& frontiers | Research Topics

Cognitive movement
ecology

Edited by
Eliezer Gurarie and Tal Avgar

Published in
Frontiers in Ecology and Evolution



https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/research-topics/16075/cognitive-movement-ecology/overview
https://www.frontiersin.org/research-topics/16075/cognitive-movement-ecology/overview

& frontiers | Research Topics

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual
articles in this ebook is the property
of their respective authors or their
respective institutions or funders.
The copyright in graphics and images
within each article may be subject

to copyright of other parties. In both
cases this is subject to a license
granted to Frontiers.

The compilation of articles constituting
this ebook is the property of Frontiers

Each article within this ebook, and the
ebook itself, are published under the
most recent version of the Creative
Commons CC-BY licence. The version
current at the date of publication of
this ebook is CC-BY 4.0. If the CC-BY
licence is updated, the licence granted
by Frontiers is automatically updated
to the new version

When exercising any right under

the CC-BY licence, Frontiers must be
attributed as the original publisher
of the article or ebook, as applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of
others may be included in the CC-BY
licence, but this should be checked
before relying on the CC-BY licence
to reproduce those materials. Any
copyright notices relating to those
materials must be complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed
in any copy, derivative work or partial
copy which includes the elements

in question

All copyright, and all rights therein,
are protected by national and
international copyright laws. The
above represents a summary only.
For further information please read
Frontiers” Conditions for Website Use
and Copyright Statement, and the
applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-8325-3947-7
DOI 10.3389/978-2-8325-3947-7

Frontiers in

February 2024

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is
a pioneering approach to the world of academia, radically improving the way
scholarly research is managed. The grand vision of Frontiers is a world where
all people have an equal opportunity to seek, share and generate knowledge.
Frontiers provides immediate and permanent online open access to all its
publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-
access, online journals, promising a paradigm shift from the current review,
selection and dissemination processes in academic publishing. All Frontiers
journals are driven by researchers for researchers; therefore, they constitute
a service to the scholarly community. At the same time, the Frontiers journal
series operates on a revolutionary invention, the tiered publishing system,
initially addressing specific communities of scholars, and gradually climbing
up to broader public understanding, thus serving the interests of the lay
society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely
collaborative interactions between authors and review editors, who include
some of the world's best academicians. Research must be certified by peers
before entering a stream of knowledge that may eventually reach the public
- and shape society; therefore, Frontiers only applies the most rigorous

and unbiased reviews. Frontiers revolutionizes research publishing by freely
delivering the most outstanding research, evaluated with no bias from both
the academic and social point of view. By applying the most advanced
information technologies, Frontiers is catapulting scholarly publishing into

a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers
Jjournals series: they are collections of at least ten articles, all centered

on a particular subject. With their unique mix of varied contributions from
Original Research to Review Articles, Frontiers Research Topics unify the
most influential researchers, the latest key findings and historical advances
in a hot research area.

Find out more on how to host your own Frontiers Research Topic or
contribute to one as an author by contacting the Frontiers editorial office:


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

& frontiers | Research Topics February 2024

Cognitive movement ecology

Topic editors

Eliezer Gurarie — SUNY College of Environmental Science and Forestry,
United States

Tal Avgar — University of British Columbia, Canada

Citation
Gurarie, E., Avgar, T, eds. (2024). Cognitive movement ecology.
Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-3947-7

Frontiers in 2


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-3947-7

& frontiers | Research Topics

Table of 0>

12

35

55

68

83

96

107

123

Frontiers in

February 2024

Editorial: Cognitive movement ecology
Eliezer Gurarie and Tal Avgar

The Cognitive Ecology of Animal Movement: Evidence From
Birds and Mammals

Tovah Kashetsky, Tal Avgar and Reuven Dukas

Learning and Animal Movement

Mark A. Lewis, William F. Fagan, Marie Auger-Méthée, Jacqueline Frair,
John M. Fryxell, Claudius Gros, Eliezer Gurarie, Susan D. Healy and
Jerod A. Merkle

Exploring the Evolution of Perception: An Agent-Based
Approach
Anshuman Swain, Tyler Hoffman, Kirtus Leyba and William F. Fagan

Memories of Migrations Past: Sociality and Cognition in
Dynamic, Seasonal Environments

Eliezer Gurarie, Sriya Potluri, George Christopher Cosner,
Robert Stephen Cantrell and William F. Fagan

Biased Learning as a Simple Adaptive Foraging Mechanism
Tal Avgar and Oded Berger-Tal

Prey Foraging Behavior After Predator Introduction Is Driven
by Resource Knowledge and Exploratory Tendency

Chloe Bracis and Aaron J. Wirsing

A Quantitative Framework for ldentifying Patterns of
Route-Use in Animal Movement Data

Shauhin E. Alavi, Alexander Q. Vining, Damien Caillaud, Ben T. Hirsch,
Rasmus Worsge Havmoller, Linnea W. Havmagller, Roland Kays and
Margaret C. Crofoot

Individual Network Topology of Patch Selection Under
Influence of Drifting Site Fidelity
Arild O. Gautestad


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/

& frontiers | Research Topics February 2024

143 Seeing Is Be-Leaving: Perception Informs Migratory Decisions
in Sierra Nevada Bighorn Sheep (Ovis canadensis sierrae)
Danielle J. Berger, David W. German, Christian John, Ronan Hart,
Thomas R. Stephenson and Tal Avgar

163 Hierarchical, Memory-Based Movement Models for
Translocated Elk (Cervus canadensis)
Andrea Falcon-Cortés, Denis Boyer, Evelyn Merrill, Jacqueline L. Frair
and Juan Manuel Morales

176~ Some Memories Never Fade: Inferring Multi-Scale Memory
Effects on Habitat Selection of a Migratory Ungulate Using
Step-Selection Functions
Helena Rheault, Charles R. Anderson Jr., Maegwin Bonar,
Robby R. Marrotte, Tyler R. Ross, George Wittemyer and
Joseph M. Northrup

191  Intraspecific Competition, Habitat Quality, Niche Partitioning,
and Causes of Intrasexual Territoriality for a Reintroduced
Carnivoran

Aaron N. Facka and Roger A. Powell

207  Memory and Conformity, but Not Competition, Explain
Spatial Partitioning Between Two Neighboring Fruit Bat
Colonies
Emmanuel Lourie, Ingo Schiffner, Sivan Toledo and Ran Nathan

222  Spatial Memory Drives Foraging Strategies of Wolves, but in
Highly Individual Ways
Eliezer Gurarie, Chloe Bracis, Angelina Brilliantova, Ilpo Kojola,
Johanna Suutarinen, Otso Ovaskainen, Sriya Potluri and
William F. Fagan

238  Predicting near-term, out-of-sample fish passage, guidance,
and movement across diverse river environments by
cognitively relating momentary behavioral decisions to
multiscale memories of past hydrodynamic experiences
R. Andrew Goodwin, Yong G. Lai, David E. Taflin, David L. Smith,
Jacob McQuirk, Robert Trang and Ryan Reeves

Frontiers in 4


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/

& frontiers | Frontiers in

@ Check for updates

OPEN ACCESS

EDITED AND REVIEWED BY
Jordi Figuerola,

Spanish National Research Council (CSIC),
Spain

*CORRESPONDENCE
Eliezer Gurarie
egurarie@esf.edu

RECEIVED 23 December 2023
ACCEPTED 19 January 2024
PUBLISHED 31 January 2024

CITATION
Gurarie E and Avgar T (2024) Editorial:
Cognitive movement ecology.

Front. Ecol. Evol. 12:1360427.

doi: 10.3389/fevo.2024.1360427

COPYRIGHT

© 2024 Gurarie and Avgar. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Ecology and Evolution

TvpPE Editorial
PUBLISHED 31 January 2024
p0110.3389/fevo.2024.1360427

Editorial: Cognitive
movement ecology

Eliezer Gurarie™ and Tal Avgar®*

‘Department of Environmental Biology, State University of New York College of Environmental
Science and Forestry, Syracuse, NY, United States, 2Department of Biology, University of British
Columbia - Okanagan, Kelowna, BC, Canada, *Wildlife Science Centre, Biodiversity Pathways Ltd.,
University of Alberta, Edmonton, AB, Canada

KEYWORDS

animal movement, animal cognition, theoretical ecology, statistical ecology, spatial
ecology, spatial memory, learning, perception

Editorial on the Research Topic
Cognitive movement ecology

1 Introduction

Papers, dissertations and books devoted to the analysis of animal movement often
invite interest in the subject with the incontrovertible claim that all animals move. It is no
less true and no less obvious that all animals perceive, remember, and think (though
cognitive scientists seem less obligated to remind everyone of the fact). Perception,
memory, orientation, and navigation are all cognitive components that have been
identified, in a zeitgeisty collection of simultaneous independent studies, as central to
animal movement (Mueller and Fagan, 2008; Nathan et al., 2008; Schick et al., 2008). And
yet, the cognitive causes and consequences of animal movement remain nearly as
understudied now (Joo et al., 2022) as then (Holyoak et al., 2008).

There are several reasons behind the apparent chasm dividing these fields. Advances in
movement ecology often “chase” both the data and the telemetry technology, the rapid
development of which is often driven in support of concrete needs to monitor animal
populations for management or conservation. Although biologists are generally aware, and
often in awe, of the cognitive ability of their study species, the very thought of trying to
measure or quantify something as unobservable as cognition is daunting and of limited
apparent practical utility.

In contrast, the history and pedigree of ethological studies on animals is much longer.
One might argue that, as an applied exercise, it includes all human groups that have ever
engaged in the domestication of wild animals. In the Western scientific tradition, notably
contributors include Darwin, Pavlov, and Lorenz. However, as a scientific endeavor,
ethology has focused on animals that are easy to observe and therefore amenable to
controlled experimentation, in almost all cases captive or domesticated (Wynne and Udell,
2020). Much as the wildlife manager may wonder what practical information can be
obtained from considering cognition in a wild deer, an ethologist may wonder what can
possibly be inferred about the cognition of an animal that can only be indirectly observed
through blips of satellite locations and upon whom experimental manipulation is
impractical. With the exception of a handful of neurological phenomena, cognitive
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processes are latent, and there are good reasons to shy away from
studying what we cannot observe.

And yet, in the past decade there has been growing theoretical
and empirical evidence that perception (Fagan et al., 2017), spatial
memory (Fagan et al., 2013; Merkle et al., 2014; Avgar et al., 2015;
Schlagel et al., 2017), and social and experiential learning (Mueller
et al.,, 2013; Berdahl et al., 2018; Jesmer et al., 2018; Abrahms et al.,
2021) are all fundamental to the way that free-ranging animals use
space. It therefore felt timely and important to collect original
research under the novel rubric of “Cognitive Movement Ecology”
into a single Research Topic. We invited a wide array of conceptual,
theoretical, and empirical papers, reflecting a wide range of
approaches to this relatively new field of study. In so doing, we
hoped to identify common themes, standardize some jargon, and
generally facilitate dialog among cognitive movement ecologists.

The resulting Research Topics includes 15 contributions which
strike an admirable balance between concepts, theory, methods and
applications. Specifically, our Research Topic is comprised of: 2
high-level reviews, 4 explicitly theoretical contributions leaning on
numerical analysis and simulation, 2 articles that propose novel
heuristic approaches to inferring cognition from movement data,
and, finally, 7 articles that bravely seek to make direct inference and
even predictions about cognitive processes of free ranging animals
based primarily on movement data. We provided no explicit
guidelines outside the general rubric and were struck by the ways
in which important themes emerged and similar goals were set in
papers with markedly different approaches. In this editorial, we
summarize the four sections of this Research Topic, making an
effort to link the common themes across sections, and conclude
with our view of the future of this young, but important, branch
of ecology.

2 Reviews and concepts

The Research Topic opens with a comprehensive review of the
cognitive ecology of animal movement (Kashetsky et al.), setting the
stage with a clear definition: that cognition is one of several processes
that deal with the acquisition, retention, and use of information. The
authors further explore several critical mechanisms by which such
acquisition occurs, with an emphasis on the important role of social
learning. The authors consider several observable spatial
phenomena - all direct consequences of movement - that are
exhibited by animals, in particular migration, homing, home
ranging, trail following, and spatial learning. There is emphasis on
the perceptual mechanisms and ranges (e.g. viewsheds, soundscapes,
and smellscapes), including a consideration of the complexity and
“cognitive costs” of different kinds of learning. These themes are laid
out with several compelling published examples, and are all
returned to explicitly and specifically (though largely
independently) in almost every subsequent paper in the Research
Topic. It bears noting, however, that the examples and synthesis
provided are based primarily on experimental studies such as
pigeon (Colomba livia domestica) releases and manipulated
spatial feeding configurations for domestic sheep (Ovis aries).
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The second major conceptual contribution (Lewis et al.)
narrows the focus on learning (i.e. the acquisition and use of
information), while broadening the disciplinary scope by pulling
in vernacular, metaphors, and approaches from such fields as
machine learning and robotics, as well as in psychology and
behavior (their Box 1 provides a comprehensive glossary). Again,
a clear definition rooted in the psychology literature is provided:
that learning is a process of information acquisition that
occurs via experience and leads to consistent and predictable
neurophysiological or behavioral change. In the context of this
Research Topic, the relevant observable behavioral change is
specifically movement data. Much effort goes into covering the
various mechanisms of learning (individual, social, positively
reinforced, negatively reinforced, etc.). A set of rigorous criteria
are proposed to identify whether actual learning is observed in a
given study. Important distinctions are made between the kind of
“fundamental learning” that occurs in a novel, or significantly
perturbed, environment, compared to the kind of “maintenance
learning” that is continuously ongoing in a dynamic but
stochastically stationary environment. The former is more
dramatic and categorical and can occasionally be inferred from
“uncontrolled experiments” like translocations, introductions, or
major environmental perturbations like habitat fragmentation or
destruction. The second kind of learning is more subtle and reflects
the ability of animals to continuously update information and make
decisions. These two papers provide crucial conceptual context for
later contributions in the Research Topic, all of which slot neatly
into themes anticipated by these two overviews.

3 Theoretical contributions

Theoretical studies lean on numerical studies and simulations
and have the freedom to essentially create universes from scratch. In
so doing, researchers can explore processes that are impossible to
observe over a range of conditions that stretch the credible,
potentially leading to profound insights into fundamental
principles that produce patterns that are, in fact, widely observed
in the wild.

Swain et al.- focusing on the evolution of perception - used
millions of agent-based models to incorporate the relatively
unexplored costs of perception to constrain the simulated
emergence of optimal evolutionary scales of perception ranges. In
identifying the conditions under which non-local perception is
selected for, the authors found unintuitive interactions between,
among others, resource density and energetic costs. Notably, low-
resource environments led to the evolution of either zero perceptual
range, or large perceptual ranges - pointing towards two divergent
and apparently contradictory strategies in low-resource
environments, consistent with observations (e.g., deep-water
crustaceans either are entirely blind, or have exceptionally large
eyes). The dramatic evolutionary trade-offs inherent in the
evolution of perception (steep costs, high returns), leading to
the wide range of evolutionary outcomes, is likely mirrored in the
emergence of cognitive properties, like spatial memory and social
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learning, and the dizzying range of those adaptations. Indeed, it can
be argued that memory itself is a kind of “temporal perceptual
range”, that uses information from the past to “perceive” the future.

Gurarie et al, ask a complementary question: what possible
non-genetic mechanisms can lead to the emergence, maintenance,
and resilience of seasonal migrations, a very widespread and
successful strategy that involves considerably uncertainty, risk,
and energetic cost. Using a different computational approach
from the other three theoretical studies (partial differential
equations rather than agent-based simulations), the authors
explore how collective memory, sociality, exploration, resource
following, and learning all interact to exploit a highly seasonal and
disconnected resource environment; i.e. one where the “patchiness”
is extreme, but the predictability is high. For migration to emerge,
all these ingredients are required, but mixed in just the right
proportions: social cohesion to share information must
be balanced against exploratory behavior to acquire new
information, and a deep well of reference memory to lean on
must be balanced against the ability to modify that reference in
response to new information. Even in the highly synthetic
conditions of the model, striking optimal balance is not easy;
but, much as in the evolutionary model of Swain et al, the
rewards can be considerable. Furthermore, though there is no
selection in the model per se, it is clear that social learning as a
mechanism can operate at time scales that are much more rapid
than genetic selection.

Cognition is, however, not only about what the animals know
(perception and memory), it is also about what they do not know,
and how they might learn and make movement decision in the face
of uncertainty. In the absence of perfect information, animals must
rely on approximations to update their knowledge of their
environment, as well as the expected outcomes of their decisions.
Using individual-based simulations in a dynamic depleting and
regenerating resource landscape, Avgar and Berger-Tal examine the
role of two types of optimism as adaptive strategy for partially
informed optimal foragers. Using a simple agent-based model, they
show that moderate discounting of information from undesirable
outcomes (‘positivity biased learning’ or ‘valence-dependent
optimism’) results in improved fitness in environments
characterized by high resource variability.

As if expressly to punish any irrationally optimistic foragers,
Bracis and Wirsing introduce predators into a similar simulated
dynamic resource environment to study the widely reported
phenomenon of the “Landscape of Fear”. The authors build on a
versatile continuous-time, continuous-space framework developed
for the exploration of the role of spatial memory in guiding mobile
foragers navigating dynamic landscapes (Bracis et al., 2015; Bracis
et al., 2018). Within this habituated prey/resource system, the
authors then release predators in high resource areas. The prey
are left to learn from near escapes, and eventually to associate high
quality habitat with increased risk. Somewhat analogous to Gurarie
et al. This method of learning relies on two memory streams - a
long-term “reference memory” (e.g. of fundamentally suitable
habitat) and a short-term “working memory” which pushes the
forager from recently depleted patches. Interestingly, these
apparently simplistic two streams of memory are capable of both
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fundamentally learning about the new predator element, and of
continuous maintenance learning (sensu Lewis et al.). The authors
find that landscape of fear effects, in particular more time spent
searching and less net consumption, do emerge with the presence of
predators. However, the factors that lead to the most dramatic
effects are primarily intrinsic, i.e. related to memory and personality,
rather than external, i.e. related to the configuration of the
environment. Specifically, the effects are greatest when animals
are initially naive to their environment and when they are highly
conservative (akin to Avgar and Berger-Tal‘s pessimists). This result
is important as a reminder that in real systems intrinsic states can
easily be as important as the kinds of external, environmental
factors that are most commonly used to model animal movements.

While very different in purpose and technique, a clear theme
emerges from this suite of theoretical explorations: that the value of
perception, memory, and learning for fitness is a direct consequence
of the spatial structure and temporal dynamics of the environment
the animal moves through. Thus, a somewhat unexpected corollary
emerges: cognitive abilities serve above all else to compensate for
constraints and limitations in the ability to move across the
landscape itself.

4 Heuristic innovations

While all the empirical studies rely to varying extents on
methodological innovations, two contributions to this Research
Topic stand out for proposing purely trajectory-based approaches
to analyzing movement data, pointing towards widely observed
spatial patterns that — the authors claim - can only emerge from
memory-driven movement process.

Gautestad explores the topological properties of movement
tracks that emerge from a model of self-reinforcing (i.e. memory-
driven) returns to previously visited locations. This ultimately very
simple model leads to patterns of space use that can be represented
as a “scale-free network”. In other words, it has rare “dominant
nodes” and very many “rarely visited” nodes, distributed in such a
way that the frequency of degree centrality scores has a predictable
log-log relationship. Gautestad shows that - when decomposed to a
node-to-node type - empirical data on black bear movements
(Ursus americanus) consistently show precisely the scale-free
properties expected by this memory-driven random walk. A
fascinating analogy is made with the global internet network,
which is also scale-free and therefore susceptible to targeted
attacks on dominant nodes. In similar ways, Gautestad makes an
unexpectedly applied conclusion: that the movements and habitat-
use of a free-ranging animal is structurally sensitive to disruptions
to dominant nodes of patch use. There is an implicit corollary to
this conclusion: if a movement track lacks these scale-free
properties, this may indicate a perturbation in “normal” memory-
inflected movement patterns.

Alavi et al. have a similar goal: to study the impact that simple
cognitive processes have on the spatial, topological, and statistical
properties of emergent movement tracks. Rather than focus, as
Gautestad, on patches (network nodes) Alavi et al. focus on routes
(network edges). They propose a set of metrics that can be
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computed directly from data that capture those properties related to
linearity, absolute directionality, and recursion rates. Using a set of
memory-driven simulations, the authors show the conditions under
which these patterns emerge, and finally apply the methods to a set
of four medium-sized tropical mammals moving in a forest in
Panama. The differences in the movement patterns of these animals
are striking, and well-captured by the metrics the authors proposed.
Those differences are then compellingly related to very specific
hypotheses about the kinds of learning and perceptual capacities
(another recurring theme) that the animals likely rely on.

Notably, both of these highly original analyses depend
entirely on the spatial properties of a movement track, without
any environmental covariates, or even particular regard to
displacement durations. Both lean on the fundamental fact that
movement tracks never actually really resemble the kinds of naive
random movements that form the basis of most empirical
movement modeling. In an echo of Bracis and Wirsing, they
underscore the fact that a good amount of the structure of the
observed animal movements can, in fact, emerge from purely
intrinsic properties. Furthermore, they point to ways in which the
generally unobservable process of cognition can nevertheless be
inferred from movement data.

5 Empirical studies

Inferring cognitive process based on observational data of free-
ranging animals is a tremendous challenge (Lewis et al.).
Nevertheless, seven contributions to our Research Topic attempt

Sociality

Discrete Choice

FIGURE 1

Venn diagram of seven empirical studies in the collection across three sets of commonalities. Three papers studied social interactions, four
leveraged inference from “naive” animals (translocated ungulates, reintroduced predators, juvenile fish migrating downstream); four used some form
of discrete choice modeling, whether choosing where to hunt, whether to migrate, where to move out of a discrete set of options.

10.3389/fevo.2024.1360427

to do just that for a diverse set of taxa: three ungulate species (elk
Cervus elaphus, mule deer Odocoileus hemionus, and bighorn sheep
Ovis canadensis; Falcon-Cortes et al, Rheault et al, and Berger
et al.), 2 terrestrial carnivores (fisher Pekania pennanti and wolves
Canis lupus; Facka and Powell and Gurarie et al.), 1 flying mammal
(Egyptian fruit bat Rousettus aegyptiacus; Lourie at al.), and 1
swimming fish (salmon Oncorhynchus spp.; Goodwin et al.).
Rather than provide summaries of their findings (the authors do
that in their abstracts much better than we could here), we focus on
areas of notable overlap and divergence (Figure 1).

The processes analyzed in these studies span a range of taxa and
of spatio-temporal scales. But the fundamental question - at the
level of the individual - always boils down to: where to move? At the
extremes, Berger et al. predict seasonal migrations of sheep, while
Goodwin et al focuses on extremely fine-scaled (3 minute) decisions
made by fish in a highly dynamic environment. Rheault et al. and
Falcon-Cortes et al. deal with space use and selection within a
seasonal range - ie. selection on a temporal scale of hours, while
Gurarie et al. and Lourie at al. examine selection of foraging sites on
the scale of diel departures from a den or roosting site. Lastly, Facka
and Powell were interested less in details of movement than in
large-scale interactions among conspecifics.

Six of the seven empirical contributions consider memory as a
potentially important driver of animal space-use patterns or
movement decisions and directly or indirectly provide a data-
informed estimate of a “memory coefficient”. The most
straightforward form of memory is captured as a tendency to
return to previously visited locations, with or without temporal
decay (Rheault et al., Falcon-Cortes et al,, Lourie at al.). In all these

Naiveté

Goodwin et al.
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cases, accounting for that tendency improved the ability of
respective models to explain the data, or - equivalently - to
match some of its emergent properties. Others add additional
cognitive elements to simple attraction to previously visited
locations; thus Berger et al. explicitly account for and estimate
relevant perception ranges for decision-making, Gurarie et al.
model multiple conflicting streams of memory that positively or
negatively reinforce revisits, and Goodwin et al. incorporate
a complex hierarchy of immediate behavioral responses to
sensory input.

Three contributions are focused primarily on social drivers of
space use (Figure 1, red set); Lourie at al. evaluate alternative
hypotheses for foraging domain partitioning among neighboring
bat colonies, Facka and Powell examine how established home
ranges affected the formation of a newcomer’s home range, and
Berger et al. compare the relative importance of the effect of a social
group’s migratory culture to the effects of individual memory and
sensory information. Inference on social factors requires
simultaneous information on many individuals, an aspect that
most observational studies lack. Each of these studies were able to
examine these questions by using some innovation in their study
design. Lourie at al. applied high-resolution tracking technology;
they used a reverse-GPS system to track ~100 bats for an average of
24 days and at a resolution of 0.125 Hz (8 obs. x sec’"). Berger et al.
and Facka and Powell had the advantage of studying reintroduced
species (incidentally, both in the Sierra Nevada mountains) where
many (Berger et al.) or all (Facka and Powell) individuals
were tracked.

To varying degrees, four of the studies took advantage of naivete
in the animals (Figure 1, green set). Facka and Powell, Berger et al,,
and Falcon-Cortes et al. leveraged the “uncontrolled experiment” of
releasing animals in novel environments (fisher reintroductions,
and sheep and elk translocations, respectively). Facka and Powell
had the further advantage of having tracked every reintroduced
individual, while Berger et al. augmented their observations with
the intensive monitoring associated with a high-profile
recovery program. Finally, the juvenile fish in Goodwin et al
were migrating downstream and entering environments and
conditions, like dams, that were completely novel to them.
Reintroductions and translocations - common means of
ecological restoration or rewilding, augmenting struggling
populations, or resolving human-wildlife conflicts - are of
incredible value for studying learning in particular (Lewis et al.).
Since relocated animals are naive to the landscape they find
themselves in, no behaviors can be ascribed to specific prior
experience, only a moving set of expectations. The same is true of
dispersal events (which also describes the juvenile salmon
outmigration), which have the advantage of not requiring any
handling of animals. Dispersal events, however, are generally
much harder to detect in wild populations, mainly because they
are relatively rare and tend to occur among subadult males, an age-
sex class that is generally understudied by wildlife biologists and
managers whose focus is often on adult females. Nonetheless, as
tracking and monitoring efforts increase, dispersal events will be
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ever more available for analysis of learning in movement (Barry
et al., 2020).

Two empirical contributions join the theoretical paper of
Gurarie et al. to focus on seasonal migration. Berger et al.
investigated why only some sheep migrate to lower elevation
ranges in the fall while others remain in high-elevation ranges.
Rheault et al. examined the effect of memory gained in the previous
year on the space use of deer returning to their seasonal ranges.
While not as tidy as translocations or dispersal events, seasonal
migration also has particular benefits with respect to cognition.
Beginning and end points of migrations are often well-known, or at
least identifiable from movement data, and questions can focus on
the repeatability of their selection. Furthermore, in some systems,
proximate drivers of migration are more or less known, e.g. niche
tracking or “green-wave surfing” (Merkle et al., 2016; Aikens et al.,
2017), providing a well-understood null model against which the
influence of perception or memory-driven choices can be
compared. Finally, given long-enough tracking durations, we may
have reasonable information on the animal’s prior knowledge and
experience, provides researchers a null expectation about what the
animal may or may not know. Studies where migratory animals are
translocated and tracked as they do (or do not) adopt the migratory
behavior, as was the case for several of the sheep in Berger et al., are
of particular value (see also Mueller et al., 2013; Jesmer et al., 2018).

With respect to methodology, four of the contributions
conducted some form of discrete choice analysis (Figure 1, blue
set), where observed movement ‘decisions’ are contrasted against
one or more alternative decisions that could have been made; e.g. to
migrate or not to migrate (Berger et al.), which foraging area to
move to (Gurarie et al,, Falcon-Cortes et al.), or which “step” to take
(Rheault et al.). These discrete-choice models were applied directly
to observed data, and memory effects were assessed by including
prior experience as a predictive covariate of the choice made.
Discrete choice modeling is not often applied to wildlife studies,
but echoes a long history of experimental approaches for studying
memory and learning in animals (Tolman and Honzik, 1930;
Wilkie and Willson, 1992; Thorpe et al., 2004). In contrast, two
contributions constructed individual-based simulation models
where some of the parameters are informed by observed data, but
the simulation as a whole is tuned via likelihood-free (pattern-
oriented) alignment with observed emerging patterns (Lourie at al;
Goodwin et al). Notably, Lourie at al. used the simulation-based
approach to draw inferences about the relative contributions of
individual memory vs. conformity, whereas Goodwin et al used it as
a predictive tool. Lastly, Facka and Powell leverage the incredible
strength of an experimental design: by simply comparing deliberate
introductions of fishers into areas with and without the presence of
conspecifics, a very strong signal of avoidance was detected without
the need for overly complex analytical machinery.

Gurarie et al. conclude their analysis with a proposed five point
checklist for the inference of memory driven processes from data on
movements of free-ranging animals: (A) an observable behavior
that might be driven by prior experiences; (B) identification of
experienced cues that might influence that behavior; (C) a cognitive
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model; i.e. a plausible functional relationship between movement
response A to experience B; (D) a statistical method (or pattern-
matching heuristic) to estimate the model C; and (E) a metric for
comparing the cognitive model against a non-cognitive model. It is
instructive to apply this checklist to other studies. For example: in
Berger et al. a sheep’s choice to migrate (A) is a consequence of
perception viewsheds (B) which predict the probability of migration
via a linear mixed model (C,D) which takes into account other
potential covariates, and can be compared against a suite of non-
cognitive models using maximum likelihood (E). Or, in Lourie at al,,
the observed property of spatially non-overlapping neighboring bat
colonies (A) is hypothesized to be a consequence of prior visitations
(B), a suite of agent-based models is developed to account for that
behavior (C) and emergent properties of those simulations are
compared to the observations (D) for agent-based simulations with
and without the memory component (E). The empirical studies in
this Research Topic checked off most, if not all, of these
requirements, indicating that the framework may be useful for
further empirical investigation into cognitive roots of movement.

6 Concluding remarks

Editing this Research Topic has reinforced our conviction that
the cognitive processes of perception, memory and learning are
fundamental to understanding any animal movements. But it may
still not be clear why wildlife practitioners should care. Here, it bears
noting that in two of the empirical studies (Rheault et al,, Falcon-
Cortes et al.) where time-scales of memory were estimated, memory
was essentially infinite, consistent with prior findings (e.g., Avgar
et al,, 2015). Similarly, in both of the heuristic contributions (Alavi
et al, Gautestad), the essential argument was that fundamental
patterns of movements can be explained almost entirely by
memory. These results suggest that, at least in some cases, the
most effective way to predict where an animal might show up (an
important goal for monitoring, conservation, and management) is
not to model movement against some complex set of habitat
covariates, but to simply study where the individual has been
before. With that in mind, the global reality is that environmental
conditions for many populations are changing extremely rapidly,
whether through disturbance, habitat fragmentation, or climate
change. These rapid changes put major pressures on the
adaptability and behavioral plasticity of organisms. Or, to apply
the jargon (and some of the paradigms) of animal cognition, the
question of a population’s persistence can be summarized as its
ability to modify a reference memory with updated working
memories, such that the resulting behavioral innovations are
adaptive with respect to fitness.

The two foundational models that underlie much of
theoretical animal movement ecology are almost diametrically
opposed. On the one extreme, the random walk (Berg, 1993;
Turchin, 1998; Codling et al., 2008) assumes that animals move
blindly and completely randomly in a restricted, slow to “diffuse”
manner. On the other extreme, the ideal-free distribution (Fretwell
and Lucas 1969; Krivan et al., 2008; Avgar et al., 2020) assumes

Frontiers in Ecology and Evolution

10

10.3389/fevo.2024.1360427

that completely omniscient and optimal animals can appear
anywhere and anytime, distributing themselves in proportion to
resource availability. The reality is, of course, somewhere between
the two: real animals in real-life scenarios are capable of moving in
directed and informed ways, but not at infinite speed, and only
with partial information about the environment. Cognitive
movement ecology can be viewed as an essential bridge between
these theoretical constructs. What does it mean to be partially
informed? How does an organism act on that partial information?
And how does it distribute itself through space, given its goals and
given its constraints? How, in the end, do organisms manage to
navigate, survive, even thrive in environments that are complex,
heterogeneous, and dynamic? These questions, which are very
much the realm of cognitive movement analysis, are also at the
very foundation of animal ecology.
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Cognition, defined as the processes concerned with the acquisition, retention and use of
information, underlies animals’ abilities to navigate their local surroundings, embark on
long-distance seasonal migrations, and socially learn information relevant to movement.
Hence, in order to fully understand and predict animal movement, researchers must
know the cognitive mechanisms that generate such movement. Work on a few model
systems indicates that most animals possess excellent spatial learning and memory
abilities, meaning that they can acquire and later recall information about distances and
directions among relevant objects. Similarly, field work on several species has revealed
some of the mechanisms that enable them to navigate over distances of up to several
thousand kilometers. Key behaviors related to movement such as the choice of nest
location, home range location and migration route are often affected by parents and
other conspecifics. In some species, such social influence leads to the formation of
aggregations, which in turn may lead to further social learning about food locations
or other resources. Throughout the review, we note a variety of topics at the interface
of cognition and movement that invite further investigation. These include the use of
social information embedded in trails, the likely important roles of soundscapes and
smellscapes, the mechanisms that large mammals rely on for long-distance migration,
and the effects of expertise acquired over extended periods.

Keywords: cognition, expertise, philopatry, spatial learning, social learning, navigation

INTRODUCTION

The factors necessary for maximizing growth, survival and reproduction vary in time and space.
To accommodate this temporal and spatial variation, most animals possess the physical means
for moving toward beneficial resources and away from harm. In addition to the ability to move,
however, animals must frequently decide about the timing, direction and duration of movement
as well as its final destination. To make such decisions, animals rely on their cognitive system,
which consists of the structures and processes concerned with the acquisition, retention and use
of information (Dukas, 2004, 2017). Research in the past few decades has integrated mechanistic
information on animal cognition with functional knowledge on animal ecology and evolution
(Dukas, 1998; Dukas and Ratcliffe, 2009; Morand-Ferron et al., 2016; Ratcliffe and Phelps,
2019). Our contemporary understanding of animal cognitive ecology, however, is still not well
incorporated within the field of movement ecology.
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Scientists across a wide range of disciplines have engaged
in insightful research on organismal movement for a long
time. Examples range from laboratory analyses of movement in
bacteria at the micrometer scale (Adler, 1976; Koshland, 1980;
Eisenbach and Lengeler, 2004) to field work on whale migration
over thousands of kilometers (Pike, 1962; Rasmussen et al., 2007).
The young field of movement ecology adds to this knowledge by
relying both on new technologies for monitoring natural animal
movement over vast areas, and on modern computational tools
for analyzing the large data sets acquired through automated
tracking (Nathan et al., 2008; Abrahms et al., 2021). Only recently,
however, movement ecology has increased the consideration of
animal cognition (Fagan et al., 2013, 2017; Avgar et al., 2015;
Lewis et al., 2021), an approach that typically requires controlled
experimental settings.

Animal cognition can be divided into a few interconnected
categories. The first component is perception, which involves
capturing information from the environment and converting
it into internal representations retained by neuronal networks.
Information acquisition is carried out by receptors specialized
to capture cue attributes emitted by or associated with relevant
objects including patterns of reflected light, sound, odors, flavors
and texture. Newly acquired information may either fade away
immediately, remain for brief periods, or consolidate into
long lasting internal representations that can persist for many
years. The process of adding new representations into neuronal
networks is termed learning, and the information retained is
referred to as memory. The only utility of information acquisition
and retention is to determine and execute action. To this end,
individuals have to continuously assess relevant environmental
features and their experience to decide about their subsequent
action (Rolls, 2014; Anderson, 2015; Dukas, 2017).

The framework of movement ecology laid out by Nathan
et al. (2008) clearly recognized the crucial role of cognition in
general and navigational abilities in particular for the obvious
reason that cognition underlies all animal decisions regarding
when and where to travel. Although one can study movement
while ignoring its underlaying internal mechanisms, a thorough
understanding of individuals’ movement decisions requires us to
quantify the cognitive processes that drive them. Chief among
the cognitive abilities relevant to animal movement are the
mechanisms that enable spatial orientation. Such mechanisms
allow individuals to both navigate their local surrounding while
engaging in their daily routines, and to undertake long-distance
seasonal migrations.

To keep our review within the space constraints, we will
focus here on experimental research in birds and mammals as
these groups have been the subject of most studies in movement
ecology. While we will aid our analyses with a few examples from
insects, we cannot encompass here the rich body of research on
insect navigation (Dyer, 1998; Collett and Collett, 2002; Wehner,
2020). Our review has five parts. In the first two sections, we focus
on individual cognition and ignore social influences. First, we
discuss the roles of learning and memory in movements within
the local settings of one’s home range. Second, we take the broader
perspective of the innate mechanisms, learning and memory
involved in long-distance movements typically associated with

seasonal migration. Most birds and mammals have parental
care, many species live in groups (Wilson, 1975; Clutton-Brock,
2016), and even the ones classified as solitary show rich social
interactions (Caro, 1994; Elbroch et al., 2017). Hence, our third
section assesses the multiple effects of the social environment
on the cognitive features that guide movement. The fourth
part briefly integrates the previous three sections to address the
understudied topic of animal expertise, defined as the traits that
enable individuals to show superior performance after a long
period of individual and social learning (Dukas, 2019). Finally,
our prospects section focusses on a few suggestions for promising
research at the interface of cognition and movement.

INDIVIDUAL LEARNING AND MEMORY
WITHIN THE HOME RANGE

Most animals can benefit from learning about the attributes
of relevant environmental settings, resources and individuals.
Examples include food sources, shelters, temperature, predators
and other hazards, kin, social partners, competitors, and
prospective mates. Key features associated with such variables
include unique, identifying cues such as odor, color, sound, taste,
size and shape, and their location in space and time. It is thus
not surprising that all animals subjected to critical experimental
tests show learning when tested under the controlled conditions
designed to distinguish learning from relevant alternatives
(Dukas, 2008a, 2017). Critical evidence for learning, however,
requires strict experimental protocols because learning can only
be inferred indirectly through a change in behavior. This means
that one has to carefully rule out non-learning alternatives
including changes in perception, satiation, physiology, and
motivation. For example, while GPS movement data on a single
mule deer (Odocoileus hemionus) suggested reliance on spatial
memory (Jakopak et al., 2019), the study could not critically
rule out alternatives including the use of trails or other cues,
or following other individuals. Nevertheless, evidence such as
the ability of an individual to return to its summer range
after moving about 100 km away is instructive regardless of
the mechanism employed. That is, we encourage researchers to
modulate their vocabulary based on their evidence where the
settings and priorities do not allow for critical tests of learning.
Additionally, future research may continue to develop protocols
that allow critical tests of cognitive abilities in the field (Morand-
Ferron et al., 2016). We provide examples of such field tests
throughout our review.

Most relevant for movement ecology is animals’ abilities
to learn and remember the spatial locations of resources and
individuals. Spatial learning and memory merely means having
the ability to acquire and later recall information about distances
and directions among relevant objects. This allows individuals
to navigate, i.e., find their way among these objects. Controlled
laboratory studies indicate robust spatial learning and memory in
key model systems including fruit flies (Drosophila melanogaster)
(Ofstad et al., 2011) and rats (Rattus norvegicus) (O'Keefe and
Dostrovsky, 1971; Moser et al., 2008). Many field studies over the
past several decades, which included controlled experiments as
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well as observations using individually tagged individuals, have
revealed exceptional navigational abilities in honey bees (Apis
mellifera) (von Frisch, 1967; Seeley, 1996; Dyer, 1998; Menzel
etal., 2005; Riley et al., 2005). In addition to routinely traveling to
flower patches up to several km away from their nests, honey bees
communicate to nestmates the direction and distance to both
flower patches and prospective new nests (Dyer, 2002; Visscher,
2007). These skills allow honey bees to dynamically adjust to
changes in the spatial and temporal distribution of floral rewards,
and to locate the best locally available tree cavities for new
nests (Visscher and Seeley, 1982; Beekman and Ratnieks, 2000;
Steffan-Dewenter and Kuhn, 2003; Seeley, 2010).

It is fair to assume that all birds and mammals possess
spatial learning and memory as good as or better than that
experimentally demonstrated for honey bees in the field.
Controlled laboratory and enclosure studies typically confined to
up to several meters indeed demonstrate excellent spatial learning
and memory in a variety of birds and mammals (e.g., Morris,
1981; Sherry et al., 1981; Balda and Kamil, 1992). Much of the
field work is either limited or suggestive owing to the lack of
a large body of controlled experiments. A notable exception
is the homing pigeon (Columba livia domestica) discussed in
the section below (Wallraff, 2005; Wiltschko and Wiltschko,
2015).

Consider the following example for study design that has
enabled strong inference on cognitive processes. A well controlled
field study (Edwards et al, 1996) tested spatial memory in
domestic sheep (Ovis aries) in a 30 by 45 m pasture. There was
a grid of 4 by 8 plastic bowls with randomly chosen 4 bowls
containing food pellets (Figure 1A). The food could not be seen
until a sheep was within 0.5 m of the bowl. Each sheep was
tested individually 11 times over about a week. In trials 1-6, the
position of the bowls containing food remained constant, and
sheep reduced the number of bowl visits required to locate the
four bowls containing food (Figure 1B). In trial 7, half the sheep
had no food in any bowl, and half the sheep had food in four new
randomly chosen bowls. This probe trial tested whether sheep
relied on spatial memory or on cues emanating from the food.
The sheep in both groups mostly searched first in the four bowls
that had previously contained food and then searched randomly
among the other bowls. This resulted in no change in the number
of visits needed to locate the previously food-containing bowls
in the no-food group, and in a large increase in the number of
visits needed to locate the four new food containing bowls in the
location-switching group (Figure 1B). Trials 8-10 consisted of
retraining, where the no-food group from trial 7 received food
again in the same bowls as in trials 1-6, while the location-
switching group received food at the same bowls as in trial
7. Sheep from the previously no-food group maintained their
small number of visits required to locate the four food bowls,
while sheep from the location-switching group reduced again
the number of visits required to find the new locations of the
four food bowls (Figure 1B). Trial 11 tested spatial memory after
longer than the retention period of 12 h used previously. Here half
the sheep were tested after 24 h while the other half were tested
after 72 h. Both groups showed the same high performance as in
the earlier trials (Figure 1B). The sheep study illustrates how one
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FIGURE 1 | (A) The layout of food bowls in the sheep spatial memory
experiment. Open circles illustrate empty bowls while filled circles depict the
four bowls containing food. (B) The mean + SE number of visits required to
locate all food bowls. In trials 1-6, the food was always in the same 4 bowls.
In trial 7, half the sheep encountered food in 4 new bowls (0J) and these bowls
also contained food in trials 8-11. The other half of the sheep encountered no
food in any bowl in trial 7 (M) and had food in the same bowils as in trials 1-6
in trials 8-11. In trial 11, half the sheep were tested 24 h after trial 10, and the
other half were tested 72 h after trial 10. The asterisks indicate visit numbers
statistically different from random search in tests conducted in trials 1, 2, and
8. Data from Edwards et al. (1996).

can critically assess spatial memory in the field. Similar work may
be conducted at larger spatial scales with a variety of wild animal
populations that are habituated to feeding near humans.

INNATE BEHAVIOR, INDIVIDUAL
LEARNING AND MEMORY IN SEASONAL
MIGRATION

Seasonal migration occurs in nearly all major animal groups.
Traveling to exploit favorable conditions (e.g., food, warmth,
or mates) and escaping adverse conditions (e.g., parasitism,
predation, or competition) is a beneficial strategy that many
animals adopt (Avgar et al, 2014; Somveille et al, 2015).
To make navigational decisions during migration, animals use
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FIGURE 2 | lllustrated phases of long-distance navigation. (A) During the long-distance phase, individuals rely on celestial and magnetic cues as well as on large
landmarks such as mountains, lakes, and coastlines. (B) During the homing phase, gradients, landmarks, and compasses are important. (C) During the
pinpointing-the-goal phase, residential cues including beacons and the goal itself are valuable. Figure from Mouritsen (2018) with permission.
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a combination of innate instructions, information they have
previously learned either individually or gleaned from others,
and cues they currently perceive (Spiegel and Crofoot, 2016).
Seasonal migration consists of three phases in which animals use
different cues to navigate (Mouritsen, 2018; Figure 2). During the
long-distance phase, animals navigate using innate and learned
information, and global/regional cues (Schmidt-Koenig, 1990;
Gwinner, 1996). In the narrowing-in/homing phase, animals use
compasses and landscape information (O’Keefe and Nadel, 1978;
Toledo et al., 2020). For the pinpointing-the-goal phase, animals
follow specific landmarks near the goal or the goal itself. We
will focus on species that live long enough to partake in multiple
migrations throughout their lives, providing good opportunity to
discuss cognitive processes beyond innate instructions.

The vast literature on animal migration has revealed a
multitude of innate mechanisms and learned features that guide
individuals toward their long-distance goals. The number and
complexity of processes involved as well as the variation among
species precludes simple generalizations. We thus detail below
several key elements. We will first assume no social interactions
and focus on the combination of innate mechanisms and
individual learning that guide navigation. Then we will discuss
in the subsequent section social influences and social learning,
which are prevalent in many species.

Compass Orientation

In many cases, orientation toward a long-distance goal can
be aided by a compass mechanism. The three compasses—
magnetic, sun, and stars—provide simple directional information
regardless of the current location (Wiltschko and Wiltschko,
2015). Migratory birds, especially inexperienced individuals,

rely on compasses during the long-distance and homing
phases of long-distance movement (Mouritsen, 2018). The
avian magnetic compass is primarily innate (Wiltschko and
Gwinner, 1974), while celestial compasses are primarily learned
(Wiltschko and Wiltschko, 1980; Michalik et al., 2014).
Birds typically use one compass mechanism to calibrate
another (Pakhomov and Chernetsov, 2020). For example, night-
migratory songbirds update their star compass using their
magnetic compass as a reference (Wiltschko and Wiltschko,
1975). Subsequently, the calibrated star compass can be used
independently (Wiltschko and Wiltschko, 2015).

Information from multiple compasses is usually available
concurrently, depending on the season, time of day, weather,
and magnetic anomalies. Currently, there are various conflicting
theories regarding the hierarchy of the compasses used for
orientation (Johnsen et al., 2020; Pakhomov and Chernetsov,
2020). When multiple cue types are available, birds likely
have preferences for which one to follow based on individual
experience, current environment, and distance to their goal
(Munro and Wiltschko, 1995; Wiltschko and Wiltschko, 2015;
Chernetsov, 2017). If an in-use compass becomes unreliable,
birds switch to cues with more accurate readings. For example,
pigeons initially rely on magnetic cues, then attempt to
compensate for disorientation during magnetic anomalies or
experimental disturbance using celestial cues (Keeton, 1971;
Toalé, 1984; Wiltschko and Wiltschko, 2001; Schiftner et al., 2011).

Magnetic Compass

Geomagnetic fields stretching from poles to equator remain
relatively consistent over animals’ lifetime, making them
informative for determining direction. Birds may rely on a few
features of magnetic fields including intensity (strength of the
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magnetic field), inclination (the angle between the magnetic
field and earth surface), direction (polarity), and declination (the
difference between true north and magnetic north) (Wallraff,
2005; Wiltschko and Wiltschko, 2005, 2015; Mouritsen, 2018).
While much of the research on magnetic compasses has
been done in birds, there is growing evidence that mammals,
specifically rodents and bats, also possess a magnetic compass
(Holland et al., 2006, 2010; Oliveriusova et al., 2012, 2014; Finn,
2021). Some large terrestrial mammals can spontaneously align
their bodies with magnetic fields (Begall et al., 2013; Obleser et al.,
2016; Painter et al., 2016; Cerveny et al., 2017), but it is unclear if
they use an established magnetic compass for navigation.

Birds inherit their ability to sense magnetic inclination
(Wiltschko and Wiltschko, 1972, 2005; Wiltschko and Gwinner,
1974). In some cases, they must calibrate this compass using
celestial cues (Able and Able, 1990; Cochran et al., 2004), or vice
versa (Muheim et al., 2007, 2009). Magnetic compass orientation
is dependent on the presence and wavelength of light (Wiltschko
W. and Wiltschko R., 1981; Muheim et al,, 2002), although
night-migratory songbirds require less light than diurnal birds
(Wiltschko and Wiltschko, 2015). The avian magnetic compass
works in a functional magnetic intensity window; increasing or
decreasing the magnetic strength by 25-30% is disorienting, until
birds establish a separate functional window (Wiltschko, 1978;
Wiltschko and Wiltschko, 2015). Because magnetic field intensity
changes through space, an adjustable compass is advantageous for
long-distance movements (Wiltschko and Wiltschko, 2015).

Solar Compass

The temporal cycles and perceived movement of the sun make
it an excellent guide for orientation (Guilford and Taylor,
2014). Solar cues are valuable during the long-distance phase of
movement (Wiltschko and Wiltschko, 2015; Mouritsen, 2018).
Birds may use polarized light cues or the azimuth of the sun
itself (Munro and Wiltschko, 1995; Wiltschko and Wiltschko,
2015; Muheim et al., 2016). The sun compass requires learning in
juvenile birds. Pigeons establish their sun compass before they are
12 weeks old, while early experience flying can accelerate learning
to 8-10 weeks (Wiltschko and Wiltschko, 1981).

Birds must integrate the sun’s movements into their internal
clock to orient themselves based on their perceived time-of-
day (Wiltschko and Wiltschko, 1980, 1981; Schmidt-Koenig,
1990; Schmidt-Koenig et al., 1991; Akesson et al., 2017). The
integrated sun compass and internal clock must constantly
be updated to account for daily and seasonal changes in the
perceived location of the sun (Wiltschko and Wiltschko, 2015).
Improper synchronization between the internal and sun compass
is disorienting. For example, pigeons under experimental settings
in which the light-dark cycles were shifted 6 h ahead flew
90 degrees counter-clockwise compared to control pigeons
(Schmidt-Koenig, 1958). Once individuals recognize that their
compass is shifted, they resynchronize their sun compass and
internal clock. Such synchronization occurs naturally when birds
travel to different locations (Schmidt-Koenig, 1958; Wiltschko
etal., 1998). Yet in some cases, following the sun compass without
updating it can be advantageous. Arctic shorebirds such as
the American golden plover (Pluvialis dominica), semipalmated

sandpiper (Calidris pusilla), pectoral sandpiper (C. melanotos),
and the white-rumped sandpiper (C. fuscicollis) migrate without
synchronizing their internal clock and sun compass. At high
altitudes, non-stop flights attuned to the sun compass result in
orthodomes, traveling the shortest distance between two points
on a sphere (Alerstam et al., 2001).

Star Compass

The other celestial compass, which is based on stars, provides
direction for nighttime navigation. Night-migratory songbirds
learn to locate a north-south directional axis based on the
fact that stars closer to the celestial axis move through smaller
arcs (Emlen, 1970). In order for night-migratory songbirds to
learn the compass, they require 2-3 weeks of exposure to a
rotating star pattern (Able and Able, 1990; Michalik et al., 2014).
Learning occurs during the pre-migratory period before autumn
(Emlen, 1970, 1972), but can take place the following spring if
needed (Zolotareva et al., 2021). Star patterns change seasonally
because of the earth’s rotation around the sun, so migrating birds
must regularly update their celestial information (Wiltschko and
Wiltschko, 2015). On the other hand, because birds learn the
celestial axis rather than the time-dependent celestial location
of stars, shifting birds” internal clock does not affect their star
compass orientation (Emlen, 1970; Mouritsen and Larsen, 2001;
Pakhomov et al., 2017). Once a star compass is established, it can
be used independently of magnetic and solar cues.

Vector Navigation

Long-distance movement poses a considerable challenge for
young, inexperienced individuals. First year avian migrants
either follow experienced individuals (see Social Learning section
below) or use vector navigation (Gwinner, 1996; Bingman and
Cheng, 2005; Mouritsen, 2018). Vector navigation, also called
the clock-and-compass strategy, uses at least one compass and a
set of genetically encoded instructions for direction and distance
rooted in their internal clock (Mouritsen et al., 2016). Garden
warblers (Sylvia borin) deprived of any seasonal cues for a
year displayed migratory restlessness only at the appropriate
temporal windows for spring and fall migrations (Gwinner,
1996). The inherited migratory instructions are population
specific. Crossbreeding individuals from separate populations
with distinct migration routes results in hybrid offspring with
intermediate migration patterns (Berthold and Querner, 1981;
Helbig, 1991).

Circadian and circannual clocks are responsible for the
onset, distance (duration), and direction of migration (Gwinner,
1996). Before learning alternative navigation strategies, naive
individuals rely on genetic instructions, effectively demonstrated
by displacement experiments. Experienced birds can correct for
displacement over extraordinary distances, while inexperienced
juveniles typically fail to do this (Perdeck, 1958). For example,
in an experiment involving the displacement of juvenile and
adult white-crowned sparrows (Zonotrichia leucophrys gambelii),
adults corrected for displacement by adjusting their route
toward their usual wintering grounds. Juveniles neglected to
reorient themselves, flying in the direction of the expected
migration route (Figure 3; Thorup et al., 2007). Juveniles fail
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FIGURE 3 | Last observed direction of white-crowned sparrows after
experimental displacement east of their location. Adults (blue, large arrow is
the average) correctly reoriented southwest toward their original wintering
grounds, exhibiting true navigation. Juveniles (red, large arrow is the average)
failed to reorient, continuing southward using vector navigation. Based on
Thorup et al. (2007).

to correct for displacement not because they lack that ability,
but because they lack information required for compensation
(Wiltschko and Wiltschko, 2015).

In some instances, juveniles can correct for displacement.
Surprisingly, juvenile blackcaps (Sylvia atricapilla), willow
warbles (Phylloscopus trochilus) and garden warblers could
reorient themselves after experimental or natural displacement
during their first migration to an unfamiliar goal (Thorup
et al,, 2011). Likewise, some juvenile common cuckoos (Cuculus
canorus) corrected for experimental displacement at the same
level as adults, traveling toward their expected wintering grounds
(Thorup et al., 2020). These compensation mechanisms toward
an unfamiliar goal remain unclear—juveniles may be following
magnetic cues or using inherited signposts, which are discussed
next (Thorup et al., 2011, 2020).

Signposts

Signposts are markers that trigger specific responses that aid in
navigation (Wiltschko and Wiltschko, 2005; Freake et al., 2006).
Behavioral responses to signposts can be genetically encoded or
imprinted. Various species respond to signposts. These include
birds (Beck and Wiltschko, 1988; Fransson et al., 2001), turtles
(Lohmann et al., 2001), eels (Schabetsberger et al., 2016; Naisbett-
Jones et al., 2017), salmon (Putman, 2015; Scanlan et al., 2018)
and lobsters (Boles and Lohmann, 2003). Signature magnetic and
physical properties act as signposts. Examples include region-
specific magnetic intensity, temperature, odor, water salinity
or currents (e.g., Fransson et al, 2001; Schabetsberger et al,
2016). For example, particular magnetic intensities can trigger
animals to change directions during migration (Putman, 2015;
Naisbett-Jones et al, 2017; Scanlan et al., 2018), reorient
themselves to avoid ecological barriers and dangerous conditions

(Beck and Wiltschko, 1988; Lohmann et al., 2001), or land at
stopover sites for refueling (Fransson et al., 2001).

True Navigation

True navigators are individuals that can navigate to a goal
after being displaced to an unknown location, at an unknown
distance and direction (Griffin, 1952; Kramer, 1953; Keeton,
1974; Able, 2001; Thorup et al., 2007, 2020; Wikelski et al.,
2015; Kishkinev et al., 2021). True navigation allows individuals
to reach their goal when familiar landscape information is
absent. Animals must determine their geographic location,
then orient themselves toward the goal using a compass
(Griffin, 1952). As mentioned in the vector navigation section
above, displaced adult white-crowned sparrows flew toward
their usual wintering grounds, exhibiting true navigation, while
inexperienced juveniles relied on vector navigation, flying
according to genetically encoded instructions (Thorup et al,
2007). Bi-coordinate position fixing, that is, navigation using at
least two gradients, is a prerequisite for true navigation (Griffin,
1952; Freake et al, 2006). True navigation involves at least
one compass and gradient-based or location-based navigation
discussed in the section below.

Navigation Based on Learning and
Memory

Animals may learn distinct information for guiding their
navigation. Such learning may be egocentric, meaning that it is
based on the animal’s own movement, or exocentric, implying
that it is based on features of the landscape (Klatzky, 1998). Based
on the type of information learned, one can distinguish among
four non-mutually exclusive navigation strategies (Fagan et al.,
2013) detailed in the four sub-sections below (Figure 4).

Route-Based Navigation

During route-based navigation, also called path integration
(Figure 4A), individuals record their movements relative to the
starting point using a compass and return by reversing their
net outward movements (Schmidt-Koenig, 1975; Wiltschko and
Wiltschko, 2000, 2015; Wallraff, 2005; Fagan et al., 2013; Bidder
et al., 2015). Learning is egocentric and structured around self-
movement, thus the individual does not need to be familiar
with the landscape because landmarks are not required (Wehner
et al, 1996; Kimchi et al, 2004). Route-based navigation is
a cognitively simple strategy that requires little memorization
(Mittelstaedt and Mittelstaedt, 1982; Wehner and Wehner, 1986;
Fagan et al, 2013). Additional distance and turns increase
the cognitive demand of keeping track of the route, leaving
more room for mistakes. Thus, we can expect route-based
navigation to be used at smaller scales. During route-based
navigation, individuals acquire information of the unfamiliar
area en route to build their exocentric navigation strategies
(Wiltschko and Wiltschko, 2015).

Location-Based Navigation

In location-based navigation (Figure 4B), one learns
the spatial relationships between landmarks and goals
(O’Keefe and Nadel, 1978; Bingman and Cheng, 2005; Wallraff,
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FIGURE 4 | Types of memory-based navigation. (A) In route-based navigation, the individual sums the distance and direction of its outward movements to estimate
its current position and take a direct path to its starting point. (B) In location-based navigation, the individual memorizes spatial relationships between landmarks and
goals. (C) In beacon-based navigation, specifically pilotage, the individual follows sequential landmarks leading to the goal. (D) In gradient-based navigation, the
individual navigates with memorized gradients. In this illustration, both gradients are magnetic (solid and dash lines), with a magnetic anomaly in the southeast
corner, which could initially disorient the individual. The scale of D is over 1000 km. Created with BioRender.com.

2005; Faganetal., 2013; Wiltschko and Wiltschko, 2015;
Toledo et al., 2020). This strategy may use simple memory
snapshots (Cartwright and Collett, 1982; Alert et al, 2015)
or complex cognitive representations of space (Bingman and
Cheng, 2005). A compass is required for learning geographical
directions in relation to landmarks (Wiltschko and Wiltschko,
1982, 2015). Although learning spatial relationships between
landmarks and goals can produce a heavy memory load,
repeated experience moving throughout the landscape should
reinforce these memories, reducing cognitive load. Migratory
animals probably learn spatial information at a larger scale
but lower acuity compared to non-migratory navigators

(Bingman and Cheng, 2005). This navigation technique is
valuable during the homing phase of long-distance movement.

Beacon-Based Navigation

Individuals using the beacon-based strategy (Figure 4C) are
guided to their goal by at least one familiar beacon, which is a
landmark near the goal (Papi, 1992; Biro et al., 2004; Wallraff,
2005; Fagan et al., 2013; Wiltschko and Wiltschko, 2015). This
includes traveling toward the goal itself or following a series of
landmarks to reach the goal (Collett et al., 1986, 1992; Steck
et al., 2009; Guilford and Biro, 2014; Yovel and Ulanovsky, 2017).
While exploring unfamiliar areas, individuals use a compass to
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navigate until they learn which landmark(s) lead them to their
goal. Once they have established a route, compasses become
unnecessary as they can follow the landmark(s) directly (Papi,
1992; Biro et al., 2007; Guilford and Biro, 2014). Beacon-based
navigation is most applicable during the homing and pinpointing
phases of long-distance movement, as landmarks are typically too
small to perceive at long distances, with the exception of massive
geographical features such as coastlines or mountains.

Gradient-Based Navigation

Individuals that rely on gradient-based navigation (Figure 4D)
have to learn perceptual signatures of at least one feature
that changes gradually over space (e.g., magnetic or olfactory
gradients) (Bingman and Cheng, 2005; Wallraft, 2005; Fagan
et al., 2013; Wiltschko and Wiltschko, 2015). Navigating using
gradients requires a compass (Wiltschko and Wiltschko, 2015).
Magnetic cues provide both compass orientation and gradient-
based navigational information through different perceptual
mechanisms—interfering with magnetic cues for one does not
impair the other (Munro et al., 1997; Deutschlander et al., 2012;
Holland and Helm, 2013; Chernetsov et al., 2017). Gradients
are functional during the homing phase and can be projected
to longer distances beyond an individual’s experience (Gagliardo
et al, 2013; Wikelski et al., 2015). For example, birds learn
the features of the magnetic field throughout their home or
migratory range, then extrapolate that information to spatial
scales beyond what they have experienced (Figure 5; Thorup
et al,, 2007; Kishkinev et al., 2021). Extrapolated gradients
are not always accurate representations of nature (Wallraff,
2005). Individuals extrapolate to unknown locations based on
memory of familiar gradients, leaving unfamiliar anomalies
and gradient changes unaccounted for, which could result in
navigation miscalculations. For instance, individuals displaced to
the northwest corner of Figure 5A would move away from their
true home because their extrapolated gradient is signaling them
to fly in the opposite direction (Wallraff, 2005).

Selecting a Navigation Strategy

Strategies of navigation vary among species. In species that
employ multiple strategies, their use depend on individual
experience, preference, available information, distance from
the goal, and energy expenditure (Filannino et al, 2014;
Green et al., 2020). Furthermore, animals may use multiple
navigation strategies simultaneously (Wiltschko and Wiltschko,
2015). Navigation strategies driven by landscape familiarity
(location-, beacon-, or gradient-based, Figure 4) are generally
preferred over route-based navigation (Wiltschko and Wiltschko,
2015), likely because these strategies are less prone to errors,
and allow for short cuts and course corrections. Pigeons
using gradient-based navigation modified their route depending
on their current motivational state. Food deprived pigeons
released at an unknown location flew to a known food
source, while satiated pigeons released at the same location
flew to their home loft (Blaser et al, 2013). Contrarily,
route-based navigation does not allow individuals to revise
their goal, and displacing individuals is disorienting, as their
reversed net outward movements no longer lead to the return

point (Miiller and Wehner, 1988; Andel and Wehner, 2004). If
information necessary for a preferred strategy is unavailable,
animals revert to a simpler feasible navigation technique. For
instance, rats revert to route-based navigation when beacons are
unavailable (Shettleworth and Sutton, 2005).

Synthesis

Notwithstanding our precautionary note that both the multitudes
of complex processes involved in navigation and the variation
among species preclude simple generalizations, we wish to end
this section with a synthesis. In many species, naive individuals
traveling alone can successfully execute long-distance migration
based on innate instructions and one or more compasses. All
three compasses typically include innate as well as learned
information. Overall, navigation is greatly enhanced by learning,
which may be solely based on an individuals’ own movement, but
typically also on a variety of environmental features including
landmarks and gradients. Furthermore, individuals in many
species acquire information related to navigation from others, a
topic we discuss next.

SOCIAL INFLUENCES AND SOCIAL
LEARNING

The traditional separation of animals into solitary and social
species is rapidly fading as we learn to appreciate the
sophisticated social skills of animals historically classified as non-
social (Costa, 2006; Durisko and Dukas, 2013; Elbroch et al.,
2017). It is fair to assume that individuals in most species can
gain from information gleaned from conspecifics, and that such
information may guide their movements. Social influence merely
means that a focal’s behavior is affected by the presence, activity,
or cues left by other individuals. Social learning means that a
focal acquires novel information based on the presence, activity,
or cues left by other individuals. As we discuss below, a dominant
source of information that young individuals should attend to is
parents and other old individuals. While we focus here on species
with parental care, direct or indirect cues left by parents are
highly relevant in species in which young do not encounter their
parents (Dukas, 2010). We begin by discussing philopatry and the
importance of trails. We then review collective navigation, and
the use of social learning for decisions regarding home range and
migratory movement.

Philopatry

In birds and mammals, newborn rely on their parents for
food and protection. When young are sufficiently mature, they
typically travel farther from their nest or shelter and often follow
their parents. The duration of parental feeding of fledgling varies
widely among birds and is positively associated with the duration
of practice required for reaching some threshold of foraging
proficiency (Ashmole and Tovar, 1968; Heinsohn, 1991; Hunt
et al, 2012). In mammals, post-weaning maternal care is brief
in short-lived species but can last for years in long lived species
(Clutton-Brock, 2016). At least in carnivores, the long duration
of post-weaning maternal care is related to the low learning rate
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associated with challenging hunting skills (Caro, 1994; Wachter
et al,, 2017). While there is wide variation among species, in
the vast majority of birds and mammals, young have ample
opportunities to learn many features of their natal environment
including the food types preferred by their parents, foraging
skills, and the spatial locations of food, shelters, and hazards
(Slagsvold and Wiebe, 2007, 2011).

In most species, a large proportion of individuals do not
reach reproductive maturity. Of those that reproduce, a large
proportion of parents fail to lead their offspring to independence
owing to either predation or starvation (Clutton-Brock, 1988).
Hence the fact that young have reached independence is
a solid evidence that their parents have chosen well their
natal environment. Given their likely lack of knowledge about
alternative sites and the costs of acquiring such information, the
young should copy their parents’ choice and show philopatry
where possible (Stamps et al., 2009). Several other factors that
promote philopatry include advantages of familiarity with biotic
and abiotic features of the natal habitat, improvements to the
environment by previous generations such as reusable burrow
systems, tree cavities and trails, and the mortality risk associated
with exploration of novel areas (Waser and Jones, 1983). Indeed,
philopatry is prevalent in both birds and mammals (Greenwood,
1980; Waser and Jones, 1983).

A large cross fostering study tested the effects of early
social experience on natal habitat preference in pied flycatchers
(Ficedula hypoleuca) in Spain. Pied flycatchers are long-distance
migrants who breed throughout Europe but spend the winter
south of the Sahara. The experiment involved cross fostering
nestlings between nests in a coniferous habitat and nests in
a deciduous habitat one km away and, as a control, cross
fostering nestling within each of the two distinct habitats. Most
returning young birds came to the forest patch from which
they had fledged, regardless of whether they had been cross-
fostered within or between patches (Figure 6A). These results
indicate a strong effect of early experience on habitat choice

(Camacho et al., 2016), which is consistent with many other bird
studies (Greenwood, 1980; Weatherhead and Forbes, 1994). The
results also illustrate remarkable navigational and spatial memory
abilities, which allowed 1 year old birds to relocate the small patch
of their natal forest after a round trip migration of thousands
of km. While the young birds receive no guidance from their
parents (Mouritsen and Larsen, 1998), some reliance on social
information cannot be ruled out.

Similar effects of early social influence were observed in a
study involving 57 radio-collard moose (Alces alces) in Sweden,
which revealed strong philopatry by calves. Ten of the 14 radio
collard calves returned with their mothers to their summer
range, and 9 out of the 10 subsequently separated from the
mothers but remained within 2 km from them. The female
offspring kept returning to that range in subsequent summers
(Cederlund et al., 1987).

In both birds and mammals, site fidelity is even stronger
in breeding adults than in young. The same reasons listed
above can readily explain why adults remain in their current
home range, or keep returning to it in species that show
seasonal migration. Indeed, adult philopatry tends to increase
with the temporal consistency in conditions, risks, and resources,
and particularly their predictability from year to year (Riotte-
Lambert and Matthiopoulos, 2020; Morrison et al., 2021).
The factor of experience becomes stronger over time, because
individuals can keep learning site-specific relevant information
as discussed in the expertise section below (Dukas, 2019).
Individuals, however, can rely on their experience to decide
whether it pays to show site fidelity. Indeed in many bird species,
individuals are more likely to show site fidelity if they succeed
than fail in reproduction (Greenwood and Harvey, 1982). For
example, an elegant experiment manipulated the nesting success
of prothonotary warblers (Protonotaria citrea) that used nest
boxes in southern Illinois (Hoover, 2003). Birds were randomly
assigned into rearing zero, one or two successful broods within
a season, with the failures manipulated via predation. Success
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FIGURE 6 | (A) The proportions of pied flycatcher nestlings that returned to
breed in the same patch where they had fledged after being cross-fostered
within or between habitats containing either pines or oaks. Data from
Camacho et al. (2016). (B) Territory fidelity of female and male prothonotary
warblers that were experimentally manipulated to have 0, 1, or 2 successful
broods in the previous year. Data from Hoover (2003).

rates strongly affected the return rates of birds in the following
season, after their long-distance migration to Central or South
America (Figure 6B). Intriguingly, males whose nesting attempts
failed were three times more likely to show site fidelity if they had
successful rather than unsuccessful neighbors. Because the males
can monitor and even father offspring in neighboring territories
through extrapair copulations, it is likely that neighbors’ success
affected their subsequent site fidelity (Hoover, 2003). In addition
to their remarkable navigational and spatial memory abilities,
the prothonotary warblers also showed sophisticated skills in
optimizing decisions affecting future reproductive success based
on both their own and their neighbors’ experience.

To synthesize, while there are clear benefits to philopatry and
obvious costs to dispersal, the social and genetic trade-offs vary
among species, leading to a large within and between species
variation in the overall and sex-specific patterns of philopatry

(Greenwood, 1980; Waser and Jones, 1983; Smale et al., 1997;
Clutton-Brock, 2016; Morrison et al., 2021). There are many
unresolved issues ripe for investigation, which can take advantage
of modern movement ecology tools. Specifically, the causes and
consequences of within species variation in philopatry provide
intriguing questions. On the cognitive ecology side, in species
where one sex remains and the other sex disperses, are there
between sex differences in cognitive traits such as spatial abilities,
tendencies to explore, attachment to kin, and openness to new
experiences? On the movement ecology side, current tracking
techniques can help us quantify the sex-specific trade-offs that
underlie philopatry versus dispersal.

Trails

Trails can be perceived as social information left from previous
generations owing to their usefulness in connecting multiple
sites containing resources such as food, water, minerals and
shelters while minimizing effort and perhaps danger. Similarly,
trails may be used for migratory movement. Trails are also a
rich source of contemporary social information, as olfactory and
visual cues left by previous trail users can provide information
on their identity, number, reproductive state, condition, and
the time and direction of travel (Mutinda et al., 2011). Finally,
established and well maintained trails allow fast, efficient travel
between feeding areas, and between feeding patches and shelters.
Indeed, as noted above, an established trail system is one factor
that can promote site fidelity in walking species. For example,
elephant shrews (Elephantulus rufescens) restrict much of their
travel to a network of trails from which they regularly remove
plant material and other obstacles. It has been suggested that
their rapid running along these trails is an effective anti-predatory
strategy (Rankin, 1965; Rathbun, 1979). In larger animals, trails
have been studied primarily in elephants (Loxodonta africana)
(Vanleeuwe and Gautier-Hion, 1998; Mutinda et al., 2011) and
mentioned in a few other studies (Di Fiore and Suarez, 2007;
Noyce and Garshelis, 2014; Trapanese et al., 2019). Despite the
prevalence and potential importance of animal trails in shaping
animal movement, however, they remain understudied.

Aggregations, Information and Individual

Movement

A fair number of animals live their whole or part of their
lives in aggregations. Examples include bird and bat roosts,
and nesting aggregations in solitary bees and birds (Allee,
1931; Michener et al., 1958; Rolland et al., 1998; Beauchamp,
1999; Fenton and Simmons, 2015). Philopatry, discussed above,
can readily lead to aggregation. Additional factors include the
rarity of appropriate sites, anti-predatory advantages and social
information about food and predators (Galef and Giraldeau,
2001; Danchin et al, 2004; Evans et al., 2016). The most
likely effect of social information on movement is via local
enhancement, whereby individuals searching for food join others
whom they observe feeding (Thorpe, 1963; Krebs et al., 1972;
Thiebault et al, 2014). Another possibility is that individuals
from the aggregation follow departing, apparently informed
individuals to food patches. Some field observations agree with
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this possibility while others do not (Brown, 1986; Mock et al.,
1988; Marzluff et al., 1996; Danchin and Richner, 2001; Sonerud
et al., 2001; Harel et al., 2017; Urmy, 2021). It is fair to assume,
however, that socially biased movement occurs in many species.

Both philopatry and the rarity of satisfactory aggregation
sites should lead to large spatial variation in the distribution of
aggregating species. Because members of the aggregation can save
time and energy as well as incur lower mortality by foraging
closer to the aggregation, one would expect lower individual
densities farther from the aggregation (Figure 4 in Dukas and
Edelstein-Keshet, 1998). Bumblebees in the field indeed showed
such pattern of spatial distribution (Figures 3, 4 in Osborne et al.,
2008). Reliance on social information would further increase
the spatial variation in individual densities. This can lead to
cascading spatial effects on other trophic levels. For example,
bumblebee wolves (Philanthus bicinctus), sphecid wasps that prey
on bumblebees, nest in rare, large aggregations that persist over
decades as indicated by the fact that an aggregation studied in the
early 1960s (Armitage, 1965) still existed in 2004 (Dukas, 2005).
Bumblebee densities at flowers were much lower within 4 km
than farther than 5 km from the bumblebee wolf aggregation
(Figure 7A). Consequently, fewer flowers of the bumblebee
pollinated plant, western monkshood (Aconitum columbianum),
set fruit within a few hundred m from the bumblebee wolf
aggregation than 6 km away from the aggregation (Figure 7B;
Dukas, 2005).

COLLECTIVE NAVIGATION AND SOCIAL
LEARNING

Group-living animals balance individually acquired information
with social information to make navigational decisions for home
range and migratory movement. When individual information
is insufficient, social information can reduce uncertainty
(Bergman and Donner, 1964; Hamilton, 1967; Griinbaum,
1998; Couzin, 2018). As we discuss below, collective decision-
making mechanisms consist of sharing information among
group members or following a subset of directed individuals.
Concurrently, knowledge regarding movement patterns can
propagate within the group, reducing individual learning costs
and improving movement efficiency (Mueller et al., 2013; Sasaki
and Biro, 2017; Jesmer et al., 2018).

Collective Navigation Using Shared

Information

Collective navigational accuracy can be increased by comparing
information through social cues (emergent sensing),
pooling information (many wrongs), or communicating
preferences (voting).

Emergent Sensing

In emergent sensing (Figure 8A), group members respond to
environmental gradients. This results in collective navigation
even if all individuals are naive (Berdahl et al., 2018; Couzin,
2018). Theoretical models suggest that this is a simple collective
decision-making strategy that does not require either memory
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FIGURE 7 | (A) The mean + SE number of bumble bees observed at six
matched pairs of coneflower (Rudbeckia occidentalis) and goldenrod
(Solidago spp.) within 4 km and farther than 5 km from a large bumble bee
wolf aggregation. (B) Fruit-set in the bumble bee pollinated flower, western
monkshood (Aconitum columbianum), within 0.5 km and farther than 5 km
from a large bumble bee wolf aggregation. Left bars: the percentage
(mean =+ SE) of marked monkshood flowers that produced fruits. Right bars:
the total number (mean + SE) of fruits on haphazardly chosen monkshood
plants. Data from Dukas (2005).

or complex cognition (Torney et al., 2009; Berdahl et al., 2013;
Hein et al., 2015). Individuals within the group respond to
environmental information and subsequent social cues. For
example, golden shiners (Notemigonous crysoleucas) were tested
in environments with varying light patches. Golden shiners
prefer dark environments and increase swimming speed as a
function of light, causing individuals to reduce speed in dark
patches, resulting in the group collectively navigating toward
dark areas (Berdahl et al., 2013). There is a trade-off between
sensitivity to environmental gradients and social information.
Greater ability to perceive environmental gradients lessens the
need for social interaction, which could decrease group cohesion
(Puckett et al., 2018). Therefore, an appropriate balance between
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A Emergent sensing

B Many wrongs C Voting

FIGURE 8 | lllustrated examples of collective decision-making strategies.

(A) Emergent sensing in which individuals respond to environmental gradients
(e.g., golden shiners increase swimming speed as a function of light) and
social cues (e.g., responding to movement of neighbors). This results in
collective navigation toward favorable dark areas. (B) Many wrongs in which
the collective pooling of estimates suppresses individual error (e.g., indirect
homing routes in pigeons; dashed arrows) and increases collective
navigational accuracy (large arrow). (C) Voting occurs when individuals
express their preference for initiation or direction of movement (e.g., African
buffalo orienting toward a proposed movement path; small blue and red
arrows). Voting prompts the group to choose the majority (large red arrow) or
average the proposed paths. Created with BioRender.com.

environmental cues and social information can be achieved by
weighing incoming information (Puckett et al., 2018).

Many Wrongs

The many wrongs principle (Figure 8B) emerges from
individuals pooling each imperfect estimate of direction to
improve accuracy, in which group cohesion suppresses individual
noise (Bergman and Donner, 1964; Tamm, 1980; Simons, 2004;
Biro et al., 2006; Codling and Bode, 2014; Nesterova et al., 2014;
Berdahl et al., 2018). For example, homing pigeons released with
a small flock flew faster and more direct routes compared to their
routes when released alone, even in familiar areas (Figure 9;
Dell’Ariccia et al., 2008). When individuals are uncertain about
navigational decisions, averaging group information reduces
error. However, if the difference between individual estimates
becomes too large, the group may split or adopt a leader (Biro
etal., 2006; Nesterova et al., 2014). For example, homing pigeons
with distinct individually established route preferences were
released in pairs. When the distance between the two routes was
small, pairs typically averaged their paths. But if the distance
between each individual’s established route grew beyond a
threshold, pigeons either followed one of the established routes
or split to pursue their own route (Biro et al., 2006). For both
emergent sensing and many wrongs, directional accuracy
increases as group size increases, notably in groups with few
individuals (Bergman and Donner, 1964; Wallraft, 1978; Berdahl
et al,, 2013). We can expect these strategies to be especially
advantageous when knowledge among the group members is
low and homogeneous, e.g., a group moving through a novel
landscape or consisting of inexperienced juveniles.

Voting
During the voting strategy (Figure 8C), individuals advertise
their preference and then the group selects the majority or

averages the choices (Norton, 1986; Black, 1988; Sueur et al., 2010,
2011; Walker et al., 2017). For example, it has been suggested
that adult female African buffalo (Syncerus caffer) indicate their
preferred foraging patch by orienting themselves toward a certain
direction while grazing. The herd then departs in the average
direction of individual preferences (Prins, 1996). This widely
cited example requires critical tests. Similarly, individuals in
troops of olive baboons (Papio anubis) propose a movement
path. If the difference between the various prospective paths is
above a threshold, the group follows the majority. But, when
the angle between proposed routes is below the threshold, the
group compromises to average the paths (Strandburg-Peshkin
etal., 2015). Emergent sensing, many wrongs, and voting are not
mutually exclusive. Furthermore, they are frequently combined
with leadership and social learning discussed in the next sections.

Leadership

Group members can have varying degrees of influence on
navigational decisions. Commonly, animal groups consist of a
subset of individuals called “leaders” which guide the remaining
group members deemed “followers” (Chance, 1967; Squires
and Daws, 1975; Wallraff, 1978; Wilson, 2000; Van Vugt,
2006). Leadership can be distributed among multiple animals
or centered around a sole individual (Garland et al., 2018;
Strandburg-Peshkin et al., 2018). Leaders may be aware of their
status, are recognized by the group as leaders, and can even
produce overt signals to lead their group (Raveling, 1969; Poole
et al., 1988; Boinski and Campbell, 1995; Lusseau and Conradt,
2009). Alternatively, leaders could be anonymous and unaware
of their influence, thus followers rely on passive cues, such as the
orientation of neighbors (Couzin et al., 2005; Rosenthal et al.,
2015). The terms leader and follower are relative, as a leader
in one situation may be a follower in another. For example,
leadership may vacillate depending on the area. Homing pigeons
can take turns leading during different segments of the same
route (Biro et al., 2006). Additionally, leadership status depends
on the identity of others in the group. For example, pigeons have
leader hierarchies: if individual A leads B, and B leads C, A will
also lead C (Biro et al., 2006; Nagy et al., 2010).

In some groups, knowledge or experience determines
leadership. Leaders may possess and act on information that
followers do not have, such as knowledge of a migratory route
(Reebs, 2000; Olsen, 2001a,b; Chernetsov et al., 2004; Jesmer
et al., 2018). However, followers are not always naive. Followers
may hold the same knowledge as leaders, but are more agreeable
(Arnold, 1977; Smith et al., 2016), have lower route fidelity
(Freeman etal., 2011), or are more receptive to social information
(Guttal and Couzin, 2010). In homing pigeons, experience
increases the chance of becoming a leader, but does not predict
it (Flack et al., 2012, 2013; Watts et al., 2016). Factors such as
social status (King et al., 2008), sex (Lusseau and Conradt, 2009),
or age can also drive leadership. For example, pods of killer
whales (Orcinus orca) are led by postreproductive females (Brent
et al,, 2015). Likewise, V-formations in families of greater white-
fronted geese (Anser albifrons) are primarily led by the father
(Kolzsch et al., 2020).
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FIGURE 9 | GPS-tracked pigeon routes between a release location (R) and home loft (H). Six pigeons were released six times individually (blue), then six times as a
flock (red; one track per flock release), then pigeons were released another six times individually (green). Pigeons released with a small flock flew faster and more
direct routes compared to their routes when released alone. Figure from Dell’Ariccia et al. (2008) with permission.

Old individuals may possess information on the most efficient
migratory route or the location of a rarely visited site that
provides limited resources such as food or water. Such a site
may be crucial for the group’s success during either a local food
shortage or drought. It has been suggested that old elephant
matriarchs possess exclusive spatial information crucial to group
fitness (Foley et al., 2008; Mutinda et al., 2011). There is indeed
evidence for a positive association between matriarch age and
her social knowledge, which translates into superior leadership
by older matriarchs (McComb et al., 2001, 2011; Mutinda et al.,
2011). The role of spatial information in that superior leadership,
however, is unknown.

In some cases, leadership is much less systematic. For example,
individuals that travel at high speeds (Pettit et al., 2015) or near
the front of the group (Pettit et al., 2013b) can emerge as leaders.
Further, group members may rotate leadership roles frequently.
Alternating leadership roles is fittingly seen in juveniles with
similar demographics and experience (Nesterova et al., 2014).
For example, flocks of juvenile northern bald ibis (Geronticus
eremita) take turns leading their V-formation during migration
(Voelkl et al., 2015; Voelkl and Fritz, 2017). Additionally,
leaders can emerge through simple behavioral rules by followers
following the movements of their neighbors (Herbert-Read et al.,
2011; King et al., 2011; Rosenthal et al., 2015; Torney et al., 2018;

Sankey et al., 2021). Thus, the individuals that initiate movement
may have a large influence on group navigation.

Although followers are less influential than leaders, followers
can participate in and even initiate decisions. However, the
threshold to reach a quorum is higher when followers propose
decisions compared to leaders (Kummer, 1968; Bousquet et al.,
2011; Walker et al., 2017). For example, families of Canada geese
(Branta canadensis) perform vocalizations and head-tossing to
evoke movement in the group, which ensures cohesion for take-
off. If the calls are initiated by a family member other than the
father, the number of calls required to elicit movement increases,
as well as the period of time before departure (Raveling, 1969).

Cognitive abilities are not identical across group members,
leaving some individuals predisposed to become leaders or
followers. The shy-bold dimension of animal personality posits
that bold individuals have a consistent tendency to explore
unfamiliar areas and objects (Gosling and John, 1999; Sih et al.,
2004; Réale et al., 2007). Bold individuals are more likely to be
leaders than shy individuals (Kurvers et al.,, 2009; Found and
St. Clair, 2016). Compared to shy individuals, leaders are more
likely to explore while navigating (Flack et al., 2018), travel at
faster speeds, and lead in both familiar and unfamiliar locations
(Sasaki et al., 2018). In some cases, leaders may be responsible for
immense changes in collective migratory behavior. For example,
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in elk (Cervus canadensis), bold individuals are three time less
likely to migrate than shy individuals from the same population
(Found and St. Clair, 2016), likely because they better adapt to
changing environments (Found and St. Clair, 2019). Another
dimension of personality, sociability, can also produce leaders.
Chacma baboons (Papio ursinus) follow the movements of
individuals that they are socially affiliated with (King et al., 2011).
Thus, individuals that are highly social are more influential than
their less social peers.

Social Learning

Information can diffuse throughout a population and across
generations via social learning. Accumulated knowledge can act
as a second, non-genetic, inheritance system (Whiten, 2005;
Tennie et al., 2009; Jesmer et al., 2018). Many animals learn
migratory behavior from their parents or older conspecifics in
their population (Olsen, 2001a,b; Agostini, 2004; Chernetsov
et al., 2004; Urbanek et al, 2005; Harrison et al.,, 2010;
Palacin et al, 2011). Social influences may even override
genetic instructions (Schiiz, 1951; Perdeck, 1958; Ferrari et al,,
2009; Mellone et al., 2016). Old individuals possess valuable
information that has helped them survive thus far. Hence,
juveniles profit by learning from old, experienced members
of their group, even if juveniles possess adequate migratory
information. For example, juvenile whooping cranes (Grus
americana) migrate using more direct routes when flying with
older individuals compared to groups consisting only of young
birds (Figure 10; Mueller et al., 2013). It is unclear, however, if
juveniles deviate from direct routes because of either error or
exploration of unfamiliar territory (Mueller et al., 2013; Wolfson
et al,, 2020). Additionally, learned migratory behaviors are more
flexible than genetic instructions, allowing changes in migratory
patterns to spread through populations within the lifetimes of
individuals. For example, populations containing older whooping
cranes were more likely to modify their migratory routes by
establishing new wintering grounds closer to their breeding
grounds (Teitelbaum et al., 2016).

Individuals can update socially transmitted information to
filter out inefficient routes. While homing, pigeon followers
actively participate in navigation, learning more direct routes
than that of their leader (Pettit et al, 2013a). Additional
individuals incorporating their own information into the
collective pool of knowledge can further improve group
performance. An experiment by Sasaki and Biro (2017)
investigated the effects of social learning and cumulative
improvement. The experimental group consisted of chains of
homing pigeon pairs, beginning with a single pigeon that had
developed a homing route after 12 releases. The pigeon was then
paired with a naive individual for another 12 releases. The naive
individual learned the route throughout those trials, becoming
experienced, then was paired with a new naive individual for
another 12 releases. This process of pairing a newly experienced
pigeon with a naive pigeon was repeated an additional two times
for a total of 60 releases per chain. One control group consisted
of solo pigeons and the other control group consisted of fixed
pairs of pigeons. Pigeons in both control groups were released
60 times from the same site as the experimental group. By the

end of the experiment, the experimental group outperformed
both solo and fixed pair controls, which plateaued in efficiency.
This suggests that naive individuals learn route information via
social learning and contribute to cumulative improvements in
route efficacy, more so than solo or fixed pairs with the same total
amount of experience.

Synthesis

Social groups adopt various strategies, typically coinciding, to
move within and throughout a landscape. Groups can share
information to improve navigational accuracy, during which
opinions from some individuals have more influence than others,
while valuable information can diffuse throughout the group via
social learning. For example, leadership and voting coincide in
packs of African wild dogs (Lycaon pictus) during pre-departure
social rallies. Pack members increase the amount of abrupt nasal
exhales (sneezes) prior to departure. Any pack member can
propose a departure by initiating sneezing, although individuals
other than the highest ranking dominant dogs must have higher
signal frequency in order to succeed (Walker et al, 2017).
Collective navigation, leadership and social learning are difficult
to assess in nature through observation alone. Without controlled
experiments, we can only estimate which process is occurring
without firm conclusions.

EXPERTISE AND MOVEMENT

Individual learning, social influence and social learning are
ubiquitous among animals. Their long term, combined effects
lead to expertise, defined as the features that allow individuals
with extensive experience on a given complex task to show
superior performance on that task compared to novices (Dukas,
2019). While expertise has been studied primarily in humans
(Ericsson and Lehmann, 1996; Ericsson et al., 2006; Vaci et al,,
2019; Strittmatter et al., 2020), it is highly relevant for other
species as it can manifest in many behaviors including movement.
Two domains pertinent to movement ecology are first, mastery
of an individual’s habitat, which may include a vast memory
about the identity, location and occurrence of a variety of
relevant items, events and individuals. Examples include the
location of seasonal food plants, shelters, territorial neighbors,
and predators. Second, individuals can improve their movement
speed and efficiency with practice. This may be owing to
motor learning within a small territory (Stamps, 1995), adopting
optimal routes that avoid challenging terrain in a large home
range (Green et al., 2020), or learning to better handle a variety of
challenges throughout a long travel route. For example, a within
individual comparison in black kites (Milvus migrans) indicated
improvement in migratory performance with age. Part of this
improvement was due to birds enhancing their abilities to exploit
tailwinds and cope with wind drift (Sergio et al., 2014). Other
studies also indicate that birds improve their abilities to handle
winds and rising air currents with experience (Harel et al., 2016;
Wynn et al., 2020).

Critical research on expertise is currently scarce as it requires
comparisons of the same individuals over time while controlling
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FIGURE 10 | Groups of whooping cranes containing old individuals migrate using more direct paths compared to groups consisting of only juveniles. (A) Telemetry
and visually observed locations of whooping cranes throughout their migratory journey. (B) Examples of migratory routes that juveniles performed with (blue) and
without (red) the presence of older individuals. (C) Distance from straight line paths during migration of juvenile groups with and without older individuals. Figure from

for relevant alternatives that affect performance. These include
correlated changes in anatomy, morphology, physiology and
effort (Dukas, 2019). Furthermore, between individual analyses
are insufficient as they commit selection bias owing to the
likely higher mortality rates of inferior individuals. As far as we
know, only a single program, which combined observations and
controlled experiments in the field, has considered all factors by
quantifying within individual foraging performance in natural
settings, muscle physiology, and effort as functions of experience
(Dukas and Visscher, 1994; Dukas, 2008b,¢; Schippers et al., 2006,
2010). Many other species are amenable for long term research
programs that add controlled experiments to information about
within individual changes in performance with age (Clutton-
Brock, 1988, 2016; Wooler et al., 1990; Sand et al., 2006; Daunt
etal.,, 2007a,b; Leach and Sedinger, 2016).

CONCLUSION AND PROSPECTS

Our three main conclusions are first, that birds and mammals
possess good spatial learning and memory, which enable them to
find their way while engaging in their daily activities. Second, we
have good understanding of the cognitive mechanisms that allow
many species to navigate successfully over distances spanning
up to thousands of km. Third, the movement ecology of many
birds and mammals is heavily determined by social influence and
social learning. While there is large variation among animals,
researchers initiating work on a lesser studied species may assume
that it has good spatial cognitive abilities that are influenced
by social observations. Nevertheless, the strength of evidence

for our three conclusions is rather mixed. Very few controlled
experimental studies assessed spatial learning and memory in
birds and mammals over a large area. On the other hand,
owing to the conspicuousness and ubiquity of animal migration,
we have known for a long time about animals’ abilities to
orient well between their winter and summer grounds. Some of
the mechanisms underlying these navigational skills are mostly
understood, at least for a small selection of species, primarily
birds. Finally, we know that social information influences some
aspects of bird and mammal movement including, for example,
philopatry and migration in some species. There are probably,
however, many other aspects of movement that are under
social influence but understudied. Examples include trails, long-
lasting scents, and cues that indicate recent activity or successful
reproduction by conspecifics.

While we focused on relatively well studied topics, our
review can readily reveal subjects that invite future research.
Most notably, we have not critically addressed specific issues
of both perception and decisions even though they likely have
strong effects on animal movement (Avgar et al., 2013). Some
studies have addressed issues of perception relevant to movement
ecology. For example, the topic of perceptual range, defined
as the maximum distance from which one can detect relevant
landscape features, has been recognized for some time (Zollner,
20005 Schooley and Wiens, 2003), but we still know relatively
little about it. Similarly, while decisions have been implicitly
included within the overall study of animal movement, there
has not been a focus on the exact decision rules employed by
individuals when considering, for example, when and where to
go (Bauer et al., 2011). Finally, our review primarily encompassed

Frontiers in Ecology and Evolution | www.frontiersin.org

September 2021 | Volume 9 | Article 724887


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Kashetsky et al.

Cognitive Ecology of Animal Movement

issues related to movement either within a home range or during
seasonal migration. We have not addressed the two other relevant
categories of dispersal and nomadism (Baguette et al., 2014;
Teitelbaum and Mueller, 2019) even though they can gain from a
synthesis that takes a cognitive ecology approach.

There are various areas that would gain from further
integration of methods and insights from cognitive ecology
into the study of animal movement. First, there is a strong
research bias toward the visual domain. It is thus crucial that we
devote more research effort to the effects of understudied sensory
domains on animal movement. Such domains include olfaction,
electromagnetic radiation beyond the human perceptual range,
and night vision. For example, we perceive the landscape
primarily in the visual domain, but soundscape (Pijanowski et al.,
2011; Van Oosterom et al., 2016) and smellscape (Wallraft and
Andreae, 2000; Nevitt, 2008; Gagliardo et al.,, 2013; Henshaw,
2013; Buehlmann et al., 2015; Ackels et al., 2021) may be as
or more important for many species. Particularly promising is
the likely possibility that many animals perceive a rich scene
of long-lasting olfactory cues, which inform them about the
location, condition, age and sex of conspecifics, competitors and
predators. Second, enlightening information gathered from GPS-
collard animals has inspired increased interest in the spatial
information that animals learn about, remember and employ
to guide their movement. The GPS data, however, are merely
observations on individuals’ locations over time. Hence they
must be supplemented with controlled field studies that critically
test for the spatial learning and memory of species of interest.
Such work may modify protocols previously employed for critical
tests of spatial memory in the field, such as the one detailed in
Figure 1 (Edwards et al,, 1996). Third, a few studies indicate
that the large-scale spatial structure of animal movement affects
species at other trophic levels through competition, predation,
herbivory, pollination and seed dispersal (e.g., Dukas, 2005;
Kohl et al., 2018). We think that further research on the effect
of the movement patterns of one species on other species
can be highly illuminating. Fourth, understandingly, a large
share of movement ecology research has been devoted to large
mammals. However, we have little experimental data on the
mechanisms underlying seasonal migration in these species.
For example, do they rely on all three compasses as birds
do? Fifth, mechanisms of time keeping both within day and
throughout the year have received significant attention in both
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Integrating diverse concepts from animal behavior, movement ecology, and machine
learning, we develop an overview of the ecology of learning and animal movement.
Learning-based movement is clearly relevant to ecological problems, but the subject
is rooted firmly in psychology, including a distinct terminology. We contrast this
psychological origin of learning with the task-oriented perspective on learning that has
emerged from the field of machine learning. We review conceptual frameworks that
characterize the role of learning in movement, discuss emerging trends, and summarize
recent developments in the analysis of movement data. We also discuss the relative
advantages of different modeling approaches for exploring the learning-movement
interface. We explore in depth how individual and social modalities of learning can
matter to the ecology of animal movement, and highlight how diverse kinds of field
studies, ranging from translocation efforts to manipulative experiments, can provide
critical insight into the learning process in animal movement.

Keywords: animal cognition, decision-making, migration, reinforcement statistical learning, translocation

INTRODUCTION

Animal movement, in the form of translocation from one locale to another, takes many forms
and is critical to ecological processes. This understanding has given rise to the rapidly growing
discipline called movement ecology (Nathan, 2008). Concurrently, the subject of learning has been
studied from the perspective of animal behavior, both in the context of ecological interactions and
in the context of movement itself (Box 1 and Table 1). Animal behavior has a well-established
and celebrated history of understanding learning and there has been recent growth in connecting
learning and memory to animal movement behavior (e.g., Fagan et al, 2013). At the same
time, a recent explosion of ideas about machine learning is now creating new perspectives on
understanding animal movement based on algorithms.

Along with these recent developments, the ability of ecologists to track animal movements and
behaviors remotely in the wild has been steadily increasing. The collection of massive amounts
of data on animal movement, primarily via satellite tracking, is now possible at a scale and level
of detail previously unimaginable and can be linked with similarly improving remotely sensed
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or modeled environmental data (e.g., vegetation, anthropogenic
disturbance, terrain, NDVI, snow depth) (Kays et al., 2015).
Furthermore, more recent advances in bio-logging (e.g.,
accelerometers, proximity measures, audio-, and video-
recording devices) provide direct information on some of the
physiological (e.g., jaw movement, heart rate, cortisol, stable
isotopes, reproductive status), and social (e.g., interactions with
conspecifics), contexts of movements (Wilmers et al., 2015).
This coupling of movement patterns with the movement context
has created opportunities to infer learning mechanisms and
meld ideas from animal behavior, movement ecology, and
remote sensing in the context of ecology of learning and animal
movement. We develop such a synthesis here.

We start with a focus on learning as a means for acquiring
information and making decisions. Employing two related
definitions of learning, one from psychology and the other
related to computer science, we evaluate the benefits, costs and
limitations of learning in the context of animal movement. Next,
we address the modality of learning in animal movement, ranging
from individual to social. We then develop links to related
disciplines: psychology, animal cognition, and machine learning.
We close by reviewing approaches to studying the process of
learning and animal movement, whether from experimental or
observational studies, discussing the role that models can play in
this endeavor, and suggesting areas for future developments.

INDIVIDUAL INFORMATION
ACQUISITION AND DECISION MAKING

Definition of Learning

We start with a psychology-based definition of learning,
which states that learning is the information acquisition
that occurs via an individual’s experience that results in a
detectable and consistent change in neurophysiology and/or
behavior (Box 1). Movement intersects with this definition
of learning in several key ways. First, movement will give
rise to learning if the movement facilitates information
acquisition by introducing an animal to a new environment
(e.g., information on forage availability) or state (e.g.,
information from increased vigilance). Second, the learned
information can give rise to new movement decisions if the
information acquired is used to change movement patterns
(e.g., switching to area-restricted search in regions of high
forage availability). Lastly, learning can be about movement
itself, for example, when an animal learns where and when
to migrate by imitating conspecifics (e.g., crane migration).
Figure 1 depicts these connections among movement,
information processing, the environment, and the internal
states of the animal.

Laboratory studies of learning can be used to seek out direct
cellular evidence for neurophysiological changes arising from
information acquisition and storage via functional magnetic
resonance imaging (Marsh et al, 2010). However, these
approaches are impractical in studies of wild animals, for
which most ecologically relevant evidence for learning comes
from observing changes in behavior as a result of experience.

Thus, although the psychology-based definition of learning
above does not strictly involve decision-making, the ecological
implications of learning are often intimately tied to experience
and the decision-making process. This emphasis on process
means that movement-related learning is more similar to
how machine learning is defined: improved performance
for a specific task as a result of prior experience. This
definition, which we refer to as the task-based definition,
differs from the psychological definition because it is directly
tied to experience-based improvements in performance for a
specific task (Box 1).

The Learning Process

The process of learning includes all the steps needed for
information acquisition based on experiences encountered.
Broadly, these steps include attention to relevant information,
perception of the information, acquisition of that information,
and, finally, storage, retention, and retrieval (memory) of that
information. At this point, the information can be acted upon,
for example, to make a movement decision (Figure 1).

Diverse factors may impede or enhance an animal’s attention
to information from its environment or from other individuals.
For example, animals in unfamiliar environments may be more
(or less) observant of environmental cues (Wolfe, 1969) and
certain types of social interaction may increase or decrease
attentiveness, leading to social learning (Heyes, 1994). Other
factors, such as the internal state of an animal (Dorrance and
Zentall, 2001) or its risk sensitivity (Bacon et al., 2010) may also
play a role in determining attentiveness (Figure 1).

The perception and acquisition of information depend
on an animal’s sensory capacities. For most animals, certain
sensory cues will be easier to detect than others, which can
lead to different hierarchies of inputs, which may be altered
contextually. For example, many aural and olfactory cues
may be more important than visual information at night
(Zollner and Lima, 1999). Once acquired, information must be
committed to memory as part of the learning process. Spatially
distributed information may be stored as a cognitive map,
sometimes in a network-based non-Euclidean format (Noser and
Byrne, 2014). Storage and retrieval of learned information is
essential for decision making, which can be based on recent
events or information from long ago (Polansky et al., 2015;
Abrahms et al., 2019).

A test of successful learning is the ability to make a decision
using information from past experiences that discriminates
among alternative strategies. For example, in laboratory studies,
exposure to spatially distributed food rewards in mazes can
affect the movement choices of rats (Leonard and McNaughton,
1990). Similarly, for wolves, memory-related statistical metrics
like “time since last visit” to a location may form the basis for
movement decision discrimination (Schligel et al.,, 2017). Of
course, this link between experiences and decision making is both
complex and context-dependent, being modulated by layers of
complexity regarding habitats, social status, and internal states
(Figure 1). The so-called diffusion theory for learning posits that
the brain does not solve decision-making problems exactly but
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BOX 1| Definitions of terms associated with learning.

This box defines terms central to a synthesis of concepts from animal behavior, ecology, psychology, and certain quantitative methods.
Foundational Concepts
Learning:

Psychology-based definition: the cause-effect process leading to
information acquisition that occurs as a result of an individual’s experience.

Task-based definition: improved performance for a specific task,
based on experience.

Memory: The storage, retention and retrieval of information.

Spatial memory: The memory for where objects/resources/places are in space. Representation of space. Encodes spatial relationships or configurations.
Supervised machine learning: The process by which the machine is trained to perform a task where some input data are already labeled with the correct output.
It can be compared to learning in the presence of a supervisor or teacher.

Statistical learning theory: An unsupervised framework for machine learning that deals with the problem of extracting statistically relevant correlations from data.
Modes of Learning

Associative learning: When an animal makes an association between a stimulus and an outcome. Two forms are:

Classical (Pavlovian) conditioning: an animal associates a biologically
relevant stimulus (e.g., food) with a previously irrelevant stimulus. For
example, a dog presented the sound of a bell rung alongside the
presentation of food, will come to salivate at the sound of the bell in the
absence of food. Another example would be that a raccoon learns that
garbage cans contain food.

Operant (instrumental) conditioning: the behavior of an animal is controlled
by the consequences of that behavior. Typically, this behavior develops
through sequential reinforcement (e.g., a raccoon learns how to open the
garbage can to get food and is rewarded).

Positive reinforcement: Behavior is rewarded and then increases.

Negative reinforcement: Behavior is increased through avoidance of an unpleasant stimulus (also known as instrumental conditioning).

Punishment or Inhibitory learning: Behavior is decreased through avoidance of an unpleasant stimulus. This contrasts with negative reinforcement, where the
behavior increases.

Reinforcement learning: From machine learning: The learner is not told which actions to take, but instead must discover which actions yield the most reward by
trying them. This is synonymous with trial and error learning. As in optimal foraging in ecology, the focus is on the balance between exploration (of unfamiliar
objects/places) and exploitation (of current knowledge).

Online learning: From machine learning: A technique for implementing machine learning based on data becoming available in a sequential order and then being
used to update the best predictor for future data at each step.

Habituation: after repeated exposure, an animal decreasingly responds to a stimulus. The stable end state is the animal’s level of tolerance of a stimulus and the
outcome is higher tolerance.

Sensitization: after repeated exposure, an animal increasingly responds to a stimulus. The stable end state is the animal’s level of tolerance of a stimulus, and the
outcome is decreased tolerance.

Latent learning: an animal learns by gathering and storing information, without immediate reward.

Pathways of Learning

Social learning: Also called “transmission,” this is an umbrella term that includes transfer of skills, concepts, rules and strategies that occur in social contexts and
can affect individual behavior. These include:

Social facilitation: An animal has an increased probability of performing a
behavior in the presence of a conspecific.

Local enhancement: An individual’s interest in an object or location is
mediated by the interest or movement of others.

Imitation: Novel copying of a model behavior through observation that
results in a reliably similar outcome.

Cultural transmission: Social transmission leading to the development of traditions that are passed down from generation to generation.

Vertical vs. horizontal learning: Sometimes referred to as parent vs. peer learning, this dichotomy characterizes the generational source of social information.
Information center: Particular locations or events that provide opportunity for information exchange. For example, a community roost may enable individuals to
follow well-fed peers to new foraging locations.

Direct information exchange: An animal is provided sender-based, actively communicated information by another individual. For example, honeybees tell their
sisters the locations of rewarding flowers.

Optimization-related Terms

Genetic algorithm: A population of candidate solutions to an optimization problem that evolve toward better solutions.

Policy: In machine learning, the mapping of states to actions (e.g., a hungry animal begins to hunt).

Utility function: In machine learning, the assignment of weights or values to agent states. Actions are selected by comparing the values of the predicted states that
derive from particular action. For example, a policy involving search vs. sit-and-wait strategies will yield different outcomes for a hungry animal.

Adaptive movement: \When animals modify their movement in response to a change. In models, adaptive implies movement behaviors that confer
fitness/performance benefits.
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uses algorithms that optimize the speed and accuracy of choices
(Bogacz, 2007).

Benefits and Costs of Learning

All mobile organisms face a wide variety of spatial challenges
that influence individual fitness and present opportunities for
decision making shaped by learning. Foraging opportunities and
energetic constraints are patchy in space and time, in large part
because the underlying physical and biotic processes are also
patchy. Optimal foraging theory (McNamara and Houston, 1985;
Stephens and Krebs, 1987; Mangel and Clark, 1988) provides a
framework for understanding how benefits accrue from foraging
in patches that offer the highest returns of energy or nutrient
intake per unit time relative to time or energetic costs. Lost
opportunities for social interaction, breeding, reproductive care,
or shelter, and the risks of mortality due to predation, parasitism,
or disease can then be considered.

When the rate of environmental change varies across time and
space, as is common along elevation or rainfall gradients, theory
suggests an animal may be able to improve its fitness through
appropriate patterns of nomadic or migratory movement (e.g.,
Fryxell and Sinclair, 1988). Field studies support this theory. For
example, migratory ungulates can choose patches at a landscape
scale that yield appreciable improvement in rates of energy
gain, even when such gains are transitory and require continual
nomadic repositioning (Fryxell et al., 2004; Holdo et al., 2009).
Memory can also influence the choice of movement patterns,
such as the balance between range residency and migration

(e.g., Shaw and Couzin, 2013). For example, when undergoing
seasonal transitions between ranges, migratory ungulates can
obtain fitness benefits by remembering previous trajectories
(Bracis and Mueller, 2017; Jesmer et al., 2018; Merkle et al., 2019).

Researchers have investigated how learning can influence and
confer advantages to moving organisms. Agent-based models of
foragers with spatial memory have shown how fitness accrues
from moving to acquire reliable information, even when that
movement samples sub-optimal patches (Bracis et al., 2015). This
is particularly clear when naive animals are presented with an
unfamiliar environment and movement is exploratory. However,
even experienced individuals can benefit by spatially sampling
a dynamic environment, in particular when resources can be
depleted (Boyer and Walsh, 2010) or predation risk can change
(Bracis et al., 2018). In this case, movement keeps current the
information needed for appropriate decision making.

Given that foraging often results in resource depletion, fitness
may also be improved through informed departure criteria based
on marginal value leaving rules (Charnov, 1976; Arditi and
Dacorogna, 1988; Brown, 1988). The field of “sampling behavior”
(Stephens, 1987) extends ideas originally developed within the
optimal foraging theory framework, which traditionally assumed
that animals are omniscient (Krebs and Inman, 1992; Stephens
et al., 2007). One sampling framework considers when animals
should visit a patch to assess whether it has changed in value
(Green, 1980), whereas another framework focuses on the benefit
accrued by tracking a changing environment (Shettleworth et al.,
1988). Foragers that sample patches or track changing conditions

TABLE 1 | Case studies of learning and animal movement.

References Species Spatial Individual Learning in novel Learning linked Simple elapsed Juvenile vs. adult
processes learning vs. or familiar to memory? time? compariso?
involved social learning contexts?

Barry et al. (2020)  Wolves 1. Natal dispersal  Individual Novel Y Y N
2. Territory
formation

de Grissac et al. Wandering Foraging Individual Novel N Y Y

(2017) Albatross

Grecian et al. Gannets 1. Foraging Elements of both  Novel Y N Y

(2018)

2. Exploration

Leadbeater and Bumblebees Foraging Social Novel N Y N

Chittka (2009)

Lihoreau et al. Bumblebees Foraging Individual Familiar Y Y N

(2012)

Papastamatiou Sharks 1. Orientation Individual Familiar Y N Partly

etal. (2011)

2. Patch use

Scott et al. (2014)  Sea turtles 1. Foraging Individual Novel Y Y Partly
2. Migration

Sigaud et al. (2017) Bison 1. Foraging Social Novel Y Y N
2. Patch Use

Teitelbaum et al. Whooping Cranes 1. Migration Elements of both Familiar Y Y Y

(2016)

2. Shortstopping

Votier et al. (2017)  Gannets 1. Foraging Elements of both Novel Y Y Y
2. Exploration
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Environment

Movement
Decision

FIGURE 1 | A conceptualization of learning in the context of animal movement. An individual’s environment (green, including social context) and its internal state
(gray) can both influence the onset of information gathering via the attention that an individual pays to landscape features (arrows 1 and 2, respectively). As currently
understood by psychologists, the information gathering pathway involving attention, perception, learning, and memory appears inside the animal’s brain (pink,
unlabeled arrows) ultimately providing input to a movement decision (arrow 3). Both the individual’s environment (arrow 4) and its internal state (arrow 5) can then
shape and modify the link between memory and movement. The movement decision has ramifications for the environment (arrow 6) and for the internal state (arrow
7). Lastly, the environment can alter an individual’s internal state directly (arrow 8) without invoking information gathering and memory, often via social interactions.

Internal
State

(condition,
physiology)

are learning about the current state of the environment (Stephens,
1987). Informed decision making about which patches to feed in
and how long to do so requires reliable expectations regarding
resource availability, predation risk, and energetic costs across
an individual’s home range, as well as the capacity to estimate
these same variables at a given spatial location. For example,
primates foraging on fruit track the productivity of different trees
and possibly fruit ripeness (Janson and Byrne, 2007). Overall,
environmental predictability appears to be essential for the origin
and success of movements based on learning and the reshaping
of movement strategies based on experience more generally
(Mueller et al., 2011; Riotte-Lambert and Matthiopoulos, 2020).
Learning can also help improve fitness even when spatial
movement processes are not directly tied to foraging (e.g.,
territorial defense, migration, reproduction) (Box 2). For
example, learning can provide advantages in dominance
interactions (Kokko et al., 2006), efficiency of movement
(Stamps, 1995), effective escape from predators (Brown, 2001),
and large-scale dispersal decisions (Barry et al., 2020), all
of which can translate into fitness benefits (Brown et al.,
2008; Patrick and Weimerskirch, 2017). For territorial species,
learning can influence how conflicts drive pattern formation
(Stamps and Krishnan, 1999, 2001; Sih and Mateo, 2001) and
alter strategies for territorial defense (Potts and Lewis, 2014;
Schldgel and Lewis, 2014; Schldgel et al., 2017). For migratory

species, this includes determining least-cost migration corridors
between seasonal ranges (Bischof et al, 2012; Poor et al,
2012).

While learning may have benefits, acquiring information
based on experience does not come without costs. For example,
information gathering can require substantial investment in time
and/or energy, and may heighten risk (Eliassen et al., 2007) or
come at the expense of lost opportunities for foraging, social
interaction, or search for suitable breeding sites (Dall et al., 2005).
The machinery for learning also exacts an energetic cost (Isler and
Van Schaik, 2006; Niven, 2016). Furthermore, retained memories
may negatively affect the acquisition of new information, and so
there may be a trade-of between memory retention and acquiring
new memories (Tello-Ramos et al., 2019).

Limitations to Measuring Learning From
Animal Movement Patterns

Typical methods for recognizing learning in animal movement
patterns do not measure the acquisition of information directly
but rather rely on the task-based definition of learning,
which requires improved performance for a specific task,
based on acquired experience (Box 1). There are limitations
to such methods, which pose challenges to learning from
uncontrolled field-derived data. Unambiguously explaining a
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particular movement is a general challenge in the study of operant (instrumental) conditioning, where the behavior of
wildlife, where context, perception, internal states, and particular ~ the animal is controlled by the consequences of that behavior
environmental cues all determine an animal’s response, but are  (e.g., feeding on grain on tracks leads to a food reward)
often unobserved. For example, the “time since last visit” behavior ~ (Pearce and Bouton, 2001).

in wolves, mentioned above, may not require memory, but These learning processes can make a behavior more likely
could be explained by information from decaying scent marks through positive reinforcement (via rewards) or negative
(Schldgel and Lewis, 2014). reinforcement (via unpleasant stimuli), or less likely through

Obvious and obscure alternative explanations to learning punishment or inhibitory learning (again, via unpleasant
and memory must be carefully considered in uncontrolled field stimuli). For example, a bear foraging on railway tracks
studies. Table 2 categorizes a number of movement studies (Murray et al., 2017) might be more likely to forage when it
according to the level of evidence for learning—from strong to  finds grain (positive reinforcement) but less likely to forage
simply consistent with learning. For each we provide other, non-  through negative interactions with moving trains (punishment
learning interpretations of the data that cannot be definitively or inhibitory learning). Additionally, it might increase its
excluded (Table 2). vigilance through negative interactions with moving trains

(negative reinforcement).

One associative learning mode relevant to animal movement

PATHWAYS OF LEARNING FOR ANIMAL is discrimination learning, where an animal learns to respond
MOVEMENT differently to distinct stimuli. For example, because homing
pigeons can discriminate between the presence and absence of

Individuals can experience or gain information about their anomalies in magnetic fields, magnetoreception could be used for
environment via different pathways—individually (i.e., by direct navigation (Mora et al., 2004).
interaction with the environment; Dall et al., 2005) or socially Two non-associative learning modes that are relevant to
(i.e., by observing others; Bandura and Walters, 1963; Rendell movement are habituation (decreased response to a stimulus
et al., 2010)—with learning demonstrated by a change in an after repeated exposure) and sensitization (increased response

individual’s behavior due to its experience (Box 1). to a stimulus after repeated exposure). These modes depend
on the strength of association between stimulus and outcome,
Individual Learning rather than the association itself. For example, the sensory

Much of an animal’s individual learning is associative; that responsiveness of honey bees declines after bees receive low
is, the individual learns by making an association between sucrose sugar solutions (habituation) and increases after offerings
a stimulus and an outcome. Associative learning may arise of high sugar solutions (sensitization) (Scheiner, 2004). In turn,
either from classical (Pavlovian) conditioning, where an animal the sensory responsiveness of honey bees constrains individual
associates a biologically relevant stimulus (e.g., food) with a foraging plasticity and skews the collective foraging decisions of
previously irrelevant stimulus (e.g., railway tracks), or from colonies (Scheiner, 2004).

BOX 2| Learning and Movement Processes.

Movement is the spatial consequence of a number of different behaviors by animals. For example, a predator searching for predictable but mobile prey must change
its location in space to increase the chances it will encounter a prey item. In many situations (e.g., predictable environments or regularly available prey), learning can
reduce uncertainty and increase success in such spatial behaviors. We outline a selection of these below:

Search and attack in predation—\When prey live in a complex and heterogeneous environment, predators may benefit by adjusting their search and attack
behavior over time (Stephens et al., 2007). When predators detect their prey through visual, auditory, or olfactory cues, they can use associative learning to refine
their “search image” and improve their ability to detect and attack prey (Ishii and Shimada, 2010). For instance, desert ants (Cataglyphis fortis) use associative
learning to connect specific odors to food, and then use this food-odor memory to assist their next foraging journey (Huber and Knaden, 2018).

Escape from a predator —Spending time in familiar space allows animals to learn motor programs that enhance efficient movement within that space (Stamps,
1995). For instance, in response to a pursuing human, Eastern Chipmunks (Tamias striatus) within their home range (i.e., familiar space) take half as much time and
travel half as far to reach a refuge compared to when outside their home range (Clarke et al., 1993).

Foraging bouts —An animal’s rate of energy gain while foraging can increase by collecting information about the environment (Stephens and Krebs, 1987), given
the environment changes in a (at least somewhat) predictive way. In most of these cases, animals use associative learning to connect the reward of a food source
with some aspect (e.g., color, nearby landmark) of that food source. For instance, Rufous Hummingbirds learned the location of flowers that they had emptied in a
foraging trial, and in subsequent trials did not waste time visiting them again (Healy and Hurly, 1995).

Navigation and migration—Migratory movements notably occur at spatial scales that greatly exceed perceptual abilities of animals (mammals: Teiteloaum et al.,
2015; birds: Alerstam et al., 2003). Thus, it is expected that animal migration is at least partly based on memory of past experience (though some migrations appear
to be innate). When migration has a learned component, learning is likely used to improve migratory performance. For instance, social learning of migration helps
ungulates improve energy gain (Jesmer et al., 2018) and helps birds reduce costs (Mueller et al., 2013).

Home range or territory selection—The decision process of choosing the size and location of home range or territories can be thought of as a learning process
of integrating new information about the distribution of resources of a landscape (Mitchell and Powell, 2004). For instance, home range size is often larger in areas
with fewer resources available (e.g., Morellet et al., 2013; Viana et al., 2018). Further, increased exploration events, presumably to sample new locations when others
are unavailable, can result in still larger home ranges (Merkle et al., 2015).

Frontiers in Ecology and Evolution | www.frontiersin.org 40 July 2021 | Volume 9 | Article 681704


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Lewis et al.

Learning and Animal Movement

Another mode of learning, latent learning, is relevant to
animal movement (Franks et al., 2007). Latent learning involves
the gathering and storing of information, without immediate
reward, such as when animals learn their migration route away
from breeding grounds after they are born (e.g., in autumn) and
must use that information to return in springtime. Box 1 provides
further details on these modes of learning.

Social Learning

Social learning is an umbrella term for the learning pathway
that includes transfer of skills, concepts, rules, and strategies
that occur in social contexts and can affect individual
behavior. Types of social learning include (i) social facilitation
(increased probability of performing a behavior in the presence
of a conspecific), (ii) local enhancement (an individuals
interest in an object or location mediates interest/movement

by others), and (iii) imitation (novel copying of a model
behavior through observation that results in a reliably similar
outcome) (Visalberghi and Fragaszy, 1990). Note that these
are distinct from the transfer of declarative or procedural
information via direct information exchange, such as in bee
dancing, to relay information concerning resource locations
(Leadbeater and Chittka, 2007).

Each type of social learning is relevant to movement ecology.
For example, social facilitation explains bison movement:
individuals are more likely to travel to a given new location
when in a group where another animal had knowledge of that
location (Sigaud et al., 2017). Following behavior occurs in ants
where leaders provide guidance to naive individuals concerning
the location of resources (Franks and Richardson, 2006), and in
elephants where matriarchs lead herds to waterholes not known
to the rest of the group (Fishlock et al., 2016). Imitation can be

TABLE 2 | Mapping empirical examples of learning to machine learning concepts.

Machine learning

Empirical examples

example
Step AlphaGo Zero (Silver Hummingbird Crane migration Experimental elk Sheep and moose
et al.,, 2017) traplining (Mueller et al., 2013) translocation (Frair migration (Jesmer
(Tello-Ramos et al., et al., 2007) et al., 2018)
2015)
Task Win Forage efficiently Migrate efficiently Exploit environment Exploit environment
optimally optimally
Experience Repeated play against Movement within a Repeated migration Movement away from Movement and
self controlled array of journeys across years initial capture/release population persistence
feeders location over decades
Performance Victories Path distance per bout Deviations from Settlement and survival 1. Proportion of green
measure straight-line migratory rate wave exploited 2.
path Percent of population
migrating
Demonstrated Increased competitive Decreased length of Decreased length of Increased rate of Increased migratory
improvement over ranking movement path migratory journey residency tracking and universal
time (or in migration
comparison to
benchmark)
Plausible learning Reinforcement learning Positive reinforcement 1. Spatial memory 1. Positive 1. Vertical transmission
mechanisms reinforcement (forage)
2. Social learning 2. Negative 2. Positive
reinforcement
3. Positive reinforcement (individual moose
reinforcement (predation) foraging)
3. Horizontal social 3. Positive
transmission reinforcement (social
sheep foraging)
4. Cultural transmission
Alternative Not necessary Controlled experiment Tested and rejected Mortality-mediated 1. Mortality-mediated
explanations wind-mediated natural selection natural selection
movement and
ontogeny
2. Population growth
and expansion
3. Kinesis
Evidence of Yes Yes Yes 1. Consistent with learning but not direct evidence.
learning?
2. Population-level rather than individual-level
metrics impede direct evidence for learning.
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seen in fish, where translocation experiments demonstrate how
naive individuals learn migration routes through association with
experienced individuals (Helfman and Schultz, 1984), as well as in
replacement experiments where the long-term re-use of resting
and mating sites can be socially learned rather than quality-based
(Warner, 1988).

Individual learning can interact with social learning. For
example, independent exploration allows ants to improve
upon the paths they have learned via social learning through
tandem running (Franklin and Franks, 2012). Here, independent
exploration is the basis for improvement of route navigation,
which can then be distributed within a colony via “information
cascades.” More generally, individual learning may be modulated
by associational acquisition, where options for individual
learning are constrained by the individuals with which an animal
associates (Fragaszy and Visalberghi, 2004).

Social learning is emphasized though existing social bonds,
such as parent-offspring relationships. For example, elephants
will learn resource locations in complex landscapes through
both wvertical and horizontal transmission (Bowell et al.,
1996) and maternal-offspring pairs of whales may complete
entire migrations together (Hamilton and Cooper, 2010), thus
enhancing the potential for social learning.

However, social learning does not always confer a net benefit
(Giraldeau et al., 2002), and may result in costly strategies of
movement and resource use (Sigaud et al., 2017). For example,
tested alone, adult female guppies that had shoaled with trained
conspecifics as they swam to food used the same route used by
their trained fellows, even if the route taken by the trained shoal
was longer and more energetically costly than were alternative
routes (Laland and Williams, 1997; Giraldeau et al., 2002).

LEARNING AND SPACE USE:
CONNECTIONS TO OTHER DISCIPLINES

We distinguish two fundamental constructs for learning in
conjunction with animal movement: updating the world model
and building a new world model. To understand the difference
between these, it helps to assume that the animal has a cognitive
model of the world (Q) and a set of “policy rules” (B) for
mapping conditions—including the snapshot of that cognitive
model and the state or priorities of the animal—into outcomes, in
particular movement decisions. The policy rules can be thought
of as the coefficients of a function governing outcomes in terms
of conditions. Within this construct, updating the world model
refers to the process of movement through a world, acquiring
and storing information about the world, updating the world
model Q, and acting upon that knowledge according to the fixed
set of policy rules B. The learning process itself is limited to
updating the world model. Note that this kind of learning is
only meaningful if the world itself is dynamic, with resources or
threats moving, regenerating, or depleting in a way that makes
it necessary to update expectations. When confronted with a
new world, either via dispersal, translocation, or a significant
perturbation to the existing world, the very structure of the
world model and the policy rules both require adjustment by

building a new world model. These two fundamental kinds of
learning are schematized in Figure 2 where an elk’s movement
among three dynamic patches permits constant updating of
information (updating the world model), a process with relies on
moving between those patches. But when a patch is significantly
perturbed, or becomes unusable in a novel way, the fundamental
structure of the world needs to be altered (building a new world
model), and novel policy rules to govern interaction with novel
elements must be developed.

The main distinction between updating the world model and
building a new world model appears in a slightly different form in
the machine-learning literature, where the two kinds of learning
are labeled as base-level and meta-level. Specifically, “The base-
level learning problem is the problem of learning functions, just
like regular supervised learning. The meta-level learning problem is
the problem of learning properties of functions, i.e., learning entire
function spaces” (Thrun and Pratt, 1998). The function spaces
in our analogy comprise Q, whereas the learning functions are
the coefficients . In the neurosciences, the terms model-based
and model-free reinforcement learning are used in analogy with
base-level and meta-level learning (Doll et al., 2012).

Cognitive ecologists typically have stringent experimental
criteria for identifying learning. For example, experimentation
plus control conditions sufficient to rule out alternate
explanations are fundamental to confirming the existence
of social learning (Reader and Biro, 2010). In this framework,
experimentation could involve manipulation of physical aspects
of the environment, individual animals via translocations or
similar means, or the routes governing social transmission
of information. Rare cases where a wild population can be
experimentally manipulated provide the strongest cases for
demonstrating and parameterizing memory-based movements
(Ranc et al., 2020).

It is also interesting to note that complex behaviors that appear
to involve decision-making can arise from other mechanisms
of self-organized behavior. Self-organization occurs when simple
rules lead to emergent behavior (Gros, 2015). A prominent
theoretical example is cellular automata whereby a specific
rule set, such as “the game of life)” gives rise to agent-like
configurations that may travel, replicate, and combine. Self-
organized robots (Box 3) can exhibit emergent behavior, such as
autonomous direction reversal, which an external observer could
mistakenly interpret as decision-making (Kubandt et al., 2019).
Because self-organization is not purposeful, an agent solely based
on self-organizational principles will not be able to improve, or
to “learn” its score in a given task. However, complex, emergent
behavior that appears to be adaptable can confound efforts to
recognize signals of learning in movement data.

Machine Learning Approaches

Machine learning tasks involve an explicit goal, such as parameter
estimation or classification, and require a clear objective function,
such as minimizing a cost function or correctly classifying data.
To the extent that animals also have clear objective functions
(e.g., ultimately: increasing individual fitness; proximally: eating,
avoiding being eaten, reproducing), and that these objectives
might be satisfied by performing a specific movement-related task
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FIGURE 2 | A schematic representation of a forager's movement rules in a heterogeneous landscape, how a stable set of rules might be applied, and how
landscape disturbance could force an update to the movement rules via learning. In a pre-disturbance world (left three columns), the forager (denoted by the white
elk symbol) occupies a landscape with three depletable and renewable resource patches and a water body. The “real world” is represented in the top row, with all of
its complexity. The second row represents the forager’s model of that world, which distils the complexity to the most relevant information. Shapes indicate different
landscape elements, while colors reflect a quantitative score: darker greens are regenerated, paler greens are depleted. The forager has two movement rules in this
landscape (bottom row): (1) move from depleted resource patch to a regenerated resource patch and (2) avoid the water body. The pre-disturbance movements rely
on a dynamically updated spatial memory, as the forager learns about a changing environment. Post-disturbance, the forager’s world model changes after it gains
information about the loss of a potential foraging area, e.g., a new oil well destroys one of the patches. Accordingly, the forager’s world model is refined to include a
novel categorical element (orange triangle), with its own avoidance rule for movement (dynamic learning).

post-disturbance

(e.g., selecting appropriate places to forage), it is useful to draw
a general analogy between a machine-learning algorithm and an
animal that learns. As described above, we use the term fask-based
learning when referring to this type of process.

Types of Machine Learning

Machine learning has three main learning paradigms: supervised,
statistical (unsupervised) learning and reinforcement (Box 1).
Training data for supervised learning is labeled with the correct
output (Jordan and Mitchell, 2015). However, statistical and
reinforcement machine learning do not require labeled training
data and thus may be more directly applicable to animal
learning. Statistical learning attempts to extract statistically
relevant correlations from data (Hastie et al., 2009) whereas
reinforcement learning attempts to maximize a cumulative
reward through a balance between exploitation of current
knowledge and exploration of new strategies (Sutton and Barto,
2017; Box 1).

A wide range of machine learning approaches emphasizes
the importance of improvement through experience (Jordan
and Mitchell, 2015), which is close to some definitions of
animal learning. Good examples are artificial neural networks
(ANN), a class of biologically inspired statistical learning

algorithms. The input of an ANN, typically the sensory
perception of the agent or animal, is propagated through
a network of idealized neurons, which can be readjusted
by experience-generated reward signals. The sophistication
of the ANN can be increased via multiple layers (referred
to as deep learning). The output of the ANN induces
observable behavior, although it may suffer from overfitting
the model to the particular data set at hand. Another way to
incorporate the effects of improvement through experience is
via evolutionary computing. This method mimics the trial-and-
error process of natural evolution, with inheritance, mutation,
and crossing over providing the material upon which selection,
via reward signals, acts.

The Bayesian probabilistic model for inference provides
another perspective on learning. While Bayesian reasoning
is most often applied for statistical tasks such as parameter
estimation and complex model fitting, it is also a central,
probabilistic model for human cognition and learning (Chater
et al, 2006; Tenenbaum et al, 2006). In the context of
animal movement, prior information represents existing
knowledge or existing preference sets (e.g., spatial memory
and selection coefficients). Bayesian perspectives readily permit
prior knowledge to be updated with new data (experiences)
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gained by an animal’s movement through the environment. For  appropriateness of actions is not provided initially but must be
example, Michelot et al. (2019) draw an explicit analogy between  learned via exploration.
stochastic rule-based animal movement and a Gibbs sampler
performing Markov chain Monte Carlo sampling. The resulting  Criteria of machine learning applied to animal learning
posterior distributions accurately reflect the animal’s resource  The machine learning literature provides concrete criteria for
selection function (RSF). identifying if an algorithm has learned (Thrun and Pratt, 1998).
As introduced above, reinforcement learning is a paradigm  Specifically, given (1) a fask, (2) training experience, and (3) a
involving iterated remapping of situations to actions with the  performance measure, if performance at the task improves with
goal of maximizing a numerical reward (Sutton and Barto, 2017).  experience, the algorithm is said to have learned. This is a useful
Learners are not provided with rules, but must instead employ  framework for interpreting observational animal movement
repeated trials to discover relationships between actions and  data. For example, for the sheep and moose in Jesmer et al.
rewards. This framework has strong parallels to experience-based  (2018) the task was maximizing energy intake and the training
frameworks for animal learning. Indeed, the temporal difference  experience was several years of moving around the landscape.
algorithm from machine learning calculates a reward-prediction =~ The performance measure was whether the animals adopted
error, reflecting how much better the world is than expected a migratory movement strategy to track variability in energy
(Sutton and Barto, 2017). This algorithm closely resembles the availability across space and time. Because of an increase in the
Rescorla-Wagner learning rule (Rescorla and Wagner, 1972), a  proportion of migrants in the population over time (and, thereby,
mainstay from animal learning theory, which posits the change  an increase in the proportion of individuals with increased energy
in associative strength during learning is proportional to the intake), the animals likely had “learned”. Other instances of
difference between the reward received vs. predicted. By way mapping empirical examples to machine learning concepts, given
of example, a schematic of the reinforcement optimizer for in Table 2, include hummingbird traplining, crane migration,
a computer learning to play the game Go is broadly similar  and experimental elk translocation.
to schematics of animal behavior and learning (Table 2). In A major challenge to applying machine learning criteria to
both frameworks, an agent takes actions (movements) in the moving animals involves identifying the task and performance
environment, and the outcomes of those actions are processed  measure in meaningful ways, given the animals’ spatial context
by an interpreter (cognitive model), which either “rewards” or and scale of movement. Survival and reproduction are the
“punishes” the agent, thereby modifying its internal state and  ultimate tasks, but foraging, resting, finding a mate, and
modifying its subsequent actions. Additional aspects of realism  avoiding predation are all proximal tasks. Nonetheless, the
are that rewards can be short term or delayed, and that the framework helpfully and unambiguously associates movement

BOX 3| Robotics: learning by mobile autonomous agents.

Robots that move and act autonomously, learning as they go, are confronted with tasks that parallel, in some ways, the life needs faced by moving animals. As in
living animals, future decisions by a mobile autonomous robot hinge on what the learning robot experiences and encounters. Consequently, it is interesting to
investigate how animal decision making about movement (Figure 1) may be understood using concepts commonly used in robotics and control theory

(Jordan and Mitchell, 2015).

The basic model of an autonomous learner includes the following ingredients:

1
2

The external environment (e.g., spatial locations of forage).

An internal state representation, sometimes termed a world representation
(e.g., an individual’s location, energy level and knowledge of

forage locations).

3) A set of possible actions (e.g., foraging strategies).

A policy map that relates state representations to actions (e.g., anticipated
energy gain from each foraging strategy).

Information acquisition, which is a consequence of actions interacting with
the environment and the state representations (e.g., accumulated
information on forage locations).

Value functions that quantify benefits and consequence of actions as
represented by the internal states (e.g., benefits and consequences of
choosing a foraging strategy, given an individual’s location, energy level and
knowledge of forage locations).

=

o

2

A robot’s state representation simplifies all the information in the environment to a manageable (pruned and stylized) subset of relevant information that can
eventually be linked to actions. Unsupervised state representations (Lesort et al., 2018) in which there are no performance measures, may be particularly relevant as
constructs for how learning operates in animals. State representations allow the policy map to act on a dimensionally reduced decision space (the collection of
states), which dramatically simplifies the task of learning individual policies.

A policy map structures the relationship of the robot’s state representation to possible actions. A policy map may be complete, mapping all possible states to actions,
or calculated on the run. Monte Carlo tree search, as used in the Go program AlphaGo from Google Deepmind (Silver et al., 2017), determines the next move via an
extensive stochastic search. As an additional complication, a robot may possess several policy maps and then select among the alternatives in a rule-based fashion.
Specified in this way, the basic details of a mobile autonomous robot map quite closely onto a formal conceptualization of the learning process in the context of
animal movement (Figure 1).
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in the environment with training experience. Table 2 cross-
references a machine-learning example with field studies that
provided experimental evidence of learning.

Machine learning may suggest new avenues for research in
learning and animal movement. Active topics include feature
extraction, in which derived values are intended to be informative
and non-redundant (for example, preference for exploring as yet
unvisited locations in mice or composition of feeding groups
in jackdaws), and feature selection, which is the choice of
a subset of goal-relevant features (for example, availability of
resources for mice or foraging efficiency for jackdaws) (Valletta
et al, 2017; Maekawa et al, 2020). These subjects must also
play a role in the information processing associated with
learning and animal movement; developing the connections may
provide new insights.

A particularly interesting learning challenge involves updating
the world (as described above) in a familiar rather than novel
landscape. For example, in the foraging models of Bracis et al.
(2015, 2018), the task is maximization of instantaneous energy
intake, the training experience is the movement (together with
the acquisition of information for updating the cognitive map),
and the performance measure is the amount of forage obtained.
This challenge can be connected to that of online statistical
machine learning (Box 1), where data become available in a
sequential order and are used to update the best predictor for
future data at each step.

Could machine learning move beyond an analogy by
providing specific hypotheses about the way animals learn to
move? It has done so, but the cases are few. By way of
example, foraging bumblebees were manipulated in a laboratory
environment by presentation with artificial blue and yellow
flowers dispensing sucrose solution according to probabilistic
reward schedules, and their sampling strategy was compared to
the results under the equivalent two-armed bandit reinforcement
learning decision rules (Keasar et al., 2002). These decision
rules describe optimal behavior of gamblers choosing repeatedly
between options that differ in reward probability, without any
prior information. In this case, the bees’ behaviors were generally
consistent with the decision rule predictions.

LEARNING ABOUT LEARNING:
METHODS AND APPROACHES

Experimental vs. Observational
Frameworks for Gathering Evidence of

Learning in Movement

Researchers have inferred connections between learning and
animal movement via classical experiments, observational
studies, and translocation/reintroduction efforts. These diverse
data types provide distinct insights into how movement can be
used to infer learning.

Experimental Studies
Informative experimental studies of learning and movement
derive from both field and laboratory settings (Jacobs and Menzel,

2014). Many experimental studies involve insects. Indeed, study
of insect navigation propelled much of the early understanding
of animal behavior and movement and includes work by Nobel
Prize winners Tinbergen and von Frisch. Examples range from
moving landmarks to show the effects on navigation to food
sources (Wystrach and Graham, 2012) to displacing individuals
to show the effects on path integration when returning to
an organizing center (Collett and Collett, 2000). Experimental
resource manipulations have been used to demonstrate that
hummingbirds can learn abstract concepts like spatial position
(Henderson et al., 2006) and can encode spatial location on the
basis of surrounding landmarks (Flores-Abreu et al., 2012). When
applied to roe deer, experimental resource manipulation in a field
environment demonstrates that memory, rather than perception,
drives foraging decisions (Ranc et al., 2020). Elsewhere, Preisler
et al. (2006) tracked elk movements in relation to experimental
treatments involving all-terrain vehicles (ATV). They found that
elk were more likely to respond to ATVs when on an ATV route,
even if the ATV was far away. These data suggest that elk have
learned to associate ATV presence with their routes.

In laboratory settings, radial mazes and water mazes (e.g.,
Leonard and McNaughton, 1990) have been used to study how
quickly rodents can learn movement routes and improve their
efficiency. Elsewhere, laboratory arenas built for insects have
demonstrated that pesticide exposure can impair spatial learning
of resource locations by bumblebees (Stanley et al., 2015).

Sometimes field and laboratory experiments can be combined
with great benefit, including comparisons among three classic
model systems (homing pigeons, bees, and rats; Jacobs and
Menzel, 2014). For example, experimental lesioning studies of
young homing pigeons, followed by release in unfamiliar areas,
demonstrate that immature birds are very good at learning
movement routes and that there is a consolidation phase during
which experiences (e.g., encounters with landmarks) are neurally
encoded (Bingman et al., 2005).

Observational Studies

To assess learning in observational studies, researchers must
analyze how an animal behaves at a given time based on
local conditions and past experiences. Observational studies
typically record the location of animals and thus their experiences
over relatively long time-frames (e.g., multiple years, or entire
lifetimes). Remotely sensed geographic and climatological data
then provide the local conditions the animal is experiencing
during movement. Additional information on the behavioral
and physiological states of the animal may also be relevant.
Fortunately, the ongoing evolution in remote animal tracking and
sensing technology means that researchers are increasingly able
to infer physiological and behavioral states over long periods of
time (Kays et al., 2015).

Data on repeated movement patterns can help differentiate
learning hypotheses. For example, data on repeated migration
routes have helped distinguish whether animals follow resource
gradients, rely on memory to navigate, or learn from experience
to shape their movement decisions (Mueller et al., 2013; Merkle
et al., 2019). However, long-term tracking data may also be
sufficient for analysis. For example, wolf movement data have
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identified how animals follow resource levels, but that they
may also rely on the memory of time since last visit to
a location (Schldgel et al, 2017). Augmenting tracking data
with information that the animals might gather, for example
the location of kill sites (Gurarie et al., 2011) or profitable
forage patches (Merkle et al., 2014), can further enhance our
understanding of how animals monitor their environment
(Gurarie et al., 2011).

Comparative studies can be useful for identifying instances
of learning. For example, comparing the movement efficiency
of juveniles and adults shows that seabirds start by exploring
their landscape and then learn to identify the good foraging areas
and cues as adults (de Grissac et al., 2017; Votier et al., 2017;
Grecian et al.,, 2018; Wakefield et al., 2019). Effects of early-
life experience can be identified by analyzing the site fidelity
of animals to their breeding ground (Weinrich, 1998) and by
comparing the migration patterns of offspring to those of their
mother’s (Colbeck et al., 2013). Finally, comparing the movement
of cultural groups, especially if sympatric, can help to assess the
effect of culturally transmitted information on animals’ space use
(Kendal et al., 2018; Owen et al., 2019).

Translocations and Reintroductions

Some management actions involve human-aided displacements
of animals, either from captivity (reintroductions) or from
wild populations (translocations). Tracking the animals released
in such manipulations can provide unique opportunities to
understand how the animals adapt to their new environments
(He et al, 2019). For example, recurring short displacements
(such as when animals are repeatedly taken to the same sampling
station for physiological samples), can be used to assess how
quickly the animal learns the return route to its home range
(Biro et al., 2007).

Translocations of animals into existing populations can
aid understanding of learning when movement behaviors of
individuals new to the environment can be compared to
those of already-resident individuals. For example, quantifying
the rate of convergence of movement metrics between new
arrivals and residents could help estimate learning rates. In
addition, if translocated animals, such as elk, are sourced
from areas that differ in predation risk (or other factors)
but released in a common space, comparison of the survival
and movement patterns could be useful to understanding
how previous experience shapes learning (Frair et al., 2007).
Translocations of social animals may also create opportunities
for newly arrived individuals to learn from resident conspecifics
(Dolev et al., 2002).

Overall, comparing movements of animals in novel
environments over years or even generations with historical
populations can reveal learning and cultural transmission
and identify the rate at which animals gain knowledge. For
example, Jesmer et al. (2018) found that it took multiple
decades for translocated bighorn sheep and moose to regain
the capacity to identify and follow the optimal forage gradients
that existed in their landscapes as they migrated. Likewise,
tracking the movement of prey species before and after the
introduction of predators into a landscape affords unique

opportunities for investigating how animals learn to avoid
predators (Ford et al., 2015).

Uncontrolled Experiments

Beyond intentional displacements, other management actions
can serve as uncontrolled experiments for learning. For example,
aversive conditioning, which is routinely used in wildlife conflict
management, could provide guidance on the mode of learning
(Bejder et al,, 2009) and may provide contrast the efficacy of
different deterrence systems. For example, Ronconi and Clair
(2006) showed that presence-activated deterrent systems were
more useful than were randomly activated systems for limiting
the landing of waterfowl on tailing ponds from oil extraction.
Likewise, fences involving bee hives were more likely to turn away
elephants than were bush fences (King et al., 2011) and problem
elk repeatedly chased by humans and dogs stayed further from
town (Kloppers et al., 2005).

Rapid changes in habitat can also serve as uncontrolled
experiments. For example, because ungulates will select recently
burned areas (Allred et al., 2011), monitoring animal movement
in fire-prone systems could help understand how these animals
learn about and navigate to novel habitats. Studying movement
in the vicinity of new obstacles (e.g., pipelines and roads)
and passageways (e.g., road-crossing structures) could help to
understand how animals change their spatial patterns as they
learn to circumvent barriers and make use of new structures
(McDonald and Clair, 2004; Ford and Clevenger, 2018).

Identifying and Characterizing Learning
Analytical and computational tools have a special role to play in
the context of learning and animal movement. They can be used
both to develop new theory, and in inference regarding actual
movement behaviors.

Modeling Frameworks for Exploring How Learning
Operates

Dynamical systems models are often used to investigate learning
and animal movement in a purely theoretical context (Table 3).
The most common purpose is to investigate possible emergent
patterns, which arise from the inclusion of learning in movement
models. Here spatial location and spatial memory are given by
variables that change in time and space, and dynamical rules
postulate how these variables could change through the interplay
of movement and learning. The actual form of the dynamical
systems ranges from difference equations used to analyze home
ranges (van Moorter et al., 2009), to “record-keeping” models
of cognitive maps based on incremental experiences (Spencer,
2012), to partial differential equations used to analyze searching
ability (Berbert and Lewis, 2018) to stochastic processes used to
investigate patrolling ability (Schligel and Lewis, 2014). Agent-
based simulations have also been used to track the development
of complex spatial movement behaviors via learning (Tang
and Bennett, 2010; Avgar et al, 2013). A review of the ways
in which decisions can be integrated into agent-based models
is given in DeAngelis and Diaz (2018). Often a balance is
required between current perceptual information vs. memories
of long-term averages and between random exploration vs.
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determinism when exploiting resources (see Boyer and Walsh,
20105 Bracis and Mueller, 2017). When it comes to the sharing of
information between individuals, ephemeral public information
about resource locations can lead to permanent aggregations
of memory-based foragers that move via circuits (traplines)
(Riotte-Lambert and Matthiopoulos, 2019), and sometimes the
rules for near-optimal traplines can be developed based on
simple heuristics (Lihoreau et al., 2013). Theoretical studies can
investigate relationships or feedbacks between movement and
learning that generate patterns similar those seen in nature. They
can also be used to explore the environments in which learning
might confer benefits. Intriguingly, in the face of an uncertain
heterogeneous environment, it may be better for individuals
to overestimate environmental quality, as optimistic animals
can learn the true value of the environment faster, allowing
for a higher rate of exploration (Berger-Tal and Avgar, 2012).
Theoretical explorations are particularly useful for studying the
updating the world model type of learning, where it is more
difficult to make a clear distinction between precipitating events
of experiences and movement outcomes in observational data.

Machine learning is emerging as a powerful paradigm for the
analysis of many biological systems. In the context of learning
and animal movement, these approaches can map environmental
conditions to movement behavior outcomes without necessarily
investigating the learning process itself (see, for example, Mueller
et al, 2011; Wijeyakulasuriya et al., 2020). Furthermore, as
described earlier, machine learning can serve as prototype models
for the process of animal learning itself.

Testing for Change Over Time in Key Movement
Metrics

Across diverse data types, a key indicator of learning is a change
quantified as a function of “time in the environment” (Figure 3).
While not sufficient to say confidently that learning has occurred,

a strong signal that an animal’s movement behavior has changed
with experience suggests that it is learning. For example, the
range occupied by a group of newly translocated animals would
be expected to stay very close to their point of release as they
focus on learning attributes of their new environment, but
wander more widely as time since release increases as they
start to exploit their new environment more widely (e.g., total
daily displacement, He et al., 2019). It has been proposed that
Lévy walks may arise from a learning process wherein animals
attempt to learn optimally from their environment (Namboodiri
et al., 2016). In this situation the change from simple random
(Brownian) motion to a Lévy walk pattern of movement could
be interpreted as learning (but see, for example, Benhamou and
Collet, 2015 for a critique of this type of formalism).

Decreases in the rate of range expansion over time indicates
that translocated individuals may have learned to favor certain
parts of the landscape. In this case, exploration shifts to an
exploitation phase (Berger-Tal et al., 2014) as translocated
animals exhibit a greater probability of revisiting previously
visited areas in a goal-directed manner (Figure 3, top row),
and may ultimately establish home-ranges (Moorcroft and Lewis,
2006). Similarly, exposure to a hostile landscape element (e.g.,
human habitation) may condition wild animals to avoid such
elements, altering their spatial distribution to favor locations far
from habitation (Figure 3, middle row). This issue has been
particularly well-investigated with elephants (Hoare and Du Toit,
1999; Cheptou et al., 2017).

Animals that “sample” different landscapes during exploratory
movements may ultimately settle in landscapes featuring the
kinds of elements they encountered and exploited during
the exploration phase. This can occur during dispersal,
during which animals effectively sample and make decisions
in an environment about which they are completely naive.
Wolves have been shown to show less avoidance of human

TABLE 3 | Models for learning and animal movement.

Step Bracis et al., 2015 Merkle et al., 2017 Avgar et al., 2016 Schlégel et al., 2017
Task 1. Maximize consumption 2. Forage efficiently Forage efficiently and survive Patrol

Reduce predation
Experience Movement Movement among patches Movement Movement

Model prediction

Null model

Information
updated

Improvement via
learning
Plausible
connections to
fitness

Plausible learning
mechanism

Consumption and predator
encounter rate

Context-dependent behavioral
switching

Location and quality of forage and
encounters

Learning forager outperforms null
model

1. Foraging efficiency

2. Reducing encounters with
predators

Sampling and trial-and-error plus
reinforcement

Patch selection

Connectivity, size, and quality of
patch

1. Location and quality of
patches

2. Memory of past patch quality
Learning forager is more
efficient

Past experience leads to
foraging in higher quality
patches

Positive reinforcement

Redistribution kernel

Forage quality, predation risk,
competitors, and snow

Location and quality of habitat

Yes

Past experience leads to better
habitat use

Positive reinforcement

Entire movement path

1. Movement in response to
prey density

2. Distance to territory
boundary

Time since last visit to territorial
locations

Yes

Territorial maintenance and
defense

Positive reinforcement
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FIGURE 3 | Exemplar movement patterns associated with learning. We represent clusters of movement activity as squiggles and range displacement events as
periods of directed motion. In each of the three examples, the process of learning alters the pattern of movement in a statistically detectable manner. Exploration
becomes exploitation through repeated visitation (top row). Conditioned responses to habitat elements may manifest as before / after displacement events (middle
row). Information gathering during a juvenile (or otherwise naive) phase may yield improved efficiency of travel. In all three examples, one or more key metrics will
exhibit time-dependence (right column).

BOX 4| Grand challenges in the study of animals learning to move.

How animals learn to move in novel environments. As a key form of experimental manipulation on animals in the wild, translocations and reintroductions have
provided unigue insights into the role of social learning of migration and the time-lags required to re-establish migration routes (Mueller et al., 2013; Jesmer et al.,
2018). By designing efforts to collect pre-translocation movement that could be compared with post-release data would allow insight into the ways animals learn to
move in novel environments.

Social learning. Social learning is particularly hard to study in the context of animal movement because it requires simultaneous information on the location of
multiple individuals (Fragaszy and Visalberghi, 2004; Sigaud et al., 2017). One promising approach for studies in this area involves the deployment of animal tracking
collars with proximity detectors that can be used to characterize and quantify how known individuals spend their time near or far from other known individuals.

Near-term prediction of movement. Successful prediction of movement, even over modest time horizons of one or a few days, requires a strong, probabilistic
representation of animals’ decision-making process. With such a representation in hand it would become possible to gauge how novel experiences shape
subsequent movements.

Understanding fitness consequences of learning on population interactions. Learning about movement affects interactions with other individuals
(conspecifics, predator, prey and so forth), as well as with the environment. While much has been done to connect individual learning to the environment via optimal
foraging (Stephens and Krebs, 1987) there is not yet a comprehensive theory for the influence of learning about movement on population level interactions and the
subsequent impacts of these interactions on individual fitness. A natural place to start investigating these feedbacks would be social insects.

