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Editorial on the Research Topic

North Pacific climate and ecosystem predictability on seasonal to
decadal timescales

The present Research Topic aims to collect studies on all aspects contributing to
marine ecosystem predictability and prediction, including observational and numerical
studies, with a focus on the North Pacific Ocean north of 30°N. The scope of this
Research Topic includes studies of climate predictability and climate-marine ecosystem
relationships as the basis of marine ecosystem predictability. This Research Topic is
organized by the Working Group on “Climate and Ecosystem Predictability”, a joint
working group between the North Pacific Marine Science Organization (PICES) and
Climate and Oceans, Variability, Predictability and Change (CLIVAR). PICES is an
intergovernmental organization for marine science over the North Pacific, that includes
the countries along the North Pacific rim, ie., the United States of America, Japan,
People's Republic of China, Canada, Republic of Korea, and the Russian Federation.
CLIVAR is one of six global core projects of the World Climate Research Programme.
These international science organizations and projects have played important roles in the
ocean and climate sciences. This working group is the first joint working group between
PICES and CLIVAR, demonstrating the increasing need for collaboration between
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physical ocean/climate studies, the main area of CLIVAR, and
marine biological studies, the major focus of PICES.

The Research Topic includes twelve original papers and one
perspective paper. The perspective paper by Minobe et al.
outlined several steps required for marine biology forecasts,
typically involving global climate model prediction of the
physical environment, regional downscaling of those physical
conditions, and marine biological estimation based on the
physical environment. The paper reviewed existing projects
pursuing physical ocean/climate prediction at lead times
ranging from subseasonal to multi-annual, pointed out
existing bottlenecks for using physical predictions to make
marine biological forecasts, and described lessons learned from
physical predictions. The workflow suggested by Minobe et al. is
based on the assumption that the physical environment
influences marine ecosystems on the timescales of interest but
not vice versa. It is interesting to note that one paper in the
Research Topic studied causality in the other direction, i..,
biology influencing physical conditions; using numerical
experiments Ma et al. reported that the presence of
phytoplankton substantially increases the subduction rate of
the subtropical mode water and the central mode water in the
North Pacific.

Four papers studied oceanic variability using data analysis
and numerical modeling. Miyama et al. reported frequent
occurrences of marine heatwaves in the Northwestern Pacific
near Japan between 2010 and 2016 in summer, associated with a
weakened first intrusion of the Oyashio current and increased
frequency of warm core eddies detached from the Kuroshio
Extension (KE) to the north of the KE. Nonaka et al. studied the
intrinsic and atmospheric-forced components of KE eddy
activity using an ensemble of ocean general circulation model
runs with 0.1-degree horizontal resolution. They found that the
intrinsic variability is dominant in the upstream KE, and in the
downstream KE on interannual timescales. The atmospheric
forced component, on the other hand, is dominant on decadal
timescales in the downstream KE, in association with Rossby
waves propagating from the central North Pacific with four-year
time lags, implying potential predictability. Doi et al.
investigated the predictability of sea-surface height using a
climate prediction system and found a high predictability
region in the central North Pacific at about 2-year lead time.
Song et al. reported that the seasonal prediction skill of sea-
surface temperatures is substantially better when the Ensemble
adjustment Kalman filter is used for their data assimilation
rather than Projection Optimal Interpolation, especially in the
central North Pacific. They also found that inclusion of a wave
model improves prediction in the Kuroshio-Oyashio
Extension region.

Two papers described how the large-scale physical ocean
and climate influence marine biology. Ma et al. investigated how
fishery catches from China, Chinese Taipei, Japan and Korea are
influenced by large scale climate modes including the Pacific
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Decadal Oscillation (PDO), the North Pacific Gyre Oscillation
(NPGO) and the El Nino-Southern Oscillation, and found
fishery-climate relationships to be non-stationary. By analyzing
120 marine biological indicators from the western (29 time
series) and eastern (91 time series) North Pacific, Yati et al.
found that the first principal component of the biological
indicators is characterized by a long-term trend with multi-
decadal fluctuations with the largest negative impacts on
groundfishes (Figure 1). They found that this mode is strongly
related to global warming. It is worth noting that their first mode
is consistent with previous studies that analyzed a large number
of biological indicators, but earlier studies did not investigate the
impact of global warming (see references in Yati et al.).

Three papers investigate how regional physical conditions
influence marine biology and how well marine biological
conditions can be estimated using physical conditions. Gomez
et al. found that the presence of swordfish is strongly related to
warm core eddies around the Kuroshio Extension. Kuriyama et al.
studied the spatial shared dynamics of temperature, salinity and
ichthyoplankton abundance in the California Cooperative
Oceanic Fisheries Investigations (CalCOFI) data, using an
Empirical Dynamic Method known as “co-prediction”. Their
findings help identify the spatial structure of the physical and
biological dynamics of the California Current System. Muhling
et al. examined the performance of statistical models, including
machine learning models, for fish habitat estimation in the
California Current System. They found that models trained over
periods without substantial marine heatwaves can be unreliable
for the estimation of fish species and ages during marine
heatwave conditions.

The other two papers investigated marine ecosystem
forecasts with seasonal or multi-annual prediction lead times.
Malick et al. examined the forecast skill of Pacific hake
distributions, combining a statistical model for hake with
regionally downscaled ocean forecasts provided by JISAO’s
Seasonal Coastal Oceanic Prediction of the Ecosystem (J-
SCOPE). Navarra et al. used a physical-biological linear
inverse model (LIM) for the prediction of fishery indicators
(estimated biomasses, landings, and catches) in the Northwest
Pacific, and found that the LIM outperforms persistence for up
to 5-6 years. The influence of the physics on the biological
indicators was found to play an important role in the forecast
skill, with Rossby wave propagation from the central to western
North Pacific potentially being responsible for the skill at multi-
annual lead times.

The papers collected in this Research Topic clearly indicate
the influence of physical ocean/climate conditions on marine
ecosystems, as well as the importance and potential of prediction
studies spanning from physics to biology. Some of the papers in
this Research Topic have already had outstanding influence on
the research community. At the time of writing, Muhling et al.
have been cited by other publications 21 times and Miyama et al.
17 times. The study of Miyama et al. was also used as a
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(A) The first Principal Components (PCls) for the whole North Pacific (NP), eastern NP and western NP marine biological time series, and
statistically significant correlations of marine biological time series (B) with the western NP PC1, (C) with the eastern NP PC1. Before calculating
correlations 5-year running means are applied to PC1s and marine biological time series. In (B, C), numbers indicate species ID in Table 1 of Yati
et al, while S, G, P, Z and | indicate salmon, groundfish, small-pelagic, zooplankton and invertebrate, respectively. Circle size indicates the
absolute values of correlations and colors of the circles (red, orange, cyan, blue) indicate the sign of correlations and the corresponding

confidence levels. (After Yati et al.).

motivation for the new PICES working group on “Climate
Extremes and Coastal Impacts in the Pacific”. Yati et al.
have been cited by the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, Working Group
I1, in two chapters (Cooley et al., 2022; Shaw et al., 2022).

In the future, the importance and necessity of marine
biological forecasting, especially those relating biological
responses to physical variability, will further increase. Since
marine biological forecasting can be conducted for many
species, regions and timescales, a vast number of new studies
is required. The topic editors hope that the present Research
Topic illustrates the potential in this exciting and emerging
research field.
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Accurate prediction over the North Pacific, especially for the key parameter of sea
surface temperature (SST), remains a challenge for short-term climate prediction. In
this study, seasonal predicted skills of the First Institute of Oceanography Earth System
Model version 1.0 (FIO-ESM v1.0) over the North Pacific were assessed. Ensemble
adjustment Kalman filter (EAKF) and Projection Optimal Interpolation (Projection-Ol) data
assimilation schemes were used to provide initial conditions for FIO-ESM v1.0 hindcasts
that were started from the first day of each month between 1993 and 2017. Evolution
and spacial distribution of SST anomalies over the North Pacific were reasonably
reproduced in EAKF and Projection-Ol assimilation output. Two hindcast experiments
show that the skill of FIO-ESM v1.0 with the EAKF data assimilation scheme to predict
SST over the North Pacific is considerably higher than that with Projection-Ol data
assimilation for all lead times of 1-6 months, especially in the central North Pacific where
the subsurface ocean temperature in the initial conditions is significantly improved by
EAKF data assimilation. For the Kuroshio—Oyashio extension (KOE) region, the errors
in the initial conditions have more rapid propagation resulting in large discrepancies
between simulated and observed values, which are reduced by inducing surface
waves into the climate model. Incorporation of realistic initial conditions and reasonable
physical processes into the coupled model is essential to improving seasonal prediction
skill. These results provide a solid basis for the development of operational seasonal
prediction systems for the North Pacific.

Keywords: seasonal prediction skill, FIO-ESM, North Pacific, ensemble adjustment kalman filter, assimilation
scheme, sea surface temperature

INTRODUCTION

The seasonal prediction skill of short-term climate prediction systems has received increasing
attention from the scientific community in recent decades (Kug et al., 2008; Kim et al., 2012; Wen
et al., 2012). In the North Pacific, sea surface temperature (SST) is an essential parameter of the
climate system, and its considerable variability has broad impacts on the weather, climate processes,
and ocean environment both locally or around adjacent continents, such as North America and
East Asia (Lau et al., 2004). Accurate prediction of SST based on the advanced seasonal prediction
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systems will provide useful information for disaster prevention
and damage reduction, as well as marine resource management.
Improved skill to predict oceanographic conditions in the North
Pacific is highly desirable.

Accurate prediction of SST anomalies (SSTAs) over the North
Pacific remains a challenge for the seasonal prediction systems
(Wen et al, 2012; Duan and Wu, 2014; Hu et al, 2014).
Current state-of-the-art coupled general circulation models are
unable to accurately simulate climatology and variations of
SST in the North Pacific (Wang et al., 2014). Variability of
SSTAs over the North Pacific, especially at mid and high
latitudes, is mainly influenced by local air-sea interactions,
Pacific Decadal Oscillation (PDO), and the El Nifo-Southern
Oscillation (ENSO, Liu and Alexander, 2007; Hu et al., 2014;
Bayr et al,, 2019). Associated with atmospheric teleconnection,
ENSO is the primary source of global climate predictability
at seasonal and interannual time scales (Kumar et al., 2014).
Since the coupled ocean-atmosphere system was used for ENSO
predictions (Cane et al., 1986), the seasonal prediction skill of
ENSO has considerably improved, and SST over the equatorial
Pacific can be successfully predicted two seasons in advance
(Barnston et al., 1999, 2015; Luo et al., 2005; Song et al., 2015;
Kim et al,, 2017; Liu and Ren, 2017). However, the skill to predict
SSTAs at the mid and high latitudes of the North Pacific is
lower than that for the tropical eastern Pacific. The robust spring
predictability barrier has limited seasonal prediction of ENSO for
along time (Zheng and Zhu, 2010). In the western central North
Pacific, initial error growth also exhibits a distinctive seasonal
dependence. The prediction skill is lowest in summer, giving rise
to the summer predictability barrier (Zhao et al., 2012; Duan and
Wu, 2014; Wu et al., 2016). Previous researches suggested that a
shallow mixed-layer depth in the North Pacific accompanied by
strong oceanic stratification in summer could result in a relatively
weak correlation between SSTAs in the summer and temperature
in the following winter (Alexander, 1999; Jacox et al., 2019),
which could lead to poor prediction of SSTAs. With the exception
of the Kuroshio-Oyashio Extension (KOE) region, SSTAs over
most of the North Pacific can be predicted with reasonable skill
with a lead time of two seasons (Wen et al., 2012). Hence,
the ability of a model to predict SST over the KOE region is
critical for the model’s skill in short-term climate prediction over
the North Pacific.

Seasonal prediction skill is controlled by physical processes
in the dynamical model as well as the initial conditions (Rosati
et al., 1997; Zhu et al,, 2012, 2017a; Kim et al., 2017). Studies
have found that low resolution and omission of critical physical
processes in models can lead to systematic biases, which limit
the seasonal prediction skill (Wen et al., 2012; Suranjana et al.,
2014; Zhu et al., 2017a). With ensemble initialization, increased
resolution, and comprehensive physics, seasonal prediction skill
of coupled dynamical models can be considerable improved
(Zhu et al., 2013). For example, Zhao et al. (2019a) show that
incorporation of surface wave processes can effectively improve
the simulation and prediction skills of SST in the North Pacific.
In addition, small perturbations in initial conditions can lead
to very different final results (Lorenz, 1969); therefore, more
accurate initial conditions based on high-quality observation and

data assimilation schemes are important for improving seasonal
predictions (Alessandri et al., 2010; Zhu et al., 2012).

In recent decades, availability of ocean observation data
and dramatically increased computer resources promotes the
development and application of different data assimilation
technologies, which combine the numerical model with
observational data optimally to provide more accurate
initial conditions for short-term climate prediction systems
(Ratheesh et al., 2012). Several assimilation schemes, including
optimal interpolation, three- or four-dimensional variational
assimilation, and Kalman filtering have been widely used in
weather and climate predictions (Eddy, 1964; Jones, 1965; Ezer
and Mellor, 1997; Anderson, 2001; Yin et al., 2010). The Optimal
Interpolation (OI) scheme requires few computing resources
and is relatively simple and easy to implement. Yin et al. (2010)
developed the improved Projection-OI scheme by projecting
observed data obtained at the ocean surface onto layers below.
The ensemble adjustment Kalman filter (EAKF) can make a joint
adjustment on related variables; for example, the upper-ocean
temperature, salinity, and velocity are in accordance with each
other during the prediction (Anderson, 2001; Bishop et al,
2001; Chen et al,, 2015). In addition, the ensemble method
in EAKF effectively eliminates uncertainties caused by initial
errors. Examining the impact of initial conditions, obtained from
different data assimilation schemes, can benefit the development
of prediction systems and improve seasonal prediction skills
over North Pacific.

In this study, we evaluate the skill of FIO-ESM v1.0 in seasonal
prediction of SST in North Pacific. The hindcast was initialized
by EAKF and the Projection-OI data assimilation scheme. In
addition, the effect of surface waves on the prediction skill is
discussed. The remainder of the paper is organized as follows:
climate model, assimilation schemes, hindcast experiments, and
observed data used for validation are described in section
“Model and Data Assimilation Schemes”; the assimilation results
from two schemes are compared in section “Comparison of
Assimilation Outputs”; in section “Evaluation of Prediction Skill”,
we investigate the seasonal dependence of prediction skill over
the North Pacific, and we close with discussions and conclusions
in section “Discussion”.

MODEL AND DATA ASSIMILATION
SCHEMES

Introduction of FIO-ESM v1.0

Hindcasts were conducted using FIO-ESM v1.0, which has been
developed by the First Institute of Oceanography, Ministry of
Natural Resources of China. There are five components in FIO-
ESM v1.0. These include the Community Atmosphere Model
Version 3.0 (CAM3.0) with a horizontal resolution of T42 (about
2.875° in latitude and longitude) and 26 vertical layers, the
Community Land Model Version 3.5 (CLM3.5), the Los Alamos
Sea Ice Model Version 4.0 (CICE4), the Parallel Ocean Program
Version 2.0 (POP2.0), which is an ocean circulation component,
and the wave model developed by the Key Laboratory of
Marine Science and Numerical Modeling (MASNUM), Ministry
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of Natural Resources of China. The horizontal resolution of
POP2.0 and CICE4 is 0.3-1.1°, and there are 40 vertical layers
in the ocean model. More details about FIO-ESM v1.0 can be
found in Qiao et al. (2013).

FIO-ESM v1.0 is a fully coupled ocean-atmosphere general
circulation model that considers ocean surface wave effects based
on the theory of non-breaking surface wave-induced mixing
(Qiao et al,, 2004, 2010). A set of coordinated experiments,
including historical and future scenarios simulations without flux
correction, has been conducted and included in the Coupled
Model Intercomparison Project phase 5 (CMIP5). The model
can capture major features of the observed climatology in the
historical period (Qiao et al., 2013), specially, it can reproduce
SST distribution and evolution in historical experiments. By
incorporating surface wave effects, the FIO-ESM v1.0 hindcasts
are skillful in predicting SST over most of the North Pacific
with lead times of 1-6 months (Zhao et al, 2019b). The
reliable SST representation at mid-latitudes leads to improved
simulated precipitation through the air-sea interaction (Chen
et al, 2015). More details about model performance can be
found in Zhao et al. (2019a).

Data Assimilation Schemes and

Observation Data

The initial condition of the ocean state plays a crucial role
in seasonal prediction. Outputs from two data assimilation
methods, EAKF and Projection-Ol, were used to initialize FIO-
ESM v1.0.

Data assimilation using the EAKF includes ten ensembles
spreading within a suitable scope. Ensembles were produced
using the three-dimensional ocean temperature perturbation
method with the magnitude of 10~3°C.

pert
Tijk = (1+aBijk) Tijk W

where the coefficient a is equal to 1073, Bi,j.k is arandom number
€

between -1 and 1 varying at each grid, and TP rli is the ocean
i,j

5

temperature after perturbation. The perturbation simulation
was conducted for 2 years before assimilation. During the
perturbation simulation, the tiny perturbation grows, gradually
stabilizes, and is used as the initialized condition for EAKF
assimilation experiments (Chen et al., 2015). The EAKF avoids
the perturbed observations in the traditional ensemble Kalman
filter (Evensen, 1994); instead, background error covariance
in the EAKF is calculated using ensemble samples. Spatial
and temporal evolutions of covariance are determined by the
dynamical processes of the model. Multiple variables are jointly
adjusted in the EAKF, maintaining consistency of the dynamic
relationships between elements before and after adjustment,
thus ensuring rationality of the initial conditions. In addition,
the method of the ensemble mean can effectively eliminate
uncertainties caused by initial biases.

Projection-OI uses vertical projections to project observations
at the ocean surface onto the three-dimensional model space
(Yin et al., 2010). Differences between surface observations and
model estimates were first calculated. Weight Bsst representing

the covariant relations between the surface and the lower layer
were then used to adjust the three-dimensional model state.
Temperature variation in each layer is AT, Bsst - ASST is the
corresponding variation obtained through vertical projection,
and Z is the difference between the two terms:

Z = AT — Bsst - ASST (2)

To minimize discrepancies, Psst was determined using the least-
square method by maintaining the gradient of Z at zero.

cov(AT, ASST
Bsst = 27) (3)
OASST

The time series of AT and ASST were constructed from
anomalies. The Projection-OI assimilation experiment was
conducted using a single member.

Two data assimilation experiments using the EAKF and
the Projection-OI schemes were conducted for January 1993-
December 2017 directly based on the fully coupled model
FIO-ESM v1.0. Seasonal hindcasts under two initial conditions
were started on the first day of each month. The same
aerosol radiative forcing and greenhouse gas concentrations
prescribed to the observation data in the historical experiments
of CMIP5 were used. Influences of initial conditions on the
skill of the model to predict seasonal SST in North Pacific were
quantified by the same validation metrics.

A daily-averaged advanced very high resolution radiometer
(AVHRR) SST from the National Oceanic and Atmospheric
Administration (NOAA)/National Climate Data Center (NCDC)
with horizontal resolution of 0.25° and sea level anomaly
(SLA) from the Archiving, Validation and Interpretation of
Satellite Data (AVISO) with horizontal resolution of 0.25° were
assimilated in two hindcast experiments (Ducet et al., 2000;
Reynolds et al., 2007). Observation data have higher horizontal
resolution than the model and contain the signals of mesoscale
processes. To ensure alignment with model resolution, spacial
running averages of the observation data over 1.5° grid were used.

Monthly observed SST from NOAA Optimum Interpolation
(OI) SST v2 for the period of 1993-2017 was used as the
validation dataset (Banzon et al., 2016). Monthly subsurface
ocean temperatures were obtained from version 4 of the Met
Office Hadley Centre EN series of data sets (EN4), which is a
global quality-controlled ocean temperature objective analysis.
The horizontal resolution of EN4 is 1°, and there are 42
vertical layers (Good et al., 2013). Observation data were linearly
interpolated to match the model grid.

SST is one of the key indicators to represent climate
variabilities. In this study, we examined the skill of FIO-ESM
v1.0 to predict SSTAs relative to monthly climatology averaged
for 1993-2017 with different lead times. Several criteria are
used to evaluate model performance. Specifically, the anomaly
correlation coefficient (ACC), which is widely used to measure
the relationship between predicted and observed anomalies,
was used to quantify the prediction skill. Three-month running
averages were applied before correlation analysis.
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COMPARISON OF ASSIMILATION
OUTPUTS

Climatology and evolution of SST from the assimilation output
were compared with those from the validation dataset to
examine whether the assimilation output can be used reliably
to initialize prediction. Area-averaged time series of SSTAs
over the North Pacific (20°-70°N, 110°E-100°W) are shown in
Figure 1. Seasonal, interannual, and inter-decadal variabilities
of SSTAs in EAKF and Projection-OI assimilation outputs are
highly consistent with those of OISST v2 SSTAs. The correlation
coefficient between OISST v2 and EAKF SSTAs (0.935) is
higher than that between OISST v2 and Projection-OI (0.905),
indicating that the ability to reproduce observed SSTAs is higher
in EAKF than in Projection-OI. Figure 2 shows the spacial
distribution of ACC between OISST v2 and SST from two data
assimilation experiments. High ACC scores indicate that the
model with the data assimilation scheme has high ability in
reproducing SST. For EAKF runs, the ACC reaches 0.9 over most
of the North Pacific and is higher in the east than in the west.
The same observation data are assimilated using Projection-OI
scheme, but the ACC in the Projection-OI run is apparently
lower than that in EAKF. For Projection-OI, ACC reaches 0.9
only distributing in the eastern North Pacific, off the coast of
California. In general, SSTAs were reasonably reproduced with
ACC exceeding 0.7 over most of the North Pacific, except for
the western boundary region and the mid-latitudes of the central
North Pacific where ACC is relatively lower. The FIO-ESM v1.0
with EAKF assimilation produces initial conditions for prediction
that have higher accuracy than those produced by FIO-ESM v1.0
with Projection-OI assimilation.

Surface observation data, including SST and SLA, were
assimilated into FIO-ESM v1.0 using EAKF and Projection-OI
assimilation schemes. The ocean subsurface layer is considerably

— OISST
— EAKF(0.935)
— Projection-01(0.905)
1 . . | 1
1993 1998 2003 2008 2013
Year

FIGURE 1 | Time series of area-averaged SSTAs (units: °C) over the North
Pacific (20-70°N, 110°E-100°W) with respect to climatology for 1993-2017.
Three-month-running smoothing is applied. The black line represents SSTAs
from OISST v2 observation; red and blue lines represent EAKF and
Projection-Ol assimilation results, respectively. The values in brackets are
correlation coefficients between assimilation results and observation.

A 70°N EAKF

50°N |
30°N |
120°E 160°E 160°W 120°W
B 70°N Prq;ectlon-OI .
50°N %
30°N |
126°E 160°E 160°W 120°W

FIGURE 2 | The anomaly correlation coefficient (ACC) of sea surface
temperature (SST) between OISST v2 and assimilation results for 1993-2017.
(A) EAKEF; (B) Projection-Ol. ACC s significantly greater than zero at the 95%
confidence level. Only the 0.8 and 0.9 contours are plotted.

Y
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FIGURE 3 | The ocean temperature changes along 45°N in the North Pacific
as the EAKF scheme compared with the Projection-Ol assimilation scheme.
This change was calculated according to Eq. (4) for 1993-2017 (units: °C).
The negative value indicates improvement with EAKF data assimilation.

changed under the data assimilation. Here, the difference between
EAKF and observed temperatures was calculated to estimate the
error of the EAKF scheme; similarly, the difference between
Projection-OI and observed temperatures was calculated to
estimate the error of the Projection-OI scheme:

Temperature changes = |Tpakr — Tops|—|Tprojections—or — ToBs|
(4)
where temperature changes refer to the difference between the
absolute values of the errors of the two schemes; negative
temperature changes indicate that the absolute difference
between EAKF and observed temperatures is smaller than that
between Projection-OI and observed temperatures. Figure 3
shows temperature changes along 45°N in the North Pacific.
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Negative temperature changes centered around 170-140°W from
the surface to a depth of 300 m, and along the western coast at a
depth of 100 m, indicating that EAKF is superior to Projection-OI
in assimilating observed ocean temperatures for these locations.
The EAKF and Projection-OI schemes use different projection
methods to assimilate and project observed SST and SLA onto the
subsurface vertical profile. The EAKF scheme uses the covariant
relationship among different ensemble members, adjusting the
temperature profile while also adjusting the current velocity
coordinately, resulting in improved temperature simulation
below the sea surface, which are superior to those obtained
with the Projection-OI scheme. Distributions of subsurface
negative temperature changes (centered around 170-140°W and
140-150°E in Figure 3) are consistent with that of high ACC
skill (located in the central and western North Pacific as shown
in Figure 2), indicating that the subsurface ocean temperature
changes are directly associated with data assimilation techniques.
Besides, this improvement is possible to be amplified via air-sea
interaction in the coupled system. The improved SST, in turn,
may derive inferior winds that contribute to better estimates of
subsurface thermal conditions (Luo et al., 2005; Zhu et al., 2017a).

EVALUATION OF PREDICTION SKILL

Initialization of hindcasts with EAKF and Projection-OI data
assimilation were conducted for 1993-2017. Figure 4 shows ACC
of SST with lead times of 2, 4, and 6 months between OISST
v2 dataset and hindcast results. We explore the impact of two
different data assimilation schemes on the seasonal prediction
skill for SST in the North Pacific. For lead times of 2, 4, and
6 months, the skill of FIO-ESM v1.0 to hindcast seasonal SST
in the North Pacific is higher with EAKF data assimilation and
lower with Projection-OI data assimilation. ACC at a 2-month
lead time exceeds 0.5 over most of the North Pacific and is
higher than 0.9 in the eastern Pacific. The prediction based on
Projection-OI assimilation shows lower prediction skills with the
ACC below 0.5 in most parts of North Pacific. As the lead time of
prediction increases from 2 to 6 months, values of AAC gradually
decreased. For lead times of 2, 4, and 6 months, the spacial
distribution of ACCs indicates low skill in SST prediction over the
KOE region where the active mesoscale processed combined with
strong air-sea interactions is present. The remarkable predicted
bias over the KOE region is consistent with results from previous
research (Wen et al., 2012) and is a common problem in seasonal
prediction over the North Pacific.

To show the prediction skill initialized by two data
assimilation methods more clearly, we examine the differences
between ACC from EAKF and that from Projection-OI were
calculated for each lead month. Figure 5 shows a clear difference
over the Western central Pacific, particularly in the Okhotsk Sea,
Japan Sea, and China Seas in the first lead month. Starting from
a 2-month lead, large positive values are found in the Bering Sea
and the Gulf of Alaska of the eastern North Pacific and extend
along the northeast-southwest banded area in central Pacific.
This positive value indicating improvement with EAKF method
varies with increasing lead months and remaining in place for

lead times of 5 and 6 months. Due to the coordinated adjustment
at the surface and the entire water column in vertical in EAKE
SST hindcasts with EAKF data assimilation are superior to those
with Projection-OI data assimilation. The difference between the
two ACCs does not decrease with increasing lead time. Prediction
skill strongly depends on initial conditions, and the dependence
can last for lead times of up to two seasons.

The times series of area-averaged (30-50°N, 150°E-150°W)
SSTAs differences between hindcast and OISST v2 for 1993-2017
for different lead times is shown in Figure 6. Biases of SSTAs
from EAKF and from Projection-OI are similar, characterized
by strong interannual variation. When the bias from the EAKF
experiment is positive, there is also a positive bias in the
Projection-OI prediction, and vice versa, indicating that the
direction of prediction SST shifts is probably related to the model,
regardless of which data assimilation method is used. However,
the prediction bias initialized with Projection-OI is considerable
larger than those from EAKF. The EAKF scheme performs better
in restraining the shifts of model due to coordinated adjustment.
Generally, the prediction bias for a lead time of 6 months is larger
than biases for lead times of 2 or 4 months, either for EAKF or
Projection-OI experiments.

Seasonal dependence of prediction skill over the North
Pacific was further investigated, and variation of ACC with
horizontal axis of hindcast length and the vertical axis indicating
the forecast starting month is shown in Figure 7. Hindcasts
with EAKF data assimilation and that start from May are
consistently high in skill, while the prediction skill is lower for
hindcasts that start from November. The skill of Projection-
OI hindcast is relatively low, but their ACC has the same
characteristics of seasonal dependence as ACC of hindcasts with
EAKF data assimilation. For both data assimilation schemes,
hindcasts started from summer are lower in skill, which is
consistent with the summer predictability barrier that is often
encountered in short-term predictions. The differences show that
the prediction skill is improved for all lead times by EAKF,
especially for hindcasts that start in spring and autumn. The
significant change with the differences exceeding 0.3 exists for
lead times of 2-4 months. The FIO-ESM v1.0 with EAKF
data assimilation tends to represent atmospheric and oceanic
conditions relatively well and shows high skill of SST prediction
over North Pacific.

To explore the factors underlying the superior performance
of hindcasts with EAKF data assimilation, temperature changes
(as defined in Eq. 4) in the subsurface layer in the initial
condition and difference of prediction skills between EAKF
and Projection-OI hindcasts averaged for 1-6 lead months are
illustrated in Figure 8. The significant improvement of prediction
skill distributes in the banded area from 160°E to 160°W and in
the high latitudes. Realistic initial conditions improve a model’s
ability to capture climate variability and can improve the model’s
skill to predict ENSO with a lead time of up to two seasons
(Song et al., 2015). Signals from the tropics can have profound
impacts on subtropical regions. Previous studies suggest that
SSTA evolution in the North Pacific is strongly influenced by
ENSO because of atmospheric teleconnections (Kim et al., 2015;
Zhu et al., 2017a). The well-predicted ENSO can also improve
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FIGURE 4 | Distributions of ACC between IOSST v2 and hindcasts using the EAKF and Projection-Ol data assimilation methods for the 2-, 4-, 6-months lead in the
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FIGURE 5 | The differences of ACC between the EAKF and Projection-Ol hindcasts in each lead month averaged for 1993-2017. Only the line of 0.3 contour is
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skill to predict SSTA over the mid and high latitudes. In addition,
we found that significant improvement of ocean temperature
in the subsurface layer of the initial condition up to 3°C is
shown to be located over the central North Pacific between
160°E and 160°W, which is generally in accordance with the
region where the prediction skill is much improved. It reveals

that the accurate subsurface structure in the initial condition
could improve seasonal prediction skill in this region. However,
more accurate ocean temperatures in the initial conditions are
insufficient to remove all prediction errors, for example over
the KOE region, characterized by active air-sea interactions and
mesoscale processes.
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FIGURE 6 | Time series of area-averaged SSTAs prediction biases over the
North Pacific (30-50°N, 150°E-150°W; units: °C) with respect to OISST v2
for 1993-2017. The lines in different colors represent SSTA biases at the 2-,
4-, and 6-lead months in EAKF and Projection-Ol predictions, respectively.

DISCUSSION

In this paper, the impacts of initial conditions on the skill of
FIO-ESM v1.0 to predict seasonal SST over the North Pacific
were assessed. Several assimilation and hindcast experiments
for 1993-2017 were conducted using FIO-ESM v1.0 and the
EAKF and Projection-OI data assimilation scheme. Evaluation
of data assimilation output shows that simulated SST in the
North Pacific from the EAKF scheme has a higher accuracy
than that from Projection-OI runs. Seasonal SST variability in
assimilation outputs is consistent with those in observations,
with ACC exceeding 0.7 over most of the North Pacific. Both

EAKEF and Projection-OI assimilate the same surface observation
data, however, the model with EAKF data assimilation has higher
accuracy than that with Projection-OI in simulating subsurface
ocean temperature.

Oceanic initial conditions play an important role in improving
seasonal prediction skill. We analyzed hindcasts initialized
by EAKF and Projection-OI data assimilation for the lead
times of 1-6 months for 1993-2017. Prediction skill, as
represented by ACC, is higher in hindcasts with EAKF
than those with Projection-OI. ACC exceeding 0.5 is found
over almost the entire North Pacific at a 2-month lead
time and even over the eastern North Pacific at the 6-
month leading time with EAKF initialization. Specifically,
significant improvement of ACC distributes over the central
North Pacific, as well as from the Bering Sea to the
eastern North Pacific. Seasonal dependence of prediction
skill was further assessed, and we found that, like other
prediction systems, FIO-ESM v1.0 also encounters the North
Pacific summer predictability barrier. EAKF can mitigate the
prediction bias in contrast to Projection-OI for all lead times
of 1-6 months, especially for the prediction starting from
spring and autumn.

The prediction skill of FIO-ESM v1.0 over the KOE region
is relatively low, because the complex dynamic environment
with strong air-sea interaction in this region, which is difficult
to parameterize correctly in climate models. Previous research
suggested that the SST evolution and climate variability
in extratropical Pacific are influenced by ENSO through
atmospheric teleconnection and other associated dynamic
processes (Hu et al., 2014). The skill to predict SSTAs in the
central Pacific increases under ENSO remote forcing during the
cold phase (Zhu et al., 2017a). If the model fails to simulate
the teleconnection pattern, it may limit the prediction skill
over the North Pacific (Kim et al, 2015). Realistic oceanic
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FIGURE 7 | Evolution of area-averaged ACC over the North Pacific (20-70°N, 110°E-100°W); the horizontal axis represents the length of hindcasts, and the vertical
axis indicates the starting month. (A) EAKF; (B) Projection-Ol; and (C) EAKF-Projection-OlI.
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FIGURE 8 | The temperature changes between EAKF and Projection-Ol
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condition and the differences of ACC between the EAKF and Projection-Ol
hindcasts averaged in all lead months (contour, only 0.3 and 0.4 contours are
plotted). The depth of 50-150 m covers the annual variation of mixed-layer
depth.
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FIGURE 9 | (A) Zonal mean ACC (110°E-100°W) between IOSST v2
datasets and hindcast results in EAKF (solid line) and Projection-Ol (dashed
line) runs. Red, green, and blue lines represent for 2-, 4-, 6-month lead,
respectively. (B) Zonal mean SSTAs (110°E-100°W; units: °C) with respect to
1993-2017 climatology in observation (black), Exp.wave (red) and Exp.nowa
(blue) mean averaged for 1-6 lead months, and gray solid and dashed lines
represent the different lead month in Exp.wave and Exp.nowa.

initial conditions improve ENSO predictions, which in turn have
profound impacts on SSTAs predictions over the extratropical
Pacific. In this study, we found that the EAKF data assimilation
scheme improves the subsurface layer temperature in the
initial condition and results in highly predicted ACC over the
central North Pacific, indicating that accurate oceanic initial
conditions, especially in the subsurface layer, can effectively
improve prediction skill over the North Pacific. The projection
method of the data assimilation scheme in the subsurface layer
or deep waters can improve the prediction system’s performance.
Development of short-term climate prediction systems has
considerably improved seasonal prediction of SST over the
North Pacific. For example, version 2 of the NCEP Climate
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FIGURE 10 | The differences of absolute predicted biases between Exp.wave
and Exp.nowa in 2016. (A) Annual mean; (B) Jan-Jun mean; and (C) Jul-Dec
mean. The hindcasts with or without wave are respectively compared with
OISST v2 to show the predicted biases. Then the difference of absolute values
of the biased between Exp.wave and Exp.nowa are calculated. As definited
above, the negative value, indicating that the absolute difference between
EAKF and observation is smaller than that between Projection-Ol and OISST
v2, represents the improvement due to the surface wave effects.

Forecast System (CFSv2'), which belongs to the new generation
of operational climate forecast systems and has improved physics
and increased resolution in the atmosphere-ocean-land coupled
model. The skill of seasonal forecasts of 2-m temperatures over
the United States from CFSv2 is nearly double of that from the
old version of the prediction system. Global SST forecasts are
also considerably improved with CFSv2 (Suranjana et al., 2014).
Guan et al. (2014) show that the maximum skill based on CFSv2
hindcasts is confined in the tropical Pacific, and the prediction
skill at the mid-latitudes of North Pacific remains low. Compared
with CFSv2, FIO-ESM v1.0 exhibits improved prediction skills
in the mid and high latitudes ocean. As shown in Figure 9, the
zonal mean of ACCs (110°E-100°W) varies between 0.7 and 0.4
for 1- to 6-month lead (latitudes ranging from 35 to 50°N) in the
EAKEF experiment. Except for the influences of initial condition
on prediction, it demonstrated that the physical process, such as
wave effect, also plays a constructive role in climate prediction
in North Pacific. To show the impacts of wave-induced mixing
on seasonal prediction, the hindcast without waves is conducted
using FIO-ESM v1.0 for 2016 (denoted as Exp.nowa), and the

'http://cfs.ncep.noaa.gov
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results were compared with the FIO-ESM v1.0 hindcast with
EAKF data assimilation for 2016 (denoted as Exp.wave). Two
experiments were started from each month of 2016 and initialized
with the same initial conditions using the EAKF and ensemble
method. When non-breaking wave-induced mixing effects are
taken into account, the prediction bias of SSTAs is reduced by
about 0.4°C for average lead times of 1-6 months at mid and
high latitudes of the North Pacific (Figure 9B). Furthermore,
bias reduction is found from the Okhotsk Sea across the mid-
latitudes of the North Pacific (Figure 10) where low seasonal
prediction skills have been persisting in other climate prediction
systems. The prediction skill improvement due to surface wave
exhibits seasonal dependence. Surface wave mixing has a stronger
influence when the prediction starts in spring or early summer.
As the prediction initiated from the second half of the year,
ocean surface waves have little effect on prediction skill. The
mixed-layer depth in the high latitude is shallow in summer, with
the larger temperature gradient in the upper ocean. The enhanced
vertical mixing bringing more cold water from the subsurface to
the surface reduces SST. At low latitudes of the Pacific, the deep
mixed-layer depth with weak wave-induced mixing results in a
slight reduction in SST. In winter, the mixed-layer depth is deep,
and the temperature gradient in the upper ocean is small. Due
to the limitation of penetration depth, wave-induced mixing is
unable to act on the water beneath the mixed layer. Furthermore,
the decrease in the vertical diffusion coefficient reduces vertical
water exchange, preventing downward heat transfer. As a result,
upper ocean temperatures change little or even increase. The
effect of surface wave on seasonal prediction of SST is more
pronounced in summer, because of shallow mixed-layer depth
(Zhao et al., 2019b). Seasonal predictions over the North Pacific
over long lead times can be improved by incorporating realistic
initial conditions produced by effective data assimilation schemes
and reasonable physical processes in climate models.
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Spatial distributions of marine fauna are determined by complex interactions between
environmental conditions and animal behaviors. As climate change leads to warmer,
more acidic, and less oxygenated oceans, species are shifting away from their historical
distribution ranges, and these trends are expected to continue into the future. Correlative
Species Distribution Models (SDMs) can be used to project future habitat extent
for marine species, with many different statistical methods available. However, it is
vital to assess how different statistical methods behave under novel environmental
conditions before using these models for management advice, and to consider whether
future projections based on these techniques are biologically reasonable. In this
study, we built SDMs for adults and larvae of two ecologically important pelagic
fishes in the California Current System (CCS): Pacific sardine (Sardinops sagax) and
northern anchovy (Engraulis mordax). We used five different SDM methods, ranging
from simple [thermal niche model (TNM)] to complex (artificial neural networks). Our
results show that some SDMs trained on data collected between 2003 and 2013
lost substantial predictive skill when applied to observations from more recent years,
when ocean temperatures associated with a marine heatwave were outside the range
of historical measurements. This decrease in skill was particularly apparent for adult
sardine, which showed non-stationary relationships between catch locations and sea
surface temperature (SST) through time. While sardine adults and larvae shifted their
distributions markedly during the marine heatwave, anchovy largely maintained their
historical spatiotemporal distributions. Our results suggest that correlative relationships
between species and their environment can become unreliable during anomalous
conditions. Understanding the underlying physiology of marine species is therefore
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essential for the construction of SDMs that are robust to rapidly changing environments.
Developing distribution models that offer skillful predictions into the future for species
such as sardine and anchovy, which are migratory and include separate sub-stocks,
may be particularly challenging.

Keywords: Species Distribution Models, Pacific sardine, northern anchovy, California Current, marine heatwaves

INTRODUCTION

Climate change is leading to unprecedented conditions in marine
ecosystems around the world, forcing ocean biota to adapt to new
environmental states (Lima and Wethey, 2012; Poloczanska et al.,
2013). Mobile marine animals may respond to physiologically
stressful or otherwise unfavorable environments by moving away
from impacted areas. These changes in spatial distributions can
present challenges for the effective management of ecologically
and economically important species and habitats (Mills et al,
2013; Cheung et al., 2015; Kleisner et al., 2017; Karp et al., 2019).
The development of most stock assessment models, marine
protected areas, and other resource management measures has
traditionally assumed relatively constant species distributions
through time (Link et al, 2011; Punt et al., 2013). Resilient
management strategies for the future will thus need to be flexible
enough to adapt to shifting species distributions, and changing
spatial productivity regimes (Johnson and Welch, 2009).

Multivariate correlative Species Distribution Models (SDMs)
are increasingly being used to anticipate these challenges by
projecting future distributions of marine species. These types
of model are popular due to their flexibility, and ability to
represent complex relationships between a species and its ocean
habitat (Guisan and Zimmermann, 2000; Elith and Leathwick,
2009). However, SDM projections can be misleading if models do
not adequately capture the mechanistic drivers which underpin
species responses to their environment (Buckley et al., 2010;
Silber et al., 2017; Yates et al., 2018). These models can
also behave in unexpected ways when confronted with novel
environmental conditions, or when required to extrapolate in
time or space (Hannemann et al., 2015; Norberg et al., 2019).
The responses of different classes of SDM to novel conditions
can also depend on the model structure, potentially introducing
another significant source of uncertainty into projections of
future species distributions.

The choice of covariates for use in SDMs can also
be influential. The inclusion of environmentally invariant
spatiotemporal covariates (e.g., longitude, latitude, month, day of
the year) often improves SDM performance against present-day
observations, because these covariates can represent important
but unmeasured (or unknown) spatiotemporal processes (Brodie
et al, 2020). However, as climate change increasingly leads
to directional shifts in ocean conditions, historically relevant
spatiotemporal predictors of species distributions may lose
their skill. For species that move primarily in response to
local, near-real-time environmental conditions, SDMs including
spatiotemporal covariates are less likely to remain accurate into
the future. In contrast, SDMs with spatiotemporal covariates

may continue to be skillful for some future period of time
for species which move depending on genetically determined
migration behaviors, or in response to fixed geographical cues,
such as coastal topography (Bauer et al., 2011; Winkler et al.,
2014). These animals may continue to occupy historical habitats,
even as the physiological suitability of these locations deteriorates
(e.g., Crozier et al., 2008). The importance of understanding the
physiology, predator-prey interactions, and movement ecology of
species before attempting to project their future distributions is
thus clearly important.

A combination of anthropogenic climate change overlaid
on higher-frequency natural variability, such as the El Nino -
Southern Oscillation, has led to unprecedented warm events in
marine ecosystems in recent years (Holbrook et al., 2019; Jacox,
2019; Smale et al., 2019). These extreme events have been referred
to as marine heatwaves, with a severity classification based on
departures from climatological sea surface temperature (SST)
(Hobday et al.,, 2018). The California Current System (CCS)
experienced a severe (category 3) marine heatwave from 2014 to
2016 (Figure 1), which originated as an offshore anomaly known
as “the Blob” (Bond et al., 2015). This heatwave evolved into
a coastwide warming pattern (Di Lorenzo and Mantua, 2016),
further fueled by a strong El Nifio in 2015-2016 (Jacox et al.,
2016). SSTs were up to 6°C warmer than usual, and primary
productivity was anomalously low across parts of the continental
shelf and offshore regions (Gentemann et al., 2017; Kahru et al.,
2018). Many marine species responded strongly to the heatwave,
showing highly anomalous abundances (e.g., Becker et al., 2018;
Brodeur et al., 2019; Duguid et al., 2019), and distribution
patterns (Cavole et al., 2016; Sakuma et al., 2016) compared to
historical observations.

With novel environmental conditions, such as marine
heatwaves, becoming increasingly common, there is a critical
need to test if our predictions of species responses to these
conditions are realistic (Guisan et al., 2013). The CCS marine
heatwave can thus provide a useful out-of-sample robustness
test for SDMs trained on prior years (Becker et al, 2018).
If SDMs can reproduce the anomalous species distributions
observed in 2014-2016, it instills confidence in their usefulness as
tools for projecting species distributions decades into the future.
Conversely, a strong loss of SDM skill during the heatwave years
may suggest that the underlying mechanisms driving species
distributions in the CCS have not been adequately captured.

Pacific sardine (Sardinops sagax: sardine hereafter) and
northern anchovy (Engraulis mordax: anchovy hereafter) are
ecologically important forage fish in the CCS, transferring energy
from plankton to upper trophic levels (Koehn et al., 2016). Their
dynamics are characterized by boom and bust cycles, even in the
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FIGURE 1 | Sea surface temperature (SST) anomalies against a 1980-2018 mean from the CCS ROMS by quarter (January-March, April-June, etc.) for the
Experiment 1 SDM training/testing and validation time periods. Anomalies are averaged temporally and mapped spatially at 1° resolution (top) and averaged
spatially across the whole model domain and plotted temporally (bottom).
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absence of industrial fishing (Baumgartner, 1992). In the past
10 years, sardine biomass has declined to very low levels, while
anchovy abundance has increased strongly since 2017 (Lindegren
et al,, 2013; Gallo et al,, 2019; Thompson et al., 2019; Zwolinski
etal., 2019). Anchovy are associated with cool, upwelled waters in
shallower coastal environments, and are generally non-migratory
(Checkley etal., 2009). The central anchovy subpopulation ranges
from Baja California to San Francisco, and spawns off southern
and central California, while the northern subpopulation ranges
from San Francisco to British Columbia, and spawns near
the Columbia River plume (Emmett et al., 2005; Litz et al.,
2008; Checkley et al., 2009; Duguid et al., 2019). Sardine reside
in warmer, more oligotrophic waters between the California
Current and the coastal upwelling region (Checkley et al,
2009). Two of the three sardine subpopulations undergo annual
northward feeding migrations, the extent of which may depend
on oceanographic conditions, population size, and age structure
(Smith, 2005; Zwolinski et al., 2011; McDaniel et al., 2016). The
southern subpopulation extends from southern Baja California to
southern California, and spawns in summer and fall off southern
Baja California. The northern subpopulation, and extends from
northern Baja California to British Columbia (Valencia-Gasti
et al.,, 2018), spawning off central and southern California in
spring, and in spring-summer off Oregon and Washington in
some years (Zwolinski et al., 2011; Auth et al,, 2018).

Ongoing research surveys provide extensive distribution
information for sardine and anchovy across life stages in the
CCS, making them useful case study species. In this study, we
thus assessed the ability of five different types of SDM to predict
distributions of adults and larvae of sardine and anchovy in the
region. Our chosen SDMs spanned a range of complexity from
simple, single-variable thermal niche models (TNMs) to more
complex machine learning models. We assessed the predictive
skill for each SDM across two separate experiments. The first used
data collected from 2003 to 2013 to train the SDMs, and then
externally validated them against observations from 2014 to 2018,
a time period including the 2014-2016 marine heatwave. The
second experiment allowed the SDMs to use observations from
the marine heatwave years for model training, and validated them
against data from withheld years with near-average temperature
conditions (2003-2007). We discuss our results in light of current
knowledge on the ecology of sardine and anchovy in the CCS,
and offer some potential explanations for differences in skill
observed between the two experiments and across each life stage
of each species.

MATERIALS AND METHODS

Biological Data Sources

Catch records for adult sardine and anchovy were obtained
from trawl surveys conducted by the NOAA Southwest Fisheries
Science Center (SWFSC). There were data from 1,777 hauls
available for use, from 29 cruises conducted between July 2003
and September 2018. Sampling effort was primarily concentrated
in spring (April: 657 hauls) and summer (July-August: 737
hauls), but some data were also available from other months

between March and October. The trawl net was towed near the
surface at night at a target speed of 3.5-4.0 knots. The net was
fitted with an 8 mm mesh liner in the codend (more details
are contained in Zwolinski and Demer, 2012; Zwolinski et al.,
2012 and Weber et al., 2018). Sampling was concentrated on the
continental shelf and slope.

Larval occurrence records for California waters were
primarily sourced from the California Cooperative Oceanic
Fisheries Investigations (CalCOFI) surveys. Collections under
this program began in 1949, and CalCOFI cruises have occupied
a standard grid of 66 stations off southern California since 1985.
We used catches from standard oblique 0.71 m bongo net tows,
which are fitted with 505 mm mesh and towed to 210 m depth
(Kramer et al., 1972; Moser et al., 2001; Asch, 2015). Larval
occurrence records for the northern California Current were
sourced from various sampling programs conducted between
1998 and 2018 by the NOAA Northwest Fisheries Science
Center (NWFSC) along the central Oregon coast. These catches
derived from 1-m ring and 0.6-0.7 m bongo net tows fitted
with 0.200-0.333 mm mesh towed to 20-100 m depth (Auth
et al., 2015, 2018; Thompson et al., 2019). Larval data from the
entire Oregon and southern Washington coasts were available
from yearly (since 2013) NWFSC Prerecruit surveys using a
0.7 m bongo net with 0.333 mm mesh (Brodeur et al.,, 2019;
Thompson et al., 2019).

Environmental Variables

Environmental predictors for the SDMs were sourced from a data
assimilative CCS configuration of the Regional Ocean Modeling
System (ROMS), with 42 terrain-following vertical levels. The
ROMS domain covered from 30 to 48°N, inshore of 134°W at
0.1° horizontal resolution' (Veneziani et al., 2009; Neveu et al.,
2016). The suite of predictors was the same as used by previous
distribution modeling studies for marine vertebrates in the CCS
(Scales et al., 2017; Becker et al., 2018; Brodie et al., 2018; Muhling
et al., 2019; Smith et al., 2020), and is shown in Table 1. We
included SST due to the known importance of temperature to
physiological processes and habitat delineation in our species
(Checkley et al., 2000; Zwolinski et al., 2011; Weber et al., 2018).
Mesoscale oceanographic activity has been shown to delineate
favorable spawning areas for small pelagic fishes (Asch and
Checkley, 2013), and was captured through sea surface height and
eddy kinetic energy. We also included predictors of current flow
and wind stress (northward and eastward wind stress, current
velocities, wind stress curl), as these are important in shaping
retention characteristics and drivers of primary productivity in
the region (Jacox et al., 2018). As Brodie et al. (2018) showed the
importance of indicators of subsurface water column structure
(such as isothermal layer depth and bulk buoyancy frequency)
in predicting the distribution of large pelagic fishes and sharks
in the CCS, we also included these variables. Isothermal layer
depth captures the thickness of the well-mixed surface layer,
while bulk buoyancy frequency indicates the stability of the
upper water column. The spatial standard deviation of both SST
and sea surface height at 0.7° resolution were also included as

'http://oceanmodeling.ucsc.edu/ccsnrt version 2016a
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TABLE 1 | Predictors used to build SDMs, and SDM configurations which included each variable.

Variable Source Spatial resolution Temporal resolution SDM Config.
Bulk buoyancy frequency ROMS 0.1 Daily eny, all
Wind stress curl ROMS 0.5 Daily envy, all
Isothermal layer depth ROMS 0.1 Daily env, all
Eddy kinetic energy (log) ROMS 0.1 Daily env, all
Sea surface height ROMS 0.1 Daily env, all
Sea surface height s.d. ROMS 0.1 Daily envy, all
Sea surface temperature ROMS 0.1 Daily envy, all
Sea surface temperature s.d. ROMS 0.1 Daily eny, all
Surface eastward current velocity ROMS 0.1 Daily env, all
Surface northward current velocity ROMS 0.1 Daily envy, all
Surface eastward wind stress ROMS 0.1 Daily env, all
Surface northward wind stress ROMS 0.1 Daily envy, all
Surface chlorophyll (4th root) ESA reanalysis 0.04167 8 day eny, all
Moon phase Date Non-spatial Daily env, all
Stock biomass Stock assessment or larval survey Non-spatial Annual eny, all
Latitude Survey Native Daily geo, all
Longitude Survey Native Daily geo, all
Month Survey Native Monthly geo, all

“s.d.” denotes standard deviation. Note that wind stress curl was extracted at 0.5 resolution, to account for discrepancies in wind forcing datasets used across years

(see Muhling et al., 2019).

predictors, to highlight areas of high variability such as frontal
zones (Hazen et al., 2018). More information on the calculation
of these parameters is available in Brodie et al. (2018) and
Mubhling et al. (2019). Although surface salinity is available from
the ROMS, we chose not to include it as a predictor as it was
inconsistent through time, across the two ROMS experiments
(1980-2010 and 2011 - present: see Brodie et al., 2018). Values
of each ROMS predictor were extracted at native 0.1° spatial
resolution, for the date and location of biological sampling. As
the CCS ROMS is physics-only (no biogeochemistry), we used
satellite surface chlorophyll to approximate primary productivity.
These data were obtained from chlorophyll re-analyses developed
through the Ocean-Colour Climate Change Initiative (OC-
CCI) using multiple ocean color sensors (Sathyendranath et al.,
2019). Chlorophyll was extracted at 0.25° spatial resolution, and
from 8-day composites overlapping biological sampling dates, to
minimize the number of observations lost to cloud cover. Where
no 8-day chlorophyll observations were available for a sampling
station, we used monthly chlorophyll instead, as the correlation
between 8-day and monthly chlorophyll was high (r > 0.8). This
impacted <5% of the biological observations. Eddy kinetic energy
and surface chlorophyll were both strongly right-skewed, and so
were log. and 4th root transformed, respectively, before inclusion
in the SDMs. None of the environmental predictors were linearly
correlated with each other at r > 0.6 or r < —0.6, and so all were
included in the SDMs.

Following Weber and McClatchie (2010) and Muhling et al.
(2019) we included annual biomass indicators as additional
predictors for both species, to account for potentially different
rates of occupation of environmentally suitable habitat at
different stock sizes (Supplementary Figure S1). Previous studies
have shown that actual occupied habitat is more spatiotemporally
restricted than potential habitat for many fish species, particularly
when stock biomass is low (Planque et al., 2007; Reiss et al., 2008).

For sardine, we used annual standing stock biomass estimated
from sardine stock assessments (Hill et al., 2014, 2018). For
anchovy, we used 3-year running mean larval abundances from
CalCOFI surveys to index anchovy stock biomass (following
Zwolinski and Demer, 2012), as there is no current stock
assessment for this species.

Species Distribution Models

All SDMs in this study predicted the probability of occurrence
(presence or absence) of each species and life stage. The available
biological data from both trawl and larval surveys were split
into three sections for use in SDM training, testing, and external
validation. Partitioning of observations among these three groups
varied across two set experiments, described below.

In Experiment 1, SDMs were trained using a randomly
selected 50% of all available observations collected between
2003 and 2013 (training dataset). Optimal SDM configurations
were determined based on skill against the other 50% of data
from these years (testing dataset). Model skill was quantified
using the Area Under the Receiver Operating Characteristic
(ROQC) curve: (AUC). The AUC metric measures the skill of
a classification model. The ROC curve plots the true positive
rate against the false positive rate at different classification
thresholds, and the area under this curve is used as a measure
of model performance. An AUC of 1 indicates a perfect model,
where all absences are correctly predicted as absences, and all
presences are correctly predicted as presences, while a value of
0.5 indicates that the model’s skill is no better than random.
SDMs built using the optimal configuration were then scored
against data from years 2014 to 2018 (validation dataset). Results
reported for each SDM for each species/life stage thus include
(1) a “test” skill, against data not used to build the model
but within the same set of years, and (2) a “validation” skill,
against data not used to build the model and from a different
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set of years with novel environmental conditions (Figure 1).
To estimate the uncertainty introduced from the random 50%
split of 2003-2013 data into training and testing datasets, this
split was repeated 10 times (setting the seed each time to
allow reproducibility), with optimal SDM configurations re-
determined, and a separate set of SDMs saved for each iteration.
Mean SDM skill was then assessed across results from all 10
training/testing splits.

Our Experiment 1 training data for the SDMs were restricted
to the years 2003-2013, to align with data availability for the trawl
surveys. However, larval survey data extend much further back in
time. We thus tested two modifications to Experiment 1 for larval
sardine and larval anchovy SDMs: the first extended training and
testing data back to September 1997, to align with the start of the
satellite chlorophyll record. The second modification extended
training and testing data back to 1980, to align with the start of
the ROMS reanalysis, with chlorophyll dropped as a predictor.
Skill against the withheld validation dataset from 2014 to 2018
was then re-tested in the same manner as for the larval SDMs
trained using 2003-2013 data.

In Experiment 2, we aimed to assess whether changes
in SDM skill between the testing and validation datasets
observed in Experiment 1 depended primarily on the novel
environmental conditions present during 2014-2018, or on the
lack of temporal overlap between the training/testing data and the
validation data. The first instance may suggest non-stationarity
in relationships between species and their environment during
extreme environmental events, or an inability of the SDMs to
skillfully extrapolate to novel conditions. The second instance
may suggest that the training and testing procedures outlined for
Experiment 1 were generally insufficient to prevent overfitting of
the SDMs. We thus repeated the SDM training procedure from
Experiment 1 but used different splitting criteria. Here, we used
50% of the data from 2008 to 2018 as the training data, and the
other 50% as the testing data. Years 2003-2007 were withheld to
be used as validation data. In this experiment, the validation data
were thus separated from the training/testing data temporally but
were not particularly novel environmentally (Figure 1).

As strongly uneven class membership can bias classification
models (Kuhn and Johnson, 2013), we used upsampling and
downsampling in the caret package (Kuhn et al., 2019) on the
training data for both experiments. Downsampling randomly
samples the data so that the two classes (positive and negative)
end up with the same frequency as the minority class.
Upsampling samples the data with replacement to make the
two class distributions equal. We upsampled the trawl data, as
downsampling resulted in too few observations remaining for
model training, but downsampled the much larger larval fish
dataset to keep computation times feasible. The most unbalanced
training dataset was for adult anchovy in the trawl dataset
for Experiment 1 (6.18% positive stations), while the least
unbalanced was for adult sardine in the trawl dataset, also for
Experiment 1 (33.81% positive stations).

Within each experiment, we tested three subsets of predictors
(Table 1 and Figure 2). One set of SDMs was built using
all environmental variables plus biomass indicators, longitude,
latitude, and month. The next set was built using only

environmental predictors and biomass indicators. The last set
was built using only longitude, latitude, and month. These
three configurations are referred to as “all, “env;’ and “geo,
respectively, throughout the text.

Five different modeling methods were used to build SDMs
for each species/life stage: three machine-learning methods and
two forms of Generalized Additive Models (GAMs). These were
chosen to represent a range of possible approaches to building
SDMs for ecology, and all are well represented in the ecological
literature (e.g., Ozesmi et al., 2006; Olden et al., 2008; Elith, 2019;
Brodie et al., 2020). All SDMs were built in R 3.6.1 (R Core Team,
2019) and are described in more detail below.

Boosted Regression Trees

Boosted Regression Trees (BRTs) are tree-based machine learning
models, which are highly flexible and include interactions among
predictors implicitly (Elith et al., 2008). BRTs for this study
were built using Bernoulli distributions in the dismo and gbm
packages (Hijmans et al., 2017; Greenwell et al., 2019). Different
combinations of tree complexity, learning rate, and number of
trees were tested using the caret package. Tree complexity was
allowed to vary between 2 and 5 (with a step of 1), and the number
of trees between 1200 and 2400 (step of 40). The best learning rate
depends on the tree complexity, number of trees, and number of
observations in the training data. We calculated a learning rate
coeflicient (Ir.coeff) based on the number of observations as:

Ir.coeff = 1.7e — 06 x n — 1.91e — 04 (1)

where n is the number of observations in the training data. We
then allowed the learning rate for BRT training to vary between
4 and 8 times the Ir.coeff. We found that this linear equation,
determined iteratively, gave a useful range of learning rates to
test. Once the “train” function in caret had selected the optimal
values for tree complexity, learning rate, and number of trees,
5 BRTs were built using the same training data, to capture the
stochasticity in the model building process (Figure 2).

Generalized Additive Models

Generalized Additive Models are semi-parametric regression
models which can account for non-linear relationships between
covariates and dependent variables using smoothing functions.
We built our GAMs in the mgcv package (Wood, 2017). The only
parameter tuned for the GAMs was the number of knots (k),
which was allowed to vary between 3 and 7, and kept the same
for all environmental variables. Although higher values of k can
result in slightly more skillful models, this approach can also lead
to biologically unreasonable relationships between predictors and
dependent variables. Thin plate regression splines were used for
all environmental variables, except month, which used a cyclic
cubic regression spline. Latitude and longitude were included
as a smoothed interaction term, and k was set to the square of
the value used for single predictors [i.e., s(lon, lat, k = k x k)].
This approach allowed the GAMs to realistically capture the
2-dimensional spatial structure of the observations (e.g., Zuur,
2012), without overfitting unreasonably in space. The value of k
which produced the best AUC on the testing data was selected
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as optimal. Unlike the machine learning SDMs, multiple GAMs
built on the same training data will be identical, and so only one
GAM was built for each subset of the training data (Figure 2).

Multilayer Perceptron Artificial Neural Networks
Multilayer Perceptrons (MLPs) are a type of Artificial Neural
Network machine learning model (Ozesmi et al., 2006). We built
our MLPs in the neuralnet package (Fritsch et al., 2019) using
the resilient backpropagation with weight backtracking algorithm
and a logistic activation function. MLPs were optimized by
varying the number of neurons in the single hidden layer between
3 and 10. A maximum possible value of 10 was chosen as although
models with >10 neurons sometimes had slightly higher skill
against the testing data, they often did not converge, and required
much longer computation times to build. Similarly to the BRTs,
once an optimal number of neurons was chosen, five MLPs with
this configuration were built for each set of the training data.

Random Forests

Random Forest models (RFOs) are also tree-based machine-
learning models, but in contrast to BRTs, they use “bagging”
(bootstrap aggregating) instead of sequential boosting to create
model ensembles (Elith, 2019). We built our RFOs in the
randomForest package (Liaw and Wiener, 2002), and optimized
the models by varying the number of variables available for
splitting at each tree node (“mtry”). This parameter was allowed
to vary between a minimum of 2 and a maximum of the number

of total predictors. Similarly to the BRTs and MLPs, once the best
value of mtry was selected, five RFOs were built for each set of
the training data.

Thermal Niche Model

Machine learning SDMs are sometimes criticized for presenting
a “black box,” or overly complex approach to distribution
modeling (Ozesmi et al., 2006; Olden et al., 2008). To examine
this perspective for our region and species of interest, we also
included a simple TNM in our suite of SDMs. The TNMs were
GAMs including only SST as a predictor (and also latitude,
longitude, and month for the “all” configuration). The number
of knots (k) for SST was fixed at 3, to allow only simple
parabolic relationships. Consistent with the approach to building
the multivariate GAMs described above, latitude and longitude
were included as a smoothed interaction term (except in the “env”
configuration), with k set at the same optimal value determined
for the full GAM. As with the full GAM, only one TNM was built
for each subset of the training data.

RESULTS

Experiment 1: Novel Conditions

Species Distribution Model skill for years 2003-2013 was
fair to good (AUCs > 0.7) for all four species/life stage
combinations (Figure 3). Skill varied between different covariate
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configurations, with those containing spatiotemporal predictors
(“all” and “geo”) generally outperforming environment-
only SDMs (“env”). The exception was adult sardine, where
distributions during this time period were generally best
predicted using all available environmental and spatiotemporal
predictors (“all” configuration), with the spatiotemporal-only
SDMs (“geo”) the least skillful and the environment-only
SDMs (“env”) showing intermediate skill. In contrast, larval
sardine distributions during years 2003-2013 were near equally
well predicted by either the “all” or “geo” SDMs, with the
“env” SDMs substantially weaker. None of the three SDM
configurations consistently outperformed the others for adult
anchovy during the SDM training period, although the “env”
TNM was particularly weak. This was also the case for sardine
larvae and anchovy larvae, suggesting that simple univariate
relationships with SST (i.e., the TNM) could not skillfully predict
distributions of these species in 2003-2013. Larval anchovy
distributions were best predicted by the “all” configuration, but
most SDMs built using all three configurations showed good skill
(AUCs > 0.75-0.80).

In contrast to the results for the SDM training period of
2003-2013, SDM skill for the marine heatwave years of 2014-
2018 was markedly lower (Figure 3). AUCs were particularly
low for adult sardine, being close to 0.5, or no better than a
random model. The TNM for adult anchovy retained some skill,
however, mean AUCs were still <0.7. In contrast to the other
three species/life stage combinations, the larval anchovy SDMs
did retain some skill for years 2014-2018. The “all” and “geo”
models generally did the best, suggesting that this result was
due to the persistence of previously observed spatiotemporal
structure in larval anchovy distributions.

The observed loss of skill for years 2014-2018 was not
consistent across seasons. Adult sardine and anchovy SDMs
showed improved AUCs (although still <0.75 on average)
for the spring period, but much lower skill during summer
(Supplementary Figure S2). In contrast, the skill of the larval
SDMs was much higher during summer than in spring. In
particular, AUCs for the larval sardine BRTs, GAMs and TNMs
averaged >0.75 for the “all” configurations during summer, but
were generally <0.6 during spring.

The modifications to the Experiment 1 larval SDMs with a
longer testing and training time period allowed the SDMs to use
records from El Nifio years with very warm temperatures in the
early 1980s and late 1990s (Figure 4). However, validation skill
on data from 2014 to 2018 did not change markedly for either
sardine larvae or anchovy larvae depending on the testing and
training years used. In fact, SDMs for both taxa showed a slight
decline in validation skill when the testing and training data were
extended back in time to 1997, and then to 1980.

None of the five SDM methods consistently out-performed
the others across both time periods, for all species/life stage
combinations (Figures 3, 4). In particular, the prediction skill
for the three machine learning methods was not substantially
different to those from the GAMs. The skill of the simple TNM
was often weaker during 2003-2013, but it was among the best
SDMs for years 2014-2018 for adult sardine, adult anchovy,
and larval anchovy.

Two-dimensional representations of SDM predictions were
examined by binning observations and SDM predictions by
SST and latitude, and averaging probabilities of occurrence
within each bin. A comparison of these between the testing and
validation time periods suggested some potential drivers of skill
loss for the adult sardine SDMs (Figure 5A). During the model
training time period (2003-2013), sardine were most likely to
be collected where SSTs were between approximately 10 and
18°C, with somewhat higher probabilities of occurrence north
of 42°N. This pattern was captured well by the SDMs. During
the marine heatwave years, adult sardine were collected roughly
within this same SST range in the northern study area, but
patterns were much different in the south. Sardine were less likely
to be collected south of 40°N at SSTs of 10-15°C than they were
previously, but much more likely to be collected where SSTs were
>19°C (Figure 5A). This shift was not captured by any of the
SDMs, which all assumed very low probabilities of occurrence in
these very warm conditions, in line with historical observations.
This mismatch is also evident from one-dimensional partial
relationships of adult sardine to SST, across all observations and
SDMs (Supplementary Figure S3).

Two-dimensional representations of larval anchovy SDMs
provide a contrast to the adult sardine SDMs (which performed
the poorest on the validation dataset). Relationships between
larval anchovy and SST with latitude remained much more
constant between the training and validation time periods
(Figure 5B). Larval anchovy were collected at SSTs of
approximately 11-23°C throughout the time series, with two
centers of abundance around 33-35°N, and 40-48°N. All of
the SDMs captured these patterns well for the training years.
While the SDMs were also able to predict the general patterns
of distribution in the validation years, all underestimated overall
probabilities of occurrence during 2014-2018, particularly at
cooler SSTs < 19°C (Figure 5B and Supplementary Figure S3).

A comparison of observations and SDM predictions for two
example years with relatively good sampling coverage (2008
and 2015) showed the contrasting responses of both species
and life stages to the marine heatwave. Distributions of both
adult and larval sardine appeared to move northward during
spring 2015 (Figure 6A), although sampling coverage was not
as comprehensive as in 2008. In 2008, both adult and larval
sardine were concentrated south of 40°N during April and
May, coinciding with areas of highest predicted probability from
all of the SDMs. In 2015, adult sardine were not common in
the trawl surveys, due to their low spawning stock biomass,
but those that were present were located between 38 and
44°N. While the SDMs also predicted a northward shift in
habitat, these predictions did not align exactly with observations,
particularly for the GAMs and MLPs. Similarly, predictions
from the larval sardine SDMs suggested a northward shift, but
models underestimated the extent of the observed change in
larval distributions (Figure 6A). The GAMs and MLPs did
show some favorable habitat between 40 and 45°N, where larvae
were collected, but also showed favorable habitat off southern
California, where sampling collected very few larvae.

In contrast to sardine, adult and larval anchovy did not show
strong northward shifts during summer 2015 (Figure 6B). Adult
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anchovy were present between 37 and 48°N during July and
August of both 2008 and 2015. This was captured better by the
GAMs than the other SDMs for these particular years. Although
larval sampling coverage differed between the years, the two
centers of larval anchovy abundance appeared to persist during
both 2008 and 2015 (Figure 6B). This persistence occurred
despite strongly contrasting environmental conditions between

the 2 years (Figure 1). However, while SST was moderately
important to the larval anchovy SDMs, it was less influential
than latitude and longitude (Supplementary Figure S4). SST
was also not a strong contributor to the adult anchovy SDMs.
Anchovy thus appeared more likely to maintain their historical
spatiotemporal distribution patterns than sardine, partially due
to weaker relationships with SST.
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The maps in Figures 6A,B suggested that the SDMs
often captured some aspects of distribution patterns, but that
predictions were not precisely aligned with observations. To

test the effect of spatial resolution on SDM skill, we thus
aggregated all predictions and observations to 2 x 2°, taking
the maximum value of each within each cell. AUCs increased
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to >0.75 on average for most of the BRTs, GAMs, RFOs, and
TNMs for sardine larvae, for the adult anchovy TNMs, and for
the “env” GAMs and TNMs for adult sardine using these spatial
coarsened data, but remained <0.75 for all other models (results
not shown). Collapsing observed and predicted probabilities of
occurrence even further, down to means within 2° latitudinal
blocks, showed that SDMs were more successful at capturing
the general direction of change than the magnitude of change
(Figure 7). For example, both the adult and larval sardine
SDMs captured the tendency for there to be more sardine in
the northern CCS and less in the south during spring, but
under-predicted the scales of these shifts. In contrast, the adult
anchovy GAMs and MLPs correctly predicted an increase in

overall probabilities of occurrence but were unable to reproduce
the spatial patterns of these increases. The larval anchovy SDMs
correctly predicted the spatial persistence of the two main
spawning locations in 2014-2018 and the increase in probabilities
of occurrence in the northern CCS (Figures 6B, 7). However,
the models were not able to predict the observed increases in
probabilities of larval anchovy occurrence in the southern CCS.
Sampling coverage during the model training time period
(2003-2013) was generally more spatially extensive and covered
more negative habitat than during the validation period (2014-
2018), a trend evident in Figures 6A,B. To assess the potential
impact of this difference on 2014-2018 AUCs, we re-scored
data from these years with some “dummy” negative stations
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added. These negative stations were located at aggregated 1 x 1°
locations sampled only during 2003-2013 but not 2014-2018,
and where no sardine or anchovy were recorded during the
earlier period. Dummy negative stations were calculated and
added separately for the trawl and larval datasets, with one
station each added for each location in each year (2014-2018)
at the end of April, and the end of July, to capture the two
best sampled seasons. Environmental data were extracted at these
new locations, and re-scored through the SDMs. AUCs for this
new dataset including dummy negative stations were generally
higher than for the original data (Supplementary Figure S5).
This improvement was more marked for adult sardine and
anchovy than for larvae, suggesting that lower and more inshore
spatial coverage in trawl surveys in recent years may have led to
lower AUC:s for these life stages. However, the general patterns

of skill loss remained consistent, with adult SDMs retaining better
skill in spring versus summer, and larval SDMs retaining more
skill during summer.

Experiment 2: Near-Average Conditions

Area Under the Receiver Operating Curves for validation years
were generally higher in Experiment 2 than for the same taxa and
SDMs in Experiment 1 (Figure 8). This result suggested that SDM
predictions were more successful in unseen years if the training
data covered a more complete range of environmental conditions
and/or stock sizes. In particular, larval sardine distributions were
well predicted for 2003-2007, in contrast to the strong loss of skill
in Experiment 1. The most skillful SDM configurations for larval
sardine were “all” and “geo,” suggesting that this skill resulted
from SDMs being better able to capture spatiotemporal structure
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in distributions. Experiment 2 AUCs for withheld validation
years also improved for adult sardine and adult anchovy, but
mostly remained <0.75. Notably, the adult anchovy SDMs were
the only ones to lose substantial skill between the test and
validation time periods in Experiment 2. This was partially due to
the comparative rarity of anchovy in these earlier years, a result
of lower spawning stock biomass and less trawl sampling during
summer. Anchovy larvae AUCs for Experiment 2 were slightly
weaker than for Experiment 1, but still remained fair to good for
all SDMs except for the “env” TNM. These results indicate that
the SDMs were largely capable of retaining reasonable skill for
years not included in the model training and testing process. The
marked loss of skill observed for validation years in Experiment 1
may therefore have resulted mostly from the novel environmental
conditions and unexpected species responses to those conditions,
rather than SDM overfitting.

To provide a “best case” model comparison against results
from Experiments 1 and 2, we lastly re-trained the SDMs using
all available data from 2003 to 2018 (50% each for model
training and testing, no data withheld for external validation).
A comparison of mean AUC by year and SDM type suggested that
the RFOs and BRTs were mostly able to maintain good predictive
skill throughout the entire time series, as long as they were
initially trained on data including observations from the marine
heatwave years, and observations across a range of stock sizes
(Figure 9). The MLPs, GAMs, and TNMs also showed useful skill
in some years for most taxa, but usually performed less skillfully
than the BRTs and RFOs, implying that the tree-based SDMs were
best able to capture the complex responses of our species to their
environment across different environmental regimes. Results
from all sets of SDMs together thus indicate that although some
of the machine-learning SDMs were flexible enough to maintain
reasonable skill both before and during the marine heatwave,
most could only do so if they had access to observations from
heatwave years during the model training process. Otherwise, the
models had no way to anticipate the non-stationary responses
of species to anomalously warm temperatures, and lost much of
their predictive skill.

DISCUSSION

Our results show that most SDMs lost substantial predictive skill
during novel environmental conditions experienced during the
recent marine heatwave, regardless of the type of model or the
suite of covariates used. However, performance differed among
species and life stages. There was no single best type of SDM,
although including spatial variables was generally useful. We note
that global statistical performance may not always completely
represent model value, as some SDMs could capture the general
spatial direction of change, even if they could not replicate the
observed magnitude.

Importance of Robust SDM Validation

Loss of SDM skill on out-of-model validation datasets is not
uncommon, and can be broadly attributed to four issues: (1)
model overfitting during training (Elith, 2019), (2) unreasonable

model behavior during extrapolation (Hannemann et al., 2015;
Beaumont et al., 2016), (3) the selection of irrelevant predictors
which do not impact distribution (Steen et al, 2017), and
(4) non-stationarity in relationships between a species and its
environment (Dormann et al., 2012; Yates et al., 2018). Some
degree of over-fitting to the training data may be expected with
the more flexible machine learning SDMs used in this study
(i.e., BRTs, MLPs, RFOs). However, it was notable that (with
the exception of adult anchovy), the GAMs and TNMs showed
similarly poor skill to the more complex SDMs for the validation
time period. The primary driver of skill loss for years 2014-
2018 is thus unlikely to be simply a problem of overfitting in
the more complex models. Similarly, the extrapolation behavior
of the SDMs to anomalously warm temperatures did not appear
to be biologically unreasonable. For example, adult sardine were
most commonly collected at SSTs between 9 and 18°C in the
Southern California Bight between 2003 and 2013. The SDMs
all predicted that this pattern would continue during 2014-2018,
and all predicted low probabilities of occurrence where SSTs were
warmer than 18°C. In contrast, observations showed that adult
sardine were collected with relatively high occurrence in these
southern locations, in waters as warm as 21.7°C. These very warm
temperatures were rarely sampled between 2003 and 2013.

The third and fourth issues identified above are likely more
relevant to our results. Statistical relationships between our
species and their environment changed between the model
training and validation time periods, particularly for adult
sardine. While the relative importance of each predictor to the
SDMs frequently varied across model type, all SDMs tended
to show similar skill loss during 2014-2018. This suggests
that none of the SDMs successfully captured the true drivers
of spatial distribution for sardine and anchovy in our study
region. The exception was larval anchovy, where the SDMs
successfully predicted that the main distribution drivers were
environmentally invariant geospatial predictors. However, we
note that aggregating observations and predictions to a coarser
spatial resolution improved the validation skill of some SDMs
to more acceptable levels, and did qualitatively capture the
northward shifts in adult and larval sardine distributions during
the marine heatwave years. The spatial contraction of sampling
effort in recent years may also have led to some relative loss
of skill from reduced sampling in strongly negative habitats. In
addition, breaking results down by season showed that the larval
sardine SDMs performed better during summer, while the adult
SDMs showed some improvement in skill during spring. These
results suggest that better understanding of spatial processes
and spawning phenology should allow the development of more
reasonable predictive models in the future.

Our results highlight another important recommendation for
the prediction of species distributions, which is the need to
validate SDM predictions on an entirely withheld dataset. Results
from Experiment 2 show that even when the validation dataset
does not include previous unobserved values for environmental
predictors (e.g., very warm SSTs), some loss of predictive
skill is still possible for some taxa. However, Experiment
2 SDMs (validated against near-average conditions) generally
maintained much better skill than those built under Experiment
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1 (validated against novel conditions). If there are sufficient
observations, the splitting of data into a model training, testing,
and external validation set should be standard practice for
properly assessing model skill, particularly for the highly flexible
machine learning SDMs (Ozesmi et al., 2006). This is particularly
important if SDMs are to be transferrable to times, locations, or
environmental conditions not included within the training data.

Influence of Species Ecology on SDM
Performance

Environmental associations of sardine and anchovy in the CCS
have been closely studied for more than 50 years (e.g., Lasker
and Smith, 1977; Fiedler et al., 1986; Lindegren et al., 2013;
Gallo et al., 2019). Extensive previous research suggests that both
species have distinct temperature preferences, especially during
spawning (Lluch-Belda et al., 1991; Green-Ruiz and Hinojosa-
Corona, 1997; Zwolinski et al., 2011; Weber et al., 2018). We
may therefore have reasonably expected that both species would
respond in a predictable way during the unusual environmental
conditions observed in recent years. However, although our
results qualitatively captured some of the phenological shifts in

spawning recorded by previous studies (e.g., McClatchie et al.,
2016; Auth et al., 2018), our SDMs showed a substantial loss
of predictive skill across both species and life stages for years
2014-2018, with the exception of larval anchovy.

Relationships between adult sardine and the ocean
environment appeared to be especially non-stationary. In
particular, none of the SDMs predicted the occurrence of sardine
in warm (>18°C) waters during 2014-2018. This observation
may be partially due to the increased incursion of adult sardine
from the southern sub-stock into United States waters. The
current stock assessment uses a SST cutoff rule, where sardine
caught at < = 16.7°C are assumed to be from the northern sub-
stock and those caught at >16.7°C from the southern sub-stock
(Félix-Uraga et al., 2004; Garcia-Morales et al., 2012; Demer
and Zwolinski, 2014; Hill et al,, 2019). However, re-training
and re-validating the adult sardine SDMs only on observations
where SST was <16.7°C, to remove the influence of the southern
sub-stock, did not improve model validation skill, with all
AUC:s for 2014-2018 remaining <0.6 (results not shown). Thus,
although the low historical sampling coverage in waters warmer
than 20°C may have limited the ability of the SDMs to predict
to these novel conditions in 2014-2018, relationships between
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sardine and their environment also changed substantially during
the heatwave years even within cooler temperatures. In addition,
re-training the larval sardine SDMs using data back to 1980
did not result in more skillful predictions in 2014-2018. These
results suggest that distribution patterns and environmental
associations for early life stages of sardine during the marine
heatwave were unprecedented over the 38 years where larval data
were available, despite several strong El Nifio events occurring
during this timeframe.

In contrast to the other species/life stage combinations, adult
sardine SDM skill for both Experiment 2 and for the full models
trained on years 2003-2018 mostly remained fair to poor. This
result suggests that even when sardine SDMs were able to use
observations from the marine heatwave years, they struggled
to usefully generalize relationships between this species and
its environment. This issue may partially stem from sardine
migratory behavior. When biomass is high, the two sardine
sub-stocks migrate seasonally. The northern sub-stock moves
between southern California in winter and the Pacific Northwest
in summer, while the southern sub-stock reaches southern
California during summer and returns to coastal Baja California
in winter (Lo et al., 2011; Demer et al., 2012). The two sub-stocks
thus overlap strongly in space but much less so in time, giving
the appearance of largely separate temperature habitats between
the two groups. However, laboratory studies show that sardine
larvae and adults from both sub-stocks can tolerate very similar,
and broad (~ 9-27°C), thermal ranges if given the opportunity
to acclimate (Lasker, 1964; Brewer, 1976; Martinez-Porchas et al.,
2009; Pribyl et al.,, 2016). The strong importance of SST to the
sardine SDMs (Supplementary Figure S4) is thus unlikely to
represent a purely physiological constraint. Previous studies have
also found relationships between sardine and temperature to be
complex. For example, McClatchie et al. (2010) showed that a
long-standing SST-recruitment relationship for sardine was non-
stationary through time, and had reduced predictive skill when
applied to more recent data.

During the anomalous conditions of the marine heatwave,
adult sardine may also have changed their migration and
spawning phenology in response to conditions experienced weeks
or months before sampling, leading to observed distribution
shifts that did not follow historical environmental associations
(see Figure 5A). As older, mature sardine comprise the bulk
of the migrant population (Lo et al., 2011; McDaniel et al.,
2016), the poor prediction skill during the marine heatwave
period may also have been associated with changes in sardine
age structure. The 2015-2018 sardine population was not only
low in abundance, but trawl acoustic survey data showed
younger age classes dominating the age composition (Hill
et al, 2019). Younger fish may not have migrated as far
north during these years, which may have contributed to the
observed latitudinal mismatch between observations and SDM
predictions for sardine.

The only species and life stage to retain good skill during
the marine heatwave years was larval anchovy. However, this
skill derived mostly from the inclusion of geospatial predictors
in the SDMs, suggesting that anchovy spawning did not shift

markedly in space or time in recent years. This was confirmed
by the map comparisons in Figure 6B, showing the spatial
persistence of two spawning areas for anchovy in summer
during a near-average year (2008) and a heatwave year (2015).
This was an unexpected result, as including fixed geospatial
predictors in SDMs should theoretically reduce their usefulness
for extrapolating to novel environmental conditions. However,
previous studies have shown that anchovy in the northern
CCS can be associated with the Columbia River plume during
warmer months (Emmett et al., 2005; Litz et al., 2008). Spawning
anchovy may therefore have maintained their association with
this oceanographic feature during the heatwave years, despite the
presence of anomalously warm temperatures.

Although the spatial structure of anchovy spawning activity
persisted during the marine heatwave, their ability to maintain
historical spawning areas under future warming is not clear (e.g.,
Howard et al., 2020). Climate change is expected to result in
mean upper ocean temperature increases of 2-4°C in the CCS
by 2100 under the RCP8.5 “business as usual” scenario, with
future marine heatwaves leading to even higher SST extremes
(Woodworth-Jefcoats et al., 2017; Alexander et al., 2018). While
SDMs including geospatial predictors often did better for the
marine heatwave test case described in this study, it is probably
not reasonable to assume that these relationships will continue
to hold decades into the future. Our results therefore highlight
the ongoing need for improved mechanistic understanding of
movement and distribution drivers for sardine and anchovy in
the CCS, if climate change impacts on these species are to be
realistically predicted over longer time horizons.

The difficulties inherent to predicting the distributions of
migratory species with broad physiological tolerances are also
apparent from our results, and have been described for other
species previously (e.g., Dambach and Rédder, 2011; Yates et al.,
2018). Sardine migratory behavior depends on population size,
sub-stock structure, and age composition (Lluch-Belda et al,
1986; Demer et al., 2012; McDaniel et al., 2016). As a result,
the presence or absence of sardine and their larvae in the CCS
may depend partially on environmental conditions at the time
of sampling, and partially on environmental and population
drivers of migration and spawning condition earlier in the
season. In addition, the same environmental conditions which
cause shifts in suitable habitats can also impact recruitment
and biomass, which are themselves linked to migration and
distribution patterns. During the marine heatwave years, sardine
biomass declined to very low levels while anchovy biomass
increased sharply (Harvey et al, 2019; Hill et al, 2019). As
a result, both environmental conditions and stock biomass
for both species during 2014-2018 were outside the ranges
of the training period. A combination of both factors, and
interactions between them, likely contributed to loss of SDM
skill. This is a central problem with using SDMs to predict or
project species distributions into the future: it is often more
straightforward to anticipate shifts in potential environmental
niches than it is to model the complex relationships between
stock productivity, movements, and realized habitat use (e.g.,
Koenigstein et al., 2016).
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Other complex factors can drive decoupling of species
distributions from their immediate environment, including
the persistence of anomalous range extensions even after
environmental conditions have returned to normal [e.g.,
bottlenose dolphin (Tursiops truncatus) off central California:
Wells et al., 1990]. Migratory schooling animals may also
show inertia in their behaviors deriving from collective
memory (Macdonald et al., 2018), or from interactions between
environmentally invariant and environmentally responsive
movement behaviors (Bauer et al., 2011; Winkler et al., 2014).
Taken together, these considerations suggest that caution is
required when attempting to use statistical SDMs for future
projections of pelagic species habitats. It is worth noting that
a similar study predicting marine mammal distributions in
the CCS during the 2014-2016 marine heatwave showed
higher model skill than we describe here (Becker et al.,, 2018).
Correlative SDMs may therefore still have use for certain climate
prediction problems within some ecosystems. Progression
toward more mechanistically informed distribution models
which incorporate processes such as metabolism, energy budgets,
foraging ecology, and migratory behavior can alleviate some
of the drawbacks of statistical SDMs (e.g., Lehodey et al,
2008; Planque et al., 2011; Deutsch et al., 2015; Fiechter et al.,
2015; Rose et al., 2015; Koenigstein et al., 2016; Howard et al,,
2020). However, a sound understanding of physiological drivers
across different species is required before the best modeling
framework can be identified (Yates et al., 2018), and there
are insufficient data available on these processes for many
marine taxa.

Conclusion and Recommendations

Overall, our results suggest that statistical relationships defined
in correlative SDMs can break down when confronted with
novel environmental conditions. This loss of skill was relatively
consistent across the five SDMs examined, despite strong
differences in model complexity. While a lack of transferability
of SDMs in time or space can result from multiple mechanisms
(Yates et al., 2018), in our case, the non-stationary responses
of our two test species to changes in their ocean environment
were particularly influential. Whether the rate of change of
the environment contributed to this non-stationarity is unclear
(heatwaves represent sudden anomalous change), and validation
of long time series would be a valuable test of longer term
non-stationarity. Although sardine and anchovy are well-
studied forage species in the CCS, their complex environmental
associations and behaviors challenged our ability to effectively
model their distributions across different oceanographic regimes.
Our results thus show the importance of understanding the
mechanistic drivers of range shifts in marine species, and the
difficulties intrinsic to modeling the distributions of mobile,
migratory animals.

We recommend that future work explores methods for
including migration and spawning phenology in SDMs for
sardine and anchovy in the CCS, for example via correlative
SDMs which include spatially remote or time-lagged processes
(Thorson et al., 2020), further development of mechanistic
models (e.g., Rose et al, 2015), or exploration of hybrid

correlative-mechanistic approaches. Development of distribution
models by age group, or use of a measure of age composition
as an additional covariate may also be beneficial for sardine
SDMs. Consistent sampling across a wider range of thermal
environments may also allow better definition of potential versus
realized habitats for both species. Ultimately, if the SDMs
described in this study can be improved to better represent the
underlying processes driving distribution shifts in sardine and
anchovy, they will be more useful for anticipating the potential
impacts of climate change and anomalous environmental events
on the future assessment and management of these species, and
on the broader CCS.
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Recent observational and numerical studies have suggested that the decadal modulation
of the Kuroshio Extension system, driven by mesoscale eddies, profoundly affect the
basin scale physical and biogeochemical oceanography. However, it remains unclear
how these decadal changes affect distribution and abundance of fish species in
this region. In this study, 26,964 swordfish catch data obtained by longliners during
2004-2010 in the western North Pacific are analyzed with an eddy-resolving ocean
reanalysis by using mesoscale dynamic parameters and an eddy detection technique,
to clarify the effects of mesoscale eddies and their variabilities on the swordfish relative
abundance. During this period, the Kuroshio Extension underwent two different dynamic
phases: stable path state in 2004, 2005, and 2010; and unstable path state during 2006—
2009. Based on our analyses, we show here that swordfish are more concentrated in and
near the anticyclonic warm-core eddies in the northern site, 36-45°N, of the Kuroshio
Extension system, especially during the unstable path phase. This is found to be caused
by the interannual modulation of mesoscale eddy activities due to more warm-core rings
generated from the unstable Kuroshio Extension, making it easier for fishermen to target
swordfish in this region.

Keywords: interannual modulation, mesoscale eddies, Kuroshio Extension decadal modulation, eddy detection
technique, swordfish fishery, CPUE

1. INTRODUCTION

Ocean accommodates variety of marine life from small plankton to large migratory fish species,
including swordfish. Within this marine ecosystem, phytoplankton are the most important primary
producers of the vital energy source for most of the marine life, forming the foundation of the food
web. These marine primary producers are nearly passive to the flow, and their abundance depends
strongly on the availability of nutrients and light. The enhanced nutrient injection near ocean
fronts (Mahadevan and Archer, 2000; Lévy et al., 2001) and active restratification of the mixed
layer eddies (Mahadevan et al., 2012) may sustain primary producers and their grazers. So, the
enhanced primary and secondary productions near fronts and eddies not only provide controls over
biogeochemical flows but also attract large migratory fish species (Braun et al., 2019). In addition
to this bottom-up influence through the trophic supply, physical structures in the ocean, such as
fronts and eddies, have been known to influence the distributions of marine organisms. They may
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act as barriers or migration routes, giving greater feeding
opportunities and a preferred thermal habitat, thus influencing
the behavior and distribution of various marine species (Seki
et al., 2002; Watanabe et al., 2009). To this regard, using
satellite tracking of shark movements, satellite remote sensing
and a numerical forecasting model, Braun et al. (2019) have
recently shown that the blue sharks in the Gulf Stream regions
prefer warm swirls or warm-core rings, which has been believed
to be oligotrophic ocean desert. For swordfish, Bigelow et al.
(1999) have reported, using Hawaii based swordfish longline
fishery data, that important factors to model catch-per-unit-effort
(CPUE) include latitude, time, longitude, sea surface temperature
(SST), and frontal energy. However, the detailed mechanisms of
how the mesoscale frontal processes affect these factors are not
discussed. Also, Hsu et al. (2015) recently reported high swordfish
catch found outside of eddies, by using satellite altimeter data
in the surroundings of the Gulf Stream. Although the direct
comparison of fishery catch data with the mesoscale eddies
detected using satellite altimeter data is pioneering, the study
region was limited to the western North Atlantic. In the western
North Pacific, previous studies using limited short-term physical
and fishery data have shown the influence of mesoscale eddies on
the distributions of pelagic fish (Sugimoto and Tameishi, 1992).
However, it is still unclear how evolving mesoscale flows with
interannual timescale affect distributions and relative abundance
of fish species, including the swordfish. In the Pacific Ocean,
the swordfish Xiphias gladius has a distribution between the
latitudes 50°N-50°S (Bedford and Hagerman, 1983), with areas
of apparent concentrations in the western North Pacific within
the latitudes 20-45°N. The main habitat of the swordfish in this
area is the subtropical region (Watanabe et al., 2009), where the
Kuroshio Extension flows along its northern boundary.

The Kuroshio Extension (KE) is a western boundary current
of the subtropical gyre in the North Pacific. It is one of the most
dynamic regions of the world ocean, rich in mesoscale eddies
and with the largest heat loss from the ocean to the atmosphere
(Qiu et al., 2004). It presents two dynamic states: “stable” and
“unstable” driven by the Aleutian low variation and associated
westward propagating mesoscale eddies (Qiu and Chen, 2005;
Taguchi et al., 2007; Sugimoto and Hanawa, 2009; Qiu et al,,
2014). During the stable period, the KE flows steadily along
relatively stable paths, while during the unstable period, it flows
more convoluted paths evolving with timescales of weeks to
months. Due to this interannual variation, it has been shown that
ecosystem in the KE region can be influenced from its lowest
trophic level (Lin et al., 2014).

However, it has still been unclear how the KE interannual
modulation affects the distributions and the relative abundance
of higher trophic levels such as secondary producers,
migrating fish species including swordfish, in relation to
the mesoscale eddies.

In this study, by using a state-of-the-art ocean reanalysis
product and available pelagic longline swordfish fishery data
from 2004 through 2010 in the KE region, it becomes possible
to investigate the effects of the spatiotemporal variations in the
mesoscale eddies on the relative abundance of swordfish. The
objective of this study is to assess the influence of mesoscale

eddies over the swordfish X. gladius relative abundance,
represented as the catch-per-unit-effort (CPUE) in the KE
region. Section 2 includes data and methods, section 3 presents
the results of the analysis using dynamic parameters for the
mesoscale flow with the swordfish CPUE and their modulations
in response to the KE state. Section 4 provides discussion, and
finally, conclusions are presented in section 5.

2. DATA AND METHODS
2.1. Fishery Data

The fishery data used in this study consist of catch and effort
data collected in the region 25-45°N, 138°E-160°W from 2004
through 2010 by Japanese offshore surface longliners based on
the Kesennuma fishing port. This operational data contains
information of time (year, month, and day), fishing locations,
number of swordfish catches, and effort in number of hooks
deployed. A total of 26,964 catch data were collected and
summarized by the National Research Institute for Far Seas
Fisheries (Table 1). Since our focus is the swordfish abundance
in the mesoscale-eddy-rich KE system, the swordfish catch data
in the region 140-175°E, 25-45°N are used in this study.

The catch-per-unit-effort (CPUE) of a specie can be used to
estimate the relative abundance, generally under the assumption
that there is a linear relationship between these two (Skalski et al.,
2010), or that both of these values are proportional (Cushing,
1981). For the analysis of the relative abundance of swordfish in
this study, we use a nominally defined CPUE calculated by the
following equation

CPUE — 100 Total # of fish catch 1)
= X 5
Total # of hooks

expressing the catch and effort as the total number of fish
catch per 100 hooks. Although this non-standardized CPUE may
bias the abundance depending on the environmental factors,

TABLE 1 | Number of fishery records for the period 2004-2010.

Year Total
Month 2004 2005 2006 2007 2008 2009 2010
1 536 502 591 534 459 432 3,054
2 505 474 499 440 404 338 2,660
3 500 458 462 515 488 396 2,819
4 516 469 465 458 348 361 2,617
5 455 275 398 448 318 381 2,275
6 299 302 415 509 357 93 1,975
7 2 221 315 312 380 218 1,448
8 123 217 147 265 146 134 1,032
9 301 383 343 398 299 212 1,936
10 444 408 373 453 439 315 2,432
11 433 364 336 440 372 406 2,351
12 412 372 326 504 386 365 2,365
Total 1,716 4776 4,320 5202 4,926 4,024 2,001 26,964
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such as temperature, salinity and/or specifications of fishing
gears (Bigelow et al, 1999; Bellido et al., 2001), important
factors revealed by this study in the following sections, such
as mesoscale dynamic parameters, can be useful to improve
the standardization.

2.2. Ocean Data Analyses

For the respective analysis of the oceanographic conditions in
the KE, we used the Four-dimensional Variational Ocean Re-
Analysis for the western North Pacific over 30 years (FORA-
WNP30) provided by the Japan Agency for Marine-Earth Science
and Technology (JAMSTEC) and the Japan Meteorological
Research Institute (Usui et al., 2017). We worked with data of sea
surface height, temperature, salinity and lateral velocity with a
resolution of 1/10° in the western North Pacific during the time
corresponding to the period of the fishery data.

To characterize the mesoscale flow field, several dynamic
parameters are computed using the reanalysis data. For the
mesoscale eddy detection, the Okubo-Weiss parameter (OW)
is computed, since it can distinguish two-dimensional flow of
rotating regime (OW < 0) from that of deformation regime (OW
> 0) (Okubo, 1979; Weiss, 1991). The OW is defined as

qu\> v ou
OW=4|[—) +—— 1,
ox ox dy

where u and v are zonal and meridional velocities,
respectively, and x and y represent the respective zonal and
meridional directions.

In a region where the rotation dominates over the deformation
flow (OW < 0), it is typically inside the isolated eddies.
The directions of the rotating flows of the detected mesoscale
eddies are determined by computing the vertical component
of the relative vorticity, {. The sign convention for direction
is that the vorticity is positive (negative) when rotation is
anticlockwise (clockwise),

(2)

_Bv ou

S ox Ay ®)
The available reanalysis data do not include vertical velocity,
and the exact discretized form for the continuity equation of the
model is not provided. Therefore, to deduce the tendency of the
adiabatic subinertial vertical water movement, the divergence of
the Q-vector, Vj - Q is computed. Positive and negative signs
of Vi, - Q have been shown to correspond to the tendency of
downwelling and upwelling, respectively (Gill, 1982; Nagai et al.,
2015). Vj, - Q is defined as,

v,.Q = a 8u8b+3v8h a 8u3b+8v8b @
WET Tax \axax | ax dy) dy \dyadx dyady)’
where b = —gp/p, is buoyancy with water density p and

its reference value p,, gravitational acceleration g, and V;, =
(0/9x,0/dy) is the horizontal derivative operator. In addition
to the divergence of the Q-vector, a frontogenetical function is

also computed using upper 100 m average horizontal flow. The
frontogenetical function F is equated as,

1D |Vb|° dudb  dvab\ db
2 Dt dx dx 0dx0dy/ ox
dudb dvob\ db
Nt ) o (5)
dy ox  dydy/ dy

When the frontogenetical function F is positive, it is equivalent
to the increase trend of the lateral buoyancy gradient of
the front under the frontogenesis, while a negative value
means decrease in the lateral buoyancy gradient caused by the
frontolysis (Pettersen, 1956; Bluestein, 1993). To investigate the
relationships between the swordfish CPUE and these mesoscale
dynamic parameters, the CPUEs are computed as a function of
these parameters with the following resolutions, every 0.02f for
¢ /f (where f is the Coriolis parameter); 2 x 1071% s=2 for OW; 2
x 1077 ms™3 for Vj, - Q.

2.3. Eddy Detection and Eddy Kinetic

Energy

To analyze the swordfish CPUE distributions with respect to
mesoscale eddies, and to investigate their temporal variations in
the Kuroshio Extension system, an eddy detection technique is
used. The eddy detection method is based on the closed contours
of the OW-parameter (2) at a value of —5 x 107! s72, The OW
parameter for the eddy detection is computed from upper 100 m
average lateral flow data. Only eddies with equivalent radius from
15 to 200 km are considered to detect mesoscale eddies of O(100
km) under the limit of available resolution of the reanalysis ~ 10
km. Whether a detected eddy is a cyclonic or an anticyclonic
ring is determined by averaging the vertical component of relative
vorticity ¢ (3) within the eddy.

To understand the effects of eddies on the swordfish CPUE,
the geographically closest eddy to each fishing position is
determined by computing the distance between each fishing
location and all the positions of eddy center, which is defined
as the average longitudes and latitudes inside an eddy. The
maps of the mean CPUE as a function of zonal and meridional
distance from the eddy center are then obtained by averaging
each CPUE, computed for each fishing point, on the grid over
500 km centered at the eddy with the resolution of 10 km for
both zonal and meridional directions. Lastly, to investigate the
spatiotemporal modulations in eddy activities, the upper 100 m
average eddy kinetic energy (EKE) is computed as,

1
EKE = - (s’ + viao') ©)

where u},, and v}, are fluctuating (eddy) components of the
zonal and meridional upper 100 m average velocities obtained by
subtracting long-term (1982-2014) mean velocities u from each
component of daily velocity u, i.e., ' = u — u before averaging
them over upper 100 m.
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FIGURE 1 | Time series of daily average latitudinal fishing position with swordfish CPUE in color (n/100 hooks, where n is a number of catch) from 2004 to 2010 and

3. RESULTS

3.1. Seasonal Variation of Swordfish Catch

The latitudinal positions of longline fishing reflect a seasonal
feeding migration pattern of swordfish moving over the latitudes
25°N-45°N (Figure 1). From autumn to winter seasons the
surface longliners chase swordfish migrating southward more
than 2,000 km, meanwhile from spring to summer seasons, they
migrate northward from the center of the subtropical gyre at
25°N to the northern edge of the KE system, the Kuroshio-
Oyashio mixed water region at 42-43°N.

During this swordfish migration, CPUE values recorded on
the daily basis show seasonal variations which can be clearer
after computing them monthly (black line in Figure 1). When
the fishing positions reach northernmost regions, and reverse to
the south in late autumn, the values of CPUE start increasing
significantly which is followed by a rapid decrease in early winter.
After this, there is also a CPUE increase when the southward
migration reaches around 33-35°N. The monthly CPUE shows
a repeated seasonal pattern that coincides with this migration
previously described. Accordingly, the monthly CPUE exhibits
two peaks in most of the years analyzed, due to CPUE increases
in the northern and southern fishing sites in different seasons.
The high CPUE values are observed during late autumn in
the northern fishing site, whereas they appear during winter
season in the southern site. These two seasonal CPUE peaks
could be demonstrated clearly by separating the CPUE data into

two groups according to the fishing site: southern region, 25—
36°N and northern region, 36-45°N (Figure 2A). In the southern
region, CPUE peaks occur mostly in winter season (Dec-Jan, red
line in Figure 2A), while they appear mostly during autumn to
winter season (Oct-Dec) in the northern region except early 2009
(blue line in Figure 2A).

3.2. Interannual Variation in the Kuroshio

Extension System

Besides the seasonal variations presented in the previous section,
both regions also display interannual variations in their CPUE
values during the study period 2004-2010, which could be
attributed to the decadal modulations of the Kuroshio Extension
reported extensively in the previous studies (Qiu and Chen,
2005; Lin et al., 2014). Swordfish CPUE presents a decreasing
trend from 2006 through 2009 in the southern (red curve in
Figure 2A), and an increasing trend from 2004 through 2007
followed by a decreasing trend after 2007 in the northern fishing
site (blue line in Figure 2A). In order to illustrate the interannual
transitions of the Kuroshio Extension system, we computed the
KE path defined as the longest contour at SSH = 0 in the
region 30-40°N, 140-155°E. The obtained KE paths present the
interannual phase transitions between stable and unstable period
(Figures 2B,D). Since this result is consistent with a previous
study by Qiu and Chen (2010) showing the same path transitions,
our study period was divided into two, i.e., stable phase which
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FIGURE 2 | Time series of (A) the monthly CPUE from 2004 to 2010 in the range 140-175°E for (red) southern region 25-36°N and (blue) northern region 36-45°N
and of (C) monthly Kuroshio Extension path length (10° km) between 140 and 175°E. Monthly averaged paths of the Kuroshio Extension defined by the longest
contour of sea surface height (SSH) at 0 m using FORA-WNP30 data for (B) stable paths for the years 2004, 2005, and 2010, and (D) unstable paths during the

latitude
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longitude

includes the years of 2004, 2005, and 2010, and the unstable phase
from 2006 through 2009.

During the stable phase (2004, 2005, 2010), the KE shows
relatively straight paths, defining clearly two quasi-stationary
meander crests located at 144 and 150°E (Figure 2B). On the
contrary, during the unstable phase (2006-2009), apparently
more convoluted paths are observed (Figure 2D). At the same
time, during the latter described unstable phase, the KE paths
become longer reaching up to 9,000 km of their length in late
2006, whereas path lengths are relatively shorter during the stable
phase (Figure 2C).

By comparing the path length of the KE with the swordfish
CPUE in each region (southern region, 25-36°N and northern
region, 36-45°N) separately, it is observed that the swordfish
CPUE in the northern region modulates similarly to the KE path
length with the longer path length resulting in the higher CPUE,
although there is an exceptional CPUE peak in late 2009 with
a shorter path length (blue line in Figure 2A and black line in
Figure 2C). The CPUE in the northern region shows a distinct
peak in late 2006, which coincides well with the peak in the KE
path length at the same time. On the other hand, the CPUE in the
southern region shows an opposite trend to that of the KE path
length and CPUE in the northern region with a largest CPUE

value in early 2006 followed by a decreasing trend until middle
of 2009 (red line in Figure 2A).

Despite these interannual changes in the CPUE, seasonal
north-south migration shows the periodic annual cycle, i.e.,
the northward migration during spring to summer and the
southward migration during autumn to winter (Figure 1). In
contrast, longitudinal CPUE distributions are found to exhibit
interannual transitions (Figure 3). In the northern region (36-
45°N), the CPUE in the western region, 143-155°E shows
relatively high values in autumn to winter season during the
unstable period (Figure 3A). Note that during autumn to winter,
swordfish migrate from north to south. On the other hand,
during most of the stable years, 2004-2005, the CPUE values
in the western part are relatively low. In the southern region,
the longitudinal transitions in CPUE distributions are not as
clear as that in the northern region. However, during most
of the stable years, 2004-2005, relatively high CPUE values
are found also in the western region 143-155°E during winter
to spring season (Figure 3B). In the latter season, swordfish
start migrating northward. Thus, the CPUE in the western
region 143-155°E is most likely to be a key to induce observed
interannual modulations both in the northern and the southern
regions. The CPUE-weighted-mean zonal positions of longliners,
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shown as black lines in Figure 3, reflect the pattern of zonal
seasonal migration of the swordfish. In the northern region,
it moves mostly eastward during spring to summer, while it
turns westward during autumn to winter (Figure 3A). During
the unstable period, it can approach to the western region
143-155°E in winter where the high CPUE values appear
in the same period, while it does not reach to the western
region during the stable period. On the contrary, the CPUE-
weighted-mean zonal positions are relatively stationary in the
southern region (Figure 3B). This suggests that in the northern
region, swordfish distribute more heterogeneously in the zonal
direction, depending on seasons and years than the southern
region. Because smooth and convoluted KE paths, during the
respective stable and unstable phase in the same western part
143-155°E (Figures 2B,D), are caused by less and more active
mesoscale eddies, these results imply that the KE stability state
and associated mesoscale variabilities in the western region
affect largely on the swordfish CPUE values hence also on their
relative abundance.

3.3. Physical Conditions for High Swordfish
CPUE

The results in the previous section suggest that the decadal KE
variability causes the interannual modulations in the swordfish
CPUE. To investigate the CPUE dependency on the water
property and its interannual changes, time series of CPUE is
computed as a function of temperature and salinity averaged over

upper 200 m. In the southern region, high CPUE values (>0.3)
are found with high temperature (>18°C) and salinity (>34.7)
throughout the study period (Figures S1C,D). On the other
hand, in the northern region, high CPUE values are found with
wide ranges of temperature (8-23°C) and salinity (33.4-34.9)
during the unstable period, 2006-2009 (Figures S1A,B). On the
contrary, during the stable phase, these high CPUE values are
found only with high temperature and salinity in both regions.
Similarly, the CPUE computed on the Temperature-Salinity
(T-S) diagram during the unstable period in the northern region
shows higher values in the widest ranges of temperature and
salinity amongst the regions and periods (Figure S2). These high
CPUE values in the northern region, during the unstable phase,
are found in higher temperature ranges if compared with those
of the same salinity, and in relatively lower salinity ranges at the
same temperature (Figure S2A). On the other hand, during the
stable period in the northern region, the ranges of temperature
and salinity with high CPUE are narrowed and the CPUE
values are lower than those in unstable period (Figure S2B).
Meanwhile, for southern region, there is no clear difference
between unstable and stable period, concentrating high CPUE
values at high temperature and salinity ranges (Figures S2C,D),
similar to Figures S1C,D.

Since the KE modulation is known to be driven by mesoscale
eddies, it is suspected that the swordfish CPUE can also be
influenced by the mesoscale flows, leading to the observed
interannual CPUE modulations. To understand the role of
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mesoscale eddies in driving the interannual variations of the
CPUE, several dynamic parameters to characterize the mesoscale
flows are examined. Figure 4A indicates that, in the northern
region, higher CPUE values are mostly associated with negative
values of OW (rotating regime) and with negative values of
vorticity (anticyclonic vorticity, clockwise rotating flow in the
northern hemisphere), suggesting that some physical structures
and biological conditions associated with anticyclonic warm-core
eddies lead to the high swordfish CPUE. Besides that, CPUE
values are higher with slightly positive values of divergence
of Q-vector, V; - Q (convergence zones), ie., downwelling
motions (Figures 4B,C). The results of these dynamic parameter
analyses suggest that the higher CPUE in the northern region
is found with negative OW, negative vorticity and positive Vj, -
Q (downwelling motions). On the other hand, this tendency
(negative vorticity, negative OW and positive V;, - Q) is subtle
in the southern region. This indicates that here these parameters
are not useful as in the northern region (Figures 4D-F).

To investigate the effects of the KE path modulations on the
relationships between above physical parameters and the CPUE,
the same analyses are conducted separately for the unstable
and the stable KE phases. The results for the unstable phase
are found to be very similar to that for the entire period, in
which higher CPUE values are found with negative vorticity,
negative OW, and slightly positive Vj, - Q in the northern region

(Figures 5A-C). It should be noted that these high CPUE values
in the unstable phase are even higher compared to that computed
for the entire period (Figures 4A-C, 5A-C). In contrast, high
CPUE values associated with these parameter ranges are absent
in the northern region during the stable phase (Figures 6A-C),
being clearly distinguishable in comparison to the unstable phase
(Figures 5A-C). In the southern region, no clear trend is found
with these parameters regardless of stable or unstable states of the
KE (Figures 5D-F, 6D-F).

3.4. Eddy Detection Analysis
So far, the results indicate that the higher values of CPUE are
formed within anticyclonic eddies with downwelling motion.
However, these analyses have not considered eddies explicitly.
For this reason, the eddy detection analysis is conducted in order
to determine if mesoscale eddies do affect the swordfish CPUE.
The mean CPUE computed for anticyclone (warm-core
eddies) (Figure 7A) and cyclone (cold-core eddies) as a function
of zonal and meridional distance from the closest detected
mesoscale eddy (Figure 7B) shows clearly that the CPUEs in
and near the anticyclonic eddies are higher than in cyclonic
eddies roughly by a factor of 2-3. It should be noted that,
in the anticyclonic eddies, higher CPUEs are found on the
northeastern side of the warm-core eddies within the regions of
100 km from the eddy center (Figure 7A). From the mesoscale
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dynamic parameter analyses presented in the previous section,
it is found that the high CPUE values are associated with
negative OW, negative relative vorticity, and positive Vj, - Q,
which can be interpreted as anticyclonic warm-core eddies with
downwelling tendency. This is further supported explicitly by the
eddy detection analysis, in which the high CPUE values are found
more in and near the anticyclonic warm-core eddies.

To clarify where this downwelling tendency accompanied by
the higher CPUE occurs with respect to the warm-core eddies,
the divergence of Q-vector (V, - Q) is averaged as a function of
distance from the closest eddy for each fishing location regardless
of the CPUE values. In the northern region, the average Vj, - Q
shows positive values on the eastern side and negative ones on
the western side, suggesting that the downwelling and upwelling
occur on the eastern and western side of the anticyclones,
respectively (Figures 8A,B). On the other hand, for cyclones,
downwelling tendency (V}, - Q > 0) is found on the western side,
and upwelling (V}, - Q < 0) is observed on the eastern side.

In addition to the Vj-Q, the frontogenetical function, Q- Vb is
averaged similarly as a function of zonal and meridional distance
from the closest detected mesoscale eddy. In the northern fishing
region, anticyclonic eddies present a trend to increase the lateral
buoyancy gradient with Q - Vyb > 0 on the eastern edge
of the warm-core eddies (Figure 8C). Meanwhile, for cyclones

Q- Vub > 0 is found near the center but on the southwestern
side (Figure 8D). Both positive values of Q - Vb are found in
the region of the downwelling tendency, reflecting the typical
downwelling (Q - V;,b) expected on the dense side of the front
under the frontogenesis (Q - Vb > 0) (Hoskins, 1971).

To investigate how the interannual variabilities, shown in
the previous section, are related with the detected mesoscale
eddies, the eddy detection results are analyzed further for
the stable and the unstable phases separately. During the
unstable phase, the mean CPUE in and near the mesoscale
anticyclonic warm-core eddies shows roughly two times higher
values than those during the stable phase (Figures9A,C).
The same tendency of higher CPUE during the unstable
phase than the stable phase is found for the cyclonic cold-
core eddies, although the values of CPUE are about three
times smaller than those for the anticyclonic warm-core eddies
(Figures 9B,D). Results of the same eddy detection analysis,
but limited for the northern region, 36 - 45°N, show the
same tendency that the higher CPUEs are found more on
the northeastern side of the anticyclonic warm-core rings
during the unstable phase (Figure 10). However, this tendency
is much weaker in the southern region, 25-36°N where the
difference of the CPUEs between stable and unstable phases
decreases to about a half of that in the northern region
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FIGURE 7 | Mean CPUE as a function of distances from the center of eddies along zonal and meridional directions for (A) anticyclonic eddies (or warm-core rings:
WCR) and (B) cyclonic eddies (or cold-core rings: CCR), which are closest to each swordfish fishing position.

(Figures 10, 11). What is more, in the southern region, the peak These results from the eddy detection analyses suggest that
of CPUE formed on the northeastern side of the anticyclonic  the interannual changes of the swordfish CPUE in the northern
warm-core eddies found in the northern region disappears  region are caused by environmental changes associated with the
(Figures 10A, 11A). mesoscale anticyclonic warm-core eddies. Therefore, the number
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of detected warm-core eddies in the northern region are counted.
During the unstable phase in the northern region, 36-45°N,
the number of anticyclonic warm-core eddies increases by 15%
in comparison to those formed in the stable period. Also, this
number exhibits distinct high-frequency seasonal changes with
higher values in spring to summer for most of the years except
late 2008 (Figure 12).

The Eddy Kinetic Energy (EKE), averaged in the upper 100
m depth in the KE region, also shows interannual modulations
in response to the variation of the KE states (Figure 13), which
is consistent with that in the number of detected mesoscale
anticyclonic warm-core rings. During the stable phase (2004-
2005, 2010), high EKE values (>0.3 m?s~2) are confined in the
relatively narrow region along the straight path with the two
meander crests at 144 and 150°E (similar to Figure 2B). On
the other hand, during the unstable phase of 2006-2009, the
high EKE is more accumulated in the western region, where
the Kuroshio Current separates from the Japanese coast. At the
same time, the latitudinal extent of the high EKE (>0.3 m2s~2)
becomes wider, covering more area in the northern latitudes.

These results suggest that the wider high EKE latitudinal extent to
the northern region during the unstable phase is caused by more
mesoscale eddies including anticyclonic warm-core rings in the
same region and period.

4. DISCUSSION

Although several previous studies have found effects of mesoscale
physical features, such as the formation of meanders, eddies,
and filaments on the distribution of marine species (Sugimoto
and Tameishi, 1992; Correa-Ramirez et al., 2007; Vasquez et al.,
2013; Hsu et al., 2015; Braun et al,, 2019), some of their analyses
were limited only to short-term fishery data with a few mesoscale
events. Therefore, it has been unclear how the reported results
are robust under seasonal and interannual variabilities. Even with
intensive dataset over a longer period of time, studies on the
interannual changes of pelagic fish distributions and abundance
in relation to the mesoscale processes are still very limited. In
contrast, the results of this study using relatively long-term (7
years) fishery data with eddy-resolving ocean reanalysis clearly
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FIGURE 9 | Mean CPUE as a function of distances from the center of eddies along zonal and meridional directions for (A,C) anticyclonic eddies (or warm-core rings:
WCR) and (B,D) cyclonic eddies (or cold-core rings: CCR), which are closest to each swordfish fishing position in (A,B) unstable period 2006-2009 and in (C,D)
stable period for years 2004, 2005, and 2010.

indicate that high swordfish CPUEs are found in and near the = phase for years 2004, 2005, and 2010, and the unstable phase
anticyclonic eddies. The results are contradictory comparing to  from 2006 through 2009. The results of our analyses using several
the previous study made by Hsu et al. (2015) in the western North ~ dynamic parameters, the eddy detection technique, and the eddy
Atlantic, in which the high swordfish relative abundance was  kinetic energy in relation to the swordfish CPUE reveal also that
negatively correlated with presence of mesoscale eddies. It should  the well-known variation in the KE system (Qiu and Chen, 2005;
be noted that these effects on the catch may differ depending  Jiang et al., 2017) could have large influences on the swordfish
on the swordfish stock behavior. Also, the clear tendency of  relative abundance. The swordfish CPUE in the northern region
more swordfish in anticyclones, warm-core eddies in the western ~ (36-45°N) increases proportionally to the KE path length with
North Pacific in this study would be the result of the absence of =~ higher values during the unstable KE phase, whereas that in
topographic features in the upstream KE region. In contrast, it  the southern region (25-36°N) exhibits an opposite tendency
has been reported in the North Atlantic that swordfish appear ~ with low values during the unstable phase. These opposite
to be attracted to complex high-relief bottom structures and interannual CPUE trends in the northern and southern regions
complex thermal structures, such as the topography relief of the  are reminiscent of the north-south seesaw decadal variability
Charleston Bump (Sedberry, 2001; Sedberry and Loefer, 2001). found in the surface chlorophyll concentration by Lin et al

In this study, the period for the analyses is divided into two ~ (2014). However, while phytoplankton are mostly passive to
phases based on the interannual KE path modulation, the stable  the flow, swordfish migrates seasonally between subtropical
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FIGURE 10 | Mean CPUE for the northern region, 140-175°E and 36-45°N as a function of distances from the center of eddies along zonal and meridional directions
for (A,C) anticyclonic eddies (or warm-core rings: WCR) and (B,D) cyclonic eddies (or cold-core rings: CCR), which are closest to each swordfish fishing position in
(A,B) unstable period 2006-2009 and in (C,D) stable period for years 2004, 2005, and 2010.
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region and the Kuroshio-Oyashio confluent region over several
thousands of kilometers.

According to Watanabe et al. (2009), south-north swordfish
migrations in the western North Pacific are strongly affected
by their feeding ecology, i.e., prey distributions. More presence
in the subtropical region (29-34°N) from winter to spring
seasons and in the transition zone (35-41°N) from summer to
autumn is because of the better feeding conditions. Their defined
subtropical region corresponds to the southern region, and the
transition zone to the northern region of this study. Therefore,
the CPUE peak in late autumn in the northern region, just before
the southward migration, and the other peak during winter in
the southern region, are due to more presence of swordfish
prey in each region. Our results of the north-south seasonal
transitions in the CPUE are strikingly similar and consistent
with the reported patterns of the swordfish feeding migration

(Watanabe et al., 2009), suggesting that seasonal distribution
of swordfish in the study area is mainly controlled by the
zoogeographical distribution patterns of their prey species.
Besides this feeding migration, it should be noted that
swordfish are distributed relative to preferred thermal habitats,
i.e., temperature fronts, for energetic gains by riding currents and
enhanced feeding regime (Seki et al., 2002). Swordfish migrates
toward more favorable areas for their feeding and physical
conditions. Even though it is known that this species can be
found within the temperature range of 5-27°C and it is frequently
found in surface waters at 13°C (Nakamura, 1985), swordfish
prefer warm temperatures within the range of 18-22°C (Uda,
1960). This condition is consistent with our results shown in
Figures S1C,D, S2C,D, highlighting their preferred warm (18-
22°C) and high salinity (>34.7) conditions in the southern
region, regardless of the KE stability. Note that temperature and
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salinity for this analysis were averaged over upper 200 m, which
could be deeper than the warm layers at the edges of warm-core
eddies and streamers in the northern region, but thinner than
the warm salty mode water in the recirculation gyre south of the
KE. Therefore, the high CPUE values associated with much wider
temperature and salinity ranges in the northern region, especially
during the unstable KE phase (Figures S1A,B, S2A), suggest that
swordfish can distribute following the surface trapped warm-salty
waters of the streamers and warm-core eddies which are more
frequently seen during the unstable phase in the region north of
the KE.

The most important agents to drive the interannual
modulations of CPUE in this northern region are found to
be anticyclonic warm-core eddies, especially in the western
region 143-155°E (Figures 3A, 6, 12). The high EKE values
(>0.3 m?s72) in the western KE region during unstable phase,

with its wider latitudinal extent toward north (Figure 13), are
consistent with the increasing number of anticyclonic warm-
core eddies in the unstable period (Figure 12). While these
anticyclonic eddies move westward as the first baroclinic mode
Rossby waves, the warm streamers that are more abundant
during the unstable phase, can fuel warm-salty water to the
warm-core eddies (Sugimoto et al., 1992; Yasuda et al.,, 1992).
At the same time, near the Japanese coast, these rings move
generally northward (Mizuno and White, 1983; Tomosada, 1986;
Yasuda et al., 1992), providing more suitable conditions that
swordfish can distribute in the northern region. For migrating
swordfish, it becomes easier to find warm-salty water due
to more warm-core eddies during unstable phase, which the
swordfish can utilize during their migrations to the northern
feeding sites or to the southern warm-salty habitats and
spawning sites.
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FIGURE 12 | Temporal variation of number of detected warm-core eddies per
month, from 2004 through 2010 in the western North Pacific region
144-158°E and 36-45°N, is represented by black cross and line. The red
curve shows moving average with a period of a year.

According to the eddy detection analysis, high CPUE values
are found on the northeastern side of the closest anticyclonic
warm-core eddies (Figure 9A), especially in the northern region,
36-45°N during the unstable phase (Figure 10A). The high
CPUE values on the northeastern side of these anticyclonic
warm-core eddies are found to coincide with the positive
divergence of Q-vector (Vj, - Q > 0), suggesting that swordfish
high CPUE values are accompanied by adiabatic downward flow.
The result also shows upwelling tendency (Vj, - Q < 0) on
the western side of the warm-core eddies with relatively lower
CPUE values. The reasons of upwelling and downwelling on the
western and eastern sides of the anticyclonic eddy is, however,
unclear. Although recent numerical studies have reported that
the dipole pattern of the vertical velocity arises in mesoscale
eddies, similar to the patterns shown in Figures 8A,B, adiabatic
up- and downwelling do not necessarily occur on the western
and eastern side, respectively, of an anticyclone. Their orientation
with respect to an eddy depends on how the eddy is detached
from a main current (Pilo et al., 2018), and how the Q-vector
distributes (Estrada-Allis et al., 2018). Before an anticyclonic
ring is detached from the anticyclonic meander of the KE, the
upwelling and the downwelling are seen from the meander
trough to the crest, and from the crest to the trough, respectively
(Bower and Rossby, 1989). The former is on the western side
and the latter on the eastern side of the meander crest, where the
anticyclonic meander leads respective northward and southward
flow on the western and eastern side, while the background
isopycnal shoals northward. This implies that the anticyclonic
eddies which accommodate swordfish are relatively young, and
close to the generation sites keeping the aforementioned up-
and downwelling tendencies associated with the meandering
patterns. This could be the reason why downwelling tendency is

found on the eastern side of the anticyclonic warm-core eddies,
where the high CPUE values coincide (Figure 8A).

By extracting the divergence of Q-vector V}, - Q at each fishing
point located only on the northeastern side of the warm-core
eddies (a green shape in Figure S3B), it is observed that higher
values of Vj,-Q appear in the western regions at 143°E, 148°E, and
152-155°E in the northern fishing site (black line in Figure S$3).
Furthermore, number of these eddies accompanied by fishing
activities on their northeastern side is larger in the same region
(red line in Figure S3). This indicates that the warm-core eddies,
in the western region, are the main contributors to increase the
divergence of Q-vector on the northeastern side of the warm-
core eddies. In this western region, the Kuroshio Extension has
its meander crests, where many warm-core eddies are generated,
supporting our prior speculations that high CPUEs associated
with downwelling tendency (V, - Q >0) on the northeastern side
are caused by swordfish being attracted to the young warm-core
eddies in the western region.

However, the vertical velocity, induced by the subinertial
deformation flow is very small O(107%-10"% ms™!) in
comparison to the typical swimming speed of swordfish,
that goes from O(1 ms™!) as sustainable cruising speeds for
saving energetic costs (Block and Booth, 1992) to the maximum
speed O(10 ms™!) (He, 2011). Therefore, the downwelling
tendency is unlikely to be a controlling factor of swordfish
distributions, but some other conditions that coincide with the
downwelling tendency should affect them.

Further analysis, using the eddy detection technique with
frontogenetical function Q - Vjb, shows that high swordfish
CPUEs on the northeastern side of the anticyclonic eddies
coincide with the Q - Vb > 0 (Figure 8C), i.e., frontogenesis
or sharpening of the front. The sharp thermal or environmental
front generated by the frontogenesis on the eastern side of the
young anticylones may act as a lateral environmental barrier. At
the same time, sharpened front on the eastern side of a warm-
core eddy increases the southward flow. Based on the above
analysis, the high CPUEs found in the northern region during
unstable KE phase are associated with the young warm-core
eddies in the western region 143-155°E (Figure 3A, Figure S3).
Note that these high CPUE values occur during autumn to winter
seasons, when swordfish migrate north to south. During these
returning migrations to the subtropical region, they most likely
can encounter the warm-salty water on the northern edge of
the warm-core eddies. Following the current of these warm-core
eddies, swordfish could use strong southward flows along their
eastern side to migrate further south. Although the swordfish
can swim against the eddy flow, the strong current of the
young anticyclones could induce a net advection effect with their
relatively slow cruising swimming speed O(1 ms™1).

In addition to these physical structures of the young warm-
core eddies, bottom-up biological processes may also attract
swordfish. The isothermal shoaling on the western side of
the anticyclones could induce upwelling of nutrients, which
triggers phytoplankton bloom (Flierl and Davis, 1993) and
zooplankton accumulations in the downstream, presumably at
the northeastern side of the warm-core eddies. Since swordfish
feed on small fish and squids attracted by plankton, these
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FIGURE 13 | Top 100-m annual mean eddy kinetic energy m?s=2 from 2004 through 2010 obtained from FORA-WNP30 data using (6). The abscissa is longitude (°E)
and the ordinate is latitude (°N).

bottom-up mechanisms would also boost the CPUE of the squid Ommastrephes bartramii is one of the swordfish main
swordfish migrating southward on the northeastern side of  preys (Watanabe et al., 2009), which presents a similar seasonal
the young warm-core eddies. For instance, the neon flying latitudinal migration with preference of slightly colder and
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FIGURE 14 | Summary of this study. Schematics for the modulations of the swordfish distributions associated with the Kuroshio Extension path states for (A) stable
period in which Kuroshio Extension takes relatively straight path without many warm-core rings and with less northward spreading of swordfish population and for (B)
unstable period in which the Kuroshio Extension path exhibits meandering with more warm-core eddies and more swordfish are caught on their northeastern side
during southward swordfish migration. The latter (B) unstable period can be characterized by the higher and lower swordfish CPUE in the northern and the southern
regions, respectively. The situation reverses during (A) stable period with the lower and higher swordfish CPUE in the northern and the southern regions, respectively.
(C) Hypothesis to form high swordfish CPUE on the northeastern side of an anticyclonic warm-core ring. During their southward migration in autumn to winter, they
can encounter their favorable warm-salty environment on the north side of the warm-core eddies. Following the flow of the eddies they might be able to migrate south
efficiently with the southward flow on the eastern side of the warm-core eddies. When they reach just north of the Kuroshio Extension, they might be attracted by prey
enhanced on the northeastern side of the young warm-core eddies by the upwelling on the western side. Note that there is a downwelling tendency on the
northeastern side of the young warm-core eddies. See also a supplementary animation at https://doi.org/10.6084/m9.figshare.12818846.v2.

fresher waters (Tian et al., 2009). The neon flying squid are interpretations for the results in this study can be synthesized into
often found at the edges of warm-core rings for better feeding  one hypothesis that top-down physical and bottom-up biological
conditions (Igarashi et al., 2018). When the Oyashio Current  processes may sustain high CPUE on the northeastern side of
reaches to the northern edge of these young warm-core eddies,  the young warm-core eddies, making swordfish inside the eddies
just north of the KE, it is reported that the abundance of the neon  even more easily targeted (Figure 14C).

flying squid increases there (Igarashi et al., 2011). This situation The above hypothesis is partially supported by the CPUE
would allow the swordfish to feed on the neon flying squid  distributions from autumn to winter season in 2006 to 2007
on the northeastern edges, while keeping themselves still inside  (see Movie S1). In this movie, a warm-core eddy is pinched off
the preferred thermal habitat near the warm-core eddies. These  from the KE in the middle of October 2006, followed by an
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appearance of a moderate value of CPUE on the northern edge
of this war-core ring in the middle of November. Then, early in
December, high CPUE values are seen on the northeastern side
of this eddy, which persist until end of December 2006. After
this, high CPUE values appear in the recirculation gyre south
of the KE without clear associations with the mesoscale eddies
until middle of January 2007. It should be noted that the high
CPUE values are found along the warm streamer connecting
between this warm-core eddy and the meander crest of the KE
in the end of January, which are probably due to the southward
migrating swordfish using the streamer connected to the
subtropical region.

Also, this tendency of higher CPUEs on the northeastern
side of the warm-core eddies accompanied by V;, - Q > 0 are
clearer during the unstable period (Figures 9A,C), suggesting
that more young warm-core eddies in the western region during
the unstable period attract more swordfish. Moreover, as shown
in the results, the higher CPUE values during unstable phase in
the northern region (Figure 2A) are caused by the higher CPUE
in the same western region, 143-155°E (Figure 3A). Therefore,
there is clearly an importance of young warm-core eddies in
the western region just north of the KE as the drivers of the
interannual changes of the swordfish CPUE.

Although the Kuroshio has been known to be nutrient poor
near the surface, recent studies have pointed out that the
Kuroshio in its subsurface layer is a nutrient stream, similar to
the Gulf Stream, transporting a large amount of nutrients from
south to the subpolar region, and that the concentrations of
nitrate within the nutrient stream is relatively higher compared
to ambient water of the same density (Saito, 2019). The higher
nutrient concentrations along the Kuroshio nutrient stream is
found to persist even in the downstream, the Kuroshio Extension
(Nagai et al., 2019). Therefore, warm-core eddies originated from
the KE could maintain the positive anomaly in the nutrient
concentrations in the subsurface layer, which may enhance
the nutrient supply with other physical processes near eddies
(Yoshimori et al., 1995; McGillicuddy Jr and Robinson, 1997;
Mahadevan and Tandon, 2006; McGillicuddy et al., 2007). These
bottom-up processes could possibly sustain relatively better food
availability for warm water favorite pelagic fish species within
warm-core eddies.

Our analyses using the mesoscale dynamic parameters shown
above illustrate that the swordfish CPUE in the northern region
is higher when the OW < 0, vorticity ¢ < 0, and V}, -
Q > 0, within the anticyclonic eddies with downwelling flow.
However, these parameters do not show any clear trend for
the CPUE in the southern region. In the subtropical region, it
has been reported that the surface mixed layer eddies generate
submesoscale frontal structures, so called submesoscale soup
(McWilliams, 2019), which are enhanced during the winter
season (Sasaki et al., 2014) when swordfish migrates back to
this region. How these submesoscale fronts influence on the
distributions of the migrating fish species are currently unknown
due to the coarse resolutions of the observation data. While the
resolution of the reanalysis data in this study is eddy resolving
~ 10 km, it is still too coarse to reproduce these submesoscale
processes. Also, despite the typical lengths of the lines for the

longline fishing exceed several tens of kilometers, the locations
of the catches were represented by the ship position when
they recovered the gear, that most likely limits the accuracy
of the fishing positions. Nevertheless, the results show a clear
dependency of the swordfish relative abundance on the mesoscale
parameters and anticyclonic eddies, which would have even finer
structures to reveal with the improved accuracy and resolutions
in future studies.

5. SUMMARY AND CONCLUSIONS

In this study, using mesoscale parameters derived from FORA-
WNP30 dataset and swordfish catch records from pelagic
longline fishery data from 2004 through 2010, the swordfish
relative abundance in association with the mesoscale physical
parameters and their interannual modulations were investigated,
with a special emphasis on the mesoscale eddies in the Kuroshio
Extension system.

For a clearer understanding of the effects of the KE
modulations on the swordfish CPUE, the study area is separated
into two regions, the northern region that is between 36
and 45°N, and the southern region between 25 and 36°N,
reflecting the seasonal feeding migration of the swordfish
(Figure 1). Besides this seasonal variation, interannual changes
in the swordfish CPUE are also observed in both regions,
which depend strongly on the mesoscale dynamic parameters
such as the vorticity, the Okubo-Weiss parameter, and the
divergence of Q-vector (Figures4-6). When the Kuroshio
Extension is stable for the years 2004, 2005, and 2010, the
eddy kinetic energy shows high values in limited regions
along the narrow and stable Kuroshio Extension axis, and the
annual swordfish CPUE shows low and high values in the
northern and the southern region, respectively. In contrast,
when the Kuroshio Extension is unstable for the years 2006
through 2009, the high values of EKE (> 0.3 m?s™2) are more
concentrated in the western Kuroshio Extension region, and
the annual swordfish CPUE tends to be high and low in the
northern and the southern region, respectively, opposite to the
stable phase.

The CPUE as a function of the mesoscale dynamic parameters
suggests that higher CPUE values are clearly associated with
the negative vorticity and the negative Okubo-Weiss parameter
(i.e., anticyclonic rotating flows, Figure 4). Consistently, the eddy
detection analysis with the CPUE data shows explicitly that the
high CPUE values are found in and near the anticyclonic warm-
core eddies, especially on their northeastern side (Figure9).
This is probably because, during the southward migration,
swordfish encounter the warm-salty waters at the northern
edge of the warm-core eddies, and uses the southward flow
on their eastern side to migrate south keeping themselves
within their preferred warm-salty water environment. Another
ecological reason for this is that their main prey, neon flying
squid O. bartramii are known to prefer to stay at the edges
of warm-core eddies (Figure 14). The further analyses suggest
that, in the northern region, the CPUE values in and near
the detected anticyclonic eddies are higher during unstable
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phase than in the stable phase by several factors (Figure 10).
These results indicate that the spatiotemporal variabilities in
the mesoscale warm-core eddies have a large impact on the
swordfish CPUE in the northern fishing site, with more warm-
core eddies accompanied by the higher CPUE values during the
unstable phase.

In conclusion, more swordfish can be found efficiently on the
northeastern side of the warm-core rings emanated from the
Kuroshio Extension jet during its unstable phase. It should be
noted that, for the first time, the clear interannual modulations
in the swordfish CPUE, which can be tightly correlated with
the mesoscale warm-core eddies, are shown in the northern
Kuroshio Extension region in this study. In the southern region,
however, no clear relationship is found between the same set of
mesoscale parameters and the swordfish CPUE, despite the clear
interannual modulation of CPUE, suggesting that unresolved
physical and biological structures, such as those associated with
submesoscale processes (Tandon and Nagai, 2019) are more
important to control the swordfish relative abundance in this
subtropical southern regions. These results and remaining issues
call for more studies to correlate more detailed oceanographic
parameters with relative abundance of many fish species in the
KE system, which has been long-known as one of the richest
fishing grounds in the world ocean.
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Climate-induced ecosystem variability is an increasing concern in recent years.
Integrated researches in the northeastern North Pacific have proved the ecological
importance of the Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation
(NPGO), and El Nifo—Southern Oscillation (ENSO) to the ecosystem variability. While
in the northwestern North Pacific, researches have been independent of each
other over different regional ecosystems, and identified relatively weak linkages
between these climatic indices (e.g., PDO, NPGO, and ENSQO) and variations in the
regional ecosystems. Such disassociated researches with unidentified important climate
variability patterns may have hampered a holistic understanding of climate-induced
ecosystem variability in the northwestern North Pacific. Furthermore, non-stationarity
in climate—biology relationships has been proven to be important for ecosystems in
the northeastern North Pacific but has not yet been studied in the northwestern North
Pacific. Therefore, this research compiles biological, environmental, and climatic data
in ecosystems in the northwestern North Pacific and employs a suite of analytical
techniques, aiming to provide a holistic understanding of the climate-induced ecosystem
variability. It shows that ecosystems in the northwestern North Pacific had a leading
regime shift in the late 1980s in response to climate variability. The Siberian High, Arctic
Oscillation, and East Asian Monsoon exhibit greater ecological importance to ecosystem
variability than the PDO, NPGO, and ENSO. Their variations contribute greatly to
sea surface temperature changes and thus variations in ecosystems. Furthermore,
modified models considering non-stationary relationships achieve better performances
than stationary models, suggesting the existence of non-stationarity in climate—biology
relationships in the northwestern North Pacific. This non-stationarity resulted from the
decline in variance of the sea level pressure in Siberian High rather than the Aleutian
Low as suggested by previous studies in the northeastern North Pacific. Our research
provides an improved understanding of the climate-induced ecosystem variability in
the northwestern North Pacific, offering implications for further research on the entire
North Pacific.
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INTRODUCTION

Climate-induced ecosystem variability has been one of the
most noteworthy issues at a global scale in the 21st century
(Doney et al., 2012). The North Pacific is characterized
by pronounced decadal climate variability and has received
much attention on the responses of ecosystems to changing
climatic and environmental conditions (Hare and Mantua,
2000; Biondi et al, 2001; Overland et al., 2008; Yatsu et al,
2013; Reid et al, 2016). In the northeastern North Pacific,
integrated studies based on the data compiled from multiple
sources have provided holistic understandings of the climate-
induced ecosystem variability (Benson and Trites, 2002; Mantua,
2004; Litzow and Mueter, 2014). Contrastingly, studies in the
northwestern North Pacific (Figure 1) have been carried out
independent of each other in different regions. Studies in Chinese
(Ma et al, 2019), Korean (Zhang et al., 2000, 2007), and
Japanese waters (Tian et al., 2006, 2008; Yatsu et al., 2013) have
all demonstrated strong linkages between regional ecosystems
and climatic/environmental conditions. However, these regional
studies have not yet been integrated to show general patterns in
climate-ecosystem relationships, which prevents from a holistic
understanding of climate-induced ecosystem variability in the
northwestern North Pacific. Therefore, an integrated study
targeting at the northwestern North Pacific is in urgent need,
which can promote understanding on the basin-scale climate-
induced ecosystem variability in the North Pacific.

Studies have shown that low-frequency climate variability
(red noise) in the North Pacific may have produced decadal-
scale periods of stability separated by climatic regime shifts
(Hsieh et al., 2005; Di Lorenzo and Ohman, 2013). It is also
widely accepted that these shifts could result in community-
level, basin-scale ecosystem regime shifts (Benson and Trites,
2002). Therefore, determining the specific climate variability
pattern with ecological importance is of great necessity in
understanding the climate-induced ecosystem variability and
predicting ecosystem dynamics. Relevant studies in the North
Pacific have proved the leading role of the Aleutian Low
pressure system on regional climate and ecosystem variability
(Minobe, 1999; Di Lorenzo and Ohman, 2013). In addition,
the Pacific Decadal Oscillation (PDO), North Pacific Gyre
Oscillation (NPGO), and El Nifio-Southern Oscillation (ENSO)
are presented as the primary climate variability patterns with
considerable ecological importance and have been extensively
used in the ecosystem variability researches in the northeastern
North Pacific (Zhang et al, 1997; Mantua and Hare, 2002;
Mantua, 2004; Di Lorenzo et al., 2008). However, spatial modes
of these climate variability patterns exhibit weaker representation
(small loadings) in the northwestern North Pacific than in the
central and northeastern North Pacific. Therefore, these climate
variability patterns may contribute less to ecosystem variability
in the northwestern North Pacific. Aside from the patterns in
the PDO, NPGO, and ENSO (SOI), studies in the northwestern
North Pacific always consider the Arctic Oscillation Index (AOI),
East Asian Monsoon Index (MOI), and Siberian High Index
(SHI, variations in Siberian High pressure system) in order to
explore more potential links between climate variability patterns

and regional environment and ecosystem variability (Tian et al.,
2014; Jung et al., 2017; Liu et al., 2019; Ma et al., 2019). However,
the ecological importance of these climate variability patterns has
not been evaluated, which may hamper predictions of climate-
induced ecosystem variability in the northwestern North Pacific.
Thus, it is imperative to determine the driving climate variability
patterns that have ecological importance in the northwestern
North Pacific for better understanding of climate-induced
ecosystem variability and predicting ecosystem dynamics.

Traditionally, the relationships between ecosystem variability
and environmental conditions have been modeled as a stochastic
process with a fixed probability density without considering time-
dependent non-stationarity (Wolkovich et al., 2014). However,
time-dependent non-stationarity can be important to take
into account in light of changing climatic conditions. An
example of the non-stationary relationships between physical
drivers and biological responses is the changing climate—salmon
relationships in around 1988/89 in the Gulf of Alaska, which is
attributed to the altered importance of PDO and NPGO, forced
by declined variance in the sea level pressure of the Aleutian Low
(Litzow et al., 2018). Consequently, traditional understanding
of the stationary pressure-state relationships could be subjected
to climate variability, and statistical models based on the
stationary assumption tend to be biased, resulting in the loss
of their predictive skills and the failure to warn of potential
ecological risks (Williams and Jackson, 2007; Dormann et al.,
2013). Therefore, considering the existence of non-stationary
relationships and their underlying mechanisms is crucial for the
better illustration of climate-ecosystem relationships and the
development of adaptive management strategies.

Considering the above demands, we conducted an integrated
study to explore ecologically important climate variability
patterns and to determine non-stationary driver-response
relationships between climate variability patterns and ecosystem
variability in the northwestern North Pacific. Marine fishery
catch data from China, Japan, and Korea, as well as sea
surface temperature and climatic indices were compiled for this
integrated study. We employed traditional statistical approaches,
their modified versions for tackling non-stationarity, as well
as machine learning methods to explore the possible linkages
between climate/environment drivers and ecosystem responses.
This study aims to: (1) explore long-term variability in ecosystem,
environment, and climate in the northwestern North Pacific;
(2) evaluate the ecological importance of candidate climate
variability patterns; (3) identify non-stationarity in relationships
between biological responses and physical drivers; and (4)
compare the climate-induced ecosystem variability in the
northwestern and northeastern North Pacific.

MATERIALS AND METHODS
Data

Based on the availability of qualified long-term time-series,
we compiled fishery catch data of various taxa (with raw
catch data shown in Supplementary Figure S1) from four
countries/regions (i.e., China, Chinese Taipei, Japan, and Korea)
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for the period of 1963-2016 (the longest time period considering
both data availability and comprehensiveness). Although the
taxa from different countries/regions may differ, they generally
fall into three major categories, large predatory, demersal, and
small pelagic (Supplementary Table S1), such that they well
represent the ecosystem structures (Tian et al., 2014). Within each
country/region, taxa that account for a small amount of catch
(<1% of total catch) are excluded to avoid the effects of potential
recording errors. Missing data (24 missing grids in a total of
3,240 data grids with a missing rate of 0.74%) were filled with the
averages of two adjacent years” data. Each catch data time-series
by species and by fishing country/region were standardized with
amean of 0 and a variance of 1 such that temporal variabilities in
the different data sets are comparable.

Monthly sea surface temperature (SST) grid data with
a resolution of 0.5°(latitude x longitude) for the range of

20°-50°N, 115°-150°E and for the period of 1963-2010 were
obtained from the Simple Ocean Data Assimilation Reanalysis
(SODA) (Carton and Giese, 2008). Winter (from January to
March, a period that is frequently used in relevant researches in
northwestern North Pacific) (e.g., Ma et al., 2019) means in each
SST grid were calculated for further analyses.

The PDO, NPGO, SOI, AOI, SHI, and MOI have been used
to define climate variability in the North Pacific (Ropelewski and
Jones, 1987; Thompson and Wallace, 1998; Hare and Mantua,
2000; Gong et al., 2001; Mantua and Hare, 2002; Wu and Wang,
2002; Di Lorenzo et al., 2008). All these large-scale climatic
indices (short as Cls) are derived from open-access online
databases and have a monthly temporal scale for the period
1963-2016. These CIs are well documented and largely associated
with variations in the fish communities and ecosystems in the
North Pacific (Tian et al., 2014; Liu et al., 2019; Ma et al., 2019).

Frontiers in Marine Science | www.frontiersin.org

September 2020 | Volume 7 | Article 546882


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Ma et al.

Climate-Induced Ecosystems Variability

Large-scale climate processes, such as the Siberian High, Aleutian
Low, Arctic Oscillation, and Asian Monsoon are most active in
winter. Therefore, winter (from December to February, a period
that is frequently used in relevant researches) average for each
index was calculated to represent climatic variability. Details for
ClIs are provided in Supplementary Table S2.

Data Analyses

Intensive increasing trends were observed in the catch data from
China (Supplementary Figure S1). Such increasing trends may
have been caused by socioeconomic factors such as the growing
consumption of seafoods and the increasing marine fishing effort,
which can lead to biased results. Therefore, we used engine power
of the total Chinese marine fishing boats (from Chinese Fishery
Statistics, Supplementary Figure S2) as a surrogate for fishing
effort to remove the potential socioeconomic trends in catch data
from China. The detrend analyses were applied through linear
regressions with catch data from China as response variables
and engine power as an explanatory variable. Residuals from
the linear regressions were then used as the detrended catch
time-series for further analyses. The detrend analyses were not
conducted for catch data from the other three countries/regions
as no obvious socioeconomic trend was observed in their catch
time-series (Supplementary Figure S1).

Principal component analysis (PCA) is often used to identify
the most important patterns of common variability in catch data
sets (e.g., Hare and Mantua, 2000; Litzow and Mueter, 2014).
We applied PCA to the fishery catch data of all taxa within the
four countries/regions and calculated the principal component
scores (short as PCs) to represent ecosystem variability. Empirical
orthogonal function (EOF) analysis is often used to identify
the most important SST variability pattern in the North
Pacific (Weare and Nasstrom, 1982; Litzow et al., 2018). We
calculated spatial modes and time coefficients (short as EOFs)
to represent the regional SST variability. Both PCA and EOF
were conducted by singular value decomposition (SVD) of the
centered and scaled (average 0 and variance 1) data matrix,
which was considered a preferred method for numerical accuracy
(Venables and Ripley, 2002). Both PCA and EOF analyses
were conducted by the “prcomp” routine (psych package) in R
(R Core Team, 2018).

The sequential t-test analysis of regime shift (STARS)
developed by Rodionov (2004) was applied to detect trends
and regime shifts in the PC scores. Because of the presence
of autocorrelation in the PC scores, we used a “prewhitening”
procedure before applying the STARS algorithm (ver.3)
(Rodionov, 2006). STARS results are determined by the cut-off
length for proposed regimes (L) and the Huber weight parameters
(H), which defines the range of departure from the observed
mean beyond which observations are considered as outliers. By
exploratory analyses with STARS, L is set here to 15 and H to 1
with a significant level of 5%. STARS is written in Visual Basic
for Application (VBA) for Microsoft Excel and is available at
www.BeringClimate.noaa.gov (Rodionov and Overland, 2005).

Linear correlations among PCs, EOFs, and Cls were estimated
using Pearson correlation analyses similar to those of Ma et al,,
2019. The number of degrees of freedom of coefficients obtained

from the significance tests was adjusted based on the potential
autocorrelation in the covariates (Pyper and Peterman, 1998).
Analyses were conducted using the “corr.test” routine (psych
package) with supplementary scripts for the recalculation of
effective degrees of freedom in R (R Core Team, 2018).

Gradient Forest (GF) analysis was employed to identify
contributions of climatic (Cls) and environmental variability
(EOFs) to biological variability (PCs). The gradient forest method
is built upon random forests to capture complex relationships
between potentially correlated predictors and multiple response
variables by integrating individual random forest analyses over
the different response variables (Ellis et al., 2012). In essence,
random forests are regression trees that partition the response
variable into two groups at a specific split value for each predictor
p to maximize homogeneity. Along with other measures, gradient
forests provide the goodness-of-fit, R, for each response variable
f and the importance weighted by R2. In this study, we ran
the gradient forests 1,000 times to obtain the variability of R%.
The run with the highest overall performance (R?) is then used
for calculating weighted importance of predictors on responses.
Analyses are conducted using the “gradientForest” package
available online at http://gradientforest.r-forge.r- project.org/.

Generalized additive models (GAM) and threshold
generalized additive models (TGAM) were applied to identify
the types of relationships (stationary or non-stationary) between
PCs (biological responses) and EOFs/Cls (physical drivers).
A “stationary” relationship is better fitted by a single function
throughout the entire period of time-series, and it is formulated
using a GAM (Ciannelli et al., 2004):

Y=0a+s(X)+e (1)

where Y is the response variable PC, X is the predictor (or driver)
EOF or CI, and s, a, and & are smooth function (with kK < 3
to avoid overfitting), intercept, and error terms, respectively.
By contrast, a “non-stationary” relationship is better fitted by
different functions for different time periods, and the responses
to drivers have an abrupt change over a threshold year (Litzow
et al., 2018). The non-stationary relationship is formulated using
a TGAM (with specific to two time periods) (Puerta et al., 2019):

ap + 51 (X) + &,

yr<y @)
a + 52 (X) + &,

ift=y

where y is the threshold year that separates two periods with
different responses to drivers. The y is between the 0.1 lower
and the 0.9 upper quantiles of the time-series and is selected by
minimizing the generalized cross validation score (GCV) of the
model (Casini et al., 2009). To compare the fitness of stationary
(GAMs) and non-stationary (TGAMs) models, the “genuine”
cross validation squared prediction error (gCV) is computed,
which accounts for the estimation of the threshold line and the
estimation of the degrees of freedom for the functions appearing
in all stationary and non-stationary formulations (Ciannelli et al.,
2004). Analyses were conducted by the “mgcv” package in R
(R Core Team, 2018).
Analyses flow is shown in Figure 2.

Frontiers in Marine Science | www.frontiersin.org

September 2020 | Volume 7 | Article 546882


http://www.BeringClimate.noaa.gov
http://gradientforest.r-forge.r-project.org/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Ma et al.

Climate-Induced Ecosystems Variability

RESULTS

Ecosystem, Environment, and Climate
Variability
The first four PCs explain 63.19% of the total variance in
ecosystem variability (Figure 3) with loadings on PCs shown in
Supplementary Figure S3. PC1 has an increasing trend since
the mid-1970s with a step-like change in 1986/87. PC2 decreases
around the early 1970s before increasing in the late 1980s with
step-like changes in 1974/75 and 1989/90. Prior to the late
1980s, PC3 was relatively stable before the late 1980s; however,
it decreases till the mid-2000s with step-like changes in 1989/90
and 2004/05. PC4 has dramatic fluctuations before stabilizing in
the 1980s with step-like changes in 1993/94 and 2006/07. PCs are
characterized by significant multidecadal to decadal variability
patterns with the most concentrated step-like changes in the
late 1980s, which indicates that an ecosystem regime shift in the
northwestern North Pacific may have happened in the late 1980s.
The first four EOFs have an explanation of 51.65% of the total
variance in SST variability (Figure 4). Spatial modes of EOFs are
provided in Supplementary Figure S4. EOF1 shows an abrupt

increase in the late 1980s with a step-like change in 1987/88.
EOF2 decreases in the 1970s but increases in the late 1980s
with step-like changes in 1989/90. EOF3 has a sharp increase
in the early 1980s before showing interannual fluctuations with
a step-like change in 1980/81. EOF4 shows large interannual
fluctuations without any step-like change. Variability in EOFs has
obvious decadal scale with step-like changes concentrated in the
late 1980s, which indicates that possible regime shift in SST in the
northwestern North Pacific happened in the late 1980s.

The CIs clearly show decadal-scale patterns (Figure 5).
The PDO shows a step-like change in 1976/77, and the
NPGO shows a step-like change in 1997/98. The SOI has
relatively high-frequency variations without any noticeable step-
like change. The AOI, SHI, and MOI have concentrated step-like
changes in 1988/89.

Relationships Among Climate,

Environment, and Ecosystem Variability

Correlations among CIs, EOFs, and PCs have diverse patterns
(Figure 6). First, PC1 is positively correlated with EOF1 but
negatively with EOF4; PC2 shows a negative correlation with
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FIGURE 3 | Trajectories of the first four principal components (PCs). Numbers indicate the percentage of variance explained by each PC. Black lines represent
regime means calculated by STARS, and gray lines represent the concentrated step-like changes in the late 1980s.

1990
Year

2000 2010

PDO. Other PCs show no correlations with EOFs due to the
autocorrelations. Second, EOF1 is negatively correlated with the
SHI and MOI; EOF2 is negatively correlated with the PDO, SHI,
and MOJ, but positively with the AOI; EOF3 shows a relatively
weak correlation with the PDO. Third, the SHI is negatively
correlated with the AOI but positively with MOI. The PDO is
negatively correlated with the SOI.

Gradient forest analysis reveals that PC1 is best explained by
EOFs and ClIs followed by PC2. PC3 and PC4, on the other hand,
failed to be explained by these drivers (Figure 7A). In addition,
weighted importance shows that EOF1, SHI, and EOF3 are the

first three contributors to the variations in PCs. The PDO shows
less weighted importance than the SHI, indicating its relatively
weaker effects on PCs (Figure 7B).

Non-stationary Relationships Between

Cls/EOFs and PCs

For all the models relating PCs to CIs and EOFs, the non-
stationary models generally resulted in lower gCV (Figure 8),
indicating better model performances compared with the
stationary models. In the case of PC1, the reduction in gCV by
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implementing non-stationary models are the greatest compared
with other PCs. The best fitted model for PC1 (with the lowest
gCV) is a non-stationary model with EOF2 as the driver. In the
case of PC2, a non-stationary model with EOF1 as the driver
achieves the lowest gCV. In the case of PC3, the best model
is non-stationary with EOF4 as the driver. For PC4, a non-
stationary model with SHI as the driver has a significantly lower
gCV and becomes the best fitted one.

According to variations in GCV, threshold years were
selected to distinguish eras for fitting driver-response
relationships separately (Supplementary Figure S5). Two
or three eras were identified in the relationships between
PCs and CIs/EOFs (Figure 9). In relating PC1 to EOF2, two

eras were distinguished by the threshold year 1990/91 with
similar negative relationships for both eras. However, PCI1 is
tightly aggregated with EOF2 in Eral but dispersive in Era2,
indicating a more stable relationship in Eral than in Era2.
Relationships between PC2 and EOF1 are divided into two eras
by threshold years 1976/77. A positive relationship is shown
in Era2 with high dispersion, and an inverted dome-shaped
relationships are shown in Eral, suggesting that EOFI is
relatively weak to explain variations in PC2 after the mid-1970s.
In the fitting of PC3 and EOF4, contrasting relationships
are shown in the two eras with the threshold year 1992/93.
Relationships between the SHI and PC4 are negative, negative
and inverted dome-shaped in the three eras, with threshold
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years 1969/70 and 1994/95, and the weakest relationship
is shown in Era2.

DISCUSSION

Climate-Induced Ecosystem Variability in
the Northwestern North Pacific

In this research, catch data of various taxa from four
countries/regions were compiled to provide a holistic perspective
on ecosystem variability in the northwestern North Pacific.

The problem of missing data always exists in researches with
enormous data demands as well as ours. However, with a
relatively low missing rate (0.74%), we think it would not affect
our results as we focus on the long-term general patterns in
ecosystem variability instead of short-term population variability.
Significant socioeconomic trends were observed in catch data
from China, which may lead to confused results when focusing
on climate-induced variability. Therefore, it is imperative to
remove the trends by detrend analysis. Although lacking taxa-
specific fishing effort data, the engine power of the total Chinese
fishing boats could reflect the general pattern in socioeconomic
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variations in China and could satisfy our demand in the
detrend analysis. In addition, catch data from Japan and Korea
were extensively used in relevant researches with satisfactory
representatives on the biomass (e.g., Tian et al., 2014; Jung et al.,
2017). Catch data from Chinese Taipei shown in Supplementary
Figure S1 exhibit inconspicuous socioeconomic influences.
Therefore, the detrend analyses were not conduced in catch data
from the above three countries/regions.

We employed an analytical framework that integrates both
traditional and advanced statistical methods. The traditional
statistical methods such as PCA, EOF, STARS, and correlation
analyses were extensively used in researches on climate-induced
ecosystem variability in the North Pacific (e.g., Mantua and Hare,
2002; Litzow and Mueter, 2014; Ma et al., 2019). The advanced
methods including GF and TGAM thrived in recent years

with their unique characters that cater to the present research
demands. Specifically, the GF captures complex relationships
between potentially correlated predictors and multiple response
variables, which greatly benefit researches focusing on obscure
climate-environment-ecosystem covariations with colinearity in
the predictors (e.g., climatic indices and environmental variables)
(Fuetal.,2019). The TGAM considers the non-stationary driver—
response relationships and has been successfully used in detecting
the critical transitions and for ecosystem resilience assessment
(Vasilakopoulos and Marshall, 2015; Vasilakopoulos et al., 2017).
Therefore, the analytical framework serves as an effective
approach in investigating climate-induced ecosystem variability.

Our integrated study across different regions of the
northwestern North Pacific indicates that ecosystem variability
in this part of the North Pacific is featured by significant
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decadal-scale and synchrony with climate variability. In
particular, the climatic regime shift in the late 1980s (step-like
changes in ClIs and EOFs) resulted in the ecosystem regime shift
(step-like changes in PCs). In the late 1980s, the SHI shifted
from a positive phase to a negative phase, representing the
weakening pressure in the Siberian High area. Previous research
has reported that the decline in the SHI could lead to the decline
in MOI (Wu and Wang, 2002). As a result, the MOI also shifted
from a positive phase to a negative phase in the late 1980s,
representing the weakening monsoon. In addition, the AOI
shifted from a negative phase to a positive phase, indicating the
strengthening of the Arctic wind vortex, which could hinder the
southward intrusion of cold air and also impact the SHI and
MOI (Gong et al., 2001; Wu and Wang, 2002). Consequently, the
weakening monsoon and decreasing intrusion of cold air directly
caused the increase in water temperature, shown as step-like
changes in EOFs in the late 1980s. Increasing water temperature
could be beneficial for warm-water species but harmful for
cold-water species, which have caused the ecosystem regime shift
in the late 1980s (Tian et al., 2008; Reid et al., 2016). Our research
presents apparent evidence that supports the dominance shift
from cold-water taxa to warm-water taxa in the late 1980s. For
instance, PC1, PC2, and PC3 all show great changes around the
late 1980s. The warm-water yellowtail (J5, positive loading on
PC1), Japanese anchovy (J20 and K12, positive loadings on PC2
and PCl, respectively), and Japanese jack mackerel and Japanese

scad (J16, negative loading on PC3) had abrupt increases in the
late 1980s. By contrast, cold-water Japanese sardine (J19 and
K11, negative loadings on PC2), Pacific cod (J8, negative loadings
on PC1 and PC2), and walleye pollock (J9 and K4, negative
loadings on PC1 and PC2) decreased sharply in the late 1980s.
Such taxa shift has impacted fisheries that have fixed gears (such
as stow-net and trap-net) or fixed fishing ground, resulting in
increased (decreased) percentages of warm-water (cold-water)
species (Cheung et al., 2013). Furthermore, the warming has
led to north movement of target species, resulting in north
movement of fishing grounds of flexible fishery and the increased
percentages of low-latitude species in catches of high-latitude
countries/regions (Tian et al., 2012).

In addition to the synchrony in climatic and ecosystem regime
shifts, correlations among CIs, EOFs and PCs have also been
identified by our results. PC1 shows primary correlations with
EOFI. PCl1 represents the most common variability pattern in
ecosystems in the northwestern North Pacific with the highest
explained variance and high loadings of most taxa. Besides,
EOF1 primarily represents SST variations in the eastern part
of East China Sea and variations in the Kuroshio Current path
south of Kyushu, Japan (Supplementary Figure S4). These
two areas have been identified as wintering and/or spawning
grounds for many migratory species, such as sardine, anchovy,
Japanese jack mackerel, and bluefin tuna (Kitagawa et al., 2000;
Kasai et al., 2008; Yatsu et al., 2013; Sassa, 2019; Yatsu, 2019).
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Environmental changes in these wintering and/or spawning
grounds have great impacts on wintering mortality, early life-
stage growth and survival of migratory species, and thus play a
decisive role on their recruitment process. In addition, the SHI
and MOI are negatively correlated with EOF1, but not correlated
with PCs, indicating that climate variability impacts biological
variability through the intermediary environment variability. It
provides evidence that climate-induced biological variability in
the northwestern North Pacific may follow the “atmosphere-
ocean-ecosystem” process as well as the “double-integration”
process (Di Lorenzo and Ohman, 2013; Ma et al, 2019).

Furthermore, PC2 is negatively correlated with the PDO. PC2
represents mainly the cold-water species Japanese sardine and
walleye pollock (high loadings on PC2) whose catches boomed
during the 1970s to 1980s but decreased sharply in the late 1980s.
Aside from the above climate variability patterns, it corresponded
to PDO that had a shift from a cold regime to the warm regime
in the mid-1970s followed by a sharp decline in the late 1980s
(Yatsu, 2019).

Our research evaluates the ecological importance of climate
variability patterns, and the results show that the SHI may
have the highest ecological importance to ecosystems in the
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northwestern North Pacific. On the one hand, SHI combining
with AOI and MOI have large impacts on EOF1 that could
affect the PC1, while PDO is correlated with EOF2 and PC2
that account for relatively little variance in the ecosystem. On
the other hand, gradient forest identifies that EOF1, SHI, and
EOF3 are the top three contributors to variations in PCs, followed
by PDO, which provides direct evidence for higher ecological
importance of SHI than PDO. Nevertheless, this is not a denial
of the importance of PDO in the northwestern North Pacific.
The PDO has strong linkage with the Kuroshio Current transport
(Andres et al., 2009). Besides, the PDO in tandem with ENSO

could affect the east Asian winter monsoon (Wang et al., 2008).
Therefore, the PDO could still exert on ecosystems by the above
intermediaries, which is not investigated here. Based on our
results, the SHI should be further considered in future researches
on climate-induced biological variability in the northwestern
North Pacific. Furthermore, global warming may also have effects
on the ecosystem variability in the northwestern North Pacific
as temperature increasing in the western boundary current area
was observed (Wu et al., 2012). The long-term increasing pattern
of EOFI is likely related to global warming. Meanwhile, EOF1
also has good correspondence to the Siberian High, Arctic
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Oscillation, and East Asian Monsoon as we discussed earlier,
which was consistent with other researches (e.g., Park et al,
2012). The coincidence of both climate variability and global
warming makes it difficult, if not impossible, to separate their
effects. Furthermore, other research found that global warming
could impact the Siberian High and monsoon system (Hori and
Ueda, 2006), which also increases the difficulty in the isolation.
Although our research highlighted the ecological importance of
the climate variability patterns, global warming could also impact
ecosystem variations in the northwestern North Pacific.

Non-stationarity in
Climate/Environment-Ecosystem
Relationships

Non-stationarity in relationships between climate/environment
drivers and ecosystem responses is verified by our research.
Previous researches present clear evidences for the non-
stationarity in climate-biology relationships in the northeastern
North Pacific (Litzow et al., 2018, 2019b; Puerta et al., 2019).
Our research points to the non-stationarity in the northwestern
North Pacific and enriches proofs for the non-stationarity in the
entire North Pacific.

Non-stationarity in relationships between PCs and drivers
is characterized by varied fitness or opposite fitting trends in
different eras. For example, although the fitted non-stationary
relationships between PC1 and EOF2 are negative in both
eras, higher dispersion is discovered in Era2 than in Eral
(root mean squared errors, RMSEs are 0.31 and 0.43 in Eral
and Era2, respectively), indicating the lower control of EOF2
on PCI in Eral than in Era2. In addition, the fitted non-
stationary relationship between PC3 and EOF4 is positive in
Eral but negative in Era2, suggesting different driver-response
relationships in the two eras. These two patterns have also been
reported in other researches (Puerta et al., 2019). Furthermore,
relationships between PCs and drivers have different threshold
years, suggesting the asynchronous non-stationarity in the
ecosystems, which could be caused by different sensitivities of
fish populations in their responses to environmental drivers
(Beaugrand, 2015).

The non-stationarity in the northeastern North Pacific has
been attributed to the Aleutian Low-forced change in the relative
importance of PDO and NPGO to the regional environment
variability (Litzow et al, 2018). Such change in the relative
importance of alternative climatic indices may also exist in
the northwestern North Pacific (Supplementary Figure S$6).
For example, the MOI gradually lost its control on EOFI
since the 1980s, while NPGO showed increased correlations
with EOFI1. Similarly, correlations between PDO and EOF2
decreased from the 1980s to the early 1990s, and by contrast,
correlations between NPGO and EOF2 increased consistently
during this same period. While the decline in variance of the
Aleutian Low was responsible for the change in the relative
importance of PDO and NPGO (Litzow et al., 2018), the same
reason may also apply to their correlations with EOF2. As for
EOF], the altered relative importance of MOI and NPGO may
be attributed to the decline in variance of the Siberian High

that decreased sharply since the late 1980s (Supplementary
Figure S7). Strong variances in these pressure systems may
drive coherent variability in regional ocean physical processes.
Therefore, these climatic indices would have good representation
of environmental conditions and, thus, relate well with biological
variability. However, low variances in these pressure systems
would reduce the strength of association among individual
environmental variables, accompanied by weaker representation
of environmental conditions and disappearing relationships with
biological variability. It could explain the weaker driver-response
relationships for the era after the threshold years.

While numerous studies address the role of climate forcing
in the biological variability of the North Pacific, most of these
tend to model relationships among climatic, environmental, and
biological variables as stationary properties (Wolkovich et al.,
2014). Our studies, demonstrate the existence of non-stationarity
between physical drivers and biological responses, in line with
a few others (e.g., Litzow et al, 2018, 2019a,b; Puerta et al.,
2019). We also preliminarily explored the mechanism behind the
relationships in the northwestern North Pacific. Based on our
findings, we stress that recognizing climate states (or eras) is
vital for the identification of non-stationarity in climate-biology
relationships. In addition, analytical techniques considering
the non-stationarity achieve better fitting than models with
stationary relationships, thus, these techniques are suggested to
be used in future researches. Relaxing assumptions of stationary
relationships among environmental variables and ecosystem
responses may be an important step in understanding climate-
induced biological variability.

Comparisons of Climate-Induced

Patterns in Ecosystems Between the
Northwestern and Northeastern North
Pacific

Long-term variabilities in ecosystems in the northwestern and
northeastern North Pacific are both characterized by decadal
variations largely affected by climate variability. It is widely
known that climate-induced ecosystem regime shifts in the North
Pacific occurred in the mid-1970s, late 1980s, and late 1990s,
and they matched well with the synchronous climatic regime
shifts (Overland et al., 2008). However, in the northeastern
North Pacific, ecosystem responses to the climatic regime shifts
were stronger in the mid-1970s and late 1990s, but weaker in
the late 1980s (Supplementary Figure S8) (Litzow and Mueter,
2014). By contrast, we found that ecosystems in the northwestern
North Pacific had the strongest regime shift in response to
the climatic regime shift in the late 1980s (Supplementary
Figure $8). Asynchronous ecosystem regime shifts were induced
by the different climate variability patterns that have ecological
importance. Climatic regime shifts dominated by the PDO and
NPGO contributed to the ecosystem regime shifts in the mid-
1970s and late 1990s, while climatic regime shifts dominated by
the SHI, AOI, and MOI resulted in an ecosystem regime shift
in the late 1980s. Therefore, identification of climate variability
pattern with ecological importance is vital in understanding
climate-induced biological variability.
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Based on this study and those of others (e.g., Litzow et al.,
2019a,b), non-stationarity in climate-biology relationships exists
in both northwestern and northeastern North Pacific and is
driven by the decline in variances of pressure systems. In
addition, non-stationarity in both northwestern and northeastern
North Pacific is shown as variations in driver-response
relationships over threshold years. However, the decline in
the variance of Siberian High was greater in magnitude
and longer in duration compared to the Aleutian Low
(Supplementary Figure S7), which may imply more profound
non-stationary effects on ecosystems in the northwestern than
in the northeastern North Pacific. Furthermore, accompanied
with weakening activities of Siberian High and Aleutian Low,
the NPGO seems to replace the MOI and PDO and exhibits
control over thermal variability in both the northwestern and
northeastern North Pacific, providing bases for unified climate-
induced biological variability in the North Pacific.
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To investigate the influences of oceanic intrinsic/internal variability and its interannual-
to-decadal modulations on the Kuroshio Extension (KE) jet speed and associated
eddy activity, a ten-member ensemble integration of an eddy-resolving ocean general
circulation model forced by the 1965-2016 atmospheric reanalysis is conducted. We
found a distinct time—scale dependence in the ratio of forced and intrinsic variability
of the KE jet speed. On the decadal time scale, the ratio of the magnitude of intrinsic
variability to that of the atmospheric—driven variability is 0.73, suggesting it is largely
atmospheric—driven. In contrast, on the interannual time scales, the KE jet speed has
a large ensemble spread, indicating that it is strongly affected by intrinsic variability
and has substantial uncertainty. For eddy activity, the ratios of atmospheric—driven and
intrinsic variability also depend on the region. In the downstream KE [32°-38°N, 153°—
165°E], variability in the atmospheric—driven eddy activity dominates (1.36 times) over
the intrinsic variability on the decadal time scale, and is positively correlated with the
current speed. Consistent with the westward propagation of atmospheric—driven jet
speed anomalies shown by the ensemble mean, the eddy activity in the downstream KE
region is correlated with the current speed variability in the central North Pacific 4 years
earlier. This linkage is robust even for each ensemble member with the significant lagged
correlation found in seven out of ten ensemble members as well as the ensemble mean
(r = 0.59), suggesting the possibility of prediction of the eddy activity. In contrast, the
eddy activity in the upstream KE [32°-38°N, 141°-153°E] shows a very large intrinsic
and limited atmospheric—driven variability with a ratio of the former to the latter of
2.73. These results suggest that the intrinsic variability needs to be considered in the
interannual variability of strong ocean jet. The dependence of these findings to the model
specificities needs to be further explored.

Keywords: kuroshio extension, eddy activity, interannual-to-decadal variability, predictability, ensemble
simulation

Frontiers in Marine Science | www.frontiersin.org 76

September 2020 | Volume 7 | Article 547442


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2020.547442
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2020.547442
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2020.547442&domain=pdf&date_stamp=2020-09-30
https://www.frontiersin.org/articles/10.3389/fmars.2020.547442/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Nonaka et al.

Intrinsic Variability in Kuroshio Extension

INTRODUCTION

The Kuroshio is the western boundary current of the subtropical
gyre in the North Pacific. After departing from the Japan coast at
Cape Inubo at the eastern edge of the Honshu Island, it continues
as an eastward free jet in the Kuroshio Extension (KE) and is
associated with the strongest mesoscale eddy activity in the North
Pacific Ocean (e.g., Qiu and Chen, 2005).

The Kuroshio and KE system transports heat from the tropics
to the mid-latitude, and release huge amounts of heat to the
atmosphere (about 1.7 x 10% W in the annual mean net
surface heat flux from the KE region [30°-40°N, 141°-165°E],
compared to 7.9 x 108 W in the whole Northern Hemisphere
oceans to the north of 30°N based on the third version of the
Japanese Ocean Flux Data Sets with the Use of Remote Sensing
Observations (J-OFURO3; Tomita et al.,, 2018) to impact the
atmosphere aloft. Through such processes, the strong warm
currents and associated sea surface temperature (SST) frontal
structure affect the development of cyclones (Kuwano-Yoshida
and Minobe, 2017; Hirata et al., 2018) and the large-scale
atmospheric circulations (Minobe et al., 2008; Frankignoul et al.,
2011; O’Reilly and Czaja, 2015), inducing basin-scale air-sea
interactions (Qiu et al., 2014) extending to the tropical Pacific
(Joh and Di Lorenzo, 2019). In addition, the decadal variability
in the strength of the currents can affect SST, mixed layer depth,
and further marine ecosystem in the Kuroshio Extension region
(e.g., Nishikawa et al., 2011).

Eddies associated with the KE jet (Itoh and Yasuda, 2010;
Sasaki and Minobe, 2015) are an important agent for water
mass exchanges across the KE jet and associated oceanic frontal
zones, and influence distributions of temperature (Sugimoto and
Hanawa, 2011), potential vorticity (Qiu and Chen, 2006; Oka
et al., 2015), nutrients (e.g., Sasai et al., 2019), and oxygen (Oka
et al,, 2015, 2019). The eddy activity modifies also the KE jet
itself (Ma et al., 2016). Further, eddies in the region may affect
the ocean-to—atmosphere feedbacks (Ma et al., 2015). Because
of these possible influences on the atmosphere and ocean,
including geochemical variables, it is important to improve our
understandings of variability in the KE and associated eddies.

Continuous satellite altimeter observations from the early
1990s have revealed that the KE jet has interannual-to-decadal
variability in its strength, latitude, and its stability, which are
tightly linked with the eddy activity (Qiu and Chen, 2005).
The altimeter observations also unveiled that the interannual-to-
decadal variability in the KE jet strength is associated with the sea
surface height anomalies that are generated in the central/eastern
part of the North Pacific by wind-stress variability and propagate
westward as Rossby waves (Qiu and Chen, 2005), indicating
that the variability is atmospherically driven. On the other hand,
idealized ocean model experiments suggest that strong western
boundary currents have variability under steady atmospheric
forcing (e.g., Dijkstra and Ghil, 2005). Similarly, a substantial
interannual-to-decadal variability of the KE jet has been found
in the layer and ocean general circulation models (OGCMs)
that realistically represent the ocean circulation (Pierini, 2006;
Taguchi et al, 2007; Sérazin et al., 2015) when driven by
seasonally-varying atmospheric field without the interannual

variability. To investigate atmospherically-forced and intrinsic
oceanic variability and their non-linear interaction, ensemble
OGCM simulations have been performed in recent years.
The OCCIPUT project (OceaniC Chaos-ImPacts, strUcture,
predicTability, Penduff et al, 2014) conducted and analyzed
an ensemble of 50 eddy-permitting (1/4° horizontal resolution)
ocean model integrations subject to realistic atmospheric forcing
for 56 years. This large ensemble revealed statistical properties
of the atmospherically-forced and intrinsic oceanic variability
around the globe (Penduff et al., 2019; Close et al., 2020) and
in the Atlantic Meridional Overturning Circulation (AMOGC;
Leroux et al, 2018). South of the subpolar gyre, the AMOC
simulated in 1/4 and 1/12° horizontal resolution OGCMs
showed no significant differences in the variance of intrinsic
variability, validating the use of eddy-permitting models to
investigate AMOC’s intrinsic variability (Gregorio et al., 2015).
Detailed structures of intrinsic variability of AMOC were
further investigated by an eddy-resolving ensemble of multi-
decadal integrations for the North Atlantic Ocean (Jamet
et al, 2019). Prominent intrinsic interannual variability in
the KE jet was found in a 3-member ensemble of eddy-
resolving (1/10° horizontal resolution), 18-year integration of
a realistic OGCM forced by interannually varying atmospheric
forcing under slightly different conditions (Nonaka et al., 2016).
The result indicates that part of the KE jet fluctuations are
caused intrinsically by non-linear interaction of the strong
current and eddies. However, the limited ensemble size and
integration period of Nonaka et al. (2016) experiment precluded
a separation of interannual and decadal variability due to
intrinsic ocean processes and atmospheric forcing, and pacing
of intrinsic variability in the KE jet by atmospheric variability
(Taguchi et al., 2007; Pierini, 2014).

The same question arises with respect to the interannual
and decadal variability of ocean eddy activity. Interannual-to-
decadal variability in the KE jet strength, stability, and associated
eddy activity induced by Rossby wave propagation (Qiu and
Chen, 2005) suggests a wind-driven component of interannual
variability in eddy activity. Meanwhile, as eddies are basically
formed by oceanic dynamical instability, their activities could be
inherently uncertain. In addition, the aforementioned intrinsic
interannual variability in the KE jet speed (Pierini, 2014; Nonaka
etal., 2016) is likely to induce intrinsic variability in eddy activity.
Indeed, recent studies have shown that smaller horizontal-scale
oceanic variability like mesoscale eddy activity is more strongly
affected by oceanic intrinsic variability (Penduff et al., 2011;
Sérazin et al., 2015). To further understand the interannual-to-
decadal variability and predictability/uncertainty of mesoscale
eddy activity, it is necessary to clarify the potential importance
of intrinsic variability.

The purpose of the present study is to investigate the
importance of oceanic intrinsic variability in the KE jet strength
and associated eddy activity on interannual-to-decadal time
scales. This requires available computational resources be used to
secure eddy-resolving horizontal resolution, albeit with a limited
ensemble size. We conduct a 10 member ensemble of 52-year
integrations of a realistic, eddy-resolving OGCM. In section 2,
we introduce the OGCM and ensemble experiment, and show
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the long-term mean and its spread among ensemble members in
section 3. We investigate the KE jet variability and eddy activity
in sections 4 and 5, respectively. Section 6 and 7 are for the
discussions and summary.

MATERIALS AND METHODS
OFES2

The second version of the OGCM for the Earth Simulator
(OFES2) interannual integration has been conducted for the
period from 1958 to 2017 (Sasaki et al., 2018). For OFES2, we have
modified the first version of OFES (Masumoto et al., 2004; Sasaki
et al., 2008) in vertical mixing and tidal mixing parameterization,
and coupled the ocean model with a sea-ice model (Komori et al.,
2005). The integration has been performed with a horizontal
resolution of 1/10° in the model’s near-global domain, from 76°S
to 76°N. The topography of OFES2 is obtained from ETOPO1
(Amante and Eakins, 2009) with a maximum depth of 7,500 m.
The model’s vertical coordinate has 105 levels with 44 levels in the
upper 300 m. The first version of OFES was integrated from 1950
(Sasaki et al., 2008) after a 50-year spin-up with climatological
atmospheric field (Masumoto et al., 2004). OFES2’s integration
branched off this integration with the temperature and salinity
initial conditions taken from the simulated fields of OFES on
January 1st, 1958.

To estimate wind-stress at the sea surface, wind speeds relative
to ocean currents are used in OFES2. The wind fields are obtained
from the Japanese 55-year atmospheric reanalysis based surface
dataset for driving ocean-sea-ice models (JRA-55do; Tsujino
et al., 2018), in which wind fields are adjusted to the satellite-
observed wind speeds. As the satellites observe sea surface wind
speeds relative to the surface ocean currents, the OGCM double
counts the effect of the surface currents (Zhai and Greatbatch,
2007). Furthermore, the OGCM is driven by the atmospheric
reanalysis field that does not include responses to the modeled
SST variability, and could underestimate the western boundary
currents and associated eddy activities (Renault et al., 2019, 2020).

Sasaki et al. (2020) shows further details of the model setup
and comparisons between observations and modeled fields in
OFES2. The model represents well observed fields with some
exceptions, for example, a northward turn of the extension of the
Gulf Stream in the North Atlantic.

Ensemble Experiment

In addition to the original OFES2 eddy-resolving interannual
integration mentioned above, we conducted a 10-member
ensemble integration of OFES2 for the period from the beginning
of 1965 to the end of 2016 (OFES2_ensemble). Ensemble
members differ in their initial conditions but are driven by
the identical JRA-55do atmospheric reanalysis fields that were
also used in the original OFES2 integration. Initial conditions
are obtained by sampling the original OFES2 integration every
2 days over an 18 days period between January 3rd and 21st,
1965. Those fields were applied on January 1st, 1965 and then
integrated to December 31st, 2016. From the slight differences in
the initial conditions, differences among the ensemble members
increase with time and saturate in about 5 years (not shown).

We analyze the model output from 1970 to 2016. This method
to generate the ensemble simulations is basically similar to
that used by Jamet et al. (2019). As the differences developed
under identical atmospheric variabilities, we attribute differences
among the realizations to oceanic intrinsic variability. Temporal
variability of the ensemble mean is assumed to largely result from
atmospheric forcing, although the ensemble mean can include
some components that are not atmospheric driven due to limited
number of ensemble members.

Definition of KE Jet Speed and Eddy

Kinetic Energy

In the present study, we define the KE jet speed as the current
velocity at 2.5-m depth along its axis based on monthly-mean
data. At each zonal grid point within the latitudinal band of 30°-
40°N, we define the axis of the KE jet as the meridional grid
point with the maximum current velocity. The occasional impact
of mesoscale features on the jet axis is minimized by the use
of a 10-degree longitude average and 13-month running mean
(mentioned below).

We estimate the eddy kinetic energy (EKE) as (u'2+v'2)/2,
where v and v are temporally high-pass filtered zonal and
meridional velocity at 2.5-m depth, respectively, and v’ and v/
are calculated by subtracting the 13-month running mean fields
from their original monthly time series. In the present study,
we further apply 13-month running mean to the EKE and other
time series to focus on the variability on interannual and longer
time scales. To avoid long-term trends and/or multi-decadal
variability, which could be induced by oceanic intrinsic variability
(Sérazin et al., 2016) and can affect the analysis of time series,
we removed the linear trends before the following analysis except
for the analysis of the long-term mean fields for Figure 2E and
relating discussion.

Observational Data

For observed data, we wused the surface geostrophic
currents  distributed by  the  Copernicus  Marine
Environment Monitoring Service for comparison with

the simulated data. The product identifier of the data is
SEALEVEL_GLO_PHY_L4 REP_OBSERVATIONS_008_047.
These currents are available on a 0.25° x 0.25° grid, and we use
monthly-mean values estimated from the daily-mean data in this
study. With the observational data, we estimate the KE jet speed
and EKE in the same way as for the simulated data. We also
use the indices of the North Pacific Gyre Oscillation (NPGO; Di
Lorenzo et al., 2008) and the Pacific Decadal Oscillation (PDO;
Mantua et al., 1997) obtained from the web sites of the Georgia
Institute of Technology' and Joint Institute for the Study of the
Atmosphere and Ocean, University of Washington?, respectively.
Data between 1970 and 2015 are used to examine correlations
of the EKE in the KE region with these indices. J-OFURO3 data
are obtained from the Asia-Pacific Data-Research Center at the
International Pacific Research Center, University of Hawaii’.

http://www.o03d.org/npgo/npgo.php
Zhttp://research.jisao.washington.edu/pdo/PDO.latest.txt
3http://apdrc.soest.hawaii.edu/datadoc/jofuro3.php
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Estimation of Magnitudes of
Atmospheric-Forced and Intrinsic
Variabilities

In the following analyses, we hypothesize that the variability
of the ensemble mean (f) of variable f represents the ocean
response to time dependent atmospheric forcing, and that
deviations f — (f) of each ensemble member from the ensemble
mean are caused by intrinsic oceanic variability. Here, the angled

M
brackets represent the ensemble mean, (f) = ﬁ > f, and an
m=1

- T
overbar temporal average, f = % > f, where M is the ensemble
t=1
size and T is number of months for the analysis period. We define
the ensemble spread as the standard deviation among ensemble

members from the ensemble mean:

- 5
o2 =)

m=1

Following Rowell et al. (1995), see also Leroux et al., 2018), the
variance of intrinsic variability is estimated by:

the variance of the ensemble mean is:

= X (10 -T)
=1

and the variance of the response to variable atmospheric forcing
is:

1 1 —\2
O'gtm :cgm - Mczgnt = T_1 Z;((f) - (f))
] T M
2
CTM(M - 1) ;mzz‘;(f_ )
In o2, the term of —3:07, is added to take into account

the influence of the limited number of ensemble members. The
magnitudes of the intrinsic and atmospheric-driven variability
are characterized by 0jnt, and o gim.

RESULTS

Long-Term Mean and Ensemble Spread
Global Distributions

We first examine the influence of oceanic intrinsic variability
on long-term, 30-year (1986-2015), mean fields. Figure 1A

120E 180

0.4
] 0.35
0.3
0.25
0.2
0.15
0.1

0.05

120w

120E 180

FIGURE 1 | Global map of the long-term (1986-2015) mean (A) surface (2.5-m depth) current speed, and (B) SST. Contours (shadings) indicate the ensemble mean
(spread). Contour intervals are 10 cm s~ (3°C) for (A,B) panel. Unit for the current speed is cm s~ 1, for SST °C.
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indicates that even in the 30-year mean current speed,
there are spreads among the ensemble members in the
western boundary currents and the Antarctic Circumpolar
Current regions. Corresponding ensemble spreads are also
found in the same regions in the 30-year mean sea surface
temperature (SST) field (Figure 1B). While the modeled
SST field tends to be restored to observed surface air
temperature field through the estimation of surface heat fluxes
based on the bulk formulae, SSTs are strongly influenced
by oceanic dynamics in the strong current regions and can
have the ensemble spreads associated with the spreads of
the current field. The distribution of the spread in the
long-term mean fields is consistent with regions of high
intrinsic variability found in the previous studies based on
climatological atmospheric forcing (Nonaka et al., 2016) and
realistic atmospheric forcing (Close et al., 2020). Such intrinsic
variability induces differences among the ensemble members
even in the long-term mean fields. However, due to limited
number of 10 ensemble members, estimates of the ensemble
spread have uncertainties corresponding to the particular
ensemble size as discussed below.

The Kuroshio Extension Current

The long-term (30-year) and ensemble mean of the surface
current in the North Pacific (Figure 2) indicates that the mean
current distributions are well represented in the model, although
speeds are lower than the observations (Figure 2A), even if we
compare the observed data to the ensemble member with the
strongest current in the KE region (Figure 2B) or change the
averaging interval to the overlapping period from 1993 to 2016
(not show). The surface boundary condition for the wind stress
based on the wind speeds relative to ocean currents could be a
reason for the weaker surface current.

As discussed above, the ensemble spreads of the long-term
mean surface current are large along the Kuroshio and KE, and
extends to around 170°E (Figure 2D). While absolute values
of the ensemble spreads are limited to less than 5 cm s~ !,
except for the Kuroshio large meander region, they exceed the
atmospherically-forced variability in different 30-year averages of
the ensemble mean. Indeed, the ensemble spread (Figure 2D)
is generally larger than the differences between the two 30-
year averaged ensemble means for distinct averaging intervals
such as [1971-2000] and [1986-2015] (Figure 2E), the most
separated 30-year means in the period of 1970-2016. Mean
differences among four 30-year averaged ensemble means for
the averaging intervals starting in 1971, 1976, 1981, and 1986
are further small (not show), and thus smaller than the
ensemble spread.

Oceanic internal dynamics leave a clear difference in the long-
term mean jet structures averaged from 160°E to 170°E, an area
of large ensemble spreads and weaker mean current speed of the
KE. Figure 3 shows that the mean KE has substantially different
structures among the ensemble members: some members have
rather broad single jet, while other members have double or even
triple jet structures (Figures 3A-C). Consistently, the relatively
large (about 1 cm s~!) ensemble spreads extend vertically to
about 300 m (Figure 3E), the typical depth of the jet structure

observation
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FIGURE 2 | (A) Horizontal map of the long-term (1993-2018) mean observed
surface current speed. (B,C) Same as the top panel but for panel (B) the
ensemble member with the largest current speed in the KE jet (30-40N, east
of 141E) and (C) the ensemble mean of the simulated field averaged for the
periods (1986-2015). (D) Same as panel (C) but for the ensemble spread.

(E) Absolute value of difference between two long-term mean simulated
surface current fields for the periods of (1971-2000) and (1986-2015). Unit is

cms~ .

found in the ensemble mean (Figure 3D). Ensemble spreads
of temperature are found in the thermocline layer below the
enhanced spread of the current speed, consistent with the thermal
wind relationship (Figure 3F). This suggests that the observed jet
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structures are difficult to reproduce in eddy-resolving OGCMs in
this particular region due to its substantial uncertainty.

Interannual-to-Decadal Variability in the
KE Jet Speed

Figure 4A depicts the time series of the KE jet speed for
each ensemble member and ensemble mean for the integration
period, excluding the first 5 years when the difference among
the ensemble members develops. The ensemble spread has
a substantial amplitude compared to the total variability of
the ensemble average low pass filtered with a 13-month
running mean. Indeed, the magnitude of its intrinsic variability,
ot (4.1 ecm s71), is comparable to the magnitude of
atmospheric—driven variability, 64, (4.4 cm s~ 1y, and their ratio
is 0.93. However, on decadal time scales, the spread among
the ensemble members is rather limited, and all members have
similar variations with peaks around 1974, 1980, 1990, and

2005. To focus on the decadal time scales, the KE jet speed
time series is smoothed by a 37-month running mean: in this
time series, which are dominated by decadal variability (not
show), the ratio of magnitude of intrinsic variability o;,; (2.8 cm
s™1) to that of atmospheric-driven one o, (3.8 cm sh,
0.73, is lower than the counterpart, 0.93, for the variability
after 13-month running mean. In contrast, on interannual time
scales, the spread among the ensemble members is substantial
compared to the variability of the ensemble mean. For the
band-pass filtered time series of [13-month running mean]—[37-
month running mean], which are dominated by interannual
variability (not shown), the magnitude of intrinsic variability
oint (2.7 cm s™1) is larger than that of atmospheric-driven one
Oatm (1.4 cm s71), and the ratio of it is 1.92. In short, in the
ensemble members, the KE jet speed exhibits on the interannual
and longer time-scale a similar magnitude of atmospheric—
driven and intrinsic variability, but its decadal and interannual
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FIGURE 4 | Time series of the Kuroshio Extension jet speed at 2.5-m depth on its axis averaged in 145°—155°E for panel (A) each ensemble member (thin curves),
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components are dominated by atmospheric-driven and intrinsic
variability, respectively.

Comparing the time series of the ensemble mean
and ensemble spread confirms above-mentioned features
(Figure 4B). Although the spread tends to be high (low) around
decadal local maxima (minima) of the ensemble mean in 1974
and 1990 (1985 and 1997), such a relationship is not present
in other peaks of the ensemble mean, and we do not find
clear relationships between the variability in the ensemble
mean and spread. It is indeed very clear that different time
scales are at play: the ensemble mean is dominated by decadal
time scale, and variability in the spread does not show clear
decadal signal and is dominated by interannual time-scale. This
is consistent with the rather limited ensemble spread on the
decadal time scale and means that the decadal variability in
the KE jet speed is more atmospheric-driven, and the KE jet
speed has a large uncertainty on the interannual time scale.
The thin red curve in Figure 4B indicates robustness of the
variance among the ensemble members following the method
of Leroux et al. (2018, Eq. Al). Due to the limited number
of ensemble members in the present study, the uncertainty is
very large compared to the ensemble spread itself. Therefore,
we need to consider the ensemble spread as a result of the
limited number of samples and to interpret the results with
sufficient care.

Comparison of the model results with observations (blue thick
curve) consistent with the time-scale dependent uncertainty of
the KE jet speed (Figure 4A). As discussed with Figure 2, the
time mean KE jet speed is lower in the model (93.7 cm s™!
in July 1993-June 2016, the common period for the model and
observation) than the observation (110.4 cm s~1). Meanwhile,
the ensemble mean represents very well the observed variability
on the decadal time scale. Their correlation coefficient r = 0.76
(0.90) for the time series applied 13-month (37-month) running
mean, 95 (99) % significant with the effective degree of freedom
N = 7 (5) estimated following Metz (1991). In contrast, the
band-pass filtered ensemble mean and observation, which are
dominated by the interannual time scale, are unrelated (r = 0.17,
not significant at 90% level with N = 23).

Eddy Activity in the KE Region

In addition to the simulated KE jet being slightly weaker than
the observed (Figure 2), EKE in the model is underestimated
compared to the observations (Figure 5A) even in the ensemble
member with the maximum EKE level in the high EKE region
(Figure 5B). However, the distribution of EKE is similar in
the ensemble member with the minimum EKE in the region
(Figure 5C) and also in the ensemble mean (Figure 5D), and the
model represents the long-term mean horizontal distributions
well. Then, we investigate the temporal variability of simulated
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FIGURE 5 | (A) Long-term (July 1994-Jun 2016) averaged observed EKE.
(B-D) Same as the top panel but for the simulated EKE (cm s~ )2 for the
ensemble member with a (B) maximum and (C) minimum area-mean EKE in
the high EKE region [32°-38°N, 141°-165°E], and for panel (D) the ensemble
mean. The rectangles in the panel (D) indicate the upstream [32°-38°N,
141°-153°E] and downstream [32°-38°N, 153°-165°E] KE regions.

eddy activity in the KE upstream and downstream regions.
Following Qiu and Chen (2005), we define the KE upstream
and downstream regions as [32°-38°N, 141°-153°E] and [32°-
38°N, 153°-165°E], respectively (shown by the rectangles in
Figure 5D).

KE Downstream

In contrast with the KE upstream region (Figure 6A) that
will be discussed later, EKE time series in ensemble members
in the downstream region show only small differences among
the ensemble members especially on the decadal time scales
(Figure 6B). Indeed, the atmospheric-driven variability in the
eddy activity dominates (1.36 times) over the intrinsic variability
on the decadal time scales (37-month running mean filtered time
series), while the ratio is 0.34 on an interannual time scale (band-
pass filtered time series). Also, the ensemble mean corresponds
well with the observed time series except for the last several
years (r = 0.73 for 1994-2010, 99% significant, N = 12, r = 0.41
for 1994-2015, not significant). The reasons for the difference
between the observation and the simulation after 2010 are unclear
at this stage. This means that in this region, at least in this
particular model, the modulation of the eddy activity has a
substantial atmospherically-driven component and thus, some
potential predictability.

To investigate the mechanisms for the variability in eddy
activities, we compare the longitude-time section of anomalies of
the ensemble member 2 of EKE and current speed meridionally
averaged from 32° to 38°N in Figure 7A. Both anomalies tend
to propagate westward from the central North Pacific with
an intensification of the EKE amplitude toward the western
boundary region, and tend to co-vary in the KE downstream
region. Indeed, the time series of area means in the KE
downstream region (Figure 7B) are synchronized with each
other: high current speed is accompanied by high EKE (r = 0.79,
98% significant, N = 8). For each ensemble member, the
corresponding correlation varies from r = 0.79 to 0.93, but all
of them are significant at 98% or higher level. The ensemble
member 2 shown in Figures 7A,B is the member that has the
lowest correlation between the time series shown in Figure 7B,
among the all members. The relationship between the current
speed and EKE is also suggested in the observations (Figure 7C,
r = 0.89, 99% significant, N = 7). The westward propagation
of the signals (Figure 7D) and correlation between the area
averaged EKE and current speed in the KE downstream region
(Figure 7E) are also found in the ensemble mean (r = 0.93, 99%
significant, N = 6), indicating that the variabilities include the
atmospheric-driven component.

As the current speed anomalies include the atmospheric-
driven component and tend to propagate westward (Figure 7D),
the propagation of anomalies could provide predictability for
EKE in the KE downstream region. To explore this hypothesis,
we first attribute changes of EKE to atmospheric forcing by
examining the ensemble mean (Figures 8A-D). Predictability
and comparison with the single observed realization further
require estimation of the signal to noise ratio, estimated from
the relative variances due to atmospheric forcing and intrinsic
variations, and illustrated by the correlations for individual
ensemble members (Figures 8E,F). In the lagged correlation
maps, a high correlation region is found with current speeds even
in 4 years earlier in the central North Pacific (Figure 8C), and
then propagates westward for a shorter lead-time (Figures 8A,B).
This feature is consistent with Taguchi et al. (2010) who showed
that the low-frequency modulation of EKE in the KE region
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FIGURE 6 | Time series of the standardized area-mean EKE anomalies in panel (A) the KE upstream region [32°-38°N, 141°-153°E] and (B) the KE downstream
[32°-38°N, 153°-165°E] for each ensemble member (thin curves), the ensemble mean (thick black curve), and the observation (thick blue curve). The time series of
observation and each ensemble member are standardized by dividing the original time series by their standard deviations. The ensemble mean is divided by the
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is associated with the incoming, westward-propagating Rossby
wave signals. The time series of area averaged current speed in
the central North Pacific (34°-36°N, 175°W-165°W) correlates
well with the eddy activities in the KE downstream region in
4 years later (r = 0.59, 90% significant, N = 12), indicating a
potential of predictability of the ensemble mean eddy activities
in the region (Figure 8D). While Figure 8B suggests that
the current in the same region also correlates with the eddy
activities in the KE downstream 2 years later, the correlation is
slightly lower (r = 0.50) and not significant. Also, the westward
propagating signals are not found in the 6-year lead correlation
map (not shown).

In the actual prediction, however, we need to consider
the lagged correlation for each ensemble member rather than
the ensemble mean as real observation is equivalent to one
realization of the ensembles. For each ensemble member, the
lagged correlation between the area averaged current speed
in the central North Pacific and EKE in the KE downstream
region 4 years later varies from r = 0.264 (ensemble member 6,
Figure 8F) to 0.602 (ensemble member 3, Figure 8E) and their
average is r = 0.446. While seven of ten members show the lagged
correlation statistically significant at 90% level, the correlations
are not significant for three members. (It should be noted that

as the ensemble mean has smoother time series, the effective
degree of freedom is smaller than that for each ensemble member,
and correlation coefficients at 90% significance higher for the
ensemble mean than for each ensemble member). This means
that while the ensemble mean shows a potential of a 4-year lead
prediction of eddy activity in the KE downstream region, it is not
always expected for each ensemble member due to the intrinsic
variability and, thus for real observation.

Indeed, a similar 4-year lagged correlation between the current
speed in the central North Pacific (40°-42°N, 160°W-150°W)
and EKE in the KE downstream region is also found in the
observed data (r = 0.60), but it is not statistically significant
(not shown). While this result can be due to intrinsic variability
included in the observation, the less robust statistical relation
could be also due to the limited length of observed time series.
Therefore, to determine the potential predictability in EKE in the
KE downstream region with several years lead-time in the real
North Pacific Ocean has to await a longer observed record.

KE Upstream

In contrast to the downstream region, the time series in the KE
upstream region of EKE for each ensemble member (Figure 6A)
shows substantial differences and there is almost no common
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FIGURE 7 | Anomalies of the eddy activity and current speed at 2.5-m-depth meridionally averaged in 32°-38°N. (A) Longitude-time section of the eddy activity
anomaly (shadings) and current speed anomaly (contours at 1, 5 cm s~ ). (B) Time series of an individual member EKE (red, bottom axis) and current speed
(black, top axis) anomalies averaged in 153°-165°E. (A,B) Are for the ensemble member 2, which has the lowest correlation between the two time series among the
all ensemble members. (C) Time series of the observed eddy activity (red) and current speed (black) anomalies averaged in 153°~165°E. (D) Same as (A) but for the
ensemble mean (contours at +1, 3, 5 cm s~ ). (E) Same as (B) but for the ensemble mean. Shadings indicate the corresponding error bars as + (ensemble
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temporal variability among the ensemble members. Indeed, the
ratio of the magnitude of intrinsic variability of EKE to that of
the atmospheric-driven variability is 2.73 in this region. Hence, at
least in this particular model, the variability in the eddy activity in
the region is strongly uncertain, and consistently, the time series
based on observation does not agree with the model ensemble
mean (r = —0.16, not significant). Nevertheless, the observed time
series is in the range of the ensemble spread except for some
years in the mid and late 1990s, implying that the observation
is basically within the simulated uncertainty. We will discuss
the high uncertainty of EKE in this region and the influence of
model biases on the uncertainty in section “Discussion About the
Simulated Eke in the KE Upstream Region.”

Map of Potential Predictability

In the above analyses, we have investigated uncertainty/potential
predictability of the eddy activity focusing on the two particular
regions, the KE upstream and downstream regions defined by

Qiu and Chen (2005). To examine horizontal distributions of
this property in the whole KE region, we further plot the
horizontal map of potential predictability for the interannual
and longer time scale variability (Figure 9). Here, we define the
potential predictability (PP) as follows: PP = 62,/ (62,, + 0%,,)
(Rowell et al., 1995; Sugi et al., 1997). PP represents the ratio of
deterministic, atmospheric—driven, variance to the total variance,
considering the variability in the ensemble mean is deterministic.

In Figure 9, we plot the square root of PP estimated for 5°-
longitude and 5°-latitude mean eddy activities after applying a
13-month running mean to focus on the interannual and longer
variability. The linear trends are also removed. The plot shows
that PP is generally higher in the downstream side with peaks
around 160°E to the north of the KE jet, and has a local minimum
around the KE jet (~37°N) in the further downstream region.
It is clear that PP is low in the upstream of the KE jet around
its axis, consistent with the difference found in the specific KE
upstream and downstream regions in the previous subsections.
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Comparison with the long-term mean horizontal distribution of
eddy activity (Figure 5) implies that PP tends to be lower with
higher eddy activity in the KE region.

DISCUSSION OF THE SIMULATED EKE
IN THE KE UPSTREAM REGION

The relationship between EKE and the current speed found
in the KE downstream region can be explained by dynamical
stability. Given the geostrophic/thermal wind relationship with
weak currents at depth, the stronger surface zonal current
is associated with a stronger meridional temperature/density
gradient. Stronger meridional temperature gradients are more
baroclinically unstable and induce higher eddy activity. Stronger
meridional shear associated with the stronger zonal currents
favors barotropic instability.

The relationship we identified in the KE downstream region is,
however, opposite to what Qiu and Chen (2005) found based on
satellite observations in the KE upstream region. They show that
a high (low) eddy activity is associated with a low (high) current
speed on the decadal time scale. In the KE upstream region, as
found in Figure 6A, the model does not capture the observed
EKE variability. Furthermore, the observed relationship between
the current speed and EKE variability is not clearly reproduced
even in each ensemble member (only two of ten members show
significant negative correlation between them consistent with the
observation) as well as in the ensemble mean. So, the discrepancy
in the region could be a model deficiency. Alternatively, this
may imply that EKE activity in the KE upstream region is highly
uncertain in the real ocean, so that the observed time series
cannot be reproduced in ocean GCMs.

Sugimoto and Hanawa (2012) show from observational data
that when the Kuroshio takes its offshore non-large meander path
and passes the southern part (32°-33°N) of the Izu Ridge (around
140°E), eddy activity tends to be high in the upstream KE region.

While OFES2 has a bias in the path of Kuroshio south of Japan,
and tends to have the large meander path more often compared
to the observations as suggested in Figure 2, we have confirmed
that the model tends to take a near shore path at the Izu Ridge
more often than in the observation (not shown). Based on the
results of Sugimoto and Hanawa (2012), this means that the bias
of the model Kuroshio path does not enhance the eddy activity
in the upstream KE region. Also, as discussed with Figure 5, the
model has slightly weaker EKE in the KE region compared to the
observation, and the high uncertainty in the KE upstream region
is not due to too strong eddy activity in the region.

The uncertainty in EKE in the upstream KE region can be
further explored by correlating across all the ensemble members
the intrinsic (unforced) component of SSH anomalies onto the
intrinsic component of the EKE in the upstream KE region
(Figure 10). Positive EKE deviations in the upstream KE region
that exceed the ensemble mean are associated with a negative
(positive) SSH deviations from the ensemble mean to the
south (north) of the upstream KE jet (Figure 10A). Hence, as
the intrinsic variability, the stronger EKE is associated with a
weaker southern recirculation gyre and a weaker SSH meridional
gradient, while there is a possibility that the weaker recirculation
and meridional SSH gradient results from the stronger EKE. This
property is consistent with observation (Qiu and Chen, 2005),
although the observed data includes both the atmospheric-
forced and intrinsic components. Interestingly, stronger EKE
in the upstream KE region is also associated with positive
SSH deviations in the Kuroshio south of Japan, and the lagged
correlation maps (Figures 10B,C) show that the signal appears
first in the region and then expands into the upstream KE region.
The positive SSH deviations to the north of the mean Kuroshio
meandered path (depicted by the contours) tends to straighten
the Kuroshio path and this leads to stronger EKE in the upstream
KE region 2 years later. The analysis suggests that the self-
sustained intrinsic path variations of Kuroshio south of Japan
(e.g., Qiu and Miao, 2000) may have a down-stream influence on
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FIGURE 10 | Correlation maps of SSH difference from its ensemble mean
with EKE deviations from its ensemble mean in the KE upstream region
(indicated by the black rectangle) from all the ensemble members. (A) The
simultaneous correlation. (B,C) The lagged correlation maps with SSH fields
lead by panel (B) 1 year and (C) 2 years. Regions over a 95% confidence level
(N = 380) are indicated. For the estimation of the correlations, simultaneous
and lagged covariances of deviations of SSH and EKE from their ensemble
mean, and their variances are calculated from the whole ensemble members.

the uncertainty of the KE’s southern recirculation gyre and the
EKE in the upstream KE region.

SUMMARY

To investigate the possible influence of oceanic intrinsic
variability and its interannual-to-decadal modulations in the
KE jet speed and associated eddy activities, we conducted a
10-member ensemble, 52-year integration of an eddy-resolving
OGCM with time-varying surface forcing and slightly different
initial conditions. We show that, on the decadal time scales,
variability in the KE jet speed has a limited ensemble spread,
suggesting that the decadal jet speed variability is mostly
atmospheric—driven. In contrast, on interannual time scales,
the KE jet speed has a large ensemble spread, indicating that
it is strongly affected by intrinsic variability, has substantial
uncertainty, and is difficult to predict. The present study confirms
with a longer integration results of Nonaka et al. (2016). This

time-scale dependence is similar to that found in the Atlantic
Meridional Overturning Circulation (Jamet et al., 2019). While
Pierini (2006) suggests the importance of intrinsic variability
to decadal KE variability, the present study suggests that the
intrinsic variability is more important on the interannual time
scale. The pacing of intrinsic variability in the KE jet by
atmospheric variability proposed by previous studies (Taguchi
et al., 2007; Pierini, 2014) could not be identified in the relation
between the intrinsic and atmospheric—forced variability of the
upstream KE jet speed. Further exploration is necessary.

In the KE upstream region, observations show that eddy
activity is high (low) when the KE jet is weak (strong) (Qiu
and Chen, 2005). However, in our simulations, the eddy
activity in the KE upstream region shows high uncertainty
and limited atmospheric-driven variability. In contrast, the
eddy activities in the KE downstream region have a small
ensemble spread especially on the decadal time scale, indicating
they are predominantly atmospheric-driven. Further, the eddy
activity is highly correlated with the surface current speed
averaged in the same region. This relationship is consistent
with the enhanced baroclinic instability associated with stronger
currents and meridional density gradients. Through westward
propagation of surface current variability signals shown by the
lagged correlation maps based on the ensemble mean field,
which can represent atmospheric-driven potentially predictable
component of variability, the eddy activity in the KE downstream
region correlates well (r = 0.59, 90% significant) with the
ensemble mean surface current speed variability in the central
North Pacific 4 years earlier. Even for each ensemble member,
the significant lagged correlation is also found in seven out of
ten ensemble members, suggesting a possibility of prediction of
the eddy activity in the region based on westward propagation
of wind-driven current speed anomalies. Consistent with this,
the ensemble mean of eddy activity in the KE downstream has
lagged correlation with the index of NPGO, which leads the
KE jet variability with several years lag. Their correlation is
r =0.41 (90% significant, N = 22) when the NPGO index leads a
39 months with applying 13-month running mean. Interestingly,
the ensemble mean of eddy activity in the KE upstream correlates
with PDO (r = 0.42, 99% significant, N = 48), when the PDO
index leads 13 months. As we discussed above, however, the
wind-driven component is limited in the KE upstream region
and this correlation is not found for each ensemble member at
least in our simulation due to the large uncertainty caused by
intrinsic variability.

While it has been widely recognized in the atmospheric
science that observations are just one realization of possible
fields, the oceanography community is only beginning to explore
this aspect (e.g., Penduff et al, 2018), except for the fields
directly relating to eddies, and should consider oceanic fields
in the similar way. There are a few emerging projects that
have pointed out the importance of oceanic intrinsic variability
(see Introduction). Among them, statistical properties of the
atmospheric—forced and intrinsic oceanic variability have been
revealed globally with a large ensemble OGCM simulations
performed under the OCCIPUT project (e.g., Penduff et al., 2019;
Close et al, 2020). In the present study, as we used more
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computational resources for high horizontal resolutions to
represent the KE jet structure and to resolve mesoscale eddies,
the number of ensemble members (10) is limited compared to
the OCCIPUT experiment (50). While this choice precluded us
from the robust estimates of ensemble spreads and Gaussianity
of distribution (Penduff et al., 2019), our higher-resolution
ensemble simulations complement the OCCIPUT simulations.
By better resolving the eddy activity and jet structures, we have
documented the atmospheric-forced and intrinsic variability on
the interannual-to-decadal time scales in the KE region. The
present results confirm that, even on the interannual time-scale
that is longer than a typical eddy lifetime, it is necessary to
consider uncertainty in variability of the strong jets. Nevertheless,
we found possibility of predictability in the eddy activity in the
KE downstream region. Since intrinsic variability is likely model
dependent, these results should be explored with other models
or using multi-model comparisons as well as larger number of
ensemble members.
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A Corrigendum on

Atmospheric-Driven and Intrinsic Interannual-to-Decadal Variability in the Kuroshio
Extension Jet and Eddy Activities

by Nonaka, M., Sasaki, H., Taguchi, B., and Schneider, N. (2020). Front. Mar. Sci. 7:547442.
doi: 10.3389/fmars.2020.547442

In the original article, there was a mistake in Figure 9 as published. The panel was incorrectly
included twice. The corrected Figure 9 appears below.

The authors apologize for this error and state that this does not change the scientific conclusions
of the article in any way. The original article has been updated.
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Changing ecosystem conditions present a challenge for the monitoring and
management of living marine resources, where decisions often require lead-times of
weeks to months. Consistent improvement in the skill of regional ocean models to
predict physical ocean states at seasonal time scales provides opportunities to forecast
biological responses to changing ecosystem conditions that impact fishery management
practices. In this study, we used 8-month lead-time predictions of temperature at
250 m depth from the J-SCOPE regional ocean model, along with stationary habitat
conditions (e.g., distance to shelf break), to forecast Pacific hake (Merluccius productus)
distribution in the northern California Current Ecosystem (CCE). Using retrospective
skill assessments, we found strong agreement between hake distribution forecasts
and historical observations. The top performing models [based on out-of-sample skill
assessments using the area-under-the-curve (AUC) skill metric] were a generalized
additive model (GAM) that included shelf-break distance (i.e., distance to the 200 m
isobath) (AUC = 0.813) and a boosted regression tree (BRT) that included temperature
at 250 m depth and shelf-break distance (AUC = 0.830). An ensemble forecast of the
top performing GAM and BRT models only improved out-of-sample forecast skill slightly
(AUC = 0.838) due to strongly correlated forecast errors between models (- = 0.88).
Collectively, our results demonstrate that seasonal lead-time ocean predictions have
predictive skill for important ecological processes in the northern CCE and can be
used to provide early detection of impending distribution shifts of ecologically and
economically important marine species.

Keywords: California Current, non-stationary, Pacific hake, climate, temperature, forecast
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INTRODUCTION

Anticipating ecological change is an important component
of living marine resource management where decisions often
require lead-times of weeks to months. Yet, the lack of advanced
warnings about the response of marine taxa to ecosystem shifts
limits the ability of management systems to respond to rapidly
changing ecosystem conditions (Clark et al., 2001; Dietze et al,,
2018). Increasingly, seasonal ecological forecasts provide a means
to reduce related uncertainties and play a key role in supporting
management of living marine resources into the future (Hobday
etal., 2016; Payne et al., 2017; Tommasi et al., 2017). Indeed, over
the past decade seasonal ecological forecasts have been developed
for a wide range of marine taxa including American lobster in
the Gulf of Maine (Mills et al., 2017), sardines in the California
Current (Zwolinski et al., 2011; Kaplan et al., 2016), and southern
bluefin tuna in eastern Australia (Hobday et al., 2011a, 2016).

Increases in the predictive skill of physical ocean states has
partially driven the increased availability of seasonal ecological
forecasts and has resulted in the availability of skillful ocean
forecasts with seasonal lead-times for many of the world’s large
marine ecosystems (Stock et al., 2015; Tommasi et al., 2017;
Jacox et al., 2020). In the northern California Current Ecosystem
(CCE), the J-SCOPE (JISAQO’s Seasonal Coastal Ocean Prediction
of the Ecosystem) model provides forecasts of physical, chemical,
and biological ocean states with seasonal lead times (e.g.,
6-9 months) (Siedlecki et al., 2016). Skill assessments have shown
the J-SCOPE model has considerable predictive skill at seasonal
lead times for several ecologically relevant variables including
subsurface temperature (Siedlecki et al., 2016). In turn, J]-SCOPE
seasonal forecasts of ocean conditions can then be used to drive
ecological forecasts, such as sardine distribution in the CCE
(Kaplan et al., 2016).

Pacific hake (Merluccius productus, hereafter just hake) is an
important mid-trophic-level species in the CCE that supports
one of the largest United States groundfish fisheries outside
of Alaska (Ressler et al., 2007; Berger et al., 2019). Hake are
distributed from about 25° to 55°N and at depths typically
between 100 and 1000 m. The dynamics of the hake stock are
characterized by episodic recruitment events with a few large age-
classes dominating the stock (Hamel et al., 2015; Berger et al,,
2019). Age-structure of the stock, in turn, influences distribution
since older and larger hake tend to be distributed further north
than smaller and younger conspecifics (Berger et al., 2019). Hake
growth is variable across years and is at least partly influenced
by ocean conditions (e.g., El Nifo events) and availability of prey
resources (Ressler et al., 2007; Hamel et al., 2015).

Pacific hake are seasonally migratory, with a northward spring
migration from southern spawning grounds off the United States
west coast, terminating as far north as southeast Alaska. This
migration pattern results in hake being a trans-boundary resource
fished commercially in the United States and Canada (Bailey
et al., 1982). The fraction of the population that migrates into
Canadian waters, however, can vary greatly across years, creating
challenges for monitoring and management planning (Dorn,
1995). For instance, monitoring of the hake stock is conducted
jointly by a United States/Canada summer acoustic-trawl survey

that provides an index of hake biomass that is used for stock
assessment and management planning (Berger et al., 2019). The
ability of the monitoring survey to sample the full spatial extent
of the stock partially determines the magnitude of uncertainty
associated with the biomass index.

Environmental conditions influence the summer distribution
of hake along the west coast of North America (Benson et al.,
2002; Ressler et al., 2007; Agostini et al., 2008). Thermal
conditions, in particular, have been positively associated with
the fraction of the hake stock in Canadian waters, suggesting
warmer ocean conditions drive a more northern distribution
of hake (Dorn, 1995; Ware and McFarlane, 1995). More
recently, evidence has suggested that thermal conditions have a
spatially variable effect on hake distribution with strong positive
associations with hake biomass north of Vancouver Island, British
Columbia (BC) and strong negative associations offshore of
Vancouver Island, BC and Washington, United States (Malick
et al., 2020). This suggests that ocean temperatures could be a
useful predictor of hake distribution in the northern CCE.

Skillful forecasts of hake distribution could help inform
management and survey planning decisions in three important
aspects. First, early warnings of changes in hake distribution can
inform planning of fisheries independent surveys used to monitor
the hake stock (Payne et al., 2017). For example, survey planning
decisions, such as allocating survey effort between northern and
southern areas, are made several months prior to the start of the
survey. Thus, forecasts could inform decisions about allocating
limited survey effort by predicting areas where hake are unlikely
to be present in a given year. If vessel breakdowns or weather
forced a reduction in survey effort, transect density could be
reduced in regions predicted to have low probability of hake
occurrence. Second, skillful forecasts provide information on the
projected trans-boundary distribution of hake, and thus could
help reduce uncertainties in the availability of the hake stock to
fishers in Canada and the United States (Hobday et al., 2011b;
Mills et al., 2017). Third, skillful forecasts provide early warnings
of potential ecosystem shifts that can inform ecosystem-based
management (Levin et al., 2009; Malick et al., 2017). For instance,
Pacific hake are an important predator of fish and shellfish
populations and are prey for larger fish and marine mammals in
the CCE, thus advanced warnings of shifts in hake distribution
could aid detection of consequential ecological shifts in the CCE
(Bailey et al., 1982; Francis, 1983).

In this study, we examined whether seasonal forecasts of
physical oceanographic conditions can be used to accurately
predict hake distribution in the northern CCE. In particular, we
developed and tested 8-month lead-time forecasts of summer
hake distribution with the goal of providing forecasts to support
management and survey planning decisions. We used 7 years
of acoustic-trawl survey data to characterize hake distribution.
We then used the J-SCOPE regional ocean model to develop 8-
month lead-time forecasts of subsurface temperatures that were
used to force environmentally driven species distribution models
for hake. We further evaluated whether multi-model ensembles
improved forecast skill of hake distribution by comparing
ensemble forecasts to single-model forecasts. This process of
using oceanographic forecasts to predict hake distributional
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shifts in the CCE explicitly addresses fisheries management
ecosystem-linkage goals and provides necessary context for
short-term oceanographic variability within the scope of longer-
term perturbations (e.g., climate change).

MATERIALS AND METHODS

The primary motivation for developing seasonal forecasts of
hake distribution was to provide an early warning of changes
in hake distribution to support management decisions and
Pacific hake acoustic-trawl survey planning. As a result, forecasts
were co-developed with survey planners, while stakeholder
involvement occurred via meetings associated with the Pacific
hake treaty process.

Pacific Hake Data

The hake survey aims to sample the full range of the hake
distribution in summer, and survey extent and the number of
transects are often adjusted in response to the presence or absence
of hake following survey design guidelines. Therefore, we focus
on forecasting the probability of hake occurrence, rather than
density, because the acoustic-trawl survey is better informed
by early warnings in the expansion or contraction of hake
distribution than forecasts of hake density in a given location.

We used 7 years of spatially explicit biennial hake occurrence
data collected via joint United States/Canada acoustic-trawl
surveys from 2009 to 2019, with an additional 2012 survey
(Table 1). Surveys started in southern California and moved
northward along the United States and Canada west coasts until
hake were no longer observed (typically around 54.5°N). The
spatial extent of data analyzed here, however, was limited to
the region 43-50°N - the latitudinal domain of the J-SCOPE
model used to generate forecasts of ocean conditions (see below).
The number of annual survey transects within the study domain
ranged from 34 in 2015 to 49 in 2011 (Table 1). Survey timing was
fairly consistent across years, with the southern third of the study
domain typically sampled during the second half of July and the
northern two-thirds typically sampled during August.

Acoustic backscatter measurements attributable to hake were
converted to hake biomass using the procedures outlined in
Fleischer et al. (2008) and Malick et al. (2020). We aggregated the

TABLE 1 | Summary of acoustic-trawl survey data available for analysis.

Year N transects N bins % absent
2009 38 367 73.6
2011 49 427 73.3
2012 38 380 73.7
2013 42 417 76.5
2015 34 340 75.3
2017 39 367 68.7
2019 38 369 63.7

N transects gives the annual number of survey transects. N bins gives the annual
number of 10 km bins across the study region. % absent gives the annual
percentage of 10 km bins with no Pacific hake.

hake data into 10 km bins to reduce spatial autocorrelation in the
data and coded bins with non-zero biomass as hake occurrences.
We also tested smaller (e.g., 5 km) and larger (e.g., 20 km) bin
sizes and found results were robust across different sized bins.

Ocean Forecasts

We used 8-month lead-time forecasts of temperature at
250 m depth from J-SCOPE to forecast hake distribution
(Supplementary Figure S1). J-SCOPE is a Regional Ocean
Modeling System (ROMS) (Haidvogel et al., 2008) simulation
of seasonal ocean conditions spanning 43-50°N on the outer
coast of Washington, Oregon, and southern BC (Siedlecki et al.,
2016). The J-SCOPE model has a 1.5 km horizontal resolution
with 40 vertical levels and includes both rivers and tides. The
large scale oceanic and atmospheric forcing comes from NOAA’s
global Climate Forecast System (CES). In this study, we focus
on retrospective ocean forecasts, i.e., reforecasts, which are true
forecasts for a historical period using a free-running model
unconstrained by observations after initialization. The aim in
using these reforecasts was to test the models skill for jointly
predicting future ocean conditions and hake distribution 8-
months ahead.

We chose temperature at 250 m depth as our primary
ocean variable because (1) previous research has shown strong
correlations between temperature at depth and hake distribution
(Malick et al., 2020), and (2) 250 m represents depths commonly
occupied by hake (Ressler et al., 2007). In areas where bottom
depth was less than 250 m, we used bottom temperature
instead. July and August temperature forecasts were generated
for each survey year using a January initialization period. For
2019, three model runs from CFS were used to quantify the
uncertainty related to those forcing variables. The model runs
were chosen from the beginning (January 5), middle (January
15), and end (January 25) of the forecast initialization month.
The initial conditions for ]-SCOPE ROMS consist of the average
conditions from CFS-reanalysis for the initialization month of
the forecast. As is typical in the oceanographic literature, we
focus on anomalies - i.e., differences from the climatology or
time-averaged field detailing the seasonal cycle. In this case,
the J-SCOPE reforecast climatology was based on 2009-2017,
building on Siedlecki et al. (2016).

In addition to the dynamic temperature variable, we also
explored a static index of cross-shelf location as a predictor of
hake distribution. In particular, we used the distance to the 200 m
shelf break, where the distance was defined as the minimum
euclidean distance between a hake observation and the 200 m
isobath. Positive values of the shelf distance variable indicated the
hake observation was offshore of the 200 m isobath and negative
values indicated the observation was inshore.

Statistical Forecasting Models

We used both generalized additive models (GAM) and boosted
regression trees (BRT) to model species distribution, because
previous studies have shown the potential for differences in
explanatory power and predictive skill across model types
(Abrahms et al., 2019; Brodie et al., 2019).
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We used binomial GAMs with a logit link to predict the
probability of hake occurrence,

Yi=0o+s (St,i) +f (Tt,i) + €

where y is the logit transformed probability of occurrence for
year t at location i, a is the intercept, s is a univariate smooth
function of shelf break distance (S), f is a smooth function
that describes the effect of temperature anomaly at 250 m
depth (T; i.e., deviations from the long-term mean), and ¢, ; are
model residuals.

We considered two alternative formulations for the f
temperature term (Table 2). The first formulation assumed a
spatially stationary temperature effect modeled as a univariate
smooth function of temperature, s (Tt,i). The second formulation
allowed for a spatially variable temperature effect by modeling the
temperature effect as the product of T;; and a bivariate smooth
function of longitude (lon) and latitude (lat), i.e., g (lon, lat) - Tt .
Non-parametric thin plate regression splines were used for the
univariate (s) and bivariate (g) smooth functions in the GAMs
(Wood, 2003).

Two simpler GAMs that included static covariates were
considered as alternative null forecast models (Table 2). The
first simpler model included a univariate smooth of shelf break
distance. The second simpler model included a bivariate smooth
of longitude and latitude. In total, we evaluated four alternative
GAM forecast models (Table 2).

The BRT used a Bernoulli distribution. Since BRT models can
handle colinearity among predictors, we included four covariates:
temperature anomaly at 250 m depth, distance to the shelf
break, longitude, and latitude (Elith et al., 2008). BRT models
are composed of a large number of decision trees constructed
via recursive binary splits of the data with non-linear responses
produced by evaluating these splits across many trees (Elith
et al., 2008). The BRT was estimated using a maximum of three
interactions among covariates, a learning rate of 0.02, and bag
fraction of 0.6, which resulted in models with at least 1000
trees (Elith et al., 2008). Standard errors of predicted species
distribution were calculated across 100 BRT fits to provide model
error estimates (Hazen et al., 2018; Brodie et al., 2019).

Four ensemble model forecasts were generated by averaging
each of the GAMs and the BRT, where each model in the
ensemble was given equal weight (Clemen, 1989; Araujo and
New, 2007). We also tested the sensitivity of our results to
the inclusion of temperature in the BRT by re-running the
analysis with temperature anomaly at 250 m excluded from the
BRT model. All analyses were conducted using R v3.6.0 and
the mgev and dismo packages (Elith et al., 2008; Wood, 2017;
R Core Team, 2019).

Forecast Evaluation

Previous work has shown considerable skill for the J-SCOPE
temperature forecast model. Siedlecki et al. (2016) evaluated
J-SCOPE’s predictability for temperature, and found that
predictive skill increased with depth. In addition, annual
evaluation of J-SCOPE forecasts against observations are
available on the NANOOS IOOS portal'. Supplementing earlier
evaluations of J-SCOPE performance and skill, we further
quantified performance of J-SCOPE predictions of bottom
temperature by comparing against temperature data from the
Northwest Fisheries Science Center's West Coast Groundfish
Bottom Trawl Survey (Keller et al., 2017). That survey samples
the United States West Coast slope and shelf (55-1280 m)
annually from May-October, targeting bottom-dwelling species
of commercial importance.

We evaluated the GAM and BRT model performance using a
combination of in-sample and out-of-sample metrics including
the area-under-the-curve (AUC) and mean squared error (MSE)
(Fielding and Bell, 1997). The AUC measures how well a model
can discriminate a presence from an absence. The AUC ranges
between 0 and 1 where a value of 0.5 indicates a random classifier
and values closer to 1 indicate higher forecast skill. The MSE
measures the accuracy of the forecast model where lower values
indicate a more accurate forecast.

We used leave-one-year-out cross validation to evaluate how
the models performed at forecasting hake distribution for un-
observed years (Fielding and Bell, 1997). In this procedure, a
single year was left-out of the data, each model was re-fit using
the remaining years of data, and forecasts were produced for the

Uhttp://www.nanoos.org/products/j-scope/home.php

TABLE 2 | Summary of forecast model performance.

Model Description MSE, AUC, MSEO AUCO MSE2019 AUC2019
GAMA1 y = a+g; (Lon, Lat) 0.142 0.841 0.156 0.800 0.170 0.834
GAM2 y = a+s1 (Shelf) 0.147 0.824 0.150 0.813 0.178 0.809
GAM3 y = a+s; (Shelf) +s, (Temp) 0.145 0.830 0.164 0.792 0.281 0.712
GAM4 y = a+ s (Shelf) +g1 (Lon, Lat) - Temp 0.144 0.833 0.154 0.805 0.210 0.725
BRT y = Lon+Lat+Shelf+Temp 0.091 0.938 0.148 0.828 0.200 0.836
ENS1 Ensemble 1: GAM1 + BRT 0.109 0.914 0.142 0.833 0.157 0.847
ENS2 Ensemble 2: GAM2 + BRT 0.111 0.909 0.140 0.838 0.163 0.834
ENS3 Ensemble 3: GAM3 + BRT 0.111 0.909 0.148 0.825 0.221 0.812
ENS4 Ensemble 4: GAM4 + BRT 0.110 0.910 0.142 0.834 0.182 0.800

MSE;, MSEo, and MSExp19 give the mean squared errors for the in-sample, out-of-sample, and 2019 forecast, respectively. AUC;, AUCo, and AUC2p19 give the area-
under-the-curve estimates for the in-sample, out-of-sample, and 2019 forecast, respectively. Bold values indicate the lowest MSE and highest AUC values for a column.
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left-out year. This cross-validation was repeated for each year,
providing 7 years of out-of-sample forecasts. We then compared
the forecasted values for the left-out years to the observed values
using the MSE and AUC metrics.

To further test the performance of the forecast models, we
generated “true” out-of-sample forecasts for 2019 prior to the
hake acoustic-trawl survey. We fit the hake forecast models using
data through 2017 and then tested those models using true
forecasts of the physical environment from the J-SCOPE January
initialized temperature forecasts. True forecasts are produced
every January and released on the web in February prior to the
conditions being observed, thus referred to as a “true” forecast. In
this case, ]-SCOPE ocean forecasts were used to generate forecasts
of hake distribution for August 2019. To better characterize
uncertainty in the ocean forecasts, we generated three forecasts
from the J-SCOPE model for 2019 using different initialization
dates in January (January 5, January 15, January 25). The spread
across the three forecasts was used as a measure of uncertainty
in the J-SCOPE temperature forecasts. For each hake forecasting
model, we generated separate forecasts for each of the three

temperature forecasts and used an average across the three
forecasts as our ensemble mean 2019 hake forecast for each
model. Performance of the 2019 hake forecasts was evaluated
using the AUC and MSE metrics.

RESULTS

J-SCOPE performed well when bottom temperatures observed
in situ were compared with the simulated bottom temperatures
from the same locations (R? = 0.88; Supplementary Figure S2).
The predicted bottom temperatures were biased warm
(RMSE = 0.48), which is not uncommon in ROMS applications
and is addressed here by focusing on anomalies rather than raw
temperature values (Giddings et al., 2014). This strong agreement
between observed and predicted temperatures supports the use
of numerical ocean model forecasts of sub-surface temperatures
to predict suitable hake habitat.

Hake occurred across the latitudinal extent of the study region
with the exception of 2011, when no fish were observed off
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FIGURE 1 | Pacific hake summer distribution as determined by acoustic-trawl surveys. (A) Annual occurrences and absences of Pacific hake across the study
region. Solid red circles indicate hake occurrences and open blue circles indicate hake absences. Solid gray lines show the 200 m isobath. (B) Histograms of
distance to the 200 m isobath for Pacific hake occurrences (red) and absences (blue). Darker red bars indicate overlap between the occurrences and absences.
(C) Histograms of temperature anomaly at 250 m depth for Pacific hake occurrences (red) and absences (blue). Temperature anomalies are reforecasts from the
J-SCOPE model.
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the west coast of Vancouver Island (Figure 1). Across all years,
the cross-shelf distribution of hake was concentrated around
the 200 m isobath with the majority of hake occurrences (62%)
occurring within 10 km of the shelf break (Figure 1). The
percentage of hake absences across years was consistent ranging
from 64% in 2019 to 77% in 2013, although the latitudinal
distribution of absences varied across years (Table 1). For
example, in 2015 hake were absent from most locations oft-shore
of Washington and Oregon, whereas in 2011 hake occurrences
tended to be concentrated in this region (Figure 1).

