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Editorial on the Research Topic

Acoustically Mapping the Ocean

Acoustic oceanography can address ocean observing needs, but it is not yet a standard
observational tool. Sound remotely senses the ocean, as it travels further and faster than any
other signal underwater.

Since this potential was first recognized in the late 20th century, acoustic oceanography
has primarily been used to map the ocean floor using frequencies of 10-100 kHz. These high
frequencies have also been turned toward investigating physical and biological oceanographic
questions. For example, the strong relationship between demersal fish species - those that live
close to the seafloor — and seabed depth has been used to map fish distributions, which is not
possible with direct observations. In this Research Topic, Landero Figueroa et al. examine the
effectiveness of demersal fish species models; they confirm that depth is the primary variable
explaining their distribution, whilst the inclusion of depth derivatives has varying effectiveness
depending on the species.

More recently, marine seismic reflection data, at lower frequencies of 10-100 Hz, have
seen an explosion in their use. This smaller field of acoustic oceanography, so-called seismic
oceanography, is a tool that can be used to map the distribution, properties, and dynamics of
water masses and it has the potential to overcome significant observational challenges (see
review by Dickinson and Gunn). In this Research Topic, the capability of seismic oceanography
is demonstrated via a collection of the latest methodological developments and seismic-based
advances in our understanding of oceanic processes.

Inversion of marine seismic reflection data yields oceanic temperature, salinity, and density
fields in two-, three, and even four-dimensions. Here, two methodological advances expand
the capacity for inversion. Azevedo et al. develop a geostatistical inversion that can be used
when contemporaneous and collocated hydrographic measurements are not available, instead
leveraging common models of large-scale ocean dynamics and existing vertical profiles of the
ocean properties measured by ARGO floats. Without any contemporaneous data, this inversion
scheme can produce temperature and salinity fields with accuracies of order 1°C and 0.5 psu.
In cases where contemporaneous and collocated hydrographic data are available, Xiao et al.
develop an established Markov Chain Monte Carlo approach to show that this method can
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quantify temperature and salinity fields to within 0.16°C and

0.06 psu.

Uniquely, the causes and consequences of short-term water
mass variability can be studied using seismic-derived time series
of diapycnal mixing alongside its high-resolution imagery. In the
South Atlantic, such time series of diapycnal mixing suggest that
at 1,000 km and decadal scales the background diffusivity of the
thermocline has changed little, whilst temporally intermittent
processes, such as storms (Wei et al.) and frontal advection
(Gunn et al.), can temporarily alter diapycnal mixing by an order
of magnitude. Similarly, in the South Pacific Ocean, observations
of daily frontal meandering cause significant changes in water
mass thicknesses and temperatures (Cooper et al.).

Internal waves — which drive intense ocean mixing, contribute
to ocean-atmosphere interactions, and impact offshore
engineering — are particularly difficult to observe with traditional
hydrographic methods. Here, their structure as well as their
evolution with time is observed and quantified in detail using
seismic oceanography. In depths of 300 m, seismic observations
of internal wave evolution confirm results from numerical
simulations (Song et al.); during shoaling, the degree of waveform
change is related to the waves size, and its amplitude and phase
velocity increase onshore. In depths shallower than 50 m, which
are invisible to seismic oceanography, higher-frequency acoustic
methods show internal waves that have amplitudes extending as
much at 20% of the water depth (Feng et al.). These observations
from the northeastern South China Sea can be generalized to
other regions where strong currents impinge on topographic
slopes.

The potential of seismic oceanography to solve oceanographic
questions, in conjunction with other acoustic and hydrographic
measurements, lies with the abundance and resolution of existing
measurements plus the continually growing data sets collected
by education and industry initiatives. Existing marine seismic
reflection data covers every continental shelf and slope in the
world’s ocean (Figure 4 of Dickinson and Gunn). Using these
data, bulk inversion processing can be applied to access physical
properties of water masses at unprecedented spatial resolution on
a global scale; just as oceanic models with different resolutions
are required to investigate the climate, inversion techniques
with different limitations and accuracies are necessary. For
example, the inversion of Azevedo et al. could be applied in a
bulk sense to measure the volume of water masses, whilst the

inversion of Xiao et al. (2021) could be applied in a region of
significant data coverage to develop high quality time series
of small-scale mixing and stirring processes. Oceanic mixing
rates are globally limited, yet seismic oceanography can readily
be used to expand this valuable data set, an important link
connecting mixing to larger scale climate-mediating processes.
For example, Wei et al. use seismic data to extend the record of
mixing in the South Atlantic Ocean into the late 2010s, whilst
Gunn et al. provide rare time series of mixing rates across a front.
Meanwhile, seismic imagery alone provides insight into ocean
dynamics yielding daily information about water mass position
and thickness variability (Cooper et al.). Acoustic data also yield
high-resolution information about the evolution of internal
waves on the continental shelf (Song et al., Feng et al.).

In this Research Topic, the role of short-lived and rapidly
changing processes are highlighted. Acoustic data sets provide a
guide for future observational programs as well as an avenue for
defining parameterizations that can be included in models, which
often do not realistically resolve temporally intermittent oceanic
processes. Overall, these studies show how acoustic methods
can be used to augment and overcome observational challenges.
Through collaborative development, acoustic techniques can
become a staple of the new generation of observational tools.
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A two-dimensional multichannel seismic reflection profile acquired in the Madeira
Abyssal Plain during June 2016 was used in a modeling workflow comprising seismic
oceanography processing, geostatistical inversion and Bayesian classification to predict
the probability of occurrence of distinct water masses. The seismic section was
processed to image in detail the fine scale structure of the water column using seismic
oceanography. The processing sequence was developed to preserve, as much as
possible, the relative seismic amplitudes of the data and enhance the shallow structure
of the water column by effectively suppressing the direct arrival. The migrated seismic
oceanography section shows an eddy at the expected Mediterranean Outflow Water
depths, steeply dipping reflectors, which indicate the possible presence of frontal
activity or secondary dipping eddy structures, and strong horizontal reflections between
intermediate water masses suggestive of double diffuse processes. We then developed
and applied an iterative geostatistical seismic oceanography inversion methodology
to predict the spatial distribution of temperature and salinity. Due to the lack of
contemporaneous direct measurements of temperature and salinity we used a global
ocean model as spatial constraint during the inversion and nearby contemporaneous
ARGO data to infer the expected statistical properties of both model parameters.
After the inversion, Bayesian classification was applied to all temperature and salinity
models inverted during the last iteration to predict the spatial distribution of three distinct
water masses. A preliminary interpretation of these probabilistic models agrees with the
expected ocean dynamics of the region.

Keywords: seismic oceanography, geostatistical inversion, temperature prediction, salinity prediction, ocean
modeling, Madeira Abyssal Plain

INTRODUCTION

Fine-scale ocean processes happening on ranges from a few meters to a few kilometers have a
profound impact on turbulent dynamics, on the ocean energy budget, on primary production
and ecosystems, on gas and tracer exchange, and ultimately on the global ocean circulation
and climate (e.g., Wunsch and Ferrari, 2004; Mahadevan, 2016). Yet, ocean measurements at
high resolutions are limited to fixed point probes or profiling devices. Therefore, quasi-synoptic
measurements of simultaneously vertical and lateral high resolutions require detailed planning and
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the combination of several probing devices, which are not
globally available to sample the ocean (Pascual et al., 2017).

Seismic oceanography (SO) is an interdisciplinary research
field that uses common marine multichannel seismic reflection
(MCS) data to capture high-resolution images of the ocean’s
thermohaline structure. This geophysical technique has proven
its value in imaging the oceanic structures with an unprecedent
detail both in the horizontal and vertical directions in different
basins worldwide (Holbrook et al., 2003; Hobbs et al., 2007;
Ruddick et al., 2009; Pinheiro et al., 2010). SO data are indirect
information of relevant oceanographic features and complement
the information provided by conventional oceanographic casts,
which are direct measurements of the ocean properties but
sparsely distributed. More recently, these data have been used to
estimate the oceanic turbulent dissipation (Holbrook et al., 2013;
Sallares et al., 2016; Dickinson et al., 2017; Fortin et al., 2017)
and to estimate the spatial distribution of the ocean’s temperature
and salinity using amplitude-vs.-offset analysis (Pdramo and
Holbrook, 2005), deterministic seismic oceanography inversion
methods (Wood et al., 2008; Sallares et al., 2009; Papenberg
et al, 2010; Kormann et al., 2011; Song et al., 2012; Bornstein
et al., 2013; Biescas et al., 2014; Padhi et al., 2015; Blacic et al.,
2016; Dagnino et al., 2016, 2018; Minakov et al., 2017; Gunn
et al,, 2018; Tang et al., 2018, 2019; Gunn et al., 2020), stochastic
seismic oceanography inversion (Tang et al, 2016; Azevedo
et al, 2018; Jun et al, 2019) and automatic velocity analysis
(Chhun and Tsuji, 2020).

In SO, multichannel seismic reflection data is processed
to boost the amplitudes corresponding to seismic reflections
occurring at interfaces between water layers of different
temperature and salinity, where water temperature is the most
important property and contributes on average 80% to the
reflection coefficient (Ruddick et al., 2009; Sallares et al., 2009).
A challenge for SO data processing is the ability to image
reflections near the sea surface, as traditional seismic processing
sequences fail to successfully mitigate the effect of the direct wave
traveling from source to receivers on the very weak reflections in
the near-surface water layer (e.g., Ruddick et al., 2009; Pinheiro
et al., 2010). Several processing workflows have been proposed
to tackle this limitation. Huang et al. (2012) used an adaptive
subtraction scheme. Hardy et al. (2007) and Jones et al. (2008)
combined linear moveout with dip filtering. Ristow et al. (2017)
used a combination of a linear Radon transformation with
adaptive subtraction. Often, another source of coherent noise
originates from the echo of the previous shot, but this noise is
not addressed herein. The objective of the seismic oceanography
processing shown herein is twofold: (1) to effectively attenuate
the direct arrival effect using a combination of linear moveout,
horizontal median filtering and adaptive subtraction; and (2) to
preserve the relative seismic amplitudes of the seismic data. The
attenuation of the direct wave arrival ensures a good image of
the water structure in the first few hundred of meters, whereas
preservation of original amplitudes is required to invert the
seismic data for the ocean’s physical properties.

Seismic  oceanography data represent an indirect
measurement of the physical properties of the water column
such as temperature and salinity. In fact, seismic reflections

present in SO data originate from the interfaces between
water masses with distinct properties. From an oceanographic
perspective, having the ability to predict the spatial distribution
of such properties from SO data would provide insights
about oceanographic processes not detected by conventional
oceanographic sampling techniques. The spatial prediction of
such properties from seismic oceanography data is an inverse
problem. Mathematically, seismic oceanography inversion can
be expressed as:

m = F~' (dobs) +e (1)
where F is the forward operator through which the recorded
seismic amplitudes (dops), with d.ps€RY, are obtained from an
ocean’s model, m €R™, and e represents the error term associated
with the observations and modeling uncertainties errors present
in the seismic oceanography data. In the seismic oceanography
case, the ocean’s acoustic properties (P-wave propagation velocity
and density), m, can be computed from temperature and salinity
using the thermodynamic equation of seawater (IOC, SCOR, and
IAPSO, 2010).

Seismic inversion methods can be broadly divided in two
different classes: deterministic or statistical (Bosch et al., 2010).
Deterministic approaches are based on regression models of
optimization algorithms providing a single best-fit solution.
In deterministic seismic inversion the uncertainty assessment
is limited and defined as a linearization around the best-fit
inverse solution, which is normally retrieved by least squares,
and in this sense, the uncertainty is strictly represented by
a local multivariate Gaussian (Tarantola, 2005). In statistical
seismic inversion, the solution is expressed as a probability
density function in the model parameters space. Therefore, these
inversion methods provide a set of alternative models as solution
and allow the assessment of the uncertainty associated with
the inverted models (Tarantola, 2005). Assessing the uncertainty
about the predictions in seismic inversion is critical in any
modeling procedure. The uncertainty represents the lack of
knowledge about the system under investigation, measurement
errors and physical approximation during the data processing
(Tarantola, 2005). Also, accounting for uncertainty, and therefore
risk, leads to better-informed decisions.

There are different statistical-based seismic inversion
methods. These seismic inversion methodologies are iterative
procedures based on different stochastic optimization algorithms
such as simulated annealing, genetic algorithms, probability
perturbation method, gradual deformation, geostatistical
simulation and neighborhood algorithm (e.g., Sen and Stoffa,
1991; Bortoli et al., 1993; Sambridge, 1999; Le Ravalec-Dupin and
Noetinger, 2002; Soares et al., 2007; Gonzalez et al., 2008; Grana
etal., 2012; Azevedo et al., 2015; Azevedo and Soares, 2017).

Iterative geostatistical seismic inversion methods allow
predicting models at higher resolution than the observed data
due to their ability to incorporate high-resolution information
provided by existing direct observations (e.g., Azevedo and
Soares, 2017). This is particularly of interest in oceanographic
studies as it might open a window to a reality not yet
known. Conventional ocean models built exclusively from the
interpolation of sparse direct measurements of ocean properties,

Frontiers in Marine Science | www.frontiersin.org

August 2021 | Volume 8 | Article 685007


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Azevedo et al.

Geostatistical Seismic Oceanography Inversion

%Stochastic sequential simulation of Ns temperature model%

[ Stochastic sequential co-simulation of Ns salinity models }

Background temperature

{ Compute synthetic seismic oceanography data ’

and salinity model

Deviation from background model /

A h \
Compare Ns synthetic against
real seismic oceanography data

Difference between Ns realizations
from background model

Select temperature and salinity traces
that generate lowest misfit

Iterate, use best models as secondary variables and
co-simulation to generate a new set of ocean models

Best temperature for
iteration j

L Best salinity for iteration j

. Best local correlation
coefficient for iteration j

FIGURE 1 | Schematic representation of the proposed geostatistical SO inversion including temperature and salinity background models. Green boxes represent the

steps related to the integration of background ocean models.

such as CTD and/or XBT, are always a smooth representation
of the true ocean variability and are unable to describe complex
features in detail due to the large distances between observations.
The inverted models of the ocean properties retrieved from SO
data are much richer from a spatial perspective as the SO data
constrains the model predictions far from the location of the
direct observations (e.g., Dagnino et al., 2016).

In a preliminary work, geostatistical inversion has been
successfully applied to predict the spatial distribution of ocean
temperature and salinity from seismic oceanography data
(Azevedo et al., 2018). These authors showed how geostatistical
SO inversion could retrieve a set of high-resolution temperature
and salinity models that generate synthetic SO data consistent
with observations. Each model represents an alternative scenario
that fits equally well the observed data SO data. However, in this
approach the model perturbation technique (i.e., geostatistical
simulation) (Deutsch and Journel, 1992) requires the existence
of contemporaneous and collocated direct measurements of
temperature and salinity (e.g., CTD/XBT casts) along the SO
section to be inverted. The simultaneous acquisition of CTD/XBT
data is difficult due to both operational challenges and costs,
and represents a major drawback in the practical use of
this technique.

The main objective of this work is to propose an alternative
geostatistical SO inversion method to overcome the need
for contemporaneous and collocated direct observations of
temperature and salinity, which might open the door to the
generalization of this type of inversion method in SO studies.
Low-resolution models of temperature and salinity are extracted
from large-scale ocean simulations and integrated as part of
the objective function within the geostatistical SO inversion
method. The low-resolution models represent a background
model with the expected spatial trend of temperature and salinity

(Pereira et al., 2019). In practice the background models act
as spatial constraints in the inversion procedure. These models
are not included as part of the model parameter space to
avoid limiting the exploration of the model parameter space
and therefore in a limited uncertainty assessment. The marginal
and joint distributions of temperature and salinity, necessary to
perform the geostatistical simulations, are borrowed from quasi-
contemporaneous and quasi-collocated ARGO floats profiles
(Argo, 2000) which were acquired approximately simultaneous
during the acquisition of the MCS profile.

As part of the proposed workflow, and to interpret the inverted
models obtained in the last iteration of the inversion procedure,
we classified the set of inverted models generated during the last
iteration of the geostatistical SO inversion into distinct water
masses using Bayesian classification (Avseth et al., 2005). From
the classified models we computed the probability of occurrence
of each water mass. The most likely depths of the different water
masses agree with the expected values for the area of interest as
proposed by other authors (Comas-Rodriguez et al., 2011).

The following section presents a detailed description of
the proposed geostatistical SO inversion methodology and the
Bayesian classifier used to predict the spatial distribution of
the expected water masses. The proposed inversion method
is then applied to a MCS profile acquired over the Madeira
abyssal plain (MAP) that was specifically reprocessed for this
purpose. The tailored seismic processing workflow is described
in the subsequent section. We then show a preliminary and
global interpretation of the oceanographic insights provided
by the inverted models. The workflow proposed in this
work can be applied to other locations worldwide where
no contemporaneous direct measurements of salinity and
temperatures and global ocean models exist in the vicinity of the
seismic profiles.

Frontiers in Marine Science | www.frontiersin.org

August 2021 | Volume 8 | Article 685007


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Azevedo et al.

Geostatistical Seismic Oceanography Inversion

km

acquired under the same seismic acquisition survey.

FIGURE 2 | Location of the MAP. The red line shows the location of the SO profile inverted with the proposed method. White lines correspond to other MCS profiles
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GEOSTATISTICAL SEISMIC
OCEANOGRAPHY INVERSION

The proposed iterative geostatistical SO inversion method
inverts SO data directly for temperature and salinity when no
contemporaneous direct observations of the ocean are available.
It can be considered an extension of the method introduced
by Azevedo et al. (2018). It allows the simultaneous integration
of high-resolution direct measurements of temperature and
salinity, such as CTD and XBT data, and background models
from climatology, data products or numerical ocean simulations.
A relevant aspect of the proposed method is that the background
models do not constrain the model generation (e.g., used for
example as a local mean during the geostatistical simulation), but
are included as part of a two-term objective function where they
act as a spatial regularizer (Pereira et al., 2019).

The proposed iterative geostatistical SO inversion method can
be divided into four main steps: (i) generation of temperature
and salinity background models; (ii) generation of high-
resolution temperature and salinity models using stochastic
sequential simulation and co-simulations; (iii) multi-objective

TABLE 1 | Summary of the acquisition parameters of the MCS profiles acquired
in the MAP.

Recording length (s) 18
Sampling rate (ms) 2
Low-cut filter (Hz) 4.3 at 6 dB/oct
High-cut filter (Hz) 4.3 at 6 dB/oct
Streamer length (m) 7,950
Streamer depth (m) 9 (+1.5m)
Near-offset distance (m) 190
Number of channels 636
Channel interval (m) 12.5
Source depth (m) 7 (£1.0m)

mismatch evaluation; (iv) stochastic update and generation of a
new set of models.

In the application example shown herein, two-dimensional
large-scale temperature and salinity sections, describing the
expected background spatial distribution, were retrieved from
global numerical simulations of ocean dynamics provided
by the Copernicus Marine Environment Monitoring Service
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FIGURE 3 | Relative location of the SO seismic profile and the two ARGO floats used for the seismic oceanography inversion.
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FIGURE 4 | (A) ARGO profiles showing the measured temperature and salinity vs. pressure. (B) Comparison between histograms inferred from the temperature and
salinity measured by the ARGO floats and the best-fit inverse models.
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(CMEMS, 2016). These sections were extracted for the same
geographical location, acquisition date and time of the available
SO section. From a geophysical inversion point of view, these

simulated profiles can be thought as low-frequency models in
conventional seismic inversion methodologies (e.g., Sams and
Carter, 2017; Pereira et al., 2019).

Contemporaneous observed high-resolution temperature
and salinity vertical profiles acquired close to the seismic
oceanography profile were used to infer the marginal and joint
distributions of both ocean properties. This information was
used during the model generation and perturbation and not
as spatial constraining data. These data were used as target
marginal and joint distributions to be reproduced by the
geostatistical simulation algorithms. In this inversion method,
water temperature models are generated with direct sequential
simulation (DSS; Soares, 2001) and salinity models were co-
simulated with co-DSS with joint probability distributions
(Horta and Soares, 2010). The sequential generation of models
ensures that the observed relationship between temperature and
salinity is reproduced in any given pair of models generated
during the iterative procedure. This is essential to guarantee the
plausibility of the predicted location and extent of water masses
and for classification of distinct water masses as shown below.

The pairs of temperature and salinity models are used to
compute water density and P-wave propagation velocity using the
international thermodynamic equation of seawater (IOC, SCOR,
and TAPSO, 2010). Then, normal incidence reflection coefficients
are computed and convolved with a representative wavelet. In
cases where contemporaneous and collocated vertical profiles
of salinity and temperature are available, the wavelet can be
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FIGURE 6 | Background models of (A) temperature and (B) salinity extracted from the large-scale dynamics ocean model.
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estimated by comparing synthetic seismic traces with the real
data (i.e., as in conventional seismic-to-well tie). For this work,
however, the wavelet was extracted from the processed SO data
by averaging the primary seafloor reflection of several traces
selected from a region of relatively flat bathymetry, following
the approach used by Warner (1990). The resulting synthetic
traces are then compared against the corresponding real traces
following:

2% Z?I:l (Xs*Ys)
Z?I:l (XS)Z* Z?:l (Ys)2 ’

2

where xg and ys are the real and synthetic seismic traces,
respectively, with N seismic samples. The similarity, S, like the
Pearson’s correlation coefficient is bounded between —1 and
1, but ensures a simultaneous match of the synthetic seismic
on both waveform and amplitude values of the recorded SO
data. The plausibility of the inverted models depends on the
reproduction of both properties of the observed data.

The deviations (dev) of each single realization of temperature
and salinity from the background ocean models are computed

following:
mg,;,—m
dev = | 1- |Msitm —Mpackground| ’ 3)
Myim+Mpackeround

where my;,, is a realization of temperature or salinity and
Mygckground 1S the corresponding background model. Finally, a
two-term objective function (OF) is computed combining Egs.
(2) and (3):

d d
OF = W1S+W2(7eVT—2i_ evs)’ (4)

where w; and w; are user defined weights that sum to 1 and
control the influence of each term depending on the quality of
the existing SO data and the reliability of the background model;
devt and devg are the deviations of the simulated parameter from
the background model for temperature and salinity, respectively.
If the quality of the SO data is low, then w; should decrease.
Similarly, if the reliability of the background temperature and
salinity is poor, wy should be reduced. In the application example
shown herein w; and w, were set by trial-and-error. However,
these can be optimized under an optimization framework (e.g.,
Gennert and Yuille, 1988; Mead, 2008; Marler and Arora, 2010).
Notice that OF is also bounded between —1 and 1 so it can
be used as a proxy of a collocated correlation coefficient in
the geostatistical co-simulation of a new set of temperature and
salinity models in the subsequent iteration of the inversion (e.g.,
Soares, 2001).

For a given iteration (j), the pairs of temperature and salinity
traces (i.e., vertical columns of grid samples) that ensure the
maximum OF values are stored in auxiliary temperature and
salinity models along with the corresponding OF values. These
models are used as secondary variables in the co-simulation of
a new set of models in the subsequent iteration. In practice,
regions of the seismic profile with low OF will exhibit a large
variability of simulated values within the ensemble of simulated
models, while region of high OF will produce similar models in
the next iteration.

The proposed iterative geostatistical SO inversion method is
summarized in the following sequence of steps (Figure 1):

(i) Create temperature and salinity background models for
the entire inversion grid. The background models might
be vertical sections extracted from numerical ocean
simulations collocated with the existing SO data for the
same acquisition time;

(ii) Stochastic sequential simulation (direct sequential
simulation; Soares, 2001) of Ns temperature models for the
entire inversion grid. Direct temperature measurements
located nearby the location of the SO profile are used to
infer the conditioning distribution;
Stochastic sequential co-simulation (direct sequential co-
simulation with joint probability distributions; Horta and
Soares, 2010) of Ns salinity models for the entire inversion
grid. Direct salinity measurements located nearby the
region of interest are used to infer the conditioning
distribution. Each temperature model simulated in ii is used
as an auxiliary variable to ensure the relationship between
both ocean properties are reproduced in each Ns pairs of
simulated models;

For each pair of simulated ocean models, calculation of

Ns reflection coefficient models using the International

(1ii)

(iv)

Frontiers in Marine Science | www.frontiersin.org

August 2021 | Volume 8 | Article 685007


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Azevedo et al.

Geostatistical Seismic Oceanography Inversion

Offset (m)
1000 1400 1800 2200 200 600

Offset (m) Offset (m)
1000 1400 1800 2200 400 200 600 1000 1400

P G
1000

1400 1800 2200 200 600 1

Offset (m)
1400 1800 2200 200 600 000 1400 1800 2200

correction at 1,500 m/s (50% stretch mute allowed).

FIGURE 8 | (A) An illustrative field seismic record. Echo from the previous shot is very clear. Shallow reflections from the water layer are obscured by the very strong
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thermodynamic equation of seawater (IOC, SCOR, and
IAPSO, 2010). The resulting Ns reflection coeflicients
volumes are then convolved on a trace-by-trace basis with a
wavelet extracted from the recorded seismic reflection data,
producing Ns synthetic SO sections;

basis;

(v) Calculate the objective function (Eq. 4) on a trace-by-trace

(vi) Select and store the temperature and salinity traces that
generated the highest OF value in best local salinity and
temperature models along with the corresponding OF;
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FIGURE 10 | Close-up of: (A) the eddy interpreted in the Western part of the
profile; (B) elliptical shallow feature and oblique reflection within the MOW; and
(C) bright continuous seismic reflections interpreted as possible double
diffusion.

(vii) Use these local best OF, temperature and salinity models
as secondary variables in the co-simulation of a new set of
temperature and salinity models;

Return to ii and iterate until the global correlation
coefficient between real and synthetic SO data is above a
certain threshold or a pre-defined number of iterations is
reached.

(viii)

Temperature and salinity models simulated and co-simulated
during the last iteration generate highly correlated synthetic SO
data with the observed data. These models were classified
into distinct water masses. Bayesian classification (e.g.,
Avseth et al., 2005; Grana et al, 2017) was trained based
on the existing direct measurements of temperature and
salinity profiles of spatially located nearby Argo floats taken
during the acquisition of the seismic oceanography data.
N,, different types of water were identified including the
Central Atlantic Water, the Mediterranean Outflow and
the Subarctic Intermediate Waters, as described in Comas-
Rodriguez et al. (2011). The statistical properties (i.e., mean,
covariance and proportions) were inferred from the training

data and used to compute the prior and likelihood function
for the Bayesian classification according to Bayes rule:

P (d|k) P(k) B P (d[k) P(k)
P >N p(dk) PR

P (kld) = w
(5)
where, d is the vector of the ocean properties used for the
classification, the simulated pairs of models, and k is the
number of water masses. In Eq. (5), P (d|k) is the likelihood
function, P(k) is the prior model and P(d) is a normalization
constant. The set of Ns models classified in k water masses
was then used to compute the probability of occurrence of
each water mass.

Finally, the pointwise average models of temperature and
salinity inverted during the last iteration of the inversion
and the water probability sections were used to perform a
simple and preliminary interpretation of the oceanographic
features observed in the data. Nevertheless, this is not the main
focus of this work.

REAL CASE APPLICATION

Dataset Description

The proposed iterative geostatistical SO inversion method was
applied to a seismic profile (WM-MADO01-003) acquired over
the MAP with conventional MCS reflection methods (Figure 2).
A summary of the main acquisition parameters is shown in
Table 1. This seismic profile was acquired by the Portuguese Task
Force for the Extension of the Continental Shelf (EMEPC in its
Portuguese acronym) between June 6 and June 8, 2006 and is
part of a larger seismic dataset located within the MAP. The
typical thermohaline structure of the water column in this area
is characterized by surface waters of subtropical type (warmer
and saltier) over central waters of subpolar origins (Central
Atlantic Waters) with lower temperature and salinity. Below the
Central Atlantic Waters between about 500-1,500 m the water
becomes saltier and warmer due to the presence of Mediterranean
Outflow Water (MOW). Deeper in the water column, at the lower
intermediate levels, temperature and salinity decrease with the
presence of subpolar type intermediate waters (e.g., Segade et al.,
2015). This vertical structure of water masses is unique as far as
a considerable thermohaline structure is enclosed in the upper
2,000 m of the water column and a clear structure in the SO data
was expected. Besides, this area is characterized by recurrent eddy
activity associated with the energetic and unstable Azores Current
jet on the upper ocean (Barbosa Aguiar et al,, 2011), and with
the main path of propagation of the Mediterranean Water Eddies
(Richardson et al., 2000; Barbosa Aguiar et al., 2013), which carry
very distinct salty and warm water anomalies within its core at
intermediate levels.

The MCS profile was processed to image the fine-structure
in the water column. Particular attention was given to mitigate
the effect of the direct arrival and enhance shallow reflections
while preserving true amplitudes by applying processing
parameters that minimize amplitude and phase distortion.
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FIGURE 11 | (A) Observed SO data used in the inversion; (B) synthetic SO data computed from the pointwise mean temperature and salinity models generated

Different processing sequences would produce different results
and impact the models predicted with the SO inversion. The
detailed description of the processing sequence is presented in
the following sub-section.

As collocated and contemporaneous direct measurements
of temperature and salinity were not available, we used
three vertical profiles of temperature and salinity (from two
ARGO floats—ARGO, 4,660 and 44,909), profiling close to
the acquisition period (in May 21 and May 31, 2006) and
located in the surroundings of the SO section during the data
acquisition (Figure 3). The ARGO profiles were used to infer

the marginal (Figure 4) and joint distributions (Figure 5)
of both ocean properties and were used as conditioning
distributions for the stochastic sequential simulation and co-
simulation of temperature and salinity models. We assume that
the statistical properties of temperature and salinity measured by
these floats hold for the location of the SO profile. According
to the temperature and salinity measurements, three distinct
water masses could be inferred: central Atlantic water; MOW;
and Subarctic Intermediate Water, as described in Comas-
Rodriguez et al. (2011). Low-frequency temperature and salinity
background models were built using a global ocean dynamics
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model (CMEMS, 2016) for the dates of seismic acquisition
(Figure 6). These two-dimensional sections are collocated
with the MCS data but are smooth and low resolution.
While the background temperature model shows a vertical
trend of high temperature at shallower water depths and
low temperature at deeper depths, the background salinity
model follows the description above and considers the effect
of the MOW (i.e.,, a saltier water layer) around 1,125 m of
water depth.

Seismic Processing of Line
WM-MADO01-003

The processing sequence (Figure 7) included data resampling
and recording length reduction to comprise data exclusively
above the seafloor. Bad traces, both due to poor signal-to-noise
ratio or bad readings, were edited and those unrecoverable
were removed from the dataset. The direct arrival was
tackled by applying a horizontal median filter with adaptive

amplitude subtraction, similar to ocean bottom seismometers
data processing (Duncan and Beresford, 1995). This kind of
amplitude subtraction aims at minimizing the effects on the
resulting amplitudes. This process was performed sequentially
in a four-step approach (Figure 8): first, field records were
flattened using a linear moveout correction with a constant
velocity of 1,500 m/s (Figure 8A); the flattened records were
doubled to avoid edge effects when applying a median filter
(Figure 8B); a horizontal median filter was applied to those
records to preserve horizontal coherent reflection (Figure 8C).
Finally, the resulting record was subtracted to the doubled
flatten record (Figure 8E) to eliminate the effect of the
direct arrivals and keep reflections in the records (Figure 8F).
The filtered gather, after applying a normal moveout (NMO)
correction with a constant velocity of 1,500 m/s, is shown in
Figure 8G where the reflections within the water column around
500 ms are enhanced.

The second part of the processing sequence comprises band-
pass filtering between 10 and 80 Hz, and surgical mutes to remove
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bursts of energy at the smallest offsets (Pinheiro et al., 2010).
True amplitude recovery was applied to compensate spherical
divergence. A detailed velocity analysis was performed along
the MCS profile. The resulting velocity field was used in the
normal moveout correction of the records. After CMP sorting,
the CMP gathers were stacked considering all offsets. Finally, a
constant velocity (1,500 m/s) phase-shift migration (Stolt, 1978)
and time-to-depth conversion were carried out using the same
constant velocity model.

Due to computational constraints, the MCS profile was
processed in swaths of 400 field records, with an overlap of
50 records. This computational limitation results in the vertical
stripping observed in the final time migrated section, which also
affect the inverted temperature and salinity models (Figure 9). All

sections are plotted in the depth domain to ease interpretation by
assuming an average P-wave velocity of 1,500 m/s. However, the
inversion of the SO section was performed in the time domain
(i.e., prior to depth conversion).

Preliminary Interpretation of Line
WM-MADO01-003

A preliminary interpretation of the SO profile allows its vertical
division in two layers: the top one, down to approximately
1,875 m, comprises bright and coherent reflections with different
seismic signatures and dips; the bottom one, below this depth,
which is relatively reflection-free maybe due to the relatively
homogeneous North Atlantic Deep Water. For this reason, only
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the top layer of the SO profile was considered for the geostatistical
inversion (i.e., from 0 to 2.5 s in TWT).

The top layer shows the presence of an eddy at depths
where Meddies are typically expected 600-1,500 m (Figure 10A).
A smaller lenticular feature is also observed at shallow depths
(around 750 m) that could be associated with the transition
to Mediterranean waters or a secondary feature associated with
that eddy (Figure 10B). Oblique reflections between 750 and
2,250 m might be related to oceanic fronts within the MOW
or an inclined eddy of smaller dimensions as imaged in Tang
et al. (2020). A possible double diffusion phenomenon can be
detected by the continuous, parallel and bright reflections at
approximately 1,500 ms for almost all the profile (Figure 10C).
Double diffusion generates staircase thermohaline structure. The
seismic signature of this oceanic structure has already been
observed and investigated in the area near the Lesser Antilles in
the Caribbean Sea (e.g., Fer et al., 2010) and in the Gulf of Cadiz
associated to Mediterranean Outflow Water eddies (e.g., Biescas
et al., 2008).

INVERSION RESULTS

The geostatistical SO inversion ran with six iterations, where at
each iteration thirty-two pairs of temperature and salinity models
were generated using direct sequential simulation (Soares,
2001) and direct sequential co-simulation with joint probability
distributions (Horta and Soares, 2010). The stochastic sequential
simulation and co-simulation were conditioned to the histograms
and bi-histograms from Figures 4, 5, respectively. Since the
ARGO floats were not located along the seismic profile, no
spatial conditioning was considered. Vertical variograms for
each property were modeled from both ARGO floats while
the horizontal variogram was modeled directly on the seismic
amplitudes. This is a conventional approach in seismic reservoir
characterization and often results in overestimation of the
horizontal ranges of the variogram model (Azevedo and Soares,
2017). The objective function (Eq. 4) used to drive the inversion is
based on the mismatch between synthetic and real seismic traces
used for the inversion and the deviation of each realization of
temperature and salinity from the background models shown in
Figure 6.

The synthetic SO data computed from the pointwise average
temperature and salinity models generated during the last
iteration is shown in Figure 11. These data reproduce the location
of the main oceanographic features as interpreted from the
observed data as well as their amplitude content. As expected, the
synthetic SO data calculated from these models is less noisy than
the observed seismic (e.g., Avseth et al., 2005) and, consequently,
increases the spatial continuity of the seismic reflections at the
bottom part of the section (~1,500 m). Iterative geostatistical
seismic inversion methods are known for the ability to remain
unmatched in noisy areas of the observed data (Azevedo and
Soares, 2017). This effect is illustrated by the lack of vertical
artifacts in the synthetic data. To illustrate the local convergence
of the synthetic data, Figure 11C shows the trace-by-trace S
between true and inverted SO data.

The inverted temperature and salinity models (Figure 12)
capture the oceanic features of interest at finer scale when
compared with the observed SO data. This effect is related to the
use of geostatistical simulation as model perturbation technique,
the geostatistical simulation fills-in the frequency band related
to high-frequencies (Azevedo and Soares, 2017). Modeling
oceanographic features at these scales is not possible with
either deterministic seismic inversion methods or conventional
interpolation techniques of direct observations of the ocean
properties as represented by CTDs or XBTs. This is one of the
main benefits of using geostatistical seismic inversion methods.
These models show the filamentation structures around the
eddie’s core and in particular the warm intrusions around the
homogenous nucleus. The use of background temperature and
salinity models (Figure 6) allows reproducing the expected large-
scale vertical distribution of both properties as interpreted from
the global ocean models.

Additionally, the benefit of using geostatistical inversion
methods is related to the ability to assess the uncertainty
associated with the model predictions. Figure 13 shows the
pointwise variance of temperature and salinity computed from
the ensemble of models generated for each property during
the last iteration of the inversion procedure. It is interesting
to discuss the spatial distribution pattern of these models. As
temperature is the main contributor for the existence of reflection
coeficients (Ruddick et al., 2009; Sallares et al., 2009) the spatial
uncertainty (i.e., the variance) is smaller in regions where the
observed SO data exhibits coherent seismic reflections (i.e., above
approximately 375 m and below 1,500 m). On the other hand,
the region of lower variance for salinity, between the 750 and
1,125 m, matches the depths associated with the saltier layer
as observed in the background model (Figure 6). The reason
for this phenomenon still needs to be further investigated but
might be related to: (i) the differences in signal-to-noise ratio in
different parts of the seismic section; (ii) the local influence of the
background models.

When contemporaneous direct measurements of temperature
or salinity along the SO profile are available, one could
assess the local performance of the inversion by retaining
one observation out of the conditioning data and comparing
the inverted traces with the observed data (i.e., a blind-well
test in subsurface modeling). In this application example we
compare the depth trend of the inverted two-dimensional
sections of temperature and salinity of all the realizations
generated during the last iteration of the inversion with the
vertical one-dimensional profiles acquired by the ARGO floats
(Figure 14). Note that the ARGO floats are not used to spatially
constrain the inversion. In this simple exercise we aim at
evaluating if the vertical trend of both properties is reproduced.
As expected the direct measurements are not exactly reproduced
but we consider the reproduction of the main trends to be a
positive result.To illustrate the potential of geostatistical seismic
inversion methods we used the ensemble of pairs of temperature
and salinity models generated during the last iteration to
generate two-dimensional sections of probability of occurrence
of different water masses. First each pair of models was classified
into three distinct water masses using Bayesian classification.
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The a priori probabilities were inferred from the ARGO floats
profiles, which were used as a training dataset (Figure 5).
After classification of each pair, the ensemble of 32 models was
used to compute the probability of occurrence of each water
type (Figure 15). The resulting probability sections agree with
the overall knowledge of this oceanic basin and with previous
results obtained using exclusively large-scale oceanographic
observations (Comas-Rodriguez et al., 2011). It is relevant to
highlight that the order relationship of the different water masses
(i.e., the Central Atlantic Water above the MOW above of the
Subarctic Intermediate Water) is reproduced in the probability
models, but it is not imposed by any other information rather
than the SO data and the background models. As expected the
regions of higher uncertainty are located at the boundaries of
each water mass.

CONCLUSION

This paper presents the first seismic oceanography images of the
Madeira abyssal plain region. The work focuses on two main
aspects: (i) the introduction of a simple but efficient way to
mitigate the effect of the direct arrival in the data; and (ii) the
development of a geostatistical SO inversion that can be used
when contemporaneous and collocated direct measurements are
not available. The interpretation of the inverted models from an
oceanographic perspective is limited, as it would benefit from the
processing and inversion of the other two adjacent SO sections.

The processing sequence applied to these data was able to
effectively attenuate the effect of the direct wave, revealing
reflections in the first few hundred meters below the sea surface
(Figure 10). The time-migrated section clearly shows fine-scale
structure down to 2,000 m, below this depth the SO data shows
no reflection. The upper part of the section exhibits a series
of interesting oceanographic features that might be interpreted
as eddies associated with the MOW and as double diffusive
phenomena. However, these features need to be further explored
to provide insights about the complex dynamics of the study area
(Figure 10). The detailed interpretation of these oceanographic
features will be performed after inverting the neighbor SO
profiles existing in the region.

The processed time-migrated section was inverted using the
proposed geostatistical SO inversion. We show how this inversion
technique can be applied when no direct and contemporaneous
observations of the ocean are available. We leverage common
models of large-scale ocean dynamics and existing vertical
profiles of the ocean properties measured by ARGO floats. This
method was proved to be a useful tool to characterize sub-
mesoscale oceanic features and has demonstrated a potential
to invert for temperature and salinity. From the inverted
models we also propose Bayesian classification of water masses.
The probability of occurrence of the different water masses
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The southwest Atlantic gyre connects several distinct water masses, which means that
this oceanic region is characterized by a complex frontal system and enhanced water
mass modification. Despite its significance, the distribution and variability of vertical
mixing rates have yet to be determined for this system. Specifically, potential conditioning
of mixing rates by frontal structures, in this location and elsewhere, is poorly understood.
Here, we analyze vertical seismic (i.e., acoustic) sections from a three-dimensional survey
that straddles a major front along the northern portion of the Brazil-Falkland Confluence.
Hydrographic analyses constrain the structure and properties of water masses. By
spectrally analyzing seismic reflectivity, we calculate spatial and temporal distributions
of the dissipation rate of turbulent kinetic energy, e, of diapycnal mixing rate, K, and
of vertical diffusive heat flux, Fr. We show that estimates of ¢, K, and Fy are elevated
compared to regional and global mean values. Notably, cross-sectional mean estimates
vary little over a 6 week period whilst smaller scale thermohaline structures appear to have
a spatially localized effect upon ¢, K, and Fp. In contrast, a mesoscale front modifies &
and K to a depth of 1 km, across a region of O(100) km. This front clearly enhances mixing
rates, both adjacent to its surface outcrop and beneath the mixed layer, whilst also locally
suppressing ¢ and K to a depth of 1 km. As a result, estimates of F1 increase by a factor
of two in the vicinity of the surface outcrop of the front. Our results yield estimates of ¢, K
and Fy that can be attributed to identifiable thermohaline structures and they show that
fronts can play a significant role in water mass modification to depths of 1 km.

Keywords: seismic oceanography, diapycnal diffusivity, diffusive heat flux, fronts, Brazil-Falkland Confluence

1. INTRODUCTION

Gyres are a key component of the large-scale meridional overturning circulation since they provide
exchange sites between warm and cold water masses. In the southwest Atlantic Ocean, the Brazil-
Falkland Confluence connects subtropical with subantarctic water masses. This confluence is a
region of significant water mass modification. Nevertheless, a paucity of sufficiently well-resolved
observations has hampered efforts to understand the extent of water mass variability associated
with vertical exchanges. Here, we address this knowledge gap by exploiting a seismic (i.e., acoustic)
technology that enables full-depth vertical sections of thermohaline structure and vertical mixing
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rates to be recovered. These seismic sections are hundreds of
kilometers long and complement hydrographic sections acquired
by the Global Ocean Ship-based Hydrographic Investigations
Program (GO-SHIP), albeit with a dramatically improved
horizontal resolution of ~10 m.

The southward-flowing western boundary current of the
South Atlantic subtropical gyre, known as the Brazil Current
(BC), connects warm subtropical waters with cold subantarctic
water masses of the northward flowing Falkland Current (FC;
Figure 1A). Hydrographic transects, ship-based observations,
and satellite measurements demonstrate that this region is a site
of strong water mass modification (e.g., Bianchi et al., 2001;
Saraceno et al., 2004). Jullion et al. (2010) showed that horizontal
heat and salt exchanges account for up to one half of the total
poleward heat flux across the Antarctic Circumpolar Current.
These insights are necessarily based upon intermittently obtained
hydrographic measurements that cannot easily constrain water
mass modification which occurs as a result of vertical mixing.
Thus, the distribution and variability of vertical mixing rates have
yet to be diagnosed.

Concentration of large-scale temperature gradients creates
complex frontal systems, that tend to be important sites for
water mass modification. Shallow (i.e., 0-500 m) observations
obtained by towed instruments and floats demonstrate that the
upper portions of fronts are often regions of enhanced vertical
mixing (e.g., Nagai et al,, 2009, 2015; D’Asaro et al, 2011;
Johnston et al., 2011; Peng et al., 2020). These locations can
contribute significantly to the vertical re-distribution of heat and
salt, thus impacting thermohaline circulation (Liang et al., 2015;
Frazao and Waniek, 2021). A paucity of observations in the
southwest Atlantic Ocean has left a gap in our understanding
of the magnitude and variability of vertical heat fluxes in the
Brazil-Falkland Confluence. Even less is known about the role
that fronts play in moderating dissipation rates at depths greater
than ~500 m.

Here, we address these knowledge gaps with the aid of seismic
reflection profiling. This technology exploits low (i.e., 5-100 Hz)
frequency sources and multiple towed cables with dense arrays
of hydrophone receivers (Holbrook et al., 2003; Ruddick et al.,
2009). Acoustic waves are transmitted through, and reflected
from, temperature fluctuations on length scales that vary from
tens of meters to tens of kilometers. The resultant seismic sections
can be used to delineate and map oceanic structure and water
masses with contrasting thermohaline properties over a hitherto
unsurpassed range of scales (e.g., Sallarés et al., 2009; Sheen
et al, 2012; Gunn et al., 2018). Resultant images can be inverted
and spectrally analyzed to obtain simultaneous distributions of
temperature and vertical mixing rates, respectively, that span the
full depth of the water column (e.g., Dickinson et al., 2017; Gunn
et al., 2020). This emerging field of research is generally referred
to as Seismic Oceanography.

We analyze thermohaline structures and mixing properties
across a portion of the northern Brazil-Falkland Confluence.
First, we describe three seismic sections that straddle this
confluence, spanning a period of 6 weeks between 1st February
2013 and 15th March 2013. Each of these sections is ~140 km
in length. They were acquired sequentially and any one section

is laterally offset by several kilometers. Our study builds upon a
previously published contribution which describes the structure
and hydrographic properties of a deeply penetrating front and of
a transient mesoscale eddy that both advect across the seismic
survey (Gunn et al,, 2020). Secondly, we spectrally analyze
these seismic sections in order to calculate spatial distributions
of diapycnal mixing rates, which can then be combined with
seismically determined temperature profiles to estimate vertical
diffusive heat fluxes. Finally, we compare recovered distributions
of mixing and heat flux with observed oceanographic processes
and we discuss how these distributions may evolve as a function
of time.

2. OBSERVATIONAL CONSTRAINTS

2.1. Seismic Reflection Survey

We present time-lapse imagery extracted from a three-
dimensional (3D) seismic reflection survey that straddles a
small northern portion of the Brazil-Falkland confluence of the
southwest Atlantic Ocean (Figure 1A). This seismic survey was
acquired between November 2012 and April 2013 by Polarcus
Limited OSE. During acquisition, a pair of alternately firing
airgun arrays, each of which has 36 guns with a combined volume
of 70 L (4240 in®), were deployed off the stern of the vessel at a
depth of ~5 m. Ten streamers (i.e., acoustically sensitive cables),
each of which is 6 km in length, were towed behind the vessel (for
further details see Gunn et al., 2020). The vessel steamed with an
average azimuth of 41° in what is known as the racetrack mode
of acquisition at an average speed of 2.5 m s~! (Yilmaz, 2001).
Each individual pass of the vessel acquired a single 3D swath of
seismic data that is ~120-150 km long and ~600 m wide. The
seismic sections presented here are extracted from the center of
each swath which were acquired between 1st February 2013 and
15th March 2013 (Figures 1B-D and Table 1).

2.2. Hydrographic and Satellite

Observations

Independent hydrographic and satellite observations are used
to calibrate this seismic reflection survey. Coincident and
dense hydrographic measurements are unavailable. Instead, we
exploit conductivity-temperature-depth (CTD) profiles from
three nearby GO-SHIP transects (A10, Al1, and A17). These
transects approximately bound the Brazil-Falkland Confluence
at its northern, southern and eastern boundaries, respectively
(Jullion et al., 2010). Given the planform of the Brazil and
Falkland Currents, these transects are representative of BC (i.e.,
subtropical), FC (i.e., subantarctic), and mixed water masses,
respectively (Figure1l). A subset of CTD casts from each
GO-SHIP transect are used to generate average profiles of
temperature and salinity (Figure 2). Along transects A10 and
All, these CTD casts are positioned away from the continental
shelf and extend offshore by the approximate width of the Brazil
and Falkland Currents, respectively (Figure 1A). For transect
A17, a monthly composite of sea surface currents and float
trajectories are used to gauge the latitudinal range of enhanced
eddy kinetic energy associated with the confluence between
34 and 42° S (Iglesias, 2019). We conclude that these average
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FIGURE 1 | (A) Map of southwest Atlantic Ocean where red/blue colors represent warm/cold mean sea-surface temperatures for monthly composite centered on
16th February 2013 (taken from Multi-scale Ultra-high resolution (MUR) satellite sea-surface temperature measurements which have monthly and 1 km resolution).
Thin black lines = 300/1,000/2,000 m bathymetric contours; field of black arrows = average sea surface geostrophic current velocities calculated for 5-day
composite centered on 15 February 2013 from OSCAR satellite measurements (scale at top left-hand side); labeled arrows 0= OBrazil Current (BC) and Falkland (i.e.,
Malvinas) Current (FC); black box = zoom region shown in panels (B-D); white polygon O= Olocation of 3D seismic reflection survey; thick black line within polygon
0= Olocus of three transects displayed in Figures 4-9; small white circles = loci of conductivity temperature depth (CTD) probes acquired as part of GO-SHIP
transects A10 (December 1992), A17 (April 2019) and A11 (December 1992); large white circles = loci of CTDs used to compute average hydrographic profiles
(Figure 2). (B-D) Zoomed portion shown in (A). Blue shading = water depth according to scale bar at top left-hand of (A); thin black lines = 300/1,000/2,000 m
bathymetric contours; white polygon 0= Olocation of 3D seismic reflection survey; solid black line inside polygon = seismic transect acquired on given date; dotted
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profiles are representative of water masses entering and exiting
the confluence at the location of the seismic survey.

Maps of sea surface temperature for the southwest Atlantic
Ocean highlight the confluence of warm and cold water masses
(Figure 3). Confluent flow of warm BC and cold FC concentrates
large-scale temperature gradients that are clearly visible in

satellite imagery, generating a frontal system that is marked
by several discrete fronts which occur between 36 and 39° S
(Gordon, 1989; Peterson and Stramma, 1991). Temperature
maps also show the variability in the location and properties
of this confluence as a function of time. They are consistent
with other satellite observations, which confirm the presence of
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TABLE 1 | Seismic acquisition information (Figure 1).

Section Length, km dd/mm/yy Azimuth
A 123 01/02/18 SW-NE
B 142 13/02/13 SW-NE
C 135 15/03/13 SW-NE

Note that Section B is equivalent to Section 6 of Gunn et al. (2020).

this oscillation of the Brazil-Falkland Confluence at this time of
year (Garzoli and Garraffo, 1989; Saraceno et al., 2004; Combes
and Matano, 2014). After converging, sea surface current and
float trajectory measurements show that these subtropical and
subantarctic water masses turn eastward, spreading out into the
center of the Atlantic Ocean (Figure 1; Iglesias, 2019).

3. METHODS

3.1. Signal Processing of Seismic Imagery
In the context of Seismic Oceanography, an important goal is
to combine individual seismic records to order to generate an
image which represents a full-depth vertical section through
the water column (Figure 4A). To construct these sections, we
adopt standard signal processing techniques that have previously
been applied to this survey and that are described in more
detail by Gunn et al. (2020). Significant processing steps include
application of a 20-90 Hz band-pass filter with a roll-off of
24 dB per octave, muting of the bright and irregular sea-bed
reflection, removal of high amplitude acoustic energy that travels
horizontally along the length of each streamer (i.e., the direct
arrival), velocity picking, and stacking (i.e., combining multiple
seismic records). The data used to construct a single stacked
section take several hours to acquire since the vessel steams
at ~2.5 m s~!. It is important to emphasize that during the
stacking process, many repeated shot-receiver pairs that image
an identical portion of the sub-surface are summed together. The
vertical resolution of a seismic section is given by v/(4f) where
vand f are the speed of sound through water and the dominant
frequency of the acoustic source, respectively. In this region, v =
1,510 £ 30 m s~! and the peak value of f= 35+ 5 Hz, which
yields a nominal vertical resolution of 10-20 m (Gunn et al,
2020). In contrast to GO-SHIP transects, vertical and horizontal
resolution are equal.

The observed reflectivity is generated by changes in acoustic
impedance (i.e., the product of sound speed and density).
Within the water column, acoustic impedance is predominantly
controlled by sound speed variation, which depends upon
temperature gradient and, to a much lesser extent, upon salinity
gradient (Sallareés et al,, 2009). When confluent flow of warm
subtropical and cold subantarctic water masses concentrates
large-scale temperature gradients across a large region, this
confluence is characterized by strong impedance contrasts
which gives rise to bright reflectivity (Figure 4A). In summary,
each seismic section represents a near-instantaneous, full-depth
vertical slice through the oceanic volume that is essentially a
well-resolved map of vertical temperature gradient.

3.2. Seismically Determined Properties

The temperature distribution along each seismic section is
calculated using an adapted iterative method (Papenberg et al.,
2010; Gunn et al., 2018, 2020). Acoustic inverse schemes that
rely upon densely sampled hydrographic measurements are less
easy to exploit since coincident observations of temperature and
salinity are unavailable (Azevedo et al., 2021). Instead, we use
a pragmatic approach that side-steps this limitation and takes
advantage of the dominant dependency of acoustic sound speed
upon temperature. First, we construct the long-wavelength sound
speed field for each section by analyzing pre-stack seismic records
(Figures 6, 7 of Gunn et al., 2020). Secondly, each sound speed
field is iteratively converted into an equivalent distribution of
temperature using the equation of state for seawater.

Due to a paucity of coeval hydrographic measurements,
we reasonably assume that density varies as a function of
depth and that salinity is a function of both temperature and
depth, which can be estimated at 10 m depth intervals. The
temperature-salinity relationship is calculated from the regional
CTD casts shown in Figures 1A, 2 and it is in accordance
with regional hydrographic measurements (Gunn et al., 2020).
Given these assumptions, seismic sections can be converted
into temperature (Figure 4B). Seismically derived temperature
and salinity estimates enable contemporaneous fields of vertical
temperature gradient and of density to be estimated which
can then be used to calculated vertical diffusive heat fluxes
(Equation 3). Note that recovery of temperature fields from
seismic images is contingent upon the distribution of horizontally
continuous reflections. As a consequence, there is greater
uncertainty in the details of any recovered field beneath 1,000 m
and above ~150 m where reflections can be difficult to trace
see Figure 6 of (Gunn et al., 2020). Nevertheless, this method is
a useful way to calculate contemporaneous temperature fields,
especially because it enables the vertical temperature gradient
to be recovered. A conservative depth-averaged uncertainty of
seismically determined temperature estimates is < +1° C (Gunn
et al., 2020).

3.3. Dissipation and Diapycnal Mixing

Rates

Oceanic circulation is maintained by the cascade of energy
from large-scale flows down to the smallest length scales of
turbulent mechanical mixing (Munk, 1966). On horizontal
length scales of 0.1-10 km, this cascade can be interrogated
by tracking and spectrally analyzing reflections from stacked
seismic sections (e.g., Sheen et al., 2009; Holbrook et al., 2013;
Dickinson et al., 2017). Small vertical displacements along quasi-
horizontal reflections record perturbations of the background
stratification caused by a combination of internal waves and
turbulence. Variations in the size of these vertical displacements
as a function of horizontal wavelength are obtained by calculating
the power spectrum of vertical displacements as a function of
horizontal wavenumber k. This approach enables the internal
wave and turbulent subranges to be identified and modeled
to obtain the dissipation rate of turbulent kinetic energy, e,
and thence diapycnal diffusivity, K. Sheen et al. (2009) and
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salinity, S, plotted as function of depth. (C) Potential density anomaly, oy, plotted as function of depth. (D) Buoyancy (Brunt-Vaisala) frequency squared, N2, plotted
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FIGURE 3 | Selected maps of sea-surface temperature for southwest Atlantic Ocean showing temporal variability of Brazil-Falkland Confluence. Red/blue
colors = warm/cold sea surface temperatures from 1st February 2013 to 15th April 2013 (date shown at top left-hand side). Satellite sea-surface temperature
observations from L4 gridded products of GHRSST database that have daily and 1 km resolutions. White polygon = location of 3D seismic survey; thick black
line = loci of seismic sections for 01/02/13, 13/02/13, and 15/03/13; thin black lines = sea surface temperature contoured at 4° C intervals.
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Holbrook et al. (2013) demonstrated that seismic reflections
generally track isopycnal surfaces and they showed that the
turbulent subrange can be reliably isolated with careful signal
processing. The methodology is divided into three stages
(Figure 5).

3.3.1. Tracking Reflective Events

Each trace of seismic amplitude is converted into the cosine
of the instantaneous phase angle. Application of this seismic
attribute helps to emphasize the continuity of reflections in
a way that does not influence resolution of the seismic
image (Holbrook et al., 2013). Reflective events are tracked
by contouring with a constant value of the instantaneous
phase (Figure5A). The choice of contour value does not
affect the geometry of tracked reflections but it can influence
the number of tracked reflections (Dickinson et al., 2017).
Reflections with lengths that are greater than 1 km are chosen
since they yield the best-resolved spectra. At this stage, the
midpoints along each contoured event are calculated and taken
to represent isopycnal surfaces, thus providing information
about horizontal wavenumber, ky. These midpoints are used
to estimate vertical displacements of the isopycnal surfaces
(Figure 5B).

3.3.2. Spectral Analysis of Tracked Reflections

Power of vertical displacement, ®;, as a function of k, is
calculated from each linearly detrended tracked reflection using
a multi-taper Fourier Transform, F(ky), where &z = |F(ky)|?
(Thomson, 1982). ®; is a measure of the power distribution
of the decomposed signal as a function of k. (Figure5C).
Horizontal wavenumber power spectra are converted into power
spectra of the horizontal gradient of vertical displacement, ®¢,
by multiplying ®¢ by (27k,)? (Klymak and Moum, 2007a,b).
D¢, (ky) is usually referred to as the slope spectrum.

In the oceanic realm, slope spectra calculated from seismic
images, as well as from autonomous gliders, reveal two distinctive
regimes with the characteristic spectral slopes of the internal
wave and turbulent components of the oceanic energy spectrum
(Klymak and Moum, 2007a,b; Sheen et al., 2009). The internal
wave regime is visible at low wavenumbers of 107% <
ky < 1072 m~!, corresponding to horizontal length scales
of >100-1,000 m (Figure 5D). At high wavenumbers of k, >
1072 m~!, internal waves break and there is a clear transition
to a regime with a characteristic turbulent spectral slope.
The spectral slope of this regime matches the Kolmogorov
exponent of —5/3 which, when multiplied by (2rky)? to
create horizontal gradient (i.e., slope) spectra, becomes +1/3
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FIGURE 4 | (A) Seismic reflection section B that crosses oceanic front (see also Figure 1C and panel dated 13/02/13 of Figure 3). Red/blue stripes represent
positive/negative polarity reflections generated by temperature changes as small as ~ 0.01°C within water column; irregular solid/dotted lines = seabed; black
arrows = maximal extent of front at sea surface and at depth. (B) Corresponding conservative temperature field calculated using iterative inversion procedure (Gunn
et al., 2018, 2020). Warm/cool colors = temperatures according to scale bar; solid black line = smoothed potential density anomaly contour of 26.8 kg m~2 which
highlights shallowest sub-surface expression of front (see Figures 3, 8E,F of Gunn et al., 2020 for more detailed treatment).

(Spalding, 1991). Significantly, this slope is still observed at  dissipation rate of turbulent kinetic energy, ¢, and the diapycnal
horizontal scales that exceed the Ozmidov length scale, which  diffusivity, K.

means that a slope of —5/3 should not be thought of as

purely isotropic turbulence. At these longer scales, this slope  3,3.3. Dissipation and Diffusivity Calculations

probably represents layered anisotropic stratified turbulence 1t is straightforward to identify internal wave, turbulent, and
(LAST; Riley and Lindborg, 2008; Falder et al., 2016). White  yhite (i.e., ambient) noise subranges by examining @, (k)
noise has a gradient of +2 and is clearly visible at the highest  spectra (Figures 5E-I). Here, we focus on analyzing observed
wavenumbers (e.g, kx > 107'7 m™'). Given this ability  turbulent subranges following the approach described by Sheen
to seismically identify spectral slopes, it is possible to model et al. (2009) and later refined by Dickinson et al. (2017).
the observed turbulent subrange and to estimate both the  For a given spectrum, the gradient of the turbulent subrange,
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FIGURE 5 | (A) Auto-tracked version of section B. Black box = zoomed portion shown in (B,C) where red line = auto-tracked reflection analyzed in (C,D); labeled red
lines = auto-tracked reflections that are spectrally analyzed in (E-). (B) Zoomed portion of (A) with auto-tracked reflection that is spectrally analyzed in (C,D). (C)
Power of vertical displacement, ®;, plotted as function of horizontal wavenumber, ky, which has units of cycles per meter (cpm). Spectrum calculated using
multi-taper Fourier transform of linearly detrended tracked reflection highlighted in (B). Internal wave, turbulent, and noise subranges characterized by spectral slopes
of —2, —5/3 and 0, respectively. (D) @y, (i.e., @z x (27ky)?) plotted as function of k. On this slope spectrum, black/blue/black lines = internal wave/turbulent/noise
subranges characterized by spectral slopes of —1/2, +1/3 and +2, respectively; red line = best-fitting model of turbulent subrange; label in top right = calculated
value of logq K; gray reticule = slopes of internal wave and turbulent subranges with spectral gradients of —1/2 and +1/3, respectively. (E-I) Slope spectra for other
auto-tracked reflections shown in (A). Symbols and labels as for (D).

rate, ¢, using a simplified version of the Batchelor et al. (1959)
model where

the co-ordinates of the intersection between the internal wave
and turbulent subranges, and width of the turbulent subrange
determine the value of @, (ky). A misfit function that measures

4n T
the difference between observed and calculated values of @ (k) b, = LZCng/ 3k (1)
is minimized by adjusting the values of gradient, co-ordinates N
of intersection, and width for each spectrum (see Appendix D3 Cr = 04 is the Obukhov-Corrsin constant, I = 0.2 is

of Dickinson et al., 2020). In this way, @ (k) is calculated for
each spectrum and used to estimate the turbulent dissipation

the turbulent flux coefficient, and N is the Brunt-Viisild
(i.e., buoyancy) frequency which is obtained from regional
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FIGURE 6 | (A) Spatial variation of turbulent dissipation rate, logy, ¢, for section B where warm/cool colors indicate higher/lower values according to scale bar along
base of panel; black arrows = maximal extent of front at sea surface and at depth. (B) Histogram showing spatially averaged distribution of dissipation, <e>.
Envelopes calculated using bin widths of 0.1 and Gaussian filter lengths of 1 for spatial ranges of 0-40 (blue), 40-90 (black line and white bar), and 90-140 km (red).
(C,D) Same for spatial variation of diapycnal mixing, log;q K and its average value, <K>.

hydrographic measurements [i.e.,, Figure2 D black line;  Here, we calculate the spatial and temporal variability of Fy
(Osborn, 1980; Mashayek et al., 2017)]. Since the observed  using temperature and density fields obtained from calibrated
turbulent subrange extends to wavenumbers that are smaller  seismic reflection sections together with the spatial and temporal
than the Ozmidov scale, our use of this inertial-convective  variation of K (e.g., Figures 4B, 6C). So, the four parameters
parametrization implicitly assumes that there is continuity  on the right-hand side of this equation vary as a function
between the LAST and inertial-convective regimes (Riley and  of time and space. Since the nominal vertical resolution is
Lindborg, 2008). Finally, diapycnal diffusivity, K, is obtained  O(10) m, values of dT/dz, p., and C,, are measured at intervals
using the Osborn (1980) relationship where of 10 m. The units of Fyy are W m—2 where positive heat
Ie flux is downward. Note that our estimates of Fy do not take
=—. (2)  advective contributions into account since well-resolved velocity
N measurements are unavailable.

K

Spatial variations of ¢ and K for Section B are presented in
Figure 6. 3.5. Uncertainty Estimates

. . Following Dickinson et al. (2020), the maximum likel
3.4. Diffusive Heat Flux ¥ '

; e ) ) uncertainty for log,, K is £0.4 logarithmic units. This value is
The diapycnal diffusive heat flux, Fy, is calculated in accordance gauged in the following way. First, uncertainty in N is given
with standard molecular (Fickian) diffusion where

by its standard deviation which is 0.3 cph. This uncertainty
Fir = —p.C,K(d© /d2). 3) %s combin.ed in quadrature .with the .uncertainty of the ﬁ.tted

intercept (i.e., 0.02-0.1) to yield an estimated mean uncertainty

o is potential density, C,, is the isobaric heat capacity of seawater,  for log;, K of £0.15 logarithmic units. Secondly, we acknowledge
and d©/dz is the vertical gradient of conservative temperature. ~ that assuming constant values of Cr and I' is a significant
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FIGURE 7 | (A) Section A of seismic reflection survey. (B) Conservative temperature as function of depth. Black line = horizontally averaged temperature profile
calculated for Section A using iterative inversion procedure; dashed line = portions of same profile where calculation is uncertain due to lack of continuous reflections
at depths 21,000 m; red/blue/gray lines = average temperature profile obtained from GO-SHIP hydrographic sections A10/A11/A17, which represent
subantarctic/subtropical/mixed water masses, respectively (see Figure 1A). (C) Section C of seismic reflection survey. (D) Same as (B) for Section C.

simplification (Mashayek et al., 2017). This assumption can be
tested by considering their upper and lower bounds, which yields
a maximum uncertainty of £0.25 logarithmic units (Dickinson
et al, 2020). Notwithstanding uncertainties associated with
absolute values of mixing rate, we are confident that these relative
variations are robust.

Given that the conservative upper bound of uncertainty for
log,, K is £0.4 logarithmic units, the propagated uncertainty
for Fy can be estimated by combining uncertainties for log;, K
and d® /dz. The uncertainty for ® is conservatively estimated
as +1° C (Gunn et al,, 2020). After taking the vertical gradient
over 10 m, we obtain an uncertainty of +0.1 K m~! for
dT/dz. Uncertainties for p, and C, are 0.1 kg m~> and
40.8 J kg~! K~!, respectively. Thus, the propagated uncertainty
for our estimates of Fyy is +3 W m~2.

4. RESULTS

4.1. Water Mass Structure

On Section B, which was acquired on 13th February 2013, the
most obvious feature is a band of gently dipping reflectivity
that crops out at the sea surface over a range of 30-40 km
(Figure 4A). This band represents a deeply penetrating front.
Over much of its length, a bright and continuous reflection that
dips northward is visible that can be traced down to a depth of
1.8 km. This front separates a wedge of smooth and horizontally

continuous reflections to the north from more discontinuous,
and even swirling, reflectivity to the south. A prominent tilted
lens with a complex pattern of internal reflectivity centered
at a range of 60 km sits against the front. Within 400 m
of the sea surface, the front splits into a several strands that
encase lens-shaped and acoustically transparent features that are
interpreted as intra-thermoclinic eddies (Gunn et al., 2020). On
both sides of the front, the thermocline is generally visible as a
band of reflectivity that extends to a depth of 1,000 m which
is consistent with hydrographic measurements (Figure 2). The
calculated temperature field shows that the northern end of
Section B is characterized by a wedge of warm subtropical water,
the Brazil Current, that abuts the front (Figure 4B). South of the
front, cooler temperatures are consistent with the presence of an
intermediate water mass generated by mixing of subtropical and
subantarctic waters.

On Section A, which was acquired on 1st February 2013,
a thick band of approximately flat reflectivity that extents
to a depth of 1,000 m defines the thermocline (Figure 7A).
The vertical extent of the thermocline is corroborated by the
horizontally averaged temperature distribution extracted from
the seismic image (Figure 7B). From the sea surface down to a
depth of 1,000 m, temperature values decreases from 25 to 5°C,
which is comparable to the observed temperature distribution
of subtropical water masses along GO-SHIP transect A10
(Figure 2A). Temperatures of ~5°C are diagnostic of AAIW,
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deviation, o, of values from Section A. (C) Same overlain with spatial distribution of diapycnal diffusivity, log;o K. Colored wiggly lines = individual auto-tracked
reflections where color indicates value of logyq K according to scale bar at base of (E). Note that global mean log,, K is -5 (e.g., Waterhouse et al., 2014) and that
uncertainty of calculated log;q K is 0.4. (D) Histogram showing spatially averaged distribution of K. (E-H) Same for Section C with 2,310 tracked reflections.
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CDW, and NADW at these depths (Piola and Matano, 2017). At  filaments that deform as a function of time (Gunn et al., 2020).
the northeastern end of Section A, the thermocline terminates A vortex-like structure, reminiscent of that observed between
in a set of bright reflections which are abruptly cut off at a  subtropical and subantarctic water masses at the Subantarctic
range of 100 km by weaker dipping reflections. We interpret ~ Front by Sheen etal. (2011), occurs at a depth of 1,000 m centered
this pattern of localized reflectivity as the upper portion of  atarange of 105km. These complex reflection patterns imply that
a partially imaged front. This intepretation is consistent with  imaged water masses are deforming and/or undergoing lateral
coeval surface temperature measurements (Figure 3). Beneath a  displacement. Considerable mixing is probably also occurring.

depth of 1,000 m, water masses are characterized by complex On Section C, which was acquired on 15th March 2013,
swirling patterns of reflectivity that form a mixture of lenses and  the front is no longer visible (Figure 7C). Instead, layered and
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continuous reflections form a 1,000 m thick band that extends
across the entire section. Beneath 1,000 m, sparser reflectivity
delineates elongated filaments of O(10) km lengthscales. As in the
case of Sections A and B, the average temperature distribution
indicates that this section is representative of subtropical
water masses (see Figure7D). Apart from methodological
uncertainties, seismically-derived property distributions are
limited by the observed density of continuous horizontal
reflections. Due to the limitations of seismic acquisition,
reflections are often not clearly imaged at depths shallower than
~150 m. On the seismic sections presented here, there is also
limited reflectivity at depths that exceed 1,000 m (Figures 7B,D).
At these depths, horizontally averaged temperature profiles
are inevitably less well constrained and tend to be discrepant
with respect to hydrographic observations. Nonetheless, it is
important to note that the vertical temperature gradient is
faithfully recovered.

Given the depth and temperature of the thermocline together
with the location of the seismic survey with respect to
the confluence during February 2013, these seismic sections
evidently cross the northern portion of the confluence since
it is characterized by subtropical water masses of the Brazil
Current (Figure 1A). The thermocline has a vertical extent of
1,000 m, which is consistent with steep temperature gradients
observed within these subtropical water masses (Figures 7B,D;
Piola and Matano, 2017). These observations are consistent with
sea surface temperatures, which demonstrate that the seismic
survey straddles the warmer portion of the confluence during
February and March 2013 (Figure 3). Over a 6 week period, the
depth of the thermocline remains consistent and its continuity
is only disrupted adjacent to the dipping front, most likely the
Brazil Current Front whose appearance and disappearance is
caused by the observed oscillation of the confluence at this
time of year (Olson et al., 1988; Saraceno et al., 2004; Severov
et al., 2012; Gunn et al., 2020). The patterns of reflectivity also
reveal other transient oceanic processes, including deformation
of filaments and lenses, which have previously been interpreted
as manifestations of stirring and cross-frontal mixing (Jullion
et al., 2010; Gunn et al., 2020). This complex vertical and
horizontal thermohaline structure has previously been observed
on lengthscales of tens of kilometers using CTD probes (Reid
et al., 1977; Gordon, 1989; Bianchi et al., 2001).

4.2. Vertical Mixing Rates

Section B demonstrates that dissipation and mixing rates are
conditioned by the presence of a front (Figure6). On the
southern, denser side of the front, mixing rates are highest (e.g.,
1073-1072 m? s7!), especially at ranges of 20-40 km where
the front crops out at the sea surface. North of a range of
40 km, the front deepens and its different reflective strands
are characterized by suppressed mixing rates of ~10~* m? s~}
(Figure 6C). Similarly low mixing rates are found at the base of
the prominent tilted lens. Beyond a range of 90 km, mixing rates
increase up to values of ~1073-1072 m? s~!. These qualitative
observations are supported by full-depth weighted mean values
of log,, ¢ (i.e., -6.1, -5.6, -5.8) and log,, K (-3.0, -3.4, -3.2) for
ranges of 0-40, 40-90, and 90-140 km, respectively (Figure 6D).

These section-averaged values reveal the overall effect that the
front has upon vertical mixing rates— mixing is enhanced at
its surface outcrop but it is locally suppressed along its dipping
interface down to a depth of about 1 km.

Two weeks earlier (i.e., 1st February 2013), dissipation and
mixing estimates for Section A range over three orders of
magnitude (Figures 8A,C). Recovered estimates are much more
spatially patchy which is consistent with the observed patterns
of reflectivity. The highest mixing rates occur beneath the mixed
layer (e.g., ~200 m) and in association with small-scale structures
at ranges of 30-40 km and depths of 1,000-1,400 m. Lowest
mixing estimates occur adjacent to the front at the northeastern
portion of Section A between 100 and 120 km. A weighted
histogram of recovered mixing estimates indicates that the mean,
<K>, and standard deviation, o, of log,, K are —3.2 and 0.5,
respectively (Figure 8D). One month later, the thermocline is
much more continuous and the deeply penetrating front is no
longer visible (Figures 8E,G). Mixing rates are lowest in the
thermocline and greatest at the base of the mixed layer with
sporadically higher mixing throughout the deeper portions of the
water column. <K> is 1073° m? s7! (ie., ~3x107% m? s71),
which is consistent with mean values calculated for the two
other sections.

Mixing rates calculated for other seismic sections that also
image the deeply penetrating front have similar spatial patterns
of diapycnal diffusivity. Given our conservative estimate of
uncertainty of £0.4 for log;, K, these observed patterns of
diapycnal diffusivity— enhanced K the surface outcrop of the
front and suppressed values of K along its dipping interface—
are robust. We conclude that this front conditions mixing rates
on lengthscales of O(10-100) km.

4.3. Diffusive Heat Flux

Seismically-derived heat fluxes, Fyy, range from -3 to 10 W m ™2
(Figure 9). For all three seismic sections, the highest values of
Fp occur along the base of the mixed layer. Fy decreases with
depth along each seismic section (Figures 9A,C,E). Horizontally
averaged profiles show that there is a marked decrease in the
value of Fy from 1-8 W m™2 at the sea surface to 0 W m~2 at
1,000 m depth (Figures 9B,D,E). Profiles of Fy calculated using
the mean ®(z) distribution taken from transect A17 show the
same trend within uncertainty (Figures 9B,D,F dashed lines).
This behavior is expected since Fy describes Fickian diffusion,
by which mixing rate acts upon vertical temperature gradient.
Since d® /dz decreases with depth, the effect of mixing becomes
increasingly limited. The vertical variation of Fy for sections A
and C is broadly similar. Therefore, at mesoscale length scales in
the absence of a front, Fyy does not appear to significantly change
over the 6 week period.

On the other hand, we also observe conditioning of Fy by
the front itself (Figures 9C,D). Close to the surface outcrop of
the front, heat fluxes reach their greatest values (Figure 9D).
Enhancement of these heat fluxes exceeds the uncertainty of
+3 W m~2 and it is directly associated with the vigorous mixing
observed here (Figure 6C). Along the dipping boundary of the
front, Fy is also elevated. Here, elevated values are a result of the
significant vertical temperature gradient caused by the presence
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of a wedge of warm water that is banked up against the front
where it overlies cooler water (Figure 4B). We conclude that this
major front conditions vertical diffusive heat flux on length scales
of 0(10-100) km.

5. DISCUSSION

A suite of seismic reflectivity sections is employed to shed light on
the internal structure of a small portion of the northern Brazil-
Falkland Confluence— a complex and dynamic frontal system
with intense mesoscale eddy activity. Thermohaline structures
that are seismically imaged, including evolving vortices and
filaments, are consistent with both hydrographic observations
and with satellite imagery that show frontal structure and
a vigorous eddy field (Bianchi et al., 2001; Saraceno et al,
2004; Jullion et al., 2010). Here, we build upon these physical
oceanographic observations in two significant ways. First, seismic
imagery helps to overcome observational limitations since
it yields full-depth vertical sections that have a horizontal
extent of ~140 km length, that have a vertical resolution
of O(10) m, and that span a period of 6 weeks. Secondly,
these sections can be converted into simultaneous distributions
of temperature and mixing rate. For these reasons, seismic
reflection technology provides an unprecedented view of oceanic
structure which help to unlock an improved understanding of
ocean mixing.

This portion of the Brazil-Falkland Confluence is a region of
vigorous mixing where <K> is approximately 50x 107> m? s~!
(Figures 6, 8). Spatial and temporal averaging on length scales of
100 km and time scales of 6 weeks suggests that this mean value
does not vary significantly (Figure 8). Similarly, vertical diffusive
heat flux, Fy, does not vary significantly either (Figure9).
Sparser hydrographic observations indicate that this region is
a significant hotspot for mixing. For example, Bianchi et al.
(2001) use CTD profiles to estimate the thermal diffusivity across
fronts in the vicinity of 39°S in the southwest Atlantic Ocean.
Within the upper 1,000 m, their estimates range between 1.3 and
3.4x107> m? s~!. More direct estimates of ¢ and K obtained
by microstructure profilers reveal elevated mixing rates across
the continental slope east of Uruguay (Waterhouse et al., 2014;
Iglesias, 2019). As part of the GEOTRACES experiment, a
suite of full-depth microstructure profilers were deployed across
the Argentine Basin between 36 and 41°S during January 2012
(www. geot r aces. or g). The average mixing rate across this
oceanic basin is 1.2x 107> m? s~!, which is consistent with the
global mean value (1x107> m? s~1; Waterhouse et al., 2014).
However, at the western edge of the basin close to the continental
slope and within 100 km of the seismic survey discussed
here, mixing rates are 0(100-1,000x107°) m? s ! (Iglesias,
2019). Enhanced mixing rates were also obtained above rough
topography close to the shelf break. These remarkably elevated
direct observations, which were acquired in the same location,
bathymetric range, and season as the seismic survey, corroborate
the values of mixing rate presented here. Notwithstanding the
uncertainties associated with each methodology, these different
studies suggest that mixing rates within this small northern

portion of the Brazil-Falkland Confluence are at least one order
of magnitude greater than the global mean value.

It is generally accepted that enhanced mixing rates prevail in
regions where there is a combination of rougher bathymetry,
higher shear, and enhanced kinetic energy (e.g., Ledwell et al,,
2000; Garabato, 2004; Smyth and Moum, 2012; Whalen et al.,
2012). In the South Atlantic Ocean, confluent flow of warm
and cold water focusses large-scale temperature gradients at
the continental slope (Figure 1A; Gordon, 1989; Peterson and
Stramma, 1991). As a result of this convergent flow, vertical shear
is enhanced which results in shear-driven mixing (e.g., Gordon
and Greengrove, 1986; Bianchi et al., 2001; Sheen et al., 2012).
This confluence also lies above the continental slope where it is
exposed to the open ocean. In this setting, it has been shown that
a complex field of locally and remotely generated tidal energy
can develop which can elevate mixing rates by several orders
of magnitude (Moum et al., 2003; Nash et al., 2012). Here, we
hypothesize that elevated mean mixing rates are generated by a
combination of the continental slope setting and exposure to the
open ocean.

Apart from large-scale oceanographic and bathymetric drivers
of mixing, the combination of high-resolution seismic imagery
and the calculated spatial variability of K shows that the
distribution of mixing is moderated by local water mass structure
and/or dynamic processes. In particular, we observe conditioning
of mixing rates by a major front, by smaller scale lenses, and by
filaments. On seismic sections where the front is clearly observed,
it is evident that the front itself, rather than distal processes,
can simultaneously trigger elevated and suppressed mixing rates.
Elevated values of K imply that the surface outcrop of the front is
a region of enhanced water mass modification. This observation
is consistent with microstructural and SeaSoar observations
adjacent to fronts which indicate elevated mixing rates (Dewey
and Moum, 1990; Nagai et al., 2009; D’Asaro et al., 2011; Johnston
etal, 2011; Peng et al., 2020). However, these surveys are typically
limited to a depth range of <500 m. We also observe enhanced
mixing rates extending down to depths of 500 m. Additionally,
we find that mixing rates along the frontal interface itself are
suppressed to depths of about 1,000 m. These direct observations
show that the modification of diapycnal mixing by a front is not
isolated to the upper water column but can affect water masses
across the entire thermocline.

Here, we demonstrate that vigorous vertical mixing can play
a significant role in water mass modification by calculating
coeval vertical sections of diffusive heat flux. From a global
perspective, vertical heat flux is difficult to quantify due to
the lack of sufficient diapycnal diffusivity and vertical velocity
measurements. Consequently, global estimates are often obtained
by numerical simulations. Based upon an ocean state estimate
with a resolution of >30 km, the global average value of Fg is
positive (i.e., downward) at all depths, decreasing from 1 W m 2
at the sea surface to 0.1 W m~2 at a depth of 1,000 m (Liang et al.,
2015). Vertical advective heat fluxes have a similar magnitude
although its mean value is negative (Liang et al., 2015). Here, we
obtain diffusive heat fluxes that decrease from <8 W m™2 at the
sea surface to ~0 W m~2 at a depth of 1,000 m (Figures 9B,D,F).
Compared with the global mean, we infer that this northern
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portion of the Brazil-Falkland Confluence is a key site for
vertical diffusive heat exchange. This inference contrasts with
the predictions of non-eddy-resolving global simulations, which
generally imply that the majority of diffusive heat flux occurs
at high latitudes as a consequence of the vertical projection of
isopycnal surfaces (Liang et al., 2015).

Instead, our observations are consistent with eddy-resolving
models which have spatial resolutions of ~10 km. This
consistency implies that subtropical zones are key sites for
diffusive heat flux as a consequence of elevated eddy kinetic
energy (Wolfe et al, 2008). Despite low mean values, the
temporal standard deviation of Fy in global simulations of
diffusive heat fluxes are large in the Brazil-Falkland Confluence,
which suggests that the role of Fy varies significantly with time
(Liang et al., 2015). Here, we provide observational evidence that
diffusive heat fluxes play a more significant role in the vertical
redistribution of heat than previously thought and that enhanced
fluxes are associated with an advecting front. Our results indicate
that high resolution measurements of diapycnal diffusivity and
of vertical velocity are required to comprehensively constrain
spatial and temporal patterns of vertical heat flux.

On longer timescales than those considered in this
contribution, seasonal variations of mixing and of diffusive
heat flux are probably due to the oscillation of the confluence.
Argo float measurements have been used to infer seasonal
variation of K at depths of 500, 750, and 1,000 m (Huang and Xu,
2019). At 36.5°S in the Atlantic Ocean, Huang and Xu (2019)
find that rates of diapycnal transport, which approximates to
mixing, are lowest between January and March at depths of 500
and 750 m but greater at 1,000 m depth. At depths of 500 and
750 m, mixing rates peak between July and September. This
shallow seasonal variation is attributed to seasonal changes in
wind power. Huang and Xu (2019) also find that mixing rates
at 500 m are less than those at 1,000 m within the confluence
region, which is consistent with the distribution of K values
calculated from seismic sections— compare what is observed
between depths of 500 and 1,000 m on Figures 5C, 8G. These
results suggest that seismically observed mixing rates are part
of a seasonal cycle but further investigation is required both to
confirm and to quantify this signal.

We conclude by considering the implications for
parameterization of mixing in numerical simulations. The
eddy dynamics assumed in these simulations typically exploit the
KPP vertical mixing scheme of Large et al. (1994). This scheme
combines the parametization of significant processes—including
turbulent boundary mixing, shear instability, and convection—as
potential modifiers of diapycnal diffusivity. We find that elevated
values of Fy occur in the vicinity of the surface outcrop of
the front and along its dipping interface as a consequence of
elevated mixing rate and large values of d®/dz, respectively.
Oceanic fronts are usually omitted from numerical simulations
because of computational constraints (Ferrari, 2011). Hence,
these seismic-based observations have significant implications
for the parameterization of mixing in these simulations since
our results demonstrate that fronts can play a critical role in
modifying dissipation rates and diffusive heat fluxes within the
upper 1,000 m of the water column.

6. SUMMARY

The scale and complexity of major oceanic fronts present
formidable logistical challenges for observing ocean processes
at appropriate spatial and temporal scales. Existing seismic
reflection technology has a hitherto unsurpassed ability to
resolve thermohaline structures on spatial scales of tens
of meters to hundreds of kilometers and on temporal
scales of minutes to days. In combination with simultaneous
hydrographic observations, this ability has the potential to
transform our understanding of frontal systems. Here, we
show how appropriately calibrated seismic sections can be
used to extract estimates of both diapycnal diffusivity and
diffusive heat flux. Analysis of three seismic sections demonstrate
that enhanced values of mixing and heat flux are associated
with the surface expression of a major front and with
deforming eddies and filaments at depths of more than
1,000 m. Mixing is suppressed along the frontal interface
between 500 and 1,000 m. Elevated values of diffusive
heat flux underline the global importance of these regions
of confluence.
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Testing the Improvement of Coral
Reef Associated Fish Distribution
Models Based on Multibeam
Bathymetry by Adding Seafloor
Backscatter Data
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Ben Radford? and lain M. Parnum?

" Centre for Marine Science and Technology (CMST), Curtin University, Perth, WA, Australia, ? Australian Institute of Marine
Science, Nedlands, WA, Australia, ° School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia

Demersal fishes constitute an essential component of the continental shelf ecosystem,
and a significant element of fisheries catch around the world. However, collecting
distribution and abundance data of demersal fish, necessary for their conservation and
management, is usually expensive and logistically complex. The increasing availability
of seafloor mapping technologies has led to the opportunity to exploit the strong
relationship demersal fish exhibit with seafloor morphology to model their distribution.
Multibeam echo-sounder (MBES) systems are a standard method to map seafloor
morphology. The amount of acoustic energy reflected by the seafloor (backscatter)
is used to estimate specific characteristics of the seafloor, including acoustic
hardness and roughness. MBES data including bathymetry and depth derivatives
were used to model the distribution of Abalistes stellatus, Gymnocranius grandoculis,
Lagocephalus sceleratus, Lethrinus miniatus, Loxodon macrorhinus, Lutjanus sebae,
and Scomberomorus queenslandicus. The possible improvement of model accuracy
by adding the seafloor backscatter was tested in three different areas of the Ningaloo
Marine Park off the west coast of Australia. For the majority of species, depth was
a primary variable explaining their distribution in the three study sites. Backscatter
was identified to be an important variable in the models, but did not necessarily
lead to a significant improvement in the demersal fish distribution models’ accuracy.
Possible reasons for this include: the depth and derivatives were capturing the significant
changes in the habitat, or the acoustic data collected with a high-frequency MBES were
not capturing accurately relevant seafloor characteristics associated with the species
distribution. The improvement in the accuracy of the models for certain species using
data already available is an encouraging result, which can have a direct impact in our
ability to monitor these species.

Keywords: demersal fish, habitat models, multibeam, seafloor backscatter, bathymetry, depth derivatives
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INTRODUCTION

Coral reef fish constitute an essential component of the
continental shelf ecosystem, and a significant element of fisheries
catch around the world (Anderson et al., 2009). Successful
management and conservation of these demersal fishes rely
on our ability to monitor their abundance and distribution.
However, collecting distribution and abundance data is often
expensive and logistically complex (Anderson et al, 2009).
Increasing availability of seafloor mapping technologies, such as
Multibeam echo-sounders (MBES), has led to the opportunity
to exploit the strong relationship demersal fish species exhibit
with seafloor morphology to model their distribution in a cost-
effective manner (Brown et al., 2012).

Multibeam echo-sounders (MBES) are used to map the
seafloor by transmitting acoustic energy toward the seafloor.
The two-way travel time of this energy, to and from the
transducer, combined with the angle of its travel, is used to
determine the depth (bathymetry). The amount of acoustic
energy reflected by the seafloor (backscatter) is used to estimate
specific characteristics of the seafloor, including acoustic hardness
and roughness (Fonseca and Mayer, 2007). The importance of
depth to the assemblage of demersal fish has been well established
(Fitzpatrick et al., 2012; Garcia-Alegre et al., 2014). As well as
the direct influence depth has on demersal fish, it is also seen
as a proxy for a broader set of variables involved in processes
that occur at different levels of the water column which are
usually harder to sample, e.g., temperature and light (Sih et al.,
2017). Depth derivatives (e.g., ruggedness) are used to describe
the complexity of the seafloor which can also influence the
distribution of demersal fish at a variety of scales (Monk et al,,
2011; Costa et al., 2014). Differences in the seafloor backscatter
are used to help discriminate between benthic habitats, which
can be closely related to the distribution of demersal species (e.g.,
sand vs. rock bottom; Monk et al., 2010; Monk et al., 2011).
Therefore, the inclusion of seafloor backscatter data in demersal
fish distribution models is slowly becoming more common.
Multiple descriptors can be derived from the original backscatter
data adding several lines of potentially useful information for
species distribution modeling (Hasan et al., 2012a).

One of the most common products derived from the
raw backscatter data is a mosaic, where the backscattered
energy (measured as the backscatter strength on the dB scale,
and backscatter intensity on the linear scale) received from
different grazing angles is normalized for a certain angle or a
range of angles. This method produces a regular grid usually
with a resolution equal to the bathymetry layer (Fonseca
et al., 2009). However, the relationship between the backscatter
strength/intensity and grazing angle is related, for certain
frequencies, to particular properties of the seafloor (Fonseca and
Mayer, 2007). Normalizing the data to a specific angle dismisses
valuable information contained in the angular response curve
(ARC) (Hamilton and Parnum, 2011). Another approach is to
characterize the seafloor using the Angle vs. Range Analysis
(ARA) (Fonseca et al., 2009). During the ARA analysis, the
backscatter response observed is compared to expected acoustic
response curves based on a mathematical model, the Jackson

Model (Jackson et al., 1986). In particular, the ARA analysis can
be used to estimate the sediment grain size, which has been shown
in some demersal species to be a driver of distribution, or at least
a correlate. Previous studies have focused on testing the relevance
of including the backscatter and its derivatives to model the
distribution of benthic habitat classes (Ierodiaconou et al., 2007;
Brown et al., 2012; Hasan et al., 2012a). Less attention has been
placed in testing the benefit of adding the angular response data in
modeling the distribution of demersal fishes which traditionally
included the mosaic image and derivatives e.g., texture features
(Hasan et al., 2014).

In the present study, terrain variables were used to model
the distribution of fish data derived from Baited Remote
Underwater Stereo-Video (stereo-BRUVS). The overarching aim
was to test the possible improvement of a model’s accuracy
if the backscatter data is included. This was tested in three
areas of the Ningaloo Marine Park (NMP) with different
bathymetry and levels of terrain complexity. Seven species
where chosen as an indicative evaluation of the accuracy
of species distribution models: starry triggerfish (Abalistes
stellatus), Robinson’s seabream (Gymmnocranius grandoculis),
silver toadfish (Lagocephalus sceleratus), red throat emperor
(Lethrinus miniatus), sliteye shark (Loxodon macrorhinus), red
emperor (Lutjanus sebae), and school mackerel (Scomberomorus
queenslandicus). The probability of presence of each of these
species was modeled using depth, depth derivatives and
backscatter (mosaic and ARC) data as explanatory variables.

MATERIALS AND METHODS
Study Area

Ningaloo Reef (NR) is the longest fringing coral reef in Australia,
and is considered a biodiversity hotspot and to be in a good
state of conservation compared with other coral reefs (Gazzani
and Marinova, 2007; Schonberg and Fromont, 2012). The NMP
was designed to protect 90% of these iconic waters (CALM and
MPRA, 2005). A biodiversity analysis of different phyla including
demersal fish, sponges, and soft corals showed the NMP is a
biogeographical overlap zone, where more tropical species occur
in the northern section and both tropical and temperate species
are present in the southern area (Simpson and Waples, 2012).
In the present study, three areas of the NMP were used to
model the distribution of demersal species of fish using depth
derivatives and backscatter information. Mandu in the northern
area, Point Cloates in the central area and Gnaraloo in the
southern zone (Figure 1).

Baited Remote Underwater Stereo-Video

A multidisciplinary project was conducted in NMP between 2006
and 2009 by the Western Australia Marine Science Institution
(WAMSI) and associates (Waples and Hollander, 2008). As
part of this project, many aspects of the NMP were studied,
including the demersal fish composition using Baited Remote
Underwater Stereo-Video (stereo-BRUVS). A total of 656 stereo-
BRUVS were deployed across the areas in Figure 1 in March-May
2009, between depths of 15 and 350 m. The stereo-BRUVS data
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FIGURE 1 | Study site. (A) Mandu in the northern area of the NMP, (B) Point Cloates in the central area, and (C) Gnaraloo in the southern area of the NMP. The
deployment location of the stereo-BRUVS is shown as red stars, and the backscatter mosaics are shown as black and white images.

included 239 deployments in Mandu, 185 in Pt Cloates and
155 in Gnaraloo (Waples and Hollander, 2008; Simpson and
Waples, 2012). A database that included relative abundance,
produced by the Australian Institute of Marine Science (AIMS),
was used in the present study. The commonly used metric,
MaxN, corresponds to the maximum number of individuals of
the same species observed together in one frame at any one time,

during the analyzed period of the video, and has been shown
to provide a conservative estimate of relative abundance (Willis
et al., 2000; Cappo et al,, 2003). Only the first hour of recording
was used for the MaxN estimation analysis, which commences
the moment the cameras touch the bottom. More details on the
collection and analysis of the stereo-BRUVS can be found in
Harvey et al. (2007).
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Depth and Depth Derivatives

Depth and depth derivatives MBES surveys of the study areas
were conducted in 2008 by Geoscience Australia and AIMS,
using a Kongsberg EM3002, operating at 300 kHz. The MBES
bathymetry was downloaded from the Geoscience Australia (GA)
website as a raster with 3 m resolution. Ten depth derivatives
were calculated from the bathymetry as shown in Table 1 (Moore
et al,, 2010, 2011). Some of the derivatives were produced using
the raster package (Hijmans, 2016) of the free software R (R
Development Core Team, 2017) and the rest were produced using
Landserf v2.3 as specify in Table 1. Ecological processes occurring
at different scales can affect the distribution and abundance of
demersal fishes. Therefore, four different windows sizes were
used in the production of the derivatives. The finest scale of
analysis was fixed by the resolution of the MBES data (3 m) and a
3 x 3 window of analysis, while the other three were chosen based
on the spatial dependence of the species. A variogram analysis
was used to identify the maximum distance at which the species
display spatial dependency (the range) (Holmes et al., 2008). For
the species with spatial dependency, the range was above 4 km.
Therefore, the scales were chosen to cover the span between the
finest resolution and below the maximum range of any of the
species using four windows sizes of analysis (number of cells) 3
by 3 (81 m?), 9 by 9 (729 m2), 15 by 15 (2,025 m?), and 21 by 21
(3,969 m?). The largest windows size was selected to be within the
maximum range of the species, but also based on the pixel size of
the ARA-phi layer (60 m). For the fractal dimension calculation,
the smallest windows size allowed in Landserfis 9 by 9. Therefore,
the 3 by 3 window analysis was not used for this variable.

Backscatter Derivatives

The backscatter information was included in the models as
two different layers. The first one was the full-coverage, 3-m
resolution mosaic, downloaded from the GA website. The second
one is an approximation of the sediment phi size estimated using
the ARA (Fonseca et al., 2009), applied to the raw files.

Angle vs. Range Analysis

The relationship between the backscatter strength and the grazing
angle is commonly known as the ARC. ARC is related, for certain
frequencies, to particular properties of the seafloor (Hasan et al.,
2014). Therefore, the ARC can be used to infer characteristics of
the seafloor using the Angle vs. Range Analysis (ARA; Fonseca
et al,, 2009). In this study, we used the FMGT software (version
7.8) to conduct an ARA analysis using the raw MBES backscatter
data. A full description of the method followed during the ARA
analysis in FMGT can be found in Fonseca and Mayer (2007), a
brief description of the method is given here.

The backscatter angular response is first corrected for
radiometric and geometric distortions to locate each ping to its
correct angular position. In the next step, a group of consecutive
pings is stacked in the along-track direction, 30 pings were
stacked. The stack of the pings produces two seafloor patches,
one for the port side and another for the starboard side. The size
of the patch being analyzed is approximately half of the swath of
the MBES system coverage. The stacking of the pings in a patch
has the effect of reducing the resolution of the final layer, but

it is a necessary step to reduce the speckle noise, typical to any
acoustic method. An average ARC calculated for each patch is
then compared to a formal mathematical model which relates the
observed backscatter with seafloor properties in a process called
the ARA-inversion. During the inversion, the model is used to
produce an approximation of the acoustic impedance, roughness
and consequently the mean grain size of the patch under analysis.
An ARA-inversion analysis was conducted for all the patches
in the three studied sites to obtain maps of the distribution of
grain size, with a resolution of 60 m. During the analysis, only
incidence angles between 20 and 60° were included, as the angles
in the near nadir and outer angle regions tend to be noisy with
less power of discrimination between different types of substrate
(Hasan et al., 2012b).

As part of the WAMSI project, 290 sediment samples
were collected using a Van-Veen grab sampler for surface
and subsurface material between 2007 and 2006 (Colquhoun
et al, 2007). The grain size estimated for this ground-truth
data was compared with sediment phi size estimated using the
ARA analysis, correlation and regression was used to test the
relationship between them.

Species Distribution Models

The environmental variables including depth, depth derivatives,
and the backscatter data were used as explanatory variables
to explain the probability of presence of A. stellatus, G.
grandoculis, L. sceleratus, L. miniatus, L. macrorhinus, L. sebae,
and S. queenslandicus. The species were selected based on
a minimum 25 presence in each of the sampled areas. All
the species included in the present study are carnivores with
different degrees of generalist feeding behavior using a variety
of benthic habitats (Table 2). Lutjanids and lethirinids including
G. grandoculis, L. miniatus, and L. sebae have a strong association
to hard bottom or substrate with a certain degree of vertical
relief (Parrish, 1987). L. sceleratus and A. stellatus, on the other
hand, have a preference for sandy bottoms (Randall, 1967;
Rousou et al., 2014). Seafloor backscatter can help to differentiate
hard from sandy bottoms; therefore, this study has the hypothesis
that the inclusion of seafloor backscatter will improve the
accuracy of the models for the lutjanids and lethirinids species.
For S. queenslandicus and L. macrorhinus, water column variables
may be more important in explaining their distribution (Collette
and Nauen, 1983; Gutteridge et al., 2011), and it is expected that
the inclusion of seafloor backscatter data to have a marginal effect
on their models.

Random Forest (RF) is a robust statistical method with
many advantages to solving ecological problems, including high
classification accuracy and particularly high capacity to model
complex interactions without statistical pre-assumptions like
normality (Breiman, 2001). The algorithm begins by selecting
a bootstrap sample from the data, approximately 63% of the
original observations are used at least once in the bootstrap
sample. The rest of the observations not selected for the bootstrap
sample are called out-of-bag (OOB) observations. RF fits a tree to
each bootstrap sample, but in each node, only a subsample of the
variables is available for the binary partitioning (one-third of the
total number of variables in the case of regression and the square
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TABLE 1 | Depth derivatives produced from bathymetry. Aspect (orientation of the slope) was divided in two variables using trigonometric transformations.

Variable Abbreviation Description Software References
Slope Slope Rate of change in elevation over the analysis windows Landserf v2.3 Wood, 1996
express in degrees
Aspect Northness NS Cosine of aspect (e.g., slopes facing north (NS = 1), facing Landserf v2.3 Wood, 1996
south (NS =-1)
Eastness WE Sine of aspect (e.g., slopes facing east (WE = 1), or west Landserf v2.3 Wood, 1996
(WE =-1)
Curvature Profile Profc Curvature of a line formed by intersecting the vertical plane Landserf v2.3 Wood, 1996
oriented in the direction of the steepest slope with the
terrain surface
Plan Planc Curvature of a line formed by intersecting the horizontal Landserf v2.3 Wood, 1996
plane oriented in the direction of the steepest slope with the
terrain surface
Mean Meanc Mean curvature in any plane Landserf v2.3 Wood, 1996
Fractal dimension Fractal Indicates how surface roughness changes over space with Landserf v2.3 Wood, 1996
a minimum value of 2.0 indicating smooth, scale invariant
behavior and a theoretical maximum of 3.0 indicating a
space filling rough surface
Standard deviation of depth SD Standard deviation of depth R raster package Holmes et al., 2008
Benthic position index BTI Measure of the position of a particular pixel concerning the R raster package Wilson et al., 2007
average depth of its surrounding neighbors. Positive values
showing depth above the average (ridges), and negative
values for pixels below the average (though).
Terrain ruggedness index TRI Men of the absolute difference between the value of a cell R raster package Wilson et al., 2007
and its neighboring cells
Roughness Rough Difference between the maximum and the minimum depth R raster package Wilson et al., 2007

of a cell and its neighboring cells

TABLE 2 | Habitat and feeding preference of the species included in the study.

Species Habitat

Feeding preferences References

Gymnocranius grandoculis
Lethrinus miniatus

Lutjanus sebae

Scomberomorus queenslandicus
Lagocephalus sceleratus
Loxodon macrorhinus Inshore habitats with clear waters

Abalistes stellatus

Hard substrata or substrata having some vertical relief

Pelagic in bays and around islands and coastal reefs
Sandy, rocky substrates and seagrass meadows

Sand, sponge, and weed areas on deep slopes.

Benthic invertebrates and small fishes Parrish, 1987

Collette and Nauen, 1983
Rousou et al., 2014
Gutteridge et al., 2011
Randall, 1967

Neritic species

Benthic invertebrates and small fishes
Benthic invertebrates and small fishes
Feeds on benthic animals

root in the case of classification). All the trees are fully grown and
used to predict the OOB observations. The predicted value for
each observation is based on the average value predicted by the
trees (Breiman, 2001). In this study, we used RF classification to
model the presence/absence of the nine selected species and RF
regression for the richness of species.

For the RF classification, the sensitivity and specificity were
evaluated using the Area Under the Curve (AUC) of the Receiver
Operator Curve. The AUC varies between 0 and 1. Values higher
than 0.9 are considered outstanding whereas values between
0.9 and 0.7 indicate good performance. Values lower than 0.7
indicate poor prediction and values lower than 0.5 indicate that
the model is not better than a random classification (Hosmer
etal., 2013). The performance of the models was also tested using
the F1, and Kappa statistics. The F1 is the harmonic mean of
precision and sensitivity while the Kappa statistic (K) measures
the level of chance-corrected agreement between the observed

and predicted classes. According to Landis and Koch (1977) the
level of agreement measured with K can be classified as K < 0.0
poor, 0 < K < 0.2 slight, 0.21 < K < 0.4 fair, 0.41 < K < 0.6
moderate, 0.61 < K < 0.8 substantial, K > 0.8 almost perfect. The
effect of including the backscatter data as explanatory variables in
the accuracy of the models was examined using two scenarios,
the first one including depth and depth derivatives (DV) and in
the second one the two backscatter variables were added (DVBS).
A fivefold cross-validation procedure was used, for each fold 65
percent of the data was used to train the model and the rest to test
it, an AUC, F1, and K was obtained for each fold and the mean
and standard error of the statistics is reported. The difference
in the mean AUC, F1, and K for the DV and DVBS scenarios
was tested using a t-test in R. The mean importance of the co-
variables was also calculated. For the RF regression the accuracy
was measured by the mean square error (MSE), and also the
percentage of variance explained by the model is reported.

Frontiers in Marine Science | www.frontiersin.org

October 2021 | Volume 8 | Article 688815


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Landero Figueroa et al.

Fish Models Adding Seafloor Backscatter

RESULTS

Angle vs. Range Analysis

A significant correlation was found in the Mandu area between
the phi sediment size estimated using the backscatter data in the
ARA analysis and the ground-truth sediment samples grain size
(r=0.59,p < 0.001, r* = 0.25, p < 0.001). A significant correlation
was also found in the Pt Cloates area between the phi sediment
size estimated using the backscatter data in the ARA analysis and
the ground-truth sediment samples grain size (r = 0.47, p = 0.003,
2 =0.22, p < 0.001). The relationship between the grab grain size
and the ARA-phi for the full data combined was also significant
(p < 0.001, Figure 2). No significant correlation was found for
the Gnaraloo site.

Species Distribution Models

The performance of the models was species- and area-dependent
with some species being better modeled in some areas than
others and all species models having acceptable levels of
accuracy (mean AUC > 0.7) in at least one of the studied
sites (Figure 3A). The effect of adding the backscatter data
(DVBS) also varied by species and study site with no consistent
improvement in the accuracy of the models. The Mandu area
had fewer models of species with acceptable levels of accuracy
(mean AUC > 0.7) while Pt Cloates had only one species
with model mean AUC consistently < 0.7. A similar pattern
was observed in terms of K with lower values K < 0.2
in the Mandu area and higher mean K-values in the Pt
Cloates area K > 0.4 considered as moderate performance
(Figure 3B). The majority of the species had relatively high F1
mean > 0.7 (Figure 3C).

For G. grandoculis, the inclusion of the seafloor backscatter
had a positive effect on the performance of the models increasing
the mean AUC, K and F1 in all the three study sites. The
increase on the mean value was significant for the K statistic
in the Mandu and Pt Cloates area, and for the FI in the Pt
Cloates area. The significant increase of the F1 in the Pt Cloates
area meant the accuracy of the resulting model was F1 > 0.7.
The significant increase of the mean K also meant the model
including the seafloor backscatter had an accuracy considered
moderate (K > 0.4). Although the increase of the mean AUC
in the G. grandoculis models was not significant, the mean AUC
(£ se) for Pt Cloates area was > 0.7 after the inclusion of the
seafloor backscatter data (Figure 3A).

The DVBS scenario had a better performance in the models
of L. miniatus, and S. queensladicus in at least two of the study
sites, with different levels of improvement. The inclusion of
DVBS resulted in a significant increase of the mean AUC for
L. miniatus in the Pt Cloates area (Figure 3A) and a significant
increase in the mean K in the S. queensladicus model in the
Gnaraloo area (Figure 3B). A significant increase in the mean
AUC was observed for the L. sceleratus model (Figure 3A) in
the Mandu area, and a significant increase of the mean K in the
Gnaraloo area (Figure 3B), when the seafloor backscatter was
included; however, the mean AUC of the model in the Mandu
area remained < 0.7.
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FIGURE 2 | Linear regression between the grain size calculated with the ARA
analysis and the phi size calculated from the ground-truth samples.

Richness

The RF for the richness of demersal species explained different
level of variance in the three study sites (Table 3). The model
with the lowest level of mean explained variance was at Gnaraloo,
although, the DVBS scenario produced a significant increase of
explained variance by 5% (P < 0.05). In the Mandu area, a
significant portion of variance was explained by the models, with
more than 25% of mean explained variance. However, no change
in explained variance was observed in the DVBS scenario. The
richness of demersal fish species was particularly well modeled
in the Pt Cloates area with variance explained of greater than
40%. The importance of the backscatter data was evident with an
increase of the explained variance in the DVBS scenario, although
the increase was not significant (Table 3).

Variables Importance in the Distribution Models

A summary of the most important variables explaining the
distribution of the species is shown in Table 4. Depth and seafloor
backscatter were the most important variables in the construction
of the models for the majority of the species in the three study
sites (Table 4). Depth was key for the majority of the species
in the three study areas, with some exceptions. Variables related
to terrain variability (including roughness, TRI, and standard
deviation of depth) were important for many of the species, in
particular at a broad-scale (15-21 neighbors). For the models of
L. sceleratus, L. macrorhinus, and S. queenlandicus, for example,
the terrain variability variables had higher importance than depth
in the Pt Cloates area.

The seafloor backscatter, and the ARA-phi layer, were among
the three most important variables in the models of six of the
seven studied species in at least one of the study areas. For
G. grandoculis, the ARA-phi was the second most important
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FIGURE 3 | (A) Mean AUC, (B) Kappa, and (C) F1, and standard error of the Random Forest distribution models for A. stellatus, G. grandoculis, L. sceleratus,

L. miniatus, L. macrorhinus, L. sebae, and S. queenslandicus in the three study sites of the Ningaloo Marine Park. The depth and depth derivative scenario (DV), and
the depth, depth derivatives plus the backscatter data (DVBS) scenario are shown. Red dotted horizontal lines in (A,C) show AUC = 0.7 and F1 = 0.7 respectively,
and for (B) the orange dotted lines indicate K = 0.2 and K = 0.4, while the red ones indicate K = 0.6 and K = 0.8. * denotes significance at the 0.05 level.

variable in the models of the three study sites, confirming its
importance for this species as shown by higher mean AUC,
F1 and K of the DVBS models compared to the DV scenario.
For L. sceleratus DVBS models in both the Mandu and Gnaraloo
areas the ARA-phi and the backscatter mosaic ranked among
the three most important variables in the models. The ARA-
phi variable was identified as one of the three most important

variables in the models of L. miniatus, S. queenslandicus, in
both Pt Cloates and Gnaraloo areas. For the L. macrorhinus and
L. sebae model, the ARA-Phi was important in the Gnaraloo and
Pt Cloates areas, respectively.

Depth was the most important variable in the construction of
the model for the richness of species in the Mandu area, in both
DV and DVBS scenarios. For the Pt Cloates area, TRI, followed
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TABLE 3 | Mean percentage of variance explained by the Random Forest for the
total richness of species in the three study sites for both the depth and depth
derivatives (DV, BT + DV) and depth, depth derivatives and seafloor backscatter
data (DVBS, BT + DV + BS) scenarios.

Variable Scenario Variance explained
Mandu Pt Cloates Gnaraloo
Richness DV 26% 42% 2%
DVBS 26% 46% 7%

** denotes significance at the 0.01 level.

by the profile curvature were the most important variables
explaining the richness of species. The ARA-phi layer was also
considered important when included in the model for Pt Cloates,
although with a lower ranking. For the Gnaraloo area, slope,
profile curvature and depth were the most important variables in
the DV model, while for the DVBS model, both the ARA-phi layer
and backscatter mosaic were second and third in importance.

DISCUSSION

The accuracy of the species distribution models based on depth
and depth derivatives varied among species and study sites.
Higher accuracies were observed, in general, for the species in
the Pt Cloates area, which is considered to have a complex
seafloor. The terrain variables were less successful in modeling
the presence of the species in the Mandu area. The addition of
the seafloor backscatter in the species distribution models did
not necessarily increase the model’s accuracy in a significant
manner, although, in the majority of the cases the ARA-phi
layer was ranked as an important variable when included in
the models. The ARA-phi layer was particularly important
in the model of G. grandoculis in the three study sites, and
L. miniatus in two areas, increasing the accuracy of the models.
A significant portion of the species richness variation was
explained using the terrain variables, and the addition of the
seafloor backscatter improved the accuracy of the model in
the Gnaraloo area.

Backscatter Derivatives

A significant relationship was found between the phi size
estimated with the ARA analysis and the grain sediment size
measured from the grab samples. However, the ARA-phi analysis
did not identify coarse gravel sediments (cobbles) with phi values
below —3. Previous studies have suggested the inclusion of
backscatter, and in particular, the use of the angular response of
the backscatter can add to the discrimination between benthic
habitats (Hasan et al., 2014). However, the seafloor backscatter
intensity can be affected in different ways by the frequency of
the echo-sounder, sediment grain size, nature, and magnitude of
seabed roughness, and volume scattering by subsurface scatters
(Ferrini and Flood, 2006). For example, previous studies have
shown that the use of high-frequency MBES (e.g., 300 kHz)
can lead to misclassification of coarse sediments when the
grain size is larger than the acoustic wavelength of the sonar.
In such cases, there is a decrease in the backscatter values

for sediments of increasing grain size (i.e, A = -2.3 ¢, equal
to 5 mm; Eleftherakis etal, 2014). In this study, something
similar was observed with a significant correlation between
grain size and the acoustic backscatter (ARA-phi), but low
agreement between the two for large grain sizes. Also, scattering
register by a high-frequency echo-sounder would be related to
seabed surface roughness while scattering by particles under
the sediment-water interface will be relatively more important
at lower frequencies (Jackson et al, 1986). A previous study
compared a high (200 kHz) and low (50 kHz) frequency echo-
sounders and its ability to discriminate sediment grain size and
found the higher frequency system failed to differentiate between
sediment grain sizes even between mud and sand (Freitas et al.,
2008). The importance of the different variables influencing the
backscatter of the seafloor can also vary between sampling sites
(Ferrini and Flood, 2006). Therefore the seafloor backscatter
on its own has limitations to predict seabed characteristics
(Ferrini and Flood, 2006).

A drawback in the approach adopted in this study was using
a constant number of stack pings during the ARA analysis, as
the area sampled would then depend on the water depth. As a
result, the sampling areas in the shallowest depths were around
three times smaller than in the deepest zones. This can produce
a misinterpretation of the sediment class in deeper areas, in
particular, in areas of transition between two different classes.
However, the vast majority of stereo-BRUVs deployments were
not located in areas of transition between different ARA-phi
classes reducing the risk of mixing sediment classes. Hence, it
is unlikely that the different resolutions of the ARA-phi size
layer had a significant effect on the species distribution models.
The high ranking of the ARA-phi in the models of species
distribution, reinforce the idea that the resolution of the variable
was appropriate.

Species Distribution Models

For the majority of species, depth was a primary variable in
explaining their distribution across the three study sites and
for both DV and DVBS scenarios. Depth is a common variable
influencing the distribution of species in coral reef areas, as
it is related to the effects of light availability on community
composition and function (Hill et al., 2014).

The importance of the depth derivatives at different window
sizes varied among species and study sites. For the most abundant
species, such as A. stellatus, L. sceleratus, and G. grandoculis,
broader-scale variables (15 x 15 and 21 x 21 windows size)
of TRI, roughness, slope and fractal dimension were considered
key variables in explaining their distribution. These results agree
with previous studies, showing that broad-scale variables are
more relevant for species with higher mobility and larger home
ranges that use a variety of benthic habitats (Franklin et al., 2009;
Tamburello et al., 2015). For other species, like L. macrorhinus,
which had the lowest prevalence in the study, the fine-scale
variables were more important in two of the study areas,
indicating a higher level of specialization. For the remaining
species, a mix of fine and broad-scale variables was important in
the construction of the distribution models.

The ARA-phi layer which was calculated with a broad
resolution of 60 m, was found to be one of the three most
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TABLE 4 | Summary of variable importance in the construction of the distribution models for the species included in the study.

Species Importance Area/scenario
Mandu Pt Cloates Gnaraloo
DV DVBS DV DVBS DV DVBS

A. stellatus 1 Depth Depth Depth Depth NS9 NS9

2 Rough21 Rough21 TRI21 TRI21 Depth Depth

3 Slope15 Slope15 Slope21 Slope21 BPI9 Profc15
G. grandoculis 1 Depth Depth Depth Depth Depth Depth

2 Rough9 ARA_Phi Slope15 ARA_Phi Meanc21 ARA_Phi

3 BPI3 TRI15 SD15 BS Fractal21 Profc15
L. sceleratus 1 Depth ARA _Phi TRI21 TRI21 Depth Depth

2 NS3 Depth SD21 SD21 WE21 ARA_Phi

3 Planc9 BS TRI15 TRI15 NS21 WE21
L. miniatus 1 Rough15 Rough15 Depth ARA _Phi Depth Depth

2 Profc15 Profc15 SD9 SD9 TRI9 BS

3 Depth Rough21 Rough9 Depth Profc3 TRI9
L. macrorhinus 1 Depth Depth TRI9 TRI9 TRI15 TRI15

2 Rough3 Rough3 TRI15 TRI15 TRI21 TRI21

3 TRI21 TRI3 SD9 SD9 SD3 ARA_Phi
L. sebae 1 Depth Depth Depth Depth Slope9 Slope9

2 Profc21 Profc21 Rough21 Rough21 Rough21 Rough21

3 SD3 Rough3 SD21 ARA_Phi Depth Depth
S. queenslandicus 1 Fractal9 Fractal9 Planc15 ARA_Phi Depth Depth

2 Fractal21 Fractal21 Profc15 Profc15 WE21 ARA_Phi

3 Fractal15 Depth Profc21 Planc15 NS21 WE21
Richness 1 Depth Depth TRI15 TRI15 Slope9 Depth

2 Slope15 Slope15 Profc21 Profc21 Profc9 BS

3 SD9 Slope9 SD15 ARA_Phi Depth ARA_Phi

Only the three variables with highest ranking of importance are included for each species and each scenario. The scenario of depth and derivatives (DV) and depth, depth

derivatives and backscatter data (DVBS) scenarios are shown.

important variables in the species models. This reaffirms the
importance of broad-scale variables for roaming species with
a wide niche (Monk et al., 2011; Moore et al., 2011). The
backscatter mosaic at 3 m resolution was often included as a
key variable, though to a lesser extent. This study investigated
the hypothesis that the addition of the seafloor backscatter
would increase the accuracy of the models, in particular, for
G. grandoculis, L. miniatus, L. sebae, L. sceleratus, and A. stellatus
models. Seafloor backscatter data were consistently important in
the models of G. grandoculis, increasing the model’s accuracy
for the three study sites. G. grandoculis is a species that inhabits
rocky bottoms (Dorenbosch et al., 2005), which can explain the
importance of backscatter in the construction of the models
as this variable can be used to differentiate between soft/hard
bottoms (Kloser et al., 2010). L. miniatus is associated with sand
around coral reefs areas where it feeds on benthic invertebrates,
which could explain the importance of the seafloor backscatter in
the models of two of the study sites (Carpenter and Niem, 1998).
However, results showed only an increase of 2-5% in the model
mean AUC for G. grandoculis, L. miniatus and L. sceleratus, in at
least two of the study sites, and similar incremental increases in
F1 and K. Also, the increase of the mean AUC was only significant
for L. sceleratus and L. miniatus, therefore the improvement can

only be seen as indicative. L. miniatus is often more prevalent
in shallow waters, such as on the Great Barrier Reef where it
was found in 12-18 m of water (Newman and Williams, 2001),
which may explain the lack of importance in the model accuracy
for this species in the Mandu area. Depth might play a more
important role at Mandu, where rapid changes in bathymetry
are observed (Brooke et al., 2009). L. sceleratus, inhabits offshore
sandy bottoms in their early life stages with a habitat shift to
deeper or rocky grounds for the largest individuals (Fitzpatrick
et al., 2012). The inclusion of the ARA layer may, therefore,
add useful information to differentiate between sandy and rocky
habitats. For L. sebae, the inclusion of the seafloor backscatter had
a positive effect on the accuracy of the models for the Pt Cloates
while variables measuring the rugosity of the seafloor were
particularly important for this species in the three study sites.
This species is associated with exposed reef slope (Fitzpatrick
et al., 2012) which could explain the importance of variables
related to the complexity of the seafloor as coral reef areas have,
in general, higher levels of terrain complexity and rugosity.
Depth and backscatter were not considered as important
in explaining the distribution of some species. For example,
L. macrohinus is a small species of shark whose distribution
was more related to variables measuring the rugosity of the
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seafloor. Another species, S. queenslandicus, is an epipelagic
neritic schooling species (Collette and Nauen, 1983; Kailola et al.,
1993), which might explain the poor performance of the models
for this species in two of the study sites, as variables of the terrain
might not be related to its distribution.

Previous studies have found the addition of backscatter
metrics can be important in the construction of models of
demersal fish distribution (Monk et al, 2011) or suggested
further studies were needed to assess the relationship between
seafloor backscatter and the assemblage of demersal fish (Schultz
et al., 2014). The results of this study showed that the seafloor
backscatter was an important variable in the models of demersal
fish distribution. However, the inclusion of this variable did not
necessarily lead to an improvement in the accuracy of the models.
Possible reasons for that may be that the depth and derivatives
were capturing the significant changes in the habitat, or that the
substrate was not a significant driver for the species distribution.

Another factor is the uncertainty associated with the use of
seafloor backscatter to approximate specific characteristics of the
seafloor, including roughness and hardness, but also sediment
grain size. The amount of energy reflected by the seafloor is
affected by the frequency of the MBES, and although higher
frequencies are more affected by seabed roughness, they have less
penetration in the sediment. For example, a 100 kHz frequency
in fine sediment is expected to penetrate between 0.1-1 m
(Fonseca et al., 2002), while a 12 kHz can penetrate up to 12
m in muddy deposits (Schneider von Deimling et al., 2013).
The level of penetration in the sediments of high frequencies is
also highly sensitive to small changes in sediment properties, in
particular, between fine sediments (Gaida et al., 2018). Higher
frequencies are also less effective to map coarse sediment larger
than the wavelength of the MBES, which will have a lower
level of acoustic reflectance. Therefore, the high frequency of
the MBES (300 kHz) could limit the power of discrimination
between benthic habitats (Boscoianu et al., 2008; Schneider von
Deimling et al., 2013), that might be relevant for habitat selection
of demersal fish. The use of multi-frequencies could increase our
ability to discriminate between seabed environments (Feldens
et al., 2018; Gaida et al., 2020). Previous studies have shown the
use of multiple frequencies, in particular lower frequencies (e.g.,
100 kHz) can help differentiate between soft sediments (Costa,
2019). However, the possible improvement of benthic habitat
discrimination will also be related to the characteristics of the
study site, as shown by Gaida et al. (2018).

The analysis of the 656 stereo-BRUVS showed that only
around 3% of the species were moderately prevalent, occurring
in > 20% of the sampling point (Simpson and Waples, 2012).
In the present study, we included some of these species, those
with a minimum of 25 occurrences on each of the three sites in
an effort to compare the model performance in different areas
of the NMP. Therefore, they all presented a certain degree of
generalist behavior which is related to less specialized habitat
requirements, and as a result it is more difficult to produce well
performing models of the species distributions (Wilson et al.,
2008). Finally, the combination of stereo-BRUVS with acoustic
data in itself includes a certain degree of uncertainty, for example,
by the use of bait which can attract fish from the areas around

the deployment. The possible impact of the incorrect location
of presence records in the models of species distribution will
be less likely for species for which depth and ARA-phi variables
were important, considering that both variables have a high local
spatial autocorrelation (in an area of 500 m around the stereo-
BRUVs deployment) (Naimi et al., 2014). Future studies using
more than one frequency are needed to better test the benefit of
using the seafloor backscatter in habitat distribution models of
species of demersal fish, in particular, for non-generalist species.

CONCLUSION

Demersal species were well modeled with the depth and depth
derivatives in the majority of the species analyzed, in at least one
of the study sites. The addition of the backscatter data increased
the accuracy of the models for some species, in particular,
a consistent positive effect was observed for G. grandoculis.
Depth derivatives can integrate some of the seafloor roughness
information which may explain the limited benefit of adding
the backscatter data in some of the species distribution models.
Additional information related to the hardness/roughness not
included in the depth derivatives were important for some
species for which the inclusion of the backscatter data had a
positive effect.

For some species the mosaic backscatter layer appeared as an
important variable in explaining their distribution. In general,
however, the ARA-layer was more important for the variables
in the construction of the models. This is an encouraging result
that demonstrates that the use of novel derivatives which take
advantage of the angular response can produce models with
higher accuracies. Although the increase in the accuracy of the
models was not significant for the majority of the species, it can
be considered an indicative result, and more efforts are needed to
confirm this pattern.
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Seismic oceanography generally makes use of multi-channel seismic reflection data
sourced by air gun arrays and long hydrophone streamers to image oceanographic
water masses and processes—often piggybacking on surveys that target deeper
geological features below the seafloor. However, due to the acquisition methods
employed, shallow (upper 200 m or so) regions of the ocean can be poorly imaged
with this technique, and resolution is often lower than desirable for imaging fine-
structure within the water column. In 2012, we collected a set of higher-resolution
seismic lines off the southeast coast of New Zealand, with a generator-injector
airgun source and hydrophone streamer configuration designed to improve images
of shallower water masses and their boundaries. The seismic lines were acquired
with coincident expendable bathythermograph deployments which provides direct
ties between physical oceanographic data and seismic data, allowing for definitive
identification of the Subtropical Front and associated water masses in the subsurface.
Repeat acquisition along the same transect shows significant temporal variability on the
scale of hours, illustrating the highly dynamic nature of this important ocean boundary.
Comparisons to conventional low-frequency seismic data in the same location show the
value of high-resolution acquisition methods in imaging the near-surface of the ocean
and allowing subsurface features to be linked to their expressions at the surface.

Keywords: seismic oceanography, generator-injector airgun source, time-lapse imaging, water column imaging,
Subtropical water, Subantarctic water, Subtropical Front

INTRODUCTION

The Subtropical Front (STF) is a global ocean boundary separating warm, salty Subtropical Water
(STW) from relatively cool, fresh Subantarctic Water (SAW) (e.g., Orsi et al., 1995). This global
front primarily lies between 30 and 45°S, but in the vicinity of New Zealand (Figure 1) it is
deflected further south by the continental landmass (e.g., Heath, 1981; Smith et al., 2013). Along
the southeast coast of the South Island, the front approximately follows the continental shelf break,
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FIGURE 1 | Regional oceanographic setting of the South Island of New Zealand. 1,000 and 4,000 m bathymetric contours are shown and major bathymetric
features are labeled. Sea surface temperature (SST) dataset is a composite reanalysis of a number of SST products for 2012/01/21 NASA's JPL's GHRSST MUR
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just 20-40 km offshore, where it is locally known as the Southland
Front (Burling, 1961), and is associated with the northward-
flowing Southland Current (Heath, 1972; Sutton, 2003). Burling
(1961) described the Southland Front as being characterized by
steeply sloping isotherms and isohalines at 8-9°C and 34.5-
34.6 at depths > 70 m. At this boundary, mixing processes are
important for the transfer of heat, salt, and nutrients between
the two water masses (e.g., Chiswell, 2001). The Subantarctic
Water of the Southern Ocean south of the Subtropical Front
represents a significant potential carbon sink (e.g., Currie
and Hunter, 1998); this involvement in the global carbon
cycle highlights the importance of studying temporal changes
in oceanographic properties including circulation and ocean-
atmosphere interaction in this region (e.g., Chiswell et al., 2015).

Previous studies have examined the variability of the
Subtropical Front in the study area both in terms of structure
and location; these have included CTD studies such as Jillett
(1969) and Jones et al. (2013), which found strong seasonal
variations in sea-surface temperature, with the highest values
inshore in late summer (February) and the lowest values offshore
in late winter (August). An important finding of Jillett (1969)
was that warming and/or dilution of nearshore Neritic Water
can lower its density such that it extends seaward over STW
that occupies the shelf; similarly, warming of the offshore SAW,
particularly in summer, can cause it to move shoreward resulting
in the STW becoming hidden beneath the surface. This has also
been observed in subsequent CTD studies in this region (e.g.,
Currie and Hunter, 1999); Currie et al. (2011) suggest that this
phenomenon causes blurring of the STF at the surface. Studies
of the front using satellite sea-surface temperature data suggest
that the mean surface position of the STF is strongly controlled
by bathymetry; it is located consistently just beyond the shelf
break near the 500 m isobath (Shaw and Vennell, 2001; Hopkins

etal., 2010), and seasonally appears overall to move shoreward in
summer and seaward in winter.

Since the pioneering study of Holbrook et al. (2003),
seismic oceanography has developed into a significant tool for
investigating oceanographic features. The technique represents
an adaptation of conventional marine reflection seismology;
acoustic waves are generated by a source towed just below
the sea surface, travel through the water column, reflect off
contrasts in acoustic impedance (controlled by thermohaline
fine-structure), and are then recorded by a near-surface array
of hydrophone sensors towed behind the ship. Processing of
the recorded data produces cross-sectional images of the water-
column. Seismic oceanography allows for the mapping of features
over large areas at a horizontal resolution rarely achieved with
conventional oceanographic methods (meters to tens of meters).
It can also provide information about the three-dimensionality
of structures as well as temporal changes, on a scale ranging
from hours to seasons and potentially to years. The method has
been applied to the examination of fronts, water masses, currents,
eddies, thermohaline intrusions and staircases, internal waves,
and mixing processes (e.g., Biescas et al., 2008; Sheen et al., 2009;
Blacic and Holbrook, 2010; Pinheiro et al., 2010; Tang et al,
2013; Tang et al., 2014; Buffett et al., 2017; Gorman et al., 2018;
Ruddick, 2018).

In this study, high-frequency multi-channel seismic data were
acquired along with coincident oceanographic measurements
in the form of expendable bathythermographs (XBTs). The
goals of the acquisition were (1) to produce higher-frequency
seismic images for comparison with existing legacy seismic data
(industrial seismic data acquired for other purposes and lacking
coincident oceanographic data), particularly in the shallow part
of the water column, (2) to use coincident oceanographic data
to “ground-truth” reflections seen in this seismic data set as well
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as in legacy seismic data where similar features are seen, (3) to
characterize the structure of the STF at the surface and in the
subsurface at high horizontal resolution, (4) to examine short
to medium term time-lapse changes, determining if reflective
features observed are stable or changing over the time-scale of the
survey (cf. Buffett et al., 2012; Gunn et al., 2020), and (5) to test an
affordable research-scale set-up that could be used for dedicated
seismic oceanography cruises. These goals address some of the
issues raised by Ruddick (2018) that may lead to better acceptance
and uptake of the seismic oceanography technique.

DATA AND METHODS

Seismic and oceanographic data were acquired along two
crossing transects referred to here as transect CB and the
Munida Transect (Figure 2). Transect CB follows the course
of public-domain seismic line CB82-94, acquired during a 1982
petroleum exploration survey in the Canterbury Basin (Western
Geophysical Company/Shell BP Todd Canterbury Services Ltd,
1982). The Munida Time-Series Transect, established in 1998,
has a history of repeated oceanographic records, including
temperature and salinity profiling (e.g., Currie et al, 2011). In
January 2012 aboard RV Kaharoa, two full passes (KAH1201-
1 on 20 Jan. and KAH1201-3 on 21 Jan.) and one partial pass
(KAH1201-2 on 20 Jan.) of the Munida Transect were undertaken
to collect coincident seismic and oceanographic data. One near-
complete pass along transect CB was acquired (KAH1201-5 on
Jan. 21); the line was aborted slightly early and further planned
data acquisition was canceled due to adverse weather conditions.
Supplementary Tables 1, 2 contain summary information for
the data acquisition. Figure 2 also shows the same SST data
seen in Figure 1, that is a composite reanalysis of a number
of SST products for 2012/01/21 (JPL MUR Measures Project,
2015).

Seismic Data

Seismic line CB82-94 (Western Geophysical Company/Shell BP
Todd Canterbury Services Ltd, 1982) was acquired in December
1982 aboard MV Western Odyssey using an array of 18 airguns
with a total volume of 1220 in® (20 L) at a depth of 6 m and a 120-
channel 3,000 m long hydrophone array (25 m group spacing)
towed at a depth of 11 m, with a near source-receiver offset of
168 m. The shot spacing was also 25 m resulting in a nominal
fold of 60. A sample rate of 4 ms was used, with a record length
of 6 s. Locational positioning was undertaken using microwave
ranging to land-based stations.

The KAH1201 seismic data were acquired in January 2012
using a Sodera 45/105 in® (0.74/1.72 L) GI (Generator-Injector)
airgun operating at a depth of 5 m. A Geometrics GeoEel Digital
Streamer was used, consisting of three active segments each
100 m long, with a total of 24 groups spaced at 12.5 m. Each group
included 16 equally spaced hydrophone elements. The streamer
was flown at a depth of 2.5 m, except on line KAH1201-2, where it
was set to 4 m during bad weather. The depth of the streamer was
controlled by a 5011 Digicourse bird at the head of each the three
active segments. The near source-receiver offset was 30 m and

the crossline offset between source and streamer was 8.2 m. The
source was fired every 10.8 s with the vessel traveling at 4.5 kts,
giving an average shot spacing of 25 m. Nominal fold is therefore
6. A sample rate of 1 ms was used, with a record length of 5 s.
Satellite navigation was used for locational positioning.

The seismic data were processed using the GLOBE Claritas
software package (Ravens, 2001). Details of the processing are
described by Cooper (2021). For the KAH1201 data, the flow
included 10/20 Hz high-pass filtering of the shot records and
the application of a direct arrival filter by way of 5-trace
median subtraction filtering after linear moveout at 1,498 m/s.
The data were sorted into common-midpoint gathers, binned
using the receiver group spacing (twice the natural midpoint
spacing) to increase the nominal fold of the data from 6
to 12. Gain correction was applied using an automatic gain
control (AGC) operator of 50 ms. Normal moveout correction
was performed using velocities derived from the XBT data.
Although “hand-picked” stacking velocities are often preferred in
seismic processing (e.g., Fortin and Holbrook, 2009), the small
source-receiver offsets of KAH1201 make the data unsuitable for
semblance analysis, and relatively insensitive to small changes
in NMO velocity, as discussed in more detail by Cooper (2021).
Before stacking, a 15/30/150/180 Hz bandpass filter was applied,
and channels 1, 9, and 17 were removed due to excess noise,
possibly caused by the depth-control devices at the start of each of
the three streamer segments. After stacking, a 25/40/150/180 Hz
bandpass filter was applied and the data were muted below the
seafloor. A poststack deconvolution was then applied, in the
form of a zero-phase spectral whitening with a 5 Hz smoothing
operator in the frequency domain. The data were migrated using
a finite-difference time-domain algorithm with interval velocities
calculated from the XBTs. A post-migration coherency filter was
applied to remove random noise, consisting of a 5-trace weighted
summation in the f-x domain. The 25/40/150/180 Hz bandpass
filter and the seafloor mute were reapplied to remove noise
created by the migration. A 45 ms taper was applied at the top of
the section to remove migration artifacts created in the shallowest
portion of the section where there is no signal due to the near
offset. Finally, a static shift of 6 ms for line KAH1201-2 and 5 ms
for the other lines was applied to account for the source and
receiver depths.

Profile CB82-94 was processed using a similar flow. However,
for these lower frequency data an AGC operator length of 100 ms
was used and the bandpass filter was 2/15/100/120 Hz. The
greater number of channels meant that a longer 11-trace filter
was optimal for the direct arrival and coherency filtering. CDP
binning was assigned using the same geometrical constraints
and 12.5 m spacing as the KAH1201-5 profile to facilitate direct
comparisons of the two datasets. Velocities used in the CB82-94
processing were determined using interactive semblance-based
NMO velocity analysis every 50 CDPs.

Oceanographic Data

Oceanographic data were collected in the form of expendable
bathythermographs (XBTs), providing measurements of
temperature with depth at select locations along the seismic lines.
Two types of XBTs were used: 40 Sippican Deep Blue XBTs for
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FIGURE 2 | Location of the Munida (MUN) and Canterbury Basin (CB) transects. Seismic lines KAH1201-1, -2, and -3 were acquired along transect MUN, and line
KAH1201-5 was acquired along transect CB. SST dataset (same as in Figure 1) is enlarged to highlight focus area of this manuscript in the vicinity of the Subtropical
Front. XBT positions are indicated by white dots. Subsets of transects shown in Figures 9, 10 are highlighted. Inset in upper left shows a map including bathymetry
in the region surrounding New Zealand. The area of the main figure is indicated by a red box. Land topography shading is derived from NASA's SRTM data.
Projection is UTM 59 South. Inset in upper right shows a temperature-salinity diagram based on eight conductivity-temperature-depth (CTD) profiles collected along
the Munida transect in November 2010 (CTD cast locations are indicated by yellow dots in the main figure and are labeled 1-8). Red contours are potential density
(in kg/m?3). Water mass interpretations are labeled: NW, Neritic Water; STW, Subtropical Water; SAW, Subantarctic Water; AAIW, Antarctic Intermediate Water.
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shallower seafloor depths and 40 Sippican T5 XBTs for deeper
water. The XBTs were deployed at an average spacing of 1 nautical
mile (~1.85 km) along lines KAH1201-1 and KAH1201-5, with
repeat measurements at select locations along KAH1201-2 and
-3 (see Supplementary Tables 1, 2). Sound speed values were
calculated using the Mackenzie (1981) equation; both RMS and
interval velocities were calculated for use in seismic processing.
Since the XBTs do not provide salinity data, a constant salinity
of 34.4 was used in the Mackenzie equation, which is the average
salinity from previous CTD profiles along the Munida transect
(e.g., Figure 2). The sensitivity of seismic velocity to salinity is
known to be relatively small (e.g., Sallares et al., 2009) and tests
on the CTD data show that the difference between velocities
calculated using measured salinities compared to the constant
salinity is no more than 0.04% (0.6 m/s).

Synthetic seismograms were calculated from the XBTs for
use in comparing to the processed seismic data. Synthetic
seismograms are a simulation of the seismic response of a given
vertical distribution of density and seismic velocity (which are
both functions of water temperature, salinity, and depth) to

a particular source wavelet (e.g., Yilmaz, 2001). The synthetic
seismograms were computed in MATLAB using functions in the
CREWES toolbox (see Margrave and Lamoureux, 2019). The
source wavelet used was modeled on a wavelet extracted from
the processed seismic data; the extraction was performed in a
window around a strong, isolated water-column reflection in the
final image from line KAH1201-5.

RESULTS

Seismic Images

Figure 3 shows the seismic images from lines KAH1201-1 and
KAH1201-3 along the Munida Transect, and Figure 4 shows line
KAH1201-5 along transect CB. The seismic images display strong
reflectivity between 0.05 and 0.5 s; above 0.05 s (~40 m) muting
of the direct arrival has removed any data, and below 0.5 s (375 m)
reflections are not visible over the noise level. Annotations show
several reflective regions. In particular, strong reflections are
visible at around 0.1 s (75 m) in the offshore region, sometimes
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in vertical stacks going down to 0.25 s (~190 m) in isolated areas.
Blank zones are present on the shelf and near the shelf break,
and below the strong offshore reflections. Dipping reflections are
visible near the shelf break, with dips of up to 3°. Above these
shoreward-dipping reflections is a seaward-dipping reflection

near the surface, especially in lines KAH1201-1 (Figure 3A) and
KAH1201-5 (Figure 4), with a dip around 0.3°. Undulations are
visible in most of the reflections, with the largest amplitudes in
the shallow reflections in line KAH1201-3 (Figure 3B); these are
interpreted to be internal waves, following similar interpretations
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FIGURE 3 | Processed seismic images for lines (A) KAH1201-1 and (B) KAH1201-3 from the MUN transect.
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in other seismic oceanography studies (e.g., Holbrook et al., 2003;
Holbrook and Fer, 2005; Krahmann et al., 2008; Piété et al., 2013).

Oceanographic Data and Synthetic

Seismograms

The XBT section from KAH1201-1 is shown in Figure 5, with
both temperature (A) and vertical temperature gradient (B)
plotted. These data allow for the identification of the main water
masses present, with warm (>~11°C) STW on the shelf and
near the shelf break, and cooler (<~8°C) SAW further offshore.
At depth, the two water masses are separated by a shoreward-
dipping region of strong temperature gradients, indicated by
the closely spaced isotherms approximately centered around the
9-9.5°C contours. This region is highlighted by the inclined
dashed lines and represents the subsurface expression of the STF.
The position of the STF can also be seen at the surface; the
surface trace at the top of the section shows a ~2°C temperature
drop, with the approximate midpoint of this gradient region
shown by an arrow. The surface trace was created by extracting
the shallowest measured temperature from each XBT along the
line. The satellite SST image in Figure 2 provides confirmation
that this position corresponds to the location of the STF at the
surface. In the offshore region, the SAW is overlain by a surface
mixed layer with a sharp thermocline at its base. Small areas of
temperature inversions can be seen in the middle of the section,
particularly on the 9 and 10°C contours.

Figure 5 also shows the synthetic seismograms for line
KAHI1201-1 overlain on both the XBT and seismic data. The
synthetic traces help identify which oceanographic features are
expected to be imaged in the seismic data, specifically what
the different water masses will look like and what boundaries
should be visible. One strong, continuous seismic response is
associated with large temperature gradients at the base of the
mixed layer (at depths of ~50-100 m), present in offshore regions

(over kms 30-50). Another region of high reflectivity is present
in the shoreward-dipping zone of high temperature gradients
separating STW and SAW that intersects the shelf break at depths
between ~200 and 400 m; this extends out to approximately the
30 km mark and represents the subsurface STF. Line KAH1201-
1 also shows a seaward-dipping reflective region at shallow
depths (0-50 m) in the middle of the section (kms 15-30),
approaching the surface near the surface location of the STF;
this region is highlighted by a dashed oval. The seaward- and
shoreward-dipping reflective zones trace the outline of a warm-
water “wedge” extending seaward from the shelf break. The
synthetic seismograms show that the warm STW “wedge” region
is largely non-reflective. However, an additional shoreward-
dipping reflection is present on the shelf (kms 2-7), particularly
visible in the gradient section, which could be a neritic front
separating warm, salty STW from inshore warm, fresher neritic
water. On the seaward side of the STE the region beneath
the mixed layer occupied by cool SAW is also a zone of
low reflectivity.

The XBT section from line KAH1201-5 (Figure 6) shows a
similar pattern to line KAH1201-1. Temperatures are slightly
higher in the warm-water wedge, with the 11.5-12°C contour
region occupying a greater area, whereas the 10.5-11°C contour
region was larger in KAH1201-1. The surface temperature drop
occurs over a longer distance than in line KAH1201-1 (over
kms 66-50 compared to kms 7-14), but this is partly expected
due to the more oblique angle of the line as seen in Figure 2).
The midpoint of this gradient region is taken to represent the
surface position of the STE and is indicated in Figure 6 by
an arrow. One feature that is present in line KAH1201-5 is a
minimum in surface temperatures in the middle of the section
(kms 50-30), with warmer surface temperatures both inshore
and offshore; this feature is seen to a lesser degree in line
KAHI1201-1. Temperature inversions are again visible, in the
8-12°C contours.
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and (D) interpreted seismic image for line KAH1201-1, with

the enhanced gradients of the STF in a shoreward-dipping
zone intersecting the continental slope (outlined by dashed lines),
and a smaller shallow seaward-dipping zone associated with
temperature inversions (dashed oval outline). Two zones of low

, mixed layer. The surface temperature trace, with approximate surface STF
30-0),

Synthetic seismograms overlain on the XBT and seismic data
in Figure 6 again show three main zones of high reflectivity.
These are associated with the high temperature gradients at the

synthetic seismograms overlain on each image. Shoreward- and seaward-dipping reflective zones separating interpreted water masses are highlighted by dashed
base of the mixed layer (depths of ~50-100 m between kms

lines. STW, Subtropical Water; STF, Subtropical Front; SAW, Subantarctic Water; ML
location indicated with an arrow, is shown at the top of (A). Arrow in (D) indicates the location of XBT shown in Figure 7.

FIGURE 5 | (A) Temperature, (B) vertical temperature gradient, (C) uninterpreted seismic image
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and (D) interpreted seismic image for line KAH1201-5, with

FIGURE 6 | (A) Temperature, (B) vertical temperature gradient, (C) uninterpreted seismic image

synthetic seismograms overlain on each image. Shoreward- and seaward-dipping reflective zones separating interpreted water masses are highlighted by dashed

lines. STW, Subtropical Water; STF, Subtropical Front; SAW, Subantarctic Water; ML, mixed layer. The surface temperature trace, with approximate surface STF

location indicated with an arrow, is shown at the top of (A). Arrows in (D) indicate the location of XBTs shown in Figure 7.
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igures

The temperature cross-sections in F
significant difference between the surface and subsurface

reflectivity are also present, corresponding to warm STW inshore
of the STF and cool SAW seaward of the STF and beneath

the mixed layer.

expressions of the STF. In both lines the subsurface expression
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of the STE seen as the dipping region of enhanced temperature
gradients separating the warmer STW from cooler SAW, extends
much further offshore (by up to ~25 km) than the surface
location of the STF as seen in the surface traces. The XBT
data show the surface expression on the shelf or near the
shelf break, while the subsurface expression (seen in both
the XBT and seismic data) is a broader region extending
much further offshore. The strong mixed layer overprints the
subsurface expression of the front in the offshore region, which
means that it is not visible in the surface temperature data,
including satellite SST.

Seismic Interpretations

General comparisons between the synthetic seismograms and
seismic images in Figures 5, 6 allow for the matching of
oceanographic features identified in the XBT sections, including
Subtropical and Subantarctic water masses, the Subtropical
Front, and the base of the offshore mixed layer, to their
corresponding expressions in the KAHI1201 seismic images.
These oceanographic features have been observed with similar
distributions in many previous CTD transects in the region

(e.g., Jillett, 1969; Sutton, 2003; Jones et al,, 2013), as well
as in nearby legacy seismic data (e.g., Gorman et al., 2018;
Cooper, 2021), but the coincident acquisition of oceanographic
and seismic data in this study allow for specific reflections to
be examined in more detail, giving more insight into their
oceanographic origins; this is accomplished by way of individual
synthetic ties such as those shown in Figure 7.

Figures 5, 6 previously showed a large non-reflective zone
associated with warm temperatures in the shallow, inshore
portion of the seismic images, corresponding to STW. Reflections
are visible at the base of this zone near the shelf break, and in
particular on line KAH1201-5 where canyons cut through the
shelf. Figure 7A shows a synthetic tie for this region, confirming
the non-reflective nature of the shallow STW above the STF.

In Figures 5, 6 the STF manifests as dipping reflections
associated with high temperature gradients in the subsurface,
with warm non-reflective STW above, cool weakly reflective
SAW below, and temperatures suggesting a mixture of the
two water masses in between. Figure 7 shows several synthetic
ties in this region, with distinct negative-polarity reflections
where the temperature gradient contains sharp steps over a
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range of depths (in A and C), creating a stack of interfering
reflections where the isotherms come together at the tip
of the warm-water wedge (B). The STF region also shows
examples of temperature inversions and associated positive-
polarity reflections; an example is highlighted in Figure 7B. The
seismic peaks associated with temperature inversions in the STF
region are not particularly continuous laterally in the full seismic
images, suggesting perhaps that these features are not stable.

One positive-polarity reflection that is laterally continuous is
the seaward-dipping reflection identified earlier in the shallow
region overlying the warm-water wedge. Figure 7C shows a
synthetic tie for this feature. At 0.08 s (~60 m) there is a
temperature inversion, with temperatures near 12°C above and
below, and a small region of cooler 11.5°C water in between, and
a positive-polarity reflection is present. This feature is interpreted
to represent the boundary between warm, shallow SAW present
in the mixed layer offshore and warm STW or STW/SAW
mix present on the shelf and in the subsurface warm-water
wedge. While the temperature difference between the warm SAW
mixed layer and the warm subsurface STW is small, the salinity
difference between these two water types is large, as seen in
previous CTD data in this region (e.g., Figure 2), meaning that
subsurface salinity data would show this boundary more clearly
than the XBT sections.

Further offshore, Figures 5, 6 show a shallow high-reflectivity
zone associated with the mixed layer, separated by a strong
thermocline from underlying SAW. Figure 7D shows a synthetic
tie for this region. The mixing history of the near-surface layer
is preserved in the character of the mixed layer reflections;
multiple, stacked reflections represent different mixing events
causing discontinuities in the overall temperature gradient.
Beneath the mixed-layer reflections, the SAW is non- or weakly
reflective; reflections in this zone are associated with small
temperature fluctuations indicating slight heterogeneity in the
SAW. The weakly reflective nature of the SAW is consistent
with observations in previous legacy seismic investigations in
the study area (Smillie, 2012; Gorman et al., 2018; Cooper,
2021). Particularly non-reflective zones may be associated with
very homogeneous near 7°C Subantarctic Mode Water, which is
known to be present in the region (e.g., McCartney, 1977; Morris
et al., 2001; Chiswell et al., 2015).

DISCUSSION

Comparison to Legacy Seismic Data

Because KAH1201-5 and the legacy industry seismic line CB82-
94 are co-located, the main features identified in KAH1201-5 can
be traced to CB82-94. Figure 8 shows both lines on the same
scale. The major differences in water-column imaging between
the lines are a result of the vastly different acquisition parameters,
with CB82-94 acquired using a large low-frequency airgun array
compared to the small single G/I gun of KAH1201-5, and a longer
streamer containing many more receivers (3 km and 120 channels
vs. 300 m and 24 channels). The resulting differences include the
higher frequency content of line KAH1201-5; a comparison of
the amplitude spectra of the data gives a dominant frequency

of 70 Hz in KAH1201-5 and 20 Hz in CB82-94, indicating that
the KAH1201 data can image layers that are less than a third of
the thickness of those observed by the legacy seismic set-up. The
smaller near offset in the source-streamer geometry of KAH1201
results in more detail at shallow depths, especially with the
seaward-dipping reflection connecting the surface and subsurface
expressions of the front, but the lower energy of the source and
lower fold result in greatly reduced reflectivity observed in the
deeper portion of the water column. The CB82-94 line has a
larger gap in the shallow part of the image (~60 m vs. 40 m) due
to direct-arrival interference and muting, but shows significant
reflectivity at greater depths; the synthetic seismograms suggest
that this is the transition between SAW and underlying Antarctic
Intermediate Water (AAIW), expected at depths between 500
and 1,000 m, and therefore not imaged in the KAH1201 data.
The deep, non-reflective AAIW and a possible lens or eddy-like
feature at the end of the line between CDPs 6400 and 6800 are
also present in the CB82-94 image. Since the eddy feature is
centered near 0.5 s (375 m) in the legacy data and the KAH1201
data show no reflectivity below 0.5 s it is possible that similar
features may be present in the KAH1201 data but are not (or only
partially) imaged.

At shallow depths, the two seismic lines show many
similarities in their reflectivity pattern, but also some strong
differences. Similarities include the reflections in the canyons
just off the shelf break, the strong shallow reflections offshore,
and the shoreward-dipping reflections. These are consistent with
the base of the STW, the base of the mixed layer, and the
subsurface expression of the STF. The features are not identical,
however, as expected due to the 29-year time gap between the
acquisition of the images. Seasonally, the two lines are similar,
with CB82-94 acquired in late December, compared to the late
January KAH1201 cruise. Observable differences include the
canyon reflection (at CDPs 2000-2500) that is deeper by about
0.2 s (~150 m) in CB82-94 and dipping reflections (CDPs
2700-3250 and 3600-4200) that are deeper by a similar amount
and approximately twice as steep (~2°) in CB82-94, perhaps
indicating a stronger front and current at that time. The non-
reflective STW does not appear to extend as far offshore in
CB82-94 (ending near CDP 3200 vs. 3800 in KAH1201-5, a
difference of ~5 km), and the reflective region outlining the
warm-water wedge extends further offshore (CDP 4800 vs. 4600,
~2.5 km). The mixed layer region at CDPs > 5250 in the
CB82-94 image is composed of two strong continuous reflections
extending to ~0.24 s (~180 m), as opposed to the mostly solitary,
shallower (~0.05-0.16 s or 40-120 m) mixed layer reflection in
the KAH1201-5 image.

Time-Lapse Comparisons

Time-lapse changes can be observed by comparing lines
KAH1201-1, 2, and -3, all acquired along the Munida Transect,
with lines 1 and 2 acquired continuously, followed by a gap of
11 h and 20 min before the start of line 3. Line KAH1201-2
was aborted early so only the offshore portion of the Munida
Transect was imaged, while both KAH1201-1 and -3 imaged the
entire transect. Initial comparisons of the lines made previously
(Figure 3) showed overall similarities, but also significant

Frontiers in Marine Science | www.frontiersin.org

October 2021 | Volume 8 | Article 751385


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Cooper et al. Water Masses Off New Zealand
A CDP
0.0 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 709% 0
'.m . %} = ’f‘ *-‘ -:...—35_:;
oY e d : h B
; SHIE .
A
< .\\ a
L -
w 2
1.0 7500
E” 5
- -
< ©
| e ) - ;
Frequency (Hz)
P 00 50 100 150 200 250
152 125
[
T
2
= )
£ ve Amplitude 4 10 km
< L - e— — —
2.0 1500
B 00 0.0
«-m«f‘* %ﬂm P ,AW~M*‘W W&-» e
T Y SN o ‘ 2 A e i - !
0.5 375
E
£
: §
g 1.0 7500
g g
(]
s
Frequency (Hz)
. 00 50 100 150 200 250
150 % _5 125
S
3 -10
B-15 -
£ ve Amplitude , o 10 km
<.20 — B — — —
2.0 1500
FIGURE 8 | Seismic data from the CB transect, showing comparison between (A) industry line CB82-94 collected in 1982 and (B) line KAH1201-5. Amplitude
spectra calculated from water column reflectivity show the difference in frequency content of the two datasets.

changes in the mixed-layer reflection and associated internal
waves, as well as in the reflections associated with the STF.
In particular, the difference between lines 1 and 3 is striking,
given their identical location and short time between acquisition.
Figure 9 shows in more detail the difference in the STF reflections
in lines KAH1201- and -3, with XBT temperatures overlain. The
bulk of the shoreward-dipping reflective zone moved shoreward
from line 1 to line 3 (approximately from CDP 3000 to 2400,
or 7.5 km), but the XBTs show that warm STW (indicated by
the blank zone with red temperatures and the reflection at its
base) moved further seaward (~from CDP 1500 to 1700, or
2.5 km). This is similar to the change observed between lines
KAHI1201-5 and CB82-94: in line CB82-94 the STW did not
extend as far offshore, but the zone of dipping STF reflections
extended further offshore than in line 5. If the motion of the STF
(as represented by the dipping reflections) was confined to the
plane of the section, movement of ~7.5 km in the ~19 h elapsed
between lines KAH1201-1 and -3 would suggest a minimum
velocity of ~0.1 m/s. However, some of the apparent variability

in the STF reflections is likely spatial in origin. Satellite sea-
surface temperature images of this region indicate a high degree
of meandering in the front toward and away from shore (e.g.,
Figure 2; Shaw and Vennell, 2001). These meanders would be
carried within the overall flow of the northeastward-flowing
Southland Current and pass through the position of the seismic
line, causing apparent along-section movement of the water mass
boundaries and associated reflections.

Time-lapse changes can also be observed in the seismic images
from the seaward end of the Munida Transect. Figure 10 shows
the equivalent portions of lines KAH1201-1, -2, and -3. Lines 1
and 2 were acquired consecutively, so the extreme right-hand
side of both images is nearly identical with only a 10-min delay
as the ship turned, but the differences in the rest of the image
are large, with individual reflections not able to be correlated
between the two images. Despite that, the character of the two
images is similar, especially when compared to line KAH1201-
3. Line 3 contains strong, continuous stacks of reflections, with
long-wavelength perturbations, whereas lines 1 and 2 contain
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XBTs shown in Figure 11.

reflections that are weaker and less laterally continuous, with
shorter wavelength internal waves. The difference could be due
to the surface weather conditions, with strong winds causing
the termination of line 2 and the nearly 12-h time delay
before the start of acquisition of line 3, potentially resulting
in mixing of the surface layer and the development of a
new, sharper and more continuous thermocline. Some of the
difference could also be because of weather-induced data quality
deterjoration causing reflections to appear weaker and less
continuous in lines 1 and 2.

During the seismic acquisition, XBTs were repeated at
different locations, which provide more insight into the
differences observed in the seismic data from repeat passes.
Figure 11A shows three XBTs taken along the Munida Transect at
approximately the same location within the STF region (indicated
by the arrows in Figure 9), occupied during lines KAH1201-1 and
-3. The two XBTs on line 1 were acquired 6 min apart, and show
great similarity in the temperature profile, as well as similarity
in the seismic character laterally between the two locations. The
XBT on line 3, 19 h later, shows much warmer temperatures

over most of the depth range displayed, and more steps in the
temperature profile compared to the smoother gradient on line
1. As a result, the seismic section displays a greater number of
reflections in the middle of the image. As noted previously, this
change is very striking as it occurred over such a short time period
and demonstrates the highly dynamic nature of the STF in this
region. A change of 1°C in temperature at the same location
in less than 24 h suggests significant meandering of the front
spatially, at least at depth; unfortunately, a surface temperature
trace was not available for line 3 to compare the surface position
of the STF between the two lines.

The XBTs from the seaward ends of the lines in Figure 10 are
displayed in Figure 11B. The two XBTs from line 1 and 2 were
acquired 25 min apart, and the XBT from line 3 was acquired
18.5 h later. The three temperature profiles are nearly identical
in the mixed layer and below the thermocline. The XBTs from
lines 2 and 3 are most similar, despite the larger time delay,
suggesting that spatial differences are the greater factor when
considering changes in the base of the mixed layer, rather than
time lapse changes over these time scales. This is also evident by
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the significant lateral changes in the mixed-layer reflections seen
in the seismic sections. Internal waves displacing the mixed-layer
reflections are also likely to contribute to the time-lapse changes.

The last location sampled with XBTs repeatedly was the
intersection point between transects MUN and CB. The location
was visited three times, during the recording of lines KAH1201-
1, -3, and -5 (Figure 11C). Its position is indicated on Figure 9
for the MUN lines; it corresponds to km 31 on line KAH1201-5
(Figure 6). The three temperature profiles again show differences
in the thermocline at the base of mixed layer, with line 1 showing
a deep strong reflection with weaker shallow reflections, line 3
showing a shallow strong reflection, and line 5 showing several
moderate reflections. The XBT from line 3 differs from the
other two profiles at depth, with cooler temperatures measured
below 0.18 s (~135 m). The previous comparison of lines 1 and

3 noted that the dipping STF reflections and associated high
temperature-gradient region moved shoreward between the two
lines; the process appears to have been reversed by the time of the
acquisition of line 5. Another possibility is that the temperature
difference at depth in line 3 is related to a possible eddy suggested
by the “V”-shaped feature seen in the mixed-layer reflection to
the left of the XBT location. Though this XBT just misses the stack
of reflections extending downwards from the “V” to 0.31 s, it may
be showing the effect of the feature. Either way, the changes in the
seismic images and temperature profiles are evidence for a highly
variable front over short timescales (on the order of hours).

Methodological Impact
The results of cruise KAH1201 demonstrate that cost-effective
research-scale experiments can be used for dedicated seismic
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oceanography research examining shallow (e.g, < 400 m
water depth) oceanographic features. The cruise yielded
reasonable quality, high-frequency seismic data, with coincident
oceanographic data. This cruise was the first time that
unambiguous water-column reflections were visible in a
dedicated seismic oceanography voyage in this area. The seismic
images have much greater horizontal resolution than the
coincident XBT sections alone and even higher resolution than
previous CTD sections along the 8-station Munida Transect.
Although poor weather adversely affected the amount of seismic
data collected during this cruise, one seismic profile was able to be
repeated during the cruise to examine time-lapse changes in the
reflectivity—importantly with repeat oceanographic data as well.

The KAH1201 survey resulted in good-quality high-frequency
seismic images with significantly more detail in the shallow
portion of the water column (<150 m) compared to legacy
seismic data (Figure 8). Although the legacy data have a higher
signal-to-noise ratio and contain reflections in the deeper portion
of the water column which are not seen in the KAHI1201
images, smaller and shallower layers are able to be resolved
in the new data, including the seaward-dipping portion of
the STF connecting its surface and subsurface expressions.
One disadvantage of the shorter hydrophone streamer in the
KAH1201 survey is that it did not produce long enough
source-receiver offsets for stacking velocity analysis to help with
identifying water masses, which would be useful in situations
where coincident oceanographic data are not available. On the
other hand, the small source-receiver offsets mean that detailed
(and potentially time-consuming) interactive velocity analysis is
not needed for these types of surveys, in contrast to long-offset
data (e.g., Fortin and Holbrook, 2009); for the KAH1201 data,
even using a constant velocity for stacking produced virtually
identical stacks to using XBT-derived velocities (Cooper, 2021).

As mentioned previously, when creating the final seismic
images for the KAH1201 data, an AGC operator was applied.
Compared to other gain correction methods such as spherical
divergence, AGC can cause distortion of the relative amplitudes
of seismic reflections. A more rigorous amplitude-preserving
flow would be required for further analysis of this dataset (e.g.,
for the application of seismic inversion). However, for these
shallow seismic data with high levels of background noise, a
simpler processing flow was sufficient for producing images
of the main water masses and boundaries, and comparisons
with synthetic seismograms show that relative amplitudes were
adequately preserved (e.g., Figure 7).

This survey adds to a growing body of work using similar
methods to study a range of oceanographic problems. The
frequency content of the new seismic data compares favorably to
other high-frequency seismic oceanography studies (e.g., Hobbs
etal, 2009; Carniel et al., 2012; Piété et al., 2013). The acquisition
of repeat seismic lines along the same transect to examine time
lapse changes has similarities to the investigations of Tsuji et al.
(2005), Nakamura et al. (2006), Géli et al. (2009), and Gunn et al.
(2020). Expendable bathythermographs were used to acquire
oceanographic data, in a manner similar to other single-vessel
seismic oceanography cruises (e.g., Nandi et al., 2004; Nakamura
et al.,, 2006).

The XBTs provide corroboration of the oceanographic features
observed in the seismic images. In particular, the data illustrate
the presence of STW, SAW, and a mixing zone between the
two, and a well-developed mixed layer offshore. Surface traces
constructed from the XBTs were also tied to satellite sea-surface
temperatures, which was important in comparing the surface and
subsurface expressions of the Subtropical Front.

Synthetic seismograms confirmed that prominent reflections
originate from the base of the mixed layer and from the
Subtropical Front in the subsurface, seen as high temperature
gradient regions. Overall, similar reflective features are observed
in both the KAHI1201 and CB82-94 data, which provides
confidence in the interpretation of significant oceanographic
features in legacy seismic data that typically lack coincident
oceanographic data. This provides support for previous
interpretations of water column features (e.g., Gorman et al,
2018), and also for interpretation of further legacy seismic
data in the same framework. The reflections associated with
the Subtropical Front show, in particular, that the subsurface
expression of the front is much more complex than suggested
by its surface expression, consisting of a highly variable zone
of mixing including temperature inversions. This illustrates the
value of seismic oceanography in this region, as the seismic data
have a horizontal resolution that cannot practically be achieved
using CTDs or XBTs; even with the dense XBT deployment used
in this survey, the seismic images still represent over 100 times
greater spatial sampling than the XBT sections, with a 12.5 m
trace spacing compared to the ~1.85 km XBT spacing.

Another first for this survey was the acquisition of time-
lapse seismic data over the Subtropical Front. Although earlier
work (Smillie, 2012; Gorman et al., 2018) examined nearby
legacy seismic surveys that were acquired 2 years apart, this
survey involved the acquisition of short-turnaround time-lapse
images of the identical transect. Time-lapse changes in reflections
were significant over small timescales. There were large changes
in the mixed-layer reflections and the internal waves affecting
the base of the mixed layer, even on the scale of minutes
as seen in changes between lines KAH1201-1 and -2. There
were also significant changes in the reflections associated with
the STF over the scale of hours, as seen in changes between
lines KAH1201-1 and -3. In general, the seismic data show
that features and patterns are consistent between datasets,
which allows for confidence in interpreting future data without
acquiring large amounts of coincident oceanographic data.
However, the time-lapse passes show that for detailed analysis, as
opposed to general interpretations, the acquisition of significant
oceanographic data on each repeat pass is needed at this
stage to deepen our understanding of the reflective changes in
the seismic data.

Importantly, this survey helps to constrain the minimum
requirements for a successful seismic oceanography cruise
studying features like the STF in New Zealand waters. This cruise
tested a relatively affordable research-scale operation, using a
vessel and acquisition system (45/105 in® (0.74/1.72 L) GI gun
and 300 m streamer) much smaller in scale than those of an
industry seismic survey, that resulted in satisfactory seismic data
and adequate accompanying oceanographic data, even in poor
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weather conditions. In fact, this cruise was smaller-scale in terms
of seismic acquisition parameters (source size, streamer length, or
both) than other “high-frequency” or “high-resolution” surveys
of Géli et al. (2009) and Hobbs et al. (2009), and the GI gun
surveys of Nakamura et al. (2006); Carniel et al. (2012), Piété
etal. (2013), and Sarkar et al. (2015). This means that, apart from
the Piété et al. (2013) sparker data where only the mixed layer
is imaged, this cruise represents new minimum requirements for
successful seismic oceanography acquisition.

Frontal Structure and Dynamics

The reflective region representing the STF in the KAH1201
seismic data is similar to other seismic oceanography studies
of frontal zones which show enhanced seismic reflectivity and
dipping reflections associated with thermohaline intrusions and
interleaving, such as the work of Holbrook et al. (2003); Mirshak
et al. (2010), Sheen et al. (2012), and Rice et al. (2014). Synthetic
ties between the XBTs and recorded seismic data show individual
reflections resulting from step-like changes in temperature as
well as inversions within the overall zone of high temperature
gradients. Inversions such as these are a known feature of the STE,
both in temperature and salinity (e.g., Garner, 1967; Heath, 1975;
Gilmour and Cole, 1979; Harris et al., 1993).

In addition to the zone of shoreward-dipping reflections, the
high-frequency seismic images also show the presence of an
overlying shallow seaward-dipping reflection connecting the tip
of the reflective warm-water wedge to the surface at a position
further inshore. This inshore position appears to correspond to
the surface position of the STF as seen in surface temperature
traces and satellite sea-surface temperature images. In this study
the surface STF position is found near the shelf break, consistent
with previous satellite SST studies. The surface temperatures also
show a consistent pattern with the lowest surface temperatures
immediately seaward of the surface STF position, overlying the
subsurface STF reflective region, and slightly warmer waters
offshore. These low surface temperatures have been previously
identified as a cold “tongue” created by upwelling associated with
the flow of the Southland Current (e.g., Burling, 1961; Hawke,
1989; Shaw, 1998; Hopkins et al., 2010). The association of the
low-temperature zone with the Southland Current supports the
interpretation of the high-reflectivity zone in the subsurface
as representing the mixed STW and SAW in the core of the
Southland Current.

In this study the subsurface zone of high reflectivity in
the seismic images consistently extends further seaward than
the surface position of the STF, by a distance of ~25 km.
The difference between the surface and subsurface expressions
of the STF has been observed in previous studies using SST
and CTDs. While the surface and subsurface positions of the
STF are strongly linked (e.g., Smith et al., 2013), the surface
expression of the STE particularly with respect to temperature,
can be disrupted, decoupled, or even erased (e.g., Burling, 1961;
Ridgway, 1975; Jeftrey, 1986; Butler et al., 1992; Szymanska and
Tomczak, 1994; Chiswell, 1996; James et al., 2002; Tomczak
et al., 2004). The effect changes seasonally, with the front more
plainly visible at the surface in winter (e.g., Hopkins et al,
2010). In summer, surface SAW moves shoreward to overlie

the subsurface STW, and coastal Neritic Water can also move
seaward to completely obscure the STW at the surface (e.g., Jillett,
1969; Currie and Hunter, 1999; Jones et al., 2013). The subsurface
seaward extension of STW in summer has been observed in
the study area by Jillett (1969) and (Kirchlechner, 1999); the
subsurface reflective zone in the seismic data extending further
offshore than the surface expression of the STF is probably related
to this phenomenon.

In addition to seasonal warming causing density changes
that result in movement of surface water masses laterally, wind
forcing may have a role in movement of the mixed layer above
the subsurface front at shorter timescales. In the Indian Ocean,
Tomczak et al. (2004) observed wind-driven decoupling of the
surface temperature front in the mixed layer from the subsurface
STE, with either poleward or (more commonly) equatorward
shifting of the summer surface layer. At other continental shelf-
break fronts, Siedlecki et al. (2011) and Carranza et al. (2017)
also describe the effect of oscillation in along-front winds (both
up-front and down-front) causing tilting of frontal isopycnals
and movement of the front both at the surface and at depth,
with implications for upwelling of nutrients. In the New Zealand
region, variations in wind are thought to affect the STF on
intra- and inter-annual timescales (e.g., Shaw and Vennell,
2001; Hopkins et al., 2010; Smith, 2017), and local-scale wind
variability has been correlated to changes in the flow of the
Southland Current (Chiswell, 1996; Fernandez et al., 2018).
Further examination of the mechanisms causing the short-term
variability and differing surface and subsurface expressions of
the STF in this region, as observed in the seismic images in this
study, is warranted.

CONCLUSION

The survey presented here was the first-ever successful seismic
oceanography cruise in Australasia. The cruise involved the
acquisition of 12-fold seismic data using a 300 m long streamer
and a single GI gun source. During the seismic acquisition,
oceanographic data were also acquired in the form of 79 XBTs.
The data were acquired along two transects, coincident with
previously analyzed seismic data and CTDs.

The seismic data exhibit significant reflectivity in the upper
500 ms (375 m) of the water column, coincident with dense
temperature measurements along the two transects. A reflective
zone corresponding to mixed Subtropical and Subantarctic
Waters was consistently observed to extend further seaward than
the surface position of the STF as identified in seismic images and
sea-surface temperature data.

Repeat seismic images acquired along the Munida Transect
show significant changes in STF reflections on the time-scale of
hours. For example, the seaward extent of the reflective warm-
water wedge moves ~7.5 km in images produced about 19 h
apart, and other individual reflections within the wedge cannot
be correlated between images. Repeat XBTs at the same location
within the frontal zone show differences of up to 1°C at depths
between 50 and 300 m, indicating the highly variable nature of
the STF in this region.
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Seismic oceanography represents a significant tool for
investigating oceanographic features in the dynamic waters
surrounding New Zealand. This study clearly shows the ability
of seismic oceanography to image the Subtropical Front in
the subsurface at much higher horizontal resolution than
conventional oceanographic methods. The results emphasize
the importance of subsurface data, including seismic reflection
data, in studying the frontal region, as there is a disparity
between the surface and subsurface expression of oceanographic
features. The work provides a foundation for future seismic
oceanography studies to further understand mixing processes at
this important boundary.
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High spatial resolution and deep detection depths of seismic reflection surveying are
conducive to studying the fine structure of the internal solitary wave. However, seismic
images are instantaneous, which are not conducive to observing kinematic processes
of the internal solitary waves. We improved the scheme of seismic data processing
and used common-offset gathers to continuously image the same location. In this way,
we can observe internal fine structure changes during the movement of the internal
solitary waves, especially the part in contact with the seafloor. We observed a first-
mode depression internal solitary wave on the continental slope near the Dongsha
Atoll of the South China Sea and short-term shoaling processes of the internal solitary
wave by using our improved method. We found that the change in shape of waveform
varies at different depths. We separately analyzed the evolution of the six waveforms at
different depths. The results showed that the waveform in deep water deforms before
that in shallow water and the waveform in shallow water deforms to a greater degree.
We measured four parameters of the six waveforms during the shoaling including
phase velocity, amplitude, wavelength, and slopes of leading and trailing edge. The
phase velocity and amplitudes of waveforms in shallow water increase, the wavelengths
decrease, and the slopes of trailing edge gradually become larger than that of the leading
edge, while the amplitudes of the deep water waveforms do not change significantly and
the phase velocities decrease. Our results are consistent with previous studies made by
numerical simulations, which suggest the effectiveness of the new processing scheme.
This improved scheme cannot only study the internal solitary waves shoaling, but also
has great potential in the study of other ocean dynamics.

Keywords: internal fine structure, internal solitary wave, shoaling, northern South China Sea, seismic
oceanography

Frontiers in Marine Science | www.frontiersin.org n

November 2021 | Volume 8 | Article 733959


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2021.733959
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2021.733959
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2021.733959&domain=pdf&date_stamp=2021-11-11
https://www.frontiersin.org/articles/10.3389/fmars.2021.733959/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Song et al.

Observations of ISW Structure Changes

INTRODUCTION

Internal solitary waves are an important oceanographic
phenomenon, which affect not only the marine environment,
but also affect human activities in the ocean. Internal solitary
waves play an important role in energy transfer (Wunsch and
Ferrari, 2004) and vertical mixing (Klymak and Moum, 2003;
Moum et al., 2003, 2007). Internal solitary waves have proved to
be an important mechanism for transport, which often induce
sediment resuspension (Bogucki and Redekopp, 1999; Masunaga
et al., 2015; Boegman and Stastna, 2019) or change distribution
of nutrients and biomass (Haury et al., 1983; Lamb, 1997, 2003;
Scotti and Pineda, 2004). In addition, the internal solitary waves
can generate strong shear forces, which pose a potential threat to
offshore engineering and submarines (Apel et al., 1997; Vlasenko
et al, 2000). At present, researchers have made progress in
the study of the internal solitary waves both theoretically and
observationally, but observations of fine vertical structure and
the study of interaction with topography are still insufficient. The
South China Sea is a region where the internal solitary waves are
well developed (Zhao et al., 2004; Zheng et al., 2007; Cai et al,,
2012; Guo and Chen, 2014) and the shoaling internal solitary
waves are often observed on the continental shelf-slope. For this
reason, the region is an excellent site to study the interaction
between the internal solitary waves and submarine topography.
Therefore, we decided to use this region to develop a seismic
data processing scheme that can study the evolution of the
internal solitary waves.

Propagation of the internal solitary waves onto the continental
slope is a complex dynamic process. When the internal solitary
waves propagate into shallow water, the waveform will deform
due to the imbalances between non-linear and dispersion effects.
During the shoaling process, the internal solitary waves possibly
transform from a depression wave to an elevation wave (Liu
et al, 1998) and may be breaking due to mixing (Aghsaee
et al., 2010) or form vortices in the core (Lamb, 2002). These
processes have been verified in numerical (Holloway et al., 1997;
Liu et al., 1998; Zhao et al., 2003; Grimshaw et al., 2010) and
physical laboratory simulations (Boegman et al., 2005; Cheng and
Hsu, 2010) and observed by means of mooring, high-frequency
acoustics, and remote sensing (Orr and Mignerey, 2003; Zhao
et al.,, 2003; Lynch et al., 2004; Bourgault et al., 2007; Shroyer
et al., 2008; Fu et al., 2012). However, these observations of
the shoaling processes are inadequate, since the observational
techniques are unable to visualize the evolution and internal fine
structure of the internal solitary waves. High-frequency acoustics
can only observe a few scattering interfaces. More importantly,
these methods cannot be used to observe the interactions between
the topography and internal solitary waves. These observational
constraints have limited our understanding of shoaling process of
the internal solitary waves.

With the development of seismic oceanography (Holbrook
et al., 2003), seismic reflection surveying has been applied
to study various oceanographic phenomena including fronts
(Holbrook et al., 2003; Tsuji et al, 2005), water mass
boundaries (Nandi et al., 2004), mesoscale eddies (Pinheiro
et al., 2010), internal waves (Holbrook and Fer, 2005; Bai et al.,

2017), the Mediterranean undercurrent (Buffett et al., 2009;
Biescas et al., 2010), and submesoscale processes (Sallares et al.,
2016; Tang et al., 2020). More recently, seismic reflection studies
have now been used to look at the evolution of oceanic processes
over time (Dickinson et al., 2020; Gunn et al., 2020; Zou et al.,
2021). This method has high spatial resolution. The vertical
resolution can be less than 10 m and the lateral resolution is
approximately 6.25 or 12.5 m. Such vertical resolution is close
to the scale of the “step-like” vertical profile of temperature and
salinity induced by double diffusion in some areas (Magnell,
1976), so seismic oceanography can observe the internal fine
structure of water column (Geli et al., 2009). This high resolution
ensures that fine structure of the shoaling internal solitary
waves is observable by using the seismic reflection method.
However, conventional processing schemes of seismic data are
not conducive to imaging the motion and evolution of the
internal solitary waves, since they yield a single, static image of
the water column.

In this observational contribution, we use an adapted acoustic
method to report the parameters of the internal solitary waves
at different stages of their shoaling. This methodology provides
dynamic and high-resolution observations of internal solitary
waves (ISWs) that are difficult to otherwise obtain. We hope
that such observations can be used to improve theoretical
understanding of these phenomena in the future. We improve
the processing scheme of seismic data and obtain a series
of images (i.e, a time-lapse) of the shoaling internal solitary
wave in the northern South China Sea. These images clearly
record the evolution of internal structure, according to which we
analyze the process of waveform deformation and the influence
of topography on the internal solitary wave. In section “Data
and Methods,” we introduce the seismic data used in this study
and the improved processing scheme. The description of wave
properties is given in section “Results.” The shoaling process is
analyzed in detail in section “Discussion.” Finally, the concluding
remarks are presented in section “Conclusion.”

DATA AND METHODS

Seismic Data Acquisition and Buoyancy
Frequency

The Guangzhou Marine Geological Survey acquired a set of
two-dimensional (2D) multi-channel reflection seismic data in
the South China Sea near the Dongsha Atoll in the summer of
2009. The streamer has a total length of 6 km and contains 480
channels. The trace interval is 12.5 m and the sampling interval is
2 ms. The energy generated by airgun sources has a total volume
of 5,080 in® (1 in = 2.54 cm) and the dominant frequency of
the wavelet is 35 Hz. The shot interval is 25 m and the shot
time interval is about 10 s. The minimum offset is 250 m. We
found the shoaling internal solitary wave on the seismic line
Ls, whose location is shown by the red line in Figure 1. The
seismic line is located on the continental slope and the slope of the
topography is gentle. The observation direction is from southeast
to northwest, which is almost the same as the propagation
direction of most internal solitary waves near the Dongsha Atoll
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FIGURE 1 | (A) The observation location and bathymetry. The red line is location of seismic section (Ls). The black dot is the location of the internal solitary wave in
seismic section. The blue dot is the location of reanalysis data. The arrow indicates the direction of vessel. (B) The buoyancy frequency estimated from reanalysis
data.

(Alford et al., 2015). Temperature and salinity measurements
from reanalysis data are used to calculate a local buoyancy
frequency profile (Figure 1B). The reanalysis data are provided
by the Copernicus Marine Environment Monitoring Service
(CMEMS) in daily averages. We extract data from the summer
of 2009 that are close to the location of the internal solitary wave.

Typical Seismic Section Processing

The processing scheme of stacked seismic section includes
the definition of geometry, direct wave attenuation and noise
removal, common midpoint (CMP) gathers sorting, velocity
analysis, stacking, and migration (Ruddick et al., 2009). Firstly,
we define the survey geometry to create a coordinate system for
seismic data. Secondly, we apply a high-pass filter to remove
low-frequency background noise and attenuate the direct waves
by using a median filter. Thirdly, we sort the shot gathers into
CMPs and perform a velocity analysis. We use the results of the
velocity analysis to apply a normal moveout (NMO) correction
to the CMP gathers, so that the reflection events become flat and
can be stacked. Stacking means that adding all the tracks in each
CMP gather to form one trace. Finally, we implement poststack
migration to improve the imaging accuracy of the stacked seismic
section. Yilmaz (2001) describes a more detailed description of
seismic reflection processing.

Improved Seismic Section Processing

Multi-channel reflection seismic data will cover a section multiple
times during the acquisition, so that we can image the water
column multiple times to study the motion of it (Sheen et al,,
2012). However, poststack sections generated by the traditional
processing schemes require multiple receiver channels to be
stacked in order to improve signal-to-noise ratio (SNR). This
operation can neither visualize the motion of water column nor

fine structure changes during the motion. In order to utilize the
multiple coverage information in the seismic data, we resort the
CMPs into a number of common offset gathers (COGs), where
the offset is the distance between source and receiver. Each COG
can be considered as a snapshot of water column. In this way, the
motion of water column can be visualized as an animation.

Processing schemes for COG migrated sections are the same
as those for conventional stacked seismic section, except that the
NMO correction is not applied and CMPs are not stacked. After
the third step in section “Typical Seismic Section Processing;’
the COGs are resorted from the CMPs according to the offset
and a prestack time migration is applied to the COGs. After
completing the above steps, a series of COG migrated sections
can be obtained.

Two key points are worth noting here. Firstly, as offset
increases, the high frequency components in the seismic data
will attenuate, which affect imaging quality. To reduce this
attenuation, we use a low-pass filter to limit the frequency of
all the COGs to less than 80 Hz, so that seismic data of all the
COGs are normalized to the same frequency band. Secondly,
the imaging range of each COG migrated section is not always
the same. Thus, it is necessary to select COG migrated sections
with the same CMP range. To ensure these conditions are met,
we selected COGs every four channels from the 3rd to the 95th
channel and obtain a total of 23 groups of COG migrated sections.
Then, by arranging these COG migrated sections according to
offset, a series of images, which map the motion of water column
over time, can be obtained.

Waveform Characteristics Estimate

From Seismic Section
Some waveform characteristics can be directly obtained from the
seismic section such as amplitude, wavelength, and the slopes of
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the front and rear edges of the internal solitary wave. Seismic
sections reflect the vertical gradient structure of temperature and
salinity (Ruddick et al., 2009) and we refer to this structure as
reflective interfaces. Usually, reflective interfaces are parallel to
isopycnal surfaces (Holbrook et al., 2003; Sallares et al., 2009);
therefore, they can be traced to extract information about the
internal solitary waves. In Figure 2, the black and white stripes
indicate the position of an example of reflective interface at a
depth of 130 m. The adjacent black and white stripes are caused
by the signature of the source rather than changes in ocean
properties and we call them seismic events. So, to track the
seismic events, we only trace one color stripe. Now, with the
isopycnal surface of the internal solitary wave, we can estimate its
amplitude, wavelength, and the slope of its leading and trailing
edges. Note how these parameters change with depth. In this
way, we can use seismic data to study the vertical structure of the
internal solitary waves (Gong et al., 2021).

Wave Phase Velocity Estimate From

Prestack Seismic Data

The method to estimate the section velocity of the reflection
events is based on prestack seismic data and has been successfully
applied to the phase velocity estimation of first mode and the
second mode internal solitary waves (Tang et al., 2015; Fan et al,,
2021). We first trace the same reflection event of an internal
solitary wave from a series of COG sections (the black line in
Figure 3). Then, we record the shot number and CMP number of
a fixed reflection point on these events, which can be easily read
from prestack seismic data. It should be noted that the selected
reflection point must be a feature that is not affected by seismic
imaging such as the trough or crest of the internal solitary wave
(the black dot in Figure 3). The change in the shot number of
the reflection point represents the change in time and the change
in the CMP number represents the change in distance. Then, the

# CMP

(s,,CMP))

# shot

FIGURE 3 | Schematic diagram of calculating the internal solitary wave phase
velocity by using pre-stack seismic data.

phase velocity of the internal solitary wave can be expressed as:

dCMP (1)
V= —
ds - dt

where, the dCMP is the change in CMP number, ds represents the
change in shot number, and dt is the shot time interval.

RESULTS

Internal Solitary Wave in the Stacked

Seismic Section
We found a first-mode depression internal solitary wave in
seismic line Ls. As shown in Figure 4, the internal solitary wave
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FIGURE 4 | Stacked section of the internal solitary wave. The red line represents seafloor.
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only has one concave downward waveform. The observation
direction is from southeast to northwest, which is consistent with
the movement direction of the internal solitary wave. The stacked
section is plotted as if the internal solitary wave was propagating
from left to right. In Figure 4, the internal solitary wave was
shoaling onto the continental slope.

A demarcation of the shoaling process is the “transition point.”
Before the transition point, the structure of the internal solitary
wave will not change much, while after the transition point, the
internal solitary wave reverse polarity or break due to mixing. In
the two-layer ocean model, the transition point is defined as the
position where the pycnocline is close to the mid-depth of water
(Grimshaw et al., 2010). The pycnocline depth can be determined
by the depth of the extrema of the buoyancy frequency (Liao
et al., 2014). According to Figure 1B, the maximum buoyancy
frequency is about 37 m deep, which is not within the observation
range of the seismic section. According to the two-layer model
theory, the depth of the “transition point” should be 74 m, so
that the internal solitary wave observed has not yet reached the
“transition point.”

The seismic events show continuity over 20 km, which
indicate that the stratification is stable. However, the seismic
events near the seafloor have bifurcated and broken due to the
interaction between the internal solitary wave and topography.
According to the study of the vertical structure of the internal
solitary wave (Geng et al, 2019), the maximum amplitude
of the internal solitary wave is 70 m, which is located at
a water depth of 100 m. As the water depth increases,
the amplitude gradually decreases. According to Chen et al.
(2019), the maximum amplitude of the mode-one internal
solitary wave found near the Dongsha Atoll is 87 m, which
is similar to the amplitude of the internal solitary wave. In
addition, Ramp et al. (2004) observed many internal solitary
waves in the east of Dongsha islands and they showed that
the amplitude of the internal solitary waves ranged from
29 to 140 m. We conclude that seismic reflection data are

a useful and accurate tool to observe the internal solitary
wave amplitudes.

Waveform Evolution of the Internal
Solitary Wave

Eight time-lapse images of the internal solitary wave are shown
in Figure 5. Each image is of the same location, but separated by
about 47 s (total observing time of 23 COGs is 18 min). It can
be seen from the figure that the shape of waveform in shallow
water changed more dramatically than that in deep water. As the
offset increases, the reflections in shallow water gradually weaken
at the leading edge. In the large offset COG migrated section, the
shallow parts of reflection were cutoff due to the large stretching
effect of NMO at these offsets, so that the events gradually became
indistinct. Due to the fact that the increasing offset resulted in
increasing frequency attenuation of seismic data (the raypath
increasing), the events in the large offset COG migrated sections
had become thicker.

To investigate the waveform evolution in more detail, we
pick six seismic events from the eight COG migrated sections
(Figure 5), which are shown in Figure 6. Those seismic events
represent the waveforms at six different depths. As shown in
Figure 6A, as the internal solitary wave moved rightward on
the slope, its rear edge shallowed and its slope increased, while
the leading edge gradually became flat and the slope decreased.
The shape change of waveforms at the different depths is clearly
different. In Figures 6B-G, the shape change of each waveform
can be viewed, respectively. The first waveform (Figure 6B) was
somewhat symmetrical in the first four frames of the image
and changed significantly from the fifth frame. In frame 5, the
depth of leading edge increased and the shape became flat.
An abnormal reflection like “knotting” appeared in the trough.
The trailing edge became shallower and the slope increased.
Subsequently, in frame 6, the trailing edge continued to become
shallower and there was a break in the trough, which resulted in
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leading edge reflection missing. The broken waveform in frame
7 was connected to the leading edge of the third waveform
below and formed a complete new waveform again. There is
no first waveform in the frame 8 image because it cannot be
accurately identified in the corresponding COG migrated section.
The second waveform (Figure 6C) is similar to the first one. The
shape of waveform changed from a somewhat symmetrical shape
to one with increasing trailing edge slope and decreasing leading
edge slope. Eventually, the leading edge broke and the trailing
edge connected to the third waveform. The third waveform
(Figure 6D) maintained a good symmetry in frame 1 to frame
6 and the change started in frame 7. In frame 7, the waveform
was broken and connected to the fourth waveform in frame 8.
Except for breaking in frame 8, the fourth waveform (Figure 6E)
remained intact in the rest of frames. This waveform is close

to the seafloor and the phenomenon that trailing edge slope
is larger than leading edge slope already appeared in the first
frame. The fifth waveform (Figure 6F) and the sixth waveform
(Figure 6G) did not change significantly and there was almost no
change in the shape, except for the wave moving up-slope in all
the eight frames.

Phase Velocities of Waveforms

We measured four parameters of the picked six waveforms in
23 COG migrated sections, which are phase velocity, amplitude,
wavelength, and slopes of the leading and trailing edge. The data
of the four parameters are shown in Table 1. The phase velocity
is calculated by tracing the trough of seismic events in CMP-
shot coordinates, which have been converted into distance-time
coordinates (Figure 7). In this study, we traced the trough to
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FIGURE 6 | Events (blue lines) picked from COG migrated sections showing the shape change of waveform. (A) Full six waveforms at different depths. (B-G)

calculate the phase velocities of the six waveforms. It can be seen
from the figure that the phase velocities of the six waveforms
are different. The first waveform (Figure 7A) had two different
motion regimes, i.e., there was an obvious acceleration in the
range of 9-10 km and the phase velocity accelerated from 1.23
(% 0.05) to 2.38 m/s (% 0.55). This acceleration was caused by
a large deformation after the waveform was broken. The second
(Figure 7B) and the third waveform (Figure 7C) had the same
situation, but their phase velocities were different. The phase
velocity of the second waveform changed from 1.13 (£ 0.05)
to 2.44 m/s (£ 0.57), while the phase velocity of the third
waveform changed from 1.39 (£ 0.06) to 2.07 m/s (£ 0.55).
The fourth (Figure 7D) and the fifth waveform (Figure 7E) did
not show any obvious acceleration and their phase velocities
were 1.66 m/s (+0.24) and 1.46 m/s (£0.13), respectively. The
sixth waveform (Figure 7F) is unique and its phase velocity was
reduced from 1.23 (£0.08) to 0.89 m/s (£0.03). Since the sixth
waveform was closest to the seafloor, this deceleration might be
caused by the friction between the seafloor and internal solitary
wave. Comparing the phase velocities of each waveform, we
show that the shallower the waveform depth, the more the phase
velocity increases. The increase in phase velocity is related to
the enhancement of non-linearity, so that the shallow waveform
is more susceptible to non-linear effects. The phase velocity of

the waveform near the seafloor decreases due to the interaction
between the internal solitary waves and seafloor.

Amplitudes and Wavelength of

Waveforms
Figure 8 shows a distribution diagram of amplitudes of the
six waveforms. Since the leading edge gradually flattened when
the internal solitary wave was shoaling, we defined the vertical
distance between the trough and trailing edge as amplitude. It
can be seen from the figure that the amplitudes decreased with
the water depth increasing and this rule had been maintained
during shoaling process of the internal solitary wave. As it is
shown by the fitted straight line of amplitudes in Figure 8,
the amplitude of each waveform gradually increased when the
soliton was shoaling. Numerical simulation results show that the
shoaling effect will cause the amplitude of the internal solitary
waves to increase in the uphill topography (Cai et al.,, 2002;
Cai and Xie, 2010), which is consistent with our observations.
However, the growth rates of the six waveforms were different.
As the water depth increased, the growth rate of amplitude
gradually decreased.

We counted the wavelengths (apparent wavelengths) of the
six waveforms, which are shown in Figure 9. It should be
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TABLE 1 | The four parameters of the internal solitary wave calculated from seismic data.

Amplitude (m)

Wavelength (km)

Leading edge slope

Trailing edge slope

Wave speed (m/s)

WF1 WF2 WF3 WF4 WF5 WF6 WF1 WF2 WF3 WF4 WF5 WF6 WF1 WF2 WF3 WF4 WF5 WF6 WF1 WF2 WF3 WF4 WF5 WF6 WF1 WF2 WF3 WF4 WF5 WF6
Frame1 64.46 61.32 46.38 3538 23.58 1494 341 341 369 266 299 311 -0.05 -004 -003 -0.02 -0.01 -001 004 003 002 003 002 001 1234+005 1.13+005 1.39+006 1.66+024 1.46+0.13 1.23+0.08
Frame2 66.03 5817 40.88 36.16 27.51 1494 311 341 466 247 412 315 -0.06 -005 -002 -0.02 -0.01 -001 004 003 003 003 001 001 1234005 1134+005 1394006 1.66+024 1.46+013 1.23+0.08
Frame3 58.96 5896 51.10 3538 34.59 1808 325 372 442 294 400 38 -0.06 -004 -003 -0.03 -001 -001 005 003 003 002 002 001 1234+005 113+005 1394006 1.66+024 1.46+013 1.23+0.08
Frame4 55.03 61.32 5424 3773 26,73 1651 275 374 362 28 28 311 -005 -003 -0038 -0.02 -002 -001 004 003 003 003 004 001 1234+005 113+005 1.39+006 1.66+024 146+013 1.23+0.08
Frame5 55.03 6210 41.66 37.78 26,73 1494 233 369 358 28 320 336 -006 -004 -0038 -0.02 -001 -001 005 004 099 003 002 001 123+005 113+£005 1.39+£006 1.66+024 146+£013 1.23+0.08
Frame6 55.03 6525 44.81 3538 30.66 1887 341 367 362 259 332 3862 -253 -1.00 -008 -0.02 -0.02 -001 004 004 003 003 002 002 123+005 113+£005 1.39+£006 1.66+024 146+013 1.23+0.08
Frame7 57.39 6525 4481 3852 3380 2358 374 367 360 360 35 313 -005 -004 -003 -0.01 -001 -001 004 028 003 003 003 0.02 1283+£005 113+005 1.39+006 1.66+024 146+013 1.23+0.08
Frame8 60.53 66.82 4324 37.73 29.87 2280 400 360 358 301 367 322 -0.03 -005 -004 -0.01 -047 -001 0083 090 003 003 002 002 1234005 1.13+005 1.39+006 1.66+024 1.46+0.13 1.23+0.08
Frame9 56.60 69.18 4560 37.73 29.09 2358 346 360 348 325 313 3.06 -0.04 -003 -004 -0.01 -0.01 -001 004 004 003 003 002 002 1234005 1.13+005 1394006 1.66+024 1.46+013 1.23+0.08
Frame10 70.75 69.97 4481 3852 2909 2358 325 372 329 327 306 318 -005 -005 -0.03 -001 -001 -0.01 0.04 0.04 004 003 002 001 1283+0.05 1.13+0.05 139+006 166+024 146+0.13 1.23+£0.08
Frame11 8176 7232 46.38 3852 27.51 2358 3.93 353 334 249 299 320 -0.04 -0.01 -0.01 -0.01 003 004 002 002 1234+005 113+005 1.39+£006 1.66+024 146+£013 1.23+0.08
Frame12 83.33 6839 47.17 41.66 3066 22.01 376 4.07 346 285 289 332 -0.04 -0.02 -0.01 -0.01 004 004 002 001 1234+005 113+005 1.39+£006 1.66+024 146+£013 1.23+0.08
Frame13 100.62 79.40 49.53 39.31 27.51 2044 379 374 332 292 285 315 -0.04 -0.02 -0.01 -0.01 0.04 003 002 001 238+055 244+057 139+006 166+024 146+0.13 1.23+0.08
Frame14 82.54 53.46 40.88 29.87 18.87 346 355 303 299 3.01 -0.04 -0.02 -0.01 -0.01 0.04 003 002 001 238+055 2444057 1394006 1.66+024 1.46+0.13 1.23+0.08
Frame15 89.62 5346 37.73 3223 18.87 322 327 327 299 3.11 -0.04 -002 -0.01 -0.01 003 004 002 001 2384055 2444057 1394006 1.66+024 146+013 1.23+0.08
Frame16 97.48 53.46 52.67 3223 18.87 322 278 311 278 294 -0.04 -0.02 -0.01 -0.01 003 003 002 001 2384055 2444057 1394006 1.66+024 1.46+013 1.23+0.08
Frame17 98.27 47.95 55.03 29.87 16.51 365 311 289 263 3.06 -0.06 -0.02 -0.01 -0.01 003 004 002 001 2384055 2444057 1394006 1.66+024 146+013 1.23+0.08
Frame18 80.18 47.95 52.67 31.45 2044 200 245 306 254 341 -0.03 -0.02 -0.01 -0.01 003 004 002 001 2384055 2444057 1394006 1.66+024 1.46+013 0.89+0.03
Frame19 81.76 51.88 55.03 29.09 18.08 165 287 287 261 336 -0.06 001 -001 -001 004 006 003 001 238+055 2444057 139+006 1.66+024 1.46+013 0.89+0.03
Frame20 8490 84.90 57.39 3223 18.87 221 275 285 238 3.13 -0.02 -0.01 -0.01 0.04 003 001 2884055 244+057 207+£055 166+024 146+0.13 0.89+0.03
Frame21 91.98 77.04 55.81 3459 19.65 249 271 320 3.51 -0.04 -0.01 0.02 0.01 238+055 2444057 207+055 1.66+024 1.46+0.13 0.89+0.03
Frame22 8412 58.17 37.73 21.23 285 247 249 325 -0.02 -0.01 0.03 0.01 238+055 2444057 207+055 1.66+024 1.46+013 0.89+0.03
Frame23 85.69 70.75 36.16 22.01 228 216 3.53 -0.02 -0.01 0.02 001 238+055 2444057 2074055 1.66+024 1.46+013 0.89+0.03

WF represents waveform.
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lines are fitting lines of blue asterisks. The common midpoint (CMP)-shot coordinates have been converted into the distance-time coordinates, so that the slope of
fitting line is the phase velocity. The red and green lines are different fitting of asterisks, which indicate that the internal solitary waves travel in different phase velocity.
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coordinate.

Frontiers in Marine Science | www.frontiersin.org 79 November 2021 | Volume 8 | Article 733959


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Song et al.

Observations of ISW Structure Changes

A waveforml B waveform2 c waveform3
5 5 S
[J
°
4 (1Y 4 L 4 ®
=) e o o °® % oo
° 8 o®
eé, 0‘00 ° Y ) & .
g3 ° 3 i . L
'S ) [ ]
2 b °
=2 2 o 2
°
1 1 |
8.5 9 9.5 10 10.5 8.5 9 9.5 10 10.5 8.5 9 9.5 10 10.5
D waveform4 E waveformS5 F waveform6
5 5 5
_ 4 4 ® 4 o
g .0 ) ..0 .‘ °'
2 o °
33 o« e°°} 3 e Yoo S, sfece e,
= °s e ° L4 %
= L [ ]
22 2 2
1 1 |
8.5 9 9.5 10 10.5 8.5 9 9.5 10 10.5 8.5 9 9.5 10 10.5
distance(km) distance(km) distance(km)
FIGURE 9 | The change in wavelength of the six waveforms. (A-F) The black dots are observed wavelength.

noted that the seismic data will be affected by the Doppler-like
effect (Bai et al., 2017), so that there is an error between the
wavelength picked from seismic section and the true wavelength.
In this study, we only discuss the change of wavelength. Since
the leading edge of the first and second waveforms in part of
COG migrated sections are so flat that we cannot accurately
calculate the wavelength, the sample points of the first and second
waveforms are less than 23. In Figure 9, the changing trend of
wavelength of the first waveform (Figure 9A) was not clear and
the wavelength of the sixth waveform (Figure 9F) did not change
much during shoaling process. The wavelengths of the remaining
waveforms (Figures 9B-E) gradually decrease with the shoaling
process, but their decreasing rates are different.

Leading and Trailing Edge Slopes of
Waveforms

Figure 10 shows the slopes of the leading and trailing edge
of the six waveforms. In the first waveform (Figure 10A), the
slope of the leading edge gradually decreased and the slope of
the trailing edge had no obvious changing trend. In the second
waveform (Figure 10), the slope of the leading edge decreased
and the slope of the trailing edge increased. In the third waveform
(Figure 10C), the slopes of the leading and trailing edge increased
simultaneously. In the fourth waveform (Figure 10D) and the
fifth waveform (Figure 10E), the leading edge slope was almost
unchanged and the trailing edge slope increased. In the sixth
waveform (Figure 10F), the leading edge slope was almost
unchanged and the trailing edge slope was slightly decreased.
Comparing the slopes of the six waveforms, we show that the

slopes of the leading and trailing edge gradually decreased as the
water depth increased.

DISCUSSION

In this study, we have observed a first-mode depression internal
solitary wave shoaling onto the continental slope by utilizing
prestack seismic data. The shoaling process took place in the
northern South China Sea near the Dongsha Atoll. From the
shape of the waveform, it can be found that the internal solitary
wave was still in the early stage of shoaling and had not reversed
polarity. During shoaling, the slope of the leading edge decreased
and the slope of the trailing edge increased. Each waveform in
Figure 6 has shown this behavior. This result is consistent with
previous observations (Orr and Mignerey, 2003; Zhao et al., 2003;
Bourgault et al., 2007; Shroyer et al., 2008; Fu et al., 2012) and the
results of numerical simulation (Liu et al., 1998; Vlasenko and
Stashchuk, 2007). In this study, we use seismic data to observe
the internal solitary wave motion and use these observations to
improve our understanding of their evolution.

Uniquely, seismic data allow us to visualize the evolution of
thermohaline fine structure. Seismic data record an image of
water column thermohaline differences (Ruddick et al., 2009)
and the reflection events represent the interface of thermohaline
differences. By analyzing the change of reflection events, we
can understand how thermohaline structure evolves. In the
seismic section, we picked six events at the different depths
(Figure 6A), which represent the six waveforms of the internal
solitary wave. Excluding the two near-seafloor internal solitary
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waves, all the waveforms leading to edges broke, as they shoaled
and we hypothesize that this change is related to instability,
whereby mixing reduces the local temperature and salinity
gradient causing the reflection event too weaken. This is shown
as seismic events breaking in the seismic section. During shoaling
process, the internal solitary waves could form vortices due to
the instability (Aghsaee et al., 2010) or with trapped cores (Lamb,
2002), which promote mixing in the water column and changes to
the thermohaline structure. In Figure 6, the first three waveforms
broke and were connected to other waveforms below. This shows
that the thermohaline differences of water column weakened
or disappeared under the influence of instability, so that the
interface of thermohaline difference no longer existed and was
eventually replaced by other reflective interfaces. All the breaks
appeared in the leading edge of the internal solitary wave, which
indicate that the leading edge of the internal solitary wave is more
unstable during shoaling. It can be seen from Figure 6A that
the depth of the internal solitary wave leading edge gradually
became deeper. This is similar to the phenomenon that the depth
of bottom boundary of the mixed layer at the leading edge became
deeper when the internal solitary waves was shoaling, which was
observed by Orr and Mignerey (2003).

Our results show that the change of waveforms is different
at different depths. During shoaling, the leading edge of
the waveform becomes slower and the trailing edge becomes
steeper. But, the waveforms at different depths do not change
simultaneously. The waveform at deeper water changes earlier
than that at shallower water. These observations develop out
the understanding of the causes of the shape changes of
waveform. The waveform changes are believed to be driven
by topography, water depth, and background flow shear
(Serebryanyi, 1990; Serebryany, 1996; Vlasenko and Hutter, 2002;

Orr and Mignerey, 2003). Near-seafloor waveforms are mostly
affected by topography. Shroyer et al. (2008) found that the shape
change of waveform was due to a greater phase velocity at the
leading edge than that of the trough and trailing edge. This
shear causes the leading edge to broaden, while the trailing edge
remains steep. This behavior explains near-seafloor waveform
changes, since the trough of waveform will first contact the
seafloor and decelerate, causing the leading edge to be faster
than the trough. However, the waveforms in shallow water had
the same shape change without contacting the topography. We
speculate that the troughs of waveforms in shallow water were
decelerated by viscous forces. Due to the greater amplitude of
waveforms in shallow water, the trough is more susceptible to the
resistance from deep stratification. Therefore, the phase velocity
of trough will gradually become smaller than that of leading edge.
In addition, the amplitude is related to the degree of change in the
waveform. The amplitudes of shallow waveforms are greater than
those in deeper water, while deep waveforms that are constrained
by topography change less with time. In summary, topography
is the main inducing factor of waveform evolution, while larger
amplitudes cause the waveform changes more during shoaling.
Similarly, the changes in phase velocity, amplitude,
wavelength, and the leading- and trailing-edge slope are
different for each waveform. During shoaling, phase velocity and
amplitude increase, wavelength decreases, and the slopes of the
trailing edges become larger than the leading edges. Although
the phase velocities of the fourth and fifth waveforms were
approximately constant, it can be seen from their trajectories
in the distance-time coordinates that the non-linearity is
significant. These observations indicate that non-linear
effects increase as the internal solitary waves shoal and are
consistent with numerical simulations results that use the
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Korteweg-de Vries (KdV) equations with higher-order non-
linear terms (Liu et al., 1985; Liu, 1988; Grimshaw et al., 2004;
Zhang and Fan, 2013). The high-order non-linear effect of the
internal solitary wave observed is significant because of the large
amplitudes of the waveforms. At the same time, changes in
topography can also enhanced the non-linearity (Liu, 1988). The
increasing non-linearity affects the internal solitary waves by
increasing their amplitude and phase velocity, while decreasing
their wavelengths. Shroyer et al. (2008) find a phase velocity
change similar to ours. However, the initial amplitude of the
wave is only 20 m, which is much smaller than the amplitude
of the internal solitary wave observed and amplitude change is
related to non-linearity. The amplitude of the weakly non-linear
internal solitary wave increases after shoaling, but the amplitude
of strongly non-linear internal wave decreases as shown by
the numerical simulations (Small, 2001; Vlasenko et al., 2005)
and observations (Rybak and Serebryanyi, 2011). However, the
amplitude of strongly non-linear internal waves increases first
at the initial stage of shoaling and then decreases rapidly. Our
observations capture this process, which generally occurs in
water depths of about 300 m (Small, 2001). On the other hand,
Serebryany and Pao (2008) simulate a small-amplitude (14 m)
internal solitary wave and show that its amplitude decreases
during shoaling. Although the nonlinearity of small-amplitude
internal solitary wave is weak, the shallow water depth (about
33 m) used in Serebryany and Pao’s simulation makes the
nonlinearity increase, the waveform cannot adjust gradually and
changes rapidly. To summarize, our observations build upon the
results of numerical simulations by showing that the interplay
between non-linearity and topography plays a critical role in
waveform evolution during shoaling.

CONCLUSION

We used seismic reflection surveying to observe a first-mode
depression internal solitary wave in the South China Sea near
the Dongsha Atoll. The internal solitary wave was located on
the continental slope and propagated from east to west toward
the shelf. The maximum amplitude of the internal solitary waves
is about 70 m. In order to study the evolution process of the
shoaling internal solitary wave, we improved the processing
scheme of seismic data. We used COGs instead of CMP gathers to
image the internal solitary wave, so as to obtain 23 COG migrated
sections. We are able to use these time-lapse images of internal
fine structure to map the evolution of the internal solitary waves.

Seismic sections show that internal reflection structure
changes during shoaling. In shallow water, the waveforms
break and were connected to other waveforms. We believe
that this phenomenon results from instabilities that cause the
thermohaline structure of the water column to change and leads
to disappearance or weakening of seismic events.

Common offset gather sections show that waveform evolution
varies with depth during shoaling. Six reflection events, with

different depths, reveal that topography affects deeper waveforms
earlier than shallower waveforms. The degree of waveform
change is related to its amplitude. Furthermore, phase velocity,
amplitude, wavelength, and the leading- and trailing-edge slope
also vary as a function of depth. When the internal solitary wave
shoals, its amplitude and phase velocity increase, wavelength
decreases, and the slope of the leading edge decreases, while
the slope of the trailing edge increases. Our observations
are consistent with the numerical simulations and other
observations, and our adapted seismic method has furthered
our understanding of the internal solitary waves. This method
also has potential for studying the evolution of other physical
ocean phenomena.
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Internal solitary waves (ISWs) are investigated offshore of Guangdong in the northern
South China Sea (SCS) using high-frequency acoustic backscatter data of 100 kHz
acquired in July 2020. Simultaneous XBT profiles and satellite images are incorporated
to understand their propagation, evolution, and dissipation processes in shallow water
at depths less than 50 m. The water column structures revealed by acoustic backscatter
data and XBT profiles are consistent with a small difference of less than 3 m. A soliton
train with apparent vertical and horizontal scales of ~7 and 100 m, respectively,
is captured three times in 20 h in the repeated acoustic sections, which provides
spatiotemporal constraints to the solitons. The characteristics of ISW phase speeds
are estimated from acoustic backscatter data and satellite data and using theoretical
two-layer Korteweg-de Vries (KdV) and extended KdV (eKdV) models. The acoustically
observed phase speed of ISWs is approximately 0.4-0.5 m/s, in agreement with
the estimates from both satellite data and model results. The shallow solar-heated
water in summer (~10-20 m) lying on the bottom cold water is responsible for the
extensive occurrence of ISWs in the study region. ISWs are dissipated at the transition
zone between the heated surface water and the upwelled water, forming a wide
ISW dissipation zone in the coastal area, as observed from satellites. The acoustic
backscatter method could be an effective way to observe ISWs with high resolution
in shallow water and thus a potential compensatory technique for imaging the shallow
blind zone of so-called seismic oceanography.

Keywords: internal solitary waves, propagation, acoustic backscatter data, shallow water, northern South China
Sea

INTRODUCTION

The northeastern South China Sea (SCS) is reportedly one of the strongest occurrence sites of
internal solitary waves (ISWs) with vertical amplitudes over 200 m (e.g., Ramp et al., 2004; Helfrich
and Melville, 2006; Buijsman et al., 2010; Guo and Chen, 2014; Alford et al., 2015). ISWs are
generated by the interaction between the strong tidal currents and abrupt topography in the
Luzon Strait. Their propagation and evolution processes, including transmission in the deep basin,
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waveform steepening and disintegration across the continental
slope, polarity conversion, and ultimately dissipation over the
broad continental shelf, are spatiotemporally complex due to the
variable ISW governing factors of stratification, currents, fronts,
eddies, and topography (e.g., Cai et al., 2002; Yuan et al., 20065
Farmer et al., 2009; Buijsman et al., 2010). Satellite images show
that these non-linear internal waves can propagate from the deep
sea basin into coastal regions with water depths less than 50 m in
the northern SCS (Zhao et al., 2004; Li et al., 2011). Most previous
studies of ISWs have focused on internal wave propagation across
the SCS and their interactions with the continental shelf at water
depths greater than 100 m (Cai et al., 2012; Guo and Chen,
2014; Alford et al., 2015), while ISWs in the northern coastal
region, where ISWs undergo polarity conversion, wave breaking,
and dissipation, are seldom reported primarily because internal
solitons with limited wave amplitudes are not easy to observe
hydrographically.

Echosounder recording acoustic backscatter signals with
frequencies higher than 10 kHz can be used to remotely map
internal waves (Farmer and Armi, 1999; Orr and Mignerey,
2003; Reeder et al., 2011). This equipment transmits and
receives high-frequency signals through its transducers and thus
detects scattered signals responding to gradients in oxygen, light,
temperature, salinity, and physical oceanographic conditions
from the water below the transducers (Boswell et al., 2020). Its
spatial resolution is approximately 10 cm. This sort of equipment
has been used to observe a variety of ocean phenomena,
including internal waves, turbulence, sediment resuspension,
biomass spatial distribution, and biomigration, in various ocean
environments (e.g., Trevorrow, 1998; Orr and Mignerey, 2003;
Reeder et al,, 2011; Masunaga et al., 2015; Klevjer et al,, 2016,
2020; Cascéo et al., 2017).

The ISWs in the shallow coastal region generally propagate
perpendicular to the isobaths (Fu et al, 2012; Alford et al,
2015). Polarity reversal of ISWs occurs when the ratio of the
upper mixed and lower layers of the water column reaches the
turning point along the wave propagation pathway (Shroyer
et al.,, 2009; Reeder et al., 2011). As the depth of mixed layers
varies seasonally, both elevation waves and depression waves
could occur in the same shoaling regions (Cai et al., 2012).
The evolution of an ISW with an asymmetric waveform on a
continental shelf mainly goes through four stages (Vlasenko and
Hutter, 2002; Chang et al., 2021): (1) the frontal edge becomes
more gently sloping while the rear edge becomes steeper; (2)
overturning of the rear edge leads to heavy bottom fluid over
light fluid; (3) the heavier fluid from the rear edge plunges into
the wave core; and (4) heavier fluid in the wave core forms
an enclosed isopycnal region. Strong water motion by ISWs
can enhance bottom-boundary turbulence, water exchange in
coastal areas, and surface phytoplankton primary productivity
(van Haren et al., 2012; Shishkina et al., 2013; Alford et al.,
2015; Masunaga et al, 2017; Jia et al., 2019). However, the
spatiotemporal propagation and dissipation of a specific ISW in
coastal areas are seldom reported.

In this study, we analyze ISWs in the shallow water offshore
Guangdong Province using acoustic backscatter data collected
in July 2020, combined with satellite images and in situ

hydrographic observations (Figure 1). The main topics in this
paper are organized as follows: first, the acoustic backscatter
data are processed, and the images with ISWs are shown;
second, the characteristics of the ISWs are derived from the
acoustic backscatter data, simultaneous satellite images, and
theoretical two-layer Korteweg-de Vries (KdV) and extended
KdV (eKdV) models; and third, the possible generation and
propagation processes of the ISWs are investigated from the
joint interpretation of the acoustic backscatter data, satellite
images, and hydrographic observations. This study improves
our understanding of internal wave generation, propagation,
evolution, dissipation, and its contributions to ocean mixing,
sediment resuspension, and biological processes.

MATERIALS AND METHODS

Acoustic Backscatter Data Acquisition

and Processing

In the shallow water offshore Guangdong Province (Figure 1),
approximately 3100 km acoustic backscatter data were collected
in July 2020 using an Innomar SES2000 Light parametric sub-
bottom profiler, with primary frequency (approximately 100 kHz)
and ping rate (up to 50 pings/s). The draft (source depth) of
the transducer was 2 m. In this study, we focused on the four
easternmost lines with a NW-SE direction (L1-L4; Figures 1, 2)
to study the spatiotemporal evolution of the ISWs on the
continental shelf. These lines captured a soliton train three times
in 20 h repeatedly (Figure 2).

Innomar ISE software (Innomar Technologies GmbH) was
used to process the acoustic backscatter data. The acoustic image
processing flow was (1) envelope algorithm imaging; (2) noise
attenuation by median filter; and (3) time-depth conversion
assuming an averaged sound speed of 1500 m/s.

Satellite Imagery

Optical satellite images, such as Moderate Resolution Imaging
Spectroradiometer (MODIS) and Visible Infrared Imaging
Radiometer Suite (VIIRS) images, are widely used in ISW studies
(Li et al, 2013; Tang et al, 2014, 2015, 2018). True color
satellite images with a spatial resolution of 250 m are available
from the website.! In this study, the data from MODIS and
VIIRS sensors on NASA spacecraft (Terra, Aqua, NOAA-20, and
Suomi) were used to image the sea surface signature induced
by ISWs (Figures 3, 4). Benefitting from the good weather
conditions on July 18 and 19, 2020, the ISWs in the shallow water
region were clearly imaged by three satellite datasets. The mean
wave propagation speeds and directions can be measured from
the spatiotemporal variations in the satellite images and acoustic
backscatter data (Figures 3, 4).

Hydrographic Data

During the cruise, two XBTs were deployed simultaneously along
the survey lines on July 9th at 13:24 and July 10th at 20:25 UTC
(Figures 1, 5). The in situ XBT data, less than 50 km away from

'worldview.earthdata.nasa.gov
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FIGURE 1 | Bathymetry of the northern South China Sea (A) and shallow water offshore of Guangdong (B). Gray curves are the satellite-imaged ISWs modified from
Zhao et al. (2004) and Li et al. (2011). The black and red lines denote the acoustic backscatter survey lines acquired in July 2020. The red arrows indicate the
directions of the survey lines. The solid circles show the locations of two XBT sites (red), CTD stations (magenta, Chen et al., 2017), and taut-line mooring station

ZHJ2 (blue, Lee et al., 2021).
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the four acoustic backscatter survey lines (L1, L2, L3, and L4),
could be used as the background temperature structure in the
study area in early summer (Figure 5).

Depth profiles of temperature and salinity from three CTD
stations were collected from July 27th to August 16th, 2009
(Figures 6A,B; Chen et al., 2017). These historical temperature
and salinity data reveal that the water structure can be simplified
as a two-layer structure according to the depth of the mixed layer
in the study region (Figure 6). Therefore, two-layer structures
are finally composited for theoretical KdV and eKdV model
calculations and result validation for corresponding ISWs.

Sea surface temperature (SST) images used in this study
were derived from the Group for High Resolution Sea Surface
Temperature (GHRSST) data, which are available from the
NOAA website.” The daily GHRSST data are satellite-composite

zwww.ncei.noaa.gov

products by the Jet Propulsion Laboratory (JPL) with a spatial
resolution of 1 km derived from the Advanced Microwave
Scanning Radiometer (AMSRE), MODIS, WindSat, Advanced
Very High Resolution Radiometer (AVHRR), and in situ
observation data.

Theoretical Two-Layer Model of
Korteweg-de Vries and Extended KdV
Equations

In the continental shelf of this study region (shallower than
300 m), the water column stratification can often be simplified
as a two-layer structure according to the density structure
(Figure 6). Therefore, we can use a two-layer model to
calculate the non-linear phase velocity and the characteristic half-
width of ISWs in the study area (Ostrovsky and Stepanyants,
1989). An internal soliton propagation process in continuous
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FIGURE 2 | Acoustic backscatter images of ISWs show the fine structure of the water column along the survey lines of L1 (A), L2 (B), L3 (C), and L4 (D) in
Figure 1. The survey times and directions are marked by notes and black lines with arrows. Magenta dashed lines with arrows indicate that the same wave crests
acquired more than once in different backscatter images, and the mean phase velocities between ISW1, ISW2, and ISW3 are marked. Note that a soliton train
(ISW1, ISW2, and ISW3), with apparent vertical and horizontal scales of ~7 and 100 m, respectively, was captured up to three times within 20 h.
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FIGURE 3 | Moderate Resolution Imaging Spectroradiometer images of the ISWs acquired by NASA Aqua (A) and Terra satellites (B) at 05:35 UTC on July 18, 2020
and 03:05 UTC on July 19, 2020. The yellow border illustration (C) is a partial enlargement of panel (B). Red dashed lines are the acoustic backscatter survey lines
of L1, L2, L3, and L4, and solid blue pentagrams show ISW positions identified from the backscatter images. The black dashed curves in panel (A) indicate the wave
crest of ISWs with large displacement in the study area. Red solid pentagrams indicate the western boundary of the strong ISW dissipation zone, and the distance
between the positions of these two pentagrams is approximately 82 km (eastward-moving velocity 1 m/s).
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FIGURE 4 | Two satellite images of the ISWs acquired by NASA MODIS Terra (A) and 20 VIIRS satellites (B) with an approximately 2-h lag. Propagation distances,
mean velocities, and directions (solid red lines with arrows) were measured between the two images with similar wave crests (white solid lines with arrows). Red

dashed lines are the acoustic backscatter survey lines of L1, L2, L3, and L4. D, distance; V, mean speed; P, direction of propagation (clockwise from north); DS,
Dongsha Plateau.
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FIGURE 5 | Comparisons of acoustic backscatter images and in situ XBT1 (A) and XBT2 (B) data (black curves) with each other with a small difference of fewer than
3 m, and the red characters indicate the time of acquiring XBT data. Locations of the stations are shown in Figure 1.
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FIGURE 6 | Temperature profiles of the XBT and CTD stations (A) and salinity profiles of the CTD stations (B). The CTD data were collected from July 27 to August
16, 2009 (modified by Chen et al., 2017). The gray filled shades indicate the possible ranges of the temperature (A), salinity (B), and potential density (C) of the
upper layer and the lower layer in the study area according to the XBT2, CTD1-3, and ZHJ2 data, and the solid red lines represent the median values of the possible
range. The locations of the XBT, CTD, and ZHJ2 stations are shown in Figure 1.
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water stratification can be described by the KdV equation
(Djordjevic and Redekopp, 1978):
on on 0%
= L4 p=—==0 1
o Tletan—+f-3 1)

and eKdV equation:

63;7

% + (c+an+am2)g—z +5
where ¢, B, o, and a; are the linear phase velocity, dispersive
coefficient, quadratic, and cubic non-linear parameters,
respectively. For the simplified two-layer water stratification
model, these parameters can be calculated from the following
relationships (Ostrovsky and Stepanyants, 1989):

. 8(p2 — p1)ham 2

(3)
p2h1 + prhy
5= chihy prhy + chz, @)
6 p2h1+ pihy
h2 — pih?
a:i ¢ pam /)12J (5)
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- (h1hy)? "8 prhy + p1hy

where hy, hy, p1, and p; are the thicknesses and the densities for
the upper and lower layers, respectively.

For finite-amplitude waves, the theoretical ISW solutions
of Equations 1, 2 have the following form (Ostrovsky and
Stepanyants, 1989):

pahy + prhy”

n = nosech’[*31]

Vikdy = ¢+ “¢ (7)
A2 = 128
an

_ A
n 1+Bcosh(*224

o D
— 1
B=1+ %y,
2
Vekav = ¢ + % = Vigy + =50
D2 = 8
 aA

where A, D, Vgq4y, and Vegqgy are the characteristic widths and
the phase velocities from the KdV and eKdV models, respectively.

Therefore, the vertical velocities of particle motions can
be computed from the analytical solutions (7) and (8) via
partial derivative W(x) = on(x, t)/0t|;=0 (Trevorrow, 1998;
Teague et al., 2011):

W) = — 2KV (24 tanh () )
and BV, X X
_ eKdv o X\ . X

W(x) = —p " (D)Smh(D) (10)

for the KdV and eKdV models, respectively.

RESULTS

Characteristics of Internal Solitary Wave

Packets

Many ISW packets were captured during the survey cruise
using 100-kHz acoustic backscatter data in early summer
2020 (Figure 2). Due to continuous and repeated observations
of the ISWs, some soliton trains were captured more than
once, as shown with similar features and reasonable locations
on different lines. In this study, four representative wave
packets (ISW1, ISW2, ISW3, and ISW4) at water depths from
24.5 to 40 m were selected for further analysis (Figure 2).
Figure 7 shows the detailed backscatter feature and the
strategy of deriving the waveform parameters for ISW1, ISW2,
ISW3, and ISW4. The captured locations for each leading
soliton are plotted in Figure 3, while the observed parameters
of positions, times, upper layer thicknesses, water depths,
amplitudes, and full widths of these ISWs are listed in
Table 1.

ISW1, ISW2, and ISW3 are from the same soliton train
captured three times within 20 h from west to east on the
repeating acoustic sections of L2-L4 (Figures 2, 7). ISWs
propagated from deeper water (32 m) to the shoaling water
(24.5 m) from approximately south to north (Figures 2, 7A-
F and Table 1). The wave packet ISW1 was first captured
on the L2 section, as it had no appearance on the preceding
section L1 (Figure 2). The packet consists of at least four
solitons with positive polarity and representative waveforms
within the first 0.5 km from the leading soliton (Figure 7A).
The solitons’” amplitudes are not ordered from the leading soliton
to the trailing ones. The third soliton has the largest amplitude
of 9 m, while the leading wave amplitude is approximately
7 m. Approximately 0.5 km behind the leading soliton, wave
fields become chaos, and solitons are not easy to identify.
The passing packet deepens the mixed layer, forming a bore-
like structure of ~2 km. At the trough of the bore, the
thickened mixed layer induced by the passing ISWs reverses
the non-linear parameter o, and thus, elevated waves are
formed (Figure 2B).

In contrast, packets ISW2 and ISW3 only have one leading
soliton individually (Figures 2C,D, 7C-F). Similar to ISWI,
the amplitudes of the leading waves of ISW2 and ISW3 are
~7 m, but their following wave amplitudes are only 1-2 m and
cannot be recognized as solitons. The mixed layer is suppressed
to specific depths after passing the solitons, forming hydraulic
jumps. Therefore, the solitons only have leading edges, and rear
edges are not well developed, indicating a significant energy loss,
and the stratifications are failed to be restored to the starting
depths within ~10 km (Figures 2C,D).

On line L4 in the deeper water region, the large soliton train
(ISW4) with more than 10 following well-developed solitons
was captured 2 h beyond ISW3 and ~20 km away from
ISW3 (Figures 2D, 7G). The soliton amplitudes of ISW4 are
sequentially ordered from the leading wave (~13.3 m) to the
trailing waves (~5 m). In addition to the deepened mixed layer,
the sediments were suspended several meters above the seafloor
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FIGURE 7 | Acoustic backscatter images show the waveforms (left) of ISW1 (A), ISW2 (C), ISW3 (E), and ISW4 (G). The red lines and orange notes (right) are used
to derive the waveform parameters of ISW1 (B), ISW2 (D), ISW3 (F), and ISW4 (H). The red, yellow, and purple arrows represent the propagation directions of these
ISWs, the ISW-induced bubble plumes, and sediment resuspension, respectively.

TABLE 1 | Observed parameters of the ISWs*.

ISW# Long (E) Lat (N) Time (UTC) hy (m) WD (m) Mo (M) Lw (m)
1 115°4'24.82" 22°22'1.03" 2020.7.18 11:33 32 7

2 115°8'2.02” 22°26/58.49” 2020.7.18 17:48 12+£15 27 75+£15 42

3 1156°130.43" 22°29'48.82" 2020.7.18 21:22 11.8+1 24.5 6.5+ 1 140
4 115°19'2.46” 22°20'17.82" 2020.7.18 23:10 15+£15 40 1833+£1.5 55

*Long/Lat and time, position, and time of ISWs’ wave trough captured by acoustic backscatter survey; hq, observed upper layer parameter for two layers KdV (eKdV)
theoretical calculation; WD, water depth; no, amplitude; Ly, full width of the trough at half amplitude from acoustic backscatter images.

after passing the solitons (Figure 7G). Meanwhile, because of its From two satellite images acquired by NASA MODIS Terra
larger spatial scale, ISW4 can be observed from the satellite image and NOAA-20 VIIRS satellites on July 19th, 2020 (1 day after
(Figures 3B,C). acoustic backscatter survey), many alternating dark and light
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curving signatures were caused by ISWs from the Dongsha
Plateau to the Guangdong coastal water (Figure 4). The
propagation speeds and directions vary significantly from the
deep-water region to the shallow water region according to the
position differences of the ISW crests with a 2-h lag (Figure 4).
The propagation speeds at locations #1-#3 gradually decrease
from ~1.6 to 0.45 m/s, and the propagation directions turn from
~270° to 340°, corresponding to the shoaling water depth from
the continental shelf to the coastal area. Therefore, it is expected
that the ISWs observed from the acoustic images in the study
region should have propagation parameters similar to those of
the satellite-observed results at location #3 (Figure 4).

By identifying the time and space differences of the wave
crests using the backscatter data, the estimated mean propagation
velocities were ~0.44 m/s (between ISW1 and ISW2) to
~0.41 m/s (between ISW2 and ISW3), assuming that the
ISWs were propagating northward (Figure 2). However, the
propagation velocities of ISW1, ISW2, and ISW3 cannot be
determined by satellites because of their small spatial scales.
Therefore, we resort to the theoretical calculation to verify
the propagation in the next section. In contrast, ISW4 on L4
was captured by the MODIS image ~4 h after capture by
acoustic backscatter observation (Figure 3C). The estimated
mean propagation velocity of ISW4 from the acoustic backscatter
to the satellite is ~0.35 %= 0.04 m/s, which is less than the results
from two satellite images in the coastal region (Figure 4).

Characteristics of the Internal Solitary
Wave Packet From Theoretical
Calculations

Water Properties and the Simplified Two-Layer Model
In situ XBT data show that the temperature of the upper mixed
layer gradually decreases from the near-surface to the lower layers
(XBT1: 26.2-21.2°C; XBT2: 29-21.2°C; Figure 5). In contrast,
the lower layer temperature is nearly homogeneous with a small
temperature variation (21.14-21.38°C). The acoustic backscatter

images show multiple strong scattering layers in the upper mixed
layer, corresponding well to the strong temperature stratification.
The scattering feature in the lower layer is substantially weak
without a continuous scattering interface. The overall water
column stratification revealed by acoustic backscatter data
(XBT1: 15 m; XBT2: 24 m) and XBT profiles (XBT1: 14 m; XBT2:
27 m) is consistent with a small vertical difference of less than
3 m, indicating that the acoustic backscatter technique is suitable
for imaging the water structure. Therefore, the thicknesses of the
upper and lower layers were derived from acoustic backscatter
data (Figure 7 and Table 1).

For the simplified two-layer model, which is used to estimate
the theoretical parameters for the ISWs, proper temperature and
salinity values must be calculated for each layer. The model
temperature is straightforwardly derived from in situ XBT2
because XBT?2 is closer to the study region and fits well to the
historical CTD data (Figure 6A). Therefore, the upper layer
is assigned 27.5°C, and the lower layer is assigned 21.2°C
(Figure 6A). Meanwhile, according to the salinity data of the
CTD stations, as well as the ZH]J2 station (Figure 6B), the salinity
values of the upper and lower layers are assigned to be 32.5 and
34.2 psu, respectively (Figure 6B). Thus, the density models can
be estimated using the equation of state of seawater (Figure 6C;
Millero et al., 1980; Fofonoff and Millard, 1983).

Propagation Velocities From the Model Prediction

A proper ISW propagation model can be used to predict the
ISW speed, which should be comparable to the values from
satellite and acoustic methods (e.g., Tang et al., 2015). Here, phase
velocities are derived from two-layer KdV and eKdV models with
varying salinity (Figure 6) for ISW packets: 0.48/0.41 (ISW2),
0.44/0.38 (ISW3), and 0.63/0.5 m/s (ISW4) (Figure 8). The results
show that the salinity variation in the range of 31 to 34 psu in
the upper layer can significantly affect the phase speed. We can
see that the KAV model predicted values of ISW2 and ISW3 are
slightly larger than the propagation velocities estimated from the
acoustic backscatter data, while the eKdV model predicted values
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FIGURE 8 | Phase velocities of ISW2 (A), ISW3 (B), and ISW4 (C) derived from the two-layer KdV (red) and eKdV (black) models with different salinity parameters of
the upper layers (curves with error bars). The solid squares represent phase velocities calculated using the median densities of two layers shown in Figure 6C. The
solid black circles and solid black circle with error bar indicate the phase velocities of the ISW packets derived from acoustic backscatter data and satellite and
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are slightly smaller than the estimated propagation velocities.
The analytical result of ISW4 (0.63/0.5 m/s) is larger than the
acoustic satellite measured velocity (0.35 m/s). The two-layer
eKdV model result of ISW4 returns much better agreement with
the observations than the KdV model result. A lower salinity
value in the two-layer model, the uncertainty of layer thickness,
and the spatial resolution of the satellite images may be error
sources for both predicted and measured propagation speeds.

Waveforms

Using Equations 7, 8, the analytical waveforms and the
characteristic widths for the ISWs are calculated (Figure 9).
The analytical waveforms overall patterns of the KdV and eKdV
models are similar. However, the detailed features of the observed
and theoretical waveforms are quite different. For example,
analytical waveforms are in perfect symmetry, while the observed
waveforms are in typical asymmetry with distinct differences
between the leading edge and the rear edge.

Since the wavelengths L, are derived from the analytical
ratio of 1.76 between the wavelength parameter L, and the
characteristic width A of the KdV model (Tang et al, 2014,
2015). The waveform parameters of wavelengths of ISW2, ISW3,
and ISW4 are compared from the analytical and acoustical
results (Table 1 and Figure 9), as wavelength of ISW1 cannot
be obtained from the backscatter data (Figure 7A). The L,
values of ISW2 and ISW3 measured directly from the acoustic
backscatter data are ~42 and ~140 m, respectively. The angle
theta between the near-northward wave propagation and the
backscatter observation line may make the imaged apparent
wavelength wider by a factor of cos™! (30°). In addition, the
Doppler effect for the same/opposite moving directions of the
ship and wave stretches/shortens the observed wavelength by
a factor of V{/(Vi — V3) or V1/(V1+V;), where V; and
V, are the ship and the ISW velocity, respectively. Therefore,

the actual wavelengths are ~32 and ~136 m by considering
the overall contribution between these two effects. The ISW2
wavelength measured from the observed result is half of the
analytical result, while the ISW3 observed result matches the
analytical result of 127.2 m. For ISW2, the low ratio of 0.8
is probably underestimated since we used the leading edge to
estimate the length.

As the survey line is nearly perpendicular to the wave crest
(Figure 3B), the leading soliton L,, of ISW4 is 67.6 or 62 m after
removing the Doppler effect. The KdV prediction wavelength of
66.2 m is very close to the observed result.

Vertical Particle Motion

Studies have shown that vertical velocities can be measured from
acoustically imaged waveforms and predicted from the KdV and
eKdV models (e.g., Tang et al., 2015). Vertical particle motion
along the waveforms of ISW2, ISW3, and ISW4 can be expressed
by Equations 9, 10 (Figure 9). In particular, the maximum
velocities and mean velocities (W, averaged from the half-width
point to the trough of the leading edges, shaded zones) of these
three ISWs are also derived (Figure 9). The W4 values from the
KdV and eKdV models for ISW2, ISW3, and ISW4 are 6.3/5.2,
3/2.2, and 15.1/13.6 cm/s, respectively, while the mean vertical
velocities are 4.7/3.8, 2.2/1.6, and 11.1/10 cm/s, respectively. The
vertical velocity ISW2 is nearly twice that of ISW3 from the same
packet. The W4 and W, of ISW4 at a depth of 40 m are nearly
twice those of foregoing packet ISW2 at a depth of 27 m.

Other Phenomena Related to Internal
Solitary Waves

Internal Solitary Wave-Induced Sediment
Resuspension

Strong ISW-induced currents scour the seafloor periodically and
successively by shaping the seafloor morphology, suspending the

0.2

A B
0
-2
-4
E -6
= —Kdv *°
Z‘é -8 A 44
Lw=1.76'A: 77.4 Lw=1.76"A: 127.2
wav: 0.047 Wav: 0.022
=10 fwmax 0.063 @ -29 Vimar: 0.03 @ -47.6
KdV — Scatter KdV
-—-e ---e
-12 tp: 225 = A/D tD: 39.8
Wav: 0.038 orLn2 Wav: 0.016
-14 |wmax 0.052 @ 30.48 o= Lwmax Wrax: 0.022 @ 60.1

10.1

— KdV
A: 37.6
Lw=1.76-A: 66.2
Wav: 0.111

o
w(x) (m/s)

wmax: 0.151 @ 101
— Scatter -24»8Kdv — Scatter| -
--el
== A/D D: 18.9 o=AD |
**Lna Way: 0.1 **Lnz2
o= | wmax

Wmax: 0.136 @ 25 o= Lwmax

-150-100 -50 0 50 100 150-150-100 -50 O
Range (m)

Wmax, maximum vertical velocity.

Range (m)

FIGURE 9 | Double-axis plots of the predicted waveforms (blue) and vertical velocities (red) using the two-layer KdV (solid curves) and eKdV (dashed curves) model
for ISW2 (A), ISW3 (B), and ISW4 (C). Three solid dots and squares are the characteristic width A/D (red), half-width L, > = L/2 (black), and maximum vertical
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seabed sediments, and controlling the grain size of the regional
sediments (Ma et al,, 2016; Tian et al, 2019a,b, 2021). The
phenomena of sediment resuspension can be easily observed
from high-resolution acoustic backscatter data (Cacchione et al,,
2002; Reeder et al., 2011; Masunaga et al., 2015; Tian et al,
2019a). In this study, patches of weak scattering intensity (purple
arrows) are often observed in the near-bottom layers after passing
the ISWs (Figures 7A,G), showing the sediment resuspension
process induced by the ISWs. Sediment resuspension is larger
than 5 m height above the seafloor, and affects over tens of
kilometers. This phenomena, which called bottom nepheloid
layer (BNL), is widely recognized in the global ocean (Masunaga
et al., 2017; Tian et al., 2019a).

Internal Solitary Wave-Induced Bubble Plumes

Near the sea surface, there is always an extremely strong acoustic
scattering layer of a few meters on the acoustic backscatter data
(yellow layer; Figures 2, 7). They are caused by bubbles in the
near-surface water (e.g., Trevorrow, 2003). The occurrence of a
soliton enhances the bubbles and carries the near-surface bubbles
into the soliton core, forming a downwelling bubble plume
(yellow arrows; Figure 7). Previous studies have shown that
these ISW-induced bubble plumes have a bubble size distribution
and concentration similar to those of bubble plumes caused by
breaking surface waves, which generally begin to appear with
wind speeds over 2.5 m/s (e.g., Trevorrow, 1998).

In this study, the plume penetration depths and width
induced by ISW1-4 ranged from 8 to 12 and 30 to 70 m,
respectively (Figure 7). The penetration depths are controlled
by the amplitude of the solitons or the isopycnal of the surface
layer. Taking ISW4 as an example, the largest bubble plume with
penetration depth (12 m) and width (70 m) is above the core of
the leading soliton, and the relatively small bubble plumes with
penetration depth (~7 m) and width (~20-70 m) correspond
to the following small solitons. Such downwelling process forces
influence near-surface physical and biogeochemical cycles.

DISCUSSION

Origins of Internal Solitary Waves on the
Continental Shelf

There are generally two generation sources of ISWs observed on
the continental shelf of the northern SCS. One is remotely from
the Luzon Strait, and the other is locally from the northern SCS
continental shelf (Lien et al., 2005; Cai et al., 2012). According
to satellite images, most ISWs in the northern SCS propagate
westward from the Luzon Strait and are refracted near the
Dongsha Plateau and then torn by the island into two new
trains (northern and southern arms) continuing to propagate
northwestward to coastal areas (Li et al., 2013; Wang et al., 2013;
Ma et al.,, 2016).

In this study, we suggest that large-scale ISWs were
also generated in the Luzon Strait based on the following
considerations. Two satellite images within the acoustic
backscatter observation period directly show that large-
amplitude ISWs are successively distributed from the Dongsha

Plateau to the coastal areas (Figure 4). Meanwhile, ISWs at the
Dongsha Plateau must be generated in the Luzon Strait, and ISWs
are still traceable tens of kilometers south of the study region
evolved from the northern arm of the ISW train (Figure 4).
Moreover, the surface signature of ISW4 was clear enough and
was captured by both satellite and acoustic backscatter data.
Therefore, it can be safely inferred that the periodically active
ISWs in the coastal region are generated at the Luzon Strait and
then propagate into the study region after long-range evolution.

The acoustic backscatter data may have captured some locally
generated internal waves with internal tides on the continental
shelf. For example, there is an isolated ISW approximately 1 km
ahead of ISW4 in Figure 7G. This ISW does not belong to
either the trailing soliton of ISW3 or the leading soliton of
ISW4, which are successive ISW packets from the Luzon Strait.
Therefore, the isolated ISW might be generated locally with
steep topography, most likely at the continental shelf break by
the internal tide. More integrated observations are necessary to
identify the origins of these ISWs.

Evolution of Internal Solitary Waves on

the Continental Shelf

In this study, all ISWs have large amplitude frontal edges and
small amplitude rear edges (Figure 7). The frontal edges are steep
and well-developed. In contrast, the rear edges are much weaker
and fail to resort to the normal depth. It is suggested that these
divergent zones of the rear edges were under collapse by losing
potential energy and finally forming asymmetric waveforms. The
breaking event of ISWs is mostly caused by Kelvin-Helmholtz
instability and convective overturn in the steep rear edge, forming
the breaking tail of the ISWs. These features are similar to
previous simulated and observed results in shelf-coastal regions
(Ostrovsky and Stepanyants, 1989; Novotryasov et al., 2015).

Dissipation of Internal Waves in the

Coastal Area

Numerical simulations suggest that large internal waves always
dissipate energy by developing a dispersive wave tail on gentle
slopes (e.g., Vlasenko and Hutter, 2002). The coastal topography
in the study region is gentle (slope angle y < 0.17°) with
small variation, and seawater stratification might be a key factor
affecting the propagation and dissipation of ISWs. Following the
ISW breaking criterion hy = hy + 10/(0.8°/y + 0.4), where hy, is
the critical water depth for solitary wave breaking (Vlasenko and
Hutter, 2002), and according to the stratification parameters of
ISW1-4 (Table 1), the critical water depth h; is approximately
17.5 m. Such a water depth is typically smaller than the water
depth (~30 m) of the study. Therefore, the prediction suggests
that stratification favors passing ISW's through the study area with
a large leading wave and dispersive trailing waves, consistent with
acoustic observations (Figure 7). The trailing waves weaken as
the ISW's propagate toward coastal water.

Strong dissipation zones could be identified as a series
of bright (white) bands in the northern part of the study
region (Figures 3, 4). However, these dissipation zones should
differ from the ISW-induced dissipation zones, although they
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highly overlap with the ISW field spatially. First, there are no  temperature close to the shore region, and a transition zone
clear frontal lines relating to the leading waves of the ISWs. between (Figure 10).

Second, the dissipation zones move eastward with a very high The dissipation zones are highly correlated with the
speed, contradicting the northwestward propagating ISWs with  temperature transition zone or the frontal zone between
quite low speeds. the northern ventilated water and southern heated water

The water masses in the coastal region are complex. They (Figures 3, 10, 11). On the L3 and L4 acoustic backscatter
include solar-heated SCS water in the south, eastward drifting sections, the scattering feature has been intensified even before
river water, along coastal wind-driven currents, and coastal the arrival of ISWs (Figure 2). This region is within the
upwelling cold water. On L1 and L2 in the shallow water region, dissipation zone on the satellite images and the temperature
the acoustic backscatter images show the upper layers with transition zone on the SST image (Figures 3, 10, 11). Therefore,
substantially weak without a continuous scattering interface are a schematic model is proposed for internal wave propagation
above the lower thick strong scattering layers (Figure 2). We and dissipation in this study region (Figure 12). Far field ISWs
suggest that these phenomena were the river plumes sitting on  generated at the Luzon Strait can penetrate into the wide shelf
top of the seawater close to the river mouth side. Moreover, region because of the strong stratification caused by solar-
the SST acquired on July 18 and 19, 2020 in the northern headed surface water. Distinct dissipation processes at the trailing
SCS reveals high-temperature SCS water in the south, low waves of the ISW packets make the ISWs weaken toward the
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FIGURE 10 | The satellite-composite sea surface temperature (SST) on July 18, 2020 (A) and July 19, 2020 (B) indicates that the study area was influenced by
coastal cold water upwelling. The black lines with half ticks represent the transition zone (30.1°C < SST < 30.2°C) and upwelling zone (SST < 30.1°C). The white
lines denote the acoustic backscatter survey lines.
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FIGURE 11 | The satellite-composite sea surface temperature (SST) in the study area on July 11, 2020 (A) and July 16, 2020 (C). Satellite images of the surface
roughness acquired by MODIS Aqua and VIIRS Suomi NPP at 05:25 UTC on July 11, 2020 (B) and 05:18 UTC on July 16, 2020 (D). Comparisons of SST images
and satellite images on the same day show that the strong ISW dissipation zones (white wave crests) coincided with the transition zone of the upwelling region
(30.1°C < SST < 30.2°C).
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FIGURE 12 | Schematic diagram describing the propagation and dissipation
processes of the ISWs. The ISWs on the continental shelf of the northern SCS
are generated in the Luzon Strait and northern SCS shelf. The dissipation and
evolution of ISWs couple multiple mechanisms among river plume dispersal,
upwelling mixing, and wind-driven currents.

shoreward region. These ISWss finally disappear before entering
the upwelling cold water, as their stratification does not support
ISW transmission. The surface dissipation patches are near-
surface internal wave breaks induced by the wind force. Their
occurrences show a quick response to the wind force along the
frontal instability zone.

Offshore Engineering Implications

Our study area is offshore of the Guangdong-Hong Kong-Macao
Greater Bay Area. It is one of the most developed areas in
China. There are numerous near-shore artificial facilities in the
study area, such as wind power facilities, cross-sea bridges, oil
platforms, and submarine cables. Large amplitude ISW's can lead
to strong horizontal and vertical currents in the ocean. A few
studies have been carried out to evaluate the impact induced by
strong waves on offshore structures (e.g., Cai et al., 2006). This
study shows that the duration of ISWs is a few minutes, and the
vertical displacements and vertical velocities are on the order of
~10 m and 10 cm/s, respectively. For example, ISWs recorded
that the vertical displacement was up to 20 m at a period of
~6-8 h at station ZH]J2 (Figure 1; Lee et al., 2021).

During the cruise, a high-resolution multichannel streamer,
which is geophysical equipment used in near-surface engineering
surveys, was deployed simultaneously with acoustic backscatter.
Due to the lack of depth controlling units, the streamer went
through strong vertical movements induced by ISWs, resulting
in apparent undulating topography waves of ~500 m wavelength
and ~2-4 m amplitude. Tang et al. (2015) have also reported
that the streamer with depth controlling units was uplifted to
the surface by the ISWs for ~20 min (~3 km) in NE SCS. In
addition, offshore engineering vessel operations, such as dynamic
positioning and drilling, are often influenced by ISWs.

Artificial facility safety is sensitive to sediment siltation or
erosion on the seafloor. ISWs can give rise to remarkable
interactions between the seafloor and ocean currents in a
relatively short time (Apel et al., 2007; Huang et al., 2016). The
total amount of sediments resuspended by the ISWs is 2.7 times

that of the sediments supplied by the river in the northern
SCS (Jia et al, 2019). The suspended sediments diffuse along
the isopycnals and redeposit in a different area depending on
sediment grain sizes and ocean currents (Tian et al., 2019a,b).
Acoustic backscatter data have shown that ISWs induce large-
scale sediment resuspension offshore of Guangdong. Therefore,
ISWs combining coastal currents may have potential harm to
offshore engineering structures by inducing large-scale sediment
siltation or erosion.

CONCLUSION

We analyzed the ISWs in shallow water offshore Guangdong
Province using acoustic backscatter data in combination with
satellite and hydrographic data that were simultaneously
collected in July 2020. The satellite images show that the ISWs
in coastal areas originate from the Luzon Strait. Four large-
scale ISW packets were encountered during the survey cruise
at a water depth of 20-50 m. A soliton train with apparent
vertical and horizontal scales of ~7 and 100 m, respectively,
was captured three times in 20 h on the repeating acoustic
sections (ISW1, ISW2, and ISW3). Another soliton train (ISW4)
with a more complex and stronger amplitude (~13.3 m) was
captured on both satellite and acoustic backscatter data. The
phase speeds (0.4-0.5 m/s) and waveshapes (e.g., half-wave width
60-140 m) of ISWs measured from acoustic data agree with the
results derived using a theoretical two-layer model of the KdV
and eKdV equations.

The water column structures revealed by acoustic backscatter
data and XBT profiles are consistent with each other, with a
small difference of fewer than 3 m. The shallow mixed layer
depth (~10-20 m) in summer is responsible for the extensive
occurrence of ISWs in the study region. The temperature
transition zone between the solar-heated SCS water in the
south and the upwelling cold water near the coast might be a
hydrographic front zone, where strong dissipation is prone to
occur for both ISWs and wind-induced near-surface waves.
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Ocean submesoscale dynamics are thought to play a key role in both the climate system
and ocean productivity, however, subsurface observations at these scales remain rare.
Seismic oceanography, an established acoustic imaging method, provides a unique tool
for capturing oceanic structure throughout the water column with spatial resolutions of
tens of meters. A drawback to the seismic method is that temperature and salinity
are not measured directly, limiting the quantitative interpretation of imaged features.
The Markov Chain Monte Carlo (MCMC) inversion approach has been used to invert
for temperature and salinity from seismic data, with spatially quantified uncertainties.
However, the requisite prior model used in previous studies relied upon highly
continuous acoustic reflection horizons rarely present in real oceanic environments due
to instabilities and turbulence. Here we adapt the MCMC inversion approach with an
iteratively updated prior model based on hydrographic data, sidestepping the necessity
of continuous reflection horizons. Furthermore, uncertainties introduced by the starting
model thermohaline fields as well as those from the MCMC inversion itself are accounted
for. The impact on uncertainties of varying the resolution of hydrographic data used to
produce the inversion starting model is also investigated. The inversion is applied to
a mid-depth Mediterranean water eddy (or meddy) captured with seismic imaging in
the Gulf of Cadiz in 2007. The meddy boundary exhibits regions of disrupted seismic
reflectivity and rapid horizontal changes of temperature and salinity. Inverted temperature
and salinity values typically have uncertainties of 0.16°C and 0.055 psu, respectively,
and agree well with direct measurements. Uncertainties of inverted results are found
to be highly dependent on the resolution of the hydrographic data used to produce
the prior model, particularly in regions where background temperature and salinity vary
rapidly, such as at the edge of the meddy. This further advancement of inversion
techniques to extract temperature and salinity from seismic data will help expand the
use of ocean acoustics for understanding the mesoscale to finescale structure of the
interior ocean.

Keywords: oceanography, seismic, eddy, inversion, Mediterranean, acoustic, Bayesian, thermohaline
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INTRODUCTION

Mediterranean water eddies, or “meddies,” are anti-cyclonically
rotating, sub-surface lenses of warm, salty water formed
where the Mediterranean Sea outflows into the Atlantic
Ocean (e.g., Richardson et al., 2000). They are thought
to separate from the Mediterranean Undercurrent as it
interacts with topographic features such as canyons along
the Iberian continental margin (Serra et al., 2005). Meddies
are typically 20-100 km in diameter, have rotation periods
of a few days, and have cores that are 500-1,000 m thick
centered near 1,200 m depth (Armi and Zenk, 1984; Prater
and Sanford, 1994; Richardson et al, 2000). Meddies carry
waters with temperatures of 11.5-13.5°C and salinities
36.2-36.8 within their cores (Armi and Zenk, 1984; Schultz-
Tokos and Rossby, 1991; Pingree and Le Cann, 1993; Prater
and Sanford, 1994; Richardson et al, 2000; Paillet et al.,
2002; Carton et al, 2010). With 15-20 Meddies produced
annually, meddies transport most of the Mediterranean
outflow into the wider Atlantic Ocean (Bower et al., 1997;
Richardson et al., 2000).

While the cores of meddies are largely homogeneous,
high gradients of temperature and salinity, with interleaving,
thermohaline intrusions and “layering” are commonly found
at the meddy periphery (Armi and Zenk, 1984; Ruddick,
1992; Ménesguen et al, 2009; Pinheiro et al., 2010; Biescas
et al,, 2014). These layering structures typically have vertical
scales of 20-75 m and are thought to be generated by
both stirring and double diffusive processes (Ruddick and
Hebert, 1988; Pinheiro et al., 2010; Song et al., 2011; Meunier
et al, 2015). Such finescale layering formations likely play
a key role in the eventual disintegration of the meddy
through the shedding and mixing of their Mediterranean-
water core to the surrounding cooler, fresher Atlantic waters
(Armi et al, 1989; Hebert et al., 1990; Song et al., 2011;
Hua et al, 2013; Meunier et al, 2015). Meddies are also
known to decay through collision with seamounts (Schultz
Tokos et al., 1994; Richardson et al., 2000). Accounting for
these various mixing and decay processes, meddies typically
last 1-5 years. With translation speeds of a few cm/s,
typically south-westward, they can transport Mediterranean
water more than a thousand kilometers from its source
(Richardson et al., 2000).

Seismic oceanography has been used to image the finescale
to submesoscale structures associated with meddies, aiding
understanding of the important role that they play in the
redistribution of heat and salt across the North Atlantic (Wang
and Dewar, 2003; Biescas et al., 2008; Ménesguen et al., 2009;
Papenberg et al., 2010; McWilliams, 2016). Seismic oceanography
is a widely used technique that utilizes acoustic energy (of
typically 20-200 Hz) reflected at temperature and salinity changes
within the water column (Holbrook et al., 2003; Ruddick et al.,
2009; Sallares et al.,, 2009). Resultant acoustic images display
oceanic structure with vertical and horizontal resolutions of
order ten meters, over regions tens of km long and to full
depth (e.g., Sheen et al, 2012; Gunn et al,, 2020). Physical
phenomena such as internal waves, heat fluxes and turbulent

mixing can be quantitatively estimated by interpreting the
spatial structure of reflectors, which are often assumed to
follow isopycnals (Sheen et al., 2009; Papenberg et al.,, 2010;
Fortin et al, 2016, 2017; Sallarés et al, 2016; Dickinson
et al., 2017; Gunn et al., 2018, 2020). Seismic ocean data
essentially captures the relative strength of the thermohaline
stratification but does not explicitly measure absolute values
of temperature, salinity or density. As such the ability to
interpret and quantitatively assess many of the fascinating
structures imaged is limited. Seismic inversion techniques which
produce high resolution temperature and salinity fields with
quantified uncertainties are required and could represent a
step-change in our ability to observe the sub-surface ocean on
sufficient spatial scales.

Various different strategies have been applied to solve the
ocean seismic inversion problem including both full waveform
inversion and the inversion of temperature and salinity from
acoustic impedance calculated from reflection amplitudes and
hydrographic data (Wood et al, 2008; Papenberg et al,
2010; Kormann et al, 2011; Bornstein et al., 2013; Biescas
et al, 2014; Padhi et al., 2015; Dagnino et al., 2016). The
accuracy of inverted temperature and salinity values are typically
estimated by comparison to “co-located” hydrographic data such
as conductivity-temperature-depth (CTD) casts or expendable
bathymetry (XBT) data. This approach to estimating the
inversion uncertainty, however, does not account for a time
or depth shift between CTD/XBT and seismic data. As such
Tang et al. (2016) developed a Bayesian Markov Chain Monte
Carlo (MCMC) inversion technique. In this Bayesian approach,
the uncertainty of inverted temperature and salinity values are
assessed by how well a distribution of possible solutions fit
the observed seismic acoustic reflectivity. However, due to the
band-limited nature of seismic data, which fails to capture
the background thermohaline structure (i.e., scales greater
than ~100 m), the MCMC approach only encompasses the
uncertainty of the high frequency temperature and salinity
variability. The MCMC approach therefore requires an accurate
background temperature-salinity starting model to provide
information about the larger scale background variability. Tang
et al. (2016) found that a starting model produced from
available hydrographic (i.e., XBT cast) data did not capture
enough of the horizontal variability to successfully recover
thermohaline fields using the MCMC approach. However,
by applying the MCMC method to the specific case of an
internal solitary wave, Tang et al. (2016) were instead able
to exploit the highly continuous nature of the internal wave
reflection horizons to produce an initial model with sufficient
horizontal resolution: the undulating seismic reflection horizons
associated with the solitary internal wave were treated as
isothermals/isohalines and used to characterize the finer scale
horizontal temperature and salinity variability in between XBT
casts. However, the internal solitary wave is a rather unique
situation: firstly, it is not always possible to assume that
reflection horizons follow isothermals or isopycnals (Biescas
et al., 2014); secondly, reflection horizons are typically highly
discontinuous due to complex water structures, instabilities,
or unstable seismic acquisition conditions and noise. To
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enable the MCMC inversion technique to be applied more
ubiquitously across seismic datasets, here a spatially iterative
MCMC inversion approach is developed which allows the
accurate inversion of temperature and salinity from a prior
model built from XBT data alone. The uncertainty associated
with the low frequency starting model is assessed and
incorporated into final inverted confidence limits, alongside
the dependence on the sampling resolution of the input
hydrographic data.

This study focuses on seismic oceanographic data collected
by the Geophysical Oceanography (GO) research survey in 2007
(Hobbs, 2007). The seismic data are unique as XBT casts were
deployed at unusually high spatial resolutions during seismic
acquisition (e.g., typically every 2 km). These data are therefore
ideal for investigating the influence of prior model resolution
on inversion results and providing a comprehensive dataset with
which to compare inverted values. Furthermore, the GO survey
focused on imaging sub-surface meddies, which typically display
rapidly changing temperatures and salinities and disrupted
reflectivity at their boundaries (Biescas et al., 2008; Ménesguen

et al,, 2009). These data thus provide a challenging environment
with which to test the inversion.

MATERIALS AND METHODS

Data Acquisition and Processing

The seismic transect analyzed here, GOLR12, was acquired
between 09:37 and 17:45 on the 7th May 2007, in the Gulf
of Cadiz (Figure 1). Data were acquired as part of the
Geophysical Oceanography (GO) cruise number D318b on the
RRS Discovery. The seismic source consisted of six Bolt 1500LL
airguns with a usable bandwidth of 5-70 Hz. The source array
was shot every 20 s and the acoustic reflection energy was
recorded using a 2,400 m long SERCEL streamer with 192
channels and 12.5 m group spacing. Standard signal processing
was carried out with particular attention to retaining true
reflection amplitudes, paramount for later inversion. Seismic
data processing included: (1) Geometry setting; (2) Removal of
direct waves using an eigenvector filter applied to the raw shot
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gathers (Jones and Levy, 1987); (3) Incident angle, directivity
and spherical divergence corrections; (4) Noise attenuation
by applying a Butterworth band pass filter of 10-80 Hz to
shot gathers and compressing traces of anomalous amplitudes;
(5) Common midpoint (CMP) sorting; (6) Velocity picking
performed every 100 CMPs; (7) Source deconvolution: a reweight
deconvolution strategy (Sacchi, 1997) was applied to extract the
reflectivity from stacked seismic sections basing on the source
wavelet, which was modeled from the source array geometry
and airgun volumes using the Nucleus+ software; (8) Amplitude
calibration using the seafloor reflection and its first multiple
(Warner, 1990); (9) Conversion from two-way travel time to
depth using sound velocity derived from XBT data. The final
stacked section is shown in Figure 2A. The same seismic line
(GOLR12) is used to invert the temperature and salinity by
Papenberg et al. (2010).

Hydrographic data was collected by two ships: the
RSS Discovery and the FS Poseidon. In total, twenty-four
expendable bathythermographs (XBTs) and one expendable
conductivity/temperature profiler (XCTD) were deployed from
the RSS Discovery coincident with seismic data acquisition
(Figure 1). XBTs were deployed approximately every 2.3 km
reaching a depth of 1,830 m. Three CTDs were deployed by the
FS Poseidon, along the seismic transect a few hours before or
after seismic acquisition. Using the neural network approach
of Ballabrera-Poy et al. (2009), the CTD data allowed for the
estimation of salinity from XBT data. 70% of the CTD data were
used as training data, 15% as validation data and 15% as testing
data. Using only CTD data coincident with the seismic line (as
opposed to all 43 CTD casts collected on the GO cruise) produced
lower errors in the derived salinity values, likely because the
local depth-temperature-salinity relationship associated with
the meddy was better represented. Low frequency interpolated
temperature and salinity sections are shown in Figure 2: these
were used to form the prior model for the MCMC inversion.

Markov Chain Monte Carlo Inversion

Following Tang et al. (2016), a Bayesian Markov Chain Monte
Carlo (MCMC) approach is used to recover temperature and
salinity fields from the seismic data, alongside their probability
distributions (i.e., the posterior distribution), at the resolution
of the seismic image [i.e., O(10 m)]. In this approach, a
probability distribution associated with a prior model is used to
iteratively randomly draw N solutions at each inversion point.
A likelihood function determines how well each random sample
fits the observed data (i.e., seismic reflectivity), and whether
to accept or reject the solution. After a sufficient number of
iterations (i.e., the “burn-in” period) the posterior distribution
converges and fluctuates within a given range. The mean and
standard deviation of the posterior distribution, with burn-in-
period removed, are used to estimate the final temperature
and salinity, and their associated uncertainties (Gamerman and
Lopes, 2006). Here, the inversion was conducted on reflectivity
values and performed at every seismic reflectivity profile or
common midpoint (CMP) and depth coordinate across the
seismic section. The Markov chain length, N, was set to 2,000
and the first %N iterations discarded as burn-in iterations. The
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FIGURE 2 | (A) Seismic section of the GOLR12 dataset. Red and blue lines
represent reflection horizons caused by temperature and salinity changes in
the water column. White (black) dots = 24 XBT (1 XCTD) casts deployed
coincident with seismic acquisition; blue stars = 3 CTD casts deployed before
and after the seismic survey. (B) Low frequency temperature section built from
interpolation of XBT data. A linear interpolation was used with a vertical
smoothing (moving average) of 35 m. (C) Low frequency salinity section built
from interpolation of salinity estimated from XBT and CTD data following
Ballabrera-Poy et al. (2009). Panels (B,C) form the prior model for the MCMC
inversion. Note positions of XBT 4 and XBT 8 are indicated on panel (B) (see

section “Comparing Inverted Results to Observations”).

likelihood function of reflectivity, R given the model, m was
computed as

L (m | R(CMP, d))

{Rops (CMP, d) — Ryyeq (CMP, d)}z]
2

s

20,
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where R, (CMP, d) and Ry,s(CMP, d) represent the measured
and predicted reflectivity data at each CMP and depth, and
o, is the measured data uncertainty. R,,s was computed by
summing the high frequency component of the reflectivity,
Rhigh_freq_seismic> obtained from the seismic data (band-pass
filtered to 10-80 Hz), with the low frequency component
(<10 Hz, Ry freq xpr) deduced using XBT interpolated
temperature and salinity fields (Figure 2) following Biescas
et al. (2014). As such Rpps = Rhigh_freq_seismic + Riow_freq XBT-
Ryred (CMP, d) was computed from the vertical profile of the
starting model (Rjpy, freq xpT), but with the temperature or
salinity value at depth, d, sampled from a prior distribution.
This prior distribution was obtained using the standard
deviation of starting model temperature and salinity values
within a vertical 40 m window of d (i.e., the vertical spatial
resolution, Ly ~ 40 m, corresponds to a frequency, f, of
10 Hz following L, = c¢/4f,, where ¢ = 1,500 ms~! is
the sound speed (Sheriff and Geldart, 1995). o, was estimated
as 7.06 x 107° the ambient seismic noise calculated as
the standard deviation of seismic reflectivity within an area

beneath the meddy where there are no strong seismic
reflections. The ambient noise was found to follow a normal
distribution. See Tang et al. (2016) for further details of
inversion procedures.

Iteratively Improving the Prior Model

As shown later, the success of the MCMC inversion is highly
reliant on the accuracy of the low frequency component of the
prior model, Rjyy, freq xpr- A similar conclusion was noted by
Tang et al. (2016). To improve the start temperature-salinity
model for the inversion, we investigated iteratively updating
the prior model at each inverted common mid-point (CMP),
using previous inverted results. The seismic survey was broken
up into “inversion units,” defined by XBT locations such that
each unit was bordered by an XBT profile (XBT; and XBTj;)
with Ny CMPs, or seismic reflectivity profiles, in between.
For each inversion unit, the MCMC inversion process was
started at the CMP closest to XBT; (i.e., CMP 1), with the
prior model computed by linearly interpolating data from XBT;
and XBTj;. Inverted temperatures and salinities at CMP 1

XBT, CMP, CMP, CMP, CMP,_  XBT,

CMP

ns  XBTy

XBT, CMP,

FIGURE 3 | Schematic of inversion unit and iterative MCMC approach. Black dots indicate XBT positions that bound the inversion unit (XBT; and XBTj). Solid black
lines represent the prior temperature-depth model as a function of depth. Red dots represent positions of Ns seismic CMPs, and red wiggles show associated
seismic reflectivity depth profiles used in inversion. Dashed lines represent newly inverted temperature-depth profiles. (A) Starting data within inversion unit. (B) CMP
1 is inverted using prior model from XBT data. (C) Inverted data from CMP 1 is used to update the prior model. CMP Ns is inverted. (D) Inversion from CMP Ns is
used to update prior model, and CMP 2 is inverted. The process is repeated for CMP Ns-2...CMP 3. .. until the whole inversion section has been processed.
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XBT, CMP, CMP,

Frontiers in Marine Science | www.frontiersin.org

103

December 2021 | Volume 8 | Article 734125


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Xiao et al.

MCMC Inversion of Mediterranean Eddy

were then combined with XBT; and XBTj;, to produce a new
prior model. The updated prior model was used for the next
CMP inversion, which was conducted at the CMP closest to
XBT;; (i.e., CMP N;). The process was repeated at CMP 2,
CMP N; -1, CMP 3, CMP N;-2..., until the whole unit had
been inverted: see Figure 3 for a schematic. Inverted results
were not incorporated into the prior model if an associated
posterior uncertainty anomaly (i.e., compared to a depth moving
average of 100 m) was above a chosen threshold of 0.04°C. At
each inversion step therefore, the prior model was iteratively
updated to incorporate both the hydrographic data and previous
inversion results. Recovered temperatures and salinities using the
iteratively updated prior model were compared to those using a
stationary prior model.

Uncertainty Estimation

Uncertainties introduced to the high-frequency component of
the recovered temperature and salinity fields by noise in the
seismic data and any mis-alignment of XBT data is accounted
for in calculating the standard deviation of the posterior MCMC
distribution (Tang et al., 2016). Contamination to the reflectivity
field associated with the ringyness of the seismic source and
other receiver responses has been minimized by performing a
deconvolution on the seismic data using the source wavelet.
In this study we also quantify the uncertainty introduced by
inaccuracies in the low frequency starting temperature and
salinity models. Firstly, the error associated with the estimation
of the salinity from XBT temperature data using the non-
linear approach of Ballabrera-Poy et al. (2009) was evaluated
by applying the technique to CTD-based temperatures. The
RMS error between estimated and measured salinities was
computed for the 15% of CTD data not used in the model
training (with CTD data recorded every 1 m this equates to a
total of 6,090 data points, with 914 used for validation). The
RMS salinity error was found to obey a normal distribution
from which the standard deviation was used to compute the
uncertainty. Secondly, errors introduced as a result of the
interpolation of XBT data were considered. Starting models
were recomputed using 12, 7, 5, and 4 XBTs, corresponding to
typical XBT spacings of 4.6 km, 9.1 km, 13.6 km and 18.2 km,
respectively. The distribution of RMS errors between the starting
model temperature and salinities, and those measured from
the removed XBTs were used to estimate the interpolation
uncertainty for different XBT spacings (ie., the standard
deviation of the error distribution which was found to follow
a normal distribution). For the case of all 24 XBTs (spacing
of ~2.3 km), the error distribution was computed using half
the difference of XBT neighboring pairs. We note that the
position of reflectors can get distorted and reflection amplitudes
weakened by moving water effects (Klaeschen et al, 2009;
Vsemirnova et al, 2009; Papenberg et al, 2010). Maximum
current velocities in the survey region were ~0.4 ms~! and
hence uncertainties associated with moving water to the inverted
fields are likely small compared to other uncertainty sources
(Papenberg et al., 2010). A summary of the inversion process,
along with sources of uncertainties, is shown schematically
in Figure 4.

RESULTS

Markov Chain Monte Carlo Inversion of

the Seismic Section

The final recovered temperature and salinity fields, alongside
computed potential densities, for the meddy are shown in
Figure 5. The meddy shows a distinctive lens-shaped core of
warm (~12.5°C), salty (~36.7 psu) water between 650 and
1,500 m depth. The meddy core temperature drops smoothly
with depth, while salinities appear slightly greater at the core
center. Overall the core is stably stratified. Layering filament
features with vertical scales of typically 30 m surround the
meddy core, where the velocity shear is likely greatest (e.g.,
Armi et al,, 1989). These thermohaline intrusions are more
continuous and distinct at the top of the meddy, where they
encompass a region of roughly 300 m depth. On the western
boundary of the meddy the finescale structures become more
disrupted and the erosion of the meddy through mixing with
cooler, fresher north Atlantic water is apparent. Fewer filaments
are present on the lower surface of the meddy. The dynamics
of these imaged thermohaline intrusions and their variability
around the meddy core will be investigated in further studies.
On the northeast of the section, along the upper edge of the
meddy, there is one reflection horizon with anomalously low
temperatures, high salinities and unstable density: this region
should be interpreted with caution due to the high posterior
MCMC inversion uncertainties here (see section “Markov Chain
Monte Carlo Inversion Uncertainties”).

Figure 6 shows an example of the MCMC inversion process at
539 m depth for CMP 2300 (i.e., a transect distance of 8.1 km),
located at the midpoint of an inversion unit. The temperature
and salinity decrease steadily in the first 300 inversion iterations
before stabilizing after about iteration 600 (the “burn-in” period).
Comparison of prior and posterior distributions show the
reduced uncertainty in inverted compared to initial model
temperatures and salinities, with the mean temperature and
salinity dropping from 11.6 to 11.4°C and from 35.73 to 35.68 psu
after the MCMC inversion.

Markov Chain Monte Carlo Inversion
Uncertainties

One of the developments to previous inversions of the GO
project meddies [e.g., see Papenberg et al. (2010) and Biescas
et al. (2014)] presented here is that the Bayesian framework
of the MCMC inversion allows for the posterior uncertainty
at each inversion point to be computed and thus the spatial
distribution of recovered temperature and salinity uncertainties
analyzed. While MCMC posterior distribution uncertainties
vary spatially, section averaged uncertainties are used for the
uncertainty associated with interpolation of the prior model,
and the error associated with estimating salinity from XBT
data (see Table 1). The final section uncertainty is shown in
Figure 7. Maximum uncertainties of the recovered temperature
and salinity are 0.28°C and 0.12 psu, respectively. Regions of
higher reflectivity at the meddy boundary tend to correspond
to higher uncertainties. Despite the higher signal to noise ratio
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in these regions, MCMC posterior distribution uncertainties
increase due to higher thermohaline variability (Tang et al,
2016). In particular, a short band of high uncertainties most
notable in the salinity field is found on the northeastern upper
meddy boundary. These high uncertainties are associated with
one reflection horizon and indicate the MCMC inversion did
not perform as well here, likely due to the high variability in the
temperature and salinity at the edge of the meddy and associated

disruptions to the reflectivity. Uncertainties in the meddy core
are typically 0.15°C and 0.06 psu.

Table 1 summarizes the inversion uncertainties averaged
across the seismic section associated with the MCMC posterior
distribution, the interpolation used to produce the starting
model, and the estimation of salinity from XBT data using
the neural network fitting approach. The error associated with
the interpolation of the hydrographic data to produce the low
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TABLE 1 | Uncertainties across the seismic section for an MCMC inverted
temperatures and salinities with all 24 XBTs used to produce the prior model
which is iteratively updated with inversion results.

Interpolation MCMC T-S model Overall
posterior salinity
Temperature, °C 0.14 0.02 - 0.16
Salinity, psu 0.040 0.005 0.010 0.055

MCMC posterior uncertainty is the average of spatially varying posterior
distribution uncertainties. The bold values are the sum of all uncertainties.

frequency prior model dominates the total uncertainty as also
found by Biescas et al. (2014). For example, when all 24 XBTs are
used to compute the starting model, 88% of the total temperature
uncertainty is due to errors associated with the low frequency
starting model. The error associated with estimating salinity from
XBT data makes up roughly 18% of the total salinity uncertainty.
The impact of reduced XBT sampling on recovered temperature
and salinity uncertainties is shown in Figure 8.

Comparing Inverted Results to
Observations

To evaluate results, measured XBT data were compared with
inverted values: the inversion was re-run with every other
XBT removed, for independent validation of inverted results.
Here we show validation examples from two locations on the

seismic section: XBT 4, located to the west of the meddy,
and XBT 8 which was deployed at the edge of the meddy
where horizontally the temperature changes rapidly (see Figure 2
for XBT locations). Results are shown in Figure 9. Outside
the meddy (XBT 4) measured and inverted temperatures and
salinities are extremely well matched, with RMS error standard
deviations for temperature and salinity of 0.14°C and 0.04 psu,
respectively. However, the quality of the initial model degrades
significantly in regions of rapid temperature or salinity change
after removing half of the XBTs. At the meddy edge (XBT 8)
inverted temperatures differ from XBT data by more than 1°C
at some depths, such as between 1,000 and 1,200 m. The MCMC
was found to converge in this region, and the signal-to-noise of
the seismic data here is not unusually low. As such it is likely
the inaccuracy of the initial model that has resulted in these
poor inversion results (Figures 9E-H). Considering the reduced
uncertainty associated with increased XBT sampling (Figure 8),
inversion results are likely much better at XBT 8 for the case
where all 24 XBTs are utilized. An appropriately sampled low
frequency prior model is key for accurate inversion results.

Comparing an Iteratively Updated to a
Stationary Prior Model in the Markov

Chain Monte Carlo Inversion
Alongside improving the uncertainty estimates of inverted
temperature and salinity fields, we have also built on the
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MCMC inversion methods developed by Tang et al. (2016)
by iteratively updating the prior model at each step of the
inversion (see section “Materials and Methods”). Comparison
of inverted temperature and salinity uncertainties using an
iteratively updated prior model to a stationary prior model are
shown in Figure 10. Although the prior uncertainties of the
two methods are similar, posterior distribution uncertainties
(i.e., as computed from the MCMC process) are reduced
in the iterative approach. In particular, the more extreme
MCMC uncertainties are reduced in the iterative approach
as shown by the smaller tails in the uncertainty distributions
(Figure 10). The mean posterior temperature and salinity
uncertainties using the stationary prior model method are
0.03°C and 0.008 psu compared to 0.02°C and 0.005 psu for

the iteratively updated model, implying that inverted results
are closer to the field data if an iterative prior model is
used. Differences in inverted fields between a stationary and
iteratively updated prior model become most apparent when
a lower resolution starting model is used with reduced XBTs
(as is the case in many seismic oceanographic datasets), as
shown in Figure 11. Here MCMC inverted temperatures for
a region at the edge of the meddy using a prior model
with a reduced XBT spacing of ~30 km are shown, using
both a traditional stationary prior model and an iteratively
updated prior model. Note that apart from the uncertainty
analysis, the stationary MCMC approach is essentially equivalent
to the conventional linearized inversion approach as used
by Papenberg et al. (2010) and Biescas et al. (2014). Both
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inversion approaches are compared to the high-resolution
temperature field constructed from all XBTs (ie., with a
spacing of approximately 2 km). The temperature field from
the stationary method is found to vary little from the prior
model, and displays a far more coherent horizontal structure
when compared with both the iterative approach and high-
resolution XBT section (for example along the top in the region
at depths 600-800 m and transect distance 28-37 km). The
stationary prior model inversion thus appears to be highly
constrained to the interpolated background starting model.
Iteratively updating the prior model with previous inversion
results overcomes this constraint, and in many places results
in a more representative temperature inversion that reflects the
horizontal variability and complexity at the edge of the meddy
better. However, we note that there are some regions where
the non-stationary approach matches the high-resolution XBT
data better, such as just outside the meddy core (e.g., depths
1,200-1,350 m; transect distance 13-20 km) and we find that
the mean absolute difference between the inverted results and
the high-resolution temperature section for both approaches are
comparable. In conclusion, an iterative MCMC approach reduces
posterior uncertainties and removes contamination from linear
interpolation of the start model, but a high-resolution prior
model is still key for reconstructing detailed temperature and
salinity fields.

DISCUSSION AND CONCLUSION

The Bayesian MCMC approach has been applied to a seismic
oceanographic dataset to recover the temperature and salinity
of a meddy, with lateral and vertical resolutions of O(10 m).
A typical meddy with a stably stratified core of 12.5°C and
36.7 psu, and complex layering and finestructure at the meddy

periphery is imaged. Uncertainties in the inverted temperature
and salinity results are estimated as 0.16°C and 0.055 psu,
respectively. Whilst on face value these uncertainties appear
higher than other inversion studies e.g., Papenberg et al
(2010), Biescas et al. (2014) and Tang et al. (2016), here the
inclusion of uncertainties associated with both the high frequency
and low frequency data components reflect more realistic
confidence intervals in recovered temperature and salinity values.
Furthermore, the use of the Bayesian MCMC approach has
allowed the spatial variability of uncertainties across the meddy
to be quantified.

In addition to improved uncertainty analysis, we also
investigated the impact of iteratively updating the prior model
used in the inversion with previous inverted results, such
that MCMC inversion approaches can be used on seismic
datasets that may not have coincident high-resolution XBT
data [e.g., as in Papenberg et al. (2010) and Biescas et al.
(2014)], or continuous reflections as in Tang et al. (2016).
The iterative approach is found to both reduce inversion
uncertainties and reduce artifacts introduced into the prior
model by the interpolation of XBTs. Overall, the iterative
MCMC inversion better represents the complex horizontal
structure as found around the meddy. However, it should
be emphasized that the improvements associated with the
iterative approach are secondary to the impact of using a
starting model of appropriate resolution: by quantifying and
comparing the contribution of uncertainties from different
sources we find that the main contributor to the final uncertainty
is the low frequency start model as derived from the XBT
interpolation. For example, a starting model based on XBT
spaced at ~ 2 km reduces uncertainties in inverted temperature
and salinities by 0.16°C and 0.04 psu, respectively, compared
to a starting model with XBTs spaced at roughly 18 km. By
comparison uncertainties associated with the MCMC inversion
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of the high-frequency information contained within the seismic
data are much smaller, being 0.02°C and 0.005 psu. In
conclusion, although the iterative MCMC improves inverted
results, an accurate starting model is crucial for reducing the
final inversion uncertainty particularly in highly heterogeneous
regions such as sub-surface eddies. Other inversion studies also
note the necessity of accurate reference models (Biescas et al.,
2014; Dagnino et al., 2016; Tang et al, 2016). As such we
strongly recommend that high-resolution XBT deployments,
ideally deployed every few km, are conducted alongside future
seismic studies.

For analysis of legacy data sets lacking coincident, high
resolution hydrographic data, or seismic horizons that are
not continuous enough to extend prior models as achieved

by Tang et al. (2016), other approaches must be adopted
to produce spatially improved starting models. One option
may be to adopt the method used by Gunn et al. (2018),
whereby low resolution temperature fields were extracted from
seismic data using the RMS sound velocity picked during
velocity analysis of prestack seismic data. This approach could
enable the inversion of temperature and salinity fields from
seismic data without the need for coincident hydrographic data,
useful for analyzing legacy seismic datasets as collected by
the hydrocarbon industry. Alternatively, the MCMC inversion
approach could be combined with full waveform inversion
techniques which despite being computationally expensive
are applied directly to pre-stack data, avoiding assumptions
associated with seismic stacking techniques and deconvolution
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(Wood et al., 2008; Dagnino et al., 2016). Furthermore, the
combination of MCMC inverted seismic oceanographic field
studies, as demonstrated here, with coincident data from
underwater autonomous vehicles would provide a complete
picture of finescale to mesoscale structures. Seismic experimental
set up also impacts the final resolution of inversion results
(Hobbs et al., 2009).

This work contributes to the growing approaches to extracting
temperature and salinity data from marine seismic surveys, key

to understanding finescale and submesoscale oceanic structure
and how they relate to larger scale (mesoscale) dynamics. The
temperature and salinity fields of the meddy presented here are
of high enough resolution and accuracy to be used for further
dynamical analysis, such estimating isopycnal displacements
and dissipation levels (Sheen et al, 2009; Dickinson et al,
2017) and using spice anomalies to diagnose lateral stirring
mechanisms (Klymak et al., 2015). Such data will ultimately
improve our understanding of the role that sub-surface eddies
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play in the distribution of heat, salt, nutrients and other tracers
within the ocean.
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We investigate the spatial distribution of diapycnal mixing and its drivers in the
central South Atlantic thermocline between the Rio-Grande Rise to the Mid-Atlantic
Ridge. Diapycnal mixing in the ocean interior influences the slowly evolving meridional
circulation, yet there are few observations of its variability with space and time or its
drivers. To overcome this gap, seismic reflection data are spectrally analyzed to produce
a 1,600 km long full-thermocline vertical section of diapycnal diffusivity, that has a vertical
and horizontal resolution of O(10) m and spans a period of 4 weeks. We compare
seismic-derived diffusivities with CTD-derived diffusivities and direct observations from
1996, 2003, and 2011. In the mean and on decadal scales, we find that thermocline
diffusivities have changed little in this region, retaining a background value of 1 x 107°
m? s~ . Imprinted upon the background rates, mixing is heterogeneous at mesoscales.
Enhanced mixing, exceeding 10 x 10~°m? s~ and spreading between 200 and 700 m
depth, is found above the Mid-Atlantic Ridge suggesting the ridge enhances diffusivity
by at least one order of magnitude across the entire water column. Rapid decay of
diffusivities within 30 km of the ridge implies local dissipation of tidal energy. Above
smooth topography, patches of enhanced mixing are possibly caused by a recent storm
that injects near-inertial energy into the water column and elevates mixing from 3 x 10~°
m? s~1 10 50 x 1075 m? s~ down to depths of more than 600 m. The propagation
speed of near-inertial energy varies substantially from 17 to 27 m/day. Faster speed,
and therefore greater penetration depths of 800 m, are probably facilitated by an
eddy. Together, these data extend the observational record of central South Atlantic
thermocline mixing and provide insights into drivers of mesoscale variability.

Keywords: seismic oceanography, diapycnal diffusivity, mid-ocean ridge, storm, South Atlantic

INTRODUCTION

Turbulent diapycnal mixing maintains global overturning circulation (Munk and
Wunsch, 1998). Diapycnal mixing is primarily caused by breaking of internal waves
that transfer energy from large to small scales, ultimately leading to irreversible
mixing. Understanding the spatial and temporal distribution of mixing is important in
developing ocean circulation and climate models (Harrison and Hallberg, 2008). Analytical
modeling suggests that an average diffusivity of O(10 x 107°) m? s~! is required to
maintain abyssal stratification (Munk and Wunsch, 1998), while O(1 x 107°) m? s~!
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is required in the main thermocline (Lumpkin and Speer, 2007).
However, diapycnal mixing is extremely patchy in the real world
and presents a unique observational challenge.

Enhanced mixing is mostly concentrated above rough
topography such as ridges (Polzin et al., 1997; Klymak et al,,
2006) and seamounts (Kunze and Toole, 1997), and is associated
with sustained wind input (Price et al., 1986). Barotropic tidal
energy converts to internal tide energy when it flows over
topography (Munk, 1966; Munk and Wunsch, 1998; St. Laurent
et al,, 2001) and energy input from wind propagates into the
ocean interior by generating near-inertial energy in the upper
ocean mixed layer (Gill, 1984; D’Asaro, 1985; D’Asaro et al., 1995;
Alford, 2003a). It is clear that external energy supply for the
internal wave continuum comes from tides and winds primarily.
Less is known about mixing in the ocean interior, away from
rough topography and strong coastal winds, in particular in
the central South Atlantic thermocline due to a historical lack
of observations.

Via a subtropical gyre, the South Atlantic transports surface
water equatorward to compensate the southward flow of the
North Atlantic Deep Water (Garzoli and Matano, 2011; Cabré
et al., 2019) (Figure 1 inset). Previous research in the South
Atlantic has mostly focused on low-frequency variability of its
large-scale circulation (Stramma and England, 1999; Dong et al.,
2015), or mesoscale variability near boundaries like the Brazil-
Falkland confluence (Garzoli, 1993; Valla et al, 2018). The
Brazil Basin Tracer Release Experiment (BBTRE) is the only
microstructure survey in the mid-ocean of the South Atlantic
(Polzin et al., 1997). The BBTRE collected microstructure
measurements and discovered heightened mixing throughout
much of the water column above the Mid-Atlantic Ridge (MAR).
Diffusivities exceeding 100 x 107> m? s~! were found within
150 m of the sea floor, while rates of 1 x 107> m? s™! are
found above smooth plains (Polzin et al., 1997; Ledwell et al.,
2000; St. Laurent et al., 2001). Since this experiment in the
late 1990s, there have been no further direct observations of
diffusivity above the MAR, so it is unknown if the observed
enhanced mixing rates are representative of the mean state. At
basin scales, finescale parameterization applied to Argos and
Conductivity-Temperature-Depth (CTD) probes has shown that
the distribution of mixing in the South Atlantic interior is
spatially patchy and temporally intermittent (Sloyan, 2005;
Whalen et al., 2012). However, these studies mostly focus on the
global pattern of mixing; the origin and evolution of the patchy
mixing in the quiescent mid-ocean remain unknown.

More recently, studies have shown that storms are an effective
method of wind energy injection (Dohan and Davis, 2011).
In the wake of storms, diapycnal diffusivity is enhanced by
9 x 107> m? s7! (Jing et al, 2015). Quantifying the effect
of storms on oceanic mixing is especially difficult as they are
moving, short-duration events. Conventional one-dimensional
(1ID) hydrographic measurements such as CTDs and Vertical
Microstructure Profilers (VMPs) are unlikely to capture their
effects. In particular, little is known about how storms contribute
to mixing in the quiescent ocean interior, especially in basins like
the central South Atlantic that are not covered by storm tracking
system such as NOAA. In a warming world with increasing storm

intensity (Walsh et al., 2019), it is important to develop two-
dimensional (2D) tools that can yield a deeper understanding of
the effects of storms on ocean mixing.

Seismic oceanography (SO) is a powerful tool that can be used
to overcome these observational gaps. SO provides observations
of physical processes across a horizontal length scale of ~O(10°)
m to ~O(10?) m (Ruddick, 2018). The method utilizes low
frequency (e.g., 5-120 Hz) acoustic sources and towed cable(s)
containing a dense array of hydrophones to receive acoustic
energy that is transmitted and reflected at boundaries created
by temperature and salinity differences. Nandi et al. (2004)
demonstrated that SO is able to capture temperature difference
as small as 0.03°C. Sallarés et al. (2009) further confirmed that
reflectivity has a stronger correlation with temperature than
salinity. The frequency bandwidth of the acoustic source is
capable of imaging thermohaline fine structure with lateral and
vertical resolutions on the order of 10 m, meaning that the
method is capable of mapping mesoscale structures such as
fronts, internal waves, and eddies that are always missing in
conventional hydrographic measurements. This relatively high
resolution makes SO an ideal method for turbulence mixing
analysis. Studies that calculated turbulent diffusivities from slope
spectra of seismic reflections demonstrate the suitability of the
method in exploring spatial and temporal changes of mixing
(Sheen et al.,, 2009; Fortin et al., 2016; Mojica et al., 2018; Tang
et al., 2019; Dickinson et al., 2020). The instantaneous spatial
distribution of mixing derived from seismic data represents
a near-full energy cascade from internal waves to turbulence
(Ruddick, 2018), implying the potential use of seismic derived
parameterization in future ocean models (Tang et al., 2021).
When combined with hydrographic data, seismic oceanography
studies can be used to overcome significant observational gaps.

