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Editorial on the Research Topic
Candida biofilms

Biofilm formation is an important factor of Candida pathogenesis with several
clinical implications. Most Candida spp. form biofilms on mucosal and skin surfaces
causing different types of superficial candidiasis, as well as on implanted medical devices
leading to systemic infections (Horton et al, 2020; Fan et al., 2022). The inherent
biofilm resistance to available antifungal drugs results in recurrent infections, chronic
persistent infections, and poor clinical outcomes (Ponde et al., 2021). The Research Topic
on “Candida biofilms” includes a collection of 14 original research articles and three
reviews prepared by renowned groups from Brazil, China, Germany, India, Portugal,
Spain, United Kingdom, and USA. Taken together the articles in this issue give an
overview on the field of Candida biofilms and provide insights on their structure and
regulatory networks; interactions with the host immune defense; mechanisms involved in
antifungal resistance; pathogenicity and clinical relevance; cross-kingdom interactions;
and development of novel therapeutic approaches.

In this context, Bottcher et al. present a detailed study about biofilm formation of C.
albicans with focus on the role of STP2, a key transcriptional regulator of extracellular
amino acid signaling and metabolism. The results demonstrate that STP2 mediates
the adherence, germ tube formation, metabolic adaptation, and biofilm sustainability,
suggesting that regulatory responses to extracellular amino acids are not only involved
with nutritional homeostasis, but also coordinate crucial factors for biofilm development.
Related to this work, Wang et al. explore the complex mechanism of C. albicans to
respond to environmental challenges, unveiling that SPT20 plays an important role to
resist hyperosmotic stress through regulating the high osmolarity glycerol 1 mitogen
activated protein kinase transduction pathway (Hogl-MAPK). Moving focus to biofilms
formed by Candida glabrata, Santos et al. demonstrate that Drug:H+ antiporter 1
(DHAL) transporters, involved in the activation of efflux pumps and drug resistance,
can also influence the biofilm development by affecting nutrient uptake and cellular
adhesion. Taken together, these studies contribute to clarify the intertwined network of
pathways involved in biofilms formed by Candida spp., making them promising targets
for drug development.

Looking into the influence of biofilms on Candida-host interactions and the role of
biofilm in Candida pathogenesis, Eix and Nett bring a comprehensive review on innate
immune responses associated with biofilms, highlighting the key mechanisms by which
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Candida cells increase their resistance to phagocytosis and alter
the mononuclear cell cytokine profile. The authors also examine
the insights into host responses to biofilm provided by animal
studies, and discuss models that explore biofilms formed on
vascular catheters, dental devices, and the mucosal surfaces of
rats and mice. Using a mouse model of vaginal candidiasis, Wu
et al. demonstrate that C. albicans strains can form significant
quantities of biotic biofilms on the vaginal epithelium. The
formation of these biofilms leads to high resistance to antifungal
treatment and promotes the formation of persister cells,
providing new experimental evidence that extend the role of
biofilms in the pathogenesis of vaginal candidiasis. Notably,
the mechanisms employed by C. albicans to colonize and to
form biofilms on vulvovaginal mucosa are thoroughly discussed
in the article performed by Rodriguez-Cerdeira et al, who
emphasize the genomic, proteomic and quorum sensing aspects
of these biofilms.

In a cohort study, Pentland et al. demonstrate the clinical
relevance of biofilms in voice prosthesis of patients that
underwent total laryngectomy, and show that biofilms are
associated with loss of device performance and its early
failure. Interestingly, in most cases of prosthesis failure the
investigators found polymicrobial biofilms composed mainly
by Staphylococcus aureus and C. albicans. Indeed, multi-species
biofilms formed by Candida and bacteria can be formed
in various niches of the human body, including the oral
cavity, gastrointestinal tract, vulvovaginal region, lungs, and
skin (Lohse et al., 2018). The interactions established by
Candida with different bacterial species have been widely studied
(Barbosa et al., 2016; Kong et al., 2016; Kostoulias et al.,
2016), however little is known about the possible interactions of
Candida spp. with other fungi. In pioneering studies, Oliveira
et al. and Garcia et al. demonstrate that C. albicans can
form dual species biofilms with Paracoccidioides brasiliensis or
Trichophyton rubrum, respectively. The results of both studies
suggest that C. albicans and P. brasilensis or T. rubrum can
coexist in the same environment and establish fungal-fungal
interactions on host surfaces.

