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Editorial on the Research Topic

Future Climate Scenarios: Regional Climate Modelling and Data Analysis

While climate change has become one of the most pressing issues around the world, adapting to it
from a long-term perspective is extraordinarily challenging due to the significant spatial variations of
climatic changes (e.g., different magnitudes of temperature increases from low- to high-latitude
regions, precipitation increases in wet regions versus decreases in dry areas) as well as the wide
variety of consequences caused by these changes (e.g., unexpected long-lasting droughts versus more
frequent floods) (Giorgi, 2019; Wang et al., 2013). In order to support informed decision making and
resilient engineering planning under future climate change, it is extremely important to develop
reliable and high-resolution climate scenarios to facilitate the exploration of all possible changes to
regional climatology and to quantify the potential climate risks to human society and natural systems
(Wang et al,, 2014; Wang et al., 2019).

Although global climate models (GCMs) have been widely used to develop future climate
scenarios, their outputs are usually too coarse to be suitable for driving impact models which require
finer-resolution projections at both spatial and temporal scales (Guo et al., 2018). Besides, there are a
wide variety of uncertainties in future climate projections which are caused by different choices of
greenhouse gas emissions scenarios, GCMs, physical parameterization schemes, etc. These
challenges are among the most urgent issues to be addressed for climate change impact
assessment and adaptation studies. High-resolution regional climate models, statistical
downscaling, and advanced data analytical techniques are critically important to address these
challenges, yet they are not well explored due to the research gaps among climate physicists, climate
modellers, climate impacts modellers, and climate data users.

Therefore, this research topic aims to capture recent advances in regional climate modelling
and data analysis in support of developing high-resolution climate scenarios and assessing
regional climate change impacts. This editorial intends to provide a summary about all the
papers collected in this research topic. In this research topic, we have published 22 original
research articles authored by 109 researchers. The topics of these articles do span a variety of
areas but can be generally grouped into four research areas: regional climate projections,
climate change monitoring, hydrological modeling, and climate change impacts and
adaptation. Here we endeavor to summarize the 22 published articles according to these
four research areas.
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REGIONAL CLIMATE PROJECTIONS

Due to the significant spatial variations of climate change,
developing high-resolution climate scenarios is the starting
point for climate change impact assessment and adaptation at
regional and local scales. This is because the decision makers and
local stakeholders need to first understand what would be the
expected climate before taking any mitigation and adaptation
actions. In this research topic, we collected five research articles
related to regional climate projections.

e The paper entitled “Ensemble Temperature and
Precipitation Projection for Multi-Factorial Interactive
Effects of GCMs and SSPs: Application to China” by
Duan et al. evaluate the plausible changes in annual
precipitation and mean temperature over China using
five GCMs (i.e., CESM2, GFDL-ESM4, IPSL-CM6A-LR,
MIROC6, and MRI-ESM2-0) under two Shared
Socioeconomic Pathways (SSPs), including SSP2-4.5 and
SSP5-8.5. A multi-level factorial analysis approach is then
used to help explore and quantify the sources of uncertainty
associated with the future climate projections for China.

e The paper entitled “Long-Term Maximum and Minimum
Temperature Projections Over Metro Vancouver, Canada”
by Tian et al. use a neural-network-based statistical
downscaling model to help develop future temperature
projections for Metro Vancouver, Canada. The model’s
performance is validated and demonstrated to be
effective in simulating the regional temperature patterns
of Metro Vancouver through comparisons between model
simulations and observations.

e The paper entitled “Detection, Attribution, and Future
Response of Global Soil Moisture in Summer” by Qiao
et al. use the CMIP6 global climate scenarios and two
global reanalysis datasets (i.e., ERA5 and GLDAS) to help
detect, attribute, and project soil moisture variations at
global scale. The result suggests that the anthropogenic
forcings with consideration of greenhouse gases
emissions, aerosols, and land cover and land use change
have much large impacts on soil moisture variations than
the nature forcing only.

e The paper entitled “Evaluation of the Ability of CMIP6
Global Climate Models to Simulate Precipitation in the
Yellow River Basin, China” by Wang et al. apply the
rank score method with consideration of eight
performance indicators to evaluate the performance of
the 19 selected GCMs from CMIP6 in simulating the
regional climatology over the Yellow River Basin in
China. The evaluation results can be used to help choose
the appropriate GCMs for projecting high-resolution
regional climate over the study area.

e The paper entitled “A Stepwise-Clustered Simulation
Approach for Projecting Future Heat Wave Over
Guangdong Province” by Ren et al. employ a stepwise-
clustered simulation approach to perform climate
downscaling to multiple global climate models under two
representative concentration pathways (RCPs), with the
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purpose of projecting the future changes in heat waves
for Guangdong Province, China. Four indicators have
been used to evaluate the potential changes in heat
waves, including intensity, total intensity, frequency, and
the longest duration.

CLIMATE CHANGE MONITORING

Monitoring the long-term climate is fundamentally important for
understanding what has occurred with our global and local
climates. In addition, historical climate observations are widely
used by climate scientists to improve our understanding of the
physical and dynamical processes of the Earth’s climate system
and thus to develop better climate models through model
validation and continuous performance improvement. In this
research topic, we collected seven research articles related to
climate change monitoring.

e The paper entitled “Lidar Observed Optical Properties of
Tropical Cirrus Clouds Over Gadanki Region” by Kumar
and Venkatramanan use the polarization-diversity ground-
based Lidar measurements to help monitor and investigate
the optical properties of high-altitude cirrus clouds. The
authors demonstrate that the Lidar measurements can be
used to study the cloud layer statistics (i.e., altitude
variations of optical depth and depolarization ratio) and
the seasonal variations in the optical properties of cirrus
clouds.

e The paper entitled “Quantitative Estimation on
Contribution of Climate Changes and Watershed
Characteristic Changes to Decreasing Streamflow in a
Typical Basin of Yellow River” by Lv et al. use the
observational streamflow and meteorological datasets
from 1958 to 2017 to quantify the relative contributions
of climate change and the changes in watershed
characteristics to streamflow change in the Huangshui
River Basin of the Qinghai-Tibetan Plateau, China. The
Budyko hypothesis test is used to perform the statistical
analysis.

e The paper entitled “Long-Term Spatial and Temporal
Variation of Near Surface Air Temperature in Southwest
China During 1969-2018” by Zhou and Lu employ an
improved ANUSPLIN model to analyze the trends,
anomalies, change points, and variations of near surface
air temperature for Southwest China. The observational
data from 494 weather stations during the period of
1969-2018 are used to support the analysis.

e The paper entitled “Summertime Moisture Sources and
Transportation Pathways for China and Associated
Atmospheric Circulation Patterns” by Zhang et al. use
the Lagrangian particle dispersion model (HYSPLIT) to
quantitatively analyze the impacts of major atmospheric
moisture sources from Midlatitude Westerly, Siberian-
Arctic regions, Okhotsk Sea, Indian Ocean, South China
Sea, Pacific Ocean, and China Mainland on the summertime
precipitation patterns in China. The ERA-Interim reanalysis
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dataset is used to derive the input data needed for the
HYSPLIT model, including 6-hourly and monthly
geopotential height, horizontal and vertical wind, 2-m
temperature, sea surface temperature, evaporation,
precipitable water, and precipitation during the period of
1979-2017.

e The paper entitled “Interdecadal Linkage Between the
Winter Northern Hemisphere Climate and Arctic Sea Ice
of Diverse Location and Seasonality” by He et al. investigate
the possible linkage between the mid-high-latitude
atmospheric circulation and Arctic sea-ice loss on
interdecadal timescales for the period of 1959-2020. The
datasets used in this study include the National Centers for
Environmental Prediction atmospheric reanalysis data, the
monthly sea-ice concentration (SIC) from the Met Office
Hadley Center, and the enhanced monthly mean
precipitation from the Climate Prediction Center Merged
Analysis of Precipitation.

e The paper entitled “Characteristics of Precipitation
During Meiyu and Huang-Huai Rainy Seasons in
Anhui Province of China” by Zhou et al. use the
China’s Meiyu monitoring indices to explore the
precipitation characteristics of the Anhui Province,
China during the Meiyu and Huang-Huai Rainy
seasons. The observational climate data from 15
weather stations in the Anhui Province during the
period of 1975-2020 were used to conduct the analysis.

e The paper entitled “Change in Extreme Precipitation Over
Indochina Under Climate Change From a Lagrangian
Perspective of Water Vapor” by Cheng et al. explores
how global warming has humidified the atmosphere and
increased the occurrence of extreme precipitation events
over the Indochina Peninsula during the period of
1951-2015. A variety of climate observational and
reanalysis datasets (e.g., the APHRODITE data, the ERA5
global reanalysis, and the NOAA ERSST.v5) are used here to
support the analysis.

HYDROLOGICAL MODELING

As the hydrological cycle has been intensified by global warming,
the conventional stationary assumption in many existing
hydrological and hydraulic projects has been demonstrated to
be inappropriate. Therefore, how to develop robust hydrological
models to simulate the changing precipitation-streamflow or
rainfall-runoff relationships under non-stationarity has become
one of the top research priorities towards climate change. In this
research topic, we collected five research articles related to
hydrological modeling under climate change.

e The paper entitled “A Statistical Hydrological Model for
Yangtze River Watershed Based on Stepwise Cluster
Analysis” by Wang et al. propose a stepwise cluster
analysis hydrological model to simulate the nonlinear
and dynamic rainfall-runoff relationship. The developed
model has been applied to the Yangtze River Watershed
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to predict the runoff responses to regional climatic
conditions.

e The paper titled “Risk Assessment of Dam-Breach Flood
Under Extreme Storm Events” by Lin et al. propose a
hydrodynamic modelling approach to perform flood
inundation simulations under various dam-breach
scenarios caused by extreme rainfall events. A
comprehensive case study for the Mountain Island Dam
within the Catawba River Watershed of North Carolina,
United States has been presented to demonstrate the
effectiveness of the proposed approach in assessing the
dam-breach flooding risks under extreme storm events.

e The paper entitled “A Bayesian-Model-Averaging Copula
Method for Bivariate Hydrologic Correlation Analysis” by
Wen et al. incorporate the Bayesian model averaging
method and Archimedean Copula techniques into a
general modeling framework to help analyze and
quantify the correlations between rainfall and runoff. A
case study for the Xiangxi River Watershed in China has
been introduced to demonstrate the effectiveness of the
proposed methodology.

e The paper entitled “Changes in and Modelling of
Hydrological Process for a Semi-Arid Catchment in the
Context of Human Disturbance” by Liu et al. investigate the
applicability of a flood forecasting model (i.e., GR4]) for a
semi-arid region under a changing environment. The
Zhulong River Catchment in North China is used as a
case study to evaluate the performance of GR4J] model in
simulating the hydrological processes from 1967 to 2015.

e The paper entitled “Water Resources Availability
Assessment Through Hydrological Simulation Under
Climate Change in Huangshui Watershed of Qinghai-
Tibet Plateau” by Fu et al. propose a hydroclimate
modeling framework through the integration of the
Statistical Downscaling method (SDSM), Generalized
Regression Neural Network (GRNN) model, Soil and
Water Assessment Tool (SWAT) model, and the
improved Tennant method. Through its application for
the Huangshui Watershed of the Qinghai-Tibet Plateau
in China, the proposed modeling framework is
demonstrated to be effective in enhancing the spatial
resolution of the predicted meteorological and
hydrological parameters under climate change.

CLIMATE CHANGE IMPACTS AND
ADAPTATION

Developing sustainable and climate-resilient communities
requires a comprehensive understanding of the potential
impacts of climate change on various sectors (e.g., agriculture,
fisheries, tourism, transportation, energy systems, urban
infrastructure, human and animal health, and so on) and a
feasibility evaluation for all potential climate adaptation
measures. Since climate change is essentially affecting all
aspects of our daily life, the research for climate change
impacts and adaptation can span many disciplines by nature.
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In this research topic, we collected five research articles related to
climate change impacts and adaptation.

e The paper entitled “The Effect of Precipitation on
Hydropower Generation Capacity: A Perspective of
Climate Change” by Wei et al. use the high-resolution
precipitation data obtained from statistical climate
downscaling to assess the potential changes to the
hydropower potential in the Dadu River Basin in China.
The results can provide a scientific basis for future water
sources management, especially for the planning and
operation of the hydropower station in the study area.

e The paper entitled “Facing Water Stress in a Changing
Climate: A Case Study of Drought Risk Analysis Under
Future Climate Projections in the Xi River Basin, China” by
Wang et al. present a case study about drought risk analysis
in the Xi River Basin, China under future climate change
scenarios. The CMIP5 climate data and the VIC model are
used to generate precipitation and runoff data for the
drought risk assessment.

e The paper entitled “A Low-Impact Development-Based
Multi-Objective Optimization Model for Regional Water
Resource Management under Impacts of Climate Change”
by Bao et al. propose a mathematical optimization model to
help incorporate multiple uncertainties and climate change
into a multi-objective decision making framework to
support regional water resources management. The
model considers a variety of adaptive water allocation
alternatives and construction schemes associated with
low-impact development to support climate change
adaptation in an urban environment.

e The paper entitled “Impact of Climate Change on Water
Availability in Water Source Areas of the South-to-North
Water Diversion Project in China” by Qiao et al. evaluate
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the water availability challenges for the mega water project
in China—the South-to-North Water Diversion project, in
the context of climate change. A grid-based RCCC-WBM
model is used here to develop runoff scenarios driven by
GCMs, in order to assess the water supply risks under a
changing climate.

e The paper entitled “Projecting Hydrological Responses to
Climate Change Using CMIP6 Climate Scenarios for the
Upper Huai River Basin, China” by Bian et al. investigate
how global warming would affect the regional hydrological
characteristics of the Upper Huai River Basin, China by
using the CMIP6 climate scenarios and the Xinanjiang
hydrological model. The results can provide a scientific
basis for the local stakeholders and decision makers to
develop appropriate flood mitigation and water
utilization strategies in the context of climate change.

We hope that the readers will find this research topic
interesting and the published papers will stimulate further
research advancement towards climate change monitoring,
modeling, impact assessment, and adaptation at regional and
local scales.
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China, with its fragile environment and ecosystems, is vulnerable to climate change.
Continuous changes in climatic conditions have altered precipitation patterns in most
regions of China. Droughts become more frequent and severe in the Xi River basin in
South China. It is expected that rapid urbanization and climate change will continue to
aggravate water stress in this region. There is an urgent need to develop sustainable
water management strategies in face of growing water demand and changing water
availability. Projection of future climate change impacts on drought conditions has
thus become imperative to support improved decision-making in sustainable water
management. In this study, we assessed the risk of extreme droughts under future
climate projections in the Xi River basin. The variable infiltration capacity (VIC) model was
applied to simulate the hydrological processes of the basin under a multitude of future
climate scenarios from CMIP5. Based on the precipitation and runoff series obtained
from the VIC model, a comprehensive analysis with respect to the major characteristics
of meteorological and hydrological droughts had been carried out. This study is of
practical and theoretical importance to both policymakers and scholars. First, this study
may be a readily available reference work for policymakers when taking consideration of
building drought mitigation plans into future water management practices. Second, the
findings in this study may provide some valuable insights into the inherent connection
between climatic and hydrological changes under a changing climate. Recognition of
the connection and interrelation may contribute to the improvement of climatic and
hydrological models in practices.

Keywords: drought risk analysis, regional climate change, variable infiltration capacity (VIC) model, Xi River basin,
hydrological processes

INTRODUCTION

Both climate change and global warming have been at the center of arguments for decades, but
almost all scientists and scholars now have come to an agreement that the average temperature
of our planet has risen by around 1°C since the last century and the rise is expected to continue
in the future (IPCC, 2007). Rising global temperatures unfreeze polar ice caps resulting in sea

Frontiers in Earth Science | www.frontiersin.org 9

April 2020 | Volume 8 | Article 86


https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2020.00086
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/feart.2020.00086
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2020.00086&domain=pdf&date_stamp=2020-04-09
https://www.frontiersin.org/articles/10.3389/feart.2020.00086/full
http://loop.frontiersin.org/people/888163/overview
http://loop.frontiersin.org/people/888518/overview
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles

Wang et al.

Future Drought in Southern China

level rise and regional climate change. Extreme weather events
become more intense and frequent, e.g., heatwaves, floods, and
droughts. As regional climate patterns change, their impacts from
one location to another can be erratic (Zhou and Zhang, 2014;
Wanders and Wada, 2015). While regional climate change has
increased precipitation in some areas, it has also led to droughts
in other regions. As a result, both short-term and long-term
regional impact studies under climate change are needed to
improve policymakers” understanding of the changing climate
and environment, and to highlight the urgency and necessity of
developing regional climate mitigation and adaptation plans.

China, with its fragile environment and ecosystems, is
vulnerable to the negative effects of climate change (Xu et al,
2015). In recent years, China has experienced more frequent
extreme weather events, e.g., heavy rains and droughts (Wang
and Li, 2005; Chen and Sun, 2015; Tan et al, 2016). In
fact, continuous changes in climatic conditions have altered
precipitation patterns in most regions of China, especially, in
the southern portions of China. Droughts become more frequent
and severe in many regions of southern China in recent decades
(Huang et al., 2010; Li et al., 2012). It is expected that rapid
urbanization and climate change will continue to aggravate water
stress in southern China. There is an urgent need to develop
sustainable water management strategies in face of growing water
demand and changing water availability. Therefore, projection of
future climate change impacts on drought conditions has become
imperative to support improved decision-making in sustainable
water management.

The Xi River is the longest river in South China, with a total
drainage area of 353,000 km?, accounting for 78% of the total area
of the Pearl River basin. The Xi River basin stretches from eastern
Yunnan province into southern Guangdong province, and has a
humid subtropical or tropical monsoon climate. In terms of mean
annual runoff, the Xi River ranks 2nd behind the Yangtze River in
China, and is almost 4.5 times that of the Rhine River in Europe.
The mean annual precipitation in Xi River basin is approximately
1,447 mm (Niu and Chen, 2010). The Xi River basin is resource-
rich, with fertile agricultural soils, abundant mineral resources,
water and energy intensive industries, and supports fifty million
people in South China. It has been positioned as a new national
economic growth zone thanks to the economic development
initiative of Xi River Economic Belt.

Although Xi River basin has abundant freshwater resources,
there are many regions that are subject to periodic water scarcity
due to maldistribution of water resources (Cui et al., 2007).
About 80% of the annual precipitation falls during the wet
season between April and September, while only 8% of that
falls during the winter season between December and February
(Duan et al., 2017). As a result of maldistribution of water
resources, the Xi River basin has experienced recurring droughts
and water stress (Fischer et al., 2013). An intense period of
droughts occurred from 1962 to 1963 and about 5% of the
basin land was affected, with an area of 16,200 km? (Niu
et al., 2015). A continuous period of droughts lasting 9 years
occurred from 1984 to 1992 (Lin et al, 2017). A frequent
period of droughts occurred from 2003 to 2015 and the basin
had seen widespread droughts almost every year during this

period (Wu et al, 2016). In addition, the Xi River basin has
encountered great economic losses because of severe droughts
in recent years (Xiao et al., 2012; Chen et al., 2013; Niu et al,,
2015). Increasingly frequent droughts have caused significant
socioeconomic impacts and necessitate urgent actions from
government and stakeholders. Improving understanding of
historical variations in precipitation and future trends in climate
are needed so as to aid policymakers in building drought
mitigation plans into local water management practices.

The Xi River basin has long been of interest to scientist and
scholars because of its social, economic and cultural importance.
Most studies across the Xi River basin were focused on the
assessment of the hydrological changes through trend analysis,
and only a few studies aimed at investigating climate change
impacts on hydrological processes (He et al., 2009; Zhang and Lu,
2009). However, few studies had been carried out with a glimpse
into the future. Moreover, with respect to future hydrological
changes, most studies were focused on using General Circulation
Models (GCMs) and hydrological models to analyze the long-
term mean values of variations in hydrological conditions (Yuan
et al,, 2017). There were few studies focusing on the connection
between climate change and hydrometeorological extremes at a
regional scale, despite the fact that large river basins with so-
called abundant freshwater resources and dense population may
be particularly vulnerable to extreme weather incidents (Teng
etal, 2012; Li et al., 2016).

To address the aforementioned issues, the objectives of this
study are: (1) to project future streamflow in the Xi River basin
and evaluate future drought conditions including meteorological
and hydrological droughts by using two types of drought
indexes, i.e., the Standardized Precipitation Index (SPI) and
the Standardized Runoff Index (SRI); (2) to investigate climate
change impacts on the variations in the mean and extreme
values of drought characteristics by using three parameters, i.e.,
frequency, duration and severity; and (3) to reveal the inherent
connection between climatic and hydrological changes under a
changing climate.

The remainder of this paper is organized as follows. Section
“Materials and Methods” describes the data and methods.
Section “Results” presents the results of the relative changes
of river flows and drought characteristics, as well as a
relationship analysis among precipitation, temperature and
runoff. Section “Discussion” gives a discussion, while the final
section contains conclusions.

MATERIALS AND METHODS
Study Area

The Xi River basin is located in South China between 21-
27.00°N latitude and 102.00-114.00°E longitude. The river rises
in Yunnan province, flows through Guizhou, Guangxi and
Guangdong provinces, and finally reaches the Pearl River Delta
on the South China Sea. The total length of the river is about
2,214 km, including several main tributaries, e.g., Nanpan River,
Hongshui River, Yu River, Liu River, etc. The location of the Xi
River basin is shown in Figure 1.
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Climate Change Scenarios

In this study, we simulated the terrestrial hydrological
processes over the Xi River basin with CMIP5 multi model
ensembles (MMEs). The downscaled GCMs were obtained
from “Downscaled CMIP3 and CMIP5 Climate and Hydrology
Projections™. Then, we chose 16 GCMs based on selection
criteria including data integrity of long-time series, usage
frequency of numerical modeling, and variability of the
downscaled data. The Bias Correction Spatial Disaggregation
(BCSD) climatic data at a 0.5° x 0.5° spatial resolution and a
monthly time step under the RCP4.5 scenario from 1960 to 2099
were used in this study. The summary of the selected GCM:s is
provided in Table 1.

To obtain local meteorological forcing data from the
GCMs, which are the prerequisites of simulation of the
Variable Infiltration Capacity (VIC) model, a stochastic weather
generation method was applied to temporally disaggregate the
monthly climatic data, including precipitation and temperature,
into the daily meteorological forcing datasets (Wood et al., 2004).
In addition, we chose RCP4.5 to study the potential impacts of
future climate change. The reason is that a variety of mitigation
actions have been taken in China to reduce greenhouse gas
emissions; thus RCP4.5 may be an appropriate emissions scenario
that can better reflect the future climate conditions in the Xi
River basin (Riahi and Nakicenovic, 2007; Thomson et al., 2011;
Gao et al,, 2014). Therefore, the results obtained from this study
may be more meaningful in terms of supporting decision-making

Uhttps://gdo- dcp.ucllnl.org/downscaled_cmip_projections/

in building future drought mitigation plans into local water
management practices.

Macro-Scale Hydrological Model

The future terrestrial hydrological scenarios in the Xi River basin
were derived from simulation of the VIC model. The historical
meteorological forcing data required by the VIC model, such as
temperature and wind speed, were obtained from the work of
Feng et al. (2004). The soil and vegetation datasets required for
the VIC model were obtained from the work of Nijssen et al.
(2001). Previous studies demonstrated that the VIC model was
capable of producing acceptable results for the purpose of runoff
simulation in the Xi River basin by using the aforementioned
meteorological parameters (Niu and Chen, 2010). Next, by using
the BCSD climatic data as the input of the VIC model, the daily
time series of the major hydrological parameters for the period
1960-2099 were obtained.

Drought Indices

The SPI and the SRI were used to analyze the meteorological
and hydrological droughts, respectively. The SPI is calculated
based on accumulated precipitation, which describes the degree
of deviation of accumulated precipitation from climatological
averages. The SPI is applicable at either monthly or multi-
monthly temporal scales (e.g., 3-month) over different spatial
scales so that it has been widely used to investigate the
evolution of meteorological droughts (McKee, 1997). The
procedure for calculating the SPI is outlined below. Firstly,
an appropriate probability distribution is chosen to fit the
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TABLE 1 | List of the Global Climate Models (GCMs) studied in this study.

Modeling center Country Model

(1)  Beijing Climate Center, China China BCC-CSM1-1-m

Meteorological Administration

(2)  College of Global Change and Earth
System Science, Beijing Normal
University

China BNU-ESM

(8  Canadian Centre for Climate Modelling Canada CanESM2

and Analysis

(4)  National Center for Atmospheric United States CCsm4

Research

(6)  Community Earth System Model United States ~ CESM1-BGC

Contributors
(6) Centro Euro-Mediterraneo per | CMCC-CM

Cambiamenti Meteorologicali

Italy

(7)  Centre National de Recherches France CNRM-CM5
Météorologiques

(8) Commonwealth Scientific and Industrial Australia CSIRO-Mk3-6-0

Research Organization, Queensland

Climate Change Centre of Excellence

(9) Laboratory of Numerical Modeling for China
Atmospheric Sciences and Geophysical

Fluid Dynamics, Institute of Atmospheric

Physics, Chinese Academy of Sciences,

and Center for Earth System Science,

Tsinghua University

FGOALS-g2

(10) The First Institute of Oceanography, State China FIO-ESM
Oceanic Administration, China
(11) NOAA Geophysical Fluid Dynamics
Laboratory
(12) NASA Goddard Institute for Space
Studies
3) Met Office Hadley Centre

(14) Institut Pierre-Simon Laplace

United States ~ GFDL-ESM2G

United States GISS-E2-R

HadGEM2-AO
IPSL-CM5A-LR
MIROC-ESM

Korean

France

5) Japan Agency for Marine-Earth Science
and Technology, Atmosphere and Ocean
Research Institute (The University of
Tokyo), and National Institute for
Environmental Studies

Japan

(16) Norwegian Climate Centre Norwegian NorESM1-M

accumulated precipitation. Then, the cumulative probability is
calculated based on the accumulated precipitation according
to the selected distribution. Finally, the SPI, i.e., the standard
normal deviation with mean zero and standard deviation one,
can be obtained from the cumulative probability. In this study,
the log-normal distribution was selected to fit the accumulated
precipitation over the Xi River basin (Niu et al., 2015). Thus, the
SPI can be expressed as:
spr— n (x)A .l (1)

Oy

where x is accumulated precipitation, y = In(x); G, is sample
variance; i, is sample mean. More information about calculation
of the SPI can be found in Lloyd-Hughes and Saunders (2002).
The procedure for calculating the SRI is similar to that of
the SPI except a key point that the SRI is calculated based
on accumulated runoff. The time series of the two drought

indexes were calculated by using the monthly series for the
whole-basin area as well as the grid cells in the Xi River
basin for every GCM. The selected threshold for drought
identification is zero, and thus a drought event is defined as
a consecutive and uninterrupted period, with an SPI/SRI value
lower than this level (Vicente-Serrano et al., 2017). Based on
this definition, three different parameters can be obtained to
characterize droughts: (1) frequency—the number of drought
events in a given period; (2) duration—the length of an identified
drought event; (3) severity—the accumulated deficit volume of an
identified drought event.

RESULTS

The projected results show that the Xi River basin would
experience a temperature increase of about 1.3-1.7°C in the
near future (2030-2059) and a temperature increase of about
1.9-2.4°C in the distant future (2070-2099), in comparison with
the historical period (1971-2000). As shown in Figure 2, the
largest increase would occur in the northern part of the Xi River
basin, whereas the smallest increase would occur in southeastern
part in the near future. Unlike the moderate temperature increase
in the near-future scenario, the northern part of the Xi River basin
would experience an obvious increase in temperature up to 2.4°C
in the distant future. These results indicate that temperature
would increase continuously across the Xi River basin in the
future regardless of spatial and temporal considerations. With
respect to the changes in the precipitation pattern, the results also
show an upward trend in annual precipitation, increasing up to
4.5% in the near future (see Figure 2C) and up to 7% in the distant
future over the basin (see Figure 2D). Overall, it is expected that
both average temperature and precipitation in the Xi River basin
would increase in the future.

Spatial Changes in River Flows

The relative changes in extreme river flow and average river flow
between the future periods (i.e., 2030-2059 and 2070-2099) and
the historical period (i.e., 1971-2000) are shown in Figure 3.
The 95th percentile (Q95) and the 10th percentile (Q10) of the
monthly flow were used to describe the extreme conditions (i.e.,
the low flow and the high flow) in this study. The results from
MMEs shown in Figure 3 indicate that climate change would
have a significant impact on the hydrological patterns in the Xi
River basin. For the near future (2030-2059), the low flow would
probably decrease across the Xi River basin except several areas
in the midstream region. In addition, the Xi River basin would
probably see a more significant reduction in the low flow in
the near future rather than in the distant future (2070-2099).
For example, in the central basin, some grids show a significant
decrease in the low flow by about 40-60%, while such a decrease
climbs to around 20-40% in the distant future. A modest decrease
in the mean flow is found across most areas of the Xi River
basin. In the near future, the mean flow would probably reduce
between 4 and 49%. There are only a few grids in the midstream
showing an increase ranging from 2 to 13%. Similar implications
could be obtained from observing the mean flow in the distant
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FIGURE 3 | Changes in river flows between the future period 2030-2059 and the historical period 1971-2000: (A) mean flow, (B) high flow (Q95), and (C) low flow
(Q10), and changes in river flows between the future period 2070-2099 and the historical period 1971-2000: (D) mean flow, (E) high flow (Q95), and (F) low flow
(Q10) over the Xi River basin.

future, but the degree of reduction with respect to the mean flow  in the near future. The changes in the high flow in the distant
would be alleviated in some regions of the central basin. The future would be very similar to that case, but the magnitude
high flow would decrease in the midstream region under RCP4.5  of reduction could be different. In addition, more grids show
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an increase in the high flow in the midstream and downstream
regions during 2070-2099.

Spatial Changes in Drought
Characteristics

Mean Droughts

Figure 4 illustrates the relative changes projected by MMEs with
respect to mean drought characteristics, i.e., frequency, duration
and severity, between two future periods (2030-2059 and 2070-
2099) and the historical period (1971-2000). Meteorological
droughts described by the SPI would decrease in major areas
of the Xi River basin, except the southeastern and northern
parts of the Xi River basin. Meanwhile, the mean duration and
severity of meteorological droughts would probably increase
across most areas of the Xi River basin. However, the northern

and eastern Xi River basin would experience a decrease in
the mean duration. Our results indicate that global warming
would result in less meteorological drought events but longer dry
episodes across the Xi River basin. With respect to hydrological
droughts described by the SRI, the drought frequency would
increase over major parts of the Xi River basin. However, the
northern and southeastern Xi River basin would experience
a decrease in the mean duration and severity of hydrological
droughts. Meanwhile, the increase in the mean duration and
severity described by the SRI in the near future would be less
than that of the SPI in the northern and southeastern Xi River
basin. The reason could be attributed to the buffer processes of
the land surface, leading to smaller changes in the mean duration
of hydrological droughts in contrast to meteorological droughts.

The relative changes in frequency, duration and severity for
the distant future, i.e., 2070-2099, is shown in the bottom panel
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FIGURE 5 | Changes in the characteristics of extreme meteorological droughts for the SPI between the future periods (2030-2059 and 2070-2099) and the
historical period (1971-2000): (A) longest duration and (B) highest severity, and changes in the characteristics of extreme hydrological droughts for the SRI between
the future periods (2030-2059 and 2070-2099) and the historical period (1971-2000): (C) longest duration, and (D) highest severity.

of Figure 4. More grids of the Xi River basin would see a
significant increase in the frequency of meteorological droughts
in the distant future than in the near future. However, the mean
duration of meteorological droughts would decrease significantly
in most parts of the Xi River basin. The changes in the spatial
pattern of hydrological droughts in the distant future would be
consistent with the changes described in period 2030-2059. For
example, it is expected that the drought frequency would increase
in most areas of the Xi River basin, especially in the western areas,
while the mean duration and severity would probably decrease in
major parts of the Xi River basin.

Extreme Droughts

Figure 5 describes the relative changes in extreme drought
conditions between the future and historical periods. The longest
duration of meteorological droughts would decrease in most
areas of the Xi River basin, while the western and central
areas of the basin would experience a notable increase in
the longest duration of meteorological droughts. The highest
severity of meteorological droughts would probably increase over
most areas of the central Xi River basin. The relative changes
in extreme hydrological droughts would show more intensive
variations compared with that of extreme meteorological
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droughts. A decrease in the longest duration of hydrological
droughts is observed affecting about 60% of the total grid cells
across the Xi River basin. In the lower central part of the basin,
the highest severity of hydrological droughts would be expected
to increase, which is similar to the changes in meteorological
droughts. The change patterns in extreme drought conditions
show a multitude of changes as compared with that in mean
drought conditions (Figure 4). For example, the mean duration
of meteorological droughts would tend to increase in the lower
central region of the Xi River basin, while the longest duration
would tend to decrease in the same region. Moreover, with
respect to both meteorological and hydrological droughts in the
central Xi River basin, the increment in the longest duration and
highest severity would be much greater than that in the mean
duration and severity. These results describe worsening extreme
drought conditions over the Xi River basin in the near future.

Similar implications could be reached for the future period
2070-2099. As shown in Figure 5, more areas of the Xi River
basin in the distant future would experience a decrease in the
longest duration and highest severity of meteorological droughts.
For hydrological droughts, the maximum increment in the
longest duration would be around 85% in the central basin.
Except the southern part of the central basin and the eastern part
of the Xi River basin, the longest duration would decrease with
similar patterns as the highest severity.

Response of Runoff to Climate Change

in the Future

Our study indicates that climate change could affect the timing
and magnitude of average and extreme river flows as well as
mean and extreme drought conditions in the Xi River basin.

changes of streamflow do not always follow the change patterns
of precipitation, which indicates that both precipitation and
temperature (evapotranspiration) could affect the hydrological
processes. Thus, to assess the climate change impacts on
streamflow, the annual percentage deviation for streamflow as
a function of the annual percentage deviations for precipitation
and temperature is described using the contour plot (Figure 6).
It is observed that the percentage changes in annual streamflow
are positively related to the annual precipitation changes, but
negatively related to the annual temperature changes. In addition,
streamflow seems to be more sensitive to the changes in
precipitation than that in temperature. For example, a 30%
increase in annual precipitation could result in a 60% increase in
annual streamflow when temperature stays unchanged, whereas
a 1.2°C decrease in temperature would lead to a relatively
small increase in annual streamflow with unchanged annual
precipitation (see Figure 6).

Figure 7 is derived from several cross sections of Figure 6.
Streamflow changes subject to temperature changes under
different precipitation scenarios across the Xi River basin are
shown in Figure 7A. For precipitation-increase scenarios,
streamflow and temperature are almost linearly related, with
different changing slopes, but this relationship may turn
into dissimilar non-linear patterns under the precipitation-
decrease scenarios. For example, the slope of the streamflow vs.
temperature line is about 3% per °C for the 20% precipitation-
increase scenario, indicating that a 1°C increase in temperature
would result in a decrease of 3.0% in streamflow. For the
10% precipitation-increase scenario, a 1°C increase
temperature would lead to a 2.5% decrease in streamflow.
However, for the precipitation-decrease scenarios, e.g., the
20% precipitation-decrease scenario, limited changes are

in

According to the comparison results from Figures 2, 3, the found in streamflow as temperature changes. Figure 7B
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shows streamflow changes subject to precipitation changes
under different temperature scenarios for the Xi River
basin. It is observed that streamflow and precipitation are
almost linearly related under a fixed temperature scenario.
However, some fluctuations appear, especially in the cases
with precipitation changes less than 10%, which might
be attributed to numerical instability (Fu et al, 2007).
For the scenario with a temperature increase of 1°C, the
slope of the streamflow vs. precipitation line is about 2%,
indicating that a 10% increase in annual precipitation
would result in an increase in annual streamflow by
20%. Moreover, the change slopes for the streamflow vs.
precipitation lines under different temperature scenarios
are particularly similar. In general, annual streamflow is
more sensitive to the changes in precipitation than that
in temperature. Moreover, the sensitivity of streamflow
with respect to the changes in temperature rises along with
increasing precipitation.

DISCUSSION

Uncertainties Arising From the Future

Projections

In terms of drought risk analysis under climate change,
projection of the variations of terrestrial hydrological processes
is the first and most important procedure. However, these
processes may be subject to a multitude of uncertainties owing
to the selection of emission scenarios, GCMs, downscaling
methods as well as impact models. The climate dataset used
in this study was obtained from “Downscaled CMIP3 and
CMIP5 Climate and Hydrology Projections”—a project meant to
provide access to spatial and temporal climate and hydrologic
projections for water resource managers and planners based on
CMIP3 and CMIP5 (Bureau of Reclamation, 2014). Global and

regional studies have demonstrated the superiority of multi-
model integration over to a single model (Lambert and Boer,
2001; Ziehmann, 2008; Pierce et al, 2009). The references
above also indicate that in terms of selection of the models,
with or without a preference for the quality of simulation
in study areas, there would be no systematic differences.
In this study, the 16 GCMs were statistically downscaled
after bias-correlation, making it possible to characterize the
potential uncertainties arisen from the GCMs. Moreover,
several studies have demonstrated the reliability of the selected
GCMs in global and regional climate change studies (Tan
et al, 2017; Srinivasa Raju et al., 2017; Sunde et al, 2017;
Merabti et al., 2018).

Selection of historical reference data is another potential
source of wuncertainty. Maurer et al. (2002) conducted
a comprehensive verification of the historical reference
data used in this study. Moreover, this study is meant
to investigate the hydrological response to future climate
change. Hence, the analysis had been emphasized on
description of the hydrological conditions in the 21st
century. Since the climate projections used in this study
had been corrected using the BCSD method by other
researchers, we do not reassess the reliability of the reference
data. In addition, the results in this study are relevant to
the specific historical periods. Different researchers used
different historical periods as the reference periods for
climate change studies, e.g, 1915-2006 (Mantua et al,
2010), 1976-2005 (Prudhomme et al, 2014), 1961-1990
(Kay and Davies, 2008), and 1971-2000 (Dankers et al,
2014; Leng et al, 2015). The near future of 2030-2059 and
the distant future period of 2070-2099 were used in our
study to provide policymakers with insightful information
so as to aid them in building short-term and long-term
drought mitigation or adaptation plans into future water
management practices.
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Due to the inherent characteristics of droughts, e.g., slow
onset, as well as the resulting complicated impacts, drought
regimes are more ambiguous than that of other water-related
incidents (Svoboda et al., 2002). Thus, there is no one universal
drought index that can be used to satisfy all needs of researchers;
after all, different drought indexes are only suitable for specific
drought types. To precisely and visually identify drought
occurrence and magnitude, many quantitative definitions of
drought indexes have been proposed (Palmer, 1965; Bhalme
and Mooley, 1980; McKee et al., 1993). In this study, the SPI
and SRI were used to assess the risk of meteorological and
hydrological droughts, respectively. It is clear that both the
SPI and SRI are only based on monthly data and thus cannot
fully reflect actual drought situations. Despite this limitation,
both indexes have been widely applied for monitoring specific
types of droughts (Hao et al, 2016; Zhang et al, 2017;
Merabti et al., 2018).

Comparison Between Our Studies and
Previous Studies

Our results show that there exists a substantial increase in
precipitation and temperature across the Xi River basin. The high
flow is likely to increase in the midstream and downstream region
of the basin in the future. The relative increases are larger in the
high flow than that in the mean flow, indicating an increase in
the risk of floods in the central and southern parts of the basin.
Wang and Chen (2014) reported the changes in temperature and
precipitation over China under RCP4.5 and RCP8.5 scenarios
in the future, and found annual precipitation would increase
in most area of China from 2010 to 2099. Sun et al. (2015)
concluded that the annual precipitation of the Pearl River basin
would increase in the distant future (i.e., after 2030), which is
consistent with our findings. Yan et al. (2015) reported that the
high flow would increase and the low flow would decrease over
the downstream region of the Pearl River basin, and both the
high and low flows would decrease in the upstream region of the
Pearl River basin under RCP4.5 scenario for 2070-2099. Climate
change impacts on droughts were also projected in this study.
Our results indicate that the meteorological drought would be
more serious in the near future. Zhai et al. (2010) presented
the change patterns of dryness/wetness conditions in the Pearl
River basin under AlB, A2, and Bl scenarios based on the
ECHAM4 model outputs, and reported a finding that future dry
periods would occur in the 2020s and 2040s, which is consistent
with our findings.

CONCLUSION

In this study, we assessed extreme drought risk under future
climate projections in the Xi River basin. The VIC model was
applied to simulate the hydrological processes of the basin under
a multitude of future climate scenarios from CMIP5. Based on
the precipitation and runoff series obtained from the VIC model,
a comprehensive analysis with respect to the major characteristics
of meteorological and hydrological droughts, i.e., frequency,

duration and severity, had been carried out. The main findings
of this study can be summarized as follows:

e A notable declining trend in future flows, including mean
flow, high flow and low flows, has been found over
the entire basin.

e Significant regional and temporal variations in flow
patterns has been found. In the near future, the high
flow would be likely to decrease in the midstream region
while the low flow would be likely to increase, indicating
that this region would face a higher risk of droughts
under a changing climate. In addition, most areas of the
downstream region would experience an increase in the
high flow, indicating a potential risk of floods in this region.

e The changes in drought characteristics imply that
meteorological droughts would be more serious and
persistent, while hydrological droughts would be more
frequent in the near future. In the distant future,
both meteorological and hydrological droughts would
become more frequent.

e In general, the changes in annual runoff are more
sensitive to precipitation than temperature. However, when
precipitation increases, temperature may affect runoft
generation much more.

Global warming has changed climate patterns in many
regions, including the Xi River basin. The changes in regional
climatic conditions increase the odds of worsening droughts, and
thus place additional pressure on water availability, accessibility,
and supply. The Xi River basin’s deteriorating drought conditions
have sparked the interest of scientists and researchers and
motivated major water policy modifications by providing a
glimpse into the basin’s climatic future. In fact, it is difficult to
plan for a drought and reduce its impacts when in droughts,
and while short-term response plans provide relief support
during the event, local authorities can benefit from proactive,
longer-term planning that includes risk mitigation strategies.
Therefore, projection of future climate change impacts on
drought conditions is necessary for improved policy-making in
face of future water stress.

This study is of practical and theoretical importance to
both policymakers and scholars, despite its limitations in
the methodology and model. First, the Xi River basin has
been positioned as a new national economic growth zone
in South China and this region is facing recurring droughts
and worsening water stress in spite of so-called abundant
freshwater resources. However, few studies have been carried
out for assessing the risk of extreme drought conditions under
future climate projections. As a result, this study may be a
readily available reference work for policymakers when taking
consideration of building drought mitigation plans into future
water management practices. Second, the findings in this study
may provide some valuable insights into the inherent connection
between climatic and hydrological changes under a changing
climate. Recognition of the connection and interrelation may
contribute to the improvement of climatic and hydrological
models in practices.
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The presence of cirrus cloud has its impact on the earth’s radiation budget. In order to
study the effect of cirrus clouds in the tropical regions, it is essential to understand, and
characterize their optical properties. The optical properties of high altitude cirrus clouds
are obtained using the polarization diversity ground based Mie lidar instrument at a
tropical latitude station in the Indian subcontinent. Lidar measurements are taken for one
year (2013) at National Atmospheric Research Laboratory (NARL), located at Gadanki
(13.5°North, 79.2°East; 375 m AMSL), India and are used for the present investigation.
Altitude variations of optical depth and depolarization ratio are discussed. In the altitude
range of 10-17 km, the range of the optical depth and depolarization ratio of cirrus
cloud was found to be 0.01-0.4 and 0.1-0.4, respectively. The interdependence of
optical depth as a function of depolarization ratio is analyzed and a positive correlation
is observed (0.3950). From the measured optical depth values, it is categorized that
8, 77, and 14% of the cirrus clouds are sub-visual, thin, and thick clouds. The monthly
and seasonal variations of optical properties of cirrus clouds were analyzed. Summary of
cirrus cloud layer statistics and the statistical variation (seasonal) of the optical properties
of cirrus clouds is presented for the period of study.

Keywords: altitude, cirrus clouds, depolarization, lidar, optical depth

INTRODUCTION

High altitude cirrus clouds (cold clouds) are thin and wispy, mainly composed of ice crystals
(Lynch et al, 2002) of dissimilar shape and size. Cirrus clouds cover 16.7% of the earth’s
surface with the highest fraction of occurrence in the tropics (Sassen et al., 2008, 2009). Studies
of these clouds are important to understand the climatic nature and to predict the future
(Nazaryan et al., 2008). It plays a crucial role in earth’s radiation budget (Liou, 1986; Mc
Farquhar et al., 2000; Campbell et al., 2016; Lolli et al., 2017) as well as in the climate and
weather studies. The impact of cirrus clouds (ice phase clouds) on the earths climate system
based on two radiative effects are explained by Stephens et al. (2004). A positive radiative
effect known as green house effect (traps the outgoing long-wave radiation emitted by the earth
and the atmosphere) and a negative radiative effect also known as albedo effect (reflects the
incoming solar radiation). Both lead to warming and cooling of the earth’s atmospheric system
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(Lolli et al., 2017), whose significance depends on the thickness
of the cloud. At the Top Of the Atmosphere (TOA) if the
cirrus cloud is optically thin (0.03> cloud optical depth <0.3),
then its albedo is low which causes positive radiative forcing
and the greenhouse effect warms the atmosphere. If the cirrus
cloud is optically thick (cloud optical depth >0.3), then its
albedo is high which produces negative radiative forcing, and
the albedo effect cools the atmosphere (Fu and Liou, 1993;
Fahey and Schumann, 1999). The significant roles of these two
competitive effects typically depend on the optical properties of
cirrus clouds (Zerefos et al., 2003). Hence the radiative balance
strongly depends on optical properties of cirrus clouds. Their
optical properties control the radiative forcing of the earth’s
atmospheric system and hence the detailed measurements of
cirrus clouds are important at different geographical locations.
Optical properties of cirrus clouds vary during different seasons
causing cooling or warming of the earth’s atmospheric climate
system (Ramanathan and Collins, 1991). In order to estimate
the role of optical properties of cirrus clouds at the TOA, it
is required to study their optical properties in terms of optical
depth, depolarization ratio, and their seasonal variations.

Light Detection And Ranging (Lidar), a remote sensing tool
that provides information on vertical distribution of various types
of cirrus clouds like sub visual, thin and thick (or dense or
opaque), and multi-layered clouds, rain and evaporation (Lolli
et al, 2020), aerosols (Lolli et al, 2019), gas concentration
(Foth et al., 2015), and wind speed (Lolli et al., 2013), etc.
It also provides region wise information on geometrical and
optical properties with high spatial and temporal resolutions.
Generally, Lidar detects clouds with their back scattering
signal, and provides an excellent way to obtain the optical
properties of cirrus clouds. Both of these are derived by
inverting lidar backscattering signals from cirrus clouds. Over
tropics (Sassen and Cho, 1992; Heymsfield and McFarquehar,
1996). it is reported that the distribution of optical properties
of cirrus clouds play a key role in radiative effects. Various
studies are done at different seasons to analyze the variations
of geometrical and optical properties of cirrus clouds using
ground-based lidar over Gadanki region (Krishnakumar et al,
2014; Pandit et al., 2015; Manoj Kumar et al., 2019). Ground
based lidar observations for the climatology of cirrus clouds
over a fixed single location cannot be considered globally as
uncertainties in the properties of the cloud vary from one
region to other.

The optical properties of cirrus clouds would be highly useful
in the calculation of radiative effects of climate system which
greatly affects the earth’s radiation budget. Also, it is essential in
understanding the interaction of cloud-radiation effects. Studies
related to optical properties of cirrus clouds (depolarization
ratio and optical depth) and their dependence on atmospheric
parameters (temperature, pressure, and relative humidity, etc.)
are of great importance in cloud research. Studies on optical
properties of cirrus clouds at various seasons over Gadanki region
will have an immense value in playing a vital role and will
help to reduce global climate model uncertainty in forecasting
temperature change at the end of the century. In the present work,
ground-based lidar measurements (January 2013 to December

2013) are used to investigate the optical properties of cirrus
clouds at tropical latitude Gadanki, India.

INSTRUMENTATION AND DATA
ANALYSIS

The present research work is carried out using Mie LIDAR
situated at National Atmospheric Research Laboratory (NARL),
Gadanki, a tropical rural station located at 13.5°North, 79.2°East
in a height of 375 m Above Mean Sea Level (AMSL) in southern
India. The lidar system is a monostatic, pulsed, biaxial, and dual
polarization system. To study the properties of cirrus clouds, the
lidar system usually operates for about three to 5 h during night
time. This constraint in observation is due to the appearance
of thick clouds at low altitudes and rain. Since 2007, the lidar
transmitter uses an Nd:YAG (model : PL8050) pulsed laser
operating at its wavelength (s) of 532 nm with average pulse
energy of 600 mJ, pulse width of 7 ns, and Pulse Repetition
Frequency (PRF) of 50 Hz (Pandit et al., 2015).

The receiver system employs two independent telescopes,
one to cover middle and upper atmosphere altitudes (30 to
80 km) termed as Rayleigh receiver and another to cover Upper
Troposphere and Lower Stratosphere (UTLS) altitudes (4 to
40 km) termed as Mie receiver. Data related to backscattered
photon count collected from Mie receiver [consisting of 35.5 cm
diameter, Schmidt-Cassegrain type, and Field of View (FOV)
1 mrad], in the altitude range of 8-20 km is used in the
present study. From that data depolarization measurements
can be calculated. Beam splitter is used to split the beam
into cross polarized (perpendicular) and co-polarized (parallel)
signal components. These parallel (designated as P-channel) and
perpendicular (designated as S-channel) signal components are
individually recorded through two identical and orthogonally
aligned Photo Multiplier Tubes (PMT’). For Mie receiver
channel, an MCS-Plus (EG and G ORTEC) multi channel
photon counter is used for recording the photon counting
signals as a function of time (altitude). The dwell time is
2 ps for the photon counting system, which corresponds to an
altitude resolution of 300 m and the backscattered returns are
summed for 250 s. The returns of backscatter signal from the
cirrus clouds are received as photon counts and are analyzed
by employing lidar inversion methods (Fernald, 1984; Klett,
1985). The backscattered signals in terms of photon counts
are corrected with the molecular profile obtained from the co-
located radiosonde measurements. In this present research work,
the optical properties of cirrus clouds such as optical depth,
and depolarization ratio are determined using Klett inversion
algorithm. To perform this, the reference altitude should be
considered as 35 km at which the backscattering contribution is
mainly from the air molecules and the aerosol scattering can be
neglected. Further it is used to calculate the back scattering ratio,
which is defined as the ratio of total backscattering coefficient to
the molecular backscattering coeflicient.

The back Scatter Ratio (SR) is estimated based on the aerosol
and molecular backscattering coefficients [B,(r) and By, (r)] and
is defined as the ratio of sum of the aerosol and molecular
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backscattering coefficients divided by the molecular backscatter
coefficient can be written as

SR (1) = P2 T P2) m

Bm(r)

where SRgjprys is the cirrus clouds back SR, B,(r), and By, (r) are
the backscattering coeflicients of aerosols and molecules with
respect to the altitude r. Throughout the analysis, a threshold
value of SR > 1.5 is maintained for the determination of cirrus
clouds (Sandhya et al., 2015). It can be noted that the presence
of cirrus can be in the altitude region 10-18 km on many days
during January-December 2013.

The lidar backscattering signals are processed separately for
the co-and cross polarization channels in order to obtain the
SR profile. Using the appropriate molecular density profiles (by
Rayleigh theory), the molecular backscattering values (Gadanki
station) at each altitude for the P and S channels were
calculated. The molecular air density profile can be obtained
from the co-located balloon (radiosonde) measurements. The
linear depolarization ratio (LDR) is allied with the backscattering
coefficients and is estimated using lidar signals from the
scattering ratios of P and S channels. The LDR, denoted as
3(r), is obtained from the scattering ratios of cross polarized
S-channel S sr(r) to the co polarized P-channel P sr(r) from
the lidar backscatter returns, with respect to the altitude r and is

estimated as S o
5(r) — ((SLsr( )
® (PI,SR(r) @)

The depolarization measurements provide an insight to the
distribution of ice and water within the clouds. The presence of
water droplets and ice crystals with different shapes in the cloud
can be distinguished based on the LDR values. It is a function of
the cloud altitude, temperature, and the distribution of humidity
within the cloud.

The extinction coefficient a(r) can be calculated in terms
of backscattering ratio and molecular backscattering coefficient
(Klett, 1981) and is given by

a(r) = LR [Bm(r) (SReirrus(r) — 1)] (3)

where LR is the Lidar Ratio (LR) generally known as extinction-
to-backscatter ratio, which is a key factor to study the nature
of cloud particles. The LR values (range dependent) are then
calculated from the method explained by Satyanarayana et al.
(2010). The LR value of 25 sr is used for the present study.

Cloud Optical Depth (COD) denoted as Tcrrys, is obtained
from the integral of cloud extinction profile a(r) of cloud base
(base) to the cloud top (rop), respectively, and is expressed as

Ttop
Tcirrus = / a(r)dr (4)

Tbase

The threshold value of COD was first proposed by Sassen
and Cho (1992) and classified based on the following criteria;
Teirrus < 0.03 for Sub Visual Cirrus (SVC) clouds 0.03 < Teirrus <
0.3 for Thin Cirrus (TC) clouds and 0.3 < Tcjrrus < 3 for thick
or opaque or Dense Cirrus (DC) clouds. These values are

obtained from their visual appearance and the same is utilized
in the present study.

RESULTS AND DISCUSSION

Lidar dataset for the year 2013 (January 2013 to December 2013)
was used to study the altitude dependence, distribution, monthly,
and seasonal variations of the optical properties of cirrus clouds.
In order to analyze the optical properties of cirrus clouds, the
annual prominent seasons at this site are categorized as winter
(December-January-February), pre-monsoon (March-April-
May), monsoon or South-West monsoon (June-July-August),
and post-monsoon or North-East monsoon (September-
October-November). The ground based lidar observations were
made for 122 different nights, out of which cirrus clouds were
detected during 98 nights. Even though seasonal behavior could
not be attributed with this limited lidar data, a general tendency
shall be observed. In the present analysis, Mie lidar dataset was
used up to 40 km for measuring the vertical profiles of optical
depth and depolarization ratio for the period of observation.

Optical Properties of Cirrus Clouds

Optical Depth and Depolarization Ratio

Optical depth (or thickness) is defined as the opacity of the cloud
and it is a measurable quantity of extinction coeflicient within
the boundaries of the cloud. COD gives information about the
radiative behavior and determines whether the cloud can cause
positive or negative radiative effect. It significantly depends on
geometrical thickness and composition of the clouds. LDR is
related to the ice-crystal habits that are largely unknown for
a specific type of crystal (Chen et al., 2002). Over the tropics,
all cirrus clouds are formed by non-spherical ice particles and
hence these particles will cause significant depolarization to the
backscattered radiation. The observed LDR values range from
0.1-0.6 for non spherical ice particles of cirrus clouds and nearly
zero for spherical water droplets of non cirrus clouds (Sassen,
1995; Chen et al, 2002; Manoj Kumar et al., 2019). LDR is
sensitive to shape ratios (Noel et al., 2002) and crystal shape (Dai
et al.,, 2019). The LDR values associated with the cirrus clouds
indicate the presence of ice crystals with different compositions
(Sassen, 1995) and help in the study of cloud formation and
dynamics (Sassen and Cho, 1992).

Figures 1A,B represents the pseudo color plots (2D
histograms) of variations in optical depth and depolarization
ratio as a function of altitude of cirrus cloud (ranging from 9
to 19 km) for the year 2013. Colorbar from figure represent the
percentage of COD and LDR cases. The lower altitude clouds
below 9 km have low depolarization values suggesting that these
clouds do not contain ice particles, which may be attributed due
to temperature threshold (Campbell et al., 2016). It can been
seen that from Figure 1A the majority of the cirrus clouds in
the altitude ranging from 10 to 17 km shows the optical depth
values ranging from 0.01-0.4, but few clouds with higher values
of optical depth are also seen. Similarly at the same altitude range
(Figure 1B) the depolarization ratio values ranging from 0.1-0.4,
but quite a few higher values are also seen. It was observed that
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FIGURE 1 | Altitude variations of (A) optical depth and (B) depolarization ratio.

at the altitude above 12 km the LDR values are high ranging
from 0.3-0.6, which shows good agreement with the values
reported in literature (Sassen and Dodd, 1988; Sassen et al., 2001;
Radhakrishnan et al., 2010). At higher altitudes, the ice clouds
(cirrus) have larger ice crystals due to low temperature range
resulting in high depolarization values (Chen et al., 2002). The
lower depolarization values around 8 km indicate the presence of
large water droplets which is associated with high temperature of
the clouds, suggesting that the clouds at lower altitudes (<8 km)
may be stratus type of clouds consisting of mixed phase due to
weak ice crystal scattering.

It can be seen that the optical depth and LDR increase
with cloud altitude in the range 10-14 km and above that
they decrease. Above 14 km, optical depth values range from
0.1-0.3, and LDR ranges from 0.15-0.3. Almost thin cirrus
clouds whose optical depth values above 0.03 and below 0.3
occur in the altitudes between 11 and 17 km. Generally, the
high altitude cirrus clouds with depolarization ratios >0.3
indicate the existence of hexagonal shaped and <0.3 indicate
the presence of thin plates or horizontally oriented ice crystals
(Sassen, 1995). As shown in Figure 1B, in the altitude range
between 11 and 17 km, the cirrus clouds have higher values of
depolarization with the corresponding LR (25 sr) which signifies
the presence of hexagonal ice crystals (Radhakrishnan et al., 2010)
during the period of study. The variations in the optical depth
and depolarization ratio mainly depend upon the altitudes at
which cloud occurs.

Scatter plot in Figure 2 represent the interdependence
of measured optical depth of cirrus clouds categorized with
depolarization ratio for the year 2013. A positive correlation
(0.3950) between optical depth and the depolarization ratio is
observed. The scatter plot classifies the cirrus layers into SVC
clouds, TC clouds, and DC clouds. SVC clouds show lower values
of depolarization which indicate that the clouds may consist of
plate to column (or) aggregate type of ice crystals (Radhakrishnan
et al., 2010). TC shows higher values of depolarization and DC
shows moderate values of depolarization indicating the presence
of randomly oriented crystals in ice clouds.

In case of thin cirrus clouds, it is observed that optical
depth increases with depolarization ratio. The moderate values of
depolarization ratio with higher values of optical depth show the
occurrence of thick cirrus clouds. Lower values of depolarization
ratio indicate the presence of super cooled water droplets in
cirrus clouds (year 2013). In the present analysis, it is found that
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FIGURE 2 | Interdependence of measured cloud optical depth and linear
depolarization ratio.

8% of the observed cirrus clouds are sub visual (Tgjrrus < 0.03;
Campbell et al., 2016), 77% of the observed cirrus clouds are
thin (0.03 > Tgrus < 0.3), and 14% of the observed cirrus clouds
are thick (tgirrys > 0.3) over the Gadanki station (Figure 2). The
values obtained for thin clouds are in good agreement with the
values reported (Manoj Kumar et al., 2019) for the years 2014
and 2015. Hence, for the year 2013, the occurrence frequency
of optical depth (figure not shown) reveals that most of the
observed cirrus clouds over this region are thin clouds only.
The observed values vary due to the difference in period of
observation. Lidar data are collected only during night time
because of the high presence of low level clouds during day time.
Hence its impact may be negligible. The quality of Lidar profiles
are rigorously checked based on their signal to noise ratio before
using them for analysis. The data is considered mainly because
of the strong backscattered signal received from the cloud. Also,
the signal is corrected by the molecular contribution using
ancillary computed values, i.e., the atmospheric model. Satellite
observations are not analyzed because of satellite long revisit time
over the site taken for study. Thus ground based observations are
predominantly significant and hence they are used in the present
analysis. Table 1 gives the statistical summary of cirrus cloud
layers for the period of observation. Mean optical properties of
cirrus clouds and their standard deviation (in parentheses) are
calculated from the mean values for the year 2013.

Monthly Variations of the Optical

Properties of Cirrus
Figure 3 shows the total number of observations of lidar and
cirrus clouds during the year 2013. The lidar dataset could not

TABLE 1 | Statistical details of mean optical properties of cirrus cloud.

Year (2013) No. of cirrus layers Teirrus 3(r)

All cirrus 6013 0.20 (0.15) 0.29 (0.21)
DC 843 0.45(0.18) 0.29 (0.19)
TC 4665 0.16 (0.07) 0.31(0.22)
SVC 505 0.02 (0.01) 0.16 (0.02)
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FIGURE 3 | Lidar and cirrus clouds observations during 2013.

be obtained during February and March 2013 which may be due
to unforeseen circumstances. The lidar and cirrus observations
are maximum in the month of December (winter season) and
minimum in the month of July (monsoon season). In general,
during the monsoon period, the convective activity is high at the
tropical regions. The occurrence of cirrus clouds is found to be
more prominent during the monsoon period.

The monthly mean variation of optical properties of cirrus
clouds are depicted in Figures 4A,B during the period of
observation. The symbolized vertical bars in both the cases
represent the standard deviation from their calculated values. In
this study, only single scattering effects are considered. Higher
values of optical depth and depolarization ratio are observed
during the post-monsoon season and lower values are observed
during August (monsoon season) and January (winter season).
Higher values of optical depth refer to the maximum thickness of
the cloud and its variability mainly depends upon the thickness
and composition of the cloud. The observed monthly mean
variation in the optical depth is due to the thickness of the largely
available cloud which also results in the change in microphysical
properties of clouds (Motty et al., 2015).

Higher values of COD and LDR are observed due of the
presence of ice crystals inside the cloud. It is observed that
(Figure 4A) the average value of optical depth ranges between
0.15 and 0.3 which indicate the presence of optically thin clouds
over this site. Similarly, from Figure 4B the depolarization ratio
values are found to be between 0.2 and 0.45 indicating the
presence of ice crystals inside the cirrus clouds. However, most
of the cirrus clouds seen over Gadanki are optically thin clouds.
Sassen and Campbell (2001) identified the structure of clouds as
column crystals, thick plate and hexagonal (randomly oriented)
thin plate based on the values of depolarization ratio. The
typical mean value of optical depth and depolarization ratio of
cirrus clouds occurred during different nights of corresponding
months as a function of observed cloud altitude are depicted
in Figures 5A,B. The days corresponding to the months of
observations of cirrus clouds in terms of optical depth and LDR
are shown in symbol square (blue) and upward pointing triangle
(blue), respectively. The cloud altitude is shown as red colored
circle in both the cases.

Seasonal Variation of the Optical
Properties of Cirrus

The variation of optical depth as a function of depolarization ratio
for the four prominent seasons of a year such as winter, pre-
monsoon, monsoon, and post-monsoon are illustrated (pseudo
colored plots) in Figures 6A-D. The colorbar denotes the
number of LDR cases. It is observed that majority of cirrus clouds
formed over Gadanki are optically thin having depolarization
ratio ranging from 0.1 to 0.6 (Sassen and Cho, 1992). It also shows
the presence of moderate thick cirrus clouds and minority SVC
clouds based on their optical depth values for all seasons during
2013. Table 2 illustrates the statistics of optical properties of cirrus
clouds for the four prominent seasons along with all seasons.
During each season, different numbers of cases together with all
seasons are found in a year over the tropical rural site Gadanki
for the year 2013.

It was observed that in all seasons, most of the thin cirrus
clouds formed over Gadanki have higher values of extinction
(scattering and absorption together), leading to positive radiative
forcing. The depolarization ratios vary with optical depth for all
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FIGURE 4 | (A) Monthly mean variation of optical depth and (B) depolarization ratio of cirrus clouds. Vertical bars represent standard deviation.
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TABLE 2 | Statistics of optical properties of cirrus clouds over Gadanki, India for the year 2013.

Type of cirrus Optical properties Winter Pre-monsoon Monsoon Post-monsoon All seasons
(23 cases) (28 cases) (20 cases) (27 cases) (98 cases)
Sub visual Teirrusd(F) 0.015 (0.013) 0.008 (0.014) 0.013 (0.012) 0.021 (0.006) 0.014 (0.005)
(teirus < 0.03) 0.172 (0.017) 0.078 (0.111) 0.119 (0.109) 0.161 (0.022) 0.132 (0.043)
Thin Teirrusd () 0.120 (0.105) 0.120 (0.106) 0.173 (0.050) 0.121 (0.049) 0.133 (0.026)
(0.08 > 7gjrrus < 0.3) 0.226 (0.042) 0.347 (0.101) 0.337 (0.059) 0.350 (0.112) 0.315 (0.059)
Thick (or) Dense Teirrusd(r) 0.349 (0.021) 0.398 (0.019) 0.335 (0.034) 0.661 (0.102) 0.436 (0.152)
(teirrus > 0.3) 0.223 (0.081) 0.252 (0.028) 0.259 (0.082) 0.449 (0.190) 0.296 (0.103)

Parenthesis values represent the standard deviation from their respective mean value. tgys IS Cirrus cloud optical depth and 8(r) is the linear depolarization ratio.

the seasons indicating the presence of different ice crystals in
the cirrus clouds. The depolarization ratio varies during winter
season which shows that the cirrus clouds are composed of

supercooled (like ice) particles which affect the earth’s radiative
budget. During the pre-monsoon season, the depolarization
ratio varies due to process of heterogeneous nucleation
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(DeMott et al., 2010) indicating the presence of randomly
oriented of complex ice crystals inside the cirrus clouds. Low
values of depolarization ratio during monsoon season indicate
the presence of more water content in the clouds and its high
value indicate the presence of moderate to heavy ice particles.
During post monsoon season, the depolarization ratio values
are almost same, indicating the presence of mixed phase of
water, ice and complex ice crystals in the cirrus clouds. The
optical depth is high during this season. These cirrus clouds are
observed near to the tropopause layer and hence there is a chance
for formation of ice crystals during the period of observation.
Radiation budget of cirrus cloud depends on orientation, phase
and size of cloud particles. Thus it is observed that there is
a strong seasonal variation in the optical properties of cirrus
clouds. In general, thin cirrus clouds occurred more frequently
than the sub-visual and thick clouds. The upper portion of the
cirrus clouds contain randomly oriented hexagonal ice crystals
with different orientations and sizes, whereas the lower portion
contains the mixed phase of ice crystals and liquid water droplets.

CONCLUSION

The optical properties of cirrus clouds were analyzed using
ground-based polarization diversity lidar over the tropical site,
Gadanki, India from January 2013 to December 2013. 98 days
of cloud data (80.3%) were analyzed out of 122 days of lidar
observation. Results show that cirrus clouds were observed in
the altitude region between 8-20 km. The values of optical
depth and depolarization ratio range from 0.01-0.4 and 0.1-
0.4, respectively. It is observed that the optical depth and LDR
increases in the altitude range of 10-14 km and then decreases.
Above 12 km, the LDR values are high (0.3-0.6) which confirms
the presence of ice crystals in cirrus cloud having thick plate
structures. The interdependence of optical depth and LDR of
cirrus clouds is analyzed and a positive correlation is observed
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Hydropower, which is the most extensively used renewable energy, is sensitive to
the change of streamflow under the great impact of precipitation. According to the
relationship between the hydropower station generation and local precipitation, the
impact of precipitation on hydropower can be analyzed. In this paper, the global climate
model and regional climate model simulations in precipitation are compared firstly, and
the high-resolution precipitation data are then calculated by stepwise clustering analysis
statistical downscaling method. Secondly, based on the hydropower potential (HP), the
hydropower response model driven by precipitation is established. Finally, the simulated
generation of a hydropower station in Dadu River basin is used as a case to validate this
proposed model. The results show that precipitation will increase by around 42% from
May to August in study region, while it will decrease by 40% in other months in RCP4.5.
For different periods of reservoir scheduling, the precipitation will increase by about 40%
in the Neutral | and Wet period, while it will decrease by around 30% in other periods,
which will lead to the shortening of the peak period of hydropower generation and the
peak value will be decreased. Correspondingly, the results show power generation will
decrease by around 12% from June to December and increase by around 4% in the
rest months. On the other hand, owing to the changes in precipitation, the future power
generation will increase by 25% in Neutral | and decrease by 13.5% in other periods,
but the total hydropower generation will remain. The results can provide some decision
support for future water resources management in Dadu river basin, especially for the
planning and operation of hydropower stations.

Keywords: hydropower, precipitation, regional climate model, stepwise clustering analysis, downscaling

INTRODUCTION

According to the IPCC AR5, with the increase of global populations and economies, the man-made
emissions of greenhouse gases have remained rising and reached the industrial history peak at
the beginning of the 21st century (IPCC, 2013). The global mean temperature at the end of the
21st century will probably be 1.5°C higher than that in 1899-1990 under the influence of current
emission trends (Arnette, 2017).

China, which is located in East Asia, has a vast territory, abundant climate zones and complex
topography (Guo et al., 2017a). Owing to the stronger regional seasonal wind led by global
warming, more moisture in the atmosphere will be transported to land areas from ocean, then
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resulting in more extreme precipitation events in China recently
(Hui et al,, 2018). For example, ten million residents were
displaced and billion dollars economy cost was caused by
the Yangtze River flood in 1998 (Chen and Zong, 2000).
The serious urban waterlogging events in Beijing in 2012
caused thousands people death and 11.6 billion economic losses
(Zhang D.L. et al., 2013).

As one of the effective energies to alleviate the greenhouse
effect caused by fossil energy, renewable energy is in a
fast-growing demand. Renewable energy has taken 18.2% in
world total energy consumption in 2016 (REN21, 2018). In the
meantime, the development of renewable energy in China is also
rapidly developed. Renewable energy generation, which is up to
1676 TWHh, has taken 30% in total national power generation in
2017 (CREO, 2018). Relative to other types of renewable energy,
owing to the lowest cost, easier to control and manage and lower
intermittent and uncertainly means, hydropower is a kind of
the most widely used renewable energies (Panwar et al., 2011;
Chu and Majumdar, 2012; Jiang et al., 2018). In 2017, the new
generating capacity of hydropower in China is 9.12 GW, and
the total installed capacity reached 341 GW. The hydropower
generation has taken almost 20% of total power generation,
which is far more than the generation of wind energy (5%)
and solar energy (2%). Therefore, more hydropower is planned
by China’s government to generate electricity and replace fuel
energy (IHA, 2018).

Hydropower is sensitive to climate change, especially for
precipitation. Based on the change of runoff, Ali et al. (2018)
evaluated and predicted the power generation of seven large
hydropower stations in India. Results illustrated that the
specific future climate may increase hydropower generation
by about 25%. Liu et al. (2016) thought runoff and reservoir
storage has a great influence on hydropower, then Generation
Hydropower Potential (GHP) and Development Hydropower
Potential (DHP) are tested based on 8 Global Hydro Models
(GHMs), indicating that GHP will have a 3-6% increase between
2070 and 2099. Obviously, precipitation has a direct influence
on basin runoff change, which will finally affect hydropower
generation (Berghuijs et al., 2014; Wasko and Sharma, 2017).
Based on the observed data, Chilkoti et al. (2017) found that
generation of hydropower stations and the precipitation have
close links, the generation of hydropower stations may rise
39% when the precipitation rise 43%. Above all, climate change
has a more direct impact on precipitation, but few studies
are analyzing the influence of precipitation changes under the
context of global warming on hydropower generation (Guo
et al., 2018). Hence, it is significant to explore the relationship
between precipitation changes and hydropower generation, and
the results could provide some suggestions and measures to
the government policy makers in hydropower to response the
climate change better.

In this study, stepwise cluster analysis (SCA) statistic method
is used to downscale future climate data from PRECIS regional
climate model (RCM). Then, the hydropower response model
driven by precipitation (HRMDP) is established. Finally, a
hydropower station in Dadu River basin is taken as a case
to quantitatively analyze future climate change influence on
hydropower generation.

DATA AND METHODS

As shown in the Figure 1, four analysis steps are divided in
this paper. The first step is collecting precipitation and power
generation data, which include large-scale HadGEM2-ES climate
data, observation of meteorological stations and generation
data of hydropower stations. Then, the statistical downscaling
simulation in precipitation using SCA method is conducted.
Specifically, some independent variables in large scale grids
in PRECIS RCM, such as precipitation, temperature, humidity
and pressure are extracted firstly, afterward, the precipitation
in station scale is simulated and projected by the SCA statistic
downscaling method. The third step is the establishment of a
HRMDP based on the hydropower potential (HP). In the end, we
use the projected precipitation under RCP4.5 and RCP8.5 climate
emission scenarios to drive the HRMDP to analyze the change in
hydropower in the case.

Hydropower Response Model Driven by

Precipitation

In general, hydropower generation has a close relationship
to precipitation. The increase in precipitation will lead to an
increase in power generation, and continuous non-precipitation
will cause a decrease in power generation (Chilkoti et al,
2017). Figure 2 shows that the daily precipitation and daily
power generation of station A in Dadu River basin. The
high power generation can be found in a high precipitation
period (such as from June to September), while low power
generation in low precipitation periods (such as from January
to April and December). At the same period, power generation
shows an increasing trend with increasing precipitation, and
vice versa. According to Figure 2, we can find that there
is a certain relationship between precipitation and power
generation, and the power generation is sensitive to the change
of precipitation.

Before establishing the hydropower response model, a
new conception — HP is introduced. Hydropower potential is
the perfect state power generation which only considers the
precipitation as the influence condition, it can be calculated by
daily precipitation without considering the actual generating
capacity. In this paper, HP mainly depends on the daily
precipitation. In addition, continually precipitation factor
and non-precipitation factor also have influence on HP,
which respectively represents the increased coefficient of
power generation in the period of continue precipitation
and the decline coefficient of power generation in the
period of non-precipitation. The detailed calculation method
is as follows:

HP, = 02(HPy—1 + 01 X Ry) (al)
— J Pp_1—Py H
=\ &ox )/ (2)
U
o=1- [( 22 pll) /]:| (a3)
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FIGURE 2 | Daily precipitation and power generation of a hydropower station in Dadu River basin.
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Notations:

HP,, - HP in the day n, kWh;

R, - Precipitation in the day n, mm;

o1 — The increasing coefficient of generation in the period of
continue precipitation, dimensionless;

0y — The decline coeflicient of generation in the period of non-
precipitation, dimensionless;

P,, - The power generation in the day n, kWh;

j - The number of days in some periods.

Hydropower potential represents the optimal power
generation under the current precipitation status. Station
power generation is not only restricted by natural factors
but also influenced by human society factors (such as power
policies and plans). Hence, the controllable coeflicient, which
represents human characteristics, is added to the formula.
Formula b is used to restrict the power generation of actual
production, and finally achieves the amount of constrained
power generation.

HP, = (HPmax + HPmin)/2 (bl)
HP, = HPpax — HPpin (b2)
PF,n = [Pmin + (Pmax - Pmin)]/
(—gHPn—HPq )
|:<1 +e HPy ) + 8] (b3)

Notations:

HPmax — Maximum HP during this period, kWh;

HPpin — Minimum HP during this period, kWh;

Pmax — Maximum power generation of generator set under the
power plan of this period;

Prin — Minimum power generation of generator set under the
power plan of this period;

Pr_, — The constrained power generation in day n of the period;
8 - The controllable factor, which affected by actual power
plan, power policy and more, and it shows as power generation
fluctuates at a certain range.

Regional Climate Model

The future precipitation forecasting data are from two climate
numerical simulations, which includes HadGEM2-ES and
PRECIS. The former is a global climate model (GCM) and is
used as the initial and boundary field data to drive the RCM
PRECIS for dynamic downscaling. Developed by the UK’s The
Met Office Hadley Centre, PRECIS is a high-resolution (25 km)
RCM and it has been widely used in regional climate simulations
and extreme events forecasting (Xu et al., 2009; Kerkhoft et al.,
2014; Saini et al, 2015; Guo et al, 2017b, 2018; Hui et al,
2018).

SCA Statistical Downscaling Method

Although the results from RCMs can simulate the climate
change of the whole region or basin, the higher-resolution

3 dependent Variables
Independent Variables P :
Samples > o Tem preture Pressure,Relative
Precipitation G
Humidity
\ 4
Training > Cluster Tree
v
Validation »> Downscaled Outputs VS. Observed Data
\ 4 Input Output
Se Projected Generated Downscaled Projected for Future
Prediction > T
From RCMs precipitation
FIGURE 3 | Stepwise cluster analysis downscaling flow chart.
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FIGURE 4 | Dadu River basin.

simulations (i.e., station scale) still cannot be met through
dynamical downscaling. Therefore, based on the results of
RCM, statistical downscaling can be achieved by establishing the
numerical statistical relation between the large-scale circulation
fields and station-scale climate variables (i.e., precipitation).
There are rich methods to be applied, the statistical downscaling
has been widely applied in climate change influence analysis
on precipitation and hydrology (Bellouin et al., 2011; Jones
et al,, 2011; Wang et al,, 2015). However, it is necessary to

select an appropriate statistical downscaling method to reflect
the discrete and random characteristics for precipitation. The
SCA uses a cluster tree to illustrate the relationship between
the large-scale atmosphere fields and high spatial-resolution
variables, especially in effectively dealing with the stochastic and
non-linear relationships. Through the integration of missing
data detection, correlation analysis, model calibration, cluster
tree mapping and other auxiliary function modules, SCA can
rapidly develop downscaling scenarios of local weather variables

Frontiers in Earth Science | www.frontiersin.org

September 2020 | Volume 8 | Article 268


https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles

Wei et al. The Effect of Precipitation on Hydropower

CNO5 GCM RCM RCM-CNO5

FIGURE 5 | Simulation results and deviation of difference scale models in each period.
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FIGURE 6 | Simulation results and deviation of difference scale models in each season.

under current and future climate forcing, and performs well in  previous studies, the variables, including mean sea level pressure,
predicting precipitation during the verification (Chen etal., 2011;  surface airflow strength, surface wind direction, near-surface
Yang et al., 2016). temperature, surface specific humidity, surface relative humidity,

As shown in Figure 3, the first step in the SCA statistical ~surface divergence, surface meridional velocity and more are
downscaling is to select large-scale forecast factors. Following selected as initial variables (Duan and Mei, 2013; Li and
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FIGURE 7 | Monthly mean precipitation and deviation of different scale
models and observation data.

Yan, 2017). According to correlation analyze, Near-surface
temperature, Surface relative humidity and Mean sea level
pressure are selected as independent variables in statistical
downscaling (Wood et al,, 2004; Perkins et al, 2007; Liu
et al,, 2011). The meteorological station precipitation data
are selected as dependent variable. Then, the independent

variables of statistical downscaling are constituted as X matrix.
The dependent variable is constituted as Y matrix. And using
R Studio to create site scale precipitation SCA statistical
downscaling training model, and build the clustering tree
predictor to establish the quantitative relationship between
precipitation and large-scale prediction factors.

Data

The data used for validation is divided into the following
categories:

1. Climate simulation data. The future climate data from
PRECIS are used to drive the power forecasting model. Its
initial field and boundary field data as the driving data
is from HadGEM2-ES(GCM). HadGEM2-ES is a coupled
AOGCM with atmospheric resolution of N96 (1.875° x 1.25°)
with 38 vertical levels and an ocean resolution of 1°
(increasing to 1/3° at the equator) and 40 vertical levels.
HadGEM2-ES also represents interactive land and ocean
carbon cycles and dynamic vegetation with an option to
prescribe either atmospheric CO; concentrations or to
prescribe anthropogenic CO, emissions and simulate CO,
concentrations as described. An interactive tropospheric
chemistry scheme is also included, which simulates the
evolution of atmospheric composition and interactions with
atmospheric aerosols. The model time step is 30 min
(atmosphere and land) and 1 h (ocean) (Jones et al., 2011).
The PRECIS is able to run at two different horizontal
resolutions: 0.44° x 0.44° (approximately 50 km x 50 km)
and 0.22° x 0.22° (approximately 25 km x 25 km), with 19
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atmospheric levels in the vertical using a hybrid coordinate
system (Guo et al., 2017b).

2. Climate Observation data. The CNO5 precipitation data set
is used to validate the precipitation results of GCM and
RCM. CNO5 is a dataset consisting of daily mean, maximum,
and minimum temperature on a 0.25 x 0.25° grid has
been constructed over mainland China for the 45-years
period of 1961-2005. CNO5 is derived from interpolating
observations from 751 stations distributed throughout the
entire Chinese territory except Taiwan. The interpolation
follows basically the same approach used in generating the
CRU dataset, whereby a gridded climatology is calculated first,
and then a gridded anomaly is added to obtain the final data
(Xu et al., 2009).

3. Meteorological station data. The observation is used to
validate the results of RCM and build the HRMDP.
It is from the real-time monitoring stations, including
daily precipitation, near-surface temperature, surface relative
humidity and surface wind speed.

4. Hydropower station data. The daily power generation data is
used to calibrate and verify the simulation results of the power
forecasting model.

CASE STUDY

The Dadu River basin which shown in Figure 4, is located
between 99°42’E-103°48E and 28°15°’N-33°33'N and lies in
the transition area of Tibet Plateau and Sichuan Basin. Dadu
River basin meets the Minjiang River in Leshan. It is the largest
tributary of the Minjiang River and the secondary tributary of the
Yangzi River. Dadu River Basin has an abundant hydro resource,

which has 7.74 x 10* km? basin area and a total of 149 tributaries.
The mainstream, which is 1062 km long and 48.8 km® annual
net flow, and has 33730 MW water resource reserve. The annual
precipitation of Dadu River Basin is about 800-1000 mm, and
the precipitation from May to October takes up 80% of the whole
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generation: (A) monthly power generation; (B) power generation in period.
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year (Yang et al., 2017). As a key hydropower development area
in China, Dadu River basin has many large power stations.

Station A is one of the largest hydropower stations in China,
the power capacity of station A is nearly 3.6 million KW, and
the reservoir capacity is 5.337 billion km>. Due to the greatest
power generation in Dadu River Basin and the most abundant
water resources, station A is selected as the research object
(Zhang and Xu, 2014).

Moreover, according to the precipitation feature of Dadu River
basin and power generation plan for station A. Five main power
generation periods in a year are divided, which include Dry I
(from January to April), Neutral I (May), Wet (from June to
October), Neutral II (November) and Dry II (December).

In this paper, we take the power station A as a case
and use HRMDP model to build the relationship between
meteorological factors and power generation capacity. Then
based on the projection in precipitation from dynamical and
statistical downscaling results, the influence of precipitation on
power generation from 2025 to 2035 will be analyzed.

RESULTS

Simulation and Verification

The results of climate models and their deviations with CN05
in different periods are shown in Figure 5. Compared with the
results of CN05, GCM underestimates the precipitation in most
regions of the basin but overestimates the precipitation in the
middle of basin. Due to the rough resolutions in GCM, the
results of most areas only show a single value. On the other
hand, PRECIS improves the spatial resolutions and shows more

details in reproducing the precipitation in Dadu River basin,
especially in autumn in Figure 6. The results in PRECIS are
similar to the observation, and the deviation is between -1 mm
and 1 mm in the midstream. In terms of different periods, Dry
IT shows a better performance (1 mm biases) than that in Dry I
(~2 mm). From the spatial distribution, the deviation is between
0 and 1 mm in the upstream, while the value is larger (~2 mm)
in the downstream.

Figure 7 shows simulation results in annual cycle obtained
from GCM and PRECIS. Compared to CNO05, PRECIS can
simulate the monthly precipitation in Dadu River Basin
reasonably. For example, the highest precipitation occurs in
June, while the precipitation in January is smaller. Meanwhile,
PRECIS shows a great advantage in simulating the monthly mean
precipitation relative to its driving GCM. Lots of overestimations
in HadGEM2-ES (especially from May to October) are corrected
by PRECIS in dynamic downscaling. Overall, the bias of
RCM is kept between —0.34 and 3.67 mm, especially in
August (~—0.34 mm).

Figure 8 is the comparison results between simulation and
observation in precipitation data at different spatial scales.
The higher in resolutions for climate model, the simulation
trend and value of precipitation are closer to the observed data.
Specifically, comparing to observation, the simulation results of
GCM are overestimated obviously, especially in June or Neutral
I, the error is even exceeding 20 mm/day. While the results
downscaled by PRECIS have numerous improvements relative
to its GCM. However, PRECIS still cannot solve effectively the
accuracy in simulating station-scale precipitation. For example,
the error is still high in June (about 10 mm) and in Neutral
I (about 8 mm). On the other hand, the results from SCA
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statistical downscaling show the best performance than other
simulations. The simulated precipitation is consistent with the
observation well. The errors in GCM and PRECIS are reduced
greatly, particularly in August and Dry II.

In terms of the correlations between simulations and
observation, SCA downscaling also show its advantage, with a
correlation coefficient (about 0.97) and low RMSE value (about
0.16), meaning that there is a great fitting degree and lower biases
between the results and observation (Figure 9). Moreover, with
the improvement of resolution, the decrease of RMSE is more
pronounced. For example, the RMSE is about 68.9 mm/day in
July for GCM and about 10.2mm/day for PRECIS, while the
RMSE of SCA statistical downscaling is only about 0.5 mm/day.
In addition, the RMSEs are different in periods and SCA shows a
better performance (~ 0.16 mm/day) in Dry II periods than that
in other periods.

Overall, compared with coarser-resolution climate models, the
simulation results of SCA statistical downscaling can reasonably
reproduce the precipitation trend and value. Thus, these results
can be used as the input of a subsequent power forecasting model
to simulate the power generation of hydropower stations.

Then, through the HRMDP model, we compare the simulated
power generation and actual power generation in different
months and periods for Station A, which is shown in Figure 10.
Overall, the performance in correlation coefficients and RMSE
values are quite satisfactory especially from May to July, which
are 0.85 and 232 kWh respectively. The simulation results
demonstrate a great performance in Wet period, and the
correlation coefficients and RMSE values in different periods are
0.95 and 611 kWh, respectively.

Future Forecasting

The projection in precipitation is the first step to forecast the
future power generation through the HRMDP model. The future
precipitation and percentage change through SCA downscaling
in annual cycle and different periods are shown in Figure 11.
Compared with the historical period, the projected precipitation
in annual cycle shows different change trends. Specifically,
precipitation will increase by about 20-80% from May to July,
while it will decrease in other months. For different periods,
precipitation will increase in Neutral I and Wet, which are 79
and 4% respectively. The projected precipitation in other periods
shows a decreasing trend, particularly in Neutral IT (about 58%).

The changes in power generation resulting from the
precipitation changes in station A in the future are shown in
Figure 12. Compared with the historical period, there is an
ascending trend in power generation in station A from January
to February and May to July in the future, especially in February
with the most increase by about 25%. However, in the rest
months, there is a decreasing trend in power generation in station
A, for example, the decrease in September will be 36%. Similarly,
the power generation will increase by about 20% in future Neutral
I period, while there is no obvious change in other three periods
relative to the historical period.

It is noted that there is more power generation in September
in tradition, but the decrease in future precipitation will lead
to a decrease in power generation in this month. On the other
hand, though the power generation is less in May in the historical,
the value will increase because of the increased precipitation in
future. In addition, the peak of the generation will change from
July to August, and the value will decrease about 8%. Meanwhile,
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the peak period of power generation will be shortened from June
to August, because of the influence of precipitation.

CONCLUSION AND DISCUSSION

In this paper, based on the results from HadGEM2-ES and
PRECIS climate models, the precipitation and power generation
in power station A over Dadu River basin in China were
simulated and projected using SCA statistical downscaling. The
results from SCA downscaling show a great performance relative
former climate models in simulating the precipitation at station
scale. On the other hand, we used the observed meteorological
and hydropower data in station A to establish a HRMDP.
Meanwhile, we also validated the performance of HRMDP,
and the results show that the HRMDP model can reflect the
relationship between the precipitation and power generation,
with the correlation coefficient of 0.95 and RMSE of 611 kWh.

In future, the precipitation of station A is projected an
ascending trend from May to July while it will decrease in other
months. For different periods, the precipitation will increase in
Neutral I and Wet, but it will decrease in other periods. As
the response from precipitation, the power generation will also
show a similarly trend. There is an increasing trend in power
generation in station A from January to February and May to July,
while there is a decreasing trend in other months. For different
periods, the power generation in Neutral I will increase by about
20% in future, while there is no obvious change in other three
periods relative to the historical period.

Climate change has a great impact on precipitation,
which affects hydropower generation. Therefore, it is of great
significance to study the future precipitation change and power
generation forecasting model of hydropower station to adapt
climate change. As far as we know, there are many studies on
future precipitation changes using climate models, but relatively
few on hydropower generation forecasting model. For example,
for precipitation, future climate change will lead to a general
increase in precipitation over the most regions of China (Lin
and Zhou, 2015; Zhao et al., 2019). Future precipitation of
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Under the urgency of rational water resource allocation and effective urban flooding
control, a multi-objective interval birandom chance-constrained programming (MIBCCP)
model is developed for supporting regional water resource management under multiple
uncertainties and climate change in this study. Two objectives were included in this model,
which are the minimization of total system costs and the maximization of total pollutant
treatment amounts. The major advantage of the proposed MIBCCP model is that it realized
the effective combined utilization of conventional and nonconventional water sources
under complexities and uncertainties through incorporating compromise programming,
birandom chance-constrained programming, and interval linear programming within a
general framework. This way effectively overcomes water shortage issue and reduces
urban flood frequency under climate change. A water supply management system of the
educational park in Tianjin was used as a study case for demonstration. A variety of
adaptive water allocation alternatives and construction schemes for LID (low-impact
development) projects under RCP4.5 and RCP8.5 (representative concentration
pathway 4.5 and 8.5) scenarios were obtained to deal with possible changes arising
from increasing rainfall and runoff in the future. It is concluded that the proposed MIBCCP
model provided the effective linkage between the utilization of nonconventional water
resources and urban flood prevention and offered insights into the trade-off between
economic benefits and environmental protection.

Keywords: birandom variable, low-impact development, water resource management, climate change, uncertainty

INTRODUCTION

With the current rapid improvement in socioeconomic development, industrialization, and
urbanization, urban water scarcity is becoming an overwhelmingly urgent issue on a global
scale, and this is particularly prominent in China (Loomis et al., 2019). For example, the
average annual water scarcity in China is up to 4.00 x 108 m>, nearly two-thirds of China’s
cities are suffering from a water shortage, and 443-525 million city people live with high water
scarcity. Meanwhile, China’s urban water consumption continues to increase at an annual rate of
4-8% over the most recent decade (Wang et al., 2019). The conflict between increased water demand
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and limited available water resources has become particularly
evident in most cities in China. Currently, urban water resource
management patterns mainly focus on the reasonable
exploitation and effective utilization of conventional water
resources (including surface and underground water). In fact,
nonconventional water resources, such as rainwater and
reclaimed water, have significant advantages in regard to water
resource allocation and management (Ye et al., 2018). For
instance, the utilization of rainwater has the effect of reducing
the water supply cost by replacing potable water used for flushing
toilets and watering of gardens, and reclaimed water distributes
for industrial demand with an overall positive environmental
impact. The combination of conventional and nonconventional
water resources from a quantity and quality viewpoint is thus
expected.

In addition to water scarcity, modern urban water resource
management is also confronted with the huge challenges
presented by increasingly frequent urban flooding, which can
cause substantial economic damage and human distress
(Kundzewicz et al., 2018). Over the last decades, annual urban
flooding damage in China has exceeded 10 billion USD, and the
number of flood fatalities is greater than approximately 1,000
(Kundzewicz et al., 2019). Moreover, a series of research on the
water resource management under climate change indicated that
the climate change could aggravate water scarcity seriously and
cause urban flooding frequently through affecting regional
rainfall, temperature, evaporation, and hydrological cycle,
leading to a huge challenge on water resource management
(Shang et al., 2015; Mahmoud and Gan, 2018; Xia et al., 2019;
Zhang et al.,, 2019). In order to deal with such challenges, the
Chinese government initiated the “Sponge City” Program in
2013, which incorporates (LID) concepts to improve the urban
drainage infrastructure and address urban flooding (Song et al.,
2019; Xu et al., 2019). As a sustainable, innovative, and effective
stormwater runoff control method, LID projects have advantages
in controlling stormwater and urban runoff and storing rainwater
as underground water resources compared with non-LID
projects. However, the high construction cost associated with
these projects may trigger excessive economic burden, which has
a negative influence on the development and application of LID
technologies. Moreover, many factors, including socioeconomic,
meteorological, geographic, and environmental aspects, are
involved in the selection and placement processes of LID
projects, which bring significant difficulties to the formulation
of the LID project optimization models and generation of
effective solutions. Therefore, it is important to develop an
effective method for optimizing LID project implementation
schemes under complexities that improve water use efficiency,
explore nonconventional water resources, and control urban
flooding with a minimum cost.

For urban water resource management, considering system
factors comprehensively, establishing LID projects rationally,
combining nonconventional and conventional water resources
effectively, dealing with the impact of climate change, and
formulating water sources allocations optimization model are
suitable methods for resolving urban water scarcity and flood
control, and such approaches have been the focus of many studies
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in recent years (Mainuddin et al., 1997; Shangguan et al., 2002;
Wang et al, 2008; Liu et al, 2011; Sample and Liu, 2014;
Bekchanov et al., 2015; Palanisamy and Chui, 2015; Palla and
Gnecco, 2015; Eckart et al,, 2018; Xu et al., 2018; Ye et al., 2018;
Helmia et al, 2019; Huang and Lee, 2019). For instance,
Shangguan et al. (2002) developed a recurrence control model
for regional optimal allocation of water resource for obtaining
maximum efficiency. Liu et al. (2011) presented an optimization
approach for the integrated management of water resources,

including both nonconventional and conventional water
resources. Xu et al. (2018) proposed an optimal water
allocation model for industrial sectors based on water
footprint accounting to optimize the allocation of

nonconventional and conventional water resources in Dalian.
Ye et al. (2018) presented a multi-objective optimization model to
help optimize the allocation of water resources to different water
users in Beijing. Sample and Liu (2014) developed a rainwater
analysis and simulation model to optimize rainwater harvesting
systems for water supply and runoff capture. Eckart et al. (2018)
established a management model to optimize LID
implementation strategies with the objective of minimizing
peak flow. Huang and Lee (2019) proposed a programming
model to solve water shortage of Taiwan under the impact of
climate change. Helmi et al. (2019) developed a modeling tool to
allocate LID projects in a cost-optimized method. However,
above studies mainly sought to establish an optimization
model for water resource allocation or LID projects, which
considered only single objective for optimization, while in the
real practice, there is more than one issue need to be taken into
account simultaneously when designing and executing the water
resource management strategies, for the sake of achieving a
balance among them.

In fact with the increased complexity and our in-depth
understanding in the urban water resource system, it is
apparent that there is no absolute deterministic water
allocation system. Specifically, the water demand exhibits a
random nature that is subject to multiple variables, including
meteorological factors, socioeconomic conditions, and deviations
caused by the subjective judgments and understandings of
humans. For example, the ecological water demand would be
different with the change of runoff and biodiversity. Similarly,
some economic and engineering factors, which are influenced by
the resource availability, technical conditions, and policy
regulations, fluctuate in the small ranges. For instance, the
supply price of transfer water would fluctuate between 8.8 and
9.2 Yuan/m® due to the impact of different technical conditions.
Such uncertainties lead to significant difficulties in formulating
urban water resource allocation models and generating an
optimal management pattern. Currently, a large amount of
uncertain optimization techniques have been developed by
many researchers with the aim of solving urban water
resource management problems (Huang, 1988; Liu et al., 2008;
Qin and Huang, 2009; Qin et al., 2011; Dai et al,, 2018; Xu et al.,
2018; Zhang et al., 2019). For example, Dai et al. (2018) presented
a Gini coefficient-based stochastic optimization model for
supporting water resource allocation on a watershed scale. Xu
et al. (2018) developed a stochastic-based water allocation
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optimization model on a watershed scale for supporting water
supply planning and wetland restoration activities of the
Xiaoqing River watershed. Zhang et al. (2019) proposed an
interval multi-objective multi-stage stochastic programming
model for finding a reasonable water storage scale and
optimizing limited irrigation water resource. Based on the
above studies, it can be concluded that many researchers have
focused on dealing with the randomness inherent in urban water
resource management. However, the above studies mainly
utilized random variables with a known distribution type to
describe the uncertainties involved in the water resource
system, and they rarely observed that water demands in the
real world may be subject to twofold randomness with
incomplete or uncertain information. Specifically, it is first
assumed that the water demands ¢ are expressed as the
random variables with the normal distributions, that is, ¢ ~ N
(w 6%), where ; and & denote the mean value and standard
deviation, respectively. Based on various survey and estimation
results from n group of respondents, n groups of random
variables could be obtained, that is, (41, 812), (42> 82°) (> 6n2),s
such that 4 and 6 values are more suitable to be random variables
(based on the collected data above) rather than fixed values as are
traditional random variables (Xu et al., 2014). Hence, the
parameters y and o should be described as new random
variables, which are the so-called birandom variables, a
concept first proposed by Peng and Liu (2007). This concept
has been successfully applied to the flow shop scheduling
problem, vendor selection problem, and hydropower station
operation planning problem (Xu and Zhou, 2009; Xu and
Ding, 2011; Xu and Tao, 2012).

As mentioned above, following three aspects of urban water
resource management still need to be improved. First, current
optimization models often pay attention to only one aspect of
water resource allocation or LID project exploration. In fact, it is
necessary to develop a comprehensive optimization model that
incorporates the exploration of LID projects into the urban water
management scheme. Second, because water demands directly
affect the accuracy and rationality of the results due to the
supply-demand constraint, it is important to develop a
birandom optimization method to avoid the deviation caused
by the birandomness of the water demands. Third, the climate
change exerts the influences on the water availability and the
occurrence of urban flood, which should be incorporated into the
optimization model for integrated water resource management.
As such, the main goal of this study was to develop a (MIBCCP)
model under climate change for supporting the urban water
resource management. The proposed model aims to optimize
water resource allocation and address the urban flooding under
uncertainties and different climate change scenarios, while
minimizing the total system costs and maximizing the treated
pollutant amount. The rest of this study is organized as follows:
Materials and Methods introduce the descriptions of the
compromise programming, birandom chance-constrained
programming, and interval linear programming and describe
formulation and the solution procedure of the MIBCCP
model. An overview of the reference education park and the
MIBCCP model for this park are proposed in Case Study. In
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Results Analysis and Discussion, the variations in the obtained
solutions and impact of climate change on water resource
management are analyzed and discussed. Finally, the
conclusions summarizing this study are presented in the last
section.

METHODOLOGY

To establish a cost-effective and environmentally friendly water
resource management pattern, multiple objectives for the
programming model should be taken under consideration, so
that the model is capable of tackling the economic and
environmental objectives simultaneously. Moreover, the
estimation and expression of uncertain factors are critical for
generating a rational and reliable management strategy of the
urban water system, as many of the system parameters are
associated with various types of the uncertainties. Therefore,
an inexact multi-objective equilibrium chance-constrained
programming model with the birandom and interval variables
(i.e., MIBCCP) was developed for addressing these issues.

Preliminary Definitions and Descriptions of
Proposed a Multi-Objective Interval
Birandom Chance-Constrained
Programming Model

In this section, some definitions, conceptions, and descriptions
associated with compromise programming, birandom
parameters, and interval numbers are described first in order
to formulate and solve the proposed MIBCCP model.

Compromise Programming

Currently, many methods are available for solving multi-objective
programming problems, among which the compromise
programming is the most commonly used. The solution
algorithm of compromise programming is based on the
concept of a distance scale dy,, a point which has the shortest
distance to the ideal solution from the noninferior solution set.
The total performance of all objective functions can be written as
follows:

K max _ p 1/
Mind, = min{ Zn{(w) } " ()
k=1

Z}r{nax _ er(nin
l1<p<oo (1b)
i >0 (1c)
K
=1 (1d)
k=1

where Z;"**(x) and Z;‘i“ (x) are the maximum and minimum
values of each individual objective which can be obtained through
the transformation of the original multi-objective programming
that is single objective. The introduction of Z** (x) and Z;(“i“ (x)
is used to normalize noncommensurable formats and units in
model objectives. Z (X) = the value of the objective k; k = the total
number of objectives; »; = the corresponding weight of each
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objective. The distance scale d,, varies with various p, where p = co
when decision-makers focus on the specific objective; p = 1 is
corresponded to the decision-makers, considering all the
objectives. Considering the complexity of the MIBCCP model,
the item p is designed as 1 for the simplicity in this research.

Introduction of Birandom Variable following the
Normal Distribution

Birandom variable, a concept first proposed by Peng and Liu
(2007), is a useful tool to deal with problems with twofold
randomness and has been successfully applied to many fields
(Xu and Zhou, 2009; Xu and Ding, 2011; Xu and Tao, 2012). In
this study, the random variable following the normal distribution
is considered as the example. For any o, £(w) is a birandom
variable with normal distribution and is expressed as
N (¢ (w), 0*(w)), where u(w) and o(w) are random variables,
rather than fixed values of general random variable.

Definition 2.1. A n-dimensional birandom vector ¢ is a map
from the probability space (@, A, Pr) to a collection of
n-dimensional random vectors such that Pr{¢(w) € B} is a
measurable function with respect to o for any Borel set B of
the real space R". Especially, ¢ is called a birandom variable as
n=1

Example 2.1. A birandom variable ¢ is assumed to follow the
normal distribution, if for each w, é(») is a random variable with
normal distribution, denoted by N(u(«), o*(0)), where u(w), o(w)
are the random variables defined on the probability space (¢,
A, Pr).

Lemma 2.1. Let & = (&, &, . . ., &,) be a birandom vector and f

be a Borel measurable function from R” to R. Then f(¢) is a
birandom variable.
Let ¢, and &, be two birandom variables defined on the probability
spaces (Q;, Ay, Pry) and (Qy, Ay, Pr,), respectively. Then & = &, + &,
is a birandom variable on (Q; X Q, A} X A,, Pry X Pr,) defined by ¢
(w15 w2) = & (w1) + & (w2), (w15 wp) € (Q1 X Q).

Interval Number

The interval number is composed of the lower bound and upper
bound, which is depicted in Eq. 1, where the items a~ and a* are
the lower and upper bounds of 4, , respectively. The lower and
upper bounds represent minimum value and maximum value of
a*, respectively. Two major advantages of the interval number
are the low requirement of data information and the interval
optimization model is solved without excessive computational

burden (Huang et al., 1992).

o = o ] @)
Let a* and b* be two interval numbers defined as
a* =[a", a*] and b* =[b", b*], respectively. Some
calculation equations of two interval numbers are defined as
follows:

a* +b* =[a +b, a" +b"] (2b)
a* -b* =[a -b, a" -b"] (20)
a* xb* =[a xb, a"xb"] (2d)
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a* a a'

b [F b] (2¢)

ka* = [ka™, ka'] (29)
1 1 1

e P g

ka* = [ka™, ka"] (2h)
1 1 1 .
ol 7 @)

Multi-Objective Interval Birandom

Chance-Constrained Programming

As stated in the Introduction section, the uncertainties associated
with the urban water resource management system not only
exhibit the random characteristics but also fluctuate in the small
ranges. Therefore, in this study, an integrated uncertain multi-
objective optimization model including the birandom parameters
and interval numbers (MIBCCP) is developed for tackling two
types of uncertainties.

Minimize f,* = C*X* (3a)
Minimize f,* = C,” X * (3b)
Subject to:
A(w)X* < B(w) (3¢)
D*X* <E* (3d)
X* 20 (3e)
C*. CF.A(w), D* #0 (30

where two objective functions f,* and f,*, decision variable X *,
and coefficients C;*, C,;f, A*, D*, and E* are expressed as
interval forms. The coefficients A (w) and B (w) are birandom
variables following normal distribution, where they are described
as A(w) ~ N(A(w), 063) and B () ~ N(B(w), 03), respectively.
The mean values of stochastic variables also are described as
gormal random variables, that is, A(w)~N (445 0124,) and
B(w) ~ N (up, oé,), respectively. The covariance magnitudes
(ie, o4 and o¢%) are assumed as fixed values, since the
variations in the deviation value are limited.

The first and critical step of solving model 3 is to combine two
objective functions into one objective through designing various
weight coefficients (i.e., w; and w,).

Minimize f * oA R )
mnimize f - = wp* X — + Wyk p a
flma _flmm fzmax _fzmm
w+w, = 1 (4b)

where w; is the corresponding weight of f;; w; is the
corresponding weight of fy; f%%, fmax fmin and fMin are the
maximum and minimum values of each individual objective
which can be obtained through the transformation of the
original multi-objective programming, that is, single objective.
In this study, depending on local conditions, we consulted 30
local managers with various backgrounds, including the

environmental protection bureau, economic development
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commission, and civil affairs department. According to the above
managers’ preferences, w; and w, were regarded as the weight
coefficients of economic objective and environmental objective,
and nine groups of weight coefficients (i.e., w; = 0.1 and w, = 0.9,
w;=0.2and w, =0.8, w; =0.3 and w, = 0.7, w; = 0.4 and w, = 0.6,
wy=0.5and w, = 0.5, w; =0.6 and w, = 0.4, w; = 0.7 and w, = 0.3,
wy = 0.8 and w, = 0.2, and w; = 0.9 and w, = 0.1) were designated.
Among these, the first three groups were proposed by the
managers from economic development commission, who tend
to give priority to economic growth; the latter three groups were
regulated by the managers from environmental protection
bureau, who prefer the improvement in environmental quality.
The rest of the groups correspond to the managers from civil
affairs department, who focus on the coordinated development of
economic growth and environmental protection.

Next, the constraint with birandom variables (3¢) is converted
into its interval equivalent based on the birandom equilibrium
chance-constrained algorithm. The selection of the equilibrium
chance measure is because it is a real number and is convenient
for decision-makers to rank potential solutions (Peng and Liu,
2007). The original stochastic constraint could be reformulated as
follows:

;\(w)Xi SE(a))®Ch"<{g(a))Xi Sg(w)} - a,

>1
©Pr{w € Q'Pr{f:&(w)Xt <B (w)} >1- ocr} >1-a,
(5)

S X+ 07 (@) (X2) 04X * + (o)’

2
+c1>1(a,)\j(x+)TaA,x+ +<aB,) <pp ¥

where a, represent predetermined probability violation levels. The
principle of designing «, value is ensuring its ranges are wide
enough. In order to generate a variety of decision alternatives and
provide more choosing opportunities to decision-makers, a
relatively wide range of designed parameter is necessary.
Referring to the studies (Xu et al., 2009; Wang et al., 2018), in
this study, the constraint violation level is designed as 0.01, 0.05,
and 0.1, respectively.

Then, the interactive two-step algorithm proposed by Huang
et al. (1992) is used for transforming the intermediate interval
linear programming model into two submodels, which
correspond to the upper and lower bounds of objective
function values, respectively. The submodel corresponding to
the lower bound of objective function is formulated first as (Xu
and Zhou, 2009; Xu and Tao, 2012):

Minimize [~ = C X~ (6a)
Subject to:
1 X+ 07 (@) () 0, X + (03)?
2 (6b)
17 (@) (X) 0, X + (03,) <up Vr
D'X <E (60)
X* 20 (6d)
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Based on obtained solutions from model 6, the submodel
representing the upper bound of the objective function f* is
formulated as follows:

Minimize f* = C*X"* (7a)
Subject to:
1 X+ 07 (@) (X 0, X" + (03)°
2 (7b)
107 (@) (X o, X + (03) <u, Vr
DX <E' (70)
X=X 7d)

Finally, the solutions of objective values and decision variables
under various a, values are obtained, that is, f,,, = [fi pe> filope)>
Jaopt = Wnoper o] and Xoo = [X5,, X5, respectively. The
MIBCCP model developed in this study can not only reflect
two distinct objectives including the economic and
environmental aspects but also describe uncertain parameters
as the birandom variables and interval numbers, leading to the
interval solutions under various weight combinations and
violation levels for supporting the decision-making process.
Figure 1 shows the procedures for formulating and solving an
MIBCCP model, which are summarized as follows:

Step 1: Investigate the water resource management system and
recognize system structure and components, respectively.
Step 2: Identify all types of uncertain variables as the birandom
variables and interval numbers and determine the objective
function and constraints in the optimization model.

Step 3: Establish an MIBCCP model based on step 1 and step 2.
Step 4: Combine two objectives into a single objective based on
the compromise programming method.

Step 5: Convert the birandom constraints into their respective
interval equivalents based on equilibrium chance-constrained
measure.

Step 6: Transform the interval model into two submodels

through an interactive two-step algorithm, which
correspond to the lower bound and upper bound models,
respectively.

Step 7: Solve two submodels and generate the final solutions of
objective values and decision variables under various
conditions.

CASE STUDY

Overview of the Study Area
To demonstrate the advancement of the proposed optimization

model for optimizing the allocation of water resource and
addressing urban flooding with minimal LID project
construction cost, an education park water system in Tianjin,
China, was taken as an example. As shown in Figure 2, the
reference park is a national demonstration zone of vocational
education reform and innovation in China, located at latitude
38°34'-40°15'N and longitude 116°43'~118°4’E, and it covers an
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FIGURE 1 | Main procedure of formulating and solving a multi-objective interval bi

irandom chance-constrained programming model.

area of 37 km” with a total population of 0.2 million. The annual
rainfall is about 480 -520 mm, 75% of which is concentrated in
the months of June, July, and August. As a demonstration area
constructed with “three-zone linkage” (educational zone,
residential zone, and industrial zone), the reference park
clearly has high requirements in regard to water availability
and water supply safety. However, its existing water provision
is incapable of meeting the scale expansion needs of the park in
the future, which is mainly reflected in the following aspects: i)
water scarcity is an urgent problem in this area. The water
resource per capita is 160 m*/a, which is only about 7% of the
average level in China; ii) the major water source for this park is
the local reservoir, and no alternative sources are available. As
such, this single water source will affect the water supply security;
iii) the capability of water conservation and retention has
declined due to the decrease in puddle and lake areas;
moreover, increased concrete areas has also reduced the
penetration of rainwater into the soil. The on-site survey result
indicated that this park often undergoes flooding, which would be
exacerbated under climate change; iv) intrinsic uncertainties are

associated with the water resource system of this park, including
the volatility in water demands and fluctuations in the prices of
water resource. The current water resource management plan
neglects the uncertain features and potential risk caused by
climate change that can affect the accuracy and rationality of
the water allocation strategy. Therefore, it is important that an
effective water resource optimization model is formulated to help
mitigate and/or solve the above issues.

Impact of Climate Change on the Study Area

Over the last decades, climate change has significantly aggravated
water scarcity and intensified frequency of extreme weather
events (such as urban flooding and droughts) in China (Niu
etal., 2008; Yu et al., 2008; Guo et al., 2019). Hence, it is necessary
to detect future changes in rainfall over a region by using the
simulation techniques in order to identify the influence exerted by
climate change and generate an optimal water resource
management strategy. PRECIS is a regional climate model
system developed at the Met Office Hadley Centre, United
Kingdom (Rao et al,, 2014). It is advantageous in simulating
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TABLE 1 | Average annual rainfall under various periods and scenarios.

Item Emission Period
scenario 2025 2050 2075 2100
(mm) (mm) (mm) (mm)
Average RCP4.5 512.58 593.57 695.24 823.24
annual
Rainfall RCP8.5 766.76 880.56 1,029.55 1,214.87

the change trend of climatic variables due to its easy-to-use
operation, high computational precision, and wide suitability.
In this study, the average annual rainfall in the reference park was
predicted under four periods (2025, 2050, 2075, and 2100) and
two emission scenarios (RCP4.5 and RCP8.5) by the PRECIS
model, which are shown in Table 1. From Table 1, it can be seen
that the average annual rainfall shows an upward trend among
four periods under the impact of climate change in the future.

Description of the Water Resource System
Figure 3 presents the water network in the studied region. Based

on the natural conditions, geographical position, and surface
runoff of the reference park, the water resource management
system for this park is conceptualized as 12 nodes, including
four water sources, six water users, and LID, and non-LID
projects. The major water sources are transfer water, tap water,
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reclaimed water, and rain water, which are used for living,
industry, tertiary industry, construction, ecology, and other
water Considering a water-saving plan, green
ecological requirements, and traditional water source
allocation principles of the city of Tianjin, this study made
some adjustment as follows: i) “planning of recycled water
utilization of Tianjin” highlights that the utilization of
reclaimed water should be considered for livelihood water
with the maximal value of 30L/d per capita. Hence, the
water sources for livelihood water would be transfer water,
tap water, and reclaimed water. ii) According to “technical
specifications for construction and community rainwater
utilization engineering,” rainwater can be used for green
space irrigation and road watering. Therefore, the demand
for ecology water could be met by reclaimed water and
rainwater, which are harvested via the LID and non-LID
projects in this study. iii) Other water users should include
the water source loss caused by water transfer, including transfer
water loss and tap water loss.

users.

Formulation of the Multi-Objective Interval
Birandom Chance-Constrained
Programming Model Under Climate Change

As mentioned in the above sections, the generation and execution
of a rational water resource management strategy under climate
change, including the determination of the system components,
design of the system operation pattern, and generation of water
allocation alternatives, are directly related to the coordinated
development of local socioeconomy and environmental factors.

Therefore, the MIBCCP model for tackling the water supply
problem of the park was formulated, as shown in Figure 4. This
model was used to identify and determine the optimal water
allocation strategy under climate change, which could enhance
the economic efficiency, reduce environmental water pollution,
and avoid the negative effects caused by various uncertainties
associated with the water resource management system. The
formulation and solution procedures of the MIBCCP model in
this study are summarized as follows:

Step 1: Investigate the water resource management system and
recognize system structure and confirm the impact of climate
change.

Step 2: Identify all types of uncertain variables as the birandom
variables and interval numbers and determine the objective
function and constraints in the MIBCCP model based on
step 1.

Step 3: Establish the MIBCCP model depended on step 2.
Step 4: Solve the MIBCCP model and generate the solutions of
objective values and decision variables under different
conditions.

Step 5: Analyze and discuss the results obtained in step 4 and
support managers to make a trade-off between the economic
benefits and environmental benefits, identify the relation
between the system cost and the joint constraint violation
risk, and deal with the impact of climate change.
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N M
maximize f;* = Z z LgK ¥ gA;s (8b)
N M 1 ] n=1 m=1
P + + +
minimize fo = CA~ + CX:> 8a .
fe ; mzzl B Amm ; 1:21 b (82) where f;* = total treatment amount of total suspended solids

where f& = construction costs and water resource allocation
costs (RMB); CA,,, = construction price of project n in area m
(RMB/m®). n (g=1, 2, ..., N) = index of the project type; n = 1
represents non-LID projects; n = 2 represents LID projects; m
(m=1,2,.., M) = index of the area type; m = 1 represents
pavement; m = 2 represents greenbelt; m = 3 represents roofs; m =
4 represents square; A, ,, = decision variables representing the
area of project n at area m (m?); CX;; = water transferred cost
from water source i to water user j (RMB/m ); = decision
variables representing water amounts transferred from water
source i to water user j (m®,i@G=1,2, ..., = index of
water resource type; i = 1 represents transfer water; i = 2
represents tap water; i = 3 represents reclaimed water; i = 4
represents rainwater; j (j =1, 2, . . ., J) = index of water user type;
j = 1 represents livelihood; j = 2 represents industry; j = 3
represents tertiary industry; j = 4 represents construction; j =
5 represents ecology; j = 6 represents other water user, as shown
in Figure 2, wheni=1,j=1,2,3,and 6; wheni=2,j=1,2, 3,4,
and 6; wheni=3,j=1,2,3,4,5,and 6; when i = 4, j = 5. The
economic target (8a) was designed to realize the minimization of
the construction costs related to LID and non-LID projects and
water resource allocation costs.

(TSS) (ton); L = the amount per unit area of TSS in the study area
(t/m®); K = TSS treatment efficiency of LID projects at area .
The environmental objective (8b) endeavors to maximize the
total treatment amount of TSS.

Constraints
i. Constraint for water resource availability

X5+ X5+X5+X5<Q+ (8¢c)

X5 +X+ +X+ +X+ +X26_Q+ (8d)

X +X +X +X +X 36_Q+ (8e)

X4,5 < Qyx (8f)

where Qy, = transfer water availability (m®); Q; = tap water

availability (m>); QJ; = reclaimed water availability (m®); Qyx =
rainwater availability (m®). The constraints (8¢c) to (8f) regulate
the water amounts, including the transfer, tap, reclaimed, and,
rainwater, so they do not exceed their maximum availability.
ii. Constraint for the water supply-demand balance

+ +
X1,1 + X1,2 13 = QS

32—Qg

(8g)

X5 +X5 (8h)
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FIGURE 4 | Water supply management diagram for the educational park in Tianjin.

Xlg + X; + X5 = Qq (8i)
34 = QJ (SJ)

X5+ Xu52 Qe (8k)
Xﬁa + Xzis +X 3 62 Qq (8

where Qs = total demand of livelihood water (m?); Q = total
demand of industrial water (m?); Qi = total water demand of
tertiary industry (m>); Q; = total demand of construction water
(m*); Q. = total demand of ecological water (m?); Q, = total water
demand of other users (m?). The constraints (8g) to (81) serve to
regulate the allocated water amounts from each water resource to
be higher than or equal to the required water amounts.

iii. Constraint of conventional water resource utilization

(Xfl + X5 X+ X X0 + X +X;4)SR; gGDP  (8m)
X5+ X,5 <R gMAV; (8n)

22—

X7 + X5 < REgMA Vg (80)
where GDP = gross domestic product of the reference park (10*
RMB); R/ = maximum conventional water resource availability
of the gross domestic product (m*/10* RMB); MAV; = added
product of industry (10* RMB); Rff = maximum available
conventional water amounts of the added industrial product
(m*/10* RMB); MAVps = added product of tertiary industry
(10* RMB); Rps = maximum conventional water resource
availability of the added tertiary industrial product (m>/10*
RMB). The constraints (8m) to (80) restrict the allocated
water amounts of transfer water and tap water not to exceed
their utilization limitations of the GDP, added industrial
products, and added tertiary industrial products, respectively.
iv. Constraint of reclaimed water reuse rate

(Xai + X5+ X5+ X + X5+ st)
r]g(Qs + Qg + st + Qj)

[\

u* (8p)
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where y* = reuse rate of reclaimed water; 4y = sewage discharge
coefficient. The constraint (8p) regulates the sewage water
amounts to be reclaimed following a designated ratio.

v. Constraint of the LID projects

A +A,=4p (8q)
Az + Az, =Ag (8r)
Az + Az, = Ag (8s)
Ay + Ay = Ag (8t)
N M
z z Fn,mgAn,mngh = st (81.1)
n=1 m=1
Qvx = st (8v)

where A, = available area of the pavement in the lark, m* A =
available area of the greenbelt in the lark, m’* A, = available
area of the roof in the lark, m?; A, = available area of the square
in the lark, m?; Qy = rainfall runoff of the lark, m?>; F,, = runoff
coefficient of projects n at the construction area m; Q) =
average rainfall of the lark during one year, m?; Qy = storage
volume of rainfall, m. The constraints (8q) to (8t) are used to
control the construction area of the LID projects in the
pavement, greenbelt, roof, and square areas. The constraints
(8u) to (8v) regulate the rainfall runoff and the rainwater
availability, respectively.

vi. Other constraints

X = 0ng(X5 + X5+ X5) (8w)
X5h = Ong( X5 + X5 + X5 + X)) (8x)
Aym=0 (8y)

X+ >0 (Sz)

where 61, = transmission loss coefficient of transfer water; 61, =
transmission loss coefficient of tap water. The constraints (8w)
to (8x) regulate the transmission losses of the transfer water
and tap water, respectively. The constraints (8y) to (8z) require
the decision variables to be greater or equal to zero. Based on
compromise programming and stochastic equilibrium chance-
constrained programming methods described in Materials and
Methods, objectives  (including economic and
environmental objectives) were first combined into a single
objective; then, the birandom constraints (including water
supply-demand balance constraints) were converted into
their interval equivalents; next, the interval form objective
function and constraints were transferred to their respective
two deterministic forms. Finally, the interval solutions under
various constraints violation levels (i.e., 0.01, 0.05, and 0.1)
were obtained, that is,

fC opt — [fC opt’fC opt fE opt —
[A7 ;], and X%

n,m opt’ ij opt —

two

[fE opt’fE opt]’Anm opt

= [Xi; operXij opt]> Tespectively

n,m op

Data Information

The model parameters can be divided into two types in this study,
which included engineering parameters and water resource
system parameters.

Regional Water Resource Management

Engineering Parameters

Engineering parameters composed of construction costs, runoff
coefficients, TSS treatment efficiencies, and available areas of LID
and non-LID projects, which are shown in Table 2. The available
areas are subjected to the park-scale limitation and remain
unchanged, where they are expressed as deterministic values
that came from Tianjin Statistics Bureau. The construction
cost and TSS treatment efficiency have significant variations
caused by policy regulations and technical condition, where
they exhibited the uncertain characteristics with known upper
and lower bounds. Accordingly, it is essential to define them as
the interval numbers.

Water Resource System Parameters

According to on-site survey results, historical data record (from
2010 to 2018), Tianjin Statistics Bureau, and Tianjin Statistics
yearbook, water resource system parameters include water
provision cost, available water amount, and users’
requirements, and their detailed data information is displayed
in Table 3. Among them, users’ requirements are affected by
population, production scale, and local meteorological condition.
Therefore, they are designed as the birandom variables with
normal probability distribution. The water supply cost and
available water amount own the small variation range and
thus are assumed to be the interval number.

RESULTS ANALYSIS AND DISCUSSION

Results Analysis
Table 4 displays the optimal solutions of the MIBCCP model

under different constraint violation levels (i.e., «) and different
weight combinations. Based on the description of the interval
linear programming in the Methodology section, the solutions
for the two objective function values and some decision

TABLE 2 | Parameters associated with the low-impact development and
non-low-impact development projects.

Item Type of project

LID projects Non-LID projects

Runoff coefficient 0.3 0.9
Available pavement area (m?) 9,000 9,000
Available greenbelt area (m?) 3,200 3,200
Available roof area (m?) 14,000 14,000
Available square area (m?) 5,600 5,600
TSS treatment efficiencies of the pavement [0.85, 0.92] 0
TSS treatment efficiencies of the greenbelt [0.85, 0.92] 0
TSS treatment efficiencies of the roof [0.85, 0.92] 0
TSS treatment efficiencies of the square [0.50, 0.70] 0

Construction costs in the pavement
(RMB/m?)

Construction costs in the greenbelt
(RMB/m?)

Construction costs in the roof (RMB/m?)
Construction costs in the square (RMB/m?)

[168.12,222.96] [132.64, 188.32]

[190.43,294.53]  [147.95, 196.54]

[225.87, 336.29]
[443.55, 588.81]

[194.32, 298.40]
[398.16, 544.10]

TSS, total suspended solids; LID, low-impact development; non-LID, non-low-impact
development.
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TABLE 3 | Parameters related to the water resource system.

Parameters Value

Interval parameters
Supply price of transfer water
Supply price of tap water
Supply price of reclaimed water
Supply price of rain water
Available amount of transfer water
Available amount of tap water
Available amount of reclaimed water

Birandom parameters

Parameters

Total water demand of livelihood
Total water demand of industry
Total water demand of tertiary industry
Total water demand of construction
Total water demand of ecology
Total water demand of other users

(8.8, 9.2] RMB/m®
[7.2, 7.8] RMB/m®
[4.3, 4.7] RMB/m®
[2.2, 2.8] RMB/m?®
[11,000, 14,000] 10% m®
[30,000, 35,000] 10° m®
[15,000, 18,000] 10% m®

Probability distribution
N ~ (4, 23.38) u ~ (1,829, 16.26)
N ~ (4, 19.09) u ~ (1,168, 13.39)
N ~ (u, 8.61) u ~ (175, 6.41)
N~ (u, 7.41) u ~ (117, 5.61)
N ~ (4, 19.01) u ~ (1,158, 13.34)
N ~ (u, 23.38) u ~ (578, 10.01)

variables could be presented as interval numbers. For instance,
when «=0.1, w; =0.1, and w, = 0.9, the TSS treatment amounts
would range from 31.6 x 10° to 34.2 x 10” tons. The system
costs would change from 35.75 to 43.77 million RMB. The
transfer water amount allocated to livelihood would fluctuate
from 6.07 to 8.47 million m®. The solutions of the two
objectives correspond to the upper bound of the
environmental benefit and the lower bound of the system
costs, which are obtained under the most optimistic
conditions (e.g., high TSS treatment efficiency as well as low
construction and water allocation prices) when the interval
decision variables (e.g., water resource allocation amounts) are
at their lower bounds; although the solutions corresponding to
the lower bound of the environmental benefit and the higher
bound of the system costs are associated with the most
conservative conditions when the water resource allocation
amounts reach their higher bound levels. In fact, the flexibility
and adjustability of the interval decision variables are
beneficial for the decision-maker when inserting more
implicit knowledge (e.g., socioeconomic conditions) into the
optimize model so that they can formulate a more satisfactory
and applicable decision scheme. Moreover, some interval
decision variables indicate that there is no difference
between their upper bound value and lower bound value.
For example, when a« = 0.1, w; = 0.1, and w, = 0.9, the
solutions of 8.00 million m> and 1.44 million m> are the tap
water amounts allocated to industry and tertiary industry
users. This is because these decision variables are insensitive
to the variations in interval parameters.

Considering that the obtained solutions are affected by the
interactive influence of the above two factors (weight coefficient
combination and violation level), for the sake of reflecting the impact
exerted by each factor, the variation trend of the solutions was
analyzed under the context of changes to one factor as the other
factor remains unchanged. First, when the three violation levels were
maintained as stable (« = 0.1), the selection of the construction
schemes exhibited an obvious difference under various weight
combinations. The high w; value would help to raise the
economic benefits; otherwise, as w, climbs, the environmental

Regional Water Resource Management

benefits would increase. For instance, the non-LID projects
are favored when the system costs are more of a concern, where
wy = 0.9 and w, = 0.1. Under « value of 0.1, the difference in values
between the non-LID project construction area and LID project
construction area for pavement, greenbelt, roof, and square areas
were 9.0 x 10%, 3.2 x 10°, 14.0 x 10°, and 5.6 x 103 m?, respectively.
Conversely, with the change in weight combinations from w; = 0.9
and w, = 0.1 to w; = 0.1 and w, = 0.9, the difference in values would
be 3.8x10%, 3.2x10%, ~14.0x10°, and 5.6 x 103 m?, respectively. This
variation is because LID projects can bring increased environmental
benefits. Moreover, selection of the water allocation strategy is also
dependent on the weight coefficients. For example, it is established
that the water demand of the tertiary industry is satisfied by tap water
and reclaimed water with the values of 144 and 38.01 million m’,
where w; = 0.1 and w, = 0.9. However, when the system focuses on
the economic benefit (w; = 0.9 and w, = 0.1), reclaimed water with
its low allocation price would be the preferred source, and thus, the
water demand of the tertiary industry would be provided in total by
reclaimed water. A similar situation was also reflected in the different
climate change scenario and time period. For example, under the
RPC 4.5 scenario, when w; = 0.1 and w, = 0.9, tap water would be
used to meet the water demand of the construction industry in 2025,
with the values of 123.5 million m>. When w; = 0.9 and w, = 0.1, the
water demand of the tertiary industry would be provided in total by
reclaimed water due to its high economic characteristic. The
function of weight coefficients was to provide different water
resource management schemes for managers. If the
environmental quality is relatively poor and needs to be
improved, managers should focus on the environmental benefits
and choose the scheme under the high w,. Conversely, they could
prefer to increase the economic benefits and select the scheme under
the high w,.

Moreover, the variable situations of the obtained solutions
under the different fixed weight coefficient combinations are
discussed in order to examine the influences caused by
violation level design on the generated decision schemes. First,
when two weight coefficients are maintained as stable (w; = 0.9
and w, = 0.1), as the increase in the probabilistic level, the total
water amounts supplied to four water users were decreased. For
example, at the three a levels of 0.01, 0.05, and 0.1, the water
amounts transferred to meet the demands of livelihood were
18,496.3, 18,435.9, and 18,403.6 x 103 m’, respectively; similarly,
the water amounts allocated to industry and the rainwater
amount collected by LID and non-LID projects increased from
9,333.0 and 11,866.8 x 103 m” t0 9,775.8 and 11,782.9 x 103 m’,
respectively. Meanwhile, the results own the same trends under
climate change. For example, under the RPC 8.5 scenario, when «
increases from 0.01 to 0.1, the water demand of the construction
industry provided by reclaimed water was reduced in 2,100, being
from 1,288.4 x 103 to 1,235.2 x 103 m’; the tap water allocated to
industry would decrease to 3,920.8 x 103 from 4,160.6 x 103 m’.
The main reason for this result is that the decrease in « value
meant the constraints with the birandom variables would be
strict, such that the water demand amounts would increase. On
the contrary, the increase in the violation level of « means that the
satisfied extent of the constraint has become weak, leading to a
decrease in the water demand.
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TABLE 4 | Part of solutions of multi-objective interval birandom chance-constrained programming model under various « values and weight combinations.

LID, low-impact development, non-LID, non-low-impact development projects.

ltem Water allocation amount (10° m3)
Transfer water allocation Tap water allocation Reclaimed water allocation
A wy  wy User® User®  User® User' User® User® User® User User' User® User® User® User® User® User
0.1 0.1 0.9 [607.31, 846.56] 0 0 [48.58, 67.72] 7,751.7 8,000 1,440 1,235.2 1,474.2 4,578.8 3,782.9 380.1 0 2,349.7 3,908.5
0.9 0.1 [607.31, 846.56] 0 0 [48.58, 67.72] 12,330.5 3,920.8 0 0 1,300.1 0 7,862.1 1,820.1 1,235.2 0 4,082.6
0.05 0.1 0.9 [608.38, 848.05] 0 0 [48.67, 67.84] 7,722.5 8,000 1,440 1,253.7 1,473.3 4,629.6 3,812.1 399.9 0 2,224.8 3,933.6
0.9 0.1 [608.38, 848.05] 0 0 [48.67, 67.84] 12,352.1 4,004.1 0 0 1,308.5 0 7,808 1,839.9 1,263.7 0 4,098.4
0.01 0.1 0.9 [610.38, 850.83] 0 0 [48.83, 68.07] 7,667.8 8,000 1,440 1,288.4 1,471.7 4,724.7 3,866.8 437.2 0 1,990.6 3,980.7
0.1 [610.38, 850.83] 0 0 [48.88, 68.07] 12,392.5 4,160.6 0 0 1,324.2 0 7,706.2 1,877.2 1,288.4 0 4,128.1
Item Construction area (10° m?) Values of objectives System costs(10° RMB) Rainwater
Pavement Greenbelt Roof Square Economic Environment Water Construction ;’gf unst)
- - f m
A Wi wo Non- LID Non- LID Non- LID Non- LID obéectlve objsctwe allocation cost
LID LID LID LID (10° RMB) (10% ton) cost
0.1 0.1 0.9 6.41 2.59 3.20 0 0 14.00 5.60 0 [385.74, 43.77] [31.6,34.2] [7.15, 10.17] [28.60, 33.60] 9,333.0
09 0.1 9.00 0 3.20 0 14.00 0 5.60 0 [34.05, 41.97] 0 [6.62, 9.55] [27.43, 32.42] 11,682.7
0.05 0.1 0.9 6.92 2.08 3.20 0 0 14.00 5.60 0 [385.77, 43.80] [30.7,33.2] [7.13, 10.15] [28.64, 33.64] 9,487.0
0.9 0.1 9.00 0 3.20 0 14.00 0 5.60 0 [34.14, 42.07] 0 [6.62, 9.55] [27.58, 32.53] 11,711.8
001 01 09 7.89 111 3.20 0 0 14,00 5.60 0  [35.81,43.86] [28.8,31.2] [7.13,10.08]  [28.71, 33.74] 9,775.8
0.9 0.1 9.00 0 3.20 0 14.00 0 5.60 0 [34.33, 42.29] 0 [6.62, 9.55] [27.71, 32.74] 11,766.4
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The changes in the combinations of weight coefficients and
violation levels exerted an influence on the decision variables,
but they also influenced the objective value. The economic and
environmental objectives under various weight combinations
and violation levels were estimated and are shown in Figure 5A.
From Figure 5A, it was apparent that regardless of the « levels,
the values of two objectives both keep the same trend with the
change in weight combinations, considering the obtained
solutions are affected by the interactive influence of the
above two factors (w and a); thus, in order to reflect the
impact exerted by w, the variation trend of the solutions was
analyzed under a stable constraint violation, which was selected
as 0.1. Specifically, when w; increased from 0.1 to 0.8 and w,
simultaneously decreased from 0.9 to 0.2 under « = 0.1, the
economic objective and environmental objective remained
unchanged with the values of 35.75, 43.77 million RMB and
31.6, 34.2 x10° tons. When w; and w, changed to 0.9 and 0.1, the
two objectives decreased especially fast to 34.05, 41.97 million
RMB and 0 tons. This indicated that the values of two objectives
were insensitive to the weight shift before w; reaches 0.8. Only
when w; = 0.9 and w, = 0.1 could the solution of environmental
objective would decrease, which means the decision-makers
considering environmental benefits are not the key factor for
determining the optimal water resource allocation strategy.
Meanwhile, the solution of economic objective corresponding
to the total cost of the system would decrease, which represents
the decision-makers focus on the economic benefit and aim to
reduce the system costs.

In order to further reflect the sensitive range of objective
functions, two objectives values under different weight
coefficients (changing between from w; = 0.8, w, = 0.2 and,
wy = 0.9, w, = 0.1) were estimated and displayed in Figure 5B. As
demonstrated in Figure 5B, it was apparent that the values of two
objectives decreased fast only when w; shifted from 0.87 to 0.89
and w, ranged from 0.11 to 0.13, respectively. For example, under
an « value of 0.1, TSS treatment amounts are 31.6, 34.2 x10° tons,
26.7,28.9 10’ tons, and 0 ton under the three weight coefficient
combinations (i.e., w; = 0.87 and w, = 0.13, w; = 0.88 and w, =
0.12, and w; = 0.89 and w, = 0.11). The total system costs also
showed the similarly downward trend with the values of 35.75,
43.77, 35.27, 43.29, and 34.05, 41.97 million RMB. Hence, if the
managers wanted other results for system costs and treatment
amount of TSS, they could adjust the parameters of the
optimization model by choosing different w; and w, values
between the above range.

Apart from the weight coefficient combinations, the values
of two objectives were also influenced by the levels of a. As
shown in Figure 5A, various « values resulted in different
solutions. The value of economic objective decreased with
the increase In contrast, the value of
environmental objective increased with the growth level of a.
For example, when w; = 0.1 and aincreased from 0.01 to 0.1, the
total treatment of TSS exhibited an upward trend from 28.8,
31.2 x10° tons to 31.6, 34.2 10> tons. Inversely, the costs of the
system decreased to 35.75, 43.77 million RMB from 35.71,
43.85 million RMB. This is because the « level represents the
constraint violation risk of water supply-demand balance. The

in o« value.
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low « level corresponded to a low violation risk with a high
water demand, leading to a high water allocation amount,
which caused an increase in the system cost. Conversely, a
high a« value was associated with a high violation risk, which was
accompanied by a low water supply amount. The variation in
the a level provides a variety of water resource management
schemes to the managers, which reflected the trade-off between
the system economy and risk. Generally, the water demand can
be divided into two categories: rigid demand and flexible
demand. For example, the industrial water demand must be
satisfied in its entirety subjected to its production
characteristic. Conversely, the living water demand has a
high elasticity and is able to reduce the water requirement
through a series of water-saving measures under the water
shortage scenario. The elastic characteristics of water demand
allow the managers to design the water provision schemes
according to local situation. Specifically, for the area where
the economic development is relatively backward and
simultaneously suffers from water shortage, it is suitable to
select the scheme under the high o level which is capable of
increasing the economic benefits and decreasing the water
provision amounts, although it also may result in the high
system failure risk. Conversely, the managers could choose the
strategy under the low « level so that the water supply security
would be enhanced by raising water supply amounts and
system costs. Tianjin, as one of the most prosperous cities in
China, always faces severe water shortage and thus has the
superiority on economic development and the inferiority on
water resource availability at the same time. Therefore, it is
suggested that a compromise alternative (i.e., « = 0.95) be
adopted as the decision basis for the generation of final
water resource management scheme in this study, which is
helpful in realizing the balance between system economy and
failure risk.

Discussion
In order to evaluate the influence caused by climate change on the

water resource management, the generated runoff of the studied
region and LID project implementation scheme were estimated
under the two climate change scenarios (RCP4.5 and RCP8.5)
with four periods (2025, 2050, 2075, and 2100), which were
displayed in Figure 6. As shown in Figure 6, under fixed «
level, the runoff of the park and area of LID projects would
increase from 2025 to 2100 under both two scenarios. For
example, with an a value of 0.1, when the period changes
from 2025 to 2100, the runoffs in the RCP4.5 and RCP8.5
scenarios would increase from 696.7 to 1,510.0 million m® to
1,610.26 and 2,704.3 million m® meanwhile, the areas of LID
projects would be upward from 17.35 and 27.4 thousand m” to
28.8 and 31.8 thousand m?, respectively. That is because the
climate change could lead to the growths in regional rainwater and
runoff, which might trigger the rainfall flood. The similar results
were also reported by other studies (Zahmatkesh et al., 2014; Yoon
et al.,, 2015; Guo et al. (2019a)). For instance, Zahmatkesh et al.
(2014) found that climate change led to the increase in the urban
stormwater runoff volume of the Bronx River watershed, New York
City. Yoon et al. (2015) proposed a methodology for the evaluation
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Morvarid et al. (2019), and Hou et al. (2019). Specifically, it is
concluded that the LID projects are beneficial to reduce the
flooding risk and cope with the stormwater management issue
arising from heavy rainfall under climate change. On the other
hand, the above studies formulated the urban water
management model with the aid of hydrological software
(ie., SWMM), which has excellent performance
describing the hydraulic connections and relationships
among various water sources and users. In this study, an
MIBCCP model based on compromise programming,
birandom chance-constrained programming and interval
linear programming is proposed for identifying the
uncertainties associated with the urban water resource
management system and generating a variety of water
allocation patterns reflecting the trade-off between system
economy and reliability; however, it also has difficulties in
obtaining more accurate solutions due to oversimplified
hydrologic and hydraulic equations. Therefore, it is
necessary to enhance the accuracy and applicability of the
proposed model through incorporating the output of some
hydrological models into the optimization process.

Moreover, the MIBCCP model still needs to be improved,
especially in the following three aspects. First, the objective
function in this study is assumed as a linear form; in fact, system
cost could exhibit the economy-of-scale feature, and the relationship
between water supply cost and distance may be nonlinear, rather
than the linear one. This will lead to a nonlinear objective function.
Because the focus of this research is to apply birandom variables and
interval numbers for supporting water resource management issue, it
is thus desired to examine the possibility of the integrated model of
MIBCCP and nonlinear programming in the future. Second, the
compromise programming is used to combine two objectives into an
integrated one. In fact, many types of multi-objective methods are
available, such as the genetic algorithm and the interactive
approximation algorithm. How to select an appropriate solution
method through the comparison analysis is very critical. Third, two
traditional objectives are considered in the MIBCCP model. In fact,
other objectives, including the ecological stability and social
acceptance, also obtained more attentions and thus deserved
further research.

in

CONCLUSION

Under the urgency of rational water resource allocation and
effective urban flooding control, a (MIBCCP) model under
climate change is developed in this study. The MIBCCP
model incorporates compromise programming, birandom
chance-constrained programming, and interval linear
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Climate change has broadly impacted on the China areas. There will be severe challenges
due to the variations of precipitation and temperature in the future. Therefore, a
comprehensive understanding of the future climate change over China areas is
desired. In this study, future annual precipitation and annual mean temperature under
two SSPs over China areas were projected through multiple global climate models.
Meanwhile, to explore the sources of uncertainty in projecting future climate change,
the multi-factorial analysis was conducted through GCMs (five levels) and SSPs (two
levels). This study can help us understand the possible changes in precipitation,
temperature, and the potential extreme climate events over the China area. The results
indicate that China would have more annual precipitation and higher annual mean
temperature in the future. Compared with the historical period, the annual mean
temperature would face a continuously increasing trend under SSPs. Regardless of
SSP245 or SSP585, the growth rate of annual precipitation and annual mean
temperature increase in the northern region (e.g., Northeast China, North China, and
Northwest China) are higher than those in the southern parts (e.g., East China, South
China, and Central China). The future temperature rise may increase the frequency of heat-
related extreme climate events, which needs to be focused on in future research.
Moreover, GCM was the main contributing factor to the sources of uncertainty in
projecting future precipitation and SSP was the main factor for future temperature.
Overall, climate change is an indisputable fact in China. The annual precipitation and
annual mean temperature would increase to varying degrees in the future. Reducing the
systemic bias of the climate model itself will undoubtedly be the top priority, and it would
help to improve the projection and evaluation effects of relevant climate variables.

Keywords: climate change, annual precipitation, annual mean temperature, multi-factorial analysis, China
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INTRODUCTION

Temperature and precipitation are the two major climatic
elements that people are most concerned about under climate
change (Tisseuil et al., 2012). Observations show that the average
temperature of the global land area has been increasing
significantly, especially in recent decades (Cheng et al., 2019).
Not only that, but the precipitation has also changed to varying
degrees. Changes in temperature and precipitation will cause a
series of extreme climate events (Kodinariya and Makwana, 2013;
Duan et al,, 2020). For instance, droughts and heatwaves have
increased, and floods have become more frequent (Wang et al,,
2004b). There is no doubt that the intensification of climate
change has affected the survival and development of humans
(Feng and Hu, 2014). Besides, changes in precipitation and
temperature also affect agricultural, industrial, fisheries, animal
husbandry, and other aspects. Therefore, the assessment of future
temperature and precipitation will help to improve the ability to
deal with climate-related impacts (Wang et al, 2018).
Precipitation and temperature in China have also seen
significant changes in recent decades (Shivam et al, 2019).
The increase in climate disasters caused by climate warming
may be a more prominent problem in China. This may bring
frequent climatic disasters, including excessive rainfall, extensive
droughts, and sustained high temperatures, resulting in large-
scale disaster losses. Therefore, the projection and analysis of
future climate change have important socio-economic
significance (Ghosh and Mujumdar, 2007; Zhai et al., 2020).

Previous studies have checked future changes in temperature
and precipitation in China by multiple climate models (e.g.
global climate models and regional climate models) (Du et al,
2018; Jacob et al., 2018). Most research focused on analyzing the
temporal and spatial characteristics of key climate elements.
Besides, the quantitative analysis of climate elements was also
one of the current research hotspots. In particular, the changes in
relative historical periods such as temperature and precipitation
under different emission scenarios in the future (Cho et al., 2015;
Ji et al., 2018; Batibeniz et al., 2020). There is no doubt that the
climate model has become an important tool for assessing future
climate change in the current period. For example Hui et al.
(2018), analyzed the mean and extreme climate over China
during future period through the simulations from global
climate models (GCMs) under two RCPs (Representative
Concentration Pathways). Ultimately, the study revealed that
China area would experience much warmer climate in the
future (Hui et al, 2018). Ba et al. (2018) assessed the impacts
of climate change on water resources in Kaidu River Basin
through multiple general circulation models under two RCPs.
The results showed that both the precipitation and temperature in
the study area would increase in the future relative to the
historical period (Ba et al., 2018). Hou et al. (2019) compared
the performance of multiple climate models for future climate
change projection over different regions in China (Hou et al,
2019).

However, many studies were mainly focused on analyzing the
future changes in precipitation and temperature through
individual global climate models (GCMs) from CMIP5

Climate Change

(Manrique-Alba et al,, 2020). Currently, the GCMs are the
only tool available to project future climate change. They have
been widely used in assessing climate change (Thomas et al.,
2013). Due to the lack of a full understanding of the complex
climate change process, there are inevitably many deficiencies in
GCMs (Paeth and Hense, 2004; Dan et al., 2015; Spinoni et al,,
2019). The grid points of GCMs are often larger than 100 km,
which makes them difficult to employ for regional climate change
research. Besides, due to the uncertainty of emission scenarios,
climate change in the future is often uncertain (Carrédo et al., 2016;
Park et al., 2016; Peltier et al., 2018). Although existing studies
have analyzed the uncertainties of climate models and emission
scenarios for future climate projections, they have seldom
considered their interactive effects (Vogel et al, 2020).
Moreover, the new version of climate models has improved
the ability to simulate climate elements. Therefore, it is
necessary to strengthen the analysis of future climate change
under the latest coupled model. (i.e., CMIP6).

Therefore, as an extension of previous studies, the objective of
this research is to evaluate the possible changes in annual
precipitation and annual mean temperature in China and trace
the sources of uncertainty on projecting future climate change.
Specifically, the objective entails 1) exploring changes in
temperature and precipitation in the future from multiple
perspectives through an ensemble of multiple GCMs under
different Shared Socioeconomic Pathways (SSPs), 2)
quantifying the main contribution (and their interactions) of
climate models and emission scenarios to the sources of
uncertainty on climate change projection.

METHODOLOGY AND CLIMATE DATA
Study Area

The terrain of China is high in the west and low in the east and is
complex and diverse (Smirnov et al., 2016; Poschlod et al., 2018;
Zhou et al., 2018). Mountains accounted for 33.3% of the total
land area, plateaus accounted for 26%, basins accounted for
18.8%, plains accounted for 12%, and hills accounted for 9.9%
(Sharafi et al., 2020). The terrain forms a three-level ladder from
west to east. Among them, the Qinghai-Tibet Plateau is located in
the west, with the highest terrain. It is composed of extremely
high mountains and plateaus. Therefore, it is also called the “roof
of the world”. The second ladder is from the east of the Qinghai-
Tibet Plateau to Daxinganling-Taihang-Wushan-Xuefeng
Mountain (Tan et al., 2011; Thompson et al., 2016). The
altitude is generally 1,000-2000 m, and it is mainly composed
of mountains, plateaus, and basins. The broad plains and hills of
eastern China are the third ladder. The annual precipitation
gradually decreases from the southeast coast to the northwest
inland. The annual precipitation in the southeast coastal area is
more than 1,600 mm and decreases to 800 mm near the Qinling-
Huaihe River. Then to the northwest to Daxinganling-Yinshan-
Lanzhou-southeast of the Qinghai-Tibet Plateau, it is reduced to
400 mm. The Helan Mountain to the central part of the Qinghai-
Tibet Plateau reduces to 200 mm. The annual precipitation in the
Tarim Basin is less than 50 mm (Moore et al, 2013). The
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FIGURE 1 | The study area of China with seven sub-regions. The seven sub-regions are Northeast China, North China, East China, South China, Central China,

TABLE 1 | The information of five global climate models employed in this study.

GCM model Resolution (deg) Experiment Time frequency Variant Label
CESM2 1.25 x 0.94 historical, ssp245, ssp585 Mon r1ilp1f1
GFDL-ESM4 1.25%x1.0 historical, ssp245, ssp585 Mon riitp1f1
IPSL-CMBA-LR 2.50 x 1.27 historical, ssp245, ssp585 Mon r1itp1f1
MIROC6 1.41 x 1.40 historical, ssp245, ssp585 Mon r1itp1f1
MRI-ESM2-0 1.125 x 1.12 historical, ssp245, ssp585 Mon r1ilp1ft

temperature difference between north and south is large in
winter, while the south is warm, and the temperature gets
lower as it goes north. The summer is generally high
throughout the country, and the Qinghai-Tibet Plateau is the
coolest place in China. Due to the combined influence of human
activities and natural factors, the annual average temperature in
China has risen by 0.68°C since the 1950s. Therefore, it is
imminent to carry out climate change projection and
assessment over China. The changes in precipitation and
temperature in different regions of China are not the same. To
facilitate comparative analysis, China is divided into seven
subregions, including Northeast China, North China, East
China, South China, Central China, Northwest China, and
Southwest China, as shown in Figure 1. The division of
subregions refers to previous studies (Smalley et al., 2019).

Dataset

Five different kinds of GCMs (i.e., CESM2, GFDL-ESM4, IPSL-
CMS6A-LR, MIROC6, and MRI-ESM2-0) are acquired from the
WCRP Coupled Model Intercomparison Project (Phase 6)

dataset archive (https://esgf-node.llnl.gov/projects/cmip6/). The
details are shown in Table 1. Two 50-year periods are employed
in this study, including the historical period (1965-2014) and the
future period (2051-2100). The data in the future period is
extracted under two SSPs (i.e., SSP245 and SSP585). The
annual precipitation and annual mean temperature are the two
variables of interest in this study. The data are all united to 0.5° x
0.5° in spatial through the bilinear interpolation method (Chen
et al.,, 2016). The SSPs (Shared Socioeconomic Pathways) is the
latest scenarios to project socioeconomic global changes up to
2100. They are broadly employed to derive greenhouse gas
emissions scenarios with different climate policies. The SSP245
scenario assumes that the world follows a path where social,
economic, and technological trends will not significantly deviate
from historical patterns. Among them, development and income
growth are not balanced. Some countries have made good
progress, while others have fallen short of expectations. The
environmental system has experienced degradation, but there
have been some improvements, and the intensity of resource and
energy use has declined overall (Ying et al, 2019). Global
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population growth is modest and stabilized in the second half of
this century. Income inequality persists or is slow to improve, and
the challenge of reducing vulnerability to social and
environmental changes remains (Roberts et al., 2019; Asif and
Chen, 2020; Li et al., 2020). SSP585 assumes that the world
increasingly believes that competitive markets, innovation, and a
participatory society can bring rapid technological progress and
human capital development as a way to sustainable development.
At the same time, while promoting economic and social
development, all parts of the world are developing abundant
fossil fuel resources and adopting resource- and energy-intensive
lifestyles. All these factors have led to the rapid growth of the
global economy, while the global population has reached its peak
and declined in the 21st century (Trenberth and Shea, 2005).

Multi-Factorial Analysis Method

The main content of the multi-factorial analysis method is the
Analysis of variance (ANOVA) theory (Li et al., 2010). As an
effective statistical method, the main contribution and the
interactions of multiple factors to the sources of uncertainty
can be traced. In this study, the global climate models
(i.e., GCMs) and emission scenarios (i.e., SSPs) are the two
sources of uncertainty on future precipitation and temperature
projection. It has been broadly used to address the non-linear
relationship between the independent factors and the dependent
factor (Wang et al., 2004a; Wang et al., 2018; Feng and Hu, 2014).
In general, a formula can be written as y = F (xy, X5, X3, .., X,) t0
express the complex connection. Among them, y is the dependent
factor and x represents the multiple independent factors. In this
study, the future precipitation or temperature is the y variable,
GCMs (five levels) and SSPs (two levels) are x variables (Huang
etal, 1997; Wang et al., 2021). According to the ANOVA theory,
the total variance contains two aspects:

SSiotal = ). SSi + S (1)

i=1
where SS,,1, is the total variance; SS; represents the variance of a
single factor; SS;,; is expressed as the variance of interactions
between multiple factors. The SS;,; also can be written as:

n

SSin = ). issij o #8815, = SSiotal - Z SS;

=1 j>i

2

i=1

The ratio of the variance of each part to the total variance is
regarded as the contribution of the main effect and the interactive
effect to the total effect, respectively. The variance fraction p can
be calculated as follows:

i

x 100%

pi= (3)

total

Sint

x 100%

Dint = (4)

S total

Table 2 presents the detailed multi-factorial design for future
precipitation and temperature projection. In this study, two
factors (i.e., GCM with five levels and SSP with two levels)
and two responses (i.e., precipitation and temperature) are

Climate Change

TABLE 2 | The multi-level factorial design for the sources of uncertainty of future
precipitation and temperature projection.

Levels Factors Response
GCMs (x4) SSPs (x2) Precipitation Temperature

1 CESM2 SSP245 Yi-1 Y21
2 CESM2 SSP585 Vi Vo2
3 GFDL-ESM4 SSP245 Yi-3 Y23
4 GFDL-ESM4 SSP585 Via Voa
5 IPSL-CM6A-LR SSP245 Yi-5 Va5
6 IPSL-CM6BA-LR SSP585 Yi-6 Y2-6
7 MIROC6 SSP245 Yi-7 Yo7
8 MIROC6 SSP585 Yi-8 Y2-8
] MRI-ESM2-0 SSP245 Yi-g Vo9
10 MRI-ESM2-0 SSP585 Yi-10 Y2-10

employed (Figure 2). Therefore, there are a total of ten
different level combinations in this design.

RESULTS

Spatial-Temporal Trends in Precipitation

and Temperature

Figure 3 presents the Mann-Kendall trend analysis results for
annual precipitation and annual mean temperature in the
historical and future periods. MK trend analysis is a non-
parametric test method broadly employed to statistically
evaluate whether there is a significant change trend in a time
sequence of the corresponding variable. The null hypothesis, Hy,
indicates that there is no monotonic trend. The alternative
hypothesis, H,, states that there is a positive or negative
monotonic trend in the data series. More details can be found
in previous study (Duan et al, 2021). For the annual
precipitation, nearly half of the areas (47.8%) show a
significant trend in the historical period. Among them, the
central areas in China present a significant decreasing trend.
In the Northwest China, there is a significant growth trend. The
significant proportion reached 70.3%. In the Northeast China and
North China, the significant proportions are relatively small, at
4.4 and 7.6%, respectively. The fraction of China areas with a
significant trend will be increased to 52.7% during 2051-2100
under SSP245. Besides, the annual precipitation will be increased
to varying degrees in all seven sub-regions. The central areas,
South China, and Northeast China have a statistically significant
(indicate by dots) increasing trend for annual precipitation. The
significant proportion of precipitation increase in North China
and Northeast China has increased compared with the historical
period. The significant proportions in the Northeast China and
North China have reached 80.3 and 24.4%, respectively. The
percentage of significant trend areas will continually increase to
85.5% during 2051-2100 under SSP585. Meanwhile, there will be
a significantly high increase center in Southwest China. The
significant proportions in Northwest China and Northeast
China exceed 90%. In North China, Central China, Southwest
China, and South China, proportions exceed 80%. The trend
change in annual mean temperature is in sharp contrast with
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annual precipitation. It has shown a significant increasing trend
both in historical (99.9% significant trend areas) and future
periods (100% significant trend areas) over China areas. The
growth rate is the largest during 2051-2100 under SSP585, which
is 0.1°C/year. In general, over China areas, the annual
precipitation and annual mean temperature will increase
significantly in the future, especially under SSP585. In
historical and future periods, the northwestern inland
temperature has increased relatively high. Compared with
precipitation, the temperature has increased significantly
throughout China, especially in the future. That means China
will face higher temperature in the future, and there may be more
temperature-related extreme climate events. It is also consistent
with previous research conclusions (Chaudhuri et al., 2020; Ramil
et al., 2020; Shrestha and Wang, 2020).

Projections of Future Precipitation and

Temperature

Figure 4 shows the variations of future annual precipitation and
annual mean temperature under SSP245 and SSP585. Compared
with the historical period, the annual precipitation will increase
by 11.3% over whole China areas, under SSP245. Besides, the
precipitation will also increase to varying degrees in the seven
sub-regions. Among them, the growth rate of the inland
northwest area is higher than that of the northern and eastern
coastal regions. In general, the increase in the northern part is
higher than that in the southern region. The fraction of entire
China areas with increasing annual precipitation will reach to
17.2% under SSP585. The growth rate of the inland northwest

area is still higher than that of the eastern regions. Compared with
the historical period, the whole China areas will be much wetter
due to the increase annual precipitation. Among them, the
proportion of precipitation increase in Northwest China,
North China, and Northeast China is about 19%. The
southwestern region is 18%, and the rest parts are about 10%.
Figure 4 also presents the change in annual mean temperature.
Undoubtedly, temperature will increase in the future, both under
SSP245 and SSP585. The increasing annual mean temperature
over the whole China areas is 2.8°C under SSP245, and under
SSP585, this increment will be 4.7°C. Interestingly, the spatial
pattern of annual mean temperature variations is quite similar to
precipitation, under both SSPs. Temperature increase in
Northeast China, North China, and Northwest China is higher
than that in the southern regions. The temperature increase is 3.2,
3.0, and 3.0°C, respectively, under SSP245. While under SSP585,
the increase is further expanded to 5.2, 5.0, and 5.0°C,
respectively. The temperature increase in the other four sub-
regions was relatively small. Under SSP245, the increase is around
2°C, and under SSP585, the increase is around 4°C.

In summary, the results indicate that both annual
precipitation and annual mean temperature over China will
increase in the future. Regardless of SSP245 or SSP585, the
growth rate of annual precipitation and annual mean
temperature increase in the northern region (e.g., Northeast
China, North China, and Northwest China) are higher than
those in the southern parts (e.g., East China, South China, and
Central China). The increase in precipitation is closely related to
the rise in temperature, and it has been discussed in previous
studies. Potential evapotranspiration will be increased with the
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FIGURE 3| The results of Mann-Kendall trend analysis for annual precipitation and annual mean temperature during the historical and future periods. The historical
period is 1965-2014, and the future period is 2051-2100 under SSP245 and SSP585.
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rise in temperature, and it may cause large amounts of moisture
to converge. Eventually lead to a large increase in precipitation.
Changes in precipitation and temperature will affect many
aspects of China. Such as the agricultural output, human
health, and infrastructure. The future temperature rise may

increase the frequency of heat-related extreme climate events,
which needs to be focused on in future research.

Figure 5 visually shows the historical and future changes in
annual precipitation and annual mean temperature in China and
the seven sub-regions. The results provide more detailed statistics
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on the changes in precipitation and temperature. Precipitation in
East China, South China, Central China, and Southwest China is
much more. However, the growth rate in the future is significantly
lower than that of other regions, as shown in Figure 4. The results
also indicate that the previously wet areas will be wetter, while the

dry areas tend to be wet. For the annual mean temperature, the
East China, South China, and Central China will face higher
temperature.

Figure 6 presents the changes in the probability distribution of
annual precipitation and annual mean temperature. The black
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line represents the distribution of precipitation and temperature
in the historical period. The blue line is the probability
distribution of the two variables in 2051-2100 under SSP245,
and the red line represents the probability variation of the two
variables in 2051-2100 under SSP585. Compared with the
historical period, the probability distribution of precipitation
and temperature under SSP245 and SSP585 both shifted to the
right. The results also show that under the SSP scenarios, the
seven sub-regions and the entire China area will have more
precipitation and higher temperature in the future. Climate
change has significant impacts on China, and the regional
ecological environment and human production may face
severe challenges in the future due to changes in temperature
and precipitation, as well as their derivative disasters (e.g.,
drought). Therefore, a full understanding of the possible
impacts of climate change on China is desired.

Contributing Factors to Variations of
Precipitation and Temperature

The uncertainties come from various factors, such as GCMs and
SSPs. In this study, GCMs (with five levels) and SSPs (with two
levels) are employed to quantify the main and interactive effects
on precipitation and temperature projection. As presented in

Figure 7, the total variance of precipitation and temperature
projection contains three aspects: GCMs, SSPs, and their
interactions. For annual precipitation, the largest contributing
factor to the total variance comes from GCM, with the rate of
50.68% (Northeast China), 68.33% (North China), 83.28% (East
China), 53.35% (South China), 81.20% (Central China), 77.79%
(Northwest China), 53.49% (Southwest China), and 44.73%
(entire China), respectively. The second contributing factor is
SSP, with the rate of 34.63% (Northeast China), 22.25% (North
China), 11.17% (East China), 11.52% (South China), 8.50%
(Central China), 18.91% (Northwest China), 35.56%
(Southwest China), and 44.36% (entire China), respectively.
The contribution of the interaction is relatively small, with the
rate of 14.69% (Northeast China), 9.42% (North China), 5.54%
(East China), 35.13% (South China), 10.30% (Central China),
3.30% (Northwest China), 10.95% (Southwest China), and
10.91% (entire China), respectively.

For annual mean temperature, the largest contributing factor
to the total variance comes from SSP, with the rate of 54.75%
(Northeast China), 64.08% (North China), 65.96% (East China),
74.60% (South China), 66.66% (Central China), 64.84%
(Northwest China), 73.22% (Southwest China), and 66.42%
(entire China), respectively. The second contributing factor is
GCM, with the rate of 40.64% (Northeast China),32.02% (North

Frontiers in Environmental Science | www.frontiersin.org

67

September 2021 | Volume 9 | Article 742326


https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Duan et al.

China), 29.25% (East China), 21.04% (South China), 28.42%
(Central China), 30.70% (Northwest China), 22.07%
(Southwest China), and 29.09% (entire China), respectively.
The contribution of the interaction is relatively small, with the
rate of 4.61% (Northeast China), 3.91% (North China), 4.80%
(East China), 4.35% (South China), 4.92% (Central China), 4.46%
(Northwest China), 4.71% (Southwest China), and 4.49% (entire
China), respectively.

The projections of future precipitation and temperature have
the uncertainty of global climate models and emission scenarios.
Results show that GCM is the main source of uncertainties in
precipitation projection. For all sub-regions, the main
contributing factor to the total variance in precipitation
projection is GCM. The average contribution portions are all
exceeded 50%. The interaction between GCM and SSP is
relatively small. Results also present that SSP is the major
contributing factor to the total variance in temperature
projection. The average contribution portions are also
exceeded 50%. Besides, the interaction between GCM and SSP
is also quite small. Different variables have different sources of
uncertainty. This may reflect the influence of different
parameterization schemes of the model on the final output result.

DISCUSSION

The study on future precipitation and temperature projection,
based on ensemble of global climate models, has the uncertainties
of different emission scenarios and climate models. The
uncertainty of future climate projection may have a profound
impact on climate change projection and assessment. It is
necessary to quantify different sources of uncertainty to
provide reliable output achieve (Tisseuil et al.,, 2012; Feng and
Hu, 2014). The relationship between the independent variables
(i.e., climate models and emission scenarios) and the response
variable is not a simple linear relationship. It is hard to explore
their main and interactive effects on response variables.
Nevertheless, the application of factorial analysis can roughly
explore the main effects and interactions of various factors behind
complex nonlinear relationships. Therefore, GCMs with five
levels and SSPs with two levels are employed to trace the
sources of uncertainty in projecting future precipitation and
temperature, and the multi-factorial analysis method is used in
this study. Results show that the major contributing factors in
projecting future precipitation are all GCM over seven sub-
regions and entire China. However, the major contributing
factors in projecting future temperature are all SSP over seven
sub-regions and entire China (Chen et al., 2016; Manrique-Alba
et al,, 2020). The effects explained by GCM and SSP interactions
are relatively small for both future precipitation and temperature
projection. To trace the different sources of uncertainty in
projecting future climate change, multiple qualitative and
quantitative methods have been employed in previous studies,
such as the ANOVA theory.

The different kinds of uncertainties sources of multiple climate
models perhaps lie in the insufficient cognizing and
understanding on the natural earth change process of global

Climate Change

climate change. Ultimately, the outputs of climate models
accompany various assumptions and limitations. Due to the
unpredictability of social-economic factor and human behavior
in the future period, a variety of potential greenhouse gas
emission scenarios have been generated (Shivam et al., 2019;
Sharafi et al, 2020). For instance, the Representative
Concentration Pathways (RCPs) in CMIP5 and the Shared
Socioeconomic Pathways (SSPs) in CMIP6. Different emission
scenarios have multiple premises and assumptions, which
represent variations of development paths in the future (Du
et al., 2018). Although developers try to incorporate the main
physical processes of the earth’s natural changes into the climate
model, due to unknown emission scenarios, imperfect model
structure, and complex climate systems, the simulation output of
the climate model is bound to be uncertain. To reduce the system
uncertainty in the modeling process as much as possible, the
calculation and simulation are usually carried out through
ensemble means of multiple GCMs (Moore et al, 2013;
Smalley et al., 2019). A variety of ensemble methods have
been developed in previous studies. In this study, five different
GCMs under two SSPs are given equal weights. After the
ensemble process, future annual precipitation and annual
mean temperature are then projected. The simulation
performance of multiple GCMs will vary with different
variables and the study area. Besides, due to some GCMs
share the same parameterization scheme, some modules or
codes, different GCMs are not completely independent (Vogel
et al,, 2020; Zhai et al., 2020). Therefore, in this study, giving the
same weight to all GCMs may not be the optimal solution to
achieve ensemble. Wang et al. (2019) have assessed eight different
weighting schemes to determine the optimal weight distribution
among multiple GCMs. In addition, the effects of different
weighting schemes on the final output simulation results are
also compared (Wang et al., 2019). The performance of multiple
GCMs ensemble has been confirmed in many studies, and the
ability to project future climate change is better than a single
GCM. Perhaps the multiple GCMs ensemble can reduce the
systematic bias from the individual GCM, thereby improving
the ability to project future variables. In the current climate
change-related study, GCM is the only tool that can be used,
but due to its shortcomings, the projection of some climate
variables has a large deviation. In future research, reducing the
systemic bias of the climate model itself will undoubtedly be the
top priority (Chen et al., 2016; Wang et al., 2018).

CONCLUSION

In this study, future annual precipitation and annual mean
temperature under two SSPs over China areas were projected
through multiple global climate models. Meanwhile, to explore
the sources of uncertainty in projecting future climate change, the
multi-factorial analysis was conducted through GCMs (five
levels) and SSPs (two levels). This study can help us
understand the possible changes in precipitation, temperature,
and the potential extreme climate events over the China area. The
results indicate that China would have more annual precipitation
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and higher annual mean temperature in the future. Compared
with the historical period, the annual mean temperature would
face a continuously increasing trend under SSPs. Regardless of
SSP245 or SSP585, the growth rate of annual precipitation and
annual mean temperature increase in the northern region (e.g.,
Northeast China, North China, and Northwest China) are
higher than those in the southern parts (e.g., East China,
South China, and Central China). The increase in
precipitation is closely related to the rise in temperature.
Potential evapotranspiration would be increased with the
temperature rise, and it could cause large amounts of
moisture to converge. Eventually, this leads to a large
increase in precipitation. Changes in precipitation and
temperature would affect many aspects of China. Such as
the agricultural output, human health, and infrastructure.
The future temperature rise may increase the frequency of
heat-related extreme climate events, which needs to be focused
on in future research. Moreover, GCM was the main
contributing factor to the of wuncertainty in
projecting future precipitation and SSP was the main factor
for future temperature. The interactive effects are relatively
unobvious on both projecting precipitation and temperature.

Opverall, climate change is an indisputable fact in China. The
annual precipitation and annual mean temperature will increase
to varying degrees in the future. Reducing the systemic bias of the

source
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During the past few decades, Arctic sea-ice has declined rapidly in both autumn and
winter, which is likely to link extreme weather and climate events across the Northern
Hemisphere midlatitudes. Here, we use reanalysis data to investigate the possible linkage
between mid-high-latitude atmospheric circulation and Arctic sea-ice loss in different
geographical locations and seasons and associated impacts on wintertime climate on
interdecadal timescales. Four critical sea-ice subregions are analyzed in this
study—namely, the Pan-Arctic, Barents—Kara-Laptev =~ Seas (BKL), East
Siberia-Chukchi-Beaufort Seas (EsCB), and Bering Sea (Ber). Results suggest that
interdecadal reduction of autumn sea-ice, irrespective of geographical location, is
dynamically associated with the negative phase of the North Atlantic Oscillation (NAO)
in the subsequent winter via stratospheric pathways. Specifically, autumn sea-ice loss
appears to cause a weakened stratospheric polar vortex that propagates to the
troposphere in the ensuing months, leading to lower surface air temperature and a
deficit in precipitation over Siberia and northeastern North America. Meanwhile, an
anomalous cyclone over Europe favors excessive precipitation over southern Europe.
For wintertime sea-ice loss in the Pan-Arctic and BKL, a weak positive NAO phase, with a
dipole pressure pattern over Greenland-northeastern North America and North Atlantic,
and a shrunken Siberian high over Eurasia are observed over mid-high-latitudes. The
former results in excessive precipitation over northwestern and southeastern North
America, whilst the latter leads to less precipitation and mild winter over Siberia. In
contrast, Ber sea-ice loss is associated with a circumglobal wave train downstream of
the Bering Sea, leading to extensive warming over Eurasia. The anomalous dipole cyclone
and anticyclone over the Bering Sea transport more Pacific and Arctic water vapor to North
America, and the anomalous cyclone over the Barents Sea results in abundant
precipitation in Siberia. Such midlatitude anomaly is dynamically linked to winter sea-
ice loss, mainly through tropospheric rather than stratospheric pathways. These results
have important implications for future seasonal and interdecadal forecasts in the context of
ongoing sea-ice decline.

Keywords: interdecadal linkage, sea ice, midlatitudes coldness, precipitation, water vapor transport
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INTRODUCTION

In recent decades, the midlatitudes of the Northern Hemisphere
have experienced more frequent cold winters and extreme
weather events (Wu et al., 2011; Cohen et al,, 2014; Li et al,,
2015; Cohen et al.,, 2020; Wang et al., 2021). For instance, Japan
suffered an extreme snowstorm in December 2005, and China
suffered persistent cold and freezing rain events in
January-February 2008 (WMO Regional Climate Centres
2012); and extreme cold conditions and heavy snowfall
attacked North America in two consecutive winters (2013/14
and 2014/15), during which the Great Lakes were almost
completely frozen for the first time in the previous 35 years
and Boston experienced record-breaking snowfall reaching
2.7m (Van Oldenborgh et al,, 2015).

A range of mechanisms have been proposed for the frequent
occurrence of extreme cold and snowy climates during the past
2 decades. Some studies have attributed natural variation as the
primary cause of Eurasian cooling (Trenberth, 1999; Sun et al.,
2016; Song et al., 2016; Screen, 2017B); whereas, in contrast,
others have suggested that the increase in cold temperature events
has been affected by the so-called Arctic Amplification and
associated sea-ice loss (Francis and Vavrus, 2012; Mori et al,,
2014, 2019; Takaya and Nakamura, 2015; Zhang et al., 2018;
Zhang and Francis, 2020; Zhang et al., 2021). For instance, Wu
et al. (2017) investigated a cold event that occurred in East Asia
during January-February 2012 and its possible association with
Arctic sea-ice loss. They found that weakening of the Aleutian low
and rapid strengthening of the Siberian high, concurrent with a
polar blocking high aloft, were crucial precursors for cold-air
outbreaks from the Arctic. In addition to extreme temperature
events, Arctic sea-ice loss further affects wintertime precipitation
in northern midlatitudes. Large-scale atmospheric circulation
and moisture transport are decisive for this precipitation via
storm-scale moisture convergence (Ma et al,, 2012; Sun and
Wang, 2012). Using an atmospheric model, Li and Wang
(2012) indicated that a negative phase of the North Atlantic
Oscillation (NAO) in response to Kara-Laptev sea-ice loss in
autumn acts as an atmospheric ridge over Eurasia that is favorable
for moisture transport to East Asia. Liu et al. (2016) reported that
the reduction of autumn sea-ice across the Arctic Ocean is
accompanied by dry conditions over central China and wet
conditions over South China and North China in early winter,
via two wave-train structures.

There are two main pathways responsible for these
Arctic-midlatitude linkages. First is the stratospheric pathway
through which Arctic sea-ice loss causes a weakened stratospheric
polar vortex in the ensuing months and has lagging effects on
midlatitude climate in both winter and the subsequent spring
(Mori et al., 2014; Chen and Wu, 2018; Mori et al., 2019). Second
is the tropospheric pathway, in which the melting sea-ice
decreases polar-to-tropics temperature gradients, which results
in meandering tropospheric flow and more extreme weathers
events in the midlatitudes (Nakamura et al., 2014; Sun et al., 2015;
Nakamura et al., 2016). Another critical issue is the geographical
location of sea-ice loss, which has distinct impacts on the
midlatitude climate in both modeling and observational
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studies (Screen, 2017A). Specifically, rapid sea-ice loss in the
Barents—Kara-Laptev (BKL) seas has tremendous impacts on the
Eurasian climate (Honda et al, 2009), while in the East
Siberian-Chukchi-Beaufort (EsCB) seas it has substantial
implications for the climate over North America (Kug et al,
2015).

However, most previous studies have tended to focus on sea-
ice change in the winter season or year-round and on interannual
timescales, with limited attention having been paid to autumn
and interdecadal timescales. Although recent studies argued there
is diverse Eurasian temperature and precipitation responses to
BKL sea-ice loss in autumn (Li and Wang, 2012; Ding et al., 2020;
Zhang and Screen, 2021), their focus was on the interannual
rather than interdecadal timescale. Chen and Wu (2018) and
Ding and Wu (2021) explored how autumn EsCB sea-ice loss can
influence spring Eurasian temperature. However, the impact on
wintertime temperature and precipitation has not been
thoroughly examined, particularly on interdecadal timescales.

This study aims to address two questions: 1) How does Arctic
sea-ice loss in different seasons and at different locations
contribute to the wintertime atmospheric circulation anomalies
and associated impact on temperature and precipitation? 2) What
is the Arctic-midlatitude linkage on interdecadal timescales?
More specifically, this paper investigates the interdecadal
linkage between Northern Hemisphere temperature and
precipitation and sea-ice change in diverse regions and
seasons. The underlying physical mechanisms of these linkages
are thoroughly investigated via tropospheric and stratospheric
pathways. Before we investigate the interdecadal linkage, the total
variation (i.e., the sum of interannual and interdecadal variations)
of sea-ice and its association with wintertime climate is primarily
analyzed as a comparison.

Data and Methods

The datasets employed in this research are: 1) the National
Centers for Environmental Prediction atmospheric reanalysis
with a resolution of 2.58" x 2.58" (Kalnay et al, 1996),
including sea level pressure (SLP), surface air temperature
(SAT), horizontal wind, specific humidity, and geopotential
height; 2) the monthly sea-ice concentration (SIC) from the
Met Office Hadley Center with a 1° x 1° longitude/latitude
resolution (Rayner et al., 2003); and 3) the enhanced monthly
mean precipitation from the Climate Prediction Center Merged
Analysis of Precipitation with a resolution of 2.5° x 2.5° (Xie and
Arkin, 1997). For interdecadal study, the 1959-2020 period is
analyzed in the present study. Regression and correlation analysis
are employed in this study, and the two-tailed Student’s t-test is
applied to examine the statistical significance of the regression
and correlation coefficients.

Based on topographical features (e.g., islands, straits) and
conventional nomenclature, sea-ice in the Atlantic and Pacific
sectors is analyzed in the present study. Specifically, we set the
area-averaged SIC north of 60°N as belonging to the Pan-Arctic.
Likewise, we define BKL as the (70°-80°N, 30°~135°E)-averaged
SIC to represent Atlantic sea-ice index. In the Pacific sector,
autumn sea-ice is mainly located in the EsCB region during
September-October, and large of
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(December-February) sea-ice exists in the Bering Sea (Ber)
region. The reason why we choose September-October EsCB
for autumn analysis is that the melting of sea-ice in EsCB is
limited to occurring in September and October, which has great
influence on stratospheric processes, whilst subtle sea-ice loss
occurs in other months (Chen and Wu, 2018; Ding et al., 2021).
Therefore, we define EsCB as the (70.5°-82.5°N, 135°E-60.5°"W)-
averaged SO SIC and Ber as the (55°-68°N, 165°E-125'W)-
averaged DJF SIC to represent Pacific sea-ice indices. Linear
trends are removed from the SIC indices prior to carrying out
the analysis. In general, this paper emphasizes on autumn sea-ice
in Pan-Arctic, BKL and EsCB regions and winter sea-ice in Pan-
Arctic, BKL and Ber regions.

To investigate the interdecadal variation of sea-ice, we use
power spectrum method to figure out the periodism of Arctic
sea-ice indices in diverse regions. Three main periods are
identified for autumn and winter sea-ice, which are 2-year,
10-year, and 20-year (figure not shown). Therefore, since our
focus is the interdecadal timescale, a 9-year low-pass
Butterworth filter is applied to all variables to derive the
interdecadal component. The algorithm of the Butterworth
low-pass filter (Selesnick and Burrus, 1998) can be expressed
by the following formula of the amplitude squared to the
frequency:

H@P=— =1

1+ (ﬁ)Zn 1+ ez(a%)Zn

where # is the filter order (as n increases, the smoother the curve
will be), w, is the cut-off frequency, and w, is the pass-band edge
frequency. For example, if we extract decadal components from
the original sequence, our sampling frequency is 1 year, and the
decadal cycle is 9 years. That is, the frequency is 1/9, and then the
end frequency is w, = 2 x 1/9 = 0.222.

Besides, the low-pass filtered variables will have strong
persistence or high autocorrelation. Therefore, the effective
number of degree of freedom of the significance test (i.e., the
t-test) needs to be replaced with n/T when calculating the
regression and correlation coefficients. The formulae are as
follows (Davis, 1976):

T =3 % R (j)Ryy (),
. 1 n—j & _x
Rux(j) = n—j thljxtxuj’

. 1 n—j % %
R, (j) = n_—] Zt:l]ytij’

where R, and R, are the autocorrelation coefficients of x and y,
respectively; # is the sample number; j is the lag time, usually set
as n/2; and an asterisk (*) represents normalization.

RESULTS

Interdecadal Variations in Arctic Sea Ice
Arctic sea-ice change has profound impacts on the wintertime
climate of the Northern Hemisphere (Cohen et al., 2014; Cohen
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et al,, 2020). Moreover, there is emerging evidence that the
geographical location of sea-ice loss is critically important
in determining the large-scale atmospheric circulation
anomalies and associated impacts on the midlatitudes
(Screen, 2017A). Besides, there are diverse winter circulation
responses to sea-ice loss in different seasons (Zhang and
Screen, 2021). Figure 1 displays the variations in Arctic SIC
in the different regions and seasons. In general, the SIC indices
show substantial variations on interannual and interdecadal
timescales. The interannual component of SIC indices
explained roughly 52.1-78.9% of the total variance, while
the interdecadal component explained 21.1-47.9%
(Table 1). This result indicates that the interdecadal
changes in SIC indices are of great importance, in addition
to the interannual variability, in the total variations. We find
Arctic SIC variations in autumn and winter show particularly
high coherence. For instance, for the Pan-Arctic, BKL and Ber,
the correlation coefficients between the autumn and winter SIC
indices are 0.51, 0.42, and 0.37 respectively, with the statistical
significance exceeding the 95% confidence level (Table 2).
These high correlation coefficients indicate that a large part
of the autumn sea-ice change tends to persist until winter.
However, for EsCB, the autumn-winter correlation is only
0.26, consistent with the finding of Ding et al. (2021) that the
melting of sea-ice in EsCB in September—October doesn’t
persistent into the following winter.

Such seasonal footprint characteristics in the Pan-Arctic, BKL,
and Ber are also seen in the spatial pattern of correlation
coefficients (Figure 2). When there is more (less) Pan-Arctic
SIC in autumn, positive (negative) anomalies of sea-ice are
located over the northern BKL and the EScB; however, in the
following winter, the highly correlated region shrinks to Eurasian
coastal regions, particularly over the Laptev Sea (Figures 2A,D).
It is interesting to note that the regions of significant Pan-Arctic
SIC anomalies cover the BKL and EsCB regions. That is why the
correlation coefficients between the Pan-Arctic and BKL and
EsCB in autumn reach 0.74 and 0.70, respectively. For BKL and
EsCB, positive SIC correlations are limited to the defined region
(Figures 2B,C), but only the southern part lasts to winter
(Figures 2E,F).

In comparison, the wintertime sea-ice in association with
winter SIC indices differs from those with autumn SIC indices.
When the winter Pan-Arctic index is above average, positive SIC
anomalies are located over the Atlantic sector (northern
Barents-Kara—Greenland seas) and Pacific sector
(Chukchi-Bering seas), which also covers the BKL and Ber
regions (Figures 2G-I). Nevertheless, the correlation
coefficients between the winter Pan-Arctic and BKL and Ber
SIC indices are 0.83 and 0.30, respectively, indicating that the
winter BKL makes major contributions to the variations in Pan-
Arctic SIC.

Sea-ice indices in different regions and seasons show apparent
interdecadal variations, which explain approximately half of the
total variations. The Pan-Arctic index shows similar interdecadal
changes to those of BKL in both autumn and winter, with
negative phases during 1980-1990 and during 2005-2020, and
a positive phase during 1990-2000. The two indices are also
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FIGURE 1 | Arctic sea-ice concentration (SIC) indices in different regions and seasons: (A) Pan-Arctic, (B) BKL in autumn (September—November) and winter
(December—February), (C) EsCB in autumn (September-October) and Ber in winter. (D-F) As in (A-C) but for the corresponding 9-year low-pass filtered components.
The blue (red) line denotes the winter (autumn) SIC index.

TABLE 1 | Explained variance of interannual and interdecadal components of raw
SIC indices.

Interannual (%)

Interdecadal (%)

Pan-arctic SON SIC 61.3 38.7
BKL SON SIC 61.8 38.2
EsCB SO SIC 68.0 32.0
Pan-Arctic DJF SIC 67.7 32.3
BKL DJF SIC 78.9 211
Ber DJF SIC 52.1 47.9

consistent in their amplitudes. Also of note is that the autumn
EsCB and winter Ber are increasingly linked to the Pan-Arctic
and BKL on interdecadal timescales since 2000, indicating that
the interdecadal variation of Pan-Arctic sea-ice is mainly affected
by sea-ice in the Atlantic sector and secondarily by sea-ice in the
Pacific sector, while the contribution of Pacific sea-ice has

TABLE 2 | Correlation coefficients between Arctic SIC in diverse regions and
seasons.

Pan-arctic SON SIC Pan-arctic DJF SIC 0.51*
BKL SON SIC BKL DJF SIC 042
Ber SON SIC Ber DJF SIC 0.37*
EsCB SO SIC EsCB DJF SIC 0.26
Pan-Arctic SON SIC BKL SON SIC 0.74*
Pan-Arctic SON SIC EsCB SO SIC 0.70*
Pan-Arctic DJF SIC BKL DJF SIC 0.83*
Pan-Arctic DJF SIC Ber DJF SIC 0.30

Asterisk indicates correlation statistically significant at the 95% confidence level.

increased since 2000. Considering the similarity in the SIC
variation between the Pan-Arctic and BKL, their related
atmospheric circulation and midlatitude climate anomalies
should also resemble each other closely.
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FIGURE 2 | Linear regression of (A—C) autumn and (D—F) winter Arctic SIC with respect to regional SIC indices in the Pan-Arctic, BKL and EsCB in autumn. (G-1) As
in (A-C) but for winter SIC anomalies regressed upon winter indices. Rectangles denote the region to define BKL, EsCB, and Ber indices. Stippling indicates regression
anomalies that are statistically significant at the 95% confidence level.

Autumn Sea-Ilce—-Related Temperature and studies, the autumn Pan-Arctic and BKL sea-ice loss have
Circulation pronounced impacts on winter Eurasian coldness. There are

also negative SAT anomalies over North America and positive
ones over the Arctic Ocean, but the response is generally weaker
and with patchy statistical significance (Figures 3A,B). The
Northern Hemisphere midlatitude SAT anomalies are usually
associated with large-scale atmospheric circulation changes.

Previous studies have indicated that sea-ice loss coupled with
cooling or a lack of warming in the midlatitudes causes the
Arctic and midlatitude temperatures to diverge. The warm
Arctic and cold continents/Eurasia (WACC/E) pattern

constitutes the most robust observational evidence over the g o0 4000 lies are dynamically consistent with the
Northern Hemisphere midlatitudes in recent decades (Cohen negative phase of the NAO, enhanced and northward shifted
et al., 2014; Cohen et al., 2020). However, the aforementioned Siberian high, and the Ural ridge of high pressure, featuring an
studies focused mostly on year-round sea-ice change, with equivalent barotropic structure (Figures 4A,B). These
limited attention paid to autumn sea-ice change. Figure 3 circulation changes imply meandering westerly winds,
shows the wintertime SAT anomalies regressed upon the  increased blocking frequency, and hence severe cold weather,
sea-ice indices in different regions. Consistent with previous  which is consistent with the findings of previous studies, albeit
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FIGURE 3 | Linear regression of winter surface air temperature (SAT; unit: K) anomalies against the Pan-Arctic, BKL and EsCB SIC indices (A-C) and associated
interdecadal component (D=F) in autumn. (G-L) As in (A=F) but for SIC indices in winter. Stippling indicates SAT anomalies that are statistically significant at the 95%

confidence level.
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FIGURE 4 | As in Figure 3 but for SLP (shading; unit: hPa) and 500-hPa geopotential height fields (contours; interval: 10 m).

that focused mainly on the effects of year-round or winter sea- The mechanisms underpinning the influence of autumn sea-
ice loss (Mori et al, 2014; Ayarzagiiena and Screen, 2016;  ice on the wintertime midlatitude climate are complex. Autumn
Pedersen et al., 2016) rather than autumn sea-ice loss. sea-ice loss can modify large-scale Rossby waves by increasing the

Frontiers in Earth Science | www.frontiersin.org n September 2021 | Volume 9 | Article 758619


https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

He et al. Interdecadal Arctic-Midlatitude Linkage
A Arctic SON SIC B BKL SON SIC EsCB SO SIC
10 ~ 10
20 20
30 30 A
50 50 -
70 70
100 100
200 200 -
300 ~ 300 ~
500 500
700 4° o 700
1000 T f T Y 1000 T T T T 1000 T T T T
09/12 30/12 20/01 10/02 09/12 30712 20/01 10/02 09/12  30/12 20/01 10/02
D Arctic SON SIC E BKL SON SIC F EsCB SO SIC
10 10 ~
20 . ' ' 20 -
30 4 30
50 50
70 2 70
100 100
200 - i, 200 -
300 ~ B 300 ~
500 - :4 . '.'” .:.:.. v 500 -
700 T . o« » '.1 ....- '.‘.‘.. 700 7
1000 T T T T 1000
09/12 30/12 20/01 10/02 09/12 30/12 20/01 10/02 09/12 30/12 20/01 10/02
Arctic DJF SIC H BKL DJF SIC | Ber DJF SIC
G 10 ~ 10
20 + 20 ~ ' ' ' i ll
30 + 30 .
= 504 50 e
© 70 70 A, 5
o 100+ 100 e, )
200 + 200 4 ¥ X
300 300 ~ o
500 500 * o
700 A 700 ' '
1000 —— T T T T 1000 T — T T
09/12 30/12 20/01 10/02 09/12 30/12 20/01 10/02 09/12 30/12 20/01 10/02
J Arctic DJF SIC BKL DJF SIC L Ber DJF SIC
10 ‘ 10
Fin | .
20 4 20 I
8 30 - 30 - :
© 50 50 y
a 70 + 70
| 100 ~ 100 +
= 200 \ 200 o !
O 300 ! € 300 1 S
—1 500 1 500 % -
700 T: 700 .% * e
1000 L — T T T T— T 1000 T T T —T
09/12 30/12 20/01 10/02 09/12  30/12 20/01 10/02 09/12  30/12 20/01 10/02
- ; >
-160 -80 0 80 160
FIGURE 5 | As in Figure 3 but for the winter daily evolution of polar cap height (PCH; 70°=90°N; unit: m).

vertical propagation of wave energy into the stratosphere,
favoring a warmer and weakened stratospheric polar vortex.
One common measure of such troposphere-stratosphere
interaction is the evolution of polar cap height (PCH; e.g,
Peings and Magnusdottir, 2014), which is calculated as the
geopotential height averaged north of 70°N. Figure 5 shows

the winter PCH anomalies regressed upon the sea-ice indices
in different regions and seasons. Autumn Pan-Arctic and BKL
sea-ice loss favor significant positive PCH anomalies throughout
the troposphere in winter, which increase in late December and
January above 100 hPa, indicating a weakening of the polar
vortex, consistent with Sun et al. (2015). Then, positive PCH
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anomalies propagate downwards and reach the surface in mid-
January and early February, leading to a negative phase of the
NAO and hence significant cooling over large parts of Eurasia and
North America (Figures 5A,B). This timing of the coldness is
consistent with the findings of Peings and Magnusdottir (2014),
who prescribed year-round sea-ice loss in an atmospheric model,
indicating that the stratospheric pathway can be primarily
attributed to sea-ice change in autumn.

A similar pattern of winter negative SAT anomalies over
Eurasia is apparent for autumn EsCB, but the anomalies are
relatively insignificant and spatially restricted when compared
with the Pan-Arctic and BKL (Figure 3C). The positive PCH
anomalies occur in the stratosphere but lack statistical
significance, which implies the absence of stratospheric
processes (Figures 4C, 5C). Chen and Wu (2018) found
significant stratospheric PCH responses over the mid-high
latitudes in  response to EsCB loss in
September-October on interannual timescales, but these PCH
anomalies reach lower troposphere in March rather than in
winter. Another significant cold SAT anomaly occurs over
Alaska, and this coldness is associated with weakening of the
Aleutian low possibly related to persistent EsCB sea-ice loss
(Figures 2C, 3C).

On the interdecadal timescale, autumn sea-ice loss in these
subregions is connected with significant cooling over large
parts of Eurasia and North America, and the correlations are
statistically stronger than the unfiltered results (Figures
3A-C). This suggests that, in decadal periods of autumn
sea-ice loss (gain), low (high) temperature anomalies are
likely to occur over midlatitude land areas. In addition, it
is interesting to note that lower-than-normal SAT anomalies
are found over North America for all regional SIC indices and
over the Eurasian midlatitudes for EsCB (Figures 3D-F),
which disappear in the unfiltered results. This discrepancy
implies that Arctic sea-ice loss has some physical linkage with
North American coldness on interdecadal rather than
interannual timescales, as well as the autumn EsCB-winter
Eurasian SAT linkage. Reasons for this closer linkage are
probably the stronger negative NAO phase and the enhanced
Siberian high that stretch into North America (Figures
4D-F). Furthermore, the downward wave propagation to
troposphere is significantly enhanced. In particular, the
EsCB-related PCH anomalies display significant positive
anomalies and propagate into the lower troposphere in
early February (Figures 5D-F). These intensified
circulation situations provide favorable conditions for the
occurrence of cold temperatures in the Northern Hemisphere
midlatitudes.

In conclusion, there is a dynamic relationship between
autumn sea-ice loss in different regions and wintertime
atmospheric circulation and attendant midlatitude coldness,
mainly through stratospheric pathways. Specifically, the BKL
sea-ice variation is closely related to the Eurasian midlatitude
coldness on both interannual and interdecadal timescales, but to
the North American coldness on the interdecadal timescale only.
The EsCB sea-ice is connected with midlatitude coldness in
Eurasia and North America on the interdecadal timescale.

sea-ice

Interdecadal Arctic-Midlatitude Linkage

Winter Sea Ice-Related Temperature and

Circulation

Winter sea-ice has a different effect on wintertime atmospheric
circulation relative to autumn sea-ice. As for winter Pan-Arctic
and BKL sea-ice loss, cold anomalies in the Eurasian midlatitude
are quite a lot weaker and lack statistical significance. Meanwhile,
broad and significant Arctic warming is evident in regions of sea-
ice loss (Figures 3G,H). Winter sea-ice loss corresponds to a
weak positive phase of NAO pattern over the North Atlantic
regions, which is different to the autumn sea-ice-related negative
NAO pattern. The main positive anomaly centers are situated
over Siberia and the North Atlantic, with the Siberian high
relatively weaker in magnitude and more zonally orientated
when compared with autumn sea-ice-related circulation
anomalies (Figures 4G,H). That is the reason why low
temperatures occur over Northeast China along the eastern
margin of the high pressure. In cases of BKL sea-ice loss, the
expansion of Davis Strait sea-ice is conducive to the anomalous
low pressure over Greenland-northern North America and the
anomalous high pressure over North Atlantic (Dai et al.,, 2019). In
addition, the weak positive NAO pattern is very likely attributed
to the strengthened and significant stratospheric polar vortex in
early winter (Figures 5G,H). The stratospheric process associated
with winter sea-ice loss differs from that with autumn sea-ice loss.
In late winter, the stratospheric process is characterized by a
weakened polar vortex, weak downward propagation in late
January and obvious upward propagation of tropospheric
waves in February. This weak stratospheric process related
with winter loss is different from the robust
stratospheric process in Zhang et al. (2018), since their focus
is sea-ice loss in November-December, while our focus is
December-February.  These results suggest that the
tropospheric pathway may play a major role in the impacts of
winter sea-ice change on Eurasian climate, while stratospheric
pathway play a minor role.

In comparison, the winter Ber is linked to significant cooling
over eastern North America and evident warming over the
Aleutian region of sea-ice loss (Figure 3I), consistent with
previous results (Kug et al, 2015; Screen, 2017A). In the
troposphere, there is a clear wave train downstream of the
Bering Sea, dynamically connected with an anomalous high
over Alaska, which plays a vital role in linking the reduction
in Ber sea-ice to the cold conditions in eastern North America
(Figure 4I). This result is in agreement with Iida et al. (2020) that
winter Bering sea-ice loss can affect wintertime North American
cold anomalies by changing the Alaska Oscillation, the dominant
mode over the highlatitude North Pacific. In the stratosphere,
there is insignificant downward propagation of the positive PCH
response that emerges in late December and early February
(Figure 5I). Likewise, the stratospheric pathway is less
important in the linkage between the winter Ber and the cold
conditions in North American.

On the interdecadal timescale, the Eurasian midlatitude cold
temperature is statistically insignificant; and furthermore, in
turn, overall warming is apparent over the Arctic with
penetration into northern Eurasia. Conversely, the North

sea-ice
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FIGURE 6 | As Figures 3A-C and Figures 3G-l but for monthly mean precipitation over land (unit: mm).

American midlatitude cold temperature is robust (Figures
3],K). This indicates that in decades with Pan-Arctic and
BKL sea-ice loss (gain) in winter, the highlatitude Eurasia
tend to be warmer (colder) and the midlatitude Eurasian
cold conditions tend to be milder (warmer) and the
midlatitude North America tend to be colder (warmer),
contrary to autumn sea-ice loss. The Siberian high shifts

southwards in position and the positive NAO pattern is more
apparent when compared with that associated with autumn sea-
ice change (Figures 4J,K). The southerly winds along the
western margin of the Siberian high guide warm air to the
Arctic and Eurasian highlatitude regions; and meanwhile, warm
advection along the eastern margin transports warm air from
the open oceans to the Eurasian highlatitudes, leading to the
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FIGURE 7 | As in Figure 6 but for 1,000-500-hPa cumulative moisture transport fluxes [vectors; units: g (m s)~'] and associated divergence [shading; units: g
(m? ).

warm highlatitude Eurasia. Furthermore, significantly negative  sea-ice loss in BKL, mainly through tropospheric rather than
PCH anomalies are overwhelmingly found throughout the  stratospheric pathways.

troposphere and stratosphere, leading to the positive NAO As for Ber, there is significant SAT warming in central Eurasia
pattern and cold North America. Therefore, it can be  and Alaska and insignificant warming over North America
concluded that the Eurasian highlatitude warming and  (Figure 3L). The latter warming is contrary to the unfiltered
weakened midlatitude cooling is dynamically linked to winter ~ cooling over North America, indicating that the impacts of Ber
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FIGURE 8 | As in Figure 6 but for the interdecadal component of precipitation.

sea-ice on North American cooling possibly exist at the
interannual timescale (figure not shown) rather than the
interdecadal timescale. A circumglobal-scale teleconnection
wave train, with high pressure anomalies over East Asia, a
strengthened Aleutian low, and weakened high-pressure
anomalies over Alaska (Figure 4L), is favorable for the
occurrence of warm temperatures over central Eurasia. In

addition, the low pressure in the Aleutian region is contrary
to autumn sea-ice-induced high anomalies, which implies that
atmospheric circulation dominates the Bering Sea and that the
southerly winds guide warm air northwards to the Bering Sea
and hence ice loss happens there. The stratospheric pathway,
however, has little impact on the wintertime climate
(Figure 5L).
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FIGURE 9 | As in Figure 7 but for the interdecadal component of moisture transport fluxes and associated divergence.

Generally speaking, the winter BKL sea-ice loss (gain) is linked
to an enhanced (a weakened) Siberian high and lower (higher)
temperatures in the highlatitudes of Eurasia. In contrast, the winter
sea-ice loss (gain) in Ber is linked to a large-scale teleconnection
wave train downstream of the Bering Sea, with higher (lower) than
normal temperature in North America on the interannual
timescale and in central Eurasia on the interdecadal timescale.

Precipitation and Moisture Transport
In addition to temperature, large-scale circulation anomalies

associated with Arctic sea-ice variation also affect
precipitation. On the one hand, strengthening of the
Siberian high caused by melting of Arctic sea-ice changes
the precipitation pattern in the midlatitudes (Gong and Ho,
2002). On the other hand, the expansion of the Arctic open
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FIGURE 10 | As in Figure 1 but for the period from 1959 to 2020.
ocean also provides water vapor conditions for precipitation  precipitation over southern Europe. This wintertime

over the continent (Ben et al., 2016). Figures 6-9 show the
wintertime precipitation and large-scale moisture flux
anomalies regressed upon the sea-ice in different regions
and seasons.

In terms of autumn Pan-Arctic and BKL sea-ice loss, a
meridional dipole precipitation anomaly pattern can be found
in the Northern Hemisphere mid-high-latitudes, which shows
more precipitation over the midlatitudes, such as in southern
Europe, and little precipitation at highlatitudes, such as
northwestern Eurasia and northeastern Canada (Figures
6A,B). This dipole pattern is mainly affected by the
anomalous anticyclone over Siberia and the Canadian
Archipelago, which gives rise to apparent water vapor
divergence over Eurasian highlatitudes and northeastern
Canada, leading to a deficit in precipitation over these regions.
Meanwhile, the anomalous anticyclone over the North
Atlantic-Europe region converges water vapor flux from the
Atlantic and Eurasia (Figures 7A,B), resulting in increased

precipitation pattern is similar to that in Li and Wang (2012),
who applied the autumn Kara-Laptev sea-ice index during
1982-2010 for regression. For EsCB, due to the weak
circulation anomalies, water vapor flux and precipitation
anomalies are broadly weak (Figures 6C, 7C).

On the interdecadal timescale, the precipitation anomalies
related to autumn sea-ice loss in the three regions show similar
dipole patterns, but with stronger precipitation in magnitude
and a southward extension of the deficit in precipitation in
central Eurasia. This dipole pattern is due to the meridional
enhancement and expansion of Siberia-North America high
pressure anomalies, which facilitate an increased frequency of
cold and dry air into Siberia and North America. Meanwhile,
the negative precipitation anomalies over northeast Canada
are spreading towards southeast Canada. Moreover, the
anomalous cyclone located in the northeast Atlantic-Europe
region is strengthened, relative to the unfiltered results, and
facilitates water vapor transport from the Atlantic and
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FIGURE 11 | As in Figure 3 but for interdecadal component of sea-ice indices and surface air temperature during 1959-2020 [(A-C) and (G-1)] and 1969-2020
[(D-F) and (J-L)].
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FIGURE 12 | As in Figure 4 but for interdecadal sea-ice loss during 1959-2020 [(A-C) and (G-L)] and 1969-2020 [(D-F) and (J-L)].

Mediterranean (Figures 8 A-C; Figures9A-C). Therefore, the For the winter Pan-Arctic and BKL sea-ice loss, insufficient
dipole pattern is strengthened in intensity, and the area  precipitation is generally observed in Eurasia, which corresponds
influenced is enlarged to nearby regions. to the more extensive Siberian high and accompanies a divergence
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in moisture transport. The anomalous low pressure in northern
North America is favorable for the convergence of water vapor and
excessive precipitation over the northeastern United States
(Figures 6D,E; Figures 7D,E). For the winter Ber, the moisture
flux and precipitation anomalies over both continents are weak.
However, the Alaskan high pressure and melting Ber sea-ice
facilitate water vapor convergence in the Far East, contributing
to increased precipitation there (Figures 6F, 7F).

On the interdecadal timescale, the main difference for the
Pan-Arctic and BKL is the north-south tripole pattern of
precipitation over the Eurasian continent, with high snowfall
around the Arctic and in southern Europe and low snowfall in
the midlatitudes. This is because the anomalous Siberian high
moves southwards, which leads to the southward
displacement of the dipole pattern identified in the
unfiltered results. In addition, the high snowfall around the
Arctic can be attributed to the increased area of open water,
and the Siberian high transports more water vapor from BKL
to the Eurasian highlatitudes. However, the cause of the
increase in precipitation over southern Europe is different
to that in the unfiltered results Figures 3A-C. The high
pressure anomaly over western Europe and the westerly
winds carry water vapor from the North Atlantic to
southern Europe. In North America, the low pressure over
northeastern North America and the high pressure over the
Aleutian region appear to guide water vapor from the Arctic
via the northerly winds, resulting in more precipitation over
northwestern and southeastern North America (Figures
8D,E; Figures 9D,E). For the Bering Sea, due to the
anticyclonic circulation near the Barents Sea, the water
vapor from the Arctic Ocean and Europe converges in
eastern Europe, leading to abundant precipitation there.
Northeast China is located at the eastern margin of the
anomalous Eurasian high, which is controlled by the dry
current from the northern continent and hence dominated
by reduced precipitation. Similar to the Pan-Arctic and BKL,
the low pressure over northern North America and the high
pressure over the northern Atlantic facilitate water vapor
convergence in northern and central North America, with
moisture sources from the Arctic, North America and North
Atlantic (Figures 8F, 9F).

To conclude, changes in precipitation are dynamically
consistent with large-scale atmospheric circulation and
temperature. The precipitation patterns associated with autumn
sea-ice change on interdecadal timescales resemble those in the
unfiltered results, which display a north-south dipole pattern over
the Northern Hemisphere. For winter sea-ice change, a
north-south tripole pattern is identifiable for BKL, and
excessive European precipitation is apparent for Ber.

CONCLUSION AND DISCUSSION

The interdecadal linkage between the wintertime Northern
Hemisphere climate and sea-ice in different regions and
seasons is analyzed in this paper. The results can be
summarized as follows:

Interdecadal Arctic-Midlatitude Linkage

The Pan-Arctic and BKL sea-ice, irrespective of seasonality,
display similar relationships with large-scale atmospheric
circulation, near-surface air temperature, and precipitation
anomalies. The WACC mode of wintertime temperature is
dynamically consistent with the sea-ice loss in both autumn and
winter. Autumn sea-ice loss can affect the wintertime climate in the
midlatitudes through stratospheric pathways, which generally leads
to a negative NAO phase with an anomalous high over the Arctic
and continental highlatitudes. These anomalous circulations
appear to induce severe cold events in the midlatitudes, albeit
still controversially, and a north-south dipole precipitation pattern
over Northern Hemisphere continents. However, wintertime sea-
ice loss affects the climate mainly through tropospheric pathways.
Significant warming is observed over the Arctic and extends to
highlatitudes, whereas mild coldness is found in the midlatitudes.
For precipitation, there is a meridional “less-more-less” tripole
pattern over the Eurasian continent and abundant precipitation
over North America.

The atmospheric circulation and climate anomalies
associated with autumn EsCB shows similarity to those with
Pan-Arctic and BKL on the interdecadal timescale, but large
difference on the interannual timescale. For winter, however,
the Ber-related circulation and climate anomalies differ from
those of the Pan-Arctic and BKL. There are low pressure
centers over Siberia and northeastern North America and
hence positive precipitation anomalies there, and high
pressure over East Asia and hence strong central Eurasian
warming.

The present study focuses on the interdecadal relationship
between the Arctic and midlatitudes during the 1979-2020
period. Given that the periodism of Arctic sea-ice indices is
shorter than 20years, it appears reasonable to conduct
interdecadal analysis using 40-year dataset. To further verify
the interdecadal variations of sea-ice on longer timescale, we
extend the period of dataset to 1959 and 1969, respectively.
Figures 10-12 show the Arctic sea-ice indices and associated
SAT, and SLP and 500-hPa geopotential height anomalies. Prior
to 1979, there is relatively heavy than average sea-ice in diverse
regions, and high persistence of sea-ice anomalies between
autumn and winter (Figure 10). The temperature and
circulation anomalies during the 1969-2020 and 1979-2020
periods are similar in spatial pattern and magnitude,
particularly for the robust Eurasian cooling (Figure 11). The
main difference is the disappearance of significant cold anomalies
over North America, which is caused by the stronger low pressure
anomalies over North America (Figure 12). For the 1959-2020
period, the spatial patterns remain similar, but the magnitudes
largely reduce and lack statistical significance. This is because the
NAO pattern and Siberian high are relatively weaker, in
companion with the weakened East Asian trough, which is
conducive to cold-air outbreaks into the midlatitudes
(Figure 12). Another reason for the differences between
different periods, is the lack of sea-ice data until the satellite
era. Before sea-ice can be seen from satellites, rather coarse
indicators of the sea-ice have been monitored and higher
spatial resolution sea-ice data can be acquired for recent
three decades (Rayner et al., 2003; Coon et al., 2007).
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Another question worthy of discussion is the nonstationary
relationship betweensea-ice and wintertime climate in long-term
timescales. In this study, comparing dataset of long period to
short period, this interdecadal linkage begins to attenuate and
lacks statistical significance. For the 1850-2099 period, Kolstad
and Screen (2019) discovered evidence of nonstationarity in the
relationship between autumn sea-ice and the winter NAO, which
implicates that the recently intimate ice-NAO relationship is
unstable. Furthermore, recent studies reported that weakened
positive anomaly of Siberian High after the mid-1990s is induced
by lesser Kara-Laptev sea-ice loss, and that enhanced spring AO
after the late-1990s is caused by larger interannual variability of
Laptev-eastern Siberian-Beaufort sea ice (Chen et al, 2019;
2020B). These results implicate that the circulation anomalies
caused by sea-ice change are strongly dependent upon the
analysis period and the location of sea-ice loss.

These findings have important implications for seasonal and
interdecadal forecasting in the future, especially in the context of
ongoing sea-ice loss. However, some regional precipitation
anomalies still cannot be explained by mid-high-latitude
circulation anomalies; for example, the precipitation anomalies
over southeastern North America where there are complex
tropical-extratropical interactions. Previous studies have also
demonstrated that precipitation inland is strongly influenced by
climate change (Lin and Zhou, 2015; Zhao et al, 2019) and El
Nifo-Southern Oscillation (ENSO) (Zhou and Wu, 2010),
amongst other factors. Furthermore, recent studies have
indicated that wintertime Arctic sea-ice anomalies can also have
a significant impact on tropical climate systems, including the
ENSO and Intertropical Convergence Zone, through large-scale
atmospheric wave trains and equatorial warm Kelvin wave and
monotonic temperature increase in deep ocean, respectively. (e.g.,
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Streamflow prediction is one of the most important topics in operational hydrology. The
responses of runoffs are different among watersheds due to the diversity of climatic
conditions as well as watershed characteristics. In this study, a stepwise cluster analysis
hydrological (SCAH) model is developed to reveal the nonlinear and dynamic rainfall-runoff
relationship. The proposed approach is applied to predict the runoffs with regional climatic
conditions in Yichang station, Hankou station, and Datong station over the Yangtze River
Watershed, China. The main conclusions are: 1) the performances of SCAH in both
deterministic and probabilistic modeling are notable.; 2) the SCAH is insensitive to the
parameter p in SCAH with robust cluster-tree structure; 3) in terms of the case study in the
Yangtze River watershed, it can be inferred that the water resource in the lower reaches of
the Yangtze River is seriously affected by incoming water from the upper reaches
according to the strong correlations. This study has indicated that the developed
statistical hydrological model SCAH approach can characterize such hydrological
processes complicated with nonlinear and dynamic relationships, and provide
satisfactory predictions. Flexible data requirements, quick calibration, and reliable
performances make SCAH an appealing tool in revealing rainfall-runoff relationships.

Keywords: stepwise cluster analysis hydrological model, streamflow prediction, statistical hydrological, yangtze
river watershed, climate change

HIGHLIGHTS:

o A stepwise cluster analysis hydrological model (SCAH) was proposed.
o The proposed SCAH is applied in three stations runoff simulation in the Yangtze River watershed.
e Both deterministic and probabilistic predictions are generated in the proposed SCAH.

INTRODUCTION

Streamflow prediction is one of the most important topics in operational hydrology, which can
provide valuable information for water resource allocation, hydropower generation, flood risk
management, irrigation, and agricultural crop forecasting (Fan et al., 2015). A crucial task is to select
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and develop an advanced forecasting model which can effectively
model hydrological processes and provide accurate prediction
(Liu et al, 2016). The task is complicated by the many
complexities in hydrological systems such as extensive
nonlinearities, temporal-spatial variations, interactions, and
uncertainties (Solomatine and Ostfeld, 2008; Cheng et al,
2016). During the past decades, great effort has been applied
to this issue and a series of hydrological models have been
developed to improve hydrologic prediction (Xie et al., 2020;
Wang et al., 2021c). These hydrological models primarily include
process-based and data-driven models (Li et al., 2015). The
process-based models represent the runoff generating
mechanisms realistically based on the inherent mass and
energy conservation laws in the water cycle system. The main
drawback of such models is that the expression of physical
processes is often oversimplified, and many uncertainties such
as model structure (and/or parameter) uncertainties exist
(Bhadra et al., 2009; Zhang et al., 2016). Another drawback is
that the process-based models mainly rely on the
parameterization process and cannot reflect the mapping
between independent (i.e., explanatory, boundary input) and
dependent (i.e., response, output) variables in the hydrologic
system (Wang et al, 2021a). In comparison, the data-driven
models are able to capture this mapping, which involves the
analysis of boundary input and the corresponding response time
series rather than the physical process (Solomatine and Ostfeld,
2008). Due to the flexible data requirements, quick calibration,
and reliable performance, data-driven models have been proven
to be effective for streamflow forecasting (Fan et al., 2016).
Nonparametric ~ statistical techniques mainly including
statistical regression, artificial intelligence, and machine
learning methods have been commonly used as practical tools
to calculate surface runoff.

However, previous data-driven models still suffer from several
difficulties in reflecting the inherently complicated relationships
within the environmental process (Wang et al., 2021b). A number
of statistic models such as multiple linear regression,
autoregressive, and autoregressive integrated moving average
cannot reflect nonlinear relationships between predictors (e.g.,
climatic factors) and responses (e.g., streamflow) (Solomatine
and Ostfeld, 2008; Ordieres-Meré et al., 2020). Besides, it can
hardly fit the observations very well with nonlinear relationships
in the water cycle (Fan et al., 2020; Li et al., 2020). The artificial
intelligence-based models may suffer from a few deficiencies such
as getting trapped in local optimum, overfitting, subjectivity in
the choice of model parameters, and the components of its
complex structure (Wang et al, 2020). As for machine-
learning models, such as random forest (Sun et al., 2016), the
reliability and development of these models met many obstacles
stemming from a lack of thorough understanding of the
underlying processes (Gaume and Gosset, 2003; Solomatine
and Ostfeld, 2008; Li et al, 2015). To solve the above
problems, one potential approach is to extend innovative and
advanced multivariate statistical methods to reflect the
complicated environmental processes with nonlinear and
dynamic characteristics (Li et al, 2015; Yu et al, 2020).
Stepwise cluster analysis is an improved multivariate analysis

Statistical Hydrological Model

Predictors Predictands
X X, Y, |3 )
Initial data X X 22 X2 |[V2
i
X m X m2 X mn y = )
h 4 Do cutting step by step until all
Ctuting hypotheses of further cut are
rejected
l
$ Do mergence step by step until all
Mergence hypotheses of further mergence
i are rejected
Cut-Merge Repeat cutting-mergence to the
Loop end nodes
Training Generate the cluster tree of the
output training samples
Prediction Do the cutting to the end nodes
FIGURE 1 | The framework of SCAH.

tool, which can handle nonlinear and discrete relationships
between predictors and predictands firstly introduced by
(Huang, 1992). Therefore, as the extension of previous studies,
the objective of this study is to develop a stepwise cluster analysis
hydrological (SCAH) approach to reveal the nonlinear and
dynamic rainfall-runoff relationship. Then the developed
SCAH will be applied at Yichang station, Hankou station, and
Datong station within the Yangtze River Watershed, China, to
demonstrate the applicability of the proposed model.

FRAMEWORK OF STEPWISE CLUSTER
ANALYSIS HYDROLOGICAL MODEL

In this study, the SCAH model framework was proposed and used
for runoff prediction. The framework of this study is presented in
Figure 1. Firstly, the correlations between streamflow and
climatic conditions are analyzed to screen out potentially
significant climatic variables. The runoffs with the selected
climatic variables are simulated by the proposed SCAH model
in which multiple dependent variables are taken into account. As
a kind of nonparametric statistical method, stepwise cluster
analysis was firstly proposed by (Huang, 1992). In stepwise
cluster analysis, the sample sets of response variables are
derived into new sets through cutting or merging actions
based on given criteria, and cluster trees are built during the
process (Duan et al., 2021). The structures of cluster trees reflect
the inherent relationships between the explanatory and response
variables. With the advantage of capturing discrete and nonlinear
relationships between explanatory and response variables,
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stepwise cluster analysis has received much attention for
environmental issues such as air quality prediction (Huang,
1992), process control (Huang et al., 2006), climate projections
(Wang et al., 2013), stream flow prediction (Cheng et al., 2016;
Zhuang et al., 2016), groundwater simulation (Han et al., 2016),
and ecosystem analysis and prediction (Sun et al., 2018). This
previous researcher has indicated that the stepwise cluster
analysis approach can characterize environmental processes
with complicated nonlinear and dynamic relationships and
provide satisfactory predictions.

According to the theory of multivariate analysis of variance,
the sample sets of predictors and predictands are divided into new
sets through a series of cutting and merging processes (Wang
et al, 2013; Li et al,, 2015). As shown in Figure 1, several main
steps are included in SCAH: 1) Select predictors and predictands
and prepare the training matrix; 2) Do cutting actions step by step
until all hypotheses of further cuts are rejected; 3) Do merging
actions until all hypotheses of further merges are rejected; 4)
Repeat cutting-merging to the end nodes where hypotheses of
further cutting are accepted; 5) generate the cluster tree of the
training samples; 6) Do prediction according to the generated
cluster tree.

According to (Huang, 1992), the cutting and merging criterion
is an F test based on the theory of Wilks’ likelihood ratio criterion.
For example, assume a cluster V,x,,, which contains m samples of
n dimension predictors. The cluster V., can be cut into two sub-
clusters V;,, and V,,, where a +f8 = m. The value of Wilks’
statistic A can be calculated as follows:

W
|W + B|

1

where W is the within-groups sums of squares and cross products
matrix; B is the between-group sums of squares and cross
products. |[W| and |W + B| indicate the determinants of
matrixes. The smaller the A value is, the larger the difference

between the sub-clusters of Vi, and Vi, is

N
M-&

w=Y (V. -V, )(V1 Vo) *

axn axn axn axn

Vi)
)

aﬁ _ _ T, _
B= o+ ﬂ( ixn - Vlzixn) (Vzlxxn - ijﬁxn) 3)

V;Xn and V/}Xn are the sample means of sub-clusters V. and

ﬁxn, respectively:

(V= Via) (Vior~

i i

- Zlexn )

ﬂxn - zvzxn (5)

The cutting point is optimal, if and only if the value of A is
minimal (Huang, 1992). On the contrary, sub-clusters V', and
Vf;xn cannot be cut, if the A value is very large, but may be merged
into a new cluster. By Rao’s F approximation (Rao et al., 1973), we
have the R-statistic as following:

Statistical Hydrological Model

1-AS ZS—P(K-1)2+1
R= s (6)
A P(K-1)

where K is the number of groups and P is the number of
predictors. Z and S can be calculated as follows:

Z=m-1-(P+K)2 ?)
_ PPx(K-1)-4 )
P+ (K-1)P-5
Here, K = 2 (two sub-clusters V} . andVﬁxn) and the
R-statistic will be an exact F-variate:
1-A -P-1
F(P,m-P-1)= —2xM" "~ )

A p

Therefore, the criteria for cutting and merging clusters
becomes to conduct a number of F tests (Rao et al., 1973).
For example, the F test could be used to identify whether sub-
clusters V. and V2 o are significantly different. Cluster V
can be cut into two sub clusters V1 and Vﬁm ifFP,m-P-1)
is larger than F,_cysing. The p-cutting is the significance level of
cutting, which can be set according to the demand. The default
is 0.05. On the other hand, the F test could also be used to
identify whether any two of the generated sub-clusters are
significantly similar. For two clusters Vi and V]  with
samples of o and B, if F(P,o' +B - P- 1‘3 is smaller than
Fp_merging> the two clusters can be merged into a new cluster.
The p-merging is the significance level of merging, which can be
set according to the demand. The default is 0.05. Repeat cutting-
merging until no cluster can be further cut and no clusters can
be further merged. After the cutting-merging loop, a cluster tree
with a series of nodes (i.e., intermediate nodes and end nodes) is
built for prediction. For a more detailed description of the SCA
method, refer to the authors’ previous work by (Huang, 1992;
Huang et al., 2006; Cheng et al., 2016; Fan et al., 2016). The main
advantage of SCAH is the capability of modeling variations of
multiple dependent variables ys (e.g, runoffs over multiple
catchments in this study) with independent variables xs. Beyond
that, this method can identify dominant independent variables
for ys, adapt to highly nonlinear xs-ys relationships due to
non-functional assumptions, reveal the equifinality in xs-ys
relationships, and reveal the interactions of xs in impacting ys.

Five statistical coefficients, including Nash-Sutcliffe efficiency
(NSE) (Nash and Sutcliffe, 1970), Pearson correlation coefficient
(COR), Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and Percent BIAS (PBIAS) (Gupta et al., 1999) are used
to evaluate the performance of the SCAH model in the Yangtze
River watershed. Let N be the total number of observations (or
predictions); Qgps,; the observed value, Qg the estimated value,
Qus and Qg,, the mean of all observed and estimated,
respectively. The NSE, COR, MAE, RMSE, and PBIAS are
presented as:

(Qobs,i - Qsim,i )2

NSE=1-———"——
(Qobst aabs)z

(10)
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Values of the NSE coefficient can range from negative infinity to 1.
NSE coefficients greater than 0.75 are considered “good,” whereas
values between 0.75 and 0.5 are considered as “satisfactory” (Moriasi
et al,, 2007). The COR value is a measure of the linear correlation
between the observed and simulated values. MAE and RMSE are used
to describe average model-performance error (Willmott and Matsuura,
2005). PBIAS indicates whether the simulated value is larger or smaller
compared to the corresponding observed value. Model underestimated
the value with PBIAS larger than 0, and overestimated opposite.

To better evaluate the model performance under uncertainties,
the relative error of the interval solution (REIS) of sample i are
proposed by (Li et al., 2015):

Q"Tlgx - Qi,obs .
100, if Qi <Qiobs

Qi,obs
REIS (%) = { 0, if Qi <Qiobs<Qi ¢ (15)
Qi =100, f Qs <@,
Qi,obs 7

where Q% and Q% are the minimum and maximum simulated
flow of the sample i in the corresponding end node, respectively.
Therefore the mean relative error of the interval solution

(MREIS) can be defined as:

1 N
MREIS (%) = - > [REIS (%) (16)
i=1

The ratio of observations falling into the interval solution (RF)
can be defined as

RF (%) = z nreis;
. min max (17)
. 1’ lf Qi,sim < Qiﬂbs < Qi,sim
nreis; =
0, otherwise

OVERVIEW OF THE STUDY AREA

A case study within the Yangtze River watershed (24°30'-35°45'N
and 90°33'-122°25'E) in south China (Figure 2) is applied to
demonstrate the applicability of the proposed model. As the
third-longest river in the world and the longest in China, the
Yangtze is 6,300 km long with a basin area of 1.8 million km?
(Hayashi et al., 2004; Ma et al., 2016). The main section of the
basin is located in a subtropical warm-wet zone heavily affected
by both East and South Asian monsoon activities. The southern
part of the basin is near to tropical climates and the northern part
is close to the temperate zone. The annual mean temperature in
the southern and northern parts are 19 and 15°C, respectively (Xie
et al, 2020). Owing to great topographic variability, annual
precipitation varies greatly in different sections of the Yangtze
River with a range of 300-2,000 mm and appears to increase from
northwest to southeast. Affected by summer southwest monsoon
and southeast monsoon, the precipitation has noticeable seasonal
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FIGURE 3 | The correlation between predictors and streamflow. streamflow.[Note: (A), (B), and (C) present the correlation between predictors in different month
ahead and stream. (D-F) present the correlation between predictors and streams between different stations. Predictors are defined in Table 2].

and regional variations, with most of the precipitation reachingits =~ Reform Commission (NDRC, 2016), the processes of
peak from April to October (Zhang et al.,, 2019). It is reported that ~ urbanization and industrialization will continue to gain
summer precipitation and rainstorm frequency have increased in ~~ momentum in the next 2decades. Therefore, precise
the past few decades (Chaudhuri et al., 2020). By the 2080s, the ~ streamflow prediction is essential in this region which helps
annual mean precipitation is expected to increase in the range of =~ practitioners and policymakers make more comprehensive
5.33-15.29% under different scenarios (Huang et al.,, 2011). management and targeted policy decision of water resources.
The Yangtze River spans nearly one-fifth of mainland China, Three streamflow stations, namely Yichang station, Hankou
traverses three economic zones in eastern, central, and western  station, and Datong station in the Yangtze River watershed are here
China, and crosses nineteen provinces of the country all told. As  studied, which represent the upper, middle, and lower reaches
one of the most densely populated and economically developed ~ (Zhang et al., 2006). The changes of water level and streamflow of
areas in China, the Yangtze River Basin has experienced a  these three gauging stations represent the fundamental principles
booming economy over the last decade and constituted over  of the whole Yangtze River Catchment. Runoff data came from
40% of gross domestic product (GDP) (Chen et al, 2017). In https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/stationMaps.
addition to urbanization, the Yangtze River Basin is a favorable ~ html?nn =201566. Climatic data are obtained from the national
location for agriculture, which accounts for 25% of the total =~ meteorological stations closest to hydrologic stations. The time
cultivated land area in China (Kong et al., 2018). As the primary ~ periods of all data series are dated from 1965 to 1984. The data has
water source, the Yangtze River is supporting the ever-growing  not been extended beyond 1990 in order to preserve the
socio-economic development in the Yangtze River basin and  stationarity of the data, since rapid economic development and
northern China. Inevitably, rapid urbanization and global  large-scale land uses have taken place in China since 1990.
climatic change are accompanied by many social, economic,
environmental, and resource issues. Many issues such as water
resource allocation, urban flooding risk management, reservoir RESULT ANALYSES
operation, soil erosion control, and environmental protection are
associated with precise streamflow predictions. According to the ~ Gorrelation Analysis of Predictors
Development and Planning Outline of the Yangtze River  Previous reports have shown that the inclusion of additional
Economic Belt, issued by the National Development and  antecedent meteorological variables, such as precipitation and
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TABLE 1 | The correlation between predictors and streamflow.

Logogram Climate variables Q1 Q2 Q3
v P1 0.61 0.69 0.70
v2 T 0.30 0.44 0.49
v3 VP1 0.21 0.37 0.46
v4 P1(t-1) 0.83 0.86 0.87
v5 T1(t-1) 0.83 0.87 0.87
v6 VP1(t-1) 0.84 0.88 0.87
v7 P1(t-2) 0.85 0.88 0.87
v8 T1(t-2) 0.84 0.87 0.87
v9 VP1(t-2) 0.85 0.88 0.87
v10 P2 0.69 0.71 0.69
vi1 T2 0.48 0.59 0.64
v12 VP2 0.44 0.59 0.66
v13 P2(t-1) 0.88 0.85 0.80
vi4 T2(t-1) 0.89 0.85 0.81
vi5 VP2(t-1) 0.88 0.84 0.79
vi6 P2(t-2) 0.90 0.85 0.79
v1i7 T2(t-2) 0.90 0.85 0.80
vi8 VP2(t-2) 0.89 0.84 0.79
v19 P3 0.58 0.54 0.51
v20 T3 0.49 0.50 0.52
v21 VP3 0.61 0.58 0.59
v22 P3(t-1) 0.71 0.61 0.54
v23 T3(t-1) 0.72 0.62 0.55
v24 VP3(t-1) 0.69 0.58 0.51
v25 P3(t-2) 0.71 0.61 0.53
v26 T3(t-2) 0.72 0.62 0.54
V27 VP3(t-2) 0.70 0.60 0.52

temperature, in the statistical hydrological model increased
streamflow forecast skill (Fan et al., 2016; Slater and Villarini,
2017). Therefore, in this study, meteorological variables for the
current month, 1 month ahead, and 2 months ahead are used as
predictors. The correlation coefficients between monthly
streamflow and potential predictors are provided in Figure 3
and the corresponding values are supported in Table 1. From
Figures 3A-C, it can be found that there are strong correlations
(ranging from 0.51 to 0.91) between the antecedent
meteorological variables and stream. For example, in station
S1 (Yichang), temperature and vapor pressure 1 month ahead
are the most correlated variables to monthly streamflow, with the
highest correlation coefficient (i.e., 0.88 and 0.90). This result
indicates a delay in the response of streamflow to meteorological
variables. This may be related to the spatial variation of
meteorological variables and the confluence time in the basin.
The correlations between meteorological variables and streams
between different stations are presented in Figures 3D-F, and .
Strong correlations (ranging from 0.37 to 0.90) of monthly
streamflow with the meteorological variables in surrounding
stations are found. It is worth noting that there are strong
correlations  (greater than 0.86) between antecedent
meteorological variables in Yichang station and the streamflow
in Hankou and Datong stations. Similar results are thrown up
between antecedent meteorological variables in Hankou station
and the streamflow in Datong station. This may be related to the
geographical location of the three stations. As shown in Figure 1,
Yichang station, Hankou station, and Datong station are located
in the upper, middle, and lower reaches of the Yangtze River

Statistical Hydrological Model

TABLE 2 | Abbreviations and descriptions of predictors and predicated factors in
SCAM.

Abbreviations Descriptions

Q Streamflow

P Precipitation

T mean Temperature
VP Vapor Pressure

P(t-1) Precipitation in 1 month ahead

T (1) mean Temperature in 1 month ahead
VP (t-1) Vapor Pressure in 1 month ahead
P(t-2) Precipitation in 2 months ahead

T(t-2) mean Temperature in 2 months ahead
VP(t-2) Vapor Pressure in 2 months ahead

Note: Q1, Q2, and Q3 present the stream in Yichang station (S1), Hankou station (S2),
and Datong station (S3) respectively in this research. The other predictors are equally
prescriptive.

respectively. Depending on the size and the topography of these
basins, it takes days to months for the upstream precipitation to
reach the downstream hydrological station through runoff
generation and river confluence in the basin. Therefore, the
strongest correlation is delayed in time. At the same time,
according to the strong correlations, it can be inferred that the
water resource in the lower reaches of the Yangtze River is
seriously affected by incoming water from the upper reaches.

Deterministic Prediction

The SCAH model is calibrated with the data from 1956 to 1975
and validated with the data from 1976 to 1985 in the Yangtze
River watershed, using the abovementioned predictors. In detail,
SCAH is established for only one predicted variable
(i.e., streamflow for a particular station), calibrated using each
station flow, and applied for the stream prediction of that station.
A default significance level of 0.05 is chosen in SCAH since a 95%
confidence level is acceptable for statistical testing. The generated
cluster trees obtained from SCAH are presented in Figure 4.
According to the generated cluster trees, streamflow of Yichang
station, Hankou station, and Datong station could be predicted
through forcing the predictors into three cluster trees
respectively.

Figure 5 shows the simulated and observed time series of
monthly flow in three streamflow gauge stations during
calibration and validation periods. The results show a good
agreement of the observed and forecast hydrographs for
SCAH, with slight under-prediction on some days (e.g., flood
peak). The performance criteria of SCAH for the three stations
are shown in Table 3. According to the five statistical coefficients,
both the two schemes yielded acceptable simulation in all three
stations. This result is consistent with previous studies (Fan et al.,
2015; Li et al., 2015; Fan et al., 2016; Zhuang et al., 2016) which
indicated that stepwise cluster analysis can provide reliable and
efficient flow prediction. In the calibration period, measured and
simulated monthly stream flows have a good match using the two
schemes. The NSEs are larger than 0.94 and the CORs are larger
than 0.96 with a slight difference between the three stations
(Table 3). The difference between the two schemes is
negligible in the calibration period. However, there are notable
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FIGURE 4 | SCAH model cluster tree for (A) Station S1, (B) Station S2, and (C) Station S3. (p = 0.05 and yellow boxes indicate end nodes; Stations S1, S2, and S3

Station S3

Cc

different performances observed between the three stations as
well as the two schemes in the validation period. On the whole,
the SCAH performs “good” (NSE >0.75) in three stations. In
detail, using a single-site calibration approach, SCAH
overestimates verification period runoff on S2 and S3 stations
(Figure 5), with PBAIS <-3. The NSE ranges from 0.70 to 0.82, and
COR varies from 0.84 to 0.90 across the three stations (Table 3).
The lower average simulation error in SCAH can be observed
through the lower MAE and RMSE values. Even both of the three
stations which overestimated the streamflow during the validation
period had negative PBIAS. The absolute PBIAS increased in the
validation period, especially for station S3 (Datong station) where
the absolute PBIAS increased from 0.14 to 4.78. The high NSE and
COR, as well as the low MAE, RMSE, and PBAIS clearly indicate
the superior hydrologic simulation of SCAH. This means that
SCAH can reflect a comprehensive rainfall-runoft relationship,
which considers the nonlinear and dynamic relationships between
climate information and streamflow.

Table 4 presents the SCAH model performance (NSE, COR,
MAE, RMSE, and PBIAS) for Yichang station, Hankou station,
and Datong station under different p levels for calibration and
validation periods. It can be found that model representation of
SCAH is sensitive to the p level. In the calibration period, as the p
level rises, the model performance of SCAH tends to increase with
increased NSE and COR values and decreased MAE and RMSE
values; while SCAH has the best model performance when the p
level equals 0.01 in the validation period. In detail, when p = 0.01,
NSE and MAE values in station S1 are 0.90 and 1.61 in calibration
and 0.83 and 2.18 invalidation respectively. When p = 0.10, the
corresponding values are 0.99 and 0.28 in calibration and 0.80
and 2.47 in the validation respectively. This is because the higher
p level means lower threshold values for cutting processes, leads
to more cut actions, and corresponds to more leaf nodes (as
shown in Table 4) and less variation in each leaf node, resulting in
fewer deviations between predictions and observations in the
calibration period. While in the validation period, the

over-segmentation of leaf nodes did not lead to more accurate
prediction results. In contrast, the deviation predictions and
observations actually increased. Results also show that the
sensitivity of different statistical indicators to p level is
different, and PBIAS is the most sensitive indicator. COR and
RMSE share similar trends with NSE and MAE, respectively.
Therefore, the SCAH is suggested for monthly runoff prediction
with a robust structural tree and better validation performance in
terms of the five statistical coefficients with the three p levels
evaluated in this study.

Probabilistic Predictions

In the aforementioned study, the future deterministic prediction
of streamflow was estimated using the mean value of the samples
in the corresponding end node of the derived cluster tree. In fact,
the proposed SCAH approach can also generate more results such
as interval forecasting results (Fan et al.,, 2015; Li et al., 2015; Fan
etal., 2016) using the maximum and minimum flow values of the
end node, which can reflect uncertainties. The comparison of the
forecasted intervals obtained through SCAH and observed
monthly flow are presented in Figure 6. Through Figure 6, it
can be seen that the forecasted intervals of SCAH can catch the
fluctuations of actual monthly flow during the calibration period.
Nearly all the observations are covered by the forecasting
intervals. Moreover, the predicted intervals of SCAH are
relatively large, especially for some peaks. During the
validation period (Figures 6D-F), the forecasted intervals can
generally cover the main part of observations in this period,
except for some underestimates during high streamflow periods.
This is because the prediction was conducted using a twenty-year
training tree, which might not cover all the possible precipitation-
runoff relationships, especially for the stream peak periods.
Comparatively speaking, more observations are covered by the
forecasting intervals obtained by SCAH with wider forecasted
intervals. Generally, the results show an overall good agreement
between observed data and predicted intervals.
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TABLE 3 | Model performance of SCAH in Yangtze River watershed. (Note:

Stations S1, S2, and S3 represent Yichang station, Hankou station, and
Datong station).

Station S1 S2

Callibration period NSE 0.99 0.98
COR 0.99 0.99
MAE 0.28 0.27
RMSE 0.84 0.89
PBIAS 0.46 0.16

Validation period NSE 0.80 0.74
COR 0.90 0.88
MAE 2.48 2.66
RMSE 3.85 3.77
PBIAS -2.97 -2.16

S3

0.99
0.99
0.29
0.81
0.14

0.70
0.85
2.91
4.03
-4.78

The performance of SCAH (REIS, MREIS, and RF) for the
calibration and validation periods using two calibration strategies
are presented in Figure 7 and Figure 8. In the calibration period,
the proportions of samples with absolute REIS smaller than 5% in
thethree stations are 95.42, 96.25, and 97.92%, respectively for
SCAH in Yichang station, Hankou station, and Datong station.
As presented in Figure 8, the MREIS in the three stations are 1.15,
1.09, and 0.70%, respectively for SCAH during the calibration
period. Moreover, among the 240 samples used for calibration,
there are more than 226 samples where the observation value falls
into its corresponding stream-flow interval estimated by the two
calibration strategy, accounting for more than 94% of the total
samples. On the whole, SCAH shows an insignificant
performance in the calibration period. However, in the
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TABLE 4 | Model performance of SCAH under different p levels. (Note: S1, S2, and S3 represent Yichang station, Hankou station, and Datong station).

Station S1 S2 S3
p =0.01 p = 0.05 p =0.10 p =0.01 p = 0.05 p =0.10 p = 0.01 p = 0.05 p =0.10
calibration NSE 0.90 0.96 0.99 0.92 0.97 0.98 0.98 0.97 0.99
COR 0.95 0.98 0.99 0.96 0.98 0.99 0.99 0.99 0.99
MAE 1.61 0.89 0.28 1.38 0.66 0.27 0.27 0.64 0.29
RMSE 2.66 1.60 0.84 2.00 1.32 0.89 0.89 1.18 0.81
PBIAS 0.22 0.30 0.46 0.08 0.85 0.16 0.16 0.13 0.14
validation NSE 0.83 0.80 0.80 0.79 0.70 0.74 0.74 0.62 0.70
COR 0.91 0.89 0.90 0.89 0.86 0.88 0.88 0.85 0.85
MAE 2.18 2.53 2.48 2.39 2.84 2.66 2.66 3.36 2.91
RMSE 3.50 3.83 3.85 3.42 4.02 3.77 3.77 4.49 4.03
PBIAS -0.90 -0.69 -2.97 -0.01 -3.32 -2.16 -2.16 -5.65 -4.78
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FIGURE 6 | Comparison of forecasted intervals versus observed monthly flow using SCAH (the red areas) with measurement values (the black circle) in the Yangtze
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FIGURE 8| The performance (MREIS and RF) of SCAH for the calibration and validation periods. (Note: S1, S2, and S3 represent Yichang station, Hankou station,
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validation period, the proportions of samples with the absolute  of observations falling into the interval solution. The RFs in the
REIS smaller than 5% in Yichang station, Hankou station,  three stations are only 14.2, 7.50, and 12.5%, respectively for the
and Datong station are 26.67, 20.83, and 28.33%, respectively. =~ SCAH in the three stations. The above results are sufficient to
The MREIS in these three stations is 10.24, 11.73, and  illustrate the advantages of SCAH to predict streamflow
21.69%, respectively. Moreover, SCAH can improve the ratio  probability.
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CONCLUSION

Streamflow prediction is one of the most important topics in
operational hydrology. The responses of runoffs are different
among watersheds due to the diversity of climatic conditions as
well as watershed characteristics. In this study, to characterize the
hydrological process complicated with nonlinear and dynamic
relationships, SCAH was developed and applied to predict the
runoffs with regional climatic conditions over the Yangtze River
watershed, China. The main conclusions are specified as follows:
First, the performances of SCAH in both deterministic and
probabilistic modeling are notable. Flexible data requirements,
quick calibration, and reliable performances make SCAH an
appealing tool revealing rainfall-runoff relationships.
Second, the SCAH is insensitive to p levels in monthly runoff
prediction with a robust structural tree and good validation
performance in terms of the five statistical coefficients
evaluated in this study. Third, in terms of the case study of
the Yangtze River watershed, it can be inferred that the water
resources in the lower reaches of the Yangtze River are seriously
affected by incoming water from the upper reaches according to
the strong correlations.

The responses of runoffs may be different among watersheds
due to the diversity of climatic conditions as well as watershed
characteristics. This study has indicated that the developed SCAH
approach can characterize such hydrological processes with
complicated nonlinear and dynamic relationships and provide
satisfactory predictions. This study provides a statistical
hydrological model to simulate streamflow considering the
nonlinear and dynamic relationships. On the other hand, a
series of extensions, improvements, or applications can be
conducted in future studies based on this study. For instance,
considering multiple response variables may reflect the complex
interaction and nonlinear relationship between climatic variables
and streamflow in the environmental process. Although the

in
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Evident climate change has been observed and projected in observation records and
General Circulation Models (GCMs), respectively. This change is expected to reshape
current seasonal variability; the degree varies between regions. High-resolution climate
projections are thereby necessary to support further regional impact assessment. In this
study, a gated recurrent unit-based recurrent neural network statistical downscaling model
is developed to project future temperature change (both daily maximum temperature and
minimum temperature) over Metro Vancouver, Canada. Three indexes (i.e., coefficient of
determinant, root mean square error, and correlation coefficient) are estimated for model
validation, indicating the developed model’s competitive ability to simulate the regional
climatology of Metro Vancouver. Monthly comparisons between simulation and
observation also highlight the effectiveness of the proposed downscaling method. The
projected results (under one model set-up, WRF-MPI-ESM-LR, RCP 8.5) show that both
maximum and minimum temperature will consistently increase between 2,035 and 2,100
over the 12 selected meteorological stations. By the end of this century, the daily maximum
temperature and minimum temperature are expected to increase by an average of 2.91°C
and 2.98°C. Nevertheless, with trivial increases in summer and significant rises in winter
and spring, the seasonal variability will be reduced substantially, which indicates less
energy requirement over Metro Vancouver. This is quite favorable for Metro Vancouver to
switch from fossil fuel-based energy sources to renewable and clean forms of energy.
Further, the cold extremes’ frequency of minimum temperature will be reduced as
expected; however, despite evident warming trend, the hot extremes of maximum
temperature will become less frequent.

Keywords: climate change, statistical downscaling, regional climate model, long-term projection, recurrent neural
network

INTRODUCTION

Distinct impacts of climate change on Canada are being observed. The increasing rate of temperature
over Canada is near twice the global rate (Canada in a Changing Climate, 2019). The relevant
mitigation and adaptation measures are thereby required to be updated. The first step is to generate
suitable climate projections over selected study regions. Global climate models (GCMs) have been
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widely used to conduct large-scale climate change impact
assessment through their coarse-scale climate projections
(100-300 km resolution) (Wang et al., 2015; Tian et al., 2020).
However, it is also necessary to evaluate the impacts of climate
change at regional levels to understand their interrelationships
with larger-scale socioeconomic processes and geographical
features (Pérez et al., 2014; Jury et al, 2015; Notaro et al,
2015). To advance the representation of local climate,
downscaling techniques are critical for obtaining high-
resolution climate projections via handling the spatial
mismatch between GCMs and regional climatology (Hessami
et al., 2008; Roberts et al., 2019; Shrestha and Wang, 2020).

Previous studies have been conducted to develop a wide range
of downscaling algorithms which can be divided into two
categories: dynamic and statistical downscaling (Hewitson and
Crane, 1996; Yu et al., 2020). Regional Climate Models (RCMs),
the representative dynamic downscaling approach, could
downscale the climate data from GCMs or continental
reanalysis data through physical mechanisms. More
importantly, dynamic downscaling can generate out-of-sample
data that previously were not observed for climate projections
(Feser et al., 2011). However, it would become difficult to obtain
high-resolution climate data through RCMs with limited time or
computation resources. By contrast, by building the statistical
relationship between coarse-scale atmospheric variables and
locally observed climate data, statistical downscaling could
quickly generate a great number of possible outcomes under
moderate computation requirements (Wilby et al., 2004; Li et al,,
2020).

Diverse studies aimed at using statistical downscaling
algorithms to support climate change impact assessments.
Wang et al. (2013) developed a statistical downscaling
software, SCADS, for downscaling climate projection based on
stepwise cluster analysis. An application of this software was
presented to generate 10 km-resolution daily temperature and
monthly precipitation projections in Toronto, ON, Canada.
Bechler et al. (2015) proposed a spatial hybrid downscaling
(SHD) algorithm to overcome the defect that statistical
downscaling cannot well capture the extreme behavior and
features of spatial structures. To further display the superiority
of the proposed method, the authors applied it to the French
Mediterranean basin where extreme events occurred frequently.
In addition, Chen et al. (2012) provided a thorough evaluation of
different downscaling methods and hydrological models with two
reanalysis data, suggesting that some widely used evaluation
criteria were not effective to evaluate certain downscaling
approaches. GIS-based statistical downscaling methods were
also common tools for handling the GCM’s poor simulation of
local climatology. Ashiq al. (2010) utilized various
interpolation models within the GIS to
downscale PRECIS precipitation data, which filled the gap in
the lack of credible precipitation data for Pakistan. In detail,
inverse distance weighted, local polynomial interpolation, and
radial basis functions were combined as deterministic methods.
The core of selected geostatistical models was ordinary kriging
and its extension which relies on the spatial autocorrelation in
models. Moreover, multidimensional GCM ensembles were

et
environment
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downscaled statistically with a GIS-based downscaling
environment by Gharbia et al. (2016a). Temperature, rainfall,
wind speed, solar radiation, and relative humidity were projected
at a finer spatial resolution applying the proposed method.
Gharbia et al. (2016b) also provided the performance
assessment for multi-GCM ensemble based on statistically
downscaled fine-scale data through the GIS platform.
Compared to a single GCM, GCMs ensemble in downscaling
climate variables could effectively reflect the uncertainty, and
consequently provide more reliable climate projections for
further impact assessment studies.

Deep learning techniques, especially, recurrent neural network
(RNN), have been widely used in modeling sequence
dependencies that exist in many fields (e.g., image processing,
and language translate) (Le et al., 2020; Westermann et al., 2020).
Nevertheless, few applications could be found in climate
downscaling field. Moreover, since vanishing/exploding
gradient problems are inevitable in naive RNN, gated
recurrent unit (GRU) technique is also applied in this study.
On the other hand, owing to complex microclimate system of
Metro Vancouver (MV), limited studies can be found regarding
its high-resolution regional climate projections.

Thus, this study will focus on MV, where thirteen of British
Columbia’s thirty most populous municipalities are located. This
area is experiencing evident climate change with increasing
daytime and nighttime temperatures, particularly in winter,
following by consequential fewer winter days with ice or frost.
In addition, motivated by the success of RNN in capturing
complex non-linear relationships between time-dependent data
(LeCun et al., 2015), a GRU-based RNN statistical downscaling
method followed by Tian et al. will be developed to generate
temperature projections (both daily maximum temperature and
minimum temperature) for further impact assessment of MV.
Details of the case study area and developed downscaling method
are given in the next section.

OVERVIEW OF THE STUDY SYSTEM

MV is bordered by fold mountain ridges to the north, the Pacific
Ocean to the west, and the semi-arid Fraser Valley to the east,
which results in a complicated microclimate system with
growing urban heat island effects (Hay and Oke, 1976; Oke,
1976). As one of the most developed regions in the province of
British Columbia (BC), Canada, MV is committed to becoming
a carbon-neutral region by 2050 (Arcand et al., 2018). Switching
from fossil fuel-based energy sources to renewable and clean
forms of energy is consequently essential to decarbonize MV’s
energy system (Zeng et al., 2011). Nevertheless, evident global
warming has been changing the weather patterns. For example,
it may increase the summer hot days of MV. Measures such as
redesign of provincial energy infrastructures are needed for
mitigation and adaptation under climate change (Metro
Vancouver, 2018). Therefore, it is desired that high-
resolution climate projections representing local climate
features of MV be generated to support further impact
assessment under climate change.

Frontiers in Earth Science | www.frontiersin.org

103

September 2021 | Volume 9 | Article 742840


https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Tian et al. Maximum and Minimum Temperature Projections
-123°45' -123°30' -123°15 -123° -122°45' -122°30"
1 1 1 1 1 1
@ 12 Selected Stations
49°30" — - 49°30'
49°15' —- 49°15'
49° 1 0 5 10 20 30 40 - 49°
Kilometers
1 I Ll 1 1 1
-123°45' -123°30' -123°15' -123° -122°45' -122°30"
FIGURE 1 | The spatial distribution of 12 selected meteorological stations.

TABLE 1 | Original performance of RCM outputs and validation results (all monthly data between 1996 and 2005) of the developed downscaling model.

Original data (RCM) Downscaled data

Rz

BURNABY SIMON FRASER U (BSFU) max 0.74
min 0.71

BURQUITLAM VANCOUVER GOLF COURSE (BVGC) max 0.66
min 0.56

DELTA TSAWWASSEN BEACH (DTB) max 0.37
min 0.84

HANEY EAST (HE) max 0.57
min 0.55

HANEY UBC RF ADMIN (HURA) max 0.57
min 0.37

N VAN SEYMOUR HATCHERY (NVSH) max 0.63
min 0.35

PITT POLDER (PP) max 0.4
min 0.64

PORT MOODY GLENAYRE (PMG) max 0.72
min 0.47

RICHMOND NATURE PARK (RNP) max 0.13
min 0.71

SURREY MUNICIPAL HALL (SMH) max 0.75
min 0.69

VANCOUVER HARBOUR CS (VHC) max 0.23
min 0.83

VANCOUVER INTL A (VIA) max 0.39
min 0.81

To undertake high-resolution climate projections, 12 high-
quality meteorological stations are selected, as shown in Figure 1.
Daily minimum and maximum temperature observations at these

r RMSE ('C) R? r RMSE ('C)
0.93 2.93 0.89 0.95 1.93
0.84 3.86 0.87 0.96 1.56
0.93 3.67 0.93 0.96 1.68
0.92 2.96 0.92 0.96 1.28
0.92 4.29 0.95 0.97 1.26
0.93 1.65 0.9 0.95 1.33
0.83 4.21 0.93 0.96 1.75
0.87 3.1 0.85 0.92 1.81
0.94 4.21 0.92 0.97 1.83
0.89 3.51 0.86 0.93 1.68
0.94 4.09 0.97 0.98 1.21
0.92 3.04 0.96 0.98 1.02
0.93 5.09 0.91 0.97 1.99
0.98 2.57 0.99 0.99 0.44
0.93 3.22 0.91 0.96 1.85
0.96 2.82 0.99 0.99 0.06
0.91 5.77 0.92 0.97 1.76
0.92 2.48 0.9 0.95 1.49
0.96 3.03 0.98 0.99 0.81
0.97 0.98 0.98 0.99 0.18
0.92 4.91 0.9 0.95 1.78
0.94 1.74 0.92 0.96 1.16
0.93 4.36 0.93 0.97 1.43
0.94 1.99 0.93 0.96 1.25

stations are obtained from Environment and Climate Change
Canada, representing the realistic climate of MV (Historical
data). Temperature simulation from RCMs displays poor
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performances compared to these observations (Table 1). Thus, to
combine the advantages of dynamical and statistical downscaling,
in this study, RCM outputs (25 km x 25 km), both historical and
projected, are selected to support the developed downscaling
work. The outputs (WRF-MPI-ESM-LR) are acquired from the
NA-CORDEX where climate projections cover most of North
America (Mearns et al., 2017). NA-CORDEX is the North
American component of the international CORDEX
(Coordinated Regional Downscaling Experiment) program
which has been providing global coordination of regional
climate downscaling for improved regional climate change
adaptation and impact assessment. The selected historical
RCM simulations are driven by the ERA-Interim historical
reanalysis; future projections are driven by a GCM (MPI-
ESM-LR) using representative concentration pathways 8.5
(RCP 8.5). With the local-scale observations over MV, the
GRU-based RNN  statistical downscaling model (detailed
information is displayed in the next section) will be developed
to correct/downscale gridded simulations (daily maximum/
minimum temperature) from the selected RCM. The time
series is divided into two time slots, ie, 1986-1995 for
calibration, and 1996-2005 for validation.

GATED RECURRENT UNIT-BASED
RECURRENT NEURAL NETWORK
DOWNSCALING MODEL

Deep learning with multiple hidden layers is employed to
represent complex functions in a series of fields (e.g., image
analysis, language analysis, and runoff prediction) (Ordieres-
Meré et al, 2020). Recurrent neural network (RNN, first
developed by Hopfield (2018)), as a class of deep learning, has
been applied to capture complex non-linear relationships,
especially for time-dependent data as it allows forward and
backward connections among time steps. It is found that with
acceptable correlation, RNN performs better ability to capture the
non-linear relationship than some traditional data-driven
models. Considering the complicated non-linear relationship
that exists between relatively coarse-scale simulation and
realistic temperature observations, RNN statistical downscaling
model followed by Tian et al. (2021) is developed for generating
high-resolution temperature projections for MV. The minimum
and maximum temperature projections from RCM will be
downscaled, respectively.

RNN basically consists of the input layer, multiple hidden
layers, and the output layer, as expressed in Eq. 1. Since the
superiority of back propagation arithmetic (Li et al., 2010), RNN
models can display impressive memory ability to store
information from the last time step, and then decide the
current outputs combined with the current outputs. However,
when the time steps are large, the deeper layer is, the easier would
the error of partial derivative accumulate. Specifically, the
gradient will get quite small, leading to the weight in larger
time steps becoming constant, which is generally known as the
vanishing gradient problem. By contrast, substantial updates of

Maximum and Minimum Temperature Projections

s(t-1)

K )

x(®)

FIGURE 2 | Neuron network of GRU.

weights in antecedent time steps, i.e., exploding gradient, will also
significantly impact the accuracy of RNN training.

y= <§x,-wi+b> M

where angle brackets denote an activation function; x; is the input
variable; W; is the vector of weight assigned to corresponding
input variable; b is the bias term.

Gated recurrent unit (GRU) technique is developed to handle
the above-mentioned vanishing/exploding gradient problem.
Different from a typical RNN, a reset gate and update gate are
added in the hidden block (as shown in Figure 2), which aimed to
forget the unnecessary state/input from the last/current time step.
Thus, it can effectively avoid the vanishing/exploding gradient
problem, and meanwhile, make the computation simpler. Albeit
the application of GRU-based RNN in statistical downscaling is
still in infancy, it has been demonstrated to perform better
capability to capture time-dependent relationships with limited
correlation between simulation and observation (LeCun et al.,
2015). In detail, the GRU-based RNN can be represented as
follows:

Uge = (Wa 204U, -5 4 by @
Rg, =W, -xD+U, -8V +b,) (3)

s - tanh(W - x + U, - (Rg, x $“V) + b) )
$O =Ug, 8" + (1-Ug,)s*? (5)

where W and U are related weights; Ug,, is the update gate aimed
to learn long-term dependency relationship between coarse-scale
RCM simulation and temperature observation, which is
determined by both hidden state from the last time step S~}
and the present input x®; Rg, is the reset gate applying the
activate function of sigmoid to the linear transformations of x(*)
and SV, which is used to capture short-term dependency
relationship between time-dependent data; gi and S®Ware the
candidate state and final cell state, respectively; S "is generated by
the current input and the reset gate employing activation function
of tanh; S considers both last final cell state and candidate state.
The parameters in the update/reset gate range from 0 to I;
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estimated values are used to determine whether the last state
should be updated/reset.

In addition, to avoid over-fitting, dropout technique is applied
in this study. Specifically, certain probabilities will be assigned in
k neurons of a certain layer; in this way, relevant parameters will
not be updated within each training iteration. That is, the final cell
state would not be overly reliant on certain neurons of the hidden
layer. The detailed structure and model settings can refer to Tian
et al. (2021). Besides, three model evaluation criteria,
ie, determinant coefficient (R*), root mean square error
(RMSE), and correlation coefficient (r), are used to evaluate
the GRU-based RNN statistical downscaling.

RESULTS AND DISCUSSION

Validation Results

To validate the calibrated GRU-based RNN downscaling model,
the daily maximum and minimum temperatures in the baseline
period (i.e, 1985-2005) are generated via the proposed
downscaling model. The produced temperature values are then
compared with meteorological observations at 12 selected
stations of MV. The R?, RMSE, and r are calculated as indexes
to characterize the downscaling capability of the developed
approach. The validation results of monthly maximum and
minimum temperature for observation and simulated values at
the 12 weather stations are displayed in Table 1. Also,
temperature observations are compared to the original outputs
from RCM, indicating the necessity of downscaling work.

It is quite clear that for maximum temperature, most of the
R-squared coefficients over the 12 meteorological stations are
higher than 0.88. The highest value could be achieved at 0.98
(SMH station), while the lowest value is obtained at BSFU station
(0.89). The overall performance of the presented downscaling
model for maximum temperature is stabilized with the average
R-square value being 0.93. Compared to the outputs of RCM, the
other two indexes (r and RMSE) also suggest the good
downscaling capability of the developed model. For instance,
the value of RMSE at VHC station could be decreased from
491-t01.78. However, the performance for minimum
temperature varies relatively greatly at the 12 stations, which is
not as satisfactory as that for maximum temperature. Though the
highest value could be reached as high as 0.99 (PP station and
PMG station, corresponding to 0.64 and 0.47 of original RCM
outputs, respectively), the lowest R* is only 0.85 for HE station.
Moreover, another two stations display relatively poor
performance with the values being lower than 0.88 (0.87 of
BSFU and 0.86 of HURA). Alpine and coastal areas have been
one of the challenges in climate simulation for both GCM and
RCM. Despite a few stations are not quite ideal and competitive
with previous studies of other regions, compared to RCM
outputs, prominent improvements could be found in all the
indexes after employing the developed GRU-based RNN
downscaling model. Therefore, the overall performance of the
calibrated model could still be competitive.

To further investigate the performance of the presented
downscaling model, the monthly means of maximum and

Maximum and Minimum Temperature Projections

minimum temperature are compared between the simulated
outputs and the observed temperature data. As displayed in
Figures 3, 4, apart from few stations (e.g, HE and PMG
stations) showing evident under- or overestimate compared to
observations, most of the simulated temperature could well fit
with the monthly variation of observations, especially for the
stations with high R*/RMSE values (e.g., PP and SMH stations).
In other words, the proposed downscaling model is able to well
capture the overall seasonal and spatial patterns of MV. This
further affirms its acceptable performance in simulating both
maximum and minimum temperature at 12 selected weather
stations. In addition, to filter out potential effect of annual cycle
on the performance of the developed downscaling model,
seasonal (i.e., spring, summer, autumn, and summer)
validation is undertaken to further indicate the model’s
effectiveness (see Supplementary Tables S1-S4). Despite with
relatively poor performance in winter owing to quite limited
correlation between RCM simulations and observations,
significant improvement could be found for most of the
stations compared to validation results of original RCM
outputs, which suggests that the developed downscaling model
is able to correct RCM seasonal errors. Therefore, albeit complex
microclimate resulting in limited researches regarding the
downscaling work at MV, the developed GRU-based RNN
downscaling model is demonstrated to be effective to
downscale the daily maximum and minimum temperature
of MV.

Projections of Future Daily Temperature

High-resolution temperature projections for MV are obtained
from 2035 to 2100 by downscaling the 25 km outputs from WRF
under RCP 8.5 scenarios with the validated GRU-based RNN
downscaling model. The trend analysis in daily maximum and
minimum temperature is then applied to understand future
changing tendency across the selected 12 stations of MV
under RCP 8.5 scenario. It should be noted that p-value <
0.01 (« = 0.01) suggests that the future temperature performs
a statistically significant tendency during 2035-2100. Figure 5
displays the downscaled projections of daily maximum
temperature, and future tendencies of 12 weather stations
which are estimated by Sen’s slope estimator (Dong et al,
2021; Song et al, 2021). It can be seen that all stations show
consistent and remarkable warming trends with all of the
probability values being less than 0.0001. The trend at each
station also tells a different story owing to the spatial pattern
of MV. The most significant increasing trend is projected to warm
by approximately 0.0037°C per month for NVSH station, which
means that NVSH station would increase ~2.9°C by 2100. Also,
the coastal station (e.g., DTB station) shows a similar warming
trend (0.0036°C per month), taking second place among 12
meteorological stations. One may be easy to ignore is that
both coastal (DTB and SMH stations) and inland stations
(NVSH and PP stations) display significant warming trends in
the next 65 years, which further highlights the complex climate
context of MV. By contrast, the estimated warming trends at
stations in highly urbanized regions such as VIA station (City of
Richmond, 0.0025°C per month) and VHC station (City of
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FIGURE 3 | Monthly comparisons between maximum temperature simulation and observation.

Vancouver, 0.0019°C per month) are not the most significant as
expected. In addition, the lowest warming tendency is estimated
at BSFU station located in City of Burnaby. Compared to
varying warming trends for maximum temperature, the
degree of daily minimum temperature increasing is more
consistent as shown in Figure 6. Similarly, the hypothesis

testing indicates that 12 meteorological stations will have
significant changes in the next 65 years. Instead of displaying
relatively different warming trends for the maximum
temperature, the trends of minimum temperature ranges at a
comparatively lower level (from 0.0022°C to 0.0031°C per
month). City of Richmond and City of Vancouver remains at
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7
Month

simulation -+ observation

the middle level of the warming trend, with the same trend value
of 0.0024°C per month. On the other hand, a much more
significant warming trend (0.0026°C per month) is displayed
in the minimum temperature over BSFU station, in comparison
with its maximum temperature. Furthermore, similar to the
pattern of maximum temperature, both coastal and inland

stations (DTB and NVSH) display consistently noticeable
warming tendency; the minimum temperature would increase
by 2.34°C to the end of this century. Despite less variability of
trend values, the average value for monthly minimum
temperature could still be as high as 0.0027°C per month for
the whole MV region.
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FIGURE 7 | Annual and seasonal time series of projected daily maximum
temperature between 2035 and 2100.
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warming trends with little temporal variability. Accordant with
the results of trend analysis, the maximum temperatures of
NVSH and DTB stations increase consistently with constant
notable crawling. As for the minimum temperature plot
(Figure 8), it displays similar overall patterns with that for
maximum temperature. The difference is, more evident
fluctuations between 2035 and 2060 are shown in winter and
spring. Besides, there are sharper increases between 2060 and
2070 compared to that of maximum temperature. The annual
warming tendency is not as pronounced as that for maximum
temperature but more consistent, which further demonstrates the
comparison in previous trend indexes.

To better explore future changes of projected temperature in
the 12 meteorological stations, the future projections of daily
maximum and minimum temperature are divided into three
periods (the 2030s, 2050s, and 2080s, ie., 2035-2054,
2055-2074, and 2075-2100). The projected climate changes
are calculated based on the mean temperature of three periods
under RCP 8.5 as well as that of the 20years baseline,
i.e., historical periods from 1985 to 2005. The projections of
changes in daily maximum and minimum temperature under

Further, Figures 7, 8 present projected time series of
maximum and minimum temperature at annual and seasonal
time scales over the 12 weather stations from 2035 to 2100. For
both plots, it is quite clear that all 4 seasonal time series display
increasing temporal patterns from 2035 to the end of this century,
which further confirms mentioned trend analysis. Interestingly,
the increasing tendency in summer is not quite significant as
expected, especially for maximum temperature. This suggests that
even under RCP 8.5 scenario, the frequency of extreme hot events
would not increase substantially, which seems good news for MV.
On the other hand, it can be seen that winter and spring time
scales have more predominant temporal variability. Considering
these two patterns, MV is projected to experience less seasonal
temperature variability under the global warming trend. Besides,
maximum temperature values fluctuate between 2035 and 2060
with a relatively significant peak between 2060 and 2080, and
continuously undulate with an overall increasing tendency
instead of a constantly rising trend. Specifically, the patterns of
HURA and VIA stations are relatively notable. Moreover,
consistent plunges across 12 stations could be found in the
wintertime series around 2065. By contrast, projected mean
values on annual and autumn’s time scales display successive
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FIGURE 8 | Annual and seasonal time series of projected daily minimum
temperature between 2035 and 2100.
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RCP 8.5 scenario could be further analyzed at the 12 selected
weather stations.

Figure 9 depicts the baseline simulated maximum and
minimum temperature, as well as future annual temperature
changes of 12 selected stations for the 2030, 2050, and 2080 s
under RCP 8.5. RNP and SMH stations (located at City of
Richmond and City of Surrey, respectively) show the highest
maximum temperature during the baseline period; while for the
minimum temperature, VHC and DTB (located at City of
Vancouver and District of Delta, respectively) are the top two

stations. As for the future changes, the results suggest that the
simulated annual maximum temperature changes would increase
consistently across the 12 weather stations from the near term to
the end of this century. Instead of RNP and SMH stations, the
changes in the annual maximum temperature for District of Delta
(DTB station) and City of Coquitlam (PMG station) are the most
significant, with change values being 1.76°C and 1.67°C in the
2030s, 2.69°C and 2.40°C in the 2050s, as well as 3.93°C and 3.26°C
to the end of this century. These cities would face more serious
positive changes in maximum temperature, which may increase
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the cooling requirement of buildings within summer. In addition,
NVSH station ranks third and also reveals conspicuous positive
changes. The projected change of its maximum temperature
would be 1.53°C in the near term, 2.48°C in the 2050s, and
3.44°C in the 2080s, respectively. It is interesting that even if some
stations (e.g., VIA and VHC stations) display relatively gentle

increasing rates in previous trend analysis, considerable positive
change will still occur. In particular, to the end of this century,
almost half of the selected stations will increase by ~3°C in
comparison with the baseline maximum temperature. Potential
impacts from positive changes under the high radiative value of
RCP 8.5 still have to be faced in the future. For the minimum
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temperature, similar to patterns of the maximum temperature,
the entire MV region (12 stations) displays an obvious rising
tendency from the 2030s-2080s. Even for the least positive
change of PP station located in District of Pitt Meadows
would increase from 0.29°C in the 2030s to 1.16°C in the
2050s, and then continue to as high as 2.16°C in the 2080s.

The greatest warming in the minimum temperature still occurs in
the PMG station (City of Coquitlam); by the 2080s, the changes
could reach as high as 4.09°C relative to the historical baseline.
Moreover, one of the highly urbanized cities, City of Richmond,
shows quite a bit increase compared to historical climate. The
positive change could reach 3.14°C at the end of this century. This
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may cause by the relatively lower minimum temperature in the
historical baseline. Comparatively, it is interesting to note that in
many stations, the rises of minimum temperature are greater than
those of maximum temperature, indicating the daily temperature
range of these stations is projected to become narrow under RCP
8.5 scenario.

Comparatively, the annual minimum temperature shows
more apparent spatial variability especially in the 2030s where
the highest positive change (PMG station) could achieve at more
than 8 times of the least increase relative to the baseline. Albeit
less spatial pattern is found for the annual minimum temperature,
the rising amplitude compared to historical climate is
commensurate with that for annual maximum temperature in
most stations. Overall, such a continuous rising tendency may
raise the temperature of MV by 2.28°C by the end of this century.
Both coastal and inland cities are likely to have a pronounced
climate warming trend. Unexpectedly, under RCP 8.5 scenario,
i.e,, scenario for long-term high energy requirement and GHG
emissions without any climate adaptation policies, highly
urbanized cities with developed economy will not experience
more frequent hot extremes. By contrast, evident increases are
displayed in the projected minimum temperature, narrowing the
daily temperature difference in these stations.

To understand temperature projections’ temporal changes
over MV, monthly maximum and minimum temperature
changes are calculated for the specific period, ie., from 2075
to 2095. Figure 10 displays monthly baseline maximum
temperature and specific changes of 2,075-2,095at the 12
meteorological. It is clear that positive changes are shown in
almost every month; especially, all the 12 weather stations
consistently have significant increases in January/February/
March (the average change of all stations in these 3 months
could reach as high as 2.99°C). The mere exception to this is
that few changes could be found in July and August for most of
the stations, which further demonstrates the concluded stable
state during the summer period. The results also show that for
most stations, changes of the maximum temperature in spring
and winter are greater than those in autumn and summer. For
instance, in City of Surrey (SMH station), the positive change
values of winter and spring are 2.75°C and 3.52°C, while those for
spring and summer would be only 2.03°C and 1.38°C,
respectively. The highest positive change would be 6.47°C of
NVSH station in March rather than 3.39°C of PMG station. Most
of the increases in maximum temperature for PMG and DTB
stations are contributed by winter and spring. Stations with
relatively moderate warming trends such as VIA station also
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perform considerable increases in all months with the largest
increase of 5.16°C occurring in October and an average positive
change of 2.91°C. As for the monthly minimum temperature
under RCP 8.5 scenario shown in Figure 11, it can be seen that
compared to the increases in monthly maximum temperature,
more significant rises in winter and spring are displayed in
monthly minimum temperature for most of the selected
stations. More specifically, the average value in winter would
be 4.73°C, while that for maximum temperature in Figure 10 is
only at 2.97°C. In addition, evident increases could also be found
in July and August, which is consistent with previous findings.
PMG stations show the most remarkable positive changes in
nearly every month, causing the highest increases in the
aforementioned annual mean. Overall, as shown in these two
figures, it is quite clear that under RCP 8.5 scenario, the monthly
variability will be substantially reduced across all the weather
stations. The difference between the maximum and minimum
temperature will also be narrowed to the end of this century. The
results are consistent with previous conclusions.

Figure 12 displays the ~20 years distributions (baseline period
and 2075-2095, respectively) of 12 meteorological stations.
Despite the annual increases of extreme maximum
temperature are not significant at most of the stations as
mentioned before, the frequency of relatively lower
temperature is reduced evidently since “violin” distributions of
all the stations get to top-heavy. Moreover, as shown in this figure,
the hot extreme’s frequency would not increase substantially,
which is consistent with the above-mentioned analysis.
Furthermore, since NVSH station shows the most significant
warming trend from 2035 to 2100, the frequency of higher and
lower temperatures seems to interchange in 2075-2095,
compared to the baseline period, which is different from other
stations. For daily minimum temperature, there are four stations
(i.e, NVSH, PMG, PP, and SMH stations) displaying similar
patterns, which further highlights more notable rises in
comparison with maximum temperature. In addition, top-
heavy “violin” distributions are more common in Figure 12B;
the frequency of cold extreme will experience massive declines.

CONCLUSION

In this study, a GRU-based RNN downscaling approach was
developed to tackle the spatial mismatch between coarse-scale
climate simulation and regional climatology for improving the
representation of local future climate across MV. The complex
microclimate systems under the context of the alpine and coastal
areas are usually difficult to be simulated by GCMs and even
RCMs. The proposed downscaling model was demonstrated (by
three indexes, namely, R%, RMSE, and r) to perform competitive
ability to capture the regional climatology of MV. The
effectiveness further highlighted by the monthly
comparison, indicating that the GRU-based RNN downscaling
model could well simulate the MV’s overall seasonal and spatial
patterns.

The presented downscaling approach was then applied to
generate regional high-resolution climate projections of the

was

Maximum and Minimum Temperature Projections

maximum and minimum temperature from 2,035 to 2,100
under RCP 8.5. Trend analysis in the next 65 years was first
conducted by Sen’s slope algorithm, which disclosed that both
maximum and minimum temperature would consistently
increase over the 12 selected weather stations. Both coastal
and inland regions may experience more significant successive
warming in the future, which revealing the complex microclimate
of MV. These results were accordant with annual and seasonal
analysis for temporal patterns. Furthermore, the future
temperature changes were analyzed to better understand the
potential impacts of climate change on MV under a high RCP
scenario. It was indicated that the entire MV (12 stations)
displayed obvious gradually increasing positive changes from
the 2030s-2080s relative to the baseline climate of each
station. In addition, both annual maximum and minimum
temperature shows apparent spatial variability, especially by
the 2080s. More importantly, it can be also found that with
negligible increases in summer (e.g., RNP and VHC stations) and
notable rises in winter and spring, the seasonal temperature
variability =~ would be reduced substantially. Further,
surprisingly, despite evident warming trends, the hot extremes
of maximum temperature will become less frequent. On the other
hand, the cold extreme’s frequency of minimum temperature will
be reduced as expected.

Overall, the presented GRU-based RNN downscaling
approach could effectively capture the statistical relationship
between RCM outputs and realistic climatology, and
consequently combine advantages of both dynamic and
statistical methods. Thus, maximum and minimum
temperature projections could provide effective support for
further regional impact assessment in MV. However,
notwithstanding it can reflect local climate features based on
dynamical downscaling (RCM outputs), the systematic errors in
the simulated fields hidden within RCMs would be transferred
into the statistical downscaling process, which may cause
relatively poor performance of some station’s validation
(especially in winter) in this study. Besides, a wide range of
factors (e.g., input data, model selection, and parameter setup)
may result in multiple uncertainties, which would impact the
robustness of a single GCM/RCM model. Future research is
thereby desirable to introduce multiple GCM/RCM ensembles
and further investigate the inherent uncertainties to advance the
performance of the proposed downscaling approach.
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Hydrological modelling is of critical importance to flood control. However, flood forecasting
in semi-arid region is a great challenge to hydrologists, particularly in a changing
environment. Taking the Zhulong River catchment located in north China as a case,
the performance of GR4J model for hydrological modelling was investigated based on the
analysis for changes in hydrological process of three periods defined as natural period
(1967-1979), moderate human impact period (1980-1996) and intensive human impact
period (1997-2015). Results show that 1) the annual precipitation and temperature of the
catchment both presented upward trends, while the annual observed runoff exhibited a
significant downward trend in the time span from 1967 to 2015; 2) the correlations
between runoff and precipitation were comparatively higher on both monthly and annual
scales in natural period than those in human disturbed periods; 3) both annual runoff and
daily peak discharge in human disturbed periods decreased relative to those in natural
period due to the environmental changes; 4) the GR4J model performed well for runoff
simulations in natural period but gradually lost its applicability with the intensification of
human activities. It is essential to improve the accuracy of hydrological modelling under a
changing environment in further studies.

Keywords: the Zhulong River catchment, semi-arid catchment, human activities, hydrological process, GR4J model,
hydrological modelling

INTRODUCTION

The evolution of water cycle under the changing environment is a very complex process, which has
been an important issue in the “Panta Rhei-Everything Flows” project (2013-2022) of THAS
(International Association of Hydrological Science) (Montanari et al., 2013). Climate change and
human activities are two main driving factors affecting water cycle process under the changing
environment (Wang et al., 2020). In the context of global warming, the temporal and spatial
distribution of precipitation, evaporation and runoff have changed significantly (Dai et al., 2018;
Charles et al., 2020). While human activities have changed the hydrological process in a basin by
means of urban expansion, water extraction, water conservancy project construction and so on (Song
et al., 2013; Liang et al., 2020). The acceleration of urbanization has not only changed underlying
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surface of the basin, but also changed runoff yield and confluence
laws as well as groundwater recharge conditions (Wang et al,
2018). The development of industrial and agricultural production
has caused a substantial increase in water resources consumption,
which results in corresponding changes in surface runoff, dry
season runoff and groundwater level (Leng et al., 2015; Yang P.
et al., 2017). The construction of water conservancy projects can
effectively reduce discharge in high flow seasons and increase
discharge in low flow seasons to a certain extent (Wang et al,
2019; Varentsova et al., 2020).

Hydrological models are mathematical models constructed to
simulate hydrological cycles and describe hydrophysical
processes. They are essential means to study the laws of
hydrology and nature (Xu, 2010; Krysanova et al., 2020) and
effective tools to solve practical problems, e.g., hydrological
forecasting, resources management, and water
conservancy project planning and design (Musuuza et al,
2020; Thatch et al., 2020; Turner et al., 2020). Liu et al. (2019)
applied the VIC model to forecast the annual maximum floods
and annual first floods in the YarlungZangbo River based on
precipitation and temperature data, and provided an early
warning with extended lead time. Maier and Dietrich (2016)
investigated the application of SWAT model for the development
of water saving irrigation control strategies in Northern Germany
and showed a future increase of irrigation demand in humid
regions. Du et al. (2016) adopted the Xinanjiang model to
simulate inflows of reservoirs and flood hydrographs of all
sub-catchments in the Ganjiang River basin and established
simple reservoir operation rules for calculating outflows.

Previous studies have shown that most of the hydrological
models can simulate streamflow processes well in humid and
semi-humid regions, but hydrological modelling in arid and
semi-arid regions has always been a great challenge to
hydrologists, particularly under the changing environment
(Molina-Navarro et al., 2016; Bugan et al., 2020). The GR4]
model, as a lumped conceptual model, has been widely applied
in various climate regions of the world because of its distinctive
characteristics in principle and structure (Boumenni et al., 2017;
Sezen and Partal, 2019). Zeng et al. (2019) investigated the
predictive ability and robustness of the GR4J] model with time-
varying parameters under changing environments and improved
the performance of streamflow simulations in Wei River Basin.
Ghimire et al. (2020) used a range of hydrological modelling
approaches for flow simulation and forecasting in the
Ayeyarwady Basin and revealed that the GR4] model
performed best in simulations and yielded the least biases in
daily flow forecasting. Grigg and Hughes (2018) implied a
modified GR4] model in a forested headwater catchment in
southwest Australia and improved the predictions for
catchments with significant changes in vegetation cover.

Studies on changes in hydrological sequence and simulation
under the changing environment for large size rivers, e.g., the
Amazon River (Jahfer et al, 2020), Yangtze River (Sun et al,
2019), Yellow River (Huo et al., 2020) have attracted sufficient
attentions from river managers and state authorities. However,
regional flooding and water shortage issues have been
increasingly serious during the past decades due to global

water
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warming and increasing water demand (Wilkinson et al., 2019;
Omer et al., 2020), and attention to these issues should be paid as
well. The Daqing River is an important tributary of Hai River, and
the Beijing-Tianjin-Hebei region in Daqing River basin is the
political, cultural and technological center of China, as well as an
important engine for the country’s economic development (Li
et al., 2016). Since the 1980s, human activities have caused
significant changes in the underlying surface of this basin, and
runoff has decreased severely. However, the rapid development of
Daging River basin increases the demand for water resources,
resulting in prominent problem of water shortage (Cui et al,
2019). It is therefore of great significance to investigate variation
characteristics of hydrological series and hydrological modelling
under such an changing environment to support water resources
management and flood control of the Daging River basin. Taking
the Zhulong River catchment, an agricultural catchment in the
Daging River basin as a case, the main objectives of the paper are
to investigate changes in hydrological process in different periods
and to test performance of the GR4J model for extension of the
model application to catchments in semi-arid regions.

DATA AND METHOD

Study Catchment and Data Sources

The Zhulong River is in southern branch of the Daqing River in
Hai River basin, and consists of three tributaries: the Sha, Ci and
Mengliang rivers. It stretches from Taihang Mountains in the
west to Baiyang Lake in the north, crossing 14 counties and cities
in Shanxi and Hebei provinces. The Beiguocun hydrometric
station (east longitude 115°23'E, north latitude 38°19'N) is the
control station of Zhulong River, covering a drainage area of
8,550 km®. The main channel is 261.3km long, with a
longitudinal slope 2.5%o0 and an average basin width 88.5 km.
Terrain of the catchment is high in the northwest and low in the
southeast. The upper reaches are covered by forested mountains,
middle reaches are mainly undulating hills, and lower reaches are
dominated by flat plains (Figure 1). The Zhulong River
catchment is in the temperate semi-arid continental monsoon
climate zone with an annual average temperature of 12.2°C. It has
a mean annual precipitation of 523.0 mm which is extremely
uneven with more than 80% concentrated in flood season. There
are three large reservoirs in the catchment - Wangkuai, Koutou
and Hengshanling reservoirs which are located on the Sha river,
Sha river’s tributary Gao river and Ci river, respectively. Each of
the three reservoirs has a storage capacity of more than 100
million m?, among which the Wangkuai Reservoir has the largest
capacity, about 1.39 billion m®. The control area of these
reservoirs accounts for 51% of the total catchment, with main
functions flood control and irrigation, as well as power generation
and aquaculture.

Taking the Zhulong River catchment controlled by Beiguocun
Hydrological Station as a study area, the DEM elevation data with
a resolution of 30 m were obtained from the ASTER GDEM data
set (http://www.gscloud.cn). The daily runoft data from 1967 to
2015 were extracted from the Hydrological Yearbook issued by
the Ministry of Water Resources, China. Daily precipitation and
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FIGURE 1 | The terrain, drainage and stations distribution of the Zhulong River catchment.
daily average air temperature over 1967-2015 were collected from  GR4J Model

the China Meteorological Administration (CMA, http://cdc.cma.
gov.cn). The evaporation was calculated using Penman’s formula
based on the daily data set of surface climate from CMA, then the
data of precipitation, runoff and evaporation were compiled and
processed as inputs to drive the hydrological model.

Methodologies

Research Framework

Based on the study catchment and collected data sets, this paper
investigated the variation trends of hydrometeorological variables
(precipitation, temperature and runoff) from 1967 to 2015 by using
Mann-Kendall rank test. Based on date sequence segment of
streamflow, relationships between runoff and precipitation as well
as hydrological processes under a same precipitation condition were
investigated for different segmented periods. Finally, the GR4] model
was applied to simulate daily and monthly discharge for periods with
different degrees of human disturbance to reveal the impact of
environmental changes on hydrological modelling. The research
framework is shown in Figure 2.

Mann-Kendall Rank Test

The Mann-Kendall rank test is a nonparametric method to
evaluate trends in time series of climate and hydrological
elements (Mann, 1945; Kendall, 1955). The method can
effectively distinguish whether a certain time series is in a
natural fluctuation or a certain trend without a specific
distribution test and has been widely applied all over the world
(Caloiero, 2017; Hu et al., 2020). The standardized statistic Zx of
the time series is defined (Yang Z. et al., 2017), with a positive value
representing an upward trend, while a negative one indicating a
downward trend. If | Z x| < Z,2, the trend was not significant. For
a significance level a = 5%, then Z,, = 1.96.

The GR4] model is a conceptual lumped hydrological model,
proposed by French researchers (Oliveira et al., 1999). It has
been verified in more than 400 regions with different climatic
conditions after continuous improvement and development by
hydrological scholars (Perrin et al., 2003; Moine et al., 2008). So far,
the model has been widely used in water resources management,
flood forecasting, and low flow forecasting in global catchments
(Dhemi et al., 2010; Aufar and Sitanggang, 2020). The GR4J model
is divided into two modules: production store and routing store,
and both of them are calculated by a nonlinear reservoir. The main
calculation process is shown in Figure 3.

When calibrating the model, the value ranges of model parameters
are determined, then different parameter sets are selected to run the
model, and objective functions are calculated to reflect pros and cons
of simulation results until the optimal. In order to better reflect the
effect of hydrological model on runoff simulations, the Nash Sutcliffe
Efficiency (NSE) and Relative Error (RE) are selected to describe the
degree of agreement between simulated discharge series and observed
one (Nash and Sutcliffe, 1970).

RESULTS AND DISCUSSION

Variability of Annual Runoff in the Context of

Intensive Human Activities

Precipitation and temperature are the most significant
meteorological elements affecting the variations of runoff. The
long-term variations of annual precipitation, air temperature over
the catchment and the observed runoff at the Beiguocun
hydrometric station during 1967-2015 are shown in Figure 4.
The variation trends of annual precipitation, temperature and
runoff were tested by using Mann-Kendall rank test and
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FIGURE 3 | Structure of the GR4J model (Oliveira et al., 1999).

P actual precipitation (mm)

E potential evapotranspiration (mm)

Q runoff (mm)

S water content in production store (mm)
R water content in routing store (mm)

Model parameters:

x1 maximum capacity of the production store (mm)

x2 groundwater recharge coefficient

x3 one day ahead maximum capacity of the routing store (mm)
x4 time base of unit hydrography (days)

summarized in Table 1, in which slope coefficient (S) illustrates
the magnitude of upward or downward trend of a series.
Figure 4 and Table 1 show that the annual temperature series
exhibited a significant upward trend with a linear rising rate of
0.29°C/10 years, while annual precipitation series presented a
slight upward trend (10.39 mm/10 years). Although the climate
was getting warmer and wetter in the Zhulong River catchment
during 1967-2015, the observed runoff series exhibited a
significant downward trend with a linear decline rate of
9.21 mm/10 years probably due to the influence of human
activities. According to the records in the local year book
series, numerous water conservancy projects have been

constructed successively in the Zhulong River catchment since
1970s for supporting industrial and agricultural development
(Zheng et al,, 2020). The continuous increase in water supply
led to a decline in runoff series because of pumping water from
the stream (Li et al., 2019). According to the degree of human
activities disturbance and long-time variations of runoff, the
research sequence is divided into three periods: the natural
period of 1967-1979 in which the catchment kept a natural
state with limited human activities; the moderate human
impact period of 1980-1996 in which water conservancy
projects were in operation and human activities was gradually
intensified; the intensive human impact period of 1997-2015 in
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TABLE 1 | Trend test results of annual precipitation, temperature and runoff during
1967-2015.

Elements S Trend ZMK Significance
Annual precipitation 1.039 mm/year T 1.302 No
Annual temperature 0.029°C/year T 4.973 Yes
Annual runoff —0.921 mm/year l -5.260 Yes

which, industry and agriculture were both highly developed, and
human activities had a strong and stable impact.

Relationships Between Runoff and
Precipitation in Different Periods

In order to analyze the relationships between runoff and
precipitation in the Zhulong River catchment under a
changing environment, the runoff-precipitation scatter plots of

the three periods on monthly and annual scales are shown in
Figure 5. The average seasonal distribution of observed runoff in
the three periods is shown in Figure 6.

Figure 5 shows that correlations between runoff and
precipitation in natural period was higher than those in
periods with human disturbance, the correlation decreased
with the intensification of human activities. The runoff-
precipitation scattered points moved downward with the
passage of time, which meant that the runoff generated by a
same magnitude of precipitation decreased continuously.
Figure 6 shows that runoff concentrated in flood season from
July to October for all the three periods. In natural period, runoff
in flood season accounts for 76% of the annual total. Monthly
runoff in human disturbed periods was much lower than that in
natural period, particularly for the intensive human impact
period. For August, runoff in moderate and intensive human
impact periods decreased by 60.0 and 99.5% relative to that in
natural period.

O 1967-1979 O 1980-1996 © 1997-2015 Linear fit of 1967-1979 Linear fit of 1980-1996 Linear fit of 1997-2015
80 150
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FIGURE 5 | Relationships between runoff and precipitation on monthly (A) and annual (B) scales of the Zhulong River catchment during 1967-2015.
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FIGURE 6 | The average seasonal distributions of observed runoff in the
Zhulong River catchment during 1967-2015.

Changes in Daily Discharge Process for
Typical Years With a Same Precipitation

Situation
Human activities have not only changed the correlation between
runoff and precipitation, but also altered the process of runoff yield
and confluence. In different periods and under different intensities of
human activities, the runoff processes are different even with a same
precipitation situation. Research years are classified according to the
percentage of precipitation anomalies (Kasei et al., 2010) from 1967 to
2015 (Figure 7), into wet years (PA > 15%), normal years (-15% < PA
< 15%) and dry years (PA < -15%) (Zhu et al., 2019). There are four
wet years, five normal years and four dry years in natural period, four
wet years, nine normal years and four dry years in moderate human
impact period, three wet years, 11 normal years and five dry years in
intensive human impact period. Then typical wet, normal and dry
years are selected based on the classification results in different
periods to compare daily discharge processes, as is shown in
Figure 8 (wet years are 1977, 1996, and 2013; normal years are
1978, 1991, and 2010; dry years are 1974, 1986, and 1999). The
hydrological element information of typical years is shown in Table 2.
Figure 8 shows that the precipitation could always generated
runoff in natural period, no matter in the wet year, normal year or
dry year. During the moderate human impact period, the discharge
process occurred only in wet and normal years. The flow ran dry for
most time in intensive human impact period except for a certain runoft
in the wet year. The peak discharge of typical years decreased with the
intensification of human activities even under the same precipitation
situation. The peak discharge of the wet year in natural period is
653 m’/s, it drops to 378 m*/s in moderate human impact period and
3.74m’s in intensive human impact period. In natural period,
precipitation in dry season could produce obvious discharge (from
January to June in 1974, 1977, and 1978), but the flow in dry season
was almost zero in human disturbed periods and discharge processes
tended to rise and fall steeply. Statistical results in Table 2 shows that
the runoff of typical years varied greatly in different periods even
though there was little difference in annual precipitation. Compared
with the natural period, runoff in moderate and intensive human
impact period decreased by 11.4 and 99.3% for wet years, 79.4 and

== Natural period

= Moderate human impact period

= [ntensive human impact period
—5-yr moving average

45

1967 1972 1977 1982 1987 1992

ime

1997 2002 2007 2012

FIGURE 7 | The percentage of precipitation anomalies during
1967-2015 in the Zhulong River catchment.

100% for normal years, 100 and 100% for dry years, respectively.
Human activities had a greater impact in normal and dry years.

Hydrological Modelling for the Zhulong
River Catchment in Natural and Human
Disturbed Periods

In order to evaluate the performance of streamflow simulation in
the Zhulong River catchment under the complex changing
environment, data series of the three periods were segmented
into calibration and verification periods. Then the GR4] model
was applied to simulate daily and monthly discharge. The
performance of GR4] model in the Zhulong River catchment
is presented in Table 3. Daily and monthly observed and
simulated discharge is shown in Figure 9.

Tables 3 and Figure 9 show that the GR4J model could
perform well in natural period (1967-1979) with daily and
monthly NSEs of calibration period reaching 0.62 and 0.82,
respectively, the REs were controlled within 5% on both scales.
Additionally, the daily and monthly NSEs of verification period
could reach 0.58 and 0.79, respectively, the REs were controlled
within 20%. However, performance of the model was not
satisfactory in human disturbed periods, with NSEs no greater
than 0.3 during the moderate human impact period (1980-1996)
and even less than zero during the intensive human impact period
(1997-2015). Furthermore, the REs fluctuated with large amplitude
and all exceeded 100% for both calibration and verification periods.
During the moderate human impact period, the GR4J model could
simulate a few flood peaks when precipitation and runoff were high
enough, and discharge in the rest time was always over simulated.
The observed discharge mostly approached zero during the
intensive human impact period, meaning that the runoff had
very little response to precipitation. This demonstrated that the
GR4J model could not depict the laws of runoft yield and confluence
any more under the complex changing environment. In Figure 9,
most of the simulated peaks were smaller than observed ones in
flood season during the natural period, which was more obvious on
daily scale. This phenomenon also occurred in moderate human
impact period even when there were only a few peaks being
simulated. The main reason is that the Zhulong River is located

Frontiers in Earth Science | www.frontiersin.org

124

September 2021 | Volume 9 | Article 759534


https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Liu et al.

Changes and Simulations in Semi-Arid Basin

1200 T H,] Wi - T wIW ”1 T 0
[}
900 - Q 19
4
5 £
>E 600 F {1208
0 &
=
300 - 4180 4180 2+ 4180
140 |
1977 1996 2013
0 . 240 0 . Al =240 0 . : : 240
197711 1977/3/26  1977/6/18  1977/9/10  1977/12/3 1996/1/1  1996/3/25  1996/6/17  1996/9/9  1996/12/2 2013/1/1  2013/326  2013/6/18  2013/9/10  2013/12/3
Time Time Time
360 50 — ||| T ] — 1
40 F
270 ‘ L
] —Q
P 30
ERCRT 1
£5
5] 20t
Z
90 - 460 160 460
10F 02
1978 1991 2010
0 -J L, : L g9 0 : L . g0 0.0 L v v — 80
1978/1/1  1978/3/26  1978/6/18  1978/9/10  1978/12/3 1991/1/1  1991/3/26  1991/6/18  1991/9/10  1991/12/3 2010/1/1  2010/3/26  2010/6/18  2010/9/10  2010/12/3
Time Time Time
300 0
240
20
é
5 2180 0
>E {40E & {40 40§
23S 5 s =
A Tizof o4t
160 460 60
60 02t
L 1974 1986 1999
1974/1/1  1974/3/26  1974/6/18  1974/9/10  1974/12/3 1986/1/1  1986/3/26  1986/6/18  1986/9/10  1986/12/3 1999/1/1  1999/3/26  1999/6/18  1999/9/10  1999/12/3
Time Time Time
Natural period Moderate human impact period Intensive human impact period
FIGURE 8 | Daily discharge processes for typical years with a same precipitation situation in different periods.
TABLE 2 | Hydrological element information of typical years in different periods.
Periods Wet years Normal years Dry years
Year P (mm) R (mm) Year P (mm) R (mm) Year P (mm) R (mm)
Natural period 1977 752.7 72.0 1978 487.5 42.7 1974 4221 20.6
Moderate human impact period 1996 750.5 63.8 1991 484.8 8.8 1986 416.5 0
Intensive human impact period 2013 684.4 0.5 2010 483.4 0 1999 416 0

TABLE 3 | Performance measurements of the GR4J model for daily and monthly discharge simulations in the Zhulong River catchment.

Periods

Natural period

Moderate human impact period

Intensive human impact period

Time

1967-1975
1976-1979
1980-1990
1991-1996
1997-2010
2011-2015

Scale

Daily
Monthly
Daily
Monthly
Daily
Monthly

Calibration period

Validation period

NSE RE (%) NSE RE (%)
0.62 44 0.58 18.3
0.82 4.1 0.79 18.3
0.11 361.9 0.22 149.0
0.11 361.9 -0.15 149.0
-30.67 1,345.7 —-739.02 2014.6
-13.80 1,345.7 -606.25 2014.6
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FIGURE 9 | Daily (A) and monthly (B) simulated and observed discharge (m3/s) during the three periods in the Zhulong River catchment.
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in the semi-arid area, and runoff generation mechanism is
dominated by the excess infiltration. While the GR4J, as a
lumped hydrological model, cannot capture the changes in high
intensity rainfall events accurately, resulting in smaller simulated
peaks. All in all, the GR4J model may be useful for investigating
streamflow simulations in the Zhulong River catchment during the
natural period but gradually loses its applicability with the
intensification of human activities.

DISCUSSION

Climate change and human activities are two dominant factors
affecting the hydrological cycle. Climate change affects the total
amount of water resources and their spatial and temporal
distribution mainly through variations of precipitation and
temperature. The impacts of human activities on runoff can be
divided into direct ones caused by water resources development and
utilization and indirect ones caused by changes in the underlying

surface of the catchment. With upward trends in annual precipitation
and temperature from 1967 to 2015, human activities might be a
main reason for runoff decrease in the Zhulong River catchment.
Since the late 1960s, a number of large and small reservoirs
(Wangkuai Reservoir and so on) have been successively established
in the Zhulong River catchment. The reservoir regulation not only
ensures water demand for industrial and agricultural development,
but also affects the fluctuation of natural runoff. The inflow changes
of Wangkuai Reservoir during 1967-2015 is shown in Figure 10.
Figure 10 shows that although the Wangkuai reservoir is
located in the upstream of Zhulong River and its controlled area
only accounts for 44% of the total catchment, the inflow of the
reservoir during 1967-2015 is always larger than that of
Beiguocun hydrometric station. The reservoir plays a crucial
part in regulating natural discharge of the catchment, with
flood control in high flow years and water storage in low flow
years, the regulation in low flow years is more significant in the
Zhulong River catchment. During the intensive human impact
period (1997-2015), when flow of the catchment always ran dry,
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FIGURE 10 | Variations of annual flow (10® m®) in the Wangkuai reservoir
and Beiguocun hydrometric station.

the stored water in reservoirs ensured normal production and life
of this area. As one of the main agricultural areas in North China
Plain, the Zhulong River catchment is mainly covered by
farmland and grassland. During the study period, with
decrease of runoff in this catchment, water area shrank
gradually, resulting in the changes of agricultural production
structure (paddy field area decreased while dry land area
increased). Meanwhile, with the acceleration of urbanization,
impervious area (urban and rural land) in this catchment
increased significantly, shortening the confluence time of runoff.

With the influence of human activities, the contradiction
between supply and demand of water resources in the Zhulong
River catchment and even the whole Hai River basin gradually
intensified. The annual water resources and water consumption of
Hai River basin during the intensive human impact period
(1997-2015) show that although industrial structure has been
optimized and water use efficiency has been improved since the
21th century, the amount of water resources is always less than water
consumption, with years in this period mostly normal and low flow
years except for a high flow year 2012. Since 2003, water for natural
environment has been included into the statistical category of water
resources in China, and has grown at a rate of 170 million m® per
year in Hai River basin, which further exacerbates water stress in this
area. During the intensive human impact period, the Hai River basin
cannot achieve self-sufficiency in water resources, and it meets the
daily needs of production and life mainly through inter-basin water
transfer projects (the Yellow River Diversion Project and South-to-
North Water Diversion Project), the Zhulong River catchment is the
same. In general, the influence of human activities on runoff in the
Zhulong River catchment is mainly reflected in reservoir regulation,
land use change and water resources utilization. In addition, due to
severe shortage of water resources, groundwater in this area has been
seriously overexploited, which results in a decline in groundwater
level, as well as a reduction of runoff in this catchment.

The influence of human activities on runoff was limited during
the natural period, so the GR4] model could capture main
features of hydrological processes and obtain a good
simulation accuracy for the Zhulong River catchment.
However, the intensification of human activities affects not
only hydrological regimes, but also hydrological modelling, as
it complicates the regional water cycle process. Tests of challenges

Changes and Simulations in Semi-Arid Basin

to hydrological modelling in semi-arid catchments under the
changing environment should be enhanced in further studies.

CONCLUSION

The annual precipitation and temperature both presented upward
tends by Mann-Kendall rank test, with rising rates 10.39 mm/10 years
and 0.29°C/10 years respectively, while the annual runoff exhibited a
significant downward trend with a decline rate of 9.21 mm/10 years
probably due to the influence of human activities. According to the
degree of human disturbance and long-time variations of runoff, the
research sequence was divided into three periods (natural period
from 1967 to 1979, moderate human impact period from 1980 to
1996 and intensive human impact period from 1997 to 2015) to
investigate the changes in hydrological process and hydrological
modelling under the changing environment.

Correlations between runoff and precipitation in natural period
were higher than those in periods with human disturbance on
monthly and annual scales. The correlation decreased with the
intensification of human activities. Runoff concentrated in flood
season from July to October for all the three periods. Monthly
runoff in human disturbed periods was much lower than that in
natural period, particularly for the intensive human impact period.
Both annual runoff and peak discharge in human disturbed periods
decreased relative to those in natural period with a same
precipitation situation due to the environmental changes.
Human activities had a greater impact in normal and dry years.

The GR4J model performed well for streamflow simulations in
the Zhulong River catchment during the natural period.
However, the model’s performance was not satisfactory in
periods with human disturbance. During the moderate human
impact period, the GR4] model could still catch several flood
peaks, but when came to the intensive human impact period, the
model completely lost its applicability.

Changes of underlying surface have altered the confluence process
in the catchment, and human activities like water resources utilization
and water conservancy projects have a more significant and direct effect
on runoff reduction, which presents more challenges for hydrological
simulations in semi-arid areas. It also raises higher requirements for
hydrological models to quickly assess water resources under the
changing environment with complex human disturbance.
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Shaowei Ning
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Based on the spatial distribution characteristics of the summer monsoon rain belt, Anhui
Province of China is divided into three regions, namely, the south of the Yangtze River
region (SYA), the Yangtze-Huai region (YHA), and the north of the Huaihe region (NHA). The
western Pacific subtropical high (WPSH) ridge and the number of regional rainy days are
adopted to identify the onset and ending dates of Meiyu and Huang-Huai rainy seasons
during 1957-2020, using China’s national standard on “Meiyu monitoring indices.” Then
precipitation characteristics of these three regions during Meiyu and Huang-Huai rainy
seasons are investigated. Finally, the return periods of the precipitation during the
northward movement of summer monsoon over Anhui Province are calculated. The
results show that there are 7years without the occurrence of Huang-Huai rainy
season, but 8years with the occurrence of two Meiyu periods and 5 years with two
Huang-Huai rainy periods. Thus, there is only one Meiyu period and one Huang-Huai rainy
period in the rest 49 years. For the first Meiyu period during 1957-2020, the average onset
and ending dates are 14th June and 10th July, respectively, while the corresponding
precipitation presents a decreasing tendency from south to north regions in Anhui
Province. For the first Huang-Huai rainy period during 1957-2020, the average onset
and ending dates are 10th July and 23rd July, respectively, and the corresponding
precipitation shows an increasing tendency from south to north regions. For the
northward movement of summer monsoon over Anhui Province, the average onset
and ending dates are 14th June and 25th July, respectively, and the corresponding
precipitation in NHA is close to that in YHA, but less than that in SYA. Annual precipitation in
SYA, YHA, and NHA are 999.5, 1010.6, and 618.7 mm, respectively, during the northward
movement of summer monsoon over Anhui Province in 2020, and the corresponding
return periods are 56.0, 161.6, and 29.2 years, respectively.

Keywords: precipitation characteristics, Meiyu, Huang-Huai rainy season, return period, subtropical high ridge,
Anhui Province

INTRODUCTION

East Asian summer monsoon (EASM) is the most important as well as the specific climate
phenomenon over East Asia (Huang et al, 2015; Bombardi et al, 2017; Xu et al, 2021).
Summer precipitation in the Eastern Monsoon Region of China (EMRC) is dominated by
EASM, resulting in a relatively high occurrence frequency of severe disasters, such as floods and
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droughts (Xia et al., 2017; Yang et al., 2020). Anhui Province is
located across both the eastern monsoon region and the north-
south climate transition zone of China. Affected by the weather
systems at low and mid-to-high latitudes, the precipitation
characteristics in Anhui Province are complicated to identify.
Recently, severe droughts and floods have occurred in Anhui
Province, especially the consecutive drought over the region of
the Yangtze-Huaihe River Basin in 2019, and the floods over the
Yangtze River Basin and the Huaihe River Basin in 2020.
Therefore, a thorough understanding of precipitation
characteristics during the period of the northward movement
of summer monsoon over Anhui Province is needed for disasters
forecast and prevention.

Previous studies about regional precipitation typically focus
on the statistical analysis of the temporal and spatial distribution
of extreme precipitation in terms of the trend, abrupt change, and
the return period with various time scales for administrative
convenience, such as day, month, and season (Wang and Xu,
2002; Ye, 2012; Tang and Chen, 2015; Wang et al., 2015; Ding
etal., 2016; Huang et al., 2020). However, there is seldom research
focusing on process characteristics of precipitation from the
perspective of the large-scale weather systems (Sun and Zhu,
2013; Zhang et al., 2019; Zhang et al., 2020). Precipitation resulted
from summer monsoon and typhoons is the two most dominant
components of precipitation in flood season in Anhui Province.
The variation of summer monsoon precipitation is relatively
smaller than that of typhoon precipitation. Thus the summer
monsoon precipitation characteristics, including the onset,
ending dates, and precipitation amounts during the period of
the northward movement of summer monsoon affecting Anhui
Province are the scientific and reasonable basis for phase division
of scheduling scheme of reservoir, and it also can provide support
for the determination of time step for the run theory-based
drought process identification with clear physical meaning.
Then the issues related to the widely applied monthly
precipitation drought index may be solved. The monthly
precipitation drought index may not completely reflect
precipitation process associated with a large-scale weather
system longer than 1 month, which does not begin on the first
day nor end on the last day of a month.

Obviously, reservoir operation for flood control and drought
relief is strongly subjected to precipitation associated with the
large-scale weather systems. The period from the onset of Meiyu
season to the end of the Huang-Huai rainy season is the main
stage of the summer monsoon main rain belt affecting Anhui
Province. The associated precipitation is the most important
component of summer precipitation and determines the
precipitation characteristics in the flooding season (Water
Resources Department of Anhui Province, 1998; Wang et al.,
2018) as well as the regional drought and flood pattern. So this
study aims, and would be the first, to uncover the characteristics
of precipitation during Meiyu and Huang-Huai rainy seasons in
Anhui Province based on the synoptic indices, so as to provide
data support for the schedule of reservoir operation and flood/
drought disasters prevention.

During Meiyu season, the precipitation in Anhui Province
mainly lies in the south of the Yangtze River region in Anhui
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Province (SYA) and Yangtze-Huai region in Anhui Province
(YHA), while there is little precipitation in the north of Huaihe
region in Anhui Province (NHA) (Liang et al., 2007; Ninomiya,
2009). During the Huang-Huai rainy season, the precipitation
mainly concentrates in the NHA region, while SYA and YHA are
controlled by the northwest Pacific subtropical high (hereinafter,
SH) pressure zone with very little precipitation.

Therefore, according to the distribution characteristics of the
summer monsoon rain belt, Anhui Province can be divided into
three regions, namely, SYA, YHA, and NHA. Zhou et al. (2021)
analyzed the characteristics of precipitation during Meiyu season
in three regions of Anhui Province. However, they have not
studied the precipitation during Huang-Huai rainy season, which
may be the most important component of summer precipitation
in NHA. In light of this, firstly in this study, Meiyu season and the
Huang-Huai rainy season in Anhui Province were identified for
the above three regions each year. Following that, the temporal
and spatial distribution characteristics of precipitation were
analyzed from the perspective of large-scale weather processes.
The trend variation and the return period of the precipitation
during the period of the northward movement of summer
monsoon affecting Anhui Province were also specified. The
analysis results can provide scientific support for the planning,
design, and operation management of the regional water
conservancy project, rational use of regional water resources,
and decision making on countermeasure for flood and drought
disasters mitigation.

The rest of this article is organized as follows. In the section
“Materials and Methods,” the methods for identifying the
characteristics of Meiyu season and Huang-Huai rainy seasons
are presented. In the section “Results and Discussion,” the
precipitation characteristics of Meiyu and Huang-Huai rainy
seasons during 1957-2020 in terms of the duration, onset and
ending dates, total amount, and return periods are derived,
especially for the year 2020 with severe flood. Conclusion is
the last section.

MATERIALS AND METHODS

Identification Methods of Meiyu and
Huang-Huai Rainy Seasons

Meiyu is a unique weather and climate phenomenon that occurs
over China’s Yangtze-Huai River valley, the southern part of the
Korean Peninsula, and mid-south regions in Japan from mid-
June to early-to-mid July (Ge et al., 2008; Wang, 2020). Generally,
Meiyu season is determined by the consecutive summer monsoon
precipitation resulting from the move of SH, whose ridge
surpasses 20°N for the first northward jump in mid-June, then
stagnates at 20-25°N over the above regions (Liang et al., 2007;
Zhang, 2007; Ge et al., 2008; Liu and Ding, 2008; Liu et al., 2012;
Wang et al., 2018). Following that, in the mid July, the SH ridge
surpasses 25°N for the second northward jump, then stagnates at
25-30°N over the region between the Huang River and the Huai
River Basin. Correspondingly, the summer monsoon main rain
belt forms the so-called Huang-Huai rainy season. Apart from
SH, the central location and the range of the main rain belt of the
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summer monsoon are also affected by other climatic factors, such
as the South Asian high, East Asian congestion, and the Indian
monsoon (Liang et al., 2007). In previous studies, the proposed
thresholds and criteria for identifying Meiyu season and Huang-
Huai rainy season are typically different from each other until the
implementation of the “Meiyu monitoring indices (GB/T 33671-
2017)” from the National Standard of China in 2017 (National
Climate Center of the China Meteorological Administration et al.,
2017; Zhao et al., 2018).

Based on the “Meiyu monitoring indices (GB/T 33671-2017)”
(National the China Meteorological
Administration et al., 2017), this study uses the position of the
SH ridge (National Climate Center of the China Meteorological
Administration, 2016) and the length of rainy days as the indices
to identify the characteristics of Meiyu season and Huang-Huai
rainy seasons; that is, the first rainy day when the SH ridge
exceeds 19°N for 5 consecutive days is defined as the starting time
of Meiyu season. The first day when the SH ridge exceeds 25°N for
5 consecutive days is regarded as the earliest possible ending date
of Meiyu season, and the first day when the SH ridge exceeds 27°N
for 5 consecutive days is regarded as the latest possible ending
date of Meiyu season. If the precipitation in the north of the
Huaihe region in Anhui Province suddenly increases or shifts
from a non-rainy day to a rainy day while the precipitation in the
south of the Yangtze River region of Anhui Province decreases or
shifts from a rainy day to a non-rainy day, this day is
characterized as the beginning date of Huang-Huai rainy
season and the previous day is regarded as the ending date of
Meiyu season. When the SH ridge exceeds 30°N for 5 consecutive
days, the day before the occurrence of non-rainy days in the north
of the Huaihe region is defined as the ending date of Huang-Huai
rainy season. If the first 5 days of the SH ridge exceeding 30°N are
all non-rainy days, then the last rainy day before the SH ridge that
reaches 30°N is regarded as the ending date of Huang-Huai rainy
season. If the SH ridge does not exceed 30°N for 5 consecutive
days, that is, the SH ridge does not cross 30°N and withdraw
southward, the last rainy day before the SH ridge reaching the
northernmost tip is taken as the ending date of Huang-Huai rainy
season. Generally, after Huang-Huai rainy season, the SH ridge
jumps north again and North China and Northeast China would
enter the rainy season. However, after the end of Huang-Huai
rainy season, if the SH ridge does not immediately jump
northward, but first moves southward, such a climatic process
leads to the second Meiyu season. After that, the SH ridge jumps
northward again or withdraws southward. Under the condition of
the jumping northward again, the date that fulfills the conditions
for ending the Huang-Huai rainy season is considered as the
ending date of the second Huang-Huai rainy season.

Climate Center of

Data
According to “Meiyu monitoring indices (GB/T 33671-2017)”
(National Climate Center of the China Meteorological

Administration et al, 2017) and “Monitoring Indices of
Northwest Pacific Subtropical High (QX/T 304-2015)”
(National Climate Center of the China Meteorological
Administration, 2016), the processes of Meiyu and Huang-
Huai rainy seasons are identified mainly according to the
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atmospheric  circulation conditions and meteorological
elements. The SH ridge is mainly adopted as an atmospheric
circulation element, and the rainy periods, rainy days, and
temperature are represented as meteorological elements. The
position of the SH ridge refers to the average position of the
ridge of SH on each meridian within 110-130°E. Regional rainy
days are specified when more than 1/3 of the regional stations
have daily precipitation amount more than 0.1 mm and the
average daily precipitation amount of all the stations in the
region exceeds 2.0 mm. The upper-air circulation data used to
calculate the SH ridge are the daily average 500 hPa geopotential
height and zonal wind speed in the NCEP/NCAR reanalysis data
of the United States. The data used to determine the regional
rainy days is the daily precipitation of the observation stations in
Anhui Province during 1957-2020.

So the required data to identify Meiyu and Huang-Huai rainy
processes is obtained as follows: the upper-air circulation data
adopts the daily average 500 hPa geopotential height and the
zonal wind speed. The data can be freely downloaded from the
NCEP/NCAR reanalysis project’s webpage: https://psl.noaa.gov/
data/gridded/data.ncep.reanalysis.html. The meteorological data
including daily precipitation and average temperature are
obtained from 15 observation stations in Anhui Province
during 1957-2020, which 1is provided by the China
Meteorological Data Network (http://data.cma.cn). Other
related data of precipitation, flood, and drought disasters are
collected from the National Hydrological Annual Report
provided by Information Center, Ministry of Water Resources,
PRC. (http://xxzx.mwr.gov.cn/xxgk/gbjb/sqnb).

RESULTS AND DISCUSSION

Identification of Meiyu and Huang-Huai

Rainy Seasons in Anhui Province

Provided by the China Meteorological Data Network, Anqing
(the station has no data during 2017-2020, which is replaced by
Ma’anshan station), Ningguo, and Tunxi stations are the
representative stations for the SYA region. The six stations
including Chaohu, Hefei, Chuzhou, Lu’an, Huoshan, and
Shouxian are representative stations for the YHA region. Five
stations in Fuyang, Bengbu, Bozhou, Suzhou, and Dangshan are
the representative stations for the NHA region. All of the above
stations are shown in Figure 1 (Zhou et al., 2021).

The onset and ending dates of Meiyu and Huang-Huai rainy
seasons are identified by the position of the SH ridge and the rainy
days as listed in Supplementary Appendix Table Al in
Appendix.

Supplementary Appendix Table A1 shows the following: 1)
During 1957-2020, there are 7 years without the occurrence of
Huang-Huai rainy season (only with Meiyu season), which are
1968, 1982, 1999, 2014, 2015, 2016, and 2018. At the end of Meiyu
season, the SH ridge surpassed 30°N directly in 1968, 1982, 1999,
and 2018. Differently, Meiyu season of 2014 ended on 17th July,
and the SH ridge was located among 27-30°N on 18th and 19th
July (precipitation amount in SYA, YHA, and NHA was 3.5, 0.0,
6.2mm, respectively). On 20th July, the SH ridge jumped
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FIGURE 1 | Location of rain gauge stations in Anhui Province.
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northward over 30°N. Meiyu season in 2015 ended on 26th July.
Only on 27th July, the SH ridge was located at 27-30°N (the daily
precipitation amount in SYA, YHA, and NHA was 0.0, 0.1, and
6.2 mm, respectively), and the SH ridge jumped northward over
30°N after 27th July. Meiyu season of 2016 ended on 22nd July. The
SH ridge was located at 27-30°N on 23rd and 24th July (there was
no precipitation in SYA, YHA, and NHA). After that, the SH ridge
jumped northward over 30°N. 2) For the 5 years of 1957, 1973,
1977, 1998, and 2009, the SH ridge first laid in the typical range of
the SH ridge during Meiyu season, then moved
northward-southward-northward to the typical range of the SH
ridge during Huang-Huai rainy season, Meiyu season, and Huang-
Huai rainy season, respectively. 3) In 1964, 1985, and 2012, the SH
ridge successively laid in the typical range of the SH ridge during
Meiyu season, Huang-Huai season, and Meiyu season. The SH

ridge did not stably surpass 30°N in 1985 and 2012. In 1964, the SH
ridge quickly jumped northward and surpassed 30°N after the
second Meiyu season. 4) The length of Meiyu and Huang-Huai
rainy season exceeded 5 days in most of the recorded years, except
for the years of 1964, 1979, 2005, 2009, and 2012. 5) The northward
movement of the summer monsoon started in June and ended
before the late July in most of the recorded years, except for the
following starting time: May 18, 1991; May 27, 2001, and July 9,
1982. In addition, there were 14 years with the summer monsoon
ending in August, 10 of them before the start of autumn, while 4 of
them in mid-August (they were August 18, 1957; August 14, 1974;
August 18, 1998, and August 13, 2020).

To distinguish the rainy periods dominated by the SH ridge in
the same range at different stages, the period when the SH ridge is
first located in the typical range of the SH ridge during Meiyu
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TABLE 1 | Characteristics of Meiyu and Huang-Huai rainy season during 1957-2020 in Anhui Province.

Stage Average Average Shortest Longest
time duration/d duration/d duration/d

| 6.14-7.10 27.0 3.0 (2012) 56.0 (1991)

Il 7.10-7.23 14.4 3.0 (1979, 2005) 32.0 (1988)

1]

v

w 6.14-7.25 42.0 19.0 (1982) 69.0 (2011)

Earliest Latest Earliest Latest
onset onset ending ending
date date
5.18 (1991) 7.09 (1982) 6.15 (1961) 7.31 (1987)
6.16 (1961) 8.01 (1987) 7.01 (1964) 8.14 (1974)
5.18 (1991) 7.09 (1982) 6.15 (1961) 8.13 (1957)
6.16 (1961) 8.01 (1987) 7.01 (1964) 8.18 (1957, 1998)
5.18 (1991) 7.09 (1982) 7.01 (1964) 8.18 (1957, 1998)

Note: The time corresponding to Il in the table is the statistical value of 58 years when the Huang-Huai rainy season is not empty; the number before “()” in the shortest, longest, earliest,
and latest column are characteristic values, and the number in “( )" is the year corresponding to the extreme value.

season is specified as the narrowly defined Meiyu season. The
period when the SH ridge is first located in the typical range of
the SH ridge during Huang-Huai rainy season is specified as the
narrowly defined Huang-Huai rainy season. The period when the
SH ridge lies in the typical range of the SH ridge corresponding to
Meiyu season is defined as the broadly defined Meiyu season. The
period when the SH ridge lies in the typical range of the SH ridge
corresponding to the Huang-Huai rainy season is defined as the
broadly defined Huang-Huai rainy season. The broadly defined
Meiyu season includes the narrowly defined Meiyu season, and the
broadly defined Huang-Huai rainy season includes the narrowly
defined Huang-Huai rainy season. If the SH ridge does not move
southward to the SH ridge range corresponding to the Meiyu
season after the second northward jump, the broadly defined Meiyu
season is the same as the narrowly defined Meiyu season. If the SH
ridge does not move southward after the second northward jump,
or does not jump northward again after the southward movement
to the SH ridge range corresponding to the Huang-Huai rainy
season, the broadly defined Huang-Huai rainy season is the same as
the narrowly defined Huang-Huai rainy season. During
1957-2020, there are 8 years with the occurrence of the second
Meiyu season, and 5 years among them with the second Huang-
Huai rainy season. Therefore, there are 8 years in which the broadly
defined Meiyu season is different from the narrowly defined Meiyu
season, and 5 years in which the broadly defined and narrowly
defined Huang-Huai rainy seasons are different. Except for 7 years
with only a narrowly defined Meiyu season and 8 years with the
second Meiyu season, in the rest 49 years there are one narrowly
defined Meiyu season and one Huang-Huai rainy season.

Precipitation Characteristics for Meiyu and

Huang-Huai Rainy Seasons
The timing characteristics of Meiyu and Huang-Huai rainy
seasons are shown in Table 1, including the following five
stages of summer monsoon in Anhui Province: the narrowly
defined Meiyu (stage I), the narrowly defined Huang-Huai rainy
season (stage II), the broadly defined Meiyu season (stage III), the
broadly defined Huang-Huai rainy season (stage 1V), and the
whole period of northward movement of summer monsoon
(stage W).

It can be seen from Table 1 that the average duration of the
narrowly defined Meiyu season in 64 years is 27.0 days, and the
average duration of the narrowly defined Huang-Huai rainy

season in 57 years is 14.2 days. Therefore, the 64 years’ average
duration of the narrowly defined Huang-Huai rainy season,
including the 7-years empty Huang-Huai rainy season, is
12.8 days. Furthermore, it can be seen that the average
duration of the period from the onset of Meiyu season to the
ending date of the first Huang-Huai rainy season is 39.8 days,
which is close to the multiyear average duration of 42.0 days for
the northward movement of summer monsoon affecting Anhui
Province. In terms of multiyear average, the duration of broadly
defined Meiyu season and narrowly defined Meiyu season, as well
as broadly defined Huang-Huai rainy season and narrowly
defined Huang-Huai rainy season are almost the same. The
duration of Meiyu season and Huang-Huai rainy season vary
significantly from year to year. The shortest is only 3 days and the
longest is 56 days. The shortest duration of Huang-Huai rainy
season is 3 days, and the longest is 32 days. The shortest duration
of the northward movement of summer monsoon affecting
Anhui Province is 19 days, while the longest is 69 days. The
earliest onset is 18th May and the latest ending date is 18th
August. The characteristics of precipitation at various stages of
the northward movement of summer monsoon affecting Anhui
Province are shown in Table 2.

It can be seen from Table 2 that in the narrowly defined Meiyu
season (i.e., stage I), the 64 years average precipitation amount
during this stage decreases from south to north regions in Anhui
Province. The precipitation amount in NHA is less than that in
SYA or YHA, and the precipitation amount in NHA is only about
1/2 of that in SYA. Specifically, as shown in Supplementary
Appendix Table Al, in the 64 years’ narrowly defined Meiyu
season, there are 46 years in which the precipitation amount in
NHA is lower than that in SYA and YHA. In 1976, 1981, 2017,
and 2018, the precipitation amount in NHA is lower than that in
SYA but slightly higher than that in YHA. In 1962, 1968, 1972,
1982, and 2003, the precipitation amount in NHA is lower than
that in YHA but higher than that in SYA (in which, the
precipitation amount in NHA during this stage in 1968 and
1972 is close to that in YHA). The precipitation amount in NHA
during this stage is higher than that in YHA and SYA in 1958,
1963, 1965, 1967, 1979, 2000, 2005, 2006, and 2007. Among them,
the main rain belt during Meiyu season in 2007 laid in the Huaihe
River Basin and, consequently, heavy floods occurred along the
Huaihe River; while 1958, 1965, 2000, and 2005 are empty Meiyu
years, the precipitation amount in SYA and YHA is very low and
less than that in NHA; in 1963 and 1979, the precipitation
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TABLE 2 | Statistical characteristics of precipitation in SYA, YHA, and NHA during 1957-2020 over Meiyu and Huang-Huai rainy seasons.

Stage Average value Minimum value Maximum value

SYA YHA NHA SYA YHA NHA SYA YHA NHA
| 346.1 239.6 169.3 10.5 (1958) 33.3 (1958) 2.8 (2012) 1022.4 (1999) 955.0 (1991) 549.5 (2007)
1] 30.3 55.2 109.2 0 0 0 200.3 (1981) 243.1 (1974) 478.7 (1965)
1] 361.8 248.5 173.2 10.5 (1958) 33.3 (1958) 9.3 (1988) 1022.4 (1999) 955.0 (1991) 549.5 (2007)
v 31.4 67.2 112.8 0 0 0 200.3 (1981) 243.1 (1974) 478.7 (1965)
W 393.2 315.6 286.0 33.0 (1958) 72.3 (2001) 48.3 (2014) 1022.8 (1996) 1010.6 (2020) 670.2 (1965)

Note: The numbers in “()” in the table are the year corresponding to the extreme value.

amount in SYA, YHA, and NHA during Meiyu season are very
close to each other, and the precipitation amount during Meiyu
season in SYA is very close to that in NHA in 1967; in 2006, the
main rain belts during Meiyu season laid in SYA, NHA, and the
region of south of the Huaihe River (including SYA and YHA)
successively, and heavy rainfall occurred when the main rain belt
laid in NHA. Supplementary Appendix Table Al and Table 2
show that the spatial distribution characteristics of precipitation
during Meiyu season in Anhui Province are consistent with the
national Meiyu regionalization: SYA belongs to the Meiyu region
in the middle and lower reaches of the Yangtze River, YHA
belongs to the Yangtze-Huai Meiyu region, and the Huaihe River
in Anhui Province almost overlaps with the northern boundary of
China’s Meiyu region (National Climate Center of the China
Meteorological Administration et al., 2017).

Table 2 shows that during the narrowly defined Huang-Huai
rainy season (stage II), the 64-year average precipitation amount
during this stage increases from south to north regions in Anhui
Province, and the precipitation amount in NHA is significantly
higher than that in SYA and YHA. At this stage, the average
precipitation amount in NHA is 109.2 mm, which is about twice
of that in YHA and 3.5 times of that in SYA. Specifically,
Supplementary Appendix Table Al shows that there are
7 years with empty Huang-Huai rainy season and 50 years
with the precipitation amount in NHA greater than that in
SYA and YHA. In 1960, 1971, 1985, and 1986, the precipitation
amount in NHA is lower than that in YHA but significantly
higher than that in SYA. In 1981, 2006, and 2011, the
precipitation amount in NHA is lower than that in SYA.
Among these years, the precipitation amount in NHA during
Huang-Huai rainy season in 2006 and 2011 is close to that in
SYA but less than that in YHA. During Huang-Huai rainy
season in 1981, the precipitation in SYA and YHA results from
the typhoon; thus, the precipitation amount is significantly
higher than that in NHA.

Table 2 shows that the 64-year average precipitation
amount from the beginning of the narrowly defined Meiyu
season to the end of the narrowly defined Huang-Huai rainy
season in SYA, YHA, and NHA is 376.4, 294.8, and 278.5 mm,
respectively, and these values are close to 393.2, 315.6, and
286.0 mm for the 64-year average precipitation amount
during the period of the summer monsoon moving
northward in the three regions of Anhui Province.
Therefore, the multiyear average precipitation amount in
YHA and that in NHA from the narrowly defined Meiyu

season to the narrowly defined Huang-Huai rainy season are
close to each other but less than that of SYA. In addition, there
is little difference in the average precipitation amount
between the broadly defined and the narrowly defined
Meiyu seasons or the broadly defined and the narrowly
defined Huang-Huai rainy The precipitation
amount in the narrowly defined Meiyu season varies from
year to year. The minimum precipitation amount during
Meiyu season in SYA, YHA, and NHA is less than 50 mm.
The maximum precipitation amount during Meiyu season in
SYA, YHA, and NHA is greater than 500 mm. Among them,
the precipitation amount in SYA and YHA is close to each
other, that is, above 1000 mm, while precipitation amount in
NHA is only about 1/2 of that in SYA and YHA. The
precipitation amount in the narrowly defined Huang-Huai
rainy season varies greatly from year to year. Except for the
years with empty Huang-Huai rainy season, the minimum
precipitation amount at this stage in SYA is only 0.1 mm and
to in NHA is less than 10 mm. The maximum precipitation
amount during Huang-Huai rainy season in SYA, YHA, and
NHA is also different. The maximum precipitation amount in
SYA is less than 150 mm (except for 200.3 mm in 1981 under
the influence of typhoon), but the maximum value in YHA is
close to 250 mm, and the maximum value in NHA is close to
500 mm.

According to the daily precipitation amount series during
1957-2020, the average precipitation amount in SYA, YHA, and
NHA from June to July for 64 years is 453.5, 341.0, and 317.8 mm,
respectively. Therefore, when summer monsoon moves
northward, the average precipitation amount in SYA, YHA,
NHA is 393.2, 315.6, and 286.0 mm, respectively, accounting
for 87, 93, and 90% of the precipitation from June to July,
respectively. The results show that the precipitation from June
to July in Anhui Province is mainly formed by the frontal rain belt
resulting from the summer monsoon.

Stage III is different from stage I in 8 years and stage IV is
different from stage IT in 5 years. The years in which the dates and
precipitation of stage III, I, IV, and II are different are shown in
Table 3.

Table 3 shows that the second period of Meiyu season begins
in July, with the largest average precipitation amount in SYA,
successively followed by YHA and NHA, while the 8-year average
duration of the period is 10.3 days. All the second periods of
Huang-Huai rainy season start after mid July, with the largest
average precipitation amount in NHA, successively followed by

s€asons.
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TABLE 3 | Dates and precipitation of the second period of Meiyu and Huang-Huai rainy seasons in SYA, YHA, and NHA during 1957-2020.

Year Second period of Meiyu season Second period of Huang-Huai rainy season
Date Duration/d Precipitation/mm Date Duration/d Precipitation/mm

SYA YHA NHA SYA YHA NHA
1957 7.26-8.13 19 216.0 165.7 40.4 8.14-8.18 5 0.3 241 24.0
1973 7.19-7.28 10 62.9 35.8 28.8 7.29-8.03 6 34.7 30.9 40.6
1977 712-7.17 6 110.8 27.7 5.3 7.18-7.25 8 30.1 82.9 89.5
1998 7.13-8.02 9 206.7 121.0 96.3 8.03-8.18 16 18.6 90.6 182.7
2009 7.24-7.31 21 135.5 45.6 12.3 8.01-8.04 4 16.0 8.8 2.6
1964 7.18-7.21 4 54.6 32.7 25.0
1985 7.18-7.26 8 76.2 68.8 22.2
2012 7.09-7.17 9 145.4 81.7 17.2
Mean value 10.3 126.0 714 30.9 Mean value 7.8 19.9 47.5 67.9

YHA and SYA, while the 5-year average duration of the period is
7.8 days.

Return Period of Precipitation During Meiyu

and Huang-Huai Rainy Seasons

According to the precipitation amount during Meiyu and Huang-
Huai rainy seasons in SYA, YHA, and NHA in Supplementary
Appendix Table Al, the frequency analysis of the precipitation
amount corresponding to the northward movement of summer
monsoon affecting Anhui Province in these three regions is
analyzed. In 1996, 1999, and 2020, the precipitation amount
during Meiyu and Huang-Huai rainy seasons in SYA is 1022.8,
1022.4, and 999.5 mm, respectively. The historical floods in
China, since 1840 (Luo, 2006), and the precipitation during
the extreme Meiyu events years (e.g., 1954) in the Yangtze-
Huai Meiyu region are used for comparison and analysis
(Water Resources Department of Anhui Province., 1998;
Wang and Xu, 2002; Luo, 2006; Zhang, 2007; Ding et al,
2016; Information Center of the Ministry of Water Resources,
1983-2020). The precipitation during Meiyu and Huang-Huai
rainy seasons of these 3 years are higher than the corresponding
precipitation in the years with severe flood occurred in the
Yangtze River Basin, such as in 1896 and 1931, but slightly
lower than that of 1954 with the largest flood in history in the
basin (according to the daily precipitation records in the Tunxi
Station, the precipitation amount in this period is 1185.0 mm,
which is the largest ever recorded). Therefore, the precipitation
amount during this period of the above 3 years can be considered
as the second, third, and fourth largest values since 1840.

The precipitation amount during Meiyu and Huang-Huai
rainy seasons in YHA in 1991 and 2020 is 959.8 and
1010.6 mm, respectively. These two values are higher than that
during this period in the years with severe flood occurred in the
Huaihe River Basin, such as in 1921, 1931, and 1954 (Luo, 2006).
Among which, according to the daily precipitation records of the
representative stations in YHA (Chuzhou, Huoshan, and Hefei
stations), the precipitation amount during this period of 1954 is
849.2 mm, which is far less than the abovementioned 2 years.
Therefore, the precipitation amount of these 2 years during this
period can be considered as the first and second extreme values
since 1840.

The precipitation during Meiyu and Huang-Huai rainy
seasons from 1957 to 2020 in NHA is a continuous time series
without extraordinary value. According to the records
(Information Center of the Ministry of Water Resources, 1983;
Luo, 2006), the precipitation amount during this period in 1954
reaches the maximum value since 1840. According to the daily
precipitation series of the representative stations in NHA
(Suzhou, Bozhou, and Fuyang stations), the precipitation
during this period of 1954 is 819.2 mm. Consequently, the
return period of the precipitation during this period in 1954 is
about 181 years.

The P-III curve is used to fit the frequency of precipitation
during Meiyu and Huang-Huai rainy seasons in SYA, YHA,
and NHA, respectively. The fitting results are shown in
Figure 2.

It can be seen from Figure 2 that the P-III curve can well fit the
empirical frequency points. The mean value, coefficient of
variation, and coefficient of skew of the precipitation during
Meiyu and Huang-Huai rainy seasons in SYA are 381.3 mm, 0.59,
and 1.28, respectively. The three coefficients of the P-III curve in
YHA are 295.5mm, 0.63, and 1.65, respectively. The three
coefficients of the P-III curve in NHA are 286.0 mm, 0.53, and
1.14 respectively. Based on these parameters of the frequency
curve, it can be obtained that the precipitation amount during this
period with the return period of 180 years in SYA is 1201.9 mm. It
is slightly higher than the maximum value of 1185.0 mm at the
Tunxi station over 181 years since 1840. The precipitation
amount during this period with the return period of 180 years
in NHA is 821.9 mm, which is also very close to the maximum
value of 819.2 mm in this region over 181 years since 1840. It
demonstrates that the P-IIT curve is suitable to be taken as the
frequency curve of precipitation during this period in Anhui
Province. Precipitation under different return periods in SYA,
YHA, and NHA are given in Table 4.

According to P-III curve and their parameter values, the
return periods of 63.9, 63.8, and 56.0 years are specified for
the precipitation of 1022.8, 1022.4, and 999.5mm during
Meiyu and Huang-Huai rainy seasons in SYA in 1996, 1999,
and 2020, respectively. The return periods corresponding to the
precipitation of 959.8 and 1010.6 mm in the year of 1991 and
2020 in YHA are 118.6 and 161.6 years, respectively. The return
periods for the precipitation of 670.2, 612.9, and 618.7 mm in
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FIGURE 2 | Frequency curve of precipitation during Meiyu and Huang-
Huai rainy seasons from 1957 to 2020 in (A) SYA, (B) YHA, and (C) NHA.

TABLE 4 | Precipitation during Meiyu and Huang-Huai rainy seasons in SYA, YHA,

and NHA for some typical return periods (unit: mm).

Return
period/a

SYA
YHA
NHA

100

1100.9 9794 8880 8136 6826 543.7
730.6 661.7
680.5 622.0 5742 4894 3983 3245 2579

931.5
757.9

50 30

816.3

20 10 5 3

542.4 4198 3259

432.9 334.6
246.9
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NHA in the year of 1965, 2007, and 2020 are 45.7, 27.8, and
29.2 years, respectively.

CONCLUSION

Based on the position of the SH ridge and the regional rainy days
as the indices, Meiyu and Huang-Huai rainy seasons during
1957-2020 are identified. The precipitation characteristics of
Meiyu and Huang-Huai rainy seasons in SYA, YHA, and
NHA are analyzed, respectively. The return period of
precipitation in the above three regions are specified when the
summer monsoon moves northward over Anhui Province. The
main conclusions are given as follows:

1) The 64-year average precipitation amount during Meiyu
season in Anhui Province decreases from south to north
regions. The 64-year average precipitation amount of the
first period of Meiyu season in SYA, YHA, and NHA is
346.1, 239.6, and 169.3 mm, respectively. The 64-year
average precipitation amount during Huang-Huai rainy
season in Anhui Province increases from south to north
regions. The three regional precipitations in the first period
of Huang-Huai rainy season are 30.3, 55.2, and 109.2 mm,
respectively.

2) With the northward movement of summer monsoon over
Anhui Province, the 64-year average precipitation in YHA
and NHA is close to each other, but less than that in SYA.
The average precipitation amount in these three regions is 393.2,
315.6, and 286.0 mm, respectively, and it varies from year to year.
The precipitation amount in SYA, YHA, and NHA during this
period accounts for 87, 93, and 90% of the precipitation amount
during June-July, respectively, implying that the precipitation
during June-July is formed by the frontal rain belt resulting from
the northward movement of summer monsoon.

3) The average duration of the first period of Meiyu season is
27.0days from 14th June to 10th July. The first Huang-Huai
rainy season mainly starts from 10th July to 23rd July with duration
of 14.4 days. The northward movement of summer monsoon over
Anhui Province mainly starts from 14th June to 25th July with
duration of 42.0 days. The onset and ending dates of Meiyu season,
Huang-Huai rainy season, and the northward movement of
summer monsoon over Anhui Province vary greatly from year
to year. Particularly, there are 8 years with the occurrence of a
second period of Meiyu season, and 5 years with a second Huang-
Huai rainy season out of 64 years.

4) The return periods corresponding to the precipitation of
1022.8 mm at 1996, 10224 mm at 1999, and 999.5 mm at 2020
in SYA are 63.9, 63.8, and 56.0 years, respectively, which are lower
than the return period of the precipitation in 1954. The return
periods of the precipitation of 959.8 mm at 1991 and 1010.6 mm at
2020 in YHA are 118.6 and 161.6 years, respectively. It is higher
than the return period of precipitation during this period in 1954.
The return periods corresponding to the precipitation of
6702 mm at 1965, 6129 mm at 2007, and 618.7 mm at 2020
in NHA are 45.7, 27.8, and 29.2 years, respectively. It is also lower
than the return period of precipitation during this period in 1954.
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The South-to-North Water Diversion project (SNWD project) is a mega water project
designed to help solve water shortages in North China. The project’s management and
operation are highly influenced by runoff change induced by climate change in the water
source areas. It is important to understand water availability from the source areas in the
context of global warming to optimize the project’s regulation. Based on the projections of
nine GCMs, the future runoff in the water source areas of the three diversion routes was
simulated by using a grid-based model RCCC-WBM (Water Balance Model developed by
Research Center for Climate Change). Results show that temperature will rise by about
1.5°C in the near future (2035, defined as 2026-2045) and 2.0°C in the far future (2050,
defined as 2041-2060) relative to the baseline period of 1956-2000. Although GCM
projections of precipitation are highly uncertain, the projected precipitation will likely
increase for all three water source areas. As a result of climate change, the simulated
runoff in the water source areas of the SNWD project will likely increase slightly by less than
3% relative to the baseline period for the near and far future. However, due to the large
dispersion and uncertainty of GCM projections, a high degree of attention should be paid
to the climate-induced risk of water supply under extreme situations, particularly for the
middle route of the SNWD project.

Keywords: climate change, water resources, South-to-North Water Diversion Project, water source areas, GCM
projections, RCCC-WBM

INTRODUCTION

Water is the most direct and vulnerable sector influenced by climate change (Zhang and Wang, 2007;
IPCC, 2008, 2013, 2021). China faces shortages in water sources due to a huge population (Liu et al.,
2019). Uneven spatiotemporal distribution of water resources further exacerbates water scarcity in
many arid regions (Hoekstra, 2014; Cosgrove and Loucks, 2015; Montanari et al., 2015). How much
water is available in the context of global warming has been attracting tremendous attention from
various arms of the central government, local communities, and river basin managers (Kundzewicz
et al., 2018; Lu et al., 2019; Luo et al., 2019).
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Studies show that only 10% of the total renewable water
resources are currently used by people, and nearly 80% of the
world’s population is exposed to high levels of threat to water
security (Oki and Kanae, 2006; Vorosmarty et al., 2010). Both
climate change and human activities add complexity to the
formation, migration, and transformation mechanisms of
water resources by altering hydrological cycles, thereby
aggravating water scarcity and water conflicts among different
socioeconomic sectors (Haddeland et al., 2014; Liu et al., 2017;
Tang et al., 2019). Because of the critical importance of water to
socioeconomic development, climate change and its impacts on
water resources have been investigated in previous studies (Wang
et al,, 2017; Liu et al., 2018; Bao et al., 2019; Sun et al., 2019).
Regional and global hydrologic models combined with global
climate model projections have been widely used to assess
changes in water resources induced by climate change
(Sivakumar, 2011; Schewe et al., 2013; Wang et al, 2012,
2017). The Xin’anjiang model which is based on the saturation
excess mechanism has been mostly applied to humid catchments
(Yuan et al,, 2016; Zhang et al., 2019), while infiltration excess-
based watershed models (e.g., GR4] model, SIMHYD model, etc.)
have been used for assessing climate change impacts in arid
catchments (Jones et al., 2006; Trudel et al., 2017). Land surface
models (e.g., VIC model, CAS-LSM model, etc.) are mainly
applied to large scale regions or applied at continental scale
for hydrological modeling and climate change study (Wang
et al, 2012; Wang et al, 2020). Due to the lack of
observations, hydrological models with physical interpretation
and simple model structure have attracted more interest and been
applied in climate change study (Wang et al., 2014; Shahid et al.,
2017). Compared with some of the well-known hydrological
models (e.g., Xin’anjiang model, Tank model, etc.), simple
models (e.g, RCCC-WBM) have advantages of easier
understanding, model parameters, more feasible
transferability to the poorly gauged areas, etc. (Guan et al,
2019). The projected climate change impacts showed that
water cycles have undergone considerable changes in the
context of global warming, and such changes have altered
water resource distribution in time and space (Bierkens, 2015;
Mehran et al.,, 2017). Available water resources in the eastern
monsoon region of China are decreasing and extreme
hydrological events are occurring more frequently (Duan and
Phillips, 2010; Xia et al., 2017), which increases the vulnerability
of water resources and adds extra pressure on the security of
water supplies, particularly in arid and semi-arid areas (Wang
and Zhang, 2015; Jin et al., 2020).

China suffers from water shortages due to its large population
and extremely low per capita water volume, accounting for less
than one-third of the world average (CREEI, 2014; Liu et al,
2019). Conditions are particularly severe in the country’s
northern regions, where half of the population and two-thirds
of the nation’s farmland are located, but where there is only one-
fifth of its water resources (Liu and Zheng, 2002; Liu and Xia,
2004). To alleviate water scarcity and maintain socioeconomic
development in northern China, the central government has
embarked on a strategic and ambitious infrastructure project
known as the South-to-North Water Diversion project (SNWD

fewer
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project; Zhang, 2009; Zhao et al., 2017). The project is designed to
transfer 44.8 km> of water per year from the water-abundant
Yangtze River to the Huang-Huai-Hai region via its eastern,
middle, and western routes, at a total cost of about US$62 billion
(Stone and Jia, 2006; Liu et al., 2012; Yan and Chen, 2013; Long
etal,, 2020). By the end of 2018, the eastern route had brought an
accumulated 3.1 billion m” of water to Shandong and the middle
route had brought an accumulated 17.8 billion m®> of water
(http://nsbd.mwr.gov.cn; Yin et al,, 2020). It has been observed
that streamflow into the Danjiangkou Reservoir, the headwater
source in the middle route of the SNWD project, has
continuously decreased since the 1980s (Liu et al, 2012; Sun
etal, 2014; She et al,, 2017), negatively affecting the water supply
of the middle route of the SNWD project. Using a climate
elasticity method, Liu et al. (2012) concluded that the climatic
(indicated by  precipitation and potential
evapotranspiration) was responsible for 84.1-90.1% of the
stream decline. She et al. (2017) also showed that the sharp
decrease in annual runoff from the Danjiangkou Reservoir is
mainly influenced by the decrease in annual precipitation. While
climate change affects the water availability of the water source
area, it also affects the encounter probability of flood and drought
between the water source areas and the water receiving areas
(Chen and Xie, 2012; Liu et al., 2015; Xia et al., 2017).

Climate change will be one of the major challenges to the
management and operation of the SNWD project, as water
resources are sensitive to climate change and variability (Wang
et al,, 2012, 2017). With the expectation that water supplies will
only become tighter in the future (Rodell et al., 2018; Pokhrel
etal,, 2021), it is essential to understand water availability in water
source areas under climate change for the efficient and reasonable
allocation of water resources by the SNWD project. However,
previous studies on the SNWD project mainly focused on the
historical variation of stream flow, so there are limited studies on
future water availability of water source areas of the SNWD
project, particularly for all three source areas together (Su et al.,
2016; Yu et al.,, 2017). The objective of this study is to investigate
future climate changes in the three water source areas and the
extent to which the stream flow will change in the coming decades
relative to the design period (1956-2000) of the SNWD project
and finally to support the project operation practices and
revisions of the second phase plan.

variation

DATA SOURCES AND METHODOLOGY

Study Areas and Data Sources

The SNWD project approved by China’s State Council in 2002 is
a national strategic project that transfers water from the Yangtze
River to the Huai River, Yellow River, and Hai River to solve
water shortages in North China. The project was designed with
three water diversion routes among which the eastern route and
the middle route have been constructed and in use since 2013 and
2014, respectively, while the western route is still in the planning
stages. Based on the project planning, the water source areas of
the project consist of the upper Yangtze River for the western
route with a drainage area of 299,087 km?, the middle and upper
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FIGURE 1| Water source areas, river systems, and locations of key hydrometric stations of the South-to-North Water Diversion Project in the Yangtze River basin.

TABLE 1 | Overview of nine GCMs used in this study.

Nos. GCMs Country and developer Resolution
1 BCC-CSM1 China, BCC 28" x 2.8
2 CNRM-CM5 France, CNRM-CERFACS 1.4° x 1.4°
3 CSIRO-MK3 Australia, CSIRO 1.9°x1.9°
4 FGOALS-G2 China, LASG-CESS 3.0° x 2.8
5 CCSm4 America, NCAR 09" x 1.3°

Han River for the mid-route with a drainage area of 94,784 km?,
and the area (1,705,383 km?) above Datong hydrometric station
for the eastern route, which covers almost the entire Yangtze
River basin. The water source areas of the project, major river
systems of the Yangtze River, and locations of key hydrometric
stations controlling water source areas are shown in Figure 1.

The daily grid meteorological data over the Yangtze River
basin with a spatial resolution of 0.25° and 1951-2020 data series
were collected from the China Meteorological Administration
(CMA). The daily observed discharge data at five hydrometric
stations which control drainage source areas of the SNWD
project, shown in Figure 1, were collected from the Hydrology
Bureau of the Ministry of Water Resources (MWR). These hydro-
meteorological data were used to calibrate hydrological models
for climate change impact assessment.

The SNWD project was designed by using the 1956-2000 data
series. In order to understand the future climate changes relative
to those in the design period, we defined two future periods as
follows: near future (NF) from 2026 to 2045, and far future (FF)
from 2041 to 2060. The future climate scenarios were
downloaded from httpps://www.wcrp-climate.org/wgcm-cmip/
wgem-cmip6. As both the high-emission scenarios, e.g., SSP5-
8.5, and the low-emission scenarios, e.g., SSP1-2.6, consider
extreme emission pathways, the medium-emission scenarios, e.
g., SSP2-4.5, will probably occur in the future. We therefore only
used climate change projections under the SSP2-4.5 scenario in
this study. Based on simulation performance to the past variation
of climate variables and consideration of GCM independence

Nos. GCMs Country and developer Resolution
6 FIO-ESM China, FIO 2.8°x 2.8
7 GFDL-ESM2M America, GFDL 2.0°x 25°
8 GISS-E2-H America, GISS 2.0°x 2.5°
9 x 2.8°

MIROC-ESM Japan, CCSR/NIES/FRCGC 2.8

(Xin et al., 2020; Zhao et al., 2021), nine GCMs were selected and
used in this study (Table 1). The nine GCM projections under the
SSP2-4.5 scenario were downscaled to a 0.25° grid by using a
LARS-WG statistical downscaling method (Hassan et al., 2014).
The data series of the projected climate scenarios are from 1901
to 2099.

RCCC-WBM

In this study, the RCCC-WBM (Water Balance Model developed
by the Research Center for Climate Change) was applied to the
study areas for climate change impact assessment. The model is a
conceptual hydrological model that considers the three runoff
components of surface flow, underground flow, and snowmelt
flow. The model inputs include monthly precipitation, pan
evaporation, and temperature. The model has been applied to
hundreds of catchments worldwide (Wang et al., 2014; Guan
et al., 2019). The model structure is shown in Figure 2.

Based on the RCCC-WBM, we developed a grid-based model
covering the entire Yangtze River basin, which was divided into
1,812 grid cells with a spatial resolution of 0.25°. The RCCC-
WBM is employed to calculate runoff yield in each grid cell. For a
catchment that covers numerous grid cells, the flow routing
scheme in the VIC (Variable Infiltration Capacity) model was
referenced in the model flow concentrating from grid cells to
catchment outlet (Wang et al., 2012, 2014).

The RCCC-WBM has four parameters that need to be
calibrated by comparing the simulated and recorded discharge
series. The Nash and Sutcliffe efficiency criterion (NSE) and the

Frontiers in Earth Science | www.frontiersin.org

142

October 2021 | Volume 9 | Article 747429


http://httpps://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
http://httpps://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Qiao et al.

Climate Change on Water Availability

Model parameters
Ks: surface flow coef. Kg: groundflow coef.
Ksn: snowmelt flow coef. Smax: maximum soil moisture
PSN =(TH-T)/(TH-TL)-P
2| Surface PR =P-PSN
flow Qs =Ks-S/Smax-PR
QG =Kg'S
: < —
Simulated Snowmelt Actual i1l Q=0
discharge flow evaporation | If TL<T<TH QSN=Ksn-exp((TH-T)/(TH-TL))
IfT>TH QSN=SN
romd E =S/Smax-E601
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<1 Tfow € Soil moisture QT =QS+QG+QSN
E601 pan evaporation measured by E601
FIGURE 2 | The model structure and principle of the RCCC-WBM.
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FIGURE 3| Temperature Chaﬁges in two periods of near future (NF) and FIGURE 4 | Precipitation changes in two periods of near future (NF) and
far future (FF) relative to baseline of 1956-2000 for all three source areas of the far future (FF) relative to baseline of 1956-2000 for all three source areas of the
South-to-North Water Diversion Project (WRSA, MRSA, and ERSA denote the South-to-North Water Diversion Project.
western route source area, the middle route source area, and the

eastern route source area, respectively; same as Figure 4 and Figure 7).

relative error of volumetric fit (RE), which describe the fitting
performance of the simulated discharge to the recorded
discharge, are employed as the objective functions to calibrate
the model (Nash and Sutcliffe, 1970; Moriasi et al., 2007; Gupta
et al.,, 2009).

RESULTS AND DISCUSSION

Changes in Temperature and Precipitation
for Water Source Areas

Taking 1956-2000 as a baseline period, changes in temperature in
the near and far future relative to the baseline period for all three
source areas, i.e., the western route source area (WRSA), middle
route source area (MRSA), and eastern route source area (ERSA),
of the SNWD project were investigated (Figure 3).

Figure 3 shows that the nine GCMs all projected that
temperatures will continue to rise in the near future and far
future although they projected different rise ranges. In the near
future of 2026-2045, temperature will rise by 1.64°C [1.27°C,
2.58°C], 1.33°C [0.87°C, 1.71°C], and 1.37°C [1.06°C, 1.89°C] for
WRSA, MRSA, and ERSA, respectively. However, temperature
will rise higher in the far future of 2041-2060. On average,
temperature would rise by 2.09°C, 1.78°C, and 1.82°C,
respectively, with ranges of [1.64°C, 3.09°C], [1.02°C, 2.44°C],
and [1.19°C, 2.41°C] for the three water source areas.

Temperature is a thermal driver of the hydrological cycle, and
temperature rise could reduce runoff yield by increasing
catchment evaporation. According to IPCC, there is high
confidence that global mean evaporation increases with global
warming, with evaporation increasing by 1-3% for every 1°C
increase in temperature (IPCC, 2021). Previous studies indicate
that a 1°C rise in temperature might lead to an approximately 5%
decrease in runoff for humid areas (IPCC, 2008; Wang et al,
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TABLE 2 | Discharge simulation results for the five hydrometric stations within source areas of the South-to-North Water Diversion Project.

Source areas Stations Model calibration Model validation
Data series NSE-v (%) Re-v (%) Data series NSE-v (%) Re-v (%)
Western route Dajin 1957-1989 83.7 -1.1 1990-2000 85.1 -0.2
Yajiang 1956-1989 86.6 -1.9 1990-2000 89.3 21
Batang 1960-1989 83.3 0.4 1990-2000 74.6 -0.7
Middle route Danjiangkou 1956-1989 81.5 1.7 1990-2000 73.0 0.4
Eastern route Datong 1956-1989 90.6 -0.8 1990-2000 87.4 0.3
140
120 simulated - --- recorded
| |
100 E ’ |
£ | \
1
£ % il 0 1k
S NI ¥ . : it
e 60 : ' 1 {
e~ # 1 0 :
i (
40 ) A g | N
20
by 1 \ v y v
0
1956 1961 1966 1971 1976 1981 1986 1991 1996
Year
FIGURE 5 | Monthly recorded and simulated runoff at the Yajiang station during 1956-2000.

2016). Changes in temperature will definitely influence water
availability in the water source area of the SNWD project.

Figure 4 shows changes in precipitation during the coming
periods of the near future and far future relative to the baseline
period. The figure indicates that precipitation projections have a
higher uncertainty than that of temperature as a GCM might
project decrease in precipitation while another one might project
precipitation increase. For the WRSA, all GCMs project that
precipitation in near future will increase by 4.9% with a range of
[1.43%, 14.1%], and most of the GCM projections show a 6.06%
precipitation increase in the far future on average with a range of
[-1.68%, 18.77%]. For the MRSA, more than half of the GCMs
projected that precipitation will increase by 0.45% [-3.23%,
8.61%)] in the near future and 2.54% [-1.77%, 7.5%] in the far
future. For the ERSA, most of the GCMs projected that
precipitation will increase by 1.63% [-3.62%, 4.84%] in the
near future and 3.71% [-3.13%, 7.45%] in the far future.

According to the definition of uncertainty by the IPCC (IPCC,
2013), precipitation in the WRSA will almost certainly increase in
the near future and will very likely increase in the far future, while
precipitation in both the MRSA and ERSA is likely to increase in
both the near and far future. Increases in precipitation for the
source areas could increase runoff yield and will no doubt benefit
implementation of the SNWD project.

Model Calibration and Discharge Simulation
A suitable hydrological model is essential to quantify the impact
of climate change on water resources. Within the source areas of
the SNWD project, there are daily discharges available at five

hydrometric stations with a data series length of over 30 years.
The grid meteorological data were used to drive the grid-based
model RCCC-WBM for discharge simulation. Simulation results
are given in Table 2. The monthly recorded and simulated
discharges at the Yajiang hydrometric station were compared,
as shown in Figure 5.

Table 2 shows that the grid-based model RCCC-WBM
performs well in the discharge simulation for all five
catchments. The NSEs in both calibration and validation
periods are above 0.7, while the REs in the periods are limited
in the range of +2.0%. Figure 5 indicates that the monthly
recorded and simulated runoff series at the Yajiang station for
1956-2000 matched well, which is in accordance with the
results in Table 2. Table 2 and Figure 5 both sufficiently
illustrate that the RCCC-WBM is qualified for simulating
runoff under the future climate change scenarios.

By using the downscaled grid climate scenarios of nine GCMs
to drive the grid-based model RCCC-WBM, monthly runoff yield
series for grid cells were simulated for 1951-2090. The catchment
average annual runoff yields of the three source areas of the
SNWD project over the period were then calculated based on
the areal weighted method. The 9-GCM-based annual runoff
simulations for the three source areas and the simulation-
based median runoff series over the period of 1951-2090 are
shown in Figure 6. Figure 6 shows that the nine simulated
annual runoff series all exhibited a natural fluctuation with no
significant variation trends. However, the range of runoff
variability in the coming decades becomes larger than that
in the past.
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FIGURE 6 | The simulated annual runoff series (gray lines) of the nine GCMs and the simulation-based median runoff series (red line) during 1951-2090 for all three
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Changes in Runoff for the Three Water

Diversion Areas

Runoff changes in the near future and far future relative to the
baseline period of 1956-2000 were investigated based on the
simulated runoff over the period of 1951-2090 under the nine
GCM scenarios for all three source areas (Figure 7).

Figure 7 indicates that for the WRSA, all GCMs project that
runoff in the near future will increase by 1.42% with a range of
[0.29%, 7.69%], and most of the GCMs project a 1.36% runoff
increase in the far future on average with a range of [-5.84%,
11.40%]. The projected runoff in the WRSA will very likely
increase in both the near and far future. For the MRSA, over
50% of the GCMs project that runoff will increase by 2.25%
[-10.48%, 8.31%] in the near future and 2.35% [—10.27%, 4.60%]
in the far future. Although more than half of the GCMs project
runoff in the middle route source area will increase in the future,
we also find that the projected runoff might decrease by > 10% in
extreme conditions. Attention to the risk of runoff reduction
induced by climate change should be given in the practical
operation of the middle route sub-project. For the ERSA, most
of the nine GCMs project runoff will increase in the near future

with the exception of the GISS-E2-R which projects runoff will
decrease by —7.3%. The GISS-E2-R and GFDL-ESM2G project
annual runoff will decrease by —7.8% and -7.0% in far future
while the other seven GCMs project annual runoff will increase
by [0.1%, 4.2%]. On average, the median GCM project runoff will
increase by 0.88% in the near future and 0.7% in the far future. In
general, the projected runoff in the eastern route source area will
likely increase in the coming decades, which could support
operation of the eastern route sub-project.

DISCUSSION

Both changes in temperature and precipitation could affect
regional water resources by altering hydrological cycles. Global
land surface temperature rose by 0.85°C during the period
1880-2012 (IPCC, 2013) while temperatures in China rose by
0.9°C in the same period. Temperatures in China have risen
particularly fast during recent decades (1956-2012), increasing at
a rate of 0.25°C/10a, which is higher than the global average (Qin
et al,, 2012). The variation of the projected temperature over the
three source areas in this study are in accordance with the
previous studies, which will continue to rise in the future (Tao
et al., 2011). However, the projected increase in temperature in
this study is approximately 0.33°C/10a, which is much higher
than that in the past (Huang et al., 2014). The projected regional
average precipitation over the three source areas will likely
increase in the rapid warming situation although several
GCMs project a certain decrease in precipitation. Most
previous studies support the findings although there is great
uncertainty in precipitation projections (Zhang et al., 2010;
Guo et al., 2012).

Numerous studies have indicated that the precipitation in the
Yangtze River basin will increase in the coming decades, and, as a
result, stream flow will probably increase (Bian et al., 2017; Yu
et al, 2017; Lu et al., 2018), which is in accordance with the
findings in this study. However, Gu et al. (2015) found that
annual runoff at the Panzhihua station in the upper Yangtze River
basin during 2011-2040 may decrease by 1.2-3.5% compared to
that in 1970-1999, which is counter to the conclusions drawn in
this study. The discrepancy might result from differences in the
baseline period, future periods, GCMs, and the study catchments
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selected. Although inflow to the Danjiangkou Reservoir decreased
in the past (Liu et al., 2012; Sun et al., 2014), the projected runoff
will likely increase by 2% in the coming decades. The hydrological
regime is shifting to benefit the operation of the SNWD project
due to climate change.

SUMMARY AND CONCLUSIONS

In the context of global warming, temperatures in the source areas
of the SNWD project will continue to rise. Relative to the baseline
period (1956-2000), temperatures will rise by about 1.5°C and 2.0°C
in the near future (2026-2045) and the far future (2041-2060).
Precipitation will likely increase for all three source areas although
GCM projections are quite dispersed and uncertain.

The grid-based model RCCC-WBM performs well for discharges
in the study areas. The simulated runoff is associated with GCM
projections. According to the nine GCMs, the median runoff will
likely increase by less than 3% relative to the baseline for all three
source areas of the SNWD project, which could guarantee the
security of water supply to some extent. However, attention
should be paid to the risk to water supply induced by extreme
climate change conditions when the project operates in practice.
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Soil moisture variations and its relevant feedbacks (e.g., soil moisture-temperature and soil
moisture—precipitation) have a crucial impact on the climate system. This study uses
reanalysis and Coupled Model Intercomparison Project phase 6 simulations datasets to
detect, attribute, and project soil moisture variations. The effect of anthropogenic forcings
[greenhouse gases (GHG), anthropogenic aerosols (AA), and land use (LU) change] on sail
moisture is much larger than that of the natural forcing. Soil moisture shows a drying trend
at a global scale, which is mainly attributed to GHG forcing. The effects of external forcings
vary with the regions significantly. Over eastern South America, GHG, AA, and natural
forcings make soil dry, while LU forcing makes the soil wet. Over severely drying Europe, all
the external forcings including GHG, AA, LU, and natural forcing exhibit drying effect. The
optimal fingerprint method detection results show that some of GHG, AA, LU, and natural
signals can be detected in soil moisture variations in some regions such as Europe. The sail
will keep drying in all scenarios over most parts of the globe except Sahel and parts of mid-
latitudes of Asia. With the increase of anthropogenic emissions, the variation of global soil
moisture will be more extreme, especially in hotspots where the land—atmosphere coupling
is intensive. The drying trend of soil moisture will be much larger on the surface than in
middle and deep layers in the future, and this phenomenon will be more severe under the
high-emission scenario. It may be affected by increased evaporation and the effect of
carbon dioxide fertilization caused by global warming.

Keywords: detection and attribution, soil moisture, future scenario, drying trend, anthropogenic forcings

INTRODUCTION

As an essential parameter of the land surface process and the climate system, soil moisture affects
surface air temperature, atmospheric humidity, precipitation, stability of the atmospheric boundary
layer, and atmospheric circulation by influencing the surface evapotranspiration, surface albedo, soil
heat capacity, and vegetation growth conditions (Delworth and Manabe, 1988; Zuo and Zhang, 2016;
Liu et al, 2017). Furthermore, soil moisture plays an important role in the energy, water, and
biochemical cycles in the climate system (Sellers et al., 1997; Seneviratne et al., 2010; Zhang et al.,
2016). Zhang and Zuo (2011) found that spring soil moisture significantly impacts the East Asian
summer monsoon and the precipitation in East China by changing the surface thermal conditions.
The abnormal soil moisture affects evaporation and temperature, causing an anomalous land-sea
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temperature difference, that affecting the East Asian summer
monsoon circulation. Berg et al. (2017) indicated that soil
moisture is essential for the mean circulation and precipitation
of the West African monsoon. On the one hand, anomalous soil
moisture changes evaporation and transpiration, resulting in
anomalous land-ocean thermal contrast. On the other hand,
the anomaly of surface evaporation changes the meridional
temperature gradients and causes large-scale circulation
changes, affecting West African monsoon circulation and
precipitation.

With global warming, the land-atmosphere coupling is
strengthened, reinforcing the influence of soil moisture on the
land surface process and climate change (Zhang et al., 2011; Vogel
et al., 2017; Zhou et al., 2019a). Seneviratne et al. (2006) reported
that the feedback of summer soil moisture on the atmosphere
would increase the temperature and climate variability in Eastern
and Central Europe. With the increase of greenhouse gases
concentrations,  this region will become a new
land-atmosphere coupling  hotspot. Through  the
land-atmosphere interaction experiment, Berg et al. (2014)
suggested that soil moisture is crucial for the coupling of land
surface and atmosphere. Soil moisture controls the partitioning of
available energy between the sensible and latent heat flux, which
makes the soil moisture dynamics enhance temperature
uncertainty over the hotspots of land-atmosphere coupling. Li
et al. (2019) used the CCSM-WRF model to study the
temperature variation in summer over East Asia and proposed
that the feedback of soil moisture caused the mean temperature in
summer to increase by 0.15°C, with key regions appearing over
the northern Tibetan Plateau, the Sichuan Basin, and the middle
and lower reaches of the Yangtze River during 2071-2100 under
the RCP8.5 scenario.

In recent decades, based on satellites, observations, and model
simulations, soil moisture has become drier in many regions.
Dorigo et al. (2012) used a multi-satellite surface soil moisture
dataset and found the subtle drying trends in the southern
United States, central South America, central Eurasia, northern
Africa and the Middle East, Mongolia and northeastern China,
northern Siberia, and Western Australia. The result is also
confirmed in GLDAS and ERA-Interim datasets. Zhou et al.
(2019a) used the Coupled Model Intercomparison Project phase
5 (CMIP5) models and deduced that the land-atmosphere
feedback greatly exacerbated the concurrent soil and
atmospheric drought. The frequency and intensity of both soil
drought and atmospheric aridity enhanced by land-atmosphere
feedback are projected to increase in the 21st century.

With soil moisture drying, soil moisture and temperature
interaction have increased and intensified extreme high
temperature and heatwave events. Liu et al. (2020) analyzed
the mechanism of heatwave in Europe and concluded that
although heatwaves are initially triggered by abnormal
atmospheric circulation, the strong coupling between soil
moisture and temperature further strengthened the heatwaves.
Meanwhile, land cover plays a key role in determining the
occurrence and intensity of coupling between soil moisture
and temperature. Based on the reconstruction of tree rings for
the past 260 years, Zhang et al. (2020) revealed an abrupt shift to

Attribution of Soil Moisture Variation

hotter and drier climate over inland East Asia. Persistent soil
moisture deficit enhances land-atmosphere coupling, which
intensifies land surface warming and soil moisture drying.

In summary, the soil moisture variation in summer, especially
in hotspots of land-atmosphere coupling, has a great impact on
climate change and extreme climate events, and its relevant
feedbacks (e.g., soil ~moisture-temperature and soil
moisture-precipitation) are prerequisite for reproducing
historical trends and ensuring fitness for future projections.
Therefore, the detection and attribution of soil moisture
variation are essential and urgent. At present, the analysis of
soil moisture variation tends to focus on precipitation,
temperature, and atmospheric circulation (Zuo and Zhang,
2007; Meng and Quiring, 2010; Wei et al,, 2016). Cheng et al.
(2015) concluded that the soil moisture in East Asia showed a
drying trend through the GLDAS dataset, which is significant in
northeast China, north China, Mongolia, and Russia near Lake
Baikal. The drying trend of soil moisture is mainly driven by the
decreasing precipitation and is enhanced almost twofold by
increasing temperatures. Chen et al. (2016) detected a
significant decreased trend in surface soil moisture in eastern
China by the satellite product and attributed the decreasing trend
to precipitation/potential evapotranspiration. However, few
studies have detected and attributed the effects of external
forcings on soil moisture variation. Coupled Model
Intercomparison Project phase 6 (CMIP6) is initiated and
organized by the World Climate Research Program Coupling
Simulation Working Group. CMIP6 provides climate simulation
data to the global science community by designing the standards
of climate model experiments and setting the shared data format
(Eyring et al., 2016; Zhou et al., 2019b). CMIP6 contains many
well-designed experiments, and most of the climate models
participate in the experiments designed by CMIP6. Therefore,
this study used the CMIP6 model experiments to detect and
attribute the external forcings on soil moisture variation in
summer, and to analyze the future changes of soil moisture
under different emission scenarios. This study will provide a
more profound understanding for the anthropogenic effects on
soil moisture variation. Data, models, and methods are explained
in Data and Methods; results and analysis are provided in Results;
the discussion and summary are presented in Discussion and
Summary.

DATA AND METHODS
Data

Reanalysis datasets are selected to replace observation data in the
analysis of soil moisture attribution because soil moisture lacks
long time period and spatially continuous observation data.
European Centre for Medium-Range Weather Forecasts
Reanalysis v5 (ERA5) and Global Land Data Assimilation
System Noah 2.0 (GLDAS-Noah 2.0) reanalysis datasets are
selected for this study, and experts have widely recognized
them in previous studies (Bi et al, 2016; Cheng et al, 2019;
Deng et al,, 2020). ERA5 derives from the European Centre for
Medium-Range Weather Forecasts, and incorporates soil
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TABLE 1 | CMIP6 models (first column), latitude grid points (second column),
longitude grid points (third column), and number of mrsos (moisture in the
upper portion of the soil column) members (fourth and after column) in different
experiments. HIST is all forcing simulation experiment—GHG, AA, NAT, and
LU—is only considering greenhouse gases, anthropogenic aerosols, natural,
and land use forcing experiment, respectively.

Model Lat Lon HIST GHG AA NAT LU
ACCESS-CM2 144 192 2 3 3 3 -
ACCESS-ESM1-5 145 192 3 3 3 3 -
BCC-CSM2-MR 160 320 3 3 3 3 1
BCC-ESM1 64 128 3 — - — —
CAMS-CSM1-0 160 320 1 - - — -
CanESM5 64 128 25 50 30 50 9
CAS-ESM2-0 128 256 4 — - —
CESM2 192 288 11 3 2 3 3
CESM2-WACCM 192 288 3 - - - —
CMCC-ESM2 192 288 — - — 1
CNRM-CM6-1 128 256 30 9 10 10 —
CNRM-CM6-1-HR 360 720 1 - — -
E3SM-1-0 180 360 5 - - — -
E3SM-1-1-ECA 180 360 1 — - — -
EC-Earth3-Veg 256 512 3 — - — 1
FIO-ESM-2-0 192 288 3 - - — -
GFDL-CM4 180 288 1 — - 3 -
GFDL-ESM4 180 288 — 1 2 1 1
GISS-E2-1-G 90 144 12 10 15 20 -
GISS-E2-1-G-CC 90 144 1 - — — -
GISS-E2-1-H 90 144 10 - — — -
IPSL-CM6BA-LR 143 144 32 10 9 10 4
MIROC6 128 256 10 3 3 3 1
MPI-ESM-1-2-HAM 96 192 2 — - — -
MPI-ESM1-2-HR 192 384 10 — — — —
MPI-ESM1-2-LR 96 192 10 — — — 1
MRI-ESM2-0 160 320 5 5 5 5 -
NorESM2-LM 96 144 3 - — — 1
NorESM2-MM 192 288 1 — — — —
UKESM1-0-LL 144 192 — - — — 4
CMIP6-MMEM 160 320 195 100 85 114 27

moisture data from in situ observations of the global SYNOP
network and satellite remote sensing data (Hersbach et al., 2020).
The spatial resolution of ERA5 is 0.250.25°, and the soil is
divided into four vertical layers, with the ranges of 0-7, 7-28,
28-100, and 100-289 cm. GLDAS-Noah 2.0 derives from the
National Aeronautics and Space Administration; it is based on
the satellite and observation data and uses the offline land surface
model of NOAH to provide output using land surface variables.
The spatial resolution of GLDAS is 0.25° *0.25°, and the soil is
divided into four vertical layers, with the ranges of 0-10, 10-40,
40-100, and 100-200 cm.

In order to analyze the detection and attribution of global soil
moisture variation in summer, all forcing simulation (historical)
experiment, detection and attribution experiment, preindustrial
control (CTRL) experiment, land use experiment, and scenario
experiment in CMIP6 models are used. The selected soil moisture
variables are moisture in the upper portion of the soil column
(mrsos) and total water content of the soil layer (mrsol). The
purpose of the historical experiment is to reproduce the
simulation of historical climate changes since 1850. The
purpose of the detection and attribution experiment is to
evaluate the impact on the climate by only considering specific
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external forcings. The experiments considering greenhouse gases
(GHG), anthropogenic aerosols (AA), and natural forcing are
selected in the detection and attribution experiment. In order to
obtain the impact of land use (LU) forcing on the climate, the
difference between historical and hist-noLu experiments (a model
experiment to keep land use at the preindustrial level in 1850) is
calculated. The CTRL experiment, also known as the
preindustrial reference experiment, is the result of setting the
external forcings before the industrial revolution in 1850. The
CTRL experiment mainly reflects the internal variability of the
climate. The scenario experiment reflects future climate
(2015-2100) under different shared socioeconomic pathways
(SSP). SSP1-2.6, SSP2-4.5, and SSP5-8.5 are selected as low-,
medium-, and high-emission scenarios, respectively, to evaluate
soil moisture variation in the future. Monthly summer data from
1979 to 2014 are selected for soil moisture detection and
attribution. June, July, and August are regarded as summer in
the Northern Hemisphere, while December, January, and
February are regarded as summer in the Southern
Hemisphere. The CMIP6 models, the number of model
members, and the spatial resolution of model in this study are
shown in Tables 1, 2, 3.

The depths of soil layer that most datasets have are chosen
under the premise of considering the physical meaning in order
to unify the thickness of the soil layers in different models and
reanalysis datasets. Three depths of 10 cm, 100 cm, and 200 cm
are selected as shallow, middle, and deep layers, respectively. The
shallow soil moisture (10 cm) directly affects evaporation, so it is

TABLE 2 | Same as Table 1, but for mrsol (total water content of the soil layer).

Model Lat Lon HIST GHG AA NAT LU
ACCESS-CM2 144 192 2 — — — —
ACCESS-ESM1-5 145 192 3 - 3
BCC-CSM2-MR 160 320 3 3 3 3 1
BCC-ESM1 64 128 3 - - — -
CanESM5 64 128 25 50 30 50 10
CESM2 192 288 1 3 2 3 3
CESM2-FV2 96 144 3 — - — —
CESM2-WACCM 192 288 3 — — — —
CESM2-WACCM-FV2 96 144 3 - — — —
CMCC-ESM2 192 288 — — - — 1
CNRM-CM6-1 128 256 28 - - — -
CNRM-CM6-1-HR 360 720 1 — - — —
CNRM-ESM2-1 128 256 10 — — — —
EC-Earth3-Veg 256 512 3 — - — 1
GFDL-ESM4 180 288 1 — — — 1
GISS-E2-1-G 90 144 19 — 10 20 -
GISS-E2-1-G-CC 90 144 1 — - — —
GISS-E2-1-H 90 144 10 - — — .
HadGEM3-GC31-LL 144 192 4 4 4 4 —
IPSL-CMBA-LR 143 144 32 10 — 10 4
MIROC6 128 256 50 3 3 3 —
MPI-ESM-1-2-HAM 96 192 2 - — - -
MPI-ESM1-2-HR 192 384 10 — - — —
MPI-ESM1-2-LR 96 192 10 - — - 1
MRI-ESM2-0 160 320 6 5 5 5 —
NorESM2-LM 96 144 3 3 3 2 1
NorESM2-MM 192 288 1 - - — -
UKESM1-0-LL 144 192 — — - — 4
CMIP6-MMEM 160 320 247 81 60 100 30
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TABLE 3| List of CMIP6 pi-control experiment used to estimate internal climate variability in this research. The first and fourth columns include model names, the second and
fifth columns include the total years of mrsos (moisture in the upper portion of the soil column) in pi-control experiment, and the third and sixth columns include the total

years of mrsol (total water content of the soil layer) in pi-control experiment.

Model Mrsos Mrsol
ACCESS-CM2 500 500
ACCESS-ESM1-5 900 900
AWI-ESM-1-1-LR 100 100
BCC-CSM2-MR 600 600
BCC-ESM1 451 451
CAMS-CSM1-0 500 -
CanESM5-CanOE 501 501
CanESM5 1,000 2,051
CESM2-FV2 500 500
CESM2-WACCM 500 499
CESM2-WACCM-FV2 — 500
CESM2 1,200 1,200
CMCC-CM2-SR5 500 500
CMCC-ESM2 500 -
CNRM-CM6-1 500 -
E3SM-1-0 500 —
E3SM-1-1-ECA 251 -
E3SM-1-1 251 —
EC-Earth3-AerChem 311 308

the most direct and essential part of the land surface process.
Middle soil moisture (100 cm) is often the depth where plant
roots are concentrated, and vegetation cover plays a significant
role in land-atmosphere interaction and ecology. For the deep
layer (200 cm), all models and reanalysis datasets have reached a
depth of at least 200 cm. Meanwhile, the deeper the layer, the
more genuine the reflection of soil moisture memory and soil
hydrological processes (Hagemann and Stacke, 2015). The linear
difference method (Liu et al., 2014; Zhang et al., 2018) is used to
unify the datasets with inconsistent thickness, and the unit is
uniformly converted into kg/m?.

Methods

For trend analysis, the least square method of linear regression is
used to analyze soil moisture variation. In the attribution of soil
moisture variation, the spatial distribution of soil moisture trends
shows that separately considering GHG forcing, AA forcing,
natural forcing, and LU forcing are used for analysis. The
multi-model ensemble mean (MMEM) is used to express the
results of the CMIP6 model simulation, which can reduce the
uncertainty caused by the initial disturbance and the model
difference.

The optimal fingerprint is a method to detect the attribution of
external forcing signals to climate change by eliminating internal
climate variability noise. Many experts have adopted the optimal
fingerprint method to realize the attribution analysis of climate
change (Hegerl et al., 1997; Allen and Stott, 2003; Sun et al., 2014).
In this study, the optimal fingerprint method of total least squares
generalized regression is used to detect the attribution of soil
moisture variation. This method splits the observations (y) into
the external forcings (X) as “signals” and the internal climate
variability (¢) as “noise”: y = Xp+¢. In the formula, § is the scaling
factor of the external forcing, and X comes from CMIP6 detection
and attribution experiments. If the scaling factor is significantly

Model Mrsos Mrsol
EC-Earth3-CC 505 —
EC-Earth3-Veg-LR 501 501
EC-Earth3-Veg 500 188
EC-Earth3 1,105 1,000
GFDL-CM4 500 —
GFDL-ESM4 500 —
GISS-E2-1-G 851 882
GISS-E2-1-H 1,102 301
GISS-E2-2-G 151 151
HadGEM3-GC31-LL - 500
IPSL-CM6A-LR 2,250 1,950
MIROC6 800 800
MPI-ESM-1-2-HAM 780 780
MPI-ESM1-2-HR 500 500
MPI-ESM1-2-LR 1,100 1,100
MRI-ESM2-0 701 952
NorESM2-LM 170 —
TalESM1 100 100
UKESM1-0-LL 1,880 1,880
SUM 23,561 20,195

greater than zero (the lower limit of the 90% confidence interval
of the scaling factor is greater than zero), it means that the
response of the external forcing can be detected in the
observation. If the scaling factor is greater than (less than) 1,
then the external forcing is considered to underestimate
(overestimate) the observed response.

1979 to 2014 (36 years in total) is divided into six segments of
the same length (6 consecutive years). The mean value during the
6 year period will reduce the variability and noise in the signal and
observation. The internal climate variability is obtained from
CTRL experiment. A total of 23,561 years of CTRL experiment
from 36 climate models of mrsos are divided into non-
overlapping consecutive 36 years, with a total of 626 segments.
Furthermore, a total of 20,195 years of CTRL experiment from 28
climate models of mrsol are divided into non-overlapping
consecutive 36 years, with a total of 538 segments. The specific
models of CTRL experiment are shown in Table 3. The segments
of internal climate variability are divided into two groups with
same numbers. One group is used for the optimal fingerprint
method, and another is used for the residual consistency test. The
residual consistency test estimates whether the residual after
removing the external forcing signal from the observation is
consistent with the internal climate variability (Allen and Tett,
1999; Allen and Stott, 2003). This study uses one signal to
separately detect whether external forcings are included in soil
moisture variation.

RESULTS

The trends (1979-2014) of shallow, middle, and deep soil
moisture of three datasets of ERA5, GLDAS, and CMIP6-
MMEM, respectively, in summer are compared (Figure 1).
The results show that global soil moisture is mainly a drying
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FIGURE 1 | Spatial distribution of the soil moisture trend (kg/m?/decade, 1979-2014) in different datasets in summer (the Northern Hemisphere is averaged in
June, July, and August, and the Southern Hemisphere is averaged in December, January, and February). (A), (B), and (C) Shallow (10 cm), middle (100 cm), and deep
(200 cm) soil moisture, respectively. Black dots indicate where a given area passes the 90% significance test.
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trend in summer, and the extent of the drying region is more
prominent in CMIP6-MMEM than in ERA5 and GLDAS. This
result is similar to Cheng and Huang (2016) viewpoint. They
reported that global soil moisture is dominated by negative
trends, especially in transitional regions between dry and wet
climates. Affected by the range of soil moisture values at different
depths, the drying trend of shallow soil moisture is the weakest,
followed by the middle soil moisture, and the trend of deep soil
moisture being the largest. For the same dataset, the spatial
distribution of soil moisture trend at different depths is
consistent, indicating that the soil moisture of each layer
changes together. In general, the three datasets have consistent
trends in most regions. For example, the soil moisture exhibits the
drying trend in southwestern North America, eastern South
America, Europe, mid-latitudes of East Asia, and the Indo-
China Peninsula. Meanwhile, soil moisture exhibits the wetting
trend in the Indian subcontinent and Sahel. However, in some
small regions, the soil moisture trend is not consistent in different
datasets. For instance, in northern North America and southern
Africa, soil moisture exhibits mainly the wetting trend in
reanalysis datasets, while CMIP6-MMEM exhibits mainly the
drying trend, and in Central Africa, soil moisture exhibits mainly
the drying trend in ERA5, while GLDAS and CMIP6-MMEM
exhibit mainly the wetting trend. The trend of the reanalysis
datasets is greater than that of CMIP6-MMEM, which is mainly
affected by the MMEM method averaging multiple members and
models. Because soil moisture is an unconventional observation
element, there are some divergences inevitably among different
datasets. These divergences are often influenced by land surface

models on hydrological process simulation (Zampieri et al., 2012;
Clark et al., 2015). However, the soil moisture trend of selected
reanalysis datasets and CMIP6-MMEM is consistent in most
regions.

In order to evaluate the stability of climatological soil moisture
in summer, the spatial distribution of the standard deviation
(1979-2014) of soil moisture in summer is analyzed (Figure 2).
The standard deviation of soil moisture is generally tiny in
extremely arid and humid regions, such as the Sahara Desert,
West Asia, Amazon rainforest, and mid-latitudes of East Asia. For
extremely arid regions, due to the slight rainfall, the land surface
is in a state of drought for a long time, and the variability of soil
moisture is naturally tiny. There is much precipitation in summer
and the surface water is sufficient for the humid area, so the soil
moisture is usually saturated. Regions with high standard
deviations are mainly in Europe, mid-latitude of Asia, central
South America, eastern North America, Indian subcontinent,
Sahel, and southern Africa. These regions are often located in
transition zones between humid and arid regions, or regions
where rainy and dry seasons occur alternatively, which makes the
soil moisture variability relatively large.

The regions where soil moisture has the most significant
impact on land-atmosphere interaction are generally located
in the dry-wet transition regions. Soil moisture is high in
humid regions, which have enough water on the surface to
evaporate so that evaporation is not affected by soil moisture,
but mainly affected by energy in humid regions. However, soil
moisture in arid areas is too low to meet the demand for
evaporation. In the dry-wet transition regions, soil moisture
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plays a decisive role in evaporation, which in turn affects the
energy distribution of surface net radiation between sensible and
latent heat flux, affecting the energy and water cycle between land
and atmosphere. Therefore, when selecting the study regions, the
hotspots of the land-atmosphere coupling in the dry-wet
transition regions are taken as the primary study regions.
When performing detection and attribution analysis, an
essential prerequisite is whether the model can simulate the
soil moisture variation. Therefore, based on the above analysis,
the global average and five hotspots of land-atmosphere coupling
with the same trend are selected to conduct the detection and
attribution analysis of soil moisture in summer. The five regions
are mid-latitudes of East Asia (M-EA: 40-55°N, 90-135°E),
Europe (36-58°N, 0-40°E), Sahel (15-20°N, 18°W-38°E),
Western North America (W-NA: 22-35°N, 98-118°E), and the
Eastern South America (E-SA, 2-22°S, 35-60°W).

The global average and five selected hotspots of soil moisture
time series are analyzed (Figure 3). Results show that the global
average is the drying trend in the reanalysis datasets and CMIP6
models, and the drying trend is weaker than that of hotspots,
which is mainly affected by the global average. The soil moisture
is the drying trend in the M-EA, Europe, the W-NA, and the
E-SA, and the trend is wetting only in Sahel. It is the same as
previous results through the spatial trend distribution (Figure 1).
The trends of shallow, middle, and deep soil moisture in global
average and selected hotspots are consistent with different
reanalysis datasets and CMIP6 models, indicating that the
CMIP6 models can simulate the soil moisture trend well in
these regions, which lays the foundation for the subsequent
detection and attribution of soil moisture variation.
Comparing the time series of different regions, soil moisture

in Europe has the most remarkable drying trend, and the deep soil
moisture of ERA5 reached 13.48 kg/m?/decade, followed by the
W-NA and the E-SA.

The single forcing effect on the soil moisture trend is analyzed
through the CMIP6 detection and attribution experiment, land
use experiment, and historical experiment. Figure 4 shows the
spatial distribution of shallow, middle, and deep soil moisture
trends in summer considering only the GHG, AA, natural, and
LU forcing, respectively. The trend of shallow soil moisture has
only passed the significance test in a few regions, while the trends
of middle and deep soil moisture have passed the significance test
in most regions; this may be due to the smaller value range of
shallow soil moisture, which leads to the shallow soil moisture
variation being smaller. On the whole, the spatial distribution of
the soil moisture trend at different depths under every single
forcing is basically the same, which means that the regional trend
can extend from surface to deep layers. The GHG forcing makes
the soil moisture significantly dry in high latitudes of the
Northern Hemisphere, northern South America, and Western
Europe. The wetting trend is relatively weaker than the drying
trend, and the distribution range is small. The wetting trend
mainly occurs in southern South America, central Africa, and
parts of the mid-latitudes of Asia. The AA forcing causes a
significant drying trend in Europe, high latitudes of Asia, and
eastern South America. The soil moisture in middle and deep
layers shows a strong drying trend, which is distributed in a belt
around 60°N from Europe to East Asia. Meanwhile, soil moisture
has a strong wetting trend in Sahel, Tibet Plateau, and Northeast
China. The influence of natural forcing on soil moisture is
generally weaker than that of other external forcings, but some
regions in the middle and deep layers have passed the significance

Frontiers in Earth Science | www.frontiersin.org

154

October 2021 | Volume 9 | Article 745185


https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Qiao et al.

Attribution of Soil Moisture Variation

04 6
.
02
< <
£ 2
2, e
s 50
H H
3 34

5.95% of models.

—R g

5.95% of models
ER)

&

—atLoas —oLoas
= Global e Global
-06 -8
1980 1990 2000 2010 1980 1990 2000 2010
Time (year) Time (year)
3 40
30
s s
E E 20
S S
< < 10
s e
s s
2 g 0
S S
= L0
& &
5.95% of models 5.95% of models
2 ER 20 —er
—octoas —oLoas
e M-EA 0, —owrs M-EA
1980 1990 2000 2010 1980 1990 2000 2010
Time (year) Time (year)
3 40
2 30
£, € 20
S5 S5
2 < 10
2 2
So s
2 z 0
S S
£, Eo
3 3
@ @

5.95% of models. 5-95% of models

| ——ERAS 207 —ras
—atons —aLons
—ours Europ 30 —cwes Europ
-3
1980 1990 2000 2010 1980 1990 2000 2010
Time (year) Time (year)
3 40
2 30
€ € 20
S >
< < 10
2 2
5 5
2 g0
S S
E' 5710
@ @
5.95% of models
g 20 —eras
—alLoas
30 ——cmiPs Sahel
1980 1990 2000 2010 1980 1990 2000 2010
Time (year) Time (year)
40

Soil moisture (kglmz)
Soil moisture (kg/mz)

—GLDAS
30 =——CMIPS

W-NA
1990 2000 1990 2000

Time (year)

2010 1980 2010

Time (year)

o

Soil moisture (kg/m?)
Soil moisture (kg/m?)

5.95% of models.

5-95% of models
—ERAS

N
S

—ERAS
—GLDAS

—GLoAs
—cuPs E-SA 30| ——cmPs E-SA
1980 1990 2000 2010 1980 1990 2000 2010
Time (year) Time (year)

latitudes of East Asia, the W-NA is Western North America, and the E-SA is Eastern South America.

Soil moisture (kg/m?)

Soil moisture (kg/mE)

Soil moisture (kg/mQ)

Soil moisture (l@lmz)

Soil moisture (l@lmQ)

Soil moisture (Kg/mz)

FIGURE 3 | Time series of soil moisture (kg/m?, 1979-2014) in the global average and selected hotspots. The solid black line is ERA5, the solid blue line is GLDAS,
the solid red line is CMIP6-MMEM, the corresponding dotted line is the trend line, and the pink shade is the range of 5-95% of all CMIP6 models. The M-EA is mid-

5.95% of models
—RAS
—GLDAS
—cMiPs

Global

1980 1990 2000 2010

Time (year)

1990 2000
Time (year)

2010

1990 2000
Time (year)

2010

5.95% ofmodels

ERAS
—GLDAS
i Sahel
1980 1990 2000 2010
Time (year)

—GLDAS

=5 W-NA
1980 1990 2000 2010
Time (year)

1990
Time (year)

2000 2010

Frontiers in Earth Science | www.frontiersin.org 155

October 2021 | Volume 9 | Article 745185


https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Qiao et al.

Attribution of Soil Moisture Variation

90E
L

1208 150E
1 L

120w %ow  soW 30w 0E  60E  90E

05 04 03 02 01 0 01 02 03 04 05 5 4 a3 2

FIGURE 4 | Spatial distribution of the soil moisture trend (kg/m?/decade, 1979-2014) from CMIP6 experiments (the experiment only considering greenhouse
gases (GHG) forcing, the experiment only considering anthropogenic aerosols (AA) forcing, the experiment only considering natural (NAT) forcing, and the experiment
only considering land use (LU) forcing). (A), (B), and (C) Shallow (10 cm), middle (100 cm), and deep (200 cm) soil moisture, respectively. Black dots indicate where a

given area passes the 90% significance test.

test. Under the LU forcing effect, the drying trend is most
pronounced in Europe, and the wetting trend occurs in
northeast China, the eastern Mongolian plateau, and the
Indian subcontinent.

Based on the external forcing experiment, the soil moisture
trend is mainly affected by GHG, AA, and LU forcings, and the
natural forcing effect is very small. The attribution characteristics
of soil moisture variation are similar to the research results of Gu
et al. (2019). They suggested that the anthropogenic climate
change signal is detectable in global soil moisture drying.
However, these external forcings do not produce a consistent
global effect on soil moisture like surface air temperature (e.g.,
GHG forcing has a warming effect globally and AA forcing has a
cooling effect in most parts of the world). The effects of external
forcings on soil moisture have significant regional divergences.
For instance, in the M-EA, the effect of GHG forcing is a drying
trend, while the effect of AA and LU forcings is a wetting
trend. In the E-SA, the GHG and AA forcings make soil
moisture dry, while the LU forcing makes soil moisture wet.
However, some regions have the same trend under different
forcings. For example, in Western Europe, GHG, AA, natural,
and LU forcings all make soil moisture dry, while it is opposite in
Sahel.

Furthermore, the optimal fingerprint method is used to detect
whether the external forcing signals are contained in the soil
moisture variation. Figure 5 shows the scaling factors of different
external forcings. Overall, scaling factors in some regions have a
wide range of 90% confidence interval, which makes some forcing
signals undetectable. At the same time, the wide range of
confidence interval also indicates that the internal climate
variability also plays a role in the soil moisture variation
(Zhang et al., 2007; Zhou et al,, 2020). On the global average,
the signals of all forcings and GHG forcing can be detected in soil
moisture variation of ERA5 and GLDAS at different depths,
except in shallow soil moisture of GLDAS. The scaling factors
of AA, natural, and LU forcings are too large or even negative,
which indicates that these external forcings have little effect on
soil moisture variation. In Europe, the signals of all forcings and
AA forcing can basically be detected in ERA5 and GLDAS at
different depths, but some lower limits of the 90% confidence
interval of scaling factors are less than 0. Meanwhile, the signal of
GHG can only be detected in the shallow soil moisture. In Sahel,
all forcings and AA forcing signals can be detected in GLDAS,
and LU forcing signals can also be detected in the middle and
deep layers, but the scaling factor is large. Only the signals of all
forcings and LU forcing on middle and deep soil moisture
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variation can be detected in ERAS5. In the E-SA, except LU
forcing, other forcing signals can be detected at different soil
layers in ERA5 and GLDAS, but the confidence interval of
some scaling factors contains the value of 0 in GLDAS. In the
M-EA, the scaling factors of each forcing are either too large
or less than 0, and it is hard to detect the impact on soil
moisture variation. The detection of results by the optimal
fingerprint method of the W-NA is similar to that of the
M-EA. However, some forcing signals of deep soil moisture
can be detected in the M-EA and the W-NA, but the scaling
factors are too large. In the residual consistency test, the test
result is obviously related to the regions. In the three regions
of the M-EA, the W-NA, and Sahel, most of the forcing signals
failed in the residual consistency test, and the detection results
of the optimal fingerprint method are also poor in these three
regions.

Based on the detection results of the optimal fingerprint
method, some external forcing signals cannot be detected in
some regions. On the one hand, it means that soil moisture
variation is complicated, and the internal climate variability has a
significant impact on soil moisture variation. On the other hand,
this may be related to the shorter time period. However, it still
confirms that GHG, AA, and LU forcings can be detected in some
regions, and natural forcing plays a minor role in soil moisture
variation.

According to the above analysis, anthropogenic forcings (GHG,
AA, and LU) have a significant impact on soil moisture variation,
especially in hotspots. Furthermore, through the CMIP6 scenario

experiment, a low-emission scenario (SSP1-2.6), a medium-
emission scenario (SSP2-4.5), and a high-emission scenario
(SSP5-8.5) are selected to analyze the soil moisture variation in
the future. Figure 6 shows the soil moisture time series of global
and hotspots’ average in the past and different scenarios.
Combined with Table 4, the global average and selected
hotspots will become drier in the future except for Sahel. The
soil moisture of Sahel shows a significant wetter tendency in the
high-emission scenario, but soil moisture under low-emission and
medium-emission scenarios almost has no trend. On global
average, with the increase of anthropogenic emission, the drying
trend of soil moisture will increase in all layers, and there are
similar phenomena in the M-EA, Europe, the W-NA, and the
E-SA. The above analysis shows that with the increase of
anthropogenic emission, the trend of soil moisture will also
increase (soil moisture in areas with drying trend will become
drier and in areas with wetting trend will become wetter), which
will exacerbate climate instability. In the first half of the 21st
century, the divergences of soil moisture variation in different
emission scenarios are not significant, but in the second half of the
21st century, the variation will increase among low-, medium-, and
high-emission scenarios. The drying trends of shallow, middle, and
deep soil moisture in Europe are the severest. Before 2040, the
divergence among low-, medium-, and high-emission scenarios is
minor, and then the divergence starts to increase, especially under
the high-emission scenario. In the M-EA, the soil moisture almost
has the same drying trend in the medium- and high-emission
scenarios. Meanwhile, there is nearly no significant trend in the
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TABLE 4 | Soil moisture trend (kg/m2/decade, 2015-2100) of global average and selected hotspots under different emission scenarios in the future. The M-EA is mid-
latitudes of East Asia, the W-NA is Western North America, and the E-SA is Eastern South America.

Depth (cm) Scenario Global M-EA
10 SSP1-2.6 -0.046 0.011

10 SSP2-4.5 -0.094 -0.044
10 SSP5-8.5 -0.148 -0.054
100 SSP1-2.6 -0.592 0.075
100 SSP2-4.5 -0.872 -0.481
100 SSP5-8.5 -1.260 -0.423
200 SSP1-2.6 -1.102 -0.559
200 SSP2-4.5 -1.697 -1.759
200 SSP5-8.5 -1.956 -1.682

Europe Sahel W-NA E-SA
-0.044 -0.023 -0.014 -0.028
-0.104 -0.025 -0.063 -0.114
-0.302 0.018 -0.091 -0.204
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low-emission scenario, which indicates that the M-EA is more
sensitive to anthropogenic emission, and the medium-emission
can also cause a similar drying trend as the high-emission scenario.
The W-NA has similar variation characteristics as that of
the M-EA.

Furthermore, the distribution of future changes of soil
moisture is analyzed. Figure 7 shows the distribution of the
ratio, which is calculated by dividing the difference between
future (2081-2100) and historical (1995-2014) climatological
soil moisture by historical climatology [the ratio
(future-historical)/historical]. Overall, soil moisture in most
parts of the world has a drying trend under different future
scenarios, but wetting trend mainly appears in Sahel and parts of
mid-latitudes of Asia. This spatial pattern is basically consistent
with the pattern caused by GHG forcing on soil moisture

variation, which means that with the emission of GHG
increase in the future, the GHG forcing effect on soil moisture
will be more intense. In most regions, future soil moisture
changes have such characteristics that as anthropogenic
emission increases, the soil moisture trend will also increase
(the regions with drying trend will be drier and the regions
with wetting trend will be wetter). The results in the study of Joo
et al. (2020) also confirmed this viewpoint. In addition to the
hotspots analyzed above, the soil moisture changes in the Tibet
Plateau, high latitudes of the Northern Hemisphere, northern
South America, and northern North America are also very
significant. It means that as anthropogenic emissions increase,
soil moisture and climate anomalies will become more unstable
and serious. In the regions with a drying trend, the trend of soil
moisture in the surface layer is drier than that of middle and deep
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layers. On the contrary, the regions with a wetting trend of soil
moisture will become wetter with the depth increase, and the
space range with a wetting trend in the deep layer will expand.
The reason for the severe drying trend of surface soil moisture is
that the increased GHG concentration leads to global warming
and evaporation increasing. The surface soil moisture is directly
affected by the enhancement of evaporation, which makes the
surface soil moisture drier. For the wetting trend in deep layers,
due to the increase of carbon dioxide concentration on vegetation
fertilization, water use efficiency of vegetation increases, leading
to the root zone layer (middle and deep layers) becoming wetter
(Mankin et al., 2017; Dai et al., 2018).

DISCUSSION AND SUMMARY

The reanalysis (ERA5 and GLDAS) and CMIP6 data are used in
this study to detect and attribute global soil moisture variation in
summer. Also, the soil moisture responses to different scenarios
are analyzed. From a global perspective, soil moisture shows
mainly a drying trend in most regions, and it will become much
drier with the increase of anthropogenic emission in the future.
The detection and attribution results show that the global drying
trend is mainly affected by GHG forcing. In different datasets, soil
moisture appears to exhibit consistently a drying trend in Europe,
southwestern North America, eastern South America, mid-
latitudes of East Asia, and the Indo-China Peninsula; however,
Indian subcontinent and Sahel show a wetting trend.

In most parts of the world, the soil moisture variations in
shallow, middle, and deep layers are consistent. In the regions
with a drying trend, the surface layer will become drier than the
middle and deep layers in the future, while in wetting regions, the
deep soil moisture will become wetter than those of surface and
middle layers, and this phenomenon will be more severe with the
increase of anthropogenic emission. The surface layer will get
when drier affected by the increased evaporation caused by global
warming, and the wetting trend is being more severe in the deep
layer, which is affected by the effect of carbon dioxide fertilization
(Mankin et al., 2017; Dai et al., 2018).

Both the spatial distribution of the detection and attribution
experiment, and the detection results of the optimal fingerprint
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Quantitative Estimation on
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Decreasing Streamflow in a Typical
Basin of Yellow River

Xizhi Lv', Shanshan Liu?, Shaopeng Li, Yongxin Ni, Tianling Qin®* and Qiufen Zhang'

"Henan Key Laboratory of Yellow Basin Ecological Protection and Restoration, Yellow River Institute of Hydraulic Research,
Zhengzhou, China, “State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water
Resources and Hydropower Research, Beijiing, China

Climate changes and underlying surface of the watershed have affected the evolution of
streamflow to a different degree. It is of great significance to quantitatively evaluate main
drivers of streamflow change for development, utilization, and planning management of
water resources. In this study, the Huangshui River basin, a typical basin of the Qinghai-
Tibetan Plateau, China, was chosen as the research area. Huangshui is the largest first-
class tributary in the upstream of the Yellow River. Based on the Budyko hypothesis,
streamflow and meteorological datasets from 1958 to 2017 were used to quantitatively
assess the relative contributions of changes in climate and watershed characteristics to
streamflow change in research area. The results show that the streamflow of Huangshui
River basin shows an insignificant decreasing trend; the sensitivity coefficients of
streamflow to precipitation, potential evapotranspiration, and watershed characteristic
parameter are 0.5502, —0.1055, and —183.2007, respectively. That is, 1 unit increase in
precipitation would induce an increase of 0.5502 units in streamflow, and 1 unit increase in
potential evapotranspiration would induce a decrease of 0.1055 units in streamflow, and
an increase of 1 unit in the watershed characteristic coefficient would induce a decrease of
183.2007 units in streamflow. The streamflow decreased by 20.48 mm (13.59%) during
the change period (1994-2017) compared with that during the reference period
(1958-1993), which can be attributed to watershed characteristic changes (accounting
for 73.64%) and climate change (accounting for 24.48%). Watershed characteristic
changes exert a dominant influence upon the reduction of streamflow in the
Huangshui River basin.

Keywords: streamflow, Budyko hypothesis, climate changes, underlying surface, Huangshui River basin, climate
changes
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INTRODUCTION

As a significant part of the hydrological process, streamflow in
many basins of the world is experiencing a decreasing trend,
which is particularly evident in the Haihe River, Huaihe River,
Songhuajiang River, Liaohe River, and Hanjiang River of China,
and streamflow variability is generally influenced by climate
change and anthropogenic activities (Wang et al., 2013; Zhang
et al, 2015; Kong et al, 2016). Climate changes, such as
precipitation and potential evaporation changes caused by
increasing temperature, may have a crucial impact on
streamflow (Huo et al., 2008). Human activities, including
irrigation, land use changes, reservoir, and other hydraulic
engineering, can result in significant hydrological alterations.
Previous studies showed human activities are the primary
driving factor of streamflow variability (Wang et al, 2012;
Zhan et al,, 2013). Due to the increases in human activities
caused by rapid growth of economy and population in lots of
places, the demand for water resources has been increased sharply
over the past decades, and the decreasing trend of streamflow will
continue (Velpuri and Senay, 2013). Situations of water shortage
recorded have increased rapidly around the world. Recently,
extreme hydrological events including floods, drought, and
heavy rainfall have been reported more frequently in a
changing environment (Thompson, 2012; Zhao et al, 2019).
Understanding the evolution of streamflow and quantifying
the individual impacts of climate change and human activities
on streamflow are crucial to managers and policy-makers for
sustainable water resources/basin management. Simultaneously,
they are essential for the sustainable use of water resources and
development of regional economics.

Researchers initially analyze components, annual and inter-
annual changes of streamflow, and the correlations with climatic
factors (Li and Tang, 1981; You, 1995). With the strengthening of
human activities, researchers gradually consider the impact of
human activities to streamflow, but it is limited to qualitative
explanation (Tang, 1995; Xu, 1995; Wang et al., 2021). The
sensitivity analysis of climate on streamflow is reported more
frequently recently, and generally the sensitivity coefficient of
streamflow to precipitation is greater than potential evaporation
in many regions (Wang and Yu, 2015). Latest studies focus on
quantitative assessments of runoff changes, including climate
change and human activities/land use changes, and indicate
that human activities are the dominant factor for runoff
variability in most of the world’s rivers (Wang et al., 2012;
Wang et al, 2013; Lv et al,, 2019; Hu et al,, 2020; Liu, 2020).
Vegetation condition is the most representative factor of human
activities in some areas, such as the Loess Plateau of China, the
effect of vegetation was deeply conducted (Zhao et al., 2010; Li
etal, 2019; Sun et al., 2020). However, the sensitivity analyses of
streamflow to climatic and no-climatic factors are still rare in
present studies.

In order to assess the hydrological response in a changing
environment, over the past years, two primary methods have been
applied to separate the effects of climate change and human
activities on streamflow variability: hydrologic model and
statistical methods. Hydrological models, such as SWAT model
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(Zhang et al., 2012), Xinanjiang model (Jiang et al., 2007), and
GBHM model (Xu et al.,, 2013), are very useful to investigate
streamflow evolution, and the models require numbers of high-
quality recorded datasets as the input in order to ensure accuracy.
Simultaneously, the modeling results have some uncertainties
caused by the shortcomings from model structure, parameters,
and scale problem. By contrast, statistical methods, including
the cumulative anomaly curve method (Ran et al, 2010) and
time trend method (Wei and Zhang, 2010), are comparatively
simple, but lack a clear physical mechanism and so
provide generalized relationships. In addition, catchment
experiments also are powerful tools for assessing the impact of
vegetation on the water balance (Costa et al, 2003);
nevertheless, they are applied to small catchments due to the
limiting conditions.

Numerous methods have been proposed to study the
hydrological cycle process, and among them, hydrological
modeling method has been widely used in different regions of
the world. However, as these process-based models are complex
combinations of scientific hypotheses, their results are highly
dependent on the embedded hypotheses and often vary greatly
among models (Beer et al.,, 2010; Yang et al., 2015). Additionally,
they also require major efforts on model calibration and have
uncertainties in the structure and parameters of the model (Wang
and Yu, 2015). The advantage of using the Budyko framework lies
in its ability to analytically separate the impacts of mean climate
conditions and catchment properties on hydrological partitioning
(Roderick & Farquhar, 2011; Wang & Hejazi, 2011; Liu and
McVicar, 2012; Xu et al,, 2014; Liang et al., 2015).

The Budyko framework demonstrates the long-term physical
distribution between precipitation, evaporation, and streamflow.
Due to the efforts and contributions of subsequent researchers,
the original Budyko equation (Budyko, 1974) has developed into
many forms, such as Fu (1981), Mezentsev—Choudhury-Yang
(Mezentsev, 1955; Choudhury, 1999; Zhang et al.,, 2001; Yang
etal., 2008; Wang and Tang, 2014), which all have one parameter
(w) related to the characteristics of watershed (e.g., soils,
topography, vegetation, and land use types). Among the above
equations, Fu equation is considered to be the most widely
concerned and applied equation in the world. The parameter
(w) can be calculated according to the method in literature (Lv
et al., 2019). Additionally, based on the Budyko framework, the
climate sensitivity method initially proposed by Schaake (1990),
which is very similar to other sensitivity (Milly and Dunne, 2002),
has been also adopted to estimate the effects of climate change
with continuous extension and improvement (Fu et al., 2007).
Researchers believe that the sensitivity method is more credible
than other statistical methods because of including basic physical
processes. Over the last studies, the climate elasticity approach
has been widely used to investigate climate- and human-induced
streamflow variability and furthermore analyze the major driving
factor of change (Ma et al., 2010).

The Huangshui River basin is the important water-producing
area of the upper catchment of the Yellow River, and streamflow
in this region has showed a reducing trend recently (Huo et al.,
2008). However, quantitatively assessing the sensitivities and
relative contributions of streamflow to different factors
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FIGURE 1 | Location of the Huangshui River basin and hydrological and meteorological stations.

(climatic and no-climatic factors) for the whole basin have not
been reported. The major purposes of this study are to 1) explore
the temporal trends and change point of annual streamflow; 2)
obtain the sensitivity coefficients of streamflow to precipitation,
potential evaporation, and watershed characteristic; and 3)
quantitatively separate the impacts of climate change and
watershed characteristic change to streamflow changes in the
Huangshui River basin.

STUDY AREA

The Huangshui River is the largest first-level tributary on the left
bank of the upper Yellow River (Figure 1), which primarily
includes the main stream and the tributary Datong River. Its main
river length is 374 km, and the drainage area of the catchments is
32863 km® (36°02'-3820'N, 98°54'-103°24'E). The Huangshui
River basin is located in the transitional zone between the
Qinghai-Tibetan Plateau and the Loess Plateau. The whole
basin is shaped like leaves, narrow in the east and wide in the
west. The topography of the basin is high in the northwest and
low in the southeast. The basin is at an altitude of 1500-5200 m
and belongs to a continental climate; alpine and drought are the
climatic characteristics of this area, and the basin is one of the

regions which is frequently influenced by East Asian Monsoon,
South Asian Monsoon, and Plateau Monsoon. The average mean
temperature is 0.6-7.9°C, the average maximum temperature is
34.7°C, the average minimum temperature is —32.6°C, the
average mean evaporation is 800-1500 mm, and the average
mean precipitation is 300-500 mm. The precipitation shows
obvious season variation, and more than 70% occurs between
June and September due to the southeast monsoon from the
Bay of Bengal. The annual runoff is about 44.5 billion m?,
which mainly comes from the mixed supplies of snowmelt and
precipitation. The soil and vegetation are significantly
different in different regions of the basin due to the
comprehensive influence of terrain, altitude, climate, and
soil parent material. The main soil-forming parent materials
are the tertiary red soil and the quaternary loess.

RESEARCH METHODS

The Budyko Hypothesis

Budyko (1974) believed that on a long time, the actual
evapotranspiration of the basin was determined by a balance
between the land surface water supply conditions (precipitation)
and atmospheric evaporation requirements (net radiation or
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potential evapotranspiration) and put forward the general form of
a balanced relationship:

= F(E P, M
where E is the actual evapotranspiration (mm); P is the mean
annual precipitation (mm); E, is the mean annual potential
evapotranspiration (mm).

Following the Budyko hypothesis, according to the physical
meaning of watershed hydrometeorology, Baopu Fu (1981)
analyzed and deduced the form of Budyko hypothesis curve
and provided another form of analytical expression:

1w

E:1+E°—[1+<E°)w] , @)

where w is a non-dimensional parameter of the watershed
underlying characteristic, which is related to the land use, soil,
vegetation, topography, and other characteristics.

Therefore, taking the underlying surface factors of the
watershed, Budyko hypothesis was developed into a new form
of expression:

()

Sensitivity Analysis of Influencing Factors of Water
Watershed Runoff

Based on the water balance equation (P = E + Q) for a long period,
combined with Eq. 2, there is

Q=[P +E*]" - E,. (4)

Based on the definition of the sensitivity coefficient, combined
with Eq. 4, the calculation formulas of sensitivity coefficients of Q
to P, Ey, w can be obtained as follows:

w1 (Mw-1)
a1 ()] ®
aQ_ p wq (T/w-1)
aQ_ w w _i w w l- 1 .
P [P +EO]~[< w2>~1n(P +E°)+w P ES o

(InP-P°+InkE,- E{;’)],
where w is calculated using the least squares method.

Estimating the Contribution of Climate and Watershed
Characteristic Variabilities to Streamflow

Perturbations in precipitation, potential evaporation, and
watershed characteristic will result in changes of water balances.
Therefore, it can be suggested that the mean annual streamflow
change was caused by climate and watershed characteristic
variabilities, and this can be expressed as the following:

Q 9Q

X AP+ == . AE, (8)

A climate =
Qutimate = 5 0E,
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0
AQwatershed = £ -Aw (9)
AQ = @ - @> (10)

where AP, AE;, and Aw denote changes in streamflow, potential
evaporation, and watershed characteristic, respectively; Q;, Q;
denote mean annual streamflow in the reference and change
period, respectively.

Therefore, the contribution rates of climate and watershed
characteristic variabilities can be determined in the following
expression:

AQc]imate

Iclimate = AQ x 100% (11)
AQyatershe
Iwatershed = % x 100% (12)

The Mann-Kendall Test
1) The Mann-Kendall trend test

The Mann-Kendall trend test, recommended by the World
Meteorological Organization and widely used to detect varying
trends in hydro-climatic time series (Wang and Yu, 2015), is
adopted in this study. The test statistics is as follows:

S-1
—, $>0
v Var (S)
Z = 0, S=0, (13)
S+1
é S<0

\Var(S)

where

S= 2 Z Sgn(xj - Xi) (14)

i=1 j=itl

+1, x;>x;
sgn(xj - xi) =14 0, xj=x (15)
—1, xj<x1-
-1)(2n+5
Var(S)z—n(n ) (2n ), (16)

18

where x; and x; denote two simple variables from a time series
data (x;, x5, X3 . .., x,,); n is the data size; Z and S stand for a test
statistic, respectively.

Under the significance level of a, the null hypothesis of no
trend is rejected if | Z| > Z(1 42y, where Z(;_o/2) denotes the critical
value obtained from the standard normal distribution tables. A
positive Z value indicates an upward trend and vice versa. In this
study, a = 0.05.

2) The Mann-Kendall change-point analysis

The test statistic Sy is calculated as follows:

Se=Y Yrijk=234,..,n) (17)

i=1 j=1
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m={éjﬁj§ﬁj <j<i) (18)
Then, the statistics index UF is calculated as follows:
UF, = &“;T\/% (k=1,2,3,..,n), (19)
where
E(sy = KD 0)
Var (Sg) = W (21)

Another statistics index UBy is obtained using the same
procedure shown above but with an adverse time series. The
two lines of UFy and UB; may make an intersection point at a
certain significance level, and then the point will be identified as
the abrupt point.

Precipitation-Streamflow Double

Cumulative Curve

Double cumulative curve (Huo et al., 2008) is the most intuitive
and widely used method in time series analysis, and it is adopted
to determine the time and degree when watershed characteristic
begins to significantly influence streamflow in this study. When it
is primarily affected by precipitation, the double cumulative curve
is a straight line; when other factors such as the underlying
surface of the watershed are significantly affected, the curve will
shift and have a break point. The degree of curve deviation
indicates the impact intensity of the underlying surface of the
watershed. The precipitation-streamflow double cumulative
curve can be defined by

YQ=a) P+b

AQdCC = Z Qdcc - z Q:

where > Q, Y P, Y Q.- and AQy,. denote cumulative streamflow,
cumulative precipitation, simulated cumulative streamflow, and
cumulative streamflow by watershed characteristic, respectively; a
and b denote fixed parameters.

(22)
(23)

DATA

This study utilized annual runoff data from China Hydrology
Yearbook. The observed series cover the period from 1958 to
2017. Meteorological data from eight weather stations within and
around the research area were provided by the National Climate
Center of China Meteorological Administration (http: //www.
data.cma.cn/) (Table 1). All the meteorological data series with
daily temperature, relative humidity, wind speed, sunshine
duration, and precipitation were also from 1958 to 2017, and
the potential evapotranspiration was calculated by
Penman-Monteith formula (Allen et al, 1998). The NDVI
dataset used in this study is NASA Global Inventory
Monitoring and Modeling Systems Normalized Difference

Contribution to Decreasing Streamflow

Vegetation Index third dataset (GIMMS NDVI 3 g) and it is
the longest NDVT time series so far, with a period of from 1982 to
2015, a spatial resolution of 1/12°, and a temporal interval of
15 days (Ni et al., 2020), and it is confirmed that the dataset can
provide high-quality data for places from mid to high latitudes.
Annual NDVI values are obtained by using maximum value
composite method (Zhang et al., 2013).

RESULTS

Characteristics of Streamflow Variability in

the Huangshui River Basin

The Mann-Kendall trend test of annual streamflow for
Huangshui River basin was summarized in Figure 2. The
results showed that the statistical test value (Z) was —1.59, and
its absolute value (|Z]) was less than 1.96, indicating that the
annual streamflow of the Huangshui River basin exhibited an
insignificant downward trend at the 0.05 significance level.

The Mann-Kendall mutation test was performed on the
streamflow data, as is showed in Figure 2. It can be noted
that, before 1987, although the UF and UB lines had several
intersections, however, there was no obvious abrupt point. After
1987, lines of UF and UB crossed in 1993, and the intersection
point was within the critical lines of +1.96 (0.05 significance
level). Therefore, the abrupt change point of annual streamflow in
the Huangshui River basin was in 1993. Furthermore, the data
series from 1958 to 2017 can be split into two periods: the
reference period (1958-1993) and the change period
(1994-2017).

It was clearly seen that compared with the reference period,
the mean annual streamflow in the change period decreased from
150.71 to 130.23 mm (Figure 3). It is concluded that the annual
streamflow reduced by 20.48 mm (13.59%).

Sensitivity of Watershed Streamflow to
Climatic Factors and Watershed

Characteristic

Based on the annual data series of 1958-2017 in the Huangshui
River basin, values of the mean annual precipitation, the mean
annual streamflow, and the mean potential evapotranspiration
were 418.81, 142.52, and 833.28mm, respectively. Further,
watershed characteristic parameter (w) calculated on the basis
of Eq. 4 was 1.7306.

These data obtained previously were used in Eq. 5, Eq. 6, and
Eq. 7; the sensitivity coefficients of streamflow to precipitation,
potential evapotranspiration, and watershed characteristic
parameter were 0Q/0P = 0.5502, 0Q/0E, = —0.1055, and 0Q/
Jw = —183.2007, respectively. That means that every unit increase
in precipitation, potential evapotranspiration, and watershed
characteristic parameter will lead to the streamflow change by
0.5502, —0.1055, and —183.2007 units. Thus, it is suggested that
the streamflow change is positively related to precipitation, and it
is negatively related to potential evapotranspiration and
watershed characteristic. Meanwhile, among climate factors,
streamflow becomes more sensitive to change in precipitation
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TABLE 1 | The overview of hydrological and meteorological stations in the Huangshui River basin.

ID Station Type
Qilian
Minhe
Guide
Xining
Gonghe
Gangcha
Menyuan
Wugiaoling

Meteorological station

o ~NOoO O wWwN =

Huangyuan
Ledu
Minhe
Jijiabao

Hydrological station

AWM =

TABLE 2 | The changes of streamflow and meteorological and watershed
characteristic parameter in two periods.

Period

Q/mm P/mm Eo/mm )

1958-1993 150.71 411.65 836.46 1.6412
1994-2017 130.23 429.56 828.51 1.8153
1958-2017 142.52 418.81 833.28 1.7306
Change/A -20.48 17.91 -7.95 0.1741
TABLE 3 | Relative contribution rates of climate change and watershed
characteristic changes to streamflow variability.

ProjeCt AQ Achimate AQwatershed Error
Influence quantity/mm -20.48 10.69 -31.90 0.73
Contribution rate/% 100 24.68 73.64 1.68

than that in potential evapotranspiration. The results also suggest
that watershed characteristic changes play a more important role
than climate changes on streamflow variability in the Huangshui
River basin.

Attribution Analysis of Streamflow Changes
in the Huangshui River Basin

Based on the data provided from the Huangshui River basin in
period of 1958-2017, the mean annual streamflow, the mean
annual precipitation, and the mean annual potential
evapotranspiration in the reference period (1958-1993) and
the change period (1994-2017) were calculated, respectively.
Further, watershed characteristic parameter (w) can be also
calculated on the basis of Eq. 4. The results are shown in
Table 2. During two periods, P and w increase from 411.65 to
429.56 mm and from 1.6412 to 1.8153, respectively, while E,
decreases from 836.46 to 828.51 mm, conversely.

The effects of climate changes and watershed characteristic
changes on the streamflow amount were 10.69 mm and
-31.90 mm, respectively, calculated by Eq. 8-12. The impacts
of climate and watershed characteristic changes on streamflow
are summarized in Table 3. The watershed characteristic changes

Longitude Latitude Altitude/m
100.25 38.18 2,787
102.08 36.03 1,814
101.37 36.02 2,273
101.75 36.73 2,295
100.62 36.27 2,835
100.13 37.00 1,330
101.62 37.38 1,285
102.87 37.20 3,045
101.27 36.68 2,619
102.42 36.48 1,971
102.80 36.33 1,779
102.78 36.32 1,818

should be principally responsible for streamflow change, which
led to a large streamflow decrease of 31.90 mm and contributes
73.64% of the total streamflow change, while climate-induced
streamflow change only accounted for 24.68%.

Double Cumulative Curve Verification

As shown in Figure 4, the slope of the curve changed abruptly in
1993, which is consistent with the Mann-Kendall test result and
the division of the study period in this study. That means that
underlying surface of the watershed has significant impact on the
streamflow of the Huangshui River basin after 1993.

Figure 4 also shows that the correlation equation of
cumulative streamflow and cumulative precipitation in the
period of 1958-1993 was >Q = 0.3729, ) P-14.669, the
correlation coefficient R* was 0.9977, the time series N was
60 years, and the confidence level was 0.001.

The cumulative simulated streamflow in the change period was
obtained by using the correlation equation on the basis of cumulative
precipitation in the same period. Thus, further, the values of simulated
streamflow are calculated during the change period. During the
changing period (1994-2017), the observed mean streamflow is
13023 mm, while the simulated mean streamflow is 160.19 mm
(Figure 5). Therefore, the underlying surface of watershed is
estimated to have resulted in a 29.96 mm change of the basin.

DISCUSSION

Attribution Analysis of Streamflow
Variability

In spite of slowly upward trend in annual precipitation and slightly
downward trend in annual potential evaporation, slightly decreasing
trend in annual streamflow can be found for the Huangshui River
basin. That infers, streamflow is affected by other factors (primary
human activities) in addition to climate change. Huangshui River
Basin plays an important role in politics, economy, culture and
transportation in Qinghai Province, China. Due to the needs of water
supply and development, many water retaining structures (such as
reservoirs) have been built in this region, which reduces the
streamflow of Huangshui River and its tributaries directly to
different degrees and changes spatiotemporal distribution of
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streamflow. Researchers believe that reservoirs with large storage
capacity could lead to the strengthening of evaporation and river
channel leakage, which also reduces streamflow to some degree (Feng
et al,, 2020). In addition, owing to serious soil and water loss in the
middle and lower reaches of the basin, soil and water conservations
have gradually covered this area since the 1970s, including terraced
fields, afforestation and grass-planting, and warping dam. Vegetation
is the most important land use type in Huangshui basin, with a
proportion of more than 85%, and the proportion of other land use
types is small. As seen in Figure 6, the vegetation coverage of this
region during 1982-2015 has improved dramatically, and annual
mean NDVT has increased gradually at a rate of 0.0008/year (range
from 0.6094 in 1982 to 0.6716 in 2015). Therefore, the increase in
vegetation coverage could improve the soil structure and result in the
enhancing of evaporation and infiltration and more water is trapped
in the soil, leading to streamflow decline in the basin outlet through
intercepting more precipitation (Xu, 2011; Qiu et al,, 2021).
Climate change and human activities are generally considered as
the two primary factors of streamflow variation, and the effects of
them to streamflow are significantly different in different catchments.
Studies have shown that the decrease in precipitation caused by
climate change is the main reason for the decrease in the runoff of the
Congo River in Africa (Noel and Saiers, 2017); however, for the
Colorado River in the United States, the impact of human activities
on runoff changes is slightly greater than climate change (Shi et al,,
2019). In the mainstream area of the Yangtze basin, the increase in

precipitation caused by climate change is the main reason for the
streamflow variability in the upper reaches of the basin, and human
activities are the main factor in runoff change for the lower reaches of
the basin, mainly including the reduction of lake area and the
hardening of the ground caused by urbanization (Wang et al,
2013). For the tributaries of the Haihe River, human activities are
the main factors for declining streamflow in Luanhe River catchment,
Chaohe River catchment, and Zhanghe River catchment, while
climate change is the main driver leading to decreasing
streamflow in the Huto River catchment, and increasing water
demand should be responsible for streamflow variability in the
whole basin (Wang et al,, 2013). Streamflow of the Yellow River
basin shows a significantly downward trend, which is primarily
caused by human activities. As shown in Figure 7, compared
with 1950s, in the early 21st century, the water consumption of
the upper reaches and whole basin of the Yellow River basin has
increased by approximately two and three times, respectively.
Research indicates that agricultural irrigation accounted for more
than 50% of the Yellow River runoff during the same period. In
addition, in order to control serious soil and water loss, large-scale soil
and water conservation projects have been constructed in the upper
and middle reaches of the Yellow River since the 1970s, but it also
reduces the runoff generation capacity of the basin.

In order to further understand streamflow variability of the
upper Yellow River, this study compares attributions of
streamflow in the headwaters of the Yellow River basin
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(HYRB) (Zheng et al., 2009), the Tao River basin (Sun et al.,
2019), the Zuli River basin (Deng, 2001), and the Xiliugou basin
(Yao et al,, 2015) of the upper Yellow River. The contributions of
runoff change in the above studies were quantitatively evaluated
by using the double mass curves method, climate elasticity
method, RCC-WBM model, and SWAT model, and the results
are listed in Figure 8. Research in the HYRB indicates that the
contribution rates of climate change and human activities to
streamflow variability were 26.20 and 73.80%, respectively, which
is extremely similar to the conclusions of this study (climate
changes account for 24.68% and watershed characteristic changes
account for 73.64%). These results suggest that the sensitivity
analysis method based on Budyko theory is used to investigate the
river basin streamflow evolution is feasible, and the results are
accurate. Besides, these also indicate related human activities have
tremendous influences on the slow decline in streamflow for the
entire upper Yellow River.

Cause-Effect of Changing Point

In this study, the streamflow of Huangshui River basin showed a
change point in 1993, which was very similar with other researches
in the upper reaches of the Yellow River. After studying climate
change in northwest China where the Huangshui River basin is
located, some researchers believe that the abrupt changes of surface
wind speed and mean annual temperature in the past 44 years
(1960-2003) are in 1990 and 1994, and the region experiences a
period of lower surface wind speed after 1990 and a warmer period
after 1994, respectively (Wang et al., 2007), and researchers believe
that obvious changes of extreme maximum and minimum
temperatures in Hexi Corridor of northwest China are in 1996
and 1993, and the subsequent climate is all warmer (Li et al., 2015).

Uncertainties

It is essential that there are some uncertainties in the assessment
of climate change and human activities on basin drainage. This
study assumes that climate and watershed characteristic changes
are independent of each other. Nevertheless, these two factors
are interacting in an exceedingly complicated way, even in the
reference period (Wang et al., 2019). In addition, we analyze
streamflow variability and estimate climate and watershed-
characteristic-induced to streamflow wvariability, but the
values (Table 2 and 3) show only average values during the
reference and change period and lack consideration of range or
change of the values. Moreover, the change of present
permafrost in an alpine basin significantly complicated the
hydrological processes due to climate warming, and we do
not consider the extent of its impact (Fang et al., 2019). In
fact, watershed characteristic parameter (w) includes both

climate-induced and watershed-characteristic-induced
variabilities, and attribution analysis in this study
overestimates the effect of watershed characteristic on

streamflow variability (Xu et al., 2014). The spatiotemporal
distribution of meteorological stations is not considered in
the Budyko framework, and it is possible to have another
type of error in quantitative assessment/analysis (Shahid
et al., 2018). In the future research, these uncertainties need
be paid more attention.

Contribution to Decreasing Streamflow

CONCLUSION

Based on the Budyko framework, this study assessed relative
contributions of climate and watershed characteristic changes on
streamflow in the Huangshui River basin. The main conclusions
are as follows:

1) From 1958 to 2017, the annual streamflow of Huangshui River
basin showed an insignificant downward trend. The streamflow
series had a change point in 1993, and thus the streamflow
reference period was set to 1958-1993, and the change period was
1994-2017. In the change period, the streamflow decreased by
20.48 mm (13.59%) compared with the reference period.
Sensitivity coefficients of streamflow to precipitation,
potential evapotranspiration, and watershed characteristic
parameter in Huangshui River basin are 0.5502, —0.1055,
and —183.2007, respectively. It shows that an increase in
precipitation by 1 unit will induce an increase of 0.5502
units in streamflow, and an increase in potential
evapotranspiration by 1 unit will induce a decrease of
0.1055 units in streamflow, and an increase in the
watershed characteristic parameter by 1 unit will induce a
decrease of 183.2007 units in streamflow.

During the change period (1994-2017), the streamflow change in
the Huangshui River basin is mainly caused by the watershed
underlying surface change, and its contribution rate is 77.64%,
and the impact of climate changes on runoff is only 24.68%.

2)

3)

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

XL wrote the original draft of this manuscript. TQ and SSL
designed the manuscript. SPL and YN undertook the analysis of
data. QZ revised the manuscript.

FUNDING

This study was financially supported by the National Key Research
and Development Project (No. 2017YFA0605004), State Key
Laboratory Fund (IWHR-SKL-KF201903), National Natural
Sciences Foundation of China (51979118), and Central Nonprofit
Research Institutions Basic Scientific Research Special Fund (HKY-
JBYW-2019-01). All experiments were in compliance with the
current laws of the country in which they were performed.

ACKNOWLEDGMENTS

The authors thank the data observers for their hard work.

Frontiers in Earth Science | www.frontiersin.org

172

October 2021 | Volume 9 | Article 752425


https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Lv et al.

REFERENCES

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., et al.
(2010). Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and
Covariation with Climate. Science 329 (5993), 834-838. doi:10.1126/
science.1184984

Budyko, M. L. (1974). Climate and Life. Academic Press.

Choudhury, B. J. (1999). Evaluation of an Empirical Equation for Annual
Evaporation Using Field Observations and Results from a Biophysical
Model. J. Hydrol. 216 (1-2), 99-110. doi:10.1016/S0022-1694(98)00293-5

Costa, M. H., Botta, A., and Cardille, J. A. (2003). Effects of Large-Scale Changes in
Land Cover on the Discharge of the Tocantins River, Southeastern Amazonia.
J. Hydrol. 283 (1-4), 206-217. doi:10.1016/S0022-1694(03)00267-1

Deng, J. L. (2001). Trend and Mutation Analysis of Spatial and Temporal
Distribution on Runoff and Sediment in Zulihe River Basin. J. China
Hydrol. 21 (2), 47-50.

Fang, J., Li, G., Rubinato, M., Ma, G., Zhou, J,, Jia, G, et al. (2019). Analysis of
Long-Term Water Level Variations in Qinghai Lake in China. Water 11 (10),
2136-2156. doi:10.3390/w11102136

Feng, J., Zhao, G., Mu, X,, Tian, P., and Tian, X. (2020). Analysis on Runoff Regime
in Middle Yellow River and its Driving Factors. J. Hydroelectric Eng. 39 (8),
90-103.

Fu, B. P. (1981). On the Calculation of the Evaporation from Land Surface. Scientia
atmosoherica sinica 5 (1), 25-33.

Fu, G., Charles, S. P., and Chiew, F. H. S. (2007). A Two-Parameter Climate
Elasticity of Streamflow index to Assess Climate Change Effects on Annual
Streamflow. Water Res. 43 (11), 2578-2584. doi:10.1029/
2007WR005890

Hu,J., Wu, Y., Wang, L., Sun, P., Zhao, F., Jin, Z, et al. (2021). Impacts of Land-Use
Conversions on the Water Cycle in a Typical Watershed in the Southern
Chinese  Loess Plateau. J. Hydrol. 593, 125741. doi:10.1016/
j.jhydrol.2020.125741

Huo, Z., Feng, S., Kang, S., Li, W., and Chen, S. (2008). Effect of Climate Changes
and Water-related Human Activities on Annual Stream Flows of the Shiyang
River basin in Arid north-west China. Hydrol. Process. 22, 3155-3167.
d0i:10.1002/hyp.6900

Jiang, T., Chen, Y. D., Xu, C.-y., Chen, X., Chen, X,, and Singh, V. P. (2007).
Comparison of Hydrological Impacts of Climate Change Simulated by Six
Hydrological Models in the Dongjiang Basin, South China. J. Hydrol. 336,
316-333. doi:10.1016/j.jhydrol.2007.01.010

Kong, D., Miao, C., Wu, J., and Duan, Q. (2016). Impact Assessment of Climate
Change and Human Activities on Net Runoff in the Yellow River Basin
from 1951 to 2012. Ecol. Eng. 91, 566-573. doi:10.1016/
j.ecoleng.2016.02.023

Li, H,, Gao, Z., Wang, S., and Wang, H. (2015). Extreme Temperature Variation of
Hexi Corridor in Recent 60 Years. Arid Land Geogr. 38 (1), 1-9.

Li, X, and Tang, Q. (1981). An Analysis on Annual Runoff of West Sichuan and
north Yunnan. Acta Geographica Sinica 36 (1), 90-100.

Li, Y., Mao, D,, Feng, A., and Schillerberg, T. (2019). Will Human-Induced
Vegetation Regreening Continually Decrease Runoff in the Loess Plateau of
China. Forests 10 (10), 906-925. doi:10.3390/f10100906

Liang, W., Bai, D, Jin, Z,, You, Y., Li, J., and Yang, Y. (2015). A Study on the
Streamflow Change and its Relationship with Climate Change and Ecological
Restoration Measures in a Sediment Concentrated Region in the Loess Plateau,
China. Water Resour. Manage. 29 (11), 4045-4060. doi:10.1007/s11269-015-
1044-5

Liu, Q. and Mcvicar, T. R. (2012). Assessing Climate Change Induced
Modification of Penman Potential Evaporation and Runoff Sensitivity in a
Large Water-Limited basin. J. Hydrol. 464-465, 352-362. doi:10.1016/
j.jhydrol.2012.07.032

Liu, X. (2020). Quantitative Attribution of Runoff and Sediment Load Change in
Huangshui River. Yellow River 42 (1), 6-10.

Lv, X,, Zuo, Z., Ni, Y., Sun, J., and Wang, H. (2019). The Effects of Climate and
Catchment Characteristic Change on Streamflow in a Typical Tributary of the
Yellow River. Sci. Rep. 9, 1-10. doi:10.1038/s41598-019-51115-x

Ma, H,, Yang, D., Tan, S. K,, Gao, B., and Hu, Q. (2010). Impact of Climate
Variability and Human Activity on Streamflow Decrease in the Miyun

Resour.

Contribution to Decreasing Streamflow

Reservoir  Catchment. 389 317-324. doi:10.1016/
j.jhydrol.2010.06.010

Mezentsev, V. S. (1955). More on the Calculation of Average Total Evaporation.
Meteorol. Gidrol 5, 24-26.

Milly, P. C. D., and Dunne, K. A. (2002). Macroscale Water Fluxes 2. Water and
Energy Supply Control of Their Interannual Variability. Water Resour. Res. 38
(10), 24-1-24-9. doi:10.1029/2001WR000760

Ni, Y., Zhou, Y., and Fan, J. (2020). Characterizing Spatiotemporal Pattern of
Vegetation Greenness Breakpoints on Tibetan Plateau Using GIMMS
NDVI3g Dataset. IEEE Access 8, 56518-56527. doi:10.1109/
ACCESS.2020.2982661

Noel, A., and Saiers, J. (2017). Simulated Hydrologic Response to Projected
Changes in Precipitation and Temperature in the Congo River basin.
Hydrol. Earth Syst. Sci. 21, 4115-4130. doi:10.5194/hess-21-4115-2017

Qiu, L, Wu, Y, Shi, Z, Yu, M., Zhao, F., and Guan, Y. (2021). Quantifying
Spatiotemporal Variations in Soil Moisture Driven by Vegetation Restoration
on the Loess Plateau of China. J. Hydrol. 600. doi:10.1016/j.jhydrol.2021.126580

Ran, L., Wang, S., and Fan, X. (2010). Channel Change at Toudaoguai Station and
its Responses to the Operation of Upstream Reservoirs in the Upper Yellow
River. J. Geogr. Sci. 20 (2), 231-247. doi:10.1007/s11442-010-0231-9

Roderick, M. L., and Farquhar, G. D. (2011). A Simple Framework for Relating
Variations in Runoff to Variations in Climatic Conditions and Catchment
Properties. Water Resour. Res. 47 (12), 667-671. doi:10.1029/2010WR009826

Schaake, J. C. (1990). From Climate to Flow. Clim. Change US Water Resour.,
177-206.

Shahid, M., Cong, Z., and Zhang, D. (2018). Understanding the Impacts of Climate
Change and Human Activities on Streamflow: a Case Study of the Soan River
basin, Pakistan. Theor. Appl. Climatology 134 (1-2), 205-219. d0i:10.1007/
s00704-017-2269-4

Shi, X, Qin, T., Nie, H., Weng, B., and He, S. (2019). Changes in Major Global River
Discharges Directed into the Ocean. Ijerph 16, 1469. doi:10.3390/
ijerph16081469

Sun, L., Wang, Y.-Y,, Zhang, J.-Y., Yang, Q.-L., Bao, Z.-X., Guan, X.-X,, et al.
(2019). Impact of Environmental Change on Runoff in a Transitional basin:
Tao River Basin from the Tibetan Plateau to the Loess Plateau, China. Adv.
Clim. Change Res. 10 (4), 214-224. doi:10.1016/j.accre.2020.02.002

Sun, P., Wu, Y., Wei, X,, Sivakumar, B., Qiu, L., Mu, X,, et al. (2020). Quantifying
the Contributions of Climate Variation, Land Use Change, and Engineering
Measures for Dramatic Reduction in Streamflow and Sediment in a Typical
Loess Watershed, China. Ecol. Eng. 142. doi:10.1016/j.ecoleng.2019.105611

Tang, Y. (1995). On Human Action Influence on the Runoff in Luanhe River basin.
J. Shaanxi Normal Univ. (Natural Sci. Edition) 23 (2), 125126. doi:10.15983/
j-cnki.jsnu.1995.02.035

Thompson, J. R. (2012). Modelling the Impacts of Climate Change on upland
Catchments in Southwest Scotland Using MIKE SHE and the UKCP09
Probabilistic Projections. Hydrol. Res. 43 (4), 507-530. d0i:10.2166/nh.2012.105

Velpuri, N. M., and Senay, G. B. (2013). Analysis of Long-Term Trends (1950-
2009) in Precipitation, Runoff and Runoff Coefficient in Major Urban
Watersheds in the United States. Environ. Res. Lett. 8 (2), 024020-024026.
doi:10.1088/1748-9326/8/2/024020

Wang, D., and Hejazi, M. (2011). Quantifying the Relative Contribution of the
Climate and Direct Human Impacts on Mean Annual Streamflow in the
Contiguous United States. Water Resour. Res. 47 (10), 411. doi:10.1029/
2010WR010283

Wang, D., and Tang, Y. (2014). A One-Parameter Budyko Model for Water
Balance Captures Emergent Behavior in Darwinian Hydrologic Models.
Geophys. Res. Lett. 41 (13), 4569-4577. doi:10.1002/2014GL060509

Wang, F., Duan, K,, Fu, S., Gou, F,, Liang, W., Yan, J., et al. (2019). Partitioning
Climate and Human Contributions to Changes in Mean Annual Streamflow
Based on the Budyko Complementary Relationship in the Loess Plateau, China.
Sci. Total Environ. 665, 579-590. doi:10.1016/j.scitotenv.2019.01.386

Wang, H,, Lv, X., and Zhang, M. (2021). Sensitivity and Attribution Analysis Based
on the Budyko Hypothesis for Streamflow Change in the Baiyangdian
Catchment, China.  Ecol.  Indicators 121, 107221.  doi:10.1016/
j.ecolind.2020.107221

Wang, H,, and Yu, X. (2015). Sensitivity Analysis of Climate on Streamflow in
north China. Theor. Appl. Climatol 119, 391-399. doi:10.1007/s00704-014-
1289-6

J. Hydrol. (3-4),

Frontiers in Earth Science | www.frontiersin.org

173

October 2021 | Volume 9 | Article 752425


https://doi.org/10.1126/science.1184984
https://doi.org/10.1126/science.1184984
https://doi.org/10.1016/S0022-1694(98)00293-5
https://doi.org/10.1016/S0022-1694(03)00267-1
https://doi.org/10.3390/w11102136
https://doi.org/10.1029/2007WR005890
https://doi.org/10.1029/2007WR005890
https://doi.org/10.1016/j.jhydrol.2020.125741
https://doi.org/10.1016/j.jhydrol.2020.125741
https://doi.org/10.1002/hyp.6900
https://doi.org/10.1016/j.jhydrol.2007.01.010
https://doi.org/10.1016/j.ecoleng.2016.02.023
https://doi.org/10.1016/j.ecoleng.2016.02.023
https://doi.org/10.3390/f10100906
https://doi.org/10.1007/s11269-015-1044-5
https://doi.org/10.1007/s11269-015-1044-5
https://doi.org/10.1016/j.jhydrol.2012.07.032
https://doi.org/10.1016/j.jhydrol.2012.07.032
https://doi.org/10.1038/s41598-019-51115-x
https://doi.org/10.1016/j.jhydrol.2010.06.010
https://doi.org/10.1016/j.jhydrol.2010.06.010
https://doi.org/10.1029/2001WR000760
https://doi.org/10.1109/ACCESS.2020.2982661
https://doi.org/10.1109/ACCESS.2020.2982661
https://doi.org/10.5194/hess-21-4115-2017
https://doi.org/10.1016/j.jhydrol.2021.126580
https://doi.org/10.1007/s11442-010-0231-9
https://doi.org/10.1029/2010WR009826
https://doi.org/10.1007/s00704-017-2269-4
https://doi.org/10.1007/s00704-017-2269-4
https://doi.org/10.3390/ijerph16081469
https://doi.org/10.3390/ijerph16081469
https://doi.org/10.1016/j.accre.2020.02.002
https://doi.org/10.1016/j.ecoleng.2019.105611
https://doi.org/10.15983/j.cnki.jsnu.1995.02.035
https://doi.org/10.15983/j.cnki.jsnu.1995.02.035
https://doi.org/10.2166/nh.2012.105
https://doi.org/10.1088/1748-9326/8/2/024020
https://doi.org/10.1029/2010WR010283
https://doi.org/10.1029/2010WR010283
https://doi.org/10.1002/2014GL060509
https://doi.org/10.1016/j.scitotenv.2019.01.386
https://doi.org/10.1016/j.ecolind.2020.107221
https://doi.org/10.1016/j.ecolind.2020.107221
https://doi.org/10.1007/s00704-014-1289-6
https://doi.org/10.1007/s00704-014-1289-6
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Lv et al.

Wang, H., and Yu, X. (2015). Sensitivity Analysis of Climate on Streamflow in
north China. Theor. Appl. Climatol. 119 (1-2), 391-399. doi:10.1007/s00704-
014-1289-6

Wang, P., Yang, J., Zhang, Q., He, J., Wang, D., and Lu, D. (2007). Climate Change
Characteristic of Northeast China in Recent Half century. Adv. Earth Sci. 22 (6),
649-656.

Wang, S., Yan, M., Yan, Y., Shi, C,, and He, L. (2012). Contributions of Climate
Change and Human Activities to the Changes in Runoff Increment in Different
Sections of the Yellow River. Quat. Int. 282, 66-77. doi:10.1016/
j.quaint.2012.07.011

Wang, W., Shao, Q., Yang, T., Peng, S., Xing, W., Sun, F., et al. (2013). Quantitative
Assessment of the Impact of Climate Variability and Human Activities on
Runoff Changes: a Case Study in Four Catchments of the Haihe River basin,
China. Hydrol. Process. 27 (8), 1158-1174. doi:10.1002/hyp.9299

Wang, Y., Ding, Y., Ye, B, Liu, F.,, Wang, J., and Wang, J. (2013). Contributions of
Climate and Human Activities to Changes in Runoff of the Yellow and Yangtze
Rivers from 1950 to 2008. Sci. China Earth Sci. 56, 1398-1412. doi:10.1007/
$11430-012-4505-1

Wei, X, and Zhang, M. (2010). Quantifying Streamflow Change Caused by forest
Disturbance at a Large Spatial Scale: A Single Watershed Study. Water Resour.
Res. 46 (12), 439-445. doi:10.1029/2010WR009250

Xu, J. (1995). A Comparative Study of the Zonal Differences in River Runoff and
Human Influence in China. Geographical Res. 14 (3), 33-42.

Xu, J. (2011). Variation in Annual Runoff of the Wudinghe River as Influenced by
Climate Change and Human Activity. Quat. Int. 244 (2), 230-237. d0i:10.1016/
j.quaint.2010.09.014

Xu, X., Yang, D., Yang, H., and Lei, H. (2014). Attribution Analysis Based on the
Budyko Hypothesis for Detecting the Dominant Cause of Runoff Decline in
Haihe basin. J. Hydrol. 510, 530-540. doi:10.1016/j.jhydrol.2013.12.052

Xu, X, Yang, H., Yang, D., and Ma, H. (2013). Assessing the Impacts of Climate
Variability and Human Activities on Annual Runoff in the Luan River basin,
China. Hydrol. Res. 44 (5), 940-952. doi:10.2166/nh.2013.144

Yang, H., Yang, D., Lei, Z., and Sun, F. (2008). New Analytical Derivation of the
Mean Annual Water-Energy Balance Equation. Water Resour. Res. 44 (3),
893-897. d0i:10.1029/2007WR006135

Yang, Y., Donohue, R. J., McVicar, T. R., and Roderick, M. L. (2015). An Analytical
Model for Relating Global Terrestrial Carbon Assimilation with Climate and
Surface Conditions Using a Rate Limitation Framework. Geophys. Res. Lett. 42,
9825-9835. doi:10.1002/2015GL066835

Yao, H,, Shi, C,, Shao, W, Bai, J., and Yang, H. (2015). Impacts of Climate Change and
Human Activities on Runoff and Sediment Load of the Xiliugou basin in the Upper
Yellow River. Adv. Meteorology 2015, 1-12. doi:10.1155/2015/481713

You, P. (1995). Surface Water Resources and Runoff Composition in the Tarim
River Basin. Arid Land Geogr. 18 (2), 29-35. doi:10.13826/j.cnki.cn65-1103/
x.1995.02.005

Contribution to Decreasing Streamflow

Zhan, C.,, Niu, C,, Song, X., and Xu, C. (2013). The Impacts of Climate Variability
and Human Activities on Streamflow in Bai River basin, Northern China.
Hydrol. Res. 44 (5), 875-885. doi:10.2166/nh.2012.146

Zhang, B., Wu, P., Zhao, X., Wang, Y., and Gao, X. (2013). Changes in Vegetation
Condition in Areas with Different Gradients (1980-2010) on the Loess Plateau,
China. Environ. Earth Sci. 68 (8), 2427-2438. doi:10.1007/s12665-012-1927-1

Zhang, L., Dawes, W. R,, and Walker, G. R. (2001). Response of Mean Annual
Evapotranspiration to Vegetation Changes at Catchment Scale. Water Resour.
Res. 37 (3), 701-708. doi:10.1029/2000WR900325

Zhang, M., Wei, X,, Sun, P, and Liu, S. (2012). The Effect of forest Harvesting and
Climatic Varijability on Runoff in a Large Watershed: The Case Study in the
Upper Minjiang River of Yangtze River basin. J. Hydrol. 464-465, 1-11.
doi:10.1016/j.jhydrol.2012.05.050

Zhang, S., Yang, D., Yang, H., and Lei, H. (2015). Analysis of the Dominant Causes
for Runoff Reduction in Five Major Basins over China during 1960-2010. Adv.
Water Sci. 26 (5), 605-613. doi:10.14042/j.cnki.32.1309.2015.05.001

Zhao, F., Zhang, L., Xu, Z., and Scott, D. F. (2010). Evaluation of Methods for
Estimating the Effects of Vegetation Change and Climate Variability on
Streamflow. Water Resour. Res. 46 (3), 742-750. do0i:10.1029/2009WR007702

Zhao, Y., Yang, N., Wei, Y., Hu, B,, Cao, Q., Tong, K., et al. (2019). Eight Hundred
Years of Drought and Flood Disasters and Precipitation Sequence
Reconstruction in Wuzhou City, Southwest China. Water 11 (2), 219.
doi:10.3390/w11020219

Zheng, H., Zhang, L., Zhu, R, Liu, C,, Sato, Y., and Fukushima, Y. (2009).
Responses of Streamflow to Climate and Land Surface Change in the
Headwaters of the Yellow River Basin. Water Resour. Res. 45 (7), 641-648.
doi:10.1029/2007wr006665

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Lv, Liu, Li, Ni, Qin and Zhang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Earth Science | www.frontiersin.org

174

October 2021 | Volume 9 | Article 752425


https://doi.org/10.1007/s00704-014-1289-6
https://doi.org/10.1007/s00704-014-1289-6
https://doi.org/10.1016/j.quaint.2012.07.011
https://doi.org/10.1016/j.quaint.2012.07.011
https://doi.org/10.1002/hyp.9299
https://doi.org/10.1007/s11430-012-4505-1
https://doi.org/10.1007/s11430-012-4505-1
https://doi.org/10.1029/2010WR009250
https://doi.org/10.1016/j.quaint.2010.09.014
https://doi.org/10.1016/j.quaint.2010.09.014
https://doi.org/10.1016/j.jhydrol.2013.12.052
https://doi.org/10.2166/nh.2013.144
https://doi.org/10.1029/2007WR006135
https://doi.org/10.1002/2015GL066835
https://doi.org/10.1155/2015/481713
https://doi.org/10.13826/j.cnki.cn65-1103/x.1995.02.005
https://doi.org/10.13826/j.cnki.cn65-1103/x.1995.02.005
https://doi.org/10.2166/nh.2012.146
https://doi.org/10.1007/s12665-012-1927-1
https://doi.org/10.1029/2000WR900325
https://doi.org/10.1016/j.jhydrol.2012.05.050
https://doi.org/10.14042/j.cnki.32.1309.2015.05.001
https://doi.org/10.1029/2009WR007702
https://doi.org/10.3390/w11020219
https://doi.org/10.1029/2007wr006665
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

'.\' frontiers

1IN Environmental Science

ORIGINAL RESEARCH
published: 25 October 2021
doi: 10.3389/fenvs.2021.742901

OPEN ACCESS

Edited by:
Shan Zhao,
Shandong University, China

Reviewed by:

Lvyang Xiong,

China Agricultural University, China
Yanhu He,

Guangdong University of Technology,
China

*Correspondence:
Guohe Huang
huangg@uregina.ca

Specialty section:

This article was submitted to
Environmental Informatics and Remote
Sensing,

a section of the journal

Frontiers in Environmental Science

Received: 16 July 2021
Accepted: 21 September 2021
Published: 25 October 2021

Citation:

Lin X, Huang G, Wang G, Yan D and
Zhou X (2021) Risk Assessment of
Dam-Breach Flood Under Extreme
Storm Events.

Front. Environ. Sci. 9:742901.

doi: 10.3389/fenvs.2021.742901

Check for
updates

Risk Assessment of Dam-Breach
Flood Under Extreme Storm Events

Xiajing Lin’, Guohe Huang"?*, Guoging Wang?® Denghua Yan* and Xiong Zhou?

"Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada, State Key Joint Laboratory of
Environmental Simulation and Pollution Control, China-Canada Center for Energy, Environment and Ecology Research, UR-BNU,
School of Environment, Bejing Normal University, Bejiing, China, °State Key Laboratory of Hydrology-Water Resources and
Hyaraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China, “China Institute of Water Resources and
Hydropower Research, Beijjing, China

In recent years, as a result of increasingly intensive rainfall events, the associated
water erosion and corrosion have led to the increase in breach risk of aging dams in
the United States. In this study, a hydrodynamic model was used to the inundation
simulation under three hypothetical extreme precipitation-induced homogeneous
concrete dam-breach scenarios. All hydraulic variables, including water depth, flow
velocity, and flood arriving time over separated nine cross-sections in the Catawba
River, were calculated. The hypothetical simulation results illustrate that the impact
of Hurricane Florence’s rainfall is far more severe over the downstream of
hydraulic facilities than that of the Once-in-a-century storm rainfall event.
Although Hurricane Florence’s rainfall observed in Wilmington had not historically
happened near the MI Dam site, the river basin has a higher probability to be
attacked by such storm rainfall if more extreme weather events would be generated
under future warming conditions. Besides, the time for floodwaters to reach cross-
section 6 under the Hurricane Gustav scenario is shorter than that under the Once-
in-a-century rainfall scenario, making the downstream be inundated in short
minutes. Since the probability can be quantitatively evaluated, it is of great worth
assessing the risk of dam-break floods in coastal cities where human lives are at a
vulnerable stage.

Keywords: dam failure, inundation mapping, extreme storm events, flood vulnerability, heavy rainfall

INTRODUCTION

Heretofore, about 87,000 dams have been built in the United States, which control 600,000
miles (970,000 km) of rivers (Figure 1) (Infrastructure Report Card, 2017). However, most
dams in the United States have been built for nearly 100 years or even more, and thousands of
dams have been listed as high-risk dams, all of which are facing the risk of failure (Chen and
Hossain, 2019). Such man-made structures are more likely to fail when they become older, as
they will not be able to withstand today’s warmer climate and associated extreme weather
events (Mallakpour et al., 2019). For instance, extreme rainfall events, such as hurricanes,
tropical cyclones, and typhoon-induced precipitation, may attribute to dam failures and lead
to devastating inundation disasters (Hill and Lackmann, 2011). Such dam failures including
overtopping and piping failures frequently occurred when the accumulated floods came from
the high stage level of the river. The inundation disasters caused by those hydrological failures
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FIGURE 1 | America’s aging dams and distribution (data source: https://www.nytimes.com).
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are short in duration, fast in speed, and large in flow, and its
harm to the protection area is far greater than that of the
general flood. Therefore, analyzing the dam breach flood
vulnerability under extreme storm events is of vital
importance.

The dam breach simulations were challenging due to the
accuracy of extreme flood estimates and time step definition
(Chaudhuri et al, 2020; Yu et al, 2020). Various
multidimensional hydrodynamic models, thus, have been
designed to simulate extreme events through evaluating
flood timing and inundation areas. Models such as HEC-
RAS, DAMBRK, FLO-2D, and MIKE are commonly used
when it comes to deal with hypothetical dam-breach events.
Yang et al. developed a three-dimensional river flood plain on
the national river system in southern Canada (Yang et al,
2006). The HEC-RAS model was used to simulate the flood by
generating the plane diagram of six differently designed storm
events with return periods of 100, 50, 25, 10, 5, and 2 years
(Yang et al,, 2006). Lodhi et al. conducted a proposed dam
breach flood simulation under series of scenarios over River
Yamuna, India (Lodhi and Agrawal, 2012). The hydrological
DAMBRK model and ArcGIS were adopted for mapping the
flood inundated areas in the downstream of the dam site
(Lodhi and Agrawal, 2012). The authors used the
deterministic method to calculate the possible maximum
flood (PMF) based on a 1000-year recurrence period under

various dam failure scenarios. Ganiyu et al. carried out a
hypothetical dam-breach case study in Asa Dam, Nigeria,
through assessing the flood hazard along the approximately
12 km river channel by using the HEC-RAS and HEC-GeoRAS
models. The unsteady flow simulation was modeled with
Once-in-a-century 24-h flow event data based on the digital
terrain model from USGS (Ganiyu, 2018).

Despite previous studies involving the risk of extreme
rainfall/flood events with different return periods, they
have been examined in various watersheds the
United States by using the hydrodynamic models; few
studies have been conducted to assess the flood risk to
specific dams in consideration of hurricane event-induced
rainfall. As an extension of the previous research, the overall
objective of this study was to evaluate the dam-break
floodwater  hydrograph and routing through the
downstream valley and floodplain. In detail, the two-
dimensional dam-breach inundation simulation and
downstream vulnerability assessment under three extreme
storm rainfall scenarios were conducted. The inundation
depths, resulting damages to the downstream communities,
and potential affecting areas over the watershed were
comprehensively evaluated. The hypothetical dam-breach
scenarios of the Mountain Island dam (MI Dam, MI Lake,
North Carolina (NC), United States) were analyzed using the
HEC-RAS model in conjunction with the ArcGIS pro.

in
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MATERIALS AND METHODS

Study Area
It is identified that 168 high-hazard dams have been found in
poor or unsatisfactory condition in North Carolina as climate
change induces rainstorms to be generated more frequently and
put those dams under the dangerous state (Dalesio, 2019). As
recorded, at least 18 dams failed in NC as floodwaters from
Hurricane Matthew and Hurricane Florence attacked the inland.
The water levels at MI Lake have been rising in recent years,
especially during heavy rain seasons. Since the construction year
of the MI dam (1924) was much earlier than that of the Cowans
Ford dam (1963), its flood controlling capacity is significantly
inadequate to meet the peak discharge coming from the
upstream. It poses a great threat to the safety of life and
property of the residents along the river, especially when the
extreme storms attack inland.

In this study, we propose various hypothetical dam-breach
scenarios over the high-risk dam which is the MI Dam in MI
Lake. MI Lake, with a water area of 112 km?, is a large sub-lake of

the Catawba River in North Carolina, United States. The flows of
MI Lake into Catawba River are governed by the releases from the
MI Dam on MI Lake, with over 85% of the total inflow to the
reservoir coming from Lake Norman regulated by Cowans Ford
Dam (Dalesio, 2019). The terrain distribution of this study area is
shown in Figure 2, and the generated nine cross-sections are
shown in Figure 3 for further discussion.

Hydrodynamic Model

The risk analysis of dam-break flood is considered as a more urgent
topic with the development of social economy, as the population and
social wealth are more concentrated in the lower reaches of the
reservoir (Bales et al., 2001; Mohsin and Muhammad Umar, 2013;
Balogun and Ganiyu, 2017). However, the occurrence of the dam
break and the formation of the associated flood are unsteady and
unpredictable, which poses threat to the safety of life (Asnaashari
et al, 2014; Derdous et al, 2015). In fact, the computational
simulation procedure of dam-break flood is complicated as it is
necessary to calculate the maximum peak discharge and flood process
at the dam site, as well as the flood evolution process and inundation
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situation in the downstream of the dam. Therefore, numerical
hydrodynamic models have been considered for evaluating the
dam-break flood and stream routing, and we mainly assess the
performance of the HEC-RAS model in this case study.

A hydrodynamic model is mainly composed of the upper and
lower boundary conditions, initial conditions, calculation area,
and other parts, which are interrelated to form a whole model. It
is very interesting to calculate the grid with the two-dimensional
model of RAS. It is specially stated in the HEC-RAS official
manual that its calculation grid uses a kind of technology called
“subgrid.” The hydraulic characteristics such as elevation-wet
cycle, elevation-roughness, and elevation-cross-section area can
be extracted by the edge of each cell grid and then be integrated
into the calculation (Brunner et al., 2016). Most of the cell grids of
hydrodynamic models can only extract the elevation of the
endpoint, the center points, and interpolate the plane in a
single grid. The spatial scale of the grid has thus become the
main sensitive factor (Brunner et al., 2016). However, HEC-RAS
can extract more terrain details within the same scale grid, which
is less sensitive to spatial step size. Hence, HEC-RAS ensures the
accuracy of the results in the case of large-scale spatial grids and

enables the interior of a single grid to be partially submerged,
which saves quantities of computational time.

The HEC-RAS two-dimensional model computations
currently consist of only two equations, the complete shallow
water equation and the diffusion wave equation, which is
simplified from the former and omits the inertial action,
turbulence, and Coriolis effect. The diffusion wave hypothesis
is subjected only to gravity, friction, and water pressure (Brunner
et al,, 2016). The diffusion wave equation has a fast convergence
rate, small error, and narrow application range. However, the
diffusion wave equation is hardly used in dam-break flood
simulation. In addition, there are many conditions under
which diffusion wave equations cannot be used, and the RAS
manual explains more details in the scope of its application
(Brunner et al., 2016).

The hydrodynamic simulation of dam break is generally
divided into two methods: integral method and stepwise
method. The integral method is to couple the dam-break
model with the hydrodynamic model. The whole model
simulates the dam-break process to solve the flow process of
the breach, and simultaneously calculate the corresponding
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downstream flood evolution in the same time step. Such models
generally require separate models of reservoirs and dams. At this
point, the upper boundary condition of the integral model is
usually the reservoir inflow or the upstream channel of the
The stepwise method separates dam-break
simulation from flood evolution. The process of simulating
and calculating the flow rate of the dam break is completed
externally. It is imported as the condition of the upper boundary,
which should be located at the dam site, which does not depend
on specific model functions.

In this case study, the hypothetical dam-break flood
simulation adopts the integral method. The model elements
are divided into the reservoir, dam, and downstream influence
area. There are no tributaries and downstream reservoirs, and the
downstream impact area is simulated with a single two-
dimensional grid.

reservoir.

Data Source

When the interpolated surface is generated from elevation
points, both the MIKE and TELEMAC hydrodynamic models
can read the elevation point format, and the elevation can then
be assigned to the computational grid. However, HEC-RAS
currently does not have this capability and can only read the
interpolated/ completed topographic surface data, which
means that no missing values are allowed before input to
HEC-RAS. This would directly lead to a computational failure
(Brunner et al., 2016).

The spatial radar mapping of SRTM30 and SRTM90 has a
large scale of topographic data with low accuracy. The spatial
resolution of DEM is generally around 30 m with a small
number of missing values, especially in some places such as
river channels and embankments. However, the losses can be
very severe. At this point, another type of data source lays the
foundation for more accurate simulation of RAS. This is a
high-resolution DEM generated from point cloud data
scanned by a LiDAR system, which has extremely high
accuracy. The spatial resolution of the DEMs generated by
the LIDAR system for the river and its banks is currently about
1 m. In fact, the “subgrid” technology in HEC-RAS is prepared
for this high-resolution DEM. In the general hydrodynamic
model, in order to better fit the terrain in the high-resolution
DEM, the computational grid space ratio is set to be relatively
small, which will significantly prolong the simulation time.
The “subgrid” technique of HEC-RAS achieves similar terrain
fitting effect in large-scale grid.

Satellite Images, Terrain Data, and Hydrological
Boundary Conditions

The satellite images and land cover of North Carolina were
obtained from USGS, and the coordinate system for the NC
region was acquired from EPSG (number at 32,119). The
hydrological and climate station observations and historical/
real-time runoff datasets were retrieved from USGS at https://
waterwatch.usgs.gov. The daily precipitation reanalysis is from
the North American Regional Reanalysis (NARRhttps://www.
ncdc.noaa.gov/data-access/model-data/model-datasets/north-
american-regional-reanalysis-narr). The interpolated

Dam-Breach Flood

high-resolution Lidar DEM (20 foot) was attained from
North Carolina One Map (https://www.nconemap.gov) and
used as the geometric raster input data for HEC-RAS
simulation. The precipitation records of three designed
extreme storm scenarios were regarded as the input
boundary conditions.

Dam Parameters

The MI Dam parameters were retrieved from the website at
http://mountain-island.lakesonline.com/Dam/3AE5F61F-AD60-
4BA4-B6B5-189EA16B095F/.

Simulation Process
In this case, the homogeneous concrete dam will be arranged
downstream. The HEC-RAS hydrodynamic model will be
used to create an inundation map under the overtopped
dam failure scenarios. The initial water level of the
reservoir is 96 ft (elevation 646 ft). The flowchart of
idealized overtopped dam-break simulations under extreme
precipitation scenarios is shown in Figure 4. Here, four
separate steps have been conducted for the dam-break
flood simulation in HEC-RAS and ArcGIS pro, including
preprocessing, reservoir modeling, dam modeling, and
boundary and initial conditions setting. The idealized dam-
break case 2D model validation results are shown in Table 1.
First Step: Preprocessing. Landsat images were loaded to
confirm the location of reservoir and dam in the preprocessing
step. Lidar DEMs (20 ft) provided by the NC one mapping
organization were incorporated with the North Carolina
coordinate system (EPSG32119.prj) in HEC-RAS. A new
geometric 2D model was then created in the raster map
associated with the raster elements (MI dam, Catawba River
basin, MI Lake inundation area, Cowans Ford dam). The
generated river topography by interpolation based on river
segments, is allowed to be modified in RAS. Land-use maps in
the raster format were introduced on the maps, and roughness
manning’s n values were assigned by the land type (Table 2).
First Step: Reservoir Modeling. The dam and reservoir
element layers are created in the RAS Mapper as two-
dimensional connections, storage areas, and two-dimensional
flow area geometric input data. According to the relationship
between reservoir characteristic water level (dead water level,
normal water level, designed flood level, and checked flood level)
and corresponding storage capacity, the elevation—volume curve
(water level—storage capacity) of the reservoir is fitted with a
quadratic curve. The reference equation is as follows (Brunner et
al., 2016):

W =P, (H-H,)’+P,(H-H,)+P;,

where W is the storage capacity; Py, P,, and P; are the coefficients
of quadratic function; h is the characteristic water level; and H, is
the dead water level.

Third Step: Dam Modeling. The SA/2D regional connection
cell modeling is performed by giving the dam connections
between each reservoir and setting the weir embankment Cd =
1.44. The dam breach modeling is performed in the diffuse top
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TABLE 1 | Water depth goodness-of-fit statistics for the idealized dam-break case
(Balogun and Ganiyu, 2017).

Time (seconds) 10 20 30

ME (10° m) -6.01 -4.68 -2.97

NME (%) -0.06 -0.05 -0.03

MAE (10 m) 2.00 3.13 418

NMAE (%) 0.20 0.31 0.42

RMSE (meter) 0.128 0.163 0.190

NRMSE (%) 1.28 1.63 0.9 were performed based on the
R? 0.99683 0.99372 0.98909

mode (overtopping failure). The dam parameters were set to
include the breach bottom elevation, pool elevation, pool volume,
inlet, bottom elevation, bottom width, and left- and right-side

slopes H:V. The diffuse top failure mode is calculated according
to the Von Thun & Gillete Function (Brunner et al., 2016).

Last Step: Unsteady Flow Analysis. The unsteady flow
(non-constant flow) analysis was performed under external
and internal boundary conditions, including water level, flow
velocity, water level flow rate, streambed slope, precipitation,
and normal depth at each cross-section. The calculation
interval was set to 1 min. Non-constant flow simulations
incompressible flow
assumption. The differential form of the mass continuity
equation is as follows (Brunner et al., 2016):

a_H . 0 (hu) . 0 (hv)
ot Ox oy

+gq=0,
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TABLE 2 | Manning’s n values for various land covers (Balogun and Ganiyu, 2017).

NLCDX1 value Normal

Manning’s n value

11 0.04
21 0.04
22 0.100
23 0.080
24 0.150
31 0.025
41 0.160
42 0.160
43 0.160
52 0.100
71 0.035
81 0.030
82 0.035
90 0.120
95 0.070

Dam-Breach Flood

Allowable range of n Land cover definition

values
0.025-0.05 Open water
0.03-0.05 Developed, open space
0.08-0.12 Developed, low intensity
0.06-0.14 Developed, medium intensity
0.12-0.20 Developed, high intensity
0.023-0.030 Barren land (rock/sand/clay)
0.10-0.16 Deciduous forest
0.10-0.16 Evergreen forest
0.10-0.16 Mixed forest
0.07-0.16 Shrub/scrub
0.025-0.050 Grassland/herbaceous
0.025-0.050 Pasture/hay
0.025-0.050 Cultivated crops
0.045-0.15 Woody wetlands
0.05-0.085 Emergent herbaceous wetlands
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FIGURE 5 | Highest rainfall record (mm) by each year in Charlotte City of North Carolina.
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where t is the time, u and v are the velocities in two dimension,
and q is the sink flux term.

RESULTS

Dam Failure Scenarios

Once-in-a-Century Storm Rainfall Induced Dam Break
Flood Scenario

The intensity—duration-frequency curve (IDF curve) is an
engineering mathematical function based on time series, which
links rainfall intensity (inches/hour) with its duration (minutes)
and frequency (return period). The IDF curves are frequently
used in the civil engineering of hydrological flood forecast and
urban drainage design, especially as an evaluation index for the
flood resistance capacity of the dam (Wang et al., 2014). Here, the
IDF curves are obtained through the frequency analysis of
historically observed meteorological station precipitation.

The empirical plotting position approach (Dettinger et al., 2018)
was applied to measure the 2-, 10-, and 50-year historical 6-h storm
rainfall events by computing the P (probability)-T (return period)
relationship associated with each rainfall volume by the
corresponding duration. The Once-in-a-century storm rainfall
intensity can be obtained in every minute by a linear

relationship with the larger exceedance probability. The
historical annual maximum daily precipitation records during
1983-2009 are shown in Figure 5. The computed 6-h extreme
rainfall distribution, accumulated storm rainfall depth, and storm
rainfall intensity corresponding to each return period are shown in
Figure 6.

Hurricane Rainfall Induced Dam Break Flooding
Scenarios

Figure 7A,B are the daily cumulative rainfall distributions in
North and South Carolina and surrounding states provided by
the NOAA NCEP multisensor stage IV precision dataset. The
distribution of the spiral rain belt of a hurricane can be clearly
observed. The area where the hurricane eye meets the eyewall is
generally affected by high-intensity rainfall. During this period,
the upstream and downstream of the river in the coastal area will
be scoured by a rainstorm to a large extent, and the streamflow
diversion would force those aging dams to bear a doubly stressful
time caused by the rising flood stage on both sides. Therefore, the
dam is more likely to suffer from an overtopping risk. To explore
the spatial and temporal distributions of two hurricane rainfall
events in NC province more clearly, the gridded average daily
precipitation reanalysis data (0.125° x 0.125°) on Sep.13 ~ 18,
2018 and Aug.25 ~ 28, 2008 were extracted. The NetCDF format
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FIGURE 6 | (A) 6-hour storm rainfall depth by different return periods; (B) 6-hour storm accumulated rainfall depth by different return periods; (C) 6-hour storm
rainfall intensity—duration—frequency curve.

FIGURE 7 | (A) Daily precipitation distribution in North and South Carolina and surrounding states during Hurricane Florence on Sep. 16, 2018 and (B) Hurricane
Gustav on Aug. 26, 2008 (data source: NOAA NCEP Multi-sensor Stage IV precipitation analysis).

was then transformed into a raster in order to create the contour ~ United States are considered as the inducers of dam break.
plot of precipitation on each day (Figure 8). The rainfall events = The frequency of rainfall and the location of two landing
caused by two serious hurricanes in the history of the  hurricanes are different in time and space.
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FIGURE 8 | Contour plot of reanalysis daily precipitation (inches) in North Carolina during Hurricane Florence on Sep.13-18 2018 (No.1 ~ 6) and Hurricane Gustav

on Aug.25-28 2008 (No.7 ~ 10).

Hurricane Florence (Sep.13 ~ 18, 2018) landed in Wilmington
on the eastern part of North Carolina and led to the power plant
of Wilmington to be breached by devastating floodwaters. MI
Lake and Catawba River were not seriously affected by Hurricane
Florence; thus, the old dam survived from the disastrous events.
However, according to the rainfall observation recorded in the
meteorological station of Charlotte City, the 3-day accumulated
rainfall brought by Hurricane Gustav (Aug.26, 2008) was
considered as the historical heaviest precipitation event at
KCLT Charlotte observation, yet it was not brought to any
dam breach. The rainfall brought by Hurricane Florence
(Figure 9, No.1) in Wilmington was observed as a type of
intensive neutral rainfall, while Hurricane Gustav in Charlotte
observation was a transient high-intensity storm (Figure 9, No.2).

To some extent, the accumulated rainfall brought by
Hurricane Gustav is higher than that of Hurricane Florence in
Charlotte City but not as serious as in Wilmington City. However,

it could not be sure that such a level of hurricane-induced rainfall
in Wilmington would not occur in Charlotte City under the
impact of climate change on hurricane intensity. Therefore, it is
essential to explore the risk of dam failure exposed to such an
extreme situation (Hurricane Florence rainfall in Wilmington) in
the area near the dam site.

Simulation Results

This study mainly focuses on the influence of the MI dam-
break flood on Charlotte City and Mount Holly, which are
5,202.8 ftand 11,865.02 ft away from the downstream of the
dam. It is assumed that the formation time of the gap is 2 h,
and the breaking process starts to spread from the center
point. When the water level exceeds the dam crest elevation
of 647.5ft, the dam break begins. The downstream
boundary condition is set to the level of peak discharge
water depth.
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FIGURE 9 | (A) Hurricane Florence precipitation observation (inches) of Wilmington weather station; (B) top three-day heaviest rainfall at KCLT record in Charlotte

In the simulation of hydrodynamic systems using the HEC-
RAS model, it is usually necessary to assume that the water
surface profile is a steady, gradually varied water flow case. The
second assumption is that a dam failure event is a hypothetical
case. Typically, a reasonable modeling approach might be to
assume that the roughness coefficient is of twice the normal
Manning’s n value and then transition to a normal roughness
factor in the downstream valley from the dam site. Under this
roughness coefficient condition, turbulent flow, sediment, and
debris transport due to the dam breach are expected to be
reduced.

In response to the three extreme scenarios of heavy rainfall, the
upstream dam (Cowans Ford dam) was considered as the
unsteady input flow under its maximum discharge situation.
The simulated dam breach happened at the MI dam, with its
upstream inflow (MI Lake) and downstream outflow (Catawba
River) affected by the extreme storm precipitation scenarios. The
inundation maps under three extreme scenarios in different
periods and all hydraulic variables including water depth, flow
velocity, and flood arriving time over separated nine cross-
sections in the Catawba River are shown in the following results.

Once-in-a-Century Storm Rainfall Induced Dam-Break
Flood Scenario

The formation of extremely intensive discharge results from the
combination of an accumulated additional inflow and unsteady
floodwater caused by the Once-in-a-century storm rainfall
induced dam breach. By comparing the water depth of each
cross-section simulated when the upstream dam was drained by
the peak discharge, the dam-break flood caused by the Once-in-a-
century rainfall event shows an abnormal water level over the
central river channel. Affected by the dynamic variations of
surface topography, it takes 60 min for the peak discharge to
reach section 6, and the water depth in this cross-section is nearly
three times the maximum drainage depth (Figure 10). It is
noteworthy to observe that the safety of life and property of
residents would be severely affected by the floodwater in cross-
section 2 although it is nearly 3,000 ft away from the river center.

After 90 min of dam failure, it is potentially dangerous that the
water level of sections 1-6 in the center of the river remains over
25 ft, while 150 min after the dam break, flows through cross-
sections 1-6 moderately level off and transit to the area below
cross-section 7. However, low-lying areas in the range of 3,000 m
from the river channel at cross-section 7 remain flooded.

Hurricane Florence Rainfall Induced Dam-Break
Flooding Scenario

Affected by Hurricane Florence’s intensive neutral rainfall, the
water level in the channel center will remain significantly high for
a long period of time. The velocity (Figure 11, D*V? (60 min))
observed in the hurricane storm rainfall induced dam-break flood
was faster than that of the flood observed in the Once-in-a-
century storm rainfall event (Figure 10, D*V? (60 min)). Within
60 min, the latter illustrated that the floodwater has reached the
cross-section 8, while the former is still at the cross-section 6. In
Figure 11, under the influence of continuous rainfall, the central
water level of the channel at cross-sections 2-4 tends to
continuously rise during this breaking period. Within 150 min
after the break, the water depth of the second station exceeds 55 ft,
and the water depth of the fifth station is over 60 ft in the low-
lying area 4,000 ft away from the center of the river. The central
floodwater at cross-sections 7-8 is fast-moving, yet the water level
is falling at 150 min. Possibly due to the significant gap in terrain
difference between the river outlet and the downstream flow area,
the speed of flood discharge is consequently faster. Additionally,
the floodwater depth contributed from the accumulated rainfall
of Hurricane Florence exceeds 6 times the flood level caused by
the peak discharge situations in low-lying regions.

Hurricane Gustav Induced Dam-Break Flood Scenario
The water level in the center of the river decreases with the time of
dam breach (Figure 12). In stations 1-6, the floodwater depth can
exceed 30 ft within 60 min after the dam break. It is possibly
because Hurricane Gustav is considered as a type of transient
high-intensity storm and the instantaneous precipitation is
comparatively higher. However, the cumulative rainfall of

Frontiers in Environmental Science | www.frontiersin.org

184

October 2021 | Volume 9 | Article 742901


https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Lin et al.

Dam-Breach Flood

Once-in-a-century Storm Rainfall
Induced Dam Break Flooding

| Lidar DEM (Extract by County) e rvvr
| o

207
s
a0

Once-in-a-century Storm Rainfall
Induced Dam Break Flooding

VLD
Lidar DEM (Extract by County) e wre
an -
w et
e e

Once-in-a-century Storm Rainfall
Induced Dam Break Flooding

ML o WA SN
Once-in-a-century Storm Rainfall [\t
Induced Dam Break Flooding ;

Inundation Depth (150min)
L EJ

LB

Lidar DEM (Extract by County) 1t war
P

wn
e

Once-in-a-century Storm Rainfall
Induced Dam Break Flooding

[ B
Lidar DEM (Extract by County) 1 17
- sk
b
phoi

Once-in-a-century Storm Rainfall .&
Induced Dam Break Flooding

FIGURE 10 | Once-in-a-century storm rainfall induced dam-break flooding scenario.

Hurricane Gustav is relatively more than that of Hurricane
Florence. The dam-break flood is greatly affected by the
accumulated rainfall, and the flood discharge capacity of
the MI dam is not equal to the supply of rainwater flowing
into the river channel. The instantaneous rainfall is conducive to

the timely drainage of the river water flowing into the
downstream direction, and the excessive floodwater can be
eliminated during the period of relatively sparse rainfall.

It is obvious that under the Hurricane Florence scenario,
floodwater took the shortest time to reach each section
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FIGURE 11 | Hurricane Florence rainfall induced dam-break flooding scenario.

compared to the other two scenarios. In the Hurricane Gustav
scenario, the time for floodwaters to reach cross-section 6 is
shorter than that of the Once-in-a-century rainfall event.
Although Hurricane Florence’s extremely heavy rainfall on

Wilmington had not historically occurred near the MI dam
site, it was well beyond the range of the Once-in-a-century
storm intensity-duration-frequency curve. In other words, if
tropical cyclones’ increase in intensity is expected under future
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FIGURE 12 | Hurricane Gustav rainfall induced dam-break flooding scenario.

warming conditions, Hurricane Florence-induced rainfall is more
likely to occur near the MI dam in the future and may generate a
far more severe impact than that of the Once-in-a-century storm
rainfall event. Hence, dam owners are responsible to repair and

upgrade those aging dams like the MI dam ahead of time, while
people living on the downstream side of the dam should be
evacuated in advance when such intensive hurricanes attacked
near the dam.
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DISCUSSION

Three hypothetical dam-break scenarios were proposed based on
historical extreme rainfall events including Once-in-a-century
storm rainfall and two devastating hurricane events. The
presumption was that the proposed dam would collapse.
However, the occurrence of dam break and the formation of
floodwaters are unsteady and unpredictable in the real world. In
the face of extreme events, the relationship between rainfall and
runoff can be calculated to assess the probability of dam failure
risk based on the severity degree of rainfall (Mallakpour et al.,
2019; Chaudhuri et al., 2020; Yu et al., 2020). It is recommended
that the prediction results of downscaling gridded RCM data
(regional climate model) can be used to evaluate the trend of
future extreme rainfall events and the possibility of dam failure
(Tryhorn and Degaetano, 2011; Wang et al., 2013; Moeini and
Soltani-nezhad, 2020). Additionally, stronger storms in warmer
climates should be taken into consideration as the IDF
(intensity-duration-frequency) curve varies and the dam
failure risk would be simultaneously changed in the future. In
other words, the future climate information is recommended to
be incorporated in the dam failure probability evaluation (Aerts
and Botzen, 2011; Dottori et al., 2016).

CONCLUSION

Most modern dams are built to resist natural disasters such as
floods, landslides, and seepage, and some dams are built for
irrigation and water supply. A number of older dams built more
than 50 years ago were not designed to modern standards, most of
which have already shown signs of degradation (erosion, aging,
and disrepair). In recent years, as a result of the increasingly
intensive extreme rainfall events associated with dam failure
caused by the water erosion and inadequate maintenance, the
breach risk of aging dams continues to be dramatically increased
in the United States. The risk of dam failure predominantly
derives from the high stage level of the river, which leads to
overtopping and piping failures (Li et al., 2008; He et al., 2018;
Shrestha and Wang, 2020).

In this case study, a hydrodynamic model was applied to the
inundation simulation of three types of extreme precipitation-
induced homogeneous concrete dam breach. The inundation
maps of the three extreme scenarios in different time periods
and all hydraulic variables including water depth, flow velocity,
and flood arriving time over separated nine cross-sections in the
Catawba River were calculated. The hypothetical simulation
results illustrate that the impact of Hurricane Florence’s
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Choosing an appropriate GCM (Global Climate Model, GCM) is of great significance for the
simulation of the hydrological cycle over a basin under future climate scenarios. In this
study, the Rank Score Method (RS) with eight indicators were applied to comprehensively
evaluate the suitability of 19 GCMs issued in the Sixth Global Atmosphere and Coupled Model
Intercomparison Project (CMIPE) to the Yellow River Basin (YRB). The results indicated that: 1)
The GCMs perform differently in simulating precipitation over the YRB with the top six GCMs
ranking from MRI-ESM2-0, ACCESS-CM2, CNRM-CM6-1, CNRM-ESM2-1, FGOALS-f3-L,
to MPI-ESM1-2-HR. 2) Most GCMs overestimated the precipitation, and poorly simulated the
phase distribution of extremes mainly due to overstimulation of wet season span and
precipitation amount in the season, although all GCMs could capture decadal feature of
annual precipitation. Meanwhile, it is also found that most GCMs underestimated summer
precipitation and overestimated spring precipitation. 3) The GCMs well simulated the spatial
distribution of annual precipitation, with an overestimation in the source area, and an
underestimation in the northern part of the middle reaches of YRB.

Keywords: CMIP6, climate model, precipitation simulation, comprehensive assessment, the yellow river basin

INTRODUCTION

With the further intensification of global climate change, the hydrological cycle processes have
been significantly affected. The Sixth Intergovernmental Panel on Climate Change (IPCC)
Assessment Report of group 1 showed that in 2015-2100, the global warming trend will be
even more significant, climate change will intensify in all regions, and extremely high temperature
and precipitation events will become more frequent (Masson-Delmotte et al., 2021). Therefore,
analyzing the changes in the hydrological process of the basin, and simulating the change of
hydrological elements under future climate scenarios are of great significance for the management
and planning of water resources in the basin (Reboita et al., 2019). The Global Climate Models
(GCMs) in a series of Global Atmosphere and Coupled Model Intercomparison Projects (CMIPs)
developed by the World Climate Change Research Program (WCRP) are effective tools for
predicting future climate change, and have been widely used to study the impact of climate change
on the processes of the hydrological cycle (Stouffer et al., 2017; Zhang and Chen, 2021). Some
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studies have noted that the models in the CMIP could well
simulate the variation of various climate elements on a large
scale (Fu et al., 2021; Zhu et al., 2021). However, due to the
differences in simulation mechanisms, initial condition setting,
parameterization scheme setting, spatial resolution and so on of
each model, the performance of GCMs in various regions is
quite different (Song Y. H. et al,, 2021; You et al, 2021).
Therefore, assessing the regional applicability of GCMs is of
great importance for further research on the impact of climate
change on the regional hydrological cycle.

A growing body of research has evaluated the applicability of
the GCMs in the CMIPs to various regions. Chen et al. (2020)
compared the ability of CMIP6 and CMIP5 models to simulate
the global extreme climates, and found that the simulated results
of CMIP6 models were usually closer to the observations than
that of the CMIP5 for most regions, especially for temperature
simulations. Igbal et al. (2021) evaluated the precipitation
simulation capability of 35 GCMs in the CMIP6 in Southeast
Asia, and the results indicated that most GCMs could well
simulate the precipitation change in the region. Khan et al.
(2021) wused Bayesian models to averagely evaluate the
applicability of the 13 GCMs in the CMIP5 over the Indus
River Basin, and the results showed that the optimal models for
simulating temperature and precipitation were not consistent.
Therefore, due to the good applicability of the GCMs in the
CMIP6 and the uncertainty of the models, it is necessary to
conduct a regional climate model evaluation. Zhu et al. (2021)
analyzed the extreme climate predictions of China when global
warming was 1.5°C, 2°C, and 3°C higher than the
industrialization (1861-1900) period based on the latest
(CMIP6) simulations, and compared them with the
simulation results of the CMIP5. The evaluation showed that
the GCMs in the CMIP6 performed better than those in the
CMIP5, especially in simulating extreme precipitation. Yang
et al. (2021) assessed the performance of 20 coupled GCMs in
the CMIP6 in simulating temperature and precipitation in
China, and found that the GCMs in the CMIP6 could
reproduce the spatial distributions of temperature and
precipitation. Dabang et al. (2020) compared the simulation
ability of GCMs in the CMIP5 and CMIP6 in terms of
temperature and precipitation in China from 1961 to 2005,
and the results indicated that the current GCMs in the CMIP6
simulated lower temperatures and higher precipitation across
the country compared with the CMIP5 models, but with little
improvement in interannual temperature and winter monsoon.
Overall, the CMIP models could well simulate the regional
precipitation in China, despite some overestimations.

The Yellow River is the mother river of China. The river basin
suffers from frequent droughts, floods and has been severely
affected by climate change. Exploring the changes in the
hydrological processes of the Yellow River Basin under future
climate scenarios could promote the sustainable development of
the basin (Niu et al., 2021). At present, most studies evaluating
the performance of GCMs have been conducted for large
research areas, such as China or the world, but relatively few
studies have been conducted over basin-scales, such as the
Yellow River Basin, where the simulation capabilities of

Evaluation the Ability of CMIP6

GCMs in spatial and temporal have not been
comprehensively considered (Yang et al, 2018; Zhou and
Han, 2018). The CMIP6 is the latest global atmospheric and
coupled model intercomparison plan proposed by the WCRP
and has the largest number of participating models, the most
complete design of scientific experiments, and the largest
simulated data in more than 20 years of the CMIP (Song Z.
et al.,, 2021). The urgent problem is how to choose a suitable
model for the study area from a large number of model data. The
objective of this work is to evaluate the abilities of the 19 GCMs
in the CMIP6 to simulate precipitation in the Yellow River
Basin, and select suitable GCMs with better simulation abilities
to provide a basis and reference for the hydrological cycle
process in response to the future climate change, water
resources planning and management in the basin.

STUDY AREA AND DATA DESCRIPTION
Study Area

The Yellow River is the second-longest river in China, is located
between 96°25'—118°75'E and 32°75'—41°75'N, has a drainage
area of 79.5 x 104 km” and with a total river length of 5,464 km.
The terrain of the Yellow River Basin is high in the west and low
in the east, which is dominated by mountains in the middle and
upper reaches of the Yellow River, and the middle and lower
reaches are dominated by plains and hills, forming the three-level
ladder from upper down to lower down (Figure 1). The annual
precipitation in most parts of the basin is between 200 and
650 mm, with more than 650 mm in the southern and lower
reaches of the middle and upper reaches. In particular, the
northern slope of the southern Qinling Mountains generally
has 700-1,000 mm in precipitation, while the inland areas of
northwest Ningxia and Inner Mongolia have less than 150 mm.
Those elements significantly affect the climate of different regions
in the basin, with large annual and seasonal variations in the
climatic elements, hence the frequent droughts and floods (Song
S. et al,, 2021; Xu et al., 2021).

Data Description

The observed data of precipitation over the Yellow River
Basin applied in this paper comes from the CNO05.1 data set,
which was provided by the National Meteorological Center
in China. The data set covers the years 1961-2018 with a
spatial resolution of 0.25" x 0.25°, with good consistency and
applicability (Pang et al., 2021; Shu et al., 2021). Considering the
integrity of stimulated data, we chose the data to form the 19
GCMs in the CMIP6, which were obtained from the official
website of CMIP6 (https://esgfnode.llnl.gov/projects/cmip6). The
specific model information is shown in Table 1, and all the
models are at daily resolution. Because the resolution of each
model and the observed data is different, the bilinear
interpolation method was used to interpolate to the resolution
of 0.5° x 0.5° to facilitate comparison. After the interception, there
are 317 grids in the Yellow River Basin, as shown in Table 1. The
data series from 1961 to 2014 were selected for evaluation and
analysis.
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TABLE 1 | Basic information of the GCMs of the CMIP6 used in this study. The “lon” means longitude, the “lat” means latitude, the “lon x lat” means the spatial resolution of

each model.
Number Model Country Atmospheric resolution
(lon x lat)

1 ACCESS-CM2 Australia 1.875° x 1.25°

2 ACCESS-ESM1-5 Australia 1.875° x 1.25°

3 BCC-CSM2-MR China 1.125° x 1.125°

4 CMCC-CM2-SR5 Italy 1.25° x 0.9375°

5 CNRM-CM6-1 France 1.40625° x 1.40625°

6 CNRM-ESM2-1 France 1.40625° x 1.40625°

7 FGOALS-f3-L China 1.25" x 1°

8 FGOALS-g3 China 2° x 2.25°

9 GFDL-CM4 the United States 1.25" x 1°

10 GFDL-ESM4 the United States 1.25° x 1°

11 [ITM-ESM Russia 1.875° x 1.904°

12 INM-CM4-8 Russia 2°%x 1.5

13 MIROC-ES2L Japan 2.8125° x 2.7893°

14 MIROC6 Japan 1.40625° x 1.40625°

15 MPI-ESM1-2-HR Germany 0.9375° x 0.935°

16 MPI-ESM1-2-LR Germany 1.875° x 1.8652°

17 MRI-ESM2-0 Japan 1.125° x 1.125°

18 NESM3 China 1.875° x 1.865°

19 NorESM2-LM Norway 2.5° x 1.89474°

TABLE 2 | Statistical indices and evaluation methods applied in this study.

Scale Climatic characteristics Method Index

Temporal Climate average Multi-year average precipitation MAE
Inter-year variability Coefficient of Variation MAE
Trend Modified Mann-Kendall test Z MAE
Trend slope Modified Mann-Kendall test g MAE
Correlation Temporal correlation coefficient Rt COR

Spatial Correlation Spatial correlation coefficient Rs COR
Inter-year change mode-1 The first modal from the Empirical Orthogonal Function (EOF1) COR
Inter-year change mode-2 The second modal from the Empirical Orthogonal Function (EOF2) COR

MAE means the Mean Absolute Error, the COR means the Correlation coefficient.

METHODOLOGY

The ability of the different GCMs to reproduce the properties of
those observed at the study area was assessed using eight statistical
indices. The evaluated indices and methods were shown in Table 2.

For the simulation ability on the temporal scale, the average
annual precipitation and the coefficient of variation were used to
evaluate the mean state and the inter-annual variability. In
addition, the Modified Mann-Kendall (MMK) method was
used to test the long-term change trend of the series, then
the correlation coefficient method was used to calculate the
temporal correlation coefficient, and evaluate the correlation
between the observations and the simulated series (Hamed and
Rao, 1998). In addition to using the spatial correlation
coefficient to judge the spatial correlation between the
observations and the simulations, the Empirical Orthogonal
Function modal decomposition (EOF) method was applied to
comprehensively evaluate the spatial modal simulation ability of
the GCMs (Sang et al., 2021). Finally, combining the above eight
indicators, the Rank Scoring (RS) method was used to evaluate
the ability of the 19 GCMs to simulate the precipitation in the
Yellow River Basin.

1) The method for calculating the Mean Absolute Error
(MAE) is:

MAE = | X, - X,| (1)

WhereXis the simulated value of the climatic characteristic
quantity, and X,is the observed value of the climatic
characteristic quantity. The closer the MAE value is to zero,
the more accurate the model is.

2) Correlation coefficient (COR) is calculated as:

o i:zl(xo,i -X,)(Xu- %) .

\/é(xo'i - Z)z . \]é(xs,i = 75)2

When calculating the temporal correlation coefficient, X;; and
X,,are the simulated and observed values at the i-th time point
respectively, and n is the total length of the sequence. When
calculating the spatial correlation coefficient between the
simulated value of each climate characteristic quantity and the
observed value in the Yellow River Basin, X;; and X,; are the
simulated value and observed value of the climate characteristic
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TABLE 3| Statistical indices values and RS total scores of precipitation simulated by 19 GCMs. The models and indicators in bold were the relatively better ones in the table,

and the indicators in bold were performed best in each category.

Model Mean cv z B
Observed 466.1 0.12 0.22 1.29
ACCESS-CM2 646.7 0.12 0.15 0.39
ACCESSES-M1-5 721.6 0.10 -0.28 -0.51
BCC-CSM2-MR 683.4 0.11 0.46 0.93
CMCC-CM2-SR5 1,083.1 0.10 -1.17 -0.99
CNRM-CM6-1 509.2 0.1 0.29 0.47
CNRM-ESM2-1 502.1 0.13 0.37 0.73
FGOALS-f3-L 483.8 0.13 0.08 0.15
FGOALS-g3 586.0 0.10 0.00 0.01
GFDL-CM4 574.3 0.13 -0.29 -0.63
GFDL-ESM4 578.5 0.12 -0.96 -1.90
IITM-ESM 791.6 0.09 -0.01 -0.01
INM-CM4-8 1,068.7 0.10 -0.39 -1.49
MIROC-ES2L 957.7 0.06 -0.22 -0.38
MIROC6 832.2 0.09 -0.19 -0.27
MPI-ESM1-2-HR 603.9 0.12 0.71 1.55
MPI-ESM1-2-LR 785.1 0.11 0.28 0.74
MRI-ESM2-0 503.6 0.14 -0.18 -0.29
NESM3 879.3 0.09 -0.19 -0.55
NorESM2-LM 9082.6 0.11 0.39 1.29

quantity of the i-th grid point in the basin respectively, and # is
the number of grids (Alves et al., 2018). The model performance
is better the closer the COR values are to 1.

3) The advantage of the RS method is that it gives a unified
evaluation result for different evaluation indicators, and can also
analyze a single feature value, which makes the evaluation result
more intuitive and objective, so it is more conducive to
comprehensive evaluation. This method first calculates the
degree of fitness between the simulated sequence and the
observed sequence of various statistical feature values, then
assigns a score of 0-10 to each model according to the degree
of fitness, which can be effectively applied to different regions
(Shiru and Chung, 2021). The calculation method is as follows:

Tk - Tmin
1l — 10; T = MAE
( dex - Tmin> 8 7
RS (T) = T 3)
k — L min
— | x 10; T = COR
<Tmax - Tmin) 8 ’

Where RS, (T) is the score value of the climate characteristic
quantity T of the k-th model. T, T and T,y are the calculated
values of the climatic characteristic quantity T of the k-th model,
and the minimum and maximum values of the climatic
characteristic quantity of all models. The range of RS is 0-10.
The higher the score, the better the simulation ability of the
climate model in this region.

RESULTS AND DISCUSSION

Comprehensive Evaluation for the
Stimulated Ability of GCMs

The RS scores of each index and total scores of 19 GCMs were
shown in Table 3.

It can be seen that the simulation capabilities of the 19 GCMs
were quite different. The highest RS score was 7.83 (MRI-ESM2-

rt Rs EOF1 EOF2 RS
0.01 0.77 0.16 0.13 7.79
-0.05 0.77 -0.18 -0.05 6.38
0.14 0.64 -0.08 -0.15 6.16
0.01 0.69 -0.09 0.08 4.52
-0.02 0.77 0.06 0.11 7.63
-0.05 0.76 0.16 0.03 7.09
0.03 0.57 0.09 0.03 6.81
-0.19 0.73 -0.15 -0.26 6.49
0.01 0.74 -0.23 -0.16 6.54
0.16 0.78 0.00 0.07 6.08
-0.02 0.69 -0.04 -0.09 5.41
0.12 0.66 0.10 0.10 4.49
0.02 0.68 -0.05 -0.14 4.43
-0.03 0.66 0.17 0.22 5.22
-0.06 0.80 0.11 0.07 6.99
0.08 0.67 0.03 0.11 5.90
0.18 0.80 0.23 0.17 7.83
0.08 0.65 -0.16 -0.10 4.78
-0.08 0.72 -0.04 0.06 5.03

0) and the lowest was 4.52 (CMCC-CMA-SR5). The models with
relatively higher scores were MRI-ESM2-0 (7.83), ACCESS-CM2
(7.79), CNRM-CM6-1 (7.63), CNRM-ESM2-1 (7.09), MPI-
ESM1-2-HR (6.99) and FGOALS-f3-L (6.81) (Figure 2). The
results showed that no model performs well for each indicator.
Each GCM had better or poorer performance indicators than
others, which indicated the necessity of a comprehensive
evaluation of indicators.

The average annual precipitation of observation in the Yellow
River Basin was 466.1 mm, while those of the 19 GCMs ranged
from 483.8 to 1,083.1 mm. Therefore, all models overestimated
the average annual precipitation. The closest simulated value was
from FGOALS-f3-L  (483.8 mm), while the greatest
overestimation from model CMCC-CM2-SR5 at
1,083.1 mm. Previous studies noted that most climate models
overstimulated the precipitation in the basin, a factor related to
that was the more convective precipitation simulated by the
GCMs (Zhou and Han, 2018). For the inter-annual variability,
there was little difference between the models. It showed that the
spatial variation of the simulated annual precipitation in most
GCMs was close to the observation in terms of the coefficient of
variation. In addition, the precipitation of the basin from 1961 to
2014 showed an insignificant increase trend (Z<+1.96), and nine
models that could simulate the increasing trend. However, the Z
value of the best scored MRI-ESM2-0 was —0.18, which failed to
simulate the increasing trend of the observation. But the better
performance of other climatic characteristics made up for the lack
of trend simulation, which showed that quantitative assessment
of the sensitivity of climate characteristics is a problem that needs
further research (Yazdandoost et al., 2020). Finally, in terms of
spatial and temporal correlation, though almost all of the GCMs
showed highly spatial correlation, they performed badly on
temporal correlation, with 8 GCMs showing negative
correlation, implying a large deviation between the simulated
value and the observation (Figure 3). For example, the

was
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precipitation stimulated by MRI-ESM2 0 at 32.75°N 102.75°E was
1,418.1 mm, while the observed precipitation over this grid was
848.37 mm, so there is a significant deviation between the
simulation and the observation.

Simulation of Temporal Characteristic
Simulation of Annual Precipitation

The ability of the different GCMs to reproduce the properties of
those observed at the study area was assessed using eight
statistical indices. The evaluated indices and methods were
shown in Table.

Table indicated that the annual precipitation in the Yellow
River Basin showed an insignificant increase from 1961 to 2014.
The maximum precipitation occurred in 1964 (597.7 mm), and
the minimum precipitation was in 1965 (342.2 mm). Figure 4
showed the annual precipitation change of the six models with
higher scores. Almost all of the models could simulate the inter-
annual change of precipitation in the basin. However, not only
the annual precipitation in the Yellow River Basin was
overestimated, but the simulation value of peak and valley also
lagged. Moreover, the peak value was obviously overestimated,
and the valley value was underestimated, which is related to the
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FIGURE 4 | Annual precipitation of the six higher-scoring GCMs and the
observed data. The red line denotes the GCM with the highest score in the
comprehensive evaluation.

uncertainty of the climate model and the resolution of the data
(Orlowsky and Seneviratne, 2013). For example, the highest
scored MRI-ESM2-0’s simulated annual precipitation in
1964 was 669.3 mm, and the simulated annual precipitation in
1965 appeared to be 470.1 mm (Table 4), which was the closest to
the observed data among the six optimal models. It also had the
least hysteresis impact, so the GCMs ranked high by the RS
method were seen to have better abilities in replicating the
historical variation of inter-year precipitation in the Yellow
River Basin.

In order to compare the uncertainty of the simulated annual
precipitation in the Yellow River Basin between the GCMs, the
uncertainty interval of the annual precipitation stimulated by 19
GCMs and six higher-scoring models were calculated with
absolute deviations (Figure 5). Among them, the range of the
simulated annual precipitation of the 19 models was
313.2-1,391.5 mm, while that of the six higher-scoring models
was 313.2-818.4 mm, which indicated that the higher-scoring
GCMs significantly reduced the uncertainty of simulated
precipitation in the Yellow River Basin.

Simulation of the Seasonal Pattern

The maximum monthly precipitation of observed data in the
basin from 1961 to 2014 occurred in July (102.2 mm), but it
occurred in August in the six models. The maximum monthly
precipitation in the basin was overestimated by 113.2 mm by
ACCESS-CM2, 110.4 mm by CNRM-CM6-1, and 107.43 mm by
CNRM-ESM2-1. However, the other three models
underestimated it: FGOALS-f3-L by 91.3 mm, MPI-ESM1-2-
HR by 914 mm, and MRI-ESM2-0 by 82.5mm (Figure 6).
On the other hand, the minimum monthly precipitation of
observation occurred in December with 3.2 mm, but the six
models all predicted it to occur in January with higher
precipitation than observation. Therefore, the GCMs offer
poor simulations of the phase distribution of the monthly
extreme precipitation. Furthermore, the wet season in the
Yellow River Basin is from May to September, and the dry
season is from October to April, the monthly average
precipitation was 38.8mm, which was consistent with previous
research conclusions (Cui, 2008). Although most GCMs in the
CMIP6 could simulate the intra-year variation of wet and dry
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TABLE 4 | Annual precipitation of six higher-scoring GCMs and observed precipitation from 1964 to 1965.

Model Observed ACCESS-CM2 CNRM-CM6-1 CNRM-ESM2-1 FGOALS-f3-L MPI-ESM1-2-HR MRI-ESM2-0
P (mm)
1964 597.7 726.0 462.7 573.0 399.2 551.4 669.3
1965 342.2 726.2 437.2 519.2 478.2 569.4 470.1
1500
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FIGURE 5 | Uncertainty interval of stimulated annual precipitation from the 19 GCMs and the six higher-scoring models. The black line is the annual precipitation
change of the observed precipitation, and the red line is the annual precipitation change simulated by the GCM with the highest score.
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FIGURE 6 | Distribution of the intra-year precipitation from the simulated
data of six higher-scoring GCMs and observed data.

seasons in the Yellow River Basin, the wet season simulated by the
six models except FGOALS-f3-L was April to September, and the
monthly average precipitation was higher than the observed data,
so the wet season simulated by most GCMs was too long and the
precipitation during the period was overestimated.
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FIGURE 7 | Seasonal precipitation of the observation and simulation

from the six higher-scoring GCMs, spring is from March to May, summer is
from June to August, autumn is from September to November, and winter is
from December to February.

The observed precipitation indicated that the summer
precipitation in the Yellow River Basin was the most
abundant, which could reach 259.1 mm, accounting for 55%
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TABLE 5 | Maximum and minimum average annual precipitation of the grids simulated by the observed and the six higher-scoring GCMs over the Yellow River Basin.

Model Observed ACCESS-CM2 CNRM-CM6-1 CNRM-ESM2-1 FGOALS-f3-L MPI-ESM1-2-HR MRI-ESM2-0
Prmax (Mm) 831.3 1859.0 1,611.6 1,580.4 921.2 1,697.3 703.4
Prin (Mm) 157.8 135.2 76.7 71.6 114.9 111.3 389.5
A 42°N
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34°N
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B o Cen D .oon 1100mm
40°N 40°N 40°N
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700mm
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FIGURE 8| Spatial distribution of average annual precipitation from the observation and six higher-scoring GCMs. Panels (A-G) are the observed data, ACCESS-
CM2, CNRM-CM6 -1, CNRM-ESM2-1, FGOALS-f3-L, MPI-ESM1-2-HR, MRI-ESM2-0, respectively.

of the annual precipitation. The winter precipitation was
insufficient, only 12.9mm, accounting for 3% of the
annual precipitation. In general, the six higher-scoring
GCMs could simulate the seasonal characteristics of the
basin with abundant summer precipitation and less
precipitation in winter. However, except for the summer
precipitation simulated by the ACCESS-CM2 1 (261.9 mm),
which was slightly higher than the observed data, that
simulated by the other five models were lower than
observed. Among them, the summer precipitation
simulated by the MRI-ESM2-0 model was the lowest of
218.7 mm, indicating that most GCMs in the CMIP6
underestimated the summer precipitation in the basin
(Figure 7).

The observed autumn precipitation (111.42 mm) was also
higher than the spring precipitation (82.6 mm) in the Yellow
River Basin. While the CNRM-ESM2-1 model could simulate
the changes of the spring and autumn precipitation, the
precipitation in spring simulated by the other five models
was higher than that in autumn. Some studies concluded that
the wet season was from May to September in the Yellow River
Basin, with the highest precipitation in summer, and the
precipitation in autumn was significantly higher than that in
spring (Li et al., 2016; Yuan et al., 2016). Therefore, the GCMs
could not well simulate the changes of precipitation in the basin
in spring and autumn, and obviously overestimated the
precipitation in spring and underestimated it in summer.

Simulation of Spatial Characteristic

Spatial Distribution Characteristics of Precipitation
The average annual precipitation in the Yellow River Basin
decreases from south to north, the maximum grid average
annual precipitation is 831.4mm while the minimum is
157.8 mm (Table 5). Figure 8 indicated that the GCMs could
well simulate the spatial distribution characteristics of the annual
precipitation in the Yellow River Basin. However, they all
overestimated the maximum precipitation, and underestimated
the minimum precipitation, especially overestimated the
precipitation in the source area of the Yellow River.

In order to further analyze the ability of the 6 GCMs to
replicate the spatial distribution of average annual precipitation
in the Yellow River Basin, this paper calculated the relative
deviation of the average annual precipitation from the six
higher-scoring GCMs and observed data (Figure 9). The
results indicated that except for the CNRM-ESM2-1, which
underestimated the average annual precipitation in the source
area of the Yellow River, the other five models significantly
overestimated it. Besides that, the six models all
underestimated the precipitation in the northern part of the
middle reaches of the Yellow River Basin, and there was also a
significant underestimation in the lower reaches of the basin.
Therefore, the GCMs had large uncertainties in the simulation of
the spatial distribution of the precipitation in the Yellow River
Basin. Xu et al. (2010) assessed the uncertainty in the impacts of
climate change on river discharge in the Yangtze and Yellow
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ACCESS-CM2, CNRM-CM®6 -1, CNRM-ESM2-1, FGOALS-3-L, MPI-ESM1-2-HR, MRI-ESM2-0.

River Basins, and found that the precipitation in the Yellow River
Basin simulated by the GCMs was obviously affected by regional
climate characteristics. The climatic conditions of the basin from
the source region to the lower reaches are very complex, which
increases the uncertainty of climate model simulations (Bao and
Feng, 2014).

Spatial Distribution Characteristics of Precipitation
Modalities

The spatial distribution of the first mode and the second mode
was obtained by the EOF decomposition of the observed average
annual precipitation in the Yellow River Basin (Figures 10A,
11A). The cumulative explained variance of the first and second
modes of the average annual precipitation in the Yellow River
Basin was 98.48%, which could almost explain the spatial and
temporal variability of the basin. On the one hand, the explained
variance of the first mode was 97.89% and the mode over the
whole basin showed a consistent trend. The EOF1 of the whole
basin was a positive signal, the maximum variability was located
in the northern part of the middle reaches, which decreases from
the north to the south over the Yellow River Basin. The explained
variance of the second mode of the average annual precipitation
in the Yellow River Basin was 0.52%, which was represented by
the characteristic of east-west antiphase bounded by the middle
part of the Yellow River. Among them, the negative signal was
from the source of the Yellow River to the middle reaches, and the
positive signal was from the middle reaches to the lower reaches
of the basin. Liu and Zheng (2002) and Hao et al. (2010) used the
EOF method to study the spatial pattern of precipitation in the
Yellow River Basin under the impact of climate change, and the
results noted that the spatial structure of precipitation in the
Yellow River Basin could be divided into four types: “total
consistency”, “north-south”, “west-east” and “complex” due to
the particularity of geographical location and climatic conditions.
Therefore, the spatial modal distribution characteristics of the
average annual precipitation in the Yellow River Basin obtained
in this paper were reasonable. The GCMs could well simulate the
spatial variation of the EOF mode of the average annual
precipitation in the Yellow River Basin, and the explained
variance was higher than the observed data, so there was an

over-fitting phenomenon (Figure 10). In addition, the six higher-
scoring GCMs could simulate the spatial characteristics of the
first mode and the second mode in the basin (Figure 11).
However, most GCMs overestimated the simulated variability
of the first mode in the northern part of the basin and the second
mode in the source region of the Yellow River. Of the GCMs, the
CNRM-CM6-1 had the best simulation effect on the spatial
characteristics of the first and second modes of the average
annual precipitation in the basin. The explained variance, in
this case, was closest to the observed data, and the phenomenon
of overestimating the modal variability was not very significant.

DISCUSSION AND CONCLUSIONS

Discussion
This study comprehensively evaluated the ability of 19 GCMs from
the CMIP6 to simulate the properties of precipitation in the Yellow
River Basin, and provided a basis of model selection for research on
the hydrological cycle under future climate scenarios in the Yellow
River Basin. Woldemeskel et al. (2014) found that different models
have great differences in the precipitation simulation capabilities
over basin scales, and choosing the better model helps reduce the
uncertainty of model simulation. Therefore, this research is of great
significance to the prediction of future flood disasters and
sustainable development of the Yellow River Basin. In this
study, we found that the GCMs in the CMIP6 showed an
obvious zoning phenomenon when simulating the spatial
distribution of precipitation in the basin. The average annual
precipitation in the source area of the Yellow River was
overestimated, and underestimated in the middle reaches of the
river. This is related to the sophisticated topographical
characteristics of the Yellow River Basin. The basin spans the
Qinghai-Tibet Plateau, the Loess Plateau, the Guanzhong Plain, the
Hetao and the Yinchuan Plain, so the underlying surface and
topography of the basin are complex. Such complicated
topographical conditions significantly ~affect the climatic
characteristics of the Yellow River Basin.

At present, it is difficult for GCMs to accurately simulate the
climate characteristics of the Yellow River Basin, and the
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resolution of most GCMs in the CMIP6 is still relatively coarse
(Hui et al, 2015). Therefore, one urgent problem is how to
improve the simulation capabilities of GCMs. In order to better
simulate and predict future climate changes in the Yellow River
Basin, dynamic or statistical downscaling methods could be used
for the GCMs selected in this paper. Besides that, the downscale
data could be corrected by the bias correction technology, then it
could drive the hydrological models, and explore the impact of
future climate changes on the hydrological processes in the Yellow
River Basin (Zhao et al, 2019). For hydrological models, it is
necessary to use meteorological data with a high resolution, so the
multiple models could be considered to drive the hydrological

models separately and then aggregated to improve simulation
accuracy. Hamlet et al. (2020) found that the multi-model
ensemble average enables the simulation errors of different
climate models (including the simulation errors of spatial
distribution) to offset each other, with a better simulation
effect. The simulation capacity will increase as the set of
samples increases, but it will gradually stabilize after reaching a
certain number of samples. And due to the frequent occurrence of
droughts and floods in the Yellow River Basin, combining
different climate and land-use scenarios to predict the changes
of future extreme drought and flood disasters in the Yellow River
Basin is a direction worth studying.
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Conclusion
Based on the simulated precipitation data of 19 GCMs in the

CMIP6 and the observed data of the Yellow River Basin from
1961 to 2014, this paper selected eight indicators and combined
them with the RS method. The ability of the GCM:s in the CMIP6
to simulate the temporal and spatial variations of precipitation in
the Yellow River Basin was comprehensively evaluated, the
conclusions are as follow:

1) The GCMs differed greatly in their ability to simulate
precipitation in the Yellow River Basin. The top six GCMs
ranking are: MRI-ESM2-0, ACCESS-CM2, CNRM-CM6-1,
CNRM-ESM2-1, FGOALS- f3-L, MPI-ESM1-2-HR.

Most GCMs overestimated the annual precipitation and
poorly simulate the phase distribution of the extremes,
although they could simulate the variation of intra-year
precipitation. Meanwhile, it also found that the wet season
simulated by most GCMs was too long, the precipitation was
also overestimated during this period. Most GCMs in the
CMIP6 could simulate the variation of precipitation in
summer and winter, but they underestimated the summer
precipitation and overestimated the spring precipitation in the
Yellow River Basin.

All GCMs could well simulate the spatial distribution of the
annual precipitation over the basin, but there was a
significant overestimation phenomenon in the source area,
and an underestimation in the northern part of the middle
reaches.

The GCMs in the CMIP6 performed well in simulating the
spatial variation of modal in the Yellow River Basin, the
simulation ability of CNRM-CM6-1 was the best. But most
models overestimated the simulation variability of the first
mode in the northern part of the basin and the second mode in
the source area of the Yellow River.

2)

3)

4)
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Based on the Lagrangian particle dispersion model, HYSPLIT 4.9, this study analyzed the
summertime atmospheric moisture sources and transportation pathways affecting six
subregions across China. The sources were: Midlatitude Westerly (MLW), Siberian-Arctic
regions (SibArc), Okhotsk Sea (OKS), Indian Ocean (I0), South China Sea (SCS), Pacific
Ocean (PO), and China Mainland (CN). Furthermore, the relative contributions of these
seven moisture sources to summertime precipitation in China were quantitatively
assessed. Results showed that the CN precipitation source dominates the interannual
and interdecadal variation of precipitation in most subregions, except Southwest and
South China. The Northeast China vortex and Pacific-Japan (PJ) teleconnection, which
transport water vapor from the MLW, OKS and PO sources, are crucial atmospheric
systems and patterns for the variation of precipitation in Northeast China. The interannual
variation of precipitation in Northwest and North China is mainly dominated by mid-high-
latitude Eurasian wave trains, which provide the necessary dynamical conditions and
associated moisture transport from the MLW and SibArc sources. In addition, an
enhanced western North Pacific subtropical high (WNPSH) accompanied by the East
Asian—-western North Pacific summer monsoon and PJ teleconnection, transports extra
moisture to North China from the SCS and PO sources, as well to the Yangtze River Valley
and South China. The Indian summer monsoon (ISM) is also critically important for the
interdecadal change in precipitation over the Yangtze River Valley and South China, via the
southwesterly branch of moisture transport from the 10 source. The interdecadal changes
in precipitation over Southwest China are determined by the IO and SCS sources, via
enhanced WNPSH coupling with a weakened ISM. These results suggest that the
interdecadal and interannual variations of moisture sources contribute to the attendant
variation of summertime precipitation in China via large-scale circulation regimes in both
the mid-high and lower latitudes.

Keywords: moisture source, atmospheric wave trains, east asian summer monsoon, Pacific-Japan teleconnection,
Indian summer monsoon
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INTRODUCTION

Interannual and interdecadal variations of summer precipitation
over China are fundamentally controlled by water vapor
transport (Zhou and Yu, 2005; Zhao et al., 2007; Sun and
Wang, 2011; Zhu et al, 2011), dynamically associated with
large-scale atmospheric circulation in both the lower and
mid-high latitudes. The major atmospheric circulation regimes
affecting the East Asian moisture pathways include the East Asian
summer monsoon, western North Pacific subtropical high
(WNPSH), Indian summer monsoon (ISM), midlatitude
westerly (MLW), and Arctic Oscillation. Specifically, the
subtropical high and summer monsoon transport water vapor
from the South China Sea and western Pacific through
southwesterly and southeasterly moisture branches to yield
precipitation over eastern China (Wang and Chen, 2012; Sun
and Wang, 2014a, 2014b). The ISM is critical for summertime
precipitation over Southwest China (Tian and Fan, 2013) and the
semiarid regions of China (Yatagai and Yasunari, 1995), mainly
through the southwesterly branch of the moisture pathway that
transports water vapor from the Indian Ocean. The MLW, which
transports moisture from the Eurasian continent, has an impact
on the westerly branch of moisture supply to South China during
summer (Simmonds et al., 1999) and to northern China during
winter (Gong et al., 2001; Zhou, 2011). In high-latitude regions,
Arctic sea-ice loss and the North Atlantic Oscillation have
additional influence on the moisture transport over Northwest
China (Liu et al.,, 2012; Li and Wang, 2013; Zhang and Zhou,
2015; Hua et al, 2017) and North China (Zhang et al., 2018)
through large-scale Eurasian wave trains. Besides these large-scale
atmospheric regimes, local evapotranspiration is another crucial
source of atmospheric moisture, which accounts for
approximately 9.6% of total rainfall as estimated by the global
annual mean recycling (Trenberth, 1999). Numaguti (1999)
demonstrated that most of the summertime precipitation over
the Eurasian continent is supplied by evaporation from the
continental surface. Considering the complex regime of
atmospheric water vapor transport over China (Zhou and Yu,
2005), the atmospheric sources are thus differing in distinct
subregions of China. Although past studies have identified
various moisture sources of regional precipitation, they do not
provide a complete picture of affecting factors in both the lower
and mid-high latitudes.

Typically, two types of numerical models are employed to
simulate the atmospheric water cycle and to trace the trajectories
of air parcels. One is the conventional Eulerian method, which
diagnoses local sources of precipitable moisture over a fixed
region and concerns the temporal variation of a fixed air
parcel. Its disadvantage is its lack of a reasonable
“source-receptor” linkage between the possible moisture
source and the target precipitation regions. Given this
deficiency, another effective method is the Lagrangian
numerical model, which traces the origins of atmospheric
water and the trajectories of specific air parcels over time. The
most commonly used model is the Flexible Particle Dispersion
Model (Stohl and James, 2005), which has been extensively
employed to study the global water cycle (Gimeno et al., 2010;
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Chen et al,, 2012; Chen et al,, 2013; Viste and Sorteberg, 2013;
Drumond et al,, 2011; Sun and Wang, 2014a, Sun and Wang,
2014b). However, besides this model, the Hybrid Single-Particle
Lagrangian Integrated Trajectory Model (HYSPLIT; Draxler and
Hess, 1998) is helpful in studying global water vapor transport
processes. For instance, Jiang et al. (2013); Jiang et al. (2017)
utilized HYSPLIT to investigate water vapor transport
characteristics over the Yangtze-Huaihe River valley during
the mei-yu period and decadal changes in North China
precipitation during the rainy season. Chen and Luo (2018)
analyzed the sources and pathways of South China
precipitation during the pre-summer rainy season. Chu et al.
(2019) identified the role of moisture sources and transportation
pathways in the variation of precipitation over East China and its
linkage to tropical sea surface temperature. In the present study,
HYSPLIT is employed to simulate the atmospheric moisture
sources and physical pathways of summertime precipitation in
six subregions across China.

Regionally speaking, most studies emphasize the moisture
sources of summertime precipitation over East China (Sun
and Wang, 2014b; Chu et al, 2019) and the semiarid
grasslands (Yatagai and Yasunari, 1995; Huang et al, 2011;
Sun and Wang, 2014a), whilst a complete picture of the
moisture sources for precipitation over has yet to be
thoroughly examined. Furthermore, elucidation of the possible
mechanisms involved in regional precipitation variations has
tended to focus on the tropical ocean and large-scale
circulation systems, such as the East Asian and Indian
summer monsoons and the MLW. Considering the complex
atmosphere-ocean and  tropics—extratropics  interactions,
however, current understanding of the atmospheric circulation
regimes affecting subregional precipitation remains vague.
Therefore, the aim of the present study was to quantitatively
investigate the Northern Hemisphere atmospheric moisture
sources for precipitation over the whole of China and their
relative contributions to summertime precipitation over
distinct subregions. Moreover, the critical atmospheric regimes
acting as atmospheric bridges linking the moisture sources to the
target precipitation regions were also examined.

DATA AND METHODS

Version 4.9 of HYSPLIT9, a Lagrangian particle dispersion
model, was employed to trace air parcel trajectories before the
air parcels arrived in target regions (Draxler and Hess, 1998). The
6-hourly and monthly geopotential height, horizontal and
vertical wind, 2-m temperature, sea surface temperature,
evaporation, precipitable water, and precipitation during
1979-2017, at a resolution of 1° x 1°, from the ERA-Interim
reanalysis, were used as input data for the HYSPLIT model.
The air parcels in the middle and lower troposphere (500 m,
1,000 m, 1,500 m, 2,000 m, 2,500 m, 3,000 m, and 3,500 m) within
a 10-day period (the average lifespan for atmospheric moisture;
Trenberth et al., 2011) were selected to trace the trajectories at an
acceptable accuracy. Given that HYSPLIT 4.9 may result in a
disordering of water vapor trajectories, the K-means clustering
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FIGURE 1 | Contribution rates (%) of seven moisture sources to summer precipitation over China: (A) MLW, (B) SibArc, (C) OKS, (D) IO, (E) SCS, (F) PO, (G) CN,
and (H) residual. The magnitudes of the SibArc and OKS sources are doubled, and the residual source is quadrupled. The specific geographical division of sources is
shown in (I).

method was additionally used to cluster the trajectories (Chu
et al, 2019). Several studies have expanded the usage of
Lagrangian models and proposed the “moisture source
attribution method (Sodemann and Stohl, 2009)” and “areal
source-receptor attribution method (Sun and Wang, 2014a;
Sun and Wang, 2014b)” to quantitatively compute the
moisture variation along the air parcel trajectories. These
methods are efficient in evaluating the relative contribution of
the evaporation source to the precipitation in the target location.
In this study, the air parcel trajectory and precipitation data were
derived from the HYSPLIT 4.9 outputs, which were then
employed to quantify the relative contributions of various
moisture sources and to distinct target regions (Emil et al,
2016; Chu et al,, 2019). This model also has a disadvantage in
that it considers only one “evaporation (uptake)-precipitation
(release)” cycle within 10 days—the mean time of one atmospheric
water cycle process.

Given the complex nature of affecting regimes, we focused on
seven moisture source regions in the Northern Hemisphere: the
MLW, Siberian-Arctic regions (SibArc), Okhotsk Sea (OKS),

Indian Ocean (IO), South China Sea (SCS), Pacific Ocean
(PO), and China Mainland (CN). The residual sources are
labeled as Res, as shown in Figure 1. Thereinto, it should be
noted that the water vapor carried over the South China Sea and
China Mainland were calculated independently because of their
influence by several moisture transport branches. In addition, six
target subregions in China were selected to provide a complete
picture for China as a whole: Northwest China (NW), North
China (NC), Northeast China (NE), Yangtze River Valley (YRV),
South China (SC), and Southwest China (SW).

To further identify the critical atmospheric patterns that affect
the variations of subregional precipitation, a series of atmospheric
pattern indices were defined. The metrics are shown below:

1) The Pacific-Japan (P]) teleconnection is a dominant pattern
in the Northwest Pacific and East Asian region that features an
anomalous dipole of lower tropospheric circulation over the
Philippine Sea and the midlatitudes around Japan (Nitta,
1987). Conventionally, the PJ index is calculated from the
leading mode of 850-hPa vorticity over the Northwest Pacific
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[10°-55°N, 100°~160°E (Kosaka and Nakamura, 2010)]. In this
study, we defined the PJ index with a pointwise method: Z
(45°N, 140°E) — Z (20°N, 140°E) — Z (60°N, 140°E), where Z
denotes the 500-hPa geopotential height. This PJ index is
highly correlated with the classical one, with a correlation
coefficient of 0.61, suggesting its representativeness of the
classical PJ pattern.

The East Atlantic/West Russia pattern is a prominent
teleconnection pattern that affects the Eurasian climate and
characterized by positive height anomalies over Europe and
northern China and negative anomalies over the central North
Atlantic and north of the Caspian Sea (Barnston and Livezey,
1987). Here, we defined a high-latitude Eurasian wave train
index as Z (60°N, 75°E) — Z (60°N, 30°E) — Z (40°N, 135°E), and
a midlatitude Eurasian wave train index as Z (60°N, 50°E) — Z
(40°N, 75°E) + Z (30°N, 110°E), where Z again denotes the 500-
hPa geopotential height. The correlation coefficients between
the East Atlantic/West Russia index and high- and
midlatitude Eurasian wave train indices are —0.12 and
—0.65, respectively, suggesting a similarity between the East
Atlantic/West Russia pattern and the midlatitude Eurasian
wave train pattern.

Following Wang et al. (2001), the WNPSH index was defined
as the areal-averaged 850-hPa geopotential height within
15°-25°N and 115°-150°E.

Following Wang and Fan (1999), the ISM index was defined as
the areal-averaged 850-hPa zonal wind between (5°-15°N,
40°-80°E) and (20°-30°N, 70°-90°E)—the former minus the
latter.

A Northeast China Vortex index was defined as the area-
averaged 500-hPa geopotential height over 40°-50°N and
110°-130°E.

2)

3)

4)

5)

RESULTS

Relative Contributions of the Seven

Moisture Sources

Figure 1 shows the relative contribution rates of the seven
moisture sources to the climatological summer precipitation
over China. The results are then further summarized in
Figure 2 as a pie chart. In addition, the moisture trajectories
of air parcels 10 (8, 6, 4, and 2) days before reaching each
subregion is presented in Figure 3. It should be noted that a
fair amount of the air parcels move at high latitudes, whereas the
evaporation and release of moisture are mainly cycled at relatively
lower latitudes. Broadly speaking, most air parcels arriving in the
three northern subregions (i.e., Northwest, North and Northeast
China) originate from the CN, MLW, SibArc and OKS sources,
whereas air parcels that arrive in the southern subregions
(i.e, Southwest, South and Southeast China) are governed
predominantly by the tropical ocean and CN sources.
Specifically, the precipitation center of the MLW source is
located in Northwest and Northeast China, with area-averaged
contribution rates of approximately 29.4 and 14.4%, respectively
(Figures 1A, 2A,C). The precipitation of the SibArc and OKS
sources contributes little to summertime precipitation over the

Summer Moisture Transports for China

whole of China (around 1-7%), and the target region is spatially
confined to Northwest and Northeast China, which is located in
the vicinity of the source origins (Figures 1B,C). The moisture
trajectory of the MLW, SibArc and OKS sources can also be seen
from the evolution of air parcel locations 10-2 days before
reaching Northwest and Northeast China (Figures 3A,C).
Regarding the tropical ocean sources, the IO source
precipitation plays a decisive role in the precipitation of
southwestern China (48.4%), with the magnitude then
decreasing northeastward radically from Southwest to
Northwest China, the YRV, and South China (Figures 1D,
2A,C-E, 3D-F). The SCS and PO sources precipitations have
similar impacts on East China (Figures 1E,F, 3D-F). The main
difference is that the former makes a more prominent
contribution to the precipitation of South China, with the
contribution rate decreasing with latitude (Figures 1E, 2F,
3F), while the latter mainly affects the precipitation of
Northeast China and the contribution rate weakens westwards
from coastal to inland regions (Figures 1, 2C, 3D-F).

In addition to the six remote sources, most air parcels arriving
in China are primarily dominated by the local CN source
(Figures 1G, 2, 3). Notably, considering the local evaporation,
the contribution rates of the CN source precipitation differ
considerably among the different regions—roughly between

258 and 68.3%. The center of China, including the
North-Northwest China, YRV and Southwest China
subregions, is overwhelmingly influenced by moisture

transport from surrounding areas (~80%), which arguably
reflects the strong feedback of local evaporation. This finding
is consistent with those of Numaguti (1999) and Sun and Wang
(2014b), who attributed continental evaporation as the primary
origin for continental precipitation. Technically, the contribution
of the CN source appears to be overestimated, partially due to the
10-day tracing method, which considered only one process of
evaporated moisture uptake, transport and release and therefore
omitted any distant transport beyond 10 days. To sum up, these
seven sources cumulatively account for greater than 95% of the
total summertime precipitation, which may provide valuable
precursors for synoptic-scale rainfall forecasts. The remaining
contributions will come from residual sources across the globe,
especially for the precipitation of Northwest China (Figure 1H).

Figure 4 shows the variations of total precipitation and
relevant sources of precipitation in the different subregions of
China. For each subregion, summertime precipitation shows
distinct interdecadal and interannual variations. Broadly
speaking, the interannual components of precipitation explain
larger amounts of the total variance than the interdecadal
components (Table 1). The precipitation of Northwest China
and its CN source display a similar increasing trend from 1979,
superimposed with clear interannual variations (Figure 4A), and
their correlation coefficient is high at 0.92 (Table 2). Their
interdecadal components explain approximately 18% of the
total variance, with the remaining 82% from interannual
timescales. The MLW and IO sources (i.e., the 2nd and 3rd)
show clear interannual variations, accounting for 88 and 97% of
the total variance, respectively. In comparison, the summertime
precipitation in North-Northeast China, the YRV, and South
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China show similar interdecadal variations superimposed with
interannual variation, which is characterized by a consecutively
southward retreat of summertime precipitation on interdecadal
timescales (Figures 4B-E). In particular, the interdecadal
component of YRV precipitation accounts for 44% of the total
variance. Specifically, there is increased rainfall in Northeast
China peaking in the mid-1980s, a southward displacement to
North China peaking in the early 1990s, a rapid southward shift
to the middle and lower YRV peaking at 1998, and then a further
extension to South China peaking in the early 2000s. The decadal
evolution of rain belts is consistent with the findings of previous
studies (Ding et al., 2009; Zhu et al., 2011; Chu et al., 2019), which
reported similar features in terms of a southward retreat. One
common trait they share is the crucial role of moisture from the
CN source in terms of total precipitation. For North China,
around 68.3% of the total precipitation is determined by the
CN moisture source, while 11.8% is determined by the PO
moisture source (Figures 2B, 3B). Similarly, the CN and PO
moisture transport pathways account for 52.7 and 19% of the
rainfall in Northeast China, respectively, and show noticeable
interdecadal variations (explained variances of 24 and 12%,
respectively), whilst the MLW moisture transport pathway
displays evident interannual variability (explained variance of
86%). For the YRV and South China, the SCS moisture source
plays a secondary and a dominant role in total rainfall,

respectively, featuring similar interdecadal variations with an
explained total variance of roughly 46%. In addition, the IO
source makes interdecadal contributions to the rainfall in the
YRV and South China (explained variance of 29 and 22%,
respectively), and the PO source makes interannual
contributions (93 and 99%, respectively). As for Southwest
China, the interdecadal change in precipitation is distinct from
the other subregions, being characterized by decreasing rainfall
from 1979 and increasing rainfall since the early 2000s, and the
explained variance of the interdecadal component is 15%
(Figure 4F). Almost identical interdecadal changes are found
for the SCS source, with an explained variance of 19%, whilst
similar interannual variations exist for the CN and IO sources,
both with an explained variance of 95%. These results suggest that
the variations of summertime precipitation differ among the six
subregions of China, which is fundamentally due to the
significant variations in moistures source and their relative
contributions.

Role of Large-Scale Atmospheric
Circulation

To better understand the causes and mechanisms involved in the
variations of summertime precipitation in China, we analyzed the
large-scale atmospheric circulation anomalies associated with the
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FIGURE 3 | Moisture trajectories of air parcels 10 (8, 6, 4, and 2) days before reaching the six subregions: (A) NW, (B) NC, (C) NE, (D) SW, (E) YRV, and (F) SC.

moisture sources. The key circulation patterns were identified to
investigate their impacts on summertime precipitation in the
different subregions. Figures 5-10 show the water vapor flux
anomalies accumulated in the lower-middle troposphere and
500-hPa geopotential height anomalies regressed on the
precipitation source, and the correlation of the precipitation
source anomalies with the key atmospheric circulation pattern
indices.

For Northwest China (Figure 5), the CN, MLW, IO and
SibArc sources are the four leading ones, accounting for 52.3,
29.4, 15.3 and 0.9% of the total precipitation, respectively. The
circulation pattern associated with the MLW source shows an
evident Eurasian wave train, with anomalously high pressure over
a region covering Siberia to the Kara Sea and anomalously low
pressure over the regions of North Europe and North Asia to
Japan (Figure 5B). Such a high-latitude wave train is also
apparent in the circulation pattern associated with the SibArc
source (Figure 5D). Note that the circulation anomalies over the
region from the Arctic to the North Atlantic project largely to the
negative phase of the North Atlantic Oscillation, consistent with
Hua et al. (2017). However, for the CN source, there is a fairly
weak high-latitude wave train pattern over the Eurasian

contribution from local evapotranspiration. For the IO source,
a similar but slightly southward-shifted wave train is identifiable
over the midlatitudes extending from Europe to China and
resembling the East Atlantic/West Russia pattern. Meanwhile,
enhanced easterly winds are apparent over the northern India,
representing an enhanced ISM (Figure 5C). Here, we define a
high-latitude and a midlatitude wave train index, as described in
Data and Methods. The commonality of the high-latitude and
midlatitude wave trains is the cyclonic anomaly over northern
China and the anticyclonic anomaly over southern China
associated with the enhanced ISM. The cyclonic circulation
anomaly facilitates cold-air outbreaks from high latitudes, and
the anticyclonic tropospheric anomaly favors moisture transport
from the tropical oceans. Therefore, the northwesterly and
southwesterly branches of moisture pathways converge in
Northwest China, resulting in excessive precipitation over
northern and southern Northwest China, respectively
(Figures 5E-H).

For North China (Figure 6), the CN, PO, MLW and SCS
sources tend to be the major contributors, with contribution rates
0f66.3,11.8, 7.8 and 7.1%, respectively. The critical role of the CN
source is in agreement with previous studies reporting that

continent, and the circulation anomalies over China are  evaporation from the land area over and south of North
insignificant ~ (Figure 5A), suggesting an important  China is the most important contributor (around 61.1%) to
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anomalously low center over Northeast China will certainly lead
to a uniform increase in summertime precipitation over North
China (Figures 6A,C). In particular, the MLW source gives rise to

the summertime rainfall in North China (Sun and Wang, 2014;
Chu et al,, 2019). The circulation patterns related to the CN and
MLW sources are a similar high-latitude wave train, and the
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TABLE 1 | Explained variances of summertime total and source precipitation in different regions by the interannual and interdecadal component.

Interannual component

Interdecadal component

Nw NC NE YRV SC
Total 82% 68% 76% 56% 66%
MLW 88% 90% 86% 7% 95%
CN 83% 71% 76% 75% 89%
SCS 91% 80% 82% 54% 54%
() 97% 86% 81% 71% 78%
PO 99% 91% 88% 93% 99%
OKS 84% 89% 98% 94% 84%
SibArc 97% 91% 99% 91% 90%

TABLE 2 | Correlation coefficients between total precipitation and related source
precipitation in different subregions. Asterisks denote correlation coefficients
exceeding the 95% confidence level.

NwW NC NE YRV SC SwW
MLW 0.64* 0.56" 0.65% 0.45% 0.12 -0.04
CN 0.92* 0.97* 0.92* 0.90* 0.76* 0.62*
SCS 0.63* 0.71* 0.48* 0.89% 0.80" 0.41*
@] 0.565* 0.61* 0.38* 0.84* 0.88* 0.83*
PO 0.46* 0.37* 0.63* -0.27 0.24 0.20
OKS 0.22 0.06 0.39* 0.24 -0.16 -0.05
SibArc 0.38* 0.53" -0.06 0.156 0.02 -0.18

a rainfall belt across North China (Figure 6G). Besides the CN
source, the PO is the most significant source of moisture and
dynamics for precipitation in North China. An apparent
meridional wave train that closely resembles the positive phase
of the PJ teleconnection pattern acts as an atmospheric bridge
linking the PO moisture source to rainfall in North China,
accompanied by cyclonic (anticyclonic) anomalies in the
tropical (midlatitude) Northwest Pacific (Figure 6B). Such
anomalously strong convective activity over the tropics tends
to the promotion of a Rossby wave teleconnection in the
poleward direction (Kosaka and Nakamura, 2010). The East
Asian-western North Pacific monsoon (Wang et al., 2008)
provides an additional source of moisture from the PO for the
abundant rainfall over eastern North China (figure not shown). In
addition, the SCS source is associated with an enhanced WNPSH,
which brings abundant water vapor along the western margin of
the subtropical high (Figure 6D). This finding is consistent with
those of Ding et al. (2009) and Jiang et al. (2017) who reported
that the southwesterly moisture transport associated with the PO
and SCS sources is the dominant moisture pathway for variations
of North China precipitation. In summary, the mid-high-latitude
wave train, subtropical high, and PJ teleconnection are dominant
circulation systems for North China precipitation.

Figure 7 shows the major circulation patterns that govern the
variations of Northeast China precipitation. The CN, PO, MLW
and OKS sources explain 52.7, 19, 14.4 and 7% of total rainfall,
respectively. A common feature for the circulation anomalies is
the prominent cyclonic anomaly over Northeast China, which
can be regarded as the Northeast China vortex—the classic
climate system affecting northern China. This pattern is
especially evident in the circulation patterns associated with
the CN, MLW and OKS sources (Figures 7A,C,D). It is

SW Nw NC NE YRV SC SW
85% 18% 32% 24% 44% 34% 15%
7% 12% 10% 14% 23% 5% 23%
95% 17% 29% 24% 25% 11% 5%
81% 9% 20% 18% 46% 46% 19%
95% 3% 14% 19% 29% 22% 5%
98% 1% 9% 12% 7% 1% 2%
83% 16% 1% 2% 6% 16% 17%
96% 3% 9% 1% 9% 10% 4%

reasonable to assume that the Northeast China vortex
converges together the water vapor branches from the west
(MLW source), south (CN source), and east (OKS source),
and thus produces heavy rainfall over vast regions of North
and Northeast China (Figures 7E,G,H). However, an
anticyclonic circulation system associated with the PO source
is identifiable over the Okhotsk Sea, reflecting the remote
influence of the PJ teleconnection (Figure 7B). The
southwesterly moisture transmission branch transports
moisture from the PO along the western margin of the
anticyclone and yields excessive rainfall over East China
(Figure 7F). In addition, the precipitation over Northeast
China might be influenced by the East Asian summer
monsoon, which transports water vapor from the SCS source
(Sun et al., 2017)—something that can also be seen in the OKS-
related circulation pattern (Figure 7D). To sum up, summertime
precipitation in northern China, including the Northwest, North
and Northeast China subregions, is primarily affected by
atmospheric regimes in in mid-high-latitudes, such as
mid-high-latitude wave trains, the Northeast China vortex,
and the PJ teleconnection. The exception is that the
subtropical high has additional impacts on North China
precipitation and the ISM has extra effects on Northwest
China precipitation.

Considering the complex regime of atmospheric water vapor
transport over northern and southern China (Zhou and Yu,
2005), the atmospheric sources of the southern subregions
could be different from those of the northern subregions.
Aside from North China, the YRV and South China
subregions are significantly affected by the East Asian summer
monsoon and subtropical high. Therefore, there will be intrinsic
linkages among the summertime precipitation in these three
subregions. For instance, the anomalously stronger East Asian
summer monsoon brings excessive rainfall to North and South
China and insufficient rainfall to the YRV. Such an out-of-phase
relationship in rainfall is linked to the variability of the East Asian
monsoon (Ding et al., 2009). Summertime precipitation in the
YRV is predominantly controlled by the CN (52.8%), SCS
(21.4%), I0 (14.6%), and PO (10%) sources, which together
account for approximately 98% of total precipitation
(Figure 2E). These relative contributions of moisture sources
are slightly distinct from those reported by Chu et al. (2019),
partly due to the different methods used for classifying water
vapor sources. In the present study, the CN precipitation source
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FIGURE 5 | (A-D) 500-hPa geopotential height and vertical accumulation of lower—middle tropospheric water vapor flux regressed against the CN, MLW, 10 and
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index, and between the 10 moisture source and the midlatitude wave train index. The red (black) box denotes the target (moisture source) region. Stippling denotes the
statistical significance of regression and correlation values at the 95% confidence level.

for the YRV is controlled by southwesterly and northerly
moisture branches, which transport moisture from southern
China and North-Northeast China, respectively (Figure 8A).
This suggests that, similar to North China rainfall (Sun and
Wang, 2014), the YRV rainfall largely originates from the
evaporation taking place over land areas, rather than oceanic
factors (Wei et al., 2012). In addition, a strengthened subtropical

high, along with a weakened East Asian summer monsoon (figure
not shown), is the key contributor to the southwesterly moisture
pathway of YRV rainfall, which carries water vapor from the SCS
and IO sources (Figures 8B,C), consistent with the findings of
Fan et al. (2008) and Wang and Chen (2012). Simultaneously, a
weakened ISM is apparent alongside the strengthened subtropical
high (Figure 8C), which corresponds to more rainfall over the
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YRV, consistent with the conclusion in Zhang (2001). The PJ
teleconnection appears to be closely linked with the PO
precipitation source (Figures 8D,H). The aforementioned out-
of-phase relationship with total precipitation is reproduced in the
CN and IO precipitation sources (Figures 8E,G). These results
indicate that the subtropical high and PJ pattern provide
uniformly excessive summertime rainfall over the whole of
East China, while the evaporation from land areas and the

ISM  provide additional information for the
distribution of East China rainfall.

In comparison, the precipitation in South China is dominated
by the SCS, 10, CN and PO sources (Figure 9), with contribution
rates of 36.5, 27.4, 25.8 and 10%, respectively. Note that CN is no
longer the primary source for South China precipitation owing to
the increased influence from the tropical oceans. Like the YRV,

the precipitation in South China is affected primarily by

uneven
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enhanced southerly winds from the SCS source, corresponding to
an intensified subtropical high (Figure 9A). On the contrary, a
weakened subtropical high and enhanced East Asian-western
North Pacific monsoon can also bring water vapor from land
evaporation over the north of South China (Figure 9C), resulting
in less rainfall over the YRV and, in turn, heavy rainfall over
South China (Figure 9G). In addition, a weakened ISM
transports water vapor from the Indian Ocean through the
westerly branch of moisture pathways over northern India

(Figure 9B), leading to excessive IO-source precipitation over
western South China (Figure 9F). The PO source further causes
spatially restricted rainfall over South China through the PJ
teleconnection and the enhanced monsoon (Figures 9D,H).
These results suggest that the moisture transport from the SCS
and IO sources dominates the variation in South China
precipitation (Sun and Wang, 2014; Chu et al, 2019) through
a strengthened subtropical high and weakened ISM. Conversely,
land evaporation from CN becomes less important, particularly

Frontiers in Earth Science | www.frontiersin.org

212 November 2021 | Volume 9 | Article 756943


https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Zhang et al.

Summer Moisture Transports for China

140
60N

112

30N ! 84
0 —1 56
— 28

30W 0 30E 60E 90E 120E 150E 180 150W 30W 0 30E 60E 90E 120E 150E 180 150W : 0

D PO -

— -28

— -56

— -84
112
-140

30W 0 30E 60E 90E 120E 150E 180 150W 30W 0 30E 60E 90E 120E 150E 180 150W
F SCS

50N 50N 0.6
40N 40N 0.48
0.36

30N 30N 0.24
0.12

0

-0.12

50N 50N -0.24
40N 40N 1-0-36
-0.48

30N 30N 06

90E 120E 90E 120E
FIGURE 8 | As in Figure 5 but for the YRV. Panels (A-D) show circulation anomalies regressed against the CN, SCS, 10 and PO moisture sources. Panels (E-H)
show the CN, SCS and IO source precipitation anomalies correlated with the WNPSH index, and the PO source with the PJ index.

relative to YRV and North China precipitation, with moisture
contributions mainly from the YRV region or the PO through a
weakened subtropical high.

The relative contributions to precipitation in Southwest
China are distinct from those of other subregions in that the
10 (48.4%), CN (41.5%) and SCS (8.8%) are the primary sources
for Southwest China precipitation, which together explain
99.1% of the total precipitation (Figure 10). The amplified

subtropical high, along with weakened ISM, brings water
vapor from the Bay of Bengal and the Indian Ocean via a
southwesterly pathway (Figure 10A). These two branches of
moisture pathways result in strong convergence and hence
heavy rainfall over Southwest China (Figure 10D). Similarly,
the intensified subtropical high associated with the SCS source
also transports moisture from the PO through the southeasterly
moisture branch (Figure 10C), resulting in a belt of heavy rain
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FIGURE 9 | As in Figure 5 but for SC. Panels (A-D) show circulation anomalies regressed against the SCS, 10, CN and PO moisture sources. Panels (E-H) show
the SCS source precipitation anomalies correlated with the WNPSH index, the 10 source with the reversed ISM index, the CN source with the reversed WNPSH index,
and the PO source with the PJ index.

over the whole of southern China and southern North China
(Figure 10F). Conversely, the CN source is associated with a
weakened subtropical high and enhanced East Asian-Western
North Pacific monsoon, albeit the pattern is more zonally
orientated, with the easterly winds bringing moisture
transport from the evaporation over land areas (Figure 10B).
This indicates that the heavy rainfall over South China can

provide further evaporation sources for Southwest China
precipitation (Figure 10E). To sum up, different from
northern China, the three southern China subregions are
primarily controlled by atmospheric circulation regimes
associated with tropical ocean origins south of the mainland,
such as the subtropical high, East Asian summer monsoon,
and ISM.
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WNPSH index.
CONCLUSION for these source-receptor linkages were further analyzed. Based

In this study, version 4.9 of the HYSPLIT model was used to
quantitatively simulate the potential moisture sources (i.e., MLW,
SibArc, OKS, IO, SCS, PO, and CN) and transport features for the
interannual and interdecadal variation of summertime
precipitation in six subregions of China. In addition, the large-
scale atmospheric circulation regimes and associated mechanisms

on the 10-day trajectories of air parcels, the relative contributions
of different moisture sources were calculated. The main results
can be summarized as follows:

The CN, MLW, IO and SibArc sources of precipitation
account for 52.3, 29.4, 15.3 and 0.9% of the precipitation in
Northwest China, respectively, and thus the CN source
dominates the increasing trend of precipitation in this region
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and the MLW and IO sources govern the interannual and
interdecadal variation. Mid-high-latitude wave trains are the
dominant regimes for excessive rainfall over Northwest China,
via the transport of moisture from evapotranspiration in Eurasian
land areas, as well as from the Arctic and the Indian Ocean.

For North China, the precipitation originating from
evapotranspiration in land areas (66.3%) is strong, in which a
high-latitude wave train and the WNPSH are dynamically
involved in the underlying mechanisms. The PO, MLW and
SCS sources are essential for the interannual variation of
precipitation, with the PJ teleconnection,
mid-high-latitude wave train, and East Asian summer
monsoon transporting moisture via the easterly, westerly and
southwesterly branches.

Likewise, precipitation originating from evapotranspiration
over land areas is the key contributor to the variation in
Northeast China precipitation. The Northeast China vortex,
which transports water vapor from the CN, MLW and OKS
sources, is the major regime affecting the summertime climate
over Northeast China. The PJ teleconnection has an additional
impact through the southeasterly branch of moisture transport
from the PO. Meanwhile, the contributions from the SibArc and
SCS sources can not be neglected (3.1 and 2.5%)

For the YRV, similarly, land evapotranspiration and the SCS
and IO sources are the predominant moisture sources for the
variation of precipitation, mainly through the southwesterly
branch of moisture transport pathways via intensified
subtropical high coupling with a weakened East Asian
monsoon and ISM. The Asian monsoon appears to have
opposite impacts on summertime precipitation over the YRV
and South China subregions. Additionally, the PJ teleconnection
contributes to the variation of summertime rainfall through the
easterly branch of moisture transport from the PO.

The moisture sources for precipitation in South and Southwest
China are distinct from those of the northern subregions,
suggesting that tropical ocean sources are key contributors to
precipitation in southern subregions, rather than the CN source.
The SCS and IO sources are the major ones in terms of the
interdecadal change in South China precipitation, largely due to
the southerly and westerly winds associated with the subtropical
high and weakened ISM. Besides, the CN source contributes to
25.8% of total rainfall, with most of the land evapotranspiration
coming from the YRV region.

For Southwest China, the weakened ISM accompanying the
enhanced subtropical high, associated with the IO source, leads to

summertime
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The process of global warming has humidified the atmosphere and increased the
occurrence of extreme-precipitation events over the Indochina Peninsula, which lies in
the transition region from the South Asian monsoon to the East Asian monsoon. The
annual occurrence number of days of extreme precipitation over the Indochina Peninsula
exhibits a significant change in 2003, with an abnormally higher occurrence number during
the period 2003-2015 than that during 1951-2002. The extreme precipitation and such
decadal change are contributed by more moisture sources associated with an enhanced
dipole circulation over the Indian Ocean, which could be linked to the Pacific Decadal
Oscillation. The daily large-scale meteorological pattern directly associated with extreme
precipitation is characterized by an enhanced dipole of the typical summer monsoon
pattern, with a zonally elongated Mascarene high and a deepened monsoon trough from
northern India to the South China Sea. Such an intensified dipole provides two major
channels of water vapor: one along the low-level westerly jet over the Indian Ocean and the
other along the gyre of monsoon trough over the South China Sea. Compared with that
during the period 1951-2002, the dipole is enhanced from northern India to the Indian
Ocean and weakened over the Indochina Peninsula during the period 2003-2015.
Although the Lagrangian analysis shows that the trajectory of air masses is displaced
southward to the Indian Ocean, the intensified low-level westerly jet increases the
evaporation of water from the ocean and thus not only enhances the water channel
over the Indian Ocean but also yields a parallel water channel over the Bay of Bengal. In
contrast, in spite of the increased trajectory density of air masses over the South China
Sea, the lingering of air mass suppresses the evaporation of water and thus provides a
declined contribution to the extreme precipitation during 2003-2015.

Keywords: extreme precipitation, Indochina, Lagrangian perspective, water vapor, monsoon, PDO
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INTRODUCTION

Global warming increases the frequency and intensity of extreme-
precipitation events (Alexander et al., 2006; Zhang et al., 2020).
The intensification of extreme precipitation is principally caused
by enhancement of atmospheric moisture content, which plays an
important role in the global water cycle and climate system
(Bengtsson, 2010). Changes in the intensity and pathways of
moisture transport lead to variabilities in rain belts and patterns
(Zhou et al., 2001; Huang et al., 2011). The Indochina Peninsula is
located in the Asian monsoon region, where there is abundant
moisture content and thus a greater vulnerability to climate
change (Ge et al, 2017). For example, Thailand encountered
its worst floods due to heavy and widespread rainfall during the
2011 rainy season, which resulted in more than 800 deaths and
affected 13.6 million people (Promchote et al., 2016). Thus,
investigating the moisture change for extreme precipitation
over the Indochina Peninsula against the background of
climate change is an important topic for the atmospheric
water cycle and could provide guidance for regional water
resources management and natural disaster prediction
(Christensen and Christense, 2003).

The Indochina Peninsula is a unique region that lies in the
transition zone between the South Asian monsoon and the East
Asian monsoon (Zhang et al., 2002). Therefore, water vapor is
transported by the low-level westerly over the Indian Ocean and
the southeasterly associated with the subtropical ridge over the
North Pacific. The moisture transport for precipitation over the
Indochina Peninsula exhibits an apparent intraseasonal
variability (Chhin et al, 2019). Prior to the onset of the
summer monsoon, water vapor for precipitation is mainly
contributed by the enhancement of moisture transport from
the Bay of Bengal. In contrast, water vapor for precipitation
during the summer monsoon is largely provided by moisture
transport from the South China Sea. Moreover, the identification
of moisture sources has received an increasing attention in the
analysis of both extreme precipitation and a changing
hydrological cycle due to climate change (Gimeno et al., 2013;
Stojanovic et al., 2021).

The variations of moisture transport to the Indochina Peninsula
are directly related to atmospheric circulations embedded in the
planetary-scale Asia—Australia monsoon system (Chang et al,
2005). After the 1990s, the warming of surface temperature and
enhancement of convective activity in the Indochina Peninsula
deepened the monsoon trough and thereby increased the moisture
transport from the Bay of Bengal to the Indochina Peninsula.
Meanwhile, the deepened monsoon trough was able to induce
more tropical cyclone activity over the Bay of Bengal to the South
China Sea (Faikura et al, 2020) and significantly increased
precipitation over the Indochina Peninsula (Takahashi et al,
2015). The monsoon trough may comprise an import portion
of daily large-scale meteorological pattern (LMP), which provides a
favorable circulation pattern for triggering or intensifying synoptic
processes (e.g., moisture transport) to promote the occurrence of
extreme precipitation and is connected to low-frequency modes of
climate variability (Grotjahn et al., 2015). Since the warming has
increased the water vapor holding capacity of the atmosphere and
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the variability of precipitation (Zhang et al., 2021), it would be of
interest to investigate how changes in moisture transport
associated with the change in LMP contribute to the extreme
precipitation against different climate backgrounds, taking the
Pacific Decadal Oscillation (PDO) for example.

Cheng et al. (2021) found a significant upward trend in
extreme precipitation over South China and the Indochina
Peninsula, which they attributed to the increasing frequency of
the meridional wave train over East Asia. By contrast, the reason
for the upward trend in extreme precipitation over the Indochina
Peninsula remains an open question. Meanwhile, much of the
effort in prior studies has focused primarily on the variabilities of
monsoonal precipitation and the model representation of
extreme precipitation over the Indochina Peninsula (e.g.,
Zhang et al.,, 2002; Ge et al, 2021; Tang et al.,, 2021; Wu and
Zhu, 2021). This unanswered question served as motivation for
the present study, which aims to explore the change in extreme
precipitation over the Indochina Peninsula from the Lagrangian
perspective of water vapor transport to address two issues: the
change in water vapor transport and the underlying mechanisms.
To answer these two questions, we first identify the daily LMP
responsible for extreme precipitation over the Indochina
Peninsula, mainly in terms of composite 850-hPa stream
function anomalies and associated moisture transport. Then,
we construct LMP indices by projecting daily 850-hPa stream
function anomalies onto the LMP and investigate their potential
linkages with anomalous remote forcing.

The remainder of this paper is organized as follows: Section 2
describes the data and methods. Section 3 presents the results in
terms of the changes in LMP and water vapor transport from a
Lagrangian perspective and the potential influence of the PDO on
extreme precipitation. Section 4 discusses associations with
weather systems of the intraseasonal variability. And finally, a
summary of the study’s main findings is provided in Section 5.

DATA AND METHODS

Data

The daily precipitation dataset comes from APHRODITE
(Yatagai et al., 2012). This suite of high-resolution gridded
datasets is jointly constructed by the Meteorology Institute of
the Japan Meteorological Agency and the Research Institute for
Humanity and Nature. They use a SphereMap-type scheme based

on the rainfall distribution to interpolate Global
Telecommunications ~ System-based data from gauge
observations, precompiled data by other projects or

organizations, and data from individual collections to produce
the gridded precipitation data. In this study, we adopt
APHRO_MA_V1101 (1951-2007) and
APHRO_MA_VI101EX (2007-2015) on a 0.5 x 0.5
latitude-longitude grid encompassing 15°S-55°N and 60°-155°E.

We also use the ERA5 global reanalysis dataset provided by the
Copernicus Climate Change Service (Hersbach et al.,, 2020). The
ERAD5 reanalysis covers the period from 1950 to the present day.
The variables used here are the u- and v-components of wind at
850, 700, and 200 hPa; total column water vapor; and vertically
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integrated eastward and northward water vapor fluxes. The air
parcel tracking requires data at a relatively high horizontal and
vertical grid spacing. Thus, six-hourly surface pressure, 3D winds,
and specific humidity on a 0.5 x 0.5° longitude-latitude grid at 32
vertical levels between 1,000 and 10 hPa are used as the input for
the Lagrangian analysis tool LAGRANTO 2.0.

The monthly mean sea surface temperature (SST) data used in
this study are from the Extended Reconstructed SST, version 5
(ERSST.v5), of the National Oceanic and Atmospheric
Administration (NOAA; Huang et al, 2017). These data are
provided on a 2 x 2° longitude-latitude grid for the period
from 1854 to the present day. We also use the PDO index and
Madden-Julian Oscillation (MJO) index based on outgoing
longwave radiation (OMI) provided by the NOAA Physical
Sciences Laboratory. The western North Pacific tropical
cyclone database comes from China Meteorological
Administration (Lu et al., 2021).

Following prior studies (Zhang et al., 2002; Yang and Wu,
2019), we focus on the rainy season over the Indochina Peninsula
from 1 May to 31 October in the years 1951-2015. The OMI is
available for the period from 1979 to 2015.

Definition and Objective Classification of

Extreme Precipitation

Given the large spatial variability of the topography, we use the
values based on the 95th percentile instead of fixed absolute
values to define the extreme-precipitation threshold value for
each grid point (Lai et al., 2020). In addition, a spatial coverage
criterion of extreme precipitation is also required to remove any
regional influence of the topography. Therefore, an extreme-
precipitation event is identified if the number of grid points with
precipitation above the threshold values is at least 5% of the total
grid points (Zhao et al., 2017). Accordingly, we identified 1,428
extreme precipitation events with 2,775 days over the Indochina
Peninsula to South China (Cheng et al., 2021).

To isolate the extreme-precipitation patterns, we apply self-
organizing maps (SOM; Kohonen, 2001) to all extreme-
precipitation events over the Indochina Peninsula to South
China. It works by mapping high-dimensional data to a low-
dimensional representative space with a neuronal structure
(readers are referred to Supplementary Material for more
details). The precipitation percentiles of 1,232 grid points in
the study area on 2,775 extreme-precipitation days are input
into the SOM with a specified number of nodes. The SOM is
trained over 50,000 iterations, with each cycle of training
adjusting the weights of the neurons until, finally, the SOM
outputs the optimal neurons representing the spatial patterns
(i.e., best matching units) of extreme precipitation.

As shown in Cheng et al. (2021), the SOM is repeated with the
number of nodes (N) from 2 to 20 to determine the optimum
number of clusters, which shows that four clusters are sufficiently
different from each other (Supplementary Figure S1). Readers
are referred to the Supplementary Material for more details.
These four best-matching units are then used to determine the
cluster indices of 2,775 extreme-precipitation days by finding the
minimum Euclidian distance among the percentile field on each
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extreme-precipitation day and best-matching units. The cluster
indices associated with 2,775 extreme-precipitation days are used
to composite the circulations for each cluster. These four clusters
are named the South China cluster, the Indochina Peninsula
cluster, the Burma-Yunnan cluster, and the Southern South
China-Northern Vietnam cluster according to their respective
geographical distributions of cluster-mean extreme precipitation
(Supplementary Figure S2). The current study simply adopts the
Indochina Peninsula cluster of extreme precipitation with
543 days (Figure 1).

Running t-Test

We use a running -test to detect a possible change in the series of
the occurrence number of days of extreme precipitation (Fu and
Wang, 1992). For time series with sample size n, the size numbers
of the subsequences x1 and x2 around a certain time are n; and
ny, respectively. The means of each sample are X; and X,
respectively, while the variances are s? and s3. Assuming the
null hypothesis (Hy) is that there is no difference between the
sample means x; and X,, the statistical quantity ¢; is defined as
follows:

X1 —%

s-+/1/n; + 1/n,

For the significance level a, if the statistic ¢; >t,, the null
hypothesis Hj is rejected. The means of the two subsequences are
significantly different, and thus, a significant change at time i is
obtained.

t,': ~t(n1+n2—2)

Backward Trajectories
The Lagrangian analysis tool LAGRANTO (Sprenger and Wernli,
2015) is applied to calculate 5-day backward trajectories of air
parcels associated with extreme precipitation over the Indochina
Peninsula. For more details, readers are referred to Sprenger and
Wernli (2015), where they can find a schematic overview of the
typical steps involved in computing trajectories. The advantage of
LAGRANTO, compared to other trajectory tools such as
FLEXTRA and HYSPLIT, is the highly flexible definition of
the trajectory’s initial parcel position and height, which allows
the results of each time step to be converted into trajectory
density data (Schemm et al., 2017). Thus, it is a powerful
Lagrangian analysis tool for the study of air mass trajectories.
Specifically, the grid points of the high-precipitation percentile
area over the Indochina Peninsula are considered as initial air
parcel positions, which are within the region of 10°-17°N and
98°-109°E (Figure 1A). The initial height for all grid points is
700 hPa, which is likely associated with the cloud for
precipitation. The air parcels of these grid points are tracked
backward for 5days, starting from each of the extreme-
precipitation days, which is sufficient to characterize the large-
scale flow of air (Schemm et al., 2017). To exclude the overlap
trajectory information for extremes, we select 128 out of
543 extreme-precipitation days such that there is no extreme-
precipitation day within 5 days prior to an extreme-precipitation
day. LAGRANTO provides information on air mass position
along each trajectory in terms of longitude, latitude, and pressure
height with the value of specific humidity. In addition,
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FIGURE 1 | (A) Composite precipitation percentile and (B) time series of the annual

variability (red) and long-term trend (blue) for extreme precipitation of the Indochina Peninsula cluster, which are adopted from Figures 5B and 9C in Cheng et al. (2021),

respectively. The box in (A) denotes the starting region of the backward trajectories.
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number of days of extreme precipitation (black), along with the decadal

LAGRANTO also provides a density tool that converts all the
trajectories  to  trajectory  densities on a 1°x1°
longitude-latitude grid.

Potential Source Contribution Function

Analysis

Potential source contribution function (PSCF) analysis is a method
for identifying potential pollution sources based on the conditional
probability function (Zeng and Hopke, 1989). The contribution of
the pollution at each grid point to the pollution in the target region
is calculated as the ratio of the residence time of the pollution
trajectory to all trajectories. Some researchers have applied this
method to investigate potential water vapor sources, which has
revealed a relatively good capability of PSCF analysis in identifying
moisture sources (Salamalikis et al., 2015; Meng et al., 2020). To
begin with, following Wang et al. (2014), the threshold value is
calculated by averaging the specific humidity along all the
trajectories, which is used to determine the potential
contribution of a trajectory. Then, for a grid point, the number
of trajectories with the specific humidity exceeding the threshold
values is counted. A larger number of counted trajectories indicates
that the grid point has a high PSCF value. An area including a
larger number of grid points with high PSCF values can
be considered to be a potential moisture source. At the same
time, in order to reduce the error of the conditional probability
function that is due to the small total number of samples, a weight
function W (n;;) is introduced to calculate the PSCF. The formula
for the PSCF and weight function is as follows (Zeng and Hpoke,
1989):

PSCF; = 3. W (ny)
1
1.00, 314y, <ny
0.70, 1.5n4, <nj < 3n,,
W (my) = 040, 1y <1m;<15m,,

0.17 i < Ngye

where m;; is the number of trajectories passing through the grid
(i, j) and exceeding the threshold in the research area; n;; is the
number of total trajectories in the grid (i, j); and #n,, is the
average number of trajectories for each point.

RESULTS

Circulation Features of Extreme

Precipitation

Figure 1 displays the composite precipitation percentile and
corresponding time series of the annual number of days of
extreme precipitation for the Indochina Peninsula cluster. The
extreme precipitation is concentrated over the southern
Indochina Peninsula (Figure 1A). Its annual occurrence
number exhibits a significant upward trend at the 99%
confidence level. Such an upward trend might be contributed
by the amplified decadal variability in the 21st century, when
there was an anomalously high number of days of extreme
precipitation during 2003-2015. In contrast, the decadal
variability generally fluctuates around the annual mean in the
20th century. The amplified decadal variability in the 21st century
suggests a potential abrupt change in extreme precipitation over
the Indochina Peninsula.

To begin with, we introduce the daily LMP in terms of stream
function anomalies that are directly associated with extreme
precipitation (Xie et al, 2017; Zhao et al, 2017). Figure 2
displays the composite 850- and 200-hPa stream function and
corresponding anomalies and 700-hPa specific humidity
anomalies overlaid with horizontal wind anomalies during
days of extreme precipitation. The reason that we chose
700 hPa for specific humidity is that its value is not too small
and its anomaly is stronger compared to 850hPa
(Supplementary Figure S3). The LMP is characterized by an
enhanced typical summer monsoon pattern (Zhang et al., 2002).
Specifically, the 850-hPa LMP features a dipole pattern with a
zonally elongated Mascarene high and a deepened monsoon
trough from northern India to the South China Sea
(Figure 2A). Due to this intensified dipole, the low-level
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FIGURE 2 | Composite stream function (contours; units: 10° m? s

and corresponding anomalies relative to the climatological mean (shading)
associated with extreme precipitation at (A) 850 hPa and (B) 200 hPa.
Contours are drawn at intervals of 3 and 10 for (A, B), respectively. (C) is

the composite 700-hPa specific humidity anomalies (shading, units: g kg™")
and horizontal wind anomalies (arrows, units: m s™'). Stippling in (A, B) and
shading in (C) indicate composite values that are statistically significant at the
90% confidence level.

westerly jet is enhanced between the dipole from Somalia to the
South China Sea (Figure 2C). As such, this cyclonic anomaly
circulation accumulates water vapor from both the Indian Ocean
and the South China Sea to the Indochina Peninsula, resulting in
an increased water vapor over there. In the upper level
(Figure 2B), the South Asian high is amplified from the Arab
Peninsula southeastward to the Malay Peninsula. The amplified

Extreme Precipitation Over Indochina

South Asian high enhances the divergent circulation in the upper
level and thus the upward motions over the Indochina Peninsula,
which facilitates convections for extreme precipitation. As such,
the amplified South Asian high also favors the enhancement of
the low-level monsoon dipole (e.g., the 850-hPa LMP). The LMP
characterized by an intensification of the Asian monsoon
configuration favors both water vapor transport to the
Indochina Peninsula and convective activity, which tends to
induce extreme precipitation.

Change in the Large-Scale Meteorological

Pattern

As mentioned above, the enhanced decadal variability of the
annual occurrence of extreme precipitation in the 21st century
suggests a potential transition. To verify this speculation, we
apply a running t-test method to the time series of the annual
number of days of extreme precipitation to obtain its change
point (Fu and Wang, 1992). As anticipated, there is a transition
year in 2003, which is statistically significant at the 95%
confidence level (Figure 3). Accordingly, the entire period can
be divided into two subperiods of 1951-2002 and 2003-2015. In
comparison with the period 1951-2002, there is a greater mean
number of extreme precipitation days during 2003-2015. This
change coincides with decadal shifts in well-known long-term
climate modes such as the PDO and the Atlantic Multidecadal
Oscillation (Liu et al., 2020). We discuss the potential influence of
the PDO on extreme precipitation over the Indochina Peninsula
in Section 3.4.

Figure 4 shows the differences in the LMPs and water vapor
associated with extreme precipitation during 2003-2015 and
1951-2002. In comparison with the LMPs associated with
extreme precipitation during 1951-2002, the monsoon pattern
is intensified during 2003-2015. In the lower troposphere
(Figure 4A), the monsoon trough is deepened over northern
India, whereas it is weakened over the Malay Peninsula. To the
south, the zonally elongated Mascarene high magnifies and
extends northward. As a result, the gradient between this
dipole intensifies, which enhances the low-level westerly jet

5
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FIGURE 3 | Decadal shift in the total number of days of extreme
precipitation according to a running t-test and Lepage test, respectively. The
dashed lines represent the critical values at the 95% significance level, and the
thin vertical line denotes the change year of 2003.
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from Somalia to the Indochina Peninsula (Figure 4C), which
favors the transport of water vapor from the Indian Ocean to the
Indochina Peninsula. Meanwhile, a weak negative anomaly can
be seen over the South China Sea, which also helps convey water
vapor from the South China Sea to the Indochina Peninsula. An
increased water vapor is observed over the Indochina Peninsula
(Figure 4C). At 200 hPa (Figure 4B), a meridional dipole pattern
resides over Asia, indicating a further amplification and westward
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displacement of the South Asian high, which further intensifies
the upward motions for extreme precipitation over the Indochina
Peninsula. Following the intensification of the LMPs, extreme
precipitation becomes more frequent during the period
2003-2015 compared with 1951-2002.

Change in Water Vapor Transport

Given the significant change in the LMP associated with extreme
precipitation, it is of interest to investigate the change in water
vapor transport and the possible driving factors. To explore these
two aspects, we use the Lagrangian analysis tool LAGRANTO to
calculate the 5-day backward trajectories of air masses associated
with extreme precipitation over the region of 98°-109°E and
10°-17°N (Figure 1A). The trajectory density is then calculated
by counting the number of trajectory points within each 1°x 1°
grid box using the density tool of LAGRANTO.

Figures 5A-C show the trajectory density patterns for the
extreme precipitation in the two subperiods. There are two major
channels of water vapor: one along the low-level westerly jet over
the Indian Ocean and the other along the gyre of the monsoon
trough over the South China Sea (Figures 5A,B). In comparison
with those during 1951-2002, both of water vapor channels
displace southward during 2003-2015 (Figure 5C). Moreover,
the water vapor channel over the Indian Ocean bends southward
over Sri Lanka owing to the deepened monsoon trough over
India. The different trajectory densities of the air masses suggest
that the water vapor channel over the Indian Ocean is weakened
over the Bay of Bengal and displaced southward in accordance
with the enhanced low-level westerly jet. By contrast, although
the westerly over the South China Sea weakens, the trajectory
density of air masses is increased.

However, there is a deficiency in the trajectory density of air
masses, in which not all trajectories include large values of water
vapor for precipitation. To address this issue, we apply PSCF
analysis to each air mass trajectory to reveal the potential water
vapor sources (Figures 5D,E). As seen from Figure 5D, the water
vapor for the extreme precipitation during the period 1951-2002
is largely contributed by the South China Sea channel, which is
conveyed by the gyre of the monsoon trough. Meanwhile, the
large values of water vapor in the channel over the Indian Ocean
are distributed from the south to Sri Lanka northeastward to the
Indochina Peninsula.

In contrast, the water vapor of extreme precipitation during
the period 2003-2015 is primarily contributed by the Indian
Ocean channel (Figures 5E,F). Despite the reduced trajectory
density of air masses over the Bay of Bengal, the PSCF increases
not only over the Bay of Bengal but also the Indian Ocean. The
result suggests that there could be more water vapor in the
atmosphere over the Indian Ocean during the period
2003-2015. Since the low-level westerly jet is enhanced owing
to the intensification of the LMP (Figures 5A-C), the higher wind
speed helps water to evaporate from the ocean. In contrast, the
westerly is weakened over the South China Sea during the period
2003-2015 compared with during 1951-2002. Therefore, the
decelerated wind suppresses the evaporation of water from the
South China Sea. Meanwhile, the decelerated wind leads to air
masses lingering over the South China Sea, which results in a
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higher density of air masses. In spite of the increased trajectory
density of air masses over the South China Sea, the PSCF decreases.

The water vapor channel over the Indian Ocean agrees with
the findings of Stojanovic et al. (2021), who identified this as the
dominant moisture source for precipitation over Vietnam. In
comparison with their study, we found an additional moisture
source over the South China Sea and a parallel water vapor
channel over the Bay of Bengal for the larger occurrence number
of extreme precipitation during 2003-2015. These results are in
contrast to the general view that extreme precipitation requires
more water vapor sources.

In comparison with the Lagrangian perspective and PSCF
analysis, water vapor flux from the Eulerian perspective may
provide anomalous westward water vapor fluxes over the South
China Sea due to the easterly anomaly (Figures 4C and 6F). The
PSCF analysis of the backward trajectories of air masses can rule
out this potential error.

To corroborate the elevated water vapor in the 21st century,
Figure 6 displays the climatological mean total column water

vapor and vertically integrated water vapor flux and their
anomaly fields associated with extreme precipitation for the
two subperiods. The water vapor exhibits a circular
distribution around the Indochina Peninsula, with the largest
value over the Bay of Bengal (Figures 6A,B). These large values of
water vapor are transported by the low-level westerly jet over the
Indian Ocean and the cross-equatorial flow from the Australian
high to the South China Sea. In comparison with that over the
South China Sea, the water vapor flux is larger over the Indian
Ocean and converges over the Bay of Bengal because of the
topography.

Undoubtedly, water vapor increases over most of the region
from the period 1951-2002 to 2003-2015 (Figure 6C), since
climate warming leads to the atmosphere being able to hold more
water vapor. Water vapor elevates more evidently over the Bay of
Bengal than the South China Sea. A close inspection of Figure 6C
shows enhanced northeastward water vapor flux associated with
the deepened monsoon trough over India and the amplified
Mascarene high. By contrast, the northward water vapor flux
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is weakened over the South China Sea. Therefore, the change of
the climatological mean flow over the Bay of Bengal, compared to
the South China Sea, provides a more favorable water vapor
condition for the extreme precipitation over the Indochina
Peninsula in 2003-2015.

Considering the days of extreme precipitation, the mean fields
of total column water vapor and vertically integrated water vapor
flux generally resemble those of the climatological mean field but
with enhanced water vapor over the Indochina Peninsula and
eastward water vapor flux over the Indian Ocean (figure not
shown). During 1951-2002, the positive water vapor anomaly is
confined over the Indochina Peninsula to the South China Sea,
which is contributed by eastward water vapor flux from the
Indian Ocean and westward water vapor flux from the South
China Sea associated with the enhanced monsoon dipole
(Figure 6D). In contrast, during 2003-2015, the positive water
vapor anomaly dominates the Arab Sea via Indochina to the
subtropical Pacific Ocean, which is associated with the eastward

water vapor flux from Somalia (Figure 6E). The differences of
water vapor and flux between two subperiods feature amplified
water vapor and enhanced eastward transport over India via
Indochina to the subtropical Pacific Ocean (Figure 6F), which is
consistent with the increased climatological mean water vapor
and eastward water vapor flux and the intensification of the LMP.

Association With Pacific Decadal

Oscillation

It is well recognized that El Niflo-Southern Oscillation (ENSO),
one of the strongest SST signals in interannual climate variability,
exerts a significant impact on the interannual variability of
monsoon precipitation over the Indochina Peninsula (Zhang
et al,, 2002; Ge et al,, 2021; Wu and Zhu, 2021). To investigate
the potential influence of SST anomalies on the extreme
precipitation over the Indochina Peninsula, we construct an
LMP index by projecting each daily 850-hPa stream function
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anomaly pattern (y') onto the LMP (y;,,p) using a pattern
amplitude projection (Xie et al., 2017):

A _[ Aaz\V,\VLMP cos ¢dAd¢
AT I N (Yiwp)” cos pdAdd

where A represents the area of the LMP (155°-30°N, 60°-125°E),
which encompasses the anomalous circulation directly associated
with extreme rainfall; a is the mean radius of the Earth; and A and
¢ are the longitude and latitude, respectively. This LMP index
measures both the phase and amplitude of the LMP
simultaneously (Xie at al., 2017).

Figure 7 displays regression maps of the SST during spring
and summer against the unfiltered and decadal time series of the
detrended LMP index. On the interannual time scale, the LMP is
obviously associated with the La Nifio pattern (Figures 7A,C),
which agrees with prior studies regarding the influence of ENSO
on monsoon precipitation over the Indochina Peninsula (Zhang
et al.,, 2002; Ge et al,, 2021; Wu and Zhu, 2021). Ge et al. (2021)
showed that La Nifio induces a cyclonic circulation over both the
western North Pacific and the Bay of Bengal and thus brings in
more water vapor from the Pacific and Indian Oceans for the
monsoon precipitation over the Indochina Peninsula.

In addition, the midlatitude North Pacific central-western SST
is significantly warm, and the tropical central-eastern Pacific and
North Pacific North American west coast SSTs are anomalously
cold, indicative of the negative phase of the PDO (Mantua et al.,
1997). Given that the unfiltered time series of the LMP index is
primarily contributed by the interannual variability, we remove
this time scale by applying a 10-year Gaussian filter. The
regression map of SST anomalies against the decadal time
series of the LMP index confirms that the LMP is indeed
correlated with the negative phase of the PDO. To verify the
influence of the PDO on the LMP and extreme precipitation,
Figure 8 displays the probability density function (PDF) of the

LMP index =

LMP index and occurrence of extreme precipitation stratified by
the PDO phases (+1 standard deviation) for summer. The PDF of
LMP indices is right-skewed during the negative phase of the
PDO (Figure 8A). Meanwhile, the occurrence of extreme
precipitation is also most frequent during the negative phase
of the PDO (Figure 8B). The result suggests that the negative
phase of the PDO in the 21st century contributes substantially to
the increased occurrence number of days of extreme precipitation
over the Indochina Peninsula via populating larger values of
the LMP indices.

We acknowledge that not all larger value of the LMP indices
can induce extreme precipitation over the Indochina Peninsula.
Even though a larger value of the LMP index does not produce
extreme precipitation, it is likely to induce intense rainfall. Cheng
et al. (2021) noted that the LMP in terms of stream function
anomalies is contaminated by the global warming signal, which
increases the stream function value in the Northern Hemisphere.
If the LMP is defined in terms of relative vorticity, the relationship
between such an LMP and the PDO would strengthen.

DISCUSSION

Since the period of May-October includes the decay stage of the
summer monsoon, a natural question arises: there must be some
extreme precipitation that is not associated with the summer
monsoon, particularly in October. To answer this question, we
investigated the relationships between extreme precipitation and
tropical cyclone and MJO. We calculated the relative frequency of
tropical cyclone and OMI associated with extreme precipitation
during periods of May-August and September-October
normalized by the number of years and months.

Figure 9 displays the relative frequency of tropical cyclone
center associated with extreme precipitation over 1951-2015 and
its difference between two subperiods of 1951-2002 and

Frontiers in Earth Science | www.frontiersin.org

226

December 2021 | Volume 9 | Article 758664


https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Cheng et al. Extreme Precipitation Over Indochina

A B
- PDO+
1.0{— rpo- ”»n 3
== Neutral 1\
‘\
208 3
%]
§ 2
5,06 v
£ ©
= la}
204
o 1
a
0.2
0.0 ===t T 0
-2 2 PDO+ Neutral PDO -

LMP index

FIGURE 8 | (A) PDF of LMP indices and (B) the relative frequency of extreme precipitation during different phases of the PDO.

May - August
A
30°N A
20°N |
10°N A
0° :
95°E
September - October
B D
30°N A ] 30°N
20°N | 20°N -
10°N A 10°N A
0° 0°
95°E 115°E 135°E 95°E 115°E 135°E
0.001 0.009 0.017 0.025 0.033 -0.04 -0.02 0.00 0.02 0.04
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2003-2015. During May-August, tropical cyclones associated  central Indochina during September-October. Therefore, the
with extreme precipitation are confined to the northeastern  increase of extreme-precipitation-associated tropical cyclone also
Indochina Peninsula (Figure 9A). In contrast, tropical cyclones  provides some contributions to the more extreme-precipitation
associated with extreme precipitation during September-October ~ days during 2003-2015 compared to 1951-2002, particularly
not only increase in number but also dominate the southern  during the decaying stage of the summer monsoon.

Indochina Peninsula (Figure 9B). The result suggests that A parallel analysis is performed for extreme precipitation
tropical cyclones contribute more to extreme precipitation  associated with MJO (Figure 10). Extreme precipitation is
during the decay stage of summer monsoon than the peak of = mainly associated with phases 5-7 of MJO that correspond to
summer monsoon. Considering the difference between two  pronounced convections from India via Indochina to the
subperiods (Figures 9C,D), an apparent increase is seen over  western Pacific and stream function anomalies resembling
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the LMP (see https://psl.noaa.gov/mjo/mjoindex/pdf/psi850.
1x.20ns.omi.amp1.096.jja.7912.pdf). In comparison with
May-August, there are more extreme-precipitation days
associated with phases 5-7 of MJO during the decaying
stage of the summer monsoon (Figures 10A,B). The result
indicates that phases 5-7 of MJO contribute more to extreme
precipitation during the decaying stage of the summer
monsoon. Considering the change between two subperiods
of 1951-2002 and 2003-2015 (Figures 10C,D), there are
positive frequency anomalies of extreme precipitation
associated with phases 5 and 6 of MJO, which have stronger
convections over the Indochina Peninsula than phase 7 of
MJO. Therefore, phases 5 and 6 act to increase occurrence
frequency of extreme precipitation during 2003-2015
compared to 1951-2002, particularly during the decaying
stage of the summer monsoon.

The tropical cyclone and MJO provide contributions to
occurrence frequency of extreme precipitation during the
decay stage of the summer monsoon and thus to the decadal
variability of extreme precipitation over the Indochina Peninsula.
However, they both carry a large amount of water vapor and may
be implicitly included in the change of the foregoing water vapor
analysis.

SUMMARY

The decadal change in extreme precipitation over the Indochina
Peninsula during the rainy season (May-October) during
1951-2015 is investigated in this study. The annual occurrence
number of days of extreme precipitation exhibits a significant
upward trend, possibly contributed by the amplified decadal
variability during the period 2003-2015. A running t-test
shows an abrupt change in the year 2003 for the annual
occurrence number of days of extreme precipitation.
Therefore, this study focuses on the change in extreme
precipitation between the two subperiods of 1951-2002 and
2003-2015 in terms of changes of circulation pattern and
water vapor transport from the Lagrangian perspective.

The extreme precipitation is associated with an intensified
monsoon dipole pattern in which the monsoon trough is
deepened from northern India to the Indochina Peninsula and
the Mascarene high is amplified. Therefore, the low-level westerly
jet is enhanced from Somalia to the Indochina Peninsula and a
monsoon trough gyre over the South China Sea. The analysis with
the Lagrangian tool shows that these two flows constitute two
major water vapor channels: one along the low-level westerly jet
over the Indian Ocean and the other from the South China Sea.
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The monsoon pattern is intensified from the subperiod of
1951-2002 to that of 2003-2015. The monsoon trough is
deepened over northern India, and the Mascarene high is
amplified, which results in an intensification and southward
displacement of the low-level westerly jet over the Indian
Ocean. Meanwhile, the acceleration of wind speed increases
the evaporation of water from the Indian Ocean. Therefore,
the PSCF analysis reveals that the contributions of water vapor
from the Bay of Bengal and the Indian Ocean both increase. In
contrast, the wind speed is decelerated over the South China Sea
and thereby leads to lingering air masses over the South China
Sea, which can suppress the evaporation of water from the sea.
Despite more air mass trajectories over the South China Sea, the
contribution of water vapor from the South China Sea decreases.

The present study primarily focuses on the changes in the
atmospheric circulation pattern and water vapor for the change in
extreme precipitation and preliminarily discusses a possible
influence of SST anomalies—particularly ENSO and the PDO.
The negative phase of the PDO populates larger values of the
LMP and thus enhances the water vapor channel over the Indian
Ocean, resulting in an abnormally high frequency of extreme
precipitation in the 21st century. In future work, we will carry out
atmospheric general circulation model experiments to explore
this pathway between the PDO and extreme precipitation over
the Indochina Peninsula.
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The influence of climate change on the regional hydrological cycle has been an international
scientific issue that has attracted more attention in recent decades due to its huge effects
on drought and flood. It is essential to investigate the change of regional hydrological
characteristics in the context of global warming for developing flood mitigation and water
utilization strategies in the future. The purpose of this study is to carry out a comprehensive
analysis of changes in future runoff and flood for the upper Huai River basin by combining
future climate scenarios, hydrological model, and flood frequency analysis. The daily bias
correction (DBC) statistical downscaling method is used to downscale the global climate
model (GCM) outputs from the sixth phase of the Coupled Model Intercomparison Project
(CMIPB) and to generate future daily temperature and precipitation series. The Xinanjiang
(XAJ) hydrological model is driven to project changes in future seasonal runoff under
SSP245 and SSP585 scenarios for two future periods: 2050s (2031-2060) and 2080s
(2071-2100) based on model calibration and validation. Finally, the peaks over threshold
(POT) method and generalized Pareto (GP) distribution are combined to evaluate the
changes of flood frequency for the upper Huai River basin. The results show that 1) GCMs
project that there has been an insignificant increasing trend in future precipitation series,
while an obvious increasing trend is detected in future temperature series; 2) average
monthly runoffs in low-flow season have seen decreasing trends under SSP245 and
SSP585 scenarios during the 2050s, while there has been an obvious increasing trend of
average monthly runoff in high-flow season during the 2080s; 3) there is a decreasing trend
in design floods below the 50-year return period under two future scenarios during the
2050s, while there has been an significant increasing trend in design flood during the
2080s in most cases and the amplitude of increase becomes larger for a larger return
period. The study suggests that future flood will probably occur more frequently and an
urgent need to develop appropriate adaptation measures to increase social resilience to
warming climate over the upper Huai River basin.

Keywords: climate change, CMIP6, hydrological modeling, flood, Huai River basin
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1 INTRODUCTION

Climate change associated with global warming, mainly owing to
the rise of greenhouse gas emissions in the atmosphere, has
caused an increase of the evapotranspiration over the land
surface, which in turn has accelerated the hydrological cycle
and altered the hydrological element (Arnell and Gosling,
2013; Schewe et al., 2014; Wang et al., 2017). Recently, several
studies have already suggested signs of adverse impacts on
availability of water resources due to global warming in
different regions around the world (Feyen et al., 2012; Yoon
et al,, 2016; Byun et al,, 2018; Gu et al., 2020). Moreover, there is
strengthened evidence that the global water cycle will continue to
intensify as global temperatures rise, with precipitation and
surface water flows projected to become more variable over
most land regions (IPCC, 2021). A warmer climate will
intensify very wet and very dry weather and climate events.
These extreme events are expected to trigger further, leading
to increasing weather-related hazards such as destructive flooding
or drought, which possibly pose tremendous societal, economic,
and environmental challenges around the world. Therefore, it is
of great necessity to enhance the understanding of future changes
in the hydrological responses and flood characteristics under the
context of climate change to provide support for appropriate
adaptation strategies and water resources management.

In recent years, the global climate models have been proven to
be the most versatile and effective tool for producing potential
climatic scenarios in the future by many studies, which have been
extensively applied in investigating the effects of climate change
on the hydrological cycle and water resource management
(Masood et al., 2015; Amin et al., 2017; Zhuan, et al., 2018).
However, the coarse grids of GCMs are generally unable to
acquire climate variability at the basin scale; the downscaling
techniques are developed to convert GCM outputs with coarse
resolution to a finer scale for generating daily series of climate
variables representing the future climatic scenarios. Compared to
dynamic downscaling techniques, statistical downscaling
methods are more widely used owing to their relatively good
performance and inexpensive computational expense (Shen et al.,
2018; Gu et al., 2020). Moreover, the bias correction approaches
are usually used considering their convenience and good ability in
identifying extreme climatic features among those statistical
downscaling methods (Ahmadalipour et al., 2018). Based on
the results of the aforementioned techniques, a hydrological
model can be used to project and evaluate future changes in
hydrological characteristics from global and regional perspectives
(Jung and Chang., 2011; Alkama et al, 2013; Li et al.,, 2015;
Winsemius et al., 2016; Glenn et al., 2017; Wang et al., 2020). For
example, Koirala et al. (2014) used runoff outputs from 11
AOGCMs from phase 5 of the Coupled Model
Intercomparison Project (CMIP5) to evaluate the changes in
global streamflow. They found that high flow had a rising
trend over northern high latitudes of Eurasia and North
America, Asia, and eastern Africa under emission scenario
RCP4.5 and RCP8.5, while mean and low flows were both
projected with a decreasing trend in Europe, Middle East,
southwestern United States, and Central America. Zheng et al.
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(2018) projected the changes of future climate and runoff for the
south Asia region under the RCP8.5 scenario using 42 CMIP5
GCMs, three downscaling techniques, and an HO8 model. Their
results indicated that the change in precipitation was the main
driving factor leading to the increase in future runoft throughout
most of the study region.

Moreover, flood is the most serious disaster related to climate,
and it is projected to become more frequent and intense as global
warming (IPCC., 2013; Du et al., 2019; IPCC, 2021). Due to the
characteristics of the basin and river networks, the Huai River
basin is the worst hit area threatened by frequent flood disasters
since ancient times, and the flood severity of this area ranks first
among the major rivers over China. Recently, the basin-wide
floods in 1991, 2003, and 2007 are acknowledged as the most
destructive events on record in the Huai River basin, which have
resulted in considerable losses with millions of emergency
relocation and billions of economy loss (Zhang and You,
2014). These associated socioeconomic damages in the Huai
River basin will be even more progressively intensified under
the background of climate change. Therefore, investigating the
changes in flood characteristics over the Huai River basin is of
great importance to formulate regional flood risk mitigation
measures for future climatic scenarios. The conventional
approach to calculate future design floods is using historical
data only by fitting probability distribution functions, while it
may not truly reflect the probable future scenario of extreme
events due to the climate change. To overcome these
shortcomings, climate models and projections are widely
employed. In the previous studies, they found that results of
the CMIP5 models have shown strong agreement on an array of
flood variations (Silva and Portela, 2018; Nam et al., 2019; Tabari,
2020). For instance, Nyaupane et al. (2018) employed the variable
infiltration capacity (VIC) model to analyze the change in flood
frequency under various future emission scenarios from CMIP5
data for the study basin. They found that there existed a rising
trend of the future streamflow in the study area, and the future
flood with a 100-year return period likely would be more than
2 times the present flood with a 100-year return period,
highlighting the likelihood of the intensification of the risk of
future flooding. Gao et al. (2020) used four GCMs drawn from
CMIP5 in conjunction with GR4J model to evaluate the variations
of future extreme floods in the context of climate change in the Qu
river basin of east China under RCP4.5 and RCP8.5 scenarios.
They applied the POT method and generalized Pareto distribution
and found that a rising tendency of design floods was projected at
most cases in the future climate scenarios for the study area.

Despite global climate models from CMIP5 projections
effectively providing some useful information on how climate
change will affect the future flood, it is necessary to re-evaluate the
status of these effects once new datasets and research approaches
become available (Cook et al., 2020). Hence, the release of the
latest and most advanced climate models from phase 6 of the
Coupled Model Intercomparison Project (CMIP6) provides a
new opportunity to obtain more credible understanding of
influences of climate change on hydrology and to review
conclusions from previous community modeling efforts. Thus,
the specific purposes of this study are to investigate variations in
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FIGURE 1 | Location, topography, and river network of the upper Huai River basin, and the distribution of meteorological grids and hydrological stations.

precipitation, runoff, and flood for the upper Huai River basin
under a series of 21st-century development and radiative forcing
scenarios informed by the CMIP6 models. The structure of this
article contains the following five sections: First, Section 2
introduces the detailed information of the study area and data.
Then the employed approaches are described in Section 3,
including the downscaling technique, hydrological model, and
the POT approach. Section 4 evaluates the potential influences of
climate change on future runoff and flood. Finally, the discussion
and conclusion are detailed in Sections 5, 6, respectively.

2 STUDY AREA AND DATA

2.1 Study Area

The Huai River basin is located between 30°55'N-38720'
30°55'38°20'N and 111°55'E-120°45'E111°55'120° 45/,
between the Yellow River and the Yangtze River (Figure 1). It
originates in Tongbai Mountain of Henan Province and flows
into the Yangtze River, flowing through four provinces
(i.e, Henan, Anhui, Shandong, and Jiangsu provinces). The
total area of the Huai River basin is 191,200 km® and the
length of the main channel is 1,000 km. The Xixian basin is
located in the upper reaches of the Huai River, with a catchment
area of 10,191 km?, which is chosen for study in this study. The
Xixian basin is located in the transition zone of warm
temperature region and northern subtropical zone. The main
crops are rice and wheat in this area. The multi-year average air
temperature is 15.4°C. The long-term average annual rainfall is
1,028 mm (calculated by the data from 1980 to 2014). Rainfall for

the flood season (from June to September) is mainly affected by
monsoon, and more than half of the precipitation (~60%) falls in
the flood season. Owing to the monsoon and windward mountain
terrain conditions, flood has become the most serious natural
hazard in the Huai River basin.

2.2 Data

In this study, the 1980-2014 daily precipitation and
temperature data are obtained from observational gridded
datasets, with a 0.25° horizontal resolution, which can be
downloaded from the website of the National Meteorological
Information  Center of the China Meteorological
Administration (http://cdc.cma.gov.cn/). These observational
gridded datasets are interpolated from observations of nearly
2,400 quality-proven stations all over China (Xu et al., 2009).
Moreover, the Thiessen polygon method is used to calculate the
basin-averaged daily precipitation and temperature data by the
gridded datasets for the study basin. The 1980-2014 daily
runoff data of Xixian station are obtained from the
Hydrology Bureau of the Huai River basin.

To analyze the future climatic scenarios, four GCM outputs
(BCC-CSM2-MR, CanESM5, CESM2, and MRI-ESM2-0) from
the latest CMIP6 are chosen under two SSP-RCP scenarios
(i.e., SSP245 and SSP585). Meanwhile, we downloaded the
essential model outputs (daily precipitation and daily
temperature) for both the historical period (1980-2014) and
future period (2015-2100). The detailed information of the
chosen models is listed in Table 1. According to the latest
studies (O’Neill et al., 2013; Simpkins, 2017; Su, et al., 2021),
the state-of-the-art scenarios become more plausible as the
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TABLE 1 | Detail information of four selected GCMs from CMIP6.
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No. Model name Abbreviation Horizontal resolution Modeling center
1 BCC-CESM2-MR BCC ~1.125° x 1.121° Beijing Climate Center, China
2 CanESM5 CanESM ~2.8125° x 2.7906° Canadian Center for Climate Modeling and Analysis, Canada
3 CESM2 CESM ~1.25" x 0.9424° National Center For Atmospheric Research, United States
4 MRI-ESM2-0 MRI ~1.125° x 1.1215° Meteorological Research Institute, Japan
Climate scenarios Calibration & Validation Estimating runoff seasonal pattern
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[ CMIP6 outputs ] [ Observed data ] Historical seasonal runoff
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FIGURE 2 | Methodology framework of future climate change impacts on seasonal runoff pattern and flood characteristics in the Xixian basin.

shared socioeconomic pathways (SSPs) work in harmony with
RCPs by shared policy assumptions. There are five SSP scenarios
that represent the possible future socioeconomic conditions and
describe various combinations of mitigation and adaptation
challenges, including SSP1: sustainability; SSP2: middle of the
road; SSP3: regional rivalry; SSP4: inequality; and SSP5: fossil fuel
development (Huang et al., 2019; Su et al., 2021). Among these
scenarios, SSP245 and SSP585 are selected for this study as the
updated versions of the RCP 4.5 and RCP8.5 scenarios from
CMIP5.

3 METHODOLOGIES

3.1 Methodology Framework

Figure 2 displays the methodology framework of this study,
including three major modules of climate scenario projection,
hydrological model, and impact assessment. The module of
scenario projection produces climatic scenarios during
historical and future periods. The hydrological model
module involves the calibration and validation of the XA]J
model and calculation of daily runoff simulation under
historical and future climatic scenarios. The impact
assessments module is applied to investigate the runoff
seasonality variations and to quantify the potential impacts
of climate change on future design flood.

3.2 Xinanjiang Hydrological Model
The XAJ model, a conceptual hydrological model, is developed by

Zhao (1992). The physical basis of this model is the theory that
runoff generation occurs until the saturated condition of soil
water is reached. The XAJ model involves 16 free parameters (see
Table 2) and has been extensively and successfully applied in
runoff simulation and flood forecasting for the humid and semi-
humid zones over China. The detail of the XAJ model can be
found in Zhang et al. (2012). The basin-average daily
precipitation and daily potential evapotranspiration (PET) data
are calculated as the inputs of this model, and then the discharge
at the basin outlet is the final output. The PET is calculated by the
Oudin temperature-based method (Oudin et al., 2005) in this
study. Although this method requires only average daily
temperature data as input, it has been proved to be an
alternative to other complex methods, such as the Penman
method, for the hydrological simulations (Oudin et al., 2005).
Specifically, the formulas for potential evapotranspiration are
presented as follows:

R T,+5
PET = ¢ 2o " if T,+5>0

Ap 100 (1)
PET=0 if T,+5<0,

where PET refers to the potential evapotranspiration (mm day ),
R, refers to extraterrestrial radiation (MJ m~> day ™), depending
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TABLE 2 | Parameters of XAJ model.
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Rank Parameters Description Unit Range

1 KC Ratio of PET to the pan evaporation [0.6, 1.2]
2 WUM Tension water capacity of upper layer mm [5, 20]

3 WLM Tension water capacity of lower layer mm [60, 90]
4 C Deeper evapotranspiration coefficient [0.08, 0.18]
5 WM Areal mean tension water capacity mm [120, 220]
6 B Exponential of the distribution of tension water capacity [0.1, 0.4]
7 IMP Ratio of impervious area to the total area of the basin [0.01, 0.02]
8 SM Free water storage capacity mm [10, 50]
9 EX Exponential of distribution water capacity 1, 1.5]
10 KG Outflow coefficient of free water storage to the groundwater flow [0.2, 0.6]
11 Kl Outflow coefficient of free water storage to the interflow [0.2, 0.6]
12 CS Recession constant of surface water storage [0.4, 0.7]
13 Cl Recession constant of interflow storage [0.5, 0.9]
14 CG Recession constant of groundwater storage [0.99, 1]
15 KE Residence time of water h [0.5, 1.5]
16 XE Muskingum coefficient [0, 0.5]
only on latitude and Julian day, A refers to the latent hear flux (M] Poiia = Poema ¥ (PobS,Q IPGeatre f,Q)

kg_l), p refers to the density of water (kg m™>), and Ta is mean 3)

daily air temperature (°C).

Furthermore, we select the shuffled complex evolution
optimization algorithm (SCE-UA, Duan et al, 1992) to
calibrate the XAJ hydrological model. The Kling-Gupta
efficiency (KGE) is selected as the evaluation index in this
study, and the objective function is to maximize the KGE
value during calibration. The KGE value could be calculated as
follows (Gupta et al., 2009):

KGE=1-(r=17+ (a- 1) + (8- 1)}, )
where r indicates Pearson’s linear correlation coefficient between
the observed and simulated streamflow, « is the ratio of standard
deviations of observed and simulated streamflow, and f is the
ratio of the mean value of observation and simulations. The value
of KGE ranges from —oo to 1, with KGE = 1 indicating a perfect fit
between the observed and simulated series.

3.3 Daily Bias Correction Approach

The DBC approach is an empirical statistical downscaling
approach and has recently been used to correct the
systematical errors of raw GCM scenarios (Chen et al., 2013b).
The procedures of these methods are calculated as follows: First,
the precipitation occurrence of each GCM output is revised by a
determined threshold defined month by month from the
historical period, which can ensure that the corrected
historical precipitation has the same frequency as observations.
Then those thresholds are employed to correct the frequency of
rainy days for the future period. Furthermore, the daily
precipitation distribution of each month is revised by
multiplying (or adding) the quantile ratios (or differences)
between the observations and GCM simulations during the
historical period. Finally, those quantile ratios (or differences)
are applied to correct distribution of daily precipitation during
the future period. Definitely, these procedures can also be used for
temperature correction. The formulas can be expressed as follows:

Tadja = Tocma X (Tovsa/Tocrrerq)s

where the subscript Q is a quantile for a month, the subscript d is
a specific day in the historical or future period, and the subscript
adj is the corrected variables.

3.4 Peak Over Threshold Method

In this study, the POT approach is employed to extract a number
of flood samples each year that are required to exceed the
threshold S determined by certain criteria. Compared to
annual maximum series method (AMS), this method has the
core advantage, allowing more reasonable events to be identified
as “floods” for extreme value analysis. Thus, the POT method can
not only overcome the shortcoming of short historical data but
also provide a more comprehensive description of the “flood”
process (Lang et al., 1999). Accordingly, this method has been
commonly employed in the estimation of extreme precipitation
and temperature and the frequency analysis of flood runoff, and
so on (Solari et al., 2017; Lee et al., 2019; Bian et al., 2020; Yang
etal,, 2020). In this study, the POT method is conducted for flood
frequency analysis. The first key step is to ensure that the sampled
flood events satisfy the independence condition. Here, the criteria
evaluated by Silva et al. (2012) are employed, which indicates that
the successive two flood peaks can be accepted when they meet
the following formula:

D <5days +log(A)

3 (4)
Qmin < Z min (Ql’ QZ))

where D refers to the interval time between two flood peaks in
days, A denotes the basin area in km? and Q; and Q, are the
magnitudes of two flood peaks in m’/s, respectively.

In addition, an appropriate threshold is required to determine
to guarantee that the frequency distribution of floods meets a
Poisson function, which is another key point here. The mean
number of over-threshold events per year y should be more than
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TABLE 3 | List of evaluation metrics for precipitation and temperature.

No. Evaluation metrics (mean) No. Evaluation metrics (quantile)
1 Daily 14 0.1
2 January 15 0.2
3 February 16 0.3
4 March 17 0.4
5 April 18 05
6 May 19 0.6
7 June 20 0.7
8 July 21 0.8
9 August 22 0.9
10 September 23 0.99
11 October

12 November

13 December

two times per year as recommended by Mediero et al. (2014).
Therefore, the mean annual number of flood events is set as y = 3
under the independence assumption in this study. Last, the
extracted series of flood peaks are fitted with a generalized
Pareto (GP) distribution.

4 RESULTS

4.1 Bias Correction Performance of Global
Climate Models

The performances of GCMs are discrepant for different climate
variables among various climate regions; thus, there is no
common conclusion on how to select suitable GCMs in a
particular basin. Therefore, it is necessary to assess the

Projecting Hydrological Responses to Climate Change

performances of the chosen models (i.e, BCC, CanESM,
CESM, and MRI models) in order to investigate the influences
of climate change on seasonal runoffs and floods in the Xixian
basin. The systematical errors of raw GCM outputs are tackled by
the DBC method. Afterward, 23 metrics (Table 3) are selected to
describe mean and extreme values of precipitation and
temperature series under climate change. The raw GCM
simulations have the same historical period 1980-2014 with
the observed data.

Figure 3 is a color-coded “portrait diagram” showing the
deviations of precipitation and temperature before and after DBC
method during the historical period. It is can be seen that raw
outputs of precipitation and temperature from four GCMs exhibit
obvious deviations. The raw precipitations of GCMs deviate from
observed precipitations by more than +50% for most metrics,
whereas the deviations of temperature are generally above +2°C.
However, the systematic biases of GCMs are significantly reduced
after the DBC. The biases of precipitation effectively reduce to
below 5% in most cases for the selected GCMs, and as for
temperature, the biases reduce to lower than 0.1°C. Overall,
the performances of bias correction for both precipitation and
temperature simulation of GCMs are satisfied for the research
requirement. Those results indicate that the DBC method is
reliable for reproducing future climate variables in the
study basin.

4.2 Projected Variations of Precipitation and

Air Temperature
The long-term changes of annual mean precipitation and
temperature over the upper Huai River basin are detected
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FIGURE 3| Portrait diagram of daily precipitation relative deviation (%) and temperature absolute deviation (°C) for the selected GCMs before and after DBC method
in Xixian basin. The x-axis represents the 23 metrics, whereas the y-axis represents the GCMs.
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FIGURE 4 | Trend results of annual mean precipitation for each GCM in the Xixian basin from 1980 to 2100.

during the period of 1980-2100 for each GCM under two
different SSP-RCP scenarios (SSP245 and SSP585). Relative to
the change of precipitation over the baseline period, there is a
general rising trend during the future period, although the rising
rate varies with different GCM and SSP scenarios (Figure 4).
More specifically, BCC model projects the highest increasing rate
of annual mean precipitation with a rising rate up to 28 mm per
decade under SSP585 scenarios, while the minimum rising rate of
annual mean precipitation with 10.3 mm per decade is projected
by the MRI model. For SSP245 scenario, the increasing tendency
of precipitation is more insignificant than that under SSP585
scenario.

In the field of the long-term tendency of annual mean
temperature, Figure 5 shows that a significant increasing trend
in temperature is observed during the period 1980-2100, and
more significant increasing changing of temperature is observed
under SSP585 scenario compared to the SSP245. In detail, the
CanESM model releases the most pronounced warming signal,
which projects that the annual average temperature has a
significant rising rate of 0.37°C and 0.57°C per decade under
SSP245 and SSP585 scenarios, respectively. The MRI model
exhibits the most optimistic warming condition with an
increase of 0.23°C and 0.33°C per decade under the two
scenarios, respectively. The BCC and CESM models project
that annual average temperature has a significant increase with
a rate of 0.28 and 0.23°C per decade under SSP245, respectively,

and with a maximum rate of 0.37°C per decade under SSP585
scenarios.

4.3 Calibration and Validation Results of
Xinanjiang Model

In this study, XAJ model is adopted to simulate hydrological
processes in the Xixian basin. Initially, we used the basin-
averaged precipitation and temperature data during 1980-1999
to carry out the calibration of the XA] model, and then the
optimum model parameters are obtained with the largest KGE
value. The 15-year period during 2000-2014 are used for model
validation. To further investigate the performance of the XAJ
model, the Nash-Sutcliffe efficiency coefficient (NSE) and relative
bias (PBIAS) criteria are also employed.

Table 4 presents the results of calibration and validation
periods for the Xixian basin. Furthermore, the comparisons
between observed and simulated runoffs in two periods at the
daily and monthly scale are presented in Figure 6, which suggest
that the XAJ model performs well in the study basin though with
overestimates or underestimates in the flood peaks in some cases.
From Table 4, it can be seen that the KGE values are 0.86 and
0.91, respectively, at the monthly scale, and 0.79 and 0.82 at the
daily scale for calibration and validation periods. In addition, the
NSEs are 0.88 and 0.86, respectively, at the monthly scale, and
0.74 and 0.71 at the daily scale, and the PBIAS of the calibration
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FIGURE 5 | Trend results of annual average air temperature for each GCM in the Xixian basin from 1980 to 2100.
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TABLE 4 | Evaluation of the XAJ model performance at daily and monthly
time step.

Period KGE NSE PBIAS(%)
Daily Calibration (1980-1999) 0.79 0.74 1.4
Validation (2000-2014) 0.82 0.71 9.7
Monthly Calibration (1980-1999) 0.86 0.88 1.4
Validation (2000-2014) 0.91 0.86 9.7

and validation are both lower than 10%. These results indicate
that the XAJ model can perform satisfactorily so that it can be
used to project hydrological scenarios in subsequent research.

4.4 Impacts of Climate Change on Runoff

Seasonal Pattern

To investigate the influence of climate change on monthly runoff
over the Xixian basin, the XAJ model is used to simulate runoffs
during the historical period (1980-2014) and two future periods:
2050s (2031-2060) and 2080s (2071-2100). Figure 7
demonstrates the monthly average runoff during the two
future periods for each GCM under SSP245 and SSP585
scenarios. Broadly speaking, the selected GCMs perform
similarly for change of monthly runoff under two scenarios,
but there still exist some differences. Under SSP245 scenario,
all GCMs project that runoffs of most months are generally

smaller than those in the baseline period over the 2050s, while
runoffs of high-flow season over the 2080s are larger than those in
the baseline period, reflected in May to September. Moreover, the
change patterns of seasonal runoffs under SSP585 scenario are
similar to those under SSP245 scenario during the two future
periods. These can be explained by the fact that precipitation
simulations in the 2050s are equal to or less than those in the
baseline period under SSP245 and SSP585 scenarios, while the
higher temperature is projected. Thus, the projected monthly
runoffs are smaller in the 2050s than those in the baseline period.
In contrast, the precipitation simulations in the 2080s are
obviously larger than those in the baseline period, which
results in higher monthly runoffs. In addition, compared with
SSP245, the monthly runoffs under SSP585 scenario are
obviously higher, especially for high-flow months.

Then, we further analyzed the variations of monthly runoff
between the baseline and the two future periods under SSP245
and SSP585 scenarios, as shown in Figure 8. There is a large
discrepancy between the changing trends of average monthly
runoffs in the two future periods. During the 2050s, the monthly
average runoffs in most months have seen decreasing trends for
each GCM under SSP245 and SSP585 scenarios, generally
occurring in the low-flow season such as January to April and
September to December. It can be seen that the monthly average
runoffs are lower than that in baseline period and have decreased
by about 10 and 8% under SSP245 and SSP585 scenario,
respectively. These indicate that there will be more serious
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FIGURE 6 | Performance of XAJ model for the calibration (A) and validation (B) periods at daily and monthly scale in the Xixian basin.

water shortage and higher risk of drought during the 2050s in the
upper Huai river basin. In addition, Figure 8 shows that there has
been an obvious increasing trend of monthly average runoff in the
high-flow season during the 2080s. In detail, compared to the
baseline period, the GCMs project that the monthly runoffs have
generally increased by about 29% from May to September under
the SSP245 scenario. Under the SSP585 scenario, the monthly
runoffs are projected to increase by approximately 39% from May
to September. These may be caused by increasing seasonal
precipitation in high-flow season under two future scenarios.
Thus, there will be higher flood risk in high-flow season during
the 2080s in the upper Huai river basin, especially under the
SSP585 scenario, which also are proved in subsequent analyses of
impacts of climate change on design floods.

4.5 Impacts of Climate Change on Design

Floods

In order to analyze the changes of flood frequency, the flood peaks
are extracted by the POT method in this study, which has been
certified to be more reasonable than the annual maximum
sampling approach (Mediero et al, 2014; Bian et al, 2020).
Moreover, the L-Moment approach (Hosking and Wallis,
1997) is used to estimate the parameters of GP distribution.
The design floods under SSP245 and SSP585 scenarios for each
GCM during the two future periods are demonstrated in

Figure 9. It can be seen that the change patterns of design
floods are quite different between the 2050s and 2080s for
each GCM under SSP245 and SSP585 scenarios. In detail,
during the 2031-2060, the design floods are generally lower
than those in baseline period for small return period under
the two scenarios for each GCM. However, BCC and CanESM
models project that the design flood with a 100-year return period
is obviously bigger than that in baseline period under SSP585
scenario. As for the 2080s, there have been the obviously larger
design floods for all GCMs under SSP245 scenarios comparing to
the near future period. When the return period exceeds 20 years,
the design floods of 2080s are larger than those of baseline period.
Moreover, the design flood runoffs are projected to increase more
significantly when the return periods increase. Under SSP585
scenarios, the design floods of 2080s are larger than those of
baseline period when the return period exceeds 10 years. In
addition, the flood magnitude with the same return period is
greater than that under SSP245 scenario. These indicate that flood
extremes are projected to increase during the future periods in the
upper Huai River basin, especially under SSP585 scenario.

To further investigate the results as mentioned above, the
changes of future floods are calculated for the 10, 20, 50, and 100-
year return period, shown in Figure 10. It can be observed that
the design floods of the 100-year return period are increasing for
all GCMs under the SSP245 and SSP585 scenarios during the
2050s, especially the CanESM model, which exhibits the largest
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increasing rate with the 17.9 and 38.4% under SSP245 and SSP585
scenarios, respectively. However, there has been a general
decreasing tendency of the design floods with 50, 20 and 10-
year return periods during the 2050s under SSP245 scenario. As
the return period decreases, the reducing range of design flood
runoffs is exacerbated. In addition, Figure 10 demonstrates that
the change patterns of design floods for 2080s show great

differences from those in 2050s. All GCMs project obvious
increasing trends of the design floods for all return periods
under the two scenarios, except the design floods with a 10-
year return period of CESM and MRI. In detail, CanESM projects
that under SSP585 scenario, the rising rate of design floods for the
100-year and 50-year return periods in the 2080s can go up to 106
and 72%, respectively. For the BCC model, the design floods for
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100-year and 50-year return periods increase by 60.6 and 48.7%,
respectively, under SSP585 scenario. CESM model projects that
the increasing rates of design floods for these two return periods
are 45.4 and 36.4%, respectively, under SSP585 scenario, and
those of MRI model increase by 42.8 and 26.5%, respectively.
However, under SSP245 scenario, the increases of design floods

with 100-year and 50-year return periods are far below that under
the SSP585 scenario. These could be explained by the fact that the
heavier emission of gas such as SSP585 scenario causes the larger
extreme precipitation. These results indicate that the flood events
are likely to occur more frequently during the far future period in
the Xixian basin.
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5 DISCUSSION

As we know, flood frequency is expected to increase as the
hydrological cycle has been altered by climate change. This paper
quantitatively evaluates the changes of future floods in response to
climate change coupling of CMIP6 models and XA]J hydrological
model in the Xixian basin. As expected, the main results
demonstrated that extreme floods will increase under future
climatic scenarios in the study area, which is consistent with the
previous studies (Wang et al., 2018; Yang et al., 2020). Jin et al. (2017)
used CMIP5 models to investigate the effects of climate change on
flood in the upper Huai River basin during 2021-2050. They found
that future floods were projected to increase under the RCP4.5 and
RCP5.8 scenarios over the upper Huai River basin. The fact is that
the heavier and more frequent precipitation extremes in future can
be used to explain the intensification of extreme floods. Based on the
Clausius—Clapeyron law, a 1 K increase in temperature is likely to
cause the water vapor holding capacity to increase by about 7%
(Trenberth et al., 2003). Therefore, a warmer atmosphere enables to
supply more sufficient water vapor and enhances the occurrence of
extreme precipitation. Although the physical mechanism of flood
production is more complex, flood extremes are projected to
increase when extreme precipitation events occur more frequently
in the future. This has been confirmed by previous literature studies
(Hirabayashi et al., 2013; Wu and Huang,, 2015).

In this study, we use four CMIP6 GCMs, two SSP scenarios,
one downscaling method, one hydrological model, and one
frequent analysis approach to analyze the projections of
possible changes range for future design floods during two
time stages in the Xixian basin. The results show that GCM
and SSP scenarios both cause large uncertainties in projections of
floods under future climatic scenarios, which are in agreement
with the previous literatures (Chen et al., 2013a; Basheer et al.,
2016; Krysanova et al, 2017; Hattermann et al., 2018).
Meanwhile, the discrepancy of the projected results from
different GCM and SSP scenarios also emphasizes that the
misleading conclusions may be drawn if only one GCM and
SSP scenario is adopt for future climate change studies. In
addition, there are some limitations in this study. First, we
ignored the possible impacts of other important uncertainty
sources in this study, involving downscaling methods, the
structure and parameters of hydrological model, and the flood
frequency distribution functions. Although many studies have
suggested that GCMs generate much larger uncertainty
comparing to those from downscaling techniques and
hydrological models (Dobler et al., 2012; Karlsson et al., 2016;
Das et al., 2018), this does not mean that the impacts of other
uncertainty sourcing should be overlooked. Consequently, the
next step of our study is to thoroughly analyze the uncertainties
stemming from various uncertainty sources in the evaluation of
effects of climate change on future floods. Second, human
activities, including land-use change, water conservancy
construction, and government policy, are another important
driving factor affecting runoff and flood for the upper Huai
River basin. Hence, future runoff responses to human
activities and climate change are required to further accurately
investigate in following works.

Projecting Hydrological Responses to Climate Change

6 CONCLUSION

Based on four CMIP6 GCMs, this study investigates the potential
influences of climate change on future seasonal runoffs and extreme
floods in the upper Huai River basin. The statistical downscaling
methods DBC is adopted to translate the GCM outputs with coarse
resolution to regional and basin scale, and then the XAJ model is
employed to simulate daily discharge for the baseline period
(1980-2014) and two future periods: 2050s (2031-2060) and
2080s (2071-2100). The POT method and GP distribution are
employed to estimate the changes in design floods for different
return periods. The main conclusions are summarized as follows:

1) There is an insignificant increasing tendency of precipitation
in the Xixian basin. The projection of annual mean
precipitation has greater climate model uncertainty and
roughly increases 11 mm (60 mm) under SSP245 (SSP585)
scenario. In terms of the annual mean temperature, there is an
obvious increasing trend with a rising rate of 0.59°C (0.36°C)
per decade under SSP585 (SSP245) scenario.

The XAJ model performs well in simulating both monthly and
daily runoffs demonstrated by validation results; thus, it
enables to be employed to evaluate the potential influences
of climate change on runoffs. Modeling outputs indicate that
runoffs in most low-flow months have seen decreasing trends
under SSP245 and SSP585 scenarios during the 2050s
(2031-2060), while there has been an obvious increasing
trend of most high-flow monthly average runoffs during
the 2080s (2071-2100).

There is a pronounced increasing tendency in design floods
with large return period under climate change. Especially the
design flood for a 100-year return period is roughly projected
to increase 42.8-106% for SSP585 scenario during the 2080s,
and the amplitude of flood increase decreases with the
decrease of the return period. For the 2050s period, design
floods with small return periods have a decreasing trend under
two scenarios, and as the return period decreases, the
decreasing extent of design flood runoffs is exacerbated.

2)

3)
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A heat wave is an important meteorological extreme event related to global warming, but
little is known about the characteristics of future heat waves in Guangdong. Therefore,
a stepwise-clustered simulation approach driven by multiple global climate models
(i.e., GCMs) is developed for projecting future heat waves over Guangdong under two
representative concentration pathways (RCPs). The temporal-spatial variations of four
indicators (i.e., intensity, total intensity, frequency, and the longest duration) of projected
heat waves, as well as the potential changes in daily maximum temperature (i.e., Tmax)
for future (i.e., 2006-2095) and historical (i.e., 1976-2005) periods, were analyzed over
Guangdong. The results indicated that Guangdong would endure a notable increasing
annual trend in the projected Tmax (i.e., 0.016-0.03°C per year under RCP4.5 and
0.027-0.057°C per year under RCP8.5). Evaluations of the multiple GCMs and their
ensemble suggested that the developed approach performed well, and the model
ensemble was superior to any single GCM in capturing the features of heat waves.
The spatial patterns and interannual trends displayed that Guangdong would undergo
serious heat waves in the future. The variations of intensity, total intensity, frequency, and
the longest duration of heat wave are likely to exceed 5.4°C per event, 24°C, 25 days,
and 4 days in the 2080s under RCP8.5, respectively. Higher variation of those would
concentrate in eastern and southwestern Guangdong. It also presented that severe
heat waves with stronger intensity, higher frequency, and longer duration would have
significant increasing tendencies over all Guangdong, which are expected to increase
at a rate of 0.14, 0.83, and 0.21% per year under RCP8.5, respectively. Over 60% of
Guangdong would suffer the moderate variation of heat waves to the end of this century
under RCP8.5. The findings can provide decision makers with useful information to help
mitigate the potential impacts of heat waves on pivotal regions as well as ecosystems
that are sensitive to extreme temperature.

Keywords: heat wave, heat wave downscaling, future projection, climate variation, ecosystem

Abbreviations: CMIP5, coupled model intercomparison projected phase 5; GCMs, global climate models; RCPs,
representative concentration pathways; RHW, relative heat wave; RHWI, average intensity of heat waves within a year;
RHWTI, total intensity of heat waves within a year; RHWL, yearly sum of participating heat wave days; RHWE, the length of
the longest heat wave event within a year.
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INTRODUCTION

A heat wave, as one of the most frequent extreme events under
climate warming, has caused a destructive social, economic, and
ecological impacts around the world, giving rise to a number of
weather-related human mortality, property losses, and ecosystem
challenges (Perkins et al., 2012; Yang et al., 2013; Zhang L. et al,,
2018; Zhu et al, 2018; Shiva et al, 2019; Vogel et al., 2019;
Zheng et al., 2019; Ren et al., 2021a; Woolway et al., 2021). For
example, northwest Atlantic was significantly affected by a heat
wave occurred in 2012, which resulted in the massive loss of
biological habitats, the depletion of biodiversity, the destruction
of nutrient cycles, and the variation in the distribution of
commercial fisheries species (Mills et al., 2013; Smale et al., 2019).
A heat wave has also appreciably disrupted ecosystem services
and goods (Suryan et al,, 2021). In 2012, 30% of global ocean
has experienced strong or severe heat waves, which increased to
approximately 70% in 2016 (Hobday et al., 2018; Smale et al,
2019). Furthermore, an estimation conducted by Zhao et al.
(2017) indicates that global yields of wheat, rice, maize, and
soybean would be, respectively, reduced by 6.0, 3.2, 7.4, and
3.1% for each degree-Celsius increase in global mean temperature
during 2029-2058 relative to 1981-2010. Several prominent
heat wave events have struck many regions in recent years,
conspicuous events occurred in China in 2006 and 2013 (Chen
and Fan, 2007), in Europe in 2003 and 2006 (Rebetez et al,
2009), in Russia in 2010 (Hauser et al., 2016), in the United States
in 2015 (Fewings and Brown, 2019), in India in 2015 (Ghatak
et al,, 2017), and in Australia in 2009 (Zhang et al., 2017). Heat
wave activities are likely to intensify longer and severer in the
coming decades, and are expected to have an increasing impact
on the socioeconomic system (Perkins, 2015; Wang et al., 2018;
Wu et al., 2020; Gha et al., 2021). Consequently, it is desired to
project future heat waves and investigate their characteristics to
provide valuable information for future mitigation and adaption
strategies since they can induce an increasing threat in many
parts of the world.

Warming in China has also increased at a rate of
approximately 0.24°C per decade during 1951-2006, which
has been almost double the global average increase of surface
meant temperature at 0.13 per decade from 1956 to 2005 (Ding
and Qian, 2011). Consequently, China is one of the countries that
have suffered deadly heat waves in the past few decades (Chen
and Fan, 2007; Sun et al., 2014; Gu et al., 2016). For instance,
many cities in south China suffered high temperature that lasted
20-50 days from July to early September in 2003 (Ding and
Qian, 2011). As one of the most economically developed and
populated regions in China (Luo and Lau, 2017), Guangdong
Province has also experienced deadly heat waves due to climate
change (Wang W. W. et al., 2013; Luo and Lau, 2017; Wang et al,,
2018). For example, in June-July 2004, a severe heat wave event
with a maximum temperature exceeding 40°C that occurred
has resulted in 39 deaths (Du et al., 2013) in the capital city of
Guangdong (i.e., Guangzhou). Yang et al. (2013) explored the
heat wave-related mortality in 2005 over Guangzhou and found
that the average and a total number of deaths reached 12 and
145 during the heat waves, respectively. Moreover, the 2005

heat wave has led to an increase of 23% (34%) of non-accidental
(cardiovascular) mortality. Thus, it is of great significance to
explore the characteristics of heat waves in Guangdong in
the 21st century.

Previously, there have been some studies investigating the
projection of future heat waves in China (Zhou B. T. et al,
2014; Li et al., 2019; Guo et al., 2020). Based on the outputs of
24 GCMs from the coupled model intercomparison projected
phase 5 (CMIP5) models under two RCPs, projected changes
of temperature extremes in China have been analyzed by
Zhou B. T. et al. (2014). They found that the duration
of warm spell duration index would be 136 days under
RCP8.5, and that, under RCP4.5, would be 87 days lower.
Based on 12 GCMs, Guo et al. (2017) projected future heat
waves in China and showed that the frequency and intensity
of heat waves would have a more dramatic increase under
more emission-intense scenarios. Li et al. (2019) projected
the properties of the future heat waves over China on the
basis of the multi-model ensemble of 10 CMIP5 models
and illustrated that heat waves are likely to become more
frequent (0.40 and 1.26 per decade) and more extreme
(1.07 and 2.90 days per decade) under RCP4.5 and RCPS.5,
respectively. In brief, the projected variations in heat waves are
becoming more obvious.

However, in most of the previous pieces of research, the
projections of future heat waves were conducted on the basis
of direct outputs of GCMs. Guangdong is located in the
south part of China and faces the South China Sea; strong
air-sea interactions exist in coastal areas such as Guangdong,
which involves small-scale climate processes that are not well-
represented in GCMs due to their coarse resolution over
100 km. Furthermore, GCMs may have less than 10-grid
points involved in Guangdong, which cannot reflect the climate
variations sufficiently within the region. Moreover, existing
studies of extreme climate events in the Guangdong were
mostly focused on the characteristics of history heat waves
and the associated possible influencing factors (Luo and Lau,
2017), as well as the evaluation of impacts (Du et al., 2013;
Tao et al, 2013; Yang et al, 2013); the characteristics and
patterns in future heat waves over Guangdong have not been
assessed in detail.

Thus, as an extension of previous studies, this study aims to
examine the temporal-spatial variations of future heat waves in
Guangdong through a developed statistical downscaling model.
It entails: (1) a stepwise-clustered simulation approach will be
developed on the station scale to reproduce the high-resolution
simulations in Guangdong; (2) the trend of projected daily
maximum temperature (i.e., Tmax, 2006-2100) will be analyzed;
(3) historical (1976-2005) and future (2006-2100) heat waves
will be calculated based on the projection results; and (4)
the temporal-spatial variations and trend of four heat wave
indicators (i.e., intensity, total intensity, frequency, and the
longest duration) will be analyzed. This study may be of great
significance for the development of heat wave alert systems and
the formulation of early adaptive actions to protect vulnerable
regions and sensitive ecosystems in Guangdong that are exposed
to the adverse effects of heat waves.
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STEPWISE-CLUSTERED SIMULATION
APPROACH FOR PROJECTING FUTURE
HEAT WAVES

To reproduce the daily maximum temperature (i.e., Tmax) for
the analysis of future heat waves, a stepwise-clustered simulation
approach based on the stepwise clustering analysis (i.e., SCA)
is developed. The framework of the developed approach is
presented in Figure 1. SCA was introduced by Huang (1992) and
has been widely used in pieces of environmental research, such
as climate change, air pollution, process control, and hydrology
prediction (Huang et al., 2006; Wang X. Q. et al., 2013; Li et al.,
2015; Wang and Huang, 2015; Fan et al.,, 2016; Zhuang et al,,
2016; Sun et al., 2019; Zhai et al., 2019; Duan et al., 2020; Ren
etal, 2021b; Wang et al., 2021). These studies have indicated the
SCA has satisfactory performance in projecting environmental
processes with complex non-linear and dynamic relationships.
Multivariate analysis of variance is the fundamental theory of
SCA (Morrison, 1967; Fan et al., 2016; Wang X. et al., 2017). The
projection is realized through the establishment of a cluster tree
from inputs (i.e., predictors or independent variables) to outputs
(i.e., predictands or dependent variables). An SCA cluster tree
will be obtained after a series iteration process of cutting and
merging of dependent variables according to the specific given
criteria, and independent variables are used as references in the
process (Huang et al., 2006). Previously, statistical downscaling
methods mostly assume that the interested dependent variable is
a function of independent variables (Wilby et al., 2002; Hessami
et al., 2008; Gibson et al., 2017), while the improvements of
the quality of downscaled simulation reproduced through such
a function are likely to be limited relative to the raw GCMs’
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FIGURE 1 | The framework of the developed stepwise-clustered simulation
approach.

output owning to the complex climate system (Wilby et al., 2002;
Wang X. Q. et al,, 2013). However, the underlying complex
relationships (including non-linear and discrete relationships)
between dependent and independent variables can be revealed
by the generated cluster tree without assuming the functional
relationship compared to these downscaling methods (Wang
X. Q. etal., 2013; Zhuang et al., 2016; Duan et al., 2020). Handling
the complicated relationship among multiple dependent and
independent variables at the same time is another significant
advantage of SCA (Fan et al, 2015, Wang et al, 2021). In
addition, heat wave, as one of the extreme climate events, the
projection of which is also challenging due to the inherently
complex relationship between predictors (i.e., large-scale coarse
atmospheric variables) and predictands (i.e., local surface
variables). Therefore, given the advantage of the SCA method
and characteristics of heat waves, a stepwise-clustered simulation
approach based on SCA is developed for heat wave projection
in this study. Previous studies assumed that the developed
relationship through the statistical downscaling method can hold
for the future (Wu et al., 2017; Xu and Wang, 2019; Araya-Osses
et al., 2020). Such a cluster tree then can be further employed for
the projection of predictions once new predictors are available.
A detailed process for SCA can be demonstrated as following
five steps, which include the determination of the original inputs
and outputs, establishment of the cutting and merging criterion,
operation of cut and merge, output of the cluster tree and the
operating rules, and projection for the study period. Following
that, the developed stepwise-clustered simulation approach was
used for statistically downscaling the GCMs outputs to generate
high-resolution heat wave projections for Guagdong. Previous
studies showed that extreme climate events (such as heat waves
and temperature anomaly) were likely to become more frequent,
longer duration and higher intensity during 1976-2005 and
2036-2095 over South China (including Guangdong) (Lewis and
King, 2016; Almazroui et al., 2021; Ren et al., 2021b). Thus, to
provide comparability results, outputs from the GCM projections
are expected and divided into three 30-year periods, including
the historical period (i.e., 1976-2005) and the future period (i.e.,
2036-2065, 2050s; 2066-2095, 2080s) under RCP4.5 and RCP8.5.
Variations of future climate in comparison with the historical
period were then investigated to help better understand the
possible future changes in heat waves.

The coefficient of determination (R?) measures of the extent
of a model explains variations in the data; the root mean squared
error (RMSE) evaluates the variance of errors independent of
sample size and characterizes the difference between simulations
and observations. In this study, the performance of the developed
approach for projecting future heat waves is evaluated based
on the R? and RMSE values. The reliability of the approach
increases as R? approaches one, and when it is equal to one,
which indicates that all variations can be explained. In terms
of RMSE, when the fit between simulations and observations
is perfect, the RMSE would have a value of zero. Thus, the
lower the value (close to zero), the better performance of the
approach. R? and RMSE have been broadly used in the evaluation
of climatic or hydrological models (Fan et al., 2015, 2016,
2017; Wang and Huang, 2015; Zhou et al., 2018; Sun et al., 2019;
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Zhai et al, 2019; Duan et al, 2020; Li et al., 2020; Pramod
et al.,, 2021). To assess the ability of the developed approach in
reproducing the observations, the R?and RMSE were used in this
study and expressed as follows:

R — [Z?=1 (Oi — O) (S,» — S)]Z (1)

Z?=1 (Oi - 6)2 Z?=1 (Si - 3)2

Z?:] (si - Qi)2
n—1

RMSE = @)

where n is the sample number in the training or validation
dataset; O; and S; are the observed and simulated values in the
ig, sample, respectively; and O itch S are the averages of O; and
Si, respectively.

The Mann—Kendall test (i.e., MK test) is one of the most
populated method for evaluating the variation trends in climatic
studies (Gupta et al., 2018; Zhai et al., 2019; Mukherjee and
Mishra, 2020; Farooq et al., 2021; Zhou et al, 2021). The
MK test is a non-parametric procedure due to its advantages
in considering the distribution of time series data as well as
processing outlies (Mann, 1945; Kendall, 1948); the MK test
is used to investigate the trends of variables (i.e., Tmax and
heat wave indicators) in this study. A null hypothesis (Ho)
assumes that time series of variables are specifically distributed
contrary to the alternative hypothesis (H;), which demonstrates
an increasing or declining trend. The temporal trend of the MK
test is identified based on the standardized test static (i.e., denoted
as Z) as follows:

n—1 N
2 sien (X=X)
i=1 j=i+l
+1 if (X;—X;j)> 3)
sign (X; —Xj) =10 if (X;—X)) o,,
-1 if (X;—Xj) <0

where X; and X; are the consecutive time series of the variables
(i.e., Tmax and heat wave indicators), and n is the time series
length of the variable. Z is the Kendall’s test statistic; it can be
an increasing trend (positive), a declining trend (negative), or
a no trend (zero). The statistical significance of the trends is
determined by the Z;;, and the Hy of no trend will be rejected
when the absolute value of Z;; is larger than 1.96. See Farooq et al.
(2021) for more detailed information about the MK test.

Sen’s slope is a non-parametric estimator that is applied to
obtain variations in trends of the variable in a time series (Sen,
1968). In this study, the variables are Tmax and heat wave
indicators. The rate of variation (Q,,.4) was calculated from the
slopes (S) of all consecutive pairs of data (N).

0 SNED - if Nis odd "
d =1 SN ¢(N+2
" #, if N is even

The data trend is reflected by the Q.4 sign, and a positive
value of Qs demonstrates an increase in variation, and
vice versa.

AN OVERVIEW OF THE STUDY AREA

Guangdong Province (109°39'-117°19'E and 20°13’-25°31'N)
is located in the south part of China and faces the South
China Sea and adjacent to Macau and Hong Kong (Figure 2).
Guangdong has a total area of about 1.798 x 10° km?, with
the total population of 0.115 x 10° million at the end of the
year 2019 (Guangdong Statistical Yearbook, 2020). Guangdong
has experienced rapid urbanization and developed as one of the
largest economic provinces of China since 1989 (Luo and Lau,
2017; Liu et al., 2019; Yu et al., 2019). Continued urbanization
throughout Guangdong contributes to the heat-island effect, and
the occurrence, intensity, and duration of heat waves are expected
to increase under climate warming (Zeng et al., 2006; Sun et al.,
2012; Luo and Lau, 2017).

Guangdong is characterized by typical tropical and subtropical
climates. Its climate has been changing dynamically due to the
close relationship with large-scale atmospheric activities, such
as East Asian monsoon and the North Pacific subtropical high
(Luo and Lau, 2017). From 1976 to 2005, the average summer
temperature is 32.3°C at 35 stations over Guangdong, while this
in winter is 19°C. Guangdong has experienced a fluctuating rise
in temperature since the 1980s. With the variation of average
annual temperature as high as 0.03°C per year, the Pear] River
Delta region is the main warming area of Guangdong (Yu et al,,
2007). During 1986-2015, the annual temperature is 22°C (Wu
et al,, 2019). The annual precipitation is over 1,300 mm, nearly
60% of which is concentrated in the rainy season (i.e., June-
August) (Wu et al,, 2019). The surface air temperature increased
at a rate of 0.13°C per decade in the capital of Guangdong (i.e.,
Guangzhou) during 1951-2004, while it is expected to increase
rapidly in Guangdong in the coming decades (Liu et al.,, 2019).
In the long-term adaption to climate change, Guangdong has
experienced extreme climate events, such as heat waves, drought,
and coastal flooding, which have resulted in losses and threats to
the lives and safety (Zhu et al., 2014; Xu and Wang, 2019; Yu et al.,
2019; He et al., 2020). For instance, Yang et al. (2013) investigated
the impact of a diurnal temperature range on mortality in the
capital of Guangdong and concluded that the increase in diurnal
temperature of 1°C at 0-4 lag days would induce a 0.47% increase
in non-accidental mortality. In addition, Zhang L. et al. (2018)
quantified the mortality effects of future heat waves on human
health; they found that the average annual loss of the elders
(>65) would be 1,675 deaths per million in Guangzhou during
2051-2095 under RCP. Climate warming will induce extreme
disastrous impacts to coastal cities, such as a sea level rise,
the expansion of storm surge inundation areas, and ecosystem
degradation of coastal wetlands, mangroves, and reefs (He et al.,
2012; Rahmoun et al., 2016). He et al. (2012) assessed the sea
level rising in China; the investigation illustrated that the sea
level in Guangdong rose by 20 mm during 2001-2010 relative
to 1991-2000. Moreover, it is estimated that, in 2030 and 2050,
the average increase of the sea level in the Pearl River Delta will
be approximately 20-33 and 50 mm, respectively. According to
the prediction of Li et al. (1993), the low altitude of 1,500 km?
below 0.4 m in the Pearl River Delta would be completely
submerged when the sea level rises to 0.7 m in the middle of
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FIGURE 2 | Geographical positions of the 16 weather stations over Guangdong Province, China.

21st century. Thus, it is desired to improve our understanding
of future heat waves in Guangdong and provide helpful guidance
for improving our ability in projecting the variations of heat
waves in that region.

In this study, 35 weather stations are selected. For each
weather station, the observed Tmax from 1976 to 2005 was
obtained from the National Meteorological Information Center.'
The quality of the raw Tmax dataset was checked before analysis
and used as a predictand of the heat wave downscaling model.
The variables of reanalysis dataset were acquired through the
National Centers for Environmental Prediction (NCEP/NCAR)?
and were used as large-scale atmospheric predictors (Table 1).
Through the correlation analysis, the seven most relevant large-
scale atmospheric variables were chosen as predictors of Tmax
(i.e., the bold font). The NCEP/NCAR dataset has been derived
from the interpolation of daily observations since 1948 with a
resolution of 2.5° x 2.5° (Kalnay et al., 1996). It has been used in
many branches of climatological research (Simmons et al., 2004;
Luo and Lau, 2017; Wang P. et al., 2017; Zhai et al., 2019), and its
reliability is better for surface air temperature in the southern and
eastern parts of China (Xu and Ding, 2001; Shi et al., 2007). The
associated data (i.e., predictors and prediction) supporting the
development of the heat wave downscaling model for the same
period (i.e., the historical period, 1976-2005) were extracted. In

Uhttp://data.cma.cn
Zhttps://www.esrl.noaa.gov/psd/

TABLE 1 | A list of NARR variables selected as predictors for Tmax.

NARR variables selected Unit Pressure level (hPa)
Geopotential height m 500, 700, 850, and 1000
Near-surface air temperature K 2m

Air temperature K 500, 700, 850, and 1000
Near surface relative humidity % Surface

Relative humidity % 500, 700, 850, and 1000
Near surface specific humidity % Surface

Specific humidity % 500, 700, 850, and 1000
Eastward near surface wind ms~! Surface

Eastward wind ms~! 10, 500, 700, 850, and 1000
Northward near surface wind ms~' Surface
Northward wind ms~! 10, 500, 700, 850, and 1000
Pressure at surface hPa Surface

Sea level pressure hPa Surface
Precipitable water Kg/m? Surface

Wind ms~! Surface, 10, 500, 700, 850, and 1000

The bold values denotes the selected predictors of predictand, i.e., the seven large-
scale atmospheric variables that are most relevant to the Tmax.

addition, these data were further divided into two 15-year subsets,
including 1976-1990 and 1991-2005. The former set was used for
the training of the developed model, and the latter one was used
to validate the performance of the developed model.
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Daily gridded data from the four GCMs, i.e., Centre
National de Recherches Météorologique CNRM-CM5 Model
5 (i.e., CNRM-CM5), Commonwealth Scientific and Industrial
Research Organisation Mark 3.6.0 (i.e., CSIRO-Mk3.6.0), Institut
Pierre Simon Laplace Model CM5A-MR (i.e., IPSL-CM5A-MR),
and Model for Interdisciplinary Research on Climate Version
Five (i.e., MIROC5) were downloaded from the CMIP5 dataset
to analyze the future variations of heat waves in Guangdong (Li
et al,, 2019; Xu and Wang, 2019; Ren et al., 2021b). The four
GCMs cover the historical and future simulations data under
different emission scenarios. Their scenarios were developed
based on their end-of-century radiative forcing, including RCP
2.6, RCP4.5, RCP 6.0, and RCP 8.5. Among which, RCP 4.5 is
a stabilization scenario—its stabilization without an overshoot
pathway to 4.5 Wm~™2 at stabilization after 2100 (Clarke
et al., 2007). RCP8.5 represents a high-emission global warming
scenario; the rising radiative forcing would lead to 8.5 Wm™2 by
the end of 21st century (Adeniyi, 2016). In this study, the four
GCMs are re-gridded to the coarsest resolution (NCEP/NCAR
data) through the bilinear interpolation method (Zhai et al,
2019). They were then extracted for the periods of 1976-
2005 (i.e., historical) and 2006-2100 (i.e., under RCP4.5 and
RCP8.5). The extracted data were used to develop the heat wave
downscaling model and project the future heat wave. Especially,
to provide comparability results, the GCM data from 1991 to 2005
(i.e., the validation period) were also prepared.

In general, a heat wave event is defined as a period
during which the daily temperature (e.g., daily temperature
of maximum, minimum, and mean) exceeds its threshold
temperature and consecutive several days (Perkins et al., 2012;
Wang P. et al,, 2017; Shiva et al., 2019; Woolway et al.,, 2021). In
this study, the daily maximum temperature (i.e., Tmax) exceeds
the corresponding relative threshold for at least 4 consecutive
days, which was used as the criterion to identify heat wave
events in Guangdong and denoted as relative heat wave events
(i.e., RHWs). The relative threshold (i.e., the 90th percentile
of Tmax) was calculated based on centered 21-day moving
window samples with observations during May to December
in the historical period (i.e., 1976-2005). The total samples are
4,590 days (153 x 30). Following previous studies (Perkins et al.,
2012; Pezzaetal., 2012; Guo et al., 2017; Luo and Lau, 2017; Wang
P. et al,, 2017; Oliver et al., 2018; Fenner et al., 2019; Shiva et al,,
2019), four indicators (i.e., intensity, total intensity, frequency,
and the length of the longest event of RHW) are measured to
quantify the properties of relative heat waves; their definitions are
as follows:

e Average intensity of heat wave (RHWI): the average intensity
of heat waves within a year, i.e., the average of cumulative
value of the temperature biases when the daily maximum
temperature exceeds its threshold temperature during the
heat wave event within a year, calculating by averaging all
participating event days; Eq. 5 summarizes the definition of
RHWI (unit: °C/event).

e Total intensity of heat wave (RHWTI): the total intensity of
heat waves within a year, i.e., the cumulative value of the
temperature biases when the daily maximum temperature

exceeds its threshold temperature during the heat wave event
within a year; Eq. 6 summarizes the definition of RHWTI
(unit: °C).

e Frequency of a heat wave (RHWE): the total number of days
within a year that meet the relative heat wave criterion; Eq. 7
summarizes the definition of RHWTF (unit: °C).

e The longest heat wave event (RHWL): the length of the longest
heat wave event within a year; Eq. 8 summarizes the definition
of RHWL (unit: days).

SN STy — TRy)

RHWI = N (5)
REWTI =SS (1, — TR, (6)
=SS 1y )
N
RHWF = Zi (Di) 7)
RHWL = max (D;) (8)

where N is the total number of occurred RHW during the study
period. Tj; is the Tmax on Day j in the RHW, and TR; is
the corresponding threshold temperature of Tj;. The intensity

; of heat wave i is the sum of the temperature biases
5P 1y vy P

that exceed its threshold values during the duration D;. And
max(D;) is the length of the longest RHW's within a year.

RESULTS

Evaluation of the Statistical Downscaling
Model

In this study, the stepwise-clustered simulation approach is
developed and used for the heat wave downscaling. The 1976-
2005 period is divided into two 15-year sets: 1976-1990 and
1991-2005, with one set used for training and the other
for validation. To validate the performance of the developed
model, the downscaling results for Tmax are shown with the
corresponding simulations during 1991-2005 (Figures 3, 4, 5).
In this study, 16 weather stations spatially distributed across
Guangdong were selected as examples to present the associated
results. Figure 3 shows the validation results of the downscaling
model. The determination coefficient (i.e., R?) and RMSE
between the NCEP reproduced dataset through the downscaling
model and observations were calculated for the 16 weather
stations. The R? values range from 0.950 to 0.987, and the RMSEs
of all stations range from 0.863 to 1.730°C, evidencing that the
NCEP-trained approach exhibits outstanding performance.

To validate the performance of the developed model, the R?
values for the monthly average between the simulations of the
four GCMs (i.e., CNRM-CM5, CSIRO-Mk3.6.0, IPSL-CM5A-
MR, MIROCS5, and their model ensemble) and the observed
Tmax are also represented in Figure 4. Although the performance
of the developed approach displays variations among stations
over Guangdong, it can reproduce Tmax well. For instance, the
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FIGURE 3 | Evaluation results for multiyear monthly average of Tmax between observed and NCEP/NARR reanalysis at the 16 selected weather stations,
1991-2005.

maximum R? value of 0.923 is related to the reproduced Tmax
from the model ensemble. The results implied that the model
ensemble can be an effective tool in the case of reproducing
the observed Tmax at the 16 selected weather stations over
Guangdong. Previous studies have also found the use of model
ensemble reduced more the bias in the evaluation than using
only a single GCM, thereby improving the reliability of climate
projections (Webber et al., 2018; Qian et al., 2020; Ma et al,,
2021). Similarly, it can be found that the developed approach
also demonstrates significant performance in reproducing the
observed Tmax from the four GCMs at the 16 selected weather
stations (Figure 5). The comparison results of the monthly
variations between the observed Tmax and reproduced values
from GCMs during 1991-2005 possess similar trends, which

means that the developed approach has significant ability in
capturing present-day Tmax, especially for those reproduced
by the model ensemble in the periods from May to October.
In addition, Tmax is somewhat over- and underestimated by
the single GCM. In detail, Tmax is somewhat overestimated
by the CNRM-CM5 from March to April (e.g., Guangning and
Shanwei), and underestimated by the MIROC5 during July to
August (e.g., Nanxiong and Zijin). This is mainly due to the
uncertainty of the model, which may be induced by differences
in the model parameterization, emission concentration scenarios,
and internal climate variability (Zhai et al., 2019; Ma et al., 2021).
Therefore, it is essentially recommended to present the Tmax
with the model ensemble from multiple GCMs’ outputs to reduce
potential biases.
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FIGURE 4 | Comparisons of the monthly average between observed Tmax and downscaled outputs from CNRM-CM5, CSIRO-Mk3.6.0, IPSL-CM5A-MR, MIROCS5,
and their ensemble, 1991-2005 [color bars represent the coefficient of determination (R2) value between observed Tmax and downscaled outputs].
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Characteristics of the Projected Daily

Maximum Temperature

Projections of future temperature from the ensemble of four
GCMs (i.e., CNRM-CM5, CSIRO-Mk3.6.0, IPSL-CM5A-MR,
and MIROCS) are resulted from the developed approach. The
characteristics of the projected Tmax in Guangdong are shown
in Figures 6, 7, 8, 9 and Table 2. Figures 6, 7 provide the
monthly trend of the projected average of Tmax at the 16
selected weather stations from 2006 to 2100 under RCP4.5
and RCP8.5. The trend of the projected Tmax is obtained by
fitting the monthly time series data of each weather station
using the lowess method (Zhai et al., 2019), which is displayed
as a smooth bold red line. It provides a better understanding
of the possible variations of future Tmax. The results indicate
that there is a consistent increase at all 16 weather stations
under RCP4.5 and RCP8.5. In detail, the highest increasing
trend of the Tmax is likely to occur at Shaoguan (Nanxiong)
under RCP4.5 (RCP8.5). Moreover, Table 2 provides the trends
of seasonal (spring, summer, autumn, and winter) and annual
average of Tmax through the Mann-Kendall statistics and Sen’s
slope estimator test for 16 selected weather stations. These two
test methods have been extensively used by previous studies to
explore monotonic trends in climatic time series (Zhai et al.,
2019; Farooq et al., 2021). It is pretty evident that all stations
suggest significant increasing trends for their respective mean
seasonal and annual of Tmax, with MK-p values less than.001.
It indicated that Guangdong is likely to experience a warmer
future. The increase is various among stations under RCP4.5 and
RCP8.5. For instance, of all the seasons under two RCPs, the
most remarkable increase is detected in spring, lesser in winter
and summer, followed by autumn. Besides, Shaoguan presents
the highest increasing trend of 0.075°C per year during summer
under RCP8.5. On the annual time scale, the increase varies
between 0.016°C per year (i.e., at Zhanjiang) and 0.030°C per
year (i.e., at Shaoguan) under RCP4.5, while these range from
0.027°C (i.e., at Lianzhou) to 0.057°C (i.e., at Nanxiong) per year
under RCP8.5. This is consistent with previous pieces of research

that the climate in Guangdong will become warmer in the future
(Sutton, 2009).

Figures 8, 9 show the most likely variations in monthly
average Tmax at Guangdong during 2066-2095 in comparison
with those in the historical period (1976-2005). The results
present that the projected Tmax is increasing in all months to
the end of this century under RCP4.5 and RCP8.5. In detail,
the increase of projected Tmax during November, December,
and February over Guangdong is more prominent relative to
the increase in other months, especially August. Those increases
can be similarly discovered over all 16 weather stations under
two RCPs. In addition, it is noticeable that the increases of
Tmax during 2066-2095 are more significant under RCP8.5.
For example, the smallest projected variation of Tmax occurs in
the weather station of Zhanjiang in August, which is likely to
be 0.046°C, and the largest projected change would expand to
1.474°C in November (i.e., Shaoguan) under RCP4.5. While the
projected variation ranges from 0.334°C (i.e., in August at the
Zhanjiang station) to 2.985°C (i.e., in December at the Lianzhou
station) under RCP8.5. Therefore, it can be inferred that a higher
emission concentration will lead to a much higher variation in
the Tmax. Consequently, the projected Tmax of the 16 selected
weather stations in Guangdong will continue to increase by the
end of this century under two RCPs.

Evaluation of Relative Heat Waves

During the Historical Period

To evaluate the ability of the developed approach to simulating
the historically observed heat waves, the spatial distributions
between the observations and ensemble simulations of the four
GCMs during 1976-2005 over Guangdong are presented in
Figures 10, 11. The spatial patterns of a 30-year average of
RHW intensity and total intensity (i.e., RHWI and RHWTI)
are shown in Figure 10. In terms of RHWI, it can be found
that the stations in southwestern Guangdong experience higher
observed heat wave intensity, exceeding 6.3°C/event per year
(e.g., Xuwen, Zhanjiang, and Xinyi) (Figure 10A). In central
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Guangdong and most of the coastal areas, the RHWI was
low with values less than 2.7°C/event per year. This spatial
pattern is consistent with the variations of HWM in this region
in Luo and Lau (2018), which has slightly less constrained
definitions. Those spatial characteristics might associate with
the stronger solar radiation, the amplifying effect of El Nifio,
and the anomalous anticyclonic circulation (Luo and Lau,
2018; Wang et al., 2018). When it comes to the reproduced
RHWI from the model ensemble, the overall spatial patterns of
RHWTI over Guangdong are well captured, although it is faintly
overestimated (underestimated) in Lianzhou, Shaoguan, and
Nanxiong (Meixian, Dabu, and Wuhua) over northern (eastern)
Guangdong (Figure 10B). Similarly, the single GCM performs
better in reproducing the spatial characteristics of RHWI, except
for IPSL-CM5A-MR, which almost underestimated the whole
Guangdong. CNRM-CM5, CSIRO-Mk3.6.0, and MIROC5 show
overestimation in northern Guangdong and the surrounding

stations of Guangzhou, while the rest stations are closer to
the observed RHWI. Consequently, the spatial pattern of
RHWI can be reasonably simulated by the model ensemble
of the four GCMs.

The spatial distribution of the observed RHWTI is similar to
that of the RHWI, which presents the higher values at most of
the stations over southwestern Guangdong. However, the lower
RHWTT values do not directly follow those of HWI (Figure 10G).
In addition to the coastal areas of Guangdong, the stations
with lower values no more than 2°C are also distributed in
northeastern Guangdong, which has the highest altitude of the
province. This supports previous investigation, suggesting that
cooler sites at higher altitude will result in less severe heat
waves (Wang et al., 2018; Woolway et al., 2021). CNRM-CM5
and MIROCS5 exhibit similar distribution of observed RHWTI,
overestimating it over central Guangdong (e.g., Guangzhou
and Dongguan) (Figures 10LL). Likewise, the CSIRO-Mk3.6.0
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and IPSL-CM5A-MR underestimated RHWTI over eastern
Guangdong (e.g., Meixian and Dabu) and overestimated RHWTI
in the peripheral of Guangdong (e.g., Nanxiong and Huilai).
As a result, the ensemble of the four GCMs is able to capture
the spatial distributions of RHWTTI well but shows under- and
overestimation in eastern and central Guangdong, respectively.
Moreover, the spatial patterns of the frequency and the longest
duration of relative heat waves (i.e., RHWF and RHWL) during
the historical period (1976-2005) for all the weather stations
over Guangdong are provided in Figure 11. The spatial pattern
of observed and simulated RHWF is quite similar to that of
RHWL. In terms of observations, the largest observed values
of RHWF and RHWL distribute in the southwest region, such
as Zhanjiang, with higher values exceeding 11.9 and 7 days per
year, respectively (Figures 11A,G). However, the performance
of GCMs in reproducing the spatial characteristics of RHWF

and RHWL varies. For example, CNRM-CM5 and CSIRO-
MKk3.6.0 can better reproduce the spatial distribution of RHWF
and RHWL; although CNRM-CM5 overestimates the observed
values in western (e.g., Guangning and Gaoyao) and eastern
(e.g., Meixian and Dabu) Guangdong. The CSIRO-Mk3.6.0
slightly underestimated the RHWF and RHWL in the central-
northern regions of Guangdong (e.g., Yingde and Cengcheng)
and overestimated for the eastern region (e.g., Zijin). IPSL-
CM5A-MR tends to underestimate the observed RHWF and
RHWL in almost all Guangdong. MIROCS5 reproduces the HWF
and RHWL of more than 5 days per year in the central (e.g.,
Guangzhou and Dongguan) and coastal (e.g., Shenzhen and
Huiyang) Guangdong, which slightly overestimated for these
regions. The model ensemble simulates RHWF less than 3.4 days
per year for the central Guangdong, which is consistent with
the observations, while slightly underestimated (overestimated)
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over marginal Guangdong, such as Shangchuandao (Huilai)
(Figure 11E). The model ensemble of RHWL also performs
well at capturing these, but the longest day of heat waves in
the southwestern (i.e., Zhanjiang) and eastern (i.e., Longchuan
and Wuhua) parts of Guangdong is a little underestimated
(Figure 11H). Therefore, the model ensemble performs well
in reproducing the RHWF and RHWL, even if there is a
certain deviation between these GCMs. Thus, the ensemble
of simulated outputs with multiple GCMs is suitable for the
projection of heat waves.

Spatial Patterns of the Projected Heat

Waves in Guangdong
Projections of future RHW over Guangdong are reproduced
through the developed downscaling approach. To better

understand the spatial variations of future RHW in the context
of Guangdong, the projections in the 21st century are split into
two 30-year periods, 2050s (i.e., 2036-2065) and 2080s (i.e.,
2066-2095) under RCP4.5 and RCP8.5. For each indicator, the
projected changes of future RHW relative to these during the
historical period (i.e., 1976-2005) are calculated and shown in
Figure 12. In detail, the indicators of intensity, total intensity,
frequency, and the longest duration of relative heat waves
(i.e, RHWI, RHWTI, RHWEF, and RHWL) over Guangdong
will be analyzed.

With the increase of emission concentration (i.e., from RCP4.5
to RCP8.5), the projected changes of RHW in Guangdong
will gradually increase from the 2050s to 2080s, especially
over the northern, southern, and eastern Guangdong. For
example, the projected changes of RHWI in Guangzhou (i.e.,
central Guangdong) are most likely to be -0.36°C per event
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FIGURE 8 | Projected monthly variations of Tmax between 2066-2095 and 1976-2005 under RCP4.5.

(lower than 0°C per event) in the 2050s under RCP4.5,
1.81°C per event in the 2080s under RCP4.5, and 4°C per
event to the end of this century (ie., in the 2080s under
RCP8.5) (Figures 12A-C). However, the annual average variation
of RHWI in Shaoguan (ie., northern Guangdong) is likely
to be 1.6°C per event (surpassing 0°C per event) in the
2050s under RCP4.5, while the change value of projected
RHWI in the 2080s under RCP4.5 is expected to be 3.14°C
per event, and this would be as high as 6.1°C per event
(surpassing 5.4°C per event) under RCP8.5 in the coming
decades. In addition, there is a similarly increasing tendency
in the ensemble simulations for RHWTI over Guangdong
(Figures 12D-F). It is interesting to find that the annual
average of projected variations of RHWTT across all Guangdong
except the central region is more likely to exceed 24°C in the
2080s under RCP8.5.

In addition, the results of model ensemble reveal that there
is an apparent increase in the spatial variations of RHWF and
RHWL for all weather stations from 2050s to 2080s under
two RCPs over Guangdong (Figures 12G-L). In detail, during
the 2050s under RCP4.5, the projected variation values of
RHWEF are likely to range from -0.19 to 6.79 days, and the
projected range of RHWL would be between -0.46 and 1.3 days.
When it comes to the 2080s under RCP4.5, the projected
changes of RHWF and RHWL are expected to expand to -
0.08-20.65 and -0.12-5.28 days, respectively. It is clear that the
higher change value centers of RHWF and RHWL are mainly
distributed in the southwestern (e.g., Xinyi) and eastern (e.g.,
Wuhua) Guangdong. Consistent projected increases in RHWF
and RHWL over Guangdong are found during the 2080s under
RCP8.5. The distribution of RHWF shows that more frequent
RHW is expected to occur in the eastern Guangdong under
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FIGURE 9 | Projected monthly variations of Tmax between 2066-2095 and 1976-2005 under RCP8.5.

RCP8.5, with the maximum increase of up to 31.92 days in RHWI, RHWTI, RHWE and RHWL) and subsequently averaged
the Longchuan station. More than 71% stations of Guangdong over Guangdong. The annual trends of RHW are estimated
would also likely to experience longer-lasting heat waves with based on the Sen’s slope estimator, and then, these, during
the RHWL variation exceeding 4 days under higher emission the historical (i.e, 1976-2005) and future (i.e., 2066-2095)
concentration. This is consistent with the observed values of periods are compared to explore the possible contribution of
severe heat waves over Guangdong in recent years (Luo and Lau,  global warming. In this study, at the 95% confidence level, the
2018; Wang et al., 2018), which are mainly due to influences statistical significance of the change trends in annual heat waves
of El Nifo (Luo and Lau, 2018), while the lowest variation of is estimated through the MK test (Mann, 1945; Kendall, 1948).
RHWL is projected to be occurred along the western coast (i.e., The obtained slope values for each indicator are illustrated in
Taishan) where the value is likely to be as low as 0.98 days in the  Figure 13.

2080s under RCP8.5. All the indicators of RHW over Guangdong present clear
interannual variations and show a significant (at the 95%
.. confidence level) increasing trend during the historical and
Interannual Variations of Future Heat future periods. Among all the indicators, RHWI demonstrates
Waves in Guangdong the smallest increase (Figure 13A). Specifically, the average time
To explore the interannual variations of RHW, the annual series of RHWTI reflect a remarkable increase in the historical
time series are constructed for each heat wave indicator (i.e., period (0.11°C per event per year). However, in the 2080s, under
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TABLE 2 | Sen’s slope values (in °C/year) of annual and seasonal of Tmax (in °C) at the 16 weather stations in Guangdong for the period of 2006-2095.

RCP4.5 RCP8.5
Stations Spring Summer Autumn Winter Annual Spring Summer Autumn Winter Annual
01 Guangzhou 0.0272 0.0231 0.0205 0.0268 0.0189 0.0493 0.0484 0.0418 0.0441 0.0374
02 Shenzhen 0.0284 0.0217 0.0177 0.0265 0.0177 0.0522 0.0468 0.0421 0.0455 0.0377
083 Zhanjiang 0.0228 0.0214 0.0152 0.0262 0.0163 0.0408 0.0441 0.0298 0.0395 0.0303
04 Jiexi 0.0268 0.0287 0.0271 0.0269 0.0225 0.0496 0.0584 0.0553 0.0483 0.0445
05 Guangning 0.0302 0.0244 0.0250 0.0281 0.0216 0.0521 0.0500 0.0469 0.0493 0.0409
06 Taishan 0.0260 0.0222 0.0210 0.0246 0.0185 0.0452 0.0442 0.0406 0.0412 0.0353
07 Shanwei 0.0261 0.0200 0.0199 0.0222 0.0176 0.0485 0.0390 0.0416 0.0376 0.0338
08 Huiyang 0.0300 0.0277 0.0223 0.0316 0.0211 0.0566 0.0562 0.0466 0.0561 0.0427
09 Gaoyao 0.0284 0.0276 0.0273 0.0278 0.0226 0.0518 0.0569 0.0542 0.0503 0.0447
10 Shaoguan 0.0352 0.0377 0.0363 0.0425 0.0303 0.0650 0.0751 0.0616 0.0733 0.0543
11 Luoding 0.0305 0.0252 0.0241 0.0301 0.0217 0.0561 0.0513 0.0473 0.0528 0.0422
12 Lianzhou 0.0363 0.0348 0.0301 0.0423 0.0277 0.0363 0.0348 0.0301 0.0414 0.0277
13 Nanxiong 0.0371 0.0341 0.0306 0.0435 0.0286 0.0713 0.0692 0.0651 0.0745 0.0575
14 Zijin 0.0324 0.0295 0.0263 0.0324 0.0236 0.0624 0.0635 0.0579 0.0572 0.0493
15 Dabu 0.0323 0.0258 0.0241 0.0337 0.0220 0.0591 0.0503 0.0489 0.0642 0.0446
16 Lianping 0.0326 0.0261 0.0216 0.0368 0.0214 0.0628 0.0554 0.0459 0.0678 0.0441

All the trends at the 95% confidence level (MK p value < 0.001).

RCP4.5, RHWI shows a slight increase trend (0.1% per year)
lower than that of the observation. When it comes to the 2080s
under RCP8.5, RHWTI increases at 0.14°C per event per year.
As for RHWTI the Sen’s slope estimator of the observation has
the largest increase compared with the other three indicators, for
which the increment varied at a rate of 0.4°C per year during
1976-2005. In addition, RHWTT is also likely to experience most
significant increase in the future under two RCPs. In detail,
RHWTI would display the greatest increase of 1.41°C per year
in the 2080s under RCP8.5, and 0.64°C per year under RCP4.5.
The observed RHWF has a significantly increasing trend at a
rate of 0.33% per year during the historical period. During 2066
2095, a rate of increment of RHWF under RCP8.5 (0.83% per
year) almost doubles of that (0.42% per year) under RCP4.5.
Similarly, for RHWL, the observed estimated slope shows an
increase of 0.12% per year from 1976 to 2005, while a slightly
higher rate of that (0.13% per year) is simulated in the 2080s
under RCP4.5. The average time series of RHWL depict a
noticeable increase (0.21% per year) to the end of this century
under RCP8.5. Both intensity and frequency of heat waves are
found to be increased substantially during the historical period.
This is consistent with previous studies that Guangdong has
suffered significantly high temperature and heat wave events
over the past 64 years (especially after 2000) (Zeng et al., 2006;
Luo and Lau, 2017; Zhang P. et al.,, 2018). These results reveal
that warming has a significant and consistent impact on the
increases of RHW across Guangdong. Moreover, all the four
heat wave indicators present significant increasing trends in the
future period (especially under RCP8.5), and those trends are also
expected to increase greatly compared to the historical period.
This further corroborates the results demonstrated in Figure 12,
indicating that the climate change would also has a substantial
impact on future heat waves.

To specifically evaluate the future variations of RHW
with different intensities, in this study, the heat wave is
classified into four categories based on the change ratio
[(2080s under RCP8.5 minus historical)/historical] of RHWTIL
The classification is denoted as mild (change ratio < 0.8),
moderate (0.8 < change ratio < 1.6), severe (1.6 < change
ratio < 2.4), and extreme (change ratio > 2.4) variations. This
classification is similar to many previous studies (Wang et al.,
2018; Shiva et al, 2019; Woolway et al, 2021). The spatial
distribution of the four RHW variational categories is shown in
Figure 13E.

Among the four classifications, the projected change ratio
presents that 60% weather stations over Guangdong would
undergo the moderate variations of RHWs to the end of this
century under RCP8.5 (Figure 13E), which are mainly distributed
in the western half of Guangdong. Mild variation of RHWs is
expected to occur in the most southwestern Guangdong (i.e.,
Zhanjiang and Xuwen) (Figure 13E), which may be due to the
high total intensity of RHW in both the historical and future
periods (Figures 10, 12). The changes of RHW are comparatively
severe and extreme in the eastern and coastal Guangdong,
contrary to the results in Figure 12, which may be related to the
low observed RHWTI during the historical period (Figure 10).
The results depict a challenging situation that the projected
change ratios from mild to extreme heat wave events are likely to
increase significantly in the future, in the context of a dramatic
increase in extremely high temperature in the coming decades
(Figures 6, 7 and Table 2). Therefore, more attention should
be paid to these regions on the adaption strategies as impacts
from serious heat wave events are usually devastating, especially
when they occur in populated regions and ecologically fragile
areas (Cavanagh et al., 2016; Luo and Lau, 2017; Jos et al., 2018;
Vogel et al., 2019).
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FIGURE 10 | The spatial distributions of observed (A) and simulated RHWI (unit: °C/event), driven by CNRM-CM5 (C), CRIRO-Mk3.6.0 (D), IPSL-CM5A-MR (E),
and MIROCS5 (F) and the model ensemble (B). Panels (G-L) are same as panels (A-F), but for RHWTI (unit: °C).

CONCLUSION AND DISCUSSION

In this study, a stepwise-clustered simulation approach driven by
multiple GCMs is developed for high-resolution projections of
relative heat waves at station scale in the context of Guangdong.
The evaluation results concluded that the developed approach
performed very well in reproducing Tmax (R* > 0.95), and the
model ensemble of four GCMs was superior to any single GCM in
capturing the main features of current climatology. Subsequently,
the model ensemble of 16 weather stations was selected to analyze
the characteristics of projected Tmax, and then the assessment
of temporal-spatial changes of projected RHW was extended
to cover 35 weather stations in entire Guangdong, aiming to

provide valuable information for mitigating the potential impact
of severe heat waves.

The results suggest that Guangdong would experience a
warmer climate in the coming decades under two RCPs. On
the annual scale, the 16 selected weather stations would suffer
a consistent increasing trend under RCP4.5 (i.e., 0.016-0.030°C
per year) and RCP8.5 (i.e.,0.027-0.057°C per year). The most
noteworthy seasonal increase was detected in spring. The highest
monthly increase of Tmax was up to 1.474°C (2.985°C) in
November (December) at Shaoguan (Lianzhou) under RCP4.5
(RCP8.5). The ability of the developed approach to reproduce
the present heat wave was also evaluated, suggesting that
the model ensemble can well capture the spatial distribution
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FIGURE 11 | Same as Figure 9, but for RHWF (A-F, unit: days) and RHWL (G-L, unit: days).

of RHW. Four indicators (i.e., RHWI, RHWTI, RHWE and
RHWL) were then used to evaluate the variations of RHW.
The spatial patterns and interannual trends displayed that
Guangdong would undergo severe RHW. The higher projected
changes of RHW would be concentrated in eastern Guangdong
under two RCPs, and Guangdong would experience the largest
significant increase in RHWTI with 1.41 days per year under
RCP8.5. Meanwhile, the variations of RHW were also quantitated
into four categories (i.e., mild, moderate, severe, and extreme
variations) based on the projected change ratio of RHWTI
[(2080s under RCP8.5 minus historical)/historical]. Over 60%
weather stations of Guangdong would suffer moderate variations
in the 2080s under RCP8.5, followed by severe and extreme

changes. Much more attention should be raised to those areas to
adopt such variations.

Overall, the developed approach driven by multiple GCMs
performed well in the high-resolution projections of RHW, while
there is a certain bias in the simulation of extreme variables
(e.g., temperature). Techniques to improve the projected quality
of such a variable should be further investigated, such as
considering the input of more GCMs or improving the
downscaling approach. The results of this study can provide
helpful information for policymakers and stakeholders to assess
the impact of heat waves due to their devastating consequences
for social, economic, and ecological sectors under global warming
(Zhang L. et al., 2018; Vogel et al, 2019; Liu et al, 2020;
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FIGURE 12 | The spatial patterns of the projected changes in relative heat wave indicators [RHWI (A-C, unit: °C/event), RHWTI (D-F, unit: °C), RHWF (G-I, unit:
days), and RHWL (J-L, unit: days)] over Guangdong for the 2050s, 2080s driven by multi-GCMs under RCP4.5 and RCP8.5 scenarios (color dots represent average
change value).

Sun et al., 2020; Woolway et al, 2021). The assessment of
the impact of heat waves on social-economical-related sectors
(e.g., human health, water resources, and energy demand) is
supported by a lot of pieces of scientific evidence (Yang et al.,
2013; Zhu et al.,, 2014; Xie et al.,, 2017; Zampieri et al., 2017;
Mukherjee et al., 2020; Tian et al., 2021), which quantifies the
negative or positive impact of heat waves on a regional or
global scale. Moreover, heat waves (or temperature extremes)
have also and will continue to have direct or indirect impacts
on terrestrial and marine ecosystems (e.g., the carbon cycle,
vegetation productivity, and global biodiversity), and disrupt the
sustainable supply of ecological services and goods, thus affect

the human well-beings (Zhou L. et al., 2014; Yuan et al., 2016; Jos
et al., 2018; Smale et al., 2019; Wang et al., 2019; Zanatta et al,,
2020; Liu et al., 2021). For example, exposure to heat waves would
result in a decrease in vegetation productivity, crop yield, as
well as weaken the terrestrial carbon sink (Zampieri et al., 2017;
Wang et al., 2019; Font et al., 2021). Similarly, the widespread
mortality of a diversity of taxa in the Mediterranean has also
linked to the marine heat waves, which simplified the structure of
critical habitats, destroyed the local biodiversity, and reduced the
efficiency of natural carbon sequestration (Garrabou et al., 2009;
Smale and Wernberg, 2013; Messori et al., 2020). Hundreds of
millions of people benefit from these ecosystems; their services
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on the Sen’s slope estimator, and statistical significance in trends was determined based on the MK test. The numbers in the bracket represent the estimated slope,
and the asterisks denote statistically significant trends (at the 95% confidence level). The spatial distribution of the projected change ratios [(2080s under RCP8.5
minus historical)/historical] for different categories of relative heat wave intensity from the model ensemble (E). The categories are denoted as mild (change
ratio < 0.8), moderate (0.8 < change ratio < 1.6), severe (1.6 < change ratio < 2.4), and extreme (change ratio > 2.4) variations.

have considerable socioeconomic benefits (Cavanagh et al., 2016).
Guangdong mangroves have the largest distribution in China;
they play an irreplaceable role in protecting wetland ecosystems
(Yu et al.,, 2007; Yang et al., 2018). The composition, structure,
growth, and distribution of which are extremely sensitive to
temperature (Yang et al., 2018). Discrete extreme events (such
as heat waves) are beginning the key to shaping ecosystems
through driving the sudden and drastic variations in the structure
and function of the ecosystem (Smale et al., 2019). However,
the quantitative exploration of the impact of heat waves on the
ecosystem is still limited at present due to the heterogeneity of
the temporal-spatial patterns and formation mechanism of heat
waves (Mukherjee and Mishra, 2020; Ridder et al., 2020). The

characteristics and variations of heat waves were investigated
in this study, while the mechanism of which in Guangdong is
needed to be explored. Besides, previous studies demonstrated
that heat waves are often related to other heat wave-associated
extreme events (e.g., drought) (Wu et al., 2020), the large-scale
atmospheric variables (e.g., cloud cover and solar radiation)
or teleconnections (e.g., El Nino Southern Oscillation, Pacific
Decadal Oscillation, and North Atlantic Oscillation) (Luo and
Lau, 2018; Mukherjee et al., 2020; Ridder et al., 2020). Therefore,
it is necessary to explore the contribution of these influencing
variables to the evolution of heat waves to promote our
understanding of the mechanism of heat wave events and to
further evaluate the potential impact of heat waves on population
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and Guangdong’s future related ecosystems such as mangroves to
overcome the adverse effects of climate change. These will be the
focus of our follow-up research.
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Near surface air temperature (NSAT) is one of the most important climatic parameters and
its variability plays a vital role in natural processes associated with climate. Based on an
improved ANUSPLIN (short for Australian National University Spline) model which
considers more terrain-related factors, this study analyzed the trends, anomalies,
change points, and variations of NSAT in Southwest China from 1969 to 2018. The
results revealed that the improved approach performed the best in terms of Mean Absolute
Error (MAE), Root Mean Square Error (RMSE) and R-squared (R?) comparing to the
conventional ANUSPLIN and co-kriging methods. It has great potential for future
meteorological and climatological research, especially in mountainous regions with
diverse topography. In addition, Southwest China experienced an overall warming
trend of 0.21°C/decade for annual mean NSAT in the period 1969-2018. The warming
rate was much higher than mainland China and global averages, and statistically significant
warming began in the late 1990s. Moreover, consistent warming and significant elevation-
dependent warming (EDW) were observed in most parts of Southwest China, and the
hiatus or slowdown phenomenon after the 1997/1998 EL Nifo event was not observed as
expected. Furthermore, the remarkable increase in winter and minimum NSATs
contributed more to the whole warming than summer and maximum NSATs. These
findings imply that Southwest China responds to global warming more sensitively than
generally recognized, and climate change in mountainous regions like Southwest China
should be of particular concern.

Keywords: temperature changes, improved ANUSPLIN method, change-point detection, spatial variation, temporal
variation

INTRODUCTION

Near surface air temperature (NSAT) is a key meteorological parameter involved in exchanges of
energy and water in land-atmosphere interactions. It is also a key atmospheric variable with direct
influence on physical and biological processes, including energy and water balances, nutrient cycling,
growth and yield, carbon dynamics, and ecosystem adaption (Joly et al., 2011; Wang et al., 2017; Cui
and Shi, 2021). NSAT is typically measured at a height of 2.0 m above the ground with high precision
and high temporal resolution, through irregularly distributed meteorological stations (Wang et al.,
2017). Understanding about the spatial-temporal variability of NSAT is required in hydrology,
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meteorology, and ecology (Peng et al., 2019). Thus, it is important
to assess how climate change has altered the NSAT in spatial and
temporal terms, and to enhance our understanding of its
variability. However, this is often limited by the spatial
coverage of instrumental records, especially in regions where
meteorological stations are insufficient and distributed unevenly
in space (Ilori and Ajayi, 2020).

A typical way to fill in this gap is by adopting the interpolation
method, which estimates plausible values based on the
discrete known values (Nalder and Wein, 1998). As a result,
interpolation is commonly applied to estimate the spatial
distribution of NSAT for regional scales (Fick and
Hijmans, 2017). However, it is known that no single
interpolation method is optimal for all regions, and the
performance of an interpolating method is strongly
affected by many factors, e.g., sample distribution and
density, surface type, data variance, data normality, grid
resolution, as well as the interactions among these factors
(Li and Heap, 2011). Consequently, there has been growing
interest in the development of methods for interpolating in-
situ gauged data from sparse networks (Khosravi and Balyani,
2019). So far, a number of interpolation methods have been
developed to obtain spatially continuous NSAT from point
station measurements, including inverse distance weighting,
regression analysis, kriging, and spline methods (Wu and Li,
2013; Kayikci and Kazanci, 2016; Hadi and Tombul, 2018;
Jiang et al.,, 2019; Collados-Lara et al.,, 2021).

Many studies have evaluated the spatial-temporal
variations of NSAT around the globe. In general, they
reported the consistent and significant increase in NSAT
over the past 100 years (Ding et al., 2007; Ren et al., 2016;
Luo and Lau, 2017; Amato et al., 2019; Zhou et al., 2020). For
example, the global average NSAT was trending upward at
0.145°C/decade in 1951-2019 (Li et al., 2021). In China, the
NSAT was increasing at 0.150°C/decade in 1959-2014 (Cui
et al., 2017). Moreover, there was a hiatus or slowdown in the
warming period following the 1997/1998 EL Niflo event at
both global and regional scales (Easterling and Wehner, 2009;
Cahill et al,, 2015; Fyfe et al, 2016; Sun et al, 2018;
Lewandowsky et al., 2018; Risbey et al., 2018; Li et al,
2021). For China, some studies have also indicated about a
slowdown in the warming trend since 1998 (Tang et al., 2012;
Li et al., 2015), which is more pronounced than the global
mean (Du et al., 2019).

The challenge of estimating NSAT is primarily in
mountainous or high elevation areas, where instrumental
records are not always available due to the paucity of
weather stations (Wang et al., 2017; Collados-Lara et al.,
2021). Earlier studies have demonstrated that co-kriging
and ANUSPLIN (abbreviation for Australian National
University Spline) are more suitable for sparse data in these
regions (Hutchinson and Gessler, 1994; Price et al., 2000; Islam
and Déry, 2017; Mohammadi et al., 2017; Zhao et al., 2019;
Belkhiri et al., 2020; Cheng et al., 2020; Guo et al., 2020). An
advantage of these two interpolation methods is that they can
model the terrain effect by considering additional variables
during interpolation process (Cuervo-Robayo et al.,, 2014).

Temperature Variation in Southwest China

Nevertheless, in most cases, both co-kriging and
ANUSPLIN would ignore some important terrain-related
factors (such as slope and aspect), which could influence
the amount of Sun radiation on land surface and then affect
NSAT (Minder et al., 2010; Zhao et al., 2019; Persaud et al.,
2020). Thus, it is reasonable to refine the interpolation results
of NSAT by incorporating more terrain-related variables,
especially in topographically heterogeneous regions (Price
et al., 2000).

It was reported that mountainous areas are especially sensitive
and vulnerable to climate change (Diaz and Bradley, 1997). Even
relatively small climate changes could have major implications for
animal, plant, and people living in these regions (Fan et al., 2011).
Hence, man studies have been conducted to understand the
associated impacts of climate change in mountainous regions
(Lin et al., 2017; Li et al., 2020). Nevertheless, biases in results are
generally inevitable due to limited in-situ instrumental records,
which make quantifying the climate trend, and variability
inherently difficult (Chen et al, 2018; Sun et al, 2018).
Therefore, one of the current research challenges is to seek
ways to fill these gaps and reduce uncertainties for the climate
change investigation in data-scarce mountainous areas.

Southwest China, a region with varied and complex
topography, has abundant mountainous regions, and is one of
the most sensitive areas to climate change (Du et al., 2017; Qian
et al, 2019). In addition, it is one of the key regions of grain
production in China, with a grain yield of ~12% of national total.
There were no consistent findings about the trends and variabilities
of NSAT in Southwest China. For example, cooling trends in the
southwestern parts of China were reported in 1951-2001 (Hu et al,
2003) and 1963-2012 (Dong et al., 2015). However, other studies
have shown that in response to global warming, Southwest China
has exhibited warming trends in 1961-2004 (Fan et al., 2011) and
1961-2012 (Wang, 2018). In addition, Ren et al. (2016) indicated
about the warming in Southwest China during 1992-2011, against
its cooling during 1973-1992. Except for the different study
periods, another important reason for this inconsistency might
be related to the failure of sparse weather stations in Southwest
China to fully satisfy the requirements for NSAT estimation (Yang
and Jiang, 2017).

Consequently, despite some previous reports on the general
characteristics of NSAT in Southwest China, no consistent results
were identified. Moreover, to date, few attentions have been paid
to the accurate interpolation of climate variables, and the spatial
and temporal features of NSAT over Southwest China are not well
recognized. Thus, Southwest China presents a good opportunity
to improve and test the interpolation method by comprehensively
taking into account the terrain effects on NSAT. The key
objectives of the current study are: 1) optimization of
ANUSPLIN by incorporating more terrain-related factors to
improve the accuracy of NSAT estimation; 2) evaluation of the
performance of the improved interpolation method by
comparing interpolated values to withheld station data, the
WorldClim datasets and the HMTC datasets (short for
gridded data sets cover China at 1km X 1km resolution); and
3) identification of the trends and spatio-temporal variability of
NSAT during 1969-2018 over Southwest China.
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FIGURE 1 | Study area and 494 meteorological stations in Southwest China.
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STUDY AREA AND MATERIALS

Study Area

The study area (83.87°E-112.07°E and 21.14°N-36.49°N) is
located in Southwest China, including Guangxi, Guizhou,
Chongging, Yunnan, Sichuan, southern Qinghai and some
parts of the Tibet Autonomous Region, with a total area of
2.33 x 10°km® (Xu et al., 2020) (Figure 1). The elevation in
Southwest China presents a considerable variation with a
difference of ~8,000 m, exhibiting complicated topographic
structures (e.g., mountains, plateaus, hills, basins, and
plains). Due to the wide range of latitudes and complex
topography, Southwest China is characterized by a variety
of climates and environments, ranging from monsoon region
in the southeast zone to semi-arid region in the northwest
zone (Jin and Wang, 2016). There are various ecosystems,
including tropical rain forest, tropical seasonal rain forest,
subtropical evergreen broad-leaved forest, and alpine
vegetation (Gao et al., 2018).

Data Sources

Meteorological Data

NSAT datasets during 1969-2018 were downloaded from China
Meteorological Data Service Center (http://data.cma.cn),
covering 494 meteorological stations in Southwest China
(Table 1). Its quality and uniformity were assessed by the
National Meteorological Information Center. The data include
daily and monthly averages, maximum and minimum
temperatures. The annual and seasonal temperatures for each
station were obtained by averaging the corresponding month

temperatures. Specifically, the spring (Tspring)> summer (Toummer)>
autumn (Tyurumn)> and winter (T'inr) denote the averages of
March-May,  June-August, September-November, and
December-February, respectively.

Terrain Morphology Data

The Digital Elevation Model (DEM) at the spatial resolution of
90 m that was measured by the NASA Shuttle Radar Topographic
Mission (SRTM). The DEM data were collected from the
Computer Network Information Center, Chinese Academy of
Sciences (http://www.gscloud.cn). In this study, the measures
used were elevation, slope, and aspect. Prior to formal
interpolation, we evaluated the performances of the DEM data
with different spatial resolutions. We noticed that with the
resolution of 500m, the interpolation process can be
completed with speed and the quality was satisfactory. Thus,
all the terrain data were resampled to 500 m x 500 m, and the
medians in each grid cell were used.

Other Air Temperature Datasets

The monthly mean near surface air temperature data for
1970-2000 on a 30 arc-second resolution grid were obtained
from the WorldClim Data Portal (https://www.worldclim.org).
The gridded data sets cover China at 1 km x 1km resolution
(HMTC) for the same period (Peng et al., 2019) were obtained
from the National Earth System Science Data Center (http://
www.geodata.cn). Specifically, WorldClim dataset is a set of
global climate layers, while HMTC dataset was spatially
downscaled from the 30 arc-minute resolution Climatic
Research Unit (CRU) time series dataset. These reference
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TABLE 1 | Datasets used to analyze NSAT in Southwest China.

Datasets Year Resolution
Time Space

Meteorological data 1969-2018 Day 90 m

DEM

HMTC 1970-2000 Month 1km

WorldClim 1970-2000 Month 30’

datasets could provide detailed climatology data, and
could be evaluated against the land-based observations.
Moreover, they could reflect orographic effects, and are
available for monthly mean, minimum and maximum
NSATSs.

METHODOLOGY

Improved ANUSPLIN Model

The ANUSPLIN is created using thin-plate smoothing
splines, which make it suitable for interpolating climate
data with large noises (Hutchinson and Gessler, 1994;
Price et al., 2000; Guo et al., 2020). The noisy multivariable
climatic data are treated as a function with one or more
independent variables during the fitting process of a
climatic surface, and thus can produce mean error lower
than other interpolation methods (Islam and Déry, 2017;
Zhao et al, 2019; Cheng et al., 2020). The theoretical
statistical model is expressed as:

Z,-=f(x,-)+bTyi+e,-(i:1,...,N) (1)

where Z; represents the predicted value at location i x; is the
spline independent variable as a multidimensional vector, and f
represents a smoothing function of x; which needs to be
estimated; y; is the independent covariable as a
multidimensional vector, and b is the unknown coefficients for
the y; n is the number of observational data. Each e; is an
independent, zero mean error term with variance w,0°, where
W, is the known relative error variance and ¢” is the error
variance which is constant across all data points.

The traditional ANUSPLIN treats longitude and
latitude as independent variables, with elevation as a
To optimize the ANUSPLIN model,
improved it by incorporating more terrain-related factors,
with slope, and aspect also as covariates (hereafter called
M-ANUSPLIN).

covariate. we

Interpolation Methods

The NSAT parameters in Southwest China are estimated
using co-kriging, ANUSPLIN and M-ANUSPLIN models,
respectively. Due to the complex topography of
the domain over Southwest China, we tested the
performance of these models using different combinations
of covariates (Table 4) to identify the best model in this
region, and to find which variable contributes more to NSAT
variability.

Temperature Variation in Southwest China

Sources

China Meteorological Data Service Center (http://data.cma.cn)

Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn)
National Earth System Science Data Center (http://www.geodata.cn)

WorldClim Data Portal (https://www.worldclim.org)

Model Assessment
To evaluate these models, a 10-fold cross validation test was

conducted to assess the overall error of the interpolated NSAT
grid. The advantage of 10-fold cross validation is that all
observations are used for both training and validation, and
each observation is used for validation exactly once. Thus, it is
widely used to validate gridded observations (Appelhans et al.,
2015; Yoo et al., 2018). In 10-fold cross validation for this study,
the original observation data of 494 meteorological stations were
randomly partitioned into ten subsamples. Of the ten subsamples,
a single subsample was retained as the validation data for testing
the model, and the remaining nine subsamples were used as
training data. The cross validation process was then repeated ten
times, with each of the ten subsamples used exactly once as the
validation data. Hence, 10 different combinations of training and
test sets were formed, and each of training and test pair was
applied and evaluated. Final evaluation of 10-fold cross validation
test was determined by the average mis-classification probability
over the ten test sets to produce a single estimation.

Based on the results of 10-fold cross validation test, the
statistical indices of Mean Absolute Error (MAE), Root Mean
Square Error (RMSE) and R-squared (R?) between predicted and
observed values were selected as interpolation performance
evaluation criteria. Briefly, MAE provides a measure of how
far the estimate can be in error; RMSE provides a measure
that is, sensitive to outliers; and R* provides the proportion of
variation that is, explained by the predictor variables. The
performance and bias were then compared by using the three
indices, and the interpolation method with better performance
was further selected. The calculation formulas of them are shown
below:

1 o
MAE = Y. IP-0l 2
_ 'S b -0y
RMSE = nzizl (P; - O;) 3)
RZZI—Z%I(Pi_?i)Z (4)
2L (6:-0)

where P; and O; are the estimated NSAT andioriginal

observational NSAT at each station, respectively; O is the
mean of observational NSAT; and # is the sample number.

Accuracy Comparison

To further examine the accuracy of obtained data set, two
published and widely used air temperature products were
compared. One is the 30 arc-second resolution grid product
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obtained from WorldClim Data Portal (hereafter called
WorldClim2), the other is the gridded data sets cover China at
1km x 1km resolution (hereafter called HMTC). Mean
temperature values in time series of 1970-2000 derived from
all datasets were compared. The M-ANUSPLIN and WorldClim2
values were resampled to 1 km x 1 km to render them consistent
with the HMTC reference products.

Trend Analysis

A trend slope ratio analysis was examined to investigate the
changing trends of NSAT for each pixel in 1969-2018 at both
annual and seasonal scales. The formula is as follows (Vogelsang
and Nawaz, 2017):

nx yiixTem; — ¥ iy Tem;
- 2
nx Z,illz - (Z?:ll)

where slope is the degree of change in Tem; n is the number of
studied years; i is the order of year from 1 to 50 in the study
period; and Tem; is the average Tem in the ith year. Slope >0
means that the air temperature over n years increased (warming
trend); while slope<0 signifies a decreasing trend (cooling trend).
To test the significance of these trends, a significance test (F-test)
was applied. According to the F-test, the trends were divided into
categories of extremely significant (p < 0.01), significant (0.01 <
p< 0.05), and non-significant level (p > 0.05).

A coefficient of variation (CV) index was also considered to
evaluate the spatio-temporal variation of NSAT. The CV was
calculated as follows (Yang and Jiang, 2017):

2.
i=1

where CV is the coefficient of variation for NSAT; Tem is the
mean temperature; Tem; is the temperature for year i; n is the
number of studied years; i is the order of year from 1 to 50 in the
study period. The significance test is carried out based on the p
value. The CV is classified into three categories of weak variation
(0 < CV < 10%), medium variation (10% < CV < 100%) and
strong variation (CV > 100%).

)

slope =

1 1
CV = —=x
Tem

(Tem; - Tem)2 x 100%  (6)

n-1

Change Points Detection

For a long-term climatic dataset, it is expected to experience
multiple changes rather than a single break (Khapalova et al,
2018). To detect and identify the time when significant changes
for NSAT happened in the time series of 1969-2018, pruned exact
linear time (PELT) was also conducted in this study. The
superiority of PELT exists in the ability of accurate and fast
detection and identification of multiple change-points (Killick
et al.,, 2012).

RESULTS

Model Performance

Table 2 compares the MAE, RMSE and R” of the predicted NSAT
parameters using different models over Southwest China in
1969-2018. Apparently, the prediction of M-ANUSPLIN

Temperature Variation in Southwest China

model gave lower MAE and RMSE compared to the
ANUSPLIN and co-kriging models for both annual and
seasonal NSATs. The R* values of the M-ANUSPLIN model
were 0.077-0.328°C above those of the other two models.
Specifically, for annual parameters, relative to the ANUSPLIN
and co-kriging models, the MAEs and RMSEs for the
M-ANUSPLIN model were 0.02-0.04°C lower for mean
temperature  (Tipean); 0-0.02°C for ~maximum
temperature (T,.); and 0.03-0.07°C lower for minimum
temperature (Ty,,). For seasonal parameters, the MAEs and
RMSEs for the M-ANUSPLIN model were also 0.01-0.04°C
and 0-0.05°C lower than the ANUSPLIN and co-kriging
models. These results indicate the improvement of the
M-ANUSPLIN model by incorporating slope and aspect as
interpolators. Moreover, Table 2 also reflects the seasonal
dependence of the model performance. In general, the MAEs
and RMSEs decline in the order from winter to autumn to spring
then to summer, while the R* basically has the opposite trend.

Figure 2 and Table 3 show the performances of co-kriging,
ANUSPLIN and M-ANUSPLIN models along altitudinal
gradients. It can be seen that in general, the M-ANUSPLIN
model has obvious advantages in regions with altitude
<4,000 m, followed by the ANUSPLIN and co-kriging models.
However, with the exception of elevation >4000 m, the MAE and
RMSE of the M-ANUSPLIN model were slightly higher than
those of the ANUSPLIN model. Moreover, in areas with altitude
>4,000 m, all the three models generally gave overestimated
values.

A summary of the performances of the ANUSPLIN and
M-ANUSPLIN models were further compared using different
combinations of covariates (Table 4). It can be seen that the
incorporation of additional terrain-related factors resulted in
more accurate results, and slope angle contribute more to
NSAT than slope orientation.

lower

Temporal Variation

Trends of Annual Temperature

The magnitude of change for annual mean NSAT ranged
15.20-16.81°C. Figure 3 shows the annual variation of NSAT
in the last 5 decades in Southwest China. It can be seen that over
the whole region, with respect to the mean temperature during
the period 1969-2018, the anomalies of mean temperature
(Tiean) ranged —0.80 to 0.80°C; maximum temperature (Tpax)
ranged —0.93 to 1.07°C; while minimum temperature (Ti,)
ranged —-0.77 to 0.96°C. In addition, Tiean> Timaw and Tiin
increased by 0.21°C/decade, 0.23°C/decade, and 0.28°C/decade
over the past 50 years, respectively. Moreover, the warming rates
for minimum temperature (0.28°C/decade) were greater than
those for maximum temperature (0.23°C/decade), with Ty,
about 1.22 times of Tp,,.

Trends of Seasonal Temperature

The changes of seasonal NSAT for spring, summer, autumn and
winter were 15.54-18.06°C, 22.15-24.13°C, 14.63-16.82°C, and
6.26-8.88°C, respectively. Figure 4 indicates the similarity
between the temporal patterns of the seasonal NSAT and the
annual NSAT trends. Nevertheless, compared with annual NSAT,
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TABLE 2 | 10-fold cross-validation results of the co-kriging, ANUSPLIN, and M-ANUSPLIN models.

Index Models Annual Seasonal
Tmean Tmax Tmin Tspring Tsummer Tautumn Twinter
MAE (°C) M-ANUSPLIN 0.49 0.64 0.52 0.62 0.43 0.70 1.51
ANUSPLIN 0.51 0.64 0.55 0.64 0.45 0.71 1.65
Co-Kriging 1.16 1.27 1.86 1.26 1.15 1.39 1.83
RMSE("C) M-ANUSPLIN 0.77 1.02 0.79 0.95 0.68 1.15 2.37
ANUSPLIN 0.81 1.04 0.86 0.98 0.73 1.18 2.37
Co-Kriging 1.78 1.92 3.25 1.94 1.73 2.09 2.66
R? M-ANUSPLIN 0.974 0.939 0.979 0.967 0.978 0.935 0.715
ANUSPLIN 0.970 0.937 0.975 0.964 0.975 0.932 0.713
Co-Kriging 0.858 0.785 0.651 0.860 0.857 0.786 0.638
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FIGURE 2 | The MAEs of co-kriging, ANUSPLIN, and M-ANUSPLIN models along altitudinal gradients.

TABLE 3 | Accuracy metrics of co-kriging, ANUSPLIN, and M-ANUSPLIN for the different altitudinal gradients.

Index Models Ho-1000 m H1000-2000 m H2000-3000 m Ha000-4000 m Hao00-6000 m

MAE (°C) M-ANUSPLIN 0.32 0.5 1.12 0.84 1.38
ANUSPLIN 0.33 0.54 1.15 1.09 1.25
Co-Kriging 0.74 1.26 2.42 3.16 1.83

RMSE (°C) M-ANUSPLIN 0.47 0.71 1.563 1.11 1.83
ANUSPLIN 0.46 0.75 1.68 1.37 1.78
Co-Kriging 1.10 1.66 3.46 3.8 2.67

R? M-ANUSPLIN 0.953 0.880 0.643 0.778 0.535
ANUSPLIN 0.954 0.863 0.572 0.666 0.561
Co-Kriging 0.738 0.338 -0.822 -1.598 0.008
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TABLE 4 | Comparisons of the ANUSPLIN model using different combinations of
covariates.

Models EDF freedom VGCV VMSR VVAR
Acie 436.9 0.69 0.61 0.65
Asiope 4427 1.68 1.50 1.59
Aaspect 443.5 1.69 1.51 1.60
Ae\e+s\ope 435.6 0.65 0.57 0.61
Ae\e+aspect 435.8 0.69 0.61 0.65
Aaspect+siope 4417 1.68 1.50 1.59
Agle+aspect+siope 434.8 0.66 0.57 0.61
Ademsaspect+siope 434.8 0.66 0.72 0.57

Note. EDF is the abbreviation for error degrees of freedom, GCV is for generalized cross
validation, MSR is for mean square residual, and VAR is for data error variance estimate.

the temporal variations of seasonal NSAT could not be divided
into cooling and warming phases clearly. Specifically, the
temperature variations in summer were more stable than that
in other seasons. Moreover, for spring, autumn and winter, the
temperature  variations showed stronger inter-annual
fluctuations. This could lead to extreme weather events in
Southwest China.

In Figure 4, the warming rate in summer (0.16°C/decade) was
lower than those in spring (0.22°C/decade), winter (0.22°C/
decade), and autumn (0.23°C/decade). This means that the
most unnotable contribution to the warming in Southwest
China as a whole comes from summer.

Change-Points of NSAT

Annual and seasonal variations of NSAT anomalies show that the
overall warming over Southwest China started in the late 1990s
and accelerated after it (Figures 3, 4). Specifically, for mean
temperature (Tiean), 18 out of 21 years were above the long-term
average after 1998, while it was 3 out of 29 before 1998. This
indicates that the NSAT of Southwest China was characterized by
the transitions from cold to warm phases in the late 1990s.

To detect and identify the time when significant changes of
NSAT occurred, the significant changes of each NSAT
parameters were identified by using the PELT method at both
annual and seasonal scales (as shown in Figure 5). It can be seen
that the annual changes for maximum, average and minimum
NSATSs were quite similar to the seasonal changes. Moreover,
there is strong evidence for the changes in all variables in the late
1990s and early 2000s. Specifically, for the annual mean
temperature (Tpe,n) and maximum temperature (Tp.y), the
significant changes began after 1997. While for the minimum
temperature (T;,), there were two significant change points with
both of them indicating a warming phase. The first change also
started after 1997, and the second change began after 2011.
Regarding the seasonal parameters, the change began after
1997, 2004, 1997, and 1985 for spring, summer, autumn and
winter, respectively.

Overall, it is clear that most of the significant changes of
NSAT occurred either in the late 1990s or in the early 2000s.
Thus, in terms of NSAT variations, the late 1990s and early
2000s can be remarked as the abrupt change period in
Southwest China.

Temperature Variation in Southwest China

Tmean

0.5 |

0.0

1.0 1Tmax
0.5 |

0.0

-1.0

Temperature anomalies (°C)

Tmin

1.0

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 years

FIGURE 3| Annual variations of NSAT anomalies in Southwest China for
the period 1969-2018.

Spatial Variation of NSAT

To further probe into the spatial variation patterns of annual and
seasonal NSATs over Southwest China, the variations with
significance test were analyzed at the pixel scale. The area
proportions occupied by extremely significant, significant and
non-significant NSAT related indices are shown in Figures 6, 7. It
can be seen that the M-ANUSPLIN interpolation datasets can
capture the detailed NSAT very well, and they can accurately
represent the climate characteristics in Southwest China, such as
the extremely significant cooling regions with high elevations
(e.g., the northwest of Qinghai-Tibet Plateau), the non-significant
warming regions with low elevations (e.g., the northeast of
Sichuan Basin), and extremely significant warming regions in
most part of the study area. Moreover, despite slight differences
between the spatial variations of annual NSAT and those of the
seasonal indices, they exhibited highly consistent characteristics.
Specifically, for the mean annual NSAT, during the period
1969-2018, 85.66% of the study area showed -extremely
significant warming with the most notable increases in the
southeast region. Areas occupied by non-significant warming
accounted for 2.48%, followed by significant warming with 1.32%,
leading to an overall warming tendency across Southwest China.
Nevertheless, the northwest region experienced a contrary
characteristic, with extremely significant, and significant
cooling accounted for 8.35%. This could be attributed to the
high altitude in this region, which belongs to the Qinghai-Tibetan
Plateau. Regarding the mean seasonal NSAT, areas occupied by
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FIGURE 4 | Seasonal variations of NSAT anomalies in Southwest China for the period 1969-2018.
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FIGURE 5 | Change-points for annual and seasonal NSATs in Southwest China for the period 1969-2018 (p-value < 0.05).

extremely significant warming in spring, summer, autumn and
winter accounted for 63.48, 71.47, 72.36 and 54.77%, respectively.
Otherwise, it can be seen that winter has the highest proportions
for non-significant warming, comparing to other seasons
(Figure 7).

Figure 8 shows the coefficient maps of variation (CV) index
for NSAT over Southwest China. It indicates the high consistency
of the CV index of annual NSAT with that of seasonal index over

the past 50 years. Both annual and seasonal CV indices were
generally stable and mainly dominated by weak or medium
variations. Strong variations were mainly observed in high
altitude regions, or in the combined section for encompassing
plain and mountainous regions. For seasonal NSAT indices, it
also mainly exhibited weak or medium variations, with different
patterns in different seasons. Specifically, strong variations were
identified in autumn and spring, followed by winter, while
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summer was the most stable, denoting that autumn maybe more
susceptible to the warming.

DISCUSSION
Priority of M-ANUSPLIN

Previous studies indicated that topographic information might be
the key factor in climate indices prediction, especially in
mountainous or high altitude areas with low density of
meteorological stations (Gao et al., 2018; Peng et al., 2019).
Therefore, it is possible that the precision of interpolation
could be further improved by incorporating more detail
terrain-related factors (Cheng et al, 2020). Nevertheless,
traditional interpolation method is usually processed under the
assumption that the NSAT is only dependent on the altitude.
However, Safanda (1999) demonstrated the strong dependence of
NSAT on slope angle and orientation. Therefore, it is possible that
the precision of interpolation for NSAT could be improved by

considering slope angle and orientation in the interpolation
process.

In this study, we included longitude and latitude as
independent variables, and incorporated elevation, slope and
aspect as covariates. We found that compared to the
ANUSPLIN model, the MAE and RMSE values decreased by
0-5.77 and 1.96-8.86% for annual parameters, and 1.43-4.65 and
0-7.35% for seasonal parameters. As a result, the M-ANUSPLIN
exhibited smaller deviation and performed better against other
interpolation methods, especially in mountainous regions.
However, our results also reflected the relatively poor
performance of the M-ANUSPLIN model in regions with
altitude >4,000 m, suggesting that it is not optimal for all regions.

Our study confirmed that slope is an important terrain-related
factor in the interpolation process for NSAT (Table 4). As slope
angle affects the temperature of surface objects by influencing the
incidence angle and reflectivity of solar radiation, and then alters
NSAT (Li et al.,, 2015; Peng et al., 2020). However, our study
revealed the much smaller contribution of slope orientation to
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NSAT estimation than slope angle. This is not consistent with
existing knowledge, which believes that slope orientation plays an
important role in NSAT prediction. Earlier studies reported that
in the middle latitudes of the Northern Hemisphere, the north
slopes are generally colder at the same elevation than the south

orientation on

slopes because sunny aspects receive more direct solar radiation

than northern aspects (Safanda, 1999; Li et al.,
reason for this inconsistent might be due to the different
vegetation types in Southwest China. For example, Safanda
(1999) explained that the surface temperature in the meadow is
higher than that in the forest because much of the Sun
radiation is absorbed by the trees. Thus, the NSAT for
meadows located at north slopes might be higher than the
NSAT for forests located at south slopes. Another reason

2015). One

dataset (Fick and
etal,2019). The 1

might be due to the existence and duration of the snow
cover in high altitude regions, which can offset the effects
of slope orientation on NSAT. Consequently, the effect of slope

NSAT in Southwest China was smaller

compared to those in other regions.

Comparisons With Other Datasets
To examine the accuracy of M-ANUSPLIN interpolated dataset,
the predicted results were compared to both the WorldClim 2.0

Hijmans, 2017) and the HMTC dataset (Peng
0-fold cross validation test was used to evaluate

the overall error of the interpolated NSAT grid obtained from
each dataset and the original observation data of 494
meteorological stations (Table 5).
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TABLE 5 | Comparisons of annual and seasonal climatology indices among different datasets.

Index Datasets Annual (°C) Seasonal ("C)
Tmean Tmax Tmin Tspring Tsummuer Taul‘umn Twinter
MAE('C) M-ANUSPLIN 0.50 0.69 0.58 0.64 0.54 0.73 0.60
WorldClim2 0.66 0.87 0.71 0.91 0.66 1.40 0.75
HMTC 0.72 1.51 1.13 0.99 0.68 1.39 0.87
RMSE(°C) M-ANUSPLIN 0.83 1.14 0.82 1.00 1.09 1.18 0.98
WorldClim2 1.038 1.36 1.11 1.35 1.13 2.87 1.14
HMTC 1.19 1.97 1.54 1.57 1.23 2.83 1.30
R? M-ANUSPLIN 0.97 0.925 0.978 0.963 0.947 0.933 0.965
WorldClim2 0.954 0.894 0.96 0.932 0.943 0.603 0.953
HMTC 0.938 0.778 0.923 0.907 0.932 0.615 0.939

Table 5 lists the mean, maximum, minimum values for
annual and seasonal NSAT variables obtained from different
datasets. It can be seen that the climatology anomaly of
M-ANUSPLIN dataset is the lowest comparing to the
WorldClim 2.0 and the HMTC datasets. Specifically, the
anomalies are relatively high for HMTC (0.72-1.51°C for
MAE and 1.19-197°C for RMSE); intermediate
for WorldClim2 (0.66-0.87°C for MAE and 1.03-1.36°C for
RMSE); and the lowest for M-ANUSPLIN (0.50-0.69°C for
MAE and 0.82-1.14°C for RMSE). The seasonal NSAT
variables shows the similar trend, where HMTC gives the
highest estimation error, followed by WorldClim2 and
M-ANUSPLIN. The good performance of M-ANUSPLIN
can be mainly attributed to two reasons. Firstly, in case of
WorldClim2 and HMTC datasets, only ~300 sites and ~500
sites of in-situ observation stations were respectively used for
interpolation, and therefore significant biases occurred due to
the complex terrain (Peng et al, 2019). Secondly, the
M-ANUSPLIN model incorporated more detailed
topographic information than traditional models, and thus
can capture NSAT features with better precision.

Opverall, the results indicate that the improved M-ANUSPLIN
model can produce more accurate NSAT values than traditional
interpolation models, and has apparent advantages over other
interpolation methods in complex terrain areas like Southwest
China.

Study Limitations

Whilst this study demonstrated that the improved
M-ANUSPLIN method can estimate more accurate NSAT
than traditional models, especially in complex terrain areas
like Southwest China, uncertainties still remain regarding the
density of meteorological stations, input datasets and
urbanization effect. Firstly, as gauge stations are relatively
sparse in the western region of the study area, acquiring a
correct distribution of NSAT through interpolation is difficult.
The interpolated NSAT grid surface might contain some biases,
which could introduce some uncertainty, especially in regions
where the NSAT varies significantly in space and time. In
addition, as the satellite SRTM product represents the average
value in a 500 m x 500 m pixel, it does not provide the fine details
and thus could not fully represent the real situation, which might
also lead to additional biases.

Secondly, another source of uncertainty could be due to the
input datasets. The NSAT is affected not only by topographical
factors, but also closely related to other factors, e.g., vegetation
and soil (Cho and Choi, 2014; Lensky et al., 2018). Moreover, as
mentioned above, the effects of snow cover could be stronger than
general expectation. It implies the need of careful interpretation
of NSAT. Therefore, to further improve the accuracy of NSAT
prediction, more information should be taken into account in the
future.

Thirdly, the urbanization heat effect, which has a strong
warming effect on NSAT (Kalnay and Cai, 2003; Ren et al.,
2008; Luo and Lau, 2021), has not been considered in this study.
This could cause an underestimation of NSAT, especially in the
eastern region of Southwest China with a lot of big cities.
Nonetheless, the results of this work should still, at least
qualitatively, reveal the trends and spatial-temporal variations
of NSAT in Southwest China over the past 50 years.

Lastly, elevation is an important factor affecting spatial
variability of climate (Pepin et al., 2015). It is well known that
for a stationary atmosphere, an increase in elevation leads to a
subsequent decrease in air pressure and NSAT (You et al., 2008).
According to EI Kenawy et al, 2009, different regions can
experience different variations of NSAT, as each region has a
unique terrain (Limsakul & Goes, 2008). Moreover, the variation
of NSAT was not consistent between high and low land areas.
Many studies suggested that NSAT increased more rapidly at
higher than at lower elevations (Beniston, 2003; You et al., 2008;
Pepin et al, 2015), which has been defined as elevation-
dependent warming (EDW). However, this faster warming is
not ubiquitous across the globe (Thakuri et al., 2019). In general,
this study agrees with the previous studies of the EDW
phenomenon with most high-altitude areas show significant
warming. Nevertheless, we also observed a significant cooling
trend in some high altitude regions like the northwestern part of
Southwest China in the past 50years. The reason for this
phenomenon is still unclear, thus further investigation would
be required.

CONCLUSION

This study enhanced the ANUSPLIN model by incorporating
elevation, slope angle and orientation as covariates; and
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constructed monthly NSAT datasets with a spatial resolution of
500 m in Southwest China from January 1969 to December 2018.
The accuracy of the M-ANUSPLIN model was evaluated by
analyzing error statistics based on comparisons between
interpolated  values  against withheld stations data.
Furthermore, we compared the M-ANUSPLIN predicted
dataset against existing datasets. To our knowledge, this is one
of the few studies which considered slope angle and orientation to
account for the terrain effects on NSAT. The independent
validation results confirmed the clear advantages of the
optimized M-ANUSPLIN model against other interpolation
methods in Southwest China. Our methodology therefore
represents a significant and practical improvement in NSAT
estimation. Therefore, it has great potential for meteorological
and climatological research, especially in mountainous regions
with diverse topography.

As mentioned above, during the period 1969-2018, consistent
warming and significant EDW were found in most part of
Southwest China, while some sporadic areas like northwestern
region exhibited opposite trends. In general, Southwest China
experienced an overall warming with a rate of 0.21°C/decade,
obviously higher than mainland China and global averages. This
implies that Southwest China is more sensitive to global warming
than generally recognized. The warming mainly started in the late
1990s, and the hiatus or slowdown phenomenon was not
observed as expected, and the NSAT experienced a persistent
and even more significant warming after the 1997/1998 EL Niflo
event. This means that climate change in Southwest China should
be of particular concern. Moreover, the increase of low
temperature was significantly greater than that of high
temperature, where the warming rate of T, (0.28°C/decade)
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A Bayesian-model-averaging Copula (i.e., BMAC) approach was proposed for correlation
analysis of monthly rainfall and runoff in Xiangxi River watershed, China. The BMAC
approach was formulated by incorporating existing Bayesian model averaging (i.e., BMA)
method and Archimedean Copula techniques (e.g., Gumbel-Hougaard, Clayton and Frank
Copulas) within a general bivariate hydrologic correlation analysis framework. In this paper,
the BMA method was applied to determine the marginal distribution functions of variables,
and the Copula method was used to analyze the correlation. Results showed that: 1) the
BMA method could improve the representation of the marginal distribution of hydrological
variables with smaller corresponding errors; 2) the predictive joint distributions of monthly
rainfall and runoff was much better calibrated by the Gumbel Copula according to criteria of
the root mean square error (i.e., RMSE), Akaike Information Criterion (i.e., AlC) values,
Anderson-Darling test (i.e., AD test), and Cramer-von Mises test (i.e., CM test); and 3) the
bivariate joint probability and return periods of rainfall and runoff based on the optimal
Copula function was characterized and the monthly rainfall and runoff presented a strong
positive correlation based on Kendall and Spearman’s rank correlation coefficients.
Therefore, the BMAC approach performed reasonably well and can be further used to
simulate runoff values according to the historical and predicted rainfall data. Highlights: 1) A
Bayesian-model-averaging Copula method is proposed for correlation analysis; 2) the
monthly rainfall and runoff in Xiangxi River watershed has a positive correlation. 3) Gumbel
Copula is the best in modelling the joint distributions in the Xiangxi River watershed.

Keywords: archimedean copula, Bayesian model averaging, rainfall and runoff, Xiangxi river watershed, climate
change

1 INTRODUCTION

Investigating the hydrological variables relations is of vital significance for flood control and water
resource management (Fan et al., 2018). Univariate hydrological frequency analysis procedures are
important tools for analyzing the change rules between rainfall and runoff (Andres-Domenech et al.,
2015; Shin et al., 2015; Zhou et al., 2020). However, it cannot reflect the variation of variables effectively
because it overlooks the joint effects of variables. In addition, variables of real-world hydrological
systems are complicated with many factors, such as correlations and multidimensional characteristics
in hydrological processes (Zhang et al., 2006; Zhang et al., 2007; Remesan et al., 2009; Reusser et al.,
2010; Takbiri and Ebtehaj, 2017; Sun and Zhou, 2020). Consequently, statistical theories of joint
probability analysis were undertaken for developing more effective methods in this field.
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As a sufficient probabilistic analysis method for correlated
multivariate events, Copula function has been widely applied to
hydrological simulations (Aghakouchak et al., 2010; Chebana
et al, 2012; Ma et al,, 2013; Serinaldi, 2013; Madadgar and
Moradkhani, 2014; Qiang et al., 2014; Li and Zheng, 2016;
Nasr and Chebana, 2019; Yang et al, 2019). One of the
advantages is that the calculations of marginal distributions
and correlation analysis in Copula function are relatively
independent, which is the successful key to make the joint
analysis of multivariate methods more popular (Favre et al,
2004; Shiau et al., 2007; Chebana and Ouarda, 2009; Sraj et al.,
2015; Sugimoto et al., 2016; Lei et al., 2018). On the other hand,
the inherent uncertainty has been proved by practices existing in
any single frequency distribution model structure (See and
Abrahart, 2001; Wu et al, 2022), which directly affects the
reliability of hydrological prediction (Zhou et al, 2018).
Therefore, a multi-model method is proposed to deal with the
inherent uncertainty for improving the accuracy of hydrological
modeling and forecasting. Currently, the multi-model
combination methods include: the weighted average method,
linear regression, and neural networks (DeChant and
Moradkhani, 2014; Xu et al,, 2017; Zhou et al., 2021). These
methods are mainly based on different deterministic theories to
form a more accurate synthesis simulation results, but rarely
consider the uncertainty of the model structure. Therefore, a
better method to reflect the uncertainty of the multi-model
method is particularly important.

The Bayesian model averaging (BMA) method has been
widely used to construct a simulation process with better
description of variables’ probabilities in areas of management,
medicine, meteorology, etc. (Tsai, 2010; Fang et al., 2018; Zhang
and Yang, 2018). It can efficiently handle the marginal probability
distribution function (Zhang and Yang, 2012) and produce more
accurate model synthesis results for the uncertain model
structure. In this case, the obtained marginal distribution
functions can be directly used as inputs of the Copula
function. However, the adjunct process has not been used to
study the correlation between rainfall and runoff, and thus its
applicability remains to be further verified.

When considering the structure of the marginal distribution in
the present hydrological field, a single model is usually used to
calculate the hydrological frequency curve of each variable (Xu
et al, 2021). General models of distribution of unique
hydrological ~ probabilities  include  primarily = Gamma
distribution, generalized extreme value distribution, lognormal
distribution, etc. (Lu et al., 2021). According to the principle of
the BMA method, it is found that we can construct a more
suitable expression form for specific hydrological variables
through this method and use this distribution form as a
marginal distribution to calculate the Copula joint
distribution function (Lin et al., 2021; Rahimi et al., 2021).
Compare with the non-parametric method. Non-parametric
methods are generally robust but ineffective. The precision of
the parameter estimates is high. Ramsey proposed a method for
modelling the core and imported histograms into the model.
This method not only improves the accuracy of the estimate,
but also increases the design speed (Ramsey, 2012). The

Rainfall and Runoff

nonparametric method gives more attention to sample
distribution as it does not take the form of distribution.
when the quantity of data is different, the
parameter method is more stable because of the a priori
assumption that it responds to a specific distribution. When
the amount of data is small, using the parameter method and
considering its underestimated risk can obtain better results
(Zeng, 2014). Therefore, in this paper, we compare the
marginal distribution among the parameter, nonparametric,
and BMA methods to choose the best method of this study.

The objective of this article is to develop a BMA Copula
(BMAC) approach for correlation analysis with rainfall-runoft in
the Xiangxi River, the largest tributary of the Yangtze River in the
Hubei part of the Three Gorges Reservoir area. In this system, the
marginal distributions of monthly rainfall and runoff are
simulated by the BMA method with better description in
probability of each variable. Then correlation analysis between
rainfall and runoft is constructed by the Gumbel Copula method.
This paper aims to: 1) determine the variables’ marginal
distribution functions; 2) estimate the two-dimensional Copula
function parameters and calculate the Kendall and Spearman’s
rank correlation coefficients to ascertain the optimal Copula
function; and 3) characterize the bivariate joint probability and
return periods of rainfall and runoff based on the optimal Copula
function.

However,

2 METHODOLOGY

2.1 Bayesian Model Averaging Theory

2.1.1 Bayesian Model Averaging

BMA is a statistical analysis method and can be used to infer a
probabilistic prediction. It is a statistical analytical method that
considers the uncertainty of the model itself. In this paper, the
BMA method is applied to simulate the streamflow. Suppose that
y is the forecasted variable, F = (fi, f2,-"fx) is the all
considered model predictions, and M = (y1,y2, ") is a
given empirical probability distribution, where y; is the
experience distribution probability at t time. Considering the
inherent uncertainty of a model, the posterior distribution of y
under a given empirical probability distribution condition can be
presented as:

k
p(YIE, M) =Y p(felM)pi (y] fro M (1)
k=1

where p(fix|M) represents the posterior probability of a single
distribution model fx, pr(¥|fx, M) means the posterior
distribution of y under a given model prediction fj and data
set M.

Let wy, represent p ( f|M) with Z wg = 1. The posterior mean

k=1
value and variance of the BMA predlctlon can be expressed as
(Raftery et al., 2003; Duan et al., 2006):

2

K
= Zwkfk
k=1

E(yIM) = ZP (felM)E[pe (y] fr- M
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FIGURE 1 | The framework of BMAC.

K K 2 K
Var(y|M) = Z (fk - Zw,-f,) + Za)kai (3)
k=1 i=1 k=1

where o} represents the variable variance when the empirical
frequency and model prediction are M and f, respectively. The
BMA mean value prediction can be calculated by the weighted
average probability dlstrlbutlons for dlfferent optlmal simulation.

The two parts denotedbyz wi (fr— Z ,f,) and Z wkak inEq.3
k= k=

mean the error between models and error of the model itself
individually. =~ Compared to  deterministic = multi-model
combinations, BMA possesses more reliability in reflecting the
uncertainty of distribution models.

2.1.2 Expectation Maximization Algorithm
To effectively calculate the weight and variance of BMA, the
expectation-maximization (EM) method is introduced in this
paper. EM is an iterative calculation method and has been widely
used (Bilmes, 1998) to calculate the maximum likelihood
estimation, and the obtained results show good effect
especially in dealing with a great number of missing data. In
detail, the EM algorithm can be illustrated as follows.
Considering the stability and convenience of calculation, the
EM algorithm uses log-likelihood function (Duan et al., 2006).

Rainfall and Runoff

Assume the prediction error in time and space is independent, the
log-likelihood function can be formulated as follows (Duan et al.,
2006):

2(wy, -, wi, 0%)

=i1°g<iwkgk(yz|fk,f)> (4)

t=1 k=1

Assume Zj, is an unobserved variable, if at time t, fi is the
best prediction model, then Zy; = 1; otherwise, Zx; = 0. At any
time t, only one of {Z1;, -+, Zx,} is equal to 1 and the others are
equal to zero. The key of applying the EM method is to switch
steps between the expectation and maximization. It starts under
an initial guess, such as assuming a value of §”) for parameter 6.
In the expectation (E) step, Zi is estimated by the given current
guess value of 6. In the maximization (M) step, 6 is estimated by
the given current values of Z,. These two steps are repeated until
a predetermined accuracy meets the requirement. The detailed
EM computation process is as follows.

Step 1. Initialization:
- f k,r)2>
=Yt )

Tk T kL T

where T is the number of data, and j is the number of iterations.
Step 2. Calculate the initial likelihood:

ff(@(j)) = log<iwk * Pr ()’|fk’M)>
k=1

Step 3. Implementation of the E-step operation:

g()/tlfk,f’ak(j_l))
f g(%lfk,nﬂzf’;l))

k=1
t=1,2T ?)

Setj= j+ 1,2 = k=1,2-K,

Step 4. Perform the M-step operation:
Calculate the weights of the single prediction model:

1, (i
Vegyzd ®
t=1
Update the single forecast model variance:

T . 5
sz(,f) : (J’t - fk,t)
20) = =1 )
T .
yz{)

t=1

Update the value of the likelihood function ¢ (CEOY
Step 5. Check convergence:

Ife (G(j)) -¢ (9(]4’1)) is less than or equal to 107, then stop the
operation; else return to the third step.
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Readers can refer to McLachlan and Krishnan (McLachlan
and Krishnan, 1997) for more detailed information of the EM
algorithm.

2.1.3 Kernel Density Estimation
In statistics, the kernel density estimation (KDE) is a non-
parametric way to estimate the probability density function of
a random variable. KDE is a fundamental data smoothing
problem where inferences about the population are made,
based on a finite data sample (Li et al., 2022). Among the
many non-parametric methods currently used, the KDE
method proposed by Guo et al. (1996) is the most widely
used, and the effect is the most ideal.

The estimation formula of the univariate kernel probability
density function:

. 1 &, /X—X

== k( ) 10
HOR DY (10)
where 7 is the length of observed data x;; K (-) is the kernel density
function; and & is the window width, it determines the variance of
the kernel function.

among variables (Xie et al, 2020). Consequently, the
Archimedean Copula function family could be an important
method for hydrologic frequency analysis.

2.2.1. Archimedean Copula Function

Let u; be the variable margin, 0 be the parameter of the Copula
function, the cumulative probability distribution of the three
Archimedean Copula functions mentioned above can be
expressed as follows:

(1) Gumbel-Hougaard Copula function
Cup,uy - u) =
exp{ ~ [ () + (In (@)’ + - + (In(w)’]" };9 € [1,00)

(11)

Expression of generator: ¢ (t) = [-In ()]’ (12)
(2) Clayton Copula function

1
Cup,uy, s uy) = {u;g A A (2 1)}9; 0 € (0,00)%

2.2 Copula Function Theory (13)
Copula theory was proposed by Sklar (1959), which has many Expression of generator: ~ ¢(t) =t — 1 (14)
types of Copula functions, such as normality of Copula, t-Copula

functions, and Archimedean Copula function family (Nelsen,  (3) Frank Copula function

1999). Among them, Archimedean Copula function family,

including Gumbel-Hougaard Copula function, Clayton Copula Cluy, g, -ty) =

function, and Frank Copula functions, has characteristics of B lln{ - [exp (—6u;) — 1] [exp (=Buz) — 1]--- [exp (—Ou;) — 1]} 0cRr
simplified structure, diversification, and practicability, which 0 [exp(-0) - 1] ’

lead to relatively simple processes in constructing corrections (15)
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exp(-6t) - 1

Expression of generator: exp(0) -1

9= (16)

2.2.2 Correlation Measure of Copula

Correlation measure of random variables is used to describe
the mutual dependence between random variables. There are
many test metrics, in this study Kendall’s rank correlation
coefficient 7 and Spearman’s rank correlation coefficient p

are used to evaluate the correlation of the streamflow
variables. In detail, the corresponding Kendall’s rank
correlation coefficient 7 and Spearman’s rank correlation
coefficient p, for Copula function C(u, v) can be expressed as
follows:

T=4J: J:C(u,v)dC(u,v)—l (17)
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TABLE 1 | The fitting parameters of probability distributions.

Probability distribution Parameter Rainfall Runoff
Gam a 32.76 2.91
b 1557.46 31363.50
Gev k -0.34 0.18
o 8899.63 3.65
y 48177.10 63161.80
Log Y 10.82 11.24
o 0.178 0.62
Weight
BMA Gam 0.9999996 0.00001
Gev 3.90E-07 0.49844
Log 6.79E-14 0.50155

p, =12 jl Jl uvdC (u,v) —3 =12 r Jl C(u,v)dudv -3 (18)

0 Jo 0 Jo

2.2.3 Estimation of Copula Function Parameter
To estimate the parameter of Copula function, the
exact maximum likelihood (EML) method is used
(Dupuis, 2007). If the joint distribution function of
t-dimensional continuous random variables x,x,, " x;
can be expressed as C(up,up, - --uy), its maximum
likelihood estimate can be calculated as follows (Dupuis,
2007):
Step 1. Establish the relevant likelihood function

The joint density function is expressed as:

C[(uhub ut)a (01, 92) "'>0t)) 0(]
_ atc[(ub U, "'ut); (61’ 92’ T 6t)> (X] (19)
Ou,0uU, - 0u;

Likelihood function is expressed as:
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TABLE 2 | The D, RMSE and AIC analysis for marginal distributions.

Probability
distribution

Gam
Gev
Log
KDE
BMA

RMSE AlC
Rainfall Runoff Rainfall Runoff Rainfall Runoff
0.061 0.097 0.024 0.056 -1624.15 -1242.93
0.083 0.065 0.038 0.0819 -1404.66 -1481.28
0.097 0.079 0.059 0.0849 -1222.06 -1445.28
0.088 0.106 0.026 0.0813 -1570.65 —1490.51
0.060 0.061 0.023 0.0245 -1621.13 -1596.99

Rainfall and Runoff

L[(Gb 62) “.>9t)) 0(] = HC[(uilauiZa ”'auit); (Gla 62) Y et)’ 06]
i=1

(20)

Correspondingly, the log-likelihood function can be expressed as:

InL[(0;,0,, -, 0,),a] = iln
Lttt 4); (B, B, <2 6,), ] (1)
Step 2. Solve the likelihood function
(él, 92, TN ét), a =argmaxInL[(60,,0,, -, 6;),«] (22)

where: (60,0,,:--6;) are the unknown parameters of the
distribution function for each margin; « is the associated
unknown parameter in the Copula function.

2.3 Goodness-Of-Fit Statistical Tests

In order to perform the goodness-of-fit statistic tests for both
univariate distribution and Copula functions the root mean square
error (RMSE) and Akaike Information Criterion (AIC) are adopted to
assess the validation of the BMAC method. RMSE can quantitatively
analyze the results when the graph fitting effect is similar. To evaluate
the performance and select the best fitted Copulas, the goodness-of-fit
statistics test is conducted based on AIC (Akaike, 1974) and Cramér
von Mises statistics (Genest et al., 2009).

1 N
MSE = <3 (Fon (X1, Xi2, i) = C (i, i, -+ 1))’
i=1

(23)
RMSE = VMSE (24)

where Fp, (xi1, X, **+,x;r) is the value of empirical joint
distribution; C (u;1, usp, *-u;) is the value of the predicted joint
distribution; MSE is the mean square error; N is the length of the
observed data; k is the number of unknown parameters in the
model.

AIC = N1n(MSE) + 2k (25)

The Kolmogorov-Smirnov test (K-S test) is chosen because it
is a useful nonparametric hypothesis test, which is primarily used
to test if a set of samples comes from some probability
distribution (Miller, 1956).

D= maxlF“t (X < X(i)) - Fabs (X < X(i))| (26)
1<i<n
where F®'(x<x(;) is the value of theoretical probability
distribution; F*(x<x(;) is the value of the empirical
probability distribution; # is the length of the data.

The Anderson-Darling test (AD test) also has been chosen
because of its excellent properties against a variety of alternatives,
the test statistic is as follows (D’Agostino, 1986):

1 n
A= —n- Z;(Zi ~1)- [In[F,(H@)] +In(1 = F(H i)

27)
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TABLE 3 | Parameters estimation and correlation analysis of copula function.

Correlation Ellipse copula

Gaussian copula T Copula
Upper 0.5283153 0.5293994
Lower 0.417623 0.4191937
Kendall 0.578918 0.5807679
Spearman 0.7738921 0.7694191

where: H (1) < H () < -+ < H ;) are values in ascending order; F is
the distribution function of x* (2).

Specific calculation steps are as follows:
Step 1. Calculate the marginal distribution functions Fx and Fy
by the univariate empirical formula.
Step 2. Calculate H(X,Y), obey y*(2) distribution.

H(X,Y) = [0 (Fy)]* + [0 (C(Fy[Fx)]*  (28)

where: @' is the inverse function of the standard normal
distribution.

Step 3. Calculate statistic value AZ.

Step 4. Estimate Copula parameter 6 based on the marginal
distribution function.

Step 5. Simulate and generate Copula random samples with
Rosenblatt’s transformation test method, find new Copula
function parameter 6.

Step 6. 2Calculate a new H" (X*,Y™), and then calculate statistic
value A,,. ,
Step 7. Repeat steps 3 to 6 m times, obtain a sequence of A , put
the sequence in ascending order, and calculate the critical and
statistical value of each sub-site. S
Step 8. Compare the relationship between the statistic A, and
critical statistics. If the statistical value is lower than the critical
one, the distribution of the results can be accepted; otherwise,
reject the distribution results.

2.4 Bayesian-Model-Averaging Copula

(BMAC) Method

In this study, the BMAC method would be proposed by
combining the BMA and Copula methods into a general
framework. In detail, the BMA method is wused to
determine the marginal distributions of monthly rainfall
and runoff, and the Archimedean Copula method can be
used to construct the joint distribution of monthly rainfall
of runoff. Correspondingly, the BMAC method involves four
steps: 1) determining the marginal distributions of monthly
rainfall and runoff based on the principle of BMA and
generating the values of weight through the EM method, 2)
establishing the joint distributions by the Archimedean
Copula (e.g., Gumbel-Hougaard Copula, Clayton Copula,
and Frank Copula) method, 3) estimating the values of the
Copula parameter 6 through the maximum likelihood
method, and 4) performing the goodness-of-fit statistic
tests by RMSE, AIC, and AD test. The framework of the
BMAC is shown in Figure 1.

Rainfall and Runoff

Archimedes copula

Clayton copula Gumbel copula Frank copula

0.6655733 0.6695867 #
0.6100611 0.7516461 #
0.4240182 0.5931158 0.5864246
0.5938393 0.7799526 0.7887916

3 CASE STUDY

3.1 Overview of the Studied Area

The Xiangxi River basin is located between 30.96 ~ 31.67° N and
11047 ~ 111.13°E in the Hubei part of China, being the largest
tributary of the Yangtze River in the Three Gorges Reservoir area
(see Figure 2). It originates in the Shennongjia Nature Reserve, with
the mainstream length of 94 km and a catchment area of 3,099 km®
(Han et al,, 2014). This region experiences a northern subtropics
climate, and the main rainfall season is from May to September with
the annual precipitation of 1,100 mm (Xu et al., 2009). In addition,
the hydrological station mostly covering this river is called the
Xiangshan Hydrological Station (110.45°E, 31.13°N).

In order to provide decision support for flood control and
water resource management of the Xiangxi River basin, the
hydrological frequency analysis of this region would be studied
based on daily rainfall and runoff data (1991-2008) from
Xingshan Hydrological Station in this study (see Figure 3).
Figure 3 demonstrates that rainfall and runoff in 1996 were
relatively high, while rainfall and runoff in 1997 were relatively
low. The annual distribution of runoff is primarily concentrated.
The annual distribution of rainfall is rather dispersed. Annual
rainfall and runoff during 1996 and 2007 were particularly sparse.
Rainfall and runoff are strongly correlated. Figure 4
demonstrates that the distribution of monthly rainfall and
runoff are similar. The scatter plot demonstrates that the
R-square value is 0.698 and the AUK value of the Kendall plot
is 0.667. Both of them show a positive correlation (Figure 5).

3.2 Results Analysis

3.2.1 Comparison of Marginal Distributions

In the procedure of hydrological frequency analysis, the monthly
rainfall and runoff probability distributions in the Xiangxi River
basin are first estimated by the Gamma, the generalized extreme
value, and the lognormal distributions, respectively. And then,
the BMA-based marginal distributions are obtained according to
the three estimated distributions. Table 1 shows the fitting
parameters of probability distributions.

Based on the weights and distribution parameters presented
above, the BMA-based marginal distributions of monthly rainfall
and runoff can be obtained. The Gamma distribution may
account for a major proportion (99.99%) to produce the
BMA-based marginal distribution of monthly rainfall; while
the generalized extreme value distribution and lognormal
distribution may account for almost the same proportion to
produce the BMA-based marginal distribution of monthly runoft.
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FIGURE 7 | Comparison of the theotrical and empircal joint CDFs for
rainfall and runoff in Xiangxi River. (A) Gumbell-Hougard-Copula-based joint
distribution. (B) Frank-Copula-based joint distribution, respectively.

Rainfall and Runoff

The comparison of empirical and generated marginal
cumulative distribution functions (CDFs) for monthly rainfall
and runoff is shown in Figure 6. It indicates that the BMA-based
marginal distribution may appropriately represent the univariate
rainfall and runoff probability distributions. In order to clearly
clarify, the D, RMSE, and AIC values for the marginal
distributions obtained by the four methods are also calculated
and presented in Table 2. In addition, to compare with the non-
parametric methods, the KDE method is also calculated in the
same way. Results D show that only the GEV and BMA methods
pass the K-S test (the upper boundary of D is 0.092 while alpha is
0.05) in both rainfall and runoff. The obtained results indicate the
corresponding errors of the BMA method are relatively smaller
suggesting the accuracy of the marginal distributions generated
by the BMA method is very excellent.

3.2.2 Comparison of Joint Distributions

After determining marginal distributions, the joint probability
distributions of monthly rainfall and runoff in the Xiangxi River
can be estimated by a Copula function. The estimation
parameters for each Copula function are calculated based on
the maximum likelihood estimation theory. In addition,
according to the obtained parameters, the correlation
coefficients can be calculated. Results are given in Table 3. It
can be seen that the Kendall’s rank correlation coefficient ranges
from 0.42 to 0.59 and the Spearman’s rank correlation coefficient
ranges from 0.56 to 0.78. Therefore, it can be concluded that the
monthly rainfall and runoff of the Xiangxi River have a relatively
strong positive correlation.

According to Table 3, Gumbel-Hougaard-Copula-based joint
distribution and Frank-Copula-based joint distribution are
superior to the Clayton one based on the Kendall correlation
and the Spearman correlation. Moreover, it shows that the
estimation of the upper tail correlation coefficient should
select the Gumbel Copula, the number is 0.6696. The
estimation of the lower tail correlation coefficient should select

Joint distribution

0.4

Rainfall CDF

0.4
0.2

Runoff CDF 0 0

FIGURE 8 | The joint CDFs of rainfall and runoff.
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TABLE 4 | Goodness-of-fit of BMAC.

Fit test Test statistics a-the critical value of sub-sites
0.20 0.15 0.10 0.05 0.01
AD 0.97 1.47 1.69 1.97 2.30 3.55
CM 0.12 0.23 0.269 0.30 0.41 0.68
0.03
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FIGURE 10 | Comparison of BMAC and MEGHC.

the Gumbel Copula, the number is 0.7516. Obviously, there are
both upper tail correlation and lower tail correlation in the
Xiangxi River. This conforms to research by Yang et al.
(2016). Goodness-of-fit tests of empirical joint CDFs and
theoretical joint CDFs are calculated for further analysis (as
shown in Figure 7).

Comparing the results shown in Figure 7, it can be known that
the joint distribution by Frank-Copula is close to the one by
Gumbel-Hougaard-Copula in  quantifying the relevant
characteristics of monthly rainfall and runoff of the Xiangxi
River. The RMSE of the Gumbel-Hougaard-Copula is less
than the Clayton copula. The Frank-Copula function has no
tail correlation and cannot capture the tail correlation between
variables according to Xue (2018). Gumbel Copula performs
better in the upper correlation while Clayton Copula performs
better in the lower correlation (Jondeau, 2016). Therefore, the

Gumbel Copula function would be chosen to construct the joint
distribution of monthly rainfall-runoff pairs. The corresponding
results are plotted and shown in Figure 8. Figure 9 shows the
combined probability density and return period of rainfall and
runoff using the Gumbel Copula. It indicates that the extreme
value of annual precipitation or annual runoff, the joint
probability density is relatively small. When the annual runoff
is constant, the greater the annual precipitation, the longer the
time of return period is. In addition, the largest rainfall of
observed data is 1,341.7 mm, the runoff of that year is
556.36 m’/s. The return period is about 10 years, which is
reasonable.

In this study, the AD test and the CM test also have been
selected to investigate the suitability of the BMAC-based joint
distributions in describing the dependencies for different rainfall-
runoff pairs. The results are displayed in Table 4, and statistics A2
are less than threshold values Afl(ok)l (a=0.1)and A2™ (a = 0.05),
where « is the significant level. Thus, the null hypothesis H,
would be accepted. In total, it can be concluded that BMAC has a
distinct superiority in modelling variable pairs.

3.2.3 Comparison of BMAC and MEGHC

In order to further clarify the efficiency of the BMAC method, a
Maximum Entropy-Gumbel-Hougaard Copula (MEGHC)
method proposed by Kong et al. (2015) has been applied for
comparison. Accordingly, two joint distributions can be
generated by the two methods, and the bias value between the
two methods also can be obtained (shown in Figure 10). From
Figure 10, the results are quite close to each other, and the great
deviation value (i.e., absolute error) is 0.03, which illustrates that
both of the two methods can be used to generate the joint
distribution of the rainfall and runoff because of the best
fitting effect. It also can be found that, under the condition of
the CDF interval being 0-0.4, results obtained by the BMAC
method are superior to the MEGHC method; while the CDF
interval being 0.9-1, the MEGHC method may converge much
faster. To some extent, the MEGHC method can better capture
the characteristics of the upper tail dependence, which plays a
great role in flood and drainage control and watershed design
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work (Kong et al, 2015). However, in the situation of
representing the uncertainty of the model structure, it is hard
to find a suitable distribution to capture the characteristic of the
hydrologic variable. Comparatively, the BMAC method can
obtain a synthetic simulation result especially in exactly
reflecting the variables’ correlations.

4 CONCLUSION

In this study, a BMAC method has been proposed for assessing
correlations of bivariate variables in hydrological processes.
Through incorporating BMA and Copula functions within a
general framework, BMAC can determine the marginal
distribution functions of variables, and meanwhile analyze the
correlation. To demonstrate the applicability, the developed
BMAC method also has been adopted to investigate the
hydrological frequency analysis of the Xiangxi River basin.
The specific conclusions can be summarized as follows:

(1) Compared with the empirical and nonparametric marginal
CDFs, the Bayesian model averaging method can improve
the representation of the marginal distribution of
hydrological variables and comprehensively capture the
shape of empirical CDF with smaller corresponding errors.
The goodness-of-fit statistical tests, consisting of RMSE, K-S,
and AD test, indicate that the BMAC method is suitable for
describing the statistical probabilities and the dependencies
in the historical data of the Xiangxi River, China.

There is a relatively strong positive correlation existing
between the monthly rainfall and runoff. The Gumbel
Copula would be best for modelling the joint distributions
of monthly rainfall and runoff.

Compared with the MEGHC method proposed by Kong et al.
(2015), the BMAC method can obtain more accurate

2

3)

(4)
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The related dynamic change in meteorological and hydrological parameters is critical for
available water resources, development management options, and making informed
decisions. In this study, to enhance the resolution of the predicted meteorological and
hydrological parameters under climate change, the statistical downscaling method
(SDSM), the generalized regression neural network (GRNN) model, the Soil and Water
Assessment Tool (SWAT) model, and the improved Tennant method were integrated into a
framework. The available water resources were assessed in the Huangshui watershed of
the Qinghai-Tibet Plateau, which has the highest average elevation in the world. The
meteorological parameters were obtained by the SDSM model and the GRNN model. The
SWAT model used the meteorological parameters to simulate the hydrological data under
climate change scenarios. Considering the meteorological conditions and the high
sediment content in the basin, the available water resources are evaluated by the
improved Tennant method. The meteorological data of the Xining station from 1958 to
2011 were used to analyze the dynamic changes and mutation trends in the data. The
results indicated that the precipitation would have a great increase during the wet season
from May to September, and the flows and available water resources would decrease with
increasing carbon emissions under different representative concentration pathways
(RCPs).

Keywords: water resource assessment, downscaling models, climate change, GRNN model, SWAT

1 INTRODUCTION

The spatial and temporal dynamics of ecosystems are closely related to fluctuations in the climate.
The meteorological parameters are severely affected by the climate change that cause the reallocation
of water resources and lead to crisis of water utilization and threaten human lives (Song et al., 2019;
Sharma and Goyal, 2020). In addition, as sensitive climate and ecosystem area, the meteorological
data in the ecotone attracts major concern for fragile ecosystem management. The climate changes
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are expected to produce large shifts in water distributions at
unprecedented rates (Hanewinkel et al., 2013; Teng et al., 2020).
Thus, predicting the meteorological parameters, the hydrological
parameters, and the water resource availability in the ecotone
areas under different climate change scenarios is important for
planning and managing the ecological environment.

Previously, in order to meet the actual condition in regional
scale, the downscaling methods were developed for improving the
spatial resolution of the global climate models (GCMs) in climate
change impact assessment (Thuiller et al., 2005; Delworth, 2006;
Taylor et al.,, 2012; Hughes and Mazibuko, 2018). Among those
methods, due to its relatively low computational requirements,
the functional transformation downscaling method is the most
commonly used downscaling method (Ghosh and Mujumdar,
2008; Guo et al., 2014). For example, Jeong et al. (2012) provided
a multisite hybrid statistical downscaling procedure combining
regression-based and stochastic weather generation approaches
for multisite simulations of daily precipitation. Piras et al. (2015)
advanced a statistical downscaling method to analyze the impacts
of climate change on precipitation and discharges in a
Mediterranean basin. Tang et al. (2016) developed statistical
and dynamical downscaling methods to simulate the surface
climate of China based on large-scale information from either
reanalysis data or global climate models. Although the large-scale
parameters, such as the atmospheric oscillation and the
circulation patterns with slowly changing processes and low
resolutions can be addressed by the downscaling process, the
changing process of small-scale parameters (e.g., local
temperature and precipitation) are needed to reflect for
analyzing the response relationship between underlying
surfaces and meteorological factors in hydrological simulations
(Sillmann et al., 2013; Friedlingstein et al., 2014; Zhang et al.,
2020).

Moreover, water resource availability refers to the largest
one-time utilization quantity of local water resources within an
expected time range under deduction of the ecological water
demand, and the determination of ecological water demand is
the key to evaluating water resource availability (Kattsov et al.,
2007; Whitehead et al., 2009). The acceptable approaches to
simulate ecological water demand can be divided into four
categories, including the hydrological index method,
hydraulic method, holistic method, and habitat method.
Among these, as a typical representative of hydrological
index measures, the Tennant method is widely used due to
its convenient operation and high accuracy to determine the
ratio of the ecological water demand to the average annual
natural flow through the correlation between the flow in rivers
and environmental quality of fish habitats (Yakup et al., 2018;
Suwal et al., 20205 Joseph et al., 2021). However, the application
of the Tennant method for permanent rivers in arid and
semiarid areas still has some limitations. The Tennant
method divides the year into two periods to calculate the
recommended average percentage of runoff according to the
amount of runoff monthly. At the same time, this method is
mainly studied on the basis of considering the impact of runoff
on fish and ecosystem, so it needs to be adjusted in the study
area with high sediment content in rivers. So, it needs to be
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improved according to the actual situation and regional
characteristics.

Therefore, in consideration of the above limitation, the aim of
this study is to develop a general framework through integration
with the SDSM downscaling method, the GRNN model, the
SWAT model, and the Tennent method for a comprehensive
meteorological and hydrographic prediction, and available water
resource assessment of the Huangshui watershed in the
Qinghai-Tibet Plateau with the fragile ecological environment.
For the framework, the SDSM downscaling method was applied
for temperature prediction according to the large-scale observed
meteorological data, and the GRNN model was advanced to
improve the prediction accuracy of monthly precipitation. The
predicted temperature and precipitation values were the main
input parameters to the SWAT model to simulate more precise
hydrologic data under different climate change scenarios, and the
water availability within basin scale can be further obtained
through the improvement of the Tennent method. The study
results could analyze the available water resource for generating
effective water resource management schemes and address the
impacts of the climate change on ecotones in the basin.

2 METHODOLOGY

This study constructed a comprehensive assessment framework
of water resource availability based on hydrological simulation
under the impact of climate change. The methodology contains
three parts. The first step is the development of future climate
conditions including daily temperature with the SDSM method
(Section 2.1) and precipitation with the GRNN model (Section
2.2). The second step involves using the downscaled daily
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precipitation and temperature to simulate daily runoff using the
SWAT model (Section 2.3). The third step involves using the
hydrological data to calculate the water resource availability using
the Tennant method (Section 2.4). To evaluate the SDSM model,
the GRNN model, and the SWAT model, R2 and NSE are used
(Section 2.5). Figure 1 presents the general framework of the
evaluation method of available water resources based on
hydrological simulation under the impact of climate change.
Historical data and climate change scenarios both include
daily and monthly data. The daily data of historical data and
climate change scenarios will be used to predict temperature
through the SDSM model. The daily data and monthly data of
historical data and climate change scenarios are used by the
GRNN model, and the precipitation prediction results will be
obtained.

2.1 Statistical Downscaling Model

Statistical downscaling model (SDSM) is an effective decision
supporting tool with a robust statistical downscaling technique
for assessing local climate change impacts (Wilby et al., 2002;
Meenu et al., 2013). Under the present and future climate forcing,
this model can facilitate the rapid development of the multiple,
low-cost, and single-site scenarios of daily surface weather
variables. The general equation for the SDSM is as follows:

R=F(L) (1)

where R = predictand (a local climate variable), L = predictor (a
set of large-scale climate variables), and F = deterministic/
stochastic function conditioned by L and is estimated
empirically from historical observations.

Statistical downscaling model (SDSM) is used to downscale
temperature factor, which includes the daily maximum and
minimum temperatures. The data required include the daily
measured data of weather station and the daily large-scale
meteorological data obtained by GCM. In order to achieve the
purpose of this study, the software (SDSM v. 5.2) was used.

2.2 Generalized Regression Neural Network

Model

Considering that the SDSM 1is not accurate enough for daily
precipitation prediction, we built a new generalized regression
neural network model (GRNN method) to predict precipitation,
and the new method is suitable for the description of various
nonlinear relations. This method is based on nonparametric
regression. It takes the sample data as a posteriori condition,
performs nonparametric estimation, and calculates the network
output according to the maximum probability principle (Specht,
1991; Dalkilic et al., 2014). At present, it has been applied in many
fields such as control decision system, structure analysis, and so
on (Kumar and Malik, 2016). The network has the following
obvious advantages: 1) No model parameters need to be trained,
and the convergence speed is fast; 2) Based on radial basis
function network, it has good nonlinear approximation
performance, and has good adaptability to curve fitting
problem. In this model, a network can be employed to
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estimate a dependent variable from an independent variable
through finite datasets (Cigizoglu and Alp, 2006). The
theoretical foundation of the GRNN model is the kernel
regression, which is a nonlinear regression analysis. The
regression of the random variable y on the observed values X
of random variable x can be found using:

['rf (X.y)dy
[°.f (X, y)dy
where f (X, y) is a known joint continuous probability density
function. When f (X, y) is unknown, it should be estimated from

a set of observations of x and y. f (X, y) can be estimated using
the nonparametric consistent estimator suggested as follows:

E(yIX) = )

FO) = o 2o
S W ST

where n = sample size, p = dimensionality of random variable x,
and o = smooth parameter.

By substituting Eq. 3 into Eq. 2, and after solving the
integration, the following equation will be obtained:

202

iy exp[ - w]

Y(X) =
Z?:lexp[ -

(4)

(xex)! (X-X")}
202

Equation 4 is directly applicable to the issues involving
numerical data. In order to improve the predictive accuracy
caused by the nontemporality of daily precipitation, the
GRNN model was improved to construct a two-layer GRNN
model as shown in Figure 2. First, the first layer of the GRNN
model is constructed, in which the monthly precipitation is
predicted by multiple monthly scale factors. Second, the
second-level GRNN model is constructed, which uses multiple
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daily scale factors and monthly precipitation as input variables
and daily precipitation as output variables to calibrate and verify
the model. The model is composed of the two layers models.
Through the gradual simulation and prediction, the nonlinear
relationship between the large-scale meteorological data and the
measured daily precipitation is obtained.

2.3 Hydrological Model

The Soil and Water Assessment Tool (SWAT) is a physically
based semi-distributed hydrological model used to simulate the
quantity and quality of surface water and can be also used to
predict the impact of land use, land management practices, and
climate change on hydrology (Arnold et al., 2012), and developed
by the Agricultural Research Service (ARS) of the United States
Department of Agriculture (USDA). The hydrological simulation
in the SWAT model is mainly carried out through the
hydrological module. The process is divided into two parts,
land slope runoff and river channel runoff. The land slope
runoff consists of precipitation process, rainwater trapped by
plant canopy into soil, groundwater, and surface runoff (Nyika
et al., 2020). The river channel runoff is mainly affected by the
evaporation of water and infiltration of the river water. The
balance equation of water quantity in this model is shown as
follows:

t
SWt = SWO + Z(Rday - qurf - Ea - Wseep - ng) (5)

i=1

where SW; = ultimate soil moisture content, SW, = antecedent
soil moisture content, t sample size, Rg,, = daily total
precipitation, Qs = total surface runoff, E, = the total
evapotranspiration, Wy, = soil infiltration capacity and
lateral flow volume, and Qg,, = total underground runoff.

2.4 Tennant Method of Water Resource
Availability Assessment

The Tennant method is an operational method originated from
the midwest of the United States, which can determine the ratio of
ecological water demand in the average annual river flow and
evaluate the degree of river ecology according to the analysis of
the relationship between the flow of multiple rivers and the
environmental quality of fish habitat (Abbaspour et al., 2007;
Ateeq-Ur and Abdul, 2018). Specifically, 10% of the average flow
is a minimum instantaneous flow recommended to sustain short-
term survival habitat for most aquatic life forms, 30% of the
average flow is recommended as a base flow to sustain standard
survival conditions for most aquatic life forms, and 60% of the
average flow provides the excellent habitat for most aquatic life
forms. In addition, according to the monthly runoff changes and
the growth conditions of fish and other aquatic organisms, the
evaluation standard can also be divided into two periods from
October to March and April to September. The Tennant method
can be used in calculating the ecological water demand in
permanent arid and semi-arid rivers. Practically, some
appropriate improvements should be conducted based on the
actual hydrological changes and the regional characteristics. In

Water Resources Availability Assessment

this study, as the largest tributary of the upper reaches of the
Yellow River, the Huangshui River Basin suffered from serious
soil erosion and high sediment content due to the influence of
geological conditions and human factors. The sediment is mainly
concentrated from June to September. Through the calculation of
the average sediment transport in Xining station, the average
sediment concentration is 2.45kg/m’. Therefore, in order to
ensure that there are enough water resources in the
Huangshui River to transport the sediment in the water to the
downstream, it is necessary to increase the sediment transport
water demand on the basis of the original Tennant method.

2.5. Model performance evaluation method
In this study, the determination coefficient (R?) and
Nash-Sutcliffe efficiency coefficient (NSE) were used to
evaluate the accuracy of the simulation results. The formulas
are shown as follows:

2

YL (0i-0)(Si-9)

R = ]

(0, -0’y (S - S) (6)

NSC=1- M -
i (Oi - O)

where, i = the number of time series, i = 1,2...,n; S; = the ith
modeled value; O; = the ith observation; S = the average of
modeled values; and O = the average of observations. R* ranges
from 0 to 1. The NSE ranges from minus infinity to 1.

3 STUDY AREA AND DATA

3.1 Overview of the Huangshui Watershed
The Huangshui watershed, a semi-arid area with an average
annual precipitation of less than 400 mm, is located in the
upstream of the Yellow River. Moreover, this area is the core
region of the Tibetan Plateau with the most dense population and
the most developed economy. Therefore, as a transitional and
ecologically fragile zone between the Tibetan Plateau and the
Loess Plateau, this area has become a globally well-known
ecologically vulnerable area with the characteristics of high
ecological sensitivity, low environmental capacity, a weak
capability to withstand interference, and poor stability (Song
et al., 2009; Chen et al., 2015).

The Huangshui watershed has a total area of 10,337 km?, and
the overall terrain of the basin is high in the northwest and low in
the southeast. The river originates from the mountains at an
elevation of 4,300 m, and the total basin has elevations ranging
from 2,100 to 5,000 m. The terrain of the river basin is complex
and diverse, mainly including mountains, hills, valley basins, and
other landforms. The upper reaches of the river are mainly
canyons, while the middle and lower reaches are mainly wider
canyons. The study area is located in the inland plateau
continental climate, and belongs to a subhumid climate area.
The area has a high elevation, a large amount of evaporation, and
large temperature differences between day and night. The annual
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precipitation is unevenly distributed in this region, and 60%-80%
of the total precipitation is concentrated in the rainy season.
Moreover, the dry season from November to February only
accounts for approximately 3% of the annual precipitation. In
addition, the river networks are arranged in dense, branching
patterns, with more than 10 main tributaries.

3.2 Data Collection

The meteorological data were obtained from the standard
weather station of the Yellow River upstream (1952-2011),
which was provided by the “Comprehensive data platform of
Ningxia-Inner Mongolia Reach of the Yellow River,” National
Key Basic Research Program of China. These data were measured
on a daily time span, and the original format was “.txt.” The data
of the Menyuan meteorological station (W1) and Xining
meteorological station (W2) are used in this study. The study
data contained daily meteorological data for the upper reaches of
the Yellow River and its surrounding areas from 1952 to 2011.
The standard station data included air pressures, temperatures,
humidity values, wind speeds, and 15 other factors.

The large-scale meteorological data obtained by GCM used to
estimate the future trends in climate change came from the
CanESM2 model (the second-generation Canadian Earth
System Model), which was developed by CCCma (Canadian
Centre for Climate Modeling and Analysis). The selected
large-scale meteorological factors include the daily maximum
near-surface air temperature (tasmax), daily minimum near-
surface air temperature (tasmin), near-surface air temperature
(tas), precipitation (pr), near-surface relative humidity (ths),
surface air pressure (ps), total cloud fraction (clt), eastward
near-surface wind (uas), and northward near-surface wind
(vas). The data used in this study were based on CMIP5
(Coupled Model Intercomparison Project Phase 5), which
included the historical scenario, RCP (representative
concentration pathway) 2.6 scenario, RCP4.5 scenario, and
RCP8.5 scenario (Park et al., 2018). These data had two kinds
of time spans: daily and monthly. The original format was “.nc,”
and the data were spatial grid data with a spatial resolution of 2.5°.

The DEM (digital elevation model) was provided by the
Geospatial Data Cloud site, Computer Network Information
Center, Chinese Academy of Sciences (http://www.gscloud.cn/
sources/accessdata/310?pid=302). The data were derived from
the ASTER GDEM dataset based on the Advanced Spaceborne
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Thermal Emission and Reflectance Radiometer (ASTER) data
developed by the National Aeronautics and Space Administration
(NASA) and the Ministry of Economy, Trade, and Industry
(METI) of Japan. The resolution of the DEM data used was
30m, and the original format was “tiff.” Based on Landsat
8 remote-sensing images, the datasets were generated by
manual visual interpretation. In the study area, the land use
types included the cultivated land, forestland, grassland, water
area, residential land, and unused land. These data were obtained
from the data center of resources and environment science,
Chinese Academy of Sciences and are 1-km resolution,
remote-sensing monitoring data of the land use status of
China in 2015 with the “tiff” format. According to the
analysis, grassland, forestland, and cultivated land were the
main types in this region, accounting for 52.45, 20.82, and 18.
02%, respectively. Construction land accounted for only 3.22% of
the total area. The soil parameters were provided by the China
Soil Map Based Harmonized World Soil Database (HWSD). The
soil data were provided by the Nanjing Soil Institute for the
second land survey in 1995, and the data resolution was 1 km with
the “tiff” format. Considering that the soil particle size grading
standard in the HWSD is American standard, these data can be
directly used to establish the SWAT model soil database. The
division threshold was set at 2,000 ha, and the Xiaoxiaqiao section
was selected as the outlet of the watershed. A total of 305
subbasins are generated, and the final division results are
shown in Figure 3D. Figures 3A-D have been used in the
SWAT model, and they are elevation, land use type, soil type,
and subwatershed distribution.

In this study, the mainstream Huangshui River and its
tributaries were simulated. The hydrological data are from
eight hydrological stations in the basin, including Huangyuan
station (H1), Xining station (H2), Dongjiazhuang station (H3),
Xinachuan station (H4), Niuchang station (H5), Qiaotou station
(H6), Chaoyang Station (H7), and Fujiazhai station (H8). The
daily flow monitoring data from 2008 to 2015 were used as the
hydrological data in this study. Table 1 shows the results of the
annual average flow of each hydrological station. Xining Station is
located in the lower reaches of the Huangshui watershed, close to
the exit of the basin, with an annual average flow of 39.99 m’/s. As
the second largest hydrological station, Chaoyang station is
located in the upper reaches of the confluence point of the
Beichuan River, the main tributary of the Huangshui River

TABLE 1 | Annual average flow of each hydrological station.

Year Streamflow station (unit: m%/s)

H1 (Huangyuan) H2 (Xining) H3 (Dongjiazhuang) H4 (Xinachuan) H5 (Niuchang) H6 (Qiaotou) H7 (Chaoyang) H8 (Fujiazhai)

2008 7.32 29.55 2.13 3.41 4.95 10.62 14.95 4.14
2009 10.62 41.19 2.88 6.10 8.52 18.18 22.27 3.19
2010 9.30 37.57 3.21 4.65 7.12 18.19 20.26 3.21
2011 9.35 43.27 2.86 5.42 8.96 19.96 24.75 3.26
2012 12.01 45.60 3.55 6.70 8.74 18.67 22.34 3.75
2013 9.22 30.08 2.87 4.52 6.53 13.64 15.68 2.83
2014 10.55 51.20 3.00 5.21 10.31 21.53 24.55 4.21
2015 9.14 41.46 2.36 4.31 9.22 16.04 19.86 3.84
Average 9.69 39.99 2.86 5.04 8.04 17.10 20.58 3.55
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FIGURE 3 | The graphic digital elevation model (DEM) data (A), land use data (B), soil data (C), and the divided threshold of the basin (D).

basin, with an annual average flow of 20.58 m?/s. According to the
statistics on the multiyear hydrologic flow data, the hydrologic
situations had markable changes in different years. For example,
the annual average flow of the Xining station in 2008 was
29.55 m>/s, which was only 57.7% of the annual average flow
of 51.20 m’/s in 2014.

The consistency of the time scales of the data utilized for the
SDSM model, the GRNN model, and the SWAT model needs to
be considered. The calibration periods, validation periods, and
predictive periods were 1979-2000, 2001-2005, and 2021-2035,
respectively, in the meteorological prediction section. In the
hydrological simulation part, according to the daily
hydrological data of the Huangshui watershed from 2008 to
2015, the relevant data from 2008 to 2013 were taken as the
model training period, those of 2014-2015 were taken as the
model validation period, and those of 2021-2035 were taken as
the prediction period. In addition, the warm up period of the
model was 3 years before the beginning time of the cycle.

4 RESULTS ANALYSIS AND DISCUSSION

4.1 The Prediction of the Meteorological

Data

4.1.1 The temperature predictions by the Statistical
Downscaling Method Model

The statistical parameter R* was used on the observation data and
large-scale forecast of the daily maximum and minimum
temperature from 1979 to 2000, and the R® values were
approximately 0.9, which suggested that the temperature had a

direct relation with the large-scale forecast factors and could be
predicted directly. Moreover, the unconditional process analysis
model of SDSM was applied to predict the monthly maximum
and minimum average temperatures from 2021 to 2035.

The predicted (each year from 2021 to 2035) and observed (each
year from 1958 to 2011) maximum temperatures and the average
minimum temperatures in different months are presented in
Figure 4 and Table 2. Compared with the observed
temperatures, the predicted maximum average temperatures of
January, February, June, October, November, and December have
an increasing tendency, and those of April, August, and September
have an opposite tendency. However, the minimum average
temperatures have an obvious increase in winter (November to
February) and decrease slightly in summer (June to August). The
prediction results suggested that considering the factors of climate
change, the temperature fluctuation of the Huangshui watershed
would become flatter, meaning that the temperature in winter
would increase obviously, and the temperature difference within
1 year would decrease. The determination coefficients (R-squared)
of the minimum temperature and maximum temperature were
0.77 and 0.62, respectively, and the Nash-Sutcliffe coefficients were
0.74 and 0.62. According to different season, the biggest change
occurred in winter. The prediction maximum average
temperatures will change from 2.87° to 7°, and the minimum
average temperatures will change from -12.35° to -8°.

The annual average maximum temperatures and minimum
temperatures of Xining station in the Huangshui watershed under
different scenarios are shown in Figure 5. Under different scenarios,
the average maximum temperatures and minimum temperatures at
Xining station increased. The maximum temperature rose from
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FIGURE 4 | The predicted results of the monthly average temperatures.
TABLE 2 | The results of daily maximum temperature and minimum temperature in different periods.
Period Model Max Min
Calibration period (1979-2000) Measured value 13.96 0.53
Global climate model (GCM) 6.52 -5.93
Validation period (2001-2005) Statistical downscaling method (SDSM) 14.73 1.08
Measured value 14.50 -0.32
GCM 7.61 -5.19
Prediction period (2021-2035) Representative concentration pathway (RCP)2.6 SDSM 15.21 1.77
GCM 8.40 -4.08
RCP4.5 SDSM 15.08 1.67
GCM 8.19 -4.25
RCP8.5 SDSM 1617 2.00
GCM 8.34 -3.81

13.88° to 15.25°, 15.13", and 15.21° in different scenarios. The
minimum temperature rose from 0.08" to 1.82°, 1.72°, and 2.04".
Under the RCP85 scenario, the annual average maximum
temperature showed an upward trend. However, in the RCP2.6
and RCP4.5 scenarios, the annual maximum temperatures showed
certain downward trends. At the same time, the annual average
minimum temperature showed an upward trend under the RCP85
scenario. Under the RCP2.6 and RCP4.5 scenarios, the annual
average minimum temperatures presented certain downward
trends. Overall, the maximum temperature and the minimum

temperature showed the same trends under different scenarios.
According to the analysis of different scenarios, the RCP2.6
scenario had a smaller temperature variation and stable climate
between different years.

4.1.2 Precipitation Prediction by the Improved
Generalized Regression Neural Network Model
Considering that daily rainfall is affected by atmospheric
circulation, temperature, humidity, cloud cover, and other
factors, seven factors (tas., pr., ths., ps. clt., uas., and vas.,)
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were selected as large-scale meteorological factors to predict daily
precipitation. The generalized regression neural network was
constructed and trained by using the historical meteorological
data from 1979 to 2000.

The daily precipitation in the verification period
(2001-2005) is seen as the curve of the original net in
Figure 6. The values of R* and NSE were 0.53 and 0.4,
respectively, which were not sufficiently ideal. The forecast
results of daily precipitation were also not ideal. This may be
due to the strong randomness of daily precipitation on a daily
time scale. To improve the predictive accuracy, the GRNN
model was improved to construct a two-layer GRNN model in
which the first layer took the monthly precipitation, monthly
average near-surface air temperature, average near-surface
wind, near-surface relative humidity, and surface air
pressure as the inputs to predict the monthly precipitation.
Then the monthly precipitation was induced into the second
layer as the correction factor to predict the daily precipitation.
The R* and NSE values obtained for the improved GRNN
model were 0.72 and 0.70, respectively, suggesting that the

accuracy of the results was improved and could reach a
satisfactory level.

By combining the improved GRNN model with the large-scale
meteorological data output by the CanESM2 model, the precipitation
predictions of the Xining station under different RCPs were obtained.
The annual average precipitation prediction results of the Xining
station are shown in Figure 7. The annual average precipitation
amounts of RCP2.6, RCP4.5, and RCP8.5 are 471.88, 486.98, and
485.67 mm, respectively, at Xining Station, which are very close. The
annual average precipitation has an increasing tendency for RCP2.6
and RCP8.5, but a decreasing tendency for RCP4.5. Under the
RCP2.6, RCP4.5, and RCP85 scenarios, the annual maximum
precipitations are 568.06 mm at the year of 2028, 653.66 mm at
the year of 2027, and 621.39 mm at the year 2034; the annual
minimum precipitations are 372.00 mm at the year of 2024,
407.91 mm at the year 2035, and 383.45 mm at the year 2035.

The monthly precipitation predictions and the observed
precipitation data of Xining station are shown in Figure 8. It
can be seen from the figure that during the dry season (November
to April), the precipitation amounts of different RCPs have no
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obvious changes with the observed precipitation; however, for the
precipitation of the wet season (May to September), the predicted
precipitation has a large increase.

4.2 The Prediction of the Hydrologic Data

4.2.1 Calibration and Evaluation of the Parameters

The parameters used in this model were chosen as follows: First,
the sensitivity ranking of the whole watershed parameters was
conducted through the sensitivity analysis process, and the
parameters ranked at the top were selected. At the same time,
the parameters to be calibrated, their alternative methods, and
initial rate determination range were determined in combination
with the results of the SWAT manual and related research as well
as the watershed related literature. Finally, 20 parameters and
their initial value ranges were obtained. The original data in this
paper were mainly used to calibrate the parameters and compare

the simulation results with the final evaluation to determine the
simulation effects of the model.

The daily flow rate data from 2008 to 2013 were set as the
model calibration period, and those of 2014 and 2015 were set as
the validation period of the model, and the 3 years before the
calibration period were set as the model reheating period. The
calibration was conducted for the eight hydrologic stations of the
Huangshui watershed according to the principles of branches first
and then main streams, up streams first and then down streams.
The SWATCUP model was calibrated by the universal Sufi2
(Sequential Uncertainty Fitting Version 2) method, which takes
the nondeterminacies of the input data, model structures,
parameters, and metrical data into consideration and reflected
the nondeterminacies to the ranges of the parameters. After the
parameter calibration, the uncertainty interval at the 95%
confidence level could contain most measured data.
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The observed results of the calibration period, optimum
simulation results, and 95% confidence interval are shown in
Figure 9. It could be suggested that the SWAT model could
simulate the monthly variation characteristics of the flow rates in
the Huangshui watershed by the results of the calibration period.
It was suggested that the single peak and multiple peaks in
Figure 9 were attributed to the flow-rate peaks. When there
was one main heavy precipitation in a month or the times of
precipitation were concentrated, a single peak appeared; when the
heavy precipitation happened more than once in a month or the
times of precipitation were dispersive, multiple peaks appeared.

According to the variation characteristics of the observed and
simulated results, it was concluded that the simulated results had
smaller fluctuation ranges and that the value variation was more
stable. In the wet seasons of the second (2009) and fifth years
(2012) of the calibration period, the observed results were all
higher than the optimum simulated results. The R* and NSE
values of most hydrologic stations are approximately 0.75 and
0.70, respectively, which can properly reflect the whole flow rates
of the Huangshui watershed.

The observed and updated simulated flow rate results in the
verification period of the Xining hydrologic station are shown in
Figure 10. The observed and simulated values are well fitted,
especially for Xining Station, which is upstream of the basin main
exit and can effectively reflect the variation characteristics of the
flow rate with time.

4.2.2 The Simulation and Prediction of the
Hydrological Data
The parameters calibrated by the SWATCUP were input into the
SWAT model to obtain runoff data at the exit of the Huangshui
watershed from 2006 to 2015, which was set as the basic period.
The average amount of runoff was 49.59 m*/s, and 2007 and 2013
had the largest and smallest runoff amount, at 60.83 and
37.31 m’/s, respectively. The runoff data were set as the basic
data for the hydrological analysis under different climate change
scenarios.

The predicted meteorological data at different RCPs were
applied in the SWAT model with the calibrated parameters of
the Huangshui Basin. The predicted runoff data at the exit of the
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basin under different RCPs are shown in Figure 11. It was
suggested that under different RCPs, there was a large
distinction among the runoff data, and the runoff data were
64.59, 59.20, and 49.61 m’/s for RCP2.6, RCP4.5, and RCP8.5,
respectively. In addition, with the increase in CO, emission, the
flow rate was larger than the flow rate between 2006 and 2015,
which was 49.59 m’/s.

4.3 Basin Water Availability Assessment

4.3.1 Analysis of Basin Ecological Water Demand

Based on monthly runoff, the original Tennant method divides
the whole year into two periods and calculates the percentages of
average annual flow. The first period is from October to March,
and the second period is from April to September. Actually, the
distinct regional characteristics and the monthly runoffs of the
Huangshui watershed force the redivision of these two periods.
According to the monthly average runoff data of the Xiaoxia

Bridge section from 2006 to 2015, it is at the exit of the Huangshui
River basin. It can be estimated that the annual average runoff of
the Huangshui watershed is 49.59 m/s. The average runoff from
December to April is almost under 30 m>/s, which accounts for
22% of the annual overall runoff. Specifically, only runoff flow of
23.73 m/s can be found in March. In comparison, the average
runoff in each month from May to November is above 40 m’/s,
which occupies 78% of the annual overall runoff. During the
period from July to September, the average runoff can reach
80 m’/s. Thus, this study divides the whole year into two periods,
from December to April and from May to November. Moreover,
in consideration of the convenience of calculation, different levels
of runoff percentage are recommended based on the runoff ratios
at different time periods.

In this study, the Huangshui River is the largest tributary of the
Yellow River, which contains high sediment due to the influence
of geological conditions and human factors. The detention period
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of the sediment is from June to September. From the annual
calculation of the mean annual sediment transport at Xining
station, the mean annual sediment content in the Huangshui
River is 2.45 kg/m’. Thus, it is necessary to attach the calculation
of the sediment-carrying water volume on the original Tennant to
ensure that the Huangshui River has enough water to transport
the sediment in the water body downstream. Since sediment
transport is mainly concentrated in the flood season, the
sediment-carrying water volume of the Huangshui River
during the flood season is 35 m’/t.

The average annual sediment-carrying water volume in the
Huangshui watershed is approximately 134 million m?,
accounting for 8.58% of the overall average annual runoff.
The ecological water demand in the river channel accounts
for 60.00% of the overall annual average runoff under the
optimal conditions, and the proportion of the sediment-
carrying water demand is 8.58%. Based on the results, the

recommended final ecological base flow is 68.58% of the
annual average runoff.

4.3.2 Basin Water Availability Assessment and
Prediction

Since the total amount of basin water availability is equal to the
difference between the basin average annual runoff and the
ecological water demand, the basin hydrological simulation
and the runoff under different climate scenarios can be
predicted. Figure 12 illustrates the water availability from
2006 to 2015. It is worth noting that the optimal mean annual
ecological water demand in the Huangshui River is 1.072
billion m’.

From 2006 to 2015, the mean annual average water availability
in the Huangshui River was approximately 491 million m?. The
largest water availability was 846 million m® in 2007. The lowest
value was 104 million m” in 2013, which accounted for 12.29% of
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that in 2007. Taking the average annual runoff in different
periods as input data, the ecological water demand in different
planning periods under various scenarios can be calculated. The
results of water availability in the Huangshui watershed are
obtained during the forecast period under different
concentration emission scenarios, as shown in Figure 13. In
terms of the low-concentration emission scenario RCP2.6, the
mean annual average water availability is 640 million m®. The
largest water availability is predicted to reach almost 833
millionm® in 2025. In contrast, the lowest data point is
predicted to be 362 million m® in 2024. Different results can
be obtained in the medium concentration emission scenario
RCP4.5. The mean annual average water availability will
decline to 587 million m’, accompanied by the largest data
being 874 millionm® in 2026 and the least data being 492
millionm® in 2035. For the high concentration emission
scenario RCP8.5, the water availability will witness a dramatic
decrease, which falls to 492 million m*. Evidently, the range of the
water availability in scenario RCP8.5 will be the largest among the
three different emission scenarios, accompanied by a maximum
of 913 million m® in 2023 and a minimum of 225 million m
in 2021.

The results show that the Huangshui watershed is obviously
affected by global climate change. With the increase in atmospheric
CO, concentration and the further aggravation of greenhouse
effects in the future, more obvious changes will be found in
regional climate conditions. In the future, research and
management in the Huangshui watershed need to fully consider
the changes in temperature, precipitation, and other environmental
factors. For example, when making a water resource allocation
management plan, the decision-maker could make a flexible
allocation plan in advance according to the change in trend of
water resources available. Some emergency plans or engineering
measures need to be developed in advance based on the predicted
results. The results also indicate that climate change may have a
positive effect on the ecological environment of the Qinghai-Tibet
Plateau and other special regions. This means that rainfall in the
region will increase as a result of climate change, and the
temperature difference will decrease throughout the year. The
region could shift from a semi-arid zone to a warm-humid
zone, and ecosystems would benefit. The economic and social
development of humanity in the region will also benefit from an
increase in the availability of water resources.

In this study, the statistical downscaling method, the GRNN
model, the SWAT model, and the improved Tennant method has
been coupled. However, there are some shortcomings in this
study, which need to be improved in several aspects. For example,
in the further research, the researchers need to consider the
response relationship between land use change and climate
change. The hydrological change trend under the
superposition of land use change and climate change should
to be studied. The uncertainty in the research also needs to be
considered, especially the problem of uncertainty amplification
and superposition caused by the coupling of different methods.
At the same time, the selection of large-scale meteorological data
itself also needs repeated comparative analysis to select data sets
with better applicability.

Water Resources Availability Assessment

5 CONCLUSION

The Huangshui watershed is an ecologically fragile area on the
Qinghai-Tibet Plateau of China. The meteorological and
hydrological data of the Huangshui watershed were simulated
under different climate change scenarios. In the simulation
process, the temperature was predicted by the SDSM model;
the precipitation data were simulated by the improved GRNN
model; furthermore, the meteorological data were applied in the
SWAT model to simulate the hydrologic processes at the basin
scale under various climate change scenarios.

Through these simulations, it was determined that the basin
temperatures were obviously changed by climate change, the
improved GRNN model adopted in this study could effectively
simulate the daily precipitation, and the R* and NSE values of the
predicted results were significantly improved. Through the
prediction results of the temperature and precipitation, the
SWAT model could effectively simulate and predict the
hydrological changes in the basin under the influence of
climate change.

Moreover, the improved Tennant method is tailor-made for
the variety of hydrological characteristics and the high sediment
content in the river basin. The conclusion can be drawn that
climate change has a great impact on water availability. The
downscaling methods combined with the SWAT model and the
calculation method of water availability have been proven
effective in the study area. It was predicted that the
temperature of the studied region would become flatter on the
existing basis. Also, the precipitation would have a great increase
in the wet season from May to September. In addition, the runoff
of the Huangshui watershed and the water resource availability
would decrease with increasing carbon emissions under different
representative  concentration pathway (RCP) scenarios.
Moreover, the study could also provide an effective method to
assess the regional hydrology and climate systems affected by
climate change in ecotones similar to the Huangshui watershed.
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