Here, we present and analyze a ~1,600 km-long 2D seismic
transect starting from the eastern edge of the Rio Grande Rise
(RGR) to the MAR, covering one of the major pathways of
the Atlantic meridional overturning circulation (Figure 1). We
calculate diapycnal diffusivities across the thermocline using the
slope spectra method with seismic sections, as well as using
finescale parameterization with CTD and Argo data. Our primary
objective is to examine the spatial distribution of mixing in the
central South Atlantic thermocline and extend its observational
record. We also present the most likely hypotheses for drivers
of enhanced mixing. Our results extend the observational record
of diapycnal mixing in the central South Atlantic thermocline
by providing diffusivities in 2003, 2011, and 2016, and provide
further insights into the drivers of mesoscale mixing variability.

DATA AND METHODS

Seismic Data and Processing

This research uses seismic reflection data collected during the
Crustal Reflectivity Experiment Southern Transect (CREST)
experiment aboard the R/V Marcus G. Langseth (Estep et al,
2019). The primary goal of the CREST survey was to investigate
the evolution of oceanic crust at 30° S, and it spans the eastern
edge of the RGR to the MAR, including a ~1,600 km-long
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FIGURE 1 | Bathymetric map of seismic survey location. Bathymetry from the Global Multi-Resolution Topography Synthesis (Ryan et al., 2009). White

lines = seismic profiles collected between January 29 and February 14, 2016, short meridional lines mark the connection point between zonal lines; yellow

dots = CTD casts from GO-SHIP survey acquired in October 2011, yellow dots with orange/red edges correspond to orange/red profiles in Figure 2 (GO-SHIP 2003
CTDs within 0.5° of 2011 CTDs and are not shown); red dots = Argo float trajectories between January 4 and March 5, 2016, labeled a—e; green and cyan

dots = Argo floats used for mixing calculation to compare with seismic results in Figure 6. RGR, Rio-Grande Rise; MAR, Mid-Atlantic Ridge. Inset shows regional
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continuous east-west data transect (Figure 1). The transect sits
at the center of the South Atlantic subtropical gyre and provides
an opportunity to investigate the change of mesoscale mixing
processes along a significant distance in a region that contains the
returning limb of the Atlantic meridional overturning circulation
(Cabré et al., 2019).

Seismic data were collected between January and February of
2016 (Figure 4). The acoustic source was a 36 bolt air-gun array
with a total volume of 6,600 in® and 37.5 m shot spacing. Acoustic
records were collected using a 12.6 km acoustically sensitive cable
(i.e., streamer). The streamer contained 1,008 hydrophones with
12.5 m spacing. This survey design collects repeat reflections from
the same subsurface point (i.e., common mid-points, CMPs)
every 6.25 m. To ensure the maximum depth of imaging to be
more than 1,000 m, while maintaining a high signal-to-noise
ratio for turbulence analysis, we used the first 400 near-source
acoustic records.

Seismic data were processed with a standard, but adapted,
processing sequence typically used to image the solid earth
(Yilmaz, 2001): geometry definition, noise attenuation, CMP
sorting, sound speed analysis, stacking, amplitude correction,
and migration (Fortin and Holbrook, 2009; Hobbs et al., 2009).
Particular adaptations were made in the noise attenuation step
to produce a high-quality image of oceanic fine structures.
First, an eigenvector filter is applied to remove the direct
waves that overprint the first 1 s of data. Second, the relatively
small shot spacing (37.5 m) generates reverberations between
the sea surface and seafloor which share the same frequency
range with primary signals. We filter out reverberations in
the frequency-wavenumber domain based on the curvature
differences between these coherent noises and primary signals in
shot gathers. Thirdly, to reliably extract turbulent regimes from
seismic data, random noise must be attenuated, we follow the

recommendations of Holbrook et al. (2013) by applying a 30-
80 Hz band-pass filter. Lastly, shot-generated harmonic noise is
suppressed by applying a notch filter centered at harmonic spikes
(every 0.0267 cpm, cpm = cycles per meter) in the wavenumber
domain (Holbrook et al., 2013). In addition, we implement a
denoising convolutional neural network (DnCNN) to suppress
random noise after stacking. We use the recommended steps and
parameters of 17 layers and a mini-batch size of 128 (Zhang et al.,
2017; Jun et al., 2020). We train the DnCNN model for 40 epochs
and the number of iterations within each epoch is 220. After a
series of noise attenuation, the signal-to-noise ratio of the entire
seismic data increases by a factor of 6.

Seismic-Derived Diffusivities

Background

Based on the assumption that seismic reflections are a reasonable
approximation of isopycnal surfaces (Krahmann et al., 2009;
Holbrook et al., 2013), studies have shown that turbulent
diffusivity can be accurately measured from vertical displacement
spectra of tracked reflections (e.g., Figure 3A) from both the
internal wave subrange (Sheen et al., 2009; Dickinson et al., 2017)
and turbulent subrange (Holbrook et al., 2013; Fortin et al., 20165
Mojica et al., 2018; Tang et al., 2019; Gunn et al., 2021). To clearly
recognize the transition from internal wave regimes to turbulent
regimes in log-log space, the vertical displacement spectra are
multiplied by (2mk,)? to produce the slope spectra. Here we
estimate the turbulent dissipation rate ¢ through the slope spectra
method in the turbulent subrange, (pg ur via a model proposed by
Klymak and Moum (2007):

Te _1 1
= 4nm[CTs 3(27ky)3]

Turb

Pe,e (1)

Frontiers in Marine Science | www.frontiersin.org

116

January 2022 | Volume 8 | Article 771973


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Wei et al.

Topography and Wind Enhanced Mixing

A o [°C] B Sa [g/kgl c N [cph] D Sa [g/kgl
0 5 10 15 20 34.5 35.0 35.5 36.0 36.5 0 1 2 3 4 34.0 34.5 35.0 35.5 36.0 36.5
0 ey Tt . 20+ - —— .
200+ -V P
15 o
400+
E — A
= % Py
-,g_ 600+ °.10
) @
(=) >
8001 AV
5
1000+
1200 0
FIGURE 2 | Water properties from 22 GO-SHIP 2011 CTD casts (yellow dots in Figure 1). (A) Conservative temperature, ©, as a function of depth. Black
line = average profile; gray lines = individual profiles; blue patch = 95% confidence interval; and red/orange lines = average profiles of CTDs with red/orange edges
(Figure 1). (B) Absolute salinity, S4, as a function of depth. (C) Buoyancy frequency, N, as a function of depth. [cph = cycles per hour]. (D) Conservative temperature
(@) — Absolute salinity (S4) diagram. Points colored according to the water mass definition of Hernandez-Guerra et al. (2019). Orange dots = South Atlantic Central
Water (SACW); pink dots = Antarctic Intermediate water (AAIW); gray dots = Upper Circumpolar Deep Water (UCDW); blue dots = North Atlantic Deep Water
(NADW); dark blue dots = Antarctic Bottom Water (AABW). Labeled dotted lines = potential density anomaly surfaces.

where I' = 0.2 is the empirical mixing efficiency (Osborn and
Cox, 1972), N is the horizontally averaged buoyancy frequency
calculated from 22 historical CTD casts within the survey area
(Figure 2C, black line), Cr = 0.4 is the Kolmogorov constant,
and k, is the horizontal wavenumber. Equation (1) produces
a turbulence subrange with a slope of +1/3 in log-log space.
Diapycnal diftusivity, K, is then calculated using the Osborn
relationship (Osborn, 1980):

K = TI'e/N? ()

where ¢ is spectrally estimated from seismic data and varies as a
function of distance along the section and depth.

To generate high-resolution maps of diffusivity across the
entire seismic section, two complementary methods are used
to calculate K. These methods allow us to extract turbulent
information across a range of depths and scales, as they
take advantage of both low and high amplitude reflectivity
(Fortin et al., 2016).

Relative Turbulent Energy From Amplitude Spectra

First, amplitude spectra are calculated following Holbrook et al.
(2013) through direct Fourier data transform. These spectra are
calculated directly from seismic amplitudes (i.e., no tracking)
along depth slices, and are first used to identify whether the
turbulent subrange exists. For the CREST data, the turbulent
subrange exists between k, 0.025-0.045 cpm (22.2-40 m)
(Figure 3B). The advantage of using amplitude spectra is reflected
in its preservation of all horizontal wavenumbers, therefore
relative turbulent energy from all reflections can be extracted.
In other words, amplitude spectra can provide relative levels of
turbulence across the entire seismic section. However, amplitude
spectra cannot provide absolute diffusivities because they are

affected by the variation of seismic amplitudes, it is necessary
to scale them with absolute diffusivities calculated from slope
spectra of tracked reflections (hereafter, reflector slope spectra).

Absolute Diffusivities From Reflector Slope Spectra
Reflector slope spectra are calculated based on vertical
displacement of undulating reflections that follows isopycnals,
they are independent of seismic amplitude and thus can be
used to estimate absolute diffusivity. We calculate reflector
slope spectra using Fourier transform lengths of 256 points
as recommended by Holbrook et al. (2013), equivalent to
a reflection length of 1.6 km. Turbulent dissipation is then
estimated by fitting reflector slope spectra to model (1) within
the previously identified turbulent subrange (0.025-0.045 cpm)
using least square inversion. Diffusivity is then calculated using
equation (2) (Figure 3C).

Using reflector slope spectra also has its limitations. Tracked
reflections, that yield slope spectra, must have high amplitude and
good continuity, corresponding to the steepest temperature and
salinity gradients (Ruddick et al., 2009). This limitation implies
that absolute diffusivities cannot be estimated from weaker and
discontinuous reflections that still possess turbulent information.
Lower reflection amplitudes represent lower temperature and
salinity gradients, corresponding to weaker stratification regions
that are prone to mixing. Discontinuous reflections could be
caused by mixing instabilities such as interleaving, internal wave
breaking, turbulence, and double diffusion (Tang et al., 2018).
Therefore, a simple spatial smoothing of diffusivities calculated
from stronger and continuous reflections over the entire seismic
section could result in underestimation of diffusivities in areas
of weaker and discontinuous reflections. As discussed above,
because amplitude spectra preserve all horizontal wavenumbers
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FIGURE 3 | Example of spectral analysis from line 1A (a rolling window used in section “Zonal Variability of Diffusivities”). (A) Seismic data overlapped with tracked
reflections. Black lines = tracked reflections. (B) Direct data transform (DDT) of seismic data in panel (A). (C) Average slope spectrum calculated from all the tracked
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gray lines bound the turbulent subrange used to calculate diffusivity. The calculated diffusivity and its uncertainty are shown in the upper left corner.
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regardless of the strength of the reflections, we can overcome
this limitation by joining and applying these two techniques in
different window sizes to honor turbulent information in both
types of reflections.

Combining Amplitude and Reflector Slope Spectra
The seismic section is divided into regional windows of size
6.25 km wide and 50 m deep for reflector slope spectra analysis.
The size of the window is chosen to include enough reflections to
minimize artifacts and provide accurate estimations of absolute
diffusivities. An average reflector slope spectrum is calculated
from all the tracked reflections within each regional window, and
an absolute diffusivity is estimated for that window (Figure 3C).
To complement the reflector slope spectra method, we calculate
amplitude spectra in a much smaller window size of 400 m wide
and 10 m deep. The window width is determined to include
at least 10 horizontal wavelengths as calculated from the lower
bound of the identified turbulent subrange (Fortin et al., 2017).
Then, by integrating amplitude spectra energy over the turbulent
subrange within each window, a map of relative turbulent energy
across the entire seismic section can be obtained. Finally, relative
turbulent energy is scaled by the absolute diffusivities within each
regional window to produce the final high-resolution diffusivity
map which has a horizontal and vertical resolution of 400 and 10
m, respectively (Figure 5). Fortin et al. (2016, 2017) have shown
that this technique can reliably measure turbulent diffusivities
from weaker reflections and seismically transparent zones where
mixed water resides. Thus, these complementary techniques are
able to produce high-resolution 2D maps of diftusivities. To avoid
inaccurate estimation of diffusivity, seismic data shallower than
200 m are discarded because of the contamination caused by
residual direct wave energy.

Depth- and Zonally-Averaged Diffusivity
We investigate the distribution of thermocline diffusivities as
functions of longitude and depth by taking appropriate means

(Figure 6). So that seismic-derived diffusivities are comparable
with lower resolution hydrographic data, we calculate depth-
averaged, zonally varying diffusivities in rolling half overlapping
windows. The window starts at the beginning of line 1A to the
end of line 1F, covering a total length of 1,625 km and has a
width of 12.5 km, with an overlap of 6.25 km. The depth range
of each window is 300-1,000 m, for which the starting depth
is chosen to match Argos and CTDs depth limitations. Within
each window, depth-averaged diffusivity is estimated using the
average reflector slope spectrum (e.g., Figure 3C), rather than the
amplitude spectra. The average diffusivity within each window is
assigned to the center longitude of that window. Ultimately, we
obtain depth-averaged diffusivities that span longitudes 28.3° W
to 12.4° W with a sampling interval of 6.25 km (Figure 6).
Zonal-averaged, depth-varying diffusivities are calculated
based on their topographic setting. Each seismic section is
divided vertically into 256 m half-overlapping windows and
into regions above smooth and rough topography. Within
each window, an average spectrum is calculated to estimate
diffusivity. Diffusivities derived from different seismic sections
are normalized by the lengths of the sections then horizontally
averaged to produce zonal-averaged, depth-varying diffusivities.

Error Analysis

Following Dickinson et al. (2020), we conservatively estimate
an uncertainty for seismically derived diffusivities as 0.4
logarithmic wunits. This value combines sampling and
methodological errors. The sampling error mostly derives
from the uncertainty in N, which we estimate as 0.28 cph using
the standard deviation of CTD data. Methodological errors
include the assumption of constant Cr and I' and the process
of fitting a straight-line model to reflector slope spectra. These
uncertainties have been quantified by Dickinson et al. (2020), and
are 0.25 log units. Combined in quadrature, the total uncertainty
is & 0.4 logarithmic units.
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FIGURE 4 | Seismic sections from west (line 1A) to east (line 1F). Red boxes = locations of continuous, high amplitude reflections; blue boxes = an example location
of shorter, discontinuous reflections; black box = water mass above the MAR. Black arrow = location of crest of the MAR.

Conductivity-Temperature-Depth- and
Argo-Derived Diffusivities

Diftusivities are estimated from CTD and Argo data and can
be seen as representative of mean and spot measurements of
mixing, respectively. We estimate diffusivities from five nearby
Argos and 44 co-located CTDs (Figure 1). We use CTD datasets
from two repeat surveys occupying GO-SHIP A10 transect in
2003 and 2011 at 30° S (Sloyan et al, 2019). Argos were
collected around the same time as the seismic survey (data
downloaded from Global Argo Data Repository). All of the
Argo profiles used in this study record depths larger than 1,000
m, and have vertical resolution less than 10 m. Argos b and
e are ideally placed to provide spot measurements of mixing
above smooth and rough topography conditions, respectively.
Argo b was collected 176 km from the western end of line
1A, above the RGR, and only 2 days before the start of
seismic acquisition (Figure 1, green dot). Argo e traveled across
the MAR during January 2016 and is used to compare with
seismically derived and depth-averaged diffusivities across the
MAR (Figure 1, cyan dot). Although the Argo data are not
co-located with the seismic survey, they provide meaningful
measurements of the oceanic field above similar geological
settings at two key locations.

From these hydrographic profiles, we computed potential
density and buoyancy frequency. The selected profiles were then
divided into 256 m half-overlapping segments. Following Kunze
et al. (2006), the shallowest segment (0-256 m) is discarded due
to the presence of sharp pycnoclines. For the remaining segments,
we use a strain-based finescale parameterization to estimate €
(Kunze et al., 2006):

N (&)

0 (2 )ou

e = g H(R,) L(f, N) (3)

g0 =673 x 1071 m? s7%, Ny =5.24 x 107 rad s~ !, (¢2) is the
2
GM the
Garrett-Munk model spectrum (Garrett and Munk, 1975). N2
is the vertically averaged buoyancy frequency for each segment,
which is estimated as linear fits to the specific volume anomaly
depth profiles using the adiabatic leveling method (Bray and
Fofonoff, 1981). H(R,,) is a function related to the shear-to-strain
ratio R,,, which is set to 7 in this study (Kunze et al., 2006).
L(f, N) is a correction for the effects of latitude (Gregg et al.,
2003). Finally, the diffusivity is given by equation (2).

observed strain variance, (fzz) is the strain variance from the

RESULTS

Thermocline Structure

The thermocline is visible as a 1,000 m thick band of reflectivity
that extends 1,600 km across all seismic sections and is consistent
with the regional temperature structure (Figures 2A, 4). Between
0 and 800-900 m depth, we observe stronger reflections and
weaker reflectivity at greater depths. This vertical distribution
of reflection amplitude corresponds to highly stratified SACW
and weakly stratified AAIW, respectively (Figure 2). At 800-900
m depth, weakening reflection amplitude shows zonal variability
indicating that the depth of the SACW/AAIW boundary shoals
eastward by 100 m (Figure 4,1A).

Within the thermocline, reflectivity varies greatly in the lateral
direction, changing from longer, higher amplitude to, shorter,
lower amplitude and more disrupted reflectivity. Mesoscale
patches of high-amplitude and more continuous reflectivity
suggest the presence of eddy-scale processes, these patches extend
to depths of 900 m and across tens of kilometers zonally
(Figure 4, red boxes). Between 90 km and 150 km (Figure 4,
blue boxes), a set of shorter, discontinuous reflections dip to the
east which we interpret as a shear event typical of the region.
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FIGURE 5 | Turbulent diffusivity maps derived from seismic sections in Figure 4. Red boxes = locations of lower diffusivities; blue boxes = an example location of
enhanced mixing; black box = enhanced mixing above the MAR. Black arrow points at the location of the crest of the MAR. Colored boxes are the same as in
Figure 4.

We do not observe submesoscale structures here, although these
are often found in more energetic ocean environments such as
boundary currents.

Above the MAR, reflections are clearly disrupted. In line 1F
from 80 to 150 km weaker discontinuous reflections can only
be seen from the surface down to 700 m (Figure 4, black box
and arrow). This anomalous patch of low reflectivity extends
approximately 30 km on either side of the ridge. Data below 700
m are severely contaminated by noise that has been diffracted
by the hard igneous seafloor of this mid-ocean ridge and is too
complicated to be sufficiently removed using noise attenuation.

Diffusivity of the Central South Atlantic

Thermocline
Across the 1,600 km section of the central South Atlantic
thermocline, the mean seismic-derived diffusivity is 3.96 x 107>
m? s~! (Figure 5). The value is similar to the microstructure
observations made almost 20 years earlier in the Brazil Basin
at longitudes of 28° W to 16° W (Polzin et al, 1997). The
authors found a mean diffusivity of 1-5 x 107> m? s~! in the
upper 1,000 m of the water column. These seismic-derived (2016)
and microstructure (1996) values are also consistent with CTD-
derived diftusivities, which can be seen as representative of means
for 2003 and 2011. The mean CTD estimates for 2003 and 2011
are 7.45 x 107> m? s7! and 4.15 x 107> m? s~1, respectively.
The 2003 estimate is biased high by an anomalously elevated
diffusivity around 13.5° W (Figure 6, green line). When this point
is removed, the mean decreases to 3.57 x 107> m? s~ ! which is
remarkably consistent with the 2011 measurement and the mean
seismic-derived diffusivity.

The spatial standard deviation of the seismic estimates is of
a similar magnitude, 2.9 x 107> m? s~1, to the mean revealing

the heterogeneity of the thermocline diffusivities. Variability
is clearly related to variations in the thermocline structure,
as we observe a strong correlation between seismic reflection
amplitudes (i.e., strength of stratification) and corresponding
diffusivity maps. Weaker and discontinuous reflections are found
to have an average diffusivity of 4.79 x 107> m? s~!, a factor
of four greater than locations dominated by stronger and more
continuous reflections that have a mean value of 1.2 x 107>
m? s~ !, This spatial correlation is most apparent in lines 1A,B.
From the beginning of line 1A to about 90 km [Figure 4,1A
(red box)], where seismic reflections appear to be stronger and
laterally continuous, the corresponding diffusivity map shows
low diffusivities close to the canonical value of 1 x 107> m? s~!
[Figure 5,1A (red box)]. However, starting at 100 km and moving
eastward into line 1B, the strength of seismic reflections diminish
as they become discontinuous [Figures 4,1A,B (blue boxes)],
while diffusivities start to increase to the level of 10 x 107> m?
s~ ! from shallower water (~250 m) into deeper water (~900 m).
In line 1B, at about 120 km, diffusivities start to gradually increase
from deeper water (~800 m) to shallower water (~300 m), and
eventually form a bowl-shape region populated by diffusivity
hotspots across lines 1A,B [Figures 5,1A,B (blue boxes)]. Similar
correlation patterns between the seismic images and diffusivity
maps can also be observed in all remaining profiles.

Taken as a whole, there are identifiable mesoscale patterns in
the diffusivity. In areas that show elevated diffusivities, diffusivity
hotspots of 7.5-10 x 107> m? s! largely dominate, while
scattered higher diffusivities of 20-50 x 107> m? s~ ! also exist.
These hotspots are mostly located in the upper 600 m, with an
exception in line 1B from 50 to 100 km where they spread deeper
than 800 m. In lower diffusivity regions, we see the canonical
background value of 1 x 107> m? s~! that mostly resides in
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the mid-depth from 400 to 800 m; diffusivities are slightly higher
outside of this depth range.

Above the MAR, we observe the highest diffusivities of 25-
50 x 107> m? s~! that are densely distributed from 80 to
150 km within the 300 to 700 m depth range (Figure 5,1F).
These estimates show that diffusivities are enhanced by an order
of magnitude compared with background values. No reflections
were tracked below 700 m because of severe noise contamination,
which hinders our ability to reliably calculate diffusivities at
deeper depths (Figures 4, 5,1F). Nevertheless, the signal-to-noise
ratio for the 300-700 m depth range is high enough for diffusivity
estimation. Away from the ridge crest, diffusivities rapidly decay
to about 1 x 107> m? s~ ! within ~30 km.

Zonal Variability of Diffusivities
Depth-averaged diffusivities reveal zonal variability in
thermocline diffusivity, which is heterogenous of mesoscale
length scales. Depth-averaged diffusivities vary from 0.9 x 107>
to 12.6 x 107> m? s™!, with the highest diffusivity above the
MAR. Around 26° W, there is a second region of elevated
diffusivity of 6.5 x 107> m? s~!. Diffusivities are lowest in the
west at approximately 1 x 107> m? s~!. These depth-averaged
diffusivities serve as an instantaneous snapshot of mixing
during February 2016. They reveal that there is no zonal trend in
diffusivities, rather diffusivities are enhanced in localized patches.
We now compare seismic-derived diffusivities to
hydrographic-derived and depth-averaged diffusivities. CTD-
derived and depth-averaged (mean taken over 300-1,000 m)
diffusivities that vary with longitude range between 0.6 x 107>
m? s~! and 85 x 107> m? s~! (GO-SHIP 2003, 2011; Figure 6,
green and yellow line). The CTD estimates increase by one order
of magnitude at the MAR. Two Argo profiles above smooth and
rough topographic conditions serve as spot measurements of
turbulence tuned to differing bathymetric conditions (Figure 6,
magenta squares). The diffusivity calculated from Argo b
(smooth) is 0.5 x 107° m? s~ it has a similar magnitude to the
western end of line 1A, which has a seismic-derived diffusivity
of 0.9 x 107> m? s~ L. Diffusivities above the rough topography
of the MAR calculated from Argo e (37 x 107° m? s~ 1) and
seismic (12 x 107° m? s~ 1) are both one order of magnitude
higher than over smooth topography and are within error of each
other (Figure 6).

Depth Variability of Diffusivities Over
Different Topographic Settings

Zonally averaged diffusivities reveal the depth response of
thermocline diffusivities over smooth (Figures 7A-C) and rough
(Figures 7D-F) topographic settings. Above smooth topography,
diffusivities are fairly constant with depth and are typically
1 x 107> m? s~ 1. There is little difference between the seismic-
and CTD-derived diffusivities here. Above rough topography,
diffusivities are enhanced everywhere in the upper 700 m,
and are 5.5 x 107> m? s~ ! for seismic-derived estimates and
2.7 x 107> m? s7! to 17 x 107> m? s~! for CTD-derived
estimates (Figures 7D,E). Below 700 m, seismic data cannot
reliably recover diffusivities because of noise contamination, and
the CTD data are used to fill this gap. The deep CTD-derived
estimates show a sharp increase from 600 to 1,000 m (Figure 7D).
We find that, at 30° S in the South Atlantic Ocean, diffusivities
across the entire thermocline (up to 1,000 m depth) are modified
by the presence, or lack of, rough topography (e.g., compare
Figures 7C,F).

DISCUSSION

Here, we extend the observational record of ocean interior
diapycnal mixing in the central South Atlantic, and, for the
first time, we resolve diffusivities at mesoscale lengths for this
location. High-resolution seismic diffusivity maps provide an
unprecedented view of the variability of diapycnal mixing across
1,600 km of the thermocline. By combining high-resolution
seismic-derived diffusivities with low spatial resolution CTD-
derived and low temporal resolution Argo-derived diffusivities,
we can assess the likely drivers of mixing in this location.

Temporal and Spatial Variability of South

Atlantic Thermocline Diffusivities

At synoptic (~1,000 km) and decadal scales, the background
diffusivity of the South Atlantic thermocline has changed little at
this location. In 1996, direct turbulent diffusivities measurements
across the Brazil Basin revealed that the upper 1,000 m of
the South Atlantic typically had diffusivities of around 1-
5 x 107° m2s~! (Polzin et al, 1997). CTD-derived mixing
estimates from 2003 and 2011 also show a mean diffusivity of
3-4 x 107° m? s~ 1, while seismic data collected in 2016 show
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a similar mean diffusivity in the upper 1,000 m of 4 x 107>
m? s~!. Taken together, these four decadal snapshots (1996,
2003, 2011, and 2016) suggest that there is little variability
in the mean diffusivity of the thermocline. Using a global
coupled climate model, Hieronymus et al. (2019) found that
oceanic background diftusivity has a significant impact on the
climate. They found that increased background diffusivity leads
to increased meridional heat transport and stronger overturning
in the ocean. Our observations suggest that on decadal time-
scales the mean thermocline diffusivity has changed little in
this location, which may imply steady meridional overturning
circulation in the South Atlantic thermocline.

Imprinted upon the background diffusivity, we show that
diffusivities are heterogeneous and can be enhanced by up to
one order of magnitude. Regions of high mixing correspond
to seismic transparent zones or disrupted reflections. The
correlation between seismic reflectivity and turbulent mixing is
typical of seismic oceanography studies (Dickinson et al., 2017;
Fortin et al., 2017; Tang et al., 2021) and these observations have
shown that higher reflectivity is caused by sharper temperature
and salinity gradients, hence stronger stratification, while lower
reflectivity represents weaker stratification that facilitates mixing
or homogeneous water masses. Weakened reflectivity above the
MAR corresponds to enhanced mixing and weaker stratification
(Figure 4, black box). Seismic-derived, CTD-derived, and Argo-
derived diffusivities are all enhanced by an order of magnitude.
This result is consistent with lower resolution diffusivity
measurements made by Polzin et al. (1997), who showed that
diffusivities exceed 1 x 107> m?s~! in the thermocline above
the ridge. Depth-averaged N shows stronger stratification (2.13
cph) above smooth plains compared to weaker stratification
(2.01 cph) above the MAR (Figure 2C). The high resolution
and depth coverage of the seismic data also reveal that mixing
across the entire thermocline (200-1,000 m) is enhanced within
30 km of the ridge. Away from the ridge, several other patches

of high-diffusivity are observed that also correspond with low
amplitude and disrupted reflectivity.

The spatial heterogeneity of mixing suggests that the mid-
ocean thermocline is not quiescent. Enhanced mixing in the
ocean interior is primarily caused by breaking of internal
waves (Gregg et al., 2003) for which the energy input generally
comes from tidal flows impinging upon topography (Munk and
Wunsch, 1998) and wind forced near-inertial waves below the
mixed layer (D’Asaro, 1985; Alford, 2003b). We discuss the
possible drivers of observed enhanced mixing below.

Drivers of Enhanced South Atlantic
Thermocline Diffusivities

Rough Topography at the Mid-Atlantic Ridge
Enhanced mixing in the thermocline above the MAR is most
likely driven by barotropic tides impinging on the rough
bathymetry of the ridge. Due to a lack of observations, the
effect of the MAR on upper water column (<1,000 m) mixing
has been less clear than its effect on abyssal water. Here,
both seismic-derived and hydrographic-derived estimates of
K show that diffusivities across the entire water column are
enhanced by at least one order of magnitude compared with
background values. These rates are consistent with shallow
microstructure observations above mid-ocean ridges (Polzin
et al,, 1997; Mauritzen et al., 2002; St Laurent and Thurnherr,
2007) and recent work by Li and Xu (2014) who found the
influence of rough topography on turbulent mixing can extend
3,300 m upward into the ocean interior. Seismic estimates
(limited to 700 m) show larger diffusivities at shallow depths
(Figure 5,1F), while microstructure measurements show that
diftusivities increase significantly below 700 m depth, as found by
Polzin et al. (1997). Therefore, it is also possible that an upward
source or mesoscale oceanic process is enhancing the shallow
mixing further and is only captured by the high-resolution
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siemsic data. Due to the presence of the ridge and consistency
of these high diffusivities over time, we conclude that at 30° S, the
MAR enhances diffusivities across the entire water column by at
least one order of magnitude.

The rapid decay of diffusivities within ~30 km away from
the MAR is shorter than similar decays of ~60 km at the
Hawaiian Ridge and the Mariana Ridge (Klymak et al., 2006;
Tang et al., 2021). This discrepancy indicates that at the Hawaiian
Ridge and the Mariana Ridge, a large portion of tidal energy
radiates away, while at the MAR, a significant portion of tidal
energy is dissipated locally, which is consistent with previous
interpretations (Waterhouse et al., 2014).

Storm and Eddy

The causes of enhanced mixing over smooth topography are less
clear. Irregular patches of enhanced mixing in these seismic lines
could be caused by a variety of mechanisms, such as dissipation
of high-mode near-inertial energy, breaking of low-mode tidal
or near-inertial waves through wave-wave interactions, and
energy dissipation through mesoscale eddy fields (MacKinnon
et al., 2013). Numerical studies predict enhanced mixing caused
by dissipation of semidiurnal tides near latitudes of 29° N/S
(MacKinnon and Winters, 2005; Simmons, 2008).

Of these mechanisms, wind-induced mixing is the most
pervasive globally (Alford et al,, 2016). Winds inject energy
into the ocean through wind stress impulses such as traveling
midlatitude storms. These storms can excite frequency response
in the near-inertial band and generate near-inertial internal
waves (Pollard, 1970; Gill, 1984; Alford et al., 2016). Horizontal
convergence and divergence of the ocean’s mixed layer can
provide pathways for wind injected energy to propagate
downward and eventually generate near-inertial waves in the
stratified water below (D’Asaro, 1985; D’Asaro et al., 1995;
Young and Jelloul, 1997). Much of the energy exerted by
winds goes into low-mode near-inertial waves that propagate for
great distances (D’Asaro et al., 1995; Alford, 2003b), while the
remaining portion oscillates as high-mode near-inertial waves
that promote mixing because of their potential for higher shear
(Alford and Gregg, 2001; Alford, 2010). Thus, in our study,
enhanced mixing over smooth topography may reveal the energy
cascading process of high-mode near-inertial waves breaking
into small-scale turbulence during downward propagation. In
addition, using Lagrangian observations, Chaigneau et al. (2008)
showed that winds inject near-inertial energy into the mixed layer
in the subtropical South Atlantic. Given this knowledge and our
observations of mixing hotspots are mostly above 600 m depth,
we hypothesize that the observed enhanced mixing above smooth
topography is wind-induced and modified by mesoscale currents
in the mixed layer. We explore this hypothesis by analyzing wind
stress data and sea-surface geostrophic currents.

Spatial and Temporal Variability of Wind Stress

We now assess the likelihood of a storm driving unusually
elevated diffusivities in the mid-ocean. Since rays of near-inertial
waves propagate horizontally as well as downward, the location
of wind energy input may not be the same as enhanced mixing.
Theoretical modeling suggests that at 30° S, near-inertial waves
travel ~330 km horizontally before reaching the seafloor (Garrett,

2001). Therefore, we evaluate if strong winds were present
prior to and within £3 degree (in both zonal and meridional
directions) of the seismic survey. Six hourly wind speed data from
the NCEP reanalysis 2 (Kanamitsu et al., 2002) are converted to
wind stress using the method of Large and Pond (1981). Wind
stress is then averaged within the geographic boundary of 33°
W, 9° W, 27° §, 33° S for 60 days before the survey (Figure 8).
This time span of 60 days is chosen given a near-inertial wave
propagating vertically to 800 m depth with a speed of 13 m day~!.
The depth limit of 800 m is determined from the maximum depth
of enhanced mixing observed in profile line 1B (Figure 5,1B).
13 m day~! is chosen to approximate the mean downward
propagation speed for near-inertial waves, and is based on a 2-
year record of acoustic Doppler current profilers (Alford et al.,
2012). Given these time and space limits, we now investigate the
temporal and spatial variability of wind around the seismic survey
and its relation to enhanced mixing above smooth topography.

Over the 60-day period before the seismic survey, wind
stresses greater than 8 standard deviations from the mean occur
about 30 days prior to the survey between January 01 and January
08, 2016 (Figure 8A, upper panel). We interpret this high wind
stress event as a storm. After linearly interpolating the wind stress
on an hourly time grid, we use a Butterworth bandpass filter
to extract the wind stress in the near-inertial band of 0.8f-1.2f,
where f is the Coriolis frequency. Slight changes of lower and
upper bounds of the near-inertial band do not significantly affect
the results of this analysis. The storm shows a substantial increase
in strength within the near-inertial band compared to the rest of
the 60-day period (Figure 8A, lower panel), which indicates the
important role of this storm in injecting near-inertial energy into
the ocean interior.

We spatially track the storm across the seismic survey location
by calculating average wind stress along 30° S with a series of
rolling windows. Each window has size 4° x 4° and is centered
every 2° from 30° W to 12° W (Figures 8B-K). The movement
of the storm correlates with the zonal trends of diffusivities. First,
higher wind stresses with higher strength in the near-inertial
band are shown from 32° W to 14° W during the time of the
storm (Figures 8B-I), consistent with the locations of enhanced
mixing in seismic derived diffusivity sections (Figure 5,1A-E).
Second, the far eastern end of the seismic survey that is above
the MAR (15° W to 12° W) did not experience wind forcing
as high as regions further west (Figures 8J,K). Correspondingly,
we observe lower diffusivities at this location (Figure 5, from
the eastern end of lines 1E,F). We note that weaker wind
forcing and lower diffusivities at both sides of the MAR provide
additional support to our interpretation above - enhanced mixing
directly above the MAR is caused by rough topography. The
enhanced mixing on lines 1A-E is likely caused by this storm
for three reasons: (i) there were no other wind stress peaks
within the relevant time range, (ii) enhanced diffusivities track
the movement of the storm, and (iii) this region is away from
topographic boundaries.

Argo-derived diftusivities support our hypothesis of storm-
induced mixing (Figures 1, 9). Argos a, b, ¢, d were selected
because they are within the region of the storm during the time
span of the analysis. All Argos show enhanced mixing over a
depth range of 300-600 m after wind forcing (Figure 9, red
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FIGURE 8 | Wind stress variability in time and space. (A) Spatially averaged wind stress as a function of time for region 33° W, 9° W, 27° S, 33° S (upper panel) and
its corresponding bandpass filtered near-inertial wind stress (lower panel). Black line = averaged wind stress; blue line = near-inertial wind stress; horizontal dash
yellow line = average wind stress for the entire time period. Light gray shade represents the standard deviation of measurements. Vertical red dashed lines bound the
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window is shown in the box at the upper right corner of each figure. The black arrow points to the feature that we interpreted as a storm because its wind stress is
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shading), although the timing and strength of these changes
vary substantially. Argo a experienced a relatively high level of
mixing throughout the time of our analysis. The reason of higher
diffusivity of 8.1 x 107> m? s~! before the storm is unknown,
however, there is a noticeable increase of mixing from 3.9 x 107>
m? 5710 9.9 x 107> m? s~ ! after the storm around January 15,
then diffusivities maintained above the level of 5.2 x 107> m?
s~ 1. Argo b shows enhanced mixing during and after the storm,
diffusivities increased significantly from 2.4 x 107> m? s~ ! to
23 x 107> m? s~ ! in the time of December 26 to January 15. Argo
c and d show enhanced mixing during the storm but diffusivities
decrease immediately afterward. We also notice a significant
increase of diffusivities in Argo a, b, and ¢ about 50, 60, and 30
days after the storm, respectively, while there was no apparent
increase in wind stress during these periods of time (Figure 8A).
There are two possible reasons for the differences. The first is out

of plane effects and the second is local mesoscale flows. While we
analyze the diffusivities as a function of time, Argo floats change
their spatial location. All floats traveled about 100 km during
the time span of analysis (Figure 10). Their Lagrangian behavior
means that the diffusivities in Figure 9 do not reflect changes in
time at a fixed location. Therefore, other oceanic processes may
affect the recovered diffusivities. For example, energy from other
events such as wave-wave interactions and near-inertial waves
propagating in from elsewhere can have effects on the observed
mixing pattern (Plueddemann and Farrar, 2006). However, it
is beyond the scope of this contribution to account for out-of-
plane influences.

On the other hand, local mesoscale processes may cause
differences between the distribution of ocean mixing and the
presence of wind stress at the sea surface. For example, the
presence, or lack thereof, of mesoscale eddies has been shown
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to play an important role in controlling downward propagation
of near-inertial energy (Zhai et al., 2005), resulting in different
speeds of downward propagation at different times and locations.
From the seismic data, we use the different depths of enhanced
mixing (Figure 5) and a period of 30 days to calculate the
downward propagation speeds of near-inertial energy and find a
large range of 17-27 m/day. Furthermore, mismatches between
the patterns of wind stress and diffusivities suggest that local
mesoscale flows are playing a role in distributing near-inertial
energy. For example, the western end of the seismic survey (line
1A) shows the lowest diffusivities while the wind stress was high
(Figure 8B). Similarly, we observe diffusivities slightly higher
than the background level between 22° W and 20° W (Figure 6),
but the wind stress around this region shows sharp spikes in
the near-inertial band (Figures 8G,H). Since this region hosts
an energetic eddy field, we now consider the possible impact of
mesoscale eddies in the mixed layer on propagation of wind-
induced near-inertial energy.

Possible Contribution of Eddies

We use satellite observations of sea surface geostrophic current
velocities to investigate mesoscale eddies in the mixed layer
during the time of the storm. Figure 10 shows the evolution
of sea surface geostrophic current velocities from January 03,

2016 to February 14, 2016, covering the time period from
the start of the storm to the end of the seismic survey (each
plot is separated by 2 weeks). An anticyclonic eddy, centered
around 30° W, 31° S and identified by high velocities of
~0.35 m s~!, is present during the storm. The intensity of
the eddy weakens as time goes by Figures 10A-D. The eastern
and western portions of seismic lines 1A,B, respectively, cross
the easterly side of the eddy. Here, we observe enhanced
mixing that propagates to depths greater than ~800 m in
line 1B (Figure 6,1B). The convergence of high velocity
currents at this location suggests more complex structures of
mesoscale flows compared to other locations (Figure 10A),
which could be an explanation for the deeper penetration
of enhanced mixing in line 1B. If we consider the eastern
edge of the eddy as the input location of deep propagating
energy, the location of the deepest penetration is at 50-
100 km in line 1B, implying near-inertial energy propagates
both vertically and laterally. These findings are consistent with
limited previous observations (Jing et al., 2011; Whalen et al.,
2018) and numerical studies (Danioux et al., 2008) that reveal
the importance of mesoscale eddies in draining energy to great
depths. Taken together, these observations suggest that mesoscale
eddies enhance the depth-penetration of wind-induced mixing
from 600 to 800 m.
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an important role. The enhanced diffusivities we observe are

inertial energy is a likely candidate for the enhanced mixing away  higher than the background level by an order of magnitude

from rough topography, with surface mesoscale flows playing

in some cases. If our hypothesis of wind-induced mixing
126

FIGURE 10 | (A) Maps of sea surface geostrophic current velocities calculated for 5 days composite centered on 2016/01/03 from Ocean Surface Current Analyses
To summarize, we hypothesize that wind generated near-

Real-time (OSCAR) satellite measurements. Black lines = seismic survey lines. Orange dots = the trajectory of the Argo floats
positions of the Argo floats closest to the date of the satellite measurements. (B-D) Same as (A) but separated 2 weeks apart following (A).
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holds true, given that the seismic survey was conducted in a
non-stormy season, our results demonstrate that wind-induced
mixing plays an important role in the central South Atlantic
thermocline diftusivities.

CONCLUSION

We map vertical diffusivities across 1,600 km of the central
South Atlantic thermocline using six seismic reflectivity sections,
CTD, and Argo data. Seismic reflectivity yields continuous
high-resolution diapycnal diffusivity maps of the thermocline
during February 2016. These data help to overcome observational
limitations since they yield full-thermocline vertical sections
that have a horizontal extent of 1,600 km length, vertical and
horizontal resolution of O(10) m, and that span a period of
4 weeks. Meanwhile, CTD data from 2003 and 2011 provide
low spatial resolution diffusivity estimates that can be seen
as representative of the time mean. Argo data provide spot
measurements and Lagrangian tracers of mixing over different
topographic settings and at different times. Together, these data
extend the observational record of diapycnal mixing in the
ocean interior and provide insights into the variability and
drivers of mixing.

The South Atlantic thermocline is seismically imaged as an
800-900 m band of reflectivity with no clear submesoscale
patterns within it (Figure 4). Seismic-derived and CTD-derived
diffusivities show that, in the mean, thermocline diffusivities
have remained relatively consistent at close to or less than
1 x 107> m? s! since the 1990s (Figures 5, 6). We find
low/high diffusivities over smooth/rough topography, and these
values are particularly enhanced over the Mid-Atlantic Ridge
(25-50 x 107> m? s~!). Imprinted upon the synoptic scale
mean, mixing is heterogeneous, showing enhanced diffusivities
that exceed the background level of 1 x 107> m? s~! in many
regions where reflections are weaker and disrupted (Figures 5-7).

We examined the most likely drivers of mixing variability
(Figures 8-10). Above the Mid-Atlantic Ridge, diffusivities
are enhanced by barotropic tides impinging on the rough
bathymetry of the ridge. The rapid decay of diffusivities within
~30 km away from the ridge implies local dissipation of tidal
energy. Above smooth topography, we hypothesize that with
limited hydrographic data, we cannot fully decipher what caused
the enhanced mixing above smooth topography, however, our
best assessment suggests it is likely caused by localized wind-
generated near-inertial energy (i.e., a storm). The dissipation of
such energy during downward propagation resulted in elevated
diffusivities ranging from 3 x 107> m? s™! t0 50 x 107> m? s~ 1,
The loci and depth of energy propagation vary substantially,
possibly affected by the surface wind forcing and mesoscale flows
in the mixed layer. The maximum depth of enhanced mixing is
about 800 m, taking place close to the edge of an anticyclonic
eddy, suggesting mesoscale eddies encourage deeper propagation
of near-inertial energy.

The interaction between surface wind, mesoscale flows
in the mixed layer, and high mode near-inertial waves
is a complex process that remains poorly understood. It

is beyond the scope of this study to fully explain the
heterogeneity of mixing along the entire seismic survey with
limited hydrographic measurements. However, high-resolution
seismic observations along with concurrent hydrographic and
wind measurements provide an opportunity to untangle these
mechanisms. More simultaneous observations are needed in
the vicinity of rough topography and strong storm forcing
regions to improve our understanding of the global mixing
budget and to contribute to more accurate ocean circulation
and climate models.
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Seismic reflection profiling of thermohaline structure has the potential to transform our
understanding of oceanic mixing and circulation. This profiling, which is known as
seismic oceanography, yields acoustic images that extend from the sea surface to the
sea bed and which span horizontal distances of hundreds of kilometers. Changes in
temperature and salinity are detected in two, and sometimes three, dimensions at
spatial resolutions of ~O(10) m. Due to its unique combination of extensive coverage and
high spatial resolution, seismic oceanography is ideally placed to characterize the
processes that sustain oceanic circulation by transferring energy between basin-scale
currents and turbulent flow. To date, more than one hundred research papers have
exploited seismic oceanographic data to gain insight into phenomena as varied as eddy
formation, internal waves, and turbulent mixing. However, despite its promise, seismic
oceanography suffers from three practical disadvantages that have slowed its
development into a widely accepted tool. First, acquisition of high-quality data is
expensive and logistically challenging. Second, it has proven difficult to obtain
independent observational constraints that can be used to benchmark seismic
oceanographic results. Third, computational workflows have not been standardized
and made widely available. In addition to these practical challenges, the field has
struggled to identify pressing scientific questions that it can systematically address. It
thus remains a curiosity to many oceanographers. We suggest ways in which the
practical challenges can be addressed through development of shared resources, and
outline how these resources can be used to tackle important problems in physical
oceanography. With this collaborative approach, seismic oceanography can become a
key member of the next generation of methods for observing the ocean.

Keywords: seismic oceanography, acoustic imaging, observational oceanography, submesoscale, internal waves,
turbulent mixing, benchmarking, standardization

1 INTRODUCTION

During the twentieth century our knowledge of oceanic circulation was revolutionized by a host of
observational tools. Probes descended beneath the waves to measure the temperature, composition
and movement of seawater at great depths, whilst swarms of floating sensors drifted with the
currents (e.g., Jacobsen, 1948; Swallow, 1955; Gregg and Cox, 1971; Davis et al., 1992). Colorful dyes
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and inert chemicals illuminated the structure of internal waves
and the mixing of water masses, and satellite-borne instruments
mapped the shape and temperature of the sea surface from space
(e.g., Woods, 1968; Born et al,, 1979; Ledwell et al., 1986).
Measurements made by these, and many other, tools showed
that oceanic flow is not governed solely by currents that span
thousands of kilometers and which vary on time scales of
decades. Instead, circulation is maintained by a constant
exchange of energy between global currents and turbulent
motions, which mix water over distances of millimeters on
time scales of seconds (e.g., Wunsch and Ferrari, 2004;
Moum, 2021).

Improved understanding of this exchange is vital to modeling of
the ocean’s ability to store heat and carbon, and thus to efforts to
mitigate the effects of climate change (MacKinnon et al.,, 2017;
Whalen et al., 2020; Richards et al., 2021). However, characterizing
the disparate, intermittent and continuously evolving processes that
drive circulation has proven challenging. The majority of
observational systems are limited to providing time series at a
single location, to acquiring measurements in a single spatial
direction or along a single travel path, or to monitoring only the
surface of the ocean (e.g., moored arrays, probes dropped from a
ship, and satellite instruments, respectively; van Haren, 2018). Few
observations are available from abyssal regions of the ocean that are
thought to play a critical role in controlling mixing of water masses
and in modulating climate change (e.g., de Lavergne et al., 2016;
Desbruyeres et al., 2016; Desbruyeres et al., 2017; Levin et al., 2019).
Key dynamical phenomena, such as submesoscale currents and lee
waves, occur on time and length scales that are not well sampled by
common observational tools (e.g., McWilliams, 2016; Legg, 2021).

Seismic reflection profiling' of thermohaline structure offers a
solution to several of the challenges of ocean observation. This
profiling, known as seismic oceanography, is carried out by a
ship towing a source of acoustic energy and one or more cables of
hydrophones a few meters below the sea surface (Figure 1A;
Sherift and Geldart, 1995). At periodic intervals the acoustic
source is fired, exciting water-column sound waves by release of
either compressed air or electrical charge. Reflection of these
waves from changes in temperature and salinity at depth is
recorded by the hydrophones. Using these reflections, the
properties of thermohaline structure can be investigated.

Use of underwater sound for remote sensing of internal
oceanic structure is, of course, not new. For decades, ocean-
bottom echosounders have monitored thermocline depths,
acoustic tomographic systems have detected basin-wide
temperature changes, and acoustic Doppler current profilers
(ADCPs) have measured current velocities (Rossby, 1969;
Munk and Wunsch, 1979; Pinkel, 1979). High-frequency (i.e.,
2 10 kHz) acoustic surveys provide spectacular images of near-
surface internal waves and capture the intensity of turbulent
mixing (Figures 2B, C; e.g., Proni and Apel, 1975; Geyer et al,
2010; Lavery et al., 2013). Seismic oceanography is distinguished,

'In seismic acquisition, the term profile describes a two-dimensional map plotted
against range and depth. Here, we instead use the oceanographic term section. Our
use of the term profile is limited to description of a one-dimensional series of
measurements recorded as a function of depth (Krahmann et al. 2008).

however, from other acoustic imaging methods in two ways (Fer
and Holbrook, 2009). First, it uses low-frequency (i.e., < 100 Hz)
sound that does not attenuate rapidly with depth®. Second, each
imaged point is repeatedly sampled over a time interval of < 30
minutes by different configurations of acoustic source and
hydrophones, increasing the signal-to-noise ratio (Figure 1B).
These distinctive features lend seismic oceanography a unique
combination of three key characteristics:

e Multi-dimensional observation of the ocean at high spatial
resolution. Seismic oceanography provides a two-dimensional,
and often three-dimensional, view of the ocean at horizontal and
vertical resolutions on the order of 10 m. Other observational
tools may achieve higher spatial resolutions, but usually provide
measurements in only one dimension.

* Penetration to abyssal depths. Unlike higher-frequency
acoustic methods, seismic oceanography captures
thermohaline structure down to depths of several kilometers.
This capability allows observation of abyssal regions that are
otherwise undersampled.

* Horizontal coverage over hundreds of kilometers. Seismic
data are continuously recorded along < 1,000-km-long
transects. This coverage provides a holistic view of structures
such as eddies that are otherwise only intermittently sampled
(e.g., by dropped probes).

Due to these characteristics, seismic oceanography has provided
uniquely detailed images of features such as fronts, tidal beams,
eddies, thermohaline staircases and turbid layers (e.g., Nakamura
et al.,, 2006; Holbrook et al., 2009; Pinheiro et al., 2010; Fer et al.,
2010; Vsemirnova et al, 2012; Figure 2D). Importantly, seismic
records provide not only spectacular images, but have yielded
quantitative insight into dynamical phenomena including
thermohaline interleaving, propagation of internal waves, and
turbulent mixing (e.g., Papenberg et al, 2010; Tang et al., 2014;
Falder et al., 2016; Figure 3). Reviews of topics as wide-ranging as
stratified turbulence, circumpolar currents and submesoscale flow
have cited results from seismic oceanography (e.g., Riley and
Lindborg, 2008; Thompson et al, 2018; McWilliams, 2019). In
total, more than one hundred peer-reviewed research papers have
now presented seismic oceanographic data (Appendix A; Table A;
see Supplementary Material for all appendices and tables).

Despite these successes, seismic oceanography has struggled to
establish itself as a standard observational tool. This slow
development has two causes. First, the field has been hindered by
practical challenges associated with acquiring data and with
analyzing records in a consistent and reliable way. Second, and
more fundamentally, many physical oceanographers regard the
field as a curiosity, with no clear vision or scientific application. To
progress further, the seismic oceanographic community needs to
identify key scientific questions that it can systematically address.

Here, we discuss the practical challenges that face seismic
oceanography and suggest ways in which they can be overcome

2A small number of seismic oceanographic surveys have used sound with
frequencies as high as ~ 500 Hz (see Section 2.1.1; Ker et al.,, 2015). However,
the great majority have used low-frequency sound.
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Hydrophones

FIGURE 1 | Principles of seismic oceanography. (A) Cartoon showing single release of energy by acoustic source. Black star = acoustic source; undulating gray
line = change in oceanic temperature and/or salinity; solid black lines with arrows = travel paths for three example sets of incident and reflected sound waves;
dashed black lines with arrows = transmitted sound waves. In reality, sound waves travel out from acoustic source in all directions and are recorded at every
hydrophone along cable. (B) Cartoon illustrating repeated sampling of same spatial point by multiple firings of acoustic source. Black dot = repeatedly sampled
point; black star = acoustic source at time ty; solid black lines with arrows = travel path for sound waves excited at time to and reflected from black dot; gray
stars = acoustic source at later times t;, t5, t3; dashed gray lines with arrows = travel paths for sound waves excited at times t4, t», t3 and reflected from black
dot. Note that cable of hydrophones is not illustrated for times t4, t5, t3. For more complete introductions to acquisition of seismic oceanographic data, see Fer

and Holbrook (2009), Ruddick et al. (2009) and Holbrook (2009).

(Section 2). We then discuss how seismic oceanography can
address scientific questions that other tools cannot answer
(Section 3). Finally, we outline ways in which the seismic
oceanographic community can implement these solutions by
agreeing on priorities and by working together on collaborative
projects (Section 4).

2 HOW CAN SEISMIC OCEANOGRAPHY
OVERCOME ITS PRACTICAL
CHALLENGES?

Seismic oceanography is faced by three practical challenges.
Previous works have outlined possible solutions to one or
more of these challenges (e.g., Jones et al., 2008; Holbrook,
2009; Jones et al., 2010; Buffett and Carbonell, 2011; Ruddick,
2018). Here, we build on these works to develop a comprehensive
strategy for overcoming all three challenges.

2.1 How Can We Acquire Seismic
Oceanographic Data?

Perhaps the greatest practical obstacle to further development of
seismic oceanography is the logistical difficulty and high cost of
acquiring data. Conventional seismic reflection surveys require
specialized vessels that are capable of towing powerful acoustic
sources and long cables of hydrophones. A small number of
research bodies maintain such vessels (e.g., the Alfred Wegener
Institute, Germany; the Natural Environmental Research Council,
UK; the University-National Oceanographic Laboratory System,
USA). Access to ship time is limited and surveys are up to five
times more expensive than other ocean-going research cruises
(National Research Council, 2015; National Science Foundation,
2016). Chartering of independent seismic exploration companies
can cost up to three times as much again (National Science
Foundation, 2016). There are two possible solutions to the
challenge of high cost and logistical difficulty.

2.1.1 Development of New Seismic Systems
First, data could be acquired using systems that are specially
designed for seismic oceanography (e.g., Ruddick, 2018). These

systems could be optimized to reduce costs and to target specific
oceanographic phenomena. Ideally, they would be deployed
alongside other observational instruments and would not
require use of specialized vessels. The most obvious way to
lower costs and improve deployability is to use weaker acoustic
sources and shorter cables of hydrophones. Weaker acoustic
sources produce higher-frequency (i.e., 2 100 Hz) sound waves
that provide increased spatial resolution, but the signal-to-noise
ratio degrades more quickly with depth (Geli et al., 2009; Hobbs
et al., 2009). Although this degradation can be partially
compensated for by more frequent firing of the source and by a
denser spacing of hydrophones, it seems unlikely that higher-
frequency sources will be capable of clearly imaging the water
column to abyssal depths (Nakamura et al., 2006). Instead, higher-
frequency seismic systems could be optimized for imaging of
relatively shallow structures such as seasonal thermoclines (Piete
etal, 2013; Ker et al,, 2015; Sallares et al., 2016; Mojica et al., 2018).
When combined with direct measurements of properties such as
temperature and salinity, they could form an excellent tool for
investigation of processes that are too coarse to be detected by
high-frequency echosounders and yet too fine to be detected by
conventional seismic systems.

2.1.2 Use of Existing Datasets

An alternative solution to the difficulty of acquiring new seismic
reflection data is to analyze existing records. An overwhelming
majority of these records have been acquired by seismic
exploration companies, which spend billions of dollars each
year on new datasets (McBarnet, 2013). As a consequence,
these companies can afford equipment and modes of operation
that are far beyond the budgets of research organisations.
Commercial seismic records are thus likely to have higher
signal-to-noise ratios and to be more accurately spatially
positioned than records acquired for scientific research. Dense
layouts of overlapping transects are often acquired in a small area
over a period of several weeks or months, allowing the temporal
evolution of oceanographic phenomena to be tracked (e.g.,
Dickinson et al., 2020; Gunn et al., 2020b; Zou et al., 2020;
Gunn et al,, 2021). Many commercial exploration vessels carry
several parallel cables of hydrophones, enabling imaging of
thermohaline structure in three spatial dimensions (these
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FIGURE 2 | Comparison of seismic oceanography to other observational techniques. (A) Temperature section interpolated from measurements made by glider in
Gulf of Mexico (after Figure 3D of Meunier et al., 2019). Red = warmer water; blue = cooler water; vertical resolution ~ 2 m; horizontal resolution ~ 2,000 m. (B) High-
frequency (~ 120 kHz) echosounder image of Kelvin-Helmholtz instabilities within internal solitary wave above Oregon continental shelf (after Figure 14 of Moum et
al., 2003). Red = high acoustic intensity; blue = low acoustic intensity; vertical resolution =~ 0.04 m; horizontal resolution ~ 3 m at depth of 30 m. (C) High-frequency
(~ 15-25 kHz) echosounder image of thermohaline staircase in Arctic Ocean (after Figure 5 of Stranne et al., 2017). Brighter colors indicate higher acoustic
amplitudes; vertical resolution ~ 0.1 m; horizontal resolution = 15 m at depth of 150 m. (D) Seismic oceanographic image of oceanic front at Brazil-Malvinas
Confluence (after Figure 3A of Gunn et al., 2020b). Red colors = positive acoustic amplitudes; blue colors = negative acoustic amplitudes; black region = seafloor;
vertical and horizontal resolutions ~ O (10) m. Note different ranges and depths of four panels.

surveys are known as three-dimensional; Blacic and Holbrook,
2010; Bakhtiari Rad and Macelloni, 2020; Zou et al., 2021).

Existing surveys are concentrated above continental shelves and
slopes, which exploration companies have targeted since they house
economically valuable reserves of oil and gas (Figure 4A). Recent
observational, theoretical and computational work suggests that the
mixing that drives oceanic circulation is most intense above these
continental margins and above other topographically rough
features such as mid-ocean ridges and seamount flanks (e.g.,
Waterhouse et al., 2014; Ferrari et al., 2016; McDougall and
Ferrari, 2017; Drake et al., 2020). Continental margins also host
western boundary currents that transport significant quantities of
heat, salt and nutrients (e.g., Stommel, 1948; Hu etal., 2015; Buckley
and Marshall, 2016). In a warming climate, the intensity and
position of these currents is likely to change markedly, yet there
are limited direct observations of their magnitude and variability
(e.g, Wu et al,, 2012; Yang et al,, 2016). Existing seismic records
span several decades and provide a dataset of unprecedented size
and coverage that can be used to investigate in detail these critically
important interactions above continental margins.

Thanks to burgeoning open-access initiatives, an increasing
number of both academic and commercial datasets are being
made publicly available (Figures 4B, C; Appendix B).
Researchers need only cover data-dearchiving and data-shipment

costs. Access to other, privately held, commercial datasets might be
most easily gained through formation of an international
collaboration for all seismic oceanography researchers (Jones
et al., 2010; Buffett and Carbonell, 2011). Many seismic
exploration companies are currently seeking ways to improve
their public image by promoting independent scientific research.
Supporting seismic oceanography is particularly attractive since
only commercially worthless water-column reflections, and not
commercially valuable subsurface reflections, need be supplied.

2.2 How Can We Benchmark Seismic
Oceanographic Data?

Estimation of accurate quantitative results from seismic
oceanographic datasets requires a reliable understanding of the
correspondence between seismic records and hydrographic
properties. However, it has remained difficult to gain such an
understanding since the strength and form of recorded seismic
amplitudes are functions of many variables, which depend both
on local thermohaline structure and on the seismic acquisition
system. Key questions fall into three areas:

* Hydrographic sensitivity: What are the smallest changes in
temperature and salinity which seismic reflection surveys can
detect? How well do these changes correspond to changes in
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FIGURE 3 | Initial successes of seismic oceanography. (A) Values of salinity inverted from seismic oceanographic image of eddy of Mediterranean Water in Gulf of
Cadiz (after Figure 6 of Dagnino et al., 2016). Note finely resolved layering along upper side of eddy. (B) Internal solitary waves captured in seismic oceanographic
image from South China Sea (after Figure 2 of Tang et al., 2016). Grayscale represents response of thermohaline structure to seismic waves; black region = seafloor.
Internal-wave velocities can be estimated from seismic records. (C) Spatial map of diapycnal diffusivity, K, estimated from seismic oceanographic image above
Falkland Plateau (after Figure 15b of Falder et al., 2016). Grayscale = seismic image; colored overlay = estimates of K; hashed pattern = areas where estimates are
less certain; black region = seafloor. Note depressed values of K above eddy imaged at range of ~ 60-70 km.
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density? On what spatial length scales can these changes be
detected?

* Temporal blurring: How does motion of thermohaline
structure, acoustic source and recording system affect
observation of features that are repeatedly sampled during
periods of < 30 minutes?

* Seismic system: How do the answers to these questions
change with variations in acoustic frequency and in design
of the recording system?

Studies have addressed one or more of these questions in
isolated circumstances (Appendix C; Table C). To analyze
seismic data more widely, it would be helpful to systematically

investigate these questions across the full range of oceanographic
settings. This investigation can be carried out in two ways.

2.2.1 Field Datasets With Hydrographic Calibration

First, seismic records can be compared to coincident, direct
measurements of properties such as temperature, salinity and
current velocity. These comparisons aid interpretation of imaged
phenomena and guide estimation of quantities such as temperature,
salinity and diapycnal diffusivity from seismic images (e.g.,
Papenberg et al.,, 2010; Holbrook et al., 2013). Coupling seismic
records to more familiar oceanographic measurements is also likely
to encourage widespread acceptance of seismic oceanography
(Ruddick, 2018). Twenty-four existing datasets have such ancillary
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FIGURE 4 | Existing marine seismic reflection data. (A) Global distribution. Light red polygons = regions covered by two-dimensional (i.e., single-cable) surveys
acquired by seismic exploration companies; dark red polygons = regions covered by three-dimensional (i.e., multi-cable) surveys acquired by seismic exploration
companies; thin black lines = publicly available two-dimensional surveys acquired by seismic exploration companies in other regions; yellow lines = publicly available
two-dimensional surveys acquired by research institutions; light blue lines = hydrographic transects of World Ocean Circulation Experiment (WOCE; www.ewoce.
org). Red polygons were traced from the websites of the five largest exploration companies (CGG, ION, PGS, Schiumberger, TGS) and represent > 6.3 million km of
two-dimensional seismic data and > 5.5 million km? of three-dimensional seismic data. Publicly available data were downloaded from a range of online repositories
(note that plotted transects represent only a small subset of all existing data). (B) Zoom of Australia’s Northwest Shelf showing only publicly available seismic data.
Blue polygons = three-dimensional commercial surveys made available through the National Offshore Petroleum Information Management System (NOPIMS; www.

data and have been used for seismic oceanographic research
(Appendix C.1; Table C.1). Datasets with hydrographic
calibration could in future be acquired by combining specially
designed seismic systems of the kind discussed in Section 2.1.1
with instruments such as expendable bathythermographs (XBTs),
ADCPs, and microstructure profilers. However, seismic exploration
companies, which carry out the majority of surveys, do not routinely
acquire high-quality hydrographic data. More fundamentally, the
unique coverage and spatial resolution of seismic reflection data
means that coincident hydrographic measurements cannot capture
all relevant scales.

2.2.2 Numerical Modeling

Numerical modeling and synthetic datasets offer a way to
comprehensively explore scales that hydrographic calibration
cannot access. An ideal numerical model would include realistic
descriptions of two elements. First, thermohaline structure would
be described by a time-variant fluid-dynamical model that resolves
time scales of minutes to days and vertical and horizontal length

ga.gov.au/nopims). (C) Zoom of the Gulf of Alaska and the Bering, Chukchi and Beaufort Seas showing only publicly available seismic data. Note that WOCE
transects are not plotted in panels (B) or (C). See Supplementary Material for further details of data provenance.

scales of ~0(1) m (Menesguen et al., 2018). Second, this simulated
structure would be acoustically probed by a modeled seismic
acquisition system travelling at finite speed. Models with these
two elements could faithfully replicate the characteristics of
seismic surveys in a range of oceanographic conditions.

Existing studies have built numerical models of varying
sophistication (Appendix C.2; Tables C.2.1, C.2.2). These
models have been used to investigate the effect of fluid flow on
wave propagation and on blurring of seismic reflections, to assess
correspondence between reflections and isopycnals, to quantify
errors in imaging of deep structure due to non-homogeneous
near-surface waters, and to simulate the characteristics of new
seismic oceanographic acquisition systems (e.g., Vsemirnova
et al., 2009; Ji and Lin, 2013; Holbrook et al., 2013; Ji et al,,
2013; Biescas et al., 2016). Previous work must now be built upon
to form a standardized toolkit for modeling of seismic reflection
profiling of thermohaline structure. Using this toolkit, the
accuracy of quantitative results derived from seismic images
can be assessed.
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2.3 How Can We Analyze Seismic
Oceanographic Data?

Development of seismic oceanography has to date been
advanced by disparate groups of researchers, each of which has
developed its own computer codes for signal processing and
interpretation. Many of these codes either rely on proprietary
software or have not been made publicly available (see Table D).
Lack of open-source code hampers replication of results and
discourages scientists who do not have a background in seismic
signal processing.

To realize the full potential of seismic oceanography, the
community must now develop standardized open-source codes
which can be used with a broad range of seismic datasets. Key to
standardization will be rigorous investigation of the effects of
different workflows on the accuracy of results (see Appendix D for
a discussion of workflows for constructing seismic images). Here,
we focus on three fields that comprise the majority of existing
quantitative work and which are ripe for standardization:

* Hydrographic Inversion. Estimation of sound speed,
temperature, salinity and density.

* Propagation of Internal Waves. Characterization of the size,
velocity and decay of internal waves.

* Spectral Analysis. Analysis of internal waves and turbulence
using wavenumber spectra.

For each of these fields, we summarize previous work, suggest
potential future applications, and highlight selected
outstanding questions.

2.3.1 Hydrographic Inversion

Propagation of low-frequency acoustic waves within the oceanic
water column is governed by changes in sound speed and, to a
much smaller extent, in density (Ruddick et al., 2009; Sallares et al,,
2009). Sound speed can thus be directly estimated from seismic
data and mapped into values of temperature and salinity using an
assumed temperature-salinity relationship and the hydrographic
equation of state (see Appendix D.1 and Table D.1 for a summary
of proposed methods). Hydrographic inversion has been used, for
example, to investigate stirring at baroclinic fronts, to describe
temperature variance in turbulent waters above a continental
slope, and to reassess heat transport onto the Antarctic shelf
(Biescas et al., 2014; Minakov et al., 2017; Gunn et al., 2018).
Inversion results can also act as constraints for other calculations
that are made using seismic records (e.g., estimation of diapycnal
heat flux, Gunn et al., 2021; see Sections 3.1 and 3.2). Key questions
for further development of hydrographic inversion include:

¢ How accurate can inversion results be in the absence of
nearby hydrographic data? See Bornstein et al. (2013),
Padhi et al. (2015) and Blacic et al. (2016).

*  What are the smallest and greatest spatial scales that can be
recovered? See Blacic et al. (2016), Minakov et al. (2017) and
Gunn et al. (2018).

e Can useful inversion results be obtained from records in
which water-column reflections are very faint or absent?

2.3.2 Propagation of Internal Waves

Seismic oceanographic images often display prominent internal
waves, including tidal beams, lee waves and trains of solitary
waves (e.g., Holbrook et al., 2009; Eakin et al., 2011; Tang et al.,
2015). The velocities of these waves can be estimated by
analyzing changes in reflection amplitude during the interval
of < 30 minutes within which a single point is sampled
(Appendix D.2; Table D.2). This approach has shed light on
stirring at oceanic fronts, on the evolution of solitary waves, and
on heat transport by intrathermocline eddies (Sheen et al., 2012;
Tang et al., 2014; Gunn et al., 2018). Blacic and Holbrook (2010)
and Zou et al. (2020) suggest how these analyses could be
extended to mapping internal waves in three dimensions. This
mapping could greatly improve our understanding of internal-
wave-driven mixing of energy and material, which plays a critical
role in global climate (e.g., Helfrich and Melville, 2006; Legg,
2021). Outstanding questions for seismic oceanographic
estimation of internal-wave velocities include:

» To what extent is it possible to decouple the velocities of
internal waves from the velocities of background currents?

* How does the accuracy of estimated velocities vary with
duration of observation?

* How sensitive are estimated internal-wave velocities to errors
in the profiles of sound speed that are used to spatially
reposition reflections? See Klaeschen et al. (2009).

2.3.3 Spectral Analysis

In addition to imaging clearly visible internal waves, seismic
oceanographic data capture the signals of the background
internal wave field and of turbulent motions. These signals
have most commonly been analyzed by computing horizontal-
wavenumber spectra from the vertical displacements of tracked
seismic reflections (e.g., Holbrook and Fer, 2005; Appendix D.3;
Table D.3). This approach has been exploited to investigate the
nature of the dynamical transition from internal waves to
turbulence, to link intensity of turbulent overturning to
submesoscale structure, and to estimate diapycnal mixing
above regions of rough bathymetry (e.g., Falder et al, 2016;
Tang et al.,, 2020; Tang et al., 2021). Fortin et al. (2016) suggest
how spectra can be estimated from regions of a seismic image in
which reflections cannot be tracked. To develop a consistent and
reliable method for spectrally analyzing seismic oceanographic
images, the following outstanding questions must be addressed:

* How closely must reflections track isopycnals for results to be
useful? What information can be extracted from the spectra of
reflections that do not track isopycnals? See Meunier et al.
(2019).

* How severely are spectra distorted by temporal blurring? See
Vsemirnova et al. (2009) and Falder et al. (2016).

* How are spectra affected by use of different methods for
mapping of recorded seismic amplitudes into spatial images?
Which method is most appropriate? See Fortin and Holbrook
(2009) and Holbrook et al. (2013).
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In future, spectra could potentially be computed directly from
seismically estimated sections of temperature and salinity,
avoiding the need to track reflections (see Section 3.2; Xiao
et al., 2021).

3 WHAT PROBLEMS CAN SEISMIC
OCEANOGRAPHY SOLVE?

To gain widespread acceptance, the seismic oceanographic
community must identify ways in which the datasets and tools
discussed in Section 2 can be used to rapidly improve our
understanding of oceanic circulation. This circulation
encompasses myriad processes that continuously interact on a
wide range of time and length scales. No single theory or set of
observations can hope to simultaneously capture all of these
interactions. Instead, oceanographers conceptualize circulation
as a collection of discrete phenomena (e.g., Ferrari and Wunsch,
2009). Transfer of energy between these phenomena is described
by parametrizations that are based on a combination of
theoretical and empirical evidence (e.g., Garrett, 2006; Polzin
et al., 2014; McWilliams, 2017; de Lavergne et al., 2020).
Seismic oceanography straddles a unique combination of
scales and is thus ideally placed to revolutionize our
understanding of several processes and parametrizations (see

T
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103 104
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FIGURE 5 | Cartoon showing approximate length scales of processes that can be investigated using seismic oceanography. Red dashed bars show approximate
ranges3 of commonly used descriptive terms. (The term fine scale was coined to describe vertically varying structure, and its horizontal extent is not clearly defined.
Planetary scale, mesoscale and submesoscale are predominantly used to describe horizontal length scales.) Blue boxes show approximate extents of selected
phenomena. LAST = layered anisotropic stratified turbulence®. Green arrows show possible parametrizations describing transfer of energy. Solid arrow labeled A =
fine-scale parametrizations; solid arrow labeled B = assumption of continuity between LAST and inertial-convective regime of isotropic turbulence® ; dashed green
arrows = other parametrizations that seismic oceanography could inform. Note that boundaries between phenomena are much more gradational than depicted. Only
phenomena referred to in this article are shown. Inspired by Figure 1 of McWilliams (2016) and Figure 1 of Ruddick (2018).

Figure 5). Here, we outline three areas in which the seismic
method can provide key insights within the next decade.

3.1 Turbulent Mixing
It is widely accepted that mechanical mixing® by turbulent
motions is key to maintaining global overturning circulation
(e.g., Munk, 1966; Wunsch and Ferrari, 2004). Observations
since the 1990s have shown that turbulent mixing is
concentrated above regions of rough bathymetry and at the
edges of ocean basins (e.g., Polzin et al,, 1997; Mauritzen et al,
2002; Naveira Garabato et al., 2019). These observations have
spurred theoretical advances which suggest that mixing in narrow
boundary layers forms a critical part of oceanic circulation (Levy
et al,, 2012; Ferrari et al., 2016; McDougall and Ferrari, 2017;
Drake et al., 2020). Further measurements are now needed to
refine these theories and to tune climate models (e.g., Mashayek
et al,, 2015; Mashayek et al., 2017; MacKinnon et al., 2017).
Unfortunately, oceanic turbulence is difficult to sample since it is
highly intermittent in both space and time (Ivey et al., 2008; Shroyer
et al,, 2018; Cael and Mashayek, 2021). Fast-response thermistors

*The length scales of depicted descriptive terms and phenomena depend on
variables such as latitude, flow velocity, and density structure. For instance, the
term submesoscale was coined to describe flow on horizontal length scales shorter
than the first baroclinic radius of deformation (McWilliams, 1985). For further
discussion see Vallis (2017) and Meredith and Naveira Garabato (2022).
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and shear probes, which have most commonly been deployed as
vertically dropped microstructure profilers, resolve isotropic
turbulent® fluctuations on length scales as small as ~0(1) mm
(Figure 5; e.g., Schmitt et al., 1988; Lueck et al., 2002; Lozovatsky
et al.,, 2019). However, microstructure profiles are uncommon and
sparsely distributed. For instance, in compiling a global database of
turbulence measurements, Waterhouse et al. (2014) found only
~5,200 profiles of vertical shear. Such small numbers of
measurements cannot constrain the global distribution
of turbulence.

To overcome this problem, many studies have sought to infer
the strength of turbulence using observations of internal waves
on vertical length scales of ~0(1-10) m (Figure 5; Gregg, 1989;
Wijesekera et al., 1993; MacKinnon and Gregg, 2003; Polzin
et al., 2014; [jichi and Hibiya, 2015). These inferences, which are
known as fine-scale parametrizations, have underpinned
attempts to map the global distribution of mixing using
measurements made by conductivity-temperature-depth (CTD)
profilers and Argo floats (Whalen et al., 2012; Waterhouse et al.,
2014; Whalen et al.,, 2015; Kunze, 2017). However, few studies
have benchmarked the results of fine-scale parametrizations
against direct measurements of turbulence (e.g., Liang et al,
2018; Takahashi and Hibiya, 2019; Takahashi and Hibiya, 2021;
Fine et al.,, 2021).

Instruments that record structure on horizontal scales of
2 0O(10) m offer an alternative way to both directly measure
turbulence and benchmark fine-scale parametrizations (Moum,
2021). On horizontal length scales of < 300 m, observations
reveal a regime of layered anisotropic stratified turbulence
(LAST)’ that can be straightforwardly related to the intensity
of isotropic turbulence (Figure 5; Brethouwer et al, 2007;
Klymak and Moum, 2007b; Maffioli and Davidson, 2016;
Kunze, 2019). Internal-wave signals on greater horizontal
length scales can be analyzed using modified fine-scale
parametrizations to yield indirect estimates of the strength of
turbulent mixing (e.g., Klymak and Moum, 2007a; Sheen et al.,
2009; Dickinson et al., 2017).

The horizontal signals of internal waves and LAST are
captured both by towed instruments and by seismic
oceanography (e.g., LaFond, 1963; McKean and Ewart, 1974;
Holbrook and Fer, 2005; Holbrook et al., 2013). However,
seismic oceanography is distinguished by its ability to record
unprecedentedly large volumes of data in short periods of time.
For instance, one 175-km-long seismic image acquired over a 20-
hour period shows reflective boundaries with a cumulative length
of more than 5,000 km (Dickinson et al., 2017). This length is

*The term mixing is inconsistently used in the literature (e.g., Eckart, 1948; Muller
and Garrett, 2002; Dimotakis, 2005; Naveira Garabato and Meredith, 2022). Here,
we follow common convention and use the term turbulent mixing to describe the
folding and stirring of fluid by eddying motions. By increasing the variance of
temperature, salinity and density on microscales, this folding and stirring creates
favorable conditions for the molecular diffusion that ultimately mixes different
water masses (Moum, 2021).

°On length scales of < O(1) m, the effects of ocean stratification are insignificant
and turbulent motions have the same form in the horizontal and the vertical
(Ozmidov, 1965; Dillon, 1982). This isotropic turbulence maintains a downscale
transfer of energy that is exactly described by theory (Kolmogorov, 1941;

over thirty times greater than the combined length of the datasets
on which Garrett and Munk (1972) based the horizontal-
wavenumber description of their original semi-empirical
internal-wave spectrum. Rapid acquisition also distinguishes
seismic oceanography from more recent campaigns that have
acquired horizontal measurements over periods of several weeks
(e.g., Ferrari and Rudnick, 2000).

Spectral analysis of extensive seismic oceanographic datasets
thus has the potential to provide a global catalogue of oceanic
horizontal-wavenumber spectra that is unrivalled in size (cf.
Polzin and Lvov, 2011). Statistical investigation of this catalogue
could address questions that include:

* How accurate is the Garrett-Munk spectrum for internal
waves? How do the spectral properties of internal waves
vary in different oceanic environments? See Levine (2002),
Polzin and Lvov (2011) and Pinkel (2020).

*  What is the nature of the dynamical transition between internal
waves and LAST on horizontal length scales of ~0(100) m?
See Falder et al. (2016), Sallares et al. (2016), Kunze (2019) and
Howland et al. (2020).

* How accurate are existing fine-scale parametrizations when
applied to horizontal-wavenumber spectra®? Do different
parametrizations work better in different oceanic
environments? Is it possible to formulate new parametrizations
that better apply to horizontal-wavenumber spectra? See
MacKinnon and Gregg (2003), Klymak and Moum (2007a),
Hibiya et al. (2012), Polzin et al. (2014), Waterman et al. (2014)
and Jjichi and Hibiya (2015).

Perhaps most importantly, seismic oceanography offers a way
to map the intensity of turbulent mixing in unprecedented two-
dimensional detail across sections that are hundreds of
kilometers in length (e.g., Tang et al., 2021; Wei et al.,, 2022).
Advances in oceanographic instrumentation are providing new
tools that can be integrated into future seismic surveys to
benchmark estimates of mixing (Frajka-Williams et al., 2022).
Shear probes will be mounted on Argo floats, whilst expendable
profilers will measure velocity fluctuations to depths of ~ 6,000 m
(e.g., Shroyer et al., 2016; Shang et al., 2017; Roemmich et al.,
2019). Seismometers will record turbulent flow in narrow
boundary layers above the ocean floor (Yang et al., 2021).
Once seismic methods for estimating mixing have been
accurately calibrated using these tools and using numerical
simulations, existing seismic datasets will provide a way to
investigate possible changes in oceanic mixing during the
previous four decades, when few other measurements
were available.

Sreenivasan, 1995). On greater length scales, the effects of stratification lead to
anisotropic turbulence with a much greater horizontal than vertical extent. We
follow Falder et al. (2016) in using the term layered anisotropic stratified turbulence
(LAST) to refer to this turbulence. For further discussion see Lindborg (2006),
Riley and Lindborg (2008), Riley and Lindborg (2012), Caulfield (2020) and
Caulfield (2021).

®The accuracy of horizontal fine-scale parametrizations can be assessed by
comparison to simultaneous observations of LAST in the same seismic image.
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3.2 Submesoscale Currents

The submesoscale range plays host not only to internal waves,
but to a menagerie of other phenomena that evolve on time
scales of hours to days (Figure 5; Thomas et al., 2008; Callies
et al., 2020). These non-internal-wave phenomena, which we
collectively refer to as submesoscale currents’ following
McWilliams (2019), are thought to be vital in sustaining
ecosystems and in modulating exchange of energy between
mesoscale motions and microscale turbulent flows (e.g., Levy
et al., 2018; Naveira Garabato et al., 2022). Unfortunately, they
are difficult to discern in observational time series and in
measurements made by vertically dropped instruments
(McWilliams, 2016). As a result, most in situ observations have
been obtained using platforms that sample the ocean
horizontally, such as towed thermistors or ADCPs (e.g.,
Samelson and Paulson, 1988; Klymak and Moum, 2007a;
Rocha et al., 2016; Qiu et al., 2017).

A more complete description of submesoscale currents
requires rapid two- or three-dimensional sampling
(McWilliams, 2019). Although gliders provide quasi-two-
dimensional observations, they travel at slow horizontal speeds
of ~0.3 m s'and probably only resolve features at horizontal
scales greater than ~30 km (e.g., Figure 2A; Rudnick and Cole,
2011; Rudnick, 2016). A few field campaigns have sought three-
dimensional descriptions by tracking the spread of inert tracers,
by carrying out surveys with two closely spaced ships, and by
combining moored, towed and dropped instruments with
airborne sensors and with autonomous floats, drifters and
gliders (e.g., Allen and Naveira Garabato, 2012; Shcherbina
et al., 2013; Shcherbina et al., 2015; Pascual et al.,, 2017;
Marmorino et al., 2018). However, these campaigns have small
geographical extents and are limited to the upper ~ 500 m of the
ocean. Satellites and airborne instrumentation have revolutionized
our understanding of submesoscale activity at the sea surface
(e.g., Gower et al., 1980; Munk et al., 2000; Jolliff et al., 2019;
Klein et al., 2019; Martinez-Moreno et al., 2021). However, it
is not well known how closely these surface motions
correspond to flow at depth (e.g., Wang et al., 2010; Callies
and Ferrari, 2013).

In addition to being difficult to observe, submesoscale
currents are difficult to theoretically describe (e.g., McWilliams,
2010; McWilliams, 2017). As a result, developments in our
understanding have been largely driven by numerical
simulations (McWilliams, 2019). At present, most simulations
are validated by comparison to satellite or radar observations of
sea-surface height and temperature (e.g., Delandmeter et al.,
2017; Schubert et al., 2019; Bashmachnikov et al., 2020; Chrysagi
et al, 2021). Few studies have compared simulations to
subsurface observations (e.g., Rocha et al, 2016; Liu et al,
2017; Viglione et al., 2018). Improving our ability to observe
submesoscale currents and to benchmark simulations now
requires an efficient way to rapidly sample thermohaline
structure between the sea surface and the seafloor.

7Our use of the term submesocale currents includes submesoscale coherent
vortices, which are subsurface eddies with distinct hydrographic properties
(McWilliams, 1985). Once formed, they can exist for several years.

Seismic oceanography offers an unrivalled means of achieving
this sampling. Unlike gliders, seismic vessels move at fast speeds of
~2.5-3 ms™, allowing surveys to capture submesoscale structures
that evolve on time scales of hours to days. This ability can be
exploited in three ways. First, seismic images can reveal the
geometries and distributions of subsurface submesoscale
structures in unprecedented detail. For instance, Song et al.
(2011) present a seismic image which shows how submesoscale
coherent vortices generate thermohaline intrusions with forms that
are unanticipated by theory. By combining seismic images with
inverted sections of temperature, salinity and density, Gunn et al.
(2020b) show how submesoscale lenses and filaments interact with
a deep-seated oceanic front. Seismic oceanography’s ability to
visualise submesoscale features can address questions such as:

* How abundant are submesoscale coherent vortices? How
quickly do they evolve? See Gunn et al. (2018), Gula et al.
(2019), Steinberg et al. (2019), Archer et al. (2020), McCoy
et al. (2020) and Tang et al. (2020).

* How widespread are submesoscale fronts? To what depth do
these fronts extend? How are they influenced by the presence of
permanent fronts between water masses? See Ramachandran
etal. (2014), Pascual et al. (2017), Siegelman et al. (2019), Gunn
et al. (2020b) and Giddy et al. (2021).

* How does the size and form of imaged submesoscale structures
vary with depth and with proximity to rough topography? See
de Lavergne et al. (2016), Dauhajre et al. (2017), Ruan et al.
(2017), Callies (2018) and Wenegrat et al. (2018).

Second, seismic oceanography can probe the statistical
signatures of submesoscale currents. To date, few observational
studies have resolved along-isobar and along-isopycnal
hydrographic variations on submesoscale length scales, and the
distribution of potential energy in the submesoscale range is
poorly known (e.g., Cole and Rudnick, 2012; Callies and Ferrari,
2013; Schonau and Rudnick, 2015; Itoh and Rudnick, 2017).
Improved observations will show which processes dominate
transfer of energy and how they contribute to lateral stirring of
water masses (e.g., Rudnick and Martin, 2002; Johnson et al.,
2012; Jaeger and Mahadevan, 2018). These observations can be
extracted from seismically derived sections of temperature,
salinity and density (Xiao et al., 2021). As with internal waves
and LAST, analysis of widespread seismic surveys can provide a
catalogue of submesoscale spectra® that is unmatched in size.
This catalogue can address questions that include:

* What are the dominant spectral slopes for temperature,
salinity and spice? Are these slopes well described by
theory? See Ferrari and Rudnick (2000), Callies and Ferrari
(2013), Klymak et al. (2015), Kunze et al. (2015) and Erickson
et al. (2020).

» At what length scale do internal waves start to dominate the
spectral signal? See Biihler et al. (2014), Rocha et al. (2016),
Qiuetal. (2017), Qiu et al., (2018), Callies (2019) and Thomas
and Yamada (2019).

* How energetic are submesoscale currents beneath the surface
mixed layer? How do currents vary with the seasons? See Cole
etal. (2010), Callies et al. (2015), Buckingham et al. (2016), du
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Plessis et al. (2017), Siegelman et al. (2019), Yu et al. (2019),
Dong et al. (2020), Erickson et al. (2020) and Siegelman
(2020).

Finally, seismic oceanography can help calibrate satellite
observations of submesoscale flow. Satellite altimetric records
with near-global coverage are available for all years after 1992
(Fu et al., 1994; Callies and Wu, 2019). The resolution of these
records is highly variable, and it is unclear how well they capture
activity in the subsurface ocean (Wunsch, 1997). Comparison of
existing seismic oceanographic datasets to historical satellite
records will demonstrate the extent to which sea-surface
observations can predict motions at depth (e.g., Dickinson
et al., 2020; Gunn et al., 2020b; Gunn et al., 2021; Wei et al,,
2022). The next generation of satellite-borne altimeters and
current meters is expected to achieve resolutions as low as
~1 km (e.g, Gommenginger et al, 2019; Klein et al., 2019;
Martinez-Moreno et al., 2021). Future seismic surveys could be
towed along the groundtracks of these satellites, providing
spatially coincident and near-contemporaneous observations of
subsurface submesoscale motions. Comparison of both historical
and newly acquired seismic data to satellite records could
investigate questions such as:

* Can satellite observations predict the depths to which surface
oceanic fronts extend? What percentage of sub-mixed-layer
submesoscale eddies are observable in satellite records? See
Gunn et al. (2020b).

 Is there a relationship between spectral power laws computed
from satellite data and spectral power laws computed from
submesoscale structure at depth? See Wang et al. (2010) and
Callies and Ferrari (2013).

* Is there any correlation between submesoscale sea-surface
motions and periods of intense turbulence at depth?

To aid calibration of satellite records, and investigation of
submesocale currents more broadly, future seismic surveys could
integrate novel observational tools such as swarms of
autonomous robots (e.g., Jaffe et al., 2017). Autonomous tools
are ideally suited to integration with seismic oceanographic
surveys since they do not interfere with operation of the
seismic vessel.

3.3 Abyssal Water Mass Transformations

Approximately 50% of the ocean’s volume lies at depths of
2,000 m or greater (waters at these depths are referred to as
the deep ocean; Roemmich et al., 2019). Much of this volume is
filled by Antarctic Bottom Water (AABW) and North Atlantic
Deep Water (NADW), whose circulations play a key role in

8Most spectral analyses of seismic oceanographic images have depended on
tracking continuous seismic reflections, which usually extend along horizontal
distances of < 10 km (Section 2.3.3; Appendix D.3). This approach is sufficient to
resolve the signals of LAST and of the high-wavenumber portion of the internal
wave field. However, it does not resolve the full signal of submesoscale currents.
Instead of tracking reflections, submesoscale signals could be analyzed by
computing horizontal-wavenumber spectra directly from seismically estimated
hydrographic sections. Aside from spectra, further statistical properties could be
calculated following Klymak et al. (2015).

distributing heat and salt and thus in controlling global climate
(Johnson, 2008; Jayne et al., 2017). Despite its importance, fewer
than 10% of hydrographic measurements come from the deep
ocean (de Lavergne et al,, 2016). Our ability to model abyssal
processes and their impacts on climate is severely constrained by
this lack of data (e.g., Wunsch and Heimbach, 2014; Forget et al.,
2015; Liang et al., 2015).

To date, most of our knowledge of the deep ocean has come
from repeated hydrographic measurements made by ships across
a globally distributed range of transects (Talley et al., 2016;
Sloyan et al., 2019). Occupation of 34 of these transects over a
35-year period has yielded approximately 150 hydrographic
sections that sample the deep ocean at a horizontal resolution
of ~ 55 km (Desbruyeres et al., 2016). In contrast, our knowledge
of hydrography in the upper 2,000 m of the ocean depends on the
Argo program, which since 1999 has acquired over two million
hydrographic profiles using a global array that currently consists
of approximately 4,000 autonomous profiling floats (Roemmich
et al,, 2009; Wong et al., 2020; Roemmich et al., 2022). The Deep
Argo program aims to build on this success by acquiring
measurements to depths of 6,000 m (e.g., Johnson and Lyman,
2014; Gasparin et al., 2020). However, it seems unlikely that a
global deep Argo array will be operational before 2026
(Zilberman et al., 2019).

Seismic oceanography provides a means of extending our
historical record of changes in the hydrography of the deep
ocean. Although the majority of seismic reflection datasets lie
above continental shelves and slopes, a significant number of
surveys extend into deep near-shelf regions that are key in
formation of abyssal water masses (Figure 4; e.g., Dickson and
Brown, 1994; Orsi et al., 1999; Morozov et al., 2021). For
instance, between the years 1976 and 2011 more than
360,000 km of seismic reflection transects were acquired
between the shoreline of Antarctica and regions with water
depths of > 5,000 m (Breitzke, 2014; note that not all of these
transects are plotted in Figure 4A). For comparison, five repeat
hydrographic transects within the Southern Ocean were
occupied a cumulative total of 32 times during the same time
period (Desbruyeres et al., 2016). Estimation of temperature,
salinity and density from seismic transects offers a way to
improve the historical record of hydrographic changes and to
address questions such as:

* To what extent does heaving of isopycnals in the deep ocean
reflect changes in total heat content? See Bindoff and
Mcdougall (1994), Hakkinen et al. (2016), Desbruyeres et al.
(2017) and Gunn et al. (2020a).

* How do seismic estimates of temperature change correlate to
basin-wide changes estimated using acoustic thermometry?
How do seismic estimates correlate to changes estimated from
highly localised shipboard measurements? What do these
comparisons tell us about our ability to assess temperature
changes from existing datasets? See Munk (2006), Purkey and
Johnson (2010), Purkey and Johnson, (2012), Palmer et al.
(2019), Wu et al. (2020) and Wunsch (2020).

* How are changes in deep-ocean temperature associated with
changes in abyssal turbulence, internal waves, and
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submesoscale currents? See Sheen et al. (2014), Su et al.
(2018), Naveira Garabato et al. (2019) and Whalen et al.
(2020).

To answer these questions, and to investigate turbulent
mixing and submesoscale currents, use of seismic
oceanography must be guided by a clear and practicable plan
for its future development.

4 FUTURE DIRECTIONS

We believe that solutions to the challenges which face seismic
oceanography will be best realized through collaboration
amongst all researchers in the field. Key to this collaboration
will be three parts:

* Identification of priorities for the next decade of seismic
oceanography. Efficient progress will be made if researchers
come together to agree upon a small number of key scientific
questions that can be addressed using seismic oceanography.
Detailed plans for tackling these questions can be formed.
Discussion should include all researchers with an interest in
the field.

* Development of an online repository of publicly available
seismic reflection datasets. Deposited datasets should include
all ancillary hydrographic data where this exists. If original
seismic records cannot be shared, standardized details of
acquisition, processing and data provenance should be
published. Data-sharing can build on practices developed as
part of observational initiatives such as the Microstructure
Database, the Global Ocean Observing System, and Argo (e.g.,
MacKinnon et al,, 2017; Tanhua et al., 2019; Roemmich et al.,
2019; see microstructure.ucsd.edu and www.goosocean.org).

* Development of an online repository of open-source
computer codes. Existing codes should be uploaded and
benchmarked against hydrographically calibrated field
datasets and numerical simulations. Codes that are shown
to be reliable can be developed into standardized tools which
will facilitate comparison of datasets. Wherever possible,
codes should be automated to minimize subjective
judgements. Sharing of code can build on examples such as
the repository developed by the turbulent mixing community
(github.com/OceanMixingCommunity).

To encourage collaboration, we have set up a Wikipedia page
and code repository (en.wikipedia.org/wiki/Seismic_Oceanography
and github.com/SeismicOceanographyCommunity). Anyone is
welcome to contribute. Session PS06 at the 2022 American
Geophysical Union Ocean Sciences meeting discussed priorities
for the field, and sparked conversations that can now be taken
further (see www.aslo.org/osm2022/scientificsessions/#ps).

As an example of a scientific priority, we suggest that large
volumes of existing seismic data should be analyzed using
automated methods for estimating the intensity of turbulent
mixing (Section 3.1). This analysis would require development of
three open-source tools:

e Tool 1: A standardized method for estimating temperature,
salinity and density from seismic records in the absence of
coincident hydrographic measurements.

e Tool 2: A standardized method for computing horizontal-
wavenumber spectra from seismic images and for estimating
diapycnal diftusivity from identified internal-wave and LAST
spectral regimes.

* Tool 3: A standardized method for accurate numerical
modeling of seismic reflection profiling of time-variant
thermohaline structure.

Tools 1 and 2 would include rigorous assessment of
uncertainties in estimated quantities. Together, these two
components would form a toolkit for rapid, comparable
estimation of diapycnal diffusivity and of the form of the
internal wave field at disparate locations. Seismic-derived
estimates of temperature, salinity and density would free this
analysis from dependence upon independent hydrographic data.
Accuracy would be tested using the numerical modeling package
developed as Tool 3. The unprecedented number of observations
of turbulent mixing could be combined with machine-learning
techniques to inform improved climate models (Zanna and
Bolton, 2021).

Other researchers will no doubt disagree with our suggested
priority and have suggestions of their own. We hope that this
article will provoke discussion about the best way to proceed, and
will lead to development of shared resources and projects.
Similar collaborative development is fuelling formation of a
new generation of observational tools, including satellite-borne
wide-swath altimeters, moored temperature microstructure
recorders, autonomous floating seismometers, saildrones and
ultra-wideband underwater communication (Fu and Ferrari,
2008; Moum and Nash, 2009; Hello et al., 2011; Cross et al.,
2015; Ghaffarivardavagh et al., 2020). It is time for seismic
oceanography to join their ranks.
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