Machine learning as a source for new testable hypotheses regarding animal learning and movement. This contrasts with simply providing an interesting
analogy for the learning process. While the multi-armed bandit problem has been applied as a model for insect foraging (e.g., Keasar et al., 2002), there are few
other cases. However, ML algorithms (for example, K nearest neighbors, decision trees) provide intriguing hypotheses for how learning could proceed. A good place
to start would be to build on connections between the theory of ML and the theory of learning, such as the similarity of the reward-prediction error rules in the
temporal difference algorithm from machine learning calculates (Sutton and Barto, 2017) and the Rescorla-Wagner learning rule in cognitive science (Rescorla and
Wagner, 1972). To date, little has been done on applying machine learning as a source for new testable hypotheses regarding animal learning and movement, but
this is an intriguing area for future research.
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elements, in particular relatively little-used forest roads,
in new territories after a greater level of exposure and use
during a dispersal phase, suggesting that they might have
learned that the benefits of using those human elements
outweigh the risks (Barry et al, 2020). Translocation, which
can be considered an artificial and more abrupt dispersal,
also requires decision making in novel environments.
Changes in movement behavior (and improved survival)
were recorded following translocation of naive elk from a
savannah landscape in Alberta to a forested landscape in eastern
Canada (Fryxell et al., 2008).

Migration can also feature time-dependence in characteristics
of movement (Figure 3, bottom row). For example, both Mueller
etal. (2013) and Jesmer et al. (2018) report changes in migration
performance as a function of animals time in a landscape
(Table 2). On smaller scales, foraging journeys from a central
place and other kinds of daily activity patterns can show the
same kind of performance gains (e.g., reduced tortuosity) as a
function of experience or age (Franklin and Franks, 2012; de
Grissac et al., 2017; Votier et al., 2017; Wakefield et al., 2019;
Table 1). Resulting spatial patterns of movement can be complex,
exhibiting increased speed and goal-directedness (Noser and
Byrne, 2014) and even providing evidence of future-oriented
cognitive mechanisms (Janmaat et al., 2014). Emerging patterns
may include periodic recursions (Riotte-Lambert et al., 2013) as
well as sequential movements, where locations are revisited in a
regular order (Ayers et al., 2015, 2018; De Groeve et al., 20165
Riotte-Lambert et al., 2017).

Statistical Inference to Identify Learning in Movement
Processes
Analytical and computational tools may also be used to infer
learning processes from data. For example, the step-selection
function (SSE Fortin et al, 2005) is of particular utility
when it is connected to regular samples of location data and
allows for inference of movement parameters that depend on
different habitat types. Computationally efficient approaches
such as integrated step selection analysis (iSSA) (Avgar et al.,
2016), provide practitioners a straightforward way to evaluate
movement decisions against actual observations. A generalized
form of the SSE termed the coupled SSF (Potts et al., 2014),
allows for the inclusion of memory and past social interactions.
Here memory and past interactions can be included into
the model, as one or more spatio-temporal maps, sometimes
referred to as cognitive maps. Although superficially similar
to a changing habitat layer, the contents of the cognitive
maps are particular to each individual as they are populated
by information gleaned from the individual’s past experiences
(Fagan et al., 2013). With such an SSE one can test how the
individual’s movement behavior is governed by cognitive maps
whose contents arise from different types of memories or social
interactions. Coupled SSFs have been used to test for evidence
of memory (Polansky et al., 2015; Oliveira-Santos et al., 2016;
Schlégel et al., 2017) and learning (Merkle et al., 2014) in animal
movement patterns.

Analysis via SSF assumes that animals’ location data
are known without error. If error is significant, as it can

be for marine systems, a different class of model, known
as state space models, are needed. State space models are
hierarchical and feature separate models for the movement
process and the measurement error process. These models can
be modified to include a hidden Markov process, whose
latent state is determined by physiological status (e.g.,
searching or traveling) or by learning (Avgar et al, 2016).
Such models, while flexible, may suffer from parameter
estimability issues (Auger-Méthé et al., 2016) and must be
implemented with care.

CONCLUSION AND NEW HORIZONS

Traditionally, studies of animal learning and movement
have taken place in controlled laboratory environments
or small-scale field studies. Thanks to animal tracking
technologies, increasingly detailed observations of how
free-ranging animals and interact are possible,
leading to opportunities to formulate and test new ideas
about learning and movement. We summarize a variety
of outstanding new opportunities as grand challenges in
Box 4. However, potential pitfalls accompany this exciting
development. Alternative explanations to learning must be
considered, and if these alternatives cannot be ruled out,
then we can only infer that observations are consistent with
learning (Table 2).

There are two possible approaches to solving this problem.
First, field observations can be transformed into controlled
experiments via manipulations, as in the hummingbird
example in Table 2. While allowing for incisive analysis,
this approach limits the scientific questions to those where
such experiments can be set up. A second possible solution
is to collect more direct data on the individual experiences
over a life-time, including the environmental features
of locations animals visit, physiological measurements,
and sensory data as made possible by daylight sensors
and collar cameras.

Exciting approaches to studying learning and animal
movement arise from “uncontrolled” experiments, specifically
translocations, reintroductions, aversive conditioning, and
rapid environmental change. Understanding learning in
the context of relocations and environmental change may
ultimately help with understanding how animals can adapt to
an increasingly complex world, driven by elevated levels of
anthropogenic impacts.

The emergence of machine learning as a dominant paradigm
for solving human problems provides fertile ground for modeling
and understanding learning from animal movement patterns.
Here, processes such as reinforcement learning have close
natural ties to animals learning to move to maximize fitness
(e.g., optimal foraging). As machine learning algorithms are
currently improving and evolving, we expect this field to
shed light on further possible models for learning and animal
movement. However, as described in the fifth Grand Challenge
of Box 4, machine learning has yet to meet its full promise as
a reliable source for new testable hypotheses regarding animal

move
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learning and movement. This is despite the recognition that
animal cognition and communication can be closely tied to
computational models (Ma, 2015) and that behavioral decisions
can often be best formulated by simple algorithmic models
(heuristics) (Hutchinson and Gigerenzer, 2005).

Overall, the subject of learning and animal movement is at
a crucial point in development and a host of new possibilities
are on the horizon. Our goal in this review has been to set
the context for these new possibilities and point out some
future directions.
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Perception is central to the survival of an individual for many reasons, especially as it
affects the ability to gather resources. Consequently, costs associated with perception
are partially shaped by resource availability. Understanding the interplay of environmental
factors (such as the density and distribution of resources) with species-specific factors
(such as growth rate, mutation, and metabolic costs) allows the exploration of possible
trajectories by which perception may evolve. Here, we used an agent-based foraging
model with a context-dependent movement strategy in which each agent switches
between undirected and directed movement based on its perception of resources. This
switching behavior is central to our goal of exploring how environmental and species-
specific factors determine the evolution and maintenance of perception in an ecological
system. We observed a non-linear response in the evolved perceptual ranges as a
function of parameters in our model. Overall, we identified two groups of parameters,
one of which promotes evolution of perception and another group that restricts it. We
found that resource density, basal energy cost, perceptual cost and mutation rate
were the best predictors of the resultant perceptual range distribution, but detailed
exploration indicated that individual parameters affect different parts of the distribution
in different ways.

Keywords: perceptual evolution, agent-based model, resource-dependent movement, perceptual range,
perception

INTRODUCTION

Locating resources and gathering information about immediate surroundings are crucial for the
survival of an individual, and this makes perception an important nexus for behavior, ecology and
evolution. What an individual can detect and respond to is dictated by its perceptual or sensory
systems and how these systems are constructed and constrained over species-specific evolution
(Stevens, 2013). This evolution of the perceptual apparatus is regulated by interactions of the species
with its immediate environment and via inter and intra-specific interactions. Such evolution can
sometimes completely redefine the ecological dynamics of a system. This is particularly apparent
in the evolution of sensory systems, in tandem with major evolutionary transitions and species
radiations (Plotnick et al., 2010). For example, a marked increase in spatial heterogeneity of
resources and evolution of mobile organisms as well as new ecological lifestyles changed the
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information landscape of the Cambrian period. This ushered in
a major sensory transition, along with major changes in feeding
and predation modes (Dzik, 2005; Plotnick et al., 2010).

Possessing greater sensory input is always valuable as it gives
a better model of the surrounding world. However, the sensory
apparatus is not without its context and costs: changes in habitat
and surrounding environmental conditions can force organisms
to adapt their perceptual apparatus due to inherent biological
costs (Laughlin, 2001; Niven and Laughlin, 2008; Stevens, 2013).
Loss of eyes in animals dwelling in caves or other light-limited
habitats has been widely documented, especially various forms
of cavefish (Jeffery, 2009; Protas and Jeffery, 2012; Wilkens and
Strecker, 2017). A similar loss of visual acuity has been studied
in Drosophila across multiple generations in captivity (Tan et al.,
2005). Likewise, researchers have investigated the weakening
of electric organ discharges in electric fish in oxygen-stressed
habitats (Salazar and Stoddard, 2008; Stoddard and Salazar,
2011), which may represent an adaptation for saving energy
under adverse conditions. Clearly, interactions between species-
specific and environmental factors mold the sensory systems
of organisms and how they relate to movement and behavior.
A theoretical framework that facilitates systematic exploration
of these costs and benefits would help clarify the process of
perceptual evolution.

Extensive theoretical and empirical work has been undertaken
to explore the interplay of movement and perception at various
spatio-temporal scales, especially in the context of foraging
(Hastings, 1983; Johnson and Gaines, 1990; McPeek and Holt,
1992; Perry and Pianka, 1997; Farnsworth and Beecham, 1999;
Beecham, 2001; Cressman and Kiivan, 2006; Cantrell et al.,
2010; Averill et al., 2012; Bracis et al, 2015). Among the
theoretical approaches, there is a great amount of variation in
the assumptions regarding information gathering capabilities
of individuals based on the mathematical frameworks that the
researchers decide to use (Fagan et al., 2017; O'Dwyer, 2020;
Martinez-Garcia et al., 2020). Patch models generally assume
omniscience about the environment (Fretwell, 1969; Pyke,
1984; Pleasants, 1989; Houston and McNamara, 1999) whereas
other modeling frameworks allow for complete environmental
information to be learned through sampling (Cressman and
Kfivan, 2006). In contrast, many partial differential equation
(PDE) (Okubo, 1980; Cosner, 2005; Cantrell et al., 2006)
models typically make foragers follow a resource gradient, with
movement dependent on purely local information from their
immediate vicinity. Certain integrodifference/integrodifferential
equation (IDE) frameworks, although permitting for extensive
non-local movement (through longer-tailed dispersal kernels),
allow for the perception of strictly local information, while
some other IDE models use patch-level knowledge or full-
omniscience (Cosner et al., 2012). The same is true for many
agent-based models where agents get information on a strictly
local scale (either spatially, temporally or spatio-temporally; i.e.,
information only about where they currently exist in a model
scenario) and do not have access to any form of non-local
knowledge in the context of foraging and decision-making (Ranta
et al., 2000; Matsumura et al., 2010; Fraker and Luttbeg, 2012;
Nabe-Nielsen et al., 2013; Swain and Fagan, 2019). Between these

extremes, only a few formalisms exploit the concept of limited but
possibly non-local information (Berec, 2000; Hillen et al., 2007;
Barnett and Moorcroft, 2008; Martinez-Garcia et al., 2013; Fagan
etal,, 2017). Using these frameworks, past research has described
information gathering and resource tracking in static landscapes
(Viswanathan et al., 1999; Edwards et al., 2007; Vergassola et al.,
2007; Bartumeus and Levin, 2008; Hein and McKinley, 2012), but
equivalent questions in dynamic landscapes remain less explored
(but see Torney et al., 2011; Berdahl et al., 2013).

The limits of information gathering and perception lead to
alterations in behavior and movement strategies over different
spatio-temporal scales, as outlined by previous research (Zollner
and Lima, 1999; Zollner, 2000; Gehring and Swihart, 2003;
Calabrese and Fagan, 2004; Olden et al, 2004; Prevedello
et al, 2011; Fletcher et al, 2013; Fagan et al, 2019). This
limit—the maximum distance at which landscape elements can
be identified by an organism—is often called its perceptual
range (Fagan et al,, 2017). The spatial size of the perceptual
range varies widely, with magnitudes depending on species,
individual state, sensory mode, and spatial context (Zollner and
Lima, 1997; Zollner, 2000; Mech and Zollner, 2002; Fletcher
et al., 2013). Encoding and exploration of perceptual ranges in
ecological systems has been done more through agent-based
models (Ranta et al., 2000; Matsumura et al., 2010; Fraker
and Luttbeg, 2012) than through equation-based frameworks
(Skalski and Gilliam, 2003; Tyson et al., 2011; Martinez-Garcia
et al., 2020) due to the complexity of incorporating them
in the latter (Fagan et al, 2019). Both modeling frameworks
have provided important clues about the interplay among
resource detection, movement patterns, swarming dynamics
and other phenomena (Griinbaum and Okubo, 1994; Berec,
2000; Barnett and Moorcroft, 2008; Martinez-Garcia et al., 2013;
Fagan et al, 2017, 2019), but most of these previous models
have focused primarily on changes in perceptual range and
how it affects population-level performance. In this work, our
objective is instead to explore what environmental and species-
specific factors might result in the emergence, evolution, and
maintenance of perception in a species. In other words, we are
more interested in the evolutionary timescale, rather than the
near-term ecology of the system.

We use a simple agent-based model in a semi-dynamic
resource system to understand how the interplay of
environmental factors with species-specific factors can allow
for population trajectories by which perception may evolve.
Environmental factors such as the availability and heterogeneity
of resources help regulate the range of perception in organisms
as well as its usage and efficacy (Plotnick et al., 2010; Stevens,
2013). Metabolic costs to maintain sensory apparatus as well as
basal energy requirement and reproductive costs can affect the
perceptual range and its evolution in organisms (Laughlin, 2001;
Niven and Laughlin, 2008; Stevens, 2013; Tan et al., 2005). We
introduce a basic set of parameters in our model that represent
these environmental and species-specific factors, but we avoid
bringing in too many details to balance biological realism with
breadth of applicability to a variety of organisms with different
sensory modalities. More such details can be added above the
current model in further explorations of the work.
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We incorporate a context-dependent movement strategy for
each agent where it switches between undirected (random walk)
and directed (advective) movement based on its perception of
resources. Behavioral switching has been demonstrated in a wide
range of species at different spatial scales of foraging, such
as opossums (Prevedello et al,, 2011), woodpeckers (Vergara
et al,, 2019), tuna (Newlands et al., 2004), and even mosquitoes
(Raji and DeGennaro, 2017). Such a switching pattern has
been shown to better describe empirical behavioral patterns
in bees and caribou than a more straightforward blending of
movement strategies (Tyson et al., 2011). We also opted to use a
movement model that involves switching between random walk
and advective motion because models with such switching have
already identified a clear role for non-zero perceptual ranges
to enhance foraging success (Fagan et al, 2019). Alternative
models of movement exist certainly, such as ballistic movement
for agents with no information and increased tortuosity when
near resources (see Gurarie and Ovaskainen, 2013; Bartumeus
et al., 2016), but these and other foraging models are frequently
couched in terms of what is optimal (i.e., what strategy or
combination of strategies will yield the greatest uptake of
resources), which provides a poor baseline for consideration of
issues hypothesized to occur early in evolutionary history. To
supply additional biological realism, we investigated evolution
in a reproductive context, imposing limits on the amount of
resource an individual can gather and store and exploring a wide
range of initial conditions and parametric scenarios.

Focusing on the evolved distribution of perceptual range, we
assigned the parameters in the model to two categories based
on their effects: activation and deactivation parameters (i.e.,
parameters which generally promote evolution of perception
and that restrict it, respectively, in a simulated population). We
observed a non-linear, non-monotonic response as a function
of resource density, which interacts with other parameters.
Resources play a major role in determining the stability of
equilibria of the system, controlling whether or not perceptual
ranges emerge at all. In addition, we found that the system’s
behavior mirrored some biological aspects, with the evolution of
perceptual abilities depending on their costs.

MATERIALS AND METHODS

Model Description
We model the dynamics of the system using an agent-based
approach (see Figure 1). The computational spatial domain
is a 100 unit by 100 unit continuous square with parallel
sides identified (toroidal boundary conditions). Each simulation
starts with all individuals having zero perceptual range.
Through selection (enforced by environmental and species-
specific parameters) and neutral processes (brought about by
mutation) (Table 1), we observe the shape of the perceptual range
distribution in the population over time. Before the simulation
begins, a constant amount of total resource is specified according
to two parameters: resource density and resource quality.
Resource density is defined as the amount of resource patches
per unit area in the domain; thus, the number of patches

where resources are present is equal to the resource density
times the area of the domain. The resource patches are then
distributed randomly on the domain with each patch containing
an amount of resource equal to the resource quality (or the
energy quantity per resource), ensuring a spatial heterogeneity
in resource availability to mimic natural scenarios. At every
time step, the code checks the resource distribution and adds
more resource patches with the same resource quality if the
total amount of resources is less than the initial amount. This
way, the total amount of resources is held constant over time
for simplicity.

Individual agents (foragers) default to undirected movement
(a random walk) until resources enter their perceptual range,
at which point they switch movement modes and move along
a straight line (advective movement) to the nearest resource
patch and gather resources from it (see Figure 1). All foragers
have the same constant movement speed of one spatial unit
per time step. This simulates the mode of movement observed
in organisms in natural settings during foraging (Tyson et al.,
2011). Foragers having a non-zero perceptual range incur
an additional cost every timestep per unit perceptual range,
termed as the perceptual cost. We assume the relation between
perceptual range and its cost to be linear for simplicity: increased
perception translated directly into higher costs (Protas et al,
2007; Moran et al., 2015). This cost is above the basal metabolic
cost incurred per timestep for survival, irrespective of the
perceptual range. A forager can gather an amount of resources
equal to the gather amount parameter only if the resources
are within its gather distance (irrespective of its perceptual
range) and the forager is not exceeding its energy cap, which
defines the maximum amount of resource that an individual
can consume. A special case arises when the gather distance
is lesser than an agent’s perceptual range, and in such a
case, the gathering action can be understood as a rudimentary
detection, which we assume, can occur irrespective of complex
perceptual systems.

Once a forager has sufficient resources, it can randomly
reproduce asexually according to a threshold growth rate
parameter. Should an individual reproduce, it incurs a one-
time cost associated with reproduction (reproduction cost) and
transfers that energy/resources to the offspring (new individual).
The offspring also undergoes a mutation in its perceptual
range, changing its parent’s perceptual range by an amount
randomly drawn from a uniform distribution on the interval
[—m, m] where m is the maximum mutationsize parameter.
In implementation, we ensured that perceptual ranges were
always non-negative. Death only occurs when the foragers run
out of energy. From our numerical experiments, we found that
this causes the population size to be regulated by the resource
availability (similar to the idea of carrying capacity), although
the exact values can depend upon other parameters such as
metabolic costs.

Model Implementation and Analysis

We implemented the model in the Go programming language
using its standard libraries (see the code and data availability
section for details). A detailed account of all parameters appears
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Consumed resource unit
Resources within the gather
distance of an individual are

gathered/consumed by it

Resources are spread randomly
throughout the domain as per the
specification of the resource
density. Each resource unit has a
specified amount of energy content
specified by resource quality.

Gather distance

Individuals can only gather
or consume resources within —

their gather distance, which

is defined globally.

Continuous domain

The simulation happens/
on a 100 x 100 square unit
grid with toroidal boundaries

Individuals can detect resources
I within their perceptual range
and move towards it in a
directed fashion (advection),
otherwise they undergo
undirected movement (diffusion)

Each individual has an associated
perceptual range, which they
inherit at birth. Individuals can
reproduce when they have enough
energy to spend one time
reproduction cost beyond the per
unit time basal energy cost. The
offspring inherits the perceptual
range with alteration defined by
mutation size. The maximum
energy stored by an individual is
given by the energy cap.

I~ Perceptual range
Maximum distance at which an
organism can perceive resources
in the environment. Perceptual
cost is incurred per unit time and

FIGURE 1 | Conceptual figure of the model.

per unit perceptual range.

TABLE 1 | Summary of various parameters used in the model, their definitions and their effects on the perceptual range distribution.

Parameter Definition

Observed effect

Resource quality Amount of energy per resource patch

Resource density Total energy per unit area

Growth rate Probability to reproduce per timestep

Max. mutation size Maximum perceptual mutation per reproduction

Reproduction cost Energy cost to reproduce

Basal energy cost Energy cost to continue living

Perceptual cost Additional energy cost per unit perceptual radius

per timestep for having a perceptual range
Gather amount The amount of energy an agent can gather at once
(in a given time-step)
Gather distance The distance within which an agent can gather
resources, irrespective of the perceptual range
Energy cap Maximum amount of energy an agent/forager can

store at any given time

Activation parameter; Affects higher percentiles slightly more

Activation parameter; Major predictor of perceptual range distribution; Affects lower
percentiles more

Activation parameter; Affects lower percentiles more

Activation parameter; Major predictor of perceptual range distribution; Affects
higher percentiles more; influences the variance of the perceptual range distribution.

Weak deactivation parameter; Affects all percentiles aimost uniformly

Deactivation parameter; Major predictor of perceptual range distribution; Affects
higher percentiles more; Increases perceptual ranges until a cutoff

Deactivation parameter; Major predictor of perceptual range distribution; Affects
higher percentiles more
Weak deactivation parameter; Affects higher percentiles more

Activation parameter; Affects higher percentiles slightly more

Weak activation parameter; Affects lower percentiles more

The first two rows, resource quality and resource density, control the quality and quantity of resources. The next two, growth rate and maximum mutation size, control the
reproductive and mutation processes. The next three rows are the energy requirements imposed on foragers due to various conditions. The last three rows depict the

limitations on the collection of resources from the environment.

in Supplementary Table 1. To obtain a representative behavior
in the ensemble of simulations, we performed 10 million
runs, involving parameter combinations chosen using a Latin
hypercube sampling (LHS) procedure. Each simulation was
run for 150 time-steps and had a starting population of 100
zero-perceptual range individuals. From a set of preliminary
simulations over a wide variety of parameters, we found
that simulations stabilized to almost a constant distribution
(less than 5 percent difference) in under 150 timesteps and
remained stable afterward (see Supplementary Figure 1 and
Supplementary Video).

Each simulation begins by randomly placing 100 foragers on
the computational domain and initializing their energy levels
to 1.0. At each time step, a sequence of events occur: (1)
all individuals check their perceptual radii for resources; (2)
foragers move in a random manner (if they cannot perceive any
resources) or a directed manner to the closest resource (if they
can perceive one or more resources); (3) If possible, foragers
gather resources from the locations harboring resources; (5)
All foragers pay their cost penalties; (6) if they have sufficient
resources, foragers reproduce with a probability prescribed by the
growth rate parameter with their offspring placed at a random
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location adjacent to their parents (randomly within a distance of
5 units), and lastly, (7)resources are replenished according to the
parameters in the code.

Each parameter combination was replicated 10 times and
then the end time perceptual ranges were aggregated (for
each combination) to obtain an averaged, statistically robust
distribution of perceptual ranges (i.e., 10 replicates times 100
randomly placed individuals at the start of each simulation)
from which we could calculate percentiles of interest (2.5,
25, 50, 75, and 97.5). We focus on these percentiles rather
than a simple mean because we anticipate that different
factors may influence the structure of the perceptual range
distribution in different ways. For example, the degrees to
which the parameters affect the lowest perceptual range values
would be different from how they affect the highest perceptual
ranges in the system. After accumulating all the data, we
performed further analysis in Python and R. Preliminary
analyses justified our choice of 10 replicates per parameter
combination. To do this we ran 100 replicates for 100
randomly selected parameter combinations and then calculated
the Bhattacharyya distance among replicates for various subsets
from 1 to 100, discovering that 10 was an optimal number
with respect to computational time and statistical robustness
(see Supplementary Figure 2 for details). Bhattacharyya distance
is a standard statistical metric for quantifying the similarity
of two probability distributions; it reflects the amount of
overlap between two statistical samples or populations (see
Bhattacharyya, 1943), and is measured between 0 and 1, where
1 denotes complete similarity.

One might argue that assuming the probability of mutation
to be 1 on reproduction, irrespective of mutation size, is not
a biologically relevant scenario, and instead the probability of
mutation should vary depending upon environmental conditions
and species-specific factors. However, we found that a mutation
probability of 1 was appropriate for our purposes, by conducting
a series of numerical experiments in which we considered 1,000
parameter combinations at each of ten mutation probabilities.
These simulations show that the probability of mutations
(independent of the mutation size) only affects the timescale
of the simulations. It does not affect the final distribution of
perceptual ranges (see Supplementary Figure 3 for details).
Therefore, to be computationally efficient we assume mutation
probability to be 1 and focus our analyses of mutational dynamics
on maximum mutation size.

To obtain a simplified dependence structure of various
parameters on the evolution of the perceptual range distribution,
we determined the partial rank correlation coefficient (PRCC)
of various parameters with respect to the 2.5, 25, 50, 75, and
97.5 percentiles of the distribution, using the sensitivity package
(Tooss et al., 2020) in R. We also performed a Random Forest
(RF) regression, using the random Forest package (Liaw and
Wiener, 2002) in R, to identify which parameters are the strongest
predictors of the patterns in different percentiles of the perceptual
distribution. We optimized the number of parameters available
for splitting at each tree node in the RF using out-of-bag error
(OOB) (Liaw and Wiener, 2002). We use the IncNodePurity
statistic (another standard statistical metric defined as the total

decrease in node impurities from splitting on a given parameter,
averaged over all trees; Impurity is measured by residual sum
of squares and is calculated only at the node at which a
given parameter is used for a split; see Liaw and Wiener,
2002) for comparing variable importance scores in RF models.
Higher values of IncNodePurity denote higher importance of a
parameter in predicting a given variable.

To further analyze the details in the patterns of perceptual
evolution and identify how perceptual evolution depended on
resource availability, we fixed a standard set of parameters (see
Supplementary Table 1 for details) and plotted the distributions
by altering one parameter at a time in three different resource
regimes (low, medium, and high; see Supplementary Table 1).

RESULTS

Classifying Parameters and Their Impact
Figure 2A summarizes results from the PRCC analysis
investigating how model parameters affect the percentiles of the
distributions of perceptual ranges. To understand the impact
of various parameters, we categorized all parameters into two
groups: activating, which are the ones with PRCC greater than 0.0
(i.e., a positive effect on the distribution of perceptual ranges) and
deactivating, with PRCC less than 0.0 (i.e., a negative effect). This
categorization groups resource quality, growth rate, maximum
mutation size, resource density, gather distance, and energy cap as
activating parameters because these parameters positively affect
and/or aid the evolution of non-zero perceptual ranges. On the
other hand, basal energy cost, perceptual cost, reproduction cost
and gather amount fall into our deactivating category and affect
the evolution of non-zero perceptual ranges negatively.

Although this broad classification is helpful, the impact
of each parameter within the categories differs substantially,
and for some parameters (e.g., maximum mutation size) the
impact differs across the parts of the perceptual distribution
(Figure 2A). To further elucidate parameter impacts on
perceptual range, we can examine the variable impact scores
from RF regression models and quantify how individual
parameters affect perceptual ranges when all others are
held constant.

Parameters as Predictors of the

Perceptual Distribution
We plot the variable importance scores through the
IncNodePurity statistic from the RF regression models,
with all parameters as predictor variables and percentiles of
the perceptual range distribution as the outcome variable
(Figures 2B-F). See Supplementary Figure 4 for RF
optimization. These results echo the findings from the PRCC
plot (Figure 2A) and describe more than 70% of the variance in
each of the five perceptual percentile levels. Specifically, RF could
explain 74.84, 70.03, 70.25, 70.16, and 72.92% of the variance for
the 2.5, 25, 50, 75, and 97.5 percentiles, respectively).

Perceptual cost, basal energy cost, maximum mutation size,
and resource density, which have the highest PRCC values for
almost all the percentile perceptual values, are consistently the
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FIGURE 2 | Finding critical parameters. (A) Classifying parameters into activating and deactivating groups using partial rank correlation coefficient (PRCC);
parameters where the mean PRCC is above 0.0 are activating and those with mean PRCC below 0.0 are termed deactivating. (B-F) Represent a Random Forest
(RF) Regression of different parts of the resultant perceptual range distribution from the parameter values where (B-F) represent the results for 2.5, 25, 50, 75, and
97.5 percentiles, respectively (and percentage of variance explained: 74.84, 70.03, 70.25, 70.16 and 72.92%, respectively). The labels in green are activating
parameters and those in red are deactivating. The x-axis in (B-F), IncNodePurity, refers to the total decrease in node impurities from splitting on a given parameter,
averaged over all trees. Higher IncNodePurity means higher variable importance.
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best predictors of evolved perceptual range. Only the relative
ranking of the importance of these four parameters changes in
the RF regression across the percentile levels. In the case of the 2.5
percentiles, growth rate approaches a similar range as the top four
parameters listed above, but in all other cases, growth rate’s PRCC
value remains low. Although gather distance positively affects the
perceptual evolution and affects its variation as evident in PRCC
values (Figure 1), it is not a good predictor of the percentile
perceptual values.

Detailed Discussion About Parameters

To gain more insights into the model’s evolutionary dynamics,
we plotted the mean perceptual radius of simulations where we
tuned one parameter and kept the others constant at standard
values (Supplementary Table 1). We did this for each of three
resource regimes in Figure 3 to uncover broad scale patterns
associated with changing resource density. For a more detailed
structure of the distribution, please refer to Supplementary
Figures 5, 6.

Activation Parameters

Activation parameters allow perceptual ranges to evolve and
persist in the population. Resource quality, growth rate, maximum
mutation size, resource density, gather distance, and energy
cap are activating parameters. Each of these parameters
has a threshold value such that when the parameter is
below the threshold, conditions are sufficiently harsh that
no perceptual range evolution is possible. Once above the
threshold, however, the parameter creates a setting that activates
perceptual range evolution (see Figure 3B and Supplementary
Figure 5).

Threshold values vary among the activation parameters, and
across the parameter space. Regimes where positive perceptual
ranges reliably exist are usually characterized by a resource density
of around 0.5 or more, showing an important dependence on
resource availability. In the low resource case (resource density
is 0.25), we see interesting patterns: populations with non-zero
perception exist only sporadically and by chance; but when they
do exist, they create higher mean perceptual ranges than higher
resource density cases for similar parameter values (Figure 3).
The maximum mutation size parameter is unique among the
activation parameters, as it allows populations to thrive more
reliably in low resource regimes than other parameters (Figure 3).
The perceptual range distribution exhibits high variation in
harsh or low resource environments for all parameters as
compared to those in medium and high resource environments
(Supplementary Figure 5).

Deactivation Parameters
Deactivation parameters, such as basal energy cost, perceptual
cost, reproduction cost, and gather amount, make it more difficult
for perceptual ranges to evolve and persist in a population.
Instead of having thresholds, these parameters have cutoffs after
which no non-zero perceptual ranges generally evolve (Figure 3
and Supplementary Figure 6).

The perceptual range distribution is very sensitive to changes
in perceptual cost (Figures 2, 3A2). We see a quick decrease

in perceptual ranges as perceptual costs go up, but greater
perceptual costs are tolerated in high resource scenarios
(Figure 3A2). For basal energy cost, which is another strong
predictor of perceptual range (Figure 2), we see an increase
in perceptual range until the cutoft is reached (Figure 3A3).
Although reproduction cost reduces the distribution of perceptual
ranges, its impacts are relatively small (Figures 2, 3A1). Gather
amount behaves like an activation parameter, in having a
threshold rather than a cutoff, and has a small negative impact
on perceptual evolution (Figure 3A4).

DISCUSSION

Understanding the evolution of perception in a given ecological
setting sheds light on the interplay between environmental
and species-specific factors in structuring the sensory spaces
of organisms. Using our simple agent-based model, with
assumptions pertaining to biological scenarios, we can predict
possible effects of various environmental and biological
factors on perceptual evolution. Moreover, our simulations
include both neutral and adaptive processes of change (ie.,
through mutation size and selective pressure to survive
and reproduce), which allows for exploration of how such
evolutionary changes may take place.

The simulations draw a stage where the foragers try to
maximize their temporal energy gain while trying to minimize
the risk of running out of energy, under various starting
conditions and a spatially heterogeneous (but controlled)
environment. Although it would be interesting to understand
conditions and evolutionary strategies through which one can
view the emergence and maintenance of various perceptual
range distributions, the complex form of density dependence and
continuous space of possible pathways or strategies present in our
model mean that such investigation is not at all straightforward.
Therefore, we focus here on a higher-level correlative view of the
emergent patterns of perceptual range distributions.

Results from the simulations suggest a few major patterns.
From the RF analysis and PRCC estimation, we found the four
major predictors of perceptual range evolution to be resource
density, maximum mutation size, perceptual cost, and basal energy
cost, with resource density providing the uniformly strongest
effects (Figure 2A). From basic ecological principles, one expects
factors akin to resource density to affect the evolution of
perception, either directly or indirectly. A good example involves
the reduction of sensory apparatus in a variety of organisms in
resource-limited environments in both natural settings and in
well-controlled experimental systems (Stevens, 2013; Brandon
and Dudycha, 2014; Brandon et al., 2015). For example, caves
have resource-limited conditions, and the reduction in visual
organs of cavefish, as compared to their above-ground relatives
(Jeffery, 2009; Borowsky, 2008), may be driven by the relatively
high energetic costs of the visual system coupled with minimal
benefit of vision (Niven and Laughlin, 2008), in addition to other
developmental constraints. Likewise, in benthic decapods, eye
size increases with increasing depth, as expected from the fact
that larger eye size improves vision in dimmer environments
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(Hiller-Adams and Case, 1985). However, the opposite trend
was observed in pelagic crustaceans (Hiller-Adams and Case,
1984, 1988), indicating that large eyes are an energetic burden in
the resource-limited pelagic zone. These comparative examples
suggest the evolution (or loss) of visual apparatus depends not
only on the perceptual environment but may also (directly
or indirectly) depend on resource availability (although a
strong mechanistic link is still lacking). Evolutionary effects
and generational plasticity in perceptual apparatus investment
due to limited resources and allocation to other body parts
have also been observed in a number of organisms including
Daphnia (Brandon and Dudycha, 2014; Brandon et al., 2015),
beetles (Nijhout and Emlen, 1998), and butterflies (Merry et al.,
2011). Although resource availability has been implicated or
hypothesized in perceptual loss or gain in these systems, the
mechanistic link is still missing, and the observed effects might
be due to other secondary factors.

Naively, one might expect that the strongest selection on
perceptual ranges would happen under intermediate resource

densities, because at high densities, there might be little to
no benefit of increased ranges as resources are likely to be
encountered under random movement patterns and at low
resource densities, the benefits of findings resources may
not necessarily offset the costs of the systems necessary to
detect them. Interestingly, in our model lower resource density
environments sometimes produced noticeably larger perceptual
ranges than those of higher resource density environments, even
though the threshold for attaining non-zero perception in the
latter environments was lower (Figure 2 and Supplementary
Figures 5, 6). This effect was, however, sporadic and depended
on chance: low resource environments can also lead to smaller
perceptual ranges. This diversity of successful strategies seems
to be true for some low resource environments like the deep-
sea, where certain organisms have exceptionally well-developed
sensory capabilities whereas others feature extensive reductions
in sensory systems (Drazen and Sutton, 2017). Moreover,
although resource density had an overall positive impact on
the whole perceptual distribution, it had a higher impact
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in increasing the lower percentiles of the perceptual range
distribution (Figure 2A), and therefore might play a critical role
in early stages of perception evolution.

Maximum mutation size facilitated evolution of more diverse
perceptual ranges in all scenarios. The notion that large
mutations might aid in the formation of complex morphological
features, such as sensory systems, is well-developed both
experimentally (Weng, 2014) and theoretically (Lenski et al,
2003). For example, mutation rate affects the time required
for eye evolution (Nilsson and Pelger, 1994). In addition, we
observed that maximum mutation size allowed for a more stable
persistence of perception in low resource environments and led
to the evolution of larger perceptual ranges (Figure 3B1 and
Supplementary Figure 5). Such an observation may be related
to the fact that there is bistability in the system (here, bistability
corresponds to situations where the equilibrium distribution
of perceptual ranges included both zero and non-zero values;
Supplementary Figures 5A2-A4, 6A3-A4). Bistability would be
expected to emerge only when sufficient temporal and spatial
conditions are met, and near such points, we would expect
to see a transition to situations in which a portion of the
population has non-zero perceptual ranges. For example, under
standard conditions of our model and low resources, mutation
size was the major parameter that led to apparent bistable states.
In this case, sufficiently high mutation size helps create larger
perceptual ranges, which can aid survival under low resource
conditions while also meeting the perceptual costs. Otherwise,
zero-perceptual range is the stable state where random walk
foraging and low energetic costs can sustain the population. In
other scenarios, we might have such bistability as a complex
function of many parameters. As this work provides a path
for thinking about evolution of perceptual ranges and the
parameters that affect their stable distributions under various
conditions, future work, using non-agent-based approaches,
should investigate bistability more fully.

Maximum mutation size affected various parts of the
perceptual distribution differentially (Figure 2A). In particular,
the effect of this parameter increased with increasing percentiles
of the perceptual range distribution, meaning that higher
maximum mutation sizes allowed for higher upper bounds
on the possible perceptual ranges but did not affect the
lower bounds as much.

As expected, an increase in perceptual cost decreased
the prevalence of non-zero perceptual ranges (Figures 2A,
3A2) as the foragers became unable to afford the energy
loss incurred by increasing their perceptual range. Such a
phenomenon is known from a wide range of species in both
natural and captive settings and from physiological experiments
(Niven et al., 2007; Niven and Laughlin, 2008; Stevens, 2013).
For example, the production of electric organ discharges
(EODs) (in weakly electric fish) is metabolically expensive
(Salazar and Stoddard, 2008; Stoddard and Salazar, 2011). Fish
living in waters with sufficient oxygen show no correlation
between metabolic rate and EOD, but those in oxygen
depleted waters show reduced EOD (Reardon et al., 2011). In
sticklebacks, where divergence into two forms occurs during lake
habitat acclimatation—benthic (bottom dwelling, invertivorous)

individuals, which live in lower light conditions and have higher
perceptual costs, possess diminished eyes, whereas limnetic (open
water dwelling, zooplanktivorous) individuals have larger eyes
(Willacker et al., 2010). In ray-finned fish, eye size decreases
as a function of turbidity of waters they inhabit—pointing to
increased perceptual cost in more turbid waters (i.e., reduced
visibility) affecting eye size and acuity (Caves et al., 2017). We
also note that perceptual cost had the strongest effect on the higher
percentiles of the perceptual range distribution (Figure 2A).

Basal energy cost also had an overall intuitive trend. At low
levels, it is easier for foragers to evolve perceptual range, while
at higher levels the foragers are unable to meet the cost; this
cutoff increased with increasing resources (Figure 3A3). But
on a finer scale, we observed an increase in perceptual ranges
with increasing basal energy cost, until the cutoff value, where
it abruptly crashed (Supplementary Figure 5). Increases in
basal energy cost forced foragers to find a better way to gather
resources and thus, perceptual ranges increased (Supplementary
Figure 5). This process continued, in increasing strength, until
the point where foragers cannot sustain themselves due to
a high metabolic cost—which results in the cutoff. Predation
and competitive interactions both increase basal energy costs
(Hawlena and Schmitz, 2010; DeLong et al., 2014), and larger
sensory apparatus can occur in situations featuring greater
predation and competition (Beston and Walsh, 2019). But
beyond a certain threshold rate of predation, reduced visual
apparatus might happen due to higher costs as documented in
Eurasian perch (Svanbick and Johansson, 2019), similar to our
results (see Figure 3A3 and Supplementary Figure 5). Another
intriguing example of the phenomena involves cylindroleberidid
ostracods, in which species with eyes living in the photic zone
have larger carapaces (and therefore higher basal energy costs)
and may possess a larger number of ommatidia when living at
greater depths were resources are fewer (Juarez et al., 2019).
In the same group, neither body size nor absolute metabolic
rate changes as depth increases in the disphotic zone. However,
food availability does decrease with depth (and therefore, relative
metabolic rate increases) and eyes have more ommatidia (Juarez
et al, 2019). In other words, evolution of better perceptual
apparatus is possible over a range of conditions, even with
increasing relative metabolic costs.

Beyond these four major predictors, the remaining parameters
had smaller or more restricted effects. For example, growth rate
played an important role in determining the lower bound of
the perceptual distribution (Figures 2A,B), although it did not
impact other parts of the distribution as much (Figures 2C-F).
Previous works have reported enhanced growth rate being
correlated with larger eyes in Trinidadian killifish (Beston and
Walsh, 2019) and in amblyopsid fishes (Poulson, 1963).

Reproduction cost negatively affected all percentiles uniformly,
although the impact was weak (Figure 2A). Although we
only modeled asexual reproduction, we take this result as a
weak indicator of reproductive investment affecting perception.
An example of this can be seen in scarab beetles where
there is a strong trade-off between anatomical investments
that help in reproduction, such as horns, and eye size
(Nijhout and Emlen, 1998).
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The rest of the parameters that we introduced to make our
model more biologically realistic gave us important insights
about perceptual evolution but have limited experimental and
observational evidence for validation. For example, resource
quality was a weak activation parameter, which affected the
higher percentiles of perceptual range distribution slightly more
than the lower percentiles (Figure 2A). Energy cap is another
parameter of weak influence, but it impacted perceptual evolution
in a positive way, and had greater impacts on the lower percentiles
of the distribution (Figure 2A).

Gather amount is an intriguing parameter, it behaved like
an activation parameter (in the sense of having a threshold),
but it had a deactivating influence on the perceptual range
distribution (Figure 2A). When gather amount increased beyond
a certain value, larger perceptual ranges were possible as the
foragers were able to meet biological costs. At the same time,
however, foragers with lower perception ranges obtained an
advantage by not having to spend much energy on perception,
leading to a net weak decrease in perceptual ranges (Figure 2A).
This could be evidence that gather amount is leading to
increased greediness among the foragers, resulting in a more
equal spreading of resources and decreased efficacy of the
evolutionary process.

Gather distance improved the foraging ability of larger
perceptual ranges, and therefore affected the higher percentiles
of the perceptual range distribution in a more positive way
than the lower percentiles (Figure 2A). Foragers with small or
zero perceptual ranges also would be able to collect resources
easily with increasing gather distance, but they would do so in
a diffusive movement pattern. This means they would consume
more energy per timestep—making them less competitive than
foragers able to employ advective movement on the basis of
their perceptual ranges. Gather distance is especially useful at
lower resource densities (beyond a threshold which will allow for
survival; Figure 3B3 and Supplementary Figure 5).

Exploring the effects of parameters in our model facilitates
understanding of the evolution of perception by identifying
how environmental and species-specific attributes (and their
interactions) influence the development and maintenance of
perceptual range. Such investigations are also beneficial because
they suggest patterns of perceptual evolution that might have
occurred under various circumstances in the past. In particular,
this work suggests the existence of certain “minimal conditions”
that are necessary for the evolution and persistence of perception.
These conditions, in the form of cut-offs in the case of
deactivation parameters and thresholds in activation ones, give us
a basic framework to hypothesize about evolutionary trajectories
of perception and perceptual ranges. Moreover, given the general
nature of this simple model, it is relevant to the evolution of
perception for organisms of any size and sensory perception
of any modality. Even though we focus on only one type
of perception in our model, it can be easily expanded in a
future work to involve multiple sensory inputs and their relative
trade-offs to better understand the evolutionary trajectories of
multiple sensory modalities (Howarth and Moldovan, 2018;
Keesey et al., 2019).

In addition, we have not explored the ways in which “dispersal
distance” or “mobility” during the reproductive process might
affect the system dynamics in the current set of simulations. This
topic is a complex one and exceeds the scope of the current
paper, but we are able to draw a few conclusions based on pilot
results and extrapolations. Small “dispersal distance” leads to
agents with similar phenotypes being spatially localized. This
does not, however, have a direct impact on the phenotypic
distribution because reproduction is purely asexual in the current
model. In contrast, dispersal distance could have an impact via
resource consumption. Specifically, because agents with higher
perceptual range are more effective at removing resources from
the environment, spatial clustering resulting from “dispersal
distance” can indirectly result in subregions in the simulation
space that are less resource-dense because they are inhabited by
clusters of highly perceptive agents.

In its current form, our work has provided one way of
exploring the evolution of perception in a spatially explicit
agent-based model, something that has not been done in the
past. Instead, past work on the evolution of perception has
used different approaches and considered different themes.
For example, researchers have investigated the evolution of
perception from a Bayesian perspective to explore the formal
link between the statistics of the environment and species-
specific characteristics through the lens of genetics (see Geisler
and Diehl, 2002, 2003). Those authors used the concept
of a maximum fitness ideal observer (a standard Bayesian
ideal observer with a utility function) appropriate for natural
selection (with a utility function for fitness) and a formal
version of natural selection based upon Bayesian statistical
decision theory, to explore perceptual systems (Geisler and Diehl,
2003). Others have approached the evolution of perception
from a sensory ecology perspective — through the interplay of
signals, signaling behaviors and sensory drives (Endler, 1992),
where the focus in on how the environment influences the
production, propagation, and detection of signals. Our work
is complementary to both of these frameworks, as we created
a system incorporating important paradigms from movement
ecology (foraging, perceptual ranges, and switching between
random search and directional movements) to answer the
same questions, but with biologically inspired and tunable
parameters. Our model is very simple in terms of its treatment
of perception and its properties and provides only a crude
representation of forager-resource interactions. Nevertheless, it
is a first step in the direction of building more sophisticated
models of the evolution of perception. Limitations of the
current study include (1) our binary treatment of perceptual
acuity (we model acuity simply as 1 inside the perceptual
range and 0 otherwise, such that a forager isomniscient about
resources inside its perceptual range); (2) our lack of attention
to sexual reproduction (we assume only asexual reproduction for
simplicity because consideration of sexual reproduction would
require attention to a great deal behavioral complexity and many
further assumptions); (3) our lack of a role for memory; and
(4) rudimentary treatment of perception that does differentiates
among different modalities.
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In the future, we plan to investigate speciation as a
function of changing perceptual range. Such inquiry is not
possible here because aggregated data obscures our ability
to distinguish fine patterns that might indicate “perceptual
speciation” and bistability in our scenarios. Understanding
such phenomena might be important in exploring patterns
of sympatric speciation seen in many subterranean habitats
(Segherloo et al., 2018), and perhaps in Drosophila (Keesey
et al, 2019) and hypogean spiders (Mammola and Isaia,
2017). Moreover, due to our focus on foraging in this model,
we did not consider mating signals and interactions, which
also play a major role in perceptual evolution (Endler,
1992). Perception of sexual signaling would be a new
direction in which our model could be remodeled and
explored in the future.

To make this line of modeling more biologically realistic
and explore prey-predator interactions (see Hein and Martin,
2020), future studies will include moving resource (or prey)
items, different foraging strategies and scale of movement
(see Farnsworth and Beecham, 1999; Beecham, 2001). Such
a model can also account for co-evolution of perception
in multiple interacting species such as the coevolution of
hearing in bat-moth systems (Fullard, 1998), and evolution of
alternative “cognitive” strategies for movement and foraging
(Farnsworth and Beecham, 1999; Beecham, 2001). We also
would like to explore more than one type of sensory perception
(and its associated range) and incentivize the development
of perceptual modalities with different resources. Future work
could also explore other properties of perception, such as
acuity and memory to increase the model’s biological realism.
Taken together, such a system of models can help us
understand the evolution of perception and the interplay
between sensory modalities (Howarth and Moldovan, 2018;
Keesey et al., 2019), allowing investigation of the biological
and environmental factors that facilitate or hinder such
evolutionary changes.
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Seasonal migrations are a widespread and broadly successful strategy for animals to
exploit periodic and localized resources over large spatial scales. It remains an open
and largely case-specific question whether long-distance migrations are resilient to
environmental disruptions. High levels of mobility suggest an ability to shift ranges that
can confer resilience. On the other hand, a conservative, hard-wired commitment to
a risky behavior can be costly if conditions change. Mechanisms that contribute to
migration include identification and responsiveness to resources, sociality, and cognitive
processes such as spatial memory and learning. Our goal was to explore the extent to
which these factors interact not only to maintain a migratory behavior but also to provide
resilience against environmental changes. We develop a diffusion-advection model of
animal movement in which an endogenous migratory behavior is modified by recent
experiences via a memory process, and animals have a social swarming-like behavior
over a range of spatial scales. We found that this relatively simple framework was able
to adapt to a stable, seasonal resource dynamic under a broad range of parameter
values. Furthermore, the model was able to acquire an adaptive migration behavior
with time. However, the resilience of the process depended on all the parameters under
consideration, with many complex trade-offs. For example, the spatial scale of sociality
needed to be large enough to capture changes in the resource, but not so large that the
acquired collective information was overly diluted. A long-term reference memory was
important for hedging against a highly stochastic process, but a higher weighting of more
recent memory was needed for adapting to directional changes in resource phenology.
Our model provides a general and versatile framework for exploring the interaction of
memory, movement, social and resource dynamics, even as environmental conditions
globally are undergoing rapid change.

Keywords: PDE model, social learning, climate change resilience, seasonal migration, memory

1. INTRODUCTION

Seasonal migrations are widespread among terrestrial, aquatic, avian and invertebrate species
(Dingle, 2014). For many species, migration is an extremely successful strategy, allowing a far
greater number of individuals to inhabit landscapes which might not otherwise be able to support
large numbers year round (Fryxell et al., 1988). The evolutionary stability of a migratory strategy
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essentially relies on the fitness benefits of accessing seasonal
resources, whether for energetic gain, predator avoidance,
or a suitable environment for reproduction, outweighing the
energetic and survival related costs of migration (Avgar et al.,
2014).

Proximate causes, drivers and mechanisms for migration
vary widely across and even within species (Berthold, 1999;
Shaw, 2016). Some migrants follow a “green wave” of spring
vegetation as it flowers across altitudinal or latitudinal gradients
(Bischof et al., 2012; Kolzsch et al., 2015; Merkle et al., 2016).
These migrations can be considered “tactical,” as they can
occur—as an extreme simplification—purely as response to local
conditions. Other migrants perform long-distance migrations in
anticipation that critical resources will be available at the time
of arrival at the end point of migration (Abrahms et al., 2019).
This second behavior involves the greatest trade-off between
the costs and benefits of accessing those highly seasonal and
localized resources. This approach can be considered “strategic”
in the sense that it is driven not by immediate cues but by an
anticipation based on prior experience (Bracis and Mueller, 2017;
MerKkle et al., 2019; Bauer et al., 2020).

Migration can be a very successful strategy, with migratory
ecotypes of the same species often outnumbering non-migratory
conspecifics. Migratory caribou and reindeer Rangifer tarandus,
for example, are several orders of magnitude more abundant
than non-migratory woodland, mountain and forest ecotypes
(Festa-Bianchet et al., 2011; Uboni et al., 2016). However, the
question of whether migratory animals are more or less resilient
to environmental disruptions in the environment remains
open and largely case-specific (Moore and Huntington, 2008;
Hardesty-Moore et al., 2018; Xu et al.,, 2021). On the one hand,
migratory species may be more vulnerable as disruptions in
either of the seasonal ranges or along a migratory corridor
can have significant negative impacts (Wilcove and Wikelski,
2008; Seebacher and Post, 2015; Kauffman et al., 2021). On
the other hand, migratory species might be more resilient
due to their general wide-ranging mobility (Robinson et al,
2009). The resilience of a migratory population depends on
the plasticity and adaptability of the population, which can
take multiple forms, reflecting variation in where, when and
whether the migration occurs (Gurarie et al, 2017; Xu et al.,
2021).

Cognitive processes, in particular spatial memory, have been
shown to be important mechanisms for the reinforcement and
maintenance of migration (Merkle et al., 2019; Bauer et al,
2020). Similarly, sociality and social learning are likely essential
to maintaining migration (Guttal and Couzin, 2010; Fagan et al.,
2011; Berdahl et al.,, 2018; Jesmer et al., 2018). However, the
interacting role of sociality and spatial memory for the plasticity
of migration and the resilience of the behavior when faced
with a changing environment are generally unknown, though
it has been hypothesized that the importance of these cognitive
processes depend on the predictability of these resources (Riotte-
Lambert and Matthiopoulos, 2020). Because the scenarios
underlying migration are manifold and complex, mathematical
modeling may provide some insights and help clarify where,
when, and under what conditions we might expect migration

behavior to emerge, to be adaptive, to be maladaptive, or
to collapse.

Here, we develop a diffusion-advection model with sociality
and memory to explore the resilience of a migratory population
under various dynamic, seasonal resource distributions. In
formulating the model, our goal was to identify the minimum set
of movement and memory parameters required to generate an
adaptive, migratory behavior. This includes the ability to learn
to migrate from non-migratory initial conditions, simulating
the release of naive animals in a seasonal environment (Jesmer
et al.,, 2018); to lose the propensity to migrate if the resource
distribution does not require it, also a commonly observed
phenomenon (Wilcove and Wikelski, 2008); and to assess the
resilience or fragility of a migratory population against changing
resource distribution dynamics, including both stochasticity and
trends in spatial and temporal distributions, mirroring the effects
of climate change (Park et al., 2020).

We anticipated that under many conditions a blending
of tactical (ie., direct response to resource availability or
perception) and strategic (i.e., memory-driven and forward-
thinking) behavior will help foragers navigate dynamic, seasonal
environments. Over-reliance on either strategy should be
maladaptive. We further anticipated that a shorter-term memory
updating is needed to navigate trends in resource spatial
distribution and temporal distribution (phenology), but that a
longer-term reference memory is needed to navigate resource
distributions that are stochastic (Lin et al., 2021). Similarly, we
anticipated that a balance between very low sociality and extreme
sociality would lead to the most resilient migratory process.

2. METHODS
2.1. Memory Movement Model

In designing our study, our goal was to develop a minimal
heuristic in which the following processes were explicitly
modeled: (1) Random or exploratory movement, (2) attraction
to resources, (3) sociality in the movements, (4) a long-term
(or reference) memory of large-scale movement behavior, and
(5) a short-term (or working) memory that updates movement
behavior based on recent experience.

A diffusion-advection equation provided a computationally
efficient and versatile framework for examining just such a
system. We consider a population moving in one dimension in
a constrained domain D and distributing itself according to the
following equation:

ou B 9%u

T

ad
0x

oh d
(“a) + ﬂa (vs(w)) +

to 0x

(u vm(t))
(1)

where u represents the population distributed in time and space.
The first term is the diffusion term, capturing the fast time-scale
exploration and “random” movements of individuals, with ¢ is
the diffusion rate.

The second term represents the attraction to a dynamic
resource h, with the proportionality of the advection to the
gradient of the resource given by the parameter « (note, the
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population and resource distributions are functions of both space
and time u(x,t) and h(x, t) - we omit the dependent variables
in the notation for brevity). This is the well-studied standard
chemotaxic resource-following behavior. We borrow the general
notation from earlier related work expanding diffusion-advection
models to incorporate non-local information (Fagan et al., 2017)
and behavioral switching (Fagan et al., 2019).

The third term captures the collective or social advection term
of the population via a non-local, density dependent function
vs(u, x). If this function takes the form of a convolution around
a non-local kernel k, ie., vy(u) k(x) * u(x), and if that
kernel is odd, an attractive or “swarming” behavior can be
generated (Mogilner and Edelstein-Keshet, 1999). We use the
kernel analyzed by Mogilner and Edelstein-Keshet (1999):

k(x) = % exp(—x?/22%).

The convolution of u with this kernel has the property of pushing
the population in a positive direction when x < (u), and in a
negative direction when x > (u), where (u) is the mean location
of the population. The parameter A is a length scale of sociality,
roughly one-half the size of the swarm, and B is a parameter that
quantifies the overall strength of sociality.

Finally, the last term captures the direct advection that
emerges from a memory-driven migratory behavior. This term
evolves with a set of parameters 6, that slowly change each
year y € {0,1,2,...}, ie, the count of periods t: y = [t/7].
The migration is specified by six parameters 0: the timing of
the start and duration of two anticipated seasons (e.g., summer
and winter) t;, Aty, t, Aty, and the spatial coordinates of the
population centroid for each season x; and x,. The remembered
migratory speed term is a simple step function given by:

0; t>tand t <t + AhQ
s;p; t>t+Atpandt <t
0; t>tHand t <t + At
t>tH+Athort<t

Vim(t, 9)/) = (2)

5215

where the migration speeds s1, and s;; from the respective ranges
are set such that they arrive at x; at t;, depart at t = t; + Aty,
arrive at x; at t = t,, and depart at £, + Aty. Thus, s;2 = (x —
x1)/(2—(t1+At1)) and 51 = (x1 —x2)/(t1 — (2 — T+ At2)). This
step-like migration function is a one-dimensional version of the
migration parameters estimated for individuals (Gurarie et al.,
2017) and populations (Gurarie et al., 2019) in empirical studies.

We consider these six parameters to be the known or
remembered determinants of the migratory behavior, with an
initial set 0y determining the reference migration behavior. This
reference migration is updated each year by the experience
of the population. To perform this updating, we estimate a
new set of parameters 9:, after each year, and combine these
new parameters with the reference parameters according to the
following weighted mean:

Oyr1 = k7 6, + (1 — Ky) é}, 3)

where each of the six parameters is updated according to
Equation 3 identically. The estimates 6, are obtained via a
least-squares minimization of the migration track (m(t,0)

fot vm(t',6)) dt’) against the spatial mean of the population
process in year y (i.e., u(t) = fX uy(t, x)dx). The parameter k €
(0, 1) captures the reliance on that long-term memory. Whenx =
0, all of the actionable memory is from the preceding year. When
k = 1, the actionable memory is entirely the reference memory.
The model is confined to a one-dimensional bounded domain
[—x, x1, with no flux outside of the boundaries. Formally, this
no-flux condition means the following conditions must be met

where x = x

(k) = BOx() = (avm(e) =0
(”(%) — B(vx(u)) — (uvy(t)) =0 where x = —x

In practice, the design of our resource space (see below) and
other parameterization lead to 0 or near 0 values of both h(x) and
u(x), and the simpler du(—yx,t)/dt = du(x,t)/dt = 0 boundary
condition provides a good approximation.

As there are no birth or death processes, the total population
remains fixed and constant, for convenience integrating to 1.
Furthermore, the parameters remain constant throughout time,
with no adaptation or mutation-selection process. Our interest
is in the ability of a fixed set of movement and memory
parameters to navigate an intra- and interannually dynamic,
seasonal environment.

2.2. Seasonal Resource

We ran this model on a spatial domain x € [—100,100],
and a periodicity 100 (i.e., 100 day years). We were
interested in an approximately periodic resource dynamic,
ie, one in which h(x,t) ~ h(x,t — 7)). We generated two
types of resource distributions. A “non-surfable” resource (island
resource), and weakly surfable resource (drifting resource). Both
are characterized by a peak in time and space centered at iy
at my, and —m, at t — my (for example, locations 30 and
—30 at times 25 and 75, respectively). These pulses have a
shared time scale of duration s; and a spatial scale of extent
Sy> the standard deviation in the time and space dimension,
respectively. The island resource is simply two uncorrelated
bivariate normal distributions

h(x,t) = K (P (my, my, sy, 5t) + P(—1my, T — my, sx, 5¢))

where & is the bivariate Gaussian distribution function,
and the normalizing constant K is selected such that the
average total amount of resource throughout the year is 1,
ie., %fT Jx hx, tydx dt = 1.

The drifting resource differs from the island resource in that
the total amount of resource at any given time [} h(x, t)dx = 1.
This property is attained by distributing the resource as a re-
scaled beta distribution, where the shape and scale parameters
vary sinusoidally in such a way as to make the standard deviations
and means match the desired values of my, my, sy, s; (see

Frontiers in Ecology and Evolution | www.frontiersin.org

70

October 2021 | Volume 9 | Article 742920


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Gurarie et al. Sociality, Memory, and Migration

Supplementary Materials for details). Both types of resources  At;),0} + max{t, — my,my — (t2 + Atz),0}. Thus, the total
are illustrated in Figure 1. mismatch is the sum of these: TM = MM, + MM;. A mismatch
Within a given year, the resource is entirely symmetric:  ofless than 1 is essentially perfect, a mismatch of 1-5 we consider
hy(x,t) = hy(—x, T — t). However, in scenarios exploring climate  excellent, and beyond 50 the system can be said to have failed to
change we allow the peaks to vary with directional trend and  keep track of the resource dynamics.
stochasticity according to: m.(y) ~ N(ux+ yx y, 0x) and m(y) ~ To quantify the foraging efficiency, i.e., the organisms’ ability
N(u¢ + v y,01), where the pt, y and o terms are the mean, slope  to track the distribution of the resources over space and time,
and variance, respectively, for the location and time duration = we use a continuous form of the Bhattacharyya coefficient
of the pulse. Thus, if y = 0 and 0 = 0, the conditions are  (Bhattacharyya, 1943) which quantifies the similarity between
constant across years and if y, > 0 there is a shift of the resource  two distributions. We compute this coefficient at every time point
toward the extremes of the domain. While we did not explore  in a given year, and take the mean across the equilibrium year to
phenological shifts in timing, those can readily be modeled as  determine foraging efficiency (FE). Thus, the foraging efficiency
well. These trends model the pole-ward shift of peak resources  index is:
and the earlier spring phenology occurring with a warming global
climate (Renner and Zohner, 2018). The spatial and temporal

scales of the resource peak (sy and s¢) remain constant in all of FE = 1 /T /X u(x, t) h(x, t) dxdt
T Jo —x

our simulations.

where the spatial integral is taken over the domain. This metric is

2.3. Metrics constrained to be between 0 and 1.
The main metrics we were interested in are migration mismatch, For simulations with a constant resource, we ran the
foraging efficiency and adaptation to directional trends. model until a quasi-equilibrium (stationary) state was achieved,

Migration mismatch captures the combined difference i.e., where the Bhattacharya index of the population distribution
between the migration phenology and the resource phenology in  across subsequent years reached a value of 0.99999. Once
time and space. Spatial mismatch MM is the absolute difference  stationarity was attained, we computed the migration mismatch

between the migration targets and the resource peaks: MM, =  and foraging efficiency metrics, as well as the number of years
|x1 — my| 4+ |x2 + my|. Temporal mismatch is the difference  required to reach stationarity.
between the arrival time and the peak of the resource if arrival For numerical runs with climate change, we first run a

is post-peak, the difference between the departure time and the  simulation with a given parameter set until stationarity, as above,
peak of the resource if departure is pre-peak, and 0 if the seasonal ~ and then begin shifting the location of the resource poleward
duration spans the peak, i.e., MM; = max{t; — m;,m; — (t; +  with a slow, moderate or rapid trend (yy = 0.25,0.5, and 1,

isolated resource

0=3;0,=12

weakly drifting resource

0 20 40 60 80 100 O 20 40 60 80 100
time time

FIGURE 1 | Examples of various seasonal resource distribution functions, contrasting short duration, but wide pulses (o; = 3, o, = 12; left panels), long duration but
spatially concentrated pulses (o; = 12, o = 3; right panels), and isolated resource pulses (upper panels) from the weakly drifting resource (lower panels). The total
amount of resource is identical across all scenarios. In the weakly drifting resources, the total amount is constant at all times, and uniform in the middle of the phase
(time =0, 50, and 100).
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respectively), and/or by adding stochasticity (spatial standard
deviation 3, 6, 9, or 12). For stochasticity analyses, we compare
foraging efficiency across a range of the reference memory
parameter k. For analyses that included directional trends, with
or without stochasticity, we quantified the ability of the system
to keep track of climate change with a spatial adaptation (SA)
index. This index is the ratio of the slope of the memory-
based migration location over time, i.e., SA ¥ /vx where
the adaptation slope estimate is the regression coeflicient of the
spatial coordinate of the migration against time (i.e., my; =
Yxi + myo, where i is the year), and y, is the rate of drift of
the resource peak (Table 1). An SA equal to 1 suggests that the
process is keeping up with climate change, an SA of 0 indicates
that the process is not responding at all to climate change. Values
greater than 1 (super-adaptation) are possible, as are values less
than 1, which correspond to a loss of migration behavior. All
movement model parameters, resource parameters, and metrics
are summarized in Table 1.

2.4. Simulation Studies

We explored this model using numerical differencing of a
system of ordinary differential equations (ODE’s) approximating
the PDE in Equation (1) with the Runge-Kutte algorithm
using the deSol ve (Soetaert et al, 2010) and ReacTr an
(Soetaert and Meysman, 2012) packages in R. We additionally
used the nl SLM function in package m npack. LM (Elzhov
et al., 2016) for robust and fast annual estimation of the
migration parameters. The complete code is available as
an R package (menorymigration) available on GitHub
at https://github.com/EliGurarie/memorymigration and as an
interactive Shiny application at https://spot3512.shinyapps.io/
memorymigrationshinyapp/.

We assessed a wide range of parameter values and resource
geometries and dynamics with the goal of answering the four
main questions: (1) Can this model adapt to a discrete shift in
peak resource location and timing? What is the relative role of
memory and sociality for adaptation? (2) Can this model acquire
a migratory behavior from a non-migratory initial condition? (3)
What is the role of a reference memory for dealing with stochastic
resource dynamics? (4) Can this model adapt when the resource
peaks shifts in space? Details of parameter combinations and
reported metrics are provided in respective results sections.

3. RESULTS

3.1. Adaptation to Resource Phenology

The ability of this system to attain a stable, migratory state that
matches the dynamics of the resource is illustrated in Figure 2.
In the illustrated scenario, it takes nearly 40 years to attain
an equilibrium, and the eventual steady state is one where the
centroid of the migration lines up exactly with the centroid of
the resource, and the arrival timing coincides with the peak of
resource availability. Notably, the path to this equilibrium is
somewhat indirect, with the later winter range taking more time
to stabilize than the earlier summer range. The eventual steady
state is one where the foraging efficiency is relatively high, near
0.6 compared to an initial value of 0.3. However, the increase in

TABLE 1 | Table of parameters, variables and metrics.

MEMORY MIGRATION MODEL

& Diffusion

a Strength of resource following
B Strength of sociality

A Spatial scale of sociality

K Initial weighting of reference vs. working memory

X1, X2 location of population centroids in summer and winter
ty, Aty start and duration of summer season
to, Ato start and duration of winter season

(long-term) memory vs. working (short-term) memory
RESOURCE DYNAMICS

T duration of period (year)

My, —My spatial coordinate of resource peak for summer and winter
me, T —my timing of resource peak for the summer and winter

Oy, Ot time duration and spatial scale of resource pulse

Vi Vt rate of change of peak location and timing of resource
Y, Ut standard deviation of peak location and timing
METRICS

MMy spatial migration mismatch

MM; temporal migration mismatch

™ total mismatch

FE foraging efficiency

SA spatial adaptation index

the foraging efficiency was not entirely monotonic, as the system
moved through some slightly sub-optimal stages in adjusting its
migration behavior.

We ran this process for 8,100 parameter combinations
crossing different values of the movement process («, f and A)
and resource characteristics (ox and oy), and present the total
mismatch (TM) against all those combinations in Figure 3. In
all of these simulations, memory was entirely recent (k = 0),
since there can be no benefit to relying on a sub-optimal reference
memory. We compared a set of diffusion rates & between 1 and 8,
but only illustrate results for ¢ = 4.

A well-matched migration phenology (TM < 5) occurred
under very many combinations of parameter values, but all
parameters play interacting roles. Among the more intuitive
results are that greater values of « (resource following) lead
to an improved ability to match the migration. Resource peaks
with larger spatial extent (higher o) are generally better for
migration matching.

Less intuitive was the high importance of the sociality
parameters, in particular the spatial scale of the swarming. Higher
levels of social attraction () led to improved migration matching
except in those cases where the sociality scale A was high. Thus,
for example, at A = 20, no simulations at § > 200 managed to
acquire or maintain a matched migration. However, at 1 = 50
or 100, the migration was slightly better matched at high values
of B (Figure 3). The spatial extent of the swarm was a remarkably
significant variable. Smaller swarms were able to match migration
only at low values of social attraction (f = 200), and relatively
high values of resource attraction (o > 600).
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FIGURE 2 | Example of adaptation to a shift in resource peak. The initial (year 0) behavior migrates to locations 50 and 50 at days 15 and 60, whereas the resource
peak is at 30 and —30, peaking at times 25 and 75. The panels show (A) the first 14 years of the simulation; (B) the centroid of the annual movement of the population
is shown in panel b, with dark blue to red colors indicating 0-40 year; (C) annual foraging efficiency across years; (D) migration timing parameters for each year, with
orange segments indicating arrival and departure from the summering (northern) grounds, and the blue segments indicating timing of arrival and departure at the
wintering grounds; (E) migration arrival and departure location across years, with blue and orange indicating winter (southern) and summer (northern) locations.

Random forest analyses, whether on the log of total mismatch
or on the classification of a perfect match, uniformly show that
the most important variables (Breiman, 2001) were o and X (4.14
and 4.02 proportional increase in MSE), and the least important
was oy, with a 0.5 proportional increase.

Overall, foraging efficiency was strongly correlated with
migration matching, as expected. At high mismatch (> 50),
foraging efficiency was low (mean 0.29, s.d. 0.16) compared
to the near-perfect matching migrations (mean 0.58, s.d. 0.14).
However, somewhat higher mismatch (1 to 5) showed an even
higher overall foraging efficiency (mean 0.62, s.d. 0.18-see also
Figure 4).

3.2. Learning to Migrate

Figure 5 illustrates the ability of the model animals to learn to
migrate in a weakly drifting resource environment with a narrow
pulse of resource peaking at 30 and -30 (at days 25 and 75),
but a uniform distribution of resource at times 0 and 50. In
order to learn to migrate, the system needed to have a higher
exploratory impulse (higher diffusion constant €), a stronger
resource advection (higher o) and somewhat weaker sociality
(lower B). The qualitative behavior of this process was to start
drifting toward the summer resource, while slowly developing a
weak pulse toward the winter resource as well. After first locking
in on the summer resource, the winter migration, driven both by
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FIGURE 3 | Migration phenology matching across six model parameters. Low and high diffusion (¢ = 1 and 8 in upper and lower panel blocks), tight, medium and
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high diffusion and high resource following, slowly extended itself
until both narrow peaks of resource were consistently reached.
The model had, in general, a difficult time learning migration
from a non-migratory initial condition. Out of 4,047 successful
runs, only four attained mismatch below 1, and 130 below 5.
Conditions that were more conducive to learning migration were
pulses of longer duration (high o;), but smaller in scope (low oy),
suggesting that the feedback that encourages migration needs to

be compact in space but long enough in duration to lock in to
the memory.

3.3. Directional Climate Change

To assess the ability of the system to adapt to a trending climate,
we generated scenarios with slow, moderate and fast outward
directional shifts in the resource peak (0.25, 0.5, and 1 units/year,
respectively). We then assessed 40 parameter combinations for
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each of those scenarios, high and low values of resource following
(v = 400 and 100), high and low values of sociality (8 = 400 and
100) and 10 values of the spatial scale of sociality (A = 20 to 200).
The spatial and temporal scale of the resource pulses were fixed
to oy = 12 and oy = 6, a combination which analyses in section
3.1 showed were generally “easy” to adapt to. We computed the
adaptation index and foraging efficiency for each of the 120 runs
(Figure 6). We were interested in the dynamics against A due to
the consistently high importance of this parameter for matching
migration in steady states. Our main index of interest was the
spatial adaptation (SA) to trends.

As Figure 6 shows, higher values of resource following («
400; orange circles) are nearly universally better for keeping

up with climate change (SA values near 1). Furthermore, when
combined with high sociality (8 = 400; right panels), nearly all
parameter combinations do a good job keeping up with climate
change (SA values ranging between 0.53 and 0.85 for a swarm
size greater than 50). However, that maximum value is still less
than 1, suggesting that truly matching a steadily drifting trend
is very difficult. Smaller social spatial scales (A < 50) have a
very hard time adapting when the social attraction is high, but
do fairly well when social attraction is low. Larger sized swarms
do progressively worse across more parameterizations, e.g., in the
most rapid climate change scenario, the SA drops from 0.83 to -
0.13 as the swarm increases in size from 40 to 200 (encompassing,
essentially, the entire spatial domain).
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A rather more dramatic pattern is visible for the lower
foraging attraction scenario (« 100; blue circles). Notably,
no parameter combination at this value comes close to keeping
up with the rapid climate change (SA range -0.64 to 0.13). For
slower climate change, however, there is a window of values for
the swarm size between 40 and 80, where the SA exceeds 1, but
then crashes quite rapidly to negative values of SA as that swarm
size increases. These “super-adaptive” processes indicate a unique
sweet spot where a swarm is large enough to capture and adapt
to the drifting resource, but not so large that the information
gathered in a given year is too weak to adjust the migratory
behavior in a following year.

As anticipated, better adaptation to the drifting resource
correlated strongly with higher foraging efficiency (inset
boxplots).

3.4. Reference Memory and Stochasticity
While recent memory can be helpful for adapting to a single
novelty or a smoothly changing conditions, we hypothesized that

a more conservative approach that relies on a reference memory
may be beneficial when conditions change stochastically. We
tested this hypothesis by solving a set of models across a range of
k values fom 0 (all recent memory) to 1 (all reference memory).
In these scenarios, we ran the system for as many years as needed
with no stochasticity to acquire a stationary state (i.e., similarity
index greater than 1-1e-6). We then used the stationary state as
the reference memory, and then ran the process for an additional
50 years with a stochasticity (i.e., standard deviation in peak
location of the resource) ranging from 0 to 12, and present the
resulting average foraging efficiency (Figure 7).

Overall, as expected, the greater the stochasticity, the lower
the foraging efficiency. Further, as we predicted, highest level of
Kk can significantly help foraging efficiency, with some variation
across the spatial scale of sociality, especially in more highly
stochastic scenarios. When that scale of sociality is high enough
(A = 120, blue colors) there is greater probability of overlap with
a stochastic resource, and a conservative, stable migratory regime
is much more beneficial in the long run.
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3.5. Stochasticity and Trends

We added 30 years of directional trends to the variously
stochastic process described above, and assessed the adaptation
index against the reference memory parameter « (Figure 8).
Over-reliance on reference memory (x 1) by definition
does not allow the system to keep up with climate change,
leading to an adaptation index of 0. However, in many cases a
balancing of recent and reference memory (k value between 0.6
and 0.8) in many cases was slightly but significantly better than
relying entirely on recent memory. The smaller spatial scale (in
the selected parameter space) does a generally better job than
the larger spatial scale at lower stochasticity. At higher level

of stochasticity, however, the larger spatial scale outperforms
the smaller spatial scale, which completely loses track of the
climate change.

4. DISCUSSION

Animals navigate complex, dynamic and patchy environments.
When there is a strongly localized and seasonal component
to the resource dynamics, movement strategies limited to
straightforward resource-following taxis necessarily fail to
efficiently exploit available resources. It is in these cases,
quite common in the natural world, that seasonal migration
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represent the average of the FE's across all 50 years and 90 replicates. In these scenarios, the resource following parameter @ = 100, the social attraction g = 400
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change (mean shift: 0.5/year) at five increasing levels of stochasticity (inter-annual standard deviation of resource peak 0, 3, 6, and 12, left to right panels). For
non-zero stochasticity, we ran the process 30 times and present the mean and standard error of the spatial adaptation index across various values of the reference
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memory. Other parameter values are resource following & = 100, social attraction 8 = 400, and diffusion ¢ = 4.
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becomes a viable, even necessary, strategy. However, when
resources start shifting in space and time—as is occurring at
an accelerated pace with recent global climate change—the
migration phenology itself must exhibit some plasticity. It is our
conjecture that this plasticity is facilitated by a memory-driven
process in which recent experiences inform strategic behaviors in
subsequent years.

By allowing a population to adjust its migratory behavior
based on recent experiences with the resource location, the model
we presented here emulated (a) the successful navigation of
an environment with temporally and spatially isolated seasonal
resource patches, (b) the emergence of a migratory behavior from
an essentially resident or naive initial condition, and (c) some
intrinsic robustness to changes in those environmental resources,
whether steadily shifting trends or inter-annual stochasticity. The
relatively simple, social and memory-driven mechanism was able
to adapt to long-term changes in resource dynamics, even with
inter-annual stochasticity, and may thereby provide a framework
with which the interaction of memory, movement, social and
resource dynamics can be further explored.

Importantly, our model was in no ways evolutionary, as it
contained no birth-death processes or selection pressures. Thus,
we used foraging efficiency as a convenient metric of the utility of
migration, though this was not a measure explicitly maximized
by the model. Other metrics, such as foraging efficiency in a
given season, or probability of survival or reproduction relative to
resource availability (Bauer et al., 2020) may respond differently
across model parameters and could be useful in understanding
the relative success of alternative migratory strategies in different
contexts. However, the overall annually averaged foraging
efficiency metric provided the broadest linkage between resource
dynamics and animals’ locations and was consistent with the
minimal biological assumptions and generality of our framework.

4.1. Adaptation and Resiliency
Our goal was to understand the combinations of factors that
lead to a resilient migration behavior. The model we describe
was a final iteration of a sequence of models which failed to
develop or maintain social migration behavior. For example, in
earlier versions memory was modeled as an attractive advection
mathematically identical to the resource attraction, but with
the attractor being the location of the population in previous
years. These models proved to be inefficient at generating a
consistent social migratory behavior, i.e., only under very specific
parameter combinations and “easy” conditions was a migratory
equilibrium attained, and that equilibrium was highly unstable
to perturbations. Only a clear, directed advective process with
an explicit seasonal signal (i.e., the remembered migration
timing, rates, and targets which were remembered in our model)
could generate the patterns we aimed to capture. This suggests,
somewhat indirectly, that migration behavior is unique as a
fundamental, long-term, and risky strategy, profoundly different
from the kind of tactical resource response which governs
shorter-scaled animal redistributions.

Similarly, iterations of the model that did not have some
amount of social cohesion tended to diffuse away without
establishing a consistent, migratory stationary state. In fact,

sociality parameters—in particular, the spatial scale A—were,
unexpectedly among the most important parameters for
determining the resiliency of the process. Populations with
small spatial scales tended to have a more difficult time locking
in to an adaptive migratory pattern, and only when social
attraction was relatively weak. On the other hand, overly large
spatial scales compromised the ability of the process to track
climate change, due to a dilution of the population’s ability to
concentrate over available resource patches and remember the
corresponding benefits.

The ability to adapt a migration also depended strongly
on properties of the resource dynamics. In particular, the
reinforcement of memory and foraging is strongest when
patches are concentrated in time, but relatively large in space.
Interestingly, in most stable patterns, the eventual targeted
migration arrival time coincided with the peak, rather than the
beginning, of the resource dynamic. This indicates that the long-
distance social migration behavior may be particularly reinforced
when the targeted resource is very sudden. This is the case for the
rapid green-up that occurs in high latitudes as snow recedes in
tandem with extended day lengths leading to an intense green-
up period (Park et al., 2020) or, for example, when resources
are linked to the short-duration early blooming phenology of
very particular plants (Post and Forchhammer, 2007; Renner and
Zohner, 2018).

Even with no strong intrinsic propensity to migrate and
a weak phenological resource pulse to follow, our model
captured the ability to acquire a strong and adaptive migration
behavior (Figure 5). Learning migration, however, requires a very
strong resource attraction, higher levels of exploratory behavior
(e.g., diffusion, and larger spatial scale of sociliaty), and—often—
many more years, findings that echo empirical observations
(Jesmer et al., 2018).

Despite the ability of the process to adapt under many
stable conditions, our migration model (and, perhaps, migration
behaviors in general) can also be considered somewhat fragile.
Under many shifting conditions, e.g., increasing stochasticity,
rapidly shifting resources, a shift in some of the system
parameters, or even a shift in the spatial and temporal extent of
resources, migration can collapse and turn into a non-migratory,
residential behavior (Figure 3). This sensitivity may explain why
partially migratory populations are so common and, apparently,
evolutionary stable (Berthold, 1999; Chapman et al.,, 2011), as
well as the wide range of migration plasticity shown in wild
populations, even within a species (Xu et al., 2021).

4.2. Biological Interpretation of Parameters
Diffusion-advection models of animal and
redistribution are grounded in the general idea that animal
movements, somewhat like movements of physical particles,
combine random (diffusive) components with directed
(advective) components (Skellam, 1951; Turchin, 1998; Okubo
and Levin, 2001). While direct relationships between diffusion
models and movement data are somewhat tenuous (Gurarie and
Ovaskainen, 2011; Potts and Schlagel, 2020), as a theoretical tool
for exploring processes they are invaluable for their versatility

movement
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and the relative ease of numeric computation of the partial
differential equations (PDEs) that describe them mathematically.

Despite its evident abstraction, our goal was to develop
a model where all parameters have well-defined biological
interpretations. The diffusion (¢) captures short time-scaled
randomness of movement, reflecting exploratory and short-term
dispersive behavior. The foraging advection strength («) captures
the attraction of the population to better quality resources at a
relatively large scale. These two parameters, the basic ingredients
in diffusion-advection models of animal movement, have direct
parallels to empirically estimated properties of animal behavior:
diftusion is closely related to families of random walk models
(Gurarie and Ovaskainen, 2011) while the advective taxis is
related to the step and resource selection functions that are
routinely estimated from movement data (Potts and Schldgel,
2020). The spatial scale of the social group (1) captures the spatial
extent of the population, i.e., a population-level home range
(Noonan et al., 2019). Diffusion-advection models can also be
interpreted as a probabilistic description of a single individual’s
movement. In this case, A would correspond to an individual
home-range and 8 would be an individual’s tendency to be drawn
to the center of that home range, akin to an individual migratory
Ornstein-Uhlenbeck process (Gurarie et al., 2017).

The sociality parameter (8) quantifies the strength of an
individual’s desire to approach the center of the social group.
While this parameter is not typically measured, it may in
principle be possible to estimate in a manner analogous to a
step-selection function by replacing environmental variables with
presence of conspecifics as a covariate. The ratio between o« and
B can be interpreted as the relative importance of foraging to
social cohesion, which appears to be important in predicting the
resilience of migration.

Migration timing, rate, and seasonal range location
parameters can be straightforwardly estimated from movement
data (Cagnacci et al., 2015; Gurarie et al., 2019) and synchrony of
migration timing and site fidelity are well-documented for many
migratory species (Joly et al., 2021). Thus, for example, Gurarie
et al. (2019) explicitly estimated the ranging area, timing, and
seasonal range locations for migratory caribou, identifying the
kind of inter-annual variation that is reflected in the stochastic
scenarios explored here, as well as trends in timing.

The reference memory parameter « is, of course, impossible
to observe directly. Our model does, however, allow us to explore
in an heuristic way the conditions under which a strong cultural
tendency to migrate with certain fixed patterns can help a
population hedge against stochasticity (Abrahms et al., 2019;
Fagan, 2019). An extremely conservative behavior is the best way
to hedge against stochasticity with no directional changes (high
k values in Figure 7), as there is no benefit to change behavior
based on recent experiences if they provide no information
about future conditions. However, this extreme conservatism is,
by definition, incapable of adapting when there is a consistent
shift in resource distribution (Figure 8). In cases where both
processes are occurring, we did see a slight improvement in
adaptability when long-term reference memory was balanced
against a strong response to recent experience (see peaks in
Figure 8).

Clearly, our exploration of the model was not exhaustive.
We did not explore, for example, the resilience of the migration
process to changes in resource timing, which would correspond
to the widely observed earlier onset of spring as measured
by green-up and flowering phenology (Cleland et al.,, 2007).
We hope that making the model available, including via
the interactive interface, will facilitate further independent
exploration of these processes.

4.3. Social Learning and Collective

Knowledge
Models have shown that collective knowledge is important, if
not essential, to the evolution and process of migration (Guttal
and Couzin, 2010; Shaw and Couzin, 2013; Berdahl et al., 2018).
Many migratory organisms are social, and social learning is an
acknowledged, non-genetic method for transmitting information
(Kashetsky et al., 2021). Furthermore, the general role of
social learning for improving a population’s ability to track
resources has been studied not just in animal systems, but in
synthetic systems inspired by social behavior of animals such
as optimization heuristics algorithms and the study of swarm
robotics (Sahin, 2005; Brambilla et al, 2013). Because our
model is not individual-based, we can not identify any specific
mechanism (e.g., leader-follower) of social information transfer.
But, in a generic way, our model assumes that migration is
driven by a collective decision for the timing and locations of
seasonal ranges, consistent with the known social and exogenous
(e.g., daylength related) triggers for migration. Further, the
underlying assumption of the migration “urge” is consistent with
the strong endogenous programs to migrate, e.g., the seasonal
restlessness known as Zugunruhe exhibited by many birds
(Berthold, 1999; Helm, 2006). However, in its generic diffusion-
based approach to randomness, our model indirectly captures
individual-level variation in migration parameters, an inevitable
property of any population-level process (Gurarie et al., 2019).
In contrast to the many individual-based models of the
evolution of migration (e.g., Guttal and Couzin, 2010; Anderson
et al., 2013; Shaw and Couzin, 2013), our model did not
include any selection, inheritance or birth or death processes.
For example, Anderson et al. (2013) explored the resilience of a
population under selective pressure under persistent trends and
increased stochasticity of a drifting optimal resource window,
showing that a certain amount of heritable phenotypic plasticity
is necessary to adapt successfully to climate change even at the
cost of efficiency. Our model underscores the fact that some
level of resilience and adaptability can be attained with a purely
cognitive process that balances sociality with long and short
term collective memory. Importantly, this knowledge can be
transmitted through social and cultural, rather than genetic,
pathways. The high level of sociality among migratory animals,
as well as multi-annual parent offspring bonds, are an evident
pathway for that kind of transmission. As with those evolutionary
models, however, it is clear that when changes are too rapid, no
amount of cognition can help entirely mitigate against adverse
outcomes. Furthermore, if behaviors are not sufficiently plastic
(i.e., if k is too close to 1), then adaptation is very difficult.
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Given the slow scale of fitness selection and the constant
change in environmental conditions, it is possible that
certain inherent properties of populations, for example the
“conservatism” captured by the « parameter, are themselves
selected for to maximize resilience over a long time scale in
stochastic environments. The structure of the reference memory
in our model was a rather simplistic approach to introduce
conservatism or lag to the shifting migration parameters. In our
model that reference memory is eventually entirely forgotten,
whereas a more sophisticated approach would separate a
slowly varying cultural memory, perhaps that is transmitted
genetically or culturally, ie., on the scale of generations,
against shorter-scaled responses. In an evolutionary model,
we might hypothesize that the overall rates of long- and
short-term memory shifts would be related both to the scales
of short and long-term fluctuation of the resource, i.e., the
auto-correlation scale, strength of trends, and stochasticity of the
resource dynamics.

4.4. Summary

Rapid environmental change, both global warming and increased
anthropogenic development, is causing severe and dramatic
impacts to the widespread and generally successful strategy
of seasonal migration for many taxa, and the fate of many
animal migrations is a topic of increasing concern (Wilcove
and Wikelski, 2008; Kauffman et al., 2021). The ability
of animals to respond to these changes depends deeply
on their behavioral plasticity and cognitive abilities. The
importance of those abilities is in direct proportion to
the difficulty in studying them directly. By quantitatively

REFERENCES

Abrahms, B., Hazen, E. L., Aikens, E. O., Savoca, M. S., Goldbogen, J. A., Bograd, S.
J., et al. (2019). Memory and resource tracking drive blue whale migrations.
Proc. Natl. Acad. Sci. US.A. 116, 5582-5587. doi: 10.1073/pnas.1819
031116

Anderson, J. J., Gurarie, E., Bracis, C., Burke, B. J., and Laidre, K. L.
(2013). Modeling climate change impacts on phenology and population
dynamics of migratory marine species. Ecol. Modell. 264, 83-97.
doi: 10.1016/j.ecolmodel.2013.03.009

Avgar, T,, Street, G., and Fryxell, ]. M. (2014). On the adaptive benefits of mammal
migration. Can. J. Zool. 92, 481-490. doi: 10.1139/cjz-2013-0076

Bauer, S., McNamara, J. M., and Barta, Z. (2020). Environmental variability,
reliability of information and the timing of migration. Proc. R. Soc. B Biol. Sci.
287,20200622. doi: 10.1098/rspb.2020.0622

Berdahl, A. M., Kao, A. B, Flack, A., Westley, P. A,, Codling, E. A., Couzin,
L. D, et al. (2018). Collective animal navigation and migratory culture: from
theoretical models to empirical evidence. Philos. Trans. R. Soc. B Biol. Sci. 373,
20170009. doi: 10.1098/rstb.2017.0009

Berthold, P. (1999). A comprehensive
control and adaptability of avian
doi: 10.1080/00306525.1999.9639744

Bhattacharyya, A. (1943). On a measure of divergence between two statistical
populations defined by their probability distributions. Bull. Calcutta Math. Soc.
35:99-109.

Bischof, R., Loe, L. E., Meisingset, E. L., Zimmermann, B., Van Moorter, B., and
Mysterud, A. (2012). A migratory northern ungulate in the pursuit of spring:
jumping or surfing the green wave? Am. Nat. 180, 407-424. doi: 10.1086/667590

theory for the evolution,
migration.  Ostrich 70, 1-11.

exploring the properties of a heuristic model that distill
many of the main properties of wild populations in dynamic
and seasonal environments, we hope to have identified
some broad patterns that might guide further empirical
exploration of the cognitive underpinnings of adaptability
and resilience.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

EG and WFF provided the original idea. EG and SP developed
and ran models and analysis. All authors contributed to the
article and approved the submitted version.

FUNDING

EG, WFE, GCC, and RSC were supported in part by NSF award
DMS 1853478. EG and WFF were further partially supported by
NSF grant IIBR 1915347.

ACKNOWLEDGMENTS

The authors are grateful to Quentin Read at SESYNC for
computational support and advice for multi-node multi-core
model runs.

Bracis, C., and Mueller, T. (2017). Memory, not just perception, plays an important
role in terrestrial mammalian migration. Proc. R. Soc. B Biol. Sci. 284, 20170449.
doi: 10.1098/rspb.2017.0449

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics:
a review from the swarm engineering perspective. Swarm Intell. 7, 1-41.
doi: 10.1007/s11721-012-0075-2

Breiman, L. (2001). Random
doi: 10.1023/A:1010933404324

Cagnacci, F., Focardi, S., Ghisla, A., van Moorter, B., Merrill, E. H., Gurarie, E.,
et al. (2015). How many routes lead to migration? comparison of methods
to assess and characterize migratory movements. J. Anim. Ecol. 85, 54-68.
doi: 10.1111/1365-2656.12449

Chapman, B. B., Brénmark, C., Nilsson, J.-A., and Hansson, L.-A. (2011).
The ecology and evolution of partial migration. Oikos 120, 1764-1775.
doi: 10.1111/j.1600-0706.2011.20131.x

Cleland, E., Chuine, I, Menzel, A., Mooney, H. A, and Schwartz, M. (2007).
Shifting plant phenology in response to global change. Trends Ecol. Evol. 22,
357-365. doi: 10.1016/j.tree.2007.04.003

Dingle, H. (2014). Migration: The Biology of Life on the Move. New York, NY:
Oxford University Press

Elzhov, T. V., Mullen, K. M., Spiess, A.-N., and Bolker, B. (2016). minpack.lm: R
Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found
in MINPACK, Plus Support for Bounds. R package version 1.2-1.

Fagan, W., Gurarie, E., Bewick, S., Howard, A., Cantrell, R, and Cosner, C. (2017).
Perceptual ranges, information gathering, and foraging success in dynamic
landscapes. Am. Nat. 189, 474-489. doi: 10.1086/691099

Fagan, W., Hoffman, T., Dahiya, D., Gurarie, E., Cantrell, R., and Cosner, C. (2019).
Improved foraging by switching between diffusion and advection: benefits

forests. Mach. Learn. 45, 5-32.

Frontiers in Ecology and Evolution | www.frontiersin.org

80

October 2021 | Volume 9 | Article 742920


https://doi.org/10.1073/pnas.1819031116
https://doi.org/10.1016/j.ecolmodel.2013.03.009
https://doi.org/10.1139/cjz-2013-0076
https://doi.org/10.1098/rspb.2020.0622
https://doi.org/10.1098/rstb.2017.0009
https://doi.org/10.1080/00306525.1999.9639744
https://doi.org/10.1086/667590
https://doi.org/10.1098/rspb.2017.0449
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1111/1365-2656.12449
https://doi.org/10.1111/j.1600-0706.2011.20131.x
https://doi.org/10.1016/j.tree.2007.04.003
https://doi.org/10.1086/691099
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Gurarie et al.

Sociality, Memory, and Migration

from movement that depends on spatial context. Theor. Ecol. 13, 127-136.
doi: 10.1007/s12080-019-00434-w

Fagan, W. F. (2019). Migrating whales depend on memory to exploit reliable
resources. Proc Nat Acad Sci 116, 5217-5219. doi: 10.1073/pnas.19018
03116

Fagan, W. F.,, Cantrell, R. S., Cosner, C., Mueller, T., and Noble, A. E. (2011).
Leadership, social learning, and the maintenance (or collapse) of migratory
populations. Theor. Ecol. 5, 253-264. doi: 10.1007/s12080-011-0124-2

Festa-Bianchet, M., Ray, J., Boutin, S., Coté, S., and Gunn, A. (2011). Conservation
of caribou (Rangifer tarandus) in canada: an uncertain future. Can. J. Zool. 89,
419-434. doi: 10.1139/211-025

Fryxell, J. M., Greever, J., and Sinclair, A. (1988). Why are migratory ungulates so
abundant? Am Nat. 131, 781-798. doi: 10.1086/284822

Gurarie, E., Cagnacci, F., Peters, W., Fleming, C. H., Calabrese, J. M., Mueller,
T., et al. (2017). A framework for modelling range shifts and migrations:
asking when, whither, whether and will it return. J. Anim. Ecol. 86, 943-959.
doi: 10.1111/1365-2656.12674

Gurarie, E., Hebblewhite, M., Joly, K., Kelly, A. P., Adamczewski, J., Davidson,
S. C., et al. (2019). Tactical departures and strategic arrivals: divergent effects
of climate and weather on caribou spring migrations. Ecosphere 10, €02971.
doi: 10.1002/ecs2.2971

Gurarie, E., and Ovaskainen, O. (2011). Characteristic spatial and temporal scales
unify models of animal movement. Am. Nat. 178, 113-123. doi: 10.1086/660285

Guttal, V., and Couzin, I. D. (2010). Social interactions, information use, and
the evolution of collective migration. Proc Nat Acad Sci 107, 16172-16177.
doi: 10.1073/pnas.1006874107

Hardesty-Moore, M., Deinet, S., Freeman, R., Titcomb, G. C., Dillon, E. M,,
Stears, K., et al. (2018). Migration in the anthropocene: how collective
navigation, environmental system and taxonomy shape the vulnerability
of migratory species. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170017.
doi: 10.1098/rstb.2017.0017

Helm, B. (2006). Zugunruhe of migratory and non-migratory birds in a circannual
context. J. Avian. Biol. 37, 533-540. doi: 10.1111/j.2006.0908-8857.03947.x

Jesmer, B. R., Merkle, J. A., Goheen, J. R, Aikens, E. O. Beck, J. L.,
Courtemanch, A. B, et al. (2018). Is ungulate migration culturally transmitted?
Evidence of social learning from translocated animals. Science 361, 1023-1025.
doi: 10.1126/science.aat0985

Joly, K., Gurarie, E., Hansen, D. A., and Cameron, M. D. (2021). Seasonal patterns
of spatial fidelity and temporal consistency in the distribution and movements
of a migratory ungulate. Ecol. Evol. 11, 8183-8200. doi: 10.1002/ece3.7650

Kashetsky, T., Dukas, R., and Avgar, T. (2021). The cognitive ecology of
animal movement: evidence from birds and mammals. Front. Ecol. Evol.
doi: 10.3389/fevo0.2021.724887

Kauffman, M. J., Cagnacci, F., Chamaillé-Jammes, S., Hebblewhite, M., Hopcraft, J.
G. C., MerKle, J. A,, et al. (2021). Mapping out a future for ungulate migrations.
Science 372, 566-569. doi: 10.1126/science.abf0998

Kolzsch, A., Bauer, S., De Boer, R., Griffin, L., Cabot, D., Exo, K.--M., et al.
(2015). Forecasting spring from afar? Timing of migration and predictability
of phenology along different migration routes of an avian herbivore. J. Anim.
Ecol. 84,272-283. doi: 10.1111/1365-2656.12281

Lin, H.-Y., Fagan, W. F, and Jabin, P.-E. (2021). Memory-driven
movement model for periodic migrations. J. Theor. Biol. 508:110486.
doi: 10.1016/j.jtbi.2020.110486

Merkle, J. A., Monteith, K. L., Aikens, E. O., Hayes, M. M., Hersey, K. R,
Middleton, A. D, et al. (2016). Large herbivores surf waves of green-up during
spring. Proc. R. Soc. B Biol. Sci. 283, 20160456. doi: 10.1098/rspb.2016.0456

Merkle, J. A., Sawyer, H., Monteith, K. L., Dwinnell, S. P. H., Fralick, G.
L., and Kauffman, M. J. (2019). Spatial memory shapes migration and
its benefits: evidence from a large herbivore. Ecol. Lett. 22, 1797-1805.
doi: 10.1111/ele.13362

Mogilner, A., and Edelstein-Keshet, L. (1999). A non-local model for a swarm. J.
Math. Biol. 38, 534-570. doi: 10.1007/s002850050158

Moore, S. E., and Huntington, H. P. (2008). Arctic marine mammals
and climate change: impacts and resilience. Ecol. Appl. 18, S157-S165.
doi: 10.1890/06-0571.1

Noonan, M. J., Tucker, M. A, Fleming, C. H., Akre, T. S., Alberts, S. C., Ali, A.
H,, etal. (2019). A comprehensive analysis of autocorrelation and bias in home
range estimation. Ecol. Monogr. 89, e01344. doi: 10.1002/ecm.1344

Okubo, A., and Levin, S. (2001). Diffusion and Ecological Problems: Modern
Perspectives. New York, NY: Springer Verlag.

Park, H., Jeong, S., and Pe nuelas, J. (2020). Accelerated rate of vegetation green-up
related to warming at northern high latitudes. Glob. Chang Biol. 26, 6190-6202.
doi: 10.1111/gcb.15322

Post, E., and Forchhammer, M. C. (2007). Climate change reduces reproductive
success of an arctic herbivore through trophic mismatch. Philos. Trans. R. Soc.
B Biol. Sci. 363, 2367-2373. doi: 10.1098/rstb.2007.2207

Potts, J. R., and Schligel, U. E. (2020). Parametrizing diffusion-taxis equations from
animal movement trajectories using step selection analysis. Methods Ecol. Evol.
11, 1092-1105. doi: 10.1111/2041-210X.13406

Renner, S. S., and Zohner, C. M. (2018). Climate change and phenological
mismatch in trophic interactions among plants, insects, and vertebrates.
Annu. Rev. Ecol. Evol. Syst. 49, 165-182. doi: 10.1146/annurev-ecolsys-110617-
062535

Riotte-Lambert, L., and Matthiopoulos, J. (2020). Environmental predictability as
a cause and consequence of animal movement. Trends Ecol. Evol. 35, 163-174.
doi: 10.1016/j.tree.2019.09.009

Robinson, R., Crick, H., Learmonth, J., Maclean, 1., Thomas, C., Bairlein, F., et al.
(2009). Travelling through a warming world: climate change and migratory
species. Endanger Species Res. 7, 87-99. doi: 10.3354/esr00095

Sahin, E. (2005). “Swarm robotics: from sources of inspiration to domains of
application,” in Swarm Robotics (Berlin; Heidelberg: Springer), 10-20.

Seebacher, F., and Post, E. (2015). Climate change impacts on animal migration.
Clim. Change Responses 2, 5. doi: 10.1186/s40665-015-0013-9

Shaw, A. K. (2016). Drivers of animal migration and implications in changing
environments. Evol. Ecol. 30, 991-1007. doi: 10.1007/s10682-016-9860-5

Shaw, A. K., and Couzin, I. D. (2013). Migration or residency? the evolution of
movement behavior and information usage in seasonal environments. Am. Nat.
181, 114-124. doi: 10.1086/668600

Skellam, J. G. (1951). Random dispersal in theoretical populations. Biometrika 38,
196-218. doi: 10.1093/biomet/38.1-2.196

Soetaert, K., and Meysman, F. (2012). Reactive transport in aquatic ecosystems:
Rapid model prototyping in the open source software r. Environ. Model. Softw.
32,49-60. doi: 10.1016/j.envsoft.2011.08.011

Soetaert, K., Petzoldt, T., and Setzer, R. W. (2010). Solving differential equations in
R: Package deSolve. J. Stat. Softw. 33, 1-25. doi: 10.18637/jss.v033.109

Turchin, P. (1998). Quantitative Analysis of Movement: Measuring and Modeling
Population Redistribution in Animals and Plants. Sunderland, MA: Sinauer
Associates.

Uboni, A., Horstkotte, T., Kaarlejirvi, E., Sévéque, A., Stammler, F,
Olofsson, J., et al. (2016). Long-term trends and role of climate in
the population dynamics of eurasian reindeer. PLoS ONE 11:e0158359.
doi: 10.1371/journal.pone.0158359

Wilcove, D. S., and Wikelski, M. (2008). Going, going, gone: is animal migration
disappearing. PLoS Biol. 6:e188. doi: 10.1371/journal.pbio.0060188

Xu, W., Barker, K., Shawler, A., Scoyoc, A. V., Smith, J. A, Mueller, T., et al. (2021).
The plasticity of ungulate migration in a changing world. Ecology 102:€03293.
doi: 10.1002/ecy.3293

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Gurarie, Potluri, Cosner, Cantrell and Fagan. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org

81

October 2021 | Volume 9 | Article 742920


https://doi.org/10.1007/s12080-019-00434-w
https://doi.org/10.1073/pnas.1901803116
https://doi.org/10.1007/s12080-011-0124-2
https://doi.org/10.1139/z11-025
https://doi.org/10.1086/284822
https://doi.org/10.1111/1365-2656.12674
https://doi.org/10.1002/ecs2.2971
https://doi.org/10.1086/660285
https://doi.org/10.1073/pnas.1006874107
https://doi.org/10.1098/rstb.2017.0017
https://doi.org/10.1111/j.2006.0908-8857.03947.x
https://doi.org/10.1126/science.aat0985
https://doi.org/10.1002/ece3.7650
https://doi.org/10.3389/fevo.2021.724887
https://doi.org/10.1126/science.abf0998
https://doi.org/10.1111/1365-2656.12281
https://doi.org/10.1016/j.jtbi.2020.110486
https://doi.org/10.1098/rspb.2016.0456
https://doi.org/10.1111/ele.13362
https://doi.org/10.1007/s002850050158
https://doi.org/10.1890/06-0571.1
https://doi.org/10.1002/ecm.1344
https://doi.org/10.1111/gcb.15322
https://doi.org/10.1098/rstb.2007.2207
https://doi.org/10.1111/2041-210X.13406
https://doi.org/10.1146/annurev-ecolsys-110617-062535
https://doi.org/10.1016/j.tree.2019.09.009
https://doi.org/10.3354/esr00095
https://doi.org/10.1186/s40665-015-0013-9
https://doi.org/10.1007/s10682-016-9860-5
https://doi.org/10.1086/668600
https://doi.org/10.1093/biomet/38.1-2.196
https://doi.org/10.1016/j.envsoft.2011.08.011
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.1371/journal.pone.0158359
https://doi.org/10.1371/journal.pbio.0060188
https://doi.org/10.1002/ecy.3293
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Gurarie et al.

Sociality, Memory, and Migration

APPENDIX

A. SUPPLEMENTARY MATERIAL

A.1. Drifting Resource
The drifting resource function has the following properties:

1. The total amount of resource across space is constant

throughout the year.

At the beginning, middle, and end of the year the resource is

uniformly distributed.

At some peak time u; < /2, the resource concentrates at a

location pu, < x with a spatial deviation oy and a temporal

deviation o; (where 7 is the length of the year and x is the

extent of the spatial domain).

. The resource peaks exactly symmetrically at time t — j; and
location — 1, with the same variances.

To generate a resource with these properties, we allocated the
resource in space as a beta distribution, where the two shape and
scale parameters vary sinusoidally in such a way as to fulfill the
criteria above. Thus:

h(x,t,0) = xB(x/x,a(t,0),b(t,0))

where yx is the maximum value (domain) of x, B(x,a,b)
is the beta distribution, 0 represents the set of parameters

tr, Xy, 01,0x, and the two shape parameters are given
by:
m
a(t) = —2(52 +m—m?)
s
/ I m
b(t,x,a):(m—l)(l—i——(m—l))
s
where m(t) and s(t) describe the dynamic mean
and variance of the resource peak. These equations
are solutions to the mean and variance of the
beta distribution, u = a/@ + B), o? =
af
(a4B)*(a+B+1)"

The means and variances themselves are Gaussian pulses,
with the mean peaking at ., at time p; with standard deviation
oy and at —u, at time t — uy and the standard deviation
pulsing from 2 /+/12 (corresponding to a uniform distribution
over the domain —y to x) at times 0, 7/2 and t down
to oy at t, and t — t,, with standard deviation (in time)
Ot.
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Adaptive cognitive biases, such as “optimism,” may have evolved as heuristic rules
for computationally efficient decision-making, or as error-management tools when
error payoff is asymmetrical. Ecologists typically use the term “optimism” to describe
unrealistically positive expectations from the future that are driven by positively biased
initial belief. Cognitive psychologists on the other hand, focus on valence-dependent
optimism bias, an asymmetric learning process where information about undesirable
outcomes is discounted (sometimes also termed “positivity biased learning”). These
two perspectives are not mutually exclusive, and both may lead to similar emerging
space-use patterns, such as increased exploration. The distinction between these
two biases may becomes important, however, when considering the adaptive value
of balancing the exploitation of known resources with the exploration of an ever-
changing environment. Deepening our theoretical understanding of the adaptive value of
valence-dependent learning, as well as its emerging space-use and foraging patterns,
may be crucial for understanding whether, when and where might species withstand
rapid environmental change. We present the results of an optimal-foraging model
implemented as an individual-based simulation in continuous time and discrete space.
Our forager, equipped with partial knowledge of average patch quality and inter-
patch travel time, iteratively decides whether to stay in the current patch, return to
previously exploited patches, or explore new ones. Every time the forager explores
a new patch, it updates its prior belief using a simple single-parameter model of
valence-dependent learning. We find that valence-dependent optimism results in the
maintenance of positively biased expectations (prior-based optimism), which, depending
on the spatiotemporal variability of the environment, often leads to greater fitness gains.
These results provide insights into the potential ecological and evolutionary significance
of valence-dependent optimism and its interplay with prior-based optimism.

Keywords: movement ecology, giving-up density, marginal-value theorem, optimal foraging, cognition, risk
allocation, landscape of fear, exploration - exploitation

INTRODUCTION

Cognitive biases are “consistent deviations from an accurate perception or judgment of the world”
(Fawcett et al., 2014). Such biases, as well as their associated costs and benefits, are increasingly
studied by biologists, psychologists and neuroscientists (Marshall et al., 2013). The general
consensus is that some cognitive biases may be beneficial under ecologically relevant conditions
and incomplete information, suggesting they are an adaptive product of natural selection. Adaptive
cognitive biases may have evolved as either heuristic rules for computationally efficient decision
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making, i.e., as computational “shortcuts” to avoid information-
processing limitations (Haselton et al., 2015; Trimmer, 2016), or
as error-management tools when error payoff is asymmetrical
(Tversky and Kahneman, 1974; Haselton et al., 2015; Bateson,
2016; Trimmer, 2016; Jefferson, 2017; Trimmer et al., 2017).

The disposition to expect a favorable outcome when faced
with uncertainty is a well-studied cognitive bias, often termed
“optimism”. A behavioral decision can be defined as optimistic
if it is consistent with having a positively biased expectation
of reward, or a negatively biased expectation of punishment
(Bateson, 2016). Ecologists typically use the term “optimism” to
describe a positively biased innate or initial belief (McNamara
et al.,, 2011; Berger-Tal and Avgar, 2012; Houston et al., 2012;
Marshall et al., 2015; Krakenberg et al., 2019), which we will refer
to hereafter as “prior-based” optimism. Consequently, ecological
research on optimism mostly focuses on the role of prior
knowledge in creating cognitive biases, leading to circumstances
in which animals treat resources that are seemingly identical
as strikingly different, depending on their past experiences
(Stroeymeyt et al., 2011; Berger-Tal et al, 2014a). Notably,
the acquisition of this prior knowledge may range from the
immediate time scale (Bateson et al., 2011; Hui and Williams,
2017), to experiences acquired through the individuals life,
development or maternal effects, or even evolutionary history
(Murphy et al., 2014; Bateson et al., 2015).

Unlike ecologists, human cognitive psychologists often focus
on valence-dependent learning as the basis for optimism
(sometimes also termed “positivity bias”). Healthy human
subjects are known to display unrealistically positive expectations
about the future that are driven by an asymmetric learning
process, where information about undesirable outcomes is
discounted while information about desirable outcomes in
amplified (Weinstein, 1980; Sharot, 2011; Kuzmanovic et al.,
2015; Gesiarz et al., 2019; Garrett and Daw, 2020). Interestingly,
subjects suffering from depression display valence-dependent
pessimism - due to an overemphasis on information about
undesirable outcomes, their expectations about what the future
holds are typically grimmer than what they should be based
on the information they have (Strunk et al., 2006; Sharot et al,,
2007). The proximate mechanisms underlying this phenomenon
have been extensively studied in humans, as well as its
consequences (Sharot et al., 2007, 2012; Sharot, 2011; Lefebvre
et al, 2017; Dundon et al,, 2019). These consequences may
range from positive effects of mild optimism on various aspects
of human wellbeing, to negative effects of extreme optimism
that may extend as far as global financial collapse (Johnson
and Fowler, 2011; Sharot, 2011; Jefferson, 2017). Optimism bias
is thus considered the only form of misbelief in humans that
may have evolved as an adaptive trait (McKay and Dennett,
2009; Johnson and Fowler, 2011; Marshall et al., 2015). To
sum, whereas the ecological perspective on optimism translates
into a biased belief that erodes toward the truth with the
accumulation of experience (a rigid learning process; Berger-Tal
and Avgar, 2012), the psychological perspective translates into
a dynamic learning process, where biased beliefs do not erode
but instead continuously update at a rate that is proportional
to the magnitude of environmental changes (Stankevicius et al.,
2014; Kuzmanovic et al, 2015; Bateson, 2016). Importantly,

valence-dependent optimism (or pessimism) is a plausible
mechanism for the emergence of temporally dynamic prior-
based optimism (or pessimism), even in the absence of
environmental change.

The study of optimism may be particularly relevant to
the well-known trade-off between exploration and exploitation
(Berger-Tal et al., 2014b; Mehlhorn et al., 2015; Addicott et al.,
2017). Consumers, whether they are foraging animals, capital
investment firms, or fishing vessels, are constantly balancing
known resource exploitation with the time and energy devoted
to exploring new resources in order to reduce uncertainty and
broaden their portfolio (Cohen et al., 2007; Berger-Tal et al.,
2014b; Bartumeus et al, 2016; Votier et al, 2017; Kembro
et al., 2019; O’Farrell et al.,, 2019). The trade-off stems from
the fact that gathering information and exploiting it are, to a
large degree, two mutually exclusive activities (March, 1991).
Exploratory behavior is, however, typically viewed under one
of two contrasting perspectives (Warren et al., 2017). One
assuming that exploration tendencies have evolved as an adaptive
trait in itself, treating information as independently sought-
after currency (Dall et al., 2005; McNamara and Dall, 2010;
Marvin and Shohamy, 2016). The contrasting, and arguably more
mechanistically parsimonious perspective, views exploration as
an emerging pattern rather than an adaptive process. Under
this view, exploratory behavior emerges from the interactions
between simple foraging heuristics, the informational state of
the animal, and the environment (Berger-Tal and Avgar, 2012;
Avgar et al,, 2013; Riotte-Lambert et al., 2017; Davidson and
El Hady, 2019). For example, a consumer’s decision to exploit
a known resource or explore a new one would depend on the
perceived likelihood that exploration would lead to improved
long-term payoft (i.e., over multiple consumptive events), which
in turn depends of the consumer’s belief about the availability
and quality of yet unexplored resources. Thus, an optimistic
consumer will tend to “favor” exploration over exploitation
(Berger-Tal and Avgar, 2012), although the adaptive value of
this strategy will depend on the dynamics of the environment
across space and time.

Optimal Foraging Theory, perhaps more than any other
branch of ecology, emphasizes the importance of prior knowledge
in determining animal decision-making in the context of the
exploration-exploitation tradeoff. Optimal foragers are expected
to maximize their long-term intake rate by exploring new
patches when their current exploitation rate falls to a rate
that is equal to the average intake rate in the surrounding
environment (Charnov, 1976; Brown, 1988). However, real-
world environments are constantly changing, and foragers do
not possess perfect information about them. Bayesian Foraging
Theory addresses this reality by assuming that the forager’s
decisions are based on a prior belief about the expected value
of the environment, and about the variability around this
expectation, a belief that is constantly being updated as the
forager acquires new knowledge (Green, 2006; McNamara et al.,
2006; Biernaskie et al., 2009; Berger-Tal and Avgar, 2012).
A positively biased prior belief about the quality of other
patches thus corresponds to “optimism” as it is typically used
by ecologists (prior-based), whereas a positively biased updating
of this belief (learning more from positive compared to negative
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reinforcements) corresponds to “optimism” as it is typically
used by psychologists (valence-dependent). If the environment
does not change across space and time, and in the absence of
valence dependence, prior-based optimists would converge to the
optimal exploration rate after learning the true expected value of
the environment.

We have previously shown that, in the absence of valence
dependence, prior-based optimists are expected to outperform
prior-based pessimists (foragers with a negatively biased initial
belief about the expected quality of the environment), and,
when capable of revisiting patches following a resource renewal
process, prior-based optimists should outperform unbiased
foragers (Berger-Tal and Avgar, 2012). As far as we are aware,
the temporal dynamics and foraging performance of valence-
dependent optimists (or pessimists) has not yet been explored
in an ecological context, nor have the emerging space-use
patterns and consequences of such biased learners when faced
with a rapidly changing environment. Our goal here is thus
twofold; first, we aim to map the (theoretical) fitness response
to various degrees of valence-dependencies under different
ecological scenarios, and second, we aim to derive expectations
about the relationship between the two types of optimism bias,
environmental characteristics, and animal space-use patterns.

MATERIALS AND METHODS

Model Description

The model used here is an individual-based, fitness-maximizing
simulation, in continuous time and discrete (albeit implicit)
space. This model builds and expends on a model we developed
a decade ago to explore the role of prior-based optimism
in optimal foraging under uncertainty (Berger-Tal and Avgar,
2012). Simulations start with the forager arriving in a new
patch equipped with some initial energy reserves, E(t = 0),
and prior beliefs about the average quality of patches on the
landscape, Q(t = 0), and the average travel time between
patches, T (t = 0). Energy is gained by consuming discrete “food
units” (a mouthful, a bite, or a single resource item), and the
duration of each such consumption event, At, is calculated based
on current food availability in the occupied patch, k, following a
Type II functional response with search rate a and handling time
h (Holling, 1959):

At = (a-k) ' +h

Energy is lost via a constant field metabolic rate, FMR, or
via reproduction, with a per-offspring reproductive cost, E;.
The forager reproduces whenever energy reserves exceeded the
sum of its initial energy reserves and its reproductive cost
(E(t) > E(t = 0)+ E;), at which point its energy reserves
are adjusted accordingly (E(t) <— E(t) — E;). If at any time,
the forager’s net energy reserve is insufficient (E(f) < 0), the
forager dies of “starvation”. The forager may also die due
to “predation” with per-unit-time probabilities piayel (When
traveling between food patches) and pyorqge (When foraging within
a patch). Simulations end with the forager either dying, or
reaching a predefined longevity threshold, tm,c. The forager’s

fitness is its lifetime reproductive success — the total number
of offspring it produced. Fitness is thus a product of two
aspects of the forager’s resource-consumption rate: its long-term
mean (which directly translates into reproductive rate), and its
temporal variability (which enhances the risk of starvation and
predation). The longer a forager lives, and the more it was able to
consume during its lifetime, the greater would be its fitness.
After each consumption event, the forager “decides” (sensu
Leavell and Bernal, 2019) whether to stay in the current patch,
travel to a previously visited (memorized) patch, or travel in
search of a new patch. The decision to leave the current patch is
based on the forager’s expectation regarding the optimal Giving-
Up Density (GUD; the amount of resources left in a departed
patch; Brown, 1988) and associated time and predation costs:

(1) First, assume it is best to leave the current patch; the
current food availability in this patch is the optimal GUD
and so assume that the next patch will be utilized until it
reaches this GUD.

(2) Based on this assumption, calculate expected consumption
rates in each of the alternative patches: n memorized
patches + one yet-unvisited patch. Note that n does
not remain constant through the simulation but rather
increases as the forager visits more and more patches.
The expected consumption rate is calculated by dividing
the expected cumulative food intake in each of these
patches (the patch’s expected quality minus the GUD)
by the expected time it will take to reduce each to the
GUD, tigup (i = 1:n+1) (Olsson and Brown, 2006).
T,GUD = Ti travel T Ti forage> where Ti travel 1S the expect
time it will take to travel from the current patch to patch
i, whereas T; frq¢ is the expected time it will take to deplete
patch i to the GUD (the sum of all Af’s starting from k =
expected patch quality, and endingatk = GUD + 1).

(3) For each of these alternative patches, also calculate the
expected survival based on the expected time in each of
two movement states (travel and forage), Ti travel and T;, forage
('t,-,GUD = T travel + Ti,forage). The average per-unit-time
probability of surviving predation (until GUD is reached)
is then given by:

Si = tII'GU{)/[I _Ptmvel]n)mm ’ [1 _pforage]n)fomge

(4) Next, assume instead that it is best to stay in the
current patch for (at least) the duration of the next
consumption event, and hence the optimal GUD is the
current food availability in this patch, minus one. Under
this assumption, it is best to forage in the current patch
(i = 0) for the duration of the next consumption
event (Ti—o,gup = Ti=0,forage = At), with an associated
consumption rate of ti_zlo,GUD’ and average per-unit-time
probability of surviving predation, si=0 = Pforage -

(5) “Decide” whether to stay in the current patch or
leave to either of the n+ 1 alternative patches, by
choosing the option that maximizes the product of the
expected consumption rate and the average per-unit-time
probability of surviving predation (s; ).
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Once a decision is made, a “starvation mortality”
terminates the simulation if the forager’s energetic reserve
(E(t)) is lower than the product of its FMR and the
time elapsed since its previous bite. The simulation may
also end due to a “predation mortality”, with probability

b ([1 —P traVel]Ttran(t) ’ [1 _Pforage]tfumgcm

is the realized duration of traveling (tyyel (£) = O if the forager
did not leave the patch), and Tfyrage (f) is the time to consume
the next bite. If the forager survived, the focal patch’s quality
is updated by subtracting one bite, and E (t) is updated by
adding one bite and subtracting FMR expenditure (and, if
E(t) > E(t=0)+ E,, reproductive cost). If the forager moved
to a previously unvisited patch, then n is updated accordingly
(n <= n+1). The qualities of the n previously visited patches
are updated after each consumption event based on a stochastic
logistic regrowth model.

The forager is assumed to “know” the concurrent qualities
of all patches it has visited before, as well as the times it
takes to travel between any particular pair of patches, as
long as that particular journey was undertaken at least once
before. What the forager does not know with certainty is
the quality (food abundance) of yet unexplored patches, and
the travel time between pairs of patches it did not visit
sequentially before. Instead, the forager relies on its current
(at time t) beliefs about average patch quality, Q (f) and travel
time, T (f). Once a new inter-patch journey is decided on
or a new patch is visited, the true duration of that journey,
Travel (), or the true quality of that patch, k(f), are sampled
from two respective Gamma distributions, each with its own
characteristic mean and variance. The foraging environmental
is characterized by the values of these means and coefficients of
variation (CV = «/variance/mean). The forager’s beliefs about
the expected values of these quantities is then updated using a
simple yet powerful linear approximation to Bayesian learning
(McNamara and Houston, 1987; Lange and Dukas, 2009; Berger-
Tal and Avgar, 2012):

)r where  Trayel (1)

’ T({t4+1) = 07 () Tyave () + [1 =07 (H)] - T (¢)
Qt+1v) =0 k@) +[1-001)] Q1)

where 67 (f) and 6q (f) are (temporally dynamic) normalized
weights [0, 1].

The novelty of our approach lies in introducing valence-
dependent learning by allowing the 67 (¢) and 6¢ (t) to vary with
the difference between the current beliefs, T (t) and Q (¢), and
newly acquired information, Ty () and k (¢):

_ nr
01 () = ST e T ®—TOD
0o (1) = 10
no+(1-nq)-exp(ao-[QMO—k®])

Here, nr and ng [0, 1] are the basal normalized weights
(learning rates in the absence of a valence effect; unitless),
whereas ot and ag are valence-dependent learning parameters
(with units of time™! and quality~!, respectively). Positive
values of ar and aqg correspond to an increase in the
respective normalized weights whenever Tyape (f) < T (f)
or Q(t) < k(t), emphasizing new information when this

information exceeds expectations. Negative values of ar and aq
correspond to an increase in their respective normalized weights
whenever Tyaye (1) > T () or Q(f) > k(t), emphasizing new
information when this information is disappointing compared to
expectations. Consequently, for each of the two environmental
variables (patch quality and inter-patch travel time), our model
has two “cognitive traits”. The basal normalized weight, 0, is
inversely related to the effect of prior-based judgment bias;
in the absence of valence-dependent learning (o = 0), new
information has little effect on the forager’s initial beliefs [i.e.,
Q(t=0) and T (t = 0)] if it is low (close to 0), whereas new
information is heavily weighted and hence prior beliefs are
quickly eroded if it is high (close to 1). The valence-dependent
learning parameter, o, is our mathematical depiction of valence-
dependent judgment bias; if it is positive, the forager’s beliefs are
affected more by new information if that information is positive
(“optimism”), and vice versa.

Through their effects on the forager’s space-use decisions
(when and where to go), ar and aq affect the forager’s
resource acquisition rate, risk of starvation, and exposure to
predation. Everything else being equal, those values of ar and
aq that result in the greatest lifetime reproductive success (a
product of longevity and consumption rate), are expected to be
evolutionary adaptive.

Numerical Experiments

Our numerical experiments consisted of running 1,000 stochastic
realizations of the simulation across a full factorial design
of parameter and variable values, as detailed in Table 1.
While there are many axes along which our model could be
investigated, our focus here is on optimal valence-dependent
learning bias and its dependence on environmental variability
and prior-based bias. Environmental variability is manifested
in our “experiments” along two orthogonal axes. First, we
varied the coefficients of variation of patch qualities and inter-
patch travel times [CV (Q) and CV (T)] while keeping the
mean values constant (variability across space). High CV (Q)
means patches are more heterogeneous in their quality across
space, and an exploring forager is more likely to encounter
either an exceptionally rich patch, or an exceptionally poor
one. High CV (T) means patches are more aggregated in space,
and an exploring forager is more likely to travel either for an
exceptionally short time, or for exceptionally long time, before
encountering a new patch. Second, we varied the prior belief the
forager held with regards to each of these two landscape attributes
at the beginning of the simulation [Q(t = 0) and T (t = 0)],
reflecting a mismatch between the foragers expectations and
the true environmental characteristics (e.g., due to abrupt
change in mean environmental qualities; variability across time).
By varying Q(t = 0) and T (t = 0), rather than Q and
T, we are able to compare foraging performance, and the
resulting fitness, across different scenarios while keeping the
mean characteristics of the environment constant. We envision
a shift into a relatively enriched Q> Q(t =0) or T <
T(t =0)] ordegraded [Q <Q(t =0)orT > T(t =0)]
environment as one possible cause of prior-based pessimism or
optimism, respectively.
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TABLE 1 | the various parameters and state variables used in our numerical experiments.

Name Description

Numerical values

Qand T
travel time from one patch to another

mean patch quality (in the absence of depletion), and mean

100 and 10 (respectively)

CV (Q) and CV (T) coefficients of variation of patch quality and travel time 0.1,0.5,0r 1
Qt=0and T (t=0) initial (prior) belief about mean patch quality and travel time 50%, 100%, or 150% of Q and T respectivaly
FMR field metabolic rate 0.5*
E, energetic cost or producing a single offspring FMR-Q
E({=0) initial energy reserves E,
tmax maximum longevity 10,000
Diravel predation risk (per-unit-time) while travelling between a1, 2 tmax 1, OF 3 - tmax |
patches
Prorage predation risk (per-unit-time) while foraging in a patch 0.1 - Prravel
h the Type Il functional response’s handling time 1
a the Type Il functional response’s search rate 0.02**
r logistic rate of forage regrowth 0.003***
ng and nr basal normalized weights for updating Q(t) and T (t) 0.01
ag and ar valence-dependent learning parameters for updating Q(t) —e?, —e', 60, —e71, —e72, —e3 —e74,

and T (t)

—e50,e % e e e? e el el ore?

*FMR was set so as to equal the energetic consumption rate at half Q **Search rate was set so that consumption rate at half Q is half the maximum consumption rate
). ***Forage growth rate was set so that, at its maximum (i.e., at half Q), exactly one bite will regrow in the expected time it takes the forager to consume one bite at

half Q and travel to a new patch.

To reduce dimensionality (and hence make our results as
general as possible), we expressed several non-focal parameters
and variables as functions of others (Table 1). That said, we
acknowledge that the robustness of our results depends on
a comprehensive factorial sensitivity analysis, an analysis that
we view as the next step along this line of investigation. To
summarize our results, the outputs of each scenario (1,000
vectors of the various state variables) were bootstrapped 1,000
times, each time recording the average starvation rate, longevity,
consumption rate, and lifetime reproductive output, as well as
other attributes of the simulated realizations, such as the average
GUD or home range size (number of unique patches utilized over
the forager’s lifetime).

RESULTS

First, we examine the relationship between our valence-
dependent learning parameters and the resulting beliefs held
by the foragers at the end of the simulation (Figure 1 and
Supplementary Figure 1). The terminal belief (held at the
end of the simulation) about the mean patch quality, Q (end),
is always biased low (pessimism) at large negative values of
the valence-dependent Q-learning parameter (0q < 0; valence-
dependent pessimism), and high (optimism) at large positive
values of aq (valence-dependent optimism). The ag value at
which an unbiased terminal belief is obtained (Q (end) = Q)

decreases with the initial prior belief (Q (f = 0)), and the strength
of the effect increases with spatial variability in patch quality
(CV(Q)). These results are mirrored in the relationship between
ar and T (end) (Supplementary Figure 1). Note that, high
spatial variability in either patch quality or inter-patch travel

time translates into skewed distributions of these attributes (for
the Gamma distribution, skewness = 2 - CV). As a result, the
magnitude of terminal optimism at o >> 0 is much larger than
the magnitude of terminal pessimism at aq < 0 (Figure 1, lower
panels), and the magnitude of terminal optimism at ar > 0 is
much smaller than the magnitude of terminal pessimism at ar >
0 (Supplementary Figure 1, lower panels).

The fitness-maximizing value of the valence-dependent Q-
learning parameter (o), varies with environmental variability
across space and time (Figure 2). Moderate valence-dependent
optimism (aq > 0) is adaptive (i.e., it results in greater lifetime
reproductive output) in six out of the nine scenarios depicted in
Figure 2. Valence-dependent optimism is associated with greatest
(relative) fitness gain when the forager is also a “prior-based
pessimist” (which may be interpreted as a shift into an enriched
environment), and when spatial variability in patch quality is
high. Valence-dependent pessimism (o < 0) is adaptive in only
two out of the nine scenarios, when the forager is “prior-
based optimist” (which may be interpreted as a shift into a
degraded environment), and the spatial variability of patch
quality is medium or low. It should be noted that the shape and
magnitude of these response curves vary with values of T (t = 0),
CV (T), and all other variables and parameters (e.g., Piravels
Supplementary Figure 2). Overall, however, across all scenarios,
moderate valence-dependent optimism with regards to patch
quality is the most common fitness-maximizing strategy (146 out
of 243 scenarios).

The fitness effect of the valence-dependent T-learning
parameter (ar) follows similar trends but is less pronounced
than the effect of ag (Supplementary Figure 3), which is
to be expected considering the range of T is an order of
magnitude smaller than that of Q. For the same reason, in those
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FIGURE 1 | Terminal belief (at the end of the simulation) about the mean patch quality as function of valence-dependence for patch quality (positive values of ag
correspond to valence-dependent optimism whereas negative values correspond to valence-dependent pessimism). Vertical dashed lines denote unbiased learning
(ag = 0), whereas horizontal dashed lines denote an unbiased terminal belief(Q (end) = Q). Different panels refer to different scenarios: low (Q(t = 0) = 50),
unbiased (Q(t = 0) = 100), and high (Q(t = 0) = 150) initial prior belief (columns), and low (CV/(Q) = 0.1), medium (CV(Q) = 0.5), and high (CV(Q) = 1) spatial variability
(rows). In each scenario, a7 was kept constant at its optimal (fitness maximizing) value. T(t = 0) = T = 10; CV(T) = 0.5; Pyavel = tmax~ | Other parameters and
variables were as detailed in Table 1.

scenarios where valence-dependent optimism is adaptive, it is
typically extreme (ar >> 0; Supplementary Figure 3). Valence-
dependent optimism is adaptive in unchanged or newly enriched
environments (i.e., for unbiased or pessimistic priors), but only
when CV(T) is moderate or high (patches are aggregated in
space). When CV(T) is low, ar has no significant effect on
lifetime reproductive success. When the environment is newly
degraded (i.e., for prior-based optimists) and CV(T) is high,
lifetime reproductive success is maximized when ar =0 (i.e.,
unbiased learning; Supplementary Figure 3). Overall, across all
scenarios, valence-dependent optimism with regards to travel
time is the most common fitness-maximizing strategy (121 out
of 243 scenarios).

As for the adaptive value of prior-based biases, optimism is,
most often, the fitness maximizing strategy. For both medium
and high spatial variability in patch quality, absolute fitness is
highest for prior-based optimists, and lowest for prior-based
pessimists, across all levels of valance-dependent learning (lower
panels of Figure 2 and Supplementary Figure 2). This is also
true, albeit to a lesser degree, for prior-based optimism with
regards to travel time; for a given value of ar, the absolute

fitness value is highest when the forager is a prior-based
optimist, and lowest when the forager is a prior-based pessimist
(Supplementary Figure 3).

To gain better understanding of these results, we examine
the effects of our valence-dependent learning parameters on the
components of fitness, namely consumption rate and longevity
(lifetime reproductive success is the product of these two
variables; Figures 3, 4). The effects of the valence-dependent Q-
learning parameter (ag) on consumption rates follow similar
trends to those described above for lifetime reproductive
output (Figure 3). Mild valance-dependent optimism is
advantageous in newly enriched environments (i.e., for prior-
based pessimists), whereas valance-dependent pessimism is
only advantageous in relatively homogenous [low CV(Q)] and
newly degraded environments (i.e., for prior-based optimists).
Prior-based optimism about patch quality is associated with
a marked increase in absolute consumption rates across
all ag values, under both moderate and high values (Figure 3).
As for the effect of our valence-dependent T-learning parameter
(ar) on consumption rates (Supplementary Figure 4), valence-
dependent optimism is advantageous in unchanged or newly
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FIGURE 2 | Lifetime reproductive output as function of valence-dependence for patch quality (positive values of ag correspond to valence-dependent optimism
whereas negative values correspond to valence-dependent pessimism). Vertical dashed lines denote unbiased learning (ag = 0). Different panels refer to different
scenarios: low (Q(t = 0) = 50), unbiased (Q(t = 0) = 100), and high (Q(t = 0) = 150) initial prior belief (columns), and low (CV(Q) = 0.1), medium (CV(Q) = 0.5), and high
(CV(Q) = 1) spatial variability (rows). In each scenario, ar was kept constant at its optimal (fitness maximizing) value. T(t = 0)

T-= 10; CV(T) = 0.5; Prraves = tmax™';

enriched environments (i.e., for unbiased or pessimistic priors),
but only when CV/(T) is moderate or high (patches are aggregated
in space). When CV(T) is low, ar has no significant effect on
consumption rate. When the environment is newly degraded
(i.e., for prior-based optimists) and CV(T) is moderate or
high, consumption rates are maximized when ar =0 (ie.,
unbiased learning; Supplementary Figure 4). Finally,
prior-based optimism about inter-patch travel times is
associated with small but significant increase in absolute
consumption rates across all a values, under both moderate and
high CV(T) values (Supplementary Figure 4).

Across all scenarios and parameters values, our simulated
foragers typically “died” of “natural causes” (either predation
or starvation), with less than 0.01% of simulations reaching
fmax (our maximum longevity cutoff). Variability in longevity
(Figure 4) is driven primarily by variability in starvation
mortality  (Supplementary Figure 6); individuals that
die young typically die from starvation, whereas those
that live long, eventually die of predation (Figure 4 and
Supplementary Figures 5, 6). When spatial variability in patch
quality is low (CV (Q) =0.1), valence-dependent optimism
is associated with longer life span (higher probability of

survival) in newly enriched environments (compared to the
forager’s initial expectation, i.e., for prior-based pessimists),
whereas valence-dependent pessimism is associated with longer
life span in newly degraded environments (compared to the
forager’s initial expectation, i.e., for prior-based optimists;
Figure 4). In contrast, when spatial variability in patch quality
is moderate or high (CV (Q) > 0.5), longevity is typically
maximized in the absence of valence-dependent learning
(although slight deviations from aq = 0 have little effect), with
the exception of prior-based pessimists under intermediate
environmental variability, where mild optimism is associated
with distinctly longer life span (Figure 4). Longevity is otherwise
insensitive to the prior-based bias, and is also unaffected by
the value of the valence-dependent T-learning parameter
(Supplementary Figure 7).

Lastly, we examine the relationship between our valence-
dependent learning parameters and emerging space-use patterns
(Figure 5). Movement rate (% time spent travelling; Figure 5A)
remain mostly unaffected by the valence-dependent Q-learning
parameter, until the latter reaches large positive values (extreme
valence-dependent optimism), where movement rate doubles
and then plateaus. Exploration rate (% patch departures to new
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FIGURE 3 | Consumption (feeding) rate as function of valence-dependence for patch quality (positive values of aq correspond to valence-dependent optimism
whereas negative values correspond to valence-dependent pessimism). Vertical dashed lines denote unbiased learning (ag = 0). Different panels refer to different
scenarios: low (Q(t = 0) = 50), unbiased (Q(t = 0) = 100), and high (Q(t = 0) = 150} initial prior belief (columns), and low (CV(Q) = 0.1), medium (CV(Q) = 0.5), and high
(CV(Q) = 1) spatial variability (rows). In each scenario, ar was kept constant at its optimal (fitness maximizing) value. T(t = 0) = T = 10; CV(T) = 0.5; Pavel = tmax ™ '
other parameters and variables were as detailed in Table 1.

patches; Figure 5B) show a double sigmoidal increase pattern
with aq, with an intermediate plateau at moderate aq values
(mild pessimism or optimism), followed by full saturation (all
patch departures are explorations) at large positive o values.
Home-range size (number of unique patches used by a forager
over its lifetime; Figure 5C), and patch giving-up densities (GUD;
Figure 5D) follow a similar pattern as that or exploration rate.
As with other results, these patterns were similar for the effect
of ar, although exploration rate was mostly insensitive to ar.
These patterns also showed slight sensitivities to the values of
other variable and parameters, but were otherwise qualitatively
similar across all scenarios. Overall, valence-dependent optimists
explore more and consequently occupy larger home ranges, and
have higher giving-up densities (exploit less), then unbiased or
pessimistic learners.

DISCUSSION

Throughout their evolutionary history, animals faced novel
environments and situations primarily following dispersal
into new territories (Ronce, 2007; Dingle, 2014). However,

human-induced rapid environmental changes (HIREC; Sih et al.,
2016) makes encountering novel stimuli the rule rather than the
exception under many natural situations. Moreover, conservation
translocations (in which humans deliberately release animals into
novel environments) are increasingly used for the conservation
of species or the restoration of ecosystems (Berger-Tal and Saltz,
2014; Berger-Tal et al., 2020). Successful conservation therefore
depends on understanding how animals might cope with novel
environments and stimuli (Dunlap et al., 2017; Crowley et al.,
2019), and how they balance their exploration and exploitation
needs in an unknown environment. Optimism is likely to play an
important role in decision-making under novel situations, since
it is thought to encourage exploration and increase movement
rates and home range sizes. This seems to be the case regardless
of the suggested mechanism for this cognitive bias - either a
positively biased initial belief (“prior-based” optimism; Berger-
Tal and Avgar, 2012), or an asymmetric learning process where
information about undesirable outcomes is discounted (“valence-
dependent” optimism; Figure 5).

In this manuscript, we examined the adaptive value of
valence-dependent optimism (positivity biased learning).
Valence dependence is the main mechanism used by cognitive
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(CV(Q) = 1) spatial variability (rows). In each scenario, ar was kept constant at its optimal (fitness maximizing) value. T(t = 0) = T = 10; CV(T) = 0.5; Pyave = tmax ™ ';
other parameters and variables were as detailed in Table 1.

psychologists to explain the emergence of optimism bias
(Weinstein, 1980; Sharot, 2011; Kuzmanovic et al., 2015; Garrett
and Daw, 2020; Gesiarz et al., 2019), but has rarely been tested
in an ecological framework. More specifically, whereas several
studies demonstrated the existence of “valence-dependent”
optimism in non-human animals, its explicit evolutionary
adaptive value has, to our knowledge, never been evaluated.
We found that moderate valence-dependent optimism is the
most common fitness-maximizing strategy across a wide range
of ecological scenarios. Further, valence-dependent optimism
results in the maintenance of prior-based optimism (Figure 1),
and consequently to enhanced fitness in spatially variable
environments. Lastly, optimism promotes exploration and
consequently always leads to enhanced learning. The resulting
rapid acquisition of information may be advantageous even when
it results in slightly suboptimal short-term foraging patterns.
Taken together, these theoretical explorations suggest we should
expect behavioral responses consistent with having positively
biased expectations to be the rule in many natural systems.
Optimism, whether valence-dependent or prior-based,
promotes exploration. Consistently expecting to find better
resources or condition “out there” leads to spending less time

in familiar places (exploitation) and more time searching, and
consequently learning. We thus expect optimism, which is
generally adaptive even in the absence of HIREC, should play
an important role in species adjusting their behavioral patterns
to new conditions brought about by HIREC. Optimism will
not help a species persist in an environment that is degraded
to the point it cannot support it, but it should accelerate
information-based shifts in behavioral strategies, promoting
post-HIREC population viability. It is worth noting that we
have found a clear fitness advantage of mild valence-dependent
pessimism in scenarios where foragers are (initially) prior-based
optimists, and spatial environmental variability is low (e.g.,
top-right panel of Figure 2). This leads to the prediction that
species with recent evolutionary history dominated by spatially
homogenous yet temporally degrading environments, should be
valence-dependent pessimists. Consequently, such species are
expected to explore less, be slower to learn, and hence be more
vulnerable to HIREC.

In our simulations, mortality was driven primarily by
starvation. Extreme valence-dependent optimists or pessimists
tend to die of starvation early in life due to low resource
consumption rates (except when they are also prior-based
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pessimists or optimists, respectively, and living in homogenous
environment). Fitness, however, is a product of life expectancy
and reproductive rate, with the latter being tightly linked
to resource consumption rate, which is generally highest for
mild optimists. Hence, we get scenarios (particularly when
environmental spatial heterogeneity is high; e.g., the bottom mid
and left panels in Figures 2-4) where strategies that lead to
longer lives are not necessarily those with the highest fitness.
A useful perspective on this tradeoff may be based on the notion
of “pace of life” (Careau et al, 2011; Nakayama et al., 2017;
Campos-Candela et al., 2018; Mathot and Frankenhuis, 2018;
Betini et al., 2019) - a “fast” (optimistic) forager may not live for
a longer period of time, but it accomplishes more in the time it
has, presumably due to higher exploration rate which allows it to
encounter and utilize high quality patches.

Prior-based (“innate”) expectations about the environment are
an emerging product of the learning process, the prior belief
held at its onset, and the characteristics of the environment.
Consequently, these beliefs should be viewed as a dynamic state
variable (rather than a rigid trait), which continually change
through time, even if the characteristics of the environment do

not (Figure 1 here and Figure 1B in Berger-Tal and Avgar, 2012).
The rate and direction of this change depend on initial beliefs,
environmental heterogeneity, and valence-dependent learning
(Figure 1). There are at least three processes that may give
rise to a prior-based optimism at a certain point in time: an
innate disposition that is unaffected by learning (e.g., due to
genetic effects or early-life imprinting), a history of learning in
a better environment (where expectations would be set high
compared to the current environment), and positively biased
learning (valence-dependent optimism). We have shown here
that the latter is advantageous on its own accord, and is a
plausible mechanism for the emergence of temporally dynamics
prior-based biases.

The initial value of innate expectations (prior-based bias) has
a large effect on both the shape and magnitude of the relationship
between valance-dependent learning bias and fitness (Figure 2).
These interactions deserve an explicitly dynamic investigation,
one that will track the trajectories of innate expectations not only
within, but also across generations. Such an analysis is beyond
the scope of the current work but we would nevertheless like to
speculate here about the nature of these dynamics. Assuming first
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that innate beliefs are passed on from parent to offspring, so that
offspring start their life with the same innate beliefs their parents
held at the end of theirs, and that the environment does not
change across generations. Under these assumptions, the fitness
advantage of mild valence-dependent optimism we have observed
here should lead to the next generation consisting mostly of
prior-based and valence-dependent optimists. These optimists
will then suffer reduced fitness compared to either prior-based
or valence-dependent pessimists (Figure 2). Consequently, we
might then expect an emerging pattern of fluctuating selection
across generations (despite a constant environment); selection
pressure will alternate back and forth between valence-dependent
optimism and pessimism. If, on the other hand, the initial
beliefs held by offspring are independent of the terminal beliefs
of their parents, valence-dependent optimism should maintain
(on average) its adaptive advantage. Lastly, let us assume the
environment itself fluctuates from one generation to the next
(either in terms of its mean quality, or its spatial heterogeneity),
and offspring initial beliefs are affected by their parents’
environment and/or terminal belief. Under these assumptions,
the long-term fitness value of valence-dependent optimism (or
pessimism) should depend on the direction (trend) and temporal
autocorrelation of this environmental change, with long-term
degradation leading to a selection for optimism, and vice versa.
Either way, we believe these dynamics should be further studied
in the context of evolutionary traps (Robertson et al., 2013;
Robertson and Blumstein, 2019), and whether optimism is in fact
such a trap, or rather a way out of it.

Other important aspects of foraging dynamics that were
not addressed here, for the sake of simplicity, are the effects
of competitive interactions, density dependence, and memory
decay. Even in the absence of territoriality or other social
interactions, an optimal forager operating in a shared space
must also consider the effect competitors may have on current
patch qualities (via exploitation), and possibly even predation
risk (due to a dilution effect; Avgar et al., 2020). It is possible
that the effect of resource exploitations by competitors could
be boiled down to increased uncertainty in patch quality across
space and/or time (Riotte-Lambert and Matthiopoulos, 2020).
However, we must consider the possibility that, in the absence
of spatiotemporal-specific information about the foraging activity
of others, the utility of learning and revisiting a set of patches
(known as “traplining”) is critically diminished (but see Riotte-
Lambert et al, 2015, 2017). In that case, memory decay me
be not only more realistic, but also adaptive. Competition may
moreover have qualitative effects on the relationship between
environmental heterogeneity and fitness (Trevail et al., 2019).
At the same time, social information, gained by following or
monitoring competitors, plays a major role in the cognitive
movement ecology of many species (Kashetsky et al., 2021), and
may have non-trivial interactions with the effects of cognitive
biases. Lastly, the presence of other individuals with different
cognitive strategies (e.g., different levels of optimism) could
potentially play an important role in the evolution of an optimal
cognitive strategy, and hence the formation of a cognitive
niches, via either density- or frequency-dependent selection
(Beecham, 2001). The consideration of explicit exploitative

interactions among individual foragers, cognitive limitations
such as memory decay, and the availability and use of social
information are thus important future avenues for research.

Whereas our model focuses on a theoretical exploration of
the roles of prior-based and valence-dependent optimism in
shaping animal behavior and determining population viability
(through their effects on fitness), our model can also serve
as the basis for a slew of predictions that can be empirically
tested in the field. Supplementary Figure 8 details some of
these predictions regarding the space-use patterns of individuals
maintaining an optimal valence-dependent cognitive bias. For
example, an increase in predation risk is expected to lead to a
decrease in home range size, patch giving-up density, and lifetime
reproductive output, but also an increase in both movement and
exploration rates. Reproductive output is expected to increase
with environmental variability, movement rate is expected to be
substantially lower when variability in patch quality is low, but
giving-up density is expected to be highest at an intermediate
degree of patch quality variability. Lastly, exploration rate is
expected to be substantially lower when variability in patch travel
time is high (i.e., when patches are more aggregated in space).
Whereas some of these predictions are consistent with previous
theory (Calcagno et al., 2014; Riotte-Lambert and Matthiopoulos,
2020), some others are counterintuitive and novel, and warrant
further theoretical and empirical investigations.

To summarize, we have shown how cognitive biases can
serve as an adaptive foraging strategy. The question remains on
whether these biases can help individual cope with a rapidly
changing environment, or whether changing environments can
turn such cognitive biases into dangerous evolutionary traps. As
any other model, ours suffers from simplifications, intentional
omissions, and operational assumptions that might or might
not be important. That said, we believe our carful treatment
of “fitness” [considering the effects of predation, starvation,
and reproductive investment; (Houston et al., 1993)], and our
broad consideration of various ecological scenarios, provide solid
foundation for our findings. We are thus optimistic about future
extensions of our investigation.
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Predator reintroductions are often used as a means of restoring the ecosystem services
that these species can provide. The ecosystem consequences of predator reintroduction
depend on how prey species respond. Yet, to date, we lack a general framework for
predicting these responses. To address this knowledge gap, we modeled the impacts
of predator reintroduction on foragers as a function of predator characteristics (habitat
domain; i.e., area threatened) and prey characteristics (knowledge of alternative habitat
and exploratory tendency). Foraging prey had the capacity to both remember and return
to good habitat and to remember and avoid predators. In general, we found that forager
search time increased and consumption decreased after predator introduction. However,
predator habitat domain played a key role in determining how much prey habitat use
changed following reintroduction, and the forager’s knowledge of alternative habitats and
exploratory inclinations affected what types of habitat shifts occurred. Namely, habitat
shifts and consumption sacrifices by prey were extreme in some cases, particularly
when they were pushed far from their starting locations by broad-domain predators,
whereas informed foragers spent less time searching and displayed smaller reductions to
consumption than their naive counterparts following predator exposure. More exploratory
foragers exhibited larger habitat shifts, thereby sacrificing consumption but reducing
encounters by relocating to refugia, whereas less exploratory foragers managed risk in
place and consequently suffered increased encounters while consuming more resources.
By implication, reintroductions of predators with broad habitat domains are especially
likely to impose foraging and movements costs on prey, but forager spatial memory state
can mitigate these effects, as informed foragers can better access alternate habitat and
avoid predators with smaller reductions in consumption.

Keywords: habitat domain, behavioral type, predation, memory, individual-based model

1. INTRODUCTION

Predators are declining globally in both marine (MacNeil et al., 2020) and terrestrial ecosystems
(Ripple et al., 2014). Given the myriad ecosystem services that predators can provide (Estes
et al., 2011), these declines have elevated discussion of actions aimed at bolstering predator
populations (Ritchie et al., 2012), including efforts to reintroduce endangered or threatened species
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(Fritts et al., 1997; Hayward et al., 2007a), supplementing small
relict populations to aid species recovery (Weinberger et al.,
2009), managing problematic species and individuals in human-
animal conflict scenarios (Linnell et al., 1997; Athreya et al.,
2011), and assisted colonization to attempt to prevent extinctions
of species threatened by climate change (Shirey and Lamberti,
2010). Notably, however, predator recovery can have undesirable
or unanticipated consequences for ecosystems, as when predators
prey on or compete with other threatened species (Marshall et al.,
2016), negatively impact prey populations (Hayward et al., 2007b;
DeCesare et al., 2010), or fail to elicit expected patterns of anti-
predator behavior (e.g., because of human shielding Muhly et al.,
2011). Given the variability of predator restoration outcomes for
ecosystems, there is need for studies seeking to illuminate the key
factors that mediate competitor and prey responses to recovering
predator populations (Alston et al., 2019).

When they perceive predation risk, prey individuals
commonly sacrifice food in exchange for the safety afforded by
differential space use (e.g., refuging), apprehension, or group
size (Lima and Dill, 1990; Preisser et al., 2005; Cresswell, 2008;
Say-Sallaz et al., 2019). There is growing recognition, however,
that such anti-predator investment can vary in nature and
intensity as a function of context, or, in other words, properties
of the prey experiencing the danger, the predator imposing
the threat, and/or the setting of the interaction (Wirsing et al.,
2021). For example, prey energetic state (i.e., body condition or
hunger), is known to affect risk-taking behavior by mediating
individual differences in the incentive to protect vs. seek assets
(energy stores) linked to residual reproductive value (McNamara
and Houston, 1986; Lima, 1988; Whitham and Mathis, 2000;
Olsson et al., 2002; Heithaus et al., 2007). Accordingly, studies
exploring these context-dependent drivers of variation in prey
defensive behavior should facilitate more reliable prediction of
predator recovery in particular systems.

Memory is a state variable that has often been considered in
the context of foraging and migratory decision-making (Bracis
and Mueller, 2017; Abrahms et al., 2019; Merkle et al., 2019;
Tsalyuk et al., 2019), as supported by experimental evidence
(Kamil and Roitblat, 1985; Shettleworth, 2001; Stephens et al.,
2007). Animals are known to learn from and subsequently
avoid predator encounters (Huntingford and Wright, 1989;
Wisenden et al., 1994; Griffin et al., 2000; Nomikou et al,
2003). For example, predator-experienced mice (Mus domesticus)
changed their foraging behavior in response to signals of
increased predation risk while predator-naive mice did not,
and those differences in foraging behavior correlated with
survival (Dickman, 1992). Thus, memory of predator threats
as well as memory of alternative foraging locations may
both be components of forager state that influence risk-
taking or aid the forager in managing the food-safety
tradeoff. In support of this hypothesis, Bracis et al. (2018)
showed that spatial memory of food and risk allowed
simulated foragers to reduce predator encounters relative
to their naive counterparts without concomitantly reducing
consumption, particularly when predators were persistent and
weakly correlated with resources across the modeled landscape.
No study to date, however, has explored how memory shapes

prey habitat use decisions following the restoration of a
predator population.

Memory is particularly challenging to study in an ecological
context because it can neither be measured directly nor
inferred reliably from detailed information on an animal’s past
experiences (Fagan et al, 2013; Van Moorter et al, 2013).
While spatial familiarity has been shown to be an important
driver of resource selection and is suggestive of memory (Wolf
et al.,, 2009), it has also been demonstrated that an apparent
but non-existent preference for familiarity can arise when
habitat models are incomplete (Van Moorter et al., 2013).
Accordingly, modeling, whereby memory state can be controlled
explicitly, is better suited to generating insight into how this
state variable influences predator—prey interactions. Here, in the
interest of moving beyond population dynamics to how broader
ecosystem properties may be mediated by interactions between
recovering predators and prey (Seddon et al., 2007), we used
individual-based modeling to examine the impacts of predator
recolonization on prey foraging behavior and, in particular, how
memory state with respect to the surrounding landscape shapes
subsequent habitat shifts by prey. Thus we specifically examine
prey who shift their behavior to avoid predators among many
other possible antipredator behaviors (Lima and Dill, 1990).
Concretely, we introduced predators to a simulated landscape
and varied the size of their habitat domain as a measure of
the area they threatened. Habitat domain is specifically the
spatial extent over which individuals move while foraging, in
contrast to home range which can encompass resources to meet
other needs, and can also encompass what available microhabitat
is used (Preisser et al, 2007; Schmitz et al., 2017). Foraging
prey in these simulations differed in their knowledge of the
surrounding landscape and how exploratory they were in the
face of new habitat. We analyzed movements of the foragers
before and after predators were introduced to the landscape to
understand how memory influences changes in the behavioral
dimension of space use and how those changes are reflected
in consumption and time budget. Under the hypothesis that
memory facilitates optimization of the trade-off between food
and safety, we predicted that (1) informed foragers would exhibit
smaller reductions in consumption and spend less time searching
for refuge patches than their naive counterparts following
predator exposure. For all memory states, we also predicted
that (2) changes to consumption and space use would increase
with predator habitat domain, as greater area threatened should
reduce the availability of nearby anti-predator refugia and thus
necessitate more search time. Finally, we predicted that (3)
exploratory behavior would confer greater plasticity to adapt to
newly introduced predators, particularly by enabling larger-scale
spatial shifts.

2. METHODS

We explored the impact of predator introductions on prey
using an existing modeling framework in which foragers move
around a dynamic resource landscape, learning patterns of
heterogeneity in resources and predator encounters (Bracis
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FIGURE 1 | Landscape used in the simulation showing (A) habitat quality and box bounding locations of introduced predators with x marking the forager’s starting
location, (B) predators with an encounter radius of 5, (C) predators with an encounter radius of 10, and (D) predators with an encounter radius of 20.

et al., 2015, 2018). Foragers continuously consume resources
and switch between a more directed, faster searching behavior
and a more tortuous, slower feeding behavior as a function of
the consumption rate. Note that these predator introductions
could represent reintroductions, recolonizations, or colonization,
whether naturally occurring or assisted. These foraging resources
deplete and regenerate, making it advantageous for the forager
to leave recently depleted locations and return to intrinsically
high-quality locations. Resource memory takes the form of two
different resource streams of information that drive attractive
and repulsive tendencies, respectively (Van Moorter et al,
2009; Bracis et al., 2015). One stream drives the forager away
from recently visited and depleted areas; the other returns the
individual to high-quality areas that have regenerated. We varied
how the resource memory is initialized at the beginning of the
simulation to compare foragers with complete knowledge of the
landscape to those that must learn their surroundings, and we
also varied exploratory potential (see below).

Predators appear at particular locations, remain for one
quarter of the total simulation time, then disappear according
to a Poisson process for timing and location, thus representing
sit-and-wait predators, sit-and-pursue predators, or actively-
hunting predators with a small home range. Predator locations
are correlated with the forager’s resource quality (Williams
and Flaxman, 2012; Courbin et al., 2014). The forager detects
predators within a given encounter radius, then the forager
moves directly away from the predator. Predator encounter
radius varies to represent predators with different-sized habitat
domains. Encounters are tracked, but there is no death, so that
all simulations have the same length. The predation memory is a
single stream and is a spatially explicit map of predator encounter

locations that decays with time (Bracis et al., 2018). Foragers are
attracted to good quality habitat while at the same time seeking
to minimize predator encounters. The forager selects its direction
probabilistically from a circular distribution which is formed by
integrating tracts radiating outward from its position of its spatial
memory of resource quality discounted by distance, which is then
combined with a circular distribution of predator safety.

2.1. Simulations
We endeavored to use a landscape with realistic variation
in vegetation productivity, but where resources were
heterogeneously distributed in space and clumped (Figure 1A).
That is, the forager starts in higher productivity habitat before
predator introduction and then has the option of remaining
in the higher productivity habitat or switching to previously
unused lower productivity habitat. Predators are introduced into
the highest quality quadrant, matching a common practice of
releasing relocated animals in areas of presumed high quality
habitat (e.g., Smith and Clark, 1994; Halsey et al., 2015). The
distribution of resources is 42% in the northeast quadrant,
20% in the southeast quadrant, 14% in the southwest quadrant,
and 24% in the northwest quadrant. The details of the single
landscape used in the simulation can be found in Appendix A.
Simulations begin with no predation, then predators appear
in the northeast quadrant of the landscape halfway through the
simulation. Within this quadrant, containing the best quality
habitat, predator locations are correlated with landscape quality.
That is, the probability of a predator being at a location is
proportional to that location’s quality relative to the quality in
the quadrant. Different predator encounter radii (i.e., habitat
domains) control how much of the northeast quadrant is
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threatened by predators (Figures 1B-D). This variation in
encounter radii affects whether there are refugia within the
northeast quadrant once it is occupied by predators. Predators
relocate, but rarely (predator duration is half the predator period,
see Table B1), to represent relatively stable territories for the
introduced predators, while still allowing for some shifts.

Foragers vary in their memory initialization, or memory state.
Some foragers start out informed, knowing the spatial pattern
of resource quality for the whole landscape. Other foragers start
out naive and have a chance to explore the landscape before
predators are introduced. It should be emphasized that “naive”
refers to the forager being unfamiliar with the surrounding
habitat, not the predator (Sih et al., 2010). That is, it is assumed
that the foragers display effective antipredator behaviors: escape
and memory of encounters. Memory state is set at the beginning
of the simulation by initializing the two-dimensional spatially
explicit slower-decaying attractive resource memory stream, and
the faster-decaying repulsive resource memory stream (Bracis
et al,, 2015). In all cases, the repulsive memory stream that
drives foragers away from recently used locations is initialized
to zero. For informed foragers, the attractive resource memory
stream is initialized to the intrinsic resource quality. For naive
foragers, the attractive resource memory stream is initialized
to unvisited expectation parameter Msx; i.e., how unexplored
habitat is valued. We used three different values for how foragers
could value unexplored habitat: unexploratory (M 0), less
exploratory (M* < mean quality), and highly exploratory (M >
mean quality), with the average habitat quality roughly halfway
between the less and highly exploratory unvisited expectation
parameter. In all cases, it is assumed that the foragers know the
true average consumption rate of the landscape used to switch
between searching and feeding behaviors. Thus, foragers differ
in their knowledge of the landscape outside their starting region
when predators are introduced and how exploratory they are with
new habitat.

Simulations start with the forager located in the center of the
northeast quadrant, the area of highest quality, where predators
are eventually released (Figure 1A). All parameters used in the
simulation are shown in Table Bl. Parameters controlling the
resource and predation memories that were not varied are set
based on the results from Bracis et al. (2018) assuming high
survival. We performed 50 replicate simulations for each set
of parameters.

2.2. Metrics

Foragers' habitat use, consumption, and time budget (ie.,
division of time between searching and feeding) were tracked
to allow for before-after comparisons of forager behavior with
predator introduction. Foragers' consumption is a key metric
that provides a measure of the non-consumptive effects of
predation (i.e., food given up for safety). The number of
predator encounters is also important to contextualize resulting
consumption changes after predator introduction and as a
measure of risk. Finally, in order to compare the space use before
and after predators are introduced, trajectories were visually
examined and the utilization distribution was calculated with
ker nel UDin the adehabi t at HRR package (Calenge, 2006).

3. RESULTS
3.1. Space Use Changes

Space use varied dramatically with memory state, and the
kernel density of space use clearly changed after predators
were introduced across encounter radii for informed foragers
and naive foragers (Figure2). How much of the landscape
the naive foragers explored before predators were introduced
depended on memory state. Namely, unexploratory foragers
remained at the high-quality patches closest to the release site,
while less exploratory foragers exploited the high-quality areas
of the eastern half of the landscape, and highly exploratory
foragers began the simulations using the entire landscape. The
informed forager’s space use most closely resembled that of the
less exploratory forager but was more tightly focused on the
best patches. After predators were introduced, space use changed
across all scenarios as foragers were pushed out of the highest-
quality areas in the northeast section of the landscape.

Unexploratory foragers (Figure2, row 2) relocated the
least after predator introduction. With the smallest predator
encounter radius, these foragers moved out of the immediate
vicinity of the predators; the utilization distribution for these
foragers closely resembled that for the pre-predator phase as they
exploited gaps between predators, with just the upper portion
of the distribution shifted eastward. As the encounter radius
increased, forager distribution shifted southward but remained in
the northeast quadrant. Finally, with the largest encounter radius,
forager distribution was completely altered, moving into the
southeastern quadrant. Thus, by remaining in the highest-quality
quadrant despite predation risk, unexploratory foragers tended to
maintain high consumption but at the cost of higher encounters.

Less exploratory foragers showed a stronger shift in habitat
use after predator introduction. These foragers (Figure 2, row
3) continued to utilize the better-quality habitat in the gaps
between predators when the encounter radius was small, but
also expanded into patches to the south and west. This pattern
intensified as the predator encounter radius increased, and the
forager shifted to predominately using the patches south and
west of the predators. The highly exploratory forager (Figure 2,
row 4), on the other hand, utilized patches across the landscape
before predators were introduced, and predators served to
move a greater proportion of use to that more distant habitat.
With increasing encounter radius, however, all foragers shifted
from using the margins around the predators to being nearly
completely excluded from most of the northeast quadrant in the
vicinity of the predators.

The space use of informed foragers (Figure 2, row 1) was
most similar to that of less exploratory foragers in how they
relocated in the face of predation. The main difference between
informed and naive foragers was that the informed forager was
quicker to exploit more distant patches, even when the encounter
radius was small. And while the informed forager also continued
to exploit habitat close to predators, it did so to a lesser extent that
the naive foragers, especially as the predator encounter radius
became large.

The same patterns can be seen with the full trajectories
(Figures B1, B2). Namely, the unexploratory forager was the
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FIGURE 2 | Space use by foragers quantified by kernel utilization distributions comparing before predators (orange, column 1) to after predators (blue, columns 2—4).
Rows indicate memory state and columns indicate predator encounter radius. Contour lines show 20-90% utilization. Predator center point locations shown with red

most constrained with large areas of habitat completely unvisited.
Whereas the space use patterns of the informed and less
exploratory foragers were broadly similar (Figure 2), differences
can be seen between the trajectories with the informed forager
minimally traveling through unproductive habitat but the less
exploratory forager spending more time in unproductive habitat.
Finally, the highly exploratory forager had the most dispersed
space use across the entire landscape. The partitioning of space by
time, with foragers getting pushed out by predators, was clearest
with the large predator encounter radius.

3.2. Consumption Changes

The integration of space use changes can be seen with the changes
in consumption, where predator introductions depressed the
amount consumed relative to the period when predators
were absent in all scenarios (Figure 3). The forager’s memory
state partitioned both the pre-predator and post-predator
consumption amounts, with higher pre-predator consumption
nearly always associated with higher post-predator consumption.
Surprisingly, the naive unexploratory forager consumed the
most, followed by the informed forager, the naive less exploratory
forager, and then the naive highly exploratory forager. Post-
predator consumption was mediated by the predator encounter
radius, with larger radii associated with larger declines in
consumption (Table B3).

In general, higher encounter rates were associated with lower
consumption (per memory state), unlike the food-safety trade-
oft frequently observed in Bracis et al. (2018). Within a given
memory state, larger encounter radii led to higher encounters
as more habitat within the most productive quadrant was
threatened (Table B3). Naive unexploratory foragers experienced

the highest number of encounters with predators, then informed
foragers and naive less exploratory foragers, followed by naive
highly exploratory foragers.

3.3. Time Budget and Consumption Rate
Changes

Time spent searching by foragers increased after predators were
introduced, driven by foragers leaving their initial habitat to
avoid predators and searching for new resources (Figure 4A).
This pattern manifested even for informed foragers, which had
knowledge of other resource locations but still had to relocate, but
was more dramatic for naive foragers that had to initially locate
resources. Overall, increases in search time exhibited the same
rank order as those for decreased consumption. The increase in
time spent searching was also larger with increasing encounter
radius as foragers were more completely displaced from their
previous habitat.

In addition to changes in time budget, foragers’ consumption
rates while feeding declined after predators were introduced
(Figure 4B), implying that foragers shifted to lower quality or
already depleted habitat. Note that while foragers did consume
resources while searching in our simulations, the bulk of
consumption (~80-90%) occurred while feeding. Declines in
consumption rate were more similar across memory states,
with slightly larger declines with larger encounter radii, though
this was less true for highly exploratory foragers. Thus,
the declines in consumption seen with the introduction of
predators were a function of both foragers needing to spend
more time searching for food as well as selecting lower
quality patches.
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4. DISCUSSION

Habitat shifts due to changing predation threat have been
observed in a wide variety of both terrestrial and aquatic systems
(Sih, 1980; Heithaus and Dill, 2002; Wirsing et al., 2007; Belovsky
et al, 2011; Dellinger et al, 2019). Yet, previous attempts
to predict ecosystem effects of predator reintroductions have
neglected prey behavior changes (Baker et al., 2017). Here, to
address this information gap, we used individual-based modeling
to understand how both predator and prey traits shape behavioral
outcomes for foraging prey with the addition of predators to
the landscape. Consistent with the non-consumptive effects
predators can exert on prey (Preisser et al, 2005), forager
behavior, as measured by consumption rates, searching time,
and space use, changed after the introduction of predators. The
nature of these changes, however, depended on the interplay
among the memory state of the forager, the spatial domain
threatened by the predator, and the degree to which foragers were
exploratory. Namely, in support of our first prediction, informed
foragers displayed smaller reductions to consumption and spent
less time searching than their naive counterparts following
predator exposure. Furthermore, consistent with prediction two,
predator habitat domain correlated positively with reductions
to consumption and changes to space use, irrespective of
memory state. Supporting our third prediction, the degree
to which foragers were exploratory shaped their anti-predator
responses, with less exploratory prey managing risk in place and
consequently suffering increased encounters while consuming
more resources, and more exploratory individuals sacrificing

consumption but reducing encounters by relocating to refugia.
Together, these findings highlight how understanding prey
spatial memory and the movement tendencies of both predators
and prey is key to predicting the consequences of predator
recovery for subsequent prey distribution and fitness.

4.1. Memory State Influences Prey

Response to Predator Recovery

Spatial memory has been shown to shape habitat selection
and movements of translocated animals by facilitating location
of high-quality sites (Wolf et al, 2009), and inducing long
dispersals from release sites in search of areas that are similar
to the translocated individual’s natal habitat (Stamps and
Swaisgood, 2007). Here, we varied prey memory state in
terms of their knowledge of alternative foraging locations in
order to explore how it might shape anti-predator responses.
Overall, we found prey with all memory states to spend
more time searching compared to feeding after predator
introduction. Notably, however, changes to consumption differed
markedly as a function of memory state. Namely, reflecting the
advantage of knowing alternate resource locations, informed
foragers exhibited modest increases in search time, and
correspondingly minimal reductions in consumption rates,
after predator introduction relative to most of their naive
counterparts (but not for naive unexploratory individuals, see
below). This finding suggests that foragers with knowledge of
habitat beyond the immediate area threatened by introduced
predators might be better adapted to cope with the new
threat. By extension, in group-living species that depend on
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decision-making by experienced group members to navigate the
landscape (e.g., elephants, McComb et al, 2011), the loss of
such individuals could affect the vulnerability of the population
to predation danger, human and otherwise, disproportionately.
Conversely, it may also indicate that introduced predators in
this scenario might struggle to find prey. Thus, in accord
with the recommendations of Trainor et al. (2014), predicting
the success of predator translocation programs may be aided
by a functional knowledge of predator—prey interactions that
includes the capacity of the potentially affected prey species to
relocate to alternate and predator-free foraging areas. Although
differentiating between searching and feeding behavior is more
challenging in field situations, this is an active area of research
(e.g., using movement patterns extracted from GPS locations
or accelerometer data; reviewed in Gurarie et al., 2016), thus
permitting measurement of changes in time allocation pre-
and post-predator introduction. Accordingly, we may soon
be in position to test these hypotheses empirically under
field conditions.

4.2. Predator Domain Determines Degree

of Impact on Prey

Our results suggest that the spatial extent of predator threat,
or, in other words, predator habitat domain, influences the
impact of predator risk on forager behavior post-introduction.
An animal’s habitat domain is the part of the available habitat
it uses, with broad-domain species that range throughout much
of the available space (and time) differing from those with
narrow domains that use only some subset of the available space
(and/or time) (Preisser et al., 2007). Applying this paradigm to
our modeling approach, increasing encounter radius removed
potential refugia in the high-quality habitat for prey analogously
to predators switching from a narrow-domain to a broad-
domain (or to the difference between a narrow- and broad-
domain predator in the same system). Not surprisingly, therefore,
predators with large domains induced prey to spend more
time searching for refugia away from the introduction quadrant
and, as a result, to suffer increased penalties to consumption.
Interestingly, when also considering forager memory, our
findings align broadly with the “hunting mode-habitat domain”
concept (Schmitz et al., 2017; Wirsing et al., 2021). Under this
framework, prey with domains that extend beyond those of their
predators should rely on avoidance to minimize encounters,
whereas those whose domains fall within that of a predator are
expected to experience more encounters and utilize defenses
that reduce the likelihood of death given an encounter. In
our modeling scenarios, informed foragers effectively had more
immediate access to a habitat domain that extended beyond
that of the reintroduced predator, and consequently experienced
relatively few predator encounters. By contrast, naive foragers
were less able to escape the domain of the reintroduced predator,
being ignorant of more distant refugia, and thus encountered
the repatriated predator more frequently. In particular because
of their alignment with theory, our modeling results merit
evaluation under laboratory and field conditions. Further, the
habitat domain concept may also be extended to consider
humans as a potential predator, and thus could fit within the
framework of how humans and wildlife coexistence, that is
the land sparing-land sharing debate (Fischer et al., 2014). For
example, an unexploratory forager combined with a small habitat
domain predator could lead to land sharing, while either more
exploratoriness or a broad habitat domains results in the forager
displacing rather than sharing the land, which would require
land sparing.

We can also consider habitat domain in the context of the
spatial scale of the predator effect. That is, predators with
large domains would be expected to exert a stronger selection
on where the forager locates it home range, which we saw
with larger forager displacements in response to larger domain
predators. Habitat selection and how it gives rise to home
range has been considered in terms of a hierarchical process of
scales, both in space and time. Thus the factor most limiting
fitness would be selected at the largest scale, such as large
scale avoidance of predation risk and fine scale selection of
seasonally available forage (Rettie and Messier, 2000). However,
the processes of habitat selection and home range both emerge
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from individual movements, in particular how foragers exploit
resources through the amount of time spent and the frequency
of visits (Van Moorter et al.,, 2016). As a consequence of this,
habitat selection at a given scale is driven not only by the most
limiting factor at that scale, but also by which is the most variable
(Van Moorter et al., 2016). Indeed, our results show that the
scale of predator avoidance (i.e., scale of habitat selection: 2nd
vs. 3rd order according to Johnson, 1980) is driven by the scale of
variation in predation risk (i.e., predator habitat domain): a large
habitat domain leads to home range displacement, whereas a
small habitat domain results in smaller shifts in foraging patches.

4.3. Exploratory Tendency Controls Size of
Habitat Shift

Individuals can differ consistently along several behavioral
axes including activity, aggressiveness, exploration-avoidance,
shyness-boldness, and sociability (Réale et al., 2007). These
persistent behavioral differences, or behavioral types, within
populations can have important ecological implications (Sih
etal., 2012), For example, in free-ranging elk (Cervus canadensis)
introduced to a novel environment, dispersal distance and time
varied by individual, with social individuals being more sedentary
than solitary conspecifics (Fryxell et al.,, 2008). Our modeling
results reveal that individual differences in exploratory tendency
can shape prey movements following predator reintroduction
or colonization in ways that influence encounter rates and,
by extension, the probability of predator-inflicted mortality
(Lima and Dill, 1990). Namely, highly exploratory foragers
were minimally affected by degree of predator threat, as they
tended to have the most wide-ranging movements and were
less likely to remain in the initial release location when the
predators were introduced. By contrast, unexploratory foragers
tended to remain in the same area despite the introduction
of predation risk, leading to higher consumption but also
high encounters, a food-safety trade-off also observed in other
contexts (Bracis et al., 2018). When predators were confined
to a small portion of the landscape, this tendency allowed
naive unexploratory foragers to achieve higher consumption
than even informed foragers. However, when predator search
radii expanded such that informed and exploratory foragers
were pushed out of the high quality and forced to seek new
areas, naive unexploratory foragers performed poorly from a
fitness perspective, exhibiting both depressed consumption rates
(necessitated by locally searching for refugia) and extremely high
encounters. This pattern may help explain why spatial responses
are not universally observed after predator reintroductions
(Davies et al, 2016). It also highlights the role exploratory
tendency appears to play in mediating how naive prey individuals
respond to, and are affected by, restored predator populations as a
focus for empirical investigation. Notably, being exploratory may
also help prey to regularly refresh their spatial understanding of
recent resource changes and thus to optimize space use decisions
in the face of predation risk. Here we held resource quality
constant, leaving future work to explore the interplay among
predator introduction, prey memory and exploratory tendency,
and resource dynamics.

4.4. Future Perspectives

Most work on animal movement continues to focus on external
factors rather than underlying processes (Joo et al., 2020). By
contrast, as memory is likely key to understanding patterns
observed in animal foraging (Fagan et al., 2013) and thus an
emerging area of research (e.g., Avgar et al., 2013; Bracis et al.,
2015; Merkle et al, 2017), we utilize a cognitive paradigm
to provide an mechanistic understanding of how animals
make movement decisions. Our current work utilizes a flexible
modeling framework for exploring how memory can modulate a
forager’s response to predator introductions, including individual
differences in exploratory tendency and habitat knowledge.
However, our model utilizes a simple food web comprising
the resource, the prey, and the predator. Extending the model
to include conspecific interactions or additional predators
could provide additional insight, particularly for predator
introductions in ecosystems with more complex community
structure. For example, multiple predators sharing a habitat
domain can reduce the predation risk experienced by the prey, an
important consideration for multi-predator systems (Woodcock
and Heard, 2011). Other conspecifics may limit where a forager
could relocate, particularly for territorial animals (Stamps, 1991;
Potts et al., 2012). Here, we examine habitat changes in response
to predation, but other antipredator behaviors are possible (e.g.,
increased vigilance, counter-attack, herd behavior, etc.). Another
possible model extension would be to consider different predator
hunting modes, such as active hunting vs. ambush/stalking, to
examine how this variability affects forager responses. This could
include allowing predators to relocate dynamically in response
to prey behavior rather than being located solely in response
to the prey’s resource quality as in the current model. Notably,
we differentiated between naive and informed foragers, but
individuals in both of these categories could also differ with
respect to the scales at which they mentally map both resources
and predation risk. Accordingly, a fruitful avenue for future
simulation work in this area would be to explore how foragers’
behavior for a given memory state is shaped by the scale of
their mental map, before and after predator introduction. Finally,
considering dynamic resources (where their intrinsic quality
changes) would make it possible to situate this work within the
context of environmental change, whether due to habitat loss or
climate change.

5. CONCLUSION

In conclusion, our modeling exercise reveals that predator
introductions can change habitat usage and consumption
rates of foragers to varying degrees that depend on the area
threatened by the predator and thus how critical it is to avoid
encounters. When foragers do shift habitat use in response to
predator introductions, memory state (habitat knowledge) and
exploratory inclination (behavioral type) mediate how foragers
use alternative habitats and experience changes to consumption
rates and predator encounters. Search time increased and
consumption decreased after predator introduction across all
memory states. For foragers with full knowledge of the landscape,

Frontiers in Ecology and Evolution | www.frontiersin.org

October 2021 | Volume 9 | Article 698370


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Bracis and Wirsing

Prey Behavior After Predator Introduction

the increase in search time was relatively modest, reflecting
the advantage of knowing alternate resource locations. Thus,
spatial memory of the surrounding area can mitigate the effect
of introduced predators, as foragers can better access alternate
habitat refugia. Notably, forager naiveté was costly in terms of the
time needed to find refugia, and prey individuals that were both
naive and unexploratory suffered reduced consumption rates
and high predator encounter rates. Potential changes in foraging
behavior are an important, though often neglected, component
of predator reintroductions, given the far-reaching ecological
consequences of top-predator losses (Estes et al., 2011). While
memory and individual behavioral variation are challenging
to consider in experimental studies of reintroduction (Fagan
et al., 2013), evidence from modeling here suggests that dynamic
interplay among these two factors and key predator traits (habitat
domain) is a critical driver of how forager behavior changes.
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Animal movement along repeatedly used, “habitual” routes could emerge from a variety
of cognitive mechanisms, as well as in response to a diverse set of environmental
features. Because of the high conservation value of identifying wildlife movement
corridors, there has been extensive work focusing on environmental factors that
contribute to the emergence of habitual routes between protected habitats. In parallel,
significant work has focused on disentangling the cognitive mechanisms underlying
animal route use, as such movement patterns are of fundamental interest to the study of
decision making and navigation. We reviewed the types of processes that can generate
routine patterns of animal movement, suggested a new methodological workflow for
classifying one of these patterns—high fidelity path reuse—in animal tracking data, and
compared the prevalence of this pattern across four sympatric species of frugivorous
mammals in Panama. We found the highest prevalence of route-use in kinkajous, the
only nocturnal species in our study, and propose that further development of this method
could help to distinguish the processes underlying the presence of specific routes in
animal movement data.

Keywords: travel routes, spatial cognition, animal movement, navigation, corridors, unsupervised clustering,
routine movement, animal cognition

INTRODUCTION

Technological and analytical innovations in animal tracking and remote sensing have led to
increased opportunities in animal movement research (Nathan et al., 2008; Kays et al., 2015).
Tracking data are now available at high sampling rates and researchers are using them to
understand animal movement decisions (Nathan et al., 2008; Fagan et al., 2013; Kays et al., 2015;
Gurarie et al., 2016). One striking feature that emerges in many of these high-resolution datasets
is highly consistent, route-like patterns of movement. While the frequency and fidelity of such
movement patterns varies, route-use, nonetheless, appears to be taxonomically widespread. Routine
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movement is of substantial interest due to its relevance to
conservation action and because of the insight it provides
into animals’ cognition (Riotte-Lambert et al, 2016).
However, few quantitative methods exist for identifying
such patterns of movement.

Routineness, namely, the habitual reuse of the same series
of locations over time, can occur as the result of commuting
(see Glossary) between a set of target destinations. The more
deterministic the ordering of visits to said locations, the
more route-like patterns of movement will be (e.g., trap-lining
honeybees; Lihoreau et al., 2012; Reynolds et al., 2013). The
paths an individual takes during a commute can range from
highly variable to highly congruent (see Glossary). In practice,
researchers working with animal movement tracks are faced
with identifying patterns of spatial behavior, from fully diffusive
and exploratory to highly routine, and attempting to infer the
processes creating this pattern. Areas where animals exhibit
highly routine movement, particularly high path reuse fidelity,
are of particular interest, as the habitual use of these areas likely
indicate their elevated importance to the animals.

Patterns of high-fidelity path reuse can emerge from a
number of environmental and behavioral processes. Routine
movements with low directional variability can be observed
at specific locations in the landscape simply because an
individual was constrained by the geometry of that area.
This could be due to completely unsuitable habitat (e.g., a
narrow strip of forest through a city) or due to more nuanced
relationships between a species and the surrounding habitat.
For example, individuals might move through areas based
on how their motion capacity (i.e., locomotory biomechanics;
Nathan et al., 2008) interfaces with constraints imposed by
substrate characteristics following, for example, paths that
minimize energy expenditure or predation risk (Adriaensen
et al., 2003; McRae et al., 2008; Pullinger and Johnson, 2010;
LaPoint et al, 2013; Bastille-Rousseau et al., 2020). Areas
where routine movements are generated by external factors
are typically referred to as corridors within the conservation
literature (Forman, 1995; Rosenberg et al., 1997; LaPoint et al.,
2013; Bastille-Rousseau and Wittemyer, 2021).

Routine movement can emerge from the cognitive processes
underlying animal search and navigation strategies (Mueller and
Fagan, 2008; Bracis, 2014; Bracis et al., 2015; Polansky et al,
2015; Riotte-Lambert and Matthiopoulos, 2019). Highly routine
modes of movement behavior can result from an individuals
decision to navigate toward a known or perceived target location,
and are not necessarily predicted by the physical properties of
the environment, but instead by the individual’s understanding
of the spatial relationships between itself and its targets. When
movement processes rely strictly on perceptual information (i.e.,
oriented mechanisms; Mueller and Fagan, 2008), animals detect
some sensory stimulus within their perceptual range and use
various forms of taxis (Fraenkel and Gunn, 1961; Braitenberg,
1965) to bias their movement toward that target location (Mueller
and Fagan, 2008). Ants and rodents, for example, have been
shown to navigate by following chemical trails left by conspecifics
as well as by reacting to other olfactory stimuli in their
environment (chemotaxis; Kozakiewicz and Kozakiewicz, 2004;

Collett, 2010; Svensson et al., 2014; Buehlmann et al., 2015).
In dynamic landscapes, where the distribution of resources is
variable in time and space, animals that rely purely on taxis will
exhibit directed movements with low path reuse fidelity as a
consequence of navigating directly toward the stimulus. In static
landscapes, however, animals that rely purely on taxis will always
respond the same way to a particular point in space and thus will
move predictably between resources. The resulting movement
will exhibit a high degree of path reuse fidelity and commute
determinism, and produce a similar pattern of routine behavior
as seen in corridors.

Even if animals cannot sense their target, if they remember
where it is, repeated patterns of high-fidelity movement are
expected to arise. These “memory mechanisms” are defined
as movements where an individual has prior information
about the location of its resources (Mueller and Fagan, 2008).
Individuals can then use their prior experience to navigate to
resources beyond their perceptual range. Unfortunately, this
conceptualization does not explain the differences between
patterns generated by oriented mechanisms and memory
mechanisms, or the variation in patterns generated by different
memory systems such as response learning and place learning.
In response learning (see Glossary; reviewed in Goodman, 2021),
behavioral responses to specific cues (landmarks) are reinforced
if they lead to rewards such as food. Under this mechanism,
animals may develop habitual sequences of spatial behavior,
such as traplines, without needing to model or “map” their
environment. Alternatively, with place learning (see Glossary;
reviewed in Goodman, 2021), animals may learn the distances
and directions between important locations and plan routes
between them. Often referred to as a “cognitive map,” consistent
decision-making with the use of place learning may lead to route-
formation, but the use of the memory mechanism by animals
remains debated. Clarifying the differences between memory
systems greatly facilitates an understanding of how routine
movement behavior relates to spatial cognition, but the first step
in this process is accurately and reproducibly identifying patterns
of routine movement.

Within behavioral ecology, and primatology in particular,
areas featuring routine movement behavior are typically referred
to as “routes.” Influenced largely by early work by Tolman (1948)
and O’Keefe and Nadel (1978), these studies point to the repeated
use of routes as evidence for egocentric memory systems. Their
treatment of “routes;,” however, presupposes spatial cognition as
the underlying process, and the classification of a path segment
as a route is typically done by eye or by grouping similar
looking path segments together via some arbitrary distance
threshold (Di Fiore and Suarez, 2007; Valero and Byrne, 2007;
Presotto and Izar, 2010; Garber and Porter, 2014; Bebko, 2018;
de Guinea et al, 2019). We define routes as areas exhibiting
sequential behavior with low directional variability and high-
fidelity path reuse. Spatial learning can lead to route-use, but
routes can also emerge from non-cognitive processes (Figure 1).
Furthermore, reliance on expert opinion can lead to challenges
fostering generalizable understandings about the process itself,
can lead to difficulty comparing across systems, and can hinder
reproducibility.
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FIGURE 1 | Multiple processes can lead to route use, dependent on the stability of the environment. When a resource gradient is persistent through time, animals
that perceive that gradient can form routes by consistently following it (Perceptual Capacity). Similarly, when other permanent perceptual cues indicate the direction
of a persistent resource, animals that have learned navigational responses to that cue will generate routes in the cue’s presence (Response Learning). In dynamic
environments, animals may also develop routes through response learning, albeit more slowly, so long as average resource acquisition is spatially heterogenous.
Whether or not resource distributions are stable in an environment, some animals may form routes due to heterogeneity in their ability to use specific substrates,
following paths of least resistance (Movement Capacity). Animals capable of place learning, though less likely to follow routes overall, may consistently infer direct
paths between known locations, generating route-like patterns even in dynamic environments or the absence of local landmarks.
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Clearly, routine patterns of movement can arise from a mix of
external and cognitive processes. Determining what explains the
emergence of routine behavior in a given part of an animal’s range
will require developing carefully thought-out analyses. The ability
to design any analysis of routes, however, presupposes that the
routes established by an animal have been previously identified.
Before we can properly design studies that differentiate between
route generating processes, we must first develop approaches to
accurately and reliably identify patterns of routine movement.
Hereby, we introduce a method for quantifying the degree to
which movement is routine from animal tracking data, and
discuss how the results of this approach can be elaborated on to
infer cognition.

QUANTITATIVE APPROACHES

The majority of the quantitative tools for identifying areas
with highly routine movement have been developed to examine
revisits to target destinations (e.g., Riotte-Lambert et al., 2016;
Ayers et al., 2018; Bracis et al., 2018). Examining recursions to
target destinations provides valuable insights into the temporal
dynamics of resource use and can provide insights into
processes such as traplining, however, these methods aren’t
explicitly designed to examine the trajectories animals used
between recursive visits. Methods to detect the actual routes an
animal used have largely come from research on conservation

corridors. These methods may be suitable for recognizing routine
movement when it is generated by external factors, however,
they may not be ideal when the pattern is generated by spatial
cognition. Dynamic Brownian bridges have been used to reveal
shared bird migration corridors (e.g., Buechley et al., 2018).
Dynamic Brownian bridges, however, are kernel approaches
designed for interpolating missing location information in
animal tracks (Bullard, 1999; Calenge, 2006). In some cases,
the resulting density may reveal areas that visually resemble
routes, however, this approach may miss navigation decisions
at very local spatial scales, as well as fail to detect route-like
spatial patterns in non-migratory species with limited home
ranges. Objective comparison across individuals with non-
overlapping ranges, however, is not straight forward, and the
actual deterministic use of those areas are not accounted for.
Promising approaches are available that involve (a) sweeping
through a track with a circular buffer to identify areas of low
directional variability and high speed (LaPoint et al, 2013),
or (b) binning movement data into grid cells and performing
unsupervised clustering on network centrality metrics calculated
for each cell (Bastille-Rousseau et al., 2018; Bastille-Rousseau
et al., 2020). There are potential drawbacks to both approaches.
First, both approaches implicitly assume independence in the
data at the scale at which they segment the movement data.
The circular buffer approach allows for variable step lengths
and sets the buffer radius size to the step length, while the
network approach sets the grid size to the median step length.
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Ideally, an alternative approach would ensure that the scale at
which movement is autocorrelated would be estimated and the
cell/step sizes would be large enough to capture independent
displacements (Fleming et al., 2014; Gurarie et al., 2017, Noonan
et al, 2019). Second, these approaches both define corridor
behavior as fast, repeated movements with very constrained
directional variability (LaPoint et al., 2013; Bastille-Rousseau
etal., 2018; Bastille-Rousseau et al., 2020). The speed assumptions
about corridor behavior are based on the assumption that animals
don’t forage in corridors (Forman, 1995; Rosenberg et al., 1997),
while studies of spatial navigation posit that (a) certain forms
of taxis can result in movement that is necessarily slow (e.g.,
Svensson et al., 2014) and (b) animals will establish routes that
increase their likelihood of encountering food and will forage
along routes (Di Fiore and Suarez, 2007; de Guinea et al., 2019).
We do not dispute this conceptualization of corridor behavior;
rather we acknowledge that corridor use may be a particular
class of route. We define a corridor as a route that emerges
due to external constraints and independent of spatial learning
(see Glossary). Studies of spatial cognition may require methods
designed to detect routes more generally, in order to facilitate
the detection of routine behavior emerging as a function of
spatial cognition. In this case, a method that does not assume
a relationship between route-use and velocity may be more
generally useful. Finally, the approach presented by Bastille-
Rousseau et al. (2018) characterizes locations utilized by an
animal in terms of their graph theoretic properties, some of which
may well capture the persistent and deterministic features of
routine route use. They do not, however, attempt to explicitly
identify or characterize any locations as routes or areas of highly
routine behavior.

Here, we present a workflow using unsupervised-learning to
estimate the degree to which locations exhibit routine behavior
and differentiate habitual routes from other used locations.

MATERIALS AND METHODS

Frugivore Movement Data

Study Site

Data were collected for a larger study on resource selection and
cognition, and were not collected with this paper in mind. Data
were collected at the Smithsonian Tropical Research Institute
field station on Barro Colorado Island (BCI), a 1,560-ha island of
semi-deciduous tropical lowland forest in Lake Gatun, Panama
(9° 09'N/79° 51'W). For a full description see Leigh (1999).
The island exhibits a distinct dry season from mid-December
to mid-April. Fruit availability during the dry season is largely
restricted to Dipteryx oleifera, resulting in nearly identical
resource distribution for the entire community of frugivorous
mammals on the island.

GPS Collaring and Study Species
We fit GPS/3-D accelerometer collars (e-Obs Digital Telemetry,
Gruenwald, Germany)' to individuals from four species, two

Uhttp://www.e-obs.de

primates, capuchins (Cebus capucinus), spider monkeys (Ateles
geoffroyi), and two procyonid carnivores, kinkajou (Potos flavus)
and coati (Nasua narica).

Collars were programmed to collect a burst of six consecutive
(I hz) GPS locations every 4 min during the animals active
periods: 06:00-18:00 for capuchins and spider monkeys, 06:00-
18:30 for coatis, and 23:00-6:30 for the nocturnal kinkajous.
3D acceleration was recorded at 1-min intervals to determine
activity profiles. Collaring occurred in 2015 and in 2017, with 20
individuals tagged the first field season and 26 individuals tagged
the second field season. 8 spider monkeys, 7 capuchin monkeys,
16 coatis, and 14 kinkajous were tagged in total. From December
2015 to March 2016, the GPS sampling regime of collars on
kinkajous and coatis was ACC-informed, with collars collecting
data as described above when accelerometer readings were above
a specified threshold (1,000 mV). ACC-informed sampling was
not used in the second field season, from December 2017 to
March 2018. All collars were programmed to timeout if they did
not acquire a fix after 90 s.

One additional kinkajou was collared during a separate field
season in 2019, with GPS programmed to sample every 6 min
from 18:00 to 23:00 and every second from 23:00 to 5:00.

GPS Data Processing

The last fix of each burst consistently had the best horizontal
accuracy measurement, therefore only the last fix of each burst
was used for all analyses. All data were uploaded to Movebank,
an online repository for animal movement data’. Duplicate and
outlier fixes were removed using Movebank’s data filters, filtering
fixes by the height above ellipsoid. All fixes with height above
ellipsoid values less than or equal to 21 or greater than 244 were
marked as outliers. This corresponds to the first quartile minus
twice the interquartile range and the third quartile plus twice
the inter quartile range, respectively. Subsequent outlier detection
was done using the ctmm package in R (Calabrese et al., 2016),
using error information, straight line speeds, and distances from
the median latitude and longitude to manually identify outliers
via the outlie() function. Further, obviously impossible locations,
such as location estimates in the water and clearly outside the
boundaries of the island, were marked as outliers.

For ACC informed collars, GPS locations were interpolated for
times when the animals were below their ACC thresholds. The
error on the interpolated positions was modeled to replicate the
observed GPS error of a stationary collar in a tree, and was drawn
from a negative binomial distribution with a mean of 5. 46 m and
a dispersion parameter of 2.4 m.

Simulations

We simulated animal movement tracks to illustrate our
predictions regarding the spatial patterns we expect to emerge
from each learning mechanism outlined in Figure 1. The
simulated tracks associated with each prediction are presented
in Figure 2. The movement of individuals in this model vary
along three axes related to our movement pattern predictions:
the consistency of the patch selection (choice determinism),

Zwww.movebank.org

Frontiers in Ecology and Evolution | www.frontiersin.org

110

January 2022 | Volume 9 | Article 743014


http://www.e-obs.de
http://www.movebank.org
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Alavi et al.

Framework for Identifying Animal Route-Use

Examples of Animal Movement Patterns

Commute Determinism

Directedness

FIGURE 2 | Examples of animal movement patterns. Variation in three movement parameters can produce movement patterns in simulated foraging agents that
resemble different degrees and types of route use. All agents foraged by (1) selecting from a set of spatially persistent, renewing resource patches about which the
agent had complete information, (2) moving in accordance with the indicated parameter levels until the selected patch was reached, (3) moving at random within the
patch while depleting it, and (4) selecting a new patch. Where directedness is low, movement is random regardless of the other parameter levels (A,D). Where
commute determinism and persistence are both high, agents produce variable commutes (C), blue path. Where commute determinism is high, but persistence is
low, agents produce route-based commutes (C), orange path. Given response learning, animals’ movement patterns ought to resemble paths simulated with high
determinism and decreasing persistence over time [top panels (A-C), orange paths, left to right]. The paths of place learning animals may develop in a number of
ways over time depending on the structure of the environment, including the formation of route-based commutes in highly stable environments (top panels, orange
paths), the formation of routes with low commute determinism in environments where patch values are temporally asynchronous [bottom panels (D-F), orange
paths], or the formation of variable commutes where secondary resources are dynamically distributed (blue paths, left to right, top, and bottom).

Persistence

—_— 0.1

the persistence of their movement direction through time
(persistence, a proxy for variable commutes), and the directness
of their movement toward a goal (directedness). Details regarding
the simulation framework, the parameterization of each agent
and the associated environmental constants (including resource
density, patch regeneration functions, extraction rate, giving up
density, etc.) are provided in Supplementary Material 1, along
with R code from which our simulations can be reproduced.

Route Detection Framework

Here, we propose a procedure for differentiating route-based
movement patterns from other patterns of movement within
an animal’s range. Our approach is to identify segments
of movement tracks that exhibit route-like behavior by
calculating a grid cell resolution based on the autocorrelation
structure in the data, binning the sampled locations into
the grid cells, calculating a series of metrics describing the
orientation and determinism of GPS fixes within each cell,

and clustering cells with similar modes of movement using
unsupervised clustering.

Code for this analyses are available on github: https://git.io/
JP1vFE.

Path Reconstruction

The first step in the workflow is to reconstruct the original
continuous movement path from the sampled four-min GPS
track. This serves two functions: to more easily reveal segments
with similar modes of behavior, and to maximize the effective
sample size of orientations in each cell. To accomplish this,
we fit the sampled tracks to continuous time stationary
movement models, using the continuous time movement
modeling framework (Fleming et al, 2014; Calabrese et al,
2016). The semivariance of the movement tracks are used to
estimate the best fit stationary movement process, and model
parameters are estimated via maximum likelihood. The best fit
model is selected using information criterion (AICc and BIC).
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We then used the best fit model to interpolate between real
sampled locations by simulating realistic movement from the
movement model, conditional on the data. Possible trajectories
between each set of locations are simulated several times, and
the average across the simulated trajectories are used as the
interpolated segment of tracks. We simulated 10, 20, 30, 40,
and 50 tracks between observed locations in order to determine
how sensitive the accuracy of the reconstructed tracks are to the
number of iterations used to generate them. All model fitting
and simulations were implemented using the ctmm package in
r (Calabrese et al., 2016).

The limitations of this path reconstruction approach were
assessed by subsampling a 1 hz GPS track to increasingly
coarse sampling rates, reconstructing the resampled tracks to
continuous time using the ctmm package as described above,
and calculating the distance between the location estimates
from reconstructed track and observed locations from the
original 1 hz GPS track.

Binning

The second step in the workflow is to estimate a reasonable grid
cell resolution for each individual. Because animal movement
data is typically autocorrelated, we attempt to determine a
grid size that takes the autocorrelation in the behavior into
account. For individuals where the best fit movement model
exhibits autocorrelated positions and autocorrelated velocities,
the timescale of autocorrelation in the velocity (t,) give us
information about the timescale at which the fine scale behavior
of the animal is independent. In other words, T, is the timescale at
which the movement remains linear, beyond which the behavior
changes (Fleming et al, 2014; Gurarie et al, 2017, Noonan
et al,, 2019). Animals exhibiting small t, tend to have highly
tortuous movement, while animals exhibiting large t, exhibit
highly directed movement (Fleming et al., 2014; Gurarie et al,,
2017, Noonan et al., 2019). Given that T, is a timescale, we can
derive a pseudo-step-length by multiplying t, by the average
speed and getting a distance. This distance represents the spatial
scale at which the movement behavior remains the same on
average, thus any changes in orientations happening in locations
at least this distance apart are assumed to be independent from
each other. Therefore, if the best fit movement model is a model
with correlated velocities, then the cell resolution is calculated
by multiplying t, by the root mean squared speed (a convenient
summary statistic obtainable from the movement model). If the
best fit movement model is a model with independent changes
in velocity, then the grid cell resolution is simply set to the
mean step-length. The raster package (Hijmans, 2021) and rgdal
package (Bivand et al., 2021) were used to generate the grid after
the cell resolution was determined.

Cell Level Metrics

We previously defined routes as locations exhibiting movement
with a high degree of path fidelity, specifically high intensity
of sequential use and low directional variability. In the context
of a spatial grid, this translates to a series of connected cells
whereby the overall number of visits to a cell are relatively high,
the distribution of orientations within the cell reflect limited

TABLE 1 | Variables calculated for each cell.

Statistics calculated for each grid cell

Intensity of Directionality Neighboring cell Determinism
use similarity
Density of Hellinger distance MSD Point density Recursions
points in cell

Number of modes in MSD Hellinger

distribution of distance
orientations
Distance between MSD Number of
modes modes
Range of orientations MSD distance Repeats

between modes

MSD Range of
orientations
MSD STDV
orientations

Standard deviation of
orientations

Number of empty
neighbor cells

All variables intended for use in an unsupervised clustering algorithm. The Hellinger
distance is used to determine how different the distribution of cell orientations
is from a uniform distribution. Cell similarity is calculated as the mean squared
difference (MSD) between a focal cell and its surrounding neighbors. Recursions
are calculated as n(n — 1)/2, where is the number of visits to the cell. Repeats
are visits to a given cell that were part of an identical sequence of three or more
cell visits.

and consistent entry and exit points, and the sequence of cells
used preceding entry and following exit of a focal cell are
also consistent. After data are binned, the following metrics
(summarized in Table 1) are calculated for each grid-cell: Density
of points; Hellinger distance; the number of modes in the
distribution of orientations; the standard deviation of headings;
the value range of the orientations; the distance between the
modes of the orientations; the mean squared difference of all
the above metrics to all neighboring cells; the number of empty
neighboring cells; the total number of independent visits to each
cell, and the number of cell sequence repetitions (reoccurrences
within a single path of consecutive visits to three or more cells)
that include the given cell. These metrics were chosen because
of their simplicity, their concordance with our definition of
routes, and because we think they reflect what researchers are
perceiving when classification via expert opinion is attempted.
Relative intensity of use is captured by the density of points
in the cell. The consistency and constraints on entry and exit
points are captured by how significantly different the distribution
of orientations is from uniform (Hellinger distance), number of
modes in the distribution (e.g., bimodal distribution indicating
a bidirectional route and unimodal inticating a unidirectional
route), the distance between the modes (closer to 0 indicating
highly unidirectional, closer to w indicating highly bidirectional),
and the standard deviation and value range of the orientations in
the cell. The similarity to neighbor cells (mean squared difference
of a focal cell to its neighbors for each metric) and the number
of empty neighbors reflect the contrast in relative intensity of
use of a route compared to other locations. Finally, calculating
how deterministic the sequential visits to a cell are was achieved
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behavior; and (C) high use, not deterministic and directionally variable behavior.

FIGURE 3 | Examples of cell level data showing (A) high use, highly deterministic and bi-directional behavior; (B) low use, not deterministic and directionally variable

by adapting methods from Ayers et al. (2018) for identifying
traplining behavior, with the assumption that animals utilize
routes the same way every time. We quantified the degree to
which an animal passed through a given cell while traveling
along particular routes by calculating (1) the number of possible
comparisons between any two times an individual visited the
given cell (recursions, n(n — 1)/2, where n is the number of
visits to the cell) and (2) the number of recursions in which
the compared visits to the given cell were part of an identical
sequence of three or more cell visits (repeats). Examples of cells
with track segments exhibiting different value ranges from the
metrics in Table 1 are visualized in Figure 3.

Unsupervised Clustering
We use a Gaussian mixture model to cluster cells with similar
movement behavior as estimated from the cell level variables

TABLE 2 | Error estimates of the path reconstructions.

Path reconstruction error estimates

Iterations

10 20 30 40 50

Mean (STDV) (m)

4.40 4.30 4.27 4.26 4.25

(3.92) (3.90) (3.91) (3.90) (3.90)

Sampling rate (min)

4 8 16 32 60 120
Mean (STDV) (m)

4.40 6.72 11.31 19.13 35.25 62.52
(8.92) (5.87) (11.16) (17.36) (85.27) (57.24)

Comparison in the mean and standard deviation in the difference from the original
track. Iterations refer to the number of simulations included in the averaged track.
Sampling rate refers to the sampling rate after down sampling the original track.

above in order to identify cells with similar degrees of path fidelity
and sequential behavior. Model based clustering was preferred
over hierarchical and k-means clustering because instead of using
a heuristic approach, the clusters are modeled as mixtures of
distributions and cluster assignment is handled probabilistically.
This enables us to use model selection via information criterion
to determine how many clusters best fit the data, as well as
accounting for variance rather than assume spherical clusters.
Gaussian mixture models were fit using the GMM() function
in the ClusterR package (Mouselimis, 2021). In an attempt to
compare across individuals, all individuals across all species were
included in the same model, and BIC was used to determine the
optimal number of clusters [Optimal_Clusters_ GMM() function
in the ClusterR package], resulting in 10 clusters for each
animal. The distribution of values of each covariate were
compared across clusters to determine which covariates were
most distinguishable across cluster categories. The covariates
with the clearest separation (density of points per cell, recursions,
and repeats) were used to construct a “routineness score” for each
cluster. Quartiles for point density, recursions, and repeats were
calculated based on the mean values for each cluster category,
and cluster categories were associated with their corresponding

TABLE 3 | Mean and standard deviation of grid cell size across species.

Summary of grid cell resolutions

Species Mean (m) STDV (m)
Ateles geoffroyi 31.08 9.2
Cebus capucinus 25.01 7.73
Nasua narica 32.29 8.82
Potos flavus 30.18 8.25
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quatrtile for each covariate (0.25, 0.5, 0.75, and 1). The routineness
score was calculated as

Qd,- X Qreci X Qrep,-
Z,‘ Qdi X Qpee; X Qrepi

Where Q represents the quartile assignment of each cluster
based on point density, recursions, and repeats, respectively.
This provides a continuous score for each cluster category
representing how intensely used a cell is, weighted by how
deterministic visits to that cell are and how predictably sequential
movements in and out of that cell are. Larger values represent
more routine behavior.

We compare the prevalence of routine behavior across our
four study species using hierarchical Bayesian regression. Priors
were improper flat following Student — T(3, 0, 2.5), and the
model was implemented using the brms package (Biirkner, 2017;
Carpenter et al., 2017; Biirkner, 2018).

RESULTS

Continuous time movement models were able to facilitate high
fidelity and high-resolution path reconstructions. Increasing
the number of simulations did not change the observed
error between the reconstructed tracks and the original 1 hz
track. Coarsening the sampling rate resulted in substantial
increases in error between the reconstructed tracks and original

track (Table 2). Movement models fit to lower resolution
data were not able to recover fine scale movement behavior,
and sampling rates of 30 min or more resulted in error
estimates well beyond that of standard GPS error from animal
tracking collars and handheld GPS units. Sampling intervals
under 30 min had error estimates within or below typical
stationary error exhibited in the real animal movement data,
and at sampling rates under 10 min reconstructed tracks
were nearly indistinguishable from the original 1 hz track.
Supplementary Figure 1 shows the increasing distortion
in the path reconstructions when models are fit to data
resampled to coarse sampling rates, while Supplementary
Figure 2 shows a high-fidelity reconstruction overlaid on
the original track.

The unsupervised clustering was able to reveal varying degrees
of routine behavior across the four focal species. A summary
of grid cell resolutions for each species is provided in Table 3.
The density of points in a cell, total recursions and total
repeats were the variables with the clearest and most consistent
separation between clusters (Figure 4). Figure 5 provides
example trajectories from a spider monkey, capuchin, coati,
and kinkajou plotted against the boundaries of the study area.
Figure 6 shows the outcome of the route detection procedure on
those same individuals, with the tracks colored by the estimated
“routineness score.”

All species show a mix of locations with routine and non-
routine behavior as indicated by their routineness scores. The
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FIGURE 4 | Boxplots of the variables with the clearest separation across clusters. (A) The number of fixes in a focal cell; (B) The total number of recursions to that
cell (see “Methods and Materials” section); (C) the total number of repeats (sequential recursions, see “Methods and Materials” section) to that cell.
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FIGURE 5 | Example trajectories from a spider monkey, a capuchin monkey, a coati, and a kinkajou. All tracks plotted relative to the outline of the island to illustrate
any routine behavior due to potential geographical barriers such as the shoreline.

spider monkey and coati both exhibit the highest routineness
scores along the shoreline. In the case of the coati, most of the
locations with high routineness values might be explained by
the fact that the majority of its range falls within a peninsula,
strongly suggesting environmental constraints on movement.
The spider monkey in comparison does demonstrate some
route-like behavior along the shoreline, but also exhibits high
routineness scores at locations unconstrained by the geometry of
the island. The capuchin and the kinkajou both exhibit evidence
of route-use independent of the geometry of the island, with the
capuchin range being far from the shoreline, and the kinkajou
seeming to predominantly rely on routine behavior to navigate
its range. Kinkajous exhibited the highest overall routineness
relative to the any other species (hierarchical Bayesian regression,
Figure 7).

DISCUSSION

The utility of our approach lies in explicitly quantifying the
degree to which behavior in a given location is routine,
providing researchers a means of differentiating potential
habitual travel routes from other locations within an animals’
range. Our routineness score provides a simple and interpretable
means of characterizing a location as route-like, with higher
values indicating habitually high-use, sequential, and directional
behavior. Further analyses can be designed to diagnose whether
the presence of routine behavior at a given location is explainable
by environmental constraints or if there is evidence for a
learned navigation route. This could be achieved by testing the
relationship between the presence of the physical features in
Figure 1 and the routineness score of a region. For example, the
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FIGURE 6 | Example results of the route detection procedure. All individuals are the same individuals presented in Figure 5, however, the axis scales are unique for
each individual to facilitate easier visual comparison. All track segments have been annotated with the “routineness score” of the cells they occupy.

coast of the island in which our data were collected creates a
type of physical corridor; areas closer to the coast tend to have
higher routineness scores for the coati in Figure 5. Researchers
interested an animal’s perceptual capacity might estimate the
distance from important resources at which routineness scores
increase, while those interested in response learning might
estimate the effect of notable landmarks on nearby routineness
scores. Simulations such as those presented in Figure 2 can be
used to create useful references for the routineness scores that
might be expected under different conditions.

Interestingly, our results indicate that among our four study-
species, kinkajous, which are both nocturnal and arboreal,
exhibited the most consistent and pervasive routine behavior
throughout their ranges. One factor that may lead to a greater
degree of routine behavior in kinkajous is the perceptual

limitations of nocturnal activity. Greater reliance on local
landmarks, such as the pattern of foliage against the night sky
(Chaib et al., 2021), may require kinkajous to remain within
narrower regions of space in order to stay oriented. At the same
time, kinkajous may have a greater number of locations that
they visit frequently and consistently than other species in this
study. First, kinkajous typically limit their sleep to a repertoire
of 1-3 secure sleep sites (Kays and Gittleman, 2001), while other
species in this study are more flexible, perhaps due to the added
security of group-living. Second, recent research in another
asocial carnivore, the cheetah, has highlighted the importance of
communication nodes for the transfer of information between
neighboring conspecifics (Melzheimer et al., 2020). Dependence
on a limited number of sleep sites and the routine visitation
of communication hubs could limit the ability for kinkajous
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to flexibly adjust their movement strategies with changing
distributions of food resources. Understanding downstream
effects of nocturnality and asociality on navigation and space-use
strategies will be an important goal for future research.
Elaborations on our method for quantifying routine behavior
may be useful in further distinguishing the cognitive mechanism
that mediate the relationship between an animal’s ecology
and its space-use. Neuropsychologists describe an animal’s
mental representation of space as stemming from two parallel
memory systems, a relative system where space is experienced in
relation to the observer (egocentric), and a geometrically explicit
system where the vectorial relationships between locations are
independent of the observer (allocentric) (O'Keefe and Nadel,
1978; Nadel, 1992; Nadel and Hardt, 2004). Egocentric systems
emerge from the integration of perceptual processing and
response learning, such that individuals learn and remember
the sequence of responses to some reference cues that lead
to successfully acquiring some sought after target (reviewed
in Goodman, 2021). Through response learning, for example,
animals can use unique cues (landmarks) to behaviorally and
neurologically (Knierim and Hamilton, 2011) connect valuable
resources separated by spaces greater than the animal’s perceptual
range. Such learning on its own typically produces highly
routine movements in which both the order of resources visited
and the paths taken between them remain consistent over
time, as in bumblebees (Lihoreau et al., 2012; Reynolds et al.,
2013) and hummingbirds (Garrison and Gass, 1999) foraging
on spatially persistent, renewing sources of nectar. The high
degree of routine behavior in kinkajous may suggest that they
rely more heavily on response learning strategies, relying on

stimulus response behavior to encounter important resources.
This is in contrast to place learning, whereby the animal learns
and remembers the position of some object relative to an
absolute frame of reference, independent from the animal’s
own position (reviewed in Goodman, 2021). In this case, and
with relevant information about its own position relative to
this frame of reference, an animal can navigate toward the
resource on future occasions regardless of the individual’s starting
location, and is not restricted to repeating the exact sequence
of movement behaviors it exhibited previously. In Figure 8,
we identify additional metrics of routine movement paths
that could be used to interrogate the cognitive mechanisms
underlying specific routes. Supplementing applications of this
route-detection workflow with data on perceptual ranges and
resource distributions will aid in determining whether areas of
high routineness are best explained by taxis, response learning,
or place learning (Figure 8).

While the method presented here is a promising step toward
diagnosing these particular patterns of behavior, it is important
to note its limitations. Our approach does not attempt to explain
the paths an animal took as a function of the environment, as
methods like step and path selection facilitate (e.g., Fortin et al.,
2005; Cushman and Lewis, 2010; Zeller et al., 2015). Similarly,
this method is not a tool for estimating unobserved locations
that an animal may have used (e.g., via the Brownian bridge
movement model). Rather, our approach incorporates an already
available continuous time modeling framework as an integral
step in our data processing procedure. Because our approach
is built around reconstructing the data to continuous time, the
accuracy of the reconstructed movement paths are sensitive to the
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resolution of the data. Our results show that the reconstructions
stay reasonably accurate at sampling intervals less than 30 min. At
coarser resolutions, the error increases substantially. With high
resolution data, this approach does a remarkable job recovering
the fine scale tactical decisions made by the animals and has the
ability to detect fine scale route use. As sampling rates get more
and more coarse, the autocorrelation in the velocity becomes
difficult or impossible to estimate, and diffusive models that
assume independent velocities must be used (Fleming et al.,
2014, Gurarie et al., 2017). Under these circumstances, the grid
cell size will equal the mean step length, making this approach
analogous to other available approaches. For low resolution
datasets, there may not be an advantage to using this approach
over the approaches presented by LaPoint et al. (2013) and
Bastille-Rousseau et al. (2018).

Areas where animals exhibit routine behavior, particularly
route use, indicate the importance of that area to the animals
either because they have learned that moving through those
locations will lead them to high valued target destinations, or
because external factors have constrained their set of usable
locations to those areas. We have reviewed the cognitive and
non-cognitive mechanisms that can lead to the emergence of
routine behavior, particularly route-use, and have suggested one
potential way of identifying this pattern of behavior in animal

movement data. This conceptual framework and method of
classifying routine behavior should provide a helpful step toward
the study of these cognitive and non-cognitive mechanisms.
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GLOSSARY

BOX 1 | Glossary of terms used in the paper.

Exploration: A process of movement determined solely by the internal state of an animal. Results in “random” movement, analogous to the use of “local”
information or internal states.

Taxis: The combined cognitive processes that allow an animal to perceive and categorize perceptual cues and direct its movement relative to specific cue types.
Analogous to the “taxon” system.

Response Learning: The process of mentally associating perceptual cues to physiological outcomes through specific behaviors.

Place Learning: The process of mentally associating one location (or other mental representation) to another by a distance and a direction.

Path: The actual locations an animal occupied over some contiguous period of time.

Track: An animal path that has been subsampled to a time-series of discrete points in space (e.g., by a GPS collar).

Route: A region of space with high path reuse fidelity: relatively high use by one or more animals in which the animals’ movement bearings exhibit low variability
across paths.

Corridor: An environmental feature that causes route-use in the absence of response learning.

Targeted Destination: A region of space with relatively frequent re-use by one or more animals in which movement vectors have low average velocity and relatively
low correlation in bearings.

Commute: A habitual transition between two targeted areas.

Variable Commutes: A set of commutes between two targeted destinations that do not occur along a route.

Route-Based Commutes: A set of commutes between two targeted destinations that occur along one or a few routes.

Commute Determinism: The predictability of an animals next commute given its presence at a specific targeted location.

Trapline: A sequence of targeted locations that frequently occur in the same order due to a series of highly route-based commutes.
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Individual Network Topology of Patch
Selection Under Influence of Drifting
Site Fidelity

Arild O. Gautestad*

Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway

Network theory has led to important insight into statistical-mechanical aspects of
systems showing scaling complexity. | apply this approach to simulate the behavior
of animal space use under the influence of memory and site fidelity. Based on the
parsimonious Multi-scaled random walk model (MRW) an emergent property of self-
reinforcing returns to a subset of historic locations shows how a network of nodes
grows into an increased hierarchical depth of site fidelity. While most locations along
a movement path may have a low revisit probability, habitat selection is maturing
with respect to utilization of the most visited patches, in particular for patches that
emerge during the early phase of node development. Using simulations with default
MRW properties, which have been shown to produce space use in close statistical
compliance with utilization distributions of many species of mammals, | illustrate how a
shifting spatio-temporal mosaic of habitat utilization may be described statistically and
given behavioral-ecological interpretation. The proposed method is illustrated with a pilot
study using black bear Ursus americanus telemetry fixes. One specific parameter, the
Characteristic Scale of Space Use, is here shown to express strong resilience against
shifting site fidelity. This robust result may seem counter-intuitive, but is logical under the
premise of the MRW model and its relationship to site fidelity, whether stable or shifting
spatially over time. Thus, spatial analysis of the dynamics of a gradually drifting site
fidelity using simulated scenarios may indirectly cast light on the dynamics of movement
behavior as preferred patches are shifting over time. Both aspects of complex space
use, network topology and dynamically drifting dispersion of site fidelity, provide in
tandem important descriptors of behavioral ecology with relevance to habitat selection.

Keywords: complex network topology, site fidelity network, multi-scaled random walk, characteristic scale of
space use, home range resilience

INTRODUCTION

Animals” cognitive capacity to utilize a memory map in their quest for optimizing habitat selection
continues to be verified empirically from data on vertebrate movement, including amphibians
(Pasukonis et al., 2014), ungulates (Gautestad et al., 2013), primates (Boyer et al., 2012) and many
other taxonomic groups (for a review, see Piper, 2011). Individual movement may be considered to
be a mixture of exploratory moves and some occasional events of return, where the latter generate
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Network Topology and Site Fidelity

site fidelity but depend on spatial memory. Some locations
will over time become more frequently revisited than others;
a property that may be called non-random self-crossing of the
individual’s movement path. In overall terms the animal’s home
range becomes an emergent property of the tendency to revisit
historic locations. Thus, memory map utilization is a key aspect
of cognitive movement ecology.

Memory map utilization invites to study animal space use
from two complementary perspectives, topologically and spatio-
temporally. This report has thus two main objectives; first, I use
simulations involving memory-dependent site fidelity to explore
in phenomenological terms the network-topological aspect of the
emerging network of nodes (targets for return events). Secondly,
I toggle from the topological aspect of networks to the spatio-
temporal aspect of space use under this premise. Based on the
dispersion of large sets of sampled locations (fixes) of simulated
paths using a specific model, the Multi-scaled Random Walk
(MRW) algorithm (Gautestad and Mysterud, 2005; Gautestad,
2021), I specifically propose a new method to analyze the effect
of instability of local and temporal site fidelity in real space use
data and how statistical-behavioral model parameters for the
strength of habitat utilization is influenced under these terms.
Interestingly, the proposed method does not require explicit
knowledge of the physical location and dispersion of active
network nodes, which are verified indirectly and in a statistical-
physical manner.

Exploring the dual nature of MRW both from the network-
topological and the spatio-temporal (Eulerian) angle represents
a novel analysis of this model. A will be shown, it opens for
alternative methods to study behavioral-ecological aspects of site
fidelity and habitat selection within the context of statistical
physics of complex phenomena. Since this report provides the
first introduction to this approach, the theoretical framework is
kept relatively general, and the theory is likewise illustrated by a
simple empirical analysis—a pilot test—of real space use data.

Network Topology

In general terms we are surrounded by networks, both real and
virtual (Watts and Strogatz, 1998; Barabasi and Albert, 1999;
Barabdsi et al., 2003). On the World Wide Web two Websites are
connected if there is a URL pointing from one site to another.
Statistically, most websites are referred to by a few other sites,
while a few sites have a tremendous number or referring sites
(Albert et al., 1999). Mathematically the distribution tends to
self-organize into power law compliance: k times larger Website
popularity is reduced by a factor 1/k¥ . The distribution P(k)
~ k™ is scale-free over the range of the part of P(k) where
y is stable, and is said to be complex over this range. Popular
sites apparently grow in popularity in a self-reinforcing, positive
feedback manner (“rich get richer”). Complex network topology
is also found in the distribution of how often scientific papers
are referred by others (Redner, 1998). Human mobility is also
explored by applying network topological analysis (Song et al.,
2010). Other examples regard power grid structure (Watts and
Strogatz, 1998; Strogatz, 2001), inter-colleague collaboration
among actors (Barabasi et al., 1999), metabolic processes (Jeong
et al., 2000) and spread of epidemic outbreaks (Barthélemy

et al.,, 2004). In short, networks are at the center of studying
and ultimately understanding complex systems in very broad
terms. On the other hand, a non-complex (“regular”) distribution
would be expected to comply with an exponential rather than
a power law decline of popularity. In this case y is not stable
over a large range of k, and the frequency of ultralarge-k events
becomes negligible in comparison to the power law range, which
tends to enlarge the “fat tail” of the distribution. In the context
of animal space use, while most locations have a low revisit
probability, emergence of extreme patch “popularity,” albeit rare,
are also expected.

Distinguishing between true scale-free distributions and look-
alike power law distributions are challenging (Broido and
Clauset, 2019). However, in the present context the main
topological property under scrutiny regards the evolution of
“hierarchical depth” in the emergence of node weights over time,
and how some nodes appear as “super-nodes” due to a positive
feedback process, not if a true power law is satisfied in a strict
statistical sense.

From a network theoretical perspective locations along a
movement path may be said to represent potential nodes. Actual
nodes will emerge from memory-dependent returns to a small
subset of these historic locations. This kind of individual-centric
network topology deviates conceptually and qualitatively from
the geometrically explicit dispersion of patches the animal is
attracted to and the paths the animal follows to commute between
them. For example, the set of the closest patches in the network
may be independent of the Euclidean distance between the
network node and its neighbor nodes (Figure 1). Independence
between physical distance and closeness based on historic re-
visitation events has been supported empirically in American
bison Bison bison (Merkle et al., 2014, 2017) and Fowler’s toads
Anaxyrus fowleri (Marchand et al., 2017).!

For the present context of cognitive movement ecology I label
the scenarios “Site Fidelity Network” (SFN). Analyses of both
the SEN topology and the space use pattern in Euclidean terms
are performed under two premises; a statistical-physical level
of system abstraction, and application of MRW, which embeds
both occasional returns to previous locations and a scale-free
distribution of exploratory step lengths.”

The emerging system of site fidelity from an individual
entering an area, the animal’s home range, is growing in spatial
extent over time due to the mixture of exploratory moves and
occasional return events, but much slower in comparison to
movement in the absence of site fidelity. From the topological
perspective, SFN exemplifies growth of an individual-centric
virtual network where new network nodes appear in two variants;
(a) nodes that immediately connect to the network and contribute
to its growth, and (b) potential nodes. Steps leading to immediate
node growth imply that the individual is revisiting a location,

ISee, for example Marchand et al. (2017, p. 68):

“The assumption that toads returning to a previous refuge choose one at random
may seem unrealistic. Yet it fits the data better than two alternative models we
tested, where the probability of return and/or the choice of refuge were distance-
dependent.”

2The present simulations and analyses are performed under the MRW Simulator
2.0, developed by the author (www.gautestad.com).
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FIGURE 1 | In a virtual network, if the animal revisits a node from another
node the topological distance between the two nodes is shortened in an
incremental manner for each such revisit between the two. Such return events
represent inter-node attachment growth. Short-cuts where for example the
individual moves in the node sequence A-B-C-A contributes to increasing the
connectivity strength (called the degree, illustrated as bullet size in the
illustration) of the revisited nodes. When the animal returns directly to A from
C, node A is advancing upwards in the hierarchy of node connectivity
strength, which is shown by the new connecting line segment from C to A.
This new connection means that A and C also move closer in network
topological terms. In contrast, the physical (Euclidean) distance between
nodes A, B and C (the “patches” A', B’ and C’ in the lower part of the
illustration) remains the same regardless of node degree and respective
topological distances. Along the dotted path only A’, B’ and C’ belong to the
network due to previous revisits, while the rest of the path (dotted line)
represents potential nodes with still unrealized connectivity to the network of
actual nodes.

starting from a location that so far has not been revisited. The
latter then becomes part of the evolving network due to the
return event. Thus, only return events from locations outside
the present network of revisited nodes contribute to network
growth, while returns from an existing node to another node
contribute to strengthening the relative degree of the target node
(Figure 1). In this case both the start and the target locations were
already part of the network. On the other hand, locations that
have been visited only once represent a pool of potential nodes.
These locations do not immediately link to the present network
of actual nodes, but are remembered and may thus connect to
the network later on. This aspect of spatio-temporal memory
makes it necessary to extend the architecture of classic network
topology to the SEN-specific topology, containing both “insiders”
and “outsiders.”

From the topological perspective, compliance with a scale-
free network distribution of node weight (relative popularity
of revisited nodes) regards an emergent property from the
movement model’s definition of return events under a premise of
network growth; i.e., system openness. A wider the distribution
implies a deeper hierarchical depth of node weights. Further, the
topological distance between nodes, as exemplified by the length
of the connecting lines A to B, B to C and C to A between

nodes in Figure 1, is independent of the physical step length
distribution per se (distances between successive steps between
given time increments; exemplified in Figure 1 by the three
distances A’ to B, B’ to C’ and C’ to A). Thus, with respect to
the scaling properties of node weights, any movement algorithm
involving memory-based return events could be applied, given
that the properties are studied from the topological side and not
from the Euclidean spatio-temporally side. On the other hand,
in Euclidean terms, “scale-free” is a property of the movement
process in physical space, as defined by the MRW model’s step
length algorithm (see below). Similar to the Internet-related
example above, a distribution of step lengths obeying P(k) ~
k™Y is scale-free over the range of the part of P(k) where vy is
stable, and is said to be complex over this range. In step length
terms, we study the distribution of binned step lengths. In other
words, when log-tranforming the distribution of step lengths one
should expect a linear relationship. Thus, two complementary
aspects of “scale-free” space use are scrutinized in this report—
topological and Euclidean.

How to link an animal’s emerging network topology to its
spatio-temporal pattern of site fidelity? Distinguishing between
true network nodes from memory-based, intentional return
events and exploratory moves that just happen to revisit a site
by chance (random path crossing) becomes a challenging and
probably unsolvable empirical task, in particular, when these
nodes are shifting positions in space over time (“drifting site
fidelity”). Still, the cognitive process behind targeted returns
leads—in overall terms—to a qualitatively different kind of
space use process than movement where each return happens
by chance; ie., independent on memory map utilization. In
this report I propose and explore an alternative way to resolve
this empirical challenge to differentiate between intentional and
random returns. I show how simulations involving memory and
site fidelity where properties are known from the given model
conditions may reveal important statistical aspects of this kind
of space use dynamics.

Given the issues just outlined, the aspect of self-reinforcing
use of a subset of nodes in network terms needs to be studied
indirectly from the spatial distribution of fixes in physical space,
including how such pattern of site fidelity may evolve and change
over time. This is where the Euclidean properties of the space use
model become crucial, complementing the topological aspects
of site fidelity as introduced above. In particular, I show how
the abovementioned challenge to pinpoint actual return events
from non-intentional returns to specific locations selection may
be circumvented by analyzing space use in a statistically “coarse-
grained” manner; i.e., from the perspective of statistical physics.
This approach may thereby reveal topological aspects of site
fidelity indirectly, by observing the system’s complementary
properties of the spatio-temporal movement pattern rather than
the network topology directly. However, the applicability of this
approach critically depends on the realism of the space use model
that is applied.

The Multi-Scaled Random Walk Model

MRW simulates movement to be studied at a coarsened
temporal resolution; i.e., at a temporal unit scale which is
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coarse enough to ensure that successive steps are randomly
distributed in directional terms. This satisfies the premise of
a statistical-physical observations of the process in a more
simplified mathematical context, relative to studying the process
at finer (“hybrid”) temporal resolutions where deterministic,
“tactical” behavior and directional step persistence becomes
more influential on the movement path (e.g., correlated random
walk). The return steps are memory-dependent and describe
site fidelity. What regards the statistical-physical aspect, analysis
of individual space use is typically based on fixes that are
collected at large time intervals relative to the temporally fine-
grained deterministic behavioral response time for successive
movement-influencing events within the animal’s current field
of perception. For example, GPS fixes from vertebrate space
use may be collected at intervals of 1-2 h or larger, embedding
much intermediate, tactical and unobserved movement behavior.
Thus, theoretical simulation and the accompanying analysis of
the space use process at this coarsened “strategic” temporal scale
is statistical-physical by nature and in compliance with common
empirical protocols.

Three main arguments support the choice of MRW as the
basic statistical-physical model for memory-implemented space
use. First, based on analyses of real data, area demarcation (home
range, A, using various demarcation methods) has been shown to
satisfy the MRW -characteristic power law A~ N°.5 for all species
we have studied so far, for example including free ranging sheep
Ovis aries (Gautestad and Mysterud, 1993, 2012), black bear
Ursus americanus (Gautestad et al., 1998) and red deer Cervus
elaphus (Gautestad et al., 2013). A similar power law compliance
was also found in a meta-analysis embedding many vertebrate
species (Gautestad and Mysterud, 1995) and recently also in a
pilot study on roe deer Capreolus capreolus, based on data from
Ranc et al. (2020).}

Second, by superimposing a virtual grid on the spatial scatter
of relocations and counting the number of grid cells containing
one or more fixes (incidence, I) as a function of grid resolution
(a common approach to observe complex space use from a
statistical-physical perspective), we have also consistently found
a power law relationship, from which we could estimate the
fix scatters fractal dimension, D. Typically, we find D =~ 1,
which indicates that fixes are statistically distributed in a scale-
free (self-similar) manner. In other words, fixes tend to show
aggregations over a range of spatial resolutions. This range of
the fractal dimension describes a strong aggregative tendency
due to D << 1.5 (Gautestad and Mysterud, 2012; Gautestad
et al., 2013), which again is an indicator of positive feedback
with respect to local habitat utilization and thus behavioral
complexity in statistical-physical terms. Consequently, in our
analyses the overall empirical results are MRW-compliant also
from this perspective. In other words, some parts of the home
range under study were visited more often than others, and
this pattern repeated itself statistically in what is called a self-
similar (“fractal”) manner toward finer resolutions, apparently
not mirroring a simple linear proportionality with local habitat

3See Author’s blog post “Roe Deer Comply With the MRW Model,” dated August
11, 2020, at www.animalspaceuse.net.

attributes like food resources at respective resolutions. In short,
since the estimate of D covers a set of fixes that is collected from a
range of local and temporal conditions, the within-range habitat
heterogeneity effect on D is effectively “averaged away” from the
spatio-temporal pooling of fixes when estimating D.

Third, when the successive fix distances from red deer
movement were analyzed (“step lengths” L, at 2 h time
resolution), we found that a power law fitted the distribution
F(L) better than the negative exponential, where the latter
would be expected from a scale-specific and classic random
walk-like kind of movement rather than scale-free space use
(Gautestad and Mysterud, 2013; Gautestad et al., 2013). Thus,
both small and very large displacements were more common
than expected from classical movement models, and again in
compliance with MRW properties. A pseudo-scale-free variant
where the animal is switching between different scale-specific
movement modes—making the total distribution look power
law-like (composite random walk) was discarded as explanation
of these data (Gautestad and Mysterud, 2013). Recently these
aspects of complex space use, expansion of space use, A(N),
fractal self-similarity of site fidelity, and the frequency of inter-
step movement lengths F(L), have been verified empirically and
explored theoretically also by other researchers (Boyer et al., 2012;
Boyer and Romo-Cruz, 2014; Boyer and Solis-Salas, 2014; Evans
etal., 2019).

In short, the scale-free property of movement steps follows
from the model premise that the animal under MRW conditions
is assumed to relate to its environment at many spatio-temporal
scales in parallel over a given scale range (Gautestad, 2021).
In contrast, the classical use-availability analysis of habitat
selection is based on a premise of independent revisits to
respective sections of a home range; i.e., a memory-less and
area-constrained process in cognitive movement terms (Boyce
et al, 2002), and the behavior is consequently assumed to
comply with some variant of standard (Brownian motion-like
or Lévy walk-like) random walk properties in statistical-physical
terms. This paradigm premise is neither compatible with an
evolving network of nodes, nor compatible with the MRW model,
which is formulated to be compliant with evolving memory map
utilization and a scale-free kind of space use at the statistical-
physical level.* Thus, the present analyses not only explore the
feasibility of the MRW model to reveal complex patterns of
site fidelity, but also contribute to highlight the fundamentally
different system premises on which MRW rests, relative to
standard space use models.

To summarize, a theoretical framework to study cognitive
movement ecology under condition of spatial memory and scale-
free habitat utilization is beginning to emerge, and the MRW
seems to be a feasible model platform to study site fidelity in the
context of habitat selection (Gautestad, 2015, 2021). The MRW
model provides opportunities to indirectly reveal the dynamics
of site fidelity under various conditions: both from the network-
topological and the Euclidean (spatially explicit) perspective.

In particular, from behavioral-ecological arguments one
should expect the return probability to specific sites to decline

4For details on the MRW model, visit www.animalspaceuse.net.
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as a function of increased uncertainty of site profitability or
increased risk in connection with return to historic locations; e.g.,
due to increased environmental variability and unpredictability,
or due to a predators local search map being influenced by
learning the prey’s habits. On the other hand, site familiarity
provides crucial benefits with respect to utilizing a memory map
(Piper, 2011). These aspects will be scrutinized by the present
simulations by varying the temporal stability of existing memory-
based targets for an individual’s return events. A sub-set of
previously published telemetry data on 15 black bear females
(Gautestad et al., 1998) is also explored with respect to the present
method to reveal degree of (in) stability of site fidelity.

MATERIALS AND METHODS

Network Topology Under Site Fidelity

Network Terms

Within the area traversed by an animal, some locations may
over time be re-utilized in a self-reinforcing manner at the
expense of proportional use of other patches of a priori similar
qualities—owing to the process of occasional but directed returns
to known localities (Gautestad and Mysterud, 2010b). This very
general property of vertebrate movement may be simplified
into parsimonious model algorithms to simulate memory-
enhanced space use.

In general terms; i.e., whether MRW or another kind of
statistical-physical algorithm is applied to simulate memory-
involving animal space use, the model defines a return
step protocol. For example, on average every pth time
increment (u >> 1) in the simulated series the given step is
followed by a directed return to a randomly and uniformly
distributed chosen previous location in the series (called
“neutral connectivity”). Alternatively, the protocol could define
“preferential connectivity,” where visited locations gain increased
probability for additional revisits. Anyway, the probability for a
revisit to a given site under the chosen connectivity scheme on
average declines geometrically over time, due to an incrementally
larger pool of potential return targets as the total path expands.
A large p indicates that returns happen at a low frequency relative
to exploratory steps, but from a topological perspective . does
not influence the distributional form of the actual node weights,
only the relative magnitude of potential nodes in comparison to
the smaller but evolving set of actual nodes (network growth).
The reason is that the size of the network grows as a function
of actual nodes. Thus, the speed of this growth depends on
the frequency of returns, 1/p; i.e., smaller p implies relatively
stronger growth, but the distribution of node weights (its power
exponent) does not.

The network topology of actual, inter-connected nodes—
based on the set of return target locations—were studied by
analyzing the so-called degree distribution and the accompanying
weight of nodes (popularity): frequency of nodes as a function of
connectedness (number of returns to a given location), which also
increases some nodes weight on expense of less visited nodes.
Gephi version 0.7 alpha2 and version 0.9.2 (Bastian et al., 2009)
were used in these analyses.

In practice, series of simulated return targets and the
respective locations from which the individual initiated a given
return event were successively separated from the developing
path series into a two-column spreadsheet, which was then
imported to Gephi for analysis. In order to reveal the degree of
power law compliance, the degree distribution of node weight
was subject to geometrical binning. Further, the spatial locations
of the most “popular” nodes were superimposed on a dispersion
of a set of fixes, in order to illustrate—in phenomenological
terms—the juxtaposition of these locations with relatively high
return frequency relative to the over-all spatial pattern of fixes.

Only the first 10* return targets in each series of 10> or 10°
MRW steps using returns at every p = 10 time steps on average
were analyzed for scaling properties, due to their strongest
network maturity; in the initial part of the step series had the
longest history of return events and consequently providing
the highest analytical potential to distinguish a scale-free or
approximately scale-free; i.e., an approximately log-log linear
degree distribution, from scale-specific network topology (semi-
log linear). The latter parts of the series consisted mainly of
potential nodes (not yet part of the set of actual nodes due to lack
of becoming return targets). By comparing the network graph of
the first 10* return targets from a 10°-step series with the graph
from the first 10% return targets from a 10 times larger series one
gets a qualitative impression of how the “hierarchical depth” of
the graph is progressing as the SEN evolves over time.

Balancing Exploration and Site Fidelity in

Euclidean Space

Above I have already given the three main arguments for
choosing MRW as the basic model when flipping from network
topology to the Euclidean properties of memory-influenced
space use. Under the premise of the MRW framework, space
use emerges from a combination of exploratory moves and
occasional returns within a defined time resolution and spatial
extent. What regards simulation of exploratory steps of space use,
MRW series of length 2*107 steps, representing successive path
locations at the defined unit time interval ¢, were simulated in a
homogeneous environment as a set of successively independent
step vectors of length:

Lyrw = a(RND) "=V | Lipw < Lyax (1)

with a = 1 and B = 2. RND is a random number between 0
and 1. Hence, median step length is 0.5~ = 2 length units. The
maximum step length, Lp,,y, is by default set very large, meaning
that this cut-off of step length does not influence the present
results. Eq. 1 (without the added property of memory inclusion;
see below) is a common formulation of so-called Lévy flight,
representing a true Lévy walk that is simulated at a coarsened
(statistical-physical) temporal scale, defined by a. A constant o
at the unit temporal simulation scale implies a given average step
length for the simulations; i.e., movement speed is for simplicity
assumed constant on average over space and time during the
given time resolution and extent.

From a network perspective, steps from Eq. 1 represent
potential nodes and extending this basic algorithm with return
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steps implements the memory process. This MRW models
give birth to a new actual node (targeting a previously never
revisited location of the historic path) or contributes to increasing
the popularity of an already existing node. Since the first
part of the present analyses is targeting the properties of the
network topology of popular nodes that emerge for memory-
influenced space use, other aspects of habitat interactions (for
example, relations to specific habitat elements in a heterogeneous
environment, including difference in local movement speed as
reflected by differences in the parameter a or difference in the
return frequency 1/p during respective time periods) are for
simplicity not specified. This simplification is chosen for the
sake of remaining focused on the duality between complexity of
node connectivity in topological terms and site fidelity in explicit
spatial terms. Running the simulations with millions of steps at
statistical-physical resolution is an unrealistically large sample
size to represent real individuals. However, this magnitude is
chosen to allow for a proper study of theoretical aspects of
the system’s network topology and the complementary spatio-
temporal properties of MRW.

Under the implicit premise of a statistical-physical system
simulation even at unit time scale t = 1, successive inter-step
directions of the exploratory steps (Eq. 1) are drawn uniformly
from 0 to 27 radians. Before considering the complication from
return steps, large series of steps Lyvrw represents scale-free
distribution of moves (“exploratory steps”), sampled at constant
intervals of length t, thus complies with sampling a Lévy walk
(Shlesinger et al., 1993; Reynolds and Rhodes, 2009); thus, de facto
becoming a series of steps called a Lévy flight.

The log-formatted bin width of the distribution of step lengths
from Eq. 1 is set somewhat larger than the median step length in
the sample at time resolution t, to study the functional form of
the long-tail part of the step distribution at the chosen temporal
sampling scale. For example, if median step length is found to be
Limed, unit bin width is by default set to be 50% larger.

However, MRW deviates from Lévy walk/flight by adding
the effect from spatial memory and site fidelity. This property
makes the process potentially scale-free also in the time domain,
and not only in the spatial domain. On average every pth
time increment in the simulated series the step was followed
by a directed return to a randomly and uniformly distributed
chosen previous location in the series (neutral connectivity; i.e.,
the default condition of MRW), or by preferential connectivity,
where visited locations gain increased probability for additional
revisits. The magnitude of pt (where p is an integer larger than
one) defines the general strength of this “homing” tendency;
larger . implies weaker site fidelity due to longer return intervals
on average. Ecologically, a larger p may for example imply space
use under less favorable conditions than where w is small. In
the present simulations with respect to network analysis I used
10 < = < =100 under the condition of neutral connectivity (all
historic locations relative to a given instant has equal probability
for a revisit). For Medium preferential connectivity I used
an added condition that returns either takes place with 50%
probability to a randomly chosen target among existing network
nodes; i.e., alocation that has already been visited before, and 50%
probability for returning to a randomly picked target regardless of

status. This implies a “preference” to return to already revisited
locations relative to neutral connectivity. For Strong preferential
connectivity I used 90% probability to return to an existing,
actual node and 10% to a randomly picked location (using 100%
return to actual nodes would terminate network growth). Thus,
the choice of 50 and 90% strength of preference represents
two levels of skewedness on the continuum from 0% (neutral
connectivity) toward—but not including—100%). With respect
to spatio-temporally varying site fidelity (next section), I used
i = 100 for all conditions of connectivity strength.

Further Coarse-Graining of the Process:

Fix Sampling and Analyses

Each series was sampled as one “observed fix” (tops) pr. 1000t;
i.e,, a coarser time resolution than the average return interval
at the scale of steps at unit time resolution, t (tyer = pt = 100t)
in the simulations of varying site fidelity. Hence, intrinsic serial
auto-correlation was effectively eliminated at the temporal scale
of tops >> tret.

Sets of fixes from each series were in the present context
collected at temporal scale tops = 1000t. Thus, analyses of
movement in physical space represents a small subset of the
original path; in contrast to the introductory study of network
topology (above), which were analyzed at unit scale t = 1.

Incidence, I, which represents the number of virtually
superimposed grid cells embedding at least one fix, is applied
to quantify spatial use in an Eulerian (spatially explicit) manner.
While traditional estimates of home range area A(N) where A is
given by an area-demarcating method, have many complicating
challenges, the I approach allows for a coherent fractal-
geometrical analysis of the spatial fix pattern. The sample size
dependence of incidence as a function of sample size of fixes,
I(N), at a properly chosen resolution of grid cells called the
Characteristic Scale of Space Use (CSSU)’(Gautestad, 2021), can
under MRW be expressed by the power law (Gautestad and
Mysterud, 2005, 2006, 2010a):

I(N) = cN? (2)

where ¢ and z are parameters. The intensity of habitat utilization
is expressed through the combination of ¢ and z; ¢ regards
CSSU, and is—under a given average step length of exploratory
steps—a function of the frequency of returns, 1/jt, to previous
locations (space use intensity). CSSU is thus expressing the
behavioral balance between space use expansion (exploratory
steps; Eq. 1) and contraction (site fidelity from returns at
frequency 1/p). The parameter z expresses how intensity of
space use is distributed across scales. Stability of z implies a
scale-free kind of relationship to the habitat over a range of
spatial resolutions of the environment. A value of z = 0.5 [I(N)
increasing proportionally with square root of N] implies by a
MRW postulate that the animal is “relating” to its environment
over a range of scales with the same space use intensity; i.e., a
next-step movement to a neighborhood at a k? times coarser scale
is 1/k? times less probable (Gautestad and Mysterud, 2005).

5See, for  example, http://www.animalspaceuse.net/2017/12/statistical-
mechanical- details- on-space.html
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Theoretical expectancy is z~0.5 for the idealized MRW
(Gautestad and Mysterud, 2010a), with some variability expected
from so-called space-fill and dilution effects from choosing
too coarse or fine grid resolutions, respectively (Gautestad
and Mysterud, 2012). In other words, the analysis should be
performed after having “zoomed” grid resolution to a magnitude
close to CSSU. Zooming to estimate ¢ is necessary due to the
process’ combined expression of exploratory steps (influenced
by a and B in Eq. 1) and return step effects. Too coarse or too
fine grid resolution relative to the intrinsic CSSU scale will both
lead to observed instability of ¢ and z over the range of N (see a
practical example in Supplementary Material).

The sample size of fixes, N, can be drawn incrementally
from the total series in two ways; either by adding new
fixes in a time-incremental manner (continuous sampling; a
sample size that is proportional with sampling time) or by
increasing sampling frequency within the total time period for the
simulation (including every nth fix within the total time period,
by increasing n until # = N). In the present analysis I—crucially—
applied both protocols, and additionally calculated the geometric
average of I(N) for each magnitude of N from these alternative
sampling schemes.

In this manner, by averaging I(N) over continuous and
frequency sampling and studying the difference between the non-
averaged I(N) series from the two protocols, one may compare
the statistical effects from intrinsic auto-correlation in the data
(tops <= trer) with the statistics of the non-averaged I(N) series.
The differences will be of key interest to the present topic of
quantifying the effect of extrinsically induced autocorrelation
even when tops >> tr, due to an environmentally imposed
shifting mosaic of site fidelity.

In addition to the CSSU concept and its relationship with
Eq. 2, memory effects under MRW terms impose yet another
aspect of space use intensity; the property of self-similar (fractal)
dispersion of fixes. In other words, a sample of fixes from
the underlying process combination of Eq. 1 in combination
of targeted return steps will tend to be spatially distributed as
aggregations over a range of resolutions of the superimposed grid
(in contrast, Eq. 2 is expressing the N-dependence of incidence at
given grid resolution; the balance scale of CSSU). For non-auto-
correlated fix samples we have shown theoretically and verified
by simulations (Gautestad and Mysterud, 2010a) that,

z=1-D)2 [1 <D <2,N> Npin 3

where D is the fractal dimension of the spatial distribution
of fixes. Npin approximates a small-sample artifact of N. D
can thus be calculated from D = 2(1-z), as an alternative
approach to zooming over a range of grid resolutions (see section
“Introduction”).

Combining Eq. 2 and Eq. 3 gives,

IN) = eN'""P2|N > Npin, I = incidence (4)

In particular, DA2 implies I(N) is constant beyond Np;p.
This satisfies the paradigmic “home range size” concept, where
the size is assumed to expand asymptotically toward the range’s
size as N is passing Npin from below. On the other hand, D~1

implies I(N) is increasing proportionally with N'/2 far beyond
Npin. In practice, Npip is very small under D~1 relative to DA2
dispersions, since the latter is more “dense” in statistical-fractal
terms and thus require a larger set of fixes to minimize the
small-sample artifact of I(N).

In the present context, ¢ is the most important ecological
aspect of the model. Representing CSSU, it reflects the
characteristic scale of space use intensity on average within the
respective spatial and temporal scale extents:

¢ = I(N)/N'""P/2 = 1(N)/N? (5)

Under condition of z20.5, a larger ¢ implies a more coarse-
grained CSSU on average in the spatio-temporal range that is

embedded by the data.

Non-stationary Site Fidelity

In the present simulations the parameter values for a and
B in Eq. 1 (exploratory steps) and the return frequency to
historic locations (relative strength of site fidelity, 1/j1) are kept
constant. However, as indicated above, extrinsically imposed
serial auto-correlation of fixes may influence the observed
statistical properties of space use. Thus, in this report I study to
what extent the resilience of key statistics under the given model
parameters under default (stationary) conditions are influenced
by a shifting mosaic of site fidelity.

To simulate a varying environment with respect to
influencing stability of site fidelity and—in particular—whether
this environmental heterogeneity is influencing ¢ and z (or
conversely, how resilient these parameters are under increased
environmental complexity), three conditions are explored by
varying strength of so-called “punctuated site affinity.” At
regular intervals (the punctuations) the model individual is
narrowing its time horizon for memory-influenced movement
by disregarding utilization of the older parts of its historic path
during return events. At these intervals the movement path is
thus simplistically split into “sections.” Older parts of potential
nodes are not any longer included in the process of return
decisions. However, it continues to return to a given percentage
of the latest part of the foregoing section in addition to all the
new locations in the current section. By varying the length of
the sections and the length of the retained part of the foregoing
section, a variable strength of spatially shifting site fidelity may
be simulated (Gautestad and Mysterud, 2006).

Under the first condition, A, the animal is keeping the last
10% of the path locations in foregoing section of the path, each
of length 1/10 of the total series length of magnitude 107 steps,
as potential return targets on equal footing with the successively
emerging locations in the current section. The simulations are
run under condition of neutral connectivity of return events.

Under the second condition, B, 50 rather than 10 time sections
for partially punctuated site affinity is invoked, and 2% rather
than 10% of the previous section’s path of locations is retained
(section length 2*10° steps, and last 4*10° steps of foregoing
section retained). This condition implicitly reflects a situation
where site fidelity is drifting more smoothly but also more
strongly in overall terms than in the foregoing scenario, due to
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a smaller subset of previous locations to select among as return
targets and a more frequent resetting of potential return targets.
The simulations are run under condition of neutral connectivity
of return events.

Under the third condition, C, drifting site fidelity is similar
to A, but with no memory of previous sections. Number of
sections is increased from 10 to 20, but no historic parts of
the path of 1/20 of total length is retained during this fully
expressed “punctuated shift” of site fidelity. The first location in
each of the 20 successive sections is chosen randomly within the
total arena. This scenario reflects the most dramatic shift of site
fidelity. Again, the simulations are run under condition of neutral
connectivity of return events.

From each series of locations in the three variants of shifting
site fidelity, each variant replicated 10 times, fixes are sampled at
frequency 1:1,000 of respective series. Within each sequence of
stationary site affinity; i.e., in the respective sections between the
successive punctuation events during which the conditions for
site fidelity were temporally stable, this situation implies serially
non-autocorrelated steps (Swihart and Slade, 1985). However,
this condition is expected to change to serial autocorrelation
as the data set embeds several re-settings of site fidelity (fixes
covering several sections) and thus a spatially drifting space
use. Thus, auto-correlation may emerge under the respective
conditions of temporally non-stationary space use, because of two
random locations within a section may tend to be closer in space
than two locations from different sections in the total set of fixes.
In short, auto-correlation is expected to occur even under the
condition where tyt = it = 100t is set to be smaller than the fix
sampling interval typs = 1000t, because of the temporally shifting
pattern of site fidelity (extrinsic forcing).

A resolution of the virtual grid that is superimposed for the
analysis of I(N) is fixed for all simulations (k = 1/40, linearly, of
total arena scale of k = 100,000). This resolution approximates
the CSSU scale under the given model conditions prior to adding
the complexity from drifting site fidelity. In other words, log(c)
approximates zero after normalization to linear grid resolution of
k =100,000/40 = 2,500 units.

All conditions A, B and C above were simulated under
neutral connectivity. In order to explore the effect of preferential
connectivity in isolation from drifting site fidelity, I(N) for strong
preferential connectivity is also analyzed as condition D; i.e.,
under standard MRW terms for return events (site fidelity not
influenced over time by external forcing).

Pilot Testing on Telemetry Series

With respect to illustrating the new method on empirical data,
a sub-set of previously published telemetry material on female
black bear is presented with respect to I(N), including the
stability and distribution of ¢ and z from Eq. 2. According to
the MRW framework, z should be independent of both ¢ and
N after respective series are zoomed toward best-fit scale for
CSSU estimation. The data is reflecting standard radio telemetry
procedures and equipment from the 1970s, reflecting both
relatively large triangulation errors and subsequent rounding
of fix coordinates to nearest 100 meters. Fixes were collected

at intervals of one or more days. For details of the telemetry
material, see Gautestad et al. (1998).

RESULTS
Network Topology

The MRW simulations with respect to network topology of
nodes and neutral connectivity illustrate compliance with a
gradually emerging hierarchical depth of these nodes. Some of
the initially appearing nodes gain further revisits, in a positive
feedback-resembling growth process (Figure 2A). Over time, an
understory of additional hierarchical layers of nodes with less
revisit frequency appears, while most nodes are visited only once
(Figure 2B). The first 10° links were generated from 10* to10°
return events to previous locations along the animal’s path (total
series length 10° and 10° respectively, due to trer = 10f). Under
neutral connectivity, in the early stage of space use (Figure 2A)
most nodes have only one link, and the number of hierarchical
levels is limited to four. By increasing the series length 10-fold
(Figure 2B) the structure of links (the degree) to the initial
10 nodes has become more complex with six levels, and thus
reflecting a more mature network with respect to its hierarchical
property. The temporal drifting toward a scale-free topology is
indicated by the rarity of nodes with a large degre<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>