The shelf-break term in the GAM and BRT models confirmed
the strong preference of hake to be present slightly offshore
of the 200 m shelf-break (Figures 2A, 3A-C). The shelf-
break preference was also the dominant pattern in the bivariate
smooth of longitude and latitude in model GAM1 (Figure 2B).

The stationary temperature terms in the GAM3 and BRT
models indicated that hake occurrence tended to have a positive
association with temperature anomaly (Figures 2C, 3D). In
contrast, the non-stationary temperature term in model GAM4
showed negative associations between temperature and hake
occurrence off the Washington and Oregon coasts, but positive
associations in more northern and southern areas (Figure 2D).
All forecasting models had considerable forecast skill (both in-
sample and out-of-sample) with AUC values greater than 0.79
and MSE values lower than 0.17 (Table 2). The BRT tended to
fit the data the best with the highest in-sample AUC (0.93) and
lowest in-sample MSE (0.09). For out-of-sample, however, an
ensemble model (ENS2) performed best with an overall AUC
of 0.84 and MSE of 0.14 (Table 2). Among the four GAMs, the
longitude-latitude model (GAM1) tended to fit the data the best
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FIGURE 2 | Marginal effects of covariate smooths from the GAMs. (A) Marginal effect of shelf break term in model GAM2. (B) Marginal effect of bivariate
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(i.e., had the highest AUC and lowest MSE), whereas the shelf-
only model (GAM2) had the best out-of-sample forecast skill
(Table 2). Between the two GAMs that included a temperature
effect (GAM3 and GAM4), there was support for a spatially
varying temperature effect with the GAM4 model having better
in-sample and out-of-sample performance than GAM2.

The 2019 temperature anomaly forecasts from the J-SCOPE
model indicated above average temperatures at depth across the
study region (Figure 4A) with the warmest forecast (Figure 4C)
having an average temperature anomaly of 0.78°C and the coolest
forecast (Figure 4B) having an average anomaly of 0.36°C.
The three individual temperature forecasts displayed moderate
variability in temperature anomalies with grid cell specific
standard deviations across the three temperature forecasts
ranging from 0.03 to 1.36 (Supplementary Figure S3).

All models had considerable skill in forecasting 2019 hake
occurrence with the ENS1 model having the best 2019 forecast
skill with an AUC of 0.85 and MSE of 0.16 (Table 2 and
Figure 5). The 2019 forecasts showed higher probabilities of hake
occurrence near the 200 m isobath, which is consistent with their
historical distribution within the study region. The three models
that included temperature anomaly (GAM3, GAM4, and BRT)
showed more spatial variability in predicted hake occurrence
and also tended to have higher standard errors of prediction
compared to models that lacked temperature (Figures 5, 6).

When temperature was removed from the BRT, model
fit declined compared to the original BRT model that

included temperature (i.e., lower in-sample skill; Table 2
and Supplementary Table S1). In addition, the model with
the highest out-of-sample skill changed to an ensemble of
the BRT without temperature and GAM4, which includes a
non-stationary temperature effect, suggesting temperature
contributes to out-of-sample forecast skill.

DISCUSSION

Our objective was to develop and test environmentally driven
seasonal forecasts of hake distribution to support management
and survey planning decisions. The forecast models we tested
showed appreciable out-of-sample forecast skill at 8-month time
horizons. In addition, we found that: (1) the J-SCOPE model
had considerable predictive skill of subsurface temperatures
throughout the study domain, (2) distance to the 200 m shelf
break was a strong predictor of historical hake occurrence
and temperature at depth had a spatially varying effect
on the probability of occurrence; and (3) the BRT model
had moderately higher forecast skill than the GAMs and
a multi-model ensemble forecast had slightly better out-of-
sample forecast skill compared to the individual GAM and
BRT models. Together, our results suggest that comparatively
simple models can forecast hake distribution using seasonal
projections of subsurface ocean temperature and distance to the
200 m shelf break.
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Most of the forecast skill was derived from the 200 m shelf-
break covariate. The strong affinity for hake occurrences to be
concentrated in areas just-offshore of the 200 m shelf break
is consistent with several previous studies that have shown
areas near the 200 m isobath and areas with steeply sloping
bathymetry provide good hake habitat (Dorn, 1995; Mackas
et al., 1997; Swartzman, 1997, 2001). One possible explanation
for this is that food availability may be high in these areas. In
particular, euphausiids — an important prey item for hake -
tend to concentrate in areas of steeply sloping bathymetry and
submarine canyons (Buckley and Livingston, 1997; Mackas et al.,
1997; Santora et al., 2018). In addition, areas just offshore of the
200 m isobath may also provide good physical ocean conditions.
For instance, the California Undercurrent is strongest offshore of
the 200 m isobath; the northward flowing undercurrent may act
as a migration corridor for hake that could facilitate northward
migration of Pacific hake and aggregate prey resources (Bakun,
1996; Agostini et al., 2006).

Our results indicated a moderate subsurface temperature
effect on hake occurrence. The best GAMs included a
spatially variable temperature effect and the BRT indicated the
temperature term accounted for ~17% of the variability in the
response. This result broadly agrees with several previous papers
that have shown associations between hake and temperature at
depth (Ressler et al., 2007; Hamel et al., 2015; Malick et al.,
2020). Temperature most likely acts as a proxy for other processes
that have a more direct impact on hake distribution because the

temperature ranges analyzed here are comparable to previously
observed in situ temperature preferences of hake (Bailey et al.,
1982; Ressler et al., 2007). Although using variables that have
a more direct impact on hake habitat preferences (e.g., food
availability) may provide better forecasts, skillful forecast of
lower-trophic-level processes relevant for hake (e.g., euphausiid
distribution) are currently not available. In contrast, temperature
provides an ecologically relevant variable for which there is
forecast skill at the lead-times important for decision makers
(Kaplan et al., 2016; Siedlecki et al., 2016; Jacox et al., 2017).

The nine forecasting models evaluated here (five individual
models + four ensemble models) performed similarly across
years when forecasting out-of-sample hake distribution, e.g.,
most forecasts for 2011 and 2017 had relatively low skill,
whereas forecasts for 2009 and 2012 had relatively high skill
(Supplementary Figures S4, S5). Two factors likely contributed
to lower forecast skill in some years. First, gaps in the
latitudinal distribution of hake reduced skill, which occurred
in 2011 when hake stock size was lower and few were present
off the west coast of Vancouver Island. Second, variability
in the cross-shelf distribution also appears to reduce skill;
in 2017, hake occurrences were concentrated just inshore
of the 200 m isobath, but just offshore in all other years
(Figure 1 and Supplementary Figure S6). This suggests that
the consistency in which hake are present just offshore of
the 200 m isobath across the latitudinal range of the study
area drives differences in forecast skill among years. A priority
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for future research would be to examine additional covariates
to better capture inter-annual deviations in distribution from
the shelf-break, e.g., the California Undercurrent or subsurface
oxygen concentrations.

Combining multiple forecasts into an ensemble forecast has
been widely shown to produce increased forecast precision
compared to individual model forecasts, given that the individual

forecasts provide some independent information (Bates and
Granger, 1969; Clemen, 1989; Abrahms et al., 2019). We found
that the ensemble hake forecasts had only slightly better out-of-
sample skill compared to the individual model forecasts (Table 2).
The weak increase in predictive performance for the ensemble
models compared to the individual GAM and BRT models is
likely due to high correlations among model prediction errors.
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Multi-model ensemble models tend to outperform individual
model predictions when weakly or negatively correlated model
predictions are combined due to cancelation of random errors
(Clemen, 1989). In this study, however, the individual model
forecast error (i.e., observed hake occurrence - forecasted
probability of occurrence), were strongly correlated, e.g., the
average pairwise correlation of forecast errors from the GAMs
and BRT was 0.91 (Supplementary Figure S7). This indicates
that the individual forecast models produce similar forecast
errors, which reduces the effectiveness of multi-model averaging
(Araujo and New, 2007).

The results presented here provide a critical first step in
developing an early warning of hake distributional shifts. Yet,
we believe future work on three areas could further improve
the usefulness of hake forecasts for management and survey

planning. First, extending the northern range of this work to
include waters through SE Alaska could help inform survey
planning by providing additional information on the projected
northern extent of Pacific hake, which is a critical uncertainty
during survey planning. Second, developing a forecast of hake
density could improve how the forecasts inform management
decisions by helping to reduce uncertainties regarding the
proportion of the population expected to migrate into Canadian
waters. Third, if the spatial extent of the study area is extended
northward beyond 50°N, the maximum latitudinal domain of
this study, accounting for impacts of age-structure on Pacific
hake distribution may be important. Exploratory analysis did not
identify strong age-based differences in Pacific hake occurrences
within the current spatial extent; however, evidence suggests that
older and larger hake tend to migrate further north than smaller
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hake with few age-2 hake observed north of Vancouver Island
(Ressler et al., 2007; Malick et al., 2020).

Collectively, our results provide evidence that hake
distribution can be skillfully forecast at lead-times of 8-months in
the northern CCE. Our results also illustrate the broader utility
of using seasonal lead-time ocean predictions in an ecological
context to provide early warnings of distribution shifts of
ecologically and economically important marine species. Marine
ecosystems are changing rapidly and experiencing extreme
events more frequently. Thus, skillful ecological forecasts provide
new tools to inform the management process by reducing
uncertainties regarding future states of nature that management
decisions are often dependent upon (Dietze et al., 2018).
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Seasonal-to-Interannual Prediction
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Extreme sea level rise seriously impacts habitation and is indicative of changes in
primary production in the North Pacific. Because of its rising trend associated with global
warming, skillful seasonal-to-interannual predictions have become increasingly valuable
to guide the introduction of suitable adaptation measures that help us reduce the risks
of socioeconomic losses. Here, we have used a dynamical coupled ocean—-atmosphere
model called “SINTEX-F” to revisit the potential predictability of sea level anomalies at
a lead of up to about 2 years. Skillful prediction is found mainly in the tropical Pacific
as shown in previous work. Here, we found a new skillful prediction region in the North
Pacific (30°-40°N, 180°-150°W) at about 2 years’ lead time. We also analyzed the co-
variability among ensemble members and found the long-lasting ENSO/ENSO-Modoki
in the tropical Pacific seems to contribute to the predictability source. The result may
be useful to develop systematic and synergistic attempts to predict marine ecosystem
responses to regional and global climate variations.

Keywords: seasonal-interannual prediction, sea level, climate model, dynamical system, skill nent

INTRODUCTION

The North Pacific marine ecosystems are primary sources of ecosystem services (e.g., fishing,
shipping, and recreation) for its surrounding countries including Canada, U.S., China, Russia,
Korea, and Japan. Coastlines of the North Pacific are seriously damaged by extreme sea
level rise (Nicholls et al., 2007). In particular, the coastal zones are immediately affected by
submergence and increased flooding of coastal land, as well as saltwater intrusion of surface waters
(Nicholls and Cazenave, 2010).

In addition to the rising sea level trend associated with the global warming, extreme sea level
events occur in association with natural climate variability such as the Pacific Decadal Oscillation
(PDO), the Interdecadal Pacific Oscillation (IPO), the North Pacific Gyre Oscillation (NPGO), and
the El Nino-Southern Oscillation (ENSO) in the North Pacific (Mantua et al., 1997; Zhang et al,,
1997; McGowan et al., 1998; Lombard et al., 2005; Di Lorenzo et al., 2008; Hamlington et al,,
2019; Han et al., 2019). To address relatively short-term risks, stakeholders desire a forecast of
monthly/seasonal rising or falling sea levels caused by those climate variabilities. Hinkel et al. (2019)
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analyzed user needs for sea level rise information, and how
they are able to be met given the state-of-the-art of sea
level forecast science. Jacox et al. (2020) reviewed statistical
and dynamical marine ecosystem forecasting methods and
highlighted examples of their application along U.S. coastlines
for seasonal-to-interannual prediction. Payne et al. (2017) also
reviewed the state of the art marine ecological forecasts and
suggested forecasts ranging from seasonal to decadal time scales
are now a reality. Tommasi et al. (2017a) evaluated the multi-
annual SST predictions over Large Marine Ecosystems (LMEs),
a coastal scale relevant to managed fisheries stocks. Tommasi
et al. (2017b) also highlighted advances in seasonal to decadal
prediction of managing living marine resources in a dynamic
environment. Those previous studies provide information
relevant for supporting coastal adaptation decision making.

Although skillful predictions of SST have already proven
useful for a number of marine resource applications (e.g.,
Hobday et al., 2014; Stock et al, 2015), further studies
about sea level anomaly are necessary. Rebert et al. (1985)
showed that the oceanic Kelvin and Rossby waves have a
direct relation between thermocline depth and sea level, while
they have only an indirect relation to SST. These ocean
dynamics are responsible for the relatively high skill of sea
level prediction relative to SST prediction (Miles et al., 2014).
Zainuddin et al. (2017) found that SST was an important
variable for detecting hotspots of skipjack tuna distribution,
as they are sensitive to the changes in temperature. Sea
level anomaly is related to the changes in the depth of the
thermocline and mesoscale variability. They combined these
variables to improve detection of potential pelagic hotspots
for skipjack tuna.

To expand prediction of large-scale sea level anomalies into
coastal areas and to further the understanding of its potential
predictability, it is necessary to evaluate the lead-time and
locations in which a dynamical, physics-based prediction system
performs well. It might allow coastal communities to better
adapt for the impacts of severe flooding and erosion driven by
high sea levels.

Although decadal climate variation is more predictable than
previously thought, it is still challenging (Meehl et al.,, 2014;
Smith et al., 2019). Here, our focus is on seasonal-to-interannual
prediction. Generally speaking, the most important potential
source of seasonal-to-interannual predictability is often from
ENSO events, which develop via air-sea coupled feedback.
Therefore, application of an ocean-atmosphere coupled general
circulation model (GCM) is naturally a proven approach to
overcome shortcomings of stand-alone atmospheric/oceanic
models. Miles et al. (2014) initially attempted to apply a coupled
GCM to predict seasonal sea level anomalies, and assessed the
skill globally for up to 7 months in advance. McIntosh et al. (2015)
showed the prediction skill by dynamical GCMs is better relative
to statistical approaches for coastal sea level. Polkova et al. (2015)
used the decadal prediction system and found predictability in
the subtropics. Roberts et al. (2016) assessed the predictability
of large-scale dynamic sea level anomalies up to 15 months
using a climate model and found that prediction of seasonal-
to-interannual sea level variability in the extratropics will be

governed by the predictability of surface wind stress and modes
of atmospheric variability.

This study is a follow-up study of those pioneering
studies. Here, we have revisited the predictability of sea
level up to about 2 years in advance by analyzing results
of a coupled ocean-atmosphere general circulation model
“SINTEX-E.” Such a long lead time retrospective forecast
is beyond most current operational capabilities, and hence
a skill assessment of the model results is conducted here
as a first attempt. We believe that the obtained result is
useful to attempt systematic and synergistic prediction
of marine ecosystem responses to regional and global
climate variations.

MATERIALS AND METHODS

Dynamical Prediction System

The Scale Interaction Experiment-Frontier ver. 1 (SINTEX-FI)
prediction system was used here, which is based on a fully
coupled global ocean-atmosphere circulation model (CGCM)
developed under the EU-Japan collaborative framework (Luo
etal., 2003; Luo et al., 2005; Masson et al., 2005). The atmospheric
component has a horizontal resolution of 1.125° (T106) with
19 vertical levels. The oceanic component has a horizontal
resolution of about 2° x 2° but with meridional refinement to
0.58° in the tropics. It has 31 vertical levels from the surface to
the bottom with a relatively finer resolution of 10 m from the sea
surface to 110 m depth. This system adopts a relatively simple
initialization scheme based only on the nudging of observed
SST. In consideration of uncertainties of both initial conditions
and model physics, it has nine ensemble members. More details
about the prediction system are available in Luo et al. (2005).
This system has demonstrated high performance for prediction
of ENSO (Jin et al., 2008). In particular, Luo et al. (2008) showed
that several ENSO events can be predicted at lead times of up to
2 years by this system, which can be a strong advantage in this
study. The quasi real-time predictions are updated every month
and made publicly available from 2005 (see http://www.jamstec.
go.jp/aplinfo/sintexf/e/seasonal/outlook.html).

We have analyzed the reforecasting experiments for the 1993-
2018 period issued on the first day of March, June, September, and
December with about 2-year lead time. The prediction anomalies
were determined by removing the model mean climatology at
each lead-time over the same period. To evaluate the prediction
results, we have used the multi-mission altimeter satellite
gridded sea surface heights (SEALEVEL_GLO_PHY_L4 REP_
OBSERVATIONS_008_047; available from http://marine.cop
ernicus.eu/services-portfolio/access-to-products/?option=com_
csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_RE
P_OBSERVATIONS_008_047) for sea level, the NOAA OISSTv2
(Reynolds et al., 2002) for SST, and the NCEP/NCAR reanalysis
data (Kalnay et al., 1996) for atmospheric variables anomalies.
The monthly climatologies of these datasets are also calculated
by averaging monthly data over the same period, and then
anomalies are derived through deviations from those mean
climatologies. All anomalies are linearly detrended, which can
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FIGURE 1 | (A) The correlation coefficient for seasonal-to-interannual prediction for sea level anomalies (ensemble mean) from the 0-2 months lead average up to
the 21-23 months lead average issued on March 1, 1993-2018. Black dots indicate regions where the correlation is below the persistence (lag autocorrelation of
observation). Considering that the degree of freedom based on the sample size, the correlation beyond 0.3 is statistically significant at a 90% level. So, the
correlation greater than 0.3 is masked out. (B-D) Same as (A), but for the prediction issued on June 1, September 1, and December 1. The target area in the North
Pacific (30°-40°N, 180°-150°W) is shown by a red box in MAM2 prediction issued on June 1.
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FIGURE 2 | Time series of sea level anomaly averaged over 30°-40°N, 180°-150°W during March-April-May (cm). Gray column: observation, Red cross: ensemble
mean prediction issued on June 1, 2-year before (21-23 months lead average), orange dot: each ensemble member prediction, black line: observation after
removing 5-years running mean, red line: ensemble mean prediction after removing 5-years running mean.

prevent long time scale changes from artificially increasing
correlation analysis.

RESULTS

Skill Assessment up to 2-Year Lead

The correlation coefficient (Pearson’s “r”) between two time series
of observed and predicted anomalies for each grid points is used
as a deterministic prediction skill score of the phase variation.
The persistence method is the simplest way of producing a
forecast; it assumes that the conditions will not change. The
persistence method works well when anomalies vary very slowly.
Therefore, the correlation of the persistence is generally used
to assess the advantage of prediction models. Skillful prediction
of sea level is found mainly in the tropical Pacific (Figure 1).

It drops outside of the oceanic Kelvin, Rossby, and coastally
trapped waveguides in the tropical Pacific region. The correlation
often exceeds the skill of persistence and 0.6 in many regions
within 20° of the equator at the first season (0-2 months lead).
The correlation decreases at longer lead times but generally
remaining above 0.5 in the waveguides up to 11 months lead
times. The advantage of the SINTEX-F prediction relative to
the persistence increases at longer lead times. This suggests that
the skill is mainly derived from the ability to predict ENSO
accurately as expected from the previous works (Miles et al.,
2014). It is also found skillful prediction regions off the west coast
of Australia and California, which may be related to the successful
predictions of the Ningaloo Nifio/Nifa (Doi et al., 2013, 2015a)
and the California Nifio/Nifa (Doi et al., 2015b); some of those
events are strongly linked with coastally trapped ocean waves
forced by ENSO events.
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FIGURE 3 | (A) Inter-ensemble member correlation between sea level anomaly averaged in 30°-40°N, 180°-150°W (shown by a box) and a horizontal distribution of
SST anomaly in a nine-member ensemble reforecast for the 21-23 months lead average issued on June 1. (B) Same as (A), but for regional wind-induced Ekman
downwelling. (C) Same as (A), but for surface heat flux. (D-F) Same as (A-C), but for correlation using the ensemble mean prediction. The color scale is different
from that in (A-C) because the sample size is different (198 and 22). Considering the degree of freedom based on the sample size, the correlation below 0.25 (0.40)
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We can also find the seasonal dependence of the correlation,
likely because of the so-called spring predictability barrier in
forecasting the development of ENSO (e.g., Latif et al., 1998).
Prediction of sea level anomalies in the 3-5 months lead average
issued on March 1 shows low correlation in many regions
relative to that issued on other seasons. Also, we see a quick
decrease in the correlation from prediction of the December-
January-February (DJF) average into that of the March-April-
May (MAM) average.

At the extratropical latitudes in 20°-30°N, the skill still
remains in some regions in the North Pacific up to about 2-year
lead. This is likely due to the slowly propagating Rossby wave
features and some stationary anomalies. In the extratropics of
the North Pacific, which is often defined the latitude bands of
30°-60°N, interestingly, we found the predictability of a region
in the North Pacific (30°-40°N, 180°-150°W) to be skillful up
to 2 years ahead. This is not yet discussed by the previous work.
Figure 2 shows its time series for the MAM seasonal average.
The time series at first glance shows the presence of a decadal
variability. The correlation of the 2-year lead prediction is 0.67
for 26 samples (1993-2018 years). After removing the 5-years
running mean, it is 0.65 for 22 samples (1995-2016 years). The
spread of the ensemble of prediction provides information about
the uncertainty inherent. The large uncertainty suggests low
potential predictability of sea level anomalies here. Interestingly,
however, the sea level anomaly in 2000 exhibits relatively high
predictability. We will discuss the details later.

How about the other oceans? We can find some skillful
prediction regions in the southern Indian Ocean beyond 1-year
lead (Figure 1). This may be related to the successful prediction
of the Subtropical Indian Ocean Dipole (Beherea and Yamagata,
2001; Yuan et al., 2014). In the Atlantic, prediction beyond 1-year
lead is relatively challenging. For example, the pattern associated

with the North Atlantic Oscillation, which is the dominant
climate mode in the Atlantic Ocean, is not represented well by
the model. We need further analysis to understand similarities
and differences among the ocean basins.

Inter-Ensemble Members Relationship

Why is the skillful prediction found about 2-year lead in a region
in the North Pacific (30°-40°N, 180°-150°W)? Investigating
co-variability of inter-member anomalies (defined as deviations
from the ensemble mean) may provide useful insights into
possible precursors and teleconnection patterns related to a
climate event considering the intrinsic variability (Ma et al., 2017;
Ogata et al, 2019; Doi et al., 2020a,b). Figure 3A shows the
correlation coeflicients among the inter-ensemble members of
the reforecast for the March-May average of 1995-2016 (198
sample: 9 members times 22 years after removing 5-years running
mean) at 2-year lead. In this analysis, the conventional time
dimension could be enlarged by the ensemble dimension. The co-
variability between the sea level anomaly in that region and the
tropical Pacific condition shows a pattern resembling a mixture
of the Modoki-type and the canonical-type of ENSO (Ashok
et al., 2007; Karnauskas, 2013). Also, a similar co-variability
is seen between the sea level and local wind-induced Ekman
downwelling in that region (Figure 3B). Since the similar features
are able to be captured by liner regression analysis to ENSO
(Vimont, 2005; Zhang and Church, 2012; Han et al, 2019),
the successful prediction of ENSO and/or ENSO-Modoki in the
tropical Pacific may be related to the success in predicting sea
level anomaly in that region at about 2-year lead. Note that
a corresponding co-variability with the surface heat flux was
not found in that region (Figure 3C). This may suggest that
the dynamic process is more important in that region than the
thermodynamic process.
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FIGURE 4 | (A) Three-month averaged variations of sea level anomaly (cm) from June—August 1998 (upper) through March-May 2000 (bottom). The box shows the
study region of 30°-40°N, 180°-150°W based on observation. (B) Same as (A), but for prediction issued on June 1, 1998 (ensemble mean). Pattern correlation is
shown in the upper right corner. (C,D) Same as (A,B), but for SST (°C).
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We see a similar relation with SST anomalies when an
ensemble mean of the prediction was considered (Figure 3D),
which shows the horizontal map of the correlation coefficients
between the ensemble mean of the sea level anomalies averaged
in the box and the ensemble mean of the SST fields (22 sample:
22 years of the reforecast). However, the correlation with local
wind-induced Ekman downwelling does not show a clear relation
(Figure 3E). Since the signal-to-noise ratio is relatively low in
the mid-latitude atmosphere (Scaife and Smith, 2018), the sample
size of 22 may not be enough to capture the signal reasonably in
the ensemble mean.

Case Study for the 2000 Event

The successful prediction of the high sea level in 2000 (Figure 2)
demonstrates the model’s high skill to predict such events. As in
the observations, the sea level anomaly developed from boreal
summer of 1998 and reached about 7 cm during March-May
2000. The prediction issued on June 1, 1998, captured the
subsequent development in the tropical Pacific and the target
region (30°-40°N, 180°W-150°W), albeit a bit weaker than in
observations (Figures 4A,B). This is supported by the pattern
correlations shown in the upper right corner of each panel of
Figure 4B, which are calculated after interpolating the horizontal
distributions of the observational data to those of the prediction
output. At 3-5 months lead, the pattern correlation for the
sea level prediction is 0.70. At this time, a La Nifa Modoki
was observed (Figures 4C,D) in the tropical Pacific. Then,
the pattern correlation reduced at longer lead time, however
it is still 0.47 at 21-23 months lead time. Local processes

seem to contribute to the variability in 30°-40°N, 180°-150°W
relative to remote processes such as a propagation of Rossby
waves. Dynamic process associated with the local wind-driven
Ekman downwelling may be responsible for that (Figures 5A,C),
while the heat flux anomaly acted as the damping of the anomaly
in the reanalysis (Figure 5B) and showed very weak values in
the model (Figure 5D). Those features are consistent with the
results shown by the previous subsection. We note that the
signal in the Kuroshio Extension region was not represented
well in this prediction system. Nonaka et al. (2016) revealed that
stochastic variability in that region limits deterministic potential
predictability of its interannual variability through three-member
ensemble simulations with an eddy-resolving ocean model. Even
if the spatial resolution of the SINTEX-F is enhanced, it might be
intrinsically difficult to improve the prediction skill in that region.

DISCUSSION

Sea level anomalies in the region of (30°-40°N, 180°-150°W)
may be related to the PDO. The PDO is now interpreted as
an empirical mode, which includes teleconnection from ENSO
and stochastic atmospheric/oceanic fluctuations (Schneider and
Cornuelle, 2005, Newman et al, 2016). Decadal or longer
timescale signals appear also to be important for the 2000 event.
About 50% of the sea level anomaly averaged over 30°-40°N,
180°-150°W during March-April-May 2000 is due to the decadal
signal in the prediction (Figure 2). Actually, 2000 is an extreme
year for decadal variations in the IPO index and also basin-wide
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sea level in the Pacific (see Figure 3 in Lyu et al., 2017), which
is closely related to the ENSO-like low-frequency variability.
Although low-frequency sea level variations with periods longer
than interannual time scales are interesting, it might be difficult to
clearly separate the interannual variations from the decadal and
longer timescale variations mainly due to limitation of the sample
size and the lead time of the reforecast experiments. Although the
focus of this study is on seasonal-to-interannual scale prediction,
in the future, we may need to develop skillful seamless prediction
abilities from seasonal-to-decadal (S2D) timescale.

Tropical and North Pacific processes are interlinked, which
means that the North Pacific processes might also contribute
to ENSO predictability (e.g., Ogata et al., 2019). The build-up
of subsurface ocean heat content in the tropical western Pacific
as well as the northeastern subtropical Pacific is identified as
ENSO precursors (Capotondi et al., 2015; Yu and Paek, 2015).
Chikamoto et al. (2015) also showed that the low-frequency
trans-basin tropical climate variations between the Pacific and
the other two adjacent ocean basins can be predicted up to
3 years ahead. Further studies are necessary to estimate the
role of the inter-basin coupling on multi-year predictability
of the tropical and North Pacific using partial assimilation
reforecast experiments.

Since our results are based on a single-model system, we need
to check them by a multi-model ensemble system (e.g., Kirtman
et al.,, 2014; Tompkins et al., 2017; Widlansky et al., 2017).

A noble path to systematic and synergistic prediction of
marine ecosystem variations may be to develop an earth
system model, to incorporate biogeochemical processes into a
climate model to represent the interacting physical, chemical,
and biological processes. It can provide outlooks for marine-
resource-relevant changes beyond physical variables. Along this
line, Park et al. (2019) showed that an earth system model can
skillfully predict seasonal to multiannual chlorophyll fluctuations
in many regions.

Although predictability of open-ocean anomalies was
the focus in this study, its connection to coastal sea
level is also important. However, it is still challenging
to resolve the complicated topography near the coastal
regions for the resolution wused in current climate
models. Therefore, downscaling techniques are helpful to
capture the open-ocean and coastal region connections
(e.g, Jacox et al, 2020) in a manner similar to
successful examples for atmospheric downscaling (e.g.,
Ratnam et al., 2016, 2017).

Enhancement of the relatively coarse ocean model grid
will help to resolve more accurately some islands and narrow
upwelling regions. Higher resolution in the atmospheric model
may also help to improve winds that are an important component
of the ENSO teleconnection. In addition, the accuracy should
be improved by better initial conditions by explicit use of
altimeter data and in situ subsurface ocean temperature and
salinity observation from the expendable bathythermographs
(XBTs), mooring buoys, sea stations, Argo floats, etc. Increasing
the ensemble size may be beneficial for improving prediction
of the extratropics, where the signal-to-noise ratio is relatively
low. Actually, we have been developing the new version of

the SINTEX-F prediction system called as SINTEX-F2 based
on a high-resolution model by updating the initialization
scheme and increasing the ensemble size (Doi et al., 2016,
2017, 2019, 2020a; Morioka et al., 2019). However, because the
computational cost is expensive, the SINTEX-F2 mainly targets
for prediction up to 11-month lead time at this stage. We are now
extending the lead time up to 23 months because its benefit was
shown in this paper.

CONCLUSION

We assessed the prediction skill of sea level anomaly up to
23 months in advance by the SINTEX-F system and found
a skillful prediction region in the North Pacific (30-40 N,
180-150 W) at about 2-year lead. The successful prediction
of the long-lasting ENSO/ENSO-Modoki in the tropical Pacific
seems to contribute to that sea level predictability. The
result may be useful to attempt systematic and synergistic
prediction of marine ecosystem responses to regional and global
climate variations.
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Administration, La Jolla, CA, United States

Identifying spatially shared dynamics is a key component of community ecology studies
as they provide evidence of common responses to environmental factors. We apply
co-prediction, an empirical dynamic modeling method (EDM), where values in one
time series are predicted from another to quantify shared dynamics in the California
Cooperative Fishery Oceanographic Investigation (CalCOFI) dataset composed of
spatially explicit physical and biological measurements. Co-prediction can arise in the
absence of correlation between two time series. The survey dates to 1951 and consists
of a semi-regular, fixed-station design off the west coast of the USA. While the California
Current is a dynamic system with multiple identified regimes, we found evidence of
coherence measured in terms of spatially shared dynamics in salinity, temperature,
Shannon index of ichthyoplankton abundance, and single-species ichthyoplankton
abundance throughout the CalCOFI survey area. Leave-one-out hindcast skill, without
including any knowledge of shared dynamics was significant in 27 stations for salinity
data, 36 for temperature data, and 33 for Shannon index (out of 81 total stations).
We then evaluated hindcast skill when including shared dynamics via composite
libraries, in which correlated or co-predicted time series are concatenated to produce
denser attractors. The number of correlated stations was generally higher than the
number of co-predicted stations, but hindcast skill from composite libraries of correlated
stations did not increase hindcast skill. Composite libraries of co-predicted stations had
significant leave-one-out hindcast skill in 60 stations for salinity data, 60 for temperature,
and 72 for Shannon index. Additionally, we found evidence of nonlinear relationships, as
nonlinear hindcasts accounted for nearly all of these significant stations. While there
were high levels of correlation among stations, co-prediction proved a more robust
method of identifying shared dynamics. Shared dynamics were largely concentrated
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south of Point Conception, considered an oceanographic and biological breakpoint,
although in some cases shared dynamics spanned this boundary. Taken together, we
apply EDM to present the first, to our knowledge, evaluation of station-specific hindcast
skill and provide a view of the realized spatial structure occurring in the physical and
biological dynamics of the California Current system.
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INTRODUCTION

One main objective of ecology is to understand how the
environment influences biological organisms from individual
to ecosphere scales, and identification of shared dynamics
or synchrony across space and time is a valuable tool for
achieving this goal (Hsich et al., 2005). For example, marine
fish populations shift distributions in response to ocean warming
(Pinsky et al., 2013), and this kind of knowledge is necessary
to inform resilient fisheries management (Wilson et al., 2018)
or ecosystem-based fisheries management (Pikitch et al., 2004).
Application of modern statistical analyses have the capacity
to further understanding of synchronous dynamics and holds
the potential to improve forecasting (Sugihara et al, 2012).
Augmenting forecasting skill is paramount to effective marine
management and is particularly important in times of rapid
environmental change (Jacox et al., 2020).

The abundance of species can fluctuate in response to
combinations of abiotic and biotic factors, and these dynamics
can be shared across species-specific populations in space and
time. Ecological studies have focused on identifying patterns
of synchrony, defined to be shared fluctuations between time
series of population abundance. Synchrony exists for species
across a spectrum of sizes ranging from protists (Holyoak and
Lawler, 1996), insects (Williams and Liebhold, 2000; Tobin and
Bjornstad, 2003), fish (Myers et al., 1995, 1997; Fromentin et al.,
2000), and birds (Bellamy et al., 2003). In terrestrial and marine
systems, synchrony between two populations decreases as a
function of distance (Ranta et al., 1995; Sutcliffe et al., 1996;
Bjornstad et al., 1999), and estimation of this decay is a key
component of spatiotemporal models (Cressie and Wikle, 2015;
Thorson et al., 2015).

Synchrony can be quantified with parametric statistical
methods (Gouhier and Guichard, 2014), and the specific
definition of synchrony can depend on methodology (Liebhold
et al., 2004). For the most part, parametric methods involve
computing some metric (e.g., correlation, variance, or
semivariance) between two time series (Bjornstad et al,
1999; Koenig, 1999). Spatial synchrony is measured by relating
the calculated metric to the geographic distances between survey
sites. Analysis of residual correlation is one approach of relating
synchrony to environmental changes (Buonaccorsi et al., 2001).
Analysts will fit a model to the data, e.g., autoregressive models
or linear models, then quantify correlations between residuals.
Correlated residuals suggest that both time series experienced
a common response to an external (e.g., environmental)
factor (Buonaccorsi et al, 2001). The challenge with this

approach is that correlated residuals may be the result of model
misspecification, which is difficult to identify.

Empirical dynamic modeling (EDM) is a non-parametric
analytic method that may be an alternative method to
quantify shared dynamics without requiring assumptions of
independence or statistical distributions. Broadly, the EDM
approach focuses on identifying the factors that govern
dynamics in natural systems. Takens theorem of time-delay
embedding, a key component of EDM, demonstrates that lags
of a single time series can reconstruct the dynamics of the
unobservable system (Takens, 1981). This approach primarily
distinguishes between observational noise and chaotic dynamics,
but has proven applicable to ecological systems. Prediction with
EDM outperforms parametric predictions in simulated chaotic
ecological systems (Perretti et al., 2013a,b; Munch et al., 2017),
and improves forecast skill in salmon runs (Ye et al.,, 2015) and
fish recruitment (Munch et al., 2018). The methods also identify
causal relationships between sardine landings and sea surface
temperature (Deyle et al., 2013).

Time series can be synchronous even when not fluctuating in
unison, and EDM can identify shared dynamics in the absence
of traditional correlation (Sugihara et al., 2012). Co-prediction
is a method of identifying time series driven by the same forces
in ways that are not readily apparent. Technically, co-prediction
involves predicting values of one time series from another time
series. If predictions are significant (see methods for significance
criteria), the time series are assumed to have dynamic similarity.
Applications of co-prediction can identify interspecific dynamics
(Liu et al., 2012) and relationships between fish populations and
environmental covariates (Liu et al., 2014).

In addition to identifying synchrony, correlation and co-
prediction can inform forecasting through composite libraries.
Composite libraries are a means of using spatial replicates of
comparatively short time series to understand system dynamics
(Hsieh et al., 2008), but potentially have the same benefits for
longer time series. Composite libraries are composed of multiple
time series concatenated together. Individual time series that
contain as few as five observations can form composite libraries
that detect causal relationships in simulated data with both
observation and process error (Clark et al., 2015). In an in vivo
ecological setting, composite libraries can identify the shared
dynamics of albacore (Thunnus alalunga) across the North
Pacific Ocean (Glaser et al., 2014). Composite libraries may be a
powerful approach to improve both hindcasting and forecasting
in the California Current ecosystem.

The California Cooperative Oceanographic Fisheries
Investigation (CalCOFI) program is among the longest-running
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oceanographic surveys in the world (Gallo et al., 2019). The
survey has a fixed station design that has at times collected
physical oceanographic (e.g., temperature, salinity) and plankton
(e.g., zooplankton, ichthyoplankton) samples from southern
Baja California, Mexico to Vancouver Island, Canada. However,
the most comprehensive temporal coverage ranges from the
US-Mexico border to the San Francisco Bay area extending from
the nearshore to roughly 500 km offshore (Gallo et al.,, 2019).
Although the original intent of CalCOFI was to better elucidate
the factors causing the collapse of the Pacific sardine population
in the 1940s (Hewitt, 1988), data from the survey now extend
beyond fisheries applications and serve as an indicator of overall
ecosystem status (Sugihara et al.,, 2011; Thompson et al., 2018;
Harvey et al., 2019). As climate change continues to impact ocean
dynamics, CalCOFI is poised to contextualize changes in the
California Current Ecosystem (CCE) and help predict changes in
fish and zooplankton communities.

The CCE is highly dynamic and characterized by interannual
and interdecadal variability (Rykaczewski and Checkley, 2008;
Thompson et al.,, 2018). Distinct water masses mix in the CCE
(Bograd et al.,, 2015), and each body of water is associated with
a particular biological community (McClatchie et al., 2018). As a
result, fish assemblages fluctuate interannually (McClatchie et al.,
2018). The CCE is also subject to larger scale climatic forcing
(Thompson et al., 2019). For example, there was a rather abrupt
shift from relatively cold to warm conditions in 1976 that induced
long-lasting increases in warm water associated fishes in southern
California (Peabody et al., 2018). Given the complicated and
dynamic nature of physical and biological properties of the CCE,
EDM may be a tool to better understand shared dynamics and
augment forecasting across the system.

Here, we leverage the rich spatial and temporal resolution of
CalCOFI to identify shared dynamics and measure the ability of
these similarities to improve hindcast (as a proxy for forecast)
prediction skill. We focus on physical (salinity and temperature)
and biological time series (species-specific ichthyoplantkon and
Shannon index of ichthyoplankton diversity). The goals of this
study are both methodological and empirical.

The first methodological goal is to quantify the degree of
correlation and co-prediction to identify shared dynamics of
physical and biological data among sample stations. The second
methodological goal is test whether composite libraries made
up of co-predicted time series (significantly predict one time
series from another) improve hindcast skill in comparison with
composite libraries of correlated sites. Our attempts to improve
hindcast skill can serve as a template to conduct forecasts in the
future. We hypothesize that there is synchrony in the CalCOFI
data and that co-prediction will be a more robust method of
identifying shared dynamics than correlation. That is, composite
libraries of co-predicted stations will have higher hindcast skill
than composite libraries of correlated stations. Notably, we
explore synchrony and hindcasting within each variable (e.g., can
temperature at station X be predicted by temperature at station
Y) but do not search for patterns between variables (e.g., we do
not test if temperature can predict fish abundance or diversity).

The ecological goal is to evaluate the extent of shared dynamics
within physical and biological time series. We hypothesize that

shared dynamics in the physical and biological time series will
be mostly localized either north or south of Point Conception,
a known biogeographic and oceanographic breakpoint (Hubbs,
1948). Knowledge of both shared dynamics and the spatial scale
of dynamics may have important implications for survey design.
Depending on the strength of shared dynamics, it may be possible
to identify relatively redundant sampling locations to optimize
sampling effort.

MATERIALS AND METHODS

Data Preparation

CalCOFI currently collects physical and biological data from
each of 104 stations in winter and spring between the
United States/Mexico border and San Francisco and 75 stations
from the United States/Mexico border to approximately San Luis
Obispo in summer and fall (Figure 1). Because some stations
are sampled more regularly than others, we culled the analysis
to include 81 stations (Figure 1), with observations spanning
from 1951 to 2017. We used observations from winter and
spring surveys as the temporal and spatial coverage was highest.
CalCOFI shifted from annual to mostly triennial sampling from
1971 to 1983, resulting in no seasonal surveys in some years.
Although CalCOFI strives to collect from exactly the same
location for a given station, in reality the precise location can vary
somewhat from cruise to cruise. Hence, for a particular station,
we average observations (see below) within 5 km of a cardinal
station location.

CalCOFI samples a myriad of physical factors throughout the
water column with a conductivity temperature depth instrument
(McClatchie, 2014; Gallo et al, 2019). We focus here on
temperature and salinity because these variables are known to
impact the distribution and abundance of many marine species
(Thompson et al., 2014, 2017). For each station, we calculate
mean temperature and salinity between the surface and 100
m and average these means across winter and spring cruises
for each station.

The main, long-running CalCOFI biological observations are
collected with plankton nets. We focus on ichthyoplankton
collected with bongo nets lowered to 210 m (or within 10 m
of the bottom at shallow stations) and towed to the surface
at a constant speed and at a 45° angle (McClatchie, 2014).
Quantifying the abundance of larval fishes is a comprehensive
method for assessing the dynamics of most fishes in an ecosystem
because although adults occupy different habitats, larval fishes
from most species reside in the upper 200 m of the water
column and can thus be sampled simultaneously. Several studies
demonstrate that ichthyoplankton abundance correlates with the
spawning stock biomass of fishes (Moser and Watson, 1990;
Moser et al., 2001; Ralston et al., 2003; Ralston and MacFarlane,
2010). CalCO¥FI plankton samples are preserved at sea in a tris-
buffered 5% formalin solution. Ichthyoplankton are identified
in a laboratory based on morphology (Moser, 1996). CalCOFI
provides time series for hundreds of fishes. Raw larval counts
are multiplied by a standard haul factor that accounts for
differences in water filtered and divided by the percent of the

Frontiers in Marine Science | www.frontiersin.org

117

October 2020 | Volume 7 | Article 557940


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Kuriyama et al. Shared Spatial Dynamics in CalCOFI

38

36

34

)
EY
B
3
©

-

Latitude
Line-station

32

30

86.832.5 m [

427:5 -125.0 -122.5 -120.0 -117.5 i
Longitude 070

934264
1960 1980 2000 2020
Year

FIGURE 1 | Map of stations within the CalCOFI survey grid and the data availabilities for each individual station (referenced by line-station) for 1951-2017. The map
(left column) shows stations used for this analysis (black points) and those that were not (white points). The arrow indicates the location of Point Conception. The
data availability plot (right column) shows survey records for years with winter-spring values (black tiles), summer-autumn values (gray tiles; not used in analysis), and
no coverage (white tiles). CalCOFI shifted from annual to mostly triennial sampling from 1971-1983 resulting in no surveys in some years. In the early years of
CalCOFI, the survey area extended north to British Columbia, Canada and south to Baja California, Mexico (not shown).

samples with high zooplankton volumes are often subsampled and we calculate annual averages from winters and springs.
(Smith, 1977). Final abundances are expressed as larvae per 10 Note that CalCOFI shifted from annual to mostly triennial
m? surface area. CalCOFI surveys typically sample each of the sampling from 1971 to 1983 resulting in no surveys in some
stations we use in this study 1-4 times per year (Figure 1), years (e.g., 1979).
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Many of the fishes in this study share similar adult habitat
affinities and are subject to comparable fishing pressure. Both
factors are known to comparably and predictably affect fish
population dynamics (Hsieh et al., 2005). To evaluate whether
fishes in particular groups exhibit similar patterns of synchrony,
we assign each taxa to five groups delineated by Hsieh et al.
(2005): oceanic-unfished, coastal-fished, coastal-oceanic-fished,
coastal-bycatch, and coastal-unfished. For each species, we select
time series with at least 25% non-zero values as some species are
only rarely observed at particular stations. For example, some
mesopelagic fishes are never or very rarely found at shallow,
coastal stations.

Finally, we generate time series of single value Shannon
diversity index values (H; ¢ ) using the equation:

Hs,t =

R
- Z pi,s,tlog (pi,s,t) (1)

i=1

at each station (s) in year (¢) for species (i). The proportional
abundance (p) is multiplied by the natural logarithm of p and
summed from species i to the total number of species (R).
A single H value was calculated across winter and spring for
each year and station. Additionally, the Shannon diversity values
were calculated based on all the species reported, which in
most cases included additional species to the 36 fish taxa in the
single-species analysis. Although we can now identify almost all
taxa to species, taxonomic knowledge was less developed at the
beginning of CalCOFI. To keep time series used to calculated
diversity consistent, we group some species to the 1950s level
taxonomic resolution. We use 60 taxa in calculations of Shannon
diversity and focus on the 36 most common species for single-
species analyses.

Synchrony

We conduct and compare correlational and co-prediction
analyses to evaluate synchrony among stations for two physical
parameters (temperature and salinity), abundances of 36 fish
taxa, and fish diversity. In addition, we evaluate the spatial
extent of shared dynamics north and south of Point Conception.
Specifically, we quantify the proportion of stations that are
significantly synchronous with paired stations within and
between northern and southern regions. We follow this analysis
by calculating the mean Euclidian distance (km) separating
significantly synchronous stations in the north and south. Finally,
we assess if synchrony patterns vary among the five fish groups
(e.g., ocean-nonfished, coastal-fished). We determine if north-
south synchrony patterns differ depending on whether synchrony
was assessed with correlation vs. co-prediction analyses.

Correlation

We calculate correlation coeflicients (i.e., correlational
synchrony) between time series from combinations of station
pairs with time lag-0. Our criteria for significance is a statistically
significant Spearman’s rho coefficient (p < 0.05). We do not
apply sequential Bonferroni corrections that alleviate type-1
error that can arise with multiple testing because our objective

is to compare results from correlation and co-prediction
analyses rather than evaluate the significance of any one
particular time-series.

Co-prediction

A key step in EDM co-prediction analysis is to identify the
dimensionality of the data. In nature, a number of physical and
environmental factors drive a population; a time series is a one-
dimensional observation of the factors’ effects on the population.
Fortunately, ecological models do not require analysts to identify
all of the factors, rather a comparatively few number of variables
can be representative of the dynamics (Schaffer and Kot, 1985).
Similarly, Takens’ theorem, a tenet of EDM, formalizes this idea
that a single time series and some number of lags (dimension;
E) are representative of system dynamics (Takens, 1981; Sugihara
and May, 1990). Per Takens” theorem, an M-dimensional system
converges to a d-dimensional attractor, and a single time series
of observations y;,t = 1,2, ..., T and lagged coordinates of y
(at time step 1) Y¢ = {yt, VieTo e s )’thr} can reconstruct the
d-dimensional attractor (Takens, 1981). This requires that a time
series is sufficiently long to capture attractor dynamics.

Simplex projection (hereafter referred to as simplex) along
with sequentially locally weighted global linear maps (s-map)
are two key EDM forecasting methods. The distinction is
that simplex identifies the dimensionality of the system, and
s-map characterizes the data as linear or non-linear (Sugihara,
1994). S-map will generally outperform simplex if system
dynamics are non-linear.

We first identify the dimensionality of time series in the
CalCOFI dataset with simplex. Simplex projection takes a
weighted average of the nearest neighbors’ trajectories depending
on the specified dimension (E). Given an E, a time series and its
E-lagged coordinates, we seek to predict a value ;4. In order to
predict this value, we use the Euclidean distance d(y;, ys) between
yr and ys and calculate the weights w;(t) as:

wi(t) = exp (_d by ”‘t”))), 2)

d (yt, yn(t.1))

where n(t, i) specifies the index of the i-th closest neighbor to
Yn(z,1)- The prediction y;q is:

(Zfill Wi(t)}’n(t,i)Jrl)
Zf;r 11 wi (1)

We use leave-one-out cross-validation and select the E with
the highest correlation between predicted and observed values.
We evaluate E values ranging from 1 to 10 and identify the best-
fitting E for each time series.

Next, we evaluate co-prediction in which we take the best-
fitting E for one time series (library) and predict values in another
time series (predictee) with simplex. Co-prediction quantifies
the dynamic similarity between time series, and has been
used to identify interspecific and species-environment dynamics
(Liu et al.,, 2014) and nonlinearities (Liu et al., 2012) in the

3)

V1 =
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FIGURE 2 | The numbers of significantly correlated vs. numbers of significantly co-predicted stations for salinity, temperature, and Shannon indices of diversity. Each
point represents the numbers of each correlated or co-predicted with a particular station (e.g., station A is correlated with 70 stations and co-predicted with 10
stations). Points are slightly transparent to allow overplotting. For nearly all stations, the numbers of correlated stations were higher than the number of co-predicted
stations. Dashed lines indicate the one to one line. Composite libraries were composed of correlated or co-predicted stations based on these results.

Northwest Atlantic. We conclude significant co-prediction if
there are positive and statistically significant correlations between
predicted and observed values (p > 0; p < 0.05) and mean
absolute scaled error (MASE) values less than 1. Consider a
dataset from timesteps ¢ = 1, ..., n. We generated a hindcast
prediction, F;, at each timestep. Forecast error was:

er = Yt — Ft (4)
where Y is the observation at time t. Scaled error g; was:
et
qr = ©)
N D (D (R
and MASE was:
MASE = mean (’qt|) (6)

A MASE value less than 1 indicates that the prediction had lower
error than that from a naive predictor, which uses the prior
year value as a prediction (Hyndman and Koehler, 2006). Again,
we evaluate co-predictability between stations for each set time
series (i.e., salinity, temperature, Shannon index of abundance,
and single-species ichthyoplankton) for each station, but do not
attempt to conduct co-prediction across sets of time series (e.g.,
we do not predict salinity from temperature).

Further details on EDM are available in the documentation for
the R package “rEDM”" and Chang et al. (2017).

Hindcasting
We construct composite libraries (i.e., concatenated time series)
of the significantly correlated and significantly co-predicted

stations identified here.
We generate hindcast predictions from three data scenarios

for each time series. Consider time series A from a specific

Uhttps://github.com/haOye/rEDM

station for a particular data set (e.g., salinity). We s-map
hindcast (leave-one-out) values of time series A from: (1) time
series A; (2) the composite library of time series A and time
series correlated with A; and (3) the composite library of time
series A and time series co-predicted by A. Once again, we
replicate these three scenarios for each of the time series but
do not attempt comparisons between data sets (e.g., predicting
Shannon index from salinity). Our goal here is to quantify
the ability of correlated and co-predicted stations to improve
hindcast skill.

We use s-map with leave-one-out cross validation to evaluate
hindcast skill. S-map is an extension of simplex that has an
additional parameter (6) that controls the strength of nearest-
neighbor weighting. S-map can make both linear (8 = 0) and
non-linear (8 > 0) predictions (Sugihara, 1994). We select E

TABLE 1 | Percentages of correlated and co-predicted (number of unique station
pairs in parantheses) for salinity, temperature, and Shannon index.

Point Conception Correlated Co-predicted

Salinity Across 35% (n = 2262) 38% (n = 328)
N-N 7% (n = 2262) 11% (n = 328)

S-S 58% (n = 2262) 51% (n = 328)

Temperature Across 38% (n = 2507) 36% (n = 341)
N-N 8% (n = 2507) 18% (n = 341)

S-S 54% (n = 2507) 46% (n = 341)

Shannon Across 18% (n = 613) 26% (n = 430)
N-N 17% (n = 613) 6% (n = 430)

S-S 65% (n = 613) 68% (n = 430)

The Point Conception column indicates whether the library and predicted stations
crossed (Across), both north (N-N), or both south (S-S) of Point Conception.
Generally the highest percentage of relationships were both south of Point
Conception. Often correlated stations were commutative (e.g., station A correlated
with station B; Station B correlated station A), and pairs like this were only tallied

once.
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FIGURE 3 | Map of correlated (left column) and co-predicted (right column) stations shown with shades of red. The number of correlated stations was highest for
salinity (first row) and temperature (second row). Median number of significant stations are shown in the top right of each panel.

and 0 from time series A based on the values that maximize
the correlation between the leave-one-out predictions and
observations. We then use the E and 0 values with s-map to
hindcast values for time series A from time series A, correlated
composite libraries, and co-predicted composite libraries. The
criteria for statistical significance is positive correlations between
predicted and observed values (p > 0, p < 0.05) and lower error
than that of a naive prior year predictor (MASE < 1).

RESULTS
Synchrony

We found evidence of synchrony between stations within
all time series (salinity, temperature, Shannon index,
and 36 single-species ichthyoplankton abundances) with
both correlational and co-prediction analyses. Generally,
there were many more correlational relationships than
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co-predicted relationships (Figure 2). Each of the 81 stations
was correlated and co-predicted with at least one other
station for each of the temperature, salinity, and Shannon
index data.

Correlated and co-predicted stations were most concentrated
south of Point Conception. A minority of the correlated pairs are
north of Point Conception: 7% for salinity, 8% for temperature,
and 17% for Shannon index (Table 1). We found a similar
pattern for co-predicted pairs north of Point Conception:
11% for salinity, 18% for temperature, and 6% for Shannon
index (Table 1). Note, that 22 of the 81 stations (27%) were
located north and 59 of 81 stations (73%) were located south
of Point Conception. Generally, stations closer to shore and

south had the highest correlation and co-prediction with other
stations (Figure 3).

Adjusting for the distribution of stations north (22 stations)
and south (59) of Point Conception by representing values in
terms of proportions (e.g., 10 out of a possible 22 and 12
of a possible 59) for each library station resulted in slightly
more balanced relationships across Point Conception. Stations
south of Point Conception co-predicted with roughly the same
proportions of stations north and south for salinity, temperature,
and Shannon index (Figure 4). Library stations north of Point
Conception were more co-predicted with stations north for
salinity and temperature, whereas the proportions for Shannon
index were roughly equal (Figure 5).
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A majority of the predictee stations for single-species
ichthyoplankton library stations were concentrated south of
Point Conception (Table 2). For library stations north of
Point Conception, at least half of the predicted stations
were south of Point Conception for coastal-oceanic-fished and
oceanic species (Table 2). For library stations south of Point
Conception, at least half of the predicted stations were also south
for coastal-fished, coastal-oceanic-fished, and oceanic species
categories (Table 2).

Composite Libraries
Individual stations showed evidence of hindcast skill. Leave-one-
out predictions for a particular time series were significant in 27

stations for salinity, 36 for temperature, and 33 for Shannon index
of 81 total stations (Table 3).

Composite libraries generally resulted in a greater number
of significantly predicted stations. The number of significantly
predicted stations from composite libraries of correlated stations
was 28 for salinity, 36 for temperature, and 42 for Shannon index
(Table 3). Predictions from composite libraries of co-predicted
stations were significant in 60 stations for salinity, 60 for
temperature, and 72 stations for Shannon index (Table 3). For
salinity and Shannon index, co-prediction was a more robust
method of identifying shared dynamics than correlation.

Generally, significant hindcast skill was highest with nonlinear
predictions, indicated by 6 values greater than 0. Nonlinear
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TABLE 2 | Percentages of correlated and co-predicted (number of unique station pairs in parantheses) for individual species grouped by category.

Common name Scientific name Pt. Conception Correlated Co-predicted
Oceanic
California flashlightfish Protomyctophum crockeri Across 36% (n = 727) 39% (n = 364)
N-N 9% (n = 727) 6% (n = 364)
S-S 55% (n = 727) 55% (n = 364)
Blue lanternfish Tarletonbeania crenularis Across 42% (n = 615) 54% (n = 162)
N-N 17% (n = 615) 20% (n = 162)
S-S 41% (n = 615) 26% (n = 162)
Northern lampfish Stenobrachius leucopsarus Across 23% (n = 455) 36% (n = 236)
N-N 8% (n = 455) 9% (n = 236)
S-S 69% (n = 455) 55% (n = 236)
Broadfin lampfish Nannobrachium spp. Across 34% (n = 443) 35% (n = 200)
N-N 15% (n = 443) 7% (n = 200)
S-S 51% (n = 443) 58% (n = 200)
Longdfin lanternfish Diogenichthys atlanticus Across 9% (n = 56)
S-S 100% (n = 153) 91% (n = 56)
Highsnout bigscale Melamphaes spp. Across 35% (n = 136) 41% (n =109)
N-N 12% (n = 136) 9% (n = 109)
S-S 53% (n = 136) 50% (n = 109)
Mexican lampfish Triphoturus mexicanus S-S 100% (n = 104) 100% (n = 40)
California lanternfish Symbolophorus californiensis Across 7% (n = 95)
S-S 93% (n = 95) 100% (n = 37)
Pacific viperfish Chauliodus macouni Across 52% (n = 84) 51% (n = 43)
N-N 18% (n = 84) 19% (n = 43)
S-S 30% (n = 84) 30% (n = 43)
Panama lightfish Vinciguerria lucetia S-S 100% (n = 77) 100% (n = 13)
Pacific blacksmelt Bathylagus pacificus Across 10% (n = 39) 12% (n = 17)
N-N 90% (n = 39) 82% (n = 17)
S-S 6% (n=17)
Lanternfishes Myctophidae spp. S-S 100% (n = 18) 100% (n = 9)
Dogtooth lampfish Ceratoscopelus townsendi S-S 100% (n = 16) 100% (n =7)
Blackbelly dragonfish Stomias atriventer S-S 100% (n = 1) 100% (n = 6)
Bluethroat argentine Nansenia candida Across 100% (n = 1)
Pearly lanternfish Myctophum nitidulum S-S 100% (h = 1)
Slender lanternfish Hygophum reinhardtii S-S 100% (n = 1)
Coastal-fished
Chilipepper Sebastes goodei Across 42% (n = 302) 50% (n = 147)
N-N 23% (n = 302) 12% (n = 147)
YS-S 35% (n = 302) 38% (n = 147)
Cow rockfish (cowcod) Sebastes levis Across 42% (n = 302) 50% (n = 147)
N-N 23% (n = 302) 12% (n = 147)
S-S 35% (n = 302) 38% (n = 147)
Mexican rockfish Sebastes macdonaldi Across 42% (n = 302) 50% (n = 147)
N-N 23% (n = 302) 12% (n = 147)
S-S 35% (n = 302) 38% (n = 147)
Rockfishes Sebastes spp. Across 42% (n = 302) 50% (n = 147)
N-N 23% (n = 302) 12% (n = 147)
S-S 35% (n = 302) 38% (n = 147)
Splitnose rockfish Sebastes diploproa Across 42% (n=302) 50% (n = 147)
N-N 23% (n = 302) 12% (n = 147)
S-S 35% (n = 302) 38% (n = 147)
Stripetail rockfish Sebastes saxicola Across 42% (n = 302) 50% (n = 147)
N-N 23% (n = 302) 12% (n = 147)
S-S 35% (n = 302) 38% (n = 147)
(Continued)
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TABLE 2 | Continued

Common name Scientific name

Bocaccio Sebastes paucispinis

English sole Parophrys vetulus

Aurora rockfish Sebastes aurora

Coastal-oceanic-fished

Northern anchovy Engraulis mordax

California smoothtongue Leuroglossus stilbius
Pacific hake or whiting Merluccius productus
Jack mackerel

Trachurus symmetricus

Pacific sardine (pilchard) Sardinops sagax

Medusafish Icichthys lockingtoni
Coastal-bycatch
Shortbelly rockfish Sebastes jordani

Hornyhead turbot Pleuronichthys verticalis
Coastal-unfished

Pacific argentine Argentina sialis

Pt. Conception Correlated Co-predicted
Across 41% (n=115) 45% (n = 42)
N-N 13% (n = 115) 14% (n = 42)
S-S 46% (n = 115) 41% (n = 42)
Across 33% (n =6)
N-N 17% (n = 6)
S-S 100% (n = 2) 50% (n = 6)
Across 33% (n=3) 20% (n =5)
N-N 20% (n = 5)
S-S 67% (n =3) 60% (n = 5)
Across 22% (n = 692) 23% (n = 527)
N-N 3% (n = 692) 2% (n = 527)
S-S 75% (n = 692) 75% (n = 527)
Across 31% (n = 667) 43% (n = 166)
N-N 9% (n = 667) 9% (n = 166)
S-S 60% (n = 667) 48% (n = 166)
Across 29% (n = 363) 36% (n = 307)
N-N 11% (n = 363) 6% (n = 307)
S-S 60% (n = 363) 58% (n = 307)
Across 13% (n = 239) 13% (n = 98)
N-N 1% (n = 239)
S-S 86% (n = 239) 87% (n = 98)
S-S 100% (n = 122) 100% (n = 179)
Across 37% (n = 93) 44% (n = 73)
N-N 25% (n = 93) 28% (n =73)
S-S 38% (n =93) 28% (n =73)
Across 28% (n = 101) 43% (n = 54)
N-N 3% (n = 101) 6% (n = 54)
S-S 69% (n = 101) 51% (n = 54)
S-S 100% (n = 1)
Across 33% (n=12) 56% (n=19)
S-S 67% (n=12) 44% (n=9)

The Point Conception column indicates whether the library and predicted stations crossed (Across), both north (N-N), or both south (S-S) of Point Conception. Generally

the highest percentage of relationships were both south of Point Conception.

predictions resulted in significance for roughly 80% of the
stations in the single station and composite library scenarios
(Table 3). For the co-predicted composite library scenario,
nonlinear s-map predictions accounted for nearly all the
significant results (Table 3).

The CalCOFI survey has variable temporal and spatial
sampling frequencies due to logistical and financial challenges
common to any long-term ecological survey. Stations off
northern California in the CalCOFI grid had stretches
with no winter and spring surveys. Because we compare
s-map predictions to lagged observations, assuming a lagged
observation from say 10 years prior may bias MASE calculations.
In other words, a poor predictor compared to a lagged
observation from many years prior may result in lower MASE
values. To control for this, we filtered time series such that the
maximum gap was 3 years or less and recalculated MASE. The
number of significant stations was relatively unchanged, and the

TABLE 3 | Numbers of significantly predicted stations for salinity, temperature,
and Shannon indices of diversity.

Single station Correlated Co-predicted
composite composite
Salinity 27 (85% nonlinear) 28 (86%) 60 (97 %)
Temperature 36 (83%) 36 (78%) 60 (100%)
Shannon Index 33 (82%) 42 (79%) 72 (99%)

Predictions were made with s-map using either a single station, composite library
of correlated stations, or composite library of co-predicted stations. Values in
parentheses show the percentage of significant stations with 6 values greater than
0 (indicating nonlinearity).

number of significantly co-predicted composite library stations
decreased by 1-3 stations (Supplementary Table 1).

Inclusion of co-predicted stations improved hindcast skill
of Shannon index for mostly offshore stations (Figure 6).
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Additionally, composite libraries resulted in significant
predictability for all three of salinity, temperature, and Shannon
index in 38 of 81 stations. Although there were some cases,
particularly for salinity and Shannon index, where predictions
from composite libraries of co-predicted stations had MASE
values of 0.6 (indicating that error from predictions was 60% the
error from a lagged observation; Figure 6).

Prediction for individual species was highest with co-
predicted composite libraries. For many species, hindcast skill
was highest with composite libraries of co-predicted stations,
and this trend was strongest in oceanic and coastal-fished
species (Table 4).

DISCUSSION

We find evidence of spatially shared dynamics in salinity,
temperature, Shannon index, and individual ichthyoplankton
species as measured by correlation and co-prediction. Leveraging
knowledge of shared dynamics via composite libraries of
correlated or co-predicted stations generally improved hindcast
skill across all data types. However, although synchrony is
more evident from correlation than co-prediction, co-prediction
is a more robust method to significantly hindcast salinity,
temperature, Shannon index, and nearly all single-species
ichthyoplankton. Taken together, we demonstrate the utility of
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TABLE 4 | Numbers of significantly predicted stations with s-map prediction for
each species, arranged by category.

Category Common name Station Correlation Co-
prediction
Oceanic California flashlightfish 17 25 42
Broadfin lampfish 10 " 28
Pinpoint lampfish 10 i 28
Blue lanternfish 9 11 20
Highsnout bigscale 8 3 17
Little bigscale 8 3 17
Northern lampfish 4 9 14
Longfin lanternfish 3 6 10
Pacific viperfish 5 4 9
California lanternfish 7 1 6
Mexican lampfish 4 7 6
Pacific blacksmelt 2 3 6
Blackbelly dragonfish 1 0 3
Panama lightfish 2 4 2
Dogtooth lampfish 1 1 1
Pearly lanternfish 1 1 0
Blackgill rockfish 5 10 11
Coastal-fished  Chilipepper 5 10 11
Cowcod 5 10 11
Mexican rockfish 5 10 11
Splitnose rockfish 5 10 11
Stripetail rockfish 5 10 1
Bocaccio 3 4 5
Northern anchovy 21 28 26
California smoothtongue 7 13 17
Coastal- Pacific hake or whiting 7 7 14
oceanic-fished  Pacific sardine 5 10 12
Medusafish 5 6 9
Jack mackerel 8 6 7
Shortbelly rockfish 2 3 1
Pacific argentine 0 4 2

Columns show predictions from the same predictor station and composite libraries
of correlated and co-predicted stations. Composite libraries included correlated or
co-predicted stations.

co-prediction in identifying shared dynamics and find evidence
of widespread nonlinear spatial structure in physical and
biological observations across the CalCOFI survey area. To our
knowledge, this study serves as the first evaluation of station-
specific hindcast skill of the CalCOFI data set.

Identifying shared dynamics with co-prediction is an
important step in constructing composite libraries. Previous
studies that implemented composite libraries used all available
time series from individual species (Hsieh et al, 2008) or
locations (Glaser et al., 2014; Clark et al., 2015). Our results
show that identifying shared dynamics with co-prediction is
an important step to improve hindcast skill. Longer composite
libraries composed of more stations (identified through
correlation) did not result in higher hindcast skill than co-
predicted stations, with the exception of Shannon index. While
we did not explicitly have a scenario of composite libraries with
all 81 stations, composite libraries for salinity and temperature

mostly included between 70 and 80 correlated stations. Co-
prediction quantifies the degree to which two time series are
generated from the same underlying process and has the potential
to identify relationships in the absence of positive correlation
(Engle and Granger, 1987).

We found evidence of nonlinear relationships in the CalCOFI
survey data. A majority of the significant results came from
nonlinear predictions, with s-map 6 values greater than 0, across
data types and composite library scenarios. These findings are
consistent with previous analyses of CalCOFI data which found
nonlinearities in biological time series (Hsich et al., 2005). These
studies utilized out-of-sample forecasting, in contrast to the
methods used here, but found that physical time series had high
dimensionality and linear dynamics. Thus, it is likely that fish
populations have nonlinear responses to environmental forces
and have nonlinear relationships across space.

While this study focuses on hindcasting, the methods used
here may be extended to out-of-sample forecasting to better
identify and predict regime shifts. The transition to out-of-
sample forecasting may yield insight to the characteristics of
a system undergoing a regime shift. For example, a system
undergoing a regime shift may be characterized by a composite
library of co-predicted stations undergoing a decrease in forecast
skill. Additional indicators may be a shift in the number and
orientation of co-predicted stations or a transition between
linear and nonlinear dynamics. If analyses extend to include
multivariate analyses, there may be time-varying changes in
interactions, similar to those identified in Deyle et al. (2016).

The California Current is characterized by physical and
biological regimes, and here we show that stations across space
demonstrate shared dynamics through multiple regimes over
the roughly 70 year span of CalCOFI observations. Studies of
principal components in over 100 time series, both physical and
biological, found regime shifts in 1976 and 1989 (Ebbesmeyer
etal., 1991; Hare and Mantua, 2000). Shifts in the Pacific Decadal
Oscillation from a negative to positive phase were hypothesized
to precede shifts in biological regimes (McFarlane and Beamish,
2001; Moser et al., 2001). Indeed, a previous study has identified
five ichthyoplankton assemblage regimes in analysis of the
southern portion of the CalCOFI survey area (Peabody et al.,
2018). The combination of co-prediction, composite libraries,
and s-map can potentially improve the capability to track system
dynamics of a regime change. This work remains to be done but
is a logical next step.

We found shared dynamics to be largely concentrated south
of Point Conception, although this result may be influenced
by skewed station distributions north and south of Point
Conception. Point Conception is a well-known biogeographic
break within the CCE (Allen et al., 2006) with sharply contrasting
water masses north and south of Point Conception (Lynn et al.,
2003). Ocean conditions north of Point Conception tend to be
dominated by the equatorward-flowing California Current which
is cold and relatively fresh as well as cold, salty upwelled water
closer to shore that is induced by strong equatorward winds
(Checkley and Barth, 2009). As a result, water temperature often
increases abruptly south of Point Conception within the Southern
California Bight (Checkley and Barth, 2009; Thompson et al.,
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2016). Co-prediction identifies shared dynamics between two
time series but does not measure causal relationships. Convergent
cross mapping (Sugihara et al., 2012) can identify causality
between time series, and analyses that apply this method may
identify mechanistic relationships between stations. Inclusion
of additional oceanographic measurements such as oxygen,
phosphate, and silicate may further enhance analyses of the
movement and forcing of distinct water masses.

Shannon index have significant hindcast skill in 89% of
stations (n = 81). While our focus is on the 60 most-caught
taxa (used to calculate Shannon index), our results indicate
that there are likely common factors driving shared dynamics
across space. Physical conditions cascade to affect zooplankton
abundances, which fluctuated in synchrony from 1949 to 1969
(Bernal and McGowan, 1981). Additionally, taxa with similar life
histories and adult habitats track each other even when they are
uncorrelated with environmental conditions (Hsieh et al., 2005).
This is another area of future research, and convergent cross
mapping, another EDM method, is one extension to identify
causal relationships between populations and environmental
conditions or interspecific interactions.

There are multiple possible ecological explanations for the
predictability in species like Northern anchovy and bigscales.
Recruitment may be an important factor influencing shared
ichthyoplankton dynamics in the CalCOFI data. Recruitment
generally stabilizes metacommunities (Gouhier et al., 2010,
2011) although the relative levels of recruitment can influence
synchrony and stability differently (Townsend and Gouhier,
2019). Additionally, local recruitment synchronizes mussel
populations across 1,800 km of coast (Gouhier et al., 2010). The
rich time series of available data in the Southern California Bight
would allow for analyses relating egg time series (collected on
CalCOFI cruises) to ichthyoplankton time series to young-of-
year surveys and adult catches to evaluate interactions across all
life history stages. EDM works best at predicting recruitment
for short-lived, fast-growing species (Munch et al., 2018), and
the inclusion of multiple variables may further improve forecast
skill. Oceanographic currents in the Southern California Bight
have been characterized to identify metapopulation networks
(Watson et al., 2011).

While the EDM approach is generally robust to some
missing values, additional modeling approaches may not be.
The composite library approach has higher predictive skill than
using the previous year’s value as the forecast. In an analysis of
multiple time series forecast methods, this naive predictor had
the highest short-term predictive skill for 2,379 time series of
vertebrate population indices (Ward et al., 2014). Shannon index
results were likely more predictable as they integrate the year-to-
year variability in individual species. Species like bigscales, blue
lanternfish, rockfish, Northern anchovy, and Pacific hake all had
the most predictable dynamics suggesting that there may be a
small number of species driving Shannon index in each year.

Evaluation of out-of-sample predictability was beyond the
scope of this study but is a logical next step. Out-of-sample
forecasting skill will likely increase if causal relationships exist
in the CalCOFI data. Convergent cross mapping (Sugihara
et al,, 2012) and its spatial applications (Clark et al., 2015) are

natural extensions of this analysis and may identify relationships
between physical variables like temperature and salinity and
biological variables like Shannon index of diversity. The CalCOFI
dataset is an ideal dataset for such analysis due to the high
spatiotemporal resolution and multiple types of observations.
Comparing temperature and salinity directly to ichthyoplankton
time series misses key components of the community structure.
Likely, there are multiple levels of interactions relating physical
conditions to phytoplankton to zooplankton to ichthyoplankton
(Thompson et al., 2018). Additionally, analysis may need to adopt
a finer temporal scale to identify seasonal drivers. Here, we used
averages of physical and biological measurements across winter
and spring, which may have smoothed signal in the data. S-map
coefficients may elucidate time-varying interactions between
biological and physical data sets (Deyle et al., 2016; Ushio et al.,
2018). Finally, additional methodologies such as EDM Gaussian
processes (Munch et al., 2017; Rogers and Munch, 2020) and
regularized s-map (Cenci et al., 2019) may offer improvements
in both in-sample and out-of-sample prediction skill.

The analysis we have presented here, and the analytic next
steps outlined above, are motivated by both the desire to
understand the ecological dynamics of the CCE and the need
to identify analytic methods that can support future survey
design/reorganization efforts. There are numerous financial
and logistical challenges associated with conducting large-scale
surveys, and it is difficult to maintain constant sampling
efforts year to year. Co-prediction and composite libraries can
provide a means of prioritizing survey sites by identifying
partial redundancies in the CalCOFI survey grid. In the case
that sampling efforts reduce, locations with strongly shared
dynamics may be redundant, in that sampling in these areas may
not provide additional information. Locations without shared
dynamics may be high priorities because they contribute to a
more comprehensive survey of an area.
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In order to understand how North Pacific (NP) marine ecosystems have varied, 120
marine biological time series for both the western (29 time series) and eastern (91 time
series) NP were analyzed with a Principal Component Analysis (PCA) for the period
1965-2006. This is the first attempt to conduct a multivariate analysis for a large number
of marine biological data in the western and eastern NP combined. We used Monte-
Carlo simulation to evaluate confidence levels of correlations and explained variance
ratio of PCA modes while accounting for auto-correlation within the analyzed time series.
All first mode principal components (PC1s), which are the time coefficients of the first
PCA modes, calculated for the data in the whole, western, and eastern NP exhibit a
long-term trend. The PC1s were associated with an overall increase of Alaskan and
Japanese/Russian salmon, and decreases of groundfish across the basin. This mode
was closely related to the warming of sea-surface temperature over the NP and over the
global oceans, thereby suggesting that the strongest mode of the NP marine ecosystem
was already influenced by global warming. The eastern NP PC2, characterized by multi-
decadal variability, was correlated positively with salmon and negatively with groundfish.
On the other hand, the western NP PC2 exhibited slightly shorter timescale interdecadal
variability than the eastern NP PC2 and was negatively correlated with zooplankton
and two small pelagic fish time series around Japan. The eastern NP PC2 was most
strongly related to the Pacific (inter-)Decadal Oscillation index, while the western NP
PC2 was most closely related to the North Pacific Gyre Oscillation index. Consequently,
the present analysis provides a new and unified view of climate change and marine
ecosystem variations across the western and eastern NP. In particular, it is suggested
that global warming has already substantially influenced the NP marine ecosystem, and
that groundfish may suffer more than pelagic fish in response to future global warming.
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INTRODUCTION

Marine ecosystems are influenced by physical climate variability
and change (e.g., Cushing, 1982; Brander, 2007; Bindoff et al,
2019). The effects of physical climate variability on marine species
in the North Pacific (NP) have been studied in the last few
decades. Earlier studies focused their attention on target marine
species such as salmon (e.g., Ebbesmeyer et al., 1991; Beamish
and Bouillon, 1993; Francis and Hare, 1994; Mantua et al., 1997;
Beamish et al., 1999; Hare et al., 1999), sardine (Kawasaki and
Omori, 1995; Noto and Yasuda, 1999; Yasuda et al., 1999), and
groundfish (Hoff, 2006). An important finding of these studies
was that large-scale decadal variability of climate characterized
by Aleutian Low strength changes and associated sea-surface
temperature (SST) anomalies, which are known as the Pacific
(inter-)Decadal Oscillation (PDO; Minobe, 1997; Mantua et al.,
1997), strongly influenced a wide range of marine species in much
of the 20th Century (e.g., Mantua et al., 1997; Yasuda et al., 1999;
Hare and Mantua, 2000; Chavez et al., 2003; Litzow and Mueter,
2014).

In particular, as evidence of climate influence on the marine
ecosystem, step-like shifts commonly occurring in both the
marine ecosystem and physical climate attracted attention (e.g.,
Ebbesmeyer et al.,, 1991; Beamish and Bouillon, 1993; Francis
and Hare, 1994; Mantua et al., 1997), and such a shift is often
referred as a climate and ecosystem regime shift. A regime shift
for physical climate is defined as a transition from one climatic
state to another within a period substantially shorter than the
lengths of the individual epochs of each climate state (Minobe,
1997). A marine ecosystem regime shift can also be defined in
the same way as the climatic regime shift, i.e., a rapid transition
from one state to another (Mollmann and Diekmann, 2012), but
sometimes marine ecosystem regimes mean different states of
dominant species (e.g., Lluch-Belda et al., 1989). In this article,
we use the marine ecosystem regime shift in the former meaning,
i.e., a rapid step-like change that persists for a length of time that
far exceeds that of the transition.

In order to understand marine ecosystem variability and
change in a more holistic way than analyses of selected species,
a useful approach is an analysis of a large number of marine
biological time series, typically more than several tens, by using
a multivariate analysis method. We call this type of analysis
a Large-number Multivariate Analysis (LMA). The pioneering
first study of LMA was conducted by Hare and Mantua (2000),
who analyzed 69 marine species time series data in the eastern
NP, from California waters to the Bering Sea, combined with
31 physical climate indices from 1965 to 1997. They applied a
Principal Component Analysis (PCA), which is also known as
an Empirical Orthogonal Function analysis. They reported that
marine ecosystem regime shifts occurred in 1976/77 and 1988/89
over the eastern NP. A decade later, by using 64 eastern NP
biological time series with several climate indices in 1965-2008,
Litzow and Mueter (2014) also reported shifts in marine biology
in the 1976/77 but they did not find a biological shift in the late
1980s. Rather, they emphasized that the time series of the first
biological PCA mode, referred to as PC1, was characterized by a
gradual change and not a step-like shift. For the western side of

basin, Tian et al. (2006) analyzed 58 Japanese fish catch time series
from the Sea of Japan in 1958-2003, and Ma et al. (2019) recently
analyzed 147 catch time series in the Yellow and East China Seas
for 1965-2008. Tian et al. (2006) reported that the biological
PC1 is highly correlated with the PDO index (Mantua et al,
1997) and the Arctic Oscillation (AO) index (Thompson and
Wallace, 1998), while Ma et al. (2019) found strong correlations
between biological PCs with indices for local physical conditions
but not with large scale climate indices. LMA was also used for
the northeastern North Atlantic by Brunel and Boucher (2007),
who reported that the first mode of 40 fish recruitment time series
is characterized by the long-term change probably in association
with global warming.

It should be noted that previous LMA studies in the NP were
limited either on the eastern NP only or marginal seas in the
western NP only. This hinders a unified understanding of the
marine ecosystem variability and change over the whole NP. It
is already known that climate variability causes synchronized
changes in marine ecosystems in both the eastern and western
NP for sardine and anchovy (Lluch-Belda et al., 1992; Kawasaki
and Omori, 1995; Yasuda et al., 1999; Chavez et al., 2003) and
for salmon (e.g., Beamish and Bouillon, 1993). These results
underline the importance of whole basin analyses.

The purpose of this study is to identify the dominant modes
of marine ecosystem variations in the last half century both
in the western and eastern NP basin and their relationships
to basin-scale physical climate variability and change. To this
end, 120 marine species time series, consisting of 91 eastern NP
and 29 western NP time series are analyzed. The data consist
of biological time series for zooplankton, invertebrates, small-
pelagic fish, groundfish and salmon. This is the first LMA study
analyzing data from both the western and eastern NP. We
applied PCA on biological data and used correlation analysis
to understand the relationships between marine ecosystem and
physical climate variations with a rigorous estimation of the
corresponding confidence level. In addition to indices for climate
modes such as the PDO and North Pacific Gyre Oscillation
(NPGO) (Di Lorenzo et al., 2008), we analyze the NP and global
mean SST time series, which were not examined by the previous
NP LMA studies, in order to evaluate the possible relationships
between marine ecosystem changes and global warming.

DATA AND METHODS
Data

We used 120 annually sampled marine biological time series
(Supplementary Table 1) consisting of 29 western NP time series
from Japan and Russia, and 91eastern NP time series over areas
including the Bering Sea, Gulf of Alaska, and the west coast
of the United States of America and Canada. These consist of
54 groundfish recruitment, 13 small-pelagic fish recruitment, 34
salmon abundance, eight invertebrate recruitment, and eleven
zooplankton biomass time series. Some of our eastern NP data
are overlapped with those used by previous studies; 48% of
groundfish, 80% of small-pelagic, 13% of invertebrate, and 25%
of salmon were also used by Litzow and Mueter (2014). On the
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other hand, western NP data analyzed in this study, which mainly
come from analyses of Japan Fisheries Research and Education
Agency (Japan Fisheries Agency, and Fisheries Research Agency,
2015), have not been used for previous LMA studies. We set
our analysis period from 1965 to 2006 based on a criteria
of available data ratio larger than 50%, following Hare and
Mantua (2000). This is 10-years longer than the analysis period
of Hare and Mantua (2000), but similar to that of Litzow and
Mueter (2014). Some of our results will be shown by map-format
figures and the correspondences between the spatial positions
of the biological time series on the map and index number are
summarized in Figure 1, along with abbreviations of time series
in Supplementary Table 1.

In order to understand relationships between variations in
marine biology and climate, we analyzed seven annually averaged
physical climate indices: 1. global-mean sea-surface temperature
(G-SST), 2. NP-mean SST (NP-SST), 3. PDO index, 4. NPGO
index, 5. the multivariate El Nifio-Southern Oscillation Index
(MEI) (Wolter and Timlin, 2011), 6. The North Pacific Index
(NPI) (Trenberth and Hurrell, 1994), and 7. AO index (Table 1).
The NPI represents the strength of the Aleutian Low, a large-
scale low-pressure over the NP in winter, and an Aleutian Low
is stronger than usual when the NPI anomaly is negative. The
NPI is closely related to the PDO index (Mantua et al., 1997;
Minobe, 1997). We use the Centennial in situ Observation-Based
Estimates of the Variability of SST and Marine Meteorological
Variables (COBE) version 2 (Hirahara et al., 2014) to calculate
the G-SST and NP-SST indices.

Methods

We employed PCA to the marine biological time series, and
calculated PCA modes using the biological time series in the

whole, western, and eastern NP, separately. Before calculating
the PCA modes, marine biological time series were normalized
by their respective standard deviations and removing the means.
Thus, reflecting the larger number of time series in the eastern NP
than in the western NP, the former more strongly contributes to
the whole NP PCA than the latter does. By this reason, we mainly
show western and eastern NP PCA modes rather than the whole
NP modes. A covariance between two biological time series was
calculated for the temporal points at which both time series data
are available (von Storch and Zwiers, 2012).

The relation between the PC time series and respective
biological or physical time series were evaluated by the Pearson
correlation, and its statistical significance is estimated with a
Monte-Carlo simulation that takes into account effective degrees
of freedom. Since co-variability among biological time series
mostly occurs on decadal timescales as will be shown later, we
evaluated correlations with a 5-year running mean low-pass
filter as main results and without it as Supplementary results.
Statistical significance of correlations was assessed as follows.
First, we generated 1,000 surrogate time series for the respective
PCs (without the running mean), by using a red noise model,
where lag-1 correlation was estimated by using Burg’s method
(e.g., Kay, 1988). In the case of the significance estimation for
correlations with the low-pass filter, the filter was applied to both
observed data and surrogate PCs before calculating correlations.
Then surrogate correlation coeflicients were calculated between
observed data (e.g., marine biological time series) and the
surrogate PC. The confidence level was estimated as the percentile
of the absolute value of the observed correlation with respect
to the absolute surrogate correlations. We employ Monte-Carlo
simulation instead of using theoretical estimation of effective
degrees of freedom (e.g., Metz, 1991; Pyper and Peterman, 1998)
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TABLE 1 | Seven climate indices.

Data source

SST are averaged over the NP, north of 20°-68°N
First PCA mode of SST anomalies, from which global
averaged SST has been removed, over the North
Second PCA mode of sea surface height anomalies in

An index for El Nifio-Southern Oscillation over the

The area-weighted sea level pressure over the region

Calculated from COBE SST version 2
Calculated from COBE SST version 2

University of Washington, Joint Institute for the
Study of the Atmosphere and Ocean

Emanuele Di Lorenzo, Georgia Institute of
Technology
NOAA Earth System Research Laboratory

NOAA Earth System Research Laboratory

Abbreviation Name Description
G-SST Global-ocean averaged SST SST are averaged over the global ocean
NP-SST NP averaged SST
PDO Pacific Decadal Oscillation
Pacific north of 20°N
NPGO North Pacific Gyre Oscillation
the Northeast Pacific
MEI Multivariate El Nino-Southern
Oscillation tropical Pacific
NPI North Pacific Index
30°N-65°N, 160°E-140°W
AO Arctic Oscillation Index

of 20°N

First PCA mode of sea level pressure anomalies north

NOAA Climate Prediction Center

Allindices are calculated using monthly data and then are averaged to obtain annual average.

because the theoretical estimation is difficult to use for data that
have missing values and with time filtering, but these factors are
automatically included by the present Monte-Carlo simulation.

We also examined statistical significance of the explained
variance ratio (EVR) of PCA modes by using another Monte-
Carlo simulation. We use this analysis because the correlations
between some biological indices and PCs can become statistically
significant just by chance associated with the large number of
tests as discussed by Ventura et al. (2004) and Wilks (2016). For
the significance test of the EVR for the first mode (EVR1), we
generated 1,000 sets of observed biological indices (e.g., 1,000
sets of 120 time series for the whole NP basin) by using a red
noise model with a lag-1 auto-correlation for each time series,
with missing data in the same years as observed. By considering
correlations between biological indices, we reduce the number
of surrogate indices by 5% (e.g., from 120 to 114 indices for the
whole NP basin) for each set, because the number of statistically
significant pairs of biological indices is 9-10% of the number
of total pairs in all three PCA domains and removal of 10% of
pairs is equivalent to removal of 5% of time series as square root
of 0.90 is approximately 0.95. The PCA is calculated for each
set of reduced surrogate data, yielding 1,000 surrogate EVRIs.
The percentile obtained by the observed EVR1 with respect to
the 1,000 surrogate EVRIs gives the confidence level. If EVR1 is
larger than any of surrogate EVR1s, the confidence level is higher
than 99.9%, and equivalently p-value is smaller than 0.1%. Such
a rigorous estimation of statistical significance was not used in
previous LMA studies.

RESULTS

First PCA Modes of Marine Biological

Time Series

Each of the PCls for the whole, eastern, and western NP basins
show along-term trend-like feature with the single-phase reversal
in the 1980s, and western and eastern NP PCls are generally
similar (r = 0.90) especially after 1990 (Figure 2A). Interestingly,
the 1980s phase reversal is gradual for the eastern NP PCl

as seen in biological PCls of Hare and Mantua (2000) and
Litzow and Mueter (2014), but it is more rapid in the western
one. As expected, the whole NP PCI shares the features of the
eastern and western NP PCls. The EVRIs for the three analysis
domains, which ranges between 12.4 and 27.7% (Figure 2A),
are statistically significant (p-value < 0.1%) according to the
Monte-Carlo simulation.

The pattern of PCA first mode is shown (Figures 2B,C) as
statistically significant correlations at a confidence level of 90%
or higher between the PCls and biological time series with the
low-pass filter. The correlations calculated without the filter give
essentially the same pattern (Supplementary Figure 1). Two fish
groups, salmon and groundfish, have significant correlations in
both the western and eastern NP. Ten salmon time series (30%
of all salmon time series) are positively correlated, including
chum salmon (77.S, 83.S, 107.S), pink salmon (82.S, 94.S, 106.S,
109.S), and sockeye salmon (87.S, 93S, 108.S), mainly around
Alaska (82.S, 838, 87.S, 93.5, 94.S), and Russia/Japan (1068, 107.S,
108.S, 109.5). On the other hand, 13 groundfish time series
(24% of groundfish time series) have negative correlations with
PCls, including west coast rockfish (09.G, 12.G, 13.G, 20.G,
21.G), walleye pollock (34.G, 54.G, 63G), cod (35.G, 58.G, 60.G),
and others (57.G, 61.G). There are exceptions from this general
tendency such as negative correlations for salmon (89.S) and
positive correlations of groundfish (27.G, 50.S), but these are
minor. Therefore, positive correlations of salmon and negative
correlations of groundfish are the major feature commonly
found in both the western and eastern NP associated with
the first PCA mode.

Some species exhibit significant correlations in only either the
western or eastern NP (Figures 2B,C). In the western NP, PC1
is positively correlated with three small pelagic fish recruitment
time series (38% of western NP small pelagic fish) around Japan,
i.e., jack mackerel (67.P), anchovy (68.P, 73.P). In the eastern
NP, on the other hand, negative correlations are also found for
three zooplankton time series (33% of eastern NP zooplankton)
(113.Z, 114.Z, 115.Z) and one invertebrate (Bristol Bay red king
crab, 41.1), and positive correlation occurs for the large medusae
jellyfish in the eastern Bering Sea (120.Z). These basin-specific
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associations, especially those for small pelagic fish in the western
NP and zooplankton in the eastern NP, are also important aspects
of the first PCA mode of the NP ecosystem.

Biological time series that are significantly correlated to the
PCls are compared with those PC1 with the low-pass filter
(Figure 3). Consistent with the trend-like feature of the PCls,
the biological time series generally exhibit long-term increases
for Alaskan and Japanese/Russian salmon and decreases for
groundfish irrespective of basins, and increases of small pelagic
fish in the western NP and decreases of zooplankton in the

eastern NP. It is interesting to note that the time series of
the western NP salmon exhibit rapid negative-to-positive phase
transition around 1990, which appears consistent with the
aforementioned rapid phase reversal of the western NP PCl
(Figure 3A). Aside from this rapid transition around 1990,
co-variability between biological time series and PCls occurs
on multidecadal and longer timescale. For example, decadal
fluctuations are apparent in the eastern NP salmon, but these
decadal fluctuations do not occur in the PC1 (Figure 3D).
Furthermore, the time series comparison without time filtering
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(Supplementary Figure 2) shows no clear co-variability on
interannual timescale. Consequently, in association with the
trend-like first PCA mode of the marine ecosystem, the major
features are increases in Alaskan and Japanese/Russian salmon,
decreases in groundfish in both the western and eastern NP,
increases in western NP small pelagic fish, and decreases in
eastern NP zooplankton.

Second PCA Modes of Marine Biological

Time Series
The PC2s of eastern and western basins exhibit slightly different
timescales (Figure 4A). The eastern NP PC2 is characterized by

multidecadal variability with phase reversals in the 1970s and in
the 1990s. The western NP PC2 exhibits three phase reversals and
is characterized by shorter timescale interdecadal variability than
that of the eastern NP PC2. When PCA modes are calculated
using data from which linear trends are removed, the resultant
PCls with detrending are quite similar to the PC2s without
detrending (r = 0.92 for the eastern NP and r = 0.82 for the
western NP), thereby indicating the robustness of these modes.
Furthermore, the EVRIs for the detrended PCls are statistically
significant (p-value < 0.1% for the eastern NP and p-value = 3.3%
for the western NP). Here, we apply the statistical significance
test for the PCA first mode with detrending, because the present
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Monte-Carlo simulation, which assume the no-signals, does
not work accurately for the second mode when a signal exists
in the first mode.

Figures 4B,C shows the statistically significant correlation
coefficients of marine ecosystem time series with the respective
basin PC2s again using the low-pass filter before calculating
correlations. It is interesting to note that, of the time series
showing significant correlations with the PC2s, none are
significantly correlated with the respective eastern or western
NP PCls. For the western basin (Figure 4B), there are three
time series with significant correlations consisting of round
herring recruitment (65.P), chub mackerel recruitment (66.P),
and zooplankton biomass (119Z). When we calculate the

correlation map without the low-pass filter, the number
of time series with significant correlation is increased by
three times to nine in total, with negative correlations for
eight biological time series (Supplementary Figure 3).
This increase of significantly correlated time series can be
either due to the increase of effective degrees of freedom
in non-filtered analysis or due to the contribution of
interannual variability.

On the other hand, significant correlations for the eastern NP
PC2 (Figure 4C) were positive for mainly salmon abundance
(76.S, 81.S, 84.S, 90.S, 99.S) and negative for groundfish
recruitment (01.G, 02.G, 07.G, 08.G, 10.G, 11.G, 17.G, 19.G,
30.G, 32.G, 51.G). The opposite sign of correlations between
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salmon and groundfish was also found for the first PCA mode
(Figure 2C). Two invertebrate time series were significantly
correlated but with split signs (positive correlation for 45.1 and
negative for 42.1). The jellyfish in the eastern Bering Sea (120.Z)
was negatively correlated, whereas no other zooplankton time
series were significantly correlated. The correlation map without
time filtering (Supplementary Figure 3c) also exhibits positive
correlations for salmon and negative correlations for groundfish
but with increased number of biological time series that are

significantly correlated [from 18 with the filter (Figure 4C) to 27
without it (Supplementary Figure 3c)].

Figure 5 shows the biological time series that are significantly
correlated to the PC2s shown in Figures 4B,C with the low-
pass filter. The western NP PC2 is characterized by a overall
negative trend, small negative anomalies in the 1980s, and
large positive anomalies in the 1990s. This feature is shared
by zooplankton (119.Z) and chub mackerel (66.P) with a
delayed peak in the 1990s (Figures 5A,B). In contrast, the

—— Sign-reversed Western NP PC2
—— 119 Oyashio zooplankton summer

A Western NP PC2 & Zooplankton

1970 1980 1990 2000

—— Sign-reversed Western NP PC2
—— 65 Tsushima Current round herring
66 Tsushima Current chub mackerel

B Western NP PC2 & Small-pelagic fish

1970 1980 1990 2000

FIGURE 5 | As in Figure 3, but for western NP (A) zooplankton and (B) small pelag

groundfish along with eastern NP PC2. All time series are smoothed by 5-year running mean. For an easier comparison, the PC2 time series are sign-reversed

(multiplied by —1) for (A,B,D).
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peak in round herring (65.P) occurs earlier than the peak
of the western NP PC2 (Figure 5B). The low-pass filtered
eastern NP PC2 is characterized by a negative-to-positive
change in the 1970s and positive-to-negative change in the
1990s. These two phase transitions generally occur for salmon
(Figure 5C), but only the later transition is evident in groundfish
(Figure 5D). Furthermore, non-filtered data show that most of
the groundfish time series exhibit a sharp peak at the end of
1990s (Supplementary Figure 4) simultaneously in general with
the sharp negative peak of the eastern NP PC2 at 1999 shown in
Figure 4C.

Relation Between Marine Ecosystem
PCA and Climate Modes

Table 2 shows correlations between the PCs and climate time
series. All PCls, i.e., the whole NP PCI, the western NP PC1
and the eastern NP PC1, were highly correlated with NP-SST
as well as G-SST with correlation coefficients between 0.76 and
0.90. The PCls are not significantly correlated with other climate
time series except for moderate correlations of the eastern NP
PC1 with the MEI and NPIL. The G-SST and NP-SST time series
share multidecadal variability with biological PCls including the
negative-to-positive polarity change in the 1980s (Figure 6A).
The warming of the G-SST is most likely due to anthropogenic
global warming (Bindoff et al., 2019), and the similar trend
between the G-SST and NP-SST suggests that global warming
caused the warming trend of the NP-SST. Furthermore, the major
causality between global warming and the marine ecosystem is
that the former influenced the latter and not vise versa (Bindoff
et al, 2019). Therefore, the close co-variability between the
SST time series and biological PCls suggests global warming
influenced the first mode of the NP marine ecosystem.

The biological eastern NP PC2 is the most strongly correlated
with the PDO index (Table 2). Consistently, the eastern NP
PC2 and PDO index share the phase reversals in the 1970s and
1990s (Figure 6B), in association with the previously reported
climate and ecosystem regime shifts (Mantua et al., 1997; Minobe,
1997; Chavez et al,, 2003). An interesting difference between
the two time series occurs around 1990, when the PDO index
exhibited negative values for a short time without a similar feature
in the eastern NP PC2. Some studies characterized the PDO
index phase transition in the late 1980s a climatic regime shift
(Yasunaka and Hanawa, 2002), but Minobe (2000) suggested that
this was a minor climate regime shift and is different from the

TABLE 2 | Correlations between marine ecosystem PCs and climate indices with
5-year running mean.

G-SSA NP-SST PDO NPGO MEI NPI AO
Whole NP PC1 0.87* 0.88* -0.12 0.11 0.31 -0.27 0.29
Eastern NP PC1  0.89* 0.76*  0.21 0.07 0.57* —0.51* 0.37
Western NP PC1  0.77* 0.90* -0.31 0.1 0.16 —-0.05 0.29
Easten NP PC2 —-0.01 —0.26 0.76* —0.13 0.66* —0.35 0.43
Western NP PC2  0.46* 0.18 0.03 0.61* 001 -047 -0.28

Asterisks indicate that the correlations are significant at the 95% confidence level.
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FIGURE 6 | (A) Marine biological PC1s and G-SST and NP-SST (B) eastern

NP PC2 and PDO index, and (C) western NP PC2 and NPGO index. From all
climate indices, their respective averages in 1965-2006 have been removed,

and G-SST and NP-SST are further divided by their respective standard

deviations. All time series are smoothed by 5-year running mean.

major regime shifts in the 1920s, 1940s, and 1970s. The eastern
NP PC2 shows no correspondence with this short-lived event.
The second strongest correlation with eastern NP PC2 is found
for MEI (Table 2), probably reflecting the fact that the PDO,
the most strongly correlated climate mode to the eastern NP
PC2, is accompanied by ENSO-like interdecadal variability in
the tropical Pacific (Mantua et al., 1997; Zhang et al., 1997).
The relation between the North and tropical Pacific for decadal
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variability was at least partly due to the tropical influence on the
mid-latitudes (Newman et al., 2003; see also review of Newman
et al., 2016), but causality in the opposite direction, i.e., mid-
latitude forces the tropics, was also reported (e.g., Vimont et al.,
2003, Zhao and Di Lorenzo, 2020; see also review of Amaya,
2019).

In contrast to the relation between eastern NP PC2 and the
PDO index, the western NP PC2 is correlated with the NPGO
index (Table 2). It is noteworthy that the correlations of different
combinations, i.e., between eastern NP PC2 and the NPGO index
and between western NP PC2 and the PDO index, are very small.
The time series comparison shows that the coherent variability
between the NPGO index and western NP PC2 is limited to the
1990s and 2000s (Figure 6C). This may be related to the recent
enhancement of decadal variability of the NPGO (Di Lorenzo
et al., 2008; Joh and Di Lorenzo, 2017).

Figure 7 shows that the SST correlation patterns associated
with biological PCs. The correlation map associated with the
whole NP PC1 (Figure 7A) is characterized by overall positive
correlations, accompanied by especially strong correlations in
the western subtropical gyre and in the East China Sea. The
correlations with the whole NP PC1 were weak along the
subpolar front near 40°N and the subtropical front near 30°N,
150°W. Similar patterns are produced in correlation maps
between gridded SSTA and the western and eastern NP PCls
(Figures 7B,C). The correlation map associated with the eastern
NP PC2 (Figure 7D) is similar to the PDO pattern, which
was the first PCA mode of NP SSTs, while the correlation
map with the western NP PC2 (Figure 7E) is similar to the
second mode of SST pattern (Bond et al., 2003), which is known
to be closely related to the NPGO. The correlations with the
eastern NP PC2 are generally strong in the eastern and central
NP rather than in the western NP, consistent with the PDO
pattern itself (Mantua et al., 1997). On the other hand, the
correlations with the western NP PC2 are generally strong in the
subtropical western NP.

DISCUSSION

Comparison of PCA Modes Between the
Present and Previous Studies and
Possible Future LMAs

The trend-like feature is consistent with the biological PCls of
the previous eastern NP LMAs by Hare and Mantua (2000)
and Litzow and Mueter (2014) as well as PCls of western
NP LMAs by Tian et al. (2006) and Ma et al. (2019). The
physical-biological combined PC1 of Hare and Mantua (2000)
exhibited rapid transition feature, but the changes were much
more gradual in biological-only PCls by Hare and Mantua
(2000) and Litzow and Mueter (2014). Although the biological
PCls in this study were similar to those obtained by previous
studies as noted above, the relationship between the PC1 and
global warming was first identified by the present study. Our
results strongly suggest that global warming has already impacted
marine ecosystems in the NP.

The eastern NP PC2 was consistent with biological PC2s of
Litzow and Mueter (2014). The biological PC2 of Hare and
Mantua (2000) also exhibited the 1970s phase reversal, but the
second phase change occurred around 1990, earlier than that in
this study. The western NP PC2 was different from PCs reported
by LMA analyses for western NP marginal seas (Tian et al,
2006; Ma et al., 2019). The different features of western NP PC2
can be due to the different kind of data, i.e., fish catch data in
previous studies and recruitment and biomass data along with
the abundance in the present study or due to the high spatial
heterogeneity in the western NP.

The present and previous LMA studies indicate that the LMA
is useful to identify the influence of climate variability and change
on marine ecosystems, probably because LMA is effective at
extracting the influence of common forcing across the time series
even when the magnitude of the response is relatively small.
Thus further LMA studies are desirable especially for the regions
where LMA analyses have not been conducted yet. For those
future LMA studies, it is suggested to use recruitment and/or
abundance rather than fish catch data to understand changes in
marine ecosystems, because fish catch data are directly influenced
by fish catch efforts.

Possible Processes of Global Change

Influence

It is interesting to discuss what processes are responsible for the
biological variations documented in the present study, especially
for the PCA first modes, which are suggested to be related to
global warming. It is expected that the temperature increase due
to global warming may cause geographical migration of marine
species to colder areas, i.e., higher latitudes and deeper depths,
and shifts of phenology (e.g., Pinsky et al., 2013; see also review by
Poloczanska et al., 2016). The geographical migration increases
warm water species and decreases cold water species in each
region. This may be consistent with the pattern of small pelagic
fishes characterized by increased jack mackerel and anchovy
recruitment (P.67, P.68, P.73) in the western NP by the Japanese
records. The migration can be more difficult for groundfish than
pelagic fish because demersal fish habitat can be constrained by
bottom topography (Li et al., 2019). This might partly explain
why groundfish generally exhibit declines associated with the
PCA first modes across the basin. The increase of salmon mainly
occurs for Alaska and Russia, which are generally the northern
limit of their habitat in the 20th century. Therefore, there is
a possibility that global warming brought better condition for
salmon in these areas. Indeed, Kaeriyama et al. (2014) suggested
that the increase of salmon in the second half of the 20th century
is strongly influenced by global warming, through the enhanced
growth of age 1-year salmon in the Okhotsk Sea. Consistently,
Pacific salmon catch increases have been noted on the Arctic
side of Alaska since the 1990s (Carothers et al., 2019). Therefore,
it is suggested that NP warming in the last several decades
may have provided a better environment for some Russian and
Alaskan salmon, though further temperature increase due to
global warming may become harmful even for them. From the
latter point of view, it is important to note that the time series
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of Japanese/Russian salmon decline after 1990 (Figure 3A) and
that the PCls exhibit decreasing tendency after 2000 against
continuing SSTA warming (Figure 6A).

Of course, climate change influences on marine ecosystems
are not limited to temperature increases, but also include ocean
acidification and ocean deoxygenation. Among these two threats,
the species investigated in the present study may be more
strongly influenced by the ocean deoxygenation, because the
primary species impacted by ocean acidification are likely the
species that build calcium carbonate-based shells and other
structures (e.g., Doney et al., 2009). On the other hand, the
NP is an area where strong ocean deoxygenation has been
documented over the last 50-60 years, as reported by recent
global analyses (Ito et al, 2017; Schmidtko et al., 2017), and
thus the deoxygenation can have negatively impacted marine
species, especially groundfish. Indeed, Ono et al. (2001) suggested
that the shoaling of the hypoxia upper boundary influenced
the deepest habitat of pacific cod over the Pacific continental
shelf off northeast of Japan. Oxygen changes also impacted
mesopelagic and demersal fish in California Current System
(Koslow et al., 2011, 2019). Ocean deoxygenation is generally
caused by increased water temperature through the reduced

oxygen saturation concentration at the surface and weakened
circulation and mixing that supply dissolved oxygen at depth
(e.g., Keeling et al., 2010). The strong oxygen decrease over the
NP may be due to reduced ventilation caused by weaker cooling
in the Okhotsk Sea (Nakanowatari et al., 2007). In addition,
vertical displacements of isopycnal surfaces and advection on
those surfaces play important roles in varying dissolved oxygen
concentration in different regions of the NP (Pozo Buil and Di
Lorenzo, 2017; Ito et al., 2019). Further studies are necessary to
understand the mechanisms of deoxygenation over the NP basin
and its influences on marine ecosystems.

These possible mechanisms suggest that groundfish may
have more difficulties than pelagic fish in adjusting to the
impacts of global warming. In order to understand this aspect
better, we plot the depth ranges of the fish species that have
significant correlations with the biological PCls from our
analyses (Figure 8). For the first PCA modes, among 17 time
series of significant positive correlations 12 time series are for
species with depth range shallower than 300 m, while among
20 time series of significant negative correlations 13 time series
are for species with depth range deeper than 300 m. This result
shows that the sign of the loadings on our ecosystem PCA
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FIGURE 8 | Depth ranges (lines) of western and eastern basin marine species that have statistically significant correlations (colored circles) with respective basin
PC1s. The colored circles indicate the absolute correlations and color indicates the corresponding confidence levels as in Figure 2.

modes are generally opposite for shallow and deep-water species.
Consistently, the LMA in the northeast Atlantic also revealed
global-warming related decline of cod and plaice but increase of
herring (Brunel and Boucher, 2007). Since the disadvantageous
conditions to the ground fish, i.e., bottom topography constraint
for habitat and ocean deoxygenation, will not be relaxed in future,
we expect that groundfish will suffer more than pelagic fish
species in the warming oceans.

Although we consider that the first mode is mainly caused by
global warming, but other anthropogenic factors such as fishing
may have some influence. Recruitment and abundance, which
are the main data used in the present study, are less influenced
directly by fishing than fish catch data, which were used in
some LMA studies. However, our data are not free from effects
of fishing; for example, if a species is substantially removed
by fishing, it can impact its predator and prey species. It is
difficult to identify these factors from observational data analysis
alone. In future, it is desirable that these factors are estimated by

using mathematical or numerical models (e.g., Coll et al., 2019;
Bueno-Pardo et al., 2020).

Possible Mechanisms of Zooplankton
Variations

Among marine species analyzed in the present study zooplankton
are important as food for other species. Thus, it is interesting
to discuss what mechanisms can work on the observed
zooplankton variations.

Three zooplankton biomass time series in the eastern NP,
one from California Current waters (113.Z) and two from the
eastern Bering Sea (114.Z, 115.Z), were highly correlated with the
eastern NP PC1, which is suggested to be influenced by warming
ocean temperatures. For California Current waters, Roemmich
and McGowan (1995) reported that a substantial decline of
zooplankton associated with warming of a surface layer from
the 1950s to the 1990s. The warmed surface water enhances
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stratification, which in turn reduces the upwelling resulting in
weakened productivity due to the reduced upwelled nutrients.
Our result shows that the California Current zooplankton stayed
low level except for a positive spike 2003 (Supplementary
Figure 2f). If the hypothesis of Roemmich and McGowan (1995)
is true, the decline of California Current zooplankton is an
aspect of marine ecosystem response to the global warming
discussed in the previous subsection. For the eastern Bering
Sea, Sugimoto and Tadokoro (1997) reported an increase in
zooplankton biomass in the 1960s and 1970s relative to the
preceding decade, and a decline from the 1970s to the 1990s
(when the records they examined end). They suggested that on
decadal timescales a bottom-up effect may be responsible for
zooplankton variations.

In the western NP, summertime zooplankton biomass in
Oyashio waters (119.Z) was related to the western NP PC2
(Figure 4B). The zooplankton time series is consistent with those
in Tadokoro et al. (2005) and Tadokoro et al. (2009). As drivers for
the zooplankton variations in Oyashio waters, predation pressure
by Japanese sardine (Tadokoro et al., 2005) and surface nutrient
variability via primary production (Tadokoro et al., 2009) were
suggested. Ito et al. (2007) demonstrated the effect of predation
pressure on zooplankton by Japanese sardine on other pelagic fish
growth by using a simple box model. The decrease of other small
pelagic species in the western NP PC2 was consistent with the
estimates generated (Figure 4B). Furthermore, the high biomass
of zooplankton in Oyashio water in the 1990s in the present study
and Tadokoro et al. (2005, 2009) was also seen in zooplankton
biomass in the Kuroshio-Oyashio Extension region (Chiba et al.,
2013). Chiba et al. (2013) suggested that changes in advection
of Kuroshio water in association with the NPGO caused the
observed zooplankton biomass changes in this region (see also
Di Lorenzo et al., 2008).

SUMMARY

The LMA of marine biological time series for both the western
and eastern NP basins was conducted for the first time using
PCA of 120 biological time series. Marine biological PC1s both
in the eastern and western NP exhibit long-term trends and are
associated with overall increased Alaskan and Japanese/Russian
salmon abundance and some small pelagic fish recruitment in
the western NP, and decreases of groundfish recruitment across
the basin and eastern NP zooplankton biomass (Figures 2, 3).
This mode is closely related to NP- and G-SSTs (Figure 6A).
This suggests that the first mode of the NP marine ecosystem is
strongly influenced by global warming. These PC1s are consistent
with biological PCls of previous studies for the eastern NP
(Hare and Mantua, 2000; Litzow and Mueter, 2014) as well as
those for the western NP marginal seas (Tian et al., 2006; Ma
etal,, 2019), although those studies did not examine relationships
with global warming. We expect that future global warming
will cause more difficulties for groundfish than pelagic fish.
The eastern NP PC2, characterized by multidecadal variability,
was correlated positively with salmon abundance and negatively

with groundfish recruitment (Figures 4C, 5C,D). On the other
hand, the western NP PC2 exhibits slightly shorter timescale
interdecadal variability than the eastern NP PC2 and was
negatively correlated with zooplankton biomass and two small
pelagic fish recruitment records around Japan. The eastern NP
PC2 is the most strongly related to the PDO index (Figures 4A,
6B), while the western NP PC2 is the most closely related
to the NPGO index (Figures 4A, 6C). Consequently, the
present LMA provides a new and unified view for climate
change and marine ecosystem variations across the western and
eastern NP.
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The sea surface temperature (SST) of the Oyashio region in boreal summer abruptly
increased in 2010 and high summertime SST repeated every year until 2016.
Observations and an ocean reanalysis show that this marine heatwave occurred not
only at the surface but also at deeper depths down to 200 m. Furthermore, salinity
in summer also increased in parallel with the temperature. The rises in temperature
and salinity indicate the strengthening of the Kuroshio water influence. The sea surface
height and velocity show that the southward intrusion of the Oyashio near the coast
in summer weakened from 2010 accompanied by an increase in anticyclonic eddies
from the Kuroshio Extension. The much more frequent existence of anticyclonic eddies
to the east of the first intrusion of the Oyashio in summer is closely associated with
the weakening of the first intrusion and the strengthening of the second intrusion. It is
suggested that the rise in the water temperature could increase a catch of yellowtall
(Seriola quinqueradiata) in northern Japan.

Keywords: marine heatwave, Oyashio current, Kuroshio current, anticyclonic eddy, yellowtail

INTRODUCTION

Marine heatwave is an event of anomalous warm sea surface temperatures (SST) from several days
to years (Hobday et al., 2016). Recently, marine heatwaves have attracted considerable scientific
and public interests. Marine heatwaves, combined with the global warming, can have substantial
impacts on marine ecosystems. The frequency of marine heatwaves has significantly increased over
the past century, with a 54% increase in annual marine heatwave days globally from 1925 to 2016
(Oliver et al., 2018). Marine heatwaves can also be a harbinger of near-future ocean conditions in a
warmer world.

A prime example of marine heatwaves is “the blob,” which occurred in 2014-2016 in the
Northeastern Pacific Ocean (Bond et al., 2015; Lorenzo and Mantua, 2016; Hu et al., 2017),
and is characterized by anomalous SST at more than 3°C than normal, exceeding four standard
deviations. The blob caused substantial damage to marine ecosystems, including anomalously low
near-surface chlorophyll biomass (Whitney, 2015) and massive deaths of sea lions, whales, and
seabirds (Welch, 2016). On the other hand, animals favoring warm water temperatures, such as
warm-water thresher sharks and ocean sunfish, appeared as far north as the Alaska coast (Welch,
2016).

In the North Pacific Ocean, marine heatwaves in recent years were not limited to the eastern
side of the basin, but have also occurred in the western side of the basin with significant impacts
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FIGURE 1 | (A) Anomaly of the 2010-2016 mean SST in July-September to
the 1993-2009 mean (color; °C). (B) Time series from 1982 to 2018 of the
July-September mean SST (°C) averaged over the box (143-147°E 40-43°N)
enclosed in black lines in (A). The blue line shows the 1993-2009 mean; the
red line shows the 2010-2016 mean. OISST version 2 (see section Data) was
used for these figures.

on the marine ecosystem there. For example, it has often been
reported by mass media and official fisheries statistics in Japan
that warm water fishes such as Japanese amberjack or yellowtail
(Seriola quinqueradiata) are more frequently caught in the coastal
region in northern Japan in the 2010s than before (Makino and
Sakurai, 2012). Conversely, cold fishes such as saury (Cololabis
saira) decreased drastically after 2010 (Kuroda and Yokouchi,
2017).

Consistently, in the early and middle 2010s, warm SST
anomalies prevailed in the North Pacific off the island of
Hokkaido in Japan (Figure 1A; in and around the black box).
Interestingly, as shown later, this western North Pacific marine
heatwave was often limited only in summer. Furthermore, SST
anomaly oft Hokkaido in summer over the western North Pacific
was stable during 2010-2016 in contrast to the relatively high
variability before that, indicating a new normal of warm SST
(Figure 1B explained in section Results).

Recent conditions in the western North Pacific Ocean were
studied by a few papers. Kuroda et al. (2015) studied the
observational data from 1993 to 2011 and reported the increasing
trend of sea-surface height in the region of strong SST anomalies
near the coast of Hokkaido, and they suggested that this trend is
related to the Oyashio path change from a nearshore path to an
offshore path, which was caused by the wind-stress changes over
the North Pacific Ocean. By analyzing August and September
data, i.e., the season of warm SST anomalies, from 1993 to
2014, Kuroda and Yokouchi (2017) found that positive SST trend
oftf Hokkaido is related to more frequent anticyclonic eddies.
Especially for the period 2010-2014, they suggested that the same
eddy occupied the region in 3 of 5 years in association with
retreated Oyashio intrusion compared with the period 1993-
1997. These studies mainly focused on the variability near the
surface. The analysis of subsurface water properties by Kuroda

et al. (2015) was limited to a single repeat observation line for
annual mean.

Qiu et al. (2017) conducted an analysis of SST and head
budget analysis of the upper 250m depth in the western
Oyashio Extension region (36-43°N, 141-150°E) and found
that eddy advection was important in decadal variability in this
region. They did not show the difference with seasons in the
decadal variability.

Although these studies give us important information on
recent changes and their possible mechanisms in the western
North Pacific, previous studies have focused on linear trend
or decadal variability. In this study, we paid attention to the
apparent change from 2010 in Figure 1. We also studied the
difference of the summer season from the other seasons, which
was not discussed in the previous studies. The purpose of
this paper is, therefore, to investigate the anomalous oceanic
conditions in summer from 2010 compared with other seasons.
In particular, we analyzed the three-dimensional subsurface
temperature and salinity field by utilizing an eddy-resolving
assimilation dataset of the FRA-JCOPE2 reanalysis (Miyazawa
et al, 2009). The reanalysis of FRA-JCOPE2 allows us to
understand the three-dimensional structure of the marine
heatwave in the 2010s in the western North Pacific Ocean.

This paper is organized as follows. Data used in this study
are described in section Data. The results are shown in section
Results. The results are summarized and discussed in section
Summary and Discussion.

DATA

In this study, we analyzed temperature, salinity, air-sea heat flux,
sea surface height (SSH), and velocity data.

For SST, Optimal Interpolation SST (OISST) version 2
(Reynolds et al., 2007) was used. This SST dataset is a satellite
observation based on measurements by the Advanced Very
High-Resolution Radiometer (AVHRR). The horizontal grid
size is 0.25°.

For air-sea heat flux, the ERA5 reanalysis (Copernicus Climate
Change Service, 2017) with a 0.25° horizontal grid size was used.
The net downward heat flux was calculated as a sum of surface
net solar radiation, net thermal radiation, surface latent heat flux,
and surface sensible heat flux.

For SSH, Global Ocean Gridded Level 4 Sea Surface Heights of
Copernicus Marine Environment Monitoring Service (CMEMS;
http://marine.copernicus.eu/) was used. The data is based on the
observation of multi-mission satellite altimeters. The horizontal
grid size is 0.25°.

The SSH dataset was also used to describe eddies through the
eddy-tracking product of AVISO+ (https://www.aviso.altimetry.
fr/en/data/products/value-added- products/global-mesoscale-
eddy-trajectory-product.html). The daily paths and locations of
cyclonic and anticyclonic eddies from 1993 to 2016 were used.

Temperature, salinity, and velocity from the FRA-JCOPE2
reanalysis (Miyazawa et al., 2009) were also used. This reanalysis
dataset is the product assimilating satellite data and in-situ water
temperature and salinity data into an ocean circulation model.
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The horizontal grid size is 1/12° x 1/12°. The data from 1993 to
2018 was used.

In this study, we used data from July, August, and September
(JAS) for averages for summer. Similarly, we used data from
January to March (JEM), April to June (AM]), and October
to November (OND) for averages for winter, spring, and fall,
respectively. For the heat flux in summer, the average from June
to August was used, assuming that the change in the air-sea heat
flux occurs 1 month earlier than the response of the ocean.

Data from 1993 to 2018 were analyzed, unless stated
otherwise. The analysis period was decided because the observed
SSH product and the FRA-JCOPE2 reanalysis are only available
from 1993, though some data (for example, SST) before 1993 are
available. We defined anomalies as deviations from the 1993-
2009 climatologies.

RESULTS

Observed Sea Surface Temperature

Figure 2 shows the SST anomaly of the 2010-2016 mean from
the 1993-2009 mean in each season. The anomaly in Figure 2C
of JAS is the same as that of Figure 1A but magnified to show
the detailed structure of the anomaly near Japan. The warming in
the 2010s has a distinct seasonality. The temperature increase was
particularly large in summer to the southeast oft Hokkaido within
the black box (143-147°E, 40-43°N). By contrast, SST decreased
in most of the same region in winter.

The summertime SST abruptly increased in 2010 and the
marine heatwave repeated until 2016. Figure 1B shows that the
time series of the SST in JAS averaged over the aforementioned
box southeast off Hokkaido in Figurel (the same box in
Figure 2). The SSTs from 2010 to 2016 were continuously higher
by more than 1°C than its climatology, 17.5°C, defined for
the period between 1993 and 2009 (the blue line) and the SST
average between 2010 and 2016 is 18.9°C. The difference between
the averages of 1993-2009 and 2010-2016 was statistically
significant with Welch’s t-test (p = 3.2 x 10> < 0.01) with
an assumption of year each being independent. From 2017 to
2018, the SST anomaly returned to the values close to the 1993-
2009 climatology.

Although this study used values from 1993 to 2009 as the
climatology according to the availability of the other data, the
OISST data are available form 1982 (Figure 1B). The average
between 1982 and 2009 (17.4°C) was similar to the one between
1993 and 2009. Although there were a few years when the
temperature was warmer than the climatology by more than 1°C
between 1982 and 2009, consecutive warming like in 2010-2016
did not occur in the past.

Figure 3 shows the anomaly of SST for each year (2010-2016)
from the 1993-2009 average. Warming occurred at a similar
location southeast off Hokkaido in each year. The SST anomaly
in 2012 was located slightly westward of those in the other years
and how this feature is associated with other variables will be
described later.
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Hobday et al. (2016) proposed a definition of marine
heatwave as the event where temperature exceed an upper
locally determined threshold (90th percentile relative to the
local long-term climatology) for at least a five-day period,
with no more than two below-threshold days. From daily time
series for SST averaged over the box (143-147°E 40-43°N),
Figure 4 shows marine heatwave events in JAS season from
2010 to 2016 using the definition of Hobday et al. (2016). For
climatology, 30-year baseline period of 1983-2012 was used
as in Hobday et al. (2016). The red filled areas in Figure 4
indicate the periods of the identified marine heatwaves. In JAS

season of all years from 2010 to 2016, marine heatwave events
occurred, corresponding to the anomalous SST warming in
this region.

Hobday et al. (2018) further proposed a categorization scheme
for marine heatwaves. Multiples of the 90th percentile difference
(2x twice, 3x three times, etc.) from the mean climatology value
define each of the categories I-IV, with corresponding descriptors
from moderate to extreme. According to this category, some
events in 2010, 2012, 2014 were Category II (“Strong”) events,
where the maximum temperatures exceeded the 2x difference
line (green dashed line).
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Heat Flux

One possible cause of the SST increase is an increase in
downward net air-sea heat flux. The difference in the net
downward air-sea heat flux between the 2010-2016 average and
the 1993-2009 average in summer (JJA) is calculated from ERA5
and is shown in Figure 5.

Inside the box for southeast off Hokkaido, the anomalous heat
flux is upward over the peak of the SST anomaly (Figure 2C).
Therefore, the air-sea flux could not cause the SST increase.
Rather, a comparison between Figures 2A, 5 suggests that the
increase in SST induced the anomalous upward net-heat flux. A
similar spatial pattern of the heat flux change was obtained using
the averages in JAS or using the JRA55 reanalysis (Kobayashi
et al., 2015) (not shown).

Observed Sea Surface Height and
Geostrophic Velocity

Because the surface heat flux cannot explain the marine heat wave
in 2010-2016, the ocean current is examined as the possible cause
of the heat wave in this subsection.

Figure 6 shows (A) the 1993-2009 average, (B) 2010-2016
average, and (C) the difference between the latter and former of
SSH and the corresponding geostrophic velocity in JAS.

The 1993-2009 average velocity (Figure 6A) shows a typical
pattern of the Oyashio, which is schematically shown by the blue

2010-2016 JJA anomaly

46°N 50
40
30
44°N
20
10
42°N 0
-10
40°N =20
-30
—40
38°N -50
145°E 150°E 155°E

FIGURE 5 | Anomaly of the 2010-2016 average downward net heat flux (color
and contour; W m~2) in JJA to the 1993-2009 average in JJA calculated from
the ERA5 reanalysis. The box enclosed by the black lines is the same as the
previous figures.

arrow in Figure 6D. The first and second southward crests of
the meandering Oyashio from the west to the east are called the
First Oyashio Intrusion (FOI) and the Second Oyashio Intrusion
(SOI), respectively (Kawai, 1972). In contrast, the 2010-2016
average (Figure 6B) shows that the FOI was significantly weaker
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(red line). The first and second crests of the meandering Oyashio Current from the west to the east are the First Oyashio Intrusion (FOI) and Second Oyashio Intrusion

(SQlI), respectively.

than that of 1993-2009. Instead, the SOI in 2010-2016 was
stronger than that in 1993-2009. The Oyashio’s current pattern
in this period is shown by the red arrow in Figure 6D. Because
the area of the SST warming from 2010 discussed in section
Observed Sea Surface Temperature corresponds to the FOI
area, the weakening of FOI was responsible for the warming
from 2010.

The difference between the 1993-2009 and 2010-2016
averages (Figure 6C) shows that the anticyclonic eddy-like
circulation anomaly between the FOI and the SOI. This
anticyclonic eddy-like circulation is clearly visible in 2010-
2016 average (Figure 6B) but not so in 1993-2009 average
(Figure 6A). The enhancement of the anticyclone circulation for
the period 2010-2016 is closely related to the weakened FOL

Kuroda et al. (2015) also found that the Oyashio path shifted
from the nearshore (FOI) to offshore (SOI). However, they
focused their attention on a trend during 1993-2011, not the
change from 2010 discussed in this paper.

Meanwhile, there were little differences in the SSH and
geostrophic current in the surrounding subpolar gyre and its
western boundary current in Figure 6C (for example, the region
between 44-46°N). This suggests that the local intensification of
the anticyclonic eddy rather than the weakening of the whole
subpolar gyre caused the weakening of FOL

Increase in Anticyclonic Eddies
It is interesting to know how the intensification of the
anticyclonic eddy-like circulation between the FOI and the SOI

A o Anticyclonic Eddies
o 80
3
o 60
2
2 4
g
S A .
\ /N \V4
B 1995 2000 2005 2010 2015
Cyclonic Eddies

100
» 80
z
s 60
ol A
2 1
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FIGURE 7 | Time series of the total number of days for which eddies remained
within the dashed box in Figures 6A-C in summer (JAS) each year. For
example, if one eddy remained within the box for 30 days and another eddy
remained in the box for 20 days during JAS a certain year, the total cumulative
days in the year is 50. (A) For anticyclonic eddies. (B) For cyclonic eddies.

shown in Figure 6 is associated with individual eddies. The
region between FOI and SOI is known as the place where eddies
from the Kuroshio Extension move northward (Itoh and Yasuda,
2010). Thus, the intensification of the anticyclonic eddy-like
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FIGURE 9 | Deviation of the 2010-2016 average salinity at each depth from the 1993-2009 average (color) and the 2010-2016 average salinity at each depth
(contour) of the FRA-JCOPE2 reanalysis. (A) At 50 m. (B) At 100 m. (C) At 200 m. (D) At 400 m.
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circulation may be resulted from the more frequent anticyclonic
eddies from the south rather than an intensification of the same
eddy at the same place. To examine this idea, the eddy-tracking
product of AVISO was analyzed.

Figure 7A shows the time series of the total cumulative days
for which anticyclonic eddy centers are contained in the box
enclosed by the dashed line between FOI and SOI in Figure 6B in
summer (JAS) each year. The area shown by the dashed line box
is henceforth referred to as east of the FOI. Anticyclonic eddies
indeed became more frequent from 2010. While anticyclonic
eddies existed for 11 days each year on average during 1993-2009,
the number increase five times to 56 days during 2010-2016. The
difference was statistically significant (p = 3.2 x 1073 < 0.01 with
Welch’s ¢-test).

On the other hand, cyclonic eddies decreased in the east of
the FOI (Figure 7B). While cyclonic eddies existed for 24 days
each year on average during 1993-2009, they are almost absent
(0 days) during 2010-2016. The difference was again statistically
significant (p = 9.4 x 107* < 0.01).

During the period 2010-2016, anticyclonic eddies did not
exist east of the FOI in 2012. This is because the anticyclonic
eddies in summer 2012 remained slightly westward or slightly
southwestward. When the cumulative days were counted in the
box 144-145°E 40.5-41.5°N, the number was 91 days in 2012,
comparable to the number in the other years during 2010-
2016. Because of the westward location of the anticyclonic eddies
in 2012, the SST anomaly was located westward (Figure 3C)
compared with the other years in Figure 3.

Note that the eddy-tracking suggests that anticyclonic eddies
east of the FOI in each year were different ones (not shown),
except for the eddy in 2015 and 2016 as discussed in the next
section. While Kuroda and Yokouchi (2017) concluded that an
identical eddy (“Eddy-A”) remained from 2010 to as of September
2016, the product used in this study does not indicate it. The
difference of Kuroda and Yokouchi (2017) and the product used
in this study might be from the difference of the treatments in
the coalescence of eddies. Kuroda and Yokouchi (2017) allowed
the coalescence of clockwise eddies. However, they did not
determine which clockwise eddy survived or died. Instead, they
assumed that the Eddy-A survived at any coalescences. Repeated
coalescence processes were essential to revive the Eddy-A, which
is much weakened in cold seasons. In Kuroda and Yokouchi
(2017), however, source of the eddies absorbed into the Eddy-A
were not shown.

Subsurface Water Properties
To further examine the change in the subsurface structure, the
ocean reanalysis FRA-JCOPE2 was analyzed.

Figure 8 shows that the anomaly of the temperature at 50,
100, 200, and 400 m depth. Figures 8 A-C shows that temperature
difference occurred not only at the surface but at deeper depths.
At 400 m depth, the anomaly was small.

In parallel to the temperature change, the salinity also
changed from 2010. Figure9 shows the salinity increased at
the surface and deeper depths, again at least 200 m (Figure 9C).
The warming reaching to the subsurface could be important for
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FIGURE 10 | Monthly time-depth diagram from 2010 to 2016 of (A)
temperature and (B) salinity anomaly (°C and salinity unit, respectively; colors
and contours) horizontally averaged in the box in Figures 8, 9. The horizontal
blue lines at 200 m depth denote JAS period each year.

fisheries because some of the commercially important fisheries in
Japan like walleye pollock are demersal (Sakurai, 2007).

Because the water from the Kuroshio Current is warm and
saline and the water from the Oyashio Current is cold and
fresh, the increases in temperature and salinity in Figures 8,
9 are consistent with the idea that the advection from the
Oyashio became weak while the eddies from the Kuroshio
Extension increased from 2010, as discussed in section Observed
Sea Surface Height and Geostrophic Velocity and Increase in
Anticyclonic Eddies.

Figure 10 shows the monthly time-depth diagram from 2010
to 2016 of (A) the temperature and (B) salinity anomaly (°C and
salinity unit; colors and contours) horizontally averaged in the
box in Figures 8, 9. Both the temperature and salinity anomalies
extended to a depth of more than a few hundred meters during
JAS season each year (the horizontal blue line). This warm and
saline anomalies in JAS are separated by opposing cold and fresh
anomalies in other seasons until 2014. While the vertical extent in
2014 was relatively small among 2010-2016, the vertical extents
in 2015 and 2016 were large.

Another prominent feature of the anomalies in 2015 and
2016 was that the anomaly in 2015 did not end in fall unlike
2010-2014 and continued to summer in 2016. This could be
because the warm anticyclonic eddy in 2015 remained until 2016.
Sendai district meteorological observatory (2017) reported that
the warming in the Oyashio region caused by the anticyclonic
eddy continued from June 2015 to October 2016.

Southward Intrusion of the Oyashio

In this subsection, we examine how distribution of the Oyashio
water changed in 2010-2016 compared to that in 1993-2009.
The temperature colder than 5°C at 100 m depth has been used

Frontiers in Marine Science | www.frontiersin.org

January 2021 | Volume 7 | Article 576240


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles

Miyama et al.

Marine Heatwave of the Oyashio

145°E 150°E

¢ JAS 1993-2009 average

150°E

145°E

155°E

155°E

FIGURE 11 | Temperature at 100 m depth of the FRA-JCOPE2 reanalysis (contour). The temperature of <5°C is colored blue. (A) The 1993-2009 average in JFM. (B)
The 2010-2016 average in JFM. (C) The 1993-2009 average in JAS. (D) The 2010-2016 average in JAS.

145°E 150°E 155°E
D JAS 2010-2016 average
46°N y " -

150°E 155°E

145°E

for the area of the Oyashio water in previous studies (Ogawa,
1989; Takasugi and Yasuda, 1993). Figure 11 compares the 1993
2010 and 2010-2016 averages of the temperatures at 100 m depth
in winter [JFM, (A) and (B)] and summer [JAS, (C) and (D)].
The Oyashio water indicated by temperature <5°C is colored
blue, and southward bulges around 143-144°E and 147-150°E
correspond to the FOI and the SOI, respectively. In winter,
the distributions of the Oyashio waters are similar between the
1993-2009 (Figure 11A) and 2010-2016 (Figure 11B) periods.
However, in summer, the FOI is clear in 1993-2009 (Figure 11C)
but not in 2010-2016 (Figure 11D). This change of FOI is
consistent with the result obtained from the observed SSH and
the corresponding weak FOI in section Observed Sea Surface
Height and Geostrophic Velocity.

The southernmost latitude of FOI in each month is
quantified in Figure 12 using the FRA-JCOPE2 reanalysis.
The southernmost latitude of the FOI was defined as the
southernmost latitude of the 5°C isoline east of 145°E at 100 m
depth. When there was no 5°C isoline east of 145°E, the latitude
was defined as the latitude of the 5°C isotherm closest to the coast
of the island of Hokkaido.

Figure 12 shows that the seasonal migrations of the FOI
in 1993-2009 and 2010-2016 period. In both periods, the
FOI advanced most southward in March, retreated from
March to November, and reached its northernmost latitude
in November. This seasonal variability is consistent with
previous studies (Isoguchi and Kawamura, 2006; Kuroda
et al, 2017). The seasonal migration is likely controlled by
the seasonally fluctuating Aleutian Low pressure system via
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FIGURE 12 | Monthly time series of the southernmost latitude of the FOI. Red
and blue curves show the 2010-2016 and 1993-2009 average, respectively.
Dark gray and light gray show the differences are significant with p < 0.05 and
p < 0.1, respectively.

barotropic adjustment in the subarctic North Pacific Ocean (Qiu,
2019).

The significant differences in FOI latitude occur in the
summertime retreating phase. The FOI in 2010-2016 period
retreat faster and thus was located northward to the FOI in
1993-2009, while the southward intrusions in winter were not
significantly different. The difference in the latitude of FOI was
statistically significant in August and September (p < 0.05 with

Frontiers in Marine Science | www.frontiersin.org

155

January 2021 | Volume 7 | Article 576240


https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles

Miyama et al.

Marine Heatwave of the Oyashio

1200

19.04

=
o
o
o
)

18.54
800
18.01

600

Temperature (°C)
S
w
Yellowtail Catch (ton

1985 1990 1995 2000 2005 2010 2015
year

FIGURE 13 | Time series of the SST averaged over the black box of Figure 2
in JAS (black curve; °C on the left axis; the same as Figure 1B) and the time
series of the catch of yellowtail (red curve; ton on the right axis) in southeastern
Hokkaido (Hidaka, Tokachi, and Kushiro areas). The catch data is taken from
Annual Statistics on Fishery and Aquaculture Production in Hokkaido (in
Japanese) at: http://www.pref.hokkaido.lg.jp/sr/sum/03kanrig/sui-toukei/
suitoukei.htm.

Welch’s t-test) and in June (p < 0.1). Figure 12 reaffirms that the
warming in FOI from 2010 was concentrated in summer.

SUMMARY AND DISCUSSION

The SST in the Oyashio region off the Island of Hokkaido in
boreal summer abruptly increased from 2010 and stayed high
until 2016. The temperature rise cannot be explained with the
downward heat flux, because there is no agreement between
the regions of the large downward net heat flux and the large
temperature rise. Therefore, it is inferred that water advection
is important. The importance of the advection is also supported
by the fact that the change of water temperature and salinity
extended to a deeper depth of more than a few hundred
meters. The increase in the salinity in addition to temperature
suggests that strengthening (weakening) of the influence from the
Kuroshio (Oyashio) water.

SSH as well as the temperature change shows the weakening
of the Oyashio first intrusion (FOI). The weakening of
FOI was closely associated with more frequent warm and
saline anticyclonic eddies east of the FOI. The Eddy-tracking
analysis shows that more anticyclonic eddies coming from the
Kuroshio Extension.

As mentioned in the Introduction, temperature changes
in the Oyashio region have affected fisheries. As a striking
example, the catch data of yellowtail in southeastern Hokkaido
(Hidaka, Tokachi, and Kushiro areas) is shown in Figure 13.
Yellowtail is one of the most commercially important predatory
fishes in Japan. Tian et al. (2012) showed that there was close
correspondence between water temperature and catch in the
Japan Sea. Figure 13 shows the catch of yellowtail, which was
close to zero before 2010, sharply increased with the SST rise from
2010. Spearman rank correlation between the SST and the catch
is 0.65 (p = 1.7 x 1074).

Fisheries of yellowtail are conducted in the Western Central
Pacific Ocean, from Japan and the eastern Korean Peninsular

to the Hawaiian Islands (Dhirendra, 2005). The Pacific area
off southeast Hokkaido is regarded as the northeasternmost
habitat or distribution of yellowtail in Japan (Tian et al,
2012; Stock assessment report, 2020). In addition, around the
Hokkaido coast, most of yellowtail (e.g., 99% in 2018) was
caught by fixed nets in coastal waters according to the Stock
assessment report (2020). Hence, the abrupt increase of the
Yellowtail catches during 2010-2016 suggests the expansion of
the habitat/distribution. This strongly suggests that the marine
heat wave southeast off Hokkaido from 2010, which is closely
associated with the weakening of the FOI and more frequent
anticyclonic eddies from the Kuroshio Extension, have impacted
fishery in Hokkaido. Indeed, Hakodate, a city in the southwestern
part of Hokkaido, was famous as a “squid town” because of many
catches of squid in the past, but it is now trying to become also a
“yellowtail town” to adjust to decreased squid catch and increased
yellowtail catch. The sharp increase of the yellowtail catch in the
Pacific Ocean was not found in Tian et al. (2012), who used the
data before 2010.

The present paper documented the major features of the
marine heat wave southeast off Hokkaido and associated the FOI
change in 2010-2016, but the driving mechanism of this long-
lasting marine heat wave has not been identified. Kuroda et al.
(2015) proposed one possible reason for the shift of the Oyashio
path from FOI to SOI during 1993-2011 is the change of the
wind stress over the North Pacific Ocean (decrease of the wind
stress curl and the northward shift of the meridional position).
However, this change in the stress is the trend from 1993 to
2011 and does not indicate the abrupt change around 2010 (their
Figure 15). Figure 6C in this study also suggests that the change
from 2010 was local one rather than the large-scale change of the
subarctic gyre.

Kuroda et al. (2015) also proposed an increase in anticyclonic
eddies as another possible reason for the change in the Oyashio
Current. The eddy-tracking analyses by us and Kuroda and
Yokouchi (2017) support the role of anticyclonic eddies as the
plausible reason for the warming from 2010. Qiu et al. (2017)
also concluded that the western Oyashio front variability is
controlled by the decadal mesoscale eddy modulations in the
upstream Kuroshio Extension. However, Figure 3A in Qiu et al.
(2017) does not indicate an increase in eddy generation from the
Kuroshio Extension around 2010. Further analysis of not only
eddy generation but also eddy propagation is needed to elucidate
the behavior of eddies. Further studies are needed to identify the
driver for the warming in summer and increase of anticyclonic
eddies after 2010.

Hosoda et al. (2015) found the temperature increase since
2008 from the surface to several 100 m depth in another western
Pacific region (35°-45°N, 160°-180°E) in early summer. The
warming at the surface can also be seen in Figurel of our
paper. Hosoda et al. (2015) suggested that the oceanic frontal
structure change (more northward Kuroshio Extension) was a
possible cause, but the reason for the warming has not been
confirmed. The current study and Hosoda et al. (2015) share
some similarities (abrupt warming from a certain year and the
importance of the ocean current) and dissimilarities (from 2010
vs. from 2008, in summer vs. in early summer, and in the Oyashio
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region vs. 160°-180°E). The investigation on the link or the
independence between these warmings is an interesting subject
in future studies.

The anthropogenic climate change will have a large impact on
the marine environments in the North Pacific Ocean (Holsman
et al., 2018). Abrupt warming caused by marine heatwaves like
the event discussed in this paper will amplify the impacts. Further
understanding of the cause and impacts of marine heatwaves is
required to adapt to the rapidly changing ocean climate.
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The effects of ocean chlorophyll on the mode water subduction rate in the subtropical
mode water (STMW) and central mode water (CMW) in Pacific Ocean are investigated by
performing two ocean-only experiments, using two different solar radiation penetration
schemes, one with and one without chlorophyll effects. The biological impacts on mixed
layer depth (MLD), upper ocean temperature and density are analyzed. Results show
that the subduction rates of both STMW and CMW are increased with the effects of
ocean chlorophyll. The increase in the subduction rate is mainly caused by the increased
lateral induction term, which is related to larger MLD gradient in early spring in the
chlorophyll experiment.

Keywords: subduction rate, ocean model, biological effects, North Pacific Ocean, mode water

INTRODUCTION

The winter mixed layer depth (MLD) in the northwestern and central Pacific Ocean shows significant
seasonal variation. It reaches a maximum (approximately 200 m) in March (Figure 1A) along the
Kuroshio Extension region. Separating the deep mixed layer from the shallow one in the rest of the
subtropical gyre is a transition zone called the MLD front. At the cross point of the MLD front and
outcropping line, water is inducted from the deep mixed layer into the main thermocline by the
southeastward Sverdrup flow, forming a local potential vorticity (PV) minimum (Kubokawa, 1999;
Xie et al., 2000; Xie et al., 2010). These vertically homogeneous water masses are called mode water.
The subtropical mode water (STMW) was identified by Masuzawa (1969) and with vertical uniform
layer of 25.2-25.6 0. It is formed just south of the Kuroshio and Kuroshio Extension between ~132°E
and near the dateline. Nakamura (1996) identified the central mode water (CMW) with uniform
layer of o4 26.0-26.5. CMW is formed north of the Kuroshio Extension. A composite analysis of
Argo data in 2003-2008 demonstrated that lighter (denser) CMW is formed at 33°-39°N (39°-43°N)
extending from ~142°E to 160°W (Oka et al., 2011).

The winter MLD in the mode water formation region is mainly caused by local surface cooling
(Iwamaru et al., 2010) and ocean dynamic associated with westward propagating Rossby waves from
the central North Pacific (Qiu and Chen, 2005), which could cause pycnocline depth anomalies,
modify the upper ocean stratification and wintertime mixed layer (Sugimoto and Hanawa, 2010;
Lin et al.,, 2020). Mode water memorizes wintertime ocean-atmosphere interactions and might
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FIGURE 1 | (A) March climatology of the mixed layer depth larger than

100 m (shaded) and the density at the surface (black solid line) for WOA13
along with the PV=2.0x10"m" s" on 25.3 ¢, (Magenta dashed) and 26
o, (green dashed), bold solid black contour shows surface density at 25.3 o,
and 26 o, . (B) is the same as (A) but for LICOM except dashed contour for
PV=2.0x10""m"" s'" on 25 o, and 26 o, , and bold solid contour for surface
density at 25 o, and 26 o, . The lighter low PV layer (megenta dashed)
corresponds to the core layer of the STMW, while the denser layer (green
dashed) corresponds to the core layer of the CMW. (C) March climatology of
chlorophyll concentration in mg m=. The chlorophyll data is satellite-retrieved
from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) covering the
period from September 1997 to December 2007.

reemerge in the surface mixed layer in the subsequent winter
(Bingham, 1992; Qiu and Chen, 2006; Oka and Qiu, 2012) and is
believed to play an important role in climate variability (Hanawa
and Kamada, 2001).

In addition to dynamic and thermodynamic processes, some
biological processes, such as phytoplankton in the euphotic layer,
can also affect the upper mixed layer through their impacts on
the vertical distribution of solar radiation (Lewis et al., 1983; Lin
et al.,, 2007; Ma et al., 2014; Ma et al., 2021). The chlorophyll in
the ocean could trap more heat in the upper layer, and less solar
radiation could reach the subsurface. As a result, chlorophyll
could affect the vertical distribution of penetrative solar
radiation and modulate the upper ocean temperature and MLD.
Earlier studies have shown that the existence of phytoplankton
could result in surface warming, subsurface cooling, and
mixed layer shoaling (e.g., Lewis et al., 1983; Lewis et al., 1990;
Sathyendranath et al., 1991; Siegel et al., 1995). Other studies
found that ocean biological effects could lead to SST cooling in
the equatorial Pacific upwelling region (Nakamoto et al., 2001;
Anderson et al., 2007; Lin et al., 2007), the eastern tropical Indian
Ocean (Liu et al., 2012a; Ma et al., 2015) and the South China Sea
(Ma et al,, 2012). With the uneven distribution of chlorophyll in
the upwelling region, horizontal and vertical density gradients

could change, and lead to strengthened upwelling, decreased
sea surface temperature (SST) and shallower MLD. In addition,
the ocean chlorophyll also has a cooling effect in strong vertical
mixing regions like the north Arabian Sea (Ma et al., 2014) and
in mid-latitudes of the world’s oceans (Ma et al., 2021). In strong
mixing regions, biological impacts on MLD are weak as solar
penetration cannot affect such a deep depth. So, the biological
impacts on MLD are closely related to the local dynamics.

Most previous studies on the effects of ocean chlorophyll
have focused on the tropics, and little attention has been given
to the mid-latitudes. In fact, ocean biological effects should not
be neglected in the mid-latitudes. The chlorophyll concentration
(Chl) shows a band of high values (>0.3 mg m ) in the region
of 30°-40°N in the North Pacific during the spring bloom
(Figure 1C). Ma et al. (2021) found that SST cools (warms) and
MLD shoals with biological effects in the mid-latitudes of the
North Pacific Ocean during winter (spring). And the biological
impacts on MLD are not evenly distributed. According to Xie
et al. (2000), the winter MLD distribution is key to mode water
formation. Therefore, we further want to know whether and to
what extent ocean biological effects could impact the mode water
subduction rate in the north and central Pacific region.

In the present study, the effects of ocean chlorophyll on the
mode water subduction rate in the northwestern and central
Pacific region were investigated by comparing two numerical
experiments. The rest of the paper is organized as follows. In
Section 2, we describe the model and experiments used in the
study. In Section 3, we analyze the biological effects on the mode
water subduction rate and investigate the mechanism. In Section
4, we summarize these results.

MODEL AND EXPERIMENTS

Observational Data

The climatological ocean temperatures and salinities used for
density and PV are from World Ocean Atlas 2013 (WOA13)
(Locarnini et al., 2013; Zweng et al., 2013), with a resolution of
1° x 1°. Satellite-retrieved Chl data from the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS) (http://oceandata.sci.gsfc.nasa.
gov/SeaWiFS/Mapped/Monthly/9km/chlor/) are used in the
present study to analyze the ocean chlorophyll effect. The data
are monthly and cover the period from September 1997 to
December 2007.

Model Description

The model used in this study is the State Key Laboratory of
Numerical Modeling for Atmospheric Sciences and Geophysical
Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP)
Climate System Ocean Model (LICOM), version 2 (Liu et al,,
2004a; Liu et al., 2004b; Liu et al., 2012b). The zonal resolution
of LICOM in the present study is 1°. The meridional resolution is
0.5° between 10°S and 10°N and then gradually decreases to 1° at
20° (N/S). The model has 30 levels in the vertical direction, with
15 uniform 10 m levels in the upper ocean and 15 nonuniform
levels below 150 m. The forcing of the ocean model comes
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from both the Corrected Inter-Annual Forcing (CIAF) and
the Corrected Normal Year Forcing (CNYF) of the Common
Ocean-ice Reference Experiments (CORE) dataset (Large and
Yeager, 2004).

A double exponential formula is employed to describe the
penetration of solar radiation in LICOM:

T =1/1,=Rxe " +(1-R)e*'" (1)

Where T, is called transmission function, I is downward
solar radiation penetrating to a certain depth z and I is the
downward solar radiation at sea surface. The first term on the
right side of Eq. (1) represents the rapid attenuation in the upper
5m due to absorption of the red end of the spectrum, and the
second term represents the attenuation of blue-green light below
10m (Paulson and Simpson, 1977). Jerlov (1968) classified the
seawater according to the seawater transparency, and type I is
considered to be clear water and with no biology. In LICOM, the
seawater was hypothesized to be type I. Following Jerlov (1968),
and R, L, and L, are set to 0.58, 0.35m and 23m, respectively. The
pure water experiment referred to as NOCHL.

In the sensitivity run, the scheme proposed by Ohlmann
(2003) is employed to represent the influence of Chl on solar
radiation penetration (hereafter referred to as CLIMCHL).
In CLIMCHL, all four parameters are functions of Chl (see
Equation 5 and 6 of Ohlmann, 2003). In the CLIMCHL run, the
23 m penetration depth approximately corresponds to a Chl of
0.057 mg.m>. The chlorophyll concentration in present study
region is more than 0.057 mg.m= and the penetration depth is
shallower than 23 m (figure not shown). Therefore, more solar
radiation will be absorbed by the upper layer in the CLIMCHL
run than in the NOCHL run and less solar radiation will
penetrate below. The chlorophyll data used in the CLIMCHL run
are the climatological SeaWiFS monthly mean. Both experiments
were run for 10 years (1998-2007). More details about the model
configuration can be found in Lin et al. (2007).

Model Evaluation
f o

__p po is the reference water density

Py 0z
is the verticwal gradient of potential density,

PV is defined as Q =—
(1024 kg m™), 5_/3

and fis the Cori@lzis parameter. The MLD is defined as the depth
at which the water density is 0.125 kg m™ denser than the sea
surfaces (Levitus, 1983). In observations, the MLD maxima at
approximately 200 m show two zonal bands at 40°N and 30°N
(Figure 1A), which are key regions for the formation of low PV
waters (Kubokawa, 1999). The simulated MLD does not fully
capture this feature, with one zonal maxima band in the north of
35°N and with southern edge of MLD front slanting northeastward
(Figure 1B). The maximum MLD in the model is deeper than that
in the observations, with the maximum simulated MLD reaching
up to 250 m. The biases of the MLD are mainly caused by the
coarse horizontal resolution of this simulation.

Figure 2 shows the total volume of low PV water (less than
1.5x10° m?! s') over the northwestern and central Pacific

(135°E-155°W, 25°N-40°N) for the observations from the
WOA13 and the LICOM simulation. Low PV water is clustered
at 24.9-25.6 o, and 25.7-26.5 0, in WOA13. The lighter one is
related to subtropical mode water (STMW) and the denser one
is related to central mode water (CMW). In LICOM, the total
volume of the low PV water for each density class shows a single
peak in the CMW range and is clustered at 25.7-26.5 0. The
mode water properties of CMW in the model are almost matched
to the observation in both core layer density and total volume,
with a peak at 26 o, (Figure 2B). For STMW, low PV water in
WOA13 is concentrated in narrow density ranges with higher
magnitudes, with a peak at 25.3 o, (Figure 2A). In LICOM,
volume of low PV water in each density range is weaker and is
almost equally distributed in a broad density range (Figure 2B).

The weaker PV minimum volume of STMW in model could
also be seen in the horizontal distribution of PV minimum in
Figure 1. The region between the 25.3 o4 (25 04) contour and
magenta dashed contour shows the core layers of the STMW
formation region for observation (LICOM). According to
Kubokawa (1999) and Xie et al. (2000), an isopycnal PV
minimum forms where the outcrop line (surface density isoline)
intersects a MLD front. In observation, the MLD front is almost
zonal, which is almost parallel to the outcrop line especially in the
west of dateline (Figure 1A), so the PV minimum is in a broad
region but concentrated only in a narrow density range. In the
coarse resolution LICOM, the MLD front slants northeastward
from the southwestern region of the subtropical gyre, the outcrop
lines slant slightly southeastward (Figure 1B). As mode water
with minimum PV forms where the outcrop line intersects
the MLD front by lateral induction (Xie et al., 2000), the PV
minimum is limited to a narrow region but in a wide density
range (Figure 1B) and almost equally distributed (Figure 2B). So
the low PV tongue of the STMW is smaller in the LICOM than in
the observations. The meridional MLD gradient maximum west
of dateline in LICOM lies eastward compared to WOA13, so the
location of core layer PV minimum in STMW also lies eastward
in LICOM.

The northern band of the deep MLD extending to
approximately 160°W is related to the CMW, with a denser PV
minimum layer (Figure 1). The region between the 26 o, contour
and green dashed contour shows the core layers of the CMW
formation region for both observation and LICOM. As the
MLD front east of date line in LICOM lies eastward compared to
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FIGURE 2 | Volume of low PV water (less than 1.5x10° m s) in March
for each density class in the northwestern and central Pacific (135°E-155°W,
25°N-40°N) for (A) WOA13 and (B) LICOM. The interval is 0.1 kg m=. Depth
range is 0-300m.
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WOA13, the low PV region of CMW in the model extends much
farther eastward (Figure 1B).

The seasonal variation in the simulated MLD agrees well with
the observations, with the deepest MLD (more than 200 m) in
March and the shallowest MLD (less than 20 m) in summer,
except that the simulated MLD is deeper than the observed
MLD, especially in early spring (Figure 3A). The observed and
simulated SSTs also show similar seasonality, except the SST in
the model is warmer than that in the observations on average
(Figure 3B). The subsurface temperature shows warmer water
in the south and cooler water in the north (figure not shown),
which leads to lighter water in the south and denser water in the
north. As we focus on the difference between experiments, the
effects of these biases could be canceled out.

RESULTS AND DISCUSSION

Impacts of Ocean Chlorophyll on SST
and MLD
Chl in the 30°N-40°N shows strong seasonal variability. Chl
could reach to higher than 0.4 mg m? during spring bloom
(Figures 4A-C) and with a maximum in April (Figure 4B). The
SST differences between CLIMCHL and NOCHL are negative in
winter and turn to positive in late spring (Figures 4D-F), and
reaches a positive peak during June and July (>0.15°C, figure not
shown). The statistical significance of SST difference is evaluated
using a Student’s t-test. The negative/positive SST difference
indicates that chlorophyll could trap less/more solar radiation in
the mixed layer. The Chl variation leads to a SST difference of
approximately two months. This is because chlorophyll directly
affects solar radiation, which controls the temperature tendency,
not the temperature (according to the equation for the mixed
layer heat budget). Therefore, the temperature difference reaches
its peak when chlorophyll decreases.

Notably, the MLD differences are negative during the spring
(Figures 4G-I), with the largest differences in April (>20 m)
(Figure 4H). The negative MLD difference indicates that the

30

155W

FIGURE 3 | The seasonal variation in (A) MLD (m), (B) SST (°C) averaged
between 30°N and 40°N in the north Pacific. The shaded and black contours
are for WOA13, and the while contours are for LICOM.

existence of chlorophyll leads to a shallower MLD. This indicates
that the spring bloom in this region could obviously impacts the
MLD, and the MLD could be lifted more quickly during April with
the existence of chlorophyll. The large negative MLD difference
values lies around the MLD front in March (Figure 4G) and
almost the whole study region in April (Figure 4H). The more
quickly lifted MLD in the CLIMCHL run, which is caused by
the larger buoyancy frequency (figure not shown), has a potential
impact on the subduction rates in the spring season.

Impacts of Ocean Chlorophyll on
Subsurface Density and PV

In addition to the impacts on SST and MLD, chlorophyll can
also alter the subsurface temperature and density (Figure 5). At
165°E, the subsurface temperature at approximately 50-300 m for
the CLIMCHL run cools by approximately 0.1-0.3°C and further
leads to denser water in the subsurface (50 -300 m) in all three
months. This could decrease the vertical density gradient at this
depth. The temperature differences in the upper 50 m become
positive in April, which leads to lighter water. The situation is
similar for the section at 170°W but with larger temperature
and density differences between experiments. The statistical
significance of potential density difference is evaluated using a
t-test.

Due to the biological effect on the vertical distribution of solar
radiation, the change of vertical density gradient could impact
the PV. Mode waters with low PV (less than 2x10-1° m! s!) (Suga
and Hanawa, 1995; Nakamura, 1996; Qu et al., 2002) tend to
form where the winter MLD front intersects with the outcrop
line. Compared with the NOCHL run, the decrease of vertical
density gradient (50-300m) in CLIMCHL run leads to a lower
PV in the mode water formation region (gray shade in Figure 6).
PV decreases about 0.05x101° m! s in the STMW formation
region around 25°-30°N at 165°E (Figure 6A) and about 0.05
- 0.1x10° m s in the CMW formation region around 33°-
38°N at 170°W (Figure 6B). The statistical significance of PV
difference is evaluated using a t-test. Lower PV and more quickly
lifted MLD might make the mode water subduct beneath the
mixed layer more easily.

Impacts of Ocean Chlorophyll on
Subduction Rate

According to Qiu and Huang (1995) and Qu et al. (2002), the
annual subduction rate Sann can be obtained by integrating the
instant subduction rate over one year (T) from the end of the
first winter t1 to that of the second winter t2 in a Lagrangian
framework. The subduction rate is defined as

5. 1 Flo)
= Pt (h, (1) =, (1)

Thefirstterm on theright-hand siderepresents the contribution
from vertical pumping at the base of the mixed layer, where w,

Frontiers in Marine Science | www.frontiersin.org

162 July 2022 | Volume 9 | Article 814053


https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Ma et al.

Biological Effects on Mode Water

155E. 180

FIGURE 4 | Climatological mean of SeaWiFS chlorophyll concentration (mg m) for (A) March, (B) April and (C) May. Shaded in (D-F) are for SST differences
between CLIMCHL and NOCHL, and contours are for SST of NOCHL (°C). Shaded in (G-) are for MLD differences between CLIMCHL and NOCHL, and contours
are for MLD of NOCHL (M). SST and MLD differences are at 95% significant level.
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e

FIGURE 5 | The potential density differences (shaded, CLIMCHL-NOCHL, kg
m-9), temperature difference (black contours at 0.05 °C intervals, CLIMCHL-
NOCHL) and MLD for NOCHL (blue line, m) and CLIMCHL (red line, m) at
165°E in (A) March, (B) April and (C) May. (D-F) are the same as (A-C)

but for 170°W. Only the potential density differences that are statistically
significant are shown (95% significant level).

stands for the vertical velocities at the base of the mixed layer,
t; and t, denote the first and second March, respectively, and T
is one year. The second term represents the contribution from
lateral induction due to the slope of the mixed layer base or the
MLD gradient, where h, is the MLD. In Lagrangian coordinates,
the lateral induction term can be estimated by the difference in
the mixed layer depth in the first and second March. In equation
2, the vertical velocities and mixed layer are both from model
output. Here, we trace water parcels with a time interval of 5 days
and obtain Lagrangian trajectories of the mode water.

The subduction rates due to vertical pumping, lateral induction
and the total NOCHL run in the northwestern and central Pacific
are shown in Figures 7A-C. The annual subduction rate due to
vertical pumping is less than 50 m yr! and shows little spatial
variation in the NOCHL run (Figure 7A). Lateral induction
shows a maximum between 30°N and 40°N, 145°E and 160°W,
with values exceeding 100 m yr! (Figure 7B). The maximum
center lies in a long narrow band around (29°-35°N, 140°E-180)
for STMW and a broad region (35-42°N, 180-160°W) for CMW

25N 30N 35N 40N 45N

Depth(m)

FIGURE 6 | The mean potential density (thin black contours at 0.5 o,
intervals, kg m?) and PV (gray shade< 2x10-°m' s°") for NOCHL at

(A) 165°E and (B) 170°W in March. Blue contours are PV differences
between two experiments (x10°© m™' s1, CLIMCHL-NOCHL), and thick
lines show MLD for NOCHL (black line, m) and CLIMCHL (red line, m) in
March, respectively. PV< 0.8x10° m'' s1 are shaded in white. Only the PV
differences that are statistically significant are shown (95% significant level).

(Figure 7B). The total subduction rate is dominated by the latter
and shows a similar pattern to lateral induction, with maximum
values exceeding 150 m yr! (Figure 7C). The maximum
subduction rate lies where the outcrop line intersects the MLD
front (Figure 1B).

The differences in annual subduction rates between the two
experiments are shown in Figures 7D-F. Compared with the
NOCHL run, the horizontal distribution of annual subduction
rates in CLIMCHL run is similar to the NOCHL run, just with
larger value in the center of the subduction region (Figure not
shown). The CLIMCHL run shows little difference (less than
5 m yr') from the NOCHL run in the vertical pumping term
(Figure 7D) but shows an evident increase in the lateral induction
term (5-15 m yr!) in the region between 30° and 40°N, 145°E
and 160°W (Figure 7E), slanting northeastward. The increase is
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FIGURE 7 | (A) vertical pumping, (B) lateral induction and (C) the total
subduction rate in NOCHL run in the north Pacific (m/year). (D-F) are
the same as (A-C) but for the differences between the two experiments
(CLIMCHL-NOCHL).

more than 10m/year in the center of the STMW (30°N-35°N,
150°E-180) and CMW (35°N-42°N, 180-160°W). As a result,
the total annual subduction rate increases about 5-10% in the
key subduction regions (Figure 7F).

To delineate the impacts of ocean chlorophyll on the
subduction rate, we computed the distribution with the
potential density by integrating it for each 0.1 kg m™ interval
of the density field at the base of the March mixed layer in the
northwestern and central Pacific (145°E-160°W, 29°-42°N). In
the NOCHL, subduction rate is around 1.0 Sv in density range
of 24.8-25.6 kg m* and the maximum subduction rate could
reach up to 1.4 Sv (Figure 8). The average subduction rate of the
CLIMCHL run is larger than that of the NOCHL run in almost
all density ranges. The largest differences occur in density range
of 26.0-26.4 kg m~ with an increase of about 5-10%.

We have known that the ocean biological effects mainly
impact lateral induction, which is associated with MLD

front strength. Lateral induction is determined by the MLD
difference between the first and second March on the water
parcel trajectory (second term on the right-hand side of Eq.
(2)). Therefore, either the deeper MLD in the first year or
the shallower MLD in the second year could increase lateral
induction. Besides, the larger horizontal movement of water
parcels could also lead to increase of lateral induction. To
investigate how ocean chlorophyll impacts lateral induction,
Lagrangian trajectories are compared for the two experiments
(Figure 9). Most water parcels between 30°N and 40°N move
eastward, and the water parcels in the south (approximately
30°N) move southeastward, with little difference between
the CLIMCHL and NOCHL runs, except in regions between
25°N and 35°N near the western boundary (Figure 9). Little
difference between trajectories shows that the lateral induction
differences between CLIMCHL and NOCHL runs are mainly
caused by strength of the MLD front differences, not by the
difference of the trajectories.

To check whether the lateral induction increase is related to
the stronger MLD front, the MLD differences between the two
experiments in the first and second years and their differences
are shown in Figure 10. In general, the MLD of CLIMCHL is
shallower compared with the NOCHL run due to the biological
effect, especially in the shallower MLD region. In the first
March, MLD differences between CLIMCHL and NOCHL are
negative in the study region, with less than 5 m differences in
the center of 30°N-40°N and more than 5 m differences around
the MLD front (Figure 10A). This indicates that the horizontal
MLD gradient of the CLIMCHL run is stronger than that of the
NOCHL run. As the water parcels move to the east and south,
the MLD is shallower, and the MLD differences between the two
experiments increase to more than 10 m in the second March
(Figure 10B). As a result, the lateral induction differences
between experiments show positive values in the region of
30°N-40°N (Figure 10C), with magnitude more than 10m/year
in the center of the STMW (30°N-35°N, 150°E-180) and CMW
(35°N-42°N, 180-160°W). That is, the much shallower MLD in
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FIGURE 8 | Subduction rate (Sv) for each o, interval of 0.1 kg m in the northwestern and central Pacific (145°E-160°W, 29°N-42°N) for the NOCHL run (blue bars)
and CLIMCHL run (yellow bars).
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FIGURE 9 | One-year Lagrangian trajectories of water parcels released at the base of the March mixed layer in 2006 for NOCHL (black line) and CLIMCHL (red line).

Stars indicate the starting point of the released parcels.
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the second year leads to an increase in lateral induction in the
CLIMCHL run, which is caused by biological effects.

CONCLUSIONS

In the present study, we investigated the effects of ocean
chlorophyll on the temperature and subduction rate of mode
water in the northwestern and central Pacific Ocean. Two ocean
model experiments with and without chlorophyll indicate that
biology-induced feedback could impact the temperature and
density in the northwestern and central Pacific Ocean. The Chl
reaches a maximum (>0.3 mg m -*) during spring and a minimum
during summer and autumn. During spring blooms, surface
water warms, and subsurface water cools with the existence of
chlorophyll. The changes in temperature could also impact the
vertical density gradient, which lead to alower PV at 50 m-250 m.

Biological effects also obviously impact the MLD. With the
effect of ocean chlorophyll, the MLD is shallower compared
with the NOCHL run, and the MLD lifts more quickly in April
in the CLIMCHL run. Analysis shows that biological effects
could increase the total annual subduction rate about 5-10%
in the northwestern and central Pacific Ocean. The subduction
rate increase is mainly caused by the increased lateral induction
term (5-15 m yr!'). The results show that the increase of lateral
induction is affected by the increased horizontal MLD gradient.
Ocean chlorophylls lead to a larger MLD gradient in the
CLIMCHL run than in the NOCHL run. In the first March, the
MLDs of the CLIMCHL and NOCHL runs have little difference
in the deep mixed layer region near Kuroshio Extension region.
As the water parcels move to the east and south, the much
shallower MLD in the second year leads to an increase in lateral
induction in the CLIMCHL run.

The present study focused on the effects of seasonal variations
in chlorophyll on the mode water subduction rate. On a decadal
scale, the chlorophyll trends in the north Pacific Ocean might also
play an important role in mode water formation and ultimately
impact climate variability. A study by Gregg and Rousseaux
(2019) showed total primary production increases decreases in
the North Pacific over the 1998 to 2015 time series. The increased
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FIGURE 10 | The MLD difference (m) between the two experiments
(CLIMCHL-NOCHL) in March of (A) the first year and (B) the second year.
(C) is the difference between (A) and (B) (A, B). The MLD differences in (A)
are at 95% significant level.

chlorophyll might lead to a shallower MLD in the MLD front zone
and increase the mode water subduction rate. How the variability in
primary production and MLD impacts the mode water subduction
rate and climate variability needs to be investigated in future studies.

This study is based on a coarse resolution ocean model not
including the effect of mesoscale eddy. According to previous
studies, mesoscale eddies also enhance the mode water subduction
rate, and the magnitude of lateral advection is comparable to
the mean flow (Xu et al., 2016; Wang et al., 2020). The biological
impacts on subduction rate might be underestimated in present
study. Ocean chlorophyll also affects mesoscale activities, such as
tropical instability waves (Tian et al., 2019); therefore, the biological
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effects in the eddy-resolving model need to be investigated.
As the ocean-only model are forced by the same wind forcing,
there is no atmospheric feedback, the biological effects might be
mitigated in the atmosphere-ocean coupled models. This needs
to be investigated in future.
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This perspective paper discusses how the research community can promote
enhancement of marine ecosystem forecasts using physical ocean conditions predicted
by global climate models (GCMs). We review the major climate prediction projects and
outline new research opportunities to achieve skillful marine biological forecasts. Physical
ocean conditions are operationally predicted for subseasonal to seasonal timescales, and
multi-year predictions have been enhanced recently. However, forecasting applications
are currently limited by the availability of oceanic data; most subseasonal-to-seasonal
prediction projects make only sea-surface temperature (SST) publicly available, though
other variables useful for biological forecasts are also calculated in GCMs. To resolve the
bottleneck of data availability, we recommend that climate prediction centers increase the
range of ocean data available to the public, perhaps starting with an expanded suite of
2-dimensional variables, whose storage requirements are much smaller than 3-dimensional
variables. Allowing forecast output to be downloaded for a selected region, rather than
the whole globe, would also facilitate uptake. We highlight new research opportunities in
both physical forecasting (e.g., new approaches to dynamical and statistical downscaling)
and biological forecasting (e.g., conducting biological reforecasting experiments) and offer
lessons learned to help guide their development. In order to accelerate this research area,
we also suggest establishing case studies (i.e., particular climate and biological events as
prediction targets) to improve coordination. Advancing our capacity for marine biological
forecasting is crucial for the success of the UN Decade of Ocean Science, for which one
of seven desired outcomes is “A Predicted Ocean”.

Keywords: dynamical downscaling, statistical downscaling, biological forecast, marine ecosystem prediction,
GCM prediction
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Ecological Forecasting Bottlenecks and Recommendations

INTRODUCTION

Marine ecosystem forecasting, often leveraging predictions of
physical ocean conditions, is an emerging research area that
has rapidly attracted significant attention (Payne et al., 2017;
Tommasi et al., 2017; Hobday et al., 2018; Capotondi et al.,
2019a; Park et al., 2019; Jacox et al., 2020; Bolin et al., 2021). The
development and improvement of marine biological forecasts
are motivated by a number of ecological and socioeconomic
aims, including management of fisheries and aquaculture,
conservation of endangered marine species, and protection of
human health. At present, most marine ecosystem predictions
are in the experimental stage, but in the future, they could be
operationalized with a wide range of applications.

Many different statistical and dynamical methods can be used
for ecological prediction on subseasonal to decadal timescales
(Tommuasi et al., 2017; Jacox et al., 2020). However, perhaps the
most promising approach is to start with general circulation
or global climate model (GCM) predictions of the physical
environment and use them as the basis for ecological prediction.
GCM predictions are conducted for a range of forecast lead times
(i.e., the length of time between the time of initial condition and
the time for which conditions are being predicted!). Forecasts
with subseasonal to seasonal lead time (i.e., several weeks to
a year) are operationally produced by a number of modeling
centers, and multiannual predictions (i.e., 1-10 years) are also
being examined. These global climate forecasts offer a foundation
to be used for an array of marine ecosystem predictions. While
alternative methods may also be leveraged to generate biological
predictions (for example, forecasting fish population dynamics
by monitoring earlier life stages), they are beyond the scope of
this paper.

Forecasting marine ecosystems using physical predictions
consists of a multi-step process, typically including a GCM
prediction, the dynamical or statistical downscaling of the
GCM fields, and biological estimation (Figure 1) (e.g., Jacox
et al., 2020). The data transfer between the tasks is an important
consideration for the workflow. The most intensive data transfer
is needed for dynamical downscaling, in which the three-
dimensional (3D) output of a GCM prediction is needed to force
a regional model (Figure 1A). A prime example of this workflow
is J-SCOPE (JISAO’s Seasonal Coastal Ocean Prediction of the
Ecosystem), for which dynamical downscaling using the Regional
Ocean Modeling System (ROMS) is conducted using surface and
lateral boundary conditions taken from version 2 of the National
Oceanic and Atmospheric Administration (NOAA) Climate
Forecast System (CFSv2) (Kaplan et al., 2016; Siedlecki et al.,
2016). This system is supported by publicly available, 6-hourly,
3D forecast outputs of ocean variables for CFSv2. However, such
data availability is exceptional; 3D GCM forecast output at higher
than monthly resolution is typically not publicly available for
other projects. Thus, in most cases, this workflow requires a close

"'This definition of lead time is widely used for research, though for practical use of
forecasts, the lead time may be defined based on a time when a forecast is issued
instead of the time of the initial condition.

collaboration between the climate prediction center and the user
institute.

A more practical workflow for many researchers is to use
two-dimensional (2D) GCM output for key fields such as
SST (Figure 1B). This workflow was employed by a series of
Australian studies in fisheries forecasting applications (Spillman
et al., 2013; Spillman and Hobday, 2014; Eveson et al., 2015;
Brodie et al., 2017). In this case, users may employ statistical
downscaling rather than dynamical downscaling. A promising
future extension of this workflow is to use multiple GCM outputs
(Figure 1C) because a multi-model ensemble can better capture
reality than a single model due to the reduction of model-specific
errors, as found for SST (Hervieux et al., 2019; Yati and Minobe,
2021) and for sea-surface height (Widlansky et al., 2017; Long
etal., 2021). Furthermore, the reduction of model-specific errors
can lead to a better estimation of prediction uncertainty, which
can be useful for applications using predictions.

For marine ecosystem forecasts based on physical predictions,
some bottlenecks and gaps need to be resolved. In order to address
those problems, coordination across institutes is needed, and a
large body of research is required. Thus, researchers, managers,
and funding agencies need a strategy to work across climate
and oceanographic disciplines in pursuit of the larger goal. The
purpose of this perspective paper is twofold: (1) to review major
ongoing activities related to climate predictions at subseasonal to
decadal lead times, and (2) to outline new research opportunities
for marine ecosystem forecasting.

PRESENT STATUS OF PREDICTIONS OF
OCEANIC PHYSICAL CONDITIONS

In this section, we review how predictions of oceanic physical
conditions, which are the basis of marine ecosystem prediction,
are conducted from subseasonal (two weeks to two months),
seasonal (from two months to one year), and to multiannual
(from a year to ten years) lead times, including information on
publicly available oceanic variables (Table 1). As noted above,
our focus here is on physical predictions obtained using GCMs.
Other prediction products may be suitable for some applications
but are outside the scope of this paper (for example, forecasts
produced with statistical methods such as linear inverse models?
and ocean-only model forecasts such as 10-day ocean weather
forecasts around Japan?).

The subseasonal to seasonal (S2S) prediction project of the
World Climate Research Programme (WCRP) (Vitart et al,
2017) provides S2S prediction datasets for forecast lead-times
up to 60 days (Table 1). The data are available at the European
Centre for Medium-Range Weather Forecasts (ECMWEF)* and
at the Chinese Meteorological Administration (CMA)>. Several
modeling centers participating in the project provide various
oceanic variables as 2D outputs, including SST, sea-surface

2 https://psl.noaa.gov/forecasts/sstlim/ (access January 15, 2022).

* https://www.eorc.jaxa.jp/ptree/ocean_model/index.html (access January 15, 2022).
* https://apps.ecmwf.int/datasets/data/s2s (access January 15, 2022).

° http://s2s.cma.cn/index (access January 15, 2022).
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FIGURE 1| Typical workflows of biological forecasts based on physical GCM predictions. The squares indicate systems that produce predictions, downscaling

or biological estimation, whereas the parallelograms indicate the outputs from the systems. Panel (A) and panel (B) indicate the workflows with dynamical and
statistical downscalings, respectively, using outputs of a single GCM prediction, and panel (C) indicates the workflow using outputs of multiple GCMs with statistical
downscaling. The stacked parallelograms in the middle of panel (C) indicate downscaling of different GCM predictions. “BGC” in the figure indicates information
about biogeochemistry and lower-trophic level biology. Downscaling can be skipped if GCM predictions are of adequate resolution and acceptable bias. The
physical prediction is assumed to be conducted by GCMs, but it can be made by ESMs, which also include BGC.

‘ Observation

salinity, surface currents, sea-surface height, mixed-layer depth,
and 0-300 m averaged temperature and salinity.

For other subseasonal-to-seasonal prediction projects,
currently SST is the only oceanic variable made publicly available.
Those projects include the Subseasonal Experiment (SubX)
project (Pegion et al., 2019), the North American Multi-Model
Ensemble (NMME) (e.g., Becker etal., 2014; Kirtman etal., 2014),
and seasonal prediction by the Copernicus Climate Change
Service (C3S) (Table 1). However, it should be noted that ocean
output from CFSv2 seasonal forecasts, which can be obtained
from NOAAS, includes a suite of 2D variables (temperature,
salinity, and currents at fixed depths; isotherm depths, sea-level

Shttps://www.ncei.noaa.gov/products/weather-climate-models/climate-forecast-
system (access May 18, 2022).

height, 0-300 m heat content) as well as 3D fields (temperature,
salinity, and horizontal and vertical velocities) at monthly-mean
or 6-hourly resolution.

Multiannual prediction, which is often called “decadal
prediction” (Boer et al, 2016), is in its experimental stage.
The first systematic collection of multiannual predictions was
conducted in the context of the Climate Model Intercomparison
Project Phase 5 (CMIP5) (Taylor et al., 2012) and has been
enhanced in CMIP6 (Eyring et al., 2016). The data of CMIP5
and CMIP6 are available via the Earth System Grid Federation
(ESGF)”. In CMIP6, multiannual prediction is coordinated under
the Decadal Climate Prediction Project (DCPP), and DCPP

7 https://esgf-node.llnl.gov/projects/esgf-llnl/ (access May 1, 2022).
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TABLE 1 | Currently available ocean forecast output from major climate prediction projects on subseasonal to decadal timescales.

Project Name SubX'® s2s™ C3S seasonal NMME'® CMIP6/DCPP'?
forecasting'®

Maximal prediction lead-time 45 days 60 days 5 months 11 months 10 years for most models
Number of models that have near 7 models 8 models 9 models 6 models 5 models for dcppB-forecast'®
real-time forecasts and have the
ocean model
Number of Ensembles 1-21 4-50 24-60 4-30 10-40
Ocean model resolutions 0.08(M-1 degree 0.25-1 degree 0.25-1 degree 0.25-1 degree  50-100 km as nominal resolutions
2D ocean data availability for SST only sea-surface height; temperature, SST only SST only Surface values; vertically integrated
forecast data salinity, and current speeds at the values; depth of specific features

sea surface; 0-300 m averaged

temperature and salinity; 20°C

isotherm depth; mixed-layer

thickness; sea-ice thickness
3D ocean data availability No No No No Yes
Downloading selected region data  Yes No Yes Yes No

'8 http.//cola.gmu.edu/subx/ (access May 17, 2022).

4 http://s2sprediction.net/ (access May 17, 2022).

'5 https://climate.copernicus.eu/seasonal-forecasts (access May 17, 2022).
'6 https://www.cpc.ncep.noaa.gov/products/NMME (access May 17, 2022).

7 https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/cmip6-endorsed-mips-article/1065-modelling-cmip6-dcpp (access January 15, 2022).

'8 https://esgf-node.linl.gov/search/cmip6/ (access May 17, 2022).

(1) Only the US Navy Earth System Model has an eddy-resolving high resolution (0.08 degrees).

experiments contain both reforecasts (i.e., forecasts simulated
for a retrospective period; called dccpA) and near real-time
forecasts (called dccpB) (Boer et al, 2016). Early evaluations
of multiannual prediction skill have found that it mainly arises
from initial conditions in the first few years, and at longer lead
times is associated with the forced response to climate change,
especially for temperatures (e.g., Branstator and Teng 2010;
Yeager et al., 2018). CMIP6/DCPP provides a suite of 2D ocean
variables as well as 3D ocean temperature, salinity and currents,
all available as monthly or annual means. Recently, the World
Meteorological Organization has established the Lead Centre for
Annual to Decadal Climate Prediction, which annually issued
a Global Annual to Decadal Climate Update®. The latest report
documented forecasts for the target years from 2022 to 2026 (see
also Hermanson et al., 2022).

Most of these prediction projects use GCMs, but a few modeling
centers use Earth System Models (ESMs), i.e, GCMs coupled
with a biogeochemical and lower-trophic ecosystem model.
The Seasonal-to-Multiyear Large Ensemble (SMYLE) (Yeager
et al,, 2022) and the Decadal Prediction Large Ensemble (DPLE)
(Yeager et al.,, 2018), both produced by the National Center for
Atmospheric Research (NCAR), use the Community Earth System
Model (CESM). The outputs of DPLE are publicly available on the
NCAR web site®. Also, biogeochemical and biological variables for
near real-time multiannual prediction under DCPP (dcppB) are
available for one model (for the Canadian Earth System Model
version 5) and for six models for reforecast (dcppA) at the present!?.

In addition to considering the availability of data, it is also
helpful to know whether a subset of the data for a selected
region can be easily downloaded. The downloading of a selected

8 https://www.wmolc.org/ (access January 10, 2022).
*https://www.cesm.ucar.edu/projects/community-projects/ DPLE/data-sets.html
(access December 26, 2021).

10 https://esgf-node.llnl.gov/projects/cmip6/ (access May 3, 2022).

region is possible for the C3S seasonal forecast data using the
Application Programming Interface and for the SubX, NMME,
and CFSv2 data via Open-source Project for a Network Data
Access Protocol (OPeNDAP); but such an option is not available
for the S2S and CMIP6/DCPP data.

This summary of available output from global climate forecast
systems highlights both the considerable potential in ongoing
efforts and several major bottlenecks for marine ecosystem
prediction, specifically the availability of already-computed data
and the ability to download them efficiently.

NEW OPPORTUNITIES

A wide range of new studies needs to be conducted to successfully
develop marine ecological forecasts built on physical predictions.
These studies can be broadly divided into two main categories:
physical downscaling and biological prediction (Figure 1). The
physical downscaling can be viewed as an intermediate goal
that can be undertaken by physical researchers. An appropriate
intermediate goal will allow researchers of physical oceanography
to publish their own papers and obtain funding as principal
investigators, and these prospects are important to attract young
researchers (Minobe, 2014). To highlight the many specific
opportunities for research in physical and biological aspects
of marine ecosystem forecasting, we describe them separately
below. But of course, even research in specialized areas can
benefit from interdisciplinary collaboration.

Physical Research

GCM prediction skill should be examined for various oceanic
variables that are useful for biological forecasts, because skillful
ocean predictions of quantities that drive biological models are
needed to achieve skillful ecological forecasts. To date, oceanic
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prediction skill has been examined mainly for SST (e.g., Becker
et al, 2014; Doi et al.,, 2019; Hervieux et al., 2019) including
marine heatwaves (Jacox et al., 2022), sea-surface height (e.g.,
Widlansky et al., 2017; Long et al., 2021; Shin and Newman,
2021; Amaya et al.,, 2022), and upper-layer temperatures (e.g.,
Yeager et al., 2018; Doi et al., 2020), because these variables are
important in describing physical climate variability and relatively
easy to evaluate with observation-based products. However, for
biological predictions, other variables (e.g., mixed-layer depth,
upwelling, salinity, bottom temperature, vertical profiles of
temperature and density) can also be important, as they impact
nutrient availability and the habitat of marine species, and they
may be associated with a higher degree of predictability (e.g.,
Siedlecki et al., 2016; Capotondi et al., 2019a).

Furthermore, physical predictions from large ensembles and
multi-model ensembles should be examined for their use in
biological prediction. Recent studies identified an interesting
bias in climate prediction systems known as the “predictability
paradox” or “signal-to-noise paradox” (Eade et al, 2014;
Dunstone et al., 2016; Smith et al., 2020). The basic idea of
ensemble prediction is that the reality can be viewed as one
member of an ensemble, and thus the difference between the
ensemble mean and reality (as approximated by observations)
should be similar to the differences between the ensemble mean
and each ensemble member. However, when the predictability
paradox occurs, the ensemble mean is more similar to reality
than to other ensemble members. In this case, averaging over
large ensembles is helpful to obtain a better prediction than
those from smaller ensembles. To increase the size of ensembles,
it is generally effective to use output from multiple models, and
as discussed in Section 1, the use of multiple models also has
the effect of reducing problems specific to individual models.
Therefore, we suggest that using outputs of large ensembles from
multiple GCMs can also have advantages for marine biological
prediction (Figure 1C), and this possibility should be explored.

For regional marine ecosystem prediction efforts, the resolution
of the global ocean models may not be sufficient, and thus
dynamical or statistical downscaling of the predicted data at higher
spatial resolutions may be necessary. Dynamical downscaling
is used for J-SCOPE, as mentioned above, and various machine
learning techniques are used for statistical downscaling (Stengel
etal., 2020; Kashinath et al., 2021). Statistical downscaling schemes
can be constructed using observations at specific sites together with
coarse outputs of numerical models, but they can also be built on
the results of dynamically downscaled data from the coarse model
outputs (Jacox etal., 2020). The latter approach should be especially
useful for variables that are not well observed. Both dynamical
and statistical downscaling should be investigated in detail, as
they have advantages and limitations. Dynamical downscaling
can provide a complete representation of the ocean at the needed
resolution, but will inherit the biases of the climate model that was
used for the lateral boundary conditions and the surface forcing.
The skill of downscaled forecasts should be compared to that of
GCMs to quantify the added value of the downscaling procedure.
Relative to dynamical downscaling, statistical downscaling can
better capture observed relationships, but may be limited by data
availability. Furthermore, dynamical downscaling is much more

computationally expensive and slower than statistical downscaling,
which can be important considerations for operational biological
forecasting. Thus, depending on the specific application, different
approaches may be more suitable.

Biological Research

It is important to identify which ecological variables are
promising targets for prediction. The target for prediction should
be relevant to species valued by society and should be sensitive to
physical conditions. Candidates of target species can be identified
by examining the statistical relationships between physical
conditions and marine ecosystem status using the observational
data as a first step. A classic example is the relation between the
Pacific Decadal Oscillation (PDO) and Pacific salmon catches
(Mantua et al., 1997), and that between the PDO and the Japanese
sardine population (Yasuda et al., 1999). A more systematic
approach using principal component analysis of a large number
of marine ecosystem indicators reported that many species are
influenced by climate variability and change in the North Pacific
and adjacent seas (Hare and Mantua, 2000 ; Tian et al., 2006;
Litzow and Mueter, 2014; Ma et al., 2019; Yati et al., 2020) and
in the northeast Atlantic (Brunel and Boucher, 2007). Of course,
such statistical analysis can only identify correlations, which do
not necessarily mean causality, and the relationships may be non-
stationary. Furthermore, a causal relationship is not enough for
prediction, because if physical conditions that influence marine
species are unpredictable, then biological targets are also not
predictable (Brodie et al., 2021).

For the potential marine ecosystem targets, prediction skill
should be assessed by conducting retrospective forecasts (i.e.,
reforecasts) evaluated against observations. Reforecasts using
global ESMs have demonstrated meaningful prediction skill with
lead times of a year or more for certain regions and variables,
including surface pH (Brady et al., 2020), ocean carbon uptake
(Lovenduski et al., 2019), aragonite saturation state (Yeager et al.,
2022), chlorophyll and net primary productivity (Séférian et al.,
2014; Rousseaux and Gregg, 2017; Krumhardt et al. 2020), and
even annual fish catch in large marine ecosystems (Park et al,,
2019). The availability of the biogeochemical model output is very
important for better understanding the links between physics
and biology in the model context. These links are still poorly
constrained by observations due to the sparsity of biogeochemical
data (Turi et al., 2018), highlighting the need for expanded and
sustained biogeochemical observational networks in support of
biological prediction efforts (Capotondi et al., 2019a).

Ecological predictions are also challenged by shifts in the
relationships between physical conditions and biological
responses through time and with population sizes. Empirical
relationships that appear robust for several years can decay
over time (Myers, 1998; Deyle et al., 2013). Changes in climate
conditions at the basin scale have been linked to shifts in
relationships between local physical properties and fisheries
recruitment (Litzow et al, 2019). An understanding of the
underlying ecological mechanisms that explain empirical
relationships between physical and biological properties and how
those mechanisms may change over time is necessary to increase
confidence in ecological predictions.
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In the coming years, regional biological reforecasts should
be widely examined. Biological reforecasting is a relatively new
study area, but lessons learned from climate reforecasts can be
useful to guide similar efforts for biology:

1. Forecast skill should be examined for anomalies, i.e., the
differences between forecasted raw values and the forecasted
mean seasonal cycle (or climatology). If the forecast skill
is examined with raw values, then the skill is likely to be
dominated by a seasonal cycle rather than the interannual
variability of interest. Furthermore, since model biases
tend to grow due to model drift at longer lead times, model
climatologies should be lead-time dependent.

2. For the estimation of the statistical significance of a metric,
it is important to take into account the serial correlation of
the data to be examined. For example, if there are annually
sampled predicted and observed data for a period of N -years,
and the respective time series have auto-correlation at a one-
year lag of. r, and r,, then the effective degrees of freedom
of the data for the Pearson’s correlation can be estimated as
N (1-r, r,)/(1+ r, r,) (Bretherton et al., 1999). The influence
becomes strong when the lag-1 autocorrelation is large. If the
lag-1 autocorrelation is 0.6 (0.3) then the effective degrees
of freedom are 47% (83%) of the original data samples. The
serial correlation is not generally considered in widely used
software packages or libraries. Therefore, the p-value obtained
by such packages is inappropriate when the serial correlation
cannot be ignored. In any case, how degrees of freedom were
estimated should be clarified.

3. The separation of training and verification data, known as “cross-
validation’, is crucial for assessing the performance of statistical
estimation (e.g. Arlot and Celisse, 2010). For example, in V-fold
cross validation, all data are divided into v “folds,” the prediction
model is trained using data of v-1 folds, the remaining one fold
is used for validation, and the fold to be used for validation is
successively changed. Cross-validation is especially important
when using a statistical or machine-learning technique that can
substantially overfit the training data.

4. Ensembles of prediction should be used appropriately. Since the
biological responses to physical conditions may be nonlinear, it
is desirable to use the individual ensemble members of physical
forecasts to drive biological models, rather than using the
ensemble mean of the physical forecasts. A large ensemble size
is especially useful to evaluate the probability of extreme events
and to evaluate whether the predictability paradox occurs
as mentioned above. Furthermore, if biological estimation
involves uncertainty in the variables other than the physical
prediction, using ensembles for these variables may be useful
to understand the uncertainty originating in biological process.

SUMMARY AND RECOMMENDATIONS

Existing subseasonal to decadal climate predictions can potentially
be very valuable for the prediction of marine ecosystems. However,
availability of forecast output for ocean conditions is generally

rather poor; in particular, most seasonal prediction systems
do not provide ocean variables other than SST. While there
are technical hurdles to providing additional large datasets,
one of the reasons for the limited data availability may be that
the modeling centers do not see enough demand for those
data to be shared. We suggest that the demand actually exists,
and we make two recommendations for enabling the uptake of
physical forecasts in marine ecosystem prediction: 1) Climate
prediction projects should make more ocean prediction data
available to the research community. Making an expanded
suite of 2D variables available, as done by the S2S project
and CFSv2, would be a good starting point. Some currently
unavailable 2D variables, such as eddy kinetic energy, could
be useful for marine biological forecasts (e.g., Brodie et al,,
2018), and thus they would be candidates of variables to be
made available in the future. 2) Enable users to download data
for selected regions. This capability is useful for a wide range
of users who may be interested in specific regions and greatly
reduces user requirements for data downloading, storage, and
processing.

Combining physical and biological disciplines with the
common goal of improved marine ecosystem prediction will
be a fruitful area of research with clear applications to society.
To facilitate this research area, it would be useful to develop
a set of case studies for biological prediction. For example,
a massive Northeast Pacific marine heatwave in 2013-2016
involved compound extremes of a heatwave, a low-oxygen
extreme, and an ocean acidity extreme (Gruber et al., 2021).
While the forecast skill and predictability of SST anomalies
during this event have been explored (e.g., Hu et al., 2017;
Jacox et al., 2019; Capotondi et al., 2019b; Capotondi et al.,
2022), further research could investigate how much these
various co-occurring extremes and their impacts on the marine
ecosystem could be predicted. Since a regional phenomenon
is generally studied by regional researchers, other case studies
distributed across the global ocean can be identified to attract
the international community’s interest.

As the global community increasingly recognizes the
sensitivity of marine ecosystems to climate variability and
change and the potential consequences to human society,
the time is ripe to enhance forecasts of marine ecosystems by
pursuing the strategies proposed here. Such efforts are gaining
some attraction at the international level. For example, the
North Pacific Marine Science Organization (PICES) is in
the process of establishing a new working group on “Climate
Extremes and Coastal Impacts in the Pacific” with a focus on
climate and marine ecosystem predictions'!. Furthermore,
the United Nations Decade of Ocean Science for Sustainable
Development (UN Ocean Decade) has been launched for the
2021-2030 decade. The overarching theme of the UN Ocean
Decade is “The Science We Need for the Ocean We Want.”
One of its seven expected outcomes is “A Predicted Ocean.”!?

' https://meetings.pices.int/members/working-groups/wg49 (access January 15,
2022).
12 https://www.oceandecade.org/vision-mission/ (access January 10, 2021).
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To know what ocean we can have in the future, the capability
of marine biological predictions is essential.
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Previous studies have documented a strong relationship between marine
ecosystems and large-scale modes of sea surface height (SSH) and sea
surface temperature (SST) variability in the North Pacific such as the Pacific
Decadal Oscillation and the North Pacific Gyre Oscillation. In the central and
western North Pacific along the Kuroshio-Oyashio Extension (KOE), the
expression of these modes in SSH and SST is linked to the propagation of
long oceanic Rossby waves, which extend the predictability of the climate
system to ~3 years. Using a multivariate physical-biological linear inverse
model (LIM) we explore the extent to which this physical predictability leads
to multi-year prediction of dominant fishery indicators inferred from three
datasets (i.e., estimated biomasses, landings, and catches). We find that despite
the strong autocorrelation in the fish indicators, the LIM adds dynamical
forecast skill beyond persistence up to 5-6 years. By performing a sensitivity
analysis of the LIM forecast model, we find that two main factors are essential
for extending the dynamical predictability of the fishery indicators beyond
persistence. The first is the interaction of the fishery indicators with the SST/
SSH of the North and tropical Pacific. The second is the empirical relationship
among the fisheries time series. This latter component reflects stock-stock
interactions as well as common technological and human socioeconomic
factors that may influence multiple fisheries and are captured in the training of
the LIM. These results suggest that empirical dynamical models and machine
learning algorithms, such as the LIM, provide an alternative and promising
approach for forecasting key ecological indicators beyond the skill
of persistence.

KEYWORDS

empirical dynamical model, fishery indicators, climate variability, climate change,
forecast, biomass anomalies, landings, catches
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1. Introduction

The Kuroshio-Oyashio system is composed of the western
boundary currents (WBC) of the North Pacific’s subtropical and
subpolar gyres. In the transition region between the two gyres,
quasi-stationary meanders form the Kuroshio-Oyashio
Extension jet (KOE). The KOE is flanked to the south by an
anticyclonic recirculation gyre which has been observed to
increase the eastward transport of the jet [Mizuno et al. 1983;
Qiu and Chen, 2005; Qiu et al,, 2017]. Atmosphere-ocean
interactions are particularly intensified in the WBC. Almost
70% of the latent and sensible heat transferred to the atmosphere
from the ocean in the northern hemisphere is transferred in the
region between 25°N and 45°N latitude [Kwon et al., 2010]. This
heat transfer is crucial in controlling surface baroclinicity and
increasing storm activity. As a result, the KOE jet is one of the
regions with the greatest eddy kinetic energy in all the North
Pacific. [Kelly et al., 2010]

The internal dynamics of the KOE play a critical role in
explaining the decadal fluctuations of the Kuroshio-Oyashio
system [Mitsudera et al., 2001; Qiu, 2003]. However, it is now
well established that the interactions with external modes of
variability are important in triggering the quasi-stationary
meanders in the KOE jet. Recent study confirms that the
surface Chl-a concentration, nutrient concentration, and
catches of fish stocks are associated with two dominant modes
of variability of the North Pacific [Yati Emi et al., 2020] which
are the Pacific Decadal Oscillation (PDQO) [Mantua et al., 1997]
and the North Pacific Gyre Oscillation (NPGO) [Di Lorenzo
etal., 2008; Yatsu et al., 2013; Lin et al., 2014]. One way in which
the PDO-related dynamics influences the marine ecosystems is
through the control of seasonal mixed layer processes. For the
northwestern Pacific, a positive phase of the PDO is associated
with a negative anomaly in the SST with an associated increase
in the mixed layer depth, leading to a weakening of the KOE
[Yatsu, et al., 2013]. The opposite happens in a negative phase.
These climate regime shifts are well correlated with fluctuations
in biological characteristics [Yati et al., 2020; Mollmann and
Diekmann, 2012]. The weakening of the KOE is hypothesized to
increase the catches of Japanese sardine in the northwestern
Pacific, while during a strengthening of the jet, catches of
Japanese anchovies are relatively high [Chavez et al., 2003].

While the patterns of climate variability are well established
[Liu and Di Lorenzo, 2018], the mechanism by which the marine
ecosystems are influenced by climate fluctuations remains
unclear [see review in Bograd et al., 2019]. As climate processes
induce fluctuations in marine ecosystems, human societies are
often negatively impacted, as food security and coastal economies
are dependent on the stability of marine resources [Yunne-Jai
et al., 2010; Shin et al,, 2010]. This means that improved
predictions of future changes in the fisheries of the Kuroshio-
Oyashio system can have important socioeconomic impacts.
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Forecasting marine ecosystems presents a series of
challenges because the interactions of the ecosystem with
human society often have been nonlinear and occur over a
range of spatial and temporal scales. Also, the lack of long and
accurate time series challenges our ability to study climate and
fisheries interactions and develop forecasts that are accurate at
long lead times. To address these challenges, past studies have
focused on identifying the observational needs for ecosystem
forecasting [Capotondi et al,, 2019] and on exploring the use of
dynamical model approaches to account for non-linearities
present in marine ecosystems dynamics [Jacox et al, 2019;
Tommasi et al., 2017]. Yet, numerical dynamical models still
have biases, including erroneous representations of the WBCs
and their separation latitude, limiting their usefulness for
capturing many complex, fine-scale processes. Given that we
still do not have adequate dynamical models that capture the
dynamics of climate, fish, and human interactions, previous
studies [Koul et al., 2021] have investigated the use of simple
statistical models (linear regression and multiple linear
regression) for fishery forecasting. These studies have offered
successful predictions of cod stocks in the Barents Sea on decadal
time scales.

In this article we have considered an alternative approach to
predict of time series of fisheries indices by using an empirical
dynamical model (EDM) method or linear inverse modeling
(LIM). These approaches have proved very useful for
understanding the variability of North Pacific physical
ecosystems drivers, including extremes [Capotondi et al., 2022],
and have exhibited promising results when applied to North and
tropical Pacific SST forecasts [Newman, 2007]. Here, we apply the
LIM approach to explore the predictability of a set of fisheries time
series describing the temporal changes of specific stocks. These
time series can be viewed as proxies that simplify complicated
biological and socioeconomic conditions over time [Blanchard
et al,, 2010; Tam et al,, 2019]. The three fisheries databases
considered in this study are (1) stock biomass anomalies from
scientific stock assessments performed for a limited number of
stocks in different regions (RAM database, [Ricard et al., 2012]),
(2) landings of stocks as reported by the country targeting the
species (LME database, [Pauly et al., 2020]), and (3) the catches of
species that are estimated from data reported to the United
Nations (FAO database [Pauly et al., 1998]).

These data sources are useful in the context of EDMs
because they provide a large number of time series that
capture physical, ecological and human factors inherent to
commercial fisheries statistics. Also, EDMs like the LIM have
the added advantage of being able to capture some of the
human-forced dynamics that are implicitly reflected in the fish
indicators and yet are not explicitly known.

The purpose of the paper is to analyze the ability of the EDM
to forecast fisheries time series. While the use of complex
dynamical models could be another possible approach [Park
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et al,, 2019], the inclusion of fisheries information in dynamical
models is not straightforward. In addition, dynamical models
often sufter from biases in the representation of physical climate
features, such as the Western Boundary Currents, and are much
more computationally intensive. The EDM approach explored
here, if skillful, may provide a useful alternative for forecasting
fisheries indices. Here, we consider the forecasting skill related to
the fisheries metrics and partition the fisheries predictability
between the component associated with climatic variables, i.e.,
sea surface temperature (SST) and sea surface height (SSH) and
that related to stock-stock interactions or socioeconomic factors.

2. Methods
2.1 Reanalysis data

The physical data that we included in the LIM were extracted
from the ECMWF Ocean Reanalysis System 4 (ORAS4) on a 1°C
by 1°C latitude-longitude spatial resolution between 1958-2016,
for a spatial region of 15°S-62°N, 100°E-290°E, which includes
the tropical and North Pacific. It is important to include in the
LIM all North and tropical pacific basin for the physical state.
This allows us to capture the dynamics of the large-scale climate
modes such as PDO and NPGO and their tropical forcing linked
to the different flavors of the El Nifio Southern Oscillation [Di
Lorenzo and Ohman, 2013].

As is often done with the LIM [Newman, 2007; Zhao et al,,
2021], the SSH and SST data were first coarsened by averaging
them into a box of 2 degrees of latitude and 5 degrees of
longitude. As a next step, the data were smoothed to remove
sub seasonal variations with a 3 months running mean. The SSH
and SST anomalies were computed by removing the mean
monthly climatology. Further description and access to the
data can be found at https://icdc.cen.uni-hamburg.de/daten/
reanalysis-ocean/easy-init-ocean/ecmwf-ocean-reanalysis-
system-4-oras4.html

2.2 Fisheries databases

The first database considered for the fisheries was the RAM
Legacy Stock Assessment Database (RAM), https://www.
ramlegacy.org, [Ricard et al., 2012]. Globally, this database
contains 331 stock assessments divided into 295 marine fish
stocks and 36 invertebrate stocks. The species considered from
the RAM database are displayed in Supplementary Table 1 and
included 20 species from the northwest Pacific region of interest
(Figure 1A). For some species, the associated time series have a
time duration of 63 years from (1950-2012). However, most of
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the fish indicators are only available after 1979. For this reason
we selected data after 1979 with less than 5 years of data gaps for
developing the LIM.

The second database considered was the commercial catches
from a database aggregated by Large Marine Ecosystem (LME),
https://www.Imehub.net/, [Cornillon, Peter. (2007)] (Figure 1B).
An LME is defined as an area of 200,000 km? or greater whose
extent is determined by similarities in relevant variables such as
bathymetry, productivity, or trophic relationships [Sherman,
2014]. The database contains 10,438 stocks in all regions of
the world with 55 years of data, from 1950 to 2004. Three LMEs
were considered in this study (the Kuroshio, the Oyashio
Current and the Sea of Japan LMEs), and those included
catches for 225 stocks that have data gaps for less than 5 years.
The catches were defined as the weight of fish caught in the open
sea independently of the way they have been taken (i.e., gear type
or as target or non-target catch). We have considered catches
data from 1959 to the most recent data. Here, catches in FAO
region 61 (Figure 1J) were analyzed (a region of the Northwest
Pacific from about 20°CN to 65°CN and from the coast of
Vietnam east to the Bering Strait). The discarded fish have not
been filtered out in the two databases; the stocks of the LME
database are referred as “catches” as the database contains more
catches in weight than the FAO database.

The last database considered included the landings obtained
from the Food and Aquaculture Organization (FAO) of the
United Nations (https://www.fao.org/fishery/en/statistics)
[Pauly et al., 1998] (Figure 1C). Landings for each region offer
insight into variability in commercial fishing operations and the
fish populations that support them. WE have used 171 landings
data with data gaps less than 5 years. As for the LME database we
have started the data from 1959.

The stocks considered for the landings and the catches are
displayed in Tables 1, 2 and 3 of Supplemental Materials.

2.3 Detrending and standardization

Before proceeding in developing the LIM, we detrended the
fisheries and physical time series so to increase their stationarity
(i.e., no linear trends are present in any record).

Specifically, the time series extracted from the fisheries
databases were standardized by dividing by the standard
deviation for each individual stock ID and detrended by
removing the best linear trend fit. Consequently, the time
series are represented in STD units, and the total number of
fish species is described by the StockID (Figures 1A - C). The fish
information relative to the fish stocks are provided in Table 1, 2,
and 3 of the Supplemental Materials. To examine the percentage
of variance excluded by the detrending, we calculated the
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difference in variance between the total original data and the
detrended time series. The mean variance explained by the trend
is 29.5% for the RAM biomass (Figure 1D). In particular, the Red
seabream Inland sea of Japan (stockID 18) displays the highest
variance associated with the trend. For the LME catches and the
FAO landings, the variance excluded by removing the trend is
13.5% and 17.5% respectively, as displayed in Figures 1E, F. The
associated sign of the removed trend displays a mixture of
positive and negative trends in the stock time series of all the
three databases (see supplemental Figure S1).
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FIGURE 1
Timeseries of detrended and normalized fish stocks for the RAM (A), LME (B), and FAO (C) datasets. The variance explained by the removed
trend is represented in (D, E), and (F). The mean variance excluded by the detrending has been inserted in the plots. The associated variability is
described by the first and second principal component (G) and (H), while the corresponding EOFs are displayed in Supplementary Figure S1. The
percentage of variance explained by the PCs in each dataset is shown in (I).

2.4 Principal components and empirical
orthogonal functions

To reduce the dimensionality of the detrended and
standardized fish indicators, we have used a classic principal
components (PCs) analysis. To extract the PCs we first compute
the covariance matrix of each fish dataset F;(s,t), where s denotes
the stock id, ¢ its time values, and i the dataset label:

C(s,) = Fy(s, )F;(£, )"
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By performing an eigenvalue decomposition of C(s,s),

Ei(s, k)A(k, K)E;(k, s)T = Ci(s,5)

we derive the eigenvector E;(s,k) for the eigenmodes k=1...K
where K=7 or RAM, and K=8 for LME and FAO that are
associated with the K largest eigenvalues A(k) from the
diagonal of the eigenvalue matrix A(k,k) . The choice of K
modes retained in each dataset is explained in section 2.5.
Physically, these eigenvectors, referred to as the Empirical
Orthogonal Functions (EOFs), are the dominant patterns of
variance across the stocks and provide an orthogonal basis onto
which we can decompose the original fish datasets as:

P,(k,t) = E;(k,s)TF,(s, 1)

where Pi(k,f) are the PCs for each dataset i. Using this
approach we reduce the dimensionality of the fish dataset from s
(order ~100)—k(order ~10) Prior to the computation of the
covariance, years with missing data in any given stock were set to
zero to void any contribution to the covariance. Given that for
any given year there were only few missing data across all the
stocks, the impact of setting to zero the missing values has
negligible impact the estimation of the EOFs.

The first two dominant PCs for each of the fish dataset are
reported in Figures 1G, H and are discussed further in the results
section 3.1. The EOFs structures for the first two modes are
reported in supplemental material Figure S1.

By normalizing the eigenvalue om the EOFs decomposition,
we measure the fraction of yariance explained by each pair of
PC/EOF mode k as A(k)/> A(k). The spectrum of explained
variance is reported in Figufe 11.

2.5 Linear inverse model and forecast

Inverse modeling can be defined as the extraction of
dynamical properties of a physical-biological system from its
observed statistics. The LIM model suggests that on interannual
time scales, our system may be viewed as a linear system driven
by Gaussian white noise. The idea is that the climate timescales
underpinning the dynamics of our system are longer than the
noise. An example of noise are the fast air sea interactions. In
this framework the N component state vector of anomalies X
volves accordingly to the linear equation,

dX(t)
dt

= LX(t) + &(t) (6]

In this equation L represents a matrix that describes the
feedback among different components of X while & is the
stochastic forcing term.

For the purpose of this study, the components of the state
vector X and of the operator L in equation (1) are:
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In this framework, the state vector X is made of three

)

substate vectors representing the fishery, SST, and SSH dataset.
Each of these substate vectors is constructed using the PCs to
reduce the dimensionality of the problem. For example,

X(B)ssr= [SST_PC,(t), SST_PCy(t), ..., SST_PCx(t) ]

where K is number of dominant PC retained for
each dataset.

In equation (2), the operator L as in the main diagonal the
interaction terms of each variable with itself (LSST-SST,Lfisheyr-
fishery,LSSH-SSH), while the terms outside the main diagonal
are the interaction terms of each variable with the other ones
(LSST-SSH,LSST-fishery, LSSH-fishery,LSSH-SST,Lfishery-SST,
Lfishery-SSH).

As discussed by Penland et al. [1989], the statistics of a
system modeled by the LIM must be Gaussian [Penland et al.,
1995]. The operator L can therefore be determined from the state
vector X by discretizing the equation (1).

L= —In ((X(t+ DX(0) (XOXO)) G

After obtaining L we can forecast of the state vector for a
specific lead time 7 using:

(4)

An important assumption in the use of the LIM, and the

X(t+71) =exp(L- 1)X(1)

forecast equation (4), is that the statistics of the system are
stationary over the period considered. For this reason, the
operator L must be dissipative, which means its eigenvalues
must have negative real parts [Newman et al., 2013]. Similarly,
we expect that the statistics of stochastic forcing Q=(£E")
[Penland et al., 1995], which are determined from the
fluctuations-dissipation relationship,

Q =-LC(0) + C(O)LT (5)

has positive eigenvalues. In supplemental Figure S2 we have
displayed the eigenvalue spectrum for the operator L and the
matrix Q We obtain negative eigenvalues for L and positive for
Q indicating that our statistics are stationary.

frontiersin.org


https://doi.org/10.3389/fmars.2022.969319
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Navarra et al.

2.5.1 LIM forecast configuration

Number of PCs used in the state vector. To implement the
LIM forecast model, the number of PCs retained in the physical
and biological state vectors were chosen differently. For the
physical components of the analysis, we retain 20 PCs for the
SST and 17 for the SSH which capture 77% and 76% of the
variance, respectively. These numbers were selected following
the configuration of a previous Pacific LIM that uses the same
data sources and domain area [see Zhao et al., 2021]. Equation 2
is used independently for each of the fish datasets. To establish
how many PCs to retain for each dataset (e.g. RAM, LME, and
FAO), we performed a series of cross-validated forecasts
(explained in the next section 2.6) using equation (4) to
identity the number of biological PCs to retain in the LIM that
would lead to the highest forecast skill for the reconstructed fish
indicators. Based on this cross-validation, we retained 8 PCs for
the RAM biomass, corresponding to 94% of the variance of that
quantity, 7 PCs for the LME catches, which describes 74% of the
catches total variance, and 7 PCs for the FAO landings, which
still correspond to 70% of the variance. Also, for the fishery state
vectors, we interpolate the data to the same monthly scale of SST
and SSH to allow inclusion of physical information at seasonal
time scales.

Temporal span of forecast. The dataset used in this study
have different spatial coverage. The physical data is only
available starting 1959. Thus, we begin our training of the LIM
and examination of the forecast skill over the following period:
1959-2016 for SSTa, 1979-2012 for RAM, 1959-2004 for LME,
and 1959-2014 for FAO.

2.6 Cross-validation

To ensure that the LIM is tested on independent data, the
estimates of L and of forecasting skills were cross validated by
subsampling the data record. We have removed in total 10% of
the data, for both the fishery and the physical part, and
computed the operator L for the remaining data. The
independent years removed are then forecasted using the
computed L. This procedure is repeated for the entire period.
The associated forecasting skills are computed by the correlation
r(7) between the observational data and the forecast for the
different lead times T For example, to evaluate r(7) for the each of
the fish datasets, the PCs of the forecasted substate vector X (t
)fishery Obtained from (eq. 4) [Newman et al., 2003] are projected
into the truncated EOF space,

Fi(s,7) = Ei(s,k)"Pi(k, )

to obtain the forecasted fishery time series that are then
correlated with the original data Fi(s,7) We apply this procedure
to the LIM that (1) contains only the physical state variables SST
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and SSH, and (2) contains the physical variables plus the
fishery’s principal components.

2.7 LIM 7 est

To test the validity of linear approximation of the LIM, we
perform the so called a 7 test, which is designed to test the ability
of the LIM to reproduce the lag covariance statistics using a lag
which goes far beyond the training 7=3 months . Practically, the
test consists of comparing the covariance matrix obtained from
the original state vector to the covariance matrix calculated using
the LIM for different lags 7=3 .. 12 .. 36 months . The LIM is re-
computed each time using the different training T Given that the
LIM must be independent of the chosen lag, these two covariance
matrices should give a compatible result for the LIM to perform
well [Newman et al., 2011; Newman and Sardeshmukh, 2017]. A
comparison of the diagonal elements of the observed lag
covariances with the one obtained from the LIM is show in the
supplemental material for the SST (Figure S3), and each of the
fishery datasets (Figures S4-56). Overall, LIM is able to capture
the main structures of the lag autocovariance pattern for both the
SST (Figurel of Supplemental Materials) and the fishery indicator
(Figure 2-4 of Supplemental Material) for lags up to 1=72 months
in the fish dataset.Results from this test indicate that the LIM
approximation is valid for long-lead forecasts of this set of
physical and fishery indicators.

2.8 Persistence and forecast skill

When evaluating the skill of a forecast it is customary to ask
the question of whether the forecast model adds skill beyond the
so-called persistence forecast. This is equivalent to forecasting
that each future conditions is the same as the condition today.
From a mathematical point of view the persistence correlation
forecast skill at different lead time 7 for a timeseries y(t). given by
the auto-correlation function

_0)y(7)
¥(0)y(0)

where y(0)y(0) is the covariance at zero lag and y(0)y(t) is

CF(7)

the covariance at lag T.

In climate science, for a forecast model to have higher skill
that persistence is a fundamental measure to indicate that the
model is able to extend the predictability through its dynamics
beyond the natural temporal auto-correlation that exists in the
data. A recent discussion of the concept of persistence can also
be found in Jacox et al. [2020]. In the article, we compare the LIM
forecast skill to persistence as a way to estimate the LIM’s ability
to capture the dynamics of the system and to use those dynamics
to extend the predictability of the fish indicators. Specifically, we
use the following definitions for the correlation skill,
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rPersistence(T) = ACF(7)

TForecast (T) = correlation( (), y(t))

where y(7) is the LIM forecasted state at lead T and y(7) is
the observed state. As reported in section 2.6, all the forecasted
states use a LIM that is trained with a dataset that does not
include the observed state, which we also refer to this as the
cross-validated forecast skill.

To estimate the statistical significance of the correlation skill
we have used a Montecarlo approach. Specifically, we first
develop an auto-regressive model of order 1 (AR1) as a null-
hypothesis simulation model (i.e., red noise) for a given pair of
timeseries that are being compared in the correlation. Next, for
each of the timeseries we estimate the lag-1 auto-correlation
coefficient and use that to generate 2000 pairs of red noise
timeseries using the ARl model. We compute the probability
distribution function (PDF) of correlation coefficients between
the red noise timeseries pairs. This PDF is then used to estimate
the 95% and 99% confident levels of the correlation between the

two original timeseries.

3 Results and discussion

3.1 Fisheries biomass data and relation to
physical quantities

Given that the data has been decomposed in EOFs and PCs
we first perform an inspection of their statistics. The temporal
evolution of the first two dominant modes for the fish datasets
are captured by the PC1 and PC2 (Figures 1G, H). Both the PCsl
and PCs2 displays very strong low-frequency variability in each
dataset with a significant level of coherency across the datasets.
As further discussed in the next sections, these low-frequency
variations may be associated not only with decadal climate
variability, but also with human influences. For example, these
stocks have been heavily exploited in the last 60 years [Pons
et al., 2017]. In particular, the increase in fishing pressure
coupled with the demography of the fish stocks has led to a
collapse and recovery of populations with common trends
among stocks as discussed by previous authors [Myers and
Worm, 2003; Nye et al., 2009; Wang et al., 2020]. The amount
of variance explained by the first two PCs for each fisheries
databases (see Methods section 2.4) is very large (Figure 11). For
example, PC1 for the RAM biomass represents 47% of the total
variance, while the PC1 of the LME catches and the FAO
landings describe respectively 25% and 35% of the variance.
This indicates that despite the large number of fish stock
indicators, the overall degrees of freedom in the datasets are
low and represented by a relatively low number of modes (e.g.
pairs of PCs/EOFs).
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To quantify the extent to which the low-frequency
fluctuations of the fish indicators are tracking climate
variability, we perform a correlation analysis between the PCs
of the fisheries data and large scale SSTa. Correlations between
SST anomalies and the PCsl for the three fish datasets are
reported in Figure 2A. While the patterns show some differences
it is evident, especially for the LME and FAO, that stronger
correlation existing the region of the KOE. This is more evident
by computing a map of the mean correlations across the datasets
(Figure 2B), which shows a strong negative correlation from the
East China Sea and coastal Japan extending in the central North
Pacific. A similar correlation analysis for the PCs2 (Figure 2C)
reveals the emergence of the more familiar basin-scale pattern of
Pacific decadal variability such as the PDO across all the
datasets. Again, this PDO-like pattern becomes clearer in the
map of the mean correlations for PCs 2 (Figure 2D) exhibiting
strong correlations in the canonical center of actions of the PDO
over the central and eastern North Pacific. The correlation
patterns of the PCs with the SSTa (Figure 2) gives us
confidence that the link between the climate variability and
the fish can be exploited for forecasting, especially in the KOE
region, where previous studies have shown longer-lead multi-
year predictability (see next section 3.2).

3.2 LIM forecasts of the low-frequency
variability of the KOE

It is well known that the KOE variability is strongly linked to
wind induced Rossby waves formed in the Central North Pacific
[Deser et al., 1999; Schneider and Miller, 2001; Seager et al., 2001].
The effect of the wave propagation can be separated into two
dynamical modes of variability. The first mode is related to a
latitudinal shift of the KOE jet, while the second is associated with
a strengthening or weakening of the KOE quasi-stationary meanders
[Taguchi etal.,2007; Taguchi et al., 2014; Ceballos et al., 2009]. These
dynamical changes in the KOE jet can impact the local marine
populations with changes in the wintertime mixing and springtime
stratification that control seasonal nutrients and light supply for
primary producers [Chiba et al., 2013; Nakata et al., 2003]. Given that
it takes approximately 2-3 years for the Rossby waves to propagate in
the KOE region, these large-scale dynamics carry an inherent multi-
year predictability that can be exploited for longer lead low-frequency
forecasts on physics and marine ecosystems.

Thus, before exploring the predictability of the fisheries time
series, it is informative to quantify the low-frequency
predictability of the KOE physical environment, specifically
the SST, which is a state variable with strong links to the
dynamics of fish populations.

For this purpose, we build a LIM using only SSTa and SSHa
data (see Methods section 2.5) and use equation (4) to perform a
series of cross-validated forecasts for lead times of 6, 12, and 24

frontiersin.org


https://doi.org/10.3389/fmars.2022.969319
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Navarra et al.

10.3389/fmars.2022.969319

A (07
Correlation of PC 1 with SSTa Correlation of PC 2 with SSTa
p N S
)
°
2
®
-
o
°
-]
-
)
-
)
°
3
b
3
-250 -200 -150 -100 -250 -200 -150 -100
Longitude Longitude
|| DI
05 Correlation with SSTa 05
B Average Correlation (RAM + LME + FAO) D Average Correlation (RAM + LME + FAO)
o
°
2
-
3

Longitude

-150
Longitude

-200

-250

-0.4 -0.2

-0.1

0 0.1 0.2 0.3 0.4

Correlation with SSTa

FIGURE 2

Correlation map between SST anomalies and PC1 (A) and PC2 (C) of the fishery datasets (RAM, LME, FAO). The average correlation maps across

the datasets for PC1 and PC2 are shown in (B) and (D)

months (Figures 3A, B, C). We find that areas of higher skill are
concentrated along the Northeast Pacific coast and the KOE
extension and are co-located with centers of actions of the PDO
and the KOE low-frequency variability patterns [Matsumura
et al., 2016]. We also examine the forecast skill in the KOE
region (the average SSTa in the black box of Figure 3A) as a
function of the month used to initialize the forecast (Figure 4A).
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We find that significant forecast skill (correlation >0.6) extends
only up to 1.5 year. If we compare this skill level with that obtain
from persistence (Figure 4B), we find that the LIM extends this
skill beyond persistence up to 10 months (Figure 4C).

Given that the fisheries are predominantly characterized by
low-frequency variability, we now quantify the low-frequency
predictability of the SSTa in the KOE by applying a 6-year filter
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Forecast correlation skill of the LIM with physics only (SSTa, SSHa) for lead-times of 6 months (A), 12 months (B), and 24 months (C).
In (D), (E), and (F) the same correlation skill maps are shown but computed using the 6-year low-pass filter applied on the original and

forecasted monthly data

to the forecasted state vector. As expected when applying a lowpass
filter, we find an overall increase in skill spatially at 6, 12, and 24
months (Figures 3D, E, C). If we examine the skill as a function of
initialization month (Figure 4D), we find that high skill levels
(R>0.6) extends up to lead times of 4-5 years. However, the filtering
also leads to longer persistence skill due to the increase in
autocorrelation, up to 1.5 years (Figure 4E). Nevertheless, if we
look at the difference in skill between the LIM forecast and
persistence (Figure 4F), we find that the filtering does extend
dynamically the low-frequency predictability by 4-5 years. As
emphasized by previous articles [Thompson et al., 2010], the
increased skill shows the importance of the low frequency
variability of SST anomalies in the KOE jet. These results confirm
previous findings that in the KOE, the large-scale climate associated
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with the propagation of Rossby waves and the modes of decadal
variability lead to extended multi-year predictability.

3.3 LIM forecast of fisheries time series

We now analyze if the long-lead, low-frequency
predictability of the KOE physical state is important in
extending the forecast of fisheries metrics. We construct three
independent forecast LIMs for each of the fish datasets (i.e.,
RAM, LME, FAO) using the definition of the state vector in
equation (2) (see Methods section 2.5). The results from the
cross-validated forecast are shown in Figures 5A, B, C for leads
up to 160 months. Results show high correlation skill values R ~
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0.7 extending almost to the end of the forecast window. Given
that stocks are characterized by timeseries with exceptional low-
frequency variability, it is critically important to assess If the
correlation skill of the LIM is significant. Using the Montecarlo
approach discussed in Method section 2.8, we identify the 95%
and 99% significance levels for each of the datasets. These are
marked in the colorbar of Figure 5 and show that any correlation
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above R=0.55 (RAM), R=0.41 ((LME), and R=0.44 (FAO) is
significant at the 95%. Correlations above R=0.66 (RAM),
R=0.51 (LME), and R=0.54 (FAO) are significant at the 99%
with the RAM being higher than the other datasets because of its
shorten temporal span, which reduced the degrees of freedom.
We further examine the impact of autocorrelation in the data on
the forecast still by computing the persistent forecasts (Figures 5D,
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E, F). We find significant persistence skill R~0.7 up to 4 years for
some of the RAM biomass anomalies (Figure 5D) and up to 3 years
for the LME (Figure 5E) catches and FAO landings (Figure 5F).
Despite the long-lead forecast skill from persistence, the difference
maps between the LIM forecast and persistence skill (Figures 5G, H,
I) show that the LIM has higher and extended significant forecast
skill beyond the range of persistence by 3-5 year limit.

Despite the statistical measures of skill significance discussed
above, it is important to recognize that ultimately the real
usefulness of these forecast will depend on how, and what
aspects of, this information enables better informed decisions
by fishery managers. For this purpose, it is informative to show
the timeseries of the LIM forecasts for a few selected species. In
each database we picked two species that show extended
predictability and displayed their 2- and 5-years composite
forecast timeseries (Figure 6, red lines are the cross-validated
forecasts, blue line the original data). Focusing on the RAM,
Figures 6A, B displays the stock Striped Marlin North Pacific and
Yellow sea bream Sea of Japan from the RAM database. Despite
the overall higher frequency variability of the LIM forecast,
overall the 2-year LIM well captures the low-frequency evolution
of the timeseries including some of the interannual extrema on

Frontiers in Marine Science

187

timescale between 2-5 years. In contrast, for longer lead forecasts
such as the 5-year (Figures 6C, D), the LIM is only able to
capture the low-frequency variations (6 year and above) and
loses information about the interannual fluctuations (e.g.
compare Figures 6B vs D). A similar behavior is somewhat
evident also in the LME catches stocks Sardinops sagax and
Reinhardtius evermanni (Figures 6E-H) and the FAO landings
stocks Sciaenidae and Colorabis saira (Figures 61-L). We
examine this behavior more systematically across the stocks —
that is the LIM loses its ability to forecast interannual
fluctuations for longer forecast leads, by applying a 6-year
highpass filter on the composite forecasted timeseries for leads
times between 0-160 month and re-examine the correlation skill
with the original data. We find that the LIM interannual forecast
skill is significantly less for longer lead times (Supplemental
Figure S7A, B, C) as evident by taking the difference with the
non-filtered forecast (Figures S7D, E, F).
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Selected single stock time series (blue lines) and the forecasted time series (red lines). The stock have been selected considering those that have
the highest difference between forecasting LIM skill and the persistence. The 2-year lead forecast are shown for the RAM (A, B), for LME

(E, F) and for the FAO (I, J). The same comparison are shown for the 5-year lead forecast in panels (C, D) for RAM, (G, H) for LME, and (K, L) for
FAO. The name of the selected stock is displayed at the top of each panel.

3.4 LIM forecasting skills sensitivity
analysis

To better understand how marine ecosystem components
and physical components (and their interaction) contribute to
the forecast skill, we perform a sensitivity analysis to investigate
key physical and biological factors that influence the
predictability of the fisheries. More precisely, the purpose of
the sensitivity analysis is to quantify how the forecasting skill of
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individual fisheries time series depends on knowledge of the
climate state and to the knowledge of the other fish stocks.

We begin by exploring the role of the physical state variables
in the predictability of the fisheries time series by including the
constraint that the interaction terms of the fisheries with SSTa
and SSHa in the operator L are zero. This condition implies that
we are excluding the interaction of the SSTa and SSHa PCs with
the fishery PCs. The forecast skill of the LIM that does not
include the coupling with the physics is shown in Figures 7A - C
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Same as Figure 5, except showing the forecast skill of the LIM where the physics and fish sticks are decoupled, (A) RAM, (B) LME, (C) FAO. The
differences in skill between the decoupled and the full LIM case are shown in (D), (E), and (F). The forecasting correlation skill as a function of
different lead-times is displayed also for a LIM where each stock is forecasted independently are shown for the RAM (G), LME (H), and FAO (1)
datasets, along with the differences from full LIM case in panels (3), (K), and (L), respectively.

for the different fish datasets. It is immediately apparent that the
skill is greatly reduced with compared to the full LIM
(Figures 7D-F, show the difference map) suggesting that the
information of the phsycial climate variability plays a primary
role in extending the LIM forecast skill of the fishery indicators.
Specifically, we find that a LIM forecast that depends only on the
knowledge of the stock vs. stock interactions (e.g. without the
physical information) has limited extended predictability to up
to 50 months across the RAM, LME, and FAO timeseries. This
reduction in skill can be attributed to several factors, which are
not fully investigated in this study. One possible reason regards
the role of the Rossby wave propagation in the multiannual
prediction of ecological systems [Jacox et al., 2020]. These waves
are predominantly initiated in the eastern side of the North
Pacific Ocean through modulation of Ekman pumping
connected with wind stress curl anomalies induced by the
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PDO mode [Capotondi and Alexander, 2001; Qiu et al., 2017].
Propagating Rossby waves (RWs) have an important impact on
nutrients availability on interannual timescales, which are linked
to changes in primary [Sakamoto et al., 2004] and secondary
producers as well. In particular, it has been found that RWs
modulate the depth of the nutricline by a few tens of meters
[Killworth et al., 2004] with corresponding impact on surface
nutrient availability. In addition, RW impact surface chlorophyll
concentration by a vertical displacement of the chlorophyll
maximum, [Dandonneau et al,, 2003]. Consequently, it is
possible that the exclusion of the physical interactions that are
associated with skillful physical predictions from the LIM lead to
a much lower forecasting skill for most of the stocks.

Next, we want to examine how the forecast skill depends on the
interactions among species. To this end, the full case LIM forecast is
repeated by replacing the principal components of the North
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Pacific stocks with the data time series for each single stock rather
than all stocks together (Figures 7G-I). For each of the three
databases, the RAM biomass, the FAO landings, and the LME
catches, we find again substantial reduction in forecast skill when
data from other stocks are excluded from the LIM (Figures 7K-M,
show the difference map). This suggest that interactions between
stocks contains information that is useful for predictability.

Through these sensitivity analysis, we conclude that the
climate forcing has a considerable impact on the fisheries
forecast, but it does not represent the only contribution to the
skill. To a lesser extent, skill is contributed from the fisheries data
from other stocks in the region.

4 Conclusions

Previous studies [Brander et al., 2007; Yati et al.,, 2020] have
documented how climate variability and change have a significant
impact on marine populations and fish species in the North Pacific.
However, the mechanisms linking climate fluctuations to the
dynamics of marine ecosystems are not fully understood and are
currently not well captured by numerical models. Long-term
timeseries of data for both climate and fisheries such as
population biomass (RAM), catches (LME), and landings (FAO)
provide an opportunity to explore the coupled climate-fish
predictability using empirical dynamical models and machine
learning approaches. These approaches are very promising
because the time series of fish indicators also reflect non-climate
forcings that are related to the internal stock dynamics, human
exploitation by commercial fishing, economic conditions, and
technological advancements. These combined interactions are
hard to resolve in traditional dynamical models. Each of these
non-climate processes and their interactions, can have a substantial
influence on metrics of fisheries biomass, landings, and catches.
However, the relative importance of these factors on the variability
of fish species and their predictability has not been fully explored.

In this paper, we used observationally derived lag covariance
statistics to empirically capture the linear and (fast) nonlinear
interactions among fish stocks, and of fish stocks with human and
climate drivers (e.g. the LIM forecast model). Our results showed
that the empirical dynamical forecast of the climate-fish-human
multi-variate LIM has long-lead predictability that extends
beyond the persistence timescale for up to 5-years with
significant skill. This finding is consistent with recent studies
showing how both short-lived and long-lived species display a
response to climate variability and to the increased fishing
pressure [Pinsky and Byler, 2015; Rouyer et al., 2014; Wang
et al,, 2020]. To further confirm and separate the impacts that
climate and non-climate drivers are having on the fisheries, we
have implemented a series of sensitivity analyses that selectively
included or excluded the interaction terms between climate and
fisheries time series in the LIM dynamical operator. Results of the
analysis revealed a significant decrease in fish forecast skill when
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the interaction with the SSH and SST is excluded. While the LIM
methodology does not allow us to explicitly diagnose which
mechanisms of physical-biological coupling are important for
extending the predictability in the KOE region, it does confirm
and quantify the critical role of ocean climate dynamics, which
previous studies had discussed but not explored with rigorous
quantitative measures [see also review from Jacox et al., 2020]. In
fact, this study is to our knowledge one of the first attempt to
explore empirical model forecasting in the KOE region.

Further analyses also revealed that the forecast skill arising
from empirical relationships among the stocks are also
important, although less important than the inclusion of
physical characteristics. This indicates that the information
shared among stocks, which could be reflective of changes in
industrial fishing practices, market forces, or species
interactions, substantially improves forecasting skill. In
particular, we notice a distinction in the RAM data between
short-lived species and long-lived species as we compare the
results with the first sensitivity analysis. Short living species are
highly dependent on the climate factors and much less on the
stock-stock interactions. While long-living species have a
dependency on climate factors of the North Pacific, but the
stock-stock interactions give a high contribution as well to the
forecasting skill much more than short living species.

Although more studies are required to understand the joint
predictability dynamics between climate and fisheries In the
Pacific Ocean, the analyses presented here with a multivariate
linear inverse model provide a promising approach for utilizing
climate information to predict socio-ecological indicators such
as fish catch, biomass, and landings. Our results also suggest that
this approach may be successful in accounting for the dynamics
of external human forcing (e.g., in this case fishing) that are
implicitly incorporated in the stock-stock interaction terms.
Lastly, these findings support the idea that predicting the
marine ecosystem as a hole (e.g., including multi-variate
ecological indicators) is more skillful than focusing on
individual stock timeseries.
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