in winter that had two complete winters and summers
of data to fit our objectives. No pairwise correlations between
covariates were >0.5 (see Supplementary Information). The
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results of our sensitivity analysis were nearly identical to when
we dropped the most recent 24 h for three out of four models
and fourth model didn’t converge. The coefficients all were in
the same direction, with only minor changes to the magnitude,
except in summer the magnitude of decay.currud increased
considerably, and there were no changes to whether 95% credible
intervals overlapped 0. For these reasons, we report our results
from models excluding the previous 24 h from the covariate
representing recent experience.

The influence on habitat selection from recent experience
decayed for most individuals, with decay being substantially
faster during the summer (Figure 3). For all combinations of
season and time of day, models with both recent and past
experience outperformed models with one type of experience
or no experience at all (Table 1). Across both seasons and time
periods, deer displayed strong selection for areas with which they
had recent experience (locations visited within the same season)
and past experience (locations visited last year), though their
seasonal dynamics varied between winter and summer (Table 2).
During the winter, selection for areas with which deer were
familiar over the short- and long-term was generally constant
across the season (Figure 4). However, during the summer,
selection declined throughout the season (Figure 4). Both recent
and past experience was substantially stronger drivers of selection
during the summer, with effects nearly three times those of
winter (Figure 4).

In both seasons, experience with the landscape appeared
to be stronger drivers of selection behavior than most of the
environmental covariates, having larger magnitude and less
uncertainty than other covariates (Table 2). Deer also showed
strong selection relative to elevation, but the direction of this
effect varied by time of day, with deer selecting for lower
elevations during the day and higher elevations at night in
both seasons. During the summer, few other covariates had
strong influence on selection, but during the winter, at nighttime,
deer showed strong selection for numerous anthropogenic and
landscape features (Table 2). In addition to these selection
patterns, there were some major shifts in coefficient magnitudes
between models fit with and without experience covariates to
the same data. Specifically, in the summer, models with no
experience had coefficient estimates for NDVI that were more
than 3x larger than models with experience, though 95% credible
intervals overlapped in all cases (Table 2; see Supplementary
Information for a table version with credible intervals). There
were similar, though weaker, shifts in land cover covariates for
summer models, but less evidence of such shifts in winter models.

DISCUSSION

Memory is a fundamental component of animal movement
decision-making, and our findings build on the cognitive
movement ecology literature by providing evidence that memory
is an important cognitive process driving mule deer habitat
selection (Merkle et al., 2014; Avgar et al., 2015; Oliveira-
Santos et al., 2016; Bracis and Mueller, 2017; Marchand et al.,
2017). Our results demonstrate that mule deer select for

familiar locations, both from recent and past experience, to
a greater extent than most measured environmental factors.
Although measuring memory directly in observational studies
is difficult, we suggest that these covariates are at least partially
representative of memory. Thus, these findings indicate that mule
deer store information using short- (defined here as information
accrued during the season of analysis) and long-term (defined
as information accrued the previous year) memory. If deer had
no capacity for memory, we would expect that past experience
would only influence habitat selection to the degree to which
it was correlated with current environmental conditions. While
it is possible that experience could represent temporally static
environmental factors not captured in our array of landscape
covariates, past research on this species has documented the
likely use of memory (Jakopak et al., 2019; Merkle et al., 2019),
and thus the re-selection of areas that were previously used is
more simply and logically explained by memory than by animals
repeatedly randomly encountering the same locations. Further,
if deer had a more limited capacity for memory, we expect
they would have selected primarily for recently visited locations,
which would indicate memory is reset when deer leave seasonal
ranges. However, the strong influence of past experience (e.g.,
last season’s UD) and the consistent finding of the importance
of memory when excluding the previous week of data suggests
that mule deer have a strong capacity for long- and short-
term memory.

The strong influence of long-term experience has important
implications for our understanding of the evolution of long-
term memory and migratory behavior (Mettke-Hofmann, 2014).
Species migrate to access seasonally variable resources and being
able to remember information about the location of resources
on seasonal ranges, despite periodic absence, would be critical
for exploiting them efficiently (Aikens et al., 2020). Migratory
species have been shown to have greater capacity to store
and utilize long-term memory, underscoring its importance
in informing long distance movements (Mettke-Hofmann and
Gwinner, 2003; Pravosudov et al., 2006; Mettke-Hofmann,
2014). Conversely, other research comparing short- and long-
term memory found evidence that resident species (e.g., non-
migratory) rely more on short-term memory (Oliveira-Santos
et al., 2016; Vergara et al., 2019). Our results support these past
findings and suggest that both short and long term memory are
critical for allowing migratory species to exploit local resources.
Further assessments of the relationship between memory types
and movement strategies, such as long-term memory and
migration, will provide insight to how cognition and movement
phenomena have evolved.

The roughly equal influence of both recent and past experience
indicates that when mule deer leave seasonal ranges, they
retain a certain level of familiarity that influences their detailed
movement decisions and thus patterns of space use in the
following year. Our findings support several recent papers, which
suggest that memory is an important mechanism generating
emergent space-use patterns of animals (Van Moorter et al., 2009;
Piper, 2011; Spencer, 2012; Avgar et al., 2015). Animals constrain
their space use, which results in home range behavior, site fidelity,
and recursion (Brown and Orians, 1970; Boerger et al., 2008).
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FIGURE 3 | Estimates of short-term memory decay of recently visited locations (i.e., recent experience) for night and day models comparing summer and winter for
individual mule deer in the Piceance Basin, Colorado, United States. The blue line indicates the population level mean.

Environmental conditions partially explain why these patterns
exist, because species are likely to constrain their space use
depending on the availability and quality of habitat and forage
(Mitchell and Powell, 2012), population density (Trewhella
et al., 1988), breeding status (Gaulin and FitzGerald, 1988), and
anthropogenic influence (Martin et al., 2010). However, tracking
experience with a landscape allows species to better exploit
environmental factors (Wolf et al., 2009; Schmidt et al., 2010;
Merkle et al., 2014; Bracis et al., 2015; Forrester et al., 2015). Mule
deer in this system exhibit strong fine-scale fidelity to seasonal
ranges between successive years, especially in the summer
(Northrup et al., 2021). Our results suggest that memory is the
mechanistic driver of philopatric behavior in this population.
These findings further suggest that general movement paths have
been reinforced over successive years and are likely consolidated
into long-term memory, which could explain how philopatric
patterns emerge at broader scales (Owen-Smith et al., 2010;
Merkle et al., 2019). Thus, we propose that long-term memory
is likely the mechanism promoting return to seasonal ranges and
short-term memory allows for deer to alter their habitat selection
based on updated information about dynamic variables in the
landscape (Spencer, 2012).

Theory suggests that memory only provides an adaptive
advantage when the benefit of reusing information outweighs the
cost of retaining it, which occurs most often in environments
that have medium levels of heterogeneity and predictability
(Mcnamara and Houston, 1987; Barraquand and Benhamou,
2008; Fagan et al., 2013; Bracis et al., 2015; Riotte-Lambert
and Matthiopoulos, 2020). As such, we speculate that the
stronger influence of previous experience in the summer, both
recent and in the past, suggests that memory is more valuable

when navigating the summer landscape. This could be a result
of a highly predictable landscape related to resource quality
and predation risk, in combination with increased pressure to
maximize energy stores in the summer. Mule deer birth and
raise fawns at this time, and summer ranges have ample forage
available (Péron et al., 2018). Contrastingly, deer lose substantial
energy stores during the winter due to poor resource availability
(Northrup et al., 2021) and likely prioritize energy conservation.
Thus, we suspect that good habitat during parturition and areas
of high-quality forage are more valuable to remember from year
to year on summer ranges, which would support a strong reliance
on memory as a strategy for selecting habitat (Péron et al., 2018;
Cameron et al., 2020). The lesser influence of experience in
the winter suggests it is physiologically more efficient for deer
to rely on other informational sources, such as conspecifics or
engrained behavior, when moving through a more resource-poor
landscape (Riotte-Lambert and Matthiopoulos, 2020). The strong
influence of experience in the summer can explain previous
observations that deer in this system maintain smaller range
sizes in the summer (Northrup et al., 2016), which further
supports our interpretation of the strong influence of memory
in generating space use patterns. Furthermore, we estimated
individuals experience a faster rate of decay of their short-term
memory of recently visited locations in the summer compared to
winter, which we speculate further supports the stronger reliance
on memory in the summer, because when information is valuable,
capacity limits of short-term memory may be reached at a faster
rate (Spencer, 1992, 2012).

In addition to the above-noted differences between summer
and winter, deer selected less often for recently visited locations as
the summer season progressed but showed relatively consistent

Frontiers in Ecology and Evolution | www.frontiersin.org 8 July 2021 | Volume 9 | Article 702818183

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-702818 July 21, 2021 Time: 17:27 # 9

Rheault et al. Some Memories Never Fade

TABLE 1 | Model comparison using Bayes Factors across season and time of day for hierarchical Step Selection Function models with coefficient estimates (i.e., slopes)
varying by individual, fit to adult female mule deer GPS radio collar data from animals in the Piceance Basin of Northwestern Colorado, United States.

Season Time of day Model Log Marginal Likelihood Bayes Factor

Summer Day use ∼ −1 + env + expR + expP + (1 | Deer) + (env | Deer) + (expR | Deer) + (expP | Deer) −558,344 5,145

use ∼ −1 + expR + expP + (1 | Deer) + (expR | Deer) + (expP | Deer) −559,138 4,351

use ∼ −1 + env + expR + (1 | Deer) + (env | Deer) + (expR| Deer) −559,338 4,151

use ∼ −1 + expR + (1 | Deer) + (expR | Deer) −560,161 3,328

use ∼ −1 + env + expP + (1 | Deer) + (env | Deer) + (expP | Deer) −560,528 2,961

use ∼ −1 + expP + (1 | Deer) + (expP | Deer) −561,551 1,938

use ∼ −1 + env + (1 | Deer) + (Deer | env) −562,310 1,179

use ∼ −1 + (1 | Deer) −563,489 0

Night use ∼ −1 + env + expR + expP + (1 | Deer) + (env | Deer) + (expR | Deer) + (expP | Deer) −399,570 3,945

use ∼ −1 + expR + expP + (1 | Deer) + (expR | Deer) + (expP | Deer) −400,243 3,272

use ∼ −1 + env + expR + (1 | Deer) + (env | Deer) + (expR | Deer) −400,395 3,120

use ∼ −1 + env + expP + (1 | Deer) + (env | Deer) + (expP | Deer) −400,885 2,630

use ∼ −1 + expR + (1 | Deer) + (expR | Deer) −401,277 2,238

use ∼ −1 + expP + (1 | Deer) + (expP | Deer) −401,771 1,744

use ∼ −1 + env + (1 | Deer) + (Deer | env) −402,264 1,251

use ∼ −1 + (1 | Deer) −403,515 0

Winter Day use ∼ −1 + env + expR + expP + (1 | Deer) + (env | Deer) + (expR | Deer) + (expP | Deer) −1,202,517 1,430

use ∼ −1 + expR + expP + (1 | Deer) + (expR | Deer) + (expP | Deer) −1,202,860 1,087

use ∼ −1 + env + expR + (1 | Deer) + (env | Deer) + (expR | Deer) −1,202,887 1,060

use ∼ −1 + env + expP + (1 | Deer) + (env | Deer) + (expP | Deer) −1,203,078 869

use ∼ −1 + expR + (1 | Deer) + (expR | Deer) −1,203,236 711

use ∼ −1 + expP + (1 | Deer) + (expP | Deer) −1,203,469 478

use ∼ −1 + env + (1 | Deer) + (Deer | env) −1,203,570 377

use ∼ −1 + (1 | Deer) −1,203,947 0

Night use ∼ −1 + env + expR + expP + (1 | Deer) + (env | Deer) + (expR | Deer) + (expP | Deer) −1,354,149 4,770

use ∼ −1 + expR + expP + (1 | Deer) + (expR | Deer) + (expP | Deer) −1,354,937 3,982

use ∼ −1 + env + expR + (1 | Deer) + (env | Deer) + (expR | Deer) −1,354,956 3,963

use ∼ −1 + expR+ (1 | Deer) + (expR | Deer) −1,355,963 2,956

use ∼ −1 + env + expP + (1 | Deer) + (env | Deer) + (expP | Deer) −1,356,557 2,362

use ∼ −1 + expP + (1 | Deer) + (expP | Deer) −1,357,471 1,448

use ∼ −1 + env + (1 | Deer) + (Deer | env) −1,357,697 1,222

use ∼ −1 + (1 | Deer) −1,358,919 0

Covariates are defined as environmental (env), recent experience (expR), and past experience (expP).

selection for these locations during winter. We believe this
pattern could best be explained by within season variation in
predation risk (Bracis et al., 2018). We believe at the beginning
of the summer, when fawns are most vulnerable to predation,
deer frequently revisit locations with ample cover to hide
their fawns, which likely stays consistent from year to year.
As fawns become more mobile as the summer progresses, by
rule, deer return to the same location less often (Monteith
et al., 2014; Cameron et al., 2020). Additionally, the value of
forage declines as the summer progresses, potentially causing
the selection of previously visited locations to become less
favorable. We did not have sufficient data to test the relationship
between environmental predictability, resource depletion and
predation risk on selection of familiar locations within and
between seasons (Lendrum et al., 2018), but we suspect
these are the variables driving observed patterns in memory
effects. Furthermore, we acknowledge that because we were
unable to incorporate these variables, selection for habitat
related to environmental predictability, resource quality, and

predation risk could potentially occur absent memory effects.
Thus, we encourage future assessments evaluating the role of
environmental predictability and understanding how changes in
environmental conditions influence when and how species use
memory when selecting for habitat.

The strong influence of landscape experience could have
negative implications for the ability of deer to respond to
landscape change. Previous evaluations of memory suggest that
a strong reliance on this process promotes rigid movement
behavior that doesn’t allow species to respond to change
(Merkle et al., 2015; Sawyer et al., 2019). These findings have
raised concerns that memory could have maladaptive effects
for populations experiencing environmental change related to
anthropogenic disturbance (Andersen, 1991; Morrison et al.,
2021). Thus, the strong reliance of mule deer on familiarity when
selecting habitat suggests that they may not be able to cope well
with the accelerated rates of change being documented in natural
systems (Sih et al., 2011; Beever et al., 2017; Wyckoff et al., 2018).
Alternatively, past work in this system by Northrup et al. (2021)
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TABLE 2 | Posterior means of population-level parameters for summer and winter night/day Step Selection Functions when experience coefficients are included or excluded for adult female mule deer in the Piceance
Basin of Northwestern Colorado, United States.

Covariates Summer Winter

Day Night Day Night

No experience With experience No experience With experience No experience With experience No experience With experience

Barren − − − − −0.094 −0.088 −0.047 −0.039

Dpads −0.055 0.246 −0.225 −0.147 −0.089 −0.085 0.023 0.022

Drds 0.054 0.042 0.133 0.09 0.032 0.022 0.076 0.069

Edge −0.056 −0.044 0.069 0.06 0.009 0.007 0.057 0.055

Elev −0.173 −0.353 0.906 0.753 −0.214 −0.303 1.013 0.874

Grass − − − − −0.099 −0.078 −0.243 −0.22

NDVI 0.309 0.083 0.317 0.072 − − − −

Open −0.172 −0.093 −0.075 −0.037 − − − −

Shrub −0.035 −0.06 −0.012 −0.05 −0.008 −0.006 −0.012 −0.007

snow − − − − −0.01 −0.012 0.039 0.043

TRI 0.138 0.102 0.095 0.029 0.006 −0.006 0.125 0.108

curr_ud − 1.68 − 2.394 − 1.21 − 1.261

curr_ud time − −0.165 − −0.221 − 0.004 − −0.172

prev_ud − 0.508 − 0.546 − 0.226 − 0.365

prev_ud time − −0.058 − −0.023 − −0.011 − 0.011

Models were fit with all coefficients (i.e., slopes) varying by individual. Values in bold are significant effects where the lower and upper 95% credible interval does not overlap 0. The lower and upper 95% credible
intervals were estimated from the quantiles of the posterior distributions (see Supplementary Information). Parameters can only be compared within season and time of day combinations (i.e., no experience vs.
with experience).
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FIGURE 4 | The strength of selection for covariates representing recent- and past experience estimated from population-level parameters from step-selection
functions for mule deer within their winter and summer range across time of day in the Piceance Basin, Colorado, United States.

suggests deer potentially can adapt behaviorally to some forms of
landscape change with minimal demographic effect, but clearly
more research is needed to understand the role of memory in
promoting or restricting adaptability to landscape change.

Memory is complex, and thus our methods have limitations
in providing inference to this process. First, memory is
fundamentally a latent characteristic, and the degree to which
it influences animal behavior can only be inferred (Fagan et al.,
2013). We inferred memory from selection of areas that had been
used in the past, but there are other possible interpretations. As
discussed above, the role of memory in informing movement
decisions may be confounded by selection of resources absent

any significant influence of memory (Oliveira-Santos et al.,
2016). If mule deer revisited specific locations based on their
moment-to-moment perception of resource quality, we might
find similar results, particularly if we were unable to quantify
an important environmental resource in our models, such as
predation risk. Further, mule deer in our system may also draw
on conspecifics (Codling et al., 2007; Jesmer et al., 2018) and
ingrained behavior (Riotte-Lambert and Matthiopoulos, 2020)
to guide movement decisions. However, we did not sample a
sufficiently large proportion of the population to adequately
include variables representing conspecific influence, as well as
the generally low sample size could have influenced our results.
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Further, inclusion of experience tended to reduce the magnitude
of environmental covariate coefficients, which could impact
interpretation of environmental drivers of space use.

However, we believe our results provide reasonably strong
evidence that memory is an important driver of mule deer
habitat selection, and mule deer store and use information
about their environment in short- and long-term memory. There
was little correlation between environmental and landscape
experience covariates (see Supplementary Information) and
models incorporating experience outperformed models with
environmental covariates alone, lending additional support to
previous research, which showed the inclusion of memory
in simulation models was integral for reproducing empirical
movement paths (Bracis et al., 2015; Merkle et al., 2019). Further,
the annual absence of mule deer from seasonal ranges allowed
for more robust inference to the influence of memory type effects
based on how deer select for locations experienced recently (e.g.,
within the same season with decay) or in the past (e.g., the
previous season). Lastly, our estimates of the effects of memory
should be realistic because they are consistent with previous
findings reported for mule deer and other ungulate species,
including the capability for long term retention of information
(Avgar et al., 2015; Jakopak et al., 2019; Merkle et al., 2019;
Cameron et al., 2020) and similar decay rates for short-term
memory (Bailey et al., 1989; Laca, 1998).

Our results further demonstrate the utility of including
experience in the formulation of step selection functions to infer
cognitive drivers of movement (Merkle et al., 2014; Oliveira-
Santos et al., 2016). Our findings demonstrate mule deer reliance
on recent and past experience varied in accordance with both
regional (summer vs winter range) and local (within-range)
conditions, lending insight to when memory is advantageous
and how the influence of memory can lead to the emergence
of space use patterns such as site fidelity. The specific processes
driving this temporal and spatial variation in the use of
memory, however, warrant further investigation. Therefore,
where possible, we encourage future studies to include internal
state variables (e.g., reproductive status) and additional external
factors, such as resource predictability and predation risk in
model formulations to further elucidate processes influencing
when and how species use memory to inform movement
decisions. Examining how and when species use different types
of memory can provide insights to the adaptive advantages of
memory-driven movement and the development of emergent
space use patterns.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The animal study was reviewed and approved by Colorado Parks
and Wildlife Institutional Animal Care and Use Committee.

AUTHOR CONTRIBUTIONS

CA coordinated data collection. GW and CA contributed
funding for data collection. JN and RM performed data analyses.
RM, TR, and MB developed tables and figures. HR led the
drafting of the manuscript with contributions from JN and TR.
All authors contributed to the conception and design of the
study, manuscript revision, and have read and approved the
submitted version.

FUNDING

Mule deer capture and monitoring was funded and/or supported
by Colorado Parks and Wildlife (CPW), White River Field Office
of Bureau of Land Management, ExxonMobil Production/XTO
Energy, Federal Aid in Wildlife Restoration (W-185-R), Safari
Club International, the Colorado State Severance Tax, EnCana
Corp., Williams/WPX Energy, Shell Exploration and Production,
Marathon Oil Corp., The Mule Deer Foundation and Colorado
Mule Deer Assn. This work was supported by the Natural
Sciences and Engineering Research Council of Canada Discovery
Grant to JN. The funders were not involved in the study design,
collection, analysis, interpretation of data, the writing of this
article, or the decision to submit it for publication.

ACKNOWLEDGMENTS

We would like to thank L. Wolfe, M. Fisher, C. Bishop, D.
Finley, and D. Freddy (CPW) and numerous field technicians
for project assistance, L. Gepfert (CPW) and Coulter Aviation,
Inc., for aircraft support, and Quicksilver Air, Inc. for helicopter
support for mule deer captures. We would also like to thank
D. B. Johnston and B. Walker for valuable feedback. We thank
the reviewers, J. Becker and K. L. Monteith, and the handling
editor, T. Avgar, for reviewing and providing feedback that
improved the quality of this manuscript. This research was
enabled in part by support provided by Compute Canada
(www.computecanada.ca).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.2021.
702818/full#supplementary-material

REFERENCES
Aikens, E. O., Mysterud, A., Merkle, J. A., Cagnacci, F., Rivrud, I. M., Hebblewhite,

M., et al. (2020). Wave-like patterns of plant phenology determine ungulate
movement tactics. Curr. Biol. 30, 3444–3449. doi: 10.1016/j.cub.2020.06.032

Alappat, C., Basermann, A., Bishop, A. R., Fehske, H., Hager,
G., Schenk, O., et al. (2020). A recursive algebraic coloring
technique for hardware-efficient symmetric sparse matrix-vector
multiplication. ACM Trans. Parallel Comput. 7:37. doi: 10.1145/339
9732

Frontiers in Ecology and Evolution | www.frontiersin.org 12 July 2021 | Volume 9 | Article 702818187

http://www.computecanada.ca
https://www.frontiersin.org/articles/10.3389/fevo.2021.702818/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2021.702818/full#supplementary-material
https://doi.org/10.1016/j.cub.2020.06.032
https://doi.org/10.1145/3399732
https://doi.org/10.1145/3399732
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-702818 July 21, 2021 Time: 17:27 # 13

Rheault et al. Some Memories Never Fade

Allen, A. M., and Singh, N. J. (2016). Linking movement ecology with wildlife
management and conservation. Front. Ecol. Evol. 3:155. doi: 10.3389/fevo.2015.
00155

Andersen, R. (1991). Habitat deterioration and the migratory behaviour of moose
(Alces alces L.) in Norway. J. Appl. Ecol. 28, 102–108.

Avgar, T., Baker, J. A., Brown, G. S., Hagens, J. S., Kittle, A. M., Mallon, E. E.,
et al. (2015). Space-use behaviour of woodland caribou based on a cognitive
movement model. J. Anim. Ecol. 84, 1059–1070. doi: 10.1111/1365-2656.12357

Avgar, T., Deardon, R., and Fryxell, J. M. (2013a). An empirically parameterized
individual based model of animal movement, perception, and memory. Ecol.
Modell. 251, 158–172. doi: 10.1016/j.ecolmodel.2012.12.002

Avgar, T., Mosser, A., Brown, G. S., and Fryxell, J. M. (2013b). Environmental
and individual drivers of animal movement patterns across a wide geographical
gradient. J. Anim. Ecol. 82, 96–106. doi: 10.1111/j.1365-2656.2012.02035.x

Avgar, T., Potts, J. R., Lewis, M. A., and Boyce, M. S. (2016). Integrated
step selection analysis: bridging the gap between resource selection and
animal movement. Methods Ecol. Evol. 7, 619–630. doi: 10.1111/2041-210X.
12528

Bailey, D. W., Rittenhouse, L. R., Hart, R. H., and Richards, R. W. (1989).
Characteristics of spatial memory in cattle. Appl. Anim. Behav. Sci. 23, 331–340.

Barraquand, F., and Benhamou, S. (2008). Animal movements in heterogeneous
landscapes: identifying profitable places and homogeneous movement bouts.
Ecology 89, 3336–3348.

Beever, E. A., Hall, L. E., Varner, J., Loosen, A. E., Dunham, J. B., Gahl, M. K., et al.
(2017). Behavioral flexibility as a mechanism for coping with climate change.
Front. Ecol. Environ. 15:299–308. doi: 10.1002/fee.1502

Benhamou, S. (1994). Spatial memory and searching efficiency. Anim. Behav. 47,
1423–1433.

Berger-Tal, O., and Saltz, D. (2014). Using the movement patterns of reintroduced
animals to improve reintroduction success. Curr. Zool. 60, 515–526. doi: 10.
1093/czoolo/60.4.515

Boerger, L., Dalziel, B. D., and Fryxell, J. M. (2008). Are there general mechanisms
of animal home range behaviour? A review and prospects for future research.
Ecol. Lett. 11, 637–650.

Bollhöfer, M., Eftekhari, A., Scheidegger, S., and Schenk, O. (2019). Large-scale
sparse inverse covariance matrix estimation. SIAM J. Sci. Comput. 41, A380–
A401. doi: 10.1137/17M1147615

Bollhöfer, M., Schenk, O., Janalik, R., Hamm, S., and Gullapalli, K. (2020). “State-
of-the-art sparse direct solvers,” in Parallel Algorithms in Computational Science
and Engineering, eds A. Grama and A. H. Sameh (Cham: Birkhäuser Springer
International Publishing), 3–33.

Boyer, D., and Walsh, P. D. (2010). Modelling the mobility of living organisms
in heterogeneous landscapes: does memory improve foraging success? Philos.
Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 5645–5659.

Bracis, C., Gurarie, E., Rutter, J. D., and Goodwin, R. A. (2018). Remembering
the good and the bad: memory-based mediation of the food-safety trade-off in
dynamic landscapes.Theor. Ecol. 11, 305–319. doi: 10.1007/s12080-018-0367-2

Bracis, C., Gurarie, E., Van Moorter, B., and Goodwin, R. A. (2015). Memory
effects on movement behavior in animal foraging. PLoS One 10:e0136057. doi:
10.1371/journal.pone.0136057

Bracis, C., and Mueller, T. (2017). Memory, not just perception, plays an important
role in terrestrial mammalian migration. Proc. R. Soc. B Biol. Sci. 284:20170449.
doi: 10.1098/rspb.2017.0449

Brown, J. L., and Orians, G. H. (1970). Spacing patterns in mobile animals. Annu.
Rev. Ecol. Syst. 1, 239–262.

Burns, J. G., Foucaud, J., and Mery, F. (2011). Costs of memory: lessons from ‘mini’
brains. Proc. R. Soc. B Biol. Sci. 278, 923–929.

Byrne, M. E., McCoy, J. C., Hinton, J. W., Chamberlain, M. J., and Collier, B. A.
(2014). Using dynamic Brownian bridge movement modelling to measure
temporal patterns of habitat selection. J. Anim. Ecol. 83, 1234–1243. doi: 10.
1111/1365-2656.12205

Cameron, M. D., Joly, K., Breed, G. A., Mulder, C. P. H., and Kielland, K.
(2020). Pronounced fidelity and selection for average conditions of calving area
suggestive of spatial memory in a highly migratory ungulate. Front. Ecol. Evol.
8:564567. doi: 10.3389/fevo.2020.564567

Codling, E. A., Pitchford, J. W., and Simpson, S. D. (2007). Group navigation
and the “many-wrongs principle” in models of animal movement. Ecology 88,
1864–1870.

Cowan, N. (2008). “Chapter 20 what are the differences between long-term, short-
term, and working memory?,” in Essence of Memory, eds W. S. Sossin, J. C.
Lacaille, V. F. Castellucci, and S. Belleville (Jordan Hill: Elsevier), 323–338.

Dukas, R. (1999). Costs of memory: ideas and predictions. J. Theor. Biol. 197,
41–50.

Esposito, S., Incerti, G., Giannino, F., Russo, D., and Mazzoleni, S. (2010).
Integrated modelling of foraging behaviour, energy budget and memory
properties. Ecol. Modell. 221, 1283–1291.

Fagan, W. F., Lewis, M. A., Auger-Methe, M., Avgar, T., Benhamou, S., Breed, G.,
et al. (2013). Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329.
doi: 10.1111/ele.12165

Forrester, T. D., Casady, D. S., and Wittmer, H. U. (2015). Home sweet home:
fitness consequences of site familiarity in female black-tailed deer. Behav. Ecol.
Sociobiol. 69, 603–612. doi: 10.1007/s00265-014-1871-z

Fortin, D., Beyer, H. L., Boyce, M. S., Smith, D. W., Duchesne, T., and Mao, J. S.
(2005). Wolves influence elk movements: behavior shapes a trophic cascade in
Yellowstone National Park. Ecology. 86, 1320–1330.

Gaulin, S. J. C., and FitzGerald, R. W. (1988). Home-range size as a predictor of
mating systems in microtus. J. Mammal. 69, 311–319.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.
(2013). Bayesian Data Analysis, 3rd Edn. New York, NY: CRC Press.

Gomez-Rubio, V. (2020). Bayesian Inference With INLA. New York, NY: CRC
Press.

Howery, L., Bailey, D., and Laca, E. (1999). Impact of spatial memory on habitat
use. Grazing Behav. Livest. Wildl. 70, 91–100.

Jakopak, R. P., LaSharr, T. N., Dwinnell, S. P. H., Fralick, G. L., and Monteith, K. L.
(2019). Rapid acquisition of memory in a complex landscape by a mule deer.
Sci. Nat. 100:e02854.1.

Jeltsch, F., Bonte, D., Pe’er, G., Reineking, B., Leimgruber, P., Balkenhol, N., et al.
(2013). Integrating movement ecology with biodiversity research-exploring
new avenues to address spatiotemporal biodiversity dynamics. Mov. Ecol. 1:6.
doi: 10.1186/2051-3933-1-6

Jesmer, B. R., Merkle, J. A., Goheen, J. R., Aikens, E. O., Beck, J. L., Courtemanch,
A. B., et al. (2018). Is ungulate migration culturally transmitted? Evidence of
social learning from translocated animals. Science 361, 1023–1025. doi: 10.1126/
science.aat0985

Johnson, D. S., and London, J. M. (2018). Crawl: an R package for fighting
continuous-time correlated random walk models to animal movement data.
Zenodo doi: 10.5281/zenodo.596464

Johnson, D. S., London, J. M., Lea, M.-A., and Durban, J. W. (2008). Continuous-
time correlated random walk model for animal telemetry data. Ecology 89,
1208–1215.

Kass, R. E., and Raftery, A. E. (1995). Bayes factors. J. Am. Stat. Assoc. 90, 773–795.
Krausman, P., Hervert, J., and Ordway, L. (1985). Capturing deer and mountain

sheep with a net-gun. Wildl. Soc. Bull. 13, 71–73.
Laca, E. A. (1998). Spatial memory and food searching mechanisms of cattle.

J. Range Manag. 51, 370–378.
Lendrum, P. E., Anderson, C. R. Jr., Monteith, K. L., Jenks, J. A., and Bowyer,

R. T. (2014). Relating the movement of a rapidly migrating ungulate to
spatiotemporal patterns of forage quality. Mamm. Biol. 79, 369–375. doi: 10.
1016/j.mambio.2014.05.005

Lendrum, P. E., Northrup, J. M., Anderson, C. R., Liston, G. E., Aldridge, C. L.,
Crooks, K. R., et al. (2018). Predation risk across a dynamic landscape: effects
of anthropogenic land use, natural landscape features, and prey distribution.
Landsc. Ecol. 33, 157–170. doi: 10.1007/s10980-017-0590-z

Lindgren, F., and Rue, H. (2015). Bayesian spatial modelling with R-INLA. J. Stat.
Softw. 63, 1–25.

Marchand, P., Garel, M., Bourgoin, G., Duparc, A., Dubray, D., Maillard, D.,
et al. (2017). Combining familiarity and landscape features helps break down
the barriers between movements and home ranges in a non-territorial large
herbivore. J. Anim. Ecol. 86, 371–383. doi: 10.1111/1365-2656.12616

Martin, J. M., Basille, M. B., Moorter, B. V., Kindberg, J., Allaine, D., and Swenson,
J. E. (2010). Coping with human disturbance: spatial and temporal tactics of the
brown bear (Ursus arctos). Can. J. Zool. 88, 875–883. doi: 10.1139/Z10-053

Mcnamara, J., and Houston, A. (1985). Optimal foraging and learning. J. Theor.
Biol. 117, 231–249.

Mcnamara, J., and Houston, A. (1987). Memory and the efficient use of
information. J. Theor. Biol. 125, 385–395.

Frontiers in Ecology and Evolution | www.frontiersin.org 13 July 2021 | Volume 9 | Article 702818188

https://doi.org/10.3389/fevo.2015.00155
https://doi.org/10.3389/fevo.2015.00155
https://doi.org/10.1111/1365-2656.12357
https://doi.org/10.1016/j.ecolmodel.2012.12.002
https://doi.org/10.1111/j.1365-2656.2012.02035.x
https://doi.org/10.1111/2041-210X.12528
https://doi.org/10.1111/2041-210X.12528
https://doi.org/10.1002/fee.1502
https://doi.org/10.1093/czoolo/60.4.515
https://doi.org/10.1093/czoolo/60.4.515
https://doi.org/10.1137/17M1147615
https://doi.org/10.1007/s12080-018-0367-2
https://doi.org/10.1371/journal.pone.0136057
https://doi.org/10.1371/journal.pone.0136057
https://doi.org/10.1098/rspb.2017.0449
https://doi.org/10.1111/1365-2656.12205
https://doi.org/10.1111/1365-2656.12205
https://doi.org/10.3389/fevo.2020.564567
https://doi.org/10.1111/ele.12165
https://doi.org/10.1007/s00265-014-1871-z
https://doi.org/10.1186/2051-3933-1-6
https://doi.org/10.1126/science.aat0985
https://doi.org/10.1126/science.aat0985
https://doi.org/10.5281/zenodo.596464
https://doi.org/10.1016/j.mambio.2014.05.005
https://doi.org/10.1016/j.mambio.2014.05.005
https://doi.org/10.1007/s10980-017-0590-z
https://doi.org/10.1111/1365-2656.12616
https://doi.org/10.1139/Z10-053
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-702818 July 21, 2021 Time: 17:27 # 14

Rheault et al. Some Memories Never Fade

Merkle, J. A., Cherry, S. G., and Fortin, D. (2015). Bison distribution under
conflicting foraging strategies: site fidelity vs. energy maximization. Ecology 96,
1793–1801. doi: 10.1980/14-0805.1

Merkle, J. A., Fortin, D., and Morales, J. M. (2014). A memory-based foraging tactic
reveals an adaptive mechanism for restricted space use. Ecol. Lett. 17, 924–931.
doi: 10.1111/ele.12294

Merkle, J. A., Sawyer, H., Monteith, K. L., Dwinnell, S. P. H., Fralick, G. L., and
Kauffman, M. J. (2019). Spatial memory shapes migration and its benefits:
evidence from a large herbivore. Ecol. Lett. 22, 1797–1805. doi: 10.1111/ele.
13362

Mettke-Hofmann, C. (2014). Cognitive ecology: ecological factors, life-styles, and
cognition. Wiley Interdiscip. Rev. Cogn. Sci. 5, 345–360. doi: 10.1002/wcs.1289

Mettke-Hofmann, C., and Gwinner, E. (2003). Long-term memory for a life on the
move. Proc. Natl. Acad. Sci. U.S.A. 100, 5863–5866.

Middleton, A. D., Merkle, J. A., McWhirter, D. E., Cook, J. G., Cook, R. C., White,
P. J., et al. (2018). Green-wave surfing increases fat gain in a migratory ungulate.
Oikos 127, 1060–1068. doi: 10.1111/oik.05227

Mitchell, M. S., and Powell, R. A. (2012). Foraging optimally for home ranges.
J. Mammal. 93, 917–928. doi: 10.1644/11-MAMM-S-157.1

Monteith, K. L., Bleich, V. C., Stephenson, T. R., Pierce, B. M., Conner, M. M., Kie,
J. G., et al. (2014). Life-history characteristics of mule deer: effects of nutrition
in a variable environment. Wildl. Monogr. 186, 1–62. doi: 10.1002/wmon.1011

Morales, J. M., Moorcroft, P. R., Matthiopoulos, J., Frair, J. L., Kie, J. G., Powell,
R. A., et al. (2010). Building the bridge between animal movement and
population dynamics. Philos. Trans. R. Soc. B Biol. Sci. 365, 2289–2301. doi:
10.1098/rstb.2010.0082

Morand-Ferron, J., Hermer, E., Jones, T. B., and Thompson, M. J. (2019).
Environmental variability, the value of information, and learning in winter
residents. Anim. Behav. 147, 137–145. doi: 10.1016/j.anbehav.2018.09.008

Morrison, T. A., Merkle, J. A., Hopcraft, J. G. C., Aikens, E. O., Beck, J. L., Boone,
R. B., et al. (2021). Drivers of site fidelity in ungulates. J. Anim. Ecol. 90, 955–966.
doi: 10.1111/1365-2656.13425

Muff, S., Signer, J., and Fieberg, J. (2020). Accounting for individual-specific
variation in habitat-selection studies: efficient estimation of mixed-effects
models using Bayesian or frequentist computation. J. Anim. Ecol. 89, 80–92.
doi: 10.1111/1365-2656.13087

Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., et al.
(2008). A movement ecology paradigm for unifying organismal movement
research. Proc. Natl. Acad. Sci. U.S.A. 105, 19052–19059.

Northrup, J. M., Anderson, C. R. Jr., Gerber, B. D., and Wittemyer, G. (2021).
Behavioral and demographic responses of mule deer to energy development on
winter range. Wildl. Monogr. 208, 1–37. doi: 10.1002/wmon.1060

Northrup, J. M., Anderson, C. R. Jr., and Wittemyer, G. (2015). Quantifying spatial
habitat loss from hydrocarbon development through assessing habitat selection
patterns of mule deer. Glob. Chang. Biol. 21, 3961–3970. doi: 10.1111/gcb.13037

Northrup, J. M., Anderson, C. R. Jr., and Wittemyer, G. (2016). Environmental
dynamics and anthropogenic development alter philopatry and space-use in a
North American cervid. Divers. Distrib. 22, 547–557. doi: 10.1111/ddi.12417

Northrup, J. M., Anderson, C. R. Jr., and Wittemyer, G. (2014a). Effects of
helicopter capture and handling on movement behavior of mule deer. J. Wildl.
Manage. 78, 731–738. doi: 10.002/jwmg.705

Northrup, J. M., Shafer, A. B. A., Anderson, C. R. Jr., Coltman, D. W., and
Wittemyer, G. (2014b). Fine-scale genetic correlates to condition and migration
in a wild cervid. Evol. Appl. 7, 937–948. doi: 10.1111/eva.12189

Oliveira-Santos, L. G. R., Forester, J. D., Piovezan, U., Tomas, W. M., and
Fernandez, F. A. S. (2016). Incorporating animal spatial memory in step
selection functions. J. Anim. Ecol. 85, 516–524. doi: 10.1111/1365-2656.12485

Owen-Smith, N., Fryxell, J. M., and Merrill, E. H. (2010). Foraging theory upscaled:
the behavioural ecology of herbivore movement. Philos. Trans. R. Soc. B Biol.
Sci. 365, 2267–2278.

Péron, G., Duparc, A., Garel, M., Marchand, P., Morellet, N., Saïd, S., et al. (2018).
Circadian periodicity in space use by ungulates of temperate regions: how
much, when and why? J. Anim. Ecol. 87, 1299–1308. doi: 10.1111/1365-2656.
12857

Piper, W. H. (2011). Making habitat selection more “familiar”: a review. Behav.
Ecol. Sociobiol. 65, 1329–1351. doi: 10.1007/s00265-011-1195-1

Polansky, L., Kilian, W., and Wittemyer, G. (2015). Elucidating the significance of
spatial memory on movement decisions by African savannah elephants using

state-space models. Proc. R. Soc. B Biol. Sci. 282:20143042. doi: 10.1098/rspb.
2014.3042

Pravosudov, V. V., Kitaysky, A. S., and Omanska, A. (2006). The relationship
between migratory behaviour, memory and the hippocampus: an intraspecific
comparison. Proc. R. Soc. B Biol. Sci. 273, 2641–2649. doi: 10.1098/rspb.2006.
3624

R Core Team (2020). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Riotte-Lambert, L., and Matthiopoulos, J. (2020). Environmental predictability as
a cause and consequence of animal movement. Trends Ecol. Evol. 35, 163–174.
doi: 10.1016/j.tree.2019.09.009

Sawyer, H., Merkle, J. A., Middleton, A. D., Dwinnell, S. P. H., and Monteith, K. L.
(2019). Migratory plasticity is not ubiquitous among large herbivores. J. Anim.
Ecol. 88, 450–460. doi: 10.1111/1365-2656.12926

Schlaegel, U. E., Merrill, E. H., and Lewis, M. A. (2017). Territory surveillance and
prey management: wolves keep track of space and time. Ecol. Evol. 7, 8388–8405.
doi: 10.1002/ece3.3176

Schlaegel, U. E., Signer, J., Herde, A., Eden, S., Jeltsch, F., Eccard, J. A., et al.
(2019). Estimating interactions between individuals from concurrent animal
movements. Methods Ecol. Evol. 10, 1234–1245. doi: 10.1111/2041-210X.13235

Schmidt, K. A., Dall, S. R. X., and Gils, J. A. V. (2010). The ecology of information:
an overview on the ecological significance of making informed decisions. Oikos
119, 304–316.

Shettleworth, S. J. (2001). Animal cognition and animal behaviour. Anim. Behav.
61, 277–286.

Sih, A., Ferrari, M. C. O., and Harris, D. J. (2011). Evolution and behavioural
responses to human-induced rapid environmental change. Evol. Appl. 4, 367–
387. doi: 10.1111/j.1752-4571.2010.00166.x

Sikes, R. S. (2016). 2016 guidelines of the american society of mammalogists
for the use of wild mammals in research and education. J. Mammal. 97,
663–688.

Snell-Rood, E. C., and Steck, M. K. (2019). Behaviour shapes environmental
variation and selection on learning and plasticity: review of mechanisms
and implications. Anim. Behav. 147, 147–156. doi: 10.1016/j.anbehav.2018.
08.007

Spencer, W. D. (1992). Space in the Lives of Vertebrates: On the Ecology and
Psychology of Space Use. Ph. D. dissertation. Tucson, AZ: University of Arizona.

Spencer, W. D. (2012). Home ranges and the value of spatial information.
J. Mammal. 93, 929–947. doi: 10.1644/12-MAMM-S-061.1

Spiegel, O., and Crofoot, M. C. (2016). The feedback between where we go and
what we know - information shapes movement, but movement also impacts
information acquisition. Curr. Opin. Behav. Sci. 12, 90–96. doi: 10.1016/j.
cobeha.2016.09.009

Sulikowski, D., and Burke, D. (2011). Movement and memory: different cognitive
strategies are used to search for resources with different natural distributions.
Behav. Ecol. Sociobiol. 65, 621–631.

Therneau, T. (2015). A Package for Survival Analysis in S. Version 2.38. Available
online at: https://CRAN.R-project.org/package=survival (accessed January 18,
2021).

Therneau, T. M., and Grambsch, P. M. (2000). Modeling Survival Data: Extending
the Cox Model. New York, NY: Springer.

Thurfjell, H., Ciuti, S., and Boyce, M. S. (2014). Applications of step-selection
functions in ecology and conservation. Mov. Ecol. 2:4. doi: 10.1186/2051-3933-
2-4

Trewhella, W. J., Harris, S., and McAllister, F. E. (1988). Dispersal distance, home-
range size and population density in the red fox (Vulpes vulpes): a quantitative
analysis. J. Appl. Ecol. 25, 423–434.

Tucker, M. A., Boehning-Gaese, K., Fagan, W. F., Fryxell, J. M., Van Moorter, B.,
Alberts, S. C., et al. (2018). Moving in the anthropocene: global reductions in
terrestrial mammalian movements. Science 359, 466–469. doi: 10.1126/science.
aam9712

Turchin, P. (1989). Population consequences of aggregative movement. J. Anim.
Ecol. 58, 75–100.

Turchin, P. (1991). Translating foraging movements in heterogeneous
environments into the spatial distribution of foragers. Ecology 72, 1253–1266.

Van Moorter, B., Visscher, D., Benhamou, S., Borger, L., Boyce, M. S., and Gaillard,
J. M. (2009). Memory keeps you at home: a mechanistic model for home range
emergence. Oikos 118, 641–652.

Frontiers in Ecology and Evolution | www.frontiersin.org 14 July 2021 | Volume 9 | Article 702818189

https://doi.org/10.1980/14-0805.1
https://doi.org/10.1111/ele.12294
https://doi.org/10.1111/ele.13362
https://doi.org/10.1111/ele.13362
https://doi.org/10.1002/wcs.1289
https://doi.org/10.1111/oik.05227
https://doi.org/10.1644/11-MAMM-S-157.1
https://doi.org/10.1002/wmon.1011
https://doi.org/10.1098/rstb.2010.0082
https://doi.org/10.1098/rstb.2010.0082
https://doi.org/10.1016/j.anbehav.2018.09.008
https://doi.org/10.1111/1365-2656.13425
https://doi.org/10.1111/1365-2656.13087
https://doi.org/10.1002/wmon.1060
https://doi.org/10.1111/gcb.13037
https://doi.org/10.1111/ddi.12417
https://doi.org/10.002/jwmg.705
https://doi.org/10.1111/eva.12189
https://doi.org/10.1111/1365-2656.12485
https://doi.org/10.1111/1365-2656.12857
https://doi.org/10.1111/1365-2656.12857
https://doi.org/10.1007/s00265-011-1195-1
https://doi.org/10.1098/rspb.2014.3042
https://doi.org/10.1098/rspb.2014.3042
https://doi.org/10.1098/rspb.2006.3624
https://doi.org/10.1098/rspb.2006.3624
https://doi.org/10.1016/j.tree.2019.09.009
https://doi.org/10.1111/1365-2656.12926
https://doi.org/10.1002/ece3.3176
https://doi.org/10.1111/2041-210X.13235
https://doi.org/10.1111/j.1752-4571.2010.00166.x
https://doi.org/10.1016/j.anbehav.2018.08.007
https://doi.org/10.1016/j.anbehav.2018.08.007
https://doi.org/10.1644/12-MAMM-S-061.1
https://doi.org/10.1016/j.cobeha.2016.09.009
https://doi.org/10.1016/j.cobeha.2016.09.009
https://CRAN.R-project.org/package=survival
https://doi.org/10.1186/2051-3933-2-4
https://doi.org/10.1186/2051-3933-2-4
https://doi.org/10.1126/science.aam9712
https://doi.org/10.1126/science.aam9712
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-702818 July 21, 2021 Time: 17:27 # 15

Rheault et al. Some Memories Never Fade

Vergara, P. M., Soto, G. E., Rodewald, A. D., and Quiroz, M. (2019). Behavioral
switching in Magellanic woodpeckers reveals perception of habitat quality at
different spatial scales. Landsc. Ecol. 34, 79–92. doi: 10.1007/s10980-018-0746-5

Wolf, M., Frair, J., Merrill, E., and Turchin, P. (2009). The attraction of the
known: the importance of spatial familiarity in habitat selection in wapitiCervus
elaphus. Ecography 32, 401–410.

Wyckoff, T. B., Sawyer, H., Albeke, S. E., Garman, S. L., and Kauffman, M. J.
(2018). Evaluating the influence of energy and residential development on the
migratory behavior of mule deer. Ecosphere 9:e02113. doi: 10.1002/ecs2.2113

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Rheault, Anderson, Bonar, Marrotte, Ross, Wittemyer and
Northrup. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 15 July 2021 | Volume 9 | Article 702818190

https://doi.org/10.1007/s10980-018-0746-5
https://doi.org/10.1002/ecs2.2113
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-734155 October 30, 2021 Time: 12:25 # 1

ORIGINAL RESEARCH
published: 01 November 2021

doi: 10.3389/fevo.2021.734155

Edited by:
Eliezer Gurarie,

University of Maryland, College Park,
United States

Reviewed by:
Scott LaPoint,

Black Rock Forest Consortium,
United States

Jacqueline Frair,
SUNY College of Environmental

Science and Forestry, United States

*Correspondence:
Aaron N. Facka

anfacka@gmail.com

Specialty section:
This article was submitted to

Behavioral and Evolutionary Ecology,
a section of the journal

Frontiers in Ecology and Evolution

Received: 30 June 2021
Accepted: 05 October 2021

Published: 01 November 2021

Citation:
Facka AN and Powell RA (2021)

Intraspecific Competition, Habitat
Quality, Niche Partitioning,

and Causes of Intrasexual Territoriality
for a Reintroduced Carnivoran.

Front. Ecol. Evol. 9:734155.
doi: 10.3389/fevo.2021.734155

Intraspecific Competition, Habitat
Quality, Niche Partitioning, and
Causes of Intrasexual Territoriality
for a Reintroduced Carnivoran
Aaron N. Facka* and Roger A. Powell

Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States

Animals exploring a new environment develop cognitive maps using diverse sensory
input and, thereby, gain information needed to establish home ranges. Experiencing,
and learning information about, resources should be advantageous to the resident of a
home range while lack of such information should put invaders into the home range at
a disadvantage. Conspecifics, especially, should avoid the home ranges of one another
to ensure that they do not experience reduced resource availability caused by resource
depression or depletion. Yet, encountering conspecific competitors of different sexes
may elicit responses that can lead to spacing on a landscape that has different costs and
benefits on males and females. We tested the hypothesis that female fishers (Pekania
pennanti) avoid competition from both males and female conspecifics whereas male
fishers avoid competition only from other males. We reintroduced fishers onto our study
site in the presence or absence of competitors’ home ranges during late 2009 through
2011. Using satellite transmitters (Argos) and land-based (VHF) telemetry, we monitored
fishers and estimated their locations, movements and use of the surrounding landscape
during their first 500 days after release. All fishers settled in relatively high-quality habitat
but females that encountered the home ranges of conspecifics moved farther, explored
larger areas, and settled farther from their release locations than did females that did not
encounter a conspecific’s home range. Male fishers exhibited diverse responses upon
encountering the home ranges of conspecifics. Thus, female fishers avoid conspecific
competition from all fishers, but males tolerate, or impose, competition with females,
apparently to increase mating opportunities. These observations are consistent with the
movements and strategies of other solitary carnivores.

Keywords: carnivore, competition, habitat, home range, intrasexual territory, movements, niche partitioning,
territory

INTRODUCTION

When an animal moves through a new environment, it perceives the characteristics of that
environment through its diverse senses and begins to develop a cognitive map of the new area (Heft,
2013; Eichenbaum, 2017). As the animal establishes a home range, its cognitive map becomes more
complex. The cognitive map is a multi-dimensional concept of not just the locations of resources
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but also of the conditions of those resources, their juxtaposition
and interspersion, the importance of the resources given the
animal’s nutritional state and other conditions, the details of
travel routes between resources such as ground conditions,
exposure to predators, effects of weather patterns, short cuts to
other resources, and much more. The cognitive map is not a
Euclidean map as seen from above but a concept of an animal’s
surroundings as seen from the animal’s present, or another target
location (Heft, 2013). The map includes everything that the
animal knows about other animals in the environment, including
competitors. Consequently, understanding the development of
the cognitive maps is critical for understanding home ranges
and how animals learn about their environments (Powell, 2012;
Powell and Mitchell, 2012).

Intraspecific competition affects, directly or indirectly, how
animals use their environments and how they space themselves.
Individuals remove, or deplete, resources, thereby decreasing
habitat quality for both conspecifics and competitors of other
species (Nunes et al., 1997; Goubault et al., 2005). Individuals
may also depress food availability and foraging opportunities
by changing prey behavior (Charnov et al., 1976; Jetz et al.,
2004; Mitchell and Powell, 2004, 2007; Spencer, 2012). Resource
depletion and depression cause individuals to move farther than
they would without competition to find patches with abundant
resources or to find patches where their ability to acquire those
resources has fewer costs (Spencer, 2012).

Resource depletion and depression form a continuum of
resource renewal. Depressed resource availabilities, caused by
changes in prey behavior, renew over time scales of hours
(Jȩdrzejewski et al., 1993) to a day or more (Ylönen, 1989;
Jȩdrzejewski and Jȩdrzejewska, 1990). At the extreme, field voles
(Microtus agrestis) delay reproduction when exposed to odors of
weasels (Mustela nivalis) and American minks (Neogale vison),
extending resource depression to a week as an extreme (Koskela
and Ylönen, 1995). Depleted resource abundances caused by
competitors renew slowly, if at all (Charnov et al., 1976).
Although berries eaten by a competitor can renew within days,
populations of small mammal prey require weeks to renew,
large ungulate prey renew only after the next reproductive cycle
followed by another year or more of growth, and minerals
removed from a mineral lick may never renew. The consequence
is that competitors decrease other animals’ abilities to track and
to predict resource renewal and, thereby, to forage optimally.
Hence, learning the locations, physical attributes, or the time
since a competitor last visited an area is crucial to an animal’s
decisions and, ultimately, to its fitness (Mitchell and Powell, 2007;
Spencer, 2012).

Although both intra- and interspecific competitors deplete
and depress resources, intraspecific competitors do so most
effectively because conspecifics share resources requirements and
foraging behaviors (Macdonald, 1983). Thus, sharing a landscape
with a conspecific should have a larger effect on an individual’s
assessment of habitat quality than does sharing the landscape
with individuals of other species (Mitchell and Powell, 2004,
2007). If sharing its home range with conspecifics causes a
resource for an animal to become limiting, the animal should
maintain a territory (a non-overlapping home range; Brown,

1969; Brown and Orians, 1970; Carpenter and MacMillen, 1976).
Spatial and temporal patchiness of the limiting resource can
change the threshold for maintaining a territory (Powell et al.,
1997; Sells and Mitchell, 2020) and for maintaining a shared
territory with a mate (Smith, 1968; Powell, 1989, 1994). When
conspecifics make resource renewal unpredictable, individuals
may avoid areas used habitually by conspecifics, facilitating
territoriality without defense (Spencer, 2012). For some species,
habitat varies sufficiently across the species’ range that members
of some populations maintain territories while members of other
populations tolerate home range overlap (e.g., black bears, Ursus
americanus, Powell et al., 1997). Even species for which all
populations are generally thought always to maintain territories
(e.g., pack territories of wolves, Canis lupus), habitat patchiness
on landscapes over time can lead to home range overlap
(Mech and Boitani, 2003).

Members of many species with large sexual dimorphism in
body size maintain intrasexual territories (Powell, 1979b, 1994;
Rogers, 1987; Powell et al., 1997; Johnson et al., 2000; Persson
et al., 2010; Elbroch et al., 2016). Yurgenson (1947) and then
Brown and Lasiewski (1972) suggested that size dimorphism
allows resource partitioning by prey size, reducing competition
between males and females of the same species. Such reduced
competition could, theoretically, allow intrasexual territoriality.
This intuitively satisfying niche-partitioning hypothesis has,
however, experienced mixed success when tested (Selander, 1966;
Schoener, 1967; Husar, 1976; Snyder and Wiley, 1976; Powell,
1981, 1993; Dayan and Simberloff, 1994, 1996, 1998; Holmes and
Powell, 1994; King and Powell, 2007; Law and Mehta, 2018; Law,
2019). Resource partitioning by size can only occur when the
smaller sex has access to resources not available to the larger
(Wilson, 1975; Powell and Zielinski, 1983), a diet requirement
that is seldom quantified (for example, Simms, 1979). Sexual
size dimorphism does correlate strongly with a carnivorous diet
(Powell, 1979b; Law and Mehta, 2018; Law, 2019). Yet, for those
mustelids with large sexual size dimorphism, teeth, jaws and
other skull structures related to capturing and killing prey are
less dimorphic than are the rest of their bodies, indicating similar
use of resources between sexes rather than niche partitioning
(Holmes and Powell, 1994). Finally, sexual size dimorphism can
vary tremendously among successive cohorts in the same place,
because males born into food abundance grow to be significantly
larger than those born into food scarcity (Holmes and Powell,
1994; Powell and King, 1997: King and Powell, 2007). Thus, even
though sexual size dimorphism varies, and the potential for niche
partitioning, intrasexual territoriality appears not to vary.

At specific combinations of limiting resource productivity,
resource depression, and daily travel distances, dominant and
subordinate individuals can maintain overlapping territories
(Powell, 1994). Powell (1991, 1994) calculated that dominant
individuals that benefit from such an overlap force the
subordinate individuals to tolerate the overlap even if the
subordinates gain no benefit, a calculation that applies to
large males with large territories, each overlapping the smaller
territories of several females. Large male black bears with
large home ranges monitor the females with small, overlapped
home ranges (Seaman, 1992; Powell et al., 1997; Kovach, 1998;
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FIGURE 1 | A female fisher (Pekania pennanti) wearing a transmitter collar and climbing a log to her den tree, where she has a litter of kits in a cavity. This fisher is a
member of a reintroduced population established to investigate the use by fishers of industrial timberlands in northern California (Photo Credit: Fisher Reintroduction
in Northern Sierras Project).

Kovach and Powell, 2003) and many mustelids maintain
intrasexual territories for years, making such monitoring
by males possible (Erlinge and Sandell, 1986; Sandell, 1989;
Powell, 1994; Lofroth et al., 2010; Rennie, 2015; Smith et al.,
2020; but see Yamaguchi and Macdonald, 2003). Ultimately,
even though intrasexual territoriality is well documented, the
hypothesis that territoriality is imposed on females by males has
never been tested.

Reintroductions of animals provide opportunities to test
hypotheses related to what and how animals learn about new
environments as they develop new cognitive maps and create
home ranges. Biologists can infer how animals perceive and
learn through their movements and spacing of new home ranges
as more and more animals are released (Linklater et al., 2006;
Berger-Tal and Saltz, 2014; Betts et al., 2015; Facka et al.,
2016; Facka, 2017; Smith et al., 2020). Thus, reintroductions
allow comparisons of the behaviors of individuals released
into competition-free zones vs behaviors of those released into
occupied zones. If habitat varies across a reintroduction site,
the first individuals released should establish home ranges
in the first areas of acceptable quality that they encounter.
Developing a good cognitive map must be important (Heft,
2013; Eichenbaum, 2017; Lewis et al., 2021). Learning to
know where food is located on a new, local landscape and
learning how to hunt in those food sites should provide
better food security than continuing to explore new sites
that may not be better and might have less food. Likewise,

individuals released later in a reintroduction benefit from
avoiding occupied areas. Colonizers entering an area where
conspecifics have established territories should avoid entering
or minimize time in those territories (Sjöåsen, 1997). For
sexually dimorphic species, females should avoid territories of
all conspecifics if intrasexual territoriality is imposed on females
by large males but should not avoid territories of large males
if niche partitioning exists. Males who find an area without a
resident, adult male should establish territories even if (niche
partitioning), or because (imposition), the territories overlap the
territories of females.

A reintroduction of fishers (Pekania pennanti) in northern
California (Facka et al., 2016; Facka, 2017) allowed us to test
hypotheses about conspecific competition, movements, habitat,
and home range establishment. Fishers (Figure 1) are medium
sized (adult females 2–21/2 kg, adult males 31/2-6 kg) predatory
mammals in the family Mustelidae living only in northern North
America. They thrive in large stands of late successional northern
forests (Allen, 1983; Powell, 1993; Matthews et al., 2011; Raley
et al., 2012; Powell et al., 2017). Through the 19th and early 20th
centuries, fishers decreased in abundance throughout their range
and subsequent efforts to restore their populations have resulted
in numerous reintroductions and augmentations (Powell, 1993;
Krohn, 2012; Lewis et al., 2012; Powell et al., 2012).

Across their range, fishers maintain territories with little
intrasexual overlap but the territories of males overlap those of
several females (Powell, 1979b; Weir, 1995; Badry et al., 1997;
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FIGURE 2 | Stirling Management Area in northern California (shown by the
irregular blocks of land outlined by gray lines) and the fisher release areas by
year (black circles = December 2009–February 2010, white
circles = November 2010–January 2011, and red
circles = October–December2011). The background shows habitat quality
(blue is highest) estimated using the model of Thomasma et al. (1994).

Rennie, 2015). Fishers have large territories to fuel their high
metabolic rates and they travel long distances in search of
prey (McNab, 1963; Powell, 1978, 1979a; Harestad and Bunnel,
1979). Males’ territories average over twice as large as those of
females (Powell, 1994; Proulx et al., 1994; Badry et al., 1997)
and males and females with overlapping territories avoid using
the same locations simultaneously (Rennie, 2015). Fishers have
diverse scent glands, including anal glands and plantar glands
on their hind feet (Powell, 1993) and, presumably, communicate
with other fishers via scent marking. Fishers apply anal gland
secretions directly to objects, when fishers defecate, their anal
glands leave scent and when they travel, their plantar glands leave
scent. Fishers often walk along the tops of logs and jump onto
stumps and big rocks, where their plantar glands leave scent that
is elevated and able to disperse better (Powell, 1993).

Fishers are good subjects for testing hypotheses related
to intraspecific competition, spacing patterns and movements
because fisher life history and use of environments closely
resemble those of most solitary carnivores (Powell et al., 2017).
In addition to its goal of re-establishing a fisher population,
the reintroduction in northern California was designed to test
a series of hypotheses, including that fishers can maintain

a viable population on a landscape managed intensively for
lumber production (Callas and Figura, 2008; Facka, 2017).
We hypothesized that conspecific competition affects fisher
movements and establishment of territories after release for
reintroduction. Specifically, we hypothesized (1) that adult female
and male fishers move farther and faster when released into
an existing territory compared to release into an area not
occupied by another fisher. We hypothesized (2a) that newly
released female fishers avoid established territories of both
males and females but (2b) that male fishers are indifferent
or attracted to female fishers’ territories while (2c) avoiding
those of established adult male fishers. We hypothesized (3)
that established territories (2 months or older) from previously
released fishers affect newly released fishers’ movements and use
of the landscape more strongly than do incipient territories,
presumably because sufficient scent or visual or other cues
had accumulated within established territories to indicate to
new fishers that they should avoid those established territories
(Gosling, 1982; Lewis and Murray, 1993; Field et al., 2005; Zhang
et al., 2005; Kent and Tang-Martínez, 2014). The net result is that
we tested whether fishers maintain intrasexual territories because
of niche partitioning or because large males impose the territorial
system onto females.

MATERIALS AND METHODS

Study Site
Fishers were reintroduced as part of cooperative effort of Sierra
Pacific Industries (a forest products company), the United States
Fish and Wildlife Service, the California Department of Fish
and Game (now Fish and Wildlife), and researchers at North
Carolina State University (Callas and Figura, 2008, United States
Department of the Interior et al., 2009). Collectively, our
group reintroduced fishers to the Stirling Management Area
(hereafter Stirling) owned and managed by Sierra Pacific
Industries in portions of Plumas, Butte and Tehama counties
in northern California, United States (Stirling; Lat 39.9◦ Lon
−121.5◦; Figure 2) where the southern Cascade Mountains
meet the northern Sierra Nevada. Stirling was 648 km2 at
elevations ranging from 425 to 2,080 m. The climate on Stirling
was temperate with most (>85%) precipitation falling in late
autumn and winter as snow and rain (Pandey et al., 1999).
Vegetation on Stirling was typical of Sierra Nevada mixed
conifer forest with ponderosa pine (Pinus ponderosa), sugar
pine (Pinus lambertinia), incense cedar (Calocedrus decurrens),
white fir (Abies concolor), douglas fir (Pseudotsuga menziesii),
and California black oak (Quercus kellogii) as dominant tree
species. In some locations, tanoak (Notholithocarpus densiflorus)
and canyon live oak (Quercus chrysolepis) formed dense stands
(Griffin and Critchfield, 1972; Beesley, 2007). We describe habitat
assessment and quality on the study site later in our analysis.

Prey for fishers on Stirling included western gray squirrels
(Sciurus griseus) and diverse small mammals (Facka, 2017;
Townsend, 2019). Snowshoe hares (Lepus americanus) and
porcupines (Erethizon dorsatum), major prey for fishers across
most their range, were rare. Gray squirrels constituted almost
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TABLE 1 | The total number of female and male fishers released by cohort, their average ages (range in parentheses), whether fishers were released within the home
ranges of a female or male fisher released at least 2 months earlier, and whether released fishers encountered the established home ranges of other fishers while seeking
places to establish their own home ranges.

Sex Cohort N Mean Age
(range)

Released within a
female’s home range

Encountered a
female’s home range

Released within a
male’s home range

Encountered a
male’s home range

Females Year-1 9 2.6 (1.5) 3 3 0 0

Year-2 7 2.4 (1.5) 5 7 6 7

Year-3 8 2.0 (0.3) 2 2 6 8

Females 24 2.3 10 (42%) 12 (50%) 12 (30%) 15 (63%)

Males Year-1 6 3.0 (1.5) 5 6 0 0

Year-2 6 3.8 (2.6) 4 6 4 6

Year-3 4 1.8 (0.4) 1 1 3 4

Males 16 3.0 10 (62%) 13 (81%) 7 (43%) 10 (63%)

Year-1 refers to releases in December 2009–February 2010; Year-2 to November 2010–January 2011; Year-3 to October–December 2011.

FIGURE 3 | The relationships between habitat suitability for fishers as derived from expert-opinion models and empirical assessment (model by Thomasma et al.,
1994) and (A) percent canopy closure, (B) mean diameter at breast height (DBH) of overstory trees, (C) tree canopy diversity, and (D) percent of hardwoods.

40% of prey items identified in fisher scats and constituted a larger
percent of the fishers’ diets because, except for deer carrion, all
other prey identified were small mammal or of small-mammal
size (Facka, 2017).

Stirling had a history of diverse management regimes that
include both even-aged and uneven-aged management. Roughly
25% of Stirling was in even-aged (clearcut) stands that were less
than 30 years old during this study, whereas roughly 35% was in
stands that were periodically harvested with single-tree selection
approaches (Facka, 2017). Estimates of habitat quality using up-
to-date data predicted that some areas on and directly adjacent to
Stirling had habitat of decent quality (Figure 2; Facka, 2017).

Reintroduction
In late 2009, our group began moving 40 fishers (24 F; 16
M) from across the fisher range in northwestern California
to Stirling (Callas and Figura, 2008). We moved fishers in
three different years (Table 1), capturing fishers from diverse

locations to minimize the impact to any one area and to infuse
genetic diversity into the founding population (Callas and Figura,
2008; Facka, 2017). We transported all captured fishers to a
central processing area and evaluated them for potential release
onto Stirling. For females, we sought individuals that were
approaching their 2nd or 3rd birthdays and would, therefore,
be producing kits for the 1st or 2nd times in their lives. For
males, we sought individuals that we estimated to be ≥ 3-years
old and ≥ 4 kg, because we surmised that big male fishers, like
other carnivorans, would be the best breeders (Table 1; Kovach
and Powell, 2003; Powell and Zielinski, 2005; Lewis et al., 2012).
Actual ages were unknown at the time we selected and moved
fishers but, for future analysis, we removed a 1st upper pre-
molar (a tiny tooth) from each fisher to estimate age by counting
cementum annuli (Arthur et al., 1992; Poole et al., 1994). At
least 1 field biologist and 1 wildlife veterinarian evaluated each
fisher we considered for reintroduction. We immobilized fishers
chemically with Tiletamine HCL and Zolazepam HCL (Telazol,
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FIGURE 4 | Running mean distances from the sites of trapping and release for (A) female fishers and (B) male fishers born on the study site in northern California
from 2011 through 2017 and the fitted mean curves for female and male fishers through time (solid black line; shaded areas are 95% Confidence Limits). Fitted
mean line from parameter estimates from a generalized linear mixed model estimating change in distance after release.

Fort Dodge Animal Health, Fort Dodge, Iowa, United States;
7 mg/kg) to document sex, reproductive status, general condition,
disease exposure, weight, and to fit transmitters. At initial
capture, we collected a blood sample for genetic identification
and to evaluate disease exposure, and gave each fisher a Passive
Integrated Transponder (subcutaneous between the scapulae) for
future identification.

No fishers had lived on the Stirling site for approximately
100 years prior to our reintroduction. Stirling was separated
from the closest fisher population to the north and west by over
100 km and from the closest population to the south by over
400 km (Callas and Figura, 2008). During late autumns and early
winters of 2009–2010 (year–1), 2010–2011 (year–2), and 2011–
2012 (year–3), we released fishers in groups of 1–5 mostly across
central Stirling (Figure 2 and Table 1). After releases in year-
1, we released some fishers within the established home ranges
of previously released fishers and some into areas where we had
not documented fishers in the year we tracked them after release
(Table 1), alternating groups between in or out of known home
ranges. We used hard releases (without site acclimation) because
acclimation appears not to affect population establishment or
movement patterns and is expensive (Lewis et al., 2012; Powell
et al., 2012). To estimate fisher movements and survival post-
release, we outfitted female fishers with either Telonics (IMP-325
or MOD-125; Mesa, Arizona) or Holohil (MI-2i, Carp, Ontario)
Very High Frequency (VHF) transmitters. We fitted adult male
fishers with Platform Terminal Transmitter (PTT; Argos) collars
(Kiwisat 202 or 303, Sirtrack, Havelock North, New Zealand).

In autumn of 2011, we first captured fishers that had not been
released and, therefore, had been born on Stirling. We followed
the same capturing and handling protocols and used the same
types of transmitters for Stirling-born fishers as for reintroduced
fishers. We used Stirling born fishers to document how native,

non-reintroduced fishers dispersed and moved within established
home ranges at our study site.

Field Methods at Release Sites
We attempted to locate all fishers carrying transmitters on
Stirling (reintroduced and those born on site) once per day using
either VHF or PTT telemetry. We estimated fishers’ locations
with VHF data using three methods based on conditions,
activity and the relative distances that we estimated individual
fishers were from a field researcher. Most commonly, we
collected azimuths in the field to triangulate fisher locations,
using program Location of a Signal (LOAS, Ecological Software
Solutions LLC). We collected locations of individuals throughout
a 24-h diel cycle throughout the calendar year but 80% of
all locations occurred during daylight hours compared to 20%
at night. Less often, we located fishers from small planes or
helicopter. Finally, we sometimes homed on the signal of a fisher
until we saw the fisher or could identify the tree or other structure
where it hid. Location estimates from PTT data were processed
through the Argos system with Kalman estimation and filtering
(Collecte Localisation Satellites; Ramonville-Saint-Agne, France)
and delivered via email daily through the satellite tracking
and analysis tool from the seaturtle.org web service (Coyne
and Godley, 2005). Ideally, the PTT transmitters provided a
minimum of one location estimate per day. Different PTT collars
were active during different time blocks to allow inference to
male fishers’ movements throughout a 24-h cycle. We estimated
VHF and PTT error by comparing locations estimated for collars
and fishers to known locations. For VHF telemetry error, 25% of
triangulated locations were within 50 m, 50% were within 112 m,
75% where within 300 m, and 95% were within 1,200 m of the
true locations (n = 234). Triangulated locations were generally
within the error radius produced by the LOAS software. The
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Argos system classified locations into distinct classes based on
predicted error rates (Sauder et al., 2012). The expected precision
of estimates descends from those designated class-3 (≤250 m),
class-2 (≤500 m), class-1 (≤1,500 m) and class-0 (>1,500 m). Our
estimates of error for Argos locations did not depart from these
categories and were similar to results from other studies on fishers
carrying Argos collars (Sauder et al., 2012). We used only Argos
locations with estimated errors ≤ 1,500 m. Both VHF and PTT
transmitters were equipped with mortality sensors to document
fisher deaths, which was a key objective for the reintroduction
effort (Callas and Figura, 2008; Facka, 2017).

Analyses of Field Data
Habitat
We estimated habitat quality on Stirling using Thomasma’s
version (Thomasma et al., 1994) of Allen’s (1983) fisher habitat
suitability index, which was built to index habitat for prey and
habitat required for reproduction. The Thomasma model has
been tested independently at our and at other study sites with
diverse vegetation communities and found to predict use of
habitat by fishers (Thomasma et al., 1991; Powell, 2004; Facka,
2017). This model quantifies fisher habitat quality based on
four vegetative metrics: (1) percent tree canopy closure, (2)
mean diameter at breast height (DBH) of overstory trees, (3)
tree canopy diversity (i.e., number of canopy layers, including
a ground layer if it exists), and (4) percent of overstory
trees that are angiosperms (hereafter hardwoods; Figure 3).
Proximity among habitat patches and spatial configuration
(e.g., fragmentation and interspersion) do not contribute to
habitat quality in Thomasma’s model. We used the gradient
nearest neighbor (GNN) dataset downloaded from http://lemma.
forestry.oregonstate.edu/data (Ohmann et al., 2011) to create
indices for each of the four vegetative metrics and then combined
these into the final habitat suitability index (HSI) as:

HSI = (Canopy Closure+Mean DBH + Canopy Layers)
1
3

× Percent Hardwood,

where all variables range from 0 to 1 (Figure 3; Allen, 1983;
Thomasma et al., 1994).

We calculated the mean habitat value within a 1 km radius
circle (3.14 km2) around release points for all reintroduced
fishers (Figure 3). This area was similar to the smallest
reported utilization distributions for fishers (Matthews et al.,
2011). To evaluate the habitat quality of home ranges of
reintroduced fishers, we used all their locations (if ≥ 20) during
a calendar year (1 January to 31 December) to estimate annual
utilization distributions with a fixed kernel density estimator
using Silverman’s (1986) k2 for the kernel and smoothing
parameter h set to 500 m (Seaman and Powell, 1996). For each
utilization distribution, we calculated the mean habitat quality
within the 0.50 isopleth (representing an area where we could
find a fisher on 50% of occasions). Because all fishers did establish
home ranges, the 50% isopleths calculated using all locations
emphasized the areas where the fishers settled.

To estimate the distribution of habitat quality available on and
near Stirling, we generated 80 random points and then created

a 1 km radius buffer around each point. We then assigned 40
polygons randomly to serve as release sites and 40 as home range
cores and estimated the mean habitat quality for those areas. One
release polygon and one home range core polygon were then
paired to simulate randomly released fishers that settled on the
landscape randomly.

We considered that a released fisher encountered the home
range of a conspecific if we released that fisher within the 95%
isopleth of the utilization distribution of a known fisher or if the
released fisher encountered the 95% isopleth of a known fisher
within 2 weeks of being released. We noted the sex of the resident
of any home range a reintroduced fisher encountered.

Fisher Movements and Analyses
We analyzed fisher movements to 500 days after release, until
a fisher died or until its transmitter failed. If a fisher lost a
transmitter, we gave it a new one when we next recaptured it
and again tracked its movements and use of its environment.
For these analyses, all locations were used excluding any that
seemed erroneous. For each fisher, we calculated three metrics
of movement after release: (1) the mean distance from its release
location to each successive location (Distance), (2) the area of
the minimum convex polygon that bounded its last 50 locations
(Polygon Area) and (3) the distance between release site and the
centroid of the minimum convex polygon (Centroid Distance).
We used minimum convex polygons to index environmental-
use through time because it is a conservative measure of the
maximum area an animal used for a given period. We chose to use
50 locations for polygon estimation because that represented a
trade-off between exploratory, or aberrant, movements that some
fishers made and the area that fishers were using seasonally or as
they settled. When we had fewer than 50 locations for a fisher, we
used all available locations to create convex polygons.

For comparison to reintroduced fishers, we evaluated
movements and use of the environment by fishers born on our
study site. We released all captured fishers born on Stirling at
their capture sites and treated those locations the same as release
locations for reintroduced fishers. We calculated the same metrics
of movements as we did for reintroduced fishers. We removed
Stirling-born fishers with fewer than 10 locations from analyses.

Testing Hypotheses
To analyze our three metrics of movements, we used generalized
linear mixed models using PROC GLIMMIX in SAS. For
each metric, we tested for an appropriate distribution and
found that a gamma distribution fit our data best; hence, we
also used a log link function. We modeled individual fishers
and time as G-side random effects with a simple diagonal
covariance structure. We estimated parameters using maximum
likelihood and the Laplace method. Because we had relatively few
individuals, we kept the structure of our statistical models simple
(Fieberg and Johnson, 2015).

Before reintroductions started, we knew that male and female
fishers move and behave differently (Powell, 1979b, 1994).
Furthermore, because animals’ movements and use of their
environments generally change through time, we included both
Sex and Time as effects in all statistical modeling (our null
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TABLE 2 | Estimates for the first move and slope parameters from generalized linear mixed models for three dependent metrics for female (F) and male (M) fishers that
were born on the study site (Stirling-born) and translocated fishers that were released onto the established home ranges of other fishers (Yes) and where no home
ranges existed (No). Estimates were made from 57 fishers born on the study site and 40 translocated fishers from 2009 to 2016 in northern California.

Distance from release site to
each location (km)

Release site to polygon
center (km)

Polygon area (km2)

Sex Encounter Sex of
resident

Initial
moves ± SE

Change
through time

Initial
moves ± SE

Change
through time

Initial
moves ± SE

Change
through time

F Stirling-born – 1.6 ± 1.1 + 1.6 ± 1.3 + 1.6 ± 1.2 +

M Stirling-born – 2.4 ± 1.2 + 2.7 ± 1.2 + 1.6 ± 1.1 +

F Intruder F 9.0 ± 1.2 - 6.6 ± 1.1 - 65.9 ± 1.2 -

Intruder M 8.9 ± 1.2 - 6.6 ± 1.2 - 61.8 ± 1.2 -

Colonist F 5.0 ± 1.2 - 4.2 ± 1.2 - 25.0 ± 1.3 -

Colonist M 3.1 ± 1.2 + 2.5 ± 1.2 + 17.8 ± 1.3 -

M Intruder F 12.2 ± 1.2 + 10.1 ± 1.2 - 17.8 ± 1.3 -

Intruder M 12.5 ± 1.1 + 10.4 ± 1.1 + 109.1 ± 1.3 +

Colonist F 17.8 ± 1.3 + 14.6 ± 1.2 - 94.4 ± 1.3 +

Colonist M 14.4 ± 1.3 - 11.8 ± 1.3 - 196.8 ± 1.2 -

FIGURE 5 | Running mean distances (light red and blue dashed lines) from the sites of initial release following translocation for individual male (upper panels) and
female (lower panels) fishers and the fitted mean distances for fishers released onto the established home ranges of previously released fishers (Intruders, red solid
lines) and sites unoccupied by fishers (Colonists, blue lines) compared to fishers that were born on the study site (solid black lines). The y-intercepts represent initial
movements from release sites.

model). For all fishers, we measure Time as the days since
initial release (for reintroduced fishers) and days after capture
for Stirling-born fishers. We predicted that if competition
(a released fisher encountering another fisher’s home range)
were important to fishers of one or both sexes, then models
incorporating competition should describe the data better than
our null model. We predicted that a fisher of either sex could

respond similarly and strongly when encountering the home
ranges of only females or only males. Thus, we tested a model
in which fishers of both sexes encountered males (EncMale)
and another model where they encountered females (EncFem)
without interactions between those groups (also including Sex
and Time). Because we hypothesized that male and female fishers
responded differently to competition, we tested two additional
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FIGURE 6 | (A) Distribution of the estimated mean habitat quality for release areas (circles with 1-km radius around release sites) and (B) the distribution of the
difference in mean habitat quality between release sites and final home ranges of released fishers (positive values indicate that habitat quality in home ranges is
higher than at release sites). We calculated habitat quality for fishers’ home ranges for the area within the 50% isopleths and for available habitat.at randomly
distributed circles with 1-km radius, Fishers released where no conspecifics hade established home ranges (F Colonist), Fishers released within the established
home ranges of other fishers we call Intruders. Fishers released where no other fishers had established home ranges we called Colonists. Dashed black center lines
are mean values and solid gray lines are medians.

models with interactions between the Sex term and encountering
male fishers (Sex × EncMale) or female fishers (Sex × EncFem).
Finally, to test whether poor habitat quality at the release sites
or better habitat quality elsewhere described fishers’ movements
and settlement locations better than competition, we included a
model with the change in habitat quality between a fisher’s release
area and the 50% isopleth where it settled (HabSettle).

We first calculated values for our three movement metrics
using data from Stirling-born fishers to evaluate metric
patterns over time and for subsequent comparison to data
from reintroduced fishers. From preliminary plotting of
the data, we recognized that a linear relationship between
fisher movements and time may be insufficient. Thus, using
our data for both reintroduced fishers and Stirling-born
fishers, we tested three models where the effects of time on
movement were linear, 3rd or 4th order polynomials. Generally,
linear models performed similarly or superior to polynomial
models of time. In the instances where a polynomial did
fit the data better, the patterns of change through time and
the y-intercepts were within the 95% confidence intervals
for linear models. Consequently, in subsequent modeling
we used only linear models to describe the behavior of our
three metrics across time. The biological interpretations
of these statistical parameters are that the y-intercepts
describe fishers’ movements or environmental-use 1 day
after release (short initial movements yielded small intercepts
while large initial movements yielded large intercepts) and
the slopes describe overall trends in subsequent behavior

(large movements away from release sites yielded positive
slopes whereas short subsequent movements yielded negative
or flat slopes).

For all models and metrics, we ranked competing hypotheses
using Akaike’s Information Criteria corrected for small sample
size (AICc; Burnham and Anderson, 2002). Because we did
not model Time as interactive to Sex or to different types of
competition, we re-estimated the parameters for each group
(e.g., males without competition) through time based on our
top model’s structure using the GLIMMIX procedure. We report
and make inference based on these final estimates. In instances
where we needed to make multiple comparisons or determine
differences among groups, we used the Nelson-Hsu adjustment.

RESULTS

Stirling-Born Fishers
We calculated our movement metrics for the 17 male and
40 female fishers born on Stirling that we captured their
first times in 2011 through 2016. (Fishers captured in 2017
did not receive collars because we removed collars that year
in anticipation of research termination.) Females and males
averaged 215 (95% CI = 141–289) and 271 (95% CI = 120–
423) locations per individual for our analysis. Individual males
and females exhibited highly varied movements and varied
use of the landscape following release (Figure 4). On average,
Stirling-born female fishers moved 1.6 ± 1.1 km and males
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2.4 ± 1.3 km from their capture locations on the first day after
release (F1,7053 = 0.25, P = 0.68, Table 2). For all fishers, Distance
(mean daily distance from release site) increased through time
but males moved much farther than did females (F1,7053 = 10.00,
P = 0.0016, Figure 4). On average, Centroid Distance (distance
from release sites to centroid of final polygon) was greater for
Stirling born males than for females (F1,7053 = 6.01, P = 0.014,
Table 2). Polygon Area and Centroid Distances increased
(low but positive slopes) over time for both female and male
fishers (Table 2).

Reintroduced Fishers
Across all years, we estimated an average of 55 locations for
female fishers and 97 locations for male fishers within the
first 12 months after release. We followed 8 of 9 females
released in year-1 (2009-2010) through June 2010. From June
to August, three females died, and we lost contact with two
others from apparent transmitter failure. We monitored five
(of 6) males through the summer of 2010. We monitored
all but 1 year-2 female for their entire first year (one
female died in August). One male from the year-2 cohort
died within 2 months of release. We had fewer estimated
locations for the year-3 cohort because one female died 2 days
after release and another died within 2 months. Predation
was the most common source of mortality documented [7,
bobcats (Lynx rufus), raptors], followed by accidents (5,
roadkill, drowning) and disease (1); a large number of fishers
who died for unknown reasons (18) carried residues of
anticoagulant rodenticides.

Values for Distance (F1,107 = 66.7, P < 0.001), Polygon
Area (F1,107 = 14.99, P < 0.001) and Centroid Distance
(F1,107 = 62.5, P < 0.001) were all greater for reintroduced
than for Stirling-born fishers (Table 2 and Figure 5). Notably,
female fishers reintroduced without competition had patterns
of movement and space-use most similar to Stirling-born
female fishers. Reintroduced males moved larger Distances
than did females (F1,36 = 17.97, P < 0.001), had larger
Polygon Areas (F1,36 = 49.81, P < 0.001), and had larger
Centroid Distances (F1,36 = 20.48, P < 0.001) (Table 2).
Both females and males developed home ranges relatively
quickly. Distance reached asymptotes for most reintroduced
fishers by day 100 (Figure 5). Similarly, Polygon Area and
the Centroid Distance also plateaued or increased only slowly
after 100 days. Data patterns for male fishers, however,
were far more variable generally than were those for female
fishers (Figure 5).

The estimated habitat quality at the release areas (circle with
1 km radius) was 0.50 ± 0.05 (on a scale of 0-1, n = 12;
Figures 2, 6). Most fishers were released into habitat that
was of higher quality that would have been found at random
(Figure 6A). Females and males settled into areas of similar
habitat quality (female 0.49 ± 0.09; male 0.46 ± 0.08; F1,36,
P = 0.52) and, generally, fishers established home ranges in
areas of similar quality habitat (mean = 0.48 ± 0.09; Figure 6B)
as their release sites. Circles distributed randomly onto the
landscape had a mean habitat quality of 0.38 ± 0.08, which
does not differ from the means for where males or females

settled (t = 0.22, df = 1, P > 0.05). Had we released fishers
at random locations and had they established home ranges at
some new random location, the average change in habitat quality
would have been −0.05 ± 0.11 (Figure 6). Over all fishers,
difference for release vs settlement habitat quality averaged
−0.03± 0.08 (Figure 6).

The movements of reintroduced fishers were best described
by models incorporating the presence of previously released
fishers, differences (i.e., interactions between) for how males and
females responded to encountering conspecifics, and included
settlement habitat (Table 3). The highest ranked model for each
of our three movement metrics had high support (Akaike’s weight
range 0.56–0.78) AICc for the next ranked model > 6.6 for all;
Table 3). Models that included effects only from sex and time
or changes in habitat quality from the release to settled areas
of fishers had little support (weight range = 0.1–0.3). For all
three metrics, model estimates indicated a negative relationship
relative to settlement habitat (Distance: β = −3.54 ± 1.02,
P < 0.005; Polygon Area: β = −4.21 ± 0.99, P < 0.001;
Centroid Distance: β = −3.10 ± 0.75, P < 0.005). Distance
and Centroid Distance were best described by whether a fisher
encountered a female fisher’s home range, whereas Polygon
Area was best described by encountering a female fisher’s
home range (Table 3). Female fishers that encountered the
home ranges of conspecifics of either sex immediately after
release moved farther and explored larger areas than did female
fishers not encountering conspecifics (Figure 5). The effect on
a female fisher of encountering another fisher’s home range
was apparent on all three metrics of movement (Figure 5 and
Table 3). Females moved similar distances if they encountered
only females’ or only males’ home ranges (Table 4). Female
fishers that encountered both females’ and males’ home ranges
moved farthest. Conversely, male fishers exhibited a contrasting
pattern. All male fishers encountered the home range of at
least one male or female but males that failed to encounter
a female fisher’s home range moved farther than those that
encountered only a male’s home range or that encountered
both (Table 4).

The pattern of female fishers moving farther in apparent
response to conspecifics was consistent throughout the period
of analysis. The patterns for all three metrics of movement
for females that did not encounter another fisher’s home
range were more similar to the patterns for Stirling-born
fishers than to the patterns for females that encountered home
ranges of males or females (Table 2). The distances that
female fishers moved (Distance) and the area used on the
landscape (Polygon Area) decreased across time (Table 2).
This pattern occurred because all females exhibited relatively
high movement rates immediately after reintroduction, in
contrast to non-reintroduced female fishers. The patterns for
males that encountered or did not encounter home ranges
of other fishers were less distinct than were those of females
(Figure 5). All three movement metrics for reintroduced males,
regardless of whether they encountered the home range of
another fisher or not, increased or stabilized as time passed
(Table 2), consistent with the patterns for Stirling-born males.
For all three metrics generally, the mean values for males
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TABLE 3 | Model selection criteria including the AICc scores, 1AICc comparing top model to other competing models, the likelihood of each model, and the model
weight (w) for each of six competing model from analyses of three dependent metrics of fisher movements after reintroduction.

Dependent Model AICc 1AICc Likelihood w

Mean Distance Sex + Time + EncFem + HabSettle + Sex × EncFem 93,639.96 0.00 1.00 0.97

Sex + Time + EncFem + Sex × EncFem 93,649.55 9.59 0.01 0.01

Sex + Time + EncFem + HabSettle 93,649.61 9.65 0.01 0.01

Sex + Time + EncMale + HabSettle 93,649.91 9.95 0.01 0.01

Sex + Time + EncMale + HabSettle + Sex × EncMale 93,650.80 10.84 0.00 0.00

Sex + Time + EncMale Sex × EncMale 93,652.10 12.14 0.00 0.00

Sex + Time + EncMale 93,652.25 12.29 0.00 0.00

Sex + Time + EncFem 93,653.63 13.67 0.00 0.00

Sex + Time 93,654.32 14.36 0.00 0.00

Release Site to Polygon Sex + Time + EncFem + HabSettle + Sex × EncFem 92,013.18 0.00 1.00 0.94

Sex + Time + EncFem + Sex × EncFem 92,019.86 6.68 0.04 0.03

Sex + Time + EncMale + HabSettle 92,023.58 10.40 0.01 0.01

Sex + Time + EncMale 92,024.10 10.92 0.00 0.00

Sex + Time + EncMale + Sex × EncMale 92,024.20 11.02 0.00 0.00

Sex + Time + EncFem + HabSettle 92,024.34 11.16 0.00 0.00

Sex + Time + EncMale + HabSettle Sex × EncMale 92,024.47 11.29 0.00 0.00

Sex + Time + EncFem 92,026.06 12.88 0.00 0.00

Sex + Time 92,026.75 13.57 0.00 0.00

Sex + Time + HabSettle 92,028.45 15.27 0.00 0.00

Polygon Area Sex + Time + EncFem + HabSettle + Sex × EncFem 179,384.40 0.00 1.00 0.95

Sex + Time + EncMale + HabSettle + Sex × EncMale 179,391.40 7.00 0.03 0.03

Sex + Time + EncMale + Sex × EncMale 179,393.90 9.50 0.01 0.01

Sex + Time + EncFem + HabSettle 179,394.50 10.10 0.01 0.01

Sex + Time + EncMale + HabSettle 179,395.00 10.60 0.00 0.00

Sex + Time + EncFem + Sex × EncFem 179,397.60 13.20 0.00 0.00

Sex + Time + EncMale 179,399.40 15.00 0.00 0.00

Sex + Time + HabSettle 179,399.80 15.40 0.00 0.00

Sex + Time + EncFem 179,400.90 16.50 0.00 0.00

Sex + Time 179,402.80 18.40 0.00 0.00

The three metrics are the mean distance traveled from a fisher’s release site to each successive location (Distance), the distance from release site to the center of a 100%
minimum convex centroid for the last 50 locations (Release Site to Polygon Center), and the area of the minimum convex polygon bounding the last 50 locations for a
fisher (Polygon Area).

TABLE 4 | The mean of the mean and maximum distances that reintroduced fishers traveled from their release sites through the first 500 days of observation.

Sex Enc F Enc M N Mean distance ± SD (km) Average maximum ± SD (km) Mean release habitat ± SD Mean settle habitat ± SD

F N N 6 2.9 ± 1.2b 6.3 ± 1.4b 0.54 ± 0.02c 0.45 ± 0.08a

N Y 5 6.8 ± 4.4a 12.8 ± 6.8a 0.43 ± 0.05a 0.38 ± 0.12a

Y N 3 6.1 ± 3.4a 11.9 ± 1.5a 0.52 ± 0a 0.51 ± 0.07a

Y Y 9 9 ± 3.5a 15 ± 3.6a 0.49 ± 0.04a 0.49 ± 0.09a

M N N 0 – – – –

N Y 3 23 ± 14.2c 48.9 ± 5.8c 0.49 ± 0.14a 0.46 ± 0.02a

Y N 6 16.4 ± 15.6c 30.7 ± 17.9c 0.51 ± 0.02a 0.4 ± 0.12a

Y Y 7 12.6 ± 4.5a 24.1 ± 12.8c 0.5 ± 0.04a 0.48 ± 0.07a

Some fishers encountered (Yes) or did not encounter (No) the established home ranges of female or male fishers.
Established home ranges had been occupied for at least 2 months and mostly approximately a year or longer.
aMean estimate is equal to the mean value across group based on Nelson-Hsu multiple comparison test at α = 0.05.
bMean estimate is lower than the mean value across group based on Nelson-Hsu multiple comparison test α = 0.05.
cMean estimate is higher to the mean value across group based on Nelson-Hsu multiple comparison test α = 0.05.

encountering or not encountering other fishers’ home ranges
overlapped and had high variances. Several males traveled long
distances (up to > 20 km) from their release sites within

the first 200 days after release, regardless of whether they
encountered conspecifics, some of whom returned to the study
site later (Figure 5).
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DISCUSSION

Clearly, the movements of fishers indicate they perceive,
internalize, and respond to the presence of other fishers on
a landscape. Such observations are consistent with learned
behaviors that modify future decisions and, potentially, fitness
(Heft, 2013; Eichenbaum, 2017; Lewis et al., 2021). Consequently,
the spacing of other fishers on the landscape and their
potentials to affect resources are incorporated into each fisher’s
cognitive map and affects how each individual fisher uses
that landscape. Fishers placed in, or that encountered, the
existing home ranges of conspecifics did not stay long within
these areas, demonstrating that they quickly learned of and
responded to the presence of conspecifics. Female fishers released
without competition were nearly identical in their average
pattern of movement to Stirling-born fishers born on the study
site. Stirling-born fishers were found in a variety of habitat
qualities and, ostensibly, had created home ranges or areas that
minimized competition.

The movements of female fishers are best explained best by
accounting for the presence or absence of other fishers’ home
ranges and not exclusively by searching, and finding, areas of high
habitat quality compared to where they were released. Females
that did not encounter competition stayed close to their release
sites and, at times, settled into marginally poorer (though still
high) habitat (Figure 6). Were habitat their main priority these
females could have moved to settle in overall higher quality
habitat. In contrast, encountering the home ranges of other
fishers, either male or female, caused female fishers to move
farther and to explore more of the landscape before establishing
their own home ranges. Female fishers discounted high quality
habitat in the presence of competition and often moved to similar
or worse habitat to where they were released. Our results indicate
that female fishers preferred to avoid competition rather than
attempt to remain in areas with already high habitat quality.
Females who did not encounter other fishers’ home ranges close
to their release sites had movement patterns nearly identical
to those of Stirling-born, non-reintroduced, fishers (Figure 5).
Females moved less in the absence of competition regardless of
habitat quality. The movements of male fishers were more varied
but consistently different from females’ movements. Males who
encountered the home ranges of one or more females moved
shorter distances both daily and until they established home
ranges than did males who did not. The habitat quality where
fishers established home ranges did not differ from that at the
fishers’ release sites nor from the habitat quality available on the
landscape of our study site. Females and males established home
ranges in areas with similar habitat quality (Figure 6).

Habitat quality was found in our top models but appeared, at
least partially, as a consequence of fishers moving in response
to conspecifics. Fishers that moved the furthest settled in the
worst habitat relative to other fishers. Some male colonists and
intruders each made long movements and settled long distances
but also ended up in poorer quality habitat. Yet some males from
each category moved less and settled in better habitat. Effectively,
the mechanisms that seemed to cause fishers to move were their
encounters with conspecifics, but the outcome was that animals

that moved the most often settled into worst habitat. For males,
long movements may come from both failing to find females
initially or conflict with larger males. Had we more fishers to
observe, we may have been better able to evaluate interactions
between individual fishers and habitat choices. We do not claim
that habitat is unimportant only that is appeared secondary to
conspecifics interactions.

Conceivably, habitat quality could have been more influential
in our study had we not chosen a-priori to release fishers only
into areas with above average habitat quality for our study area,
to maximize chances of population growth and establishment
(Callas and Figura, 2008; Facka, 2017). A 4 × 4 study design
with fishers released with and without competition in high- and
low-quality habitat would have tested the effects of habitat better.
Yet, this too may have been insufficient because fishers, like most
carnivorans, can move widely and encounter other individuals
incidentally—despite attempted study designs. Generally, we
expect that both habitat quality and conspecifics influence
movements and spacing patterns. Under other circumstances,
habitat may be more important to fishers, or other animal’s,
movements (McNicol et al., 2020). We can state only that
competition with conspecifics strongly affected the post-release
movements of released fishers during this reintroduction in
keeping with our initial hypotheses.

We conclude that intrasexual territoriality is a social system
imposed on female fishers by males and that niche partitioning is
not involved, consistent with Powell’s (1994) hypothesis. Large
movements by male fishers in the absence of encountering
female fishers indicate that maintaining information on mating
opportunities even outside of the breeding season is important to
male fishers (Sandell, 1986; Holmes and Powell, 1994). The large
sizes of adult male fishers prevent females from excluding males
from their home ranges. Yet males and females make similar
habitat choices and have similar diets (Powell, 1993; Holmes
and Powell, 1994). We have established male imposition should
be considered and further tested with data from other mammal
populations that maintain intrasexual territories.

As with all conservation-based projects, the reintroduction
forced us to make many trade-offs. We relied on Argos telemetry
collars for males because of their long movements we may not
have tracked with conventional VHF telemetry. Indeed, without
the Argos collars, we would have missed many long-distance
movements, often into unexpected areas and habitats. In the first
year, telemetry collars for males did not arrive until 2 months after
the first females had been released, leading males to encountered
females shortly after release. In 2010, we experimented with
newly produced GPS collars but found them unreliable and
hence, unable to document mortality reliably (Facka, 2017).
Despite these limitations, our study demonstrates how research
and hypothesis testing can be designed into reintroductions.

Some male fishers that did not encounter female fishers moved
long distances within the first weeks after release. Yet, some
male fishers that did encounter female fishers also moved great
distances. We hypothesize that such inconsistent movements
depend on attributes of the male fishers that are resident or
intruding. On two occasions, we released a young, relatively
small male fisher whose movements became localized shortly
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after release. Subsequently, we introduced a large, adult male onto
the small male’s incipient territory and the small male moved to
a new, incipient territory after wandering a long distance; the
adult male settled in the small male’s original incipient territory.
When small male fishers are in the absence of female fishers
or in the presence of large, dominant male fishers, their travel
(dispersal) distances are like those observed for male fishers
elsewhere (Proulx et al., 1994; Lewis et al., 2010). Unfortunately,
we had insufficient data to tease apart these types of interactions.
Interactions between old, experienced male fishers and young
male fishers may occur relatively infrequently but probably
influence structure and placement of territories on landscapes.
Though males appear to have adopted a different strategy, they
appeared to have learned the distributions and attributes of
conspecifics quickly which were revealed in their movements.

For species with the potential for large sexual size dimorphism,
the dimorphism exhibited by any cohort appears to depend on
the abundance of prey during the year or years of growth for
males of that cohort (Holmes, 1987; Powell and King, 1997).
Thus, the extent of dimorphism is not a species trait, just the
existence of the dimorphism is. Male stoats (Mustela erminea)
growing during years of food shortage do not grow as large as
those born into abundance but the small male stoats live longer,
giving them more years of reproduction (Powell and King, 1997).
Small males are, nonetheless, larger than females and able to
impose intrasexual territoriality.

The effect of conspecific competition on use of a landscape
is a critical component of assessing habitat quality for animals.
Because habitat quality affects the fitness of individuals, the
presence of competitors should have consequences for the fitness
of the resident of a home range (Mitchell and Powell, 2003, 2004,
2007; Mosser et al., 2009). The risk of resource depression or
depletion where residents had already become established caused
newly released fishers to travel through and beyond areas of high
habitat quality to establish home ranges elsewhere. Such complex
interactions are important for understanding animals in native
settings as well as for understanding how, when and where to
release specific types of individuals during reintroductions.

We assessed the cost of resource depression by comparing the
quality of home range-sized areas that were rejected by released
fishers, the quality of areas incorporated by residents into their
home ranges, and the quality of areas where newly released
animal settled. For research that identifies individual animals
within an established population, we propose that apparently
unused areas of good habitat are actually the home ranges of
animals that have not been documented. We refer to such areas
with undetected residents as “ghost home ranges.”

Our results provide further nuance to the consistent
observation that male and female mammals use environments
differently. Particularly for solitary, terrestrial carnivorans, males
have larger home ranges, make longer movements, and often
have home ranges that overlap with females (Powell, 1979a,
1993; Powell et al., 1997; Kovach, 1998; Stirling, 1988; Johnson
et al., 2000; King and Powell, 2007; Persson et al., 2010; Sweitzer
et al., 2015; Elbroch, 2017). We conclude that males effectively
impose competition on females—ostensibly to monitor females
for mating opportunities (Powell, 1994). Such motivations and

spatial relationships are likely to be similar for many other
mammals with large sexual size dimorphism, at least most
solitary, terrestrial carnivorans.
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Memory and Conformity, but Not
Competition, Explain Spatial
Partitioning Between Two
Neighboring Fruit Bat Colonies
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Spatial partitioning between neighboring colonies is considered a widespread
phenomenon in colonial species, reported mainly in marine birds. Partitioning is
suspected to emerge due to various processes, such as competition, diet specialization,
memory, information transfer, or even “foraging cultures.” Yet, empirical evidence from
other taxa, and studies that tease apart the relative contribution of the processes
underlying partitioning, remain scarce, mostly due to insufficiently detailed movement
data. Here, we used high-resolution movement tracks (at 0.125 Hz) of 107 individuals
belonging to two neighboring colonies of the Egyptian fruit bat (Rousettus aegyptiacus),
a highly gregarious central-place forager, using the ATLAS reverse-GPS system in the
Hula Valley, Israel. Based on comparisons between agent-based mechanistic models
and observed spatial partitioning patterns, we found high levels of partitioning of
both area and tree resources (<11% overlap) that were stable across different fruiting
seasons. Importantly, partitioning could not have emerged if the bats’ movement was
only limited by food availability and travel distances, as most commonly hypothesized.
Rather than density-dependent or between-colony competition, memory, and, to a
lesser extent, conformity in tree-use explain how partitioning develops. Elucidating the
mechanisms that shape spatial partitioning among neighboring colonies in the wild
under variable resource conditions is important for understanding the ecology and
evolution of inter-group coexistence, space use patterns and sociality.

Keywords: partitioning, memory, conformity, competition, Rousettus aegyptiacus, animal movement, coloniality

INTRODUCTION

Foragers that congregate at a central place in large numbers (e.g., in roosts) face several conflicting
demands. On the one hand, as the colony grows, direct and indirect competition forces individuals
to spend energy exploring resources farther away from the colony (Ashmole, 1963; Gaston et al.,
2007; Hinsch and Komdeur, 2010). On the other hand, congregations in roosts and around food
patches offer ample opportunities to gather and transfer information about the location and
status of unfamiliar resources (Dall et al., 2005; Van Moorter et al., 2009; Evans et al., 2016;
Trapanese et al., 2019).
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The tension between the risk of competition and information
gain is even more acute when individuals from several conspecific
colonies forage within the same landscape. In such cases,
colonies often divide their territories to minimize conflict while
sustaining intra-colony information flow (Adler and Gordon,
2003; Bolton et al., 2019). When resources and roosts are
abundant, colonies are typically located far from each other,
passively creating minimal resource mixing and competition risk
(Wakefield et al., 2013; Aarts et al., 2021), a division termed the
Hinterland Model (Cairns, 1989). Yet, accumulating evidence
shows that spatial partitioning also occurs between neighboring
colonies separated by a distance smaller than the individuals’
typical foraging distance. For example, Wakefield et al. (2013)
showed that 12 colonies of northern gannets (Morus bassanus),
distributed around the British shoreline, forage in mutually
exclusive areas, including six colonies located very close to
each other. Other studies reported spatial partitioning between
neighboring colonies in a wide range of systems, most commonly
in breeding colonies of marine birds (Ainley et al., 2004; Ceia
et al., 2015; Corman et al., 2016; Mott et al., 2016; Sánchez et al.,
2018; Bolton et al., 2019; Ito et al., 2020; Jessopp et al., 2020), but
also in other birds (Cecere et al., 2018), ants (Gordon and Kulig,
1996; Adler and Gordon, 2003; Richardson et al., 2017) and a few
other taxa (Ellis et al., 2009; Papastamatiou et al., 2018).

Although this line of evidence implies that spatial partitioning
between neighboring colonies is widespread, three key elements
are missing for understanding how and by which cognitive and
social mechanisms partitioning is sustained. First, studies are
biased toward marine birds while breeding, which cannot be
readily generalized to other species that live within the same
home range year-round or have different types of diet, such
as non-mobile food (Bolton et al., 2019; Riotte-Lambert and
Matthiopoulos, 2020). The degree of resource unpredictability,
in particular, has been suggested as the key evolutionary driver
of animal congregations, increasing information transfer and
therefore reducing resource uncertainty (Ward and Zahavi,
1973; Egert-Berg et al., 2018; Gager, 2019; Riotte-Lambert and
Matthiopoulos, 2020). Yet, most studies focus on a single season
or average spatial partitioning across seasons and resource
conditions, thereby neglecting the dynamic nature of resource
availability (Grémillet et al., 2004; Aarts et al., 2021). Second,
spatial partitioning is often reported based on the observation
that colonies maintain minimal overlap between their foraging
areas. However, to confirm that partitioning does not emerge
through a random process or is the consequence of travel distance
limitations alone, the observed overlap must be compared against
those emerging from appropriate reference models that can
isolate effects associated with these processes (Cecere et al.,
2018; Bolton et al., 2019; Ito et al., 2020). Third, most studies
did not systematically examine the mechanisms contributing
to partitioning, namely competition, memory of resources,
and information transfer within the colony (Grémillet et al.,
2004; Corman et al., 2016; Bolton et al., 2019; Aarts et al.,
2021). Furthermore, studies that investigated these mechanisms
used population or agent-based simulations that were only
partially derived from observed movement distributions, without
comparing the results to the observed between-colony overlap

(e.g., Barta and Szép, 1995; Adler and Gordon, 2003; Wakefield
et al., 2013; Dallas et al., 2019; Aarts et al., 2021). Therefore, it
remains unknown which mechanism, if any, explains observed
spatial partitioning patterns under natural conditions. A major
limitation in making these inferences has been the lack of
movement data at a temporal resolution high enough to measure
(and model) local spatial overlap. The emergence of new
technologies, namely high-throughput reverse-GPS systems such
as ATLAS (Toledo et al., 2020) and some acoustic telemetry
systems (Baktoft et al., 2015), can now collect long-term, high-
resolution movement data that can bridge these gaps.

The most hypothesized driver of spatial partitioning between
neighboring colonies is density-dependent competition and its
tradeoff with travel costs (Grémillet et al., 2004; Wakefield et al.,
2013; Corman et al., 2016; Sheppard et al., 2018). According to
this idea, coined the Density Dependent Hinterland Model by
Wakefield et al. (2013), individuals of one colony expand their
home range into areas overlapping an adjacent colony’s patches
following local food depletion. As the number of individuals
within the overlapping area increases, both colonies are pushed
back to exploit more available resources in non-overlapping
areas until an equilibrium is reached and the two colonies hold
mutually exclusive ranges. However, this hypothesis assumes
that density-dependent competition exists, despite little and very
system-specific evidence (Lewis et al., 2001). Another possibility
that has been given less attention is that individuals compete
only with members of the other colony, that is, a between-
colony competitive response that might affect spatial partitioning
more directly than density-dependent competition. Yet, this
idea assumes that conspecifics can differentiate between foreign
and self-colony members and attribute the level of perceived
competition accordingly. Some taxonomic groups, especially
eusocial insect such as ants and bees, and highly social mammals
such as mongoose, are known to recognize individuals from a
rival group by processing chemical “signature mixtures.” Yet,
chemical or similar recognition mechanisms are less likely to
emerge in other groups, such as birds and less social mammals
(Wyatt, 2005, 2010).

Information about resources may operate on top (or
independent) of competition to sustain spatial partitioning
between colonies (Wakefield et al., 2013; Riotte-Lambert and
Matthiopoulos, 2019). Different levels of home-range familiarity
and the ability to memorize previous visits to resource patches
have been shown to drive home-range formation for many
species (Moorcroft, 2012; Fagan et al., 2013; Merkle et al., 2014;
Bartumeus et al., 2016). In fact, memory on its own was shown
to create non-overlapping individual home ranges in simulated
free-ranging foragers, even when resources deplete relatively fast
due to intense competition (Riotte-Lambert et al., 2015). At
the colony level, theoretical simulations incorporating individual
memory without competition were sufficient to form spatial
partitioning in central-place gregarious foragers that show high
fidelity to their colony roosts (Aarts et al., 2021). A practical
challenge in modeling the effect of memory on resource and
spatial partitioning is evaluating the true, or realistic, memory
coefficient, such as the mean probability of the return to
previously visited sites (Aarts et al., 2021). This is because
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metrics of revisits are highly dependent on the tracking and
resource data resolution (Bracis et al., 2018). For example,
low temporal resolution may cause short area-restricted-search
events to be overlooked and therefore revisits to these areas might
be underestimated. From a spatial perspective, low resolution
may attribute false revisits if the selected grid size of the study
area is too large, compared to the real size of foraging patches
(Fagan et al., 2013).

When resources are temporally predictable (e.g., mobile
prey, carcasses, or fruits of different plant species), group-
living animals often share information to reduce uncertainty
about resources (Ward and Zahavi, 1973; Kerth et al., 2001;
Weimerskirch et al., 2010; Evans et al., 2016; Harel et al., 2017).
One potential outcome of repeated exposure to information
within a group, whether gained intentionally or inadvertently,
is that individuals may conform to the same behavior (Herbert-
Read et al., 2013; Somveille et al., 2018). Accumulating evidence
shows that some species conform to the most abundant behavior,
even without personal experience, regarding food preferences
(Van De Waal et al., 2013), strategies for problem-solving (Dindo
et al., 2009; Aplin et al., 2015), and group movement speeds
and habitat use (Herbert-Read et al., 2013; Wilson et al., 2019).
Although theoretical models show that information sharing
minimizes overlap between neighboring colonies (most evidently
in Wakefield et al., 2013), this mechanism has not yet been
explicitly examined using empirical data (Aarts et al., 2021).

In this study, we used high-resolution movement data
(collected at 0.125 Hz) of 107 Egyptian fruit bats (Rousettus
aegyptiacus; hereafter abbreviated as EFB) from two large
neighboring colonies in the Hula Valley, north Israel, along with
a complete dataset of all fruit trees they visited within the study
area. Preliminary exploration of these data revealed considerable
spatial partitioning between bats from two large colonies, which
motivated the investigation of three main hypotheses on the
mechanisms that might be responsible for the observed resource
and spatial partitioning between neighboring colonies. We first
hypothesized that such partitioning could not have emerged
due to travel distance limitation only, nor by chance. Second,
we hypothesized that partitioning could have emerged due to
one or more of three mechanisms commonly suggested in the
literature, namely density-dependent competition, memory of
resources, and information sharing within each colony. Third, we
hypothesized that the observed partitioning could have occurred
at some theoretical memory or conformity coefficients, which
do not necessarily match the observed ones. To examine the
first two hypotheses, we built competitive agent-based models
derived from real bat tracks to simulate the tree-use patterns
formed when using each of the abovementioned mechanisms,
separately and in conjunction. We then compared the simulated
partitioning indices of each model—representing the overlap of
trees and home ranges between colonies—against the observed
ones. Due to the ambiguity about how competition operates
between colonies, we examined the empirical evidence for
density-dependent and between-colony competition separately
before including competition in our models. To address the
third hypothesis, we repeated the same simulation models but
replaced the observed memory and conformity coefficients with

theoretical values and examined the thresholds above which
partitioning develops.

MATERIALS AND METHODS

Study Species and Area
The Egyptian fruit bat (Rousettus aegyptiacus) is a long-lived,
widely distributed Old World fruit bat (Pteropodidae, Kwiecinski
and Griffith, 1999). In Israel, EFBs are generalist foragers
consuming a wide variety of fruits, most of which have a
predictable seasonal fruiting phenology (Tsoar et al., 2011).
However, some fruit trees, especially of the non-native Ficus
genus (Moraceae), fruit in unpredictable cycles, ranging from 1
to 8 cycles a year (e.g., Galil et al., 1977). The study area in the
Hula Valley, north Israel (Figure 1), covers a 19,000-ha area and is
an agriculturally dominated landscape inhabited by ∼2,500 EFB
fruit bats that roost mainly in two large caves—Gershom with
∼1,400 and Zemer with ∼500 individuals. Three other caves are
occasionally inhabited for varying periods, from days to months
(pers. obs.). The two main cave-roosts are located 3.5 km apart, a
distance much shorter than the average 10.3 km an EFB covers
a night, based on our long-term (4 years) tracking data. Two
lines of evidence and observations guided our reasoning in testing
the effect of memory and conformity on resource-use patterns
in this species. First, similar to other fruit bats, individual EFBs
tend to feed on a small subset of available trees and repeatedly
revisit them for weeks and even months (Egert-Berg et al., 2018;
Toledo et al., 2020), which affirms that EFBs rely heavily on
individual memory. Additionally, we have recently shown that
EFBs obtain a “cognitive map,” which encompasses information
about a large number of tree locations, suggesting that memory
expands beyond the trees used at a given time (Toledo et al.,
2020). Second, EFBs are highly gregarious central place foragers,
found in the hundreds in cave-roosts and dozens around fruit
trees during foraging. High roost fidelity (Figure 1), together
with repeated visits to the same trees, creates opportunities
to exchange information on fruit locality and status, driving
individuals to conform to the use of the same resources.

Captures and Tracking
EFBs were captured using mist nets, either around trees or at
cave-exits. Bats were tracked by ATLAS (Advanced Tracking
and Localization of Animals in real-life Systems), a reverse-GPS
system that utilizes extremely lightweight, low-cost tags at a high
temporal frequency with a 5 m mean localization error (Toledo
et al., 2016; Weiser et al., 2016). ATLAS tags were either mounted
using a shrink-coated cable-tie collar to allow tracking for up to
9 months or glued on their upper-backs with surgical cement
(Perma- Type, Plainville, CT, United States) for bats that had not
yet reached full adult size. Tag units weigh 7.4 g (5.2% of mean
adult body mass) for collars or 3 g without. Captures and tagging
procedures have been approved by the Ethics Committee of the
Hebrew University (permit NS-15-14-14660-2) and the Israeli
Nature & Parks Authority (permit NS-2020/42577).

This study analyzed data of 107 bats that regularly roosted in
one of the two main caves during 2018–2020. Bats were tracked

Frontiers in Ecology and Evolution | www.frontiersin.org 3 October 2021 | Volume 9 | Article 732514209

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-732514 October 13, 2021 Time: 15:9 # 4

Lourie et al. Spatial Partitioning in Wild Fruit Bats

FIGURE 1 | Tracks of Egyptian fruit bats of two neighboring colonies, Zemer in yellow and Gershom in purple, showing resource (trees) and spatial (area) partitioning
of foraging areas within the Hula Valley, Israel. Bats of both colonies show high fidelity to their cave-roosts (red spheres), expressed by the proportion of nights
individual bats roosted in each focal cave (pie-charts per colony on the left panel). Gray portions of the pie-chart are the percent of cave switching nights from the
focal cave to other caves. Black spheres are individual fruit trees visited by bats. Each map shows foraging movements within the (A) lean-fruit months of
November-December (147 bat-nights of Gershom and 155 from Zemer, left map), and (B) during peaks of fleshy fruits in June-July (82 bat-nights Gershom and 108
Zemer, right map), accumulated across 2018–2020.

at a 0.125 Hz sampling rate for an average tracking period of 23.7
nights and up to 131 nights. We also mapped nearly all fruit trees
in the study area (14,314 trees and 18,111 orchard trees), which
enabled us to identify specific tree visits.

Observed Metrics of Resource and
Spatial Partitioning
To estimate resource and spatial partitioning between colonies,
we first filtered raw EFB tracks for localization errors based on
the covariance matrices attributed to each ATLAS fix (Gupte
et al., 2021) and localization that exceeded the highest realistic
speed threshold for this species of 20 m/s. Then, we defined
visits to trees (location, tree ID, and duration) based on track
segmentation utilizing the first-passage algorithm to determine
the center of a “cloud of fixes” where the animal has spent
a specified number of observations within a certain radius
(source code and details at https://github.com/ATLAS-HUJI/
R/tree/master/AdpFixedPoint). We then related the median
coordinates of each cloud to the closest tree in the dataset.
Colony membership was assigned based on the cave-roost a bat
exited from each night. For this analysis, we took out foraging
nights that followed cave switching events between the two main
colonies because we could not choose the colony membership
for those particular cases and since they were relatively rare
(< 11% of bat-nights, Figure 1). Resource partitioning was

measured as the percent of tree overlap (shared trees/all trees
used, Table 1). Spatial partitioning was estimated by drawing the
75% Kernel utility density (KUD) contours for all bats of each
colony and calculating the percent of area overlap (overlapping
KUDs area/total area used, Table 1). We chose KUDs with the
most common “href” bandwidth and selected the 75% contours
to represent a compromise between falsely enlarging the area
due to single events of longer bouts and underestimating the
area due to the exclusion of short, but sometimes repetitive,
visits to trees. For simplicity, we did not consider variation in
tree quality when calculating overlap, for instance, by using
the duration in time spent on a tree as a proxy of tree value.
Both types of overlap are expected to vary according to fruit
availability. For instance, some periods are characterized by a
dense concentration of fruits around the line of equidistance
between caves (e.g., Morus nigra and Ficus carica trees in May–
July), while in other periods, bats rely on the emergence of less
predictable fruits, e.g., invasive species of the Ficus genus (family
Moraceae) in November-December. We, therefore, corrected for
changes in fruit availability by estimating trees and area overlap
for each month separately, including only months that contained
at least five bats from each cave (range 20–33 total bats),
aggregated across 2018–2020. Finally, the overlap estimation
between tracked bats is more accurate for months in which we
had more data. Hence, we weighted the percentage of overlap by
the number of bat-nights in each month to create the weighted
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TABLE 1 | Observed movement parameters used in the agent-based models and indices of observed resource (trees) and spatial (areas) partitioning, for two
neighboring Egyptian fruit bats colonies during 2018–2020.

Feb Mar Jun Jul Nov Dec

Movement parameter

Number of foraging nights per
tracked bat

1018,15] 6 [6,6] 6 [3,10] 6 [3,10] 9 [6,12] 14 [3,24]

Total Number of tracked bats
(Gershom/Zemer)

13/10 15/5 18/18 12/10 18/15 14/16

Number of trees visited per
bat-night

9 [5,18] 12 [7,23] 14 [11,21] 16 [9,22] 25 [14,42] 26 [15,47]

Roost-to-first-tree travel
distance (m)

2400 [2200,4300] 3500 [2200,5200] 2600 [2300,3900] 2900 [2400,3900] 2900 [1900,4000] 3700 [2200,4000]

Tree-to-tree travel distance (m)

51 [27,109] 52 [30,101] 64 [25,205] 67 [32,409] 65 [32,209] 79 [38,262]

Memory coefficients (µ)-

The probability of an individual to
return to the same tree on

0.87 [0.8, 1] 0.85 [0.7,1] 0.75 [0.7,0.9] 0.95 [0.8,1] 0.8 [0.7,0.8] 0.8 [0.75, 0.85]

Consecutive nights (proportion of
trees already-used each night)

Conformity coefficients (β)-

The probability to visit trees used
by other members of the same
colony (maximal proportion of
shared trees for Gershom/Zemer)

0.2/0.4 0.2/0.6 0.1/0.2 0.2/0.2 0.2/0.2 0.2/0.4

Partitioning indices

Tree Overlap (%):

The percent of trees shared
between colonies

10 2 6 7 2 5 WTO = 5.4%

Area Overlap (%):

The percent of the 75% KUD
home-ranges’ overlap between
colonies

3 7 10 15 14 14 WAO = 10%

All parameters are summarized per month to account for differences in resource conditions. For movement parameters, medians are presented [25–75% interquartile
range] unless stated otherwise. Partitioning indices represent the proportions of overlap per month, and the derived weighted tree overlap (WTO), and weighted area
overlap (WAO), both weighted by the proportion of bats tracked each month.

mean tree overlap (WTO) and the weighted mean area overlap
(WAO) indices (Table 1).

Agent-Based Simulations
The purpose of the agent-based models was to tease apart
the contribution of memory, conformity, and competition
on the observed resource and spatial partitioning patterns.
To this end, we simulated the movement of bats with and
without these different mechanisms and compared the emergent
simulated partitioning indices against the ones observed in
real EFBs (WTO and WAO, see section “Observed Metrics
of Resource and Spatial Partitioning”). The first set of models
uses movement data derived from observed bat tracks to
identify the mechanism contributing to partitioning in our
system. The second builds upon the same structure but uses
theoretical values for memory and conformity to identify the
value beyond which partitioning can (theoretically) develop.
Here, we begin by detailing the empirical parameters used
in the simulations (see Table 1 for a summary), and then
we outline the principle simulation workflow (Figure 2). See
supporting information for a more detailed model description,

following the ODD (Overview, Design concepts, Details)
protocol (Grimm et al., 2006, 2020).

Observed Parameters
Observed movement parameters were based on the tree-visit
patterns from real bat tracks, the trees they visited, and the
location of each colonys’ roost (Table 1). Movement parameters
and the available tree dataset were collected separately for
each month to account for seasonality (for reasoning, see
section “Observed Metrics of Resource and Spatial Partitioning”).
Movement parameters can be divided into three categories: (1)
variables used to simulate the number of bats, nights tracked,
and trees used per bat-night (steps). (2) Parameters to account
for distance constraints—the distributions of flight distances
undertaken by bats between the cave-roost and the first tree,
as well as between consecutive trees (i.e., tree-to-tree distance).
(3) Memory and conformity coefficients. Memory coefficients
are the probabilities of visiting a tree used in previous nights
(number of already-used trees/total trees, per bat-night). Since
simulations have a time interval of 1 month, we assume that bats
can remember all trees they used during this period, following our
previous finding that EFBs memorize trees for at least 158 nights
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FIGURE 2 | Flowchart showing the decision-making process of a simulated bat at each step (tree visit) of the agent-based models. A step begins by sampling a
bat-agent and ends with a tree selection. Colored frames represent the null model (gray) or the implementation of the different mechanisms that are hypothesized to
affect resource and spatial partitioning—memory (red), conformity (blue) and competition (green). At the end of the simulation, each colony is attributed a set of trees
from which the between-colony partitioning indices (WTO and WAO) are calculated.

(Toledo et al., 2020). Conformity coefficients are the maximum
proportion of shared trees among colony members (maximum
number of shared trees/total trees, per colony). Conformity
reflects information transfer indirectly because it assumes that
if the information is shared (unrelated to how it is shared), it
will push bats to conform and use the same trees. We used the
maximum value of shared trees because the real proportion of
trees shared (including non-tracked bats) is likely higher since
EFBs almost always congregate around fruit trees (Kwiecinski
and Griffith, 1999). Before incorporating competition into the
model, we evaluated whether there is evidence for it in our data.
Two types of competition were tested—density-dependent (bats
are negatively affected by the presence of other bats on trees)
and between-colony competition (bats are negatively affected by
bats from the other colony). For density-dependent competition,
we first estimated if the density of tracked bats increases around
trees used by both colonies (i.e., “shared”) against trees used by a
single colony. Then, we measured the probability to visit and the
duration of time spent on trees that hosted increasing numbers
of tracked bats to see if individuals changed their behavior
in response to higher densities. Similarly, whether between-
colony competition occurs was estimated based on the same
dependent variables, but as a function of the number of bats
from the other colony only. According to the competition results
(Supplementary Figures 2–5), we implemented a simple and
weak competition rule without considering different competition
strengths in our models.

Simulations Workflow
All simulations (illustrated in Figure 2) followed the same
temporal hierarchy: First, the list of trees and the observed
movement parameters were collected for each month (section

“Observed Parameters” and Table 1). Then, the maximal number
of observed tracked nights was sampled, and tree visits were
simulated for each night separately. Since any of the studied
mechanisms probably affected bats before our tracking began,
we forced agents to select only trees originally attributed to their
colony on the first night. Lastly, we derived the number of steps
for each month and night to be twice the number of tracked
bats and all the trees they visited (2 × n bats × n trees) as a
compromise between sample size and computational load.

Each step began by randomly sampling a bat and ended with
a tree visit (Figure 2). Bats were randomly sampled so that they
could simultaneously forage and affect each other’s tree choices.
The first time a bat was sampled, it was given a colony ID
based on the observed probability of belonging to each colony
(proportions of tracked bats from each roost). We assumed bats
do not switch between colonies, owing to the high levels of roost-
fidelity we observed (Figure 1). Additionally, although colony
size changes seasonally (pers. obs.), there is no data to date on the
duration, or even existence, of group cohesion of any size in this
species. The selection of trees for the first night was initialized
the same way in all models: for the first tree, a distance was
randomly sampled from the observed distances from the roosts
to the first tree that real bats visited (Table 1). Then the tree that
was positioned the closest to that distance (± 100 m) was selected.
The rest of the trees in the first night were selected in the same
way, only based on a distance sampled from the observed tree-to-
tree travel distance distribution (Table 1). The above first-night
initiation resulted in a baseline of trees that bats of the given
colony originally visited.

In the null model, bat-agents could choose among all
seasonally available trees (of both colonies) and selected a
tree based only on the tree-to-tree travel distances, as in the
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initiation phase (Figure 2). Simulating memory and conformity
from observed coefficients (Table 1) followed the same decision
sequence. For the memory model, a memory coefficient µ was
randomly sampled from the probability distribution of visiting
already-used trees. We then randomly sampled a probability
r1, taken from a uniform distribution [0,1]. If µ > r1, the bat
proceeded to select among known trees, i.e., made a memory
step. The specific (known) tree was selected based on the relative
proportion of the focal individual’s previous visits to each tree (a
linear tendency to select highly used trees). For the conformity
model, bats would select among unknown (new) trees that
they did not memorize. Then, a conformity coefficient β was
selected for each colony (a single value, see section “Observed
Parameters”). We sampled another random number r2, and a
conformity step was made if β > r2. The specific tree was
then selected based on its “attractiveness,” i.e., the proportion
of the same-colony members that used a tree. When neither
the memory nor conformity models were applied, or when
µ < r1 and β < r2, a tree was selected based on the tree-to-tree
travel distance distribution, as in the null model. Competition in
the simulation operated in retrospect after a tree was selected.
When applied, a step was deleted if a probability θ that grows
logarithmically with the density of simulated bats that used that
tree was higher than a randomly sampled number r3 (Figure 2).
Because removing visits results in an overall smaller number of
steps, corresponding to a mean of 7 (± 3) percent of steps lost,
we added 10% more steps when running the competition models.

In addition to the observed movement parameters (Table 1),
the procedure above was repeated using theoretical and constant
memory and conformity coefficients (range 0.2–0.97) to identify
thresholds above which resource and spatial partitioning emerge.
These resulted in one set of agent-based models derived from
observed memory and conformity coefficients and additional sets
for each theoretical memory and conformity coefficient, with and
without their interaction with competition.

All models executed 100 iterations per month. Then WTO
and WAO were calculated based on the trees and area overlap
and the total number of simulated bat-nights per month (as for
the observed indices, see section “Observed Metrics of Resource
and Spatial Partitioning”). All models were constructed in R
version 4.0.4 (R Core Team, 2021), with the rgeos package (Bivand
and Rundel, 2020) for spatial object manipulations and amt
package (Signer and Fieberg, 2019) for home range estimations
and area overlap. Code will be made available upon request.
p-values for testing the difference between each model against
the observed tree or area overlap (WTO and WAO, respectively)
were determined as the proportion of 100 simulated indices
smaller than the observed index.

RESULTS

Colonies Characteristics and Observed
Partitioning
We analyzed 107 bats that were tracked for a total of 1,271
foraging nights. Out of which, 764 bat-nights originated from
Gershom roost and 507 from Zemer. Bats visited < 10% of

fruit trees in the study area (1,874 trees overall, mean per
bat-night = 7.1). The data includes only tracks of months for
which we had a sufficient number of bats from each roost
simultaneously (>5 bats, 6 months in total), pooled across 2018–
2020, and representing varying levels of fruit availability (see
section “Observed Metrics of Resource and Spatial Partitioning”).
The age and sex structures of tracked bats from each colony
were similar: from Gershom, 51% were adults and 66% from
Zemer, with the remaining individuals being < 1-year-old
juveniles. Sex structure was also similar between colonies, with
62% males in Gershom and 54% in Zemer. The movement
parameters of individual bats per colony were statistically the
same (e.g., maximal distance, time spent foraging, mean duration
foraging on a tree, p > 0.05, ArtAnova, Wobbrock et al.,
2011) but differed in the total area covered, showing varying
differences between colonies depending on the month (Table 1),
and slightly in the number of trees used per bat (mean trees
difference = 6 trees per bat-month, Table 1). Regardless of the
relative fruit tree distribution, bats of both colonies showed
markedly different foraging ranges, with very little overlap
between them (Figure 1). As represented by the WTO index,
resource partitioning was substantial, with only 5.4% of trees
used by both colonies (ranging from 2 to 10% between months,
Table 1). Similarly, spatial partitioning, represented by the WAO
index, showed that 10% of the total area was shared between
colonies (ranging from 3 to 19%), which is 11.8 km2. High
levels of colony fidelity further reinforce observed partitioning
as bats of both caves continued to roost in the same cave
between 62 and 73% of foraging nights. For the remainder
of the nights, bats mostly switched to temporary and smaller
caves, spending only 8–10% of the nights at the other main
cave (Figure 1).

Testing Mechanisms That Explain
Resource and Spatial Partitioning
We found support for the first hypothesis postulating that
partitioning between EFB colonies is not the outcome of
distance limitations nor chance, based on significantly lower
observed WTO and WAO relative to the null model (null
models indices = 48 and 25%, respectively, p < 0.01, Figure 3).
Among the three drivers of partitioning in EFB, outlined
in our second hypothesis, the memory model created the
strongest effect with WTO < 20% and WAO < 5% (Figure 3).
The observed conformity model had a smaller effect, with
WTO < 35% and WAO < 15% and the competition model
did not result in WTO or WAO distributions that were
meaningfully different than those of the null model (Figure 3).
Additionally, the combined effect of memory with conformity
and competition did not reduce WTO or WAO substantially
more than each mechanism in isolation (Figure 3). These results
are directly linked to the observed memory and conformity
coefficients (Table 1): memory was high, with > 83% of
trees already visited in previous nights. The mean of the
maximal conformity coefficient for each month was 25% (range
10–60%, Table 1), suggesting that only a small proportion
of trees are shared between same colony members. We did
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FIGURE 3 | Resource and spatial partitioning between two neighboring Egyptian fruit bat colonies. Violin plots represent the frequency distribution of (A) the
weighted tree overlap (WTO, range: 9–51%) and (B) weighted area overlap (WAO, 75% KUDs, range: 0–31%) after 100 iterations of agent-based models for
observed coefficients of memory and conformity, density-dependent competition, and their interactions. The dashed line represents the observed values of tree and
area overlap. ∗p-value ≥ 0.05 comparing simulated and observed.

not find evidence for competition because higher densities
did not affect the duration bats spent on trees nor their
revisit probabilities. This held both in the case of density-
dependent competition (i.e., when considering total bat density,
Supplementary Figures 2, 3) and between-colony competition
(i.e., when considering only the densities of bats from the
other colony, Supplementary Figures 4, 5). In the simulations,

we nevertheless included competition, using only the density-
dependent form, since it is more commonly considered the
main driver of partitioning in the literature, to reference
the effects of the two other tested mechanisms and all
possible interactions between them. The effect of memory and
conformity was stronger for WAO than WTO (Figure 3).
Importantly, none of the models for resource partitioning derived
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from real tracks, and none of their interactions, significantly
reached the observed level of WTO (Figure 3A). For area
partitioning, however, all models incorporating memory (alone
or associated interactions) showed a lower level of WAO
compared to the observed ones, while those incorporating
conformity (alone or with competition) nearly matched the
observed level (Figure 3B).

To address the third hypothesis and identify the thresholds
above which resource and area partitioning can theoretically
be reached, we used controlled and constant coefficients of
memory, conformity, and the interaction between them and
with density-dependent competition (Figure 4). We found that
relatively high values of memory (= 0.97) and conformity
(= 0.8), without any interactions, result in the observed WTO.

FIGURE 4 | Resource and spatial partitioning between two neighboring Egyptian fruit bat colonies. Each violin plot (A–D) represents the frequency distribution of the
weighted tree overlap (WTO, A,C) and weighted area (75% KUDs) overlap (WAO, B,D) after 100 iterations of the agent-based models. (A–B) represent increasing
values of theoretical memory coefficients on the x-axis in red (range 3–42% for WTO and 2–23% for WAO), and memory with competition in dark red (range 3–42%
for WTO and 2–23% for WAO). (C,D) Represent increasing values of theoretical conformity coefficients on the x-axis in blue (range 3–39% for WTO and 0–19% for
WAO), and conformity with competition in dark blue (range 3–40% for WTO and 0–23% for WAO). All dashed lines represent the observed WTO or WAO. Heatmaps
(E,F) show the combined effect conformity and memory coefficients on the WTO (E) and WAO (F) indices, with darker red colors indicating smaller overlap.
∗p-value ≥ 0.05 comparing simulated and observed.
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These results suggest that if memory is the only mechanism
and more than 97% of trees are repeatedly visited night after
night, the observed resource partitioning is achieved. Similarly,
the WTO is reached for conformity when 80% of the trees
are shared among colony-members. Unlike partitioning of
trees, the observed WAO was achieved at smaller coefficients
(memory = 0.6, conformity = 0.4). Furthermore, the threshold
values did not change meaningfully for both resource and
area overlaps when each mechanism interacts with density-
dependent competition. Surprisingly, the combined effect of
conformity with memory at lower values (< 0.6 for WTO
and < 0.4 for WAO) did not reach partitioning (heatmaps on
Figure 4). A lack of interaction effects highlights that partitioning
of both types is achieved by one of these mechanisms (at
relatively high values), suggesting they act in a non-additive,
independent manner.

DISCUSSION

Spatial partitioning between neighboring colonies is considered
a widespread phenomenon in colonial species, especially
marine birds (Bolton et al., 2019). Although several plausible
mechanisms have been proposed to explain what drives wild
populations to segregate, they have rarely been systematically
examined using competing models. Comparisons based on real
movement data collected under varying resource availabilities
are even more scarce (but see Wakefield et al., 2013; Cecere
et al., 2018; Ito et al., 2020). Here, we analyzed high-throughput
movement tracks from two neighboring colonies of Egyptian
fruit bats, tracked during different fruit seasons. We found
that the partitioning of both resources and areas was high,
with < 11% of fruit trees and area being shared between
colonies (Figures 3, 4). Importantly, these values could not
have emerged if colonies’ foraging ranges were limited strictly
by food availability and travel distances, as represented in our
null-model (Figure 3) and hypothesized by the Hinterland
model (Cairns, 1989). As such, this forms the first account
of strong within-species spatial partitioning in a terrestrial
mammal. We also found that memory was the strongest and
most significant driver of resource and spatial partitioning
(Figure 3). The role of memory suggests that individually
acquired information, with or without information-sharing and
competition, most likely sustains segregation between the two
neighboring EFB colonies. This result is consistent with the
high memory probabilities observed in this study (Table 1)
and with known tendencies of these bats revisiting and thus
memorizing the state of particular trees (Tsoar et al., 2011;
Toledo et al., 2020).

However, when replacing the observed memory and
conformity coefficients with theoretical ones, both memory
and conformity resulted in the observed partitioning in
isolation, at relatively high values (Figure 4). It is thus evident
that information sharing can also drive resource and spatial
partitioning (as suggested by, e.g., Wakefield et al., 2013; Corman
et al., 2016). But conformity was less important in our study
system characterized by animals that are highly familiar with

their home-range and use mostly spatially predictable food
resources (Gager, 2019; Harten et al., 2020; Toledo et al.,
2020). Although the mechanisms that we tested explain the
observed partitioning of colony areas, the weighted overlap
of trees was statistically smaller than the one that emerged
from all the models (Figures 3, 4). This may be due to tree
characteristics, other than the fruiting season, which may
have biased the bats’ tree selection more than we considered,
resulting in fewer trees revisited overall and less of them shared
between colonies.

The Roles of Competition and
Information in Shaping Partitioning
Competition
The most commonly proposed mechanism for explaining inter-
colony spatial partitioning is density-dependent competition
(Grémillet et al., 2004; Wakefield et al., 2013; Bolton et al.,
2019). However, competition is typically inferred based
solely on the indirect measure of a positive relationship
between colony size and foraging distances (Ashmole,
1963; Corman et al., 2016; Lamb et al., 2017). Here, we
measured competition directly by examining changes to
bat behavior as the local density on a tree increases. Based
on this analysis, we did not find evidence for density-
dependent competition (Supplementary Figures 2, 3) nor
between-colony competition (Supplementary Figures 4, 5).
Congruently, competition had no apparent effect on
partitioning (Figure 4).

However, we cannot fully dismiss density effects, given that
the number of tracked bats might not represent the true
bat densities. Importantly, we assume that the relationship
between the number of tracked and true bat densities is
the same for both colonies. To resolve the ambiguity about
the role of competition in spatial and resource partitioning,
we hypothesize that density dependence might have driven
foraging site selection strongly, following the Density Dependent
Hinterland model (see section “Introduction” and Wakefield
et al., 2013), but only during the initial stages of the
colonies’ establishment. After the colonies formed, memory
maintained partitioning by channeling individuals to use
the same (non-overlapping) resources, and competition was
reduced to act only as a “ceiling effect” by negatively
influencing the experience of individuals that seldom invaded
the neighboring colony’s range. In addition to memory,
information transfer between same-colony members reinforce
partitioning further because newly detected resources are
more likely to be discovered within the colonys’ range,
making exploration into the neighboring colonys’ territory
less profitable unless the colony reached its carrying capacity
(Grémillet et al., 2004; Wakefield et al., 2013). Because our
models did not simulate the long-term dynamics of colony
establishment across generations, this hypothesis could not be
tested. Future studies aiming to untangle the links between
density-dependence and inter-group partitioning could benefit
from incorporating data on in situ aggressive interactions,
for instance, recording social calls to estimate the intensity
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of agonistic interactions at sites with different densities
(Prat et al., 2016).

Memory
The tendency of individuals to repeatedly visit the same locations
is typical in many species and was given many synonyms,
e.g., foraging site fidelity, recursive movement, memory-
based, and reinforcement-learning movements (Grémillet et al.,
2004; Fagan et al., 2013; Merkle et al., 2014; Berger-Tal
and Bar-David, 2015; Wakefield et al., 2015; Bracis et al.,
2018; Riotte-Lambert and Matthiopoulos, 2019; Goldshtein
et al., 2020). While environmental cues could potentially
trigger these behaviors, two characteristics of EFB movement
imply that their recurrent visits to trees are driven by
individual memory, following Fagan et al. (2013)’s classification.
First, EFBs revisit specific trees, not patches with multiple
foraging options, which must be beyond the individual’s
perceptual range. Second, EFBs fly in very straight routes
without using landmarks or beacons (Harten et al., 2020;
Toledo et al., 2020), suggesting prior knowledge of their
target location.

Several studies, mostly based on data-inspired simulations,
point to the possibility that memory-based movement drives
individual spatial and resource partitioning (Van Moorter et al.,
2009; Merkle et al., 2014; Riotte-Lambert et al., 2015). For
example, Goldshtein et al. (2020) tracked the movements of
lactating females of the lesser long-nosed bat (Leptonycteris
yerbabuenae), which travel immense distances to forage on
isolated patches of flowering cacti each night. Once at the
location, individuals partition into consistent foraging “cores,”
with little overlap between them. Based on competitive agent-
based models, the authors found that the best explanation
for this division into cores was reinforcement-learning, a
similar algorithm to the one used in our memory model.
Recently, Aarts et al. (2021) showed that similar memory-
based rules that create partitioning between individuals also
drive between-colony segregation of central-place foragers. In
their simulations, inspired by tracked movements of harbor
seals (Phoca vitulina), they show that for species with spatial
cognitive abilities and high levels of colony fidelity, memorizing
a sub-set of available resources is sufficient to minimize
overlap and conflict. Our results lend empirical support to
these findings, showing that spatial partitioning in wild bats’
is primarily maintained by high memory levels (Figure 3
and Table 1).

Information Transfer
Whether, how, and where information is shared in congregating
species is species-specific and a matter of continuous debate
(Barta and Giraldeau, 2001; Danchin et al., 2004; Evans
et al., 2016; Jones et al., 2017). However, it appears plausible
that fruit bats, which roost and forage in groups, use social
information, irrespective of whether it was gained inadvertently
or intentionally. For example, controlled captive experiments
on Peter’s tent-making bats (Uroderma bilobatum) show that
individuals prefer to interact with an unknown conspecific
carrying a novel and palatable food item over an interaction

with a familiar roost-mate carrying no food (Ramakers
et al., 2016). Moreover, interactions were stronger if the
odor originated from the information givers’ mouth than if
it was only present on the surface of its fur, suggesting
that bats also evaluate the quality of social information
(O’Mara et al., 2014). Specifically for EFBs, it has been
shown that roost-mates form long-lasting bonds, fitting to the
producer-scrounger game where a sub-set of individuals actively
collect food while others scrounge for it from their mouths
(Harten et al., 2018).

However, the specific way information on food resources
is used remains unknown in this species. For example, EFBs
were not observed foraging in pairs or groups (Harten et al.,
2020; Toledo et al., 2020), rendering following behavior—
a prerequisite for the information center hypothesis—highly
unlikely (Barta and Giraldeau, 2001; Harel et al., 2017; Egert-
Berg et al., 2018). Some bat species, mainly echolocating
insectivores, gather local information by foraging in groups
and eavesdropping on each other’s feeding buzzes (Fenton,
2003). Yet this pathway of local enhancement is less likely
for EFBs (and fruit bats in general) because they rarely use
echolocation or are found foraging in groups, and other
types of local enhancement were not yet verified (Prat et al.,
2016; Gager, 2019). Given this level of inquiry, we did not
attempt to model complex information pathways. Rather, we
used the term “conformity” and assumed that if information
about fruit trees is shared and used by colony members,
it will result in individuals conforming to use similar trees.
We found that the observed conformity level of this EFB
population was low (Table 1). Yet, conformity could, on its
own, reach the observed resource and area partitioning at
high (theoretical) coefficient values (Figure 4). The discrepancy
between observed and theoretical conformity values (Figure 3
vs. Figure 4), as well as the independent effects of memory and
conformity (Figure 4), point to a potential trade-off between
the use of personal and social information, which is likely
affected by the level of resource predictability, as elaborated in
the next section.

The Effect of Resource Predictability and
Resolution
The level of resource predictability in space and time determines
whether individuals rely more on self-acquired (memory) or
socially transferred information (Janmaat et al., 2016; Egert-
Berg et al., 2018; Riotte-Lambert and Matthiopoulos, 2020). For
example, when resources are spatially predictable, as are fruit
trees, personal memory would be advantageous, as knowledge
about the location of trees is not expected to vary. However, some
introduced tree species, mainly of tropical origin, are temporally
unpredictable in their fruiting phenology, producing abrupt and
large fruit crops that are especially important in times of fruit
scarcity (Galil et al., 1977; Marshall, 1983; Bleher et al., 2003; Fahr
et al., 2015; Crestani et al., 2019). Accordingly, foragers highly
familiar with their home range may adjust the frequency of using
memory or information transfer based on the reliability of the
information. At the group-level, one would expect an advantage
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of confining information transfer to the limits of a single colony.
This is because separation into smaller units ensures naïve
individuals are more rapidly exposed to the resources (e.g., in
the roost). Moreover, density-dependent competition over the
newly discovered resources is guaranteed to be limited to a single
colony, at least until exploratory individuals of the other colony
discover the same site.

While information affects movement decisions, individual
space use patterns themselves alter resource predictability
(Spiegel and Crofoot, 2016). For example, memory affects
partitioning, which minimizes competition, reduces uncertainty
about the accessibility to food resources, and feeds back to
promote even higher reliance on memory (Lee et al., 2016;
Riotte-Lambert and Matthiopoulos, 2020). More research is
needed to understand how animals maneuver between using
personal and social information under different predictability
scenarios and how their behaviors affect the same considerations
of conspecifics. Such endeavors might be achieved by field
experiments that manipulate resource predictability, such as
preventing access to highly used (memorized) resources or
creating completely novel feeding opportunities in conjunction
with long-term movement data.

Our simulations revealed differences in the level of
partitioning depending on the resolution of the resources
examined. Specifically, the simulations based on observed
coefficients of memory and, to a lesser extent, conformity,
were able to reconstruct the observed values for partitioning
of areas (colony range) but not of the finer-grained level of
trees (Figure 3). Technically, this discrepancy is unavoidable
as multiple areas can be estimated between the same set of
visited trees, similar to the “clique problem” for the distribution
of suitable resources (Donovan et al., 2012). Thus, whereas
estimating overlap among trees visited by members of each
colony is straightforward and has a single solution, estimating
area overlap requires subjective decisions on how to measure
area coverage (e.g., choosing different kernel bandwidths or
home range calculation methods) and has multiple solutions,
implying a higher level of uncertainty. Furthermore, careful
step-by-step observations of how tree and area overlap measures
changed when simulated bats visited more trees revealed
that the vast majority of newly visited trees were placed
within the colony area at some relatively high number of
steps. This finding implies that sufficiently long simulations
lead to a higher level of tree overlap without increasing area
overlap. Therefore, area and tree overlap estimates are likely
to be under- and over-estimated, respectively, as reflected in
our results.

Conceptually, this discrepancy raises the question of whether
partitioning should be estimated at the finest grain of a single
discrete resource, the larger grain of a resource patch, or perhaps
the whole foraging range. In the case of EFBs, mounting
evidence suggests high familiarity and fidelity to specific fruit
trees (Tsoar et al., 2011; Harten et al., 2020; Toledo et al.,
2020), indicating that a single tree is an appropriate resolution
for this species. However, resources available to seabirds and
probably many other animal species are unlikely to be fine-
tuned to particular point locations. The relevant resolution is

presumably at least as large as the typical size of a foraging
patch (Vilk et al., 2021). Looking forward, the expansion of
high-throughput tracking systems provide the means to examine
further if, how, and why patterns of partitioning vary across
spatial resolutions.

CONCLUSION

This study assessed the role of different mechanisms which
underly resource and spatial portioning, one of the most
fundamental processes enabling inter-colony coexistence.
Methodologically, our study highlights the merits of high-
throughput tracking systems like ATLAS that generate large
high-resolution movement datasets. These datasets provide
the means to reliably estimate the observed patterns and
construct highly realistic models to unravel alternative
underlying mechanisms, namely memory, information
sharing, and competition, in free-ranging animals under
various environmental conditions. Major questions for
further research highlighted in this study are the lack of
support for the role of the density-dependent competition in
sustaining partitioning patterns continuously, the possibility for
independent roles of personal memory or socially transferred
information, and their potential association with variation in
resource predictability.
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The ability of wild animals to navigate and survive in complex and dynamic environments

depends on their ability to store relevant information and place it in a spatial context.

Despite the centrality of spatial memory, and given our increasing ability to observe animal

movements in the wild, it is perhaps surprising how difficult it is to demonstrate spatial

memory empirically. We present a cognitive analysis of movements of several wolves

(Canis lupus) in Finland during a summer period of intensive hunting and den-centered

pup-rearing. We tracked several wolves in the field by visiting nearly all GPS locations

outside the den, allowing us to identify the species, location and timing of nearly all

prey killed. We then developed a model that assigns a spatially explicit value based

on memory of predation success and territorial marking. The framework allows for

estimation of multiple cognitive parameters, including temporal and spatial scales of

memory. For most wolves, fitted memory-based models outperformed null models by

20 to 50% at predicting locations where wolves chose to forage. However, there was

a high amount of individual variability among wolves in strength and even direction

of responses to experiences. Some wolves tended to return to locations with recent

predation success—following a strategy of foraging site fidelity—while others appeared

to prefer a site switching strategy. These differences are possibly explained by variability

in pack sizes, numbers of pups, and features of the territories. Our analysis points toward

concrete strategies for incorporating spatial memory in the study of animal movements

while providing nuanced insights into the behavioral strategies of individual predators.

Keywords: discrete choice modeling, wolf, movement, predation, boundary patrolling, central place foraging,

foraging site fidelity, foraging site switching
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1. INTRODUCTION

Spatial memory is fundamental to successful navigation of
complex, dynamic environments (Fagan et al., 2013). Theoretical
and simulation studies have shown that memory can be essential
in structuring movements and space use (Mueller and Fagan,
2008; Barraquand et al., 2009; Van Moorter et al., 2009; Avgar
et al., 2013; Watkins and Rose, 2013; Schlägel and Lewis,
2014; Bracis et al., 2015; Riotte-Lambert et al., 2017), and can
help optimize resource acquisition in dynamic environments
(Bracis et al., 2015, 2018). In parallel, movement data is
rapidly accumulating. A central task of movement analysis is
to infer behavioral mechanisms that underlie decision making
processes (Nathan et al., 2008). Much effort has been devoted
to inferring unobservable behavioral states from movement data
(Morales et al., 2004; Forester et al., 2007; McClintock et al.,
2012; Gurarie et al., 2016), while step and resource selection
functions quantify animal movement responses to heterogeneous
environments (Boyce and McDonald, 1999; Hebblewhite et al.,
2005; Thurfjell et al., 2014). However, the underlying models
almost always assume a straightforward, tactical response to
immediate environmental cues, e.g., a fully informed preference
for a particular habitat, or a probabilistic rule for switching
behaviors under certain environmental conditions without
accounting for memory driven responses. In fact, it has been
demonstrated that not accounting for simple memory-based
behavior can lead to misleading inferences in a step-selection
framework (Van Moorter et al., 2013).

Despite the centrality of spatial memory and the abundance of
movement data collected on animals in the wild, demonstrating
that animals are using spatial memory is a surprisingly steep
challenge. Many relevant studies have focused on terrestrial
herbivores, which have the advantage of being relatively easy
to study. Thus, bison (Bison bison) keep track of meadow
patch locations and quality (Merkle et al., 2014, 2016), thereby
constraining their space use in a way reminiscent of simulation-
based predictions (Van Moorter et al., 2009). Migratory zebras
(Equus zebra) demonstrate a memory-based anticipation of
seasonal resource flushes (Bracis and Mueller, 2017), as do blue
whales (Balaenoptera musculus) (Abrahms et al., 2019). Boreal
woodland caribou (Rangifer tarandus caribou) movements can
be modeled with respect to a stored estimates of forage quality
and predation risk according to a nuanced cognitive model
(Avgar et al., 2015). Recently used locations were among the most
significant predictors of wild boar (Sus scrofa) movements and
habitat use (Oliveira-Santos et al., 2016).

The herbivorous examples above feed primarily on stationary
resources. In contrast, large carnivores feed onmobile and cryptic
prey, which are themselves capable of spatial mapping and event-
based memory when making movement decisions. This adds a
non-trivial level of complexity to applying a foraging strategy.
It is unclear, for example, whether predators should prefer or
avoid locations where they were most recently successful. Re-
use of those locations, referred to as “foraging site fidelity” is
a suitable strategy if locations of recent success correlate with
locations of future success. This hypothesis explains the large
scale selection of foraging sites for several avian central-place

predators (Davoren et al., 2003; Carroll et al., 2018). On the
other hand, foraging site switching can occur if prey avoid an
area where they have witnessed or are aware of the death of
a conspecific. In this case, predators are best off changing the
location where they predate, as had been demonstrated for lions
(Panthera leo) in savannas (Valeix et al., 2011). Whether an
immediate decision by a predator follows one strategy or another
likely depends on the spatial scale of prey patches and foraging
ranges, and on the temporal scale of prey patch persistence and
depletion-recovery dynamics relative to the temporal scale of a
predator foraging bout.

Wolves (Canis lupus) are highly adaptable, generalist, social
predators of large prey. Their reproductive, hunting, territorial,
seasonal, and dispersive behavior has been observed and
described in great detail (Mech and Boitani, 2003), mainly in
descriptive terms based on extensive field observations. Wolves
are routinely described as having high cognitive abilities and
complex information retention and communication skills. For
example, Peters and Mech (1975) write that “Wolves appear to
have well-organized memories for routes, points, junctions, and
their juxtaposition,” and propose that the spatial distribution
of wolf markings were a physical manifestation of their
“cognitive maps.”

Despite this, compelling quantitative or model-based
inference on the cognitive processes of wolf behavior in the
wild has been elusive, in part because of the layered behavioral
complexity of predator-prey interactions. In a recent study
(Schlägel et al., 2017) winter wolf movements were modeled as a
function of local prey density and boundary visitations, relating
these to the time of return for each location as a indication
of use of spatial memory. The results provide compelling
evidence that wolves do track space and time. However, the
modeling framework was constrained to a temporal scale fixed
by the arbitrary sampling frequency of the GPS locations and a
spatial scale of landscape rasterization fixed by computational
limitations. The structure of the model thereby precluded an
exploration of the temporal and spatial scales at which memory
was operating.

Here, we develop, parameterize, fit, and explore a predictive,
memory-driven model of spatial decision-making by wolves,
focusing on the summer, den-centered, pup-rearing period. In
this period, reproductive adult wolves must balance several
important prerogatives: (1) they must hunt successfully, not just
to feed themselves but to provide energetic surplus to pups, (2)
they must regularly revisit the den to feed pups via regurgitation,
and (3) they must periodically visit the edges of their territories
to mark and patrol. The data we analyze were obtained from
an intensive summer predation study contrasting established
and dispersed packs of wolves in Finland, where wolves have
reestablished themselves at relatively low densities via a process
of natural dispersal from Russia (Kojola et al., 2006; Barry et al.,
2020). During these predation studies, we obtained a detailed,
behaviorally annotated time-series by visiting nearly all non-
den GPS locations over a two-month period. Importantly, we
identified carcasses, allowing us to infer the location, composition
and timing of most kills (Gurarie et al., 2011), as well as
boundary visits.
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Our first goal was to demonstrate that wolves do use spatial
memory by developing a cognitive model that outperforms a
non-cognitive null model for predicting wolf foraging decisions.
An important goal in developing the model was to have a
heuristic that would allow us to estimate or approximate the
temporal and spatial scales at which wolves weigh and act upon
their recent predation success and boundary visitation. Once
fitted, we anticipated that this model would provide insights into
the fundamental decision-making strategies used by wolves to
forage and maintain their territories.

Based on our knowledge of wolf behavior, we had several
predictions: (1) that the valuing of predation might depend
on the size of prey (e.g., an adult moose Alces alces being
many magnitudes larger than a beaver Castor castor) and on
the effort, in terms of time spent hunting, required to make
a kill; and (2) that wolves would be inclined to return to
territorial boundaries that had not been visited with some time
lag to ensure they were marked, at a time lag approximately
equal to the duration of a scent marking persistence. We
also anticipated (3) that wolves would be more inclined to
head toward (or value more highly) areas where they have
had more recent predation success. We considered this more
likely than site switching as the limited viewshed in forested
environments may make it more difficult for prey to be aware
of conspecific kills.

2. MATERIALS AND METHODS

2.1. Study Area
The study focused on eight summer-tracking studies of seven
wolves in five unique territories in eastern Finland near the
border with Russia (Figure 1). These territories are in the
sparsely populated “core range” where wolves first recolonized
Finland from Russia in the 1970’s (Kojola et al., 2006), with
primarily coniferous boreal forest dominated by Scotch pine
(Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula
pendula and B. pubescens). As a result of extensive logging,
clear cuts and young successional mixed forests are common.
The landscape is further dotted with lakes and peat bogs,
about half of which have been drained. Moose (Alces alces)
and reindeer (Rangifer tarandus L.) are the two resident
ungulate species in the study area (Kojola et al., 2004). Reindeer
include the wild forest subspecies (R. t. fennicus) and the
free-ranging semi-domesticated reindeer (R. t. tarandus). The
distribution of wild forest reindeer is limited to the north by
the area of semi-domesticated reindeer management, separated
physically by a fence extending across Finland at roughly
65◦ N. North of this border, wolves have no legal protection
and are commonly killed by local hunters (Kojola et al.,
2006).

2.2. Wolf Capture and Handling
Wolves were captured and collared in late winter or early
spring (between February and April) (Kojola et al., 2006).
Individuals were captured using snowmobiles when the snow
was soft and at least 80 cm. Snowmobiles were driven alongside
wolves, which were looped using a neck-hold noose attached

to a pole. The wolves were placed in a wooden box that had
been strengthened with a metal grating around the outside
and had doors at both ends. Wolves were kept in the box
for at least 30 min before being injected with a mixture of
medetodimine and ketamine with a dose ratio of 1:20 (Jalanka
and Roeken, 1990). The wolves were equipped with collars
that contained global positioning system receivers (GPS Plus
2, Vectronic Aerospace GmbH, Berlin, Germany) and Very
High Frequency (VHF) radio beacon transmitters (Televilt,
Lindesberg, Sweden). The collars weighed approximately 760
g and had expanding, adjustable collars. Capture, handling,
and anesthetizing of the wolves met the guidelines issued by
the Animal Care and Use Committee at the University of
Oulu and permits provided by the provincial government of
Oulu (OLH-01951/Ym-23).

2.3. Field Tracking
We analyzed data from seven intensively field tracked wolves.
Each wolf was followed intensively for 60 days from the
beginning of June to the end of July for one summer each from
2006 to 2013, with the exception of one wolf (Hessu) that was
followed for two summers (2011 and 2013). All of the collared
wolves represented breeding individuals, and we did not have
more than one wolf collared in any particular pack.

GPS locations were obtained for all the wolves at half hour
intervals via the GSM (Global System for Mobile) network,
which covered the entirety of all wolves’ territories. In seven of
the eight studies, every location was visited in the field after a
minimum five day time lag, excluding locations near or around
the den. The lag was maintained to minimize disturbance, and
the locations visited on a given day were as far as possible from
the location of the focal wolf on that day. The overall median
lag was 8 days (inter-quartile range 5 to 11 days). A minimum
radius of 25 m around each location was surveyed with the help
of trained tracking dogs, who were able to efficiently identify
signs of wolf presence, such as carcasses, caches, bedding sites,
and scats. For the remaining study, only those locations that
were clustered, corresponding to likely kill, bedding and cache
sites, were visited. Cervid prey carcasses and age status (adult
or calf) were identified by the bones and antlers. Several were
not identifiable in the field, and were recorded as “unknown
ungulate.” Other prey items, including hare (Lepus europaeus),
beaver (Castor castor), capercaillie (Tetrao urogallus), black
grouse (Tetrao tetrix) and one each of raccoon dog (Nyctereutes
procyonoides), and Northern goshawk (Accipiter gentilis) were
identified by pelage and plumage and classified as “minor” prey,
with no further subdivision into age categories. For additional
details on the field methodology, see (Gurarie et al., 2011), which
provides a close analysis of the summer habitat preferences of
two of the wolves. The simplified outcome of the intensive field
tracking was a movement track annotated with behaviors, and
location and identity of most prey consumed over the period
of the studies. Separately, howling surveys (Fuller and Sampson,
1988) and winter tracking after each of the summer periods were
used to estimate the number of adults, juveniles, and pups in
each pack.
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FIGURE 1 | Map indicating the boundary polygons of eight wolf tracking studies in Finland (inset map). Several of the studies occurred in overlapping territories:

Lentuan Uros’s (magenta) territory in 2011 was inherited by Julla in 2013 (blue), and Viki’s territory in 2006 was inherited by Hessu, who was tracked in 2011 and 2013

(gray, green, and orange). Darker colors on the map reflect higher elevations (maximum 340 m). These territories are in the core of the Finnish wolf range, near the

border with Russia, whence the population naturally dispersed, but south of the reindeer management area (dashed line) which is separated from southern Finland by

a fence north of which wolves are unprotected.

2.4. Cognitive Model
Our overarching goal was to specify and estimate a model that
predicts the movement behavior of a wolf during the summer
den-centered pup-rearing period. In summer, wolves expend
considerable effort and energy on obtaining enough nutrition to
feed and rear pups, leaving and returning to the den on a near
daily basis (Jędrzejewski et al., 2001; Alfredéen, 2006; Gurarie
et al., 2011). A secondary important goal of wolf movements
is to patrol the territorial boundary, a task that is particularly
important when other wolves inhabit adjacent territories (Peters
and Mech, 1975).

In order to demonstrate the utility of memory, we needed to
isolate a behavioral variable that could be explained by the prior
experience of the wolves. Wolves are highly mobile and free to
hunt and visit any location in their territories. In Finland, there
are few topographical constraints to available habitat, only larger
water bodies are truly inaccessible in the summer. However, the
movements of wolves in summer are den-centered, allowing us

to specify and enumerate trips, defined as the set of GPS locations
framed on either end by departure from and return to the known
den site. One dependent variable which reflects an apparently free
(i.e., unconstrained and uncoerced) choice is the direction chosen
by the wolf, i.e., the portion of the territory toward which the wolf
headed when leaving the den to initiate a trip.

In order to enumerate or quantify this choice, we discretized
the entire territory into some number of zones ranging between
3 and 8 (see example in upper panels of Figure 4). We used
a range of zone numbers as we have no idea how the wolf
organizes its mental map of the territory, but the range of zones
allowed us to roughly explore the spatial scale at which the
wolves’ decision making process might occur. In order to make
the spatial classification unsupervised and algorithmic, we used
a nearest neighbor clustering on the location data sets, with the
slight modification that the square root was taken of the distance
of each location to the den (i.e., ||xTi || =

√
||xi − xden||, where

xT refers to the transformed location). This transformation had

Frontiers in Ecology and Evolution | www.frontiersin.org 4 March 2022 | Volume 10 | Article 768478225

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Gurarie et al. Memory-Based Wolf Foraging Model

FIGURE 2 | Illustration of two trips (#3 and #19) for wolf Niki superimposed on

a four zone classification. Colored dots represent all locations collected for Niki

over the two month period of the study. The four colors represent Zones I to IV

as labeled along the exterior. In Trip 3, the wolf departed within Zone IV, killed a

reindeer calf, moved along its boundary (pink colors), killed an adult reindeer,

and returned to the den, entirely within Zone IV. In Trip 19, the wolf departed

within Zone II, killed an adult moose at the boundary, moved along the

boundary and returned via Zone I. Regardless of the return Zone, this trip is

classified as a Zone II trip, since that is the direction chosen by the wolf at

departure. The rhombus in the middle indicates the den site.

the effect of generating zones that were more likely to be radially
arranged around the hub of the den site. After performing
the clustering on the transformed locations, a polygon was
drawn around a Dirichlet tessellation of each set of original
points, thereby breaking the entire set of original locations into
the specified number of zones. The tesselation was performed
using the dirichlet function in the spatstat R package
(Baddeley et al., 2015). Each trip was classified as heading out
into a particular zone by taking the set of points from the
beginning of the trip to that trip’s furthest location from the den
or first kill—whichever came first—and finding the mode of the
visited zones (e.g., if the set of zones were 3,3,2,3,3, the selected
zone would be 3) (see Figure 2 for an illustration of the zone
classification process).

Whatever the eventual outcome of the trip (i.e., which zones
the wolf visited, whether, where and how many prey are killed,
etc.) the selected zone is a free and unconstrained choice that
the wolf makes when it departs. The central assumption of our
memory-based model is that choice of zone is driven, in part, by
prior experiences—specifically, predation success and boundary
visits—that are specific to each zone.

2.4.1. Discrete Choice Model
We model the selected zone for each trip (denoted Zt where
t ∈ 1, 2, ...nt) using a discrete choice modeling framework
fitted withmultinomial conditional logistic regression (Chapman
and Staelin, 1982; Croissant, 2013). Discrete choice models
are behavioral models designed to forecast the behavior of
individuals facing a choice with unknown or unobservable
estimates of utility of respective choices. They have been widely
applied mainly to model human behavior, e.g., in behavioral
economics (Louviere et al., 2000; McFadden, 2001; Dubé et al.,
2002), including modeling transportation (Antonini et al.,
2006) and food (Gracia and de Magistris, 2008; Czine et al.,
2020) choices. In wildlife ecology, discrete choice models have
been applied in the context of habitat selection, including in
hierarchical frameworks across multiple individuals (Cooper and
Millspaugh, 1999; McDonald et al., 2006; Thomas et al., 2006).

Discrete choice modeling allows for the statistical estimation
of a ranking of choices where each choice can have a dynamic
set of covariates. The model assumes that the wolf maintains a
preference (or “desirability” or “priority”) score (Uit) for the ith
zone at the time of trip t, and always chooses to head in the
direction with the highest score. The preference score is separated
into a systematic component (Vit) and unobserved component
(ǫit):

Uit = Vit + ǫit (1)

It is important to note that the actual choice Uit may in
fact be deterministic from the wolf ’s perspective, and neither
the systematic nor the random component can be directly
observed, as they represent the decision making process. But the
partitioning allows us to analyze the process statistically. The
deterministic portion is further decomposed into trip-specific
and zone-specific component:

Vit = βi +
∑

v

γvXitv (2)

The coefficients βi are the zone-specific intercepts, reflecting the
time-independent quality or preference of the particular zone.
The trip-dependent set of variables Xit captures the dynamic
scoring of the zones and the set of coefficients γv reflects the
overall intrinsic response to each of the variables (indexed by v).

In our most complex model, we include three variables in
Xit : a predation quality score (Xit1 = Pit), which tracks the
zone-specific hunting success based on the wolf ’s experience, a
boundary coverage score (Xit2 = Bit), which tracks whether a
zone’s boundary has been visited and, presumably, marked, and
a repetition score (Xit3 = Rit) which tracks simply whether
an animal went to a particular zone on the previous trip. The
impact of these variables are driven by the wolf ’s memory and
depend on several parameters as explained in detail below. The
coefficients β and γ capture the relative contribution of each
of environmental and experiential (cognitive) covariates. In total
there are k+ 2 parameters in the most complex fitted model, one
each for predation memory, boundary memory and repetition,
and k − 1 intercept parameters for each zone, minus one degree
of freedom as the sum of the probabilities is always fixed to 1.
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2.4.2. Scoring Zones
We assume the wolf tracks a zone-specific predation score, which
is higher in areas with greater and more recent predation success,
and a boundary score, which is higher in zones with more recent
boundary visits. It is important to note that these scores (which
are all positive) only quantify predation success and boundary
visits, without making any claims as to whether higher values
make directed departures more or less likely. Whether higher
or lower scored areas are preferred is indicated by the strength
and sign of the coefficient estimates of discrete choice model
detailed in the next section. In fact, given the complexity of wolf
and prey behavior, it is difficult to know a priori whether areas
with a higher or lower number of kills would be preferred or
avoided. Large prey items (e.g., adult moose or reindeer) are
often cached, i.e., unconsumed portions are buried in the ground
and returned to later (Peterson and Ciucci, 2003), which can
make a recent kill site attractive. Similarly, the general suitability
of a particular area for certain prey species can make areas
of high predation success sequentially attractive. Prey behavior
can further complicate these responses, as prey may also avoid
areas with recent kills generating a “landscape of fear” (Laundré
et al., 2010), and it may be more strategic to temporarily avoid a
recently successful site.

Each kill contributes individually to the predation score
corresponding to the zone of the kill. We assume that the score
is higher the greater the mass of the kill, the shorter the time to
the kill (i.e., the less the effort), and the more recent the kill. An
expression that combines all of these assumptions is:

Pit =
∑

j=preyi,t

(
Mα

j

Ej

)
exp

(
−
(

1pj

τp

)κ)
(3)

where the sum is performed over all of the prey items captured
in zone i up to trip t (preyi,t); M is the approximate mass of the
prey item; α ∈ [0, 1] is a mass-scaling parameter (details below);
the effort Ej is the time spent moving before each kill either after
leaving the den, or events that “pause” the hunting behavior,
including cache revisits, or bedding; 1pj is the time since the
predation event; τp is a memory time scale which captures how
long the wolf considers previous successes valid or actionable;
and κ is a memory discounting coefficient. Estimates for adult
mass and estimated linear growth rates for the calves of the main
ungulate prey (moose, forest, and semi-domesticated reindeer)
were obtained from the literature as well as approximate mass
of smaller mammals and birds (Table 1). Growth rates were,
in particular, important to capture the growth of reindeer and
moose calves, which are many times larger in late July than in the
beginning of June.

The form of this predation score reflects several strong
structural assumptions, which we tested to a limited extent. For
example, we set κ to be either 1 for exponential memory decay, or
2 for Gaussian decay. We also fitted models where the predation
score did not include the discounting for effort, i.e., where Ej
was always set equal to 1. This allowed us to test, in a narrow
way, whether effort was also tracked. In both cases, fitted discrete
choice models with the two different values of κ and with and
without the effort term were compared using likelihood ratios.

TABLE 1 | Prey species, numbers killed, and growth models or estimated used to

approximate mass obtained from each prey item in the predation module of the

cognition model.

Species n. killed Mass and growth Source

ungulates adultcalfunk. b. dateb. massgrowthmax. kg

moose 37 81 3 01-Jun 13 1.123 200 S

semi-domesticated reindeer 2 12 26-May 10 0.75 100 F&P

wild forest reindeer 9 34 26-May 10 0.75 100 F&P

small mammals total estimated mass

hare 13 4 S,M

beaver 2 18 S

racoon dog 1 6

birds

capercaillie 2 3

black grouse 2 1

goshawk 1 2

The growth rate is in kg/day; for animals killed before the mean birth date, the birth

weight was used. The cited sources are: S—(Sand et al., 2008); M—(Markgren, 1969),

F&P—(Finstad and Prichard, 2000).

The two free parameters for the predation memory module
are the prey mass parameter α and the predation memory time
scale τp. If α = 0, any prey item (whether a hare or an
adult moose) contributes equally to the score. If α = 1, the
contribution is proportional to mass. The memory coefficient τp
captures the time scale at which memory is retained: if τp =
∞, all predation experience accumulates with no discounting
for time.

The boundary memory attempts to track whether the wolf
has patrolled and marked its boundary, an important behavioral
goal. To algorithmically classify locations as boundary locations,
we developed a concave hull algorithm that works as follows:
(1) select the convex hull (i.e., vertices of the minimum convex
polygon) Zmcp, (2) compute the angle θinner between all of the
inner points Zinner and the respective pair of closest convex
hull points, (3) retain the subset Z∗

inner where θinner < θ∗,
where θ∗ is a threshold of concavity, (4) repeat these steps using
the combined set of Zmcp and Z∗

inner as an input, (5) stop the
iteration when the new set is identical to the input set. We
used a threshold angle of θ∗ = π/2 (90◦). This algorithm
generated territorial boundary sets that were consistent with
field determined boundary locations (see Figure A.1 for an
example of the algorithm and Figure A.2 for all boundaries in
Appendix A).

The boundary memory, denoted Bi,t is a binary (0, 1)
variable that tracks whether the wolf has visited at least
two locations on the boundary of zone i in a fixed time
period λ preceding each trip. The λ parameter captures
the interval of time that the wolf feels it is necessary to
re-mark the territory and, therefore, related to the time
a scent-marking fades. We anticipated that the choice
regression coefficient for the boundary would be negative,
indicating that a zone with a recently visited boundary will be
scored lower.
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Finally, we added a repetition variable Ri,t , which is simply
1 if the selected zone at trip t − 1 was also i and 0 otherwise.
This variable is included in the model to account for any serial
auto-correlation (or anti-correlation) in the wolf ’s zone choice,
which could be confounded with either of the predation or
boundary variables.

2.4.3. Model Fitting and Selection
Under the generic assumptions of independent and identical
Gumbel distributions for the unobserved terms εit in Equation
(1), the probabilities Prit = Pr[Uit = max(Ut)] can be written in
terms of the logit probability function:

Pr
it
=

exp(Vit)∑k
j=1 exp(Vjt)

, (4)

and the coefficients can be estimated by full-information
maximum likelihood estimation, as implemented in the mlogit
package in R (Croissant, 2013).

The likelihood procedure provides estimates of the regression-
like choice coefficients β (zone-specific estimates) and γ

(contribution of predation, boundary memory, and repetition).
However, the memory parameters (τp, λ, memory type κ) and
the structural parameters (number of zones k) have to be assessed
separately. Likelihood based criteria are useful for comparing
models with different values of the memory coefficients;
however, because the number of zones fundamentally alters
the underlying data, likelihoods cannot be used to compare
different fitted models across different numbers of zones. We,
therefore, introduce an intuitive measure of predictive power
of the models to use a basis of comparisons: the relative
predictive improvement index (RPI) defined as the ratio of the
mean of the predicted probabilities over the mean of the null
probabilities, i.e.:

RPI =
nt∑

t=1

P̃r(zt)/
nt∑

i=1

Pr
0
(zt)

where the sums are across all trips t ∈ 1, 2, ..., nt , and the
null probabilities are the proportion of trips for each zone
(note, since both sums are over the same number of trips,
the ratio of the sums is equal to the ratio of the respective
means). As an example, if an entire dataset consisted of one
visit to each of 4 zones: z = (1, 2, 3, 4), and the model
predictions for choosing each of those trips were Prt =

(0.75, 0.5, 0.25, 0.5), then P̃r(zt) = 0.5. The mean of the null
probabilities is P0(zt) = 0.25 and the ratio of the two is RPI
= 2, which can be interpreted as a doubling of the predictive
power of the model. Note that model log-likelihoods and RPI
are monotonically related: the former is the sum of the log of
probabilities, while the latter is proportional to the sum of the
probabilities. Thus a “maximumRPI” point estimate is equivalent
to a maximum likelihood point estimate, though without the
convenience of asymptotic theory for estimating confidence
intervals on coefficients. However, a randomization test of the
null hypothesis (that the model provides no improvement,

i.e., RPI = 1) can be conducted by resampling the order of
the trips some large number of times from the null set of
probabilities, recalculating the RPI, and comparing the observed
RPI to the resulting null distribution. Similarly, a resampling
confidence interval can be obtained by sampling sequences
of trip zones from the predicted probabilities of the model,
and comparing to a sampling of zone sequences from the
null model. By computing the RPI of these resamplings and
repeating the process some large number of times (e.g., 1,000),
a confidence interval can be obtained around the RPI. The
RPI thus provides an intuitive, interpretable tool for assessing
discrete choice models where the number of choices itself is
variable, as well as a statistical mechanism for hypothesis testing
and inference.

We fitted the discretized trip-choice data across a range
of 3 to 8 zones, with predation time scales τp ranging from
0.5 to 4 (interval 0.25), boundary marking lags λ from 0.5
to 12 days (interval 0.5), for each of κ = 1 (exponential
memory) and κ = 2 (Gaussian memory), for each of 8
summermovement data sets.We computed the RPI, and selected
the combination of these parameters for which the RPI was
maximized. The theoretical total number of fitted models was
45,360, but in many cases—usually those with a high number
of zones of which some are never selected—the fits did not
converge. In other cases, there are no evident maxima in
the RPI. Nonetheless, from this set of models, we can pick
out the best combination of selected parameters (k, τp and
λ) for each wolf. Once those were determined, we compared
eight models with every combination of explanatory variables
(predation memory P, boundary memory B, or repetition R;
i.e., P+B+R, P+B, P+R, B+R, P, B, R, Null) using AIC as a
model selection criterion. From the final selected model, we
report the estimates, confidence intervals and p-values of the
retained coefficients.

As an added analysis, we compared estimates of the
boundary and predation coefficients across respective memory
time-scales to see if a particular response shifted across
scales. A transition from, e.g., a positive to a negative
response across time-scales would indirectly suggests that the
memory driven response to a particular zone operates in
different ways at different time-scales. In performing this
analysis, we selected the best model and combination of
structural parameters, i.e., number of zones and combination
of covariates.

All symbols and definitions for the modeling, data
preparation, and model assessment are presented in Table 2.

3. RESULTS

Pack size varied considerably, which in turn meant the number
and composition of prey killed varied by pack (Figure 3). The
overwhelming majority of prey consumed was cervids (176
of 206 identified carcasses: 85%): 80 (39%) moose calves and
46 (22%) were reindeer calves, another 36 (17%) were adult
moose and 11 (5%) were adult reindeer. The remaining prey
items were all minor, mainly hare. The two largest, most
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TABLE 2 | Definitions and symbols for modeling, data preparation and model

assessment.

Cognitive wolf foraging model

Zt Selected zone for each trip t

Uit Preference score for ith zone for trip t

Vit Systematic component of preference score

ǫit Unobserved component of preference score

Pit Predation quality score

Bit Boundary coverage score

Rit Repetition score

Xit Vector of covariate values: {Pit,Bit,Rit}
Predation scoring

M Approximate mass of prey item

Ej Effort preceding kill (hours)

1pj Time since predation event

Boundary identification

Zmcp Minimum convex polygon (convex hull) of all

locations

θ∗ Threshold of concavity

Z∗
inner Subset of points in convex hill where θinner < θ∗

θinner Angle between inner points Zinner and respective

pair of closest convex hull points

Estimated parameters

βi Zone specific intercept of preference for ith zone

γ Coefficients on covariates

τp Time scale of predation memory

α Mass-scaling coefficient (set to 0.5)

λ Time scale of boundary memory

Metrics

AIC Akaike Information Criterion

RPI Relative predictive improvement

established packs, on which we reported on in previous work
(Gurarie et al., 2011), consumed by far the most prey (over
45 items each, compared to 22 for the next highest, Figure 3),
which can partially be explained by their consumption of
larger prey which was easier to locate in the field. Over the
respective 60 day periods of field tracking, the number of
trips greater than 2 h varied between 34 and 67 (mean 53,
s.d. 12).

3.1. Parameters of Non-focal Interest
While there are many structural parameters in the full cognitive
model, the main ones of interest were those related to time scales
of memory for predation and boundary visits, and spatial scales
as reflected in the number of zones. We did, however, have to
make decisions regarding several other parameters.

Thus, we initially explored two values of the memory decay
shape parameter [κ in Equation (3)]: κ = 1 corresponding to
an exponential memory decay, and κ = 2 corresponding to a
Gaussianmemory decay.We also explored two values of themass
scaling parameter α: α = 0.5—i.e., a square root scaling, and
α = 1, a linear scaling. We fitted the complete (predation +
boundary visit + repetition) discrete choice model over a range
of scaling parameter values and each of the four combinations of

α and κ and compared the likelihoods of fitted models. Results
are summarized and presented in Appendix B.

There was high variability among individual animals when
these models were fitted (see results in Appendix B). Some
(e.g., Viki 2006) had a much higher likelihood with Gaussian
decay and square root scaling, while for others (e.g., Niki
2008), the exact inverse was the case. The absolute differences
in the log-likelihoods were not—typically—much larger than
one, suggesting that the process was not sensitive to either of
these parameters. We, therefore, chose to fix the “Viki” pattern
(Gaussian decay and square root scaling) for all subsequent
results, noting that those discrepancies may be worth further
investigation. Subsequent analyses focused on the time scales
of predation and boundary memory, and the spatial scales as
defined by number of zones.

Similarly, we assessed the structural assumption that the
effort component [Ej in Equation (3)] contributed significantly
to the predation score as a predictor by comparing likelihoods
of fits with and without the effort component across a range
of parameter values. Again, there was considerable variability
among individuals (see Appendix C), but for those four studies
for which the effort model was a better model (Viki 2006,
Niki 2008, Lentuan Uros 2011 and Julla 2013), the difference
was rather large (most 1AIC values < -2). These four wolves
are also the four wolves for which predation was retained in
the final discrete choice model (see below and Table 4). A
broad preliminary conclusion is that hunting effort is indeed
tracked by the wolf, and the “predation score” is tempered
by longer effort times. We retained the effort term for all
subsequent analyses.

3.2. Cognitive Model: Example Analysis
We illustrate fits of the complete (P+B+R) cognitive model for
one wolf, Lentuan Uros (LU 2011), across a range of zone
breakdowns (Figure 4, upper panels) and values of boundary
time lag λ and predation memory time scale τp (Figure 4,
lower panels). We obtained over a 50% improvement on null
predictions for this wolf (the highest of any of the other wolves),
with RPI maxima ranging between 1.51 and 1.54 for spatial
break-up into 5 to 8 zones. The RPI profile across boundary time
scales is fairly consistent across number of zones, around 4.5 days,
with the most prominent peak at 5 and 6 zones. The RPI profile
against predation memory time scale peaks consistently between
1.25–1.75 days, though differences across time scales were less
dramatic. Interestingly—the RPI-predation profile was sharper at
the higher breakdown of zones (7 and 8) where the profile for
boundary memory was flatter.

At the highest RPI set of parameters (5 zones, τp = 1.75, λ

= 4.0), a model comparison against all linear combinations of
P, B, and R models show that there is essentially no difference
between the P+B+R and B+R model, but that both of these are
much better than any of the other models (1AIC > 4), and
the null model performs much worse than any of the others
(Table 3). The coefficients for boundary and repetition were
both highly significant and positive, suggesting that the wolf
tended to repeat its previous behavior, and, unexpectedly, that
visits to boundary locations were further reinforced by recent
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FIGURE 3 | Pack and prey composition of all 8 pack-year studies, arranged chronologically by year. Colors indicate prey composition as per the legend, dots and

triangles above the bars indicate the number of adults and pups in each pack, respectively.

TABLE 3 | 1AIC table for comparison of fitted cognitive choice models for wolf LU 2011 with 5 zones, τp = 1.75, λ = 4.0, sorted by decreasing AIC, with d.f. representing

the degrees of freedom (number of parameters).

Main effects Estimated coefficients

Models d.f AIC 1AIC RPI (95% C.I.) P B R

B + R 6 120.38 0 1.51 (1.34-1.68) 1.483 0.85

P + B + R 7 120.79 0.41 1.54 (1.41-1.68) 0.22 1.372 0.784

P + B 6 125.05 4.68 1.38 (1.21-1.54) 0.29 1.579

B 5 126.21 5.83 1.31 (1.14-1.47) 1.76

P + R 6 128.51 8.13 1.40 (1.27-1.54) 0.34 1.03

R 5 130.24 9.86 1.34 (1.21-1.47) 1.152

P 5 138.02 17.64 1.17 (1.07-1.34) 0.456

null 4 144.07 23.69 1.00 (0.87-1.14)

Bold faced coefficient values are significant at the α = 0.01 level; italicized coefficients are significant at α = 0.1. The top two models have almost identical AIC values. P, B, and R refer

to predation score, boundary score, and repetition predictors, respectively. Note that the “null” model here is an intercept-only model, in which each zone has a constant preference

unaffected by the covariates.

visits, rather than recent visits obviating the need to return
to a boundary.

3.3. Cognitive Model: All Wolves
A cognitive model improved significantly on the null RPI for six
of the eight wolf studies at the best (or near best) combination of
parameters (Table 4). We refer to these six studies as “cognitive

wolves.” There was, however, considerable variability in the
values of the RPI-maximizing parameters and in the signs of the
fitted coefficients.

The repetition effect was positive and significant in all but
one of the cognitive wolves, suggesting that wolves have some
straightforward auto-correlation in their choice of departure
direction. For three of the four cognitive wolves for whom the
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FIGURE 4 | Zone breakdown (upper panels) and parameter sweep of memory models (lower panels) for wolf Lentuan Uros (LU). Upper panels illustrate the roughly

axial separation that the zone clustering algorithm generated. Lower panels illustrate the computed prediction improvement (RPI) for predation and boundary fitted

models across various values of predation memory time scale τp (middle panels) and boundary visit lags λ (lower panels). The color spectra correspond to the other

time scale in each plot. Thus, for example, the maximum RPI (1.54) is attained at 5 zones, τp = 1.75 days and λ = 4 days.

predation coefficient was retained, the effect was significant and
positive—consistent with our a priori hypothesis that there would
be a preference for zones with higher predation scores, consistent
with the foraging site fidelity hypothesis. The exception was
Viki 2006, who showed a negative response to predation at a
memory time scale of 0.75 days. Similarly, the boundary effect
was retained for five studies, of which three showed positive
responses, while two showed negative responses. Vellu 2010,
the only cognitive wolf for which repetition was non-significant,
had a strongly negative boundary coefficient (at a lag of 8.5
days), indicating that boundary patrolling was a significant
driver for this wolf, which also had the most elongated of all
the territories (Figure 1). The only wolf that conformed with
both of our hypothesized predictions was Julla 2013, with both
a positive response to predation and a negative response to
boundary visits.

3.4. Coefficients Across Time Lags
We explored how the estimated effect sizes and signs changed
across time scales of memory for boundary visits (λ from 1 to
20 days) and predation scores (τp from 0.5 to 5 days) for those
wolves for which both were significant predictors of departure
directions. Figure 5 illustrates three such examples.

Generally, for both predation and boundary visits, at the
longest time scales, the less important is the memory for
predicting intrisic values of areas, or at least at predicting
the direction of foraging. However, unique patterns do emerge
for each individual. Thus, Julla 2013 had a fairly consistent
positive predation response (mean effect size 0.58), and negative
boundary response (mean -0.72), more or less consistently across
all time scales. For wolf LU, the positive boundary response peaks
in magnitude around the value corresponding to the highest
likelihood, around 4 days (Table 4), and then steadily decays
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TABLE 4 | Summary of model results for best (or near-best) model for each study, with selected parameter values, selected model, and coefficient estimates.

ID year trips model zones τp λ RPI Predation Boundary Repeat

Significant improvement over null

LU 2011 53 P + B + R 5 1.75 4 1.54 0.22 1.37 ** 0.78 **

Hessu 2011 72 B + R 7 0.5 1.53 0.92 − 1.25 **

Niki 2008 61 P + R 8 0.75 1.35 0.75 * 0.85 **

Viki 2006 52 P + B + R 8 1.25 3 1.32 -0.56 − 1.26 ** 0.79 *

Vellu 2010 39 B 5 8.5 1.25 -1.60 **

Julla 2013 88 P + B + R 6 4 3 1.21 0.53 ** -0.76 * 0.5 −
No significant improvement over null

Hessu 2013 40 P + R 9 1.25 1.37 0.18 * 0.73 −
Miki 2009 73 B + R 8 3 1.07 -1.13 − -0.71 −

Significance indicators **, *, and − indicate p-values less than 0.01, 0.05, and 0.1, respectively. For coefficients that were significant at the 0.1 level, bold facing and italics indicate

positive and negative coefficients. The overall improvement over null was determined by the lower 95% confidence interval of the RPI being entirely greater than 1.0.

FIGURE 5 | Estimated coefficients for boundary effects against boundary memory time scales (upper panels) and predation effect against predation memory timescale

(lower panels) for three example wolves. Thick and thin bars represent 1 and 2 standard errors around respective point estimates, blue are negative, red are positive,

light and dark colors represent 1 and 2 standard errors away from 0. Note that the boundary coefficient for Viki (left panels) switches signs across memory time scales.

until it ceases to be significant after about a value of λ = 10 d.
The predation response decays steadily with greater time scale,
becoming statistically insignificant after about 3 days.

Most strikingly, wolf Viki 2006 undergoes a switch in the sign
of the boundary coefficient between short time lags (≈ 3 days)
and longer time lags (≈ 12 days). This suggests that the wolf is
more likely to revisit (or highly value) an area of recent visitation,

but if the score considers whether there have been visits over
a two week period, that area is less likely to be selected. This
result is somewhat consistent with the short and long time-scaled
memory, often referred to as “working” and “reference” which
has been both experimentally measured (Green and Stanton,
1989; Becker and Morris, 1999) and modeled (Bracis et al., 2015,
2018). Recent visits to portions of a boundary may require more
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visits for good marking. But if a boundary has been marked over
a larger time scale, while others have not been, then the need to
go to unmarked areas increases. The strength of the predation
response for Viki 2006 is significantly negative at a 1.5–2 day
time scale, indicating that more or less immediate returns to
areas with successful kills are unlikely. However, as that predation
memory time scale increases, recent predation success becomes
less significant as a predictor of future movements.

4. DISCUSSION

Cognitive processes cannot be directly observed for animals
in the wild; even in controlled experiments memory can only
be inferred. Studying cognition, therefore, requires developing
a cognitive model to make inferences on those behavioral
observations, like movements and predation events, that are
the observable outcomes of cognitive processes. In order
to demonstrate that central-place foraging wolves are using
memory to make movement decisions, we needed several specific
ingredients: (1) a discrete, observable set of choices made by
wolves in the wild, (2) significant events (kills and boundary
visits) that could reasonably have influenced the valuing of
those choices, (3) a statistical framework that allowed for a
rapid exploration of various temporal and spatial scales at
which memory might operate, combined with a model selection
framework to narrow down significant explanatory variables, and
(4) a metric by which we could demonstrate that our model
outperforms a non-cognitive model. For most wolves, fitted
and parameterized cognitive models were 20 to 50% better at
predicting choices than non-cognitive null models (Table 4).

In order to develop and fit such models, we relied on
an extraordinarily detailed dataset which contained reliable
information on objects and locations that are known to be of
importance to wolves during the breeding season: the precise
location of the den, of kill sites with identification of prey
species, and—with slightly more guesswork—the contours of the
territorial boundary.We therefore constructed ourmodel around
the behavioral imperatives of predation and territorial marking,
anchored around fairly regular, central-placed trips that began
and ended at the den site. The model assumed a spatially-explicit
scoring that emerges directly from prior experiences for both
priorities. These are generic assumptions that are consistent with
well-known aspects of wolf behavior (Mech and Boitani, 2003).

Nonetheless—and most intriguingly—the results we obtained
in many cases contradicted our expectations and were highly
individual and idiosyncratic. We comment here on the design
and structure of our modeling framework, discuss the cognitive
spatial ecology of the wolves in our study, and conclude with
some broad ideas on the ingredients needed to make cognitive
inferences on animals in the wild.

4.1. Discrete Choices
We chose a discrete choice framework with a design that focused
on the apparently unconstrained choice of direction taken by
the wolf when leaving the den. The discrete choice approach is
a natural one for exploring cognition for several reasons. First,
experimental studies of memory and learning in animals almost

always reduce to discrete choice frameworks (Thorpe et al., 2004),
including such classic experimental designs as the turns a rat
chooses to navigate a maze (Tolman and Honzik, 1930) or key-
pecking by pigeons (Wilkie and Willson, 1992). More relevant
to wolves, experiments on domestic dogs Canis familiaris that
have shown explicit episodic and working memory have been
designed around hiding food rewards in discrete boxes (Fiset
et al., 2003; Fujita et al., 2012). Second, the statistical analysis of
observational data on discrete choices is a well-developed field,
in particular as related to human economic choices (Louviere
et al., 2000; McFadden, 2001; Dubé et al., 2002). Fitting discrete
choice models is, therefore, fast and technically straightforward,
and provides easily interpretable effect sizes for any number
of statistically supported covariates that might independently
influence choices. Finally, a discrete choice framework provides
a straightforward measure of the predictive success of models by
comparing probabilistic predictions to randomized observations.

Despite the natural fit of the discrete choice framework to
studying cognition, this study is the only example we are aware
of as applied to a free-ranging wild animal. The key ingredient
is the discrete choice itself. We focused on a very specific kind
of movement: namely the early stage of departure from a den.
Given the high motility of wolves and the relatively unstructured
Finnish mixed woodland landscape, any destination was more or
less equally available. Furthermore, it seemed a safe assumption
that each departure from the den had similar essential purposes:
first to obtain food by hunting or visiting existing caches,
with the goal of returning with enough nourishment to feed
pups in the den, and to patrol territories. By reducing our
movement variable in this way, we greatly simplified the general
problem of “modeling movements.” This is in contrast to a
thematically similar study, in which a memory-based model of
winter (i.e., non den-centric) wolf movements with boundary
visits and prey habitat used as covariates (Schlägel et al., 2017).
In their compelling analysis, every movement step was modeled
and the spatial map was fixed to a computationally feasible grid.
Thus, the spatial and temporal units of analysis were set not
by biological or behavioral considerations but by the battery
power trade-off of collar transmission, and by computational
constraints of spatial grid processing. The intensive computation
of fitting a single model (several days, Schlägel, pers. comm.)
limited the ability to explore different parameterizations, model
structures or covariates. Furthermore, the nature of movements
can vary considerably depending on the motivation or behavioral
imperative. For example, previous work on several of the wolves
in this study showed thatmovements are faster andmore directed
when returning to a den post-kill than while hunting (Gurarie
et al., 2011), a distinction that is lost when all movements are
assumed to be driven by the same process.

By focusing on a limited set of discrete trip departures and
a coarsely discretized spatial structure, we were able to compare
thousands of models in a short amount of time, sweeping
across multiple temporal and spatial scales and combinations
of structural parameter values. The obvious trade-off is that
we had relatively few departures to model, no more than 1
per day per wolf, which limited the inferential power of more
complex models.
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4.2. Scales of Space and Time
Among the many structural assumptions underlying our
framework, perhaps the most tenuous was the discretization of
the wolf territories into a countable number of zones. There
is no objective way to know how similar a wolf ’s mental map
might be to our clustering-based zonal partitioning. However,
we were able to test a range of numbers of zones, from 3—
too few to provide interesting insights—to 8—at the limit of
discrete choices given the number of trips that we analyze
per wolf. By comparing these different spatial structures, we
were able to obtain a coarse idea of a spatial scale at which
wolves might be conceptualizing their territory. The number
of zones that best separated the discrete choice making of
the wolves was between 5 and 8, i.e., in the upper half of
the range. Noting that the mean area of the wolf territory
was around 670 km2 (s.d. 275), this would suggest that a
relevant cognitive spatial scale for valuing areas would be on
the order of 80–130 km2. Note that this sweeping of structural
parameters is made tractable, even trivial, by the discrete choice
model framework.

For the animals for which predation memory was significant,
three were between 0.75 and 1.75 days (Table 4), which might be
considered an indication of the time frame over which the spatial
location of a predation success is relevant to a wolf. Larger prey
items were often torn into smaller pieces and cached, i.e., buried
shallowly, by the wolves. Those caches are often revisited within
some relatively short period after the kill before any useful meat is
too spoiled, and the 1–2 day time scale might reflect that specific
cache-revisit behavior. For those wolves for which boundary
visits were a significant factor, time-scales were nearly all much
longer: from 3 to 8.5 days (Table 4).

The shift in the magnitude of the coefficient responses
(Figure 5) adds nuance to this discussion of time scales. Most
notably, the shift in the sign of the boundary response against
time scales for wolf Viki is somewhat consistent with the
paradigm of “working” (short-term) and “reference” (long-term)
memories that often operate in different ways (with opposite
signs) at different time-scales. Similarly, while we discretized
space into relatively few large zones, in Figure 4 it appears that
the RPI peak against predation time-scale is narrower at a larger
number of zones (8), i.e., at a finer spatial scale, while RPI against
boundary memory is more sharply optimized at fewer zones
(5). This may indicate that the spatial scale at which predation
success is remembered is finer than the spatial scale of boundary
patrolling. This is consistent with the fact that predation occurs
unpredictably in very specific locations, whereas the boundary is
a known, fixed entity which is most efficiently marked by making
larger territorial movements. Including multiple temporal and
spatial scales in a model like this, however, stretches the power
of limited observations for making inferences.

4.3. Wolf Foraging Strategies: Patch
Depletion or Site Fidelity?
While the fitting, parameterization and predictive assessment
of the cognitive model was largely successful, many of the
estimated effects contradicted our original expectations and point

to nuanced and context-dependent strategies of foraging. In
particular, we anticipated that the predationmemory effect would
be positive, corresponding to a strategy of foraging-site fidelity,
and that the boundary visit effect would be negative, as recently
visited boundaries would not need to be revisited immediately.

In fact, only one wolf (Julla) has a significant positive
predation memory at a time scale of 4 days (by far the
longest time scale) combined with a significant negative
boundary memory (time scale 3 days). Julla was a wolf in a
small pack (2 adults) which apparently only killed 5 reindeer
(of which three were adults) that were identified by field
workers over the study period. With so few animals, caching
and memory takes on an additionally important role, and
likely contributed to the higher scoring of recent predation
kill sites. Apparent foraging site fidelity in this context is
possibly more closely related to cache returns than persistent
prey density.

Julla can be contrasted to another wolf (Viki) that had a
weak (0.1 > p-value > 0.5) negative coefficient on the predation
memory (time scale of 1.25 days). Viki apparently did not value
locations of recent predation success as highly as moving to other
areas of its territory. Viki was a reproductive member of the
largest, most established pack in our data set in the core Finnish
wolf area, and had among the largest number of kills, 44 reindeer
and moose, mainly calves, in total (Figure 3). It is possible that
the high success rate of predation throughout the range, together
with the higher need to patrol boundaries, and reinforcing
territorial marking, deemphasizes the need for foraging site
fidelity. Furthermore, it is possible that local prey depletion
can occur, analogous to the “patch-disturbance” hypothesis that
leads lions to regularly change the location they predate after
successful hunts due to prey species avoiding environments
that are demonstrably risky (Valeix et al., 2011). While the
viewshed and corresponding cross-prey species communication
of successful hunts is much more limited in the boreal forest than
in the savanna, many of the prey ungulates have much smaller
ranges than the smallest of the wolf zones. For example, summer
home ranges of female moose in Fennoscandia range from 1000
to 2000 ha (Cederlund and Okarma, 1988; Eriksen et al., 2011).
Moose are, furthermore, solitary and somewhat territorial, with
minimal range overlap (Eriksen et al., 2011). A single adult kill
may, therefore, significantly deplete the availability of prey on
a hyper-local level, while a calf kill—which a mother moose
is likely to be aware of—may also result in a shift in the
female’s range.

In contrast to both Viki and Julla, Niki had a strong positive
predation coefficient (at time lag 0.75), and no boundary model
selected whatsoever, despite having the greatest number of kills.
This may be explained by the fact that Niki’s territory was
largely structured by several major roads and an extended fence
separating the reindeer management area (RMA, Figure 1). In
fact, Niki was the only wolf whose territory overlapped with the
RMA and the only wolf to have killed several semi-domesticated
reindeer (Gurarie et al., 2011). All of these highly structuring
features are consistent with certain areas being consistently better
for predation, making foraging site fidelity a more viable strategy
for this wolf.
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While accounting for the wide variability in cognitive
strategies among these wolves is impossible, we can broadly
conclude that wolves may engage in either major foraging
strategy, or—indeed—can move with no particular attention
to prey distribution at all. It bears noting that the territories
in this study were all very similar, many neighboring or
overlapping across years (Figure 1). The main differences
among wolves were related to pack composition and density
and distribution of primary roads and houses, which can
significantly impact wolf behavior and space use in general
(Gurarie et al., 2011; Barry et al., 2020). Thus, when it
comes to using and responding to spatial memory, wolves
appear to be highly idiosyncratic and individual, much as the
social and ecological context of individual wolves can be very
specific, even within the same territory across years (see also
Appendix B). Even as it can be demonstrated statistically that
some decisions are influenced by prior experience, there are
few overarching generalities that can be made about the spatial
or temporal scales and relative importance of various cues on
wolf cognition.

4.4. Inferring Cognition From Movement
Data
It is—in short—a surprisingly steep challenge to infer the use
of memory for animals moving in the wild, mainly because of
the large number of variables that cannot be controlled and the
complexity of animal behavior. Nonetheless, cognitive inferences
can be made when certain criterion are met. We propose here a
checklist building on the somewhat qualified success of fitting our
own cognitive model on the wolf data set.

1. Identification and isolation of a distinct quantifiable

behavior that might hypothetically be driven by prior
experiences and otherwise be minimally confounded by
unknown behavioral imperatives; e.g., den departures to
specific spatial zones.

2. Identification of key events or cues that might determine the
movement behavior to be modeled; in our example, predation
events and boundary visits. Generally, food resources are the
most important trigger, echoing experimental setups where
food rewards are routinely used. As a rule, movement data
alone without a context will almost never be sufficient to
unambiguously identify a cognitive signal.

3. A plausible cognitive mechanism for a movement response
to those events; i.e., the memory-based movement model
itself. Ideally, this model can be developed in a hierarchical
way, such that increasingly complex models can be compared
to test specific hypotheses.

4. A statistical framework to estimate the properties of that
mechanism from movement data; e.g., the discrete choice
modeling framework and parameter sweeps for maximum
likelihood exploration of parameter values.

5. A reliable metric to demonstrate the relative performance of
the cognitive model against simpler, non-cognitive models;
e.g., the relative prediction improvement score.

This checklist may be useful in pointing toward general
principles for the development of cognitive analysis of
movement data.
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Jędrzejewski, W., Schmidt, K., Theuerkauf, J., Jędrzejewska, B., and Okarma, H.
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Predicting the behavior of individuals acting under their own motivation is a

challenge shared across multiple scientific fields, from economic to ecological

systems. In rivers, fish frequently change their orientation even when stimuli are

unchanged, which makes understanding and predicting their movement in time-

varying environments near built infrastructure particularly challenging. Cognition

is central to fish movement, and our lack of understanding is costly in terms of

time and resources needed to design and manage water operations infrastructure

that is able to meet the multiple needs of human society while preserving valuable

living resources. An open question is how best to cognitively account for the

multi-modal, -attribute, -alternative, and context-dependent decision-making of

fish near infrastructure. Here, we leverage agent- and individual-based modeling

techniques to encode a cognitive approach to mechanistic fish movement

behavior that operates at the scale in which water operations river infrastructure

is engineered and managed. Our cognitive approach to mechanistic behavior

modeling uses a Eulerian-Lagrangian-agent method (ELAM) to interpret and

quantitatively predict fish movement and passage/entrainment near infrastructure

across different and time-varying river conditions. A goal of our methodology is

to leverage theory and equations that can provide an interpretable version of

animal movement behavior in complex environments that requires a minimal

number of parameters in order to facilitate the application to new data in real-

world engineering and management design projects. We first describe concepts,

theory, and mathematics applicable to animals across aquatic, terrestrial, avian,

and subterranean domains. Then, we detail our application to juvenile Pacific

salmonids in the Bay-Delta of California. We reproduce observations of salmon

movement and passage/entrainment with one field season of measurements,
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year 2009, using five simulated behavior responses to 3-D hydrodynamics.

Then, using the ELAM model calibrated from year 2009 data, we predict the

movement and passage/entrainment of salmon for a later field season, year

2014, which included a novel engineered fish guidance boom not present in

2009. Central to the fish behavior model’s performance is the notion that

individuals are attuned to more than one hydrodynamic signal and more than

one timescale. We find that multi-timescale perception can disentangle multiplex

hydrodynamic signals and inform the context-based behavioral choice of a fish.

Simulated fish make movement decisions within a rapidly changing environment

without global information, knowledge of which direction is downriver/upriver,

or path integration. The key hydrodynamic stimuli are water speed, the spatial

gradient in water speed, water acceleration, and fish swim bladder pressure. We

find that selective tidal stream transport in the Bay-Delta is a superset of the

fish-hydrodynamic behavior repertoire that reproduces salmon movement and

passage in dam reservoir environments. From a cognitive movement ecology

perspective, we describe how a behavior can emerge from a repertoire of multiple

fish-hydrodynamic responses that are each tailored to suit the animal’s recent

past experience (localized environmental context). From a movement behavior

perspective, we describe how different fish swim paths can emerge from the

same local hydrodynamic stimuli. Our findings demonstrate that a cognitive

approach to mechanistic fish movement behavior modeling does not always

require the maximum possible spatiotemporal resolution for representing the

river environmental stimuli although there are concomitant tradeoffs in resolving

features at different scales. From a water operations perspective, we show that a

decision-support tool can successfully operate outside the calibration conditions,

which is a necessary attribute for tools informing future engineering design and

management actions in a world that will invariably look different than the past.

KEYWORDS

ecohydraulics, ethohydraulics, multi-timescale perception, perceptual decision-making,
multiplex signal disentanglement, psychophysics, habituation, fish behavior model

1. Introduction

Fish in rivers are important ecologically, culturally,
recreationally, commercially, and as a key food resource (Murray
et al., 2020; Su et al., 2021). Inland waters make up less than
0.01% of Earth’s water yet simultaneously support both 40% of
the world’s fish production and more than 40% of the global
human population (Stiassny, 1996; Helfman et al., 2009; Kummu
et al., 2011; Lynch et al., 2016). Rivers are a portion of inland
waters and particularly vital, making up just 0.0002% of the
water supply (Shiklomanov, 1993; Vince, 2012). Water operations
provide human society with irrigation, navigation, power, and
flood protection and include built infrastructure such as dams,
levees, and water diversions. More than 2.8 million dams have
been built globally, and 500,000 km of waterways are regulated in
some form (Grill et al., 2019; Belletti et al., 2020; Yang et al., 2022).
In the U.S. alone, there are more than 90,000 dams (U.S. Army
Corps of Engineers, 2018) and 40,000+ km of levees with 45,500+
built structures associated with 17 million people and $2 trillion in
property (U.S. Army Corps of Engineers, 2020). More than 60% of
the US inland navigation steel structures have reached or exceeded
their design life. As infrastructure is designed, re-designed, and/or

re-imagined, the ability to predict near-term fish movement during
the engineering design phase has the potential to save time and
money as well as living resources. The success of structures and
management actions designed to facilitate the safe travel of aquatic
species past built infrastructure is frequently dictated by the
volitional decision-making of freely-moving fish.

Managing fish near water diversions and dams often involves
some form of separating individuals from the bulk flow of water
and guiding them to specific safe transit locations within the river
channel. In other species management scenarios, in-river structures
may be used to facilitate the capture or limit the spread of invasive
species (Zielinski et al., 2020). Both species management goals are a
daunting engineering challenge.

More than a half-century of field and laboratory research has
yielded a substantial amount of work and literature in which
there are many, and sometimes contradictory, findings for how
fish respond to natural and manageable environmental stimuli
(Table 1). Fish respond to multiple factors that can be managed in
a river including hydrodynamics, electrical fields, carbon dioxide,
and insonified bubble curtains with light stimuli. In some settings,
water temperature, salinity, dissolved oxygen, and stratification are
factors that influence fish movement in rivers.
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TABLE 1 Fish stimuli-response factors, cognition, behavior modeling, and general cognitive characteristics across many different kinds of organisms.

Area of scientific inquiry Abbreviated synopsis of historical and more recent works

Fish stimuli-response factors, cognition, and behavior modeling

Multiple factors Chamberlain, 1907; Chidester, 1924; Collins, 1952; Brett and Alderdice, 1958; Hocutt et al., 1980; Anderson, 1988; Feist and
Anderson, 1991; Coutant and Whitney, 2000; Schilt, 2007; Sweeney et al., 2007; Katopodis and Williams, 2012; Noatch and Suski,
2012; Jones et al., 2021; Cooke et al., 2022; NMFS, 2022

Hydrodynamics Gray, 1933a,b; McLeod and Neményi, 1941; MacKinnon and Hoar, 1953; Jones, 1956; Sutterlin and Waddy, 1975; Kalmijn, 1988;
Webb, 1989; Drucker and Lauder, 2003; Lauder and Tytell, 2004; Liao, 2007; Windsor et al., 2010a,b; Lacey et al., 2012; Coutant,
2023

Temperature, salinity, dissolved oxygen Gurley, 1902; Chamberlain, 1907; Shelford and Allee, 1913; Galtsoff, 1924; Gutsell, 1929; Creaser, 1930; Brett, 1952; Collins, 1952;
Erichsen Jones, 1952; Sullivan and Fisher, 1953; Brett, 1956; Ferguson, 1958; Garside and Tait, 1958; Whitmore et al., 1960; Moss
and Scott, 1961; Javaid and Anderson, 1967; Coutant, 1975; McCauley and Huggins, 1979; Reed and Balchen, 1982; Coutant, 1985;
Kramer, 1987; Thomson et al., 1992; Goodwin, 2000; Humston et al., 2000; Nestler et al., 2002; Humston et al., 2004; Carter, 2005;
Prchalová et al., 2006; Booker et al., 2008; Mork et al., 2012; Chittenden et al., 2013; Burke et al., 2014; Byron et al., 2014; Moriarty
et al., 2016; Clancey et al., 2017; LaBone et al., 2021; Quinn et al., 2022; García-Vega et al., 2023

Electrical fields Baker, 1928; Applegate et al., 1952; Brett and Alderdice, 1958; Johnson et al., 2014; Miller et al., 2021; Kowalski et al., 2022; Miller
et al., 2022

Carbon dioxide Shelford and Allee, 1913; Wells, 1913; Gutsell, 1929; Creaser, 1930; Powers and Clark, 1943; Collins, 1952; Donaldson et al., 2016;
Cupp et al., 2017; Treanor et al., 2017; Hasler et al., 2019; Cupp et al., 2021

Acoustic, light, bubbles Parker, 1912; Reeves, 1919; von Frisch, 1938; Lowe, 1952; Brett and MacKinnon, 1953; Fields et al., 1956; Brett and Alderdice, 1958;
Patrick et al., 1985; Sager et al., 1987; Kalmijn, 1988; Nestler et al., 1992; Popper and Carlson, 1998; Bullen and Carlson, 2003;
Johnson, 2003; Prchalová et al., 2006; Kock et al., 2009; California Department of Water Resources, 2012, 2013; Flammang et al.,
2014; Mussen et al., 2014; Perry et al., 2014; Zielinski et al., 2014a,b; Febrina et al., 2015; Zielinski and Sorensen, 2015, 2016, 2017;
Miehls et al., 2017; Dennis et al., 2019; Hansen et al., 2019; Jesus et al., 2019; Mickle et al., 2019; Piper et al., 2019; Dennis and
Sorensen, 2020; Popper et al., 2020; Flores Martin et al., 2021; Jesus et al., 2021; Leander et al., 2021; Pratt et al., 2021

Cognition; orientation to environmental
cues

Gurley, 1902; Churchill, 1916; Fraenkel and Gunn, 1940; Thorpe, 1956; Royce et al., 1968; Gleitman and Rozin, 1971; Quinn, 1991;
Dukas, 1998; Shettleworth, 1998, 2001; Brown et al., 2011; Eliassen et al., 2016; Salena et al., 2021; Hein, 2022; Rodriguez-Santiago
et al., 2022; Fahimipour et al., 2023

Cognition, orientation in natural world
for conservation

Galtsoff, 1924; Dodson, 1988; Kieffer and Colgan, 1992; Odling-Smee and Braithwaite, 2003; Greggor et al., 2020

Behavior, movement modeling DeAngelis, 1978; Balchen, 1979; Neill, 1979; Reed and Balchen, 1982; Anderson, 1988; Bartsch et al., 1989; Foreman et al., 1992;
Lough et al., 1994; Reyes et al., 1994; Tyler and Rose, 1994; Zabel, 1994; Davidson and Deyoung, 1995; Tregenza, 1995; Giske et al.,
1998; Heath et al., 1998; Goodwin, 2000; Humston et al., 2000; Humston, 2001; Bracis, 2010; Byron and Burke, 2014; Jager and
DeAngelis, 2018; DeAngelis and Diaz, 2019; Lilly et al., 2022

Agent-, particle-, individual-based
movement behavior model with 2-D/3-D
hydrodynamics, water quality, and/or
other stimuli

Walsh et al., 1981; Thomson et al., 1992; Werner et al., 1993; Thomson et al., 1994; Hermann et al., 1996; Hinckley et al., 1996;
Werner et al., 1996; Rand et al., 1997; Walter et al., 1997; Ault et al., 1999; Quinlan et al., 1999; Goodwin, 2000; Friedland, 2001;
Guensch et al., 2001; Werner et al., 2001; Nestler et al., 2002; Scheibe and Richmond, 2002; Giske et al., 2003; Blumberg et al., 2004;
Booker et al., 2004; Goodwin, 2004; Humston et al., 2004; Goodwin et al., 2006; Werner et al., 2007; Booker et al., 2008; Willis, 2011;
Bracis and Anderson, 2012; Fossette et al., 2012; Mork et al., 2012; Abdelaziz et al., 2013; Chittenden et al., 2013; Burke, 2014; Burke
et al., 2014; Byron et al., 2014; Goodwin et al., 2014; Arenas et al., 2015; Febrina et al., 2015; Moriarty et al., 2016; Putman et al.,
2016; Railsback et al., 2016; Naisbett-Jones et al., 2017; Putman, 2018; Zielinski et al., 2018; Gilmanov et al., 2019; Snyder et al., 2019;
Brosnan and Welch, 2020; Morrice et al., 2020; Ounsley et al., 2020; Padgett et al., 2020; Rossington and Benson, 2020; Benson et al.,
2021; Bjørnås et al., 2021; Gross et al., 2021a,b; Kulić et al., 2021; LaBone et al., 2021; McIlvenny et al., 2021; Newton et al., 2021;
Olivetti et al., 2021; Szabo-Meszaros et al., 2021; Zhu L. et al., 2021; Gisen et al., 2022; Holleman et al., 2022; Lai, 2022; Powalla et al.,
2022; Quinn et al., 2022; Tan et al., 2022; Whitty et al., 2022; Zeng, 2022; Hajiesmaeili et al., 2023; Kerr et al., 2023; Mawer et al.,
2023; Sridharan et al., 2023

General cognitive characteristics across many different kinds of organisms

Role of time in behavior Dodson, 1988; Kieffer and Colgan, 1992; Odling-Smee and Braithwaite, 2003; Park et al., 2016; Dabiri, 2017; Oteiza et al., 2017; Bi
and Zhou, 2020; Auger-Méthé et al., 2021; Chen et al., 2021; Fagan et al., 2023

Behavioral choice/decision via evidence
accumulation

Stone, 1960; Laming, 1968; Vickers, 1970; Ratcliff, 1978; Dodson, 1988; Kieffer and Colgan, 1992; Giske et al., 1998; Usher and
McClelland, 2001; Odling-Smee and Braithwaite, 2003; Bogacz et al., 2006; Bogacz et al., 2007; Ossmy et al., 2013; Dabiri, 2017;
Oteiza et al., 2017; Dragomir et al., 2020; Chen et al., 2021; Salena et al., 2021

Multiple timescales Gleitman and Rozin, 1971; Giske et al., 1998

Related to temporal features of the
environment

Harris, 1943; Thompson and Spencer, 1966; Anderson, 2002; Steele-Feldman, 2006; Bromberg-Martin et al., 2010; Nassar et al.,
2010; Kato et al., 2014; Murray et al., 2014; Piet et al., 2018

Tracking of time-varying information in
behavioral analysis

Anderson, 2002; Steele-Feldman, 2006; Van Moorter et al., 2009; Anderson et al., 2010; Bernacchia et al., 2011; Fagan et al., 2013;
Kacelnik et al., 2013; Wilson et al., 2013; Murray et al., 2014; Bracis et al., 2015; Wilson et al., 2018; Iigaya et al., 2019; Lin et al., 2021;
Ranc et al., 2022

Short- and long-term categorizations Sharpless and Jasper, 1956; Gleitman and Rozin, 1971; Harley, 1981; Giske et al., 1998; Rose and Rankin, 2001; McNamara et al.,
2008; Wilson and Linster, 2008; Thompson, 2009; Bernacchia et al., 2011; Das et al., 2011; Murray et al., 2014; Iigaya et al., 2019; Bi
and Zhou, 2020; Shen et al., 2020; Spitmaan et al., 2020; Lin et al., 2021; Meister, 2022; Wang and Salmaniw, 2023
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Here, we limit our focus to hydrodynamic stimuli. The study of
fish and water flow has a rich history dating back about a century.
Also dating back about a century yet somewhat separate from the
hydrodynamic investigations is the study of fish cognition and how
they orient to environmental cues, which have long been applied
to understand their behavior in the natural world for conservation
purposes (Table 1).

Ecological decision-making for conservation is inherently
a forecasting problem (Werner et al., 2007; Dietze et al.,
2018), and numerical modeling makes precise our underlying
hypotheses (Dietze et al., 2018). Numerical fish behavior and
movement modeling has been a powerful tool in conservation for
more than 40 years (Table 1). Near-term ecological forecasting,
specifically, focuses on meeting the needs of daily to decadal
environmental decision-making under high uncertainty and
adaptive management. Iterative near-term ecological forecasting
involves rapidly testing hypotheses through comparison of
quantitative predictions to new observational data under different
scenarios, one of the strongest tests of scientific theory (Dietze et al.,
2018). However, there is no such thing as a perfect forecast (Werner
et al., 2007; Dietze et al., 2018). Key challenges remain.

The number of fish behaviors that need to be factored in
order to reproduce movement and passage/entrainment patterns
at river infrastructure increases concomitantly with environmental
complexity (Goodwin et al., 2014). An important question for
water operations management, therefore, is how different fish
behaviors emerge, one at a time, from a multi-response repertoire
to meet the momentary challenges of an individual. In other
words, how does a specific fish-hydrodynamic response suited for a
given environmental context emerge from an evolved repertoire of
multiple behaviors that, together, facilitate the animal’s navigation
through diverse, time-varying conditions such as flood and ebb
tides (Dodson, 1988). We pursue three main lines of scientific
inquiry in our study:

• what might the evolved repertoire of fish-hydrodynamic
responses be for downstream-migrating fish in rivers;
• what degree of mathematical complexity is needed to

reproduce and predict fish swim path patterns and observed
passage/entrainment at infrastructure; and
• what level of numerical sophistication is required of

river hydrodynamic modeling to inform a computationally-
tractable management decision-support tool?

We cannot measure all internal and external factors in the
natural world that may influence how a fish moves through
an open river. However, sensory processing and cognitive
decision-making is evident even in simple laboratory settings
where an individual fish changes its behavior response over
time to a stimulus that itself does not change (Haro et al.,
1998; Enders et al., 2009a). In rivers, the same phenomena
is observed near infrastructure (Goodwin et al., 2006, 2014).
We piece together concepts, theory, and mathematics across
multiple scientific fields as well as findings dating back in some
cases nearly a century ago within the areas of organism sensory
perception and cognitive decision-making, fish environmental
and hydrodynamic response, and numerical behavior and
environmental modeling (Table 1).

We start by, first, describing some general characteristics of
cognition that apply to many organisms, not just fish. Then, second,
we describe our tidal study system and data involving juvenile
Pacific salmonids (hereafter salmon). Third, we tailor the general
characteristics of animal cognition that we introduce in the next
section to salmon navigating a tidal river junction in the context
of water operations to understand and predict their movement and
passage/entrainment.

2. Methods: general characteristics
of animal cognition

The present era is one of rapidly developing knowledge about
animal cognition (Greggor et al., 2020; Salena et al., 2021; Bialek,
2022; Hein, 2022; Petrucco et al., 2022; Triki et al., 2022; Wang and
Salmaniw, 2023). At a fundamental level, we lack understanding of
the complexities and context dependencies that underlie behavior
changes in multisensory conditions (Bak-Coleman et al., 2013;
Coombs et al., 2020). A critical part of interpreting changes in
behavior is understanding the role of time (Table 1). One reason
for our existing knowledge gaps is that invaluable laboratory
experiments are also limited in the available degrees of freedom
compared to the natural world (Salena et al., 2021), the latter of
which involves continuous decisions with ever-changing options
influenced by recent responses (Yoo et al., 2021). Fish may exhibit
different behaviors in the field environment than in simpler settings
(Dennis and Sorensen, 2020).

Note that for the purposes of our work herein that terminology
can differ among scientific fields and, here, we take an expansive
and inclusive view of the terms cognition and cognitive. By the terms
cognition and cognitive we are referring generally to perception,
attention, memory, learning, and the processes of perceptual
decision-making that we can predict at the scale of a river. Also,
we use the terms behavioral choice and decision interchangeably.
We recognize that in our attempt to make our nomenclature
understandable across a broad audience that we may deviate from
more stringent terminology definitions in some of the scientific
fields that we leverage in this work.

Our cognitive approach to mechanistic animal movement
behavior modeling is not a study of brain architecture.
We necessarily relegate many cognitive phenomena to
parameterization that summarily represents subresolution
dynamics that may seem crude if viewing our work from the
perspective of other scientific fields that investigate neuroscience,
neurobiology, and cognition at a finer scale. Here, we must encode
cognitive phenomena more simply than what happens inside an
animal’s brain in order for a model of movement behavior to
operate at the scale of landscape and waterscape infrastructure in
the open world for natural resources management.

2.1. Sensory experience influences
stimulus perception and behavioral
choice

The sensory experience of an individual strongly influences
the perception of a stimulus (Akrami et al., 2018) and resulting
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behavioral choice (Table 1). Momentary stimuli are noisy, so
animals constantly integrate sensory evidence over time and space
to infer the state of their environment (Bahl and Engert, 2020;
Dragomir et al., 2020). A relative difference between momentary
and previously experienced stimuli influences the movement of
even primitive organisms (Ikeda et al., 2020). In next section, we
describe the first step in our modeling process for encoding how
sensory experience influences the perception of a stimulus and
resulting behavioral choice.

2.1.1. Stimulus: physical vs. perceived intensity
We first convert a stimulus physical (measured/modeled) value

into a perceived intensity, Iϕ, by applying a treatment analogous to
the decibel scale for any stimuli variables whose quantities, ϕ, span
orders of magnitude, such as gradients and other derivative values:

Iϕ (t) = log10

(
ϕ (t)
ϕo

)
(1)

where ϕo is an arbitrary reference or baseline. The logarithm
of a physical quantity, Iϕ, at momentary time t often better
represents an animal’s perception of intensity for a stimulus whose
measured/modeled quantities span orders of magnitude (Fechner,
1860), e.g., sound. In our approach, physical stimulus quantities
that do not span orders of magnitude remain unmodified from their
measured/model value.

After this step, we refer to each stimulus i whose
measured/modeled quantity is ϕ as its perceived intensity, Ii.
Also, note that in limited places we use the terms quantity and
intensity interchangeably in order to convey a few concepts herein.

A common feature of perception across taxa is the sensory
system’s translation of a physical stimulus magnitude to a
perceived quantity using proportional differencing (Akre
and Johnsen, 2014). While our first step accounts for some
psychophysical characteristics of perception, it does not account
for an animal’s continuous sampling of the environment. In next
section, we describe our approach for how continuous sensory
sampling and experience over time influences an individual’s
perception of a stimulus.

2.1.2. Stimulus: perceived change in intensity
Continuous sampling of a stimulus over time impacts how its

perceived quantity may be registered by an animal. Each animal has
its own unique sequence of preceding experiences, or history, so the
momentary perception of a stimulus can be registered differently
by separate individuals. Detecting the change in a stimulus using a
proportional difference between two magnitudes allows an animal’s
sensory system to cope with the enormous diversity of intensities
experienced in the environment (Akre and Johnsen, 2014).

Note that in the first step, we converted stimuli to perceived
intensities, yet the perceived change in intensity is also a perceptual
characteristic. To keep our steps clear and nomenclature simple,
hereafter, we refer to perceived intensity simply as intensity, Ii, so we
can refer to the notion of a perceived change in perceived intensity
more simply as the perceived change in intensity.

Our second step for encoding how sensory experience
influences stimulus perception is to describe the perceived change
in intensity, Ei, following an analogy to the just noticeable difference
(jnd) concept of the Weber-Fechner law (Weber, 1846; Fechner,

1860). We compute Ei by comparing the momentary intensity, Ii,
to recent past sensory experience in the form of a habituated (or
acclimatized) level, Iai , at time t as:

Ei (t) =
Ii (t)− Iai (t)

Iai (t)
(2)

Habituation is the foundation of selective attention that
perceptually desensitizes an animal over time to static, common,
irrelevant, or inconsequential stimuli. Habituation allows the
individual to focus on the most salient signals in their environment
at a given moment even amid high background noise (Rose
and Rankin, 2001; McNamara et al., 2008; Rankin et al., 2009;
Blumstein, 2016; Shen et al., 2020; Tafreshiha et al., 2021).
Habituation is a form of plasticity, more specifically, a simple
memory and learning process that is found across sensory systems
and taxa, including fish (Dennis and Sorensen, 2020). Habituation
is a building block of animal cognition and behavior (Harris,
1943; Konorski, 1948; Sharpless and Jasper, 1956; Thompson and
Spencer, 1966; Peeke and Peeke, 1973; Rose and Rankin, 2001;
McNamara et al., 2008; Das et al., 2011).

The jnd does not universally capture perceptual performance in
every kind of task (Carriot et al., 2021). Our treatment of signal-
to-background, or signal-to-noise jnd, Ei (t), is perhaps better
described instead as a notable streaming differential (nsd) because
animals update the ratio in Equation 2 perpetually, not just at
a single decision moment in time that is often the basis for jnd
evaluation. We use an exponentially weighted moving average
(EWMA) to encode habituation although more sophisticated
algorithms exist. Using an EWMA, the habituated intensity, Iai ,
updates as follows:

Iai (t) =
(
1−mai

)
· Ii (t) + mai · Iai (t − 1) (3)

where Ii (t) is the momentary intensity of stimulus i at the
individual’s xyz-position at time t, Iai (t) is the intensity of stimulus
i to which the individual is habituated or, in other words, the
background intensity. We assume the memory parameter mai is
a non-changing coefficient within the range [0, 1] that determines
how quickly the individual habituates and becomes desensitized to
new intensities of the stimulus (Bush and Mosteller, 1955).

Sensory experience is the basis we use to encode a
cognitively-inspired mechanistic account of the salmon’s changing
environmental context for momentary decisions (Goodwin et al.,
2006, 2014), which we describe as the third step in the next sections.

2.1.3. Context-based behavioral choice—with a
single factor

Contrary to the notion that context is important in decision-
making only for higher trophic level organisms, contextual
awareness resulting in different responses to the same stimulus is
a factor even in single cells (Kramer et al., 2022). An organism’s
behavioral choice depends on the context of its momentary
decision (Bak-Coleman et al., 2013; Coombs et al., 2020; Ikeda
et al., 2020; Mann, 2020; Oram and Card, 2022). Sensory
experience informs the decision context. Animal decisions are
based on the simple notion of whether perceived conditions are
better or worse than preceding experience (McNamara et al.,
2013). In our approach, preceding experience is encoded through
habituation, Iai .
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In our approach, the previously experienced stimulus
intensities provide the decision context when a single
environmental factor is at play. We encode the momentary
stimulus relative to the context of previous sensory experiences
using the perceived change in intensity Ei.

Behavioral choice such as a change in movement orientation
and speed within our approach is based on the notion of whether
Ei exceeds a pertinent threshold, ki, where ki is a characteristic that
must be determined in the analysis. Describing behavioral decisions
using accumulated sensory evidence crossing a threshold (Bahl and
Engert, 2020) is a common approach across a variety of organisms
(Dragomir et al., 2020).

2.1.4. Context-based behavioral choice—with
multiple factors

The natural world is composed of many factors, some known
and many unknown, whose stimulus quantities are continuously
integrated over time by an animal. Each stimulus competes for the
individual’s selective attention. Determining the decision context of
behavioral choice requires not only integrating intensities over time
for multiple abiotic and biotic factors but also finding a common
currency to combine the diverse sensory experiences toward a
singular decision for the moment. Our approach to multiple factors
is to use thresholds, ki, for each factor or stimulus i. We combine the
sensory experiences across multiple factors by converting threshold
exceedances into Boolean values [0 or 1], which we can use as
a common currency to combine diverse sensory experiences to
inform momentary choice.

An animal’s movement strategy in natural settings may consist
of a large repertoire of behavior responses. A stimulus operates
on a spectrum, so the concept of a threshold helps in interpreting
at what point does the factor warrant attention relative to
competing factors. When the animal experiences a diverse array
of environmental stimuli and conditions, behaviors within a
repertoire may take varying precedence in different phases of a
movement sequence (Sogard and Olla, 1993; New et al., 2001).

In our approach, an individual perpetually updates and
compares their nsd values at time t, Ei (t), to corresponding
thresholds, ki, for each stimulus i. When Ei (t) crosses ki we
assume the neural activity, aB (t), in the animal’s brain increases
their propensity or motivation – mathematically, what we call
accumulated evidence, eB (t) – to respond with behavior B (t) {r}
using one of the available responses, r, within the evolved
repertoire, r = {1, 2, 3, ...}. Put simply, when Ei (t) crosses ki we
assume the corresponding stimulus i warrants attention, even if no
movement response is yet required; stimulus i begins to climb in
the hierarchy of competing other stimuli. Mathematically, when the
threshold is crossed then the Boolean measure switches from 0 to
1. When the Boolean measure is 1, then activity aB (t) takes on a
value within the range [0.0 < aB ≤ 1.0] that does not change with
time and whose value is determined in the analysis. The constant
aB is based on a subjective assessment of the response’s value to
the animal relative to the other behaviors in the larger repertoire.
Activity aB (t) is zero whenever the threshold is not crossed.

The evidence, eB, supporting each behavior B accumulates
based on inputs aB (t) through a cognitive algorithm and results
in the selection of a singular movement orientation and speed
response for the duration of time increment 4t. The temporal

integration of evidence supporting different choice options — each
behavior response B — is a computational process generally
thought to underlie decision-making (Ossmy et al., 2013) and
accurately describes paradigms with multiple sensory modalities
across various organisms (Dragomir et al., 2020). The exact
currency of evidence that is accumulated (e.g., sensory versus
behavioral output) is an active area of neurophysiological study
(Dragomir et al., 2020).

In our present approach, following the sensory integration
paradigm, we use the Mutual Inhibition Model or Leaky Competing
Accumulator model (Usher and McClelland, 2001) to temporally
accumulate perceived evidence and select the behavior B. To
decide behavior transitions, the sensory evidence accumulators, eB,
integrate the activity, aB, supporting each behavior B as:

deB =

aB − λeB − η

S∑
j = 1
j 6= B

ej

 dt + cdWB (4)

or as a complete equation in discrete form:

eB (t +1t) = eB (t) +

aB (t)− λeB (t)− η

S∑
j=1
j6=B

ej(t)


4t + cζB

√
1t (5)

where eB (t = 0) = 0. The behavior B (t) {r} implemented at time
t is the response r associated with the greatest accumulator value
eB at the beginning of increment 4t. eB is a leaky integrator that
accumulates evidence from a drifting input with mean activity aB
(Bogacz et al., 2006). Activity aB corresponds to a general, inherent
urgency to respond to the stimulus with a particular behavior B
(Schurger et al., 2012). Each behavior B is associated with an activity
aB that causes it to be implemented in the face of other available
responses. An individual executes behavior B when the activity aB
supporting it accumulates over time in the form of accumulator eB
from Equation 4 or 5 and overtakes the accumulators, e, of the other
available behaviors that could otherwise be implemented.

λ is the exponential decay rate of activity aB where the leak
term −λeB causes eB to decay to zero in the absence of inputs aB.
When λ > 0, the net effect is decay toward zero that produces
stability in the activation whereas for λ < 0 the activation
tends to self-amplify and is not stable (Schurger et al., 2012). The
accumulators eB mutually inhibit each other through a connection
weight, η, where S is the number of accumulators eB. The variable
having uppercase W may be thought of as random fluctuations in
the signal, intrinsic accumulator noise, or unmodeled inputs and
can be represented as independent, identically distributed Wiener
processes with unit variance (McMillen and Holmes, 2006).

In the discrete form, ζB is Gaussian noise sampled from a
standard normal distribution N (0, 1) with zero mean and variance
σ2
= 1, c is a noise-scaling factor, and 4t is the discrete time

increment of the simulation (Usher and McClelland, 2001; Bogacz
et al., 2007; Schurger et al., 2012; Tsetsos et al., 2012). λ and η are
all assumed to be nonnegative. The activity scale can be chosen so
that zero represents baseline activity in the absence of inputs, hence
integration starts from eB (t = 0) = 0 (Bogacz et al., 2006). The
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major simplification of the model here compared to that of Usher
and McClelland (2001) is the removal of nonlinearities (Bogacz
et al., 2006). eB accumulation rates depend linearly on their present
values. To account for the fact that neural firing rates in the
brain are never negative, Usher and McClelland assumed that eB
is transformed via a threshold-linear activation function:

eB (t + 1) = max
(
0, eB (t)+ deB

)
(6)

or more simply:
eB → max (0, eB) (7)

Usher and McClelland (2001) propose that a multi-decision
process can be modeled by a direct extension of the Mutual
Inhibition Model in which each eB inhibits and receives
inhibition from all other eB. This implements a max-versus-
average procedure where evidence favoring the most supported
alternative is compared with the average of the evidence in
support of all other alternatives (Bogacz et al., 2006). Usher and
McClelland (2001) show the approach performs best among several
alternative models. Behavior selection is an ongoing decision
process, perpetual in time, and cross-inhibition robustly improves
its efficiency by reducing the frequency of costly transitions
(Marshall et al., 2015).

2.1.5. Multiplex signal disentanglement via
multi-timescale perceptions

Animals must be responsive to information that changes locally
as well as broader environmental shifts. Both local short-term
and broader longer-term information inform the next behavioral
choice through shifts in the decision context. Animals sample
their landscape from a single position per unit time. Discerning
whether a perceived change stems from updated positioning
or broader environmental shifts is straightforward when the
stimuli are relatively steady (unchanging with time) as the animal
samples the space. When the landscape itself changes with time
at nearly the same temporal scale that the animal samples
its surroundings, disentangling self-guided and external factor
contributions to perceived shifts in environmental context is less
straightforward.

Distinguishing local versus larger-scale change is relatively
straightforward from a Eulerian (outside human observer) point-
of-view compared to the Lagrangian perspective of an individual
limited in sensory range and to a single sample per unit
time. Multiple perceptions operating at different timescales can
disentangle environmental factors occurring at more than one
spatiotemporal scale using only a single sample per unit time. In
our approach, the animal serially samples its local surroundings
once per unit time but can generate one or more parallel images
of the environment at different spatiotemporal scales by tracking
serial samples with multiple concurrent habituations (memories).
Multiple memories, or habituations, encode information that the
animal can later use to discern perceived environmental shifts at
different spatiotemporal scales.

The notion of multiple timescales is not new (Table 1). Existing
theory already suggests that animals integrate fluctuating sensory
cues over multiple timescales relevant to the temporal features of
their environment. Multiple integrations or memory timescales,
such as in habituation, are frequently categorized as short- and

long-term (Table 1). Shorter forms may be as fast as hundreds of
milliseconds (Szyszka et al., 2012) and longer forms as slow as days
(Sharpless and Jasper, 1956).

In behavioral analyses, multiple memory streams are a
powerful means to account for the tracking of time-varying
information (Table 1). While questions remain regarding the
specific relationship between short- and long-term memory
processes (McGaugh, 2000), it is generally recognized that
slower-updating (longer-term) and faster-updating (shorter-term)
memories can coexist (Bernacchia et al., 2011; Murray et al., 2014;
Iigaya et al., 2019).

We expand Equation 3 to now include two timescales
of integration for cognitively tracking long-term (slower) and
short-term (faster) habituations to a stimulus i, denoted as Islow

ai
and

Ifast
ai , respectively:

Islow
ai (t) =

(
1−mslow

ai

)
· Ii (t) + mslow

ai
· Islow

ai (t − 1) (8)

Ifast
ai (t) =

(
1−mfast

ai

)
· Ii (t) + mfast

ai · I
fast
ai (t − 1) (9)

with the memory values mslow
ai
� mfast

ai bound within the range of
[0, 1], where superscript slow indicates the quantity updates at a
slower rate since a larger m value more heavily weighs the past. We
treat timescale integration (memory) parameters mslow

ai
and mfast

ai as
fixed but, in reality, they could themselves be context-dependent.

The dual timescale approach is a simple computational method
for encapsulating the notion of multiple timescales that, in reality,
are complex neural phenomena (Thompson, 2009; Bi and Zhou,
2020; Shen et al., 2020; Spitmaan et al., 2020). Two timescales
of integration allow an individual with serial sampling of the
landscape or waterscape to disentangle dual overlapping contexts
occurring simultaneously; for example, detecting a spatial gradient
amid rapid time-varying changes while immersed in a media that
itself is moving, such as water.

The material discussed thus far does not stem primarily from
fish or the aquatic realm and, therefore, is likely applicable to
movement ecology questions in terrestrial, avian, and subterranean
environments. Next, we describe the details of our tidal river
salmon study before revisiting the general cognition characteristics
tailored specifically to our analysis. Note that, at field scale,
it is not yet possible to disentangle the relative contributions
of all the potential abiotic and biotic factors that might
be responsible for observed salmon movement. Therefore,
our notion of cognition likely inadvertently encapsulates other
factors that influence a fish’s hydrodynamic response such as
physiological condition, internal or bioenergetic state, change in
risk disposition, etc.

3. Tidal river salmon movement
behavior

In this section, we introduce the diverse and time-varying
river conditions of our tidal system and the data available.
Then, we describe the details of our cognitive approach to
mechanistic behavior modeling tailored specifically to interpreting
and predicting salmon movement and passage/entrainment.
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3.1. California’s Bay-Delta

The Sacramento-San Joaquin Rivers Delta that, together with
San Francisco Bay, is often referred to as California’s Bay-Delta
supplies drinking water to 27 million people, fuels a $32 billion
agricultural industry, and is habitat for more than 750 animal and
plant species (California Department of Water Resources, 2022).
The tidally influenced Sacramento River bifurcation at Georgiana

Slough in Walnut Grove (Figures 1, 2) is part of the managed
water supply system. A management goal at the bifurcation is to
direct juvenile salmon so their movement continues downriver
using the Sacramento River, which leads more directly to the Pacific
Ocean where these fish mature to adults. Salmon migrating through
the alternate route, Georgiana Slough, take a longer path to the
ocean that may also be associated with reduced survival probability
(Perry et al., 2018).

FIGURE 1

The Sacramento River reach between the Delta Cross Channel and Georgiana Slough in Walnut Grove, California used for our analysis is located
between river miles 26 and 28. The reach is located between the cities of Sacramento and San Francisco within the Sacramento-San Joaquin Rivers
Delta (left panels). The floating fish guidance structure or surface guidance boom (FFGS) is deployed only during year 2014 (middle and right
panels). FFGS field photo credit: California Department of Water Resources. Bathymetry data: U.S. Geological Survey, California Water Science
Center. Map data: Google, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency.

FIGURE 2

The tidally influenced flow of the Sacramento River bifurcation at Georgiana Slough during the 2008–2009 and 2014 studies. Negative river flows
move upriver away from the ocean. The graph of tagged salmon counts from acoustic-tag telemetry (Romine et al., 2013, 2017; California
Department of Water Resources, 2016) depicts the number of unique individuals observed at the junction with at least four consecutive detections
within a day. Our analysis timeframes, or simulation windows (darker grayed blocks), correspond to the dates with the largest number of tagged
salmon observed near the junction. FFGS is the floating fish guidance structure or surface guidance boom (Figure 1). Flow gage locations (SDC, GES,
GSS) shown in Figure 1. cfs is cubic feet per second. Gage flow data from the U.S. Geological Survey (2020).
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We use salmon acoustic-tag telemetry and hydrodynamic data
from the Sacramento River between the Delta Cross Channel and
Georgiana Slough to better understand and predict the stimuli-
response behaviors of the fish that result in their ultimate fate
(passage, entrainment) and movement patterns. We use data within
five analysis or simulation windows (Figure 2 and Table 2) from
two field study seasons. We use year 2009 data (two windows: 1–7
and 16–22 January) to fully build and parameterize the fish behavior
model. Later, we then apply the model without any modification
to year 2014 flow conditions that include a novel surface guidance
boom (three windows: 22–24 March, 1–4 and 12–15 April) to assess
predictive performance on out-of-sample data.

3.1.1. Salmon field data details
The fish used in the 2008–2009 and 2014 studies are juvenile

late fall-run Chinook salmon obtained from the Coleman National
Fish Hatchery operated by the US Fish and Wildlife Service. The
mean fork length of the 3,551 tagged salmon in 2008–2009 is
149.9 mm (Romine et al., 2013), and in year 2014 the average
is 157 mm with a range of 109− 213 mm across the 5,461
individuals with acoustic transmitters (California Department of
Water Resources, 2016; Romine et al., 2017).

Of the 3,551 tagged salmon in 2008–2009, 1,772 (49.9%)
are released downriver of the Georgiana Slough junction with
the Sacramento River; specifically, 690 downriver in Ryde in
the Sacramento River (river mile 24) and 1,082 in Georgiana
Slough (Figure 1). All other tagged salmon are released upriver
approximately 53 km (33 miles) in the City of Sacramento at the
Tower Bridge (river mile 59). In year 2014, 826 of the 5,461 tagged
salmon (15.1%) are released in Georgiana Slough approximately
5 km (3 miles) downriver of the junction with the Sacramento
River, and all others are released upriver in the City of Sacramento.

We filter out the following tag detections:

• known predator tags as well as tagged salmon that at any point
during their observation are assigned a predator probability
greater than or equal to 0.85 in the range [0, 1] based on
previous work by Romine et al. (2014), where 1.0 suggests
a predator and 0.0 a salmon. Some tagged individuals are
released as known predators, and any fish released dead is
classified as a predator. All fish released into Georgiana Slough
during the 2008–2009 study and later observed near the
junction are assumed to be predators (Romine et al., 2014).
One predator during the 2008–2009 study ate five tagged
salmon, and these tags are classified as predator;
• spatial positioning errors greater than 10 m. Georgiana Slough

is only about 45 m wide near the junction;
• consecutive tag detections less than 2 s apart in order to sample

the telemetry data as analogous as possible to the time step of
modeled salmon described later;
• consecutive tag detections that would require a speed over

ground greater than 2.5 m s−1, a threshold cutoff slightly
stricter than would be calculated (2.65 m s−1) by combining
the maximum water speed during our simulation windows of
about 0.65 m s−1 (from the hydrodynamic modeling described
later) and a generic 200−mm fish with a short-duration burst
swim speed of 2 m s−1 or 10 body lengths per second (Beamish,
1978).

3.1.2. Salmon movement patterns
Tagged salmon in the Sacramento River exhibit several distinct

movement modes. We classify every tagged salmon path in
the Sacramento River reach between the Delta Cross Channel
and Georgiana Slough during our simulation windows using
visual inspection according to the following predominant patterns
(Figure 3):

(1) direct path — no milling or zig-zag movements greater than
1/3 of the river’s width;

(2) zig-zagging — at least one cross-stream excursion sustained
for more than 1/3 of the river’s width. Path
can include brief, intermittent milling and/or
shoreline movement but no appreciable
double-backing within the reach between the
Delta Cross Channel and Georgiana Slough;

(3) reach milling — milling predominant throughout the reach
between the Delta Cross Channel and
Georgiana Slough;

(4) pier milling — distinct milling near the Walnut Grove
Bridge piers;

(5) riverbank — movement and milling predominantly near
the riverbank;

(6) mode
combination

— combination of two or more of (1) direct
path, (2) zig-zagging, (3–4) milling, and (5)
riverbank;

(7) unclassified — mode not readily classifiable, typically
because the swim path has few detections,
spatial gaps in key areas, a massive number
of detections in a small area that persist for
a while, or does not span the majority of
the reach between the Delta Cross Channel
and Georgiana Slough. Tag detections in the
upriver portion of the reach during 2014
have, at times, more gaps and imperfections
than 2008–2009 data, resulting in more
contributions to this class.

Tagged fish released downriver of the junction may not swim
upriver into the Sacramento River as far as the Delta Cross Channel
during our simulation windows and, thus, often contribute to
the unclassified count. Our classifications are analogous to those
developed independently in prior work by the U.S. Geological
Survey in a turning point analysis of the tagged fish; see page 3–215
of California Department of Water Resources (2016).

Heatmaps of the movement modes (Figure 3) illustrate the
pattern of all mode-classified tagged salmon. A heatmap is the
number (frequency, Freq) of unique individuals visiting a 1−m
square grid cell filling the domain, normalized by the total tagged
salmon in the movement mode category (n in Figure 3). Only
detected tag positions are heatmapped, that is, paths are not implied
from the position sequence.

Zig-zagging is, by far, the predominant movement mode in
the Sacramento River reach between the Delta Cross Channel and
Georgiana Slough in Walnut Grove. Salmon zig-zagging is not
unique, however, to the Walnut Grove reach in the Bay-Delta. Zig-
zagging and other movement modes are also observed upriver in
Clarksburg (Dinehart and Burau, 2005) about halfway between the
City of Sacramento release site and Walnut Grove (Figures 1, 3).
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TABLE 2 Tagged salmon data in analysis.

Number of tagged salmon

Permanently pass/exit (entrained) downriver during simulation window

Date First detected during
simulation window

Total exits (%: total
exits/first detections)

Georgiana Slough (% of
exits)

Sacramento River (% of
exits)

Jan 2009

1 56 40 8 32

2 75 62 21 41

3 20 20 5 15

4 24 22 7 15

5 67 60 14 46

6 10 12 4 8

7 9 10 2 8

Total 261 226 61 165

(86.6 %) (27.0 %) (73.0 %)

16 32 21 9 12

17 64 46 10 36

18 62 45 13 32

19 76 64 19 45

20 28 35 14 21

21 10 15 5 10

22 4 9 2 7

Total 276 235 72 163

(85.1 %) (30.6 %) (69.4 %)

Mar 2014

22 53 21 8 13

23 49 22 6 16

24 40 18 2 16

Total 142 61 16 45

(43.0 %) (26.2 %) (73.8 %)

Apr

1 87 39 5 34

2 74 41 8 33

3 67 35 5 30

4 53 29 5 24

Total 281 144 23 121

(51.2 %) (16.0 %) (84.0 %)

12 42 27 10 17

13 41 31 6 25

14 47 27 5 22

15 46 44 6 38

Total 176 129 27 102

(73.3 %) (20.9 %) (79.1 %)

A single salmon exhibiting more than one movement mode in
a short period of time can be observed in two examples within
Figure 3. First, just upriver of Georgiana Slough (Figure 3, upper
right) a salmon alternates between zig-zagging, pier milling, and the

riverbank movement modes. Second, upriver, a salmon can be seen
zig-zagging, transitioning to a riverbank mode, and then back again
to zig-zagging (Figure 3 inset of Clarksburg, California—white
fish trajectory).
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FIGURE 3

Available acoustic-tag telemetry data (upper-left, upper-middle, table in lower-middle), movement mode heatmaps (lower-right), example tagged
salmon swim paths of each mode (upper-right), and the modes exhibited elsewhere in the Bay-Delta (lower-left). Tabulated are the (a) total tagged
salmon released during the 2008-2009 and 2014 studies, (b) the number detected in the Sacramento River reach between the Delta Cross Channel
and Georgiana Slough, (c) within our simulation windows, and (d–f) unlikely a predator at moments the data is used in our analysis. Heatmaps are
computed after removing suspected predators, tag detections with spatial error greater than 10 m, and consecutive positions either less than 2 s
apart or require a speed over ground in excess of 2.5 m s−1 (f). n equals the total tagged salmon in the movement mode category. Example
constituent paths of each movement mode are plotted above the respective heatmap. Movement modes (1)–(6) are observed elsewhere in the
Bay-Delta (gray inset) in a supplemental 2014 hydrophone array (California Department of Water Resources, 2016). We assume all tagged fish
detected for the first time ever during our 2014 simulation windows are salmon (*) whereas year 2009 predator probabilities are formatted
differently and allow us to identify and remove suspected predators at a tag’s initial detection (d). We use transects immediately downriver of the
junction to determine tagged salmon final exits downriver (e) (Table 2) also referred to as passage or entrainment. The Delta Cross Channel is closed
during our simulation windows (Figure 2).

Habitat refuge, vision (Leander et al., 2021;
Müller et al., 2021), and explicit response to spatial structure
(Braithwaite and Burt de Perera, 2006; Miles et al., 2023) may play
modulating roles in salmon movement. Also, behavioral variation
among individuals of the same species is common (Bolnick et al.,
2002; Bierbach et al., 2017; Cresci et al., 2018; Campos-Candela
et al., 2019; Harrison et al., 2019; Honegger et al., 2020; Bailey et al.,
2021; Daniels and Kemp, 2022) as it has distinct survival value
(Humphries and Driver, 1970). We do not attempt to disaggregate
or prioritize the relative contribution of all internal and external
factors. Here, we focus on understanding the predominant zig-
zagging swim path pattern and how it with smaller proportions of
other movement modes might be hydrodynamically mediated.

3.1.3. Protean movement decisions and optimality
Movement is a behavior that operates within a hierarchy of

needs, where predation is a constant threat for prey species.
Predation complicates the analyses of behavioral choice in real-
world environments because rote responses easily discerned by

an outside observer may also be predictable from a predator’s
perspective. Protean movement in which a prey’s path changes
frequently, helps evade predators (Humphries and Driver, 1970;
Godin, 1997; Richardson et al., 2018). Selective evolutionary
pressure suggests that predators exploit repeated fixed patterns
of prey (Humphries and Driver, 1970; Domenici et al., 2008),
although perhaps not universally (Szopa-Comley and Ioannou,
2022). Peculiarities in observed movement that appear sub-
optimal from an outside observer’s perspective may be anti-
predatory characteristics whereby optimality is realized at the
much larger scale of species persistence. It is increasingly
recognized that perceptual decision-making at the individual
level in natural settings with multiple alternatives is suboptimal
(Yeon and Rahnev, 2020).

3.1.4. Zig-zagging
Salmon persist in the “predator-prey arms race”

(Humphries and Driver, 1970; Kelley and Magurran, 2006)
of California’s Bay-Delta, which suggests that they may have
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an anti-predatory characteristic to their downriver navigation
strategy. When visual cues are limited underwater, zig-zagging
keeps a prey’s average position within the river channel
unpredictable from the perspective of an immersed predator
(Humphries and Driver, 1970). Prey zig-zagging is a protean
movement pattern often thought to occur in small arenas where
it lowers a predator’s targeting accuracy (Furuichi, 2002; Jones
et al., 2011; Richardson et al., 2018; Gazzola et al., 2021), however,
juvenile salmon zig-zag also in the large spatial domains of
dammed reservoirs; see telemetry data references in the supporting
information appendix of Goodwin et al. (2014).

3.2. Fish movement behavior and
hydrodynamics

3.2.1. Determining fish movement behavior
starting with particles and particle tracking

To understand the relationship between salmon movement
and hydrodynamics, we must first understand how the river
environment itself is described and the assumptions that are
involved. Water flow is described by the Navier–Stokes equations
but conceptualizing a river’s advective contribution to a fish’s
displacement in space (x, y, z Cartesian coordinate positions)
is not trivial, especially when hydrodynamics changes with
time and location.

The movement of an ‘active’ particle that is moving under
its own motivation contributes volitionally to its spatial position
(Patlak, 1953; Siniff and Jessen, 1969; Kareiva and Shigesada, 1983),
e.g., a fish locating within a river via swimming. In water, the
change in spatial position of a swimming fish can be described
mathematically between time step t and t + 1 as follows:

x (t + 1) = x (t) + (u + uvolitional) · 4t

y (t + 1) = y (t) + (v + vvolitional) · 4t

z (t + 1) = z (t) + (w + wvolitional) · 4t (10)

where x, y, and z are the individual’s spatial position (m), u, v, and
w are the water velocity vectors (m s−1), uvolitional, vvolitional, and
wvolitional are the volitional contribution from swimming (m s−1),
and4t is the time step increment (s).

A fish that does nothing (no volitional movement) is
transported by the surrounding water flow while, in contrast, an
individual with an unbiased, uncorrelated random walk within a
non-advective environment such as a static lake typically exhibits
some form of diffusion in its location over time. In an advective
environment, such as a river or estuary, the diffusive property of a
random walk can be appreciably altered by the advection.

In general terms, the movement path of a volitional random
walk is stretched in the direction of the water flowline and
the degree to which this happens depends on the strength and
complexity of flow (river hydrodynamics). A “passive” particle
that is neutrally buoyant and massless will follow the water
flowline and provides a means to conceptualize and mathematically
determine the contribution of physical water flow to an entity’s

movement (displacement) in a river. The movement of a simulated
passive particle, however, depends inherently on the accuracy
and spatiotemporal resolution of the available water flow data
(Déjeans et al., 2022). Therefore, determining an entity’s volitional
movement behavior (which equals the measured total movement
minus what a passive particle would do) depends also on the
accuracy and spatiotemporal resolution of the available water
flow data. As there are numerous methods for describing
hydrodynamics within a river, with different tradeoffs, we provide
a brief synopsis before describing the stimuli that we use
in our analysis.

3.2.2. Describing river hydrodynamics via
numerical modeling and measurement

Fish in rivers experience turbulence that may be thought
of as water flow composed of a wide continuum of eddy sizes
where larger eddies spawn smaller ones, passing on kinetic energy,
down to the scale where viscous forces dampen or dissipate the
phenomenon (Tritico and Cotel, 2010; Rodi, 2017; Crowley et al.,
2022). In rivers, where width is often much larger than depth, the
eddy size continuum has two ranges. Smaller-scale motions are
fairly random whereas larger fluctuations interact with the mean
flow and often have some order and correlated pattern (coherent
structures). In each range, the largest eddies that contain the most
energy are limited by the size of the river dimension (Rodi, 2017).

The straightforward approach to simulating the Navier–Stokes
equations in order to describe river water flow dynamics is direct
numerical simulation or DNS (Orszag and Patterson, 1972; Moin
and Mahesh, 1998). DNS does not require any model assumptions
and accounts for fluid phenomena across the many spatiotemporal
scales relevant to fish, down to the smallest dissipation scale. DNS
simulation of river flow, however, is impractical with present-day
computing. For instance, a relatively low energy water domain just
0.1 m deep moving slowly at 0.1 m s−1 requires approximately one
billion computational mesh points (Keylock et al., 2005), and the
required grid size grows quickly with increasing flow complexity
and energy. All other approaches to the Navier–Stokes equations
involve approximating their full complexity (Keylock et al., 2012).

There are numerous approaches to modeling river
hydrodynamics, and every method involves tradeoffs (Lane
et al., 1999; Keylock et al., 2012; Rodi, 2017; Robinson et al., 2019;
Brunner et al., 2020). A simple way to gain information about the
time-varying nature of hydrodynamics is an unsteady Reynolds
averaged Navier–Stokes (RANS) approach where motions and
variations in the mean flow field account for eddy-shedding
at scales greater than the integral timescale (Keylock et al.,
2005). RANS renders a smoothed, or averaged, version of the
water flow field and, presently, is a common workhorse of river
hydrodynamic modeling.

An intermediate approach between DNS and RANS (Rodi,
2017) is large eddy simulation or LES (Smagorinsky, 1963; Bedford
and Babajimopoulos, 1980; Mahesh et al., 2004; Khosronejad et al.,
2016, 2020; Le et al., 2019; Flora, 2021; Flora and Khosronejad,
2021, 2022). LES resolves eddy phenomena larger than a given
filter scale, not just above the integral timescale as in unsteady
RANS (Keylock et al., 2005). LES resolves eddies down to the
mesh element size, and smaller scale phenomena are approximated
with a subgrid-scale model (Keylock et al., 2012; Rodi, 2017).
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LES is more sensitive to the treatment of the river’s boundary
conditions than RANS (Rodi, 2017), which is one reason why
hybrid LES-RANS approaches have emerged such as detached eddy
simulation or DES (Spalart and Allmaras, 1992; Spalart et al., 1997;
Constantinescu et al., 2011a; Keylock et al., 2012). LES and DES
require more nodes and are more computationally expensive than
RANS. The river flow field described by LES or DES is closer to what
a fish experiences (Figure 4), but the temporal sequence of LES
or DES outputs can be challenging to synchronize with a specific
calendar date-time. In other words, it is not straightforward to
determine whether an ephemeral eddy feature of interest from LES
or DES occurred before, during, or after a measured fish passed
through that part of the river.

For most rivers, water depth is shallow relative to width so
the vertical acceleration is negligible compared to gravitational
acceleration (Lai, 2010). In shallow water situations, the Navier–
Stokes equations can be vertically averaged (Rodi, 2017). Two-
dimensional, depth-averaged modeling of the Navier–Stokes
equations provides the next level of accuracy when 3-D is not
required, and the approach is practical for many river applications
with a more typical desktop computer. 2-D depth-averaged
approaches require considerably less computational resources.
Numerous modeling approaches occupy the spectrum between
RANS and simpler 2-D and 1-D methods, often covering much
larger spatial domains (Zhang et al., 2016; Savant et al., 2018;
Robinson et al., 2019; Brunner et al., 2020).

The selection of hydrodynamic model involves accounting
for whether the additional required resources are balanced by
the needed improvements in predictive ability and utility (Lane
et al., 1999; Lai, 2010; Robinson et al., 2019; Brunner et al., 2020).
The field of hydrodynamic modeling continues to rapidly evolve,
and emerging methods such as physics-informed neural networks
(Karniadakis et al., 2021; Kochkov et al., 2021) and other forms of
machine learning (Margenberg et al., 2022; Vinuesa and Brunton,
2022; Zhang et al., 2022) are expanding the viable approaches.

Generally, one can measure river hydrodynamics at finer
spatiotemporal scales than modeling can render them, but at
the expense of spatial coverage (Figure 4). Acoustic Doppler
velocimeters (ADVs) measure water velocity many times a second
at a single point. Acoustic current profilers now commonly referred
to as acoustic Doppler current profilers or ADCPs (Muste et al.,
2004; Dinehart and Burau, 2005) measure the flow field many
times a second at multiple distance intervals from the aimed
instrument and are often able to span much of a river’s width
or depth. Particle image velocimetry or PIV (Soo et al., 1959;
Adrian, 2005; Tritico et al., 2007) and large-scale particle image
velocimetry or LSPIV (Fujita, 1997; Fujita et al., 1998; Muste et al.,
2008) measure instantaneous velocities in a 2-D plane using tracers
present in the flow. Infrared quantitative image velocimetry or
IR-QIV (Schweitzer and Cowen, 2021) measures instantaneous
velocities at the 2-D water surface without tracers or illumination
and can be used both day and night. A continuing active area
of research is developing methods to estimate 3-D subsurface
hydrodynamics from river-wide measurements at the water surface
(Johnson and Cowen, 2016, 2017a,b, 2020). Increasing the spatial
coverage of river measurements can be accomplished by deploying
multiple instruments or, in some cases, moving the instruments to
capture different flow field regions.

To date, no measurement or modeling technique can accurately
describe hydrodynamics down to the finest scale that fish detect
throughout a 3-D river reach. We use field measurements of
the river’s flow and bathymetry to build and validate a RANS
model of the time-varying 3-D hydrodynamics for year 2009
(Lai, 2000; Lai et al., 2003, 2017). Later, for year 2014, we use
a 2-D depth-averaged model (Lai, 2010). For both models, we
output river hydrodynamics at 3−min intervals because the
water flow field at the junction of the Sacramento River and
Georgiana Slough can change noticeably within a few minutes and
frequently reverses direction (Figure 2). Our 3-D RANS and 2-D
depth-averaged model mesh domains (Figure 1, middle plot) are
approximately 550,000 and 50,000 vertices, respectively, for each
3−min time increment.

3.2.3. Eulerian-Lagrangian-agent method (ELAM)
River hydrodynamics output from our 3-D RANS and 2-

D depth-averaged modeling determines the river’s advective
contribution (u, v, and w water velocity vectors) to the fish’s
spatial displacement during an increment of time (Equation 10).
To compute the fish’s volitional swimming contribution to its
own displacement, we must first gain an understanding of the
stimuli available to our modeling that can influence its behavior.
Then, we must determine how the multiple available competing
and simultaneous stimuli may be perceived at a moment in
time by the animal and inform a repertoire of evolved behaviors
that mathematically result in a movement response behavior,
specifically, a 3-D orientation and speed (uvolitional, vvolitional, and
wvolitional).

Fish are simulated as an “active” particle within our
hydrodynamic model grid. A 3-D fish orientation and speed
(uvolitional, vvolitional, and wvolitional) together with the u, v, and w
water velocity vectors from the hydrodynamic model complete
Equation 10 and allow us to update the fish’s spatial displacement
each time increment.

We employ an Eulerian-Lagrangian-agent method (ELAM) to
conceptually understand the movement behavior of salmon by
mathematically resolving the differences between passive particle
and tagged fish movement path and passage/entrainment patterns
(Goodwin, 2004; Goodwin et al., 2006, 2014). The ELAM acronym
stems from the constituent numerical frameworks involved
(Figure 5):

• Eulerian — computational mesh (static or time-varying
2-D or 3-D) composed of nodes used to describe the
environmental domain;
• Lagrangian — continuous directional trajectory composed of

computationally discrete locations used to describe individual
movement trajectories and directional sensory perception;
• agent — algorithm ensemble used to describe the

behavioral cognitive decision-making of animals.

We simulate each salmon individually in order to gain
their Lagrangian perspective. Each individual has agent-based
perceptual responses to the Eulerian-meshed river hydrodynamics.
A sensory ovoid around each simulated salmon (Figure 5),
described in detail later, limits the spatial extent of stimulus
information available for making movement decisions. Simulated
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FIGURE 4

Rivers have more hydrodynamic heterogeneity than can be readily captured by any single measurement device or computational model. Here, we
use a conceptual montage to illustrate some of the general tradeoffs in spatiotemporal detail vs coverage associated with different approaches to
measuring/modeling river hydrodynamics. The fidelity of hydrodynamic information available influences the factors attributed to 3-D/2-D fish
movement trajectories and behavior. Water flow heterogeneity within a river at the surface can be measured in detail via an infrared camera that
reflects underlying hydrodynamic phenomena, illustrated here near Sacramento River mile 34 in Sutter Slough (courtesy of Seth Schweitzer;
Schweitzer and Cowen (2021)). Water flow heterogeneity can also be modeled in great 3-D detail throughout the river column using LES, illustrated
here near Sacramento River mile 89.5 (courtesy of Kevin Flora; Flora and Khosronejad (2022)). Describing river hydrodynamics with infrared
quantitative image velocimetry (IR-QIV, Schweitzer and Cowen (2021)) or LES (Khosronejad et al., 2016; Flora and Khosronejad, 2022) provides more
spatiotemporal detail than is possible using the 3-D RANS or 2-D depth-averaged methods in our study. In 3-D LES and RANS modeling, the
hydrodynamic variable values are provided explicitly at multiple depths whereas 2-D depth-averaged models provide only a single value for each
horizontal (xy-plane) location. However, RANS and even 2-D models render more spatial heterogeneity than other, courser forms of hydrodynamic
modeling. The 3-D RANS and 2-D depth-averaged illustrations of the river flow field here are of similar conditions in the Sacramento River near mile
27 between the Delta Cross Channel and Georgiana Slough upriver of the bridge piers. ADV is an acoustic Doppler velocimeter; ADCP is an acoustic
current profiler now commonly referred to as an acoustic Doppler current profiler; PIV is particle image velocimetry; LSPIV is large-scale particle
image velocimetry.
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FIGURE 5

To implement our cognitive approach to mechanistic salmon movement behavior modeling we use a numerical scheme called the
Eulerian-Lagrangian-agent method, or ELAM. We use three different forms of river hydrodynamic model mesh output: explicit 3-D hydrodynamics
(left panels), 2-D xy-plane horizontal slice extractions from just under the water surface for each output in the original 3-D flow field time series
(middle panels), and 2-D depth-averaged water flow fields (right panels). In the 2-D analyses (middle and right panels), both the vertical
z-coordinate (depth-oriented) hydrodynamics and fish swim orientation/speed are eliminated. No 3-D model is used for year 2014. Only a 2-D
depth-averaged river hydrodynamic model is available for year 2014 ELAM simulations. A sensory ovoid (lower panels) around each simulated
salmon limits the spatial extent of stimulus information available for making movement decisions.

fish neither have global information nor know downriver
from upriver.

In our study, the agent framework encodes our cognitive
representation of a salmon’s perceived local hydrodynamic
environment and resulting behavioral choices. Fish movement
decisions (agent framework) are composed of a swim orientation
and speed (Lagrangian framework) implemented in the
spatial mesh data output from the hydrodynamic model
(Eulerian framework).

3.2.4. ELAM model development and
parameterization

To build a hypothesis for the salmon’s behavior repertoire,
we identify possible strategic and tactical solutions (Anderson,
2002) that individuals of the population may have evolved over
time to confront common and critical challenges in order to
survive and persist. Behavioral choice observed in one setting may
not be relevant to a repeat encounter. Identifying the motivation
of animals is an unavoidably subjective exercise with present
technology yet important for understanding which modalities may
inform a specific movement decision, how their behavior will vary
with context, and for extrapolating existing observations to make
predictions in other environmental conditions (Mann, 2018, 2020).

We use a systematic, manual exploratory process to develop
and parameterize the behavior repertoire. We start by overlaying
the time-dynamic environment with fish movement trajectories.
Separate, but related, we also plot each trajectory in its entirety

atop the most representative water flow condition. The two overlays
are then viewed many times repeatedly, leveraging human visual
acuity and intuition. The goal of the initial exploratory process is
to find and discern repeated movement patterns — and changes
in movement patterns — that cannot be readily explained with
how passive particles move. The manual process takes time. Ever-
maturing tools are getting better at automating the identification
of trajectory patterns and change phenomena (Romine et al., 2014;
Gurarie et al., 2017; Vilk et al., 2022). However, we find that to
date automated methods cannot yet fully match the performance of
human visual acuity and intuition. One reason is that key patterns
we find useful for discerning a behavior repertoire are obvious only
in the context of — that is, contrasted with — movement dynamics
that happen elsewhere either spatially in the domain or in time
within the available data.

Unfortunately, we find that key movement patterns and
attributes (e.g., changes in swim path orientations) are rarely
evident at first and emerge to the human eye/intuition after gaining
a gist of the movement patterns and changes. Complicating the
process of identifying key patterns and changes is that one must
keep in mind the underlying hydrodynamics and what passive
particles would do. In rivers, hydrodynamics can vary quickly in
both space and time.

An observed real-world fish movement pattern (or change)
may have a place in the behavior repertoire if it occurs analogously
among multiple individuals. We often observe patterned
phenomena of interest to our analysis where hydrodynamic
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features are more complex. A pattern or change may not have
a place in the repertoire if the trajectory could be attributed
to inherent animal movement stochasticity, observed in very
few individuals, or not coincident with any nearby rendered
environmental feature. More complicated is when water flow
pattern changes in time, switching from identifiable hydrodynamic
features at one moment to perhaps none at all, for instance, during
slack tide; in such circumstances, movement pattern changes
might be related to the temporal and not spatial domain. Further
complicating the process, but where manual acuity and intuition
are helpful, is when patterns are obscured by imperfect real-world
sampling of the trajectory, common in the aquatic realm. Despite
the above challenges, we anticipate that tools in the near-future will
automate the present manual process in a way that is more on par
with human visual acuity and intuition.

After key distinct patterns are discerned within the trajectory
data, typically about a half-dozen, trial-and-error exploration
commences whereby one pattern or change is selected and
work begins to reproduce that phenomenon using the available
environmental data. Once successful, a scaffolding process begins
whereby the next distinct pattern or change is reproduced
whilst not losing the model’s ability to also reproduce the
first behavior phenomenon. Each addition to the model’s
behavior repertoire typically involves nuancing the algorithms
and parameterization of already-described phenomenon. The
exploratory model development process ends with a behavior
repertoire, algorithms, and parameterization when all of the
identified trajectory pattern and change phenomena can be
reproduced with a single structure.

We use prior ELAM model findings as a starting point and
guide (Goodwin, 2004; Goodwin et al., 2006, 2014) for how
hydrodynamic stimuli might relate to fish movement patterns and
changes. We also leverage findings — both old and new — from
fish-flow research (Tables 1, 3). In this study, we identify the
following four movement patterns and changes in the 2009 data
that, once reproduced via simulation, result in the fully developed
and parameterized version of the ELAM model described herein:

• a salmon changing its zig-zag within the Sacramento River in
front of the Delta Cross Channel junction during relatively
steady (unchanging with time) ebb tide flow, suggesting the
riverbank per se may not explicitly be solely responsible for
the swim path re-orientation pattern;
• nine salmon near-concurrently zig-zagging within the

Sacramento River with little-to-no milling in the reach from
the Delta Cross Channel to downriver of the Georgiana Slough
junction during relatively steady ebb tide flow, in which both
flow and fish continue primarily via the Sacramento River;
• two salmon milling, in part, with zig-zag movements during

relatively slow flood tide flow, one in the thalweg near the
bridge piers and, at the same time, the other along the
Sacramento River bank opposite the Delta Cross Channel;
• two salmon milling, in part, with zig-zag movements during

relatively slow ebb tide flow into Georgiana Slough, one of the
fish in the thalweg just downriver of the Delta Cross Channel
junction and the other near the bridge piers that does not
enter (e.g., seems to avoid) Georgiana Slough dissimilar from
a passive particle. At the same time, two salmon swim upriver

TABLE 3 Candidate hydrodynamic stimuli: abbreviated synopsis of historical and more recent works.

Candidate hydrodynamic
stimulus

Fish behavior response

Water velocity gradient Dijkgraaf, 1963; Royce et al., 1968; Fausch and White, 1981; Kalmijn, 1988, 1989; Fausch, 1993; Fletcher, 1994; Hayes and Jowett,
1994; McLaughlin and Noakes, 1998; Braun and Coombs, 2000; Crowder and Diplas, 2000; Montgomery et al., 2000; Kemp et al.,
2003; Goodwin, 2004; Goodwin et al., 2006; Sweeney et al., 2007; Nestler et al., 2008; Russon and Kemp, 2011; Abdelaziz et al., 2013;
Vowles et al., 2014; Oteiza et al., 2017; Albayrak et al., 2020; Beck, 2020; Swanson et al., 2020; Zhu L. et al., 2021; Li et al., 2022; Tan
et al., 2022; Li et al., 2023

Turbulence MacKinnon and Hoar, 1953; Pavlov et al., 1982; Pavlov and Tyuryukov, 1993; Pavlov et al., 1995; Skorobogatov et al., 1996; Coutant,
1998; Coutant and Whitney, 2000; Crowder and Diplas, 2000; Pavlov et al., 2000; Cada and Odeh, 2001; Coutant, 2001; Crowder
and Diplas, 2002; Enders et al., 2003; Smith, 2003; Lupandin, 2005; Smith et al., 2005; Cotel et al., 2006; Liao, 2006, 2007; Enders
et al., 2009b; Tiffan et al., 2009; Tritico and Cotel, 2010; Silva et al., 2011; Lacey et al., 2012; Silva et al., 2012; Abdelaziz et al., 2013;
Liao and Cotel, 2013; Smith et al., 2014; Cotel and Webb, 2015; Elder and Coombs, 2015; Gao et al., 2016; Kerr et al., 2016; Kirk
et al., 2017; Quaranta et al., 2017; Tan et al., 2018; Kerr and Kemp, 2019; Silva et al., 2020; Zhu et al., 2020; Ben Jebria et al., 2021;
Kulić et al., 2021; Lewandoski et al., 2021; Li P. et al., 2021; Prada et al., 2021; Syms et al., 2021; Szabo-Meszaros et al., 2021; Zhu L.
et al., 2021; Zielinski et al., 2021; Gisen et al., 2022; Li et al., 2022; Tan et al., 2022; Li et al., 2023; Wiegleb et al., 2023

Relative water velocity/speed MacKinnon and Hoar, 1953; Brett and Alderdice, 1958; Schwartz, 1974; Montgomery et al., 1997; Standen et al., 2002; Standen et al.,
2004; Sweeney et al., 2007; Chagnaud et al., 2008; McElroy et al., 2012; Mussen et al., 2013; Langford et al., 2016; Romine et al., 2021;
Gisen et al., 2022; Li et al., 2022; Liao et al., 2022; Maddahi et al., 2022; Tan et al., 2022; Zeng, 2022; Kerr et al., 2023; Li et al., 2023;
Renardy et al., 2023

Water acceleration, deceleration, and
inertial factors

Jones, 1956; Brett and Alderdice, 1958; von Baumgarten et al., 1971b; Ducharme, 1972; Arnold, 1974; Denton and Gray, 1988, 1989;
Kalmijn, 1989; Kroese and Schellart, 1992; Bleckmann, 1994; Pavlov and Tjurjukov, 1995; Haro et al., 1998; Coombs and
Montgomery, 1999; Coutant and Whitney, 2000; Johnson et al., 2000; Montgomery et al., 2000; Kanter and Coombs, 2003; Kemp
et al., 2005; Liao, 2007; Sweeney et al., 2007; Bleckmann, 2008; Enders et al., 2009a; Johnson et al., 2009; Enders et al., 2012;
Chagnaud and Coombs, 2013; McHenry and Liao, 2013; Montgomery et al., 2013; Goodwin et al., 2014; Vowles et al., 2014; Arenas
et al., 2015; Gisen et al., 2022; Zeng, 2022; Wiegleb et al., 2023

Water pressure (registered by fish swim
bladder)

Moreau, 1876; Jones, 1949, 1951, 1952; McCutcheon, 1966; Alexander, 1982; Coutant and Whitney, 2000; Goodwin, 2004; Strand
et al., 2005; Goodwin et al., 2006; Govoni and Forward, 2008; Nestler et al., 2008; Weitkamp, 2008; Brown et al., 2012; Goodwin
et al., 2014
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in Sacramento River flood flow from downriver of the slough
junction and these fish readily enter Georgiana Slough akin to
passive particles.

We identify one additional pattern, i.e., two salmon zig-
zagging into Georgiana Slough, but are able to reproduce this
last example as an emergent outcome of reproducing the previous
four examples. The example patterns and changes above are
found multiple times in the field telemetry data. Reproducing the
above movement patterns via simulation by adding them to the
model mix, one by one, is how we develop and parameterize the
ELAM in this study.

In due diligence, we rigorously evaluate the model structure
and all our parameters that we describe in the coming sections via
genetic algorithm and simulated annealing optimization schemes.
We evaluate model structure by eliminating (zeroing-out) different
components and stochasticity required to initially meet our goal.
We also evaluate adding in (activating) stochasticity permissible
from the algorithms in our model but not leveraged in the original
manual development. Lastly, we explore the model’s parameter
space to find optima that may have eluded the manual means of
development. Optimization schemes result in no further model
or performance improvements but remain an area of study.
We anticipate that automated methods will be superior in the
future, so the exploratory process leading to the model structure
described in the following sections can be accomplished faster and
cheaper in later works.

3.3. Hydrodynamic stimuli

Identifying variables of the river flow field relevant to fish
movement behavior has been an ongoing process for almost a
century (Tables 1, 3). Fish have multiple sensory modalities to
inform movement (Liao, 2007), and the context-dependencies in
multisensory information are important even for the relatively
simple case of rheotaxis (Bak-Coleman et al., 2013; Coombs et al.,
2020).

Selecting stimuli for analysis is still unavoidably subjective
as the metrics available change with measurement scale. Also,
hydrodynamic variables are often correlated. Not surprisingly,
different hydrodynamic variables have been attributed to fish
movement behavior. We select five candidate hydrodynamic
stimuli from the literature for evaluation in our study (Table 3).

3.3.1. Variable physical quantities
A nerve response in fish can be stimulated with relative flow

field currents as small as 0.025 mm s−1 (Schwartz, 1974) and water
particle movement of less than 0.5 µm (Suckling and Suckling,
1964; Anderson and Enger, 1968; Popper and Carlson, 1998). Fish
detect and interact with hydrodynamics at scales far smaller than
are rendered in a river reach size RANS model (Borazjani and
Sotiropoulos, 2008, 2009, 2010; Windsor et al., 2010a,b; Oteiza et al.,
2017; Khan et al., 2022). However, animals also constantly integrate
momentary, noisy stimuli sensory evidence over time and space
to infer the state of their environment (Bahl and Engert, 2020;
Dragomir et al., 2020; DiBenedetto et al., 2022).

We assume fish can generate a hydrodynamic image of
its nearby river environment not dissimilar from RANS-level

spatiotemporal resolution by integrating sensory experience over
time. We do not explicitly account for how a fish upscales
minuscule hydrodynamic experiences to form a RANS-level
perception of its localized river flow field. However, later,
we describe parameterization of Equation 3 that can upscale
point measurements of the RANS solution to perceive much
larger, bulk flow changes within the river due to the tides.
The minuscule-to-RANS and RANS-to-tidal perception upscaling
processes could be analogous. Leveraging our assumptions, we
formulate candidate stimuli (Table 3) using output from our RANS
hydrodynamic model.

The spatial gradient of water speed or velocity (magnitude, GM ,
s−1) represents the amount of mechanical distortion in the water
flow field (Nestler et al., 2008). Mathematically, GM is computed
as the Frobenius or Euclidean norm of the pure normal strain
(linear deformation), angular velocity (rotation), and shearing
strain (angular deformation) tensors. We compute GM on the
Eulerian mesh of the hydrodynamic model with u, v, and w
representing the mean or average water velocity vectors at time t:
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Turbulence is hard to describe mathematically with a single
metric (Tennekes and Lumley, 1972; Tritico and Cotel, 2010; Liao
and Cotel, 2013; Crowley et al., 2022). For instance, in the x-
coordinate direction, turbulent flow can be conceptually viewed as
the instantaneous random fluctuation u′ about the mean u where
the total water velocity at a moment in time, umomentary, is:

umomentary
= u + u′ (12)

where u′, v′, and w′ represent the instantaneous water velocities
relative to the mean velocities. Of the many options for describing
turbulence, we select the metric of turbulent kinetic energy (TKE,
m2 s−2) to include in our analysis. TKE is computed as follows:

TKE (t) =
1
2

(
(u′)2
+ (v′)2

+ (w′)2
)

(13)

TKE is computed within our 3-D RANS model using the k− ε

turbulence closure method (Harlow and Nakayama, 1968; Launder
and Spalding, 1974).

Water speed (VM , m s−1) is simply the magnitude of the mean
velocities:

VM (t) =
√

u2 + v2 + w2 (14)

Fish are sensitive to gravity and, thus, also to other acceleratory
and inertial stimuli (von Baumgarten et al., 1971a), which we define
with the spatial, convective acceleration of water (magnitude, AM ,
m s−2) as:
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Lastly, we assume water pressure registered by the salmon’s
swim bladder varies proportionally with depth below the surface
(D, m).

3.3.2. Spatial velocity gradient (GM) vs. turbulent
kinetic energy (TKE)

The magnitude of the spatial velocity gradient tensor, GM , is
the sum of linear deformation (pure normal strain rates), rotation
(angular velocities), and angular deformation (shearing strain
rates) mechanisms. While the mathematics are more involved, in
simple conceptual terms, GM can be viewed as a precursor to
turbulence. A velocity gradient, GM , may or may not result in
turbulence. TKE reflects turbulence that has actually materialized.
The velocity gradient may exist in areas with little-to-no TKE but
turbulence is less likely without GM . Variables GM and TKE can be
highly correlated. Fish may be attuned not only to turbulence but
also the distortion that precedes it (Goodwin, 2004; Nestler et al.,
2008).

In our hydrodynamic modeling, turbulence represented as TKE
exhibits spatial patterns similar to our velocity gradient metric,
GM . The spatial pattern similarities between TKE and GM occur
throughout our river domain and tidal phases. From a stimulus
modeling point-of-view, the similarities suggest only one of the

variables is needed. We select the velocity gradient because, in our
modeling and post-processing, the spatial GM patterns are more
pronounced than TKE across tidal phases. More specifically, the
velocity gradient GM illuminates a marked stimulus in areas where
tagged salmon re-orient whilst little-to-no TKE signature exists
(i.e., down to the lowest practical numerical precision) (Figure 6).

Given that fish movement is commonly analyzed in the context
of turbulence (Table 3), we illustrate TKE for visual comparative
purposes. A full accounting of the tradeoffs between TKE and GM
as a behavioral stimulus is beyond the scope of the work herein.
We recognize that our TKE finding may be attributable to nuances
and idiosyncrasies of our hydrodynamic modeling that, if done
differently, might result in a different conclusion regarding the
value of turbulent kinetic energy for modeling salmon swimming
behavior. The tradeoffs between TKE and GM are worthy of future,
more in-depth analysis.

3.3.3. Acute vs. nonacute
We select four hydrodynamic variables to continue our

analysis, and introduce the notion of acute and nonacute to
conceptually differentiate how the stimuli contribute to and rank
in precedence order within a repertoire of multiple competing
behaviors:

FIGURE 6

Tagged salmon and candidate hydrodynamic stimuli. Depicted are two tagged salmon (A), water flowlines (B), and the physical quantities of our
candidate hydrodynamic stimuli (C–F) in a river scenario with both ebb and flood flows. Spatial patterns in our velocity gradient metric GM are
similar yet more pronounced than turbulent kinetic energy, TKE, [compare panels (D) and (E)]. Across tidal phases, GM illuminates a hydrodynamic
stimulus in areas where tagged salmon re-orient even where little-to-no TKE signature exists down to the lowest practical numerical model
precision available. Map data: Google, Maxar Technologies, U.S. Geological Survey, USDA Farm Service Agency.
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• spatial gradient of water speed, GM , stimulus i = 1
(nonacute)
• water speed, VM , stimulus i = 2 (nonacute)
• water acceleration, AM , stimulus i = 3 (acute)
• fish swim bladder pressure, D, stimulus i = 4 (acute)

We consider a variable to be acute if the stimulus has a
surmised inherent value to the animal across different contexts.
Examples include an approaching predator or a physiologically
damaging hydraulic condition. In our approach, acute stimuli
require a timely response and quickly dominate other, nonacute
factors. We consider a stimulus to be nonacute if the behavior’s
value to the animal depends mostly on the present context
of competing stimuli. The behavior response to an acute
stimulus will be more consistent across different environmental
contexts as it is less sensitive to competing stimuli. We
describe in detail later how competing acute stimulus responses
are resolved.

3.4. Stimuli: physical vs. perceived
intensity

In rivers, GM and AM quantities span orders of magnitude, so
we convert the intensities to log form analogous to the decibel scale
using Equation (1):

Ii = 1 (t) = log10

(
GM (t)

Go

)
(16)

Ii = 3 (t) = log10

(
AM (t)

Ao

)
(17)

where Go = 1e−6 and Ao = 1e−6 are arbitrary reference values.
Values of VM and D do not span orders of magnitude, so they
remain unmodified from their physical quantities:

Ii = 2 (t) = VM (t) (18)

Ii = 4 (t) = D (t) (19)

3.5. Stimuli: perceived change in intensity

We compute the derivative stimulus quantities of GM , VM ,
and AM on the Eulerian mesh (Equations 11–15), then transform
them to perceived intensity Ii (Equations 1, 16–19), and lastly
compute the temporal rate of change in Ii at the fish centroid
via Equation 2. To be clear, note that we are first computing
the derivative quantities of GM , VM , and AM throughout the
entire spatial domain as a preprocessing step, in other words,
via a global Eulerian perspective. Second, we interpolate each
physical derivative quantity from the Eulerian mesh to the precise
fish centroid location and transform GM , VM , and AM to their
perceived intensity via Equations 16–19. For the last step, we
compute one more rate of change (derivative, differential) that is
of the temporal domain and conducted only at the fish centroid
location. The last derivative uses a local (Lagrangian) perspective

in which the individual compares the momentary experience at
the fish centroid to a habituated memory integrating all preceding
experiences (Equation 2). We describe the last derivative (rate of
change, differential) computed at the individual level next, in the
following paragraphs.

We find that the perceived change in stimuli i = 1, 2, 3 follow
Equation 2 as expected, reinforcing the notion that proportional
differencing (signal-to-background ratios) influence behavioral
choice. We find again here — as in prior work (Goodwin, 2004;
Goodwin et al., 2006, 2014) — that the perceived change in swim
bladder pressure (D, m, stimulus i = 4) for eliciting the needed
vertical movement dynamics in our approach is best described
without the denominator. Specifically, we find that using the
denominator results in an asymmetric response to perceived depth
changes that biases the modeled fish to move up more than down in
the water column. The bias makes it difficult to reproduce observed
salmon swim paths. Thus, here as in previous work, we use a
simpler formulation that does not bias vertical movement either up
or down in the water column:

E4 (t) =
∣∣I4 (t)− Ia4 (t)

∣∣ (20)

Alternative methods exist for translating physical
(measured/modeled) variables into perceived quantities, Ei,
but to date our evaluations have not found better formulations
for our stimuli i = 1− 4 that work across our multiple
environmental contexts.

3.6. Multiplex signal disentanglement via
multi-timescale perceptions

In our approach, simulated salmon make decisions every 2 s
even if the choice is no change from the previous time increment.
The 2− s time increment is mandated by a goal of keeping
individuals responsive to hydrodynamic features that can come-
and-go in a matter of a few seconds, e.g., as a fish rapidly
transits through infrastructure. Also, we want to limit the number
of interactions with the boundary of the hydrodynamic model
Eulerian mesh. Regardless of the boundary interaction heuristics
employed, e.g., at riverbanks, these features of the model are
nonetheless more physical than hydrodynamically-mediated and
can, if left unchecked, influence the fate of simulated fish. Our goal
is to maintain as much a hydrodynamically-mediated fish swim
behavior as possible.

We use memory timescales, mai , to mathematically develop a
context for behavioral choice. A timescale is one part of a process
that determines the spatiotemporal scales within which a simulated
salmon can robustly discern hydrodynamic feature changes. The
sequence of perceptual processing (model variables) that results in
a behavior decision B is as follows:

mai

memory
→

Iai

habituation
→

Ei, ki

perceived change in stimulus intensity

→
aB

sensory activity
→

eB

evidence accumulator
→

B
behavior

In the remaining portion of this section, we describe the first
half of the sequence: mai → Iai → Ei. We start with the construct
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of one timescale for each stimulus i that we refer to arbitrarily as
slow. We set mslow

ai
= 0.9999 (T50 = 3.85 h) where T50 is the

half-life of the habituation indicating how long it takes for the level
to decline 50% after the last non-zero stimulus acquisition. The
memory value is pulled directly from prior work that focused on
simplifying the parameter (Goodwin et al., 2014).

We find the single timescale is sufficient for activating a
response to our acute stimuli (Table 4) across diverse contexts. We
describe the behaviors fully in the next section (Table 5), but for the
purposes of illustrating the first part of the perceptual processing
sequence we note that one of our behaviors, B {4}, is a response
to water acceleration. Most often the behavior B {4} is triggered in
the context of simulated salmon avoiding Georgiana Slough, that
is, repulsed by the water acceleration enveloping the entrance to
the slough. The B {4} response is relatively consistent so long as the
water acceleration stimulus, AM , is present at sufficient intensity.

In contrast, we find that responses to our nonacute
stimuli — behaviors B {2} and B {3} also referred to with the
notation B {2, 3} — require additional context quantification.
B {2} is a reaction to GM that results in an orientation toward
(attraction to) the fastest nearby water, VM . Behavior B {3} is
similar but inverted, in which the response to VM results in an
orientation toward the largest nearby spatial gradient in water
speed, GM (Table 5). By nearby we mean within the perceptual
range of the sensory ovoid (Figure 5) described in detail later.
We highlight B {2, 3} here because of their unique dependence
on multiple timescales. B {2, 3} must be responsive to both local
spatiotemporal features such as riverbank-induced hydrodynamic
patterns of elevated GM and low VM as well as to, at the same time,
bulk water flow speed changes due to the tides. B {2, 3} take on
a very different character — visual trajectory appearance — near
the riverbank when bulk river flow changes due to the tides.

TABLE 4 Relationship between hydrodynamic stimuli, memory timescales (slow = longer-term; fast = shorter-term), and behavior response.

Original physical (measured/modeled) quantity,ϕ

Unmodified, Iϕ = ϕ Log-transformed, Iϕ = log10

(
ϕ
ϕo

)
Memory
(habituation)

Single timescale
Islow
ai

Fish’s swim bladder pressure
D (t), meters

Stimulus i = 4 (acute)
Triggers behavior B {5}

Response type I

Water acceleration
AM (t), m s−2

Stimulus i = 3 (acute)
Triggers behavior B {4}

Response type II

Dual timescales
Islow
ai

, Ifast
ai

Water speed
VM (t), m s−1

Stimulus i = 2 (nonacute)
Triggers behavior B {3}

Response type II

Spatial gradient in water speed
GM (t), s−1

Stimulus i = 1 (nonacute)
Triggers behavior B {2}

Response type II

Type I is triggered by stimulus i, response orients to same stimulus. Type II is triggered by stimulus i, response orients to different stimulus.

TABLE 5 Engineering design relevance of each behavior in the repertoire of downstream-migrating salmon responses to river hydrodynamics.

Context-based behavioral choice/decision

Engineering design relevance
How each stimulus might be used to trigger a
managed movement of fish in a river channel

Behavior notation
Type I or II

Swim path/trajectory color

Orientation
Alignment
Attraction
Repulsion

Modulation

Trigger
Sensory evidence accumulator, eB , integrates the

activity, aB , supporting behavior B when the following
occurs:

Guide salmon with the bulk water flow
toward an area

B {1}
N/A
Cyan

Flowline alignment
swim with flow

Absence of other triggers

Separate (guide) salmon away from the bulk water
flow
toward/away from an area

B {2}
II

Yellow

Velocity (VM) attraction
swim toward fastest water

Small or decreasing perceived change in spatial
gradient of water speed GM (↓ Efast

1 ) in
large GM (↑ Eslow

1 )

B {3}
II

Blue

Gradient (GM) attraction
swim toward largest spatial

gradient in
water speed

Small or decreasing perceived change in water speed
VM

(↓ Efast
2 ) in

fast water (↑ Eslow
2 )

Repulse salmon
away from an area

B {4}
II

Gray

Acceleration (AM) repulsion
swim against flowline, away

from large AM

Large perceived change in water
acceleration/deceleration AM (↑ Eslow

3 )

In deep environments:
Separate (guide) salmon away from the bulk water
flow
toward/away from an area

B {5}
I

Green

Pressure (depth, D)
modulation
swim toward

habituated/acclimatized
depth

Large perceived change in swim bladder pressure or
depth D
(↑ Eslow

4 )

N/A is not applicable. ↓ = small or decreasing values; ↑ = large values.
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We find that B {2, 3} cannot be responsive to both localized and
tidally-driven bulk flow hydrodynamics at the same time with only
a single timescale.

The inadequacy of a single timescale for B {2, 3} precipitates
our need for a second that can facilitate perception at a different
scale. Equation [3] with timescale mslow

ai
= 0.9999 (T50 = 3.85 h)

forms the basis we need for a simulated fish to perceive bulk flow
changes within the river due to the tides; this is the process we
alluded to earlier (Section 3.3.1) that may have analogies for how a
fish could upscale minuscule hydrodynamic experiences to form a
RANS-level perception of its localized river flow field. We pursue
a second timescale that can operate at smaller spatiotemporal
scales. For simplicity, we start with the length of time between
consecutive behavioral choices in our fish model (T50 = 2 s,
mfast

ai = 0.5) and then evaluate values higher and lower than our
initial guess. We find that T50 = 2 s provides the most robust
perception of local hydrodynamic features needed to activate
B {2, 3}. The superior performance of T50 = 2 s stems, in part,
from the intrinsic relationship to our model’s time step that, in
turn, is related to the spatial resolution of the Eulerian mesh data.
Therefore, T50 = 2 s is not reflective of real fish memory of local
hydrodynamic features but, rather, an artifact that is inseparable
from our river hydrodynamic description. The dual timescales
facilitate perception of hydrodynamic features in our river reach
at two different spatiotemporal scales, simultaneously.

Sensory experience for each stimulus i is integrated over time in
the form of habituation, Islow

ai
and, for B {2, 3}, also Ifast

ai . A simulated

fish detects perceived changes Eslow
i and Efast

i by comparing the
perceived stimulus intensity at momentary time t to an integrated
value over time that corresponds to longer-term (slower, Islow

ai
) and

shorter-term (faster, Ifast
ai ) habituations, respectively.

A change in water acceleration AM (i = 3) is perceived using
the slow timescale (Table 4) via Equation 2:

Eslow
3 (t) =

I3 (t)− Islow
a3 (t)

Islow
a3 (t)

(i = 3) (21)

and swim bladder pressure (i = 4) changes are perceived via
Equation 20 using the variation of:

Eslow
4 (t) =

∣∣∣I4 (t)− Islow
a4 (t)

∣∣∣ (i = 4) (22)

We use two timescales to perceive the velocity gradient GM
(i = 1) and water speed VM (i = 2). We expand Equation
2, one for the slow and another for the fast timescale. Perceived
changes in GM and VM are perceived in both slow and fast
timescales as:

Eslow
1 (t) =

I1 (t)− Islow
a1 (t)

Islow
a1 (t)

(i = 1) (23)

Eslow
2 (t) =

Ifast
a2 (t)− Islow

a2 (t)
Islow
a2 (t)

(i = 2) (24)

Efast
i (t) =

Ii (t)− Ifast
ai (t)

Ifast
ai (t)

(i = 1, 2) (25)

Note the difference between Equations 24 and 2, 21, 23, 25.
Equations 2, 21, 23, 25 all follow the same logic structure where

the momentary perceived intensity Ii is located in the first position
of the numerator. In contrast, Equation 24 places the fast memory
(shorter-term) habituation, Ifast

a2 , in the position. In other words, for
VM (Equation 24 only) we modify the slow memory structure of
E2 by substituting Ifast

a2 in lieu of I2 in the numerator. Through trial-
and-error, we find that Equation 24 is superior within our modeling
approach for an immersed individual to perceive meaningful large
spatiotemporal scale changes in river water speed due to the tides.

The floor of habituated intensities for GM and AM are set to
0.001 and 0.0001, respectively. In other words, Iai = 1 ≥ 0.001
and Iai = 3 ≥ 0.0001. Note the numerical floors here are different
than the arbitrary reference values of Go = 1e−6 and Ao = 1e−6

used in log-transforming these physical quantities to perceived
intensities Ii = 1 and Ii = 3, respectively, in Equations 16,17.

3.7. Repertoire of hydrodynamic
response behaviors

In this section, we describe the behaviors so that in the
next section we can describe the second half of the perceptual
processing (model variables) sequence: Ei, ki → aB → eB → B.
We refer to the behaviors B{1}, B {2}, B{3}, B{4}, and B{5} using
the notation B{1, 2, 3, 4, 5} and analogously for any subset of
responses. Our salmon behaviors B{1, 2, 3, 4, 5} are repulsion,
alignment, attraction, and modulation responses to the river’s
hydrodynamic field (Table 5). The default behavior, B {1}, is
swimming oriented aligned with (parallel to) the river flowline
facing downstream. B {1} is a negatively rheotactic response that
occurs in the absence of stimuli supporting other actions. Behaviors
B {2, 3} are both attraction responses, towards faster water and
larger spatial gradients in water speed, respectively. Behavior B {4}
is also aligned parallel to the river flowline but in the opposite
direction facing into, instead of with, the water current where the
fish’s head is upstream of the tail. B {4} is a positively rheotactic
response to avoid (repulsion from) elevated AM . Behavior B {5}
modulates swim depth, D, to mitigate rapid changes in swim
bladder pressure.

Only one behavior from the options of B {1, 2, 3, 4} is
implemented per time increment 4t. The exception is B{5},
which is a vertical-only behavior and always acts in concert
simultaneously with one of the behaviors from B {1, 2, 3, 4} that
provides the xy-plane orientation. Behavior B{5} is a vertically-
oriented response inclined off the horizontal xy-plane. The
horizontal xy-plane is perpendicular to the direction of gravity.
Since B{5} confers no orientation within the xy-plane — and
the fish must always be oriented in some way within the
xy-plane — that information is provided by one of the behaviors
from B {1, 2, 3, 4}. The orienting process works as follows: first,
the simulated fish chooses one of the behaviors from B {1, 2, 3, 4}
using the process steps in Table 6 and described in the sections
that follow. Second, the simulated fish determines whether a
vertically-oriented B {5} inclination is warranted; if so, then B {5}
overrides (supersedes) the vertical angle inclination off the xy-
plane set by the chosen behavior from B {1, 2, 3, 4}. For example,
assume the simulated fish chooses B{4} and this behavior turns
(re-orients) their body 5◦ to the left from the present heading
and upward vertically 10◦ off the xy-plane. Then assume the fish
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TABLE 6 Cognitive-based mechanistic fish movement behavior model: algorithm ensemble, steps, equations, and parameters.

Step Component Term(s), Equation(s) Equation # B {1} B {2} B {3} B {4} B {5}

1 Stimuli (behavior triggers)
i = 1, 2, 3, 4

GM, VM, AM, D 1, 11, 14–19 Absence of other triggers GM

i = 1
VM

i = 2
AM

i = 3
D

i = 4

2 Memory timescales slow = longer-term
fast = shorter-term

3, 8, 9

mslow
ai = 1,2,3,4

= 0.9999 (Tslow
50 = 3.85 hours)

Memory (habituation)
Iai

Exponentially weighted moving
average,
EWMA

(Bush and Mosteller, 1955)

mfast
ai = 1,2 = 0.5 (Tfast

50 = 2 seconds)

3 Perceived change in stimulus
intensity

Ei

Variant of the just noticeable
difference,

jnd
(Weber, 1846; Fechner, 1860)

2, 20–25
kslow

i = 1 = 0.001
kfast

i = 1 = 0.01
kslow

i = 2 = 0.001
kfast

i = 2 = 0.001 kslow
i = 3 = 0.6 kslow

i = 4 = 0.5
Environmental context

(of behavioral choice/decision)
Perception (multi-timescale)

Eslow
i , Efast

i

4 Behavioral choice/decision Mutual Inhibition Model or
Leaky Competing Accumulator

model
(Usher and McClelland, 2001)

4–7, 26–29 λB{1,2,3} = 0.1
ηB{1,2,3} = 0.01

cB{1,2,3,4,5} = 0
λB{4} = 0.005

ηB{4} = 0
λB{5} = 0.1
ηB{5} = 0

aB{1} = 0.30 aB{2} = 0.40 aB{3} = aB{2} − 0.01 aB{4} = 0.6 aB{5} = 0.7

5 Swim orientation Codling et al., 2004 32, 33 δB{1,2,3,4,5} = 1.0, κB{1,2,3,4,5} = 10000.0

6 Swim orientation
(step length)

Weibull distribution

34

αB{1,2,3,4} = 1.5, γB{1,2,3,4} = 0.3

kWeibullB{1,2,3} = 0.1 kWeibullB{4} = 0.7
kWeibullB{4} = 0∗

7 Movement x, y, z Cartesian coordinates 10

The ELAM model is designed to minimize the number of parameters, facilitate parameter simplicity, eliminate all permissible stochasticity, and plug-and-play alternative algorithms; however, future applications may find value in deviating from this initial
baseline approach. We constrain aB between [0, 1] in order to compare the performance with other, alternative algorithms that operate in the range of [0, 1] for their analogous parameters. Activity aB{3} is set just below the value of aB{2} so that in a tie-breaker
scenario then B {2} is the behavior implemented. aB values can play a role in determining the response precedence, so we set aB{5} > aB{4} > aB{2} > aB{3} > aB{1} . Behaviors B {4} and B {5} are an acute stimulus response, so we set them as uninhibited by the others
via η = 0.
*kWeibullB{4} = 0 when the fish is facing more with (than against/into) the water flow vector, which makes the individual re-orient.
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determines B {5} is warranted with a downward angle of 20◦.
Behavior B {4} and B {5} orientations are integrated as follows: the
B {5} downward angle of 20◦ supersedes the upward 10◦ inclination
of B{4}. Behavior B {5} does not modify the xy-plane 5◦ left turn
(re-orientation) of B{4}. For reference, 0◦ in the localized xy-plane
used in decision-making always points in the direction from the
fish’s tail to head.

Behaviors B {2, 3} often operate in tandem, in opposing fashion,
yielding emergent properties that we describe next.

3.7.1. Emergent properties from opposing
behaviors

Juvenile Pacific salmon are prey that must reach the ocean in
limited time. We propose that a salmon’s downstream migration
strategy involves balancing the opposing goals of:

(i) concealing their presence with B {3} by leveraging GM
associated with turbulence, acoustic noise, low visibility
(elevated turbidity), and physical cover (Anjum and Tanaka,
2020);

(ii) seeking faster water, B {2}, that expedites the salmon’s
downriver journey to the ocean.

Behaviors B {2} and B {3} are at odds as B {2} orients the salmon
toward the thalweg, e.g., river center, while B {3} leads toward
the river’s edge.

Note that from the Lagrangian perspective of an individual fish,
the orientation toward faster water does not have to correspond
with the water flow direction and often they do not coincide;
for example, near the riverbank, water flow may point downriver
(parallel to the riverbank) while the direction pointing toward faster
water is in line with the shortest path to the thalweg (perpendicular
to the riverbank).

Behaviors B {2, 3} work in combination by mutually inhibiting
each other, a dynamic that confers the advantageous emergent
properties of keeping salmon responsive to rapidly changing
conditions, maintaining downstream progress, and a generally
unpredictable position within the river. While the fish does
not benefit from the optimum river position of fastest water
for downriver migration, the salmon increases its survival
probability (Sabal et al., 2020). At an evolutionary scale, the
B {2, 3} combination increases the probability of salmon life cycle
completion and promotion of the species.

The notion of emergent properties arising from opposing and
mutually-inhibiting dynamics is not a novel concept. The mutually
inhibiting nature of B {2, 3} shares an analogy with the neural
inhibitions that operate at much smaller scale within an animal’s
brain (Usher and McClelland, 2001; Sukenik et al., 2021). At a very
different scale, turbulence both attracts and repulses fish (Smith,
2003; Smith et al., 2005; Liao and Cotel, 2013). In socially-driven
animal swarms, attraction and repulsion dynamics are the basis
of individual movement (Couzin et al., 2002, 2005; Ballerini et al.,
2008; Lemasson et al., 2009, 2013; Katz et al., 2011).

3.8. Context-based behavioral choice

In this section, we describe the second half of the perceptual
processing (model variables) sequence: Ei, ki → aB → eB → B.

Multiple stimuli compete to influence movement, so we must
organize the hierarchical repertoire of stimulus-responses for the
changing phases of a behavioral sequence (Sogard and Olla, 1993;
New et al., 2001). In our mechanistic approach, using the Mutual
Inhibition Model or Leaky Competing Accumulator model (Usher
and McClelland, 2001), the perceived changes Ei are translated into
a common currency for comparison across all the different sensory
modalities, stimuli i. The common currency is activity, aB, from
Equation 5. Activities aB are accumulated as sensory evidence eB
that support the triggering of its corresponding behavior. Sensory
evidence eB is compared across all the behaviors each time step to
choose the response. The behavior with the greatest evidence eB
is chosen for the next time increment 4t = 2 s (Figure 7 and
Table 6).

In mathematical form, the activity aB − and therefore evidence
eB − that supports each behavior B getting triggered increases
when the corresponding perceived changes Eslow

i and Efast
i cross

their respective thresholds kslow
i and kfast

i . In this way, the fish’s
movement decision (swim orientation and speed) is informed
by comparing the momentary perceived change to memories of
preceding experience. A succinct description of the environmental
condition that activates aB and contributes to eB for triggering
each behavior B is provided in the right column of Table 5 and
illustrated in Figure 7. The process is described in Table 6. We
describe the mathematics of how activities aB are computed in the
paragraphs that follow.

We constrain the activity constants aB to the range
[0.0 < aB ≤ 1.0]. The advantage of constraining activity
values is that we can, if ever warranted, compare the cognitive
algorithm separate from other parts of our model to other decision
methods with parameters also able to operate in the range [0, 1].
We describe the activities aB of the decision-making process
starting with behavior B {5}, then B {4}, and lastly the more
complicated B {2, 3}.

Activity aB supporting B {5} occurs when the perceived change
in depth, D, representing the perceived change in swim bladder
pressure exceeds threshold kslow

i = 4 as:

aB{5} (t) = aB{5} if Eslow
i=4 (t) ≥ kslow

i=4
= 0 otherwise

(26)

Activity aB supporting behavior B {4} occurs when the
perceived change in AM exceeds threshold kslow

3 as:

aB{4} (t) = aB{4} if Eslow
i=3 (t) ≥ kslow

i=3
= 0 otherwise

(27)

B {4} and B {5} are acute stimulus responses, and we are able
to set these behaviors as uninhibited by the others (η = 0 in
Equation 5, Table 6). Note that for the acute stimulus responses we
are able to simplify the decision process in two ways: first, B {4, 5}
require only a single timescale and, second, we are able to eliminate
inhibition (η = 0).

The activation of the nonacute behaviors B {2} and B {3} is
more complex in three ways. First, B {2, 3} require evaluation
at two timescales. The slow timescale resolves hydrodynamic
features that are generally attributable to the tidal cycle. The
fast timescale resolves local features such as riverbank-induced
hydrodynamics. Local features can come-and-go with the tides

Frontiers in Ecology and Evolution 23 frontiersin.org260

https://doi.org/10.3389/fevo.2023.703946
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-703946 June 10, 2023 Time: 15:10 # 24

Goodwin et al. 10.3389/fevo.2023.703946

FIGURE 7

Graphical illustration of a simulated salmon’s perception of river hydrodynamics versus the pattern output by a numerical flow field model, together
with the underlying cognitive dynamics of our mechanistic behavior modeling approach. To simplify the illustration, the ELAM salmon is simulated
with steady hydrodynamics (unchanging with time) using a snapshot extracted from the flow field time series that is representative of the river flow
conditions when the tagged fish was actively swimming. Illustrated are the momentary experiences and behavioral choices of a zig-zagging
simulated salmon. The simulated salmon qualitatively resembles the zig-zag movement of a tagged salmon (black path) via behaviors B {2, 3} that
arise from perceived changes in VM and GM (Tables 4, 5). Perceived hydrodynamics (Ei, colored path) differ from the river flow field stimulus patterns
output from the hydrodynamic model (background color). Additional detail including TKE contours available in Supplementary Figure 1.

so, for instance, the riverbank-induced hydrodynamic feature of
elevated GM and low VM may be negligible or imperceivable
during slack tide whereas the pattern is pronounced in ebb tide.
Therefore, the pattern of elevated GM and low VM are reliable
for indicating a riverbank and/or shallower habitat only under
certain environmental conditions (contexts). Second, activating
B {2, 3} depends on the existing behavioral state, B, of the salmon.
Third, we find the activities aB need to be inhibited by the
other behaviors (η = 0.01) to operate properly within the
overall repertoire.

To switch to B {2} from any other xy-plane response from the
options of B {1, 3, 4}, the salmon must perceive a high-gradient
region where the longer-term (slow) perceived increase in GM is
Eslow

i = 1 (t) ≥ kslow
i = 1 while simultaneously perceiving a very small or

decreasing short-term (fast) change in GM of Efast
i = 1 (t) < kfast

i = 1,
and this latter condition will sustain B {2} once initiated.

aB{2} (t) = aB{2} if B (t − 1) 6= 2 and Eslow
i = 1 (t) ≥ kslow

i=1

and Efast
i = 1 (t) < kfast

i = 1

= 2 and Efast
i = 1 (t) < kfast

i = 1
= 0 otherwise.

(28)

Similarly, the initial switch to B {3} from any other xy-plane
response, B {1, 2, 4}, requires the salmon perceive a longer-term
(slow) environmental shift to faster water described mathematically
as Eslow

i = 2 (t) ≥ kslow
i = 2 while simultaneously perceiving a very small

or decreasing short-term (fast) change in VM of Efast
i = 2 (t) < kfast

i = 2
and the latter condition will sustain B {3} once triggered:

aB{3} (t) = aB{3} if B (t − 1) 6= 3 and Eslow
i = 2 (t) ≥ kslow

i=2

and Efast
i = 2 (t) < kfast

i = 2

= 3 and Efast
i = 2 (t) < kfast

i = 2
= 0 otherwise.

(29)

We set the value of activity aB{3} just below that of aB{2} so
that in a tie-breaker scenario where both B {2, 3} dominate other
behaviors, then B {2} is the one implemented.

Activity aB values play a role in determining the response
precedence so we set aB{5} > aB{4} > aB{2} > aB{3} > aB{1}.
Acute stimulus responses are the highest priority. B{5} is valued
higher in the precedence than B{4} but recall that a vertical angle
from B{5} does not override a B{4} xy-plane orientation so, in effect,
B{4} remains the highest priority in the horizontal plane.
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3.8.1. Zig-zag example of context-based
behavioral choice with steady river
hydrodynamics

We use a single 3-D output, or snapshot in time, extracted
from a river flow field time series in order to ignore, for this
example, the additional complexity introduced by time-varying
hydrodynamics. Simulated salmon swim orientation and speed
responses at 2− s intervals (Figure 7 bottom-left) correspond to
momentary perceived changes in each stimulus. Habituation to
each stimulus updates at multiple timescales described simply as
slow and fast. The propensity, or evidence eB, to respond to AM or
D increases when the perceived change in stimulus intensity, Eslow

3
or Eslow

4 , respectively, exceeds their corresponding threshold, kslow.
The activation of B {2, 3}, eliciting the zig-zag swim path

(Figure 7), is more complex than either behaviors B{4, 5} that
are responses to stimuli i = 3, 4, respectively, because perceived
changes in the responsible stimuli GM and VM are integrated at
both slow and fast timescales and the activities aB supporting
B {2, 3} depend on the existing behavioral state B. If a salmon is
implementing a non-B {2} behavior, then the simulated fish must
experience a high-GM region (Eslow

1 (t) ≥ kslow
1 ) to initiate B {2}.

Sustaining B {2} requires only a small or decreasing perceived
change in GM (Efast

1 (t) < kfast
1 ). Similarly, triggering B {3} requires

the salmon to experience fast water (Eslow
2 (t) ≥ kslow

2 ) and
maintaining B {3} requires only a small or decreasing perceived
change in water speed (Efast

2 (t) < kfast
2 ). Initial activation, or

triggering, of the behavior requires the maintenance criterion
also be met at the initiation moment (Table 5 and Figure 7).
Whichever behavior B has the maximum accumulated evidence, eB,
is implemented for the 2− s time increment (Figure 7 bottom).
B {1} is a default behavior that occurs during the absence of
evidence supporting other behaviors.

3.9. Sensory ovoid and points

Simulated salmon sense their 3-D environment using a
localized sensory ovoid (Figure 5) beyond which the fish has no
knowledge of the virtual world. We represent the ovoid using six
sensory points located at the cardinal positions (front, back, left,
right, above, below) surrounding the fish. The simulated fish is at
the center of the ovoid. We refer to the cardinal point distances
on the outer edge of the ovoid as the sensory query distance, SQD.
Sensory points, or SQDs, are a simple discretized version of the
ovoid that simulated fish use to orient in relation to local spatial
patterns in stimuli.

Our ovoid is not used to compute any of the trigger stimuli
(Table 5). Recall that our hydrodynamic trigger stimuli are local
rates of change in time computed at the fish centroid. Our sensory
ovoid is used only for orienting the fish toward the fastest nearby
water, B{2}, or toward the largest nearby GM , B{3}, in the detectable
range sensed by the cardinal points. Since the orienting stimuli VM
and GM are scalar quantities, the direction toward higher values
cannot be determined with a simple point measurement at the
fish centroid. Orientation toward larger values is determined by
comparing VM and GM at the available cardinal endpoint locations
on the exterior shell of the sensory ovoid to their values at the fish
centroid. Note that B{1, 4} orientations can be computed using just

the water velocity vectors at the fish centroid, so the sensory ovoid
is not used for these behaviors. B{5} operates relative to the vertical
(gravity) axis and, here too, the sensory ovoid is not needed.

In the real world, the sensory range of a fish depends on the
stimulus (Giske et al., 1998) and the SQD would be proportional
to fish size. In our model, for simplicity, ovoid size is the same
for imaging VM and GM . The size of our simulated sensory ovoid
is determined not by fish size but, rather, the spatial resolution
of hydrodynamics within the Eulerian mesh. Sizing the sensory
ovoid smaller than the spatial resolution of the river hydrodynamics
available in the Eulerian mesh results in the situation where VM
and GM have the same value at the outer edge (SQD) as at the
fish centroid. When the difference in stimulus values between the
centroid and outer edge of the sensory ovoid is less than the
numerical precision available from the hydrodynamic model —
meaning there are no significant digits — then the simulated fish
cannot orient to spatial trends in VM and GM .

The limiting factor determining SQD in computer simulations
is the numerical precision of hydrodynamic variable values stored
in the time-varying Eulerian mesh of the hydrodynamic model.
SQDCFD is the distance between a fish and its sensory point
location below which orienting stimulus differences have little-
to-no significant digits (Goodwin et al., 2006). A spatial trend
computed with SQD < SQDCFD is not only unreliable but often
misleading. Therefore, simulated fish require SQD ≥ SQDCFD for
orientation, and it is preferable that SQD� SQDCFD.

Our sensory ovoid is a construct that lets us leverage
the hydrodynamic model information commensurate with the
available spatiotemporal resolution. Orienting stimuli VM and
GM increase and decrease in intensity at different spatial rates
depending on where the fish is in the river. For instance, in
the thalweg, VM and GM may not change much across several
meters whereas near the riverbank these variables can often change
appreciably in less than a meter. Varying the ovoid size each time
step provides simulated fish the ability to discern VM and GM
trends of different spatial scales. We find that varying the ovoid each
time step is a better way to discern VM and GM spatial trends at
different scales compared to, for instance, adjusting the size so that
it is proportional to the Eulerian mesh element size at a location.
Using our approach, we find that even though the SQD may not
be optimally sized to detect a particular spatial trend at a given
moment in time, the temporal variation in SQD allows a simulated
fish to discern the necessary VM and GM spatial trends within a few
time steps at most.

Through trial-and-error on our mesh, we set the SQD so
that it changes each time step randomly according to a normal
distribution with a mean in the xy-plane of 5.0 m, a standard
deviation of 1.5, and a minimum radius of 0.1 m. The vertical (z-
coordinate) radius has a mean of 0.4 m and a standard deviation
of 0.1. In our approach, a more sophisticated sensory ovoid is
not particularly useful unless accompanied with a concomitant
improvement in hydrodynamic resolution. Thus, our use of a
sensory ovoid is trivial compared to the fundamental concept
in Oteiza et al. (2017).

When orienting in relation to VM and GM spatial trends, one or
more of the four xy-plane sensory points must have a

∣∣jnd
∣∣ ≥ 1%

in that variable’s value relative to the fish (centroid), otherwise
orientation remains unchanged from the previous time increment.
A jnd is used here, as opposed to the nsd, because this is a discrete

Frontiers in Ecology and Evolution 25 frontiersin.org262

https://doi.org/10.3389/fevo.2023.703946
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-703946 June 10, 2023 Time: 15:10 # 26

Goodwin et al. 10.3389/fevo.2023.703946

comparison. The 1% rule is constant even as the ovoid size changes
each time step. If all cardinal point

∣∣jnd
∣∣ < 1%, then we assume

there is no relevant perceived difference or spatial trend in VM or
GM around the fish at the scale of time t′s sensory ovoid and hence
no orientation change. Vertical sensory points and orientation are
handled analogously to the xy-plane.

3.10. Swim orientation

Behavior B determines the preferred orientation, θo. Before
we describe the swim orientation algorithm that we use in this
study, it is worth noting the Ornstein-Uhlenbeck (O-U) model
(Uhlenbeck and Ornstein, 1930) for several reasons. The O-U
model is a powerful, longstanding approach to orientation that
is used frequently (Gurarie et al., 2017), and remains a constant
source of evaluation in our own work. The O-U model has
attributes similar to Equations 4 and 5 used in other parts of our
algorithm ensemble for cognitively deciding individual behavior
transitions. The O-U model describes and produces a stochastic
movement orientation that is implemented in the model, θ, based
on the idealized preferred direction θo from behavior B as follows:

dθ = ψ
(
θo − θ′

)
dt + cdW (30)

or as a complete, first-order approximation of the stochastic
differential equation in discrete form (Gillespie, 1996; Natvig and
Subbey, 2011):

θ (t + 4t) = θ′ (t) + ψ
(
θo (t)− θ′ (t)

)
4t + cζ

√
1t (31)

where ζ is a sample value from a standard normal distribution
N
(
µ = 0, σ2

= 1
)

with mean µ and σ standard deviation, ψ is
the drift term describing the strength of attraction to the preferred
orientation θo, θ′ (t) is the orientation at time t, c is a noise-scaling
factor analogous to its use in Equations 4 and 5 or it can be
thought of as a diffusion term where cζ

√
1t is the white noise,

Brownian motion, or a Wiener process describing randomness.
When ψ = 0, then there is no attraction to the preferred
orientation θo, only diffusion.

We find the mechanics of the Codling et al. (2004) algorithm
integrate better with our overall methodology. We use the Codling
et al. (2004) algorithm to compute the movement orientation that
is actually implemented in the model for a given time step, θ,
based on the idealized preferred direction θo from behavior B. In
our approach, we use the Codling et al. (2004) algorithm to set
the initial movement orientation θ whenever there is an updated
preferred direction θo due to a change in behavior B. Since one
of our goals is to eliminate all permissible stochasticity, we do
not use the algorithm during consecutive orientations when the
behavior B is not changing. Should stochasticity during consecutive
orientations be required in future work, we find the Codling et al.
(2004) and O-U algorithms both suffice.

In the Codling et al. (2004) algorithm, the swim orientation
is randomly drawn from a von Mises distribution T

(
θ, θ′

)
that

is dependent on a concentration parameter, κ, and mean turning
angle, µθ−θ′ , as follows:

T
(
θ, θ′

)
= (2πJo (κ))−1exp

[
κcos

(
θ− θ′ − µθ−θ′

)]
(32)

where Jo (κ) is the modified Bessel function of order zero, and the
mean turning angle is:

µθ−θ′ = − δ1t
(
θ′ − θo

) (
−π < θ′, θo, µθ−θ′ ≤ π

)
(33)

where θ is the movement orientation at time t +4t, θ′ is the
movement orientation at time t, and 0 < δ4t is the amplitude of
the mean turning angle. δ4t controls how quickly the swimming
orientation returns to the preferred direction θo during the re-
orientation process, which is a proxy for the sensing ability of the
animal (Codling et al., 2004). κ controls the amount of randomness
in the choice of each new orientation and is a proxy for the orienting
ability of the animal. A low value of κ corresponds to a poor
orientating ability, for instance, in a highly turbulent environment.
Setting κ = 0 collapses the von Mises distribution to a wrapped
uniform distribution. µθ−θ′ > 0 biases the random walk in the
preferred direction θo (Codling et al., 2004).

3.10.1. Swim orientation (step length)
Swim orientation in our model is further influenced by step

length, or re-orientation probability (Okubo, 1980). We use the
Weibull distribution to determine the fish’s propensity to maintain
the same orientation (step length). The Weibull distribution is often
used in fatigue (time-to-failure) analysis as well as in ecology for the
analyses of step length in animal movement and correlated random
walk models (Morales et al., 2004; McClintock et al., 2012, 2014).
We describe the Weibull probability density function (random
number) as:

Weibull =
α

γ

(
ζ

γ

)α−1
e−
(

ζ
γ

)α

(ζ ≥ 0) (34)

where α is the shape and γ is the scale parameter,
respectively, and ζ is a sample value from a standard normal
distribution N

(
µ = 0, σ2

= 1
)

with mean µ and σ standard
deviation (Table 6).

Our use of the Weibull distribution is simple. In our approach,
the fish’s orientation is allowed to change based on the preferred
direction θo of behavior B if the Weibull random number is
greater than or equal to a threshold value, kWeibull, that does
not change with time. If Weibull < kWeibull, then the simulated
fish’s orientation is not changed (i.e., continues straight-ahead)
although the movement trajectory may not be straight because of
the contribution from advection due to river hydrodynamics.

We do not apply the step length treatment to the vertical-
only behavior, B {5}, but it is applied to the vertical orientation
component of all other behaviors that act in 3-D whenever the
Eulerian mesh is three-dimensional. Shape and scale parameters of
the Weibull distribution as well as the threshold values are set as
part of model development and parameterization.

3.11. Swim speed

Simulated fish swimming speed is modulated by both behavior
and the environmental condition. The swimming speed for each
behavior B is based on a surmised interpretation of the stimulus-
response’s value to the animal. For instance, swim speed may be
slow, or otherwise bioenergetically efficient, for a default behavior
that is executed merely because there is a lack of important stimuli.
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In contrast, the swim speed may approach the species’ burst
propulsion limit for an avoidance response in fast water.

We set swim speed as body lengths (BL) per second, or BL s−1,
according to drift, cruise, and burst swimming modes (Beamish,
1978) with an assumed juvenile salmon size of 0.12 m (120 mm).
The swim speed of each behavior is set initially as:

• B {1} is a drift swim mode (0.25 BL s−1, 0.03 m s−1);
• B {2, 3, 4} are cruise modes (2.0 BL s−1, 0.24 m s−1).

If water flow is faster than cruise swimming during an AM
avoidance response, B {4}, then swim speed instantly increases to
1.9 VM up to the burst maximum of 10.0 BL s−1, 1.2 m s−1. The
burst speed is near the maximum BL s−1 measured in Bay-Delta
juvenile salmon (Lehman et al., 2017).

Vertical swimming, B {5}, depends on the xy-plane behavior
where speed is initially set from one of the following B {1, 2, 3, 4}
but is increased up to 1.9 VM , but no more than the burst
maximum, whenever the fish is failing to alleviate recent perceived
change in swim bladder pressure. Vertical overrides of the xy-
plane behavior speed typically occur when the simulated fish must
counteract strong vertical water currents, most common in deep
environments near infrastructure.

We simulate all fish identically as 120 mm in length even
though the mean fork length of tagged fish is slightly higher than
150 mm. Our reason is that salmon management is concerned with
fish as small as 60 mm (California Department of Water Resources,
2016). We arbitrarily select a single fish size between 60 and
150 mm, slightly closer to 150 mm. We do not use a distribution
of fish sizes in order to reduce heterogeneity and stochasticity
in the model wherever permissible. The assumed salmon size by
itself is not a critical assumption in the model. The same swim
speed (m s−1) can be obtained for a different sized fish with
simple counterbalanced shifts in the assumed drift, cruise, and burst
swimming body lengths per second (BL s−1) values.

3.12. Swim orientation and speed
integration

We find one last nuance required of B {2, 3} using the aid of
steady ebb tide flow hydrodynamics and the transit times of tagged
and modeled salmon within our river reach (Figure 8 upper-right
dyad). During ebb tide flow, tagged salmon zig-zag at a travel
rate that can only be qualitatively reproduced in simulation if the
ELAM fish is partially positive rheotactic, that is, the modeled
individual orients their swimming facing slightly into (against) the
oncoming water current (see the orientation of the swim vectors
in Figure 7 lower-left). Whenever water speed exceeds the fish’s
cruise swim speed of 2 body lengths per second (Beamish, 1978) we
prescribe that the rheotactic orientation of B {2} and B {3} increases
positively by 10%. The 10% is only a rheotactic increase in the
preferred orientation θo and not an absolute angle relative to the
water flow vectors.

In behavior rule computations thus far, the simulated fish’s 3-
D orientation is based on a local coordinate system tied to the
direction in which the salmon is pointing its head, which can
change every time increment. In the xy-plane of the local (fish

heading) coordinate system, 0◦ is straight-ahead, 180◦ is behind the
individual, 90◦ is to the left, and 90◦ (or 270◦) is to the right of the
individual. Water pressure (depth) varies parallel with gravity, so
we maintain the local and global vertical coordinate systems as the
same. When the local 3-D orientation and swim speed is computed,
we can then use how the salmon is oriented in the global Cartesian
mesh of the Eulerian-based hydrodynamic model to compute the
component swim vectors uvolitional, vvolitional, and wvolitional, which
completes the spatial displacement Equation 10.

3.13. Model time step

We find that simulated salmon need to make movement
decisions at 2− s increments in order to react quickly in fast
water. Longer time steps increase the number of mesh boundary
encounters as well as scenarios where simulated salmon are
hydrodynamically captured (entrained) that, by contrast, tagged
fish successfully avoid. Depending on the scenario, our cognitive
algorithm ensemble generally requires several discrete time steps
for an acute stimulus response to rise within the hierarchy of
competing behaviors and enable the simulated fish to successfully
realize an aversive maneuver before capture. We find that 2 s is
the longest increment permissible for the requisite number of time
steps to occur that allow acute stimulus responses such as B {4}
to achieve the avoidance observed in tagged salmon in rapidly-
changing hydrodynamics near infrastructure. Thus, the 2− s time
step is an upper-bound on the increment length for our river
analysis. We forgo smaller time increments because it increases
model runtime without a needed benefit for our study setting.

All hydrodynamic values are linearly interpolated spatially
from their nearby mesh storage locations (e.g., cell vertex/node,
cell center, or cell face center) to the precise fish centroid location
and seven surrounding sensory points every 2 s. First, all stimulus
values are interpolated spatially in linear fashion to the precise
fish position and seven sensory points for each of the adjacent
3−min intervals on either side in time from the available
hydrodynamic model output. Then, second, stimulus values are
linearly interpolated to the 2− s increment of the fish’s decision
moment from the adjacent 3−min interval values.

Most parameters of the fish cognition algorithm ensemble
(Table 6) are intrinsically linked to the time step increment
in their present form. Changes to increment length require
counterbalancing other parameter values in order to compensate
and retain the same cognitive dynamics achieved with another step
length. Parameter re-balancing, however, occurs in a nonlinear,
multidimensional space that can be challenging to negotiate.
Practically, changing the time increment length usually involves
recalibrating the model. Insulating model performance from
increment length may be possible as a future improvement and,
presently, may be found in limited form in components such as
swim orientation step length.

3.14. Lagrangian encounters with the
Eulerian mesh boundary

A key but often overlooked issue that can arise and have
large, unintended effects on the destination of simulated volitional
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FIGURE 8

Setup of the ELAM analysis (upper-left), example tagged and simulated salmon paths with a passive particle (upper-right), movement mode
heatmaps (lower-right), and tabulated downriver entrainment and movement mode proportions (lower-left). Spatial extent of the hydrodynamic
model is based on available river gage (Figure 1) and bathymetric data. ELAM model spatial domain is based on the extent of salmon acoustic-tag
telemetry data from 2008 to 2009 (Romine et al., 2013) and 2014 (California Department of Water Resources, 2016; Romine et al., 2017). Tagged
salmon exits are used to assess the accuracy of simulated individual (particle, salmon) entrainment. Example swim paths of tagged salmon (black
path) and ELAM fish (path colored by behavior B, Tables 4, 5) are provided in dyads for different tidal environments (ebb, flood, ebb+flood tide
flows), which can be compared to the passive particle (white path). The example simulated particle and salmon paths within each dyad are released
from the same location (white circle) near where the tagged fish is first detected. The ELAM salmon and particle are simulated with steady
hydrodynamics (unchanging with time) using a snapshot extracted from the flow field time series that is representative of the river flow conditions
when the tagged fish was actively swimming. The underlying cognitive dynamics of each example ELAM salmon are illustrated in greater detail in
Supplementary Figures 1, 3–5 along with candidate stimulus TKE. Heatmaps are generated from the simulated individuals (particles, salmon)
responding to time-varying hydrodynamics changing every 3 min across all simulation windows. Heatmap values are computed the same as in
Figure 3 and, just as in Figure 3, only modeled fish detections are heatmapped, that is, the paths are not implied from the position sequence. Note
that modeled individuals are detected perfectly at 2− s increments throughout the domain, unlike tagged salmon. One reason why simulated
salmon exhibit less milling near the piers (movement mode #4) in year 2009 (*) compared to year 2014 may be that the bridge is not rendered in the
2009 mesh (Figure 5) and, thus, its hydrodynamic impact on the river is not perceivable to ELAM salmon.

individuals in bounded 2-D or 3-D environmental domains is their
interaction with the boundary of the computational Eulerian mesh.
River hydrodynamic modeling generates the mesh as part of the
development process. We simulate fish within the original mesh of
the hydrodynamic model in all of our work regardless of element
type and geometric mesh tessellation. The hydrodynamic domain
has boundaries at the water surface, riverbank, and river bottom.
The domain tessellation can change each 3−min timestep, and
this is relatively common in modern hydrodynamic models that use
adaptive meshing methods.

The behavior repertoire is built and parameterized to make
every attempt within reason so that simulated salmon respond

only to hydrodynamic stimuli including near boundaries such as
the riverbank and bottom bathymetry. Limiting interaction with
physical boundaries is a key reason why our timestep is 2 s.
As a backup for when our simulated fish do physically interact
with a boundary, every practical attempt is made to recover
hydrodynamically-mediated decisions within a single timestep of
the behavior model.

When a fish’s sensory ovoid runs up against a physical boundary
in the Eulerian mesh, compressing one of the cardinal point
distances toward the fish, the individual is re-oriented away from
the feature for that timestep alone. Our model works in double
precision, yet even still the numerical processes within a computer
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are neither infinite nor perfect. Situations arise where double
precision calculations store a fish adjacent to a boundary by an
infinitesimal distance on the other (dry, non-water) side. Then,
at the next timestep, the model interprets the same position as
outside the meshed domain. We employ heuristics in an attempt to
recover fish violating the boundary by repositioning the individual
to the nearest mesh cell center, typically, a very short distance
from the point of violation. Hydrodynamic models typically use
tessellation methods in which there is a graded approach to cell sizes
where they are small near physical boundaries and larger nearer
the thalweg or wide unobstructed water flow regions. Therefore,
our heuristics generally result in very small location displacements
while recovering hydrodynamically-mediated behavior within a
single timestep. As a third backup, when the boundary interaction
heuristics are insufficient, then the modeled fish is removed from
simulation. Removals are seldom. Next, we provide examples of
boundary interaction scenarios that do not always have obvious
conceptual or computational heuristic solutions.

Mesh boundary encounters in the following scenarios can
result in the loss of simulated individuals, at times, depending
on the exact circumstances. First, the scenario of a simulated
individual in 3-D located near the water surface and riverbank.
At the next time step, the water surface drops but simulated
movement behavior (an imperfect abstraction of the real world)
keeps the individual near the previous xy-position where there is
no longer water, or even a mesh if the grid is adaptive. Second,
the scenario of two individuals at the same xy-position but at
different depths, one at the water surface and one at the river
bottom. At the next time step, the water surface drops. If we
lower the individual at the water surface to maintain its depth,
the one at the bottom cannot be handled similarly because it
would then be placed under the river. If we chose to do nothing
for the one at the bottom yet lower the individual at the water
surface, then the ELAM model now treats simulated individuals
differently according to depth — a model complexity that can have
unintended consequences. Third, and similar but not exactly the
same example as described earlier, the scenario of an individual
at the riverbank an n-th decimal place (spatially) inside the river
domain. At the next time step, computer precision/truncation
results in the individual now an n-th decimal place outside the
meshed domain. If the mesh has adapted during the timestep
change, then sometimes there is no clear solution heuristic for
identifying the most appropriate interior cell in which to place the
fish. Fourth, the scenario of an individual in a wetting-and-drying
scenario (Lai, 2010) where the Eulerian mesh changes with river
inundation and water may not be spatially contiguous at all times
near a riverbank or in the floodplain. A simulated individual near
the riverbank or in the floodplain can be cut off from the river
during drying cycles and find itself trapped with no way out when
its refuge dries entirely.

Some of the above issues have robust solutions for passive
particles and/or certain types of mesh geometries (tessellations).
We want the same boundary encounter heuristics applied across
all simulated fish, particles, and 2-D/3-D mesh element shapes to
prevent such attributes from contributing to differences between
applications. To date, we have found neither an optimum nor
computationally-efficient solution heuristic for all combinations of
possible mesh tessellation, element shapes, boundary topologies,

and time-varying mesh/element/boundary changes that can
arise in 2-D and 3-D.

3.15. Synchronizing observed and
modeled passage/entrainment

Passage (entrainment) is often a critical biological criterion
determining the engineering success of water operations
management or the design of an in-river structure. To assess
the performance of our approach, we want to quantitatively
reproduce the passage/entrainment proportions of tagged salmon
using the ELAM model. Synchronizing real and simulated worlds
for comparative analysis, however, is not straightforward. Tagged
salmon in 2008–2009 (Romine et al., 2013) and 2014 (Romine
et al., 2017) may occupy our spatial domain prior to the simulation
window and/or remain in the area afterward (Figure 8).

Transects immediately downriver of the junction (Figures 3, 8)
are used in our analysis to determine the final passage/entrainment
(permanent exits) of tagged salmon (Table 2). The available
telemetry data does not afford us the ability to move the transects
further downriver. Tagged fish that occupy our domain before the
simulation window and remain in the area afterward are not part
of our analysis as these individuals represent a movement mode
that our model does not attempt to reproduce. Non-downriver
movement may be rooted in the tag being eaten by a predator not
perfectly filtered previously (Romine et al., 2014), in a dead salmon
on the riverbed, or long-duration milling/riverbank movement
modes. We only use tagged fish with a predator probability
less than 0.85 in the range [0, 1] (Romine et al., 2014) at the
time of their final, permanent exit for comparison with modeled
entrainment (Figure 3e and Table 2). We do not count tagged
fish that linger beyond our simulation window as part of the
real-world entrainment proportion regardless of when they enter
the domain (Figure 8). However, we do count tagged salmon
that permanently exit during our simulation window even if they
occupy the area beforehand.

Year 2009 predator probabilities from Romine et al. (2014)
are formatted such that we can identify and remove suspected
predators at a tag’s first-ever detection (Figures 3d, 8 and Table
2). Year 2014 probabilities are formatted differently, so we assume
all initial tag detections are salmon. Tagged salmon detected for
the first time in our domain during the simulation windows,
but that are not part of the passed/entrained tally are often fish
released into Georgiana Slough that remain downriver of the
transect; that is, these tagged fish reveal themselves in our domain
only within the small spatial region downriver of the transect in
Georgiana Slough. Our conceptual tradeoffs result in tagged salmon
passage/entrainment into Georgiana Slough and downriver into the
Sacramento River that total 100%.

Simulated salmon are tallied as they exit the ELAM model
domain downriver of the junction (Figure 8) instead of the transect
to allow individuals the opportunity to move upriver back into the
junction area and select a different route from their first choice.
In this way, the modeled and empirical passage proportions are
comparable as it is the final passage decision of the observed
(telemetry) fish that are factored. The spatial extent of the ELAM
model domain is shortened from the river flow field mesh to
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more closely align with available telemetry field data (Figure
8). Simulated individuals, salmon or particles, that do not exit
downriver (Figure 8) result from one of the following reasons:

• out-of-bounds release;
• mesh boundary interaction requiring removal;
• exits upriver;
• freely remains in the domain.

Simulated salmon exiting the domain at the upstream
boundary are not factored into modeled passage/entrainment,
which considers only downriver entrainment. Simulated salmon
released on a particular day are allowed up through the end of
the following day to exit after which they are removed from
simulation and labeled as remaining in the domain. We do
not attempt to capture the dynamics of salmon that linger in
the domain longer than 24− 48 h. Simulated individuals that
remain in the domain are often releases near the end of the
simulation window. However, some non-exiting particles are
caught in an eddy and swirl in the cul-de-sac of the Delta Cross
Channel inlet region, and some salmon exhibiting a riverbank
movement mode are removed downriver of the junction due to
drying mesh elements.

Simulated individual exits are equivalent to measuring their
passage/entrainment at the transects so long as they do not
incur a mesh boundary interaction between the transect and
domain extent necessitating its removal from simulation. Fish
removed due to boundary interaction issues are not considered in
passage/entrainment proportions. Our conceptual tradeoffs result
in simulated entrainment into Georgiana Slough and downriver
into the Sacramento River totaling 100%.

3.16. Release of simulated individuals

Five simulated individuals are released at the location (xy-
position) and time of each initial tag detection within our
simulation window (Figure 8). We avoid releases associated with
tagged fish that have been in the area for days or weeks. Releasing
five simulated individuals per tagged salmon is an arbitrary
judgment based on balancing model runtime and the replicates
needed to average out the required/unavoidable stochasticity in our
cognitive algorithm ensemble (Table 6). Replicates also serve as
a contingency against losing individuals during simulation from
mesh boundary interactions. We believe the above approach makes
the best use of our limited field data (Figure 3).

Vertical positions from the underwater acoustic-tag telemetry
(z-coordinate values) are not accurate enough to determine water
column locations, so we have to artificially generate the release
depths at each xy-position. We assume the Sacramento River’s
depth is too shallow for salmon to exhibit a lognormal depth profile
(Smith et al., 2010; Goodwin et al., 2014). Instead, here, we use a
simple normal, or Gaussian, distribution N

(
µ, σ2) with a mean

depth µ = − 2.5 m and a standard deviation σ = 0.75 as follows:

Release depth = µ + σζ (35)

where ζ is a value drawn from the standard normal distribution
N
(
µ = 0, σ2

= 1
)
. In some cases, a release is out-of-bounds

due to a depth (z-coordinate) generation that is under the river
or imprecision in the field telemetry xy-position placing the fish
outside the river channel in the xy-plane (Figures 3, 8). In 3-D
simulations for year 2009, a release is out-of-bounds if not within
the river domain in the horizontal plane at the fish’s depth. In 2-D
modeling for year 2009 and 2014, a release is out-of-bounds if not
located within the horizontal plane of the river channel as depth
does not factor into the simulations. We do not manually modify
out-of-bounds release locations to convert them into in-bounds
positions. Simulated individuals (salmon or particles) released out-
of-bounds are immediately removed from simulation and play no
further role in our results.

A minimum proportion of simulated individuals (salmon or
particles) must exit the domain downriver within the simulation
window for modeled entrainment to be valid in our analysis,
either in comparison with real-world patterns or, later, as part
of a prediction about the future. We arbitrarily require that the
proportion of simulated individuals exiting the domain downriver
be greater than the proportion of total tagged salmon exits
(Table 2), less ∼10%. In other words, since 86.6% and 85.1% of
tagged salmon permanently exit during each seven-day simulation
window for year 2009 we require that ≥ 75% of simulated
individuals must exit the domain downriver. We require ≥ 35%
of simulated fish must exit within each 2014 three- or four-day
window (Figure 8) since only 43.0% of tagged salmon permanently
exit during the timeframe of 22–24 March. The criteria we use
is arbitrary but a useful way to flag and eliminate the use of
outcomes where, for example but not encountered in this work, too
many modeled fish are removed from simulation due to boundary
violations described earlier. If the proportion of downriver domain
exits does not meet the minimum thresholds, then there may be
reason to doubt the synchrony of the simulation relative to the
real world and, therefore, invalidates model results regardless of
the accuracy achieved. In our study, the downriver exit proportions
of simulated individuals (salmon and particles) always exceed
86% (Figure 8).

4. Results

Once the ELAM model is built and parameterized, in this case
using the 2009 data alone, we simulate salmon and passive particles
through the river reach. Later, we run the same model without
any modification to year 2014 river conditions that include a novel
fish guidance structure not present in year 2009 (Figure 1). To
assess our stimuli responses (Tables 4, 5) and cognitive algorithm
ensemble (Table 6), we first compare the movement swim paths of
tagged and simulated salmon. Then, second, we compare the key
quantitative metric at our location for water operations engineering
and management: the proportion of salmon that enter Georgiana
Slough versus continue downriver using the Sacramento River.
Third and last, since near-term future predictions generally do not
have the advantage of knowing beforehand how fish will enter
the domain spatially or temporally, we evaluate many different
spatiotemporal release distributions.

As passive particles are subject to the same analysis assumptions
as modeled salmon, they can tell us whether simulated outcomes
(paths, entrainment) are primarily due to our model setup
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idiosyncrasies such as the release assumptions and transect
locations. Simulated particles also serve another important purpose
in waterways engineering design. Passive particles are analogous
to the historical use of colored dye in scaled physical models
of river infrastructure, which has long served as an important
engineering method for assessing in-river hydraulic structure
design and management alternatives. To simulate passive particles,
all the behavior computations still occur just as with modeled
salmon, but we override the computed volitional swim speed
vectors (uvolitional, vvolitional, wvolitional) to 0 m s−1 just prior to
the implementation of equation [10]. Overriding the swim speed
to zero eliminates the volitional movement contribution of all
behavioral stimulus responses.

4.1. Swim paths

4.1.1. Year 2009 hindcast
Our first comparison of model versus real-world data leverages

information about when and where tagged salmon enter the
domain. We compare simulated individual (particle, salmon)
movement paths with tagged fish two different ways: qualitative
comparisons and heatmaps of their movement modes.

First, to qualitatively illustrate simulated behavior and paths
across diverse tidal (ebb, flood, ebb+flood) environments without
the complexity of varying hydrodynamics, we select date and time
blocks when the river flow is relatively steady (unchanging with
time) and tagged salmon are actively swimming. We use a single
3-D output, or snapshot in time, extracted from the original flow
field time series for each example tidal (ebb, flood, ebb+flood)
environment. Using the extraction (Figure 8 upper-right dyads), we
simulate a passive particle (white path) and salmon (path colored by
behavior B from Tables 4, 5) released at the same location (white
circle) near where the tagged fish (black path) is first detected
during the steady hydrodynamic window.

Tagged salmon paths and displacement differ markedly from
passive particles across the diverse ebb, flood, and ebb+flood
tide flow environments. Our stimuli responses (Tables 4, 5)
and cognitive algorithm ensemble (Table 6) result in volitional
swim speed vectors (uvolitional, vvolitional, wvolitional) that modify the
particle path to more closely resemble that of tagged salmon in
a variety of examples (Figure 8 upper-right dyads). In ebb tide
flow, the simulated fish qualitatively resembles the zig-zag path of
a tagged salmon via behaviors B {2, 3} emerging from responses to
VM and GM .

Eulerian-Lagrangian-agent method modeled fish qualitatively
reproduce other, different movement patterns of tagged salmon
during ebb+flood and reversing (flood) river conditions near
slack tide. In the combined ebb+flood flow condition, ELAM
salmon exhibit zig-zagging in the upper portion of the reach
where water flows downriver while closer to the junction the
model reproduces fish avoidance of Georgiana Slough. In the flood
tide condition, the model reproduces salmon location holding or
milling near the bridge piers where water flow direction reverses
and moves upriver.

An explanation for simulated salmon not following the flow
during tidal shifts (i.e., both the ebb+flood and flood tide
conditions) can be visualized in Supplementary Figures 3–5 (part

G in the upper-right). Without the advective contribution from
fast moving water, the dynamic of opposing behaviors B {2, 3}
results in the emergent property of milling. The additional 10%
positive rheotactic orientations of B {2} and B {3} aid the simulated
salmon in not being appreciably swept down- or up-river. The
emergent result appears to be a simulated milling that can, at
times, resemble a correlated random walk. Here, however, the
movement pattern does not stem from a correlated random
walk parameterization in the classic sense; instead, the movement
emerges from two competing, opposing behaviors with often-
contradictory orientations.

The 10% increase in positive rheotactic orientation of B {2}
and B {3} aids, but is not solely responsible for preventing,
the simulated fish from being swept with the water. Since the
10% is only an increase and not an absolute orientation angle,
the addition is not sufficient to offset a preferred direction
in line with downstream flow. Near-slack tide, when water is
moving slowly either downriver (Supplementary Figures 3G,
4G) or upriver (Supplementary Figure 5G), the preferred
orientations of B {2} and B {3} also aid the individual in not being
appreciably swept down- or up-river. In the downriver water
flow scenario near the junction with Georgiana Slough, milling
is aided by repulsion to acceleratory stimuli, B {4}, as seen in
Supplementary Figure 4G.

Second, we categorize all of the simulated salmon
responding to time-varying hydrodynamics used to compute
passage/entrainment according to their predominant swim path
pattern using the same visual inspection process earlier for
tagged fish. Heatmaps and the movement mode proportions of
simulated fish (Figure 8) and tagged salmon (Figure 3) highlight
the differences and similarities in the swim paths of individuals
used to compute passage/entrainment. Heatmaps are based on
detected positions, which are not sampled equally between real and
simulated worlds. Detected positions from underwater telemetry
in the real world are not perfect (Figure 3) whereas modeled
fish locations are known with certainty at 2− s increments
throughout the domain.

Simulated fish swim paths are more concentrated along the
river thalweg than for tagged salmon (Figure 3 vs. Figure 8
heatmaps). The larger proportion of zig-zagging in simulated
salmon is anticipated given that this movement mode is a focus
of our behavior rule development because it is, by far, the most
predominant pattern of tagged salmon in our river reach (52.8%
of tagged fish). Note the bridge is not rendered in the 3-D year 2009
mesh (Figure 5) and, thus, the piers’ hydrodynamic signature is not
perceivable to ELAM salmon for these simulations. Nonetheless,
in the reversing flood tide flow scenario, simulated salmon in
year 2009 still resemble some forms of milling or location holding
without the pier-induced hydrodynamics (Figure 8). The lack of
the bridge piers in the rendered 2009 hydrodynamics, however,
is likely one reason why simulated salmon exhibit less milling
near the piers (movement mode #4, Figure 8) than modeled
fish in year 2014.

4.1.2. Year 2014 out-of-sample prediction
(engineered fish guidance)

We apply our cognitive algorithm ensemble (Table 6)
developed and calibrated using year 2009 data to out-of-sample,
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year 2014, river conditions that include a floating wall or
surface-oriented guidance boom called the “floating fish guidance
structure” (FFGS, Figures 1, 9). The surface guidance boom extends
below the water surface to a depth of 5 ft or 1.52 m (California
Department of Water Resources, 2016; Romine et al., 2017). The
boom and year 2014 hydrodynamics are modeled with a 2-D
depth-averaged model (Lai, 2010).

We find that year 2014 simulated salmon swim paths in
2-D are not as heterogeneous as 3-D trajectories from year
2009. At least two factors are responsible. First, year 2014
lacks vertical heterogeneity. Second, horizontally, the 2-D depth-
averaged hydrodynamic model output has a more diffuse laterally-
distributed high-velocity core compared to the flow field rendered
with an explicit 3-D flow field model (Figure 4). That is, in our 2-D
flow field simulation, the higher velocity core is less concentrated
in the river thalweg and distributed across a wider portion of the
river’s width compared to 3-D rendering of the flow field. A 2-
D representation of the river does not perfectly correspond with
a particular depth from an explicit 3-D rendering of the flow
field since 2-D and 3-D modeling assumptions are different. The
more diffuse high-velocity core in 2-D flow field rendering has
a concomitant impact on hydraulic derivatives, particularly GM .
The impact of a more diffuse high-velocity core on GM results in
wider cross-sectional excursions of the simulated fish. The greater
amplitude of 2-D zig-zag paths can also be attributed to the physical
domain of the river. Natural channel cross-sections are often
u-shaped (Figure 5 upper left), so simulated salmon deeper will
have less width (amplitude) before encountering hydrodynamics
that trigger re-orientation compared to fish nearer the water surface
where the river is widest.

Despite inherent tradeoffs involved with 2-D hydrodynamic
simulation relative to 3-D, we can still use year 2014 outcomes
to explain how salmon guidance and entrainment operates in the
context of a salmon’s past hydrodynamic experiences integrated
at multiple scales. The simulated salmon swim paths in Figure 9
are responding to time-varying hydrodynamics at the same time
when tagged fish are observed swimming through the river reach.
Simulated salmon paths in Figure 9 are included in the Figure 8
heatmaps. Simulated salmon perceptually sense and respond only
to river hydrodynamics associated with the boom’s presence in the
water flow field, that is, modeled fish do not physically interact with
the FFGS structure rendered in the mesh and they can pass through
to the other side by, conceptually, swimming under in 2-D.

We find that caution should be exercised when attributing
observed salmon movement and entrainment to a surface guidance
boom’s configuration and alignment. When the FFGS is deployed
(on), hydrodynamics that emanate from the structure result in
a filament of GM that starts at the boom downriver endpoint
and extends to the riverbank apex at the junction point where
the river bifurcates (Figure 9). Salmon initially deflected at the
boom toward the Sacramento River can be subsequently attracted
to the GM filament, drawing them toward Georgiana Slough
(Figure 9A dashed gray region). However, not all boom encounters
are followed subsequent attraction to the GM filament (Figure 9D
dashed gray region). Salmon can be hydrodynamically deflected
toward the Sacramento River at the boom (Figure 9A) and also
by the GM filament downriver of the structure (Figure 9B dashed
gray region). If the perceptual context is different, however, the

filament can attract salmon into Georgiana Slough (Figure 9C
dashed gray region).

Entry into Georgiana Slough is not always a result of filament
attraction, as river flow can re-orient a salmon toward Georgiana
Slough even if the salmon is initially deflected toward the
Sacramento River (Figure 9E dashed gray region). Salmon can also
respond to the boom by milling behind the structure (Figure 9F
dashed gray region) or in front between the FFGS and dock on the
opposite riverbank (Figure 9H dashed gray region).

River flow alone can direct salmon into the Sacramento River
when the boom is not deployed (Figure 9G dashed gray region).
Also, the GM filament exists in shorter form when the FFGS is off,
extending upriver from the riverbank apex point of bifurcation.
At times, the shortened filament can act in combination with GM
emanating from the riverbank near the boom to attract salmon into
Georgiana Slough even when it requires the fish to cross the critical
streakline or water flowlines entering separate routes downriver
(Figure 9I dashed gray region).

In summary, GM can both repulse, B {2}, and attract, B {3},
nearby salmon. Broadly, influence of the guidance boom on salmon
depends on the context of the fish’s decision-making at the time of
the boom encounter. Specifically, perceived hydrodynamic stimuli
depend not only on the fish’s momentary sensing but also on its
memories of past hydrodynamic experiences that are integrated at
multiple scales.

Figure 10 summarizes all computational movements of
simulated salmon. The increase in riverbank boundary interactions
in 2-D (Figure 10) compared to 3-D and 2-D extractions of year
2009 hydrodynamics is a result of releasing simulated salmon where
tagged fish are first detected. Some tagged fish show up for the first
time at the riverbank where the geometric configuration of Eulerian
mesh elements are complex because of wetting and drying. As the
water surface rises and falls with river flow, mesh elements along
the riverbank are identified as wet or dry by the 2-D hydrodynamic
model. Since the ELAM model does not permit simulated fish to
enter or cross dry mesh elements, the geometric configuration of
wet elements at the river’s edge can, at times, be complex and
in a practical sense trap some individuals from moving into the
river toward the thalweg. Simulated fish that remain trapped along
the riverbank for the duration of the simulation window in year
2014 show up in Figure 10 as mesh boundary encounters, but are
otherwise not factored into our analyses. For instance, the trapped
simulated individuals are treated as out-of-bounds releases and do
not contribute to the swim path heatmaps.

4.2. Passage/entrainment

The model performs well in the quantitative performance
metric of greatest interest to our study, passage/entrainment
(Figure 11). Final passage/entrainment is the permanent, final exit
of individuals into either Georgiana Slough or the Sacramento
River downriver of the junction (Figure 8). Root-mean-square
error (RMSE) is a simple yet robust metric that quantifies the
difference in the final passage percentages (i.e., ultimate measured
fate or entrainment) between the tagged and simulated salmon
across 7− day contiguous multi-day windows for year 2009 and
3− and 4− day contiguous windows for year 2014. The ELAM
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FIGURE 9

Year 2014 tagged and ELAM salmon response to the engineered surface guidance boom (FFGS) and the resulting entrainment. The ELAM model is
built and calibrated with 2009 data, then applied without modification to year 2014 river conditions with the FFGS. Simulated salmon swim paths are
responding to time-varying hydrodynamics at the same time that tagged fish are observed swimming through the river reach. Simulated salmon
paths in the figure are included in Figure 8 heatmaps. Simulated salmon paths are colored by the behavior B (Tables 4, 5) and the tagged fish
trajectory is colored black. Movement dynamics of simulated and tagged salmon near the FFGS are provided as dyads, where the left side is a
zoomed-out view of the river reach and the right is a zoomed-in view of the FFGS with GM contoured as a fill color and river water flowlines colored
separately. Each dyad (A–I) represents a different category of context-based salmon response to surface boom hydrodynamics. Additional details:
the tagged salmon in panel (A) returns later and the one in panel (I) several days later. Paths in panel (B) illustrate a tagged and ELAM salmon that
begin around midnight while the hydrodynamics are plotted for 8 am when the fish pass the FFGS and junction. In panel (E), we add a light gray
geometric line and arc angle to ease visual interpretation of the tagged salmon direction before re-orientation toward Georgiana Slough. The
tagged salmon path in panel (H) is longer than displayed and truncated here to ease visual comparison where primary similarities exist with the
simulated fish.
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FIGURE 10

The distribution of behaviors B {1, 2, 3, 4, 5} over time within the simulated salmon population throughout the river reach that underlie the
movement mode heatmaps (Figure 8), simulated salmon paths near the FFGS in year 2014 (Figure 9), and modeled entrainment (Figure 11). The
sum total of simulated salmon making decisions within the ELAM model domain at any given time (black) is decomposed into the number
implementing each constituent behavior. Behavior proportions are overlaid, not stacked, with behaviors least represented in the population plotted
overtop more predominant responses. Note how flow hydrodynamics as viewed by the gage stations (Figures 1, 2) change temporally and also by
location within the river reach. Simulated salmon behaviors are updated every 2 s in response to river hydrodynamics that update at 3−min
intervals. Note that B {5} is a vertical-only response that occurs simultaneously together with an xy-plane orientation set by one of the following
behaviors from B {1, 2, 3, 4} and can only be implemented in the year 2009 3-D mesh.

model generally reproduces past and predicts the near-future
passage/entrainment with an RMSE ≤ 10 (Figure 11).

We run sensitivity analyses to evaluate some key uncertainties
in the model and its intended future use. Specifically, the standard
deviation following the ± symbol (Figure 11) is generated by
varying the random number generator seed that is part of the
algorithm ensemble (Table 6) and, for 3-D, we also vary the random
guesses of the release depth (z-coordinate).

Simulated salmon and passive particles that make up the
passage/entrainment proportions are responding to time-varying
hydrodynamics, and the classified movement modes of all these
modeled individuals are heatmapped (Figure 8). A temporal
distribution of behaviors (Figure 10) throughout the river reach
underlies resultant passage/entrainment (Figure 11). No single
hydrodynamically-mediated response behavior is solely responsible
for the passage/entrainment pattern at the junction.

Passive particle passage/entrainment (Figure 11 blue shade
background) represents neutrally-buoyant individual movement
when the perceptual decision-making behavior is turned off.
Passive particles are analogous to an entity merely following
the flow/flowlines.

4.3. 3-D vs. 2-D

In 2-D simulations, both the vertical z-coordinate (depth-
oriented) hydrodynamics and fish swim orientation/speed
are eliminated. In the 2-D slice extractions for year 2009, a
2-D xy-plane horizontal slice is extracted from just under
the water surface for each output in the original 3-D flow
field time series. Simulated salmon passage/entrainment is
resilient to the simpler 2-D descriptions of the river (Figure 11).
Also, we provide an example comparison of a 3-D swim path
(Supplementary Figure 1) and its 2-D counterpart within
an extracted slice of the same hydrodynamic condition
(Supplementary Figure 2).

The 3-D vs. 2-D passage/entrainment outcome suggests that
the analysis of salmon with modeled perceptual decision-making
may not always require the maximum permissible hydrodynamic
resolution. Elimination of the vertical hydrodynamics and
swim orientation/speed alone does not appreciably change the
simulated salmon entrainment or trajectories, e.g., comparing
Supplementary Figures 1 vs. 2, in our relatively shallow system
domain. Nonetheless, modeling hydrodynamics as depth-averaged
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FIGURE 11

Comparison of tagged versus modeled salmon passage/entrainment. The ELAM model is developed with year 2009 data (left and middle panels),
then applied without modification to out-of-sample, year 2014, river conditions that include a surface-oriented boom for guiding salmon (right
panels). Passive particle passage/entrainment is plotted with a blue shade background. Each dot represents a comparison of tagged salmon versus
simulated individual (fish or particle) passage/entrainment on a percentage basis (%) downriver into either Georgiana Slough or the Sacramento
River. There is one dot for the Georgiana Slough proportion and one for the Sacramento River. There are two black dots (Georgiana, Sacramento)
for each simulation window (Figure 2), which represent the total cumulative passage/entrainment; for instance, in year 2009, there are two black
dots for the cumulative passage during 1–7 January and another two black dots representing the total entrainment across 16–22 January, resulting
in four total black dots. Red dots are smaller in magnitude because they represent the daily portion of the total (window) percent that went
downriver in each route. The root-mean-square error (RMSE) is based on the cumulative passage/entrainment on a simulation window basis, i.e.,
the black dots. No 3-D model is used for year 2014; instead, a 2-D depth-averaged model is used to render year 2014 river hydrodynamics with the
surface guidance boom.

in lieu of 3-D phenomena does appear to influence the character
of year 2014 swim path cross-sectional excursions compared to
those in year 2009 regardless of whether the simulated salmon
movement is generated from 3-D or 2-D slice representations of
the water flow field.

4.4. When salmon entry pattern is
unknown

Future predictions of fish movement behavior for informing
water operations engineering and management do not always
have the benefit of knowing how salmon will enter the domain
of interest. We revisit year 2009 and 2014 passage/entrainment
results without the benefit of tagged salmon to inform the release
of simulated individuals (fish and passive particles) and with
the added simplification that B {4} is a cruise speed response
regardless of the river flow field. The B {4} simplification stems
from more recent continuing efforts to simplify the model wherever
possible, finding that the parsimony has an undetectable impact on
simulated passage/entrainment.

While one can discount the timing of releases in steady
(unchanging with time) hydrodynamics, e.g., Smith et al. (2010),
when the environment itself varies with time then both the
time sequencing and spatial distribution of individual entries into
the domain could impact model outcome. To release simulated
fish and passive particles into the domain without the aid of
tagged salmon data, we arbitrarily use three different quantities
of individuals per 24-h period, three spatial configurations (i.e.,
point, normal, log-normal distributions), and up to twelve different
time intervals (Figure 12). Spatially, we release all simulated
individuals within the same cross-sectional transect located at “abc”
(Figure 8). Temporally, we release individuals separately and in
clusters (Figure 12 upper right). Simulated individuals are released
irrespective of the river flow condition at the moment of release.

We plot the results of the sensitivity analysis in the form of root-
mean-square error (RMSE) of the release alternative outcomes. The
RMSE quantifies the difference in final exit passage/entrainment
proportions (ultimate measured fate) between tagged salmon and
the simulated individuals. A result is not plotted if the number of
permanent exits downriver is less than 75% of the total attempted
releases, which occurs only in two instances: point releases of 1, 440
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FIGURE 12

Modeled passage/entrainment without the benefit of tagged salmon to inform the release of simulated individuals. Simulated individuals (fish and
passive particles) are released using three different quantities per 24-h period, three spatial distributions (point, normal, log-normal) and, in time, up
to twelve different ways (upper right). All simulated individuals are released within the same cross-sectional transect located at “abc” (upper left).
Model accuracy in the form of root-mean-square error (RMSE) for each release alternative is plotted separately using a unique line and color
combination (upper middle). The RMSE of simulated fish passage/entrainment relative to tagged salmon is plotted using black or shades of orange
while passive particles use shades of blue (upper middle). RMSE quantifies the difference in final exit passage/entrainment proportions (ultimate
measured fate) between tagged salmon and simulated individuals (bottom half).

passive particles in the year 2009 3-D domain when released at
intervals of 6 and 21 min apart.

Simulated fish passage/entrainment is resilient to alternative
releases when RMSE is based on a contiguous passage/entrainment
fate integrated over multiple days: 7− day windows for year 2009
and 3− and 4− day windows for year 2014 — the same method in
Figure 11. Passive particles can resemble the passage/entrainment
during 2014 hydrologic conditions when released using a point or
normal spatial distribution, but log-normally distributed passive
particles biased toward the outside bend of the river perform poorly
for both year 2014 and 2009.

5. Discussion

We describe a cognitive approach to the mechanistic modeling
of fish behavior responses to river hydrodynamics at the scale
that water operations infrastructure is designed and managed.
The ELAM model quantitatively describes and reproduces
selective tidal stream transport patterns of downstream-migrating

juvenile Pacific salmonids and predicts their guidance and
passage/entrainment patterns in out-of-sample data across diverse
environmental contexts. We find that a mix of behaviors
(Figure 10) underlies our modeled swim paths (Figure 8) and
passage/entrainment outcomes (Figure 11).

Our theoretical approach suggests that a behavioral mix is
most likely to emerge in regions dominated by nonacute stimuli.
ELAM analysis helps conceptualize the nuanced influence that
engineered structures have on the movement of downstream-
migrating salmon (Table 5: Engineering design relevance). The
intended use of the ELAM model is to inform how future fish
passage/entrainment outcomes may result from water operations
infrastructure management and design. A numerical behavior
model in which simulated fish quantitatively reproduce observed,
tagged salmon passage/entrainment patterns (Figure 11) aligns
with the tool’s intended purpose.

Reproducing past animal movement patterns (hindcasting) is
one way to establish confidence in a model’s validity (Getz et al.,
2018; Leitch et al., 2021). A model’s accuracy should stem from the
underlying mechanisms, and comparing quantitative predictions
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to new observational data is one of the strongest tests of scientific
theory (Dietze et al., 2018).

Our goal at the outset of the study was to develop
a decision-support tool capable of quantitatively reproducing
passage/entrainment proportions within an arbitrary root-mean-
square error (RMSE) of approximately ten, similar to previous
work in other environmental contexts (Goodwin et al., 2006, 2014).
In this system, ELAM model accuracy visibly degrades as RMSE
exceeds approximately twelve (Figure 11) and RMSE much below
ten has diminishing benefit.

A key finding of our work is that the repertoire of
hydrodynamic responses in a tidal setting are theoretically
consistent with — a superset of — the behaviors that juvenile
Pacific salmonids exhibit in simpler, steady flow reservoir settings
(Figure 13). Salmon often navigate both reservoirs and dams
in the upper watershed (Martinez et al., 2021) followed by
tidal environments closer to their ocean entry. The ability to
mathematically describe, reproduce, and predict fish movement
behavior across such diverse environments strengthens water
operations decision-support in application to scenarios outside the
range of conditions to which the tool is calibrated, a typical need of
engineering and management design future forecasting.

The model herein is an abstraction of reality and the underlying
mechanics are not a holistic description of salmon movement
behavior or the cognitive architecture of fish. There is no such
thing as a perfect ecological forecast (Dietze et al., 2018). Numerous
questions remain for future study. In the model’s minutiae,
for instance, we identify at least two instances where practical
functionality deviates from anticipated theory. First, E4 differs
from the nsd construct of other stimuli, Equation 20 vs. 2; that
is, our current formulation for describing perceived changes in
intensity does not appear to work as anticipated when using
depth as a proxy for salmon swim bladder pressure. Second,
Ifast
a2 outperforms I2 in Eslow

2 from Equation 24; that is, we
find that I2 in Eslow

2 does not work and that Equation 24 is
the construct that works within our modeling approach for an
immersed individual to perceive meaningful large spatiotemporal
scale changes in river water speed due to the tides. Perhaps the
deviations are the result of simulated abstraction and limited
mensuration of the real world.

At a broader level, our work raises the question of how many
timescales animals may use and how the number might be related
to environmental and social complexity (Rodriguez-Santiago et al.,
2022; Tump et al., 2022; Li et al., 2023). Our work provides
a basis upon which further improvement and advancement is
likely. Further improvement must confront nontrivial tradeoffs that
we discuss next.

5.1. Model realism vs. usefulness

The ELAM is similar to other models in that it is a simple,
finite, and abstract representation of reality. Perhaps the single
biggest challenge of our work is finding the best balance between
model realism and usefulness in the context of how the tool is to
be used. Tradeoffs between model realism and complexity are a
common problem (Getz et al., 2018). Increasing model complexity
can come at the expense of concomitant deleterious impacts on

tool transferability to settings beyond which the tool is calibrated
(Yates et al., 2018).

Realism can be added in the form of more detailed
hydrodynamics and/or behavior rules. The practical downside
of increasing the model’s complexity for realism alone is the
additional computational burden incurred, which then reduces the
resources available to explore and improve the model elsewhere.
Determining the most important real-world features for a model to
reproduce is paramount, yet rarely straightforward. The demands
of scientific inquiry and engineering construction deadlines are
rarely in perfect synchrony.

Hydrodynamic modeling impacts the realism of simulated
trajectories. Additional flow field heterogeneity and stochasticity
provided by DES or LES compared to RANS (Figure 4) would
likely result in more heterogeneous, and thus realistic, simulated
trajectories. As is, our modeled salmon entrainment predictions
(Figure 11) are generally insensitive to vertical hydrodynamics and
vertically-aligned movement behavior B {5} in the relatively shallow
Sacramento River. Nonetheless, secondary currents (Dinehart
and Burau, 2005; Fong et al., 2009; Constantinescu et al.,
2011a; Moradi et al., 2019; Yan et al., 2020; Schreiner et al.,
2023) and water column heterogeneity should not be entirely
discounted as a factor in salmon entrainment (Ramón et al.,
2018). Selective tidal stream transport (Creutzberg, 1961) may be
driven by multiple factors (Benson et al., 2021; Gross et al., 2021b)
including vertically-aligned hydrostatic pressure (Tielmann et al.,
2015) and horizontal, cross-sectional gradients in water turbidity
(Bennett and Burau, 2015).

Adding explicit behavioral variation to our simulations
through distributions of animal characteristics, such as size or
orientation tendencies (movement modes), would likely improve
the realism of simulated trajectories. Presently, we eliminate
(zero-out) all permissible stochasticity and heterogeneity not
explicitly required to meet our primary objective — reproduce
and predict future passage/entrainment — in order to minimize
the number of tunable parameters. We find that discerning
meaningful parameter influences on key mechanics of the
model is far more challenging when other forms of variability
(stochasticity) are present in the model, e.g., attributes with the
sole purpose of increasing the “wiggle” realism in simulated
fish trajectories. While discerning parameter influence on model
performance amid stochasticity is a challenge that can be met
with Monte Carlo or similar methods, again, increasing the
computational burden within a study has tradeoffs with those
resources becoming unavailable elsewhere where they might have
a greater overall impact. ELAM model parameter values herein
do not change during simulation and are identical across all the
analyses described, the only exception being the random number
seed varied for computing the standard deviations in modeled
entrainment (Figure 11).

There are many opportunities for future improvement relevant
to the data presented herein and in application to other
systems. For example, alternative algorithms exist for every
ensemble constituent (Table 6). Continuing work can improve
our understanding of fish and the mechanics required to meet
fish passage research and water operations goals, just as this work
builds upon previous work (Figure 13 and Tables 1, 3). In the
next section, we discuss some of the more noticeable aspects
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FIGURE 13

Results to date and future potential improvements from iterative near-term ecological forecasting (Dietze et al., 2018) in the context of fish passage,
guidance, and movement prediction for water operations management and infrastructure design. The salmon movement behavioral repertoire
developed in our tidal study is a conceptual superset of the fish hydrodynamic responses found in simpler environments represented with steady
flow. Old notation from past applications: to a single dam 1Lower Granite Dam (Goodwin, 2004), 2multiple dams (Goodwin et al., 2006), and
3basin-wide (Goodwin et al., 2014) where GM and the term strain in prior works1,2 are interchangeable for the data and acclimatization is used1,2

instead of the terms habituation and memory used herein.

of our modeling approach, shortcomings, limitations, and future
improvement opportunities.

5.2. Fish swim paths

Simulated salmon paths emerge from behaviors that depend
on past experience, resulting in movement trajectories that differ
among individuals experiencing the same momentary condition.
In our approach, two hypothetical fish experiencing the same
condition at a moment in time will exhibit different behaviors
and, therefore, movement paths because their past histories
are not identical.

While examples can be found in our study in which two
simulated salmon — or a simulated and tagged fish — trace
nearly the same path (e.g., Figures 8, 9), more generally, pairs
of individuals (modeled versus modeled; modeled versus tagged)
do not have identical trajectories that coincide both spatially
and temporally. Thus, our study highlights a surprising but
useful paradox: that is, one-to-one paired synchrony between

simulated and tagged salmon paths, while desirable, is not a
requisite for satisfactory hindcasting and future prediction of route
passage/entrainment. Upon inspection, there are several reasons
for the paradox.

One reason for the paradox is that movement dynamics near
the junction are more important for determining entrainment
than behavior elsewhere within the river reach. Therefore,
paths do not have to coincide perfectly both spatially and
temporally throughout the entire reach. The most important
factors for the correspondence between modeled and tagged
fish passage/entrainment proportions in our tidal study are that
each of the sample populations (i) volitionally control much
of their displacement and fate within the river channel, in
contrast to passive particles, and (ii) make decisions similarly-
enough in similar-enough proportions across a broad range of
conditions. Location holding is one way that a tagged salmon
may sample river hydrodynamics analogous to a simulated salmon,
but at a later time after milling in a region for a while.
Another reason for the paradox is that the sample sizes, while
somewhat relatively small once parsed to our simulation windows
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(Figure 3 upper left), are sufficient to average out a variety of
characteristics both in salmon movement and in experienced
water flow patterns as evidenced by the sensitivity analysis
(Figure 12).

5.2.1. Movement mode heatmaps
We use heatmaps to compare swim path patterns and

movement modes across our samples of virtual and real fish.
The relatively concentrated simulated salmon swim paths along
the river thalweg (Figure 8), compared to tagged fish (Figure
3), can likely be improved by distributing the modeled fish
further throughout (across) the river’s width by increasing the
presently-negligible stochasticity in swim orientation. Increasing
swim orientation stochasticity, however, will come at the expense
of slowing down their speed-over-ground that is already slower
than tagged fish. Speed-over-ground could be increased by
implementing faster swim velocities (e.g., larger fish), but
bigger individuals will bias the decision-support tool away
from resembling the smaller-sized salmon important to water
operations management. A distribution of small-to-large salmon
fork lengths is likely a desired next step, but not part of
the study herein.

Another possibility for reducing the discrepancy between
simulated and tagged salmon path concentrations is modifying
how the sensitivity of perceived changes in GM and VM are
handled. Presently, GM and VM perceived changes are handled
via threshold values that do not change with time. Perhaps
the threshold values, instead, depend on previous hydrodynamic
experience, which would add yet another layer of contextuality
to behavior.

Further, the GM trigger and attraction behavior may themselves
be contextualized via multimodal signal integration (Gil-Guevara
et al., 2022) with a turbulence measure (Figure 13). While our
development efforts with year 2009 data reveal that TKE is
sometimes not present in areas where salmon repeatedly re-orient
(Figure 6 and Supplementary Figures 1, 3, 5), perhaps the less
pronounced TKE values have value in eliciting less concentrated
paths when used in combination with our existing hydrodynamic
triggers (Table 5). A challenge within the above endeavor is to
realize a more distributed concentration of simulated salmon swim
paths across the river’s width without incurring a concomitant
increase in boundary interactions.

Other observed discrepancies between simulated and tagged
salmon evident from the heatmaps (Figure 3 vs. Figure 8)
include more tagged salmon exhibiting reach milling and riverbank
tendencies, although this is a natural byproduct of our focus on
zig-zagging behavior. Interestingly, heatmaps reveal similarities
between tagged and simulation salmon milling near the bridge
despite the piers (and associated hydrodynamics) being absent from
the year 2009 flow field renderings.

5.2.2. Synchronizing modeled and tagged fish
swim paths

A better end-state of the model would preserve the existing
entrainment fidelity while gaining full synchronization between
real and simulated fish trajectories (path plus timing), which
requires reproducing the emergence of different movement modes
in the same proportions. Manual classification was best able to

handle anomalies in the real-world fish data for this present
study, but future work should focus on automated methods
that can assist the development and parameterization of more
realistic reproductions of tagged fish movement modes and
individual trajectories.

A solid next step would be a quantitatively rigorous
movement mode classification (Romine et al., 2014; Vilk et al.,
2022) combined with trajectory similarity measures such as
the Fréchet distance or dynamic time warping (Magdy et al.,
2015; Cleasby et al., 2019; Su et al., 2020; Tao et al., 2021)
for gauging the one-to-one correspondence between pairs of
simulated and tagged salmon swim paths. Larger (longer) river
spatial domains and temporal windows would facilitate the
analysis of movement mode emergence, allowing us to better
understand whether modes are more closely correlated with specific
individuals, a particular sequence of environmental experiences, or
a mix of factors.

Existing travel time discrepancies between simulated and real
fish may be improved through the previously mentioned tactic of
releasing modeled salmon with a distribution of sizes (fork lengths).
Larger fish swim faster if the assumed body lengths per second
remains unchanged, although it is also possible to modify the
assumptions of drift, cruise, and burst swimming BL s−1 for
our identically-sized 120 mm salmon. With the model as is, we
discuss three possible explanations for the slower transit time
of the simulated salmon example in ebb flow (Figure 8 and
Supplementary Figures 1, 2): swimming depth, rheotaxis, and
RANS flow field modeling, all of which relate to hydrodynamic
model fidelity that we discuss in the next section.

5.2.3. Hydrodynamic model fidelity
Rivers have more heterogeneity than we can fully measure

or model (Figure 4), and the issue is relevant to fish movement
analysis as evident in the comparison of real and simulated travel
times in Figure 8 and Supplementary Figures 1, 2 during ebb flow.
Our fish behavior simulations using 2-D xy-plane horizontal slices
use the hydrodynamics extracted from just under the water surface
where river flow is typically fastest (Supplementary Figure 2). In 2-
D, simulated individuals cannot move along the river bottom where
water speed is slower and sometimes approaches zero. Given that 2-
D simulated fish transit times (Supplementary Figure 2 particle:
46 min; salmon: 1 h 1 min) are similar to the results from 3-D
(Figure 8 and Supplementary Figure 1 particle: 46 min; salmon:
1 h 3 min), we can conclude that vertical heterogeneity in river flow
contributes negligibly to the travel time of these specific individuals
over the duration they journey the reach in this flow condition.

Notice that the tagged fish transits the stretch in 41 min
while the passive particle takes 46 min. The result appears at first
inconsistent with our finding that simulated salmon must orient
against the flow, which slows ELAM fish relative to a passive
particle. Orienting the simulated 120 mm sized salmon more with
the flow (negative rheotaxis), however, increases the zig-zag period
(wavelength) that reduces similarity between simulated and tagged
fish swim paths.

Another possible explanation for the longer simulated salmon
transit time resides in the notion that RANS modeling represents
an average flow field condition of the river (Figure 4). RANS
flow field modeling can miss high-velocity regions or cores
(Constantinescu et al., 2011b). We surmise that real-world flow
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field heterogeneity provides tagged salmon opportunities in the
real world to exploit regions of faster-than-RANS water that is
unavailable to simulated fish and may at least partially explain the
slower transit times of the modeled fish in ebb flow (Figure 8 and
Supplementary Figures 1, 2).

5.2.4. Behavioral choice/decision model fidelity
Mathematical models of decision choice, and the dynamics

that underlie them, are an active area of research not only in
ecology and ethology but other fields as well, especially the
field of economics, and have been for more than a half-century
(Table 1). There are many different choice/decision models to
choose from. The scale of our study and the assumptions we
invoke do not make our study or findings the best platform
to advocate for one theoretical approach (theory, model) over
another. Others may find in work at the same scale (but different
environmental context) or at different scales (the laboratory)
that there are advantages/disadvantages to a particular theoretical
approach which differ from our experience here. In this study,
using sensory evidence accumulators at our available scale, we find
that for the rise and fall of competing behaviors in the hierarchical
repertoire to generate the type of fast response dynamics we
observe in tagged fish in particular areas (e.g., near the riverbank)
that we need the contribution of inhibition in our decision
model. In our approach, inhibition facilitates a better transition
between behaviors B{2, 3} by keeping their sensory accumulators,
eB (Equations 4–7), in a more stable harmony compared to the
same formulation without inhibition. Without inhibition, we find
that B{2, 3} responses in some contexts are simply too slow to
resolve themselves when needed because the impending behavior
must catch-up and overtake the accumulated evidence of another
behavior’s eB and by the time the former outraces the latter
the simulated fish encounters a boundary, is captured, or is
entrained, for instance.

5.3. Fish passage/entrainment

Synchronizing real and simulated worlds in order to compare
salmon passage/entrainment proportions is not straightforward.
Tagged salmon may occupy the river reach domain prior to our
simulation window and/or remain in the area afterward (Figure
8), which limits the number of tagged salmon that we can leverage
in short windows. Analyzing the entire 2008–2009 and 2014 field
seasons (Figure 2) with larger spatial domains extending upriver
and downriver would allow us to piece apart further nuances of
salmon movement modes, as previously mentioned, as well as
incorporate more of the available fish field data. ELAM applications
that far exceed previous limitations are becoming viable with
hardware improvements (Rodi, 2017) and the ability to work
with trillion-cell hydrodynamic solutions on a common computer
(Imlay et al., 2018).

5.3.1. Release distribution
Decoupling the cognitive algorithm ensemble from a realistic

entry of fish into the river reach domain results in simulated
individuals that cannot sample the environment perfectly in line
with tagged salmon. We can use alternative release distributions

to assess the model’s prediction performance in the context of an
unknown future, but in which post-construction monitoring may
provide data on how real fish responded to the management action.
We measure model accuracy using RMSE based on multi-day
contiguous windows (Figures 11, 12). Daily passage/entrainment
numbers are inherently more variable due to the fewer available
numbers of tagged salmon (Table 2) and simulated fish that make
up the proportions. There is value in integrating field and model
passage/entrainment data over multiple days.

5.4. Guiding fish swim paths with surface
booms and engineered hydrodynamics

Fish guidance is a major focus of water operations management
and engineering in many rivers worldwide. Fish guidance has been
attributed to turbulence plumes (Coutant, 1998, 2001; Zielinski
et al., 2021) and also to velocity VM attraction triggered by
a stimulus (Goodwin et al., 2006, 2014). The VM attraction
hypothesis of fish guidance assumes the two hypotheses are
compatible as turbulence is correlated in many settings with GM
and AM identified as trigger proxies (Figure 13).

Analyses of fish guidance along surface booms using 3-D
hydrodynamic modeling that led to the VM attraction hypothesis
have yielded different triggers, and the exact trigger remains
unclear. Initial studies using the VM hypothesis attributed the
trigger to GM only for later analysis to suggest AM (Figure 13).
Our study here advances past contradictions toward a consistent
explanation worth evaluating further; that is, GM and AM play
different roles near guidance structures. Here, we find that
GM triggers VM attraction along booms which corroborates
some findings in laboratory experiments (Swanson et al., 2020).
Acceleration AM on the other hand acts to repulse salmon.

A topic for future research is whether GM attraction (triggered
by VM) acts in combination with VM attraction (triggered by GM)
to elicit salmon guidance along infrastructure and, if so, the relative
contribution of GM attraction. Also worthy of further investigation,
as mentioned previously, is how turbulence may act in combination
with GM and VM as a trigger. Regarding acceleration, our findings
add to the body of evidence that AM can repulse fish (Haro et al.,
1998; Kemp et al., 2005; Enders et al., 2009a, 2012; Vowles et al.,
2014).

5.5. Other behavioral
stimuli — temperature, dissolved gases,
sound, and bubbles

Many of the concepts and theory that we leverage do not
originate from studies on fish or hydrodynamics. Therefore,
our approach may be extendable in aquatic systems to other
environmental variables (Table 1). Insonified bubble curtains with
light stimuli were deployed at the Sacramento River junction with
Georgiana Slough in years 2011 and 2012 (California Department
of Water Resources, 2012, 2013; Perry et al., 2014) and remain a
future management option in the Bay-Delta to improve system-
wide salmon survival.
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5.6. Engineering best practices for
predicting fish response to water
operations

To facilitate iterative near-term ecological forecasting (Dietze
et al., 2018) that can support water operations infrastructure
engineering and management, we need best practices. We can begin
developing engineering best practices for using fish movement
simulations to inform civil infrastructure design and water
operations management in the context of future environmental
conditions that cannot be fully known in advance. While fish
in the future observed during post-action monitoring are likely
to experience hydrodynamics that differ in some ways from the
assumptions in management design, there are several ways to
maximize the utility of fish movement prediction given inherent
and unavoidable limitations.

The first way to maximize the utility of fish movement
prediction in design is to simulate their response to alternative
designs, with each engineering concept evaluated across numerous
future environmental conditions. Best practice would be to
simulate across, or bracket, the likely future environmental
conditions. Unfortunately, the drawback of the first method
is the large number of simulations that can quickly outrace
available resources.

The second method compares future design alternatives only
in the context of the same conditions as past observations. The
benefit of the second method is that past observations can inform
some of the model’s initial conditions, e.g., fish entry patterns,
and simulated future outcomes can be benchmarked relative to
historical data in the null case of zero changes. The downside of
the second method is the limitation of the design analysis to only
past observed conditions that may not be relevant to the future.

The third method compares the performance of alternative
design concepts relative to one another, with no relation back to
past observed historical patterns. The benefit of the third method is
that the analysis of future designs can use environmental conditions
that differ from the past and fewer contexts (simulations) are
needed for a trend to emerge that may identify a particular design as
most robust across diverse environmental states. The downside of
the third approach is that at least two design alternatives are needed
to make a minimal, relative comparison.

5.7. Real-time fish prediction with
theory-informed machine learning

Emerging new forms of automation can help address existing
ELAM model shortcomings. Easier and faster implementation of
the ELAM is needed to scale-up our approach for informing water
operations management and design. We are working to encode
our cognitive approach, such as multiplex signal disentanglement
via multi-timescale perceptions, into a reduced-order form using
theory-informed neural networks. The potential is motivated by the
recent revolution of physics-informed neural networks (Karniadakis
et al., 2021), reinforcement learning (Reddy et al., 2018; Ullman,
2019; Gunnarson et al., 2021; Li L. et al., 2021; Zhu Y. et al.,
2021), and emerging concepts for improving machine learning
by constraining them with psychological theory (Bhatia and He,

2021; Peterson et al., 2021). A reduced-order form of the ensemble
algorithms in our approach may work better for the tight schedules
that are common in engineering design projects. Machine learning
has the potential to improve cognitive modeling by circumventing
complicated assumptions about perception, attention, and memory
that burden many existing methods (Bhatia and He, 2021; Peterson
et al., 2021).

At the same time, hydrodynamic RANS, DES, and LES models
will only grow in capability. As 3-D modeling of rivers becomes
more sophisticated, cognitive-based approaches to mechanistic
and machine learning based fish prediction may find particular
value in new, in situ measurement technologies such as Infrared
Quantitative Image Velocimetry or IR-QIV (Schweitzer and
Cowen, 2021). River-wide, centimeter-scale IR-QIV hydrodynamic
measurements can not only inform hydrodynamic modeling but
also, paired with biologgers measuring fish orientation and swim
speed, provide the real-time data streams needed to inform
on-the-fly ELAM theory-informed machine learning. On-the-fly
ELAM theory-informed machine learning has potential to provide
real-time fish prediction of behavioral response, whether seconds
or days in advance, greatly reducing the present time it takes to
implement an ELAM prediction analysis.

5.8. Ethohydraulics with environmental
modeling to improve waterways
engineering

Recursively applying near-term predictions of fish movement
followed by later comparison with observed data improves
ecological research relevance to society by informing sustainable
decision-making (Johnson et al., 2020) and accelerating the
pace of scientific discovery (Dietze et al., 2018). Our present
approach to behavior modeling is an outcome of iterative, trial-
and-error work (Figure 13) to account for fish cognition in
the interpretation and near-future prediction of their movement
near water operations infrastructure. In the grand scheme of
needed decision-support tools, our approach is a scaffold upon
which future improvement is encouraged. There are many
avenues for future improvement and research. For instance,
the model does not presently account for foraging or seasonal
influences on feeding behavior. Also, the environment can
modify the cognitive dynamics of a species (Austin and Dunlap,
2023), so the potential exists that salmon decision-making is
changing whilst we’re interpreting their movement behaviors
from past years.

In civil and environmental engineering, a practical difficulty
is the effort needed to develop 3-D representations of a river
compared to less-realistic 2-D renderings (Robinson et al., 2019),
especially when predicting future hydrologic conditions. Simulated
salmon swim paths in 2-D are not as realistic yet sufficient to predict
passage/entrainment as well as some specific trajectory patterns.
In our study, the 2-D hydrodynamic features are sometimes
less concentrated in the river thalweg resulting in simulated fish
trajectories with wider cross-sectional excursions. Nonetheless,
our findings suggest that a cognitive approach to mechanistic
fish movement behavior modeling does not always require the
maximum possible resolution in river hydrodynamics.
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By juxtaposing the findings from multiple studies, we can
deduce further hypotheses for future evaluation to build a more
holistic understanding of salmon movement behavior as well
as for other downstream-migrating species (Figure 13). The
potential appears to exist for a single parameterization capable of
predicting near-future, out-of-sample juvenile Pacific salmonids
across diverse reservoir, dam, and tidal environments – and in
different river basins – sufficient for water operations management
and engineering design. Further, we speculate the repertoire
(Table 5, Figure 13) is relevant to other species with a goal to move
downriver and that inverted forms of the stimuli-responses may
describe aspects of upstream-moving fish (McElroy et al., 2012;
Zielinski et al., 2018, 2021; Zeng, 2022; Kerr et al., 2023; Luis and
Pasternack, 2023).

Here, we demonstrate how prior experiences and the temporal
sequencing of stimuli are central to understanding salmon
movement behavior in rivers. Practically, our findings show that
it is possible to construct an abstracted form of animal cognition
for a mechanistic behavior model that can operate at the scale
of real-world waterways infrastructure, a critical step toward
making quantitative near-term predictions of fish movement a
reality for improving water resources planning, management, and
engineering design.
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Kulić, T., Lončar, G., Kovačević, M., and Fliszar, R. (2021). Application of agent-
based modelling for selecting configuration of vertical slot fishway. Graðevinar 73,
235–247. doi: 10.14256/JCE.3150.2021

Kummu, M., de Moel, H., Ward, P. J., and Varis, O. (2011). How close do we live
to water? A global analysis of population distance to freshwater bodies. PLoS One
6:e20578. doi: 10.1371/journal.pone.0020578

LaBone, E. D., Rose, K. A., Justic, D., Huang, H., and Wang, L. (2021). Effects of
spatial variability on the exposure of fish to hypoxia: A modeling analysis for the Gulf
of Mexico. Biogeosciences 18, 487–507. doi: 10.5194/bg-18-487-2021

Lacey, R. W. J., Neary, V. S., Liao, J. C., Enders, E. C., and Tritico, H. M. (2012). The
IPOS framework: Linking fish swimming performance in altered flows from laboratory
experiments to rivers. River Res. Appl. 28, 429–443. doi: 10.1002/rra.1584

Lai, Y. G. (2000). Unstructured grid arbitrarily shaped element method for fluid flow
simulation. AIAA J. 38, 2246–2252. doi: 10.2514/2.915

Lai, Y. G. (2010). Two-dimensional depth-averaged flow modeling with an
unstructured hybrid mesh. J. Hydraul. Eng. 136, 12–23. doi: 10.1061/(ASCE)HY.1943-
7900.0000134

Lai, Y. G. (2022). Flow characteristics at a river diversion juncture and implications
for juvenile salmon entrainment. Fluids 7:98. doi: 10.3390/fluids7030098

Lai, Y. G., Goodwin, R. A., Smith, D. L., and Reeves, R. L. (2017). “Complex unsteady
flow patterns at a river junction and their relation with fish movement behavior,” in
ASCE world environmental and water resources congress, eds C. N. Dunn and B. V.
Weele (Sacramento, CA: ASCE), 8–15. doi: 10.1061/9780784480625.002

Lai, Y. G., Weber, L. J., and Patel, V. C. (2003). Nonhydrostatic three-dimensional
model for hydraulic flow simulation. I: Formulation and verification. J. Hydraul. Eng.
129, 196–205. doi: 10.1061/(ASCE)0733-94292003129:3(196)

Laming, D. R. J. (1968). Information theory of choice-reaction times. London:
Academic Press.

Lane, S. N., Bradbrook, K. F., Richards, K. S., Biron, P. A., and Roy, A. G.
(1999). The application of computational fluid dynamics to natural river channels:
Three-dimensional versus two-dimensional approaches. Geomorphology 29, 1–20.

Langford, M. T., Zhu, D. Z., and Leake, A. (2016). Upstream hydraulics of a run-
of-the river hydropower facility for fish entrainment risk assessment. J. Hydraul. Eng.
142:05015006. doi: 10.1061/(ASCE)HY.1943-7900.0001101

Lauder, G. V., and Tytell, E. D. (2004). Three Gray classics on the biomechanics of
animal movement. J. Exp. Biol. 207, 1597–1599. doi: 10.1242/jeb.00921

Launder, B. E., and Spalding, D. B. (1974). The numerical computation of turbulent
flows. Comput. Methods Appl. Mech. Eng. 3, 269–289.

Le, T. B., Khosronejad, A., Sotiropoulos, F., Bartelt, N., Woldeamlak, S., and
Dewall, P. (2019). Large-eddy simulation of the Mississippi River under base-flow
condition: Hydrodynamics of a natural diffluence-confluence region. J. Hydraul. Res.
57, 836–851. doi: 10.1080/00221686.2018.1534282

Leander, J., Klaminder, J., Hellström, G., and Jonsson, M. (2021). Bubble barriers
to guide downstream migrating Atlantic salmon (Salmo salar): An evaluation using
acoustic telemetry. Ecol. Eng. 160:106141. doi: 10.1016/j.ecoleng.2020.106141

Lehman, B., Huff, D. D., Hayes, S. A., and Lindley, S. T. (2017). Relationships
between Chinook salmon swimming performance and water quality in the San Joaquin
River, California. Trans. Am. Fish. Soc. 146, 349–358. doi: 10.1080/00028487.2016.
1271827

Leitch, K. J., Ponce, F. V., Dickson, W. B., van Breugel, F., and Dickinson,
M. H. (2021). The long-distance flight behavior of Drosophila supports an agent-
based model for wind-assisted dispersal in insects. Proc. Natl. Acad. Sci. U. S. A.
118:e2013342118. doi: 10.1073/pnas.2013342118

Lemasson, B. H., Anderson, J. J., and Goodwin, R. A. (2009). Collective motion in
animal groups from a neurobiological perspective: The adaptive benefits of dynamic
sensory loads and selective attention. J. Theor. Biol. 261, 501–510. doi: 10.1016/j.jtbi.
2009.08.013

Lemasson, B. H., Anderson, J. J., and Goodwin, R. A. (2013). Motion-guided
attention promotes adaptive communications during social navigation. Proc. Natl.
Acad. Sci. U. S. A. 280:20122003. doi: 10.1098/rspb.2012.2003

Lewandoski, S. A., Hrodey, P., Miehls, S., Piszczek, P. P., and Zielinski, D. P.
(2021). Behavioral responses of sea lamprey (Petromyzon marinus) and white sucker
(Catostomus commersonii) to turbulent flow during fishway passage attempts. Can. J.
Fish. Aquatic Sci. 78, 409–421. doi: 10.1139/cjfas-2020-0223

Li, L., Liu, D., Deng, J., Lutz, M. J., and Xie, G. (2021). Fish can save energy via
proprioceptive sensing. Bioinspirat. Biomimet. 16:056013. doi: 10.1088/1748-3190/
ac165e

Li, M., An, R., Chen, M., and Li, J. (2022). Evaluation of volitional swimming
behavior of Schizothorax prenanti using an open-channel flume with spatially
heterogeneous turbulent flow. Animals 12:752. doi: 10.3390/ani12060752

Li, M., Chen, M., Wu, W., Li, J., and An, R. (2023). Differences in the natural
swimming behavior of Schizothorax prenanti Individual and schooling in spatially
heterogeneous turbulent flows. Animals 13:1025. doi: 10.3390/ani13061025

Li, P., Zhang, W., Burnett, N. J., Zhu, D. Z., Casselman, M., and Hinch,
S. G. (2021). Evaluating dam water release strategies for migrating adult salmon
using computational fluid dynamic modeling and biotelemetry. Water Resour. Res.
57:e2020WR028981. doi: 10.1029/2020WR028981

Liao, J. C. (2006). The role of the lateral line and vision on body kinematics
and hydrodynamic preference of rainbow trout in turbulent flow. J. Exp. Biol. 209,
4077–4090. doi: 10.1242/jeb.02487

Liao, J. C. (2007). A review of fish swimming mechanics and behaviour in altered
flows. Philos. Trans. R. Soc. B Biol. Sci. 362, 1973–1993. doi: 10.1098/rstb.2007.2082

Liao, J. C., and Cotel, A. J. (2013). “Effects of turbulence on fish swimming in
aquaculture,” in Swimming physiology of fish, eds A. P. Palstra and J. V. Planas (Berlin:
Springer), 109–127. doi: 10.1007/978-3-642-31049-2_5

Liao, L., Chen, M., An, R., Li, J., Tang, X., and Yan, Z. (2022). Identifying three-
dimensional swimming corridors for fish to match their swimming characteristics
under different hydropower plant operations: Optimization of entrance location for
fish-passing facilities. Sci. Total Environ. 822:153599. doi: 10.1016/j.scitotenv.2022.
153599

Lilly, J., Honkanen, H. M., McCallum, J. M., Newton, M., Bailey, D. M., and Adams,
C. E. (2022). Combining acoustic telemetry with a mechanistic model to investigate
characteristics unique to successful Atlantic salmon smolt migrants through a standing
body of water. Environ. Biol. Fish. 105, 2045–2063. doi: 10.1007/s10641-021-01172-x

Lin, H. Y., Fagan, W. F., and Jabin, P. E. (2021). Memory-driven movement model
for periodic migrations. J. Theor. Biol. 508:110486. doi: 10.1016/j.jtbi.2020.110486

Lough, R. G., Smith, W. G., Werner, F. E., Loder, J. W., Page, F. H., Hannah, C. G.,
et al. (1994). Influence of wind-driven advection on interannual variability in cod egg
and larval distributions on Georges Bank: 1982 vs 1985. ICES Marine Sci. Symposia
198, 356–378.

Lowe, R. H. (1952). The influence of light and other factors on the seaward migration
of the silver eel (Anguilla anguilla L.). J. Anim. Ecol. 21, 275–309. doi: 10.2307/1963

Luis, S. M., and Pasternack, G. B. (2023). Local hydraulics influence habitat selection
and swimming behavior in adult California Central Valley Chinook salmon at a large
river confluence. Fish. Res. 261:106634. doi: 10.1016/j.fishres.2023.106634

Lupandin, A. I. (2005). Effect of flow turbulence on swimming speed of fish. Biol.
Bull. 32, 461–466. doi: 10.1007/s10525-005-0125-z

Lynch, A. J., Cooke, S. J., Deines, A. M., Bower, S. D., Bunnell, D. B., Cowx, I. G.,
et al. (2016). The social, economic, and environmental importance of inland fish and
fisheries. Environ. Rev. 24, 115–121. doi: 10.1139/er-2015-0064

MacKinnon, D., and Hoar, W. S. (1953). Responses of coho and chum salmon fry to
current. J. Fish. Board Can. 10, 523–538. doi: 10.1139/f53-030

Maddahi, M., Hagenbüchli, R., Mendez, R., Zaugg, C., Boes, R. M., and Albayrak,
I. (2022). Field investigation of hydraulics and fish guidance efficiency of a horizontal
bar rack-bypass system. Water 14:776. doi: 10.3390/w14050776

Magdy, N., Sakr, M. A., Mostafa, T., and El-Bahnasy, K. (2015). “Review on
trajectory similarity measures,” in IEEE Seventh International Conference on Intelligent
Computing and Information Systems (ICICIS), (Cairo: IEEE), 613–619. doi: 10.1109/
IntelCIS.2015.7397286

Mahesh, K., Constantinescu, S. G., and Moin, P. (2004). A numerical method for
large eddy simulation in complex geometries. J. Comp. Phys. 197, 215–240.

Mann, R. P. (2018). Collective decision making by rational individuals. Proc. Natl.
Acad. Sci. U. S. A. 115, E10387–E10396. doi: 10.1073/pnas.1811964115

Mann, R. P. (2020). Collective decision-making by rational agents with differing
preferences. Proc. Natl. Acad. Sci. U. S. A. 117, 10388–10396. doi: 10.1073/pnas.
2000840117

Margenberg, N., Hartmann, D., Lessig, C., and Richter, T. (2022). A neural network
multigrid solver for the Navier-Stokes equations. J. Comp. Phys. 460:110983. doi:
10.1016/j.jcp.2022.110983

Marshall, J. A. R., Favreau-Peigne, A., Fromhage, L., McNamara, J. M., Meah, L. F. S.,
and Houston, A. I. (2015). Cross inhibition improves activity selection when switching
incurs time costs. Curr. Zool. 61, 242–250.

Martinez, J., Fu, T., Li, X., Hou, H., Wang, J., Eppard, M. B., et al. (2021). A
large dataset of detection and submeter-accurate 3-D trajectories of juvenile Chinook
salmon. Sci. Data 8:211. doi: 10.1038/s41597-021-00992-x

Mawer, R., Pauwels, I. S., Bruneel, S. P., Goethals, P. L. M., Kopecki, I., Elings,
J., et al. (2023). Individual based models for the simulation of fish movement near
barriers: Current work and future directions. J. Environ. Manag. 335:117538. doi:
10.1016/j.jenvman.2023.117538

McCauley, R. W., and Huggins, N. W. (1979). Ontogenetic and non-thermal
seasonal effects on thermal preferenda of fish. Am. Zool. 19, 267–271. doi: 10.1093/
icb/19.1.267

McClintock, B. T., Johnson, D. S., Hooten, M. B., Ver Hoef, J. M., and Morales, J. M.
(2014). When to be discrete: The importance of time formulation in understanding
animal movement. Mov. Ecol. 2, 21–34. doi: 10.1186/s40462-014-0021-6

Frontiers in Ecology and Evolution 48 frontiersin.org285

https://doi.org/10.3389/fevo.2023.703946
https://doi.org/10.1007/BF00002597
https://doi.org/10.1152/jn.1992.68.6.2212
https://doi.org/10.1152/jn.1992.68.6.2212
https://doi.org/10.14256/JCE.3150.2021
https://doi.org/10.1371/journal.pone.0020578
https://doi.org/10.5194/bg-18-487-2021
https://doi.org/10.1002/rra.1584
https://doi.org/10.2514/2.915
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000134
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000134
https://doi.org/10.3390/fluids7030098
https://doi.org/10.1061/9780784480625.002
https://doi.org/10.1061/(ASCE)0733-94292003129:3(196)
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001101
https://doi.org/10.1242/jeb.00921
https://doi.org/10.1080/00221686.2018.1534282
https://doi.org/10.1016/j.ecoleng.2020.106141
https://doi.org/10.1080/00028487.2016.1271827
https://doi.org/10.1080/00028487.2016.1271827
https://doi.org/10.1073/pnas.2013342118
https://doi.org/10.1016/j.jtbi.2009.08.013
https://doi.org/10.1016/j.jtbi.2009.08.013
https://doi.org/10.1098/rspb.2012.2003
https://doi.org/10.1139/cjfas-2020-0223
https://doi.org/10.1088/1748-3190/ac165e
https://doi.org/10.1088/1748-3190/ac165e
https://doi.org/10.3390/ani12060752
https://doi.org/10.3390/ani13061025
https://doi.org/10.1029/2020WR028981
https://doi.org/10.1242/jeb.02487
https://doi.org/10.1098/rstb.2007.2082
https://doi.org/10.1007/978-3-642-31049-2_5
https://doi.org/10.1016/j.scitotenv.2022.153599
https://doi.org/10.1016/j.scitotenv.2022.153599
https://doi.org/10.1007/s10641-021-01172-x
https://doi.org/10.1016/j.jtbi.2020.110486
https://doi.org/10.2307/1963
https://doi.org/10.1016/j.fishres.2023.106634
https://doi.org/10.1007/s10525-005-0125-z
https://doi.org/10.1139/er-2015-0064
https://doi.org/10.1139/f53-030
https://doi.org/10.3390/w14050776
https://doi.org/10.1109/IntelCIS.2015.7397286
https://doi.org/10.1109/IntelCIS.2015.7397286
https://doi.org/10.1073/pnas.1811964115
https://doi.org/10.1073/pnas.2000840117
https://doi.org/10.1073/pnas.2000840117
https://doi.org/10.1016/j.jcp.2022.110983
https://doi.org/10.1016/j.jcp.2022.110983
https://doi.org/10.1038/s41597-021-00992-x
https://doi.org/10.1016/j.jenvman.2023.117538
https://doi.org/10.1016/j.jenvman.2023.117538
https://doi.org/10.1093/icb/19.1.267
https://doi.org/10.1093/icb/19.1.267
https://doi.org/10.1186/s40462-014-0021-6
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-703946 June 10, 2023 Time: 15:10 # 49

Goodwin et al. 10.3389/fevo.2023.703946

McClintock, B. T., King, R., Thomas, L., Matthiopoulos, J., McConnell, B. J.,
and Morales, J. M. (2012). A general discrete-time modeling framework for animal
movement using multistate random walks. Ecol. Monogr. 82, 335–349. doi: 10.1890/
11-0326.1

McCutcheon, F. H. (1966). Pressure sensitivity, reflexes, and buoyancy responses in
teleosts. Anim. Behav. 14, 204–217. doi: 10.1016/S0003-3472(66)80074-X

McElroy, B., DeLonay, A., and Jacobson, R. (2012). Optimum swimming pathways
of fish spawning migrations in rivers. Ecology 93, 29–34. doi: 10.1890/11-1082.1

McGaugh, J. L. (2000). Memory - a century of consolidation. Science 287, 248–251.
doi: 10.1126/science.287.5451.248

McHenry, M. J., and Liao, J. C. (2013). The hydrodynamics of flow stimuli. New York,
NY: Springer.

McIlvenny, J., Youngson, A., Williamson, B. J., Gauld, N. R., Goddijn-Murphy, L.,
and Del Villar-Guerra, D. (2021). Combining acoustic tracking and hydrodynamic
modelling to study migratory behaviour of Atlantic salmon (Salmo salar) smolts on
entry into high-energy coastal waters. ICES J. Marine Sci. 78, 2409–2419. doi: 10.1093/
icesjms/fsab111

McLaughlin, R. L., and Noakes, D. L. (1998). Going against the flow: An examination
of the propulsive movements made by young brook trout in streams. Can. J. Fish.
Aquatic Sci. 55, 853–860. doi: 10.1139/f97-308

McLeod, A. M., and Neményi, P. (1941). An investigation of fishways. Iowa City, IA:
State University of Iowa, doi: 10.17077/006165

McMillen, T., and Holmes, P. (2006). The dynamics of choice among multiple
alternatives. J. Math. Psychol. 50, 30–57. doi: 10.1016/j.jmp.2005.10.003

McNamara, A. M., Magidson, P. D., Linster, C., Wilson, D. A., and Cleland, T. A.
(2008). Distinct neural mechanisms mediate olfactory memory formation at different
timescales. Learn. Mem. 15, 117–125. doi: 10.1101/lm.785608

McNamara, J. M., Fawcett, T. W., and Houston, A. I. (2013). An adaptive response
to uncertainty generates positive and negative contrast effects. Science 340, 1084–1086.
doi: 10.1126/science.1230599

Meister, M. (2022). Learning, fast and slow. Curr. Opin. Neurobiol. 75:102555.
doi: 10.1016/j.conb.2022.102555

Mickle, M. F., Miehls, S. M., Johnson, N. S., and Higgs, D. M. (2019). Hearing
capabilities and behavioural response of sea lamprey (Petromyzon marinus) to low-
frequency sounds. Can. J. Fish. Aquatic Sci. 76, 1541–1548. doi: 10.1139/cjfas-2018-
0359

Miehls, S. M., Johnson, N. S., and Hrodey, P. J. (2017). Test of a nonphysical
barrier consisting of light, sound, and bubble screen to block upstream movement
of sea lampreys in an experimental raceway. North Am. J. Fish. Manag. 37, 660–666.
doi: 10.1080/02755947.2017.1308892

Miles, J., Vowles, A. S., and Kemp, P. S. (2023). The influence of flow velocity on the
response of rheophilic fish to visual cues. PLoS One 18:e0281741. doi: 10.1371/journal.
pone.0281741

Miller, M., de Bie, J., Sharkh, S. M., and Kemp, P. S. (2021). Behavioural response
of downstream migrating European eel (Anguilla anguilla) to electric fields under
static and flowing water conditions. Ecol. Eng. 172:106397. doi: 10.1016/j.ecoleng.2021.
106397

Miller, M., Sharkh, S. M., and Kemp, P. S. (2022). Response of upstream migrating
juvenile European eel (Anguilla anguilla) to electric fields: Application of the marginal
gains concept to fish screening. PLoS One 17:e0270573. doi: 10.1371/journal.pone.
0270573

Moin, P., and Mahesh, K. (1998). Direct numerical simulation: A tool in turbulence
research. Annu. Rev. Fluid Mech. 30, 539–578. doi: 10.1146/annurev.fluid.30.1.539

Montgomery, J. C., Baker, C. F., and Carton, A. G. (1997). The lateral line can
mediate rheotaxis in fish. Nature 389, 960–963.

Montgomery, J. C., Bleckmann, H., and Coombs, S. (2013). Sensory ecology and
neuroethology of the lateral line. New York, NY: Springer, 1–30. doi: 10.1007/2506_
2013_17

Montgomery, J. C., Carton, A. G., Voigt, R., Baker, C. F., and Diebel, C. (2000).
Sensory processing of water currents by fishes. Philos. Trans. R. Soc. B Biol. Sci. 355,
1325–1327.

Moradi, G., Vermeulen, B., Rennie, C. D., Cardot, R., and Lane, S. N. (2019).
Evaluation of aDcp processing options for secondary flow identification at river
junctions. Earth Surface Process. Landforms 44, 2903–2921. doi: 10.1002/esp.4719

Morales, J. M., Haydon, D. T., Frair, J. L., Holsinger, K. E., and Fryxell, J. M. (2004).
Extracting more out of relocation data: Building movement models as mixtures of
random walks. Ecology 85, 2436–2445. doi: 10.1890/03-0269

Moreau, F. A. (1876). Recherches expérimentales sur les fonctions de la vessie
natatoire. Ann. Sci. Nat. Zool. 4, 1–85.

Moriarty, P. E., Byron, C. J., Pershing, A. J., Stockwell, J. D., and Xue, H. (2016).
Predicting migratory paths of post-smolt Atlantic salmon (Salmo salar). Marine Biol.
163:74. doi: 10.1007/s00227-016-2847-5

Mork, K. A., Gilbey, J., Hansen, L. P., Jensen, A. J., Jacobsen, J. A., Holm, M., et al.
(2012). Modelling the migration of post-smolt Atlantic salmon (Salmo salar) in the
Northeast Atlantic. ICES J. Marine Sci. 69, 1616–1624. doi: 10.1093/icesjms/fss108

Morrice, K. J., Baptista, A. M., and Burke, B. J. (2020). Environmental and behavioral
controls on juvenile Chinook salmon migration pathways in the Columbia River
estuary. Ecol. Modell. 427:109003. doi: 10.1016/j.ecolmodel.2020.109003

Moss, D. D., and Scott, D. C. (1961). Dissolved-oxygen requirements of three species
of fish. Trans. Am. Fish. Soc. 90, 377–393.

Müller, S., Wilson, C. A. M. E., Ouro, P., and Cable, J. (2021). Experimental
investigation of physical leaky barrier design implications on juvenile rainbow trout
(Oncorhynchus mykiss) movement. Water Res. Res. 57:e2021WR030111. doi: 10.1029/
2021WR030111

Murray, D. N., Bunnell, D. B., Rogers, M. W., Lynch, A. J., Douglas, B., and Funge-
Smith, S. (2020). Trends in inland commercial fisheries in the United States. Fisheries
45, 585–596. doi: 10.1002/fsh.10483

Murray, J. D., Bernacchia, A., Freedman, D. J., Romo, R., Wallis, J. D., Cai, X., et al.
(2014). A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17,
1661–1663. doi: 10.1038/nn.3862

Mussen, T. D., Cocherell, D. E., Hockett, Z., Ercan, A., Bandeh, H., Kavvas, M. L.,
et al. (2013). Assessing juvenile Chinook salmon behavior and entrainment risk near
unscreened water diversions: Large flume simulations. Trans. Am. Fish. Soc. 142,
130–142. doi: 10.1080/00028487.2012.720633

Mussen, T. D., Patton, O., Cocherell, D. E., Ercan, A., Bandeh, H., Kavvas, M. L.,
et al. (2014). Can behavioral fish-guidance devices protect juvenile Chinook salmon
(Oncorhynchus tshawytscha) from entrainment into unscreened water-diversion
pipes? Can. J. Fish. Aquatic Sci. 71, 1209–1219. doi: 10.1139/cjfas-2013-0601

Muste, M., Fujita, I., and Hauet, A. (2008). Large-scale particle image velocimetry
for measurements in riverine environments. Water Resour. Res. 44:W00D19. doi:
10.1029/2008WR006950

Muste, M., Yu, K., and Spasojevic, M. (2004). Practical aspects of ADCP data use for
quantification of mean river flow characteristics; part I: Moving-vessel measurements.
Flow Meas. Instr. 15, 1–16. doi: 10.1016/j.flowmeasinst.2003.09.001

Naisbett-Jones, L. C., Putman, N. F., Stephenson, J. F., Ladak, S., and Young, K. A.
(2017). A magnetic map leads juvenile European eels to the Gulf Stream. Curr. Biol.
27, 1236–1240. doi: 10.1016/j.cub.2017.03.015

Nassar, M. R., Wilson, R. C., Heasly, B., and Gold, J. I. (2010). An approximately
Bayesian delta-rule model explains the dynamics of belief updating in a changing
environment. J. Neurosci. 30, 12366–12378. doi: 10.1523/JNEUROSCI.0822-10.2010

Natvig, E., and Subbey, S. (2011). “Modelling vertical fish migration using mixed
Ornstein-Uhlenbeck processes,” in Proceedings Norsk informatikkonferanse NIK 2011,
(Norway: University of Tromsø).

Neill, W. H. (1979). Mechanisms of fish distribution in heterothermal
environments. Am. Zool. 19, 305–317. doi: 10.1093/icb/19.1.305

Nestler, J. M., Goodwin, R. A., Cole, T., Degan, D., and Dennerline, D.
(2002). Simulating movement patterns of blueback herring in a stratified southern
impoundment. Trans. Am. Fish. Soc. 131, 55–69.

Nestler, J. M., Goodwin, R. A., Smith, D. L., Anderson, J. J., and Li, S. (2008).
Optimum fish passage and guidance designs are based in the hydrogeomorphology
of natural rivers. River Res. Appl. 24, 148–168. doi: 10.1002/rra.1056

Nestler, J. M., Ploskey, G. R., Pickens, J., Menezes, J., and Schilt, C. R. (1992).
Responses of blueback herring to high-frequency sound and implications for reducing
entrainment at hydropower dams. North Am. J. Fish. Manag. 12, 667–683.

New, J. G., Fewkes, L. A., and Khan, A. N. (2001). Strike feeding behavior in the
muskellunge, Esox masquinongy: Contributions of the lateral line and visual sensory
systems. J. Exp. Biol. 204, 1207–1221. doi: 10.1242/jeb.204.6.1207

Newton, M., Barry, J., Lothian, A., Main, R., Honkanen, H. M., Mckelvey, S., et al.
(2021). Counterintuitive active directional swimming behaviour by Atlantic salmon
during seaward migration in the coastal zone. ICES J. Marine Sci. 78, 1730–1743.
doi: 10.1093/icesjms/fsab024

NMFS (2022). NOAA Fisheries West Coast Region anadromous salmonid passage
design manual. Portland, OR: National Marine Fisheries Service.

Noatch, M. R., and Suski, C. D. (2012). Non-physical barriers to deter fish
movements. Environ. Rev. 20, 71–82. doi: 10.1139/A2012-001

Odling-Smee, L., and Braithwaite, V. A. (2003). The role of learning in fish
orientation. Fish Fish. 4, 235–246. doi: 10.1046/j.1467-2979.2003.00127.x

Okubo, A. (1980). Diffusion and ecological problems: Mathematical models.
Biomathematics. New York, NY: Springer-Verlag.

Olivetti, S., Gil, M. A., Sridharan, V. K., and Hein, A. M. (2021). Merging
computational fluid dynamics and machine learning to reveal animal migration
strategies. Methods Ecol. Evol. 12, 1186–1200. doi: 10.1111/2041-210X.13604

Oram, T. B., and Card, G. M. (2022). Context-dependent control of behavior in
Drosophila. Curr. Opin. Neurobiol. 73:102523. doi: 10.1016/j.conb.2022.02.003

Orszag, S. A., and Patterson, G. Jr. (1972). Numerical simulation of three-
dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 76–79. doi: 10.
1103/PhysRevLett.28.76

Ossmy, O., Moran, R., Pfeffer, T., Tsetsos, K., Usher, M., and Donner, T. H. (2013).
The timescale of perceptual evidence integration can be adapted to the environment.
Curr. Biol. 23, 981–986. doi: 10.1016/j.cub.2013.04.039

Frontiers in Ecology and Evolution 49 frontiersin.org286

https://doi.org/10.3389/fevo.2023.703946
https://doi.org/10.1890/11-0326.1
https://doi.org/10.1890/11-0326.1
https://doi.org/10.1016/S0003-3472(66)80074-X
https://doi.org/10.1890/11-1082.1
https://doi.org/10.1126/science.287.5451.248
https://doi.org/10.1093/icesjms/fsab111
https://doi.org/10.1093/icesjms/fsab111
https://doi.org/10.1139/f97-308
https://doi.org/10.17077/006165
https://doi.org/10.1016/j.jmp.2005.10.003
https://doi.org/10.1101/lm.785608
https://doi.org/10.1126/science.1230599
https://doi.org/10.1016/j.conb.2022.102555
https://doi.org/10.1139/cjfas-2018-0359
https://doi.org/10.1139/cjfas-2018-0359
https://doi.org/10.1080/02755947.2017.1308892
https://doi.org/10.1371/journal.pone.0281741
https://doi.org/10.1371/journal.pone.0281741
https://doi.org/10.1016/j.ecoleng.2021.106397
https://doi.org/10.1016/j.ecoleng.2021.106397
https://doi.org/10.1371/journal.pone.0270573
https://doi.org/10.1371/journal.pone.0270573
https://doi.org/10.1146/annurev.fluid.30.1.539
https://doi.org/10.1007/2506_2013_17
https://doi.org/10.1007/2506_2013_17
https://doi.org/10.1002/esp.4719
https://doi.org/10.1890/03-0269
https://doi.org/10.1007/s00227-016-2847-5
https://doi.org/10.1093/icesjms/fss108
https://doi.org/10.1016/j.ecolmodel.2020.109003
https://doi.org/10.1029/2021WR030111
https://doi.org/10.1029/2021WR030111
https://doi.org/10.1002/fsh.10483
https://doi.org/10.1038/nn.3862
https://doi.org/10.1080/00028487.2012.720633
https://doi.org/10.1139/cjfas-2013-0601
https://doi.org/10.1029/2008WR006950
https://doi.org/10.1029/2008WR006950
https://doi.org/10.1016/j.flowmeasinst.2003.09.001
https://doi.org/10.1016/j.cub.2017.03.015
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
https://doi.org/10.1093/icb/19.1.305
https://doi.org/10.1002/rra.1056
https://doi.org/10.1242/jeb.204.6.1207
https://doi.org/10.1093/icesjms/fsab024
https://doi.org/10.1139/A2012-001
https://doi.org/10.1046/j.1467-2979.2003.00127.x
https://doi.org/10.1111/2041-210X.13604
https://doi.org/10.1016/j.conb.2022.02.003
https://doi.org/10.1103/PhysRevLett.28.76
https://doi.org/10.1103/PhysRevLett.28.76
https://doi.org/10.1016/j.cub.2013.04.039
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-703946 June 10, 2023 Time: 15:10 # 50

Goodwin et al. 10.3389/fevo.2023.703946

Oteiza, P., Odstrcil, I., Lauder, G. V., Portugues, R., and Engert, F. (2017). A
novel mechanism for mechanosensory-based rheotaxis in larval zebrafish. Nature 547,
445–448. doi: 10.1038/nature23014

Ounsley, J. P., Gallego, A., Morris, D. J., and Armstrong, J. D. (2020). Regional
variation in directed swimming by Atlantic salmon smolts leaving Scottish waters for
their oceanic feeding grounds - a modelling study. ICES J. Marine Sci. 77, 315–325.
doi: 10.1093/icesjms/fsz160

Padgett, T. E., Thomas, R. E., Borman, D. J., and Mould, D. C. (2020). Individual-
based model of juvenile eel movement parametrized with computational fluid
dynamics-derived flow fields informs improved fish pass design. R. Soc. Open Sci.
7:191505. doi: 10.1098/rsos.191505

Park, I. J., Hein, A. M., Bobkov, Y. V., Reidenbach, M. A., Ache, B. W., and Principe,
J. C. (2016). Neurally encoding time for olfactory navigation. PLoS Comput. Biol.
12:e1004682. doi: 10.1371/journal.pcbi.1004682

Parker, G. H. (1912). Sound as a directing influence in the movements of fishes. Bull.
Bureau Fish. 30, 99–104.

Patlak, C. S. (1953). A mathematical contribution to the study of orientation of
organisms. Bull. Math. Biophys. 15, 431–476. doi: 10.1007/BF02476435

Patrick, P. H., Christie, A. E., Sager, D., Hocutt, C., and Stauffer, J. Jr. (1985).
Responses of fish to a strobe light/air-bubble barrier. Fish. Res. 3, 157–172. doi: 10.
1016/0165-7836(85)90016-5

Pavlov, D. S., and Tjurjukov, S. N. (1995). Reactions of dace to linear accelerations.
J. Fish Biol. 46, 768–774.

Pavlov, D. S., and Tyuryukov, S. N. (1993). The role of lateral-line organs and
equilibrium in the behavior and orientation of the dace. Leuciscus leuciscus, in a
turbulent flow. J. Ichthyol. 33, 45–55.

Pavlov, D. S., Lupandin, A. I., and Skorobogatov, M. A. (2000). The effects of flow
turbulence on the behavior and distribution of fish. J. Ichthyol. 40, S232–S261.

Pavlov, D. S., Lupandin, A. I., Degtyareva, N. G., and Dedov, S. M. (1995). Role
of turbulence in the distribution of downstream migrating young fishes (early larval
stages) in wlde and narrow channels. Doklady Biol. Sci. 341, 211–215.

Pavlov, D. S., Skorobogatov, M. A., and Shtaf, L. G. (1982). Influence of degree of
stream turbulence on the magnitude of the critical current velocity for fish. Doklady
Biol. Sci. 267, 560–562.

Peeke, H. V. S., and Peeke, S. C. (1973). “Habituation in fish with special reference to
intraspecific aggressive behavior,” in Habituation: Behavioral studies, eds H. V. S. Peeke
and M. J. Herz (New York, NY: Academic Press), 59–83.

Perry, R. W., Pope, A. C., Romine, J. G., Brandes, P. L., Burau, J. R., Blake, A. R., et al.
(2018). Flow-mediated effects on travel time, routing, and survival of juvenile Chinook
salmon in a spatially complex, tidally forced river delta. Can. J. Fish. Aquatic Sci. 75,
1886–1901. doi: 10.1139/cjfas-2017-0310

Perry, R. W., Romine, J. G., Adams, N. S., Blake, A. R., Burau, J. R., Johnston, S. V.,
et al. (2014). Using a non-physical behavioural barrier to alter migration routing of
juvenile Chinook salmon in the Sacramento-San Joaquin river delta. River Res. Appl.
30, 192–203. doi: 10.1002/rra.2628

Peterson, J. C., Bourgin, D. D., Agrawal, M., Reichman, D., and Griffiths, T. L.
(2021). Using large-scale experiments and machine learning to discover theories of
human decision-making. Science 372, 1209–1214. doi: 10.1126/science.abe2629

Petrucco, L., Lavian, H., Wu, Y. K., Svara, F., Štih, V., and Portugues, R. (2022).
Neural dynamics and architecture of the heading direction circuit in a vertebrate brain.
Biorxiv [Preprint]. doi: 10.1101/2022.04.27.489672

Piet, A. T., El Hady, A., and Brody, C. D. (2018). Rats adopt the optimal timescale for
evidence integration in a dynamic environment. Nat. Commun. 9:4265. doi: 10.1038/
s41467-018-06561-y

Piper, A. T., White, P. R., Wright, R. M., Leighton, T. G., and Kemp, P. S. (2019).
Response of seaward-migrating European eel (Anguilla anguilla) to an infrasound
deterrent. Ecol. Eng. 127, 480–486. doi: 10.1016/j.ecoleng.2018.12.001

Popper, A. N., and Carlson, T. J. (1998). Application of sound and other stimuli to
control fish behavior. Trans. Am. Fish. Soc. 127, 673–707. doi: 10.1371/journal.pone.
0063696

Popper, A. N., Hawkins, A. D., Jacobs, F., Jacobson, P. T., Johnson, P. N., and Krebs,
J. R. (2020). Use of sound to guide the movement of eels and other fishes within rivers:
A critical review. Rev. Fish Biol. Fish. 30, 605–622. doi: 10.1007/s11160-020-09620-0

Powalla, D., Hoerner, S., Cleynen, O., and Thévenin, D. (2022). A numerical
approach for active fish behaviour modelling with a view toward hydropower plant
assessment. Renew. Energy 188, 957–966. doi: 10.1016/j.renene.2022.02.064

Powers, E. B., and Clark, R. T. (1943). Further evidence on chemical factors affecting
the migratory movements of fishes, especially the salmon. Ecology 24, 109–113. doi:
10.2307/1929865

Prada, A. F., George, A. E., Stahlschmidt, B. H., Jackson, P. R., Chapman, D. C.,
and Tinoco, R. O. (2021). Using turbulence to identify preferential areas for grass carp
(Ctenopharyngodon idella) larvae in streams: A laboratory study. Water Resour. Res.
57:e2020WR028102. doi: 10.1029/2020WR028102

Pratt, T. C., Stanley, D. R., Schlueter, S., La Rose, J. K. L., Weinstock, A., and
Jacobson, P. T. (2021). Towards a downstream passage solution for out-migrating

American eel (Anguilla rostrata) on the St. Lawrence River. Aquacul. Fish. 6, 151–168.
doi: 10.1016/j.aaf.2021.01.003

Prchalová, M., Slavík, O., and Bartoš, L. (2006). Patterns of cyprinid migration
through a fishway in relation to light, water temperature and fish circling behaviour.
Int. J. River Bas. Manage. 4, 213–218. doi: 10.1080/15715124.2006.9635290

Putman, N. F. (2018). Marine migrations. Curr. Biol. 28, R972–R976. doi: 10.1016/j.
cub.2018.07.036

Putman, N. F., Lumpkin, R., Sacco, A. E., and Mansfield, K. L. (2016). Passive drift or
active swimming in marine organisms? Proc. R. Soc. B Biol. Sci. U. S. A. 283:20161689.
doi: 10.1098/rspb.2016.1689

Quaranta, E., Katopodis, C., Revelli, R., and Comoglio, C. (2017). Turbulent flow
field comparison and related suitability for fish passage of a standard and a simplified
low-gradient vertical slot fishway. River Res. Appl. 33, 1295–1305. doi: 10.1002/rra.
3193

Quinlan, J. A., Blanton, B. O., Miller, T. J., and Werner, F. E. (1999). From spawning
grounds to the estuary: Using linked individual-based and hydrodynamic models
to interpret partterns and processes in the oceanic phase of Atlantic menhaden
Brevoortia tyrannus life history. Fish. Oceanogr. 8, 224–246.

Quinn, B. K., Trudel, M., Wilson, B. M., Carr, J., Daniels, J., Haigh, S., et al. (2022).
Modelling the effects of currents and migratory behaviours on the dispersal of Atlantic
salmon (Salmo salar) post-smolts in a coastal embayment. Can. J. Fish. Aquatic Sci. 79,
2087–2111. doi: 10.1139/cjfas-2021-0316

Quinn, T. P. (1991). Models of Pacific salmon orientation and navigation on the
open ocean. J. Theor. Biol. 150, 539–545. doi: 10.1016/S0022-5193(05)80445-X

Railsback, S. F., Harvey, B. C., Kupferberg, S. J., Lang, M. M., McBain, S., and Welsh,
H. H. Jr. (2016). Modeling potential river management conflicts between frogs and
salmonids. Can. J. Fish. Aquatic Sci. 73, 773–784. doi: 10.1139/cjfas-2015-0267

Ramón, C. L., Acosta, M., and Rueda, F. J. (2018). Hydrodynamic drivers of juvenile-
salmon out-migration in the Sacramento River: Secondary circulation. J. Hydraul. Eng.
144:04018042. doi: 10.1061/(ASCE)HY.1943-7900.0001484

Ranc, N., Cagnacci, F., and Moorcroft, P. R. (2022). Memory drives the formation
of animal home ranges: Evidence from a reintroduction. Ecol. Lett. 25, 716–728.
doi: 10.1111/ele.13869

Rand, P. S., Scandol, J. P., and Walter, E. E. (1997). NerkaSim: A research and
educational tool to of Pacific salmon in a dynamic environment. Fisheries 22, 6–13.

Rankin, C. H., Abrams, T., Barry, R. J., Bhatnagar, S., Clayton, D. F., Colombo,
J., et al. (2009). Habituation revisited: An updated and revised description of the
behavioral characteristics of habituation. Neurobiol. Learn. Mem. 92, 135–138. doi:
10.1016/j.nlm.2008.09.012

Ratcliff, R. (1978). A theory of memory retrieval. Psychol. Rev. 85, 59–108. doi:
10.1037/0033-295X.85.2.59

Reddy, G., Wong-Ng, J., Celani, A., Sejnowski, T. J., and Vergassola, M. (2018).
Glider soaring via reinforcement learning in the field. Nature 562, 236–239. doi:
10.1038/s41586-018-0533-0

Reed, M. L., and Balchen, J. G. (1982). A multidimensional continuum model of fish
population dynamics and behaviour: Application to the Barents Sea capelin (Mallotus
villosus). Model. Identif. Control 3, 65–109. doi: 10.4173/mic.1982.2.1

Reeves, C. D. (1919). Discrimination of light of different wave-lengths by fish. Behav.
Monogr. 4:106.

Renardy, S., Ciraane, U. D., Benitez, J.-P., Dierckx, A., Archambeau, P., Pirotton,
M., et al. (2023). Combining fine-scale telemetry and hydraulic numerical modelling
to understand the behavioural tactics and the migration route choice of smolts at a
complex hydropower plant. Hydrobiologia doi: 10.1007/s10750-023-05237-z

Reyes, E., Sklar, F. H., and Day, J. W. (1994). A regional organism exchange model
for simulating fish migration. Ecol. Model. 74, 255–276. doi: 10.1016/0304-3800(94)
90122-8

Richardson, G., Dickinson, P., Burman, O. H. P., and Pike, T. W. (2018).
Unpredictable movement as an anti-predator strategy. Proc. R. Soc. B Biol. Sci.
285:20181112. doi: 10.1098/rspb.2018.1112

Robinson, D., Zundel, A., Kramer, C., Nelson, R., deRosset, W., Hunt, J., et al.
(2019). Two-dimensional hydraulic modeling for highways in the river environment.
Washington, DC: U.S. Department of Transportation.

Rodi, W. (2017). Turbulence modeling and simulation in hydraulics: A historical
review. J. Hydraul. Eng. 143:03117001. doi: 10.1061/(ASCE)HY.1943-7900.0001288

Rodriguez-Santiago, M., Jordan, A., and Hofmann, H. A. (2022). Neural activity
patterns differ between learning contexts in a social fish. Proc. R. Soc. B Biol. Sci.
289:20220135. doi: 10.1098/rspb.2022.0135

Romine, J. G., Perry, R. W., Brewer, S. J., Adams, N. S., Liedtke, T. L., Blake, A. R.,
et al. (2013). The regional salmon outmigration study - survival and migration routing
of juvenile chinook salmon in the sacramento-san joaquin river delta during the winter
of 2008-09. Open File Report 2013-1142. Reston, VA: U.S. Geological Survey, 46.

Romine, J. G., Perry, R. W., Johnston, S. V., Fitzer, C. W., Pagliughi, S. W., and
Blake, A. R. (2014). Identifying when tagged fishes have been consumed by piscivorous
predators: Application of multivariate mixture models to movement parameters of
telemetered fishes. Anim. Biotelemetry 2:3. doi: 10.1186/2050-3385-2-3

Frontiers in Ecology and Evolution 50 frontiersin.org287

https://doi.org/10.3389/fevo.2023.703946
https://doi.org/10.1038/nature23014
https://doi.org/10.1093/icesjms/fsz160
https://doi.org/10.1098/rsos.191505
https://doi.org/10.1371/journal.pcbi.1004682
https://doi.org/10.1007/BF02476435
https://doi.org/10.1016/0165-7836(85)90016-5
https://doi.org/10.1016/0165-7836(85)90016-5
https://doi.org/10.1139/cjfas-2017-0310
https://doi.org/10.1002/rra.2628
https://doi.org/10.1126/science.abe2629
https://doi.org/10.1101/2022.04.27.489672
https://doi.org/10.1038/s41467-018-06561-y
https://doi.org/10.1038/s41467-018-06561-y
https://doi.org/10.1016/j.ecoleng.2018.12.001
https://doi.org/10.1371/journal.pone.0063696
https://doi.org/10.1371/journal.pone.0063696
https://doi.org/10.1007/s11160-020-09620-0
https://doi.org/10.1016/j.renene.2022.02.064
https://doi.org/10.2307/1929865
https://doi.org/10.2307/1929865
https://doi.org/10.1029/2020WR028102
https://doi.org/10.1016/j.aaf.2021.01.003
https://doi.org/10.1080/15715124.2006.9635290
https://doi.org/10.1016/j.cub.2018.07.036
https://doi.org/10.1016/j.cub.2018.07.036
https://doi.org/10.1098/rspb.2016.1689
https://doi.org/10.1002/rra.3193
https://doi.org/10.1002/rra.3193
https://doi.org/10.1139/cjfas-2021-0316
https://doi.org/10.1016/S0022-5193(05)80445-X
https://doi.org/10.1139/cjfas-2015-0267
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001484
https://doi.org/10.1111/ele.13869
https://doi.org/10.1016/j.nlm.2008.09.012
https://doi.org/10.1016/j.nlm.2008.09.012
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1038/s41586-018-0533-0
https://doi.org/10.1038/s41586-018-0533-0
https://doi.org/10.4173/mic.1982.2.1
https://doi.org/10.1007/s10750-023-05237-z
https://doi.org/10.1016/0304-3800(94)90122-8
https://doi.org/10.1016/0304-3800(94)90122-8
https://doi.org/10.1098/rspb.2018.1112
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001288
https://doi.org/10.1098/rspb.2022.0135
https://doi.org/10.1186/2050-3385-2-3
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-703946 June 10, 2023 Time: 15:10 # 51

Goodwin et al. 10.3389/fevo.2023.703946

Romine, J. G., Perry, R. W., Pope, A. C., Stumpner, P., Liedtke, T. L., Kumagai, K. K.,
et al. (2017). Evaluation of a floating fish guidance structure at a hydrodynamically
complex river junction in the Sacramento-San Joaquin River Delta. California, USA.
Marine Freshwater Res. 68, 878–888. doi: 10.1071/MF15285

Romine, J. G., Perry, R. W., Stumpner, P. R., Blake, A. R., and Burau, J. R. (2021).
Effects of tidally varying river flow on entrainment of juvenile salmon into Sutter
and Steamboat Sloughs. San Francisco Estuary Watershed Sci. 19, 1–17. doi: 10.15447/
sfews.2021v19iss2art4

Rose, J. K., and Rankin, C. H. (2001). Analyses of habituation in Caenorhabditis
elegans. Learn. Mem. 8, 63–69. doi: 10.1101/lm.37801

Rossington, K., and Benson, T. (2020). An agent-based model to predict fish
collisions with tidal stream turbines. Renew. Energy 151, 1220–1229. doi: 10.1016/j.
renene.2019.11.127

Royce, W. F., Smith, L. S., and Hartt, A. C. (1968). Models of oceanic migrations of
Pacific salmon and comments on guidance mechanisms. Fish. Bull. 66, 441–462.

Russon, I. J., and Kemp, P. S. (2011). Advancing provision of multi-species fish
passage: Behaviour of adult European eel (Anguilla anguilla) and brown trout (Salmo
trutta) in response to accelerating flow. Ecol. Eng. 37, 2018–2024. doi: 10.1016/j.
ecoleng.2011.08.005

Sabal, M. C., Merz, J. E., Alonzo, S. H., and Palkovacs, E. P. (2020). An escape theory
model for directionally moving prey and an experimental test in juvenile Chinook
salmon. J. Anim. Ecol. 89, 1824–1836. doi: 10.1111/1365-2656.13233

Sager, D. R., Hocutt, C. H., and Stauffer, J. R. Jr. (1987). Estuarine fish responses
to strobe light, bubble curtains and strobe light/bubble-curtain combinations as
influenced by water flow rate and flash frequencies. Fish. Res. 5, 383–399. doi: 10.1016/
0165-7836(87)90054-3

Salena, M. G., Turko, A. J., Singh, A., Pathak, A., Hughes, E., Brown, C., et al. (2021).
Understanding fish cognition: A review and appraisal of current practices. Anim. Cogn.
24, 395–406. doi: 10.1007/s10071-021-01488-2

Savant, G., Trahan, C. J., Berger, C., McAlpin, J. T., and McAlpin, T. O. (2018).
Refinement indicator for dynamic-mesh adaption in three-dimensional shallow-water
equation modeling. J. Hydraul. Eng. 144:06017026. doi: 10.1061/(ASCE)HY.1943-
7900.0001394

Scheibe, T. D., and Richmond, M. C. (2002). Fish individual-based numerical
simulator (FINS): A particle-based model of juvenile salmonid movement and
dissolved gas exposure history in the Columbia River basin. Ecol. Model. 147, 233–252.

Schilt, C. R. (2007). Developing fish passage and protection at hydropower
dams. Appl. Anim. Behav. Sci. 104, 295–325. doi: 10.1016/j.applanim.2006.
09.004

Schreiner, H. K., Rennie, C. D., and Mohammadian, A. (2023). Insights into
secondary flow structure from clusters of instantaneous vortices. Environ. Fluid Mech.
23, 89–101. doi: 10.1007/s10652-022-09907-9

Schurger, A., Sitt, J. D., and Dehaene, S. (2012). An accumulator model for
spontaneous neural activity prior to self-initiated movement. Proc. Natl. Acad. Sci.
U. S. A. 109, E2904–E2913. doi: 10.1073/pnas.1210467109

Schwartz, E. (1974). “Lateral-line mechano-receptors in fishes and amphibians,” in
Electroreceptors and other specialized receptors in lower vertrebrates, ed. A. Fessard
(Berlin: Springer), 257–278. doi: 10.1016/0301-0082(89)90016-6

Schweitzer, S. A., and Cowen, E. A. (2021). Instantaneous river-wide water
surface velocity field measurements at centimeter scales using infrared quantitative
image velocimetry. Water Resour. Res. 57:e2020WR029279. doi: 10.1029/2020WR0
29279

Sharpless, S., and Jasper, H. (1956). Habituation of the arousal reaction. Brain 79,
655–680. doi: 10.1093/brain/79.4.655

Shelford, V. E., and Allee, W. C. (1913). The reactions of fishes to gradients of
dissolved atmospheric gases. J. Exp. Zool. 14, 207–266.

Shen, Y., Dasgupta, S., and Navlakha, S. (2020). Habituation as a neural algorithm
for online odor discrimination. Proc. Natl. Acad. Sci. U. S. A. 117, 12402–12410.
doi: 10.1073/pnas.1915252117

Shettleworth, S. J. (1998). Cognition, evolution, and behavior. Oxford, UK: Oxford
University Press.

Shettleworth, S. J. (2001). Animal cognition and animal behaviour. Anim. Behav. 61,
277–286. doi: 10.1006/anbe.2000.1606

Shiklomanov, I. A. (1993). “World fresh water resources,” in Water in crisis: A guide
to the world’s fresh water resources, ed. P. H. Gleick (New York, NY: Oxford University
Press), 13–24.

Silva, A. T., Bærum, K. M., Hedger, R. D., Baktoft, H., Fjeldstad, H.-P., Gjelland, K.
Ø, et al. (2020). The effects of hydrodynamics on the three-dimensional downstream
migratory movement of Atlantic salmon. Sci. Total Environ. 705:135773. doi: 10.1016/
j.scitotenv.2019.135773

Silva, A. T., Katopodis, C., Santos, J. M., Ferreira, M. T., and Pinheiro, A. N. (2012).
Cyprinid swimming behaviour in response to turbulent flow. Ecol. Eng. 44, 314–328.
doi: 10.1016/j.ecoleng.2012.04.015

Silva, A. T., Santos, J. M., Ferreira, M. T., Pinheiro, A. N., and Katopodis, C.
(2011). Effects of water velocity and turbulence on the behaviour of Iberian barbel

(Luciobarbus bocagei, Steindachner 1864) in an experimental pool-type fishway. River
Res. Appl. 27, 360–373. doi: 10.1002/rra.1363

Siniff, D. B., and Jessen, C. R. (1969). A simulation model of animal movement
patterns. Adv. Ecol. Res. 6, 185–219. doi: 10.1016/S0065-2504(08)60259-7

Skorobogatov, M. A., Pavlov, D. S., and Lupandin, A. I. (1996). Effect of current
velocity and turbulence intensity on the distribution of the roach Rutilus rutilus in a
water stream. J. Ichthyol. 36, 654–658.

Smagorinsky, J. (1963). General circulation experiments with the primitive
equations: I. the basic experiment. Monthly Weather Rev. 91, 99–164.

Smith, D. L. (2003). The shear flow environment of juvenile salmonids. Ph.D. thesis.
Moscow, ID: University of Idaho.

Smith, D. L., Brannon, E. L., and Odeh, M. (2005). Response of juvenile rainbow
trout to turbulence produced by prismatoidal shapes. Trans. Am. Fish. Soc. 134,
741–753.

Smith, D. L., Goodwin, R. A., and Nestler, J. M. (2014). Relating turbulence and fish
habitat: A new approach for management and research. Rev. Fish. Sci. Aquaculture 22,
123–130. doi: 10.1080/10641262.2013.803516

Smith, D. L., Nestler, J. M., Johnson, G. E., and Goodwin, R. A. (2010). Species-
specific spatial and temporal distribution patterns of emigrating juvenile salmonids in
the Pacific Northwest. Rev. Fish. Sci. 18, 40–64. doi: 10.1080/10641260903304487

Snyder, M. N., Schumaker, N. H., Ebersole, J. L., Dunham, J. B., Comeleo, R. L.,
Keefer, M. L., et al. (2019). Individual based modeling of fish migration in a 2-D river
system: Model description and case study. Landsc. Ecol. 34, 737–754. doi: 10.1007/
s10980-019-00804-z

Sogard, S. M., and Olla, B. L. (1993). Effects of light, thermoclines and predator
presence on vertical distribution and behavioral interactions of juvenile walleye
pollock. Theragra chalcogramma Pallas. J. Exp. Marine Biol. Ecol. 167, 179–195.

Soo, S. L., Tien, C. L., and Kadambi, V. (1959). Determination of turbulence
characteristics of solid particles in a two-phase stream by optical autocorrelation. Rev.
Sci. Instr. 30, 821–824. doi: 10.1063/1.1716763

Spalart, P. R., and Allmaras, S. R. (1992). “A one-equation turbulence model for
aerodynamic flows,” in AIAA 30th aerospace sciences meeting and exhibit, (Reno, NV),
439. doi: 10.2514/6.1992-439

Spalart, P. R., Jou, W. H., Strelets, M., and Allmaras, S. (1997). “Comments on the
feasibility of LES for wings and on a hybrid RANS/LES approach,” in Proceedings of first
AFOSR international conference on DNS/LES, eds C. Liu and Z. Liu (Dayton: Greyden
Press).

Spitmaan, M., Seo, H., Lee, D., and Soltani, A. (2020). Multiple timescales of neural
dynamics and integration of task-relevant signals across cortex. Proc. Natl. Acad. Sci.
U. S. A. 117, 22522–22531. doi: 10.1073/pnas.2005993117

Sridharan, V. K., Jackson, D., Hein, A. M., Perry, R. W., Pope, A. C., Hendrix, N.,
et al. (2023). Simulating the migration dynamics of juvenile salmonids through rivers
and estuaries using a hydrodynamically driven enhanced particle tracking model. Ecol.
Model. 482:110393. doi: 10.1016/j.ecolmodel.2023.110393

Standen, E. M., Hinch, S. G., and Rand, P. S. (2004). Influence of river speed on
path selection by migrating adult sockeye salmon (Oncorhynchus nerka). Can. J. Fish.
Aquatic Sci. 61, 905–912. doi: 10.1139/f04-035

Standen, E. M., Hinch, S. G., Healey, M. C., and Farrell, A. P. (2002). Energetic
costs of migration through the Fraser River Canyon, British Columbia, in adult pink
(Oncorhynchus gorbuscha) and sockeye (Oncorhynchus nerka) salmon as assessed by
EMG telemetry. Can. J. Fish. Aquatic Sci. 59, 1809–1818. doi: 10.1139/f02-151

Steele-Feldman, A. M. (2006). Learning and animal behavior: Exploring the
dynamics of simple models. M.S. thesis. Seattle, WA: School of Aquatic and Fishery
Sciences, University of Washington.

Stiassny, M. L. J. (1996). An overview of freshwater biodiversity: With some lessons
from African fishes. Fisheries 21, 7–13.

Stone, M. (1960). Models for choice-reaction time. Psychometrika 25, 251–260.
doi: 10.1007/BF02289729

Strand, E., Jørgensen, C., and Huse, G. (2005). Modelling buoyancy regulation in
fishes with swimbladders: Bioenergetics and behaviour. Ecol. Model. 185, 309–327.

Su, G., Logez, M., Xu, J., Tao, S., Villéger, S., and Brosse, S. (2021). Human impacts on
global freshwater fish biodiversity. Science 371, 835–838. doi: 10.1126/science.abd3369

Su, H., Liu, S., Zheng, B., Zhou, X., and Zheng, K. (2020). A survey of trajectory
distance measures and performance evaluation. VLDB J. 29, 3–32. doi: 10.1007/
s00778-019-00574-9

Suckling, E. E., and Suckling, J. A. (1964). Lateral line as a vibration receptor.
J. Acoust. Soc. Am. 36, 2214–2216.

Sukenik, N., Vinogradov, O., Weinreb, E., Segal, M., Levina, A., and Moses,
E. (2021). Neuronal circuits overcome imbalance in excitation and inhibition by
adjusting connection numbers. Proc. Natl. Acad. Sci. U. S. A. 118:e2018459118. doi:
10.1073/pnas.2018459118

Sullivan, C. M., and Fisher, K. C. (1953). Seasonal fluctuations in the selected
temperature of speckled trout, Salvelinus fontinalis (Mitchill). J. Fish. Board Can. 10,
187–195. doi: 10.1139/f53-014

Frontiers in Ecology and Evolution 51 frontiersin.org288

https://doi.org/10.3389/fevo.2023.703946
https://doi.org/10.1071/MF15285
https://doi.org/10.15447/sfews.2021v19iss2art4
https://doi.org/10.15447/sfews.2021v19iss2art4
https://doi.org/10.1101/lm.37801
https://doi.org/10.1016/j.renene.2019.11.127
https://doi.org/10.1016/j.renene.2019.11.127
https://doi.org/10.1016/j.ecoleng.2011.08.005
https://doi.org/10.1016/j.ecoleng.2011.08.005
https://doi.org/10.1111/1365-2656.13233
https://doi.org/10.1016/0165-7836(87)90054-3
https://doi.org/10.1016/0165-7836(87)90054-3
https://doi.org/10.1007/s10071-021-01488-2
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001394
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001394
https://doi.org/10.1016/j.applanim.2006.09.004
https://doi.org/10.1016/j.applanim.2006.09.004
https://doi.org/10.1007/s10652-022-09907-9
https://doi.org/10.1073/pnas.1210467109
https://doi.org/10.1016/0301-0082(89)90016-6
https://doi.org/10.1029/2020WR029279
https://doi.org/10.1029/2020WR029279
https://doi.org/10.1093/brain/79.4.655
https://doi.org/10.1073/pnas.1915252117
https://doi.org/10.1006/anbe.2000.1606
https://doi.org/10.1016/j.scitotenv.2019.135773
https://doi.org/10.1016/j.scitotenv.2019.135773
https://doi.org/10.1016/j.ecoleng.2012.04.015
https://doi.org/10.1002/rra.1363
https://doi.org/10.1016/S0065-2504(08)60259-7
https://doi.org/10.1080/10641262.2013.803516
https://doi.org/10.1080/10641260903304487
https://doi.org/10.1007/s10980-019-00804-z
https://doi.org/10.1007/s10980-019-00804-z
https://doi.org/10.1063/1.1716763
https://doi.org/10.2514/6.1992-439
https://doi.org/10.1073/pnas.2005993117
https://doi.org/10.1016/j.ecolmodel.2023.110393
https://doi.org/10.1139/f04-035
https://doi.org/10.1139/f02-151
https://doi.org/10.1007/BF02289729
https://doi.org/10.1126/science.abd3369
https://doi.org/10.1007/s00778-019-00574-9
https://doi.org/10.1007/s00778-019-00574-9
https://doi.org/10.1073/pnas.2018459118
https://doi.org/10.1073/pnas.2018459118
https://doi.org/10.1139/f53-014
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-703946 June 10, 2023 Time: 15:10 # 52

Goodwin et al. 10.3389/fevo.2023.703946

Sutterlin, A. M., and Waddy, S. (1975). Possible role of the posterior lateral line in
obstacle entrainment by brook trout (Salvelinus fontinalis). J. Fish. Res. Board Can. 32,
2441–2446. doi: 10.1139/f75-281

Swanson, S. T., Tullos, D. D., and Goodwin, R. A. (2020). Experiments on the
hydraulics and swimming responses of juvenile Chinook salmon encountering a
floating guidance structure. River Res. Appl. 36, 1633–1645. doi: 10.1002/rra.3693

Sweeney, C. E., Hall, R., Giorgi, A. E., Miller, M., and Johnson, G. E. (2007).
Surface bypass program comprehensive review report. Portland, OR: U.S. Army Corps
of Engineers.

Syms, J. C., Kirk, M. A., Caudill, C. C., and Tonina, D. (2021). A biologically based
measure of turbulence intensity for predicting fish passage behaviours. J. Ecohydraul.
doi: 10.1080/24705357.2020.1856007

Szabo-Meszaros, M., Silva, A. T., Bærum, K. M., Baktoft, H., Alfredsen, K., Hedger,
R. D., et al. (2021). Validation of a swimming direction model for the downstream
migration of Atlantic salmon smolts. Water 13:1230. doi: 10.3390/w13091230

Szopa-Comley, A. W., and Ioannou, C. C. (2022). Responsive robotic prey reveal
how predators adapt to predictability in escape tactics. Proc. Natl. Acad. Sci. U. S. A.
119:e2117858119. doi: 10.1073/pnas.2117858119

Szyszka, P., Stierle, J. S., Biergans, S., and Galizia, C. G. (2012). The speed of smell:
Odor-object segregation within milliseconds. PLoS One 7:e36096. doi: 10.1371/journal.
pone.0036096

Tafreshiha, A., van der Burg, S. A., Smits, K., Blömer, L. A., and Heimel, J. A. (2021).
Visual stimulus-specific habituation of innate defensive behaviour in mice. J. Exp. Biol.
224:jeb230433. doi: 10.1242/jeb.230433

Tan, J., Liu, Z., Wang, Y., Wang, Y., Ke, S., and Shi, X. (2022). Analysis of movements
and behavior of Bighead Carps (Hypophthalmichthys nobilis) considering fish passage
energetics in an experimental vertical slot fishway. Animals 12:1725. doi: 10.3390/
ani12131725

Tan, J., Tao, L., Gao, Z., Dai, H., Yang, Z., and Shi, X. (2018). Modeling
fish movement trajectories in relation to hydraulic response relationships in an
experimental fishway. Water 10:1511. doi: 10.3390/w10111511

Tao, Y., Both, A., Silveira, R. I., Buchin, K., Sijben, S., Purves, R. S., et al. (2021).
A comparative analysis of trajectory similarity measures. GISci. Remote Sens. 58,
643–669. doi: 10.1080/15481603.2021.1908927

Tennekes, H., and Lumley, J. L. (1972). A first course in turbulence. Cambridge, MA:
MIT Press.

Thompson, R. F. (2009). Habituation: A history. Neurobiol. Learn. Mem. 92, 127–
134. doi: 10.1016/j.nlm.2008.07.011

Thompson, R. F., and Spencer, W. A. (1966). Habituation: A model phenomenon
for the study of neuronal substrates of behavior. Psychol. Rev. 73, 16–43. doi: 10.1037/
h0022681

Thomson, K. A., Ingraham, W. J. Jr., Healey, M. C., LeBlond, P. H., Groot, C., and
Healey, C. G. (1994). Computer simulations of the influence of ocean currents on
Fraser River sockeye salmon (Oncorhynchus nerka) return times. Can. J. Fish. Aquatic
Sci. 51, 441–449. doi: 10.1139/f94-046

Thomson, K. A., Ingraham, W. J., Healey, M. C., LeBlond, P. H., Groot, C., and
Healey, C. G. (1992). The influence of ocean currents on latitude of landfall and
migration speed of sockeye salmon returning to the Fraser River. Fish. Oceanogr. 1,
163–179. doi: 10.1111/j.1365-2419.1992.tb00035.x

Thorpe, W. H. (1956). Learning and instinct in animals. Cambridge, MA: Harvard
University Press.

Tielmann, M., Reiser, S., Hufnagl, M., Herrmann, J.-P., Eckardt, A., and Temming,
A. (2015). Hydrostatic pressure affects selective tidal stream transport in the North
Sea brown shrimp (Crangon crangon). J. Exp. Biol. 218, 3241–3248. doi: 10.1242/jeb.
125773

Tiffan, K. F., Kock, T. J., Haskell, C. A., Connor, W. P., and Steinhorst, R. K. (2009).
Water velocity, turbulence, and migration rate of subyearling fall Chinook salmon in
the free-flowing and impounded Snake River. Trans. Am. Fish. Soc. 138, 373–384.
doi: 10.1577/T08-051.1

Treanor, H. B., Ray, A. M., Layhee, M., Watten, B. J., Gross, J. A., Gresswell,
R. E., et al. (2017). Using carbon dioxide in fisheries and aquatic invasive species
management. Fisheries 42, 621–628. doi: 10.1080/03632415.2017.1383903

Tregenza, T. (1995). Building on the Ideal Free Distribution. Adv. Ecol. Res. 26,
253–307. doi: 10.1016/S0065-2504(08)60067-7

Triki, Z., Granell-Ruiz, M., Fong, S., Amcoff, M., and Kolm, N. (2022). Brain
morphology correlates of learning and cognitive flexibility in a fish species
(Poecilia reticulata). Proc. R. Soc. B Biol. Sci. 289:20220844. doi: 10.1098/rspb.2022.
0844

Tritico, H. M., and Cotel, A. J. (2010). The effects of turbulent eddies on the stability
and critical swimming speed of creek chub (Semotilus atromaculatus). J. Exp. Biol. 213,
2284–2293. doi: 10.1242/jeb.041806

Tritico, H. M., Cotel, A. J., and Clarke, J. N. (2007). Development, testing
and demonstration of a portable submersible miniature particle imaging
velocimetry device. Meas. Sci. Technol. 18, 2555–2562. doi: 10.1088/0957-0233/18/
8/031

Tsetsos, K., Gao, J., McClelland, J. L., and Usher, M. (2012). Using time-
varying evidence to test models of decision dynamics: Bounded diffusion vs. the
leaky competing accumulator model. Front. Neurosci. 6:79. doi: 10.3389/fnins.2012.
00079

Tump, A. N., Deffner, D., Pleskac, T. J., Romanczuk, P., and Kurvers, R. H. J. M.
(2022). A cognitive computational approach to social and collective decision-making.
OSF [Preprint]. doi: 10.31219/osf.io/7aykm

Tyler, J. A., and Rose, K. A. (1994). Individual variability and spatial heterogeneity
in fish population models. Rev. Fish Biol. Fish. 4, 91–123. doi: 10.1007/BF00043262

U.S. Army Corps of Engineers (2018). National inventory of dams. Washington, DC:
U.S. Army Corps of Engineers.

U.S. Army Corps of Engineers (2020). National levee database. Washington, DC:
U.S. Army Corps of Engineers.

U.S. Geological Survey (2020). National water information system data available on
the world wide web (USGS Water Data for the Nation). Reston: U.S. Geological Survey,
doi: 10.5066/F7P55KJN

Uhlenbeck, G. E., and Ornstein, L. S. (1930). On the theory of the Brownian motion.
Phys. Rev. 36, 823–841. doi: 10.1103/PhysRev.36.823

Ullman, S. (2019). Using neuroscience to develop artificial intelligence. Science 363,
692–693. doi: 10.1126/science.aau6595

Usher, M., and McClelland, J. L. (2001). The time course of perceptual choice: The
leaky, competing accumulator model. Psychol. Rev. 108, 550–592. doi: 10.1037/0033-
295X.108.3.550

Van Moorter, B., Visscher, D., Benhamou, S., Börger, L., Boyce, M. S., and Gaillard,
J. M. (2009). Memory keeps you at home: A mechanistic model for home range
emergence. Oikos 118, 641–652. doi: 10.1111/j.1600-0706.2008.17003.x

Vickers, D. (1970). Evidence for an accumulator model of psychophysical
discrimination. Ergonomics 13, 37–58. doi: 10.1080/00140137008931117

Vilk, O., Aghion, E., Nathan, R., Toledo, S., Metzler, R., and Assaf, M. (2022).
Classification of anomalous diffusion in animal movement data using power
spectral analysis. J. Phys. A Math. Theor. 55:334004. doi: 10.1088/1751-8121/
ac7e8f

Vince, G. (2012). Why damming world’s rivers is a tricky balancing act. London, UK:
BBC Future.

Vinuesa, R., and Brunton, S. L. (2022). Enhancing computational fluid dynamics
with machine learning. Nat. Comput. Sci. 2, 358–366. doi: 10.1038/s43588-022-0
0264-7

von Baumgarten, R. J., Baldrighi, G., Atema, J., and Shillinger, G. L. Jr. (1971a).
Behavioral responses to linear accelerations in blind goldfish. Space Life Sci. 3, 25–33.

von Baumgarten, R. J., Baldrighi, G., Atema, J., and Shillinger, G. L. Jr. (1971b).
Behavioral responses to linear accelerations in blind goldfish I: The gravity reference
response. Space Life Sci. 3, 25–33.

von Frisch, K. (1938). The sense of hearing in fish. Nature 141, 8–11. doi: 10.1038/
141008a0

Vowles, A. S., Anderson, J. J., Gessel, M. H., Williams, J. G., and Kemp, P. S.
(2014). Effects of avoidance behaviour on downstream fish passage through areas
of accelerating flow when light and dark. Anim. Behav. 92, 101–109. doi: 10.1016/j.
anbehav.2014.03.006

Walsh, J. J., Wirick, C. D., Dieterle, D. A., and Tingle, A. G. (1981). Environmental
constraints on larval fish survival in the Sea. Rapp. P V Reun. Cons. Int. Explor. Mer.
178, 24–27.

Walter, E. E., Scandol, J. P., and Healey, M. C. (1997). A reappraisal of the
ocean migration patterns of Fraser River sockeye salmon (Oncorhynchus nerka) by
individual-based modelling. Can. J. Fish. Aquatic Sci. 54, 847–858. doi: 10.1139/f96-
336

Wang, H., and Salmaniw, Y. (2023). Open problems in PDE models for knowledge-
based animal movement via nonlocal perception and cognitive mapping. J. Math. Biol.
86:71. doi: 10.1007/s00285-023-01905-9

Webb, P. W. (1989). Station-holding by three species of benthic fishes. J. Exp. Biol.
145, 303–320. doi: 10.1242/jeb.145.1.303

Weber, E. H. (1846). “Der Tastsinn und das Gemeingefühl,” in Handwörterbuch der
Physiologie mit Rücksicht auf physiologische Pathologie, ed. R. Wagner (Braunschweig:
Vieweg), 481–588.

Weitkamp, L. A. (2008). Buoyancy regulation by hatchery and wild coho salmon
during the transition from freshwater to marine environments. Trans. Am. Fish. Soc.
137, 860–868. doi: 10.1577/T07-081.1

Wells, M. M. (1913). The resistance of fishes to different concentrations and
combinations of oxygen and carbon dioxide. Biol. Bull. 25, 323–347. doi: 10.1016/
0168-1605(96)01001-x

Werner, F. E., Cowen, R. K., and Paris, C. B. (2007). Coupled biological and
physical models: Present capabilities and necessary developments for future studies
of population connectivity. Oceanography 20, 54–69.

Werner, F. E., Page, F. H., Lynch, D. R., Loder, J. W., Lough, R. G., Perry, R. I.,
et al. (1993). Influences of mean advection and simple behavior on the distribution

Frontiers in Ecology and Evolution 52 frontiersin.org289

https://doi.org/10.3389/fevo.2023.703946
https://doi.org/10.1139/f75-281
https://doi.org/10.1002/rra.3693
https://doi.org/10.1080/24705357.2020.1856007
https://doi.org/10.3390/w13091230
https://doi.org/10.1073/pnas.2117858119
https://doi.org/10.1371/journal.pone.0036096
https://doi.org/10.1371/journal.pone.0036096
https://doi.org/10.1242/jeb.230433
https://doi.org/10.3390/ani12131725
https://doi.org/10.3390/ani12131725
https://doi.org/10.3390/w10111511
https://doi.org/10.1080/15481603.2021.1908927
https://doi.org/10.1016/j.nlm.2008.07.011
https://doi.org/10.1037/h0022681
https://doi.org/10.1037/h0022681
https://doi.org/10.1139/f94-046
https://doi.org/10.1111/j.1365-2419.1992.tb00035.x
https://doi.org/10.1242/jeb.125773
https://doi.org/10.1242/jeb.125773
https://doi.org/10.1577/T08-051.1
https://doi.org/10.1080/03632415.2017.1383903
https://doi.org/10.1016/S0065-2504(08)60067-7
https://doi.org/10.1098/rspb.2022.0844
https://doi.org/10.1098/rspb.2022.0844
https://doi.org/10.1242/jeb.041806
https://doi.org/10.1088/0957-0233/18/8/031
https://doi.org/10.1088/0957-0233/18/8/031
https://doi.org/10.3389/fnins.2012.00079
https://doi.org/10.3389/fnins.2012.00079
https://doi.org/10.31219/osf.io/7aykm
https://doi.org/10.1007/BF00043262
https://doi.org/10.5066/F7P55KJN
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1126/science.aau6595
https://doi.org/10.1037/0033-295X.108.3.550
https://doi.org/10.1037/0033-295X.108.3.550
https://doi.org/10.1111/j.1600-0706.2008.17003.x
https://doi.org/10.1080/00140137008931117
https://doi.org/10.1088/1751-8121/ac7e8f
https://doi.org/10.1088/1751-8121/ac7e8f
https://doi.org/10.1038/s43588-022-00264-7
https://doi.org/10.1038/s43588-022-00264-7
https://doi.org/10.1038/141008a0
https://doi.org/10.1038/141008a0
https://doi.org/10.1016/j.anbehav.2014.03.006
https://doi.org/10.1016/j.anbehav.2014.03.006
https://doi.org/10.1139/f96-336
https://doi.org/10.1139/f96-336
https://doi.org/10.1007/s00285-023-01905-9
https://doi.org/10.1242/jeb.145.1.303
https://doi.org/10.1577/T07-081.1
https://doi.org/10.1016/0168-1605(96)01001-x
https://doi.org/10.1016/0168-1605(96)01001-x
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-703946 June 10, 2023 Time: 15:10 # 53

Goodwin et al. 10.3389/fevo.2023.703946

of cod and haddock early life stages on Georges Bank. Fish. Oceanogr. 2, 43–64.
doi: 10.1111/j.1365-2419.1993.tb00120.x

Werner, F. E., Perry, R. I., Lough, R. G., and Naimie, C. E. (1996). Trophodynamic
and advective influences on Georges Bank larval cod and haddock. Deep Sea Res. Part
II Top. Stud. Oceanogr. 43, 1793–1822. doi: 10.1016/S0967-0645(96)00042-2

Werner, F. E., Quinlan, J. A., Lough, R. G., and Lynch, D. R. (2001). Spatially-explicit
individual based modeling of marine populations: A review of the advances in the
1990s. Sarsia 86, 411–421. doi: 10.1080/00364827.2001.10420483

Whitmore, C. M., Warren, C. E., and Doudoroff, P. (1960). Avoidance reactions of
salmonid and centrarchid fishes to low oxygen concentrations. Trans. Am. Fish. Soc.
89, 17–26.

Whitty, J. M., Riesgraf, A. T., Zielinski, D. P., and Sorensen, P. W. (2022).
Movements of a model fish, the common carp, through a generic Mississippi River
lock and dam demonstrate how fish swimming performance, behavior, and discharge-
driven flow-fields determine fish passage rates in ways that can be predicted and
modified using fish passage models. River Res. Appl. 38, 670–683. doi: 10.1002/rra.
3942

Wiegleb, J., Hirsch, P. E., Seidel, F., Rauter, G., and Burkhardt-Holm, P. (2023).
Impact of hydraulic forces on the passage of round goby (Neogobius melanostomus),
gudgeon (Gobio gobio) and bullhead (Cottus gobio) in a vertical slot fish pass. Ecol.
Freshwater Fish 32, 416–430. doi: 10.1111/eff.12696

Willis, J. (2011). Modelling swimming aquatic animals in hydrodynamic models.
Ecol. Model. 222, 3869–3887. doi: 10.1016/j.ecolmodel.2011.10.004

Wilson, D. A., and Linster, C. (2008). Neurobiology of a simple memory.
J. Neurophysiol. 100, 2–7. doi: 10.1152/jn.90479.2008

Wilson, R. C., Nassar, M. R., and Gold, J. I. (2013). A mixture of delta-rules
approximation to Bayesian inference in change-point problems. PLoS Comput. Biol.
9:e1003150. doi: 10.1371/journal.pcbi.1003150

Wilson, R. C., Nassar, M. R., Tavoni, G., and Gold, J. I. (2018). Correction: A mixture
of delta-rules approximation to Bayesian inference in change-point problems. PLoS
Comput. Biol. 14:e1006210. doi: 10.1371/journal.pcbi.1006210

Windsor, S. P., Norris, S. E., Cameron, S. M., Mallinson, G. D., and Montgomery,
J. C. (2010a). The flow fields involved in hydrodynamic imaging by blind Mexican
cave fish (Astyanax fasciatus). Part I: Open water and heading towards a wall. J. Exp.
Biol. 213, 3819–3831. doi: 10.1242/jeb.040741

Windsor, S. P., Norris, S. E., Cameron, S. M., Mallinson, G. D., and Montgomery,
J. C. (2010b). The flow fields involved in hydrodynamic imaging by blind Mexican cave
fish (Astyanax fasciatus). Part II: Gliding parallel to a wall. J. Exp. Biol. 213, 3832–3842.
doi: 10.1242/jeb.040790

Yan, X., Rennie, C. D., and Mohammadian, A. (2020). A three-dimensional
numerical study of flow characteristics in strongly curved channel bends with
different side slopes. Environ. Fluid Mech. 20, 1491–1510. doi: 10.1007/s10652-020-0
9751-9

Yang, X., Pavelsky, T. M., Ross, M. R. V., Januchowski-Hartley, S. R., Dolan,
W., Altenau, E. H., et al. (2022). Mapping flow-obstructing structures on
global rivers. Water Resour. Res. 58:e2021WR030386. doi: 10.1029/2021WR03
0386

Yates, K. L., Bouchet, P. J., Caley, M. J., Mengersen, K., Randin, C. F., Parnell, S.,
et al. (2018). Outstanding challenges in the transferability of ecological models. Trends
Ecol. Evol. 33, 790–802. doi: 10.1016/j.tree.2018.08.001

Yeon, J., and Rahnev, D. (2020). The suboptimality of perceptual decision making
with multiple alternatives. Nat. Commun. 11:3857. doi: 10.1038/s41467-020-17661-z

Yoo, S. B. M., Hayden, B. Y., and Pearson, J. M. (2021). Continuous decisions. Philos.
Trans. R. Soc. B Biol. Sci. 376:20190664. doi: 10.1098/rstb.2019.0664

Zabel, R. W. (1994). Spatial and temporal models of migrating juvenile salmon
with applications. Ph.D. thesis. Seattle, WA: School of Aquatic and Fishery Sciences,
University of Washington.

Zeng, Y.-X. (2022). Hydraulics and performance evaluations of fish passages based
on computational fluid dynamics and individual-based methods. Ph.D. thesis. State
College, PA: Civil and Environmental Engineering, Pennsylvania State University.

Zhang, Y. J., Ye, F., Stanev, E. V., and Grashorn, S. (2016). Seamless cross-scale
modeling with SCHISM. Ocean Model. 102, 64–81. doi: 10.1016/j.ocemod.2016.05.002

Zhang, Z., Flora, K., Kang, S., Limaye, A. B., and Khosronejad, A. (2022). Data-
driven prediction of turbulent flow statistics past bridge piers in large-scale rivers
using convolutional neural networks. Water Resour. Res. 58:e2021WR030163. doi:
10.1029/2021WR030163

Zhu, G., Zhou, Z., and Andersson, H. I. (2020). Role of transient characteristics in
fish trajectory modeling. Sustainability 12:6765. doi: 10.3390/su12176765

Zhu, L., Li, J., Deng, Y., Liao, B., Liao, L., and An, R. (2021). Based on a biological
particle model to predict the trace behavior of fish. Water Supply 21, 4044–4057.
doi: 10.2166/ws.2021.159

Zhu, Y., Tian, F. B., Young, J., Liao, J. C., and Lai, J. C. S. (2021). A numerical
study of fish adaption behaviors in complex environments with a deep reinforcement
learning and immersed boundary-lattice Boltzmann method. Sci. Rep. 11:1691. doi:
10.1038/s41598-021-81124-8

Zielinski, D. P., Hondzo, M., and Voller, V. R. (2014a). Mathematical evaluation of
behavioral deterrent systems to disrupt fish movement. Ecol. Model. 272, 150–159.

Zielinski, D. P., McLaughlin, R. L., Pratt, T. C., Goodwin, R. A., and Muir,
A. M. (2020). Single-stream recycling inspires selective fish passage solutions for the
connectivity conundrum in aquatic ecosystems. BioScience 70, 871–886. doi: 10.1093/
biosci/biaa090

Zielinski, D. P., Miehls, S., Burns, G., and Coutant, C. C. (2021). Adult sea lamprey
respond to induced turbulence in a low current system. J. Ecohydraul. 6, 82–90.
doi: 10.1080/24705357.2020.1775504

Zielinski, D. P., and Sorensen, P. W. (2015). Field test of a bubble curtain
deterrent system for common carp. Fish. Manag. Ecol. 22, 181–184. doi: 10.1111/fme.
12108

Zielinski, D. P., and Sorensen, P. W. (2016). Bubble curtain deflection screen diverts
the movement of both Asian and common carp. North Am. J. Fish. Manag. 36,
267–276. doi: 10.1080/02755947.2015.1120834

Zielinski, D. P., and Sorensen, P. W. (2017). Silver, bighead, and common carp orient
to acoustic particle motion when avoiding a complex sound. PLoS One 12:e0180110.
doi: 10.1371/journal.pone.0180110

Zielinski, D. P., Voller, V. R., and Sorensen, P. W. (2018). A physiologically inspired
agent-based approach to model upstream passage of invasive fish at a lock-and-dam.
Ecol. Model. 382, 18–32. doi: 10.1016/j.ecolmodel.2018.05.004

Zielinski, D. P., Voller, V. R., Svendsen, J. C., Hondzo, M., Mensinger, A. F., and
Sorensen, P. W. (2014b). Laboratory experiments demonstrate that bubble curtains
can effectively inhibit movement of common carp. Ecol. Eng. 67, 95–103.

Frontiers in Ecology and Evolution 53 frontiersin.org290

https://doi.org/10.3389/fevo.2023.703946
https://doi.org/10.1111/j.1365-2419.1993.tb00120.x
https://doi.org/10.1016/S0967-0645(96)00042-2
https://doi.org/10.1080/00364827.2001.10420483
https://doi.org/10.1002/rra.3942
https://doi.org/10.1002/rra.3942
https://doi.org/10.1111/eff.12696
https://doi.org/10.1016/j.ecolmodel.2011.10.004
https://doi.org/10.1152/jn.90479.2008
https://doi.org/10.1371/journal.pcbi.1003150
https://doi.org/10.1371/journal.pcbi.1006210
https://doi.org/10.1242/jeb.040741
https://doi.org/10.1242/jeb.040790
https://doi.org/10.1007/s10652-020-09751-9
https://doi.org/10.1007/s10652-020-09751-9
https://doi.org/10.1029/2021WR030386
https://doi.org/10.1029/2021WR030386
https://doi.org/10.1016/j.tree.2018.08.001
https://doi.org/10.1038/s41467-020-17661-z
https://doi.org/10.1098/rstb.2019.0664
https://doi.org/10.1016/j.ocemod.2016.05.002
https://doi.org/10.1029/2021WR030163
https://doi.org/10.1029/2021WR030163
https://doi.org/10.3390/su12176765
https://doi.org/10.2166/ws.2021.159
https://doi.org/10.1038/s41598-021-81124-8
https://doi.org/10.1038/s41598-021-81124-8
https://doi.org/10.1093/biosci/biaa090
https://doi.org/10.1093/biosci/biaa090
https://doi.org/10.1080/24705357.2020.1775504
https://doi.org/10.1111/fme.12108
https://doi.org/10.1111/fme.12108
https://doi.org/10.1080/02755947.2015.1120834
https://doi.org/10.1371/journal.pone.0180110
https://doi.org/10.1016/j.ecolmodel.2018.05.004
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Ecological and evolutionary research into our 

natural and anthropogenic world

This multidisciplinary journal covers the spectrum 

of ecological and evolutionary inquiry. It provides 

insights into our natural and anthropogenic world, 

and how it can best be managed. 

Discover the latest 
Research Topics

See more 

Frontiers in
Ecology and Evolution

https://www.frontiersin.org/journals/ecology-and-evolution/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT

	Cognitive movement ecology

	Table of contents

	Editorial: Cognitive movement ecology
	1 Introduction
	2 Reviews and concepts
	3 Theoretical contributions
	4 Heuristic innovations
	5 Empirical studies
	6 Concluding remarks
	Author’s note
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	The Cognitive Ecology of Animal Movement: Evidence From Birds and Mammals
	Introduction
	Individual Learning and Memory Within the Home Range
	Innate Behavior, Individual Learning and Memory in Seasonal Migration
	Compass Orientation
	Magnetic Compass
	Solar Compass
	Star Compass

	Vector Navigation
	Signposts
	True Navigation
	Navigation Based on Learning and Memory
	Route-Based Navigation
	Location-Based Navigation
	Beacon-Based Navigation
	Gradient-Based Navigation
	Selecting a Navigation Strategy

	Synthesis

	Social Influences and Social Learning
	Philopatry
	Trails
	Aggregations, Information and Individual Movement

	Collective Navigation and Social Learning
	Collective Navigation Using Shared Information
	Emergent Sensing
	Many Wrongs
	Voting

	Leadership
	Social Learning
	Synthesis

	Expertise and Movement
	Conclusion and Prospects
	Author Contributions
	Funding
	Acknowledgments
	References

	Learning and Animal Movement
	Introduction
	Individual Information Acquisition and Decision Making
	Definition of Learning
	The Learning Process
	Benefits and Costs of Learning
	Limitations to Measuring Learning From Animal Movement Patterns

	Pathways of Learning for Animal Movement
	Individual Learning
	Social Learning

	Learning and Space Use: Connections to Other Disciplines
	Machine Learning Approaches
	Types of Machine Learning
	Criteria of machine learning applied to animal learning



	Learning About Learning: Methods and Approaches
	Experimental vs. Observational Frameworks for Gathering Evidence of Learning in Movement
	Experimental Studies
	Observational Studies
	Translocations and Reintroductions
	Uncontrolled Experiments

	Identifying and Characterizing Learning
	Modeling Frameworks for Exploring How Learning Operates
	Testing for Change Over Time in Key Movement Metrics
	Statistical Inference to Identify Learning in Movement Processes


	Conclusion and New Horizons
	Author Contributions
	Funding
	Acknowledgments
	References

	Exploring the Evolution of Perception: An Agent-Based Approach
	Introduction
	Materials and Methods
	Model Description
	Model Implementation and Analysis

	Results
	Classifying Parameters and Their Impact
	Parameters as Predictors of the Perceptual Distribution
	Detailed Discussion About Parameters
	Activation Parameters
	Deactivation Parameters


	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Memories of Migrations Past: Sociality and Cognition in Dynamic, Seasonal Environments
	1. Introduction
	2. Methods
	2.1. Memory Movement Model
	2.2. Seasonal Resource
	2.3. Metrics
	2.4. Simulation Studies

	3. Results
	3.1. Adaptation to Resource Phenology
	3.2. Learning to Migrate
	3.3. Directional Climate Change
	3.4. Reference Memory and Stochasticity
	3.5. Stochasticity and Trends

	4. Discussion
	4.1. Adaptation and Resiliency
	4.2. Biological Interpretation of Parameters
	4.3. Social Learning and Collective Knowledge
	4.4. Summary

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix
	A. Supplementary material
	A.1. Drifting Resource


	Biased Learning as a Simple Adaptive Foraging Mechanism
	Introduction
	Materials and Methods
	Model Description
	Numerical Experiments

	Results
	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Prey Foraging Behavior After Predator Introduction Is Driven by Resource Knowledge and Exploratory Tendency
	1. Introduction
	2. Methods
	2.1. Simulations
	2.2. Metrics

	3. Results
	3.1. Space Use Changes
	3.2. Consumption Changes
	3.3. Time Budget and Consumption Rate Changes

	4. Discussion
	4.1. Memory State Influences Prey Response to Predator Recovery
	4.2. Predator Domain Determines Degree of Impact on Prey
	4.3. Exploratory Tendency Controls Size of Habitat Shift
	4.4. Future Perspectives

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	A Quantitative Framework for Identifying Patterns of Route-Use in Animal Movement Data
	Introduction
	Quantitative Approaches
	Materials and Methods
	Frugivore Movement Data
	Study Site
	GPS Collaring and Study Species
	GPS Data Processing

	Simulations
	Route Detection Framework
	Path Reconstruction
	Binning
	Cell Level Metrics
	Unsupervised Clustering


	Results
	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References
	Glossary

	Individual Network Topology of Patch Selection Under Influence of Drifting Site Fidelity
	Introduction
	Network Topology
	The Multi-Scaled Random Walk Model

	Materials and Methods
	Network Topology Under Site Fidelity Network Terms
	Balancing Exploration and Site Fidelity in Euclidean Space
	Further Coarse-Graining of the Process: Fix Sampling and Analyses
	Non-stationary Site Fidelity
	Pilot Testing on Telemetry Series

	Results
	Network Topology
	Spatio-Temporal Space Use Under Drifting Site Fidelity
	Applying the Method on Black Bear Telemetry Data

	Discussion
	Network Topology in an Site Fidelity Network Context
	Network Topology in Relation to Local Density of Fixes
	Drifting Site Fidelity
	Model Feasibility
	Characteristic Scale of Space Use: Expressing the Balance of Exploratory Moves, Return Frequency and Preferential Connectivity
	Black Bear Data Under the I(N) Analysis

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Seeing Is Be-Leaving: Perception Informs Migratory Decisions in Sierra Nevada Bighorn Sheep (Ovis canadensis sierrae)
	Introduction
	Materials and Methods
	Focal Species and Study Site
	Migratory Delineation
	Range Delineation
	Covariates
	Physical Environment Covariates
	Social Environment Covariates

	Modeling
	Base Model
	Omniscient Model
	Perception Model
	Memory Model
	Global Model and Model Goodness of Fit


	Results
	Discussion
	Perception and Memory
	Habitat
	Culture
	Individual History
	Management
	Conclusion

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Hierarchical, Memory-Based Movement Models for Translocated Elk (Cervus canadensis)
	1. Introduction
	2. Methods
	2.1. Ranging Data
	2.2. Models
	2.2.1. Model I
	2.2.2. Model II
	2.2.3. Model III
	2.2.4. Model IV

	2.3. Model Fitting
	2.4. Model Assessment and Comparison

	3. Results
	3.1. Model Comparison
	3.2. Spatial Parameters
	3.3. Memory Use
	3.4. Memory Decay

	4. Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Some Memories Never Fade: Inferring Multi-Scale Memory Effects on Habitat Selection of a Migratory Ungulate Using Step-Selection Functions
	Introduction
	Materials and Methods
	Study Area
	Mule Deer Data
	General Statistical Framework
	Environmental Covariates
	Covariates Representing Recent and Past Spatial Experience
	Model Fitting

	Results
	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Intraspecific Competition, Habitat Quality, Niche Partitioning, and Causes of Intrasexual Territoriality for a Reintroduced Carnivoran
	Introduction
	Materials and Methods
	Study Site
	Reintroduction
	Field Methods at Release Sites

	Analyses of Field Data
	Habitat
	Fisher Movements and Analyses

	Testing Hypotheses

	Results
	Stirling-Born Fishers
	Reintroduced Fishers


	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Memory and Conformity, but Not Competition, Explain Spatial Partitioning Between Two Neighboring Fruit Bat Colonies
	Introduction
	Materials and Methods
	Study Species and Area
	Captures and Tracking
	Observed Metrics of Resource and Spatial Partitioning
	Agent-Based Simulations
	Observed Parameters
	Simulations Workflow


	Results
	Colonies Characteristics and Observed Partitioning
	Testing Mechanisms That Explain Resource and Spatial Partitioning

	Discussion
	The Roles of Competition and Information in Shaping Partitioning
	Competition
	Memory
	Information Transfer

	The Effect of Resource Predictability and Resolution

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Spatial Memory Drives Foraging Strategies of Wolves, but in Highly Individual Ways
	1. Introduction
	2. Materials and Methods
	2.1. Study Area
	2.2. Wolf Capture and Handling
	2.3. Field Tracking
	2.4. Cognitive Model
	2.4.1. Discrete Choice Model
	2.4.2. Scoring Zones
	2.4.3. Model Fitting and Selection


	3. Results
	3.1. Parameters of Non-focal Interest
	3.2. Cognitive Model: Example Analysis
	3.3. Cognitive Model: All Wolves
	3.4. Coefficients Across Time Lags

	4. Discussion
	4.1. Discrete Choices
	4.2. Scales of Space and Time
	4.3. Wolf Foraging Strategies: Patch Depletion or Site Fidelity?
	4.4. Inferring Cognition From Movement Data

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Predicting near-term, out-of-sample fish passage, guidance, and movement across diverse river environments by cognitively relating momentary behavioral decisions to multiscale memories of past hydrodynamic experiences
	1. Introduction
	2. Methods: general characteristics of animal cognition
	2.1. Sensory experience influences stimulus perception and behavioral choice
	2.1.1. Stimulus: physical vs. perceived intensity
	2.1.2. Stimulus: perceived change in intensity
	2.1.3. Context-based behavioral choice—with a single factor
	2.1.4. Context-based behavioral choice—with multiple factors
	2.1.5. Multiplex signal disentanglement via multi-timescale perceptions


	3. Tidal river salmon movement behavior
	3.1. California's Bay-Delta
	3.1.1. Salmon field data details
	3.1.2. Salmon movement patterns
	3.1.3. Protean movement decisions and optimality
	3.1.4. Zig-zagging

	3.2. Fish movement behavior and hydrodynamics
	3.2.1. Determining fish movement behavior starting with particles and particle tracking
	3.2.2. Describing river hydrodynamics via numerical modeling and measurement
	3.2.3. Eulerian-Lagrangian-agent method (ELAM)
	3.2.4. ELAM model development and parameterization

	3.3. Hydrodynamic stimuli
	3.3.1. Variable physical quantities
	3.3.2. Spatial velocity gradient (GM) vs. turbulent kinetic energy (TKE)
	3.3.3. Acute vs. nonacute

	3.4. Stimuli: physical vs. perceived intensity
	3.5. Stimuli: perceived change in intensity
	3.6. Multiplex signal disentanglement via multi-timescale perceptions
	3.7. Repertoire of hydrodynamic response behaviors
	3.7.1. Emergent properties from opposing behaviors

	3.8. Context-based behavioral choice
	3.8.1. Zig-zag example of context-based behavioral choice with steady river hydrodynamics

	3.9. Sensory ovoid and points
	3.10. Swim orientation
	3.10.1. Swim orientation (step length)

	3.11. Swim speed
	3.12. Swim orientation and speed integration
	3.13. Model time step
	3.14. Lagrangian encounters with the Eulerian mesh boundary
	3.15. Synchronizing observed and modeled passage/entrainment
	3.16. Release of simulated individuals

	4. Results
	4.1. Swim paths
	4.1.1. Year 2009 hindcast
	4.1.2. Year 2014 out-of-sample prediction (engineered fish guidance)

	4.2. Passage/entrainment
	4.3. 3-D vs. 2-D
	4.4. When salmon entry pattern is unknown

	5. Discussion
	5.1. Model realism vs. usefulness
	5.2. Fish swim paths
	5.2.1. Movement mode heatmaps
	5.2.2. Synchronizing modeled and tagged fish swim paths
	5.2.3. Hydrodynamic model fidelity
	5.2.4. Behavioral choice/decision model fidelity

	5.3. Fish passage/entrainment
	5.3.1. Release distribution

	5.4. Guiding fish swim paths with surface booms and engineered hydrodynamics
	5.5. Other behavioral stimuli — temperature, dissolved gases, sound, and bubbles
	5.6. Engineering best practices for predicting fish response to water operations
	5.7. Real-time fish prediction with theory-informed machine learning
	5.8. Ethohydraulics with environmental modeling to improve waterways engineering

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Back Cover