The cross-kingdom microbial interactions in biofilms have
been explored as a potential resource for the identification of
new antifungal molecules (Scorzoni et al, 2021). From this
perspective, Santos et al. reveal that Streptococcus mutans, an
important bacterium in dental biofilms, can secrete products
capable of inhibiting the oral candidiasis in a murine model.
In this work, the authors extracted, fractionated, and identified
the fraction of the S. mutans UA159 culture (SM-F2) with
strong activity against C. albicans and high efficacy in the
treatment of oral candidiasis. In an innovative study, Rossoni
et al. explore the antimicrobial activity of bacterial metabolic
products on Candida auris, an emerging multidrug-resistant
yeast. The results show that crude extract derived from the
probiotic bacterium Lactobacillus paracasei 28.4 can inhibit
the biofilms and persister cells of C. auris, and protect the
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model host Galleria mellonella from fungal infection through
a direct antifungal activity as well as by modulating the
host immune response. Besides to natural compounds from
microbial origins, plant extracts have gained much attention
with large number of bioactive compounds already isolated
and identified (Singla and Dubey, 2019; Scorzoni et al., 2021).
This Research Topic highlights two plant-derived natural
compounds: the coumarin scopoletin (gelseminic acid) studied
by Lemos et al. and the palmitic acid (hexadecenoic acid)
studied by Prasath et al. Based on their results, both compounds
exhibit an effective inhibition on biofilms formed by Candida
tropicalis. The mechanism of action of scopoletin involves
the alteration on fungal cell and plasma membrane sterols,
while the action of palmitic acid seems associated with
ROS-mediated mitochondrial dysfunction and regulation of
ergosterol biosynthesis. Interestingly, scopoletin also showed
activity against the efflux pumps at plasma membrane when
combined with fluconazole, suggesting potential synergistic
activity against multidrug-resistant Candida strains.

Looking at therapeutic strategies targeted to Candida
biofilms, and based on the evidence that antiretroviral HIV
protease inhibitors can influence the secreted aspartyl proteases
(Saps) of Candida spp. (Cenci et al.,, 2008; Braga-Silva et al.,
2010), Lohse et al. investigate the capacity of 80 protease
inhibitors in preventing and treating Candida biofilms. Among
the 80 protease inhibitors studied, the investigators found that
gliotoxin, acivicin, TPCK and nelfinavir show effectiveness
against Candida biofilms. Moreover, several protease inhibitors
exhibit ability to decrease C. albicans biofilms when combined
with caspofungin or amphotericin B. Reddy and Nancharaiah
explore new anti-biofilm approaches using ionic liquids, a novel
class of molten salts originates from the combination of cations
and anions, with several applications in chemical industry.
The prospecting results indicate the imidazolium ionic liquid
with hexadecyl group ([C16MIM]T[CI]7) as the most effective
compound against C. albicans biofilms. The antifungal and anti-
biofilm activity of imidazolium includes alterations in various
cellular process, such as membrane permeability, ergosterol
content, and ROS generation. Seeking alternative approaches
against C. auris, Vazquez-Munoz et al. studied the use of
silver nanoparticles (AgNPs) coated with polyvinylpyrrolidone
(PVP) and verified strong antimicrobial activity on several C.
auris strains under planktonic and biofilm growing conditions.
Promisingly, this antimicrobial activity against C. auris strains
is irrespective of their clade, geographical origin, or antifungal-
resistant profiles.

Lastly, Vera-Gonzdlez and Shukla discuss the recent
advances in antifungal biomaterials for combating Candida
biofilm infections. This review explores the design of
nanoparticles aimed at disrupting existing biofilms and
presents innovative technologies that employ polymer-only
coatings as well as coatings with conventional or new antifungal
agents against biofilm formation. Moreover, the authors outline
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future perspectives in the development of biomaterials targeted
for Candida biofilms, including the use of enzymes to digest the
components of extracellular matrix and identification of new
drug targets such as extracellular vesicles.

We hope that this Research Topic covers the key points
of the development, pathogenesis, and clinical relevance of
Candida biofilms, and provides an overview about the progress
and challenges of new antifungal discovery that will incentivize
innovation in the field of Candida biofilm pathogenesis
and therapeutics.
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Biofilm formation and drug resistance are two key pathogenesis traits exhibited by
Candida glabrata as a human pathogen. Interestingly, specific pathways appear to be
in the crossroad between the two phenomena, making them promising targets for drug
development. In this study, the 10 multidrug resistance transporters of the Drug:HT
Antiporter family of C. glabrata were screened for a role in biofilm formation. Besides
previously identified players in this process, namely CgTpo1_2 and CgQdr2, two others
are shown to contribute to biofilm formation: CgDtr1 and CgTpo4. The deletion of each
of these genes was found to lead to lower biofilm formation, in both SDB and RPMI
media, while their expression was found to increase during biofilm development and to
be controlled by the transcription factor CgTeci, a predicted key regulator of biofilm
formation. Additionally, the deletion of CgDTR1, CgTPO4, or even CgQDR2 was found
to increase plasma membrane potential and lead to decreased expression of adhesin
encoding genes, particularly CgALST and CgEFAT, during biofilm formation. Although
the exact role of these drug transporters in biofilm formation remains elusive, our current
model suggests that their control over membrane potential by the transport of charged
molecules, may affect the perception of nutrient availability, which in turn may delay the
triggering of adhesion and biofilm formation.

Keywords: Candida glabrata, drug:H* antiporters, biofilm formation, CgTpo4, CgDtr1

INTRODUCTION

The human opportunistic pathogen, Candida glabrata, is responsible for an estimated death rate of
40-60% after invasive candidiasis (Ghazi et al., 2019). Being the second or third most common
cause of this disease (Tscherner et al., 2011; Fuller et al., 2019; Mari et al., 2019), C. glabrata
successfully infects and prevails in the human host thanks to its ability to adapt, resisting antifungal
treatment and the host stressful environment (Pais et al., 2019), often by being able to form biofilms
(Cavalheiro and Teixeira, 2018). In order to develop antifungal resistance, C. glabrata resorts to
the activation of different multidrug efflux pumps of the ATP-binding cassette (ABC) transporter
superfamily and the major facilitator superfamily (MFS) (Costa et al., 2014a; Cannon and Holmes,
2015). Although CgCdrl ABC transporter appears to play a primordial role in azole resistant
clinical isolates, the upregulation of some of the MFS drug transporters has also been correlated
with at least clotrimazole resistance in clinical isolates (Costa et al., 2016). The activation of several
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ABC transporters and MES transporters is mostly due to the
CgPdrl transcription factor, regulator of multidrug resistance in
C. glabrata (Costa et al., 2013b; Paul et al., 2014; Pais et al., 2016b;
Whaley et al., 2018). This regulator may suffer gain-of-function
(GOF) mutations that enhance the activation of such transporters
(Moye-Rowley, 2019).

The ABC transporters have two transmembrane domains
and two cytoplasmic nucleotide-binding domains, requiring
energy from the hydrolysis of ATP, to cross substrates through
the membrane. The ones with most dominant role in C.
glabrata azole resistance are Cdrl, Cdr2, and Snq2 (Sanglard
et al., 2009). While the role of ABC transporters has been
well-characterized, only more recently MFS transporters have
been studied with more detail. The MFS family is divided
into two subgroups: Drug:H' antiporter 1 (DHA1) and 2
(DHA2) transporter subfamilies, compromising transporters
with 12 and 14 transmembrane segments, respectively; both
with predicted transporters in the genome of pathogenic fungi:
Candida albicans, C. glabrata, Cryptococcus neoformans, and
Aspergillus fumigatus (Costa et al., 2014a). DHA transporters
have important roles in Saccharomyces cerevisiae drug resistance
(S4-Correia et al., 2008; Santos et al, 2014) and, as more
recently unraveled, in C. glabrata (Costa et al., 2014a). In the
case of this pathogenic yeast, evidence for a role in antifungal
resistance was so far obtained for the DHA transporters: CgAqrl,
CgQdr2, CgFlrl_1 and CgFlrl_2, CgTpol_1, CgTpol_2, and
CgTpo3 (Costa et al.,, 2013a,b, 2014b; Pais et al., 2016a, 2019).
CgAqrl has been shown to have a role in the resistance to
fluconazole and clotrimazole, while being also important in the
resistance to acetic acid, which interacts synergistically with
these antifungals (Costa et al, 2013a). CgQdr2 transporter
confers resistance to miconazole, tioconazole, clotrimazole,
and ketoconazole, its expression depending directly on the
Pdrl transcription factor. In addition, CgQdr2 was shown to
complement the role of quinidine resistance of its homolog
in Saccharomyces cerevisiae (Costa et al., 2013b). CgTpo3 is
involved in azole resistance but is also important for C.
glabrata resistance to spermine, complementing its homolog
in S. cerevisiae (Costa et al., 2014b). Under the control of
CgPdrl, but also of CgYapl, transcription factors, are the genes
encoding CgFlrl and CgFlr2, shown to have a role in azole
and 5-flucytosine resistance (Pais et al., 2016b). CgTpol_1 and
CgTpol_2 also contribute to the development of azole resistance
(Pais et al., 2016a).

Surprisingly, some of the DHA transporters were additionally
found to play important roles in C. glabrata virulence. For
example, CgTpol_1 confers resistance to antimicrobial peptides,
like histatin-5, thus making C. glabrata cells more virulent
in a Galleria mellonella infection model (Santos et al., 2017).
CgTpol_2 is necessary for the survival of C. glabrata upon
phagocytosis, and its expression is upregulated upon biofilm
formation, while its deletion decreases the expression of adhesin-
encoding genes during biofilm formation (Santos et al., 2017).
CgDtrl MES transporter is not involved in drug resistance, but
instead is necessary for C. glabrata’s full virulence in the infection
model G. mellonella. CgDtrl has a role in the survival upon
phagocytosis, being necessary for the resistance to oxidative and

acetic acid stress (Romao et al., 2017). More recently, CgQdr2 was
also identified as playing a role in biofilm formation, although the
underlying mechanisms remained elusive (Widiasih Widiyanto
et al, 2019). All the roles described for MFS transporters
highlight their promiscuity in transporting many different
substrates, which appear to ultimately lead to unexpected roles
in processes, such as virulence, immune system evasion, or
biofilm formation.

In this work, we screened all the C. glabrata DHA1 MFS
transporters for a possible role in biofilm formation. Previously
characterized CgAqrl1, CgQdr2, CgTpol_1, CgTpol_2, CgTpo3,
CgFlr1_1, CgFIrl_2, and CgDrtl transporters were studied, as
well as two other MFS transporters, CgTpo4 (CAGLOL10912g)
and CgYhk8 (CAGL0jJ00363g), which had not yet been
characterized. The possible involvement of an ortholog of CaTecl
transcription factor in C. glabrata, CgTecl (CAGLOMO01716g),
in the regulation of the MFS transporters during biofilm
formation was also assessed. The deletion of those MEFS
transporters was evaluated in terms of the effect on the
expression of given adhesins and on the changes in plasma
membrane potential.

RESULTS

Four, Out of the 10, Drug:H* Antiporters in
C. glabrata Are Required for Biofilm

Development

Given the previous implication of CgQdr2 and CgTpol_2 in
biofilm formation in C. glabrata (Santos et al., 2017; Widiasih
Widiyanto et al., 2019), a systematic analysis of the possible
involvement of all DHA1 transporters in this pathogenic yeast
was carried out. The ability of the KUE100 wild-type strain
and derived deletion mutants Acgaqrl, Acgqdr2, Acgtpol_1,
Acgtpol_2, Acgtpo3, Acgtpod, Acgflrl_1, Acgflrl_2, Acgyhks,
and Acgdrtl to form biofilms was assessed in SDB pH 5.6
and RPMI pH 4 media, on polystyrene, by the crystal-violet
assay. Following previous studies (KucharikovA et al, 2011;
Gongalves et al., 2016), RPMI medium was used at pH 4.0,
given the acidic nature of some of the niches colonized
by Candida species, as the vaginal tract (Owen and Katz,
1999; O’Hanlon et al, 2019). The deletion of C¢gQDR2 and
CgTPOI_2 was confirmed to significantly decrease biofilm
formation comparatively to the wild-type strain, in 30 and
40%, respectively, on both media, CgTpol_2 playing a more
prominent role (Figures1, 2). Additionally, the deletion of
CgTPO4 and CgDTRI was also found to significantly decrease
the ability to form biofilms on SDB pH 5.6 medium, in
around 30% each, when compared to the wild-type strain
(Figures 1, 2). The deletion of CgFLRI_2, CgTPOI1_1, C¢gTPO3,
and CgYHKS appears to lead to a slight increase in biofilm
formation in RPMI medium, but this was not confirmed in
SDB medium. Altogether, the obtained results expand current
knowledge on the role for MFS transporters in biofilm formation,
including two additional players in the process, CgTpo4
and CgDtrl.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org

February 2020 | Volume 10 | Article 29


https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles

Santos et al.

DHA Transporters and Biofilm Formation

P < 0.01.

2.0
o
—_—
.
1.59 - ¥ °
v ® °
E vlv o lo . o
8 ii Vo Y
a 10 °le L 2 v ol vl -
o L ol e
. 7y . E)
A V‘ £l
°
0.5
&0 N Q N 9 N 9 > N
N < 3 ¢
\)""\ g &Q 0&6 &‘\ ’ &(\ 7 \QO« s o Q°\ 7 ¢ Q\QO y Q\Q‘Jb" q\‘\ % &\
€ ¥ o W s o S W 5 e W

FIGURE 1 | CgQdr2, CgTpo1_2, CgTpo4, and CgDtr1 are necessary for C. glabrata biofilm formation on polystyrene, in SDB pH 5.6. Assessment of 24 h biofilm
formation was performed by crystal-violet assay in microtiter plates of C. glabrata KUE100, Acgaqri, Acgqdr2, Acgfirl_1, Acgfirl_2, Acgtpol_1, Acgtpol_2,
Acgtpo3, Acgtpo4, Acgyhk8, and Acgdtr1 strains grown in SDB medium, pH 5.6. The data is displayed in a scatter dot plot, where each dot represents the level of
biofilm formed in a sample. Horizontal lines indicate the average levels from at least three independent experiments. Error bars indicate standard deviations. *P < 0.05;

**P < 0.01; **P < 0.001.
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FIGURE 2 | CgQdr2, CgTpo1_2, CgTpo4, and CgDtr1 are necessary for C. glabrata biofilm formation on polystyrene, in RPMI pH 4. Assessment of 24 h biofilm
formation was performed by crystal-violet assay in microtiter plates of C. glabrata KUE100, Acgaqri, Acgqdr2, Acgfirl_1, Acgfirl_2, Acgtpol_1, Acgtpol_2,
Acgipo3, Acgtpo4, Acgyhk8, and Acgdtr strains grown in RPMI pH 4. The data is displayed in a scatter dot plot, where each dot represents the level of biofilm
formed in a sample. Horizontal lines indicate the average levels from at least three independent experiments. Error bars indicate standard deviations. *P < 0.05;

CgTec1 Transcription Factor Controls the
Expression of CgQDR2, CgTPO4, and
CgDRT1 Genes in Early Biofilm Formation

Although in C. glabrata very little is known about the regulation
of biofilm formation, in C. albicans one of the major regulators
of biofilm formation is CaTecl transcription factor (Schweizer
et al., 2000; Nobile et al., 2012; Daniels et al., 2015; Panariello
et al., 2017). The deletion mutant of the predicted ortholog

of CaTecl in C. glabrata, encoded by ORF CAGLOMOI716g
and here named CgTecl, was used to assess its possible role
controlling the expression of these MFS transporters during early
(6 h) and mature (24 h) stages of biofilm formation. Although for
the majority of Candida spp, 48 h are required to reach mature
biofilms, C. glabrata biofilms are apparently at an intermediate
maturation phase at 24h of in vitro biofilm formation, where
a confluent monolayer is already obvious, with the presence
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of extracellular matrix (Kucharikova et al., 2014). Upon 24h
of biofilm formation, the expression of CgQDR2, CgTPOI1_2,
and CgTPO4 genes is upregulated in the KUE100 wild-type
strain, comparatively to 6h of biofilm formation (Figure 3).
Moreover, the deletion of CgTECI gene, leads to a severe
decrease in the expression of CgQDR2, CgTPO4, and CgDRT1
at 6h of biofilm formation, but not at 24h (Figure 3). These
results indicate that CgTecl is required for the activation of
CgQDR2, CgTPO4, and CgDTRI transcription in the early stages
of biofilm formation. This suggests a specific window period in
which these transporters act for the benefit of biofilm formation,
the early stage of biofilm, under the control of the CgTecl
transcription factor.

The Transcript Levels of Adhesin Encoding
Genes Are Repressed in Acgqdr2,

Acgtpo1_2, Acgtpo4, and Acgdrt1 Biofilms
Considering the importance of these MFS transporters on
biofilm formation, their impact in the expression of a set
of 5 adhesin encoding genes, CgALSI, CgEAPI1, CgEPAI,
CgEPA6, and CgEPA7, linked to adherence and biofilm

formation (de Groot et al., 2013), was assessed. Gene expression
was measured at 6 and 24h of biofilm development in the
KUE100 wild-type strain and in the Acgqdr2, Acgtpol_2,
Acgtpo4, and Acgdrtl deletion mutants (Figure 4). The relative
expression of the genes in the wild-type strain KUE100 at 6 h of
biofilm growth were used as a reference. The results regarding
the expression of CgEPA6 and CgEPA?7 are presented combined
given that they share 92% homology and their transcript levels
are indistinguishable.

The expression of all selected adhesin encoding genes is
upregulated upon 24h of wild-type strain biofilm formation
comparatively to 6h of biofilm formation. As described
previously (Santos et al., 2017), upon the deletion of CgTPO1_2,
the transcript levels of CgALSI, CgEAPI, and CgEPAI are
decrease comparatively to the wild-type strain, in at least one of
the time points (Figures 4A,C,D). In turn, deletion of C¢gQDR2
gene leads to a repression of the expression of all adhesin-
encoding genes at 6h of biofilm formation (Figures 4A-E).
CgTPO4 deletion leads to the repression of CgALS1, CgALS3, and
CgEPAI genes, at the same time point (Figures 4A,B), while the
deletion of CgDTRI results in a decrease of expression of the
CgALS1, CgALS3, CgEAPI, and CgEPA1 (Figures 4A,B,D).
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FIGURE 3 | CgQDR2, CgTPO4, and CgDTR1 genes are regulated by CgTec1 transcription factor, upon early biofilm formation. Shown are the transcript levels of (A)
CgDTR1, (B) C9QDR2, (C) CgTPO4, and (D) CgTpo1_2 in the C. glabrata wild-type strain KUE100 and in the derived deletion mutant Acgtec?, in 6 and 24 h of
biofilm formation conditions on polystyrene surface in liquid SDB medium, pH 5.6. Transcript levels were assessed by quantitative RT-PCR, as described in Materials
and Methods. Values are averages of results from at least three independent experiments. Error bars represent standard deviations. *P < 0.05; **P < 0.01,
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FIGURE 4 | Effect of CQQDR2, CgTPO1_2, CgTPO4, and CgDTR1 gene deletion in the expression of adhesin encoding genes CgALST, CgEAPT, CgEPAT, and
CgEPA6/7 during biofilm formation. Comparison of the variation of the CgALST (A), C9ALS3 (B), CgEPAT (C), CgEAPT (D), and CgEPRA6/7 (E) transcript levels in
KUE100 C. glabrata wild-type cells and Acgqdr2, Acgtpol_2, Acgtpo4, and Acgdrt1 mutant cells, after 6h (black bars) or 24 h (gray bars) of biofim development.
The presented transcript levels were obtained by quantitative RT-PCR and are normalized to the CgACTT mRNA levels, relative to the values registered in wild-type
cells after 6 h of biofilm development (6 h). The indicated values are averages of at least three independent experiments. Error bars represent the corresponding

Such influence on the expression of different adhesin-
encoding genes, especially upon 6h of biofilm formation,
indicates once again that CgQdr2, CgTpol_2, CgTpo4, and
CgDrtl have an important role in the early stage of this process
in C. glabrata and that they appear to act mostly by indirectly
delaying adhesin gene up-regulation.

Membrane Potential Is Increased in the

Absence of CgQdr2, CgTpo4, and CgDtr1

Given the clear influence of CgQdr2, CgTpol_2, CgTpo4, and
CgDtrl1 in early biofilm formation, we further investigated how
these transporters might be contributing for the initiation of this
process. It has been described that the environment is a key factor
that modulates the adherence and biofilm formation, especially in
terms of the deficiency of certain nutrients (Verstrepen and Klis,
2006; Fisher etal., 2011; Riera et al., 2012). The plasma membrane
potential directly affects the secondary transporters responsible
for nutrient uptake, who have the membrane potential as a
driving force. Therefore, changes in membrane potential are
likely to affect cell proficiency in the uptake of given nutrients
(Goossens et al., 2000), thus influencing the signaling leading to
biofilm formation. Having this in mind, we assessed the effect of
the absence of each of the genes in study in C. glabrata membrane
potential. The plasma membrane potential of KUE100 wild-
type strain and Acgqdr2, Acgtpol_2, Acgtpo4, and Acgdrtl

deletion mutant cells was monitored through the accumulation
of the fluorescent dye DiOC6(3) (Cabrito et al., 2011). All
deletion mutants were found to exhibit increased membrane
potential comparatively to the wild-type strain (Figure 5), an
effect already described for CgTpol_2 (Santos et al., 2017). These
results suggest that CgQdr2, CgTpol_2, CgTpo4, and CgDtrl are
important for plasma membrane potential homeostasis, which is
likely to affect the cellular perception of nutrient availability, a key
step in the triggering of biofilm formation.

DISCUSSION

In this study, the previously characterized multidrug transporters
CgAqrl, CgQdr2, CgTpol_1, CgTpol_2, CgTpo3, CgFlrl_1,
CgFlrl_2,and CgDrtl transporters, as well as two others, CgTpo4
and CgYhks3, all belonging to the DHA1 family, were screened for
a possible role in biofilm formation. This systematic screening
was driven by the observation that the majority of the MFS
transporters characterized so far appear to transport additional
substrates beyond drugs (Costa et al., 2013a,b, 2014b; Pais et al.,
20164, 2019), which affect C. glabrata pathogenesis and virulence
(Romao et al., 2017; Santos et al., 2017).

Besides confirming the previously identified role of CgQdr2
(Widiasih Widiyanto et al., 2019) and CgTpol_2 (Santos et al.,
2017) in biofilm formation, two new DHA transporters were
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FIGURE 5 | The deletion of CgQDR2, CgTPO1_2, CgTPO4, and CgDTR1
increases plasma membrane potential. C. glabrata wild-type KUE100 and
derived Acgqdr2, Acgtpol_2, Acgtpo4, and Acgdrt1 mutant cells were
grown to mid-exponential phase of growth in YEPD medium. These cells were
incubated with the fluorescent dye DIOCB(3), whose uptake and accumulation
depends on the plasma membrane potential, and fluorescence microscopy
was used to measure the fluorescence intensity of individual cells. A scatter
dot plot representation of the data is shown, where each dot represents the
fluorescence intensity of each individual cell. The average level of fluorescence
intensity, considering at least three independent experiments, and at least 100
cells per experiment, is indicated by the black line (-), standard deviation being
represented by the error bars. ***P < 0.0001.

linked to this process: CgTpo4 and CgDtrl. This apparently
widespread role of DHA transporters in biofilm formation is
consistent with the previously described implication of the DHA
transporters CaQdrl, CaQdr2, and CaQdr3 in biofilm formation
in C. albicans. Deleting all QDR genes in C. albicans leads to
clear defects in the architecture and thickness of the biofilm,
which is suggested to be related to the remodeling of lipids
C. albicans cells suffer upon the loss of such genes (Shah
et al., 2014). The role of CgTpol_2 in biofilm formation was
also linked with its effect in ergosterol and fatty acid content,
but mostly through its influencing over plasma membrane
potential (Santos et al., 2017). Interestingly, CgQdr2, CgTpo4,
and CgDtrl were also found in this study to affect the membrane
potential. The alteration of plasma membrane potential by DHA
transporters may be related to their role in the transport of small
charged molecules, including cations and polycations (Vargas
et al., 2007). In Saccharomyces cerevisiae, MFS transporters are
known to be involved in this type of transport. For instance,
ScQdr2 is involved in KT import (Vargas et al, 2007) and
ScTpol-4 (Tomitori et al,, 2001) and ScQdr3 (Teixeira et al.,
2011) are implicated in the export of polyamines. Given that
increased plasma membrane potential is implicated in higher
secondary transport activity (Eddy and Hopkins, 1998), nutrient
uptake capacity may be modified upon the absence of each

transporter. This may possibly affect biofilm formation as has
been described for bacterial MFS transporters. Indeed, bacterial
biofilms are influenced by the nutrients in the environment,
given that the uptake of given nutrients acts as a positive or
negative signal for the initiation of this process. Therefore, a
key role in biofilm formation was identified for bacterial MFS
transporters, responsible for nutrient uptake (Pasqua et al., 2019).
It is, thus, likely that the same phenomenon may also occur in
yeast biofilms.

Given that these transporters have a clear effect on the
plasma membrane, we hypothesized if they might influence the
presence of given proteins on the plasma membrane and cell wall,
involved on biofilm formation. With this in mind, we assessed
the expression of adhesin-encoding genes upon the deletion of
CgQDR2, CgTPO1_2, CgTPO4, and CgDTRI genes, in biofilm
conditions. CgALSI and CgEPAI expression was found to be
decrease upon the absence of all transporters, for at least one of
the time points tested (6 and 24 h). In addition, more adhesins
were found to be repressed upon the specific absence of each
transporter, highlighting the clear influence MFS transporters
have on the presence of adhesins in the cell envelop. It is possible
that the absence of these MFS transporters alters the perception of
nutrient availability, delaying the activation of adhesin-encoding
genes, and ultimately leading to defects on the capacity of C.
glabrata to adhere and form biofilms.

Interestingly, in C. albicans, MFS transporters, CaMdrl and
CaQdrl, have also been linked to biofilm formation and cell
dispersion, being up-regulated in both conditions. It is suggested
in the work of Uppuluri et al. (2018) that the upregulation of these
and other types of transporters is related to the reprogramming
of dispersal cells to acquire nutrients and be able to attach and
survive in nutrient-starved niches of the host (Uppuluri et al.,
2018). It would be interesting to test if CgQdr2, CgTpol_2,
CgTpo4, and CgDtrl have a role on this last phase of biofilm
formation. Nevertheless, our results suggest that their activation
is more significant in early stages of biofilm formation than
the later.

Although the specific role of these transporters may not yet
be clear, CgQDR2, CgTPO4, and C¢gDTRI genes were found to
be activated by the CgTecl transcription factor in early stages
of biofilm formation. CgTecl has not yet been characterized in
C. glabrata but it seems to be involved on the regulation of
biofilm in this yeast, like its ortholog’s role in the regulation of
the same process in C. albicans. CaTecl has a minor role in
adhesion but is required for the formation of the several layers
of cells and hyphal formation, and influences the thickness and
integrity of the biofilm (Schweizer et al., 2000; Daniels et al.,
2015). CaTecl is also necessary for the full virulence of C. albicans
(Yano et al., 2016). It is possible that the CgTecl transcription
factor in C. glabrata may have important roles as is ortholog,
starting by the control of these transporters at the beginning of
biofilm formation.

Based on these results our current model is that the deletion
of CgQDR2, CgTPOI_2, CgTPO4, and CgDTRI genes leads
to an increase in plasma membrane potential, which possible
affects nutrient uptake, influencing the signaling that triggers
cellular adhesion, eventually compromising C. glabrata biofilm

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org

13

February 2020 | Volume 10 | Article 29


https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles

Santos et al.

DHA Transporters and Biofilm Formation

formation. Moreover, CgQdr2, CgTpo4, and CgDtrl expression
appears to be controlled by one of the predicted regulators of
biofilm formation, CgTecl, highlighting their role in the process.
Altogether, DHA transporters appear to be in the crossroad
between drug resistance, biofilm formation as well as additional
pathogenesis traits (Cavalheiro et al., 2018), highlighting their
potential impact in the success of C. glabrata infections and in
the design of novel antifungal therapeutic approaches.

MATERIALS AND METHODS

Strains, Plasmids, and Growth Medium
Candida glabrata KUE100 (Ueno et al., 2007) strain was used
in this study. The Candida glabrata Acgtpol_1, Acgtpol_2,
Acgaqrl, Acgqdr2, Acgflrl_1, Aflrl_2, Acgtpo3, and Acgdrtl
deletion mutants, constructed in previous studies (Costa et al.,
2013a,b, 2014b; Pais et al., 2016a; Romao et al., 2017), were
also used. Acgtecl, Acgtpo4, and Acgyhk8 deletion mutants were
constructed as described in the next section.

Candida glabrata cells were cultivated in rich YEPD medium,
containing per liter: 20g D-(+)- glucose (Merk, Darmstadt),
20 g bacterial-peptone (LioChem, Conyers, Georgia) and 10 g of
yeast-extract (Difco, Detroit, Michigan). Sabouraud’s Dextrose
Broth (SDB) pH 5.6, used for C. glabrata planktonic and biofilm
cultivation, contains 40 g glucose (Merk, Darmstadt) and 10g
peptone (LioChem, Conyers, Georgia) per liter. RPMI 1640
medium pH 4, used for C. glabrata planktonic and biofilm
cultivation, contains 10,4g RPMI 1640 (Sigma, Darmstadt),
34,5g MOPS (Sigma, Darmstadt) and 18g glucose (Merck,
Darmstadt) per liter.

Disruption of the C. glabrata CgTPO4,
CgYHKS8, and CgTEC1 Genes (ORF
CAGLOL10912g CAGL0J00363g and

CAGLOMO01716g)

The deletion of the CgTPO4, C¢gYHKS, and CgTECI genes was
carried out in the parental strain KUE100, using the method
described by Ueno et al. (2007). The target genes were replaced by
a DNA cassette including the CgHIS3 gene, through homologous
recombination. The DNA cassette was amplified with PCR for
which gene disruption primers (Table 1) including homologous
sequences at 5 end and as a template the pHIS906 plasmid
including CgHIS3 were used. Transformation was performed
with the DNA cassette as described previously (Ueno et al., 2007).
Recombination locus and gene deletion were verified by PCR
using the primers indicated in Table 1.

Biofilm Quantification

Candida glabrata strains were tested for their capacity for biofilm
formation, recurring to the crystal-violet method (Pathak et al.,
2012). For that, the Candida glabrata strains were grown in
SDB medium and harvested by centrifugation at mid-exponential
phase. The cells were inoculated with an initial ODgoonm =
0,05 % 0,005—corresponding to 5 x 10° CFU/ml—in 96-well
polystyrene microtiter plates (Greiner) in either SDB (pH 5.6)
or RPMI (pH 4) media. Cells were cultivated at 30°C during

TABLE 1 | List of primers used in this study.

Name Sequence (5'-3')

CgTPO4, CgYHK8 gene disruption

ACQTPO4_Fw GAACTGGTGAAATATAGTATAAGCGTTACAAAGCGAA
TAACGAATACATACACCACGGCCGCTGATCACG
ACgTPO4_Rv AAGAGCAAAAGTATTCAATTTTTTAAAAATTTAAAGCAA
ATCGAAAAAAAGGACTACATCGTGAGGCTGG
ACQYHK8_Fw TTGCTCGACTTCTATATCTTACACTATTACACAACCAA
AATCAGCAACAATAGAAAGGCCGCTGATCACG
ACQYHK8_Rv CTAAAAAAAGATCAAATGGTTCGTGCTGCTGTTATATT
CAGGGATAAGGCAGATTACATCGTGAGGCTGG
ACQTECT_Fw AAGAGTACTAATACACATCGTACTCCCCCCCACAAAT
AACGCCCTCAATCTATATTGGCCGCTGATCACG
ACQTECT_Rv TCAGCAAAACATTTCTGCAGAAAAAATAAAAATGTAGC

ATTCCTACATCTCTCTCACATCGTGAGGCTGG

Gene disruption confirmation

ACgTPO4_Fw_conf ~ CAAGTTGGTGATACTAATAGCA
ACgTPO4_Rv_conf CACTTCACTCAAGGGAGC
ACQYHK8_Fw_conf GATGAAGGACTCAGATTCG
ACgYHK8_Rv_conf CCAGGTTGTCAGGCATTG
ACgTECT1_Fw_conf GACAGCTCGGTATCAGATAGGT
ACgTEC1_Rv_conf GTGGAGATGATGCTTTCGAAGA
RT-PCR experiments

CgACT1_Fw AGAGCCGTCTTCCCTTCCAT
CgACT1_Rv TTGACCCATACCGACCATGA

CgALSTFw GAG CTC AAT GCA GAAGTG TACTTT G

CgALS1_Rv GAT CTG ATT GTG GTATAAAAG TGG TCAT
CgALS3_Fw GTTGACCCATTTCGTGGAAAA

CgALS3_Rv GAAGGCCATAATTTCACAGTCAGA
CgEPAT_Fw TTG ATT GCT GCA GAA GGG ATT
CgEPAT_Rv ATG GCG TAG GCT TGATAATTT CC
CgEAPT_Fw CAA CAC CAG CCC AAT CAA ATG
CgEAP1_Rv CGG AAG ACA TCG TTA ATG AAG GA

CgEPAB/7_Fw
CgEPA6/7_Rv

TTC CCT TCG CAA CTT ACA CAACT
GAA GCA CTC CCA CTG CTA GAG TAA

CgTPO1_2_Fw AGGACCCGCTCTATCGAAAAA
CgTPO1_2_Rv GCTGCGACTGCTGACTCAAC
CgTPO4_Fw TCGTTGGCCCATTTTTGG
CgTPO4_Rv GCAAACCCGCGATGA

CgDTR1_Fw GGAGCCAAAATGAGAATGATATGTC
CgDTR1_Rv ACCACCTTGAAATCGGTGATG
CgQDR2_Fw TCACTGCATAGTTTCATATCGGACTA
CgQDR2_Rv CAACTTCAGATAGATCAGGACCATCA

15 + 0,5h with mild orbital shaking (70 rpm), as before (Melo
et al., 2006; Pathak et al., 2012; Santos et al., 2017; Cavalheiro
et al.,, 2019). After the incubation time, each well was washed
three times with 200 L of deionized water to remove cells not
attached to the biofilm matrix. Then, 200 pL of a 1% crystal-
violet (Merck, Darmstadt) alcoholic solution was used to stain
the biofilm present in each well. Following 15 min of incubation
with the dye, each well was washed with 250 pL of deionized
water. The stained biofilm was eluted in 200 wL 96% (v/v)
ethanol and the absorbance of each well was read in a microplate
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reader at the wavelength of 590 nm (SPECTROstar Nano, BMG
Labtech, Ortenberg).

Gene Expression Measurement

The transcript levels of CgTPOI1_2, CgTPO4, CgQDR2, and
CgDTRI, and of the adhesin encoding genes CgALSI, CgEAPI,
CgEPA1, CgEPA6, and CgQEPA7 were determined by quantitative
real-time PCR (RT-PCR). Total RNA was extracted from cells
grown in biofilm. 40 mL of fresh RPMI 1640 (pH 4) was placed
in square polystyrene petri plates (Greiner), and cells were added
so that the initial ODgponm = 0.05 % 0,005. The plates were
incubated at 30°C and 30 rpm during 6 and 24 h to analyse both
young and mature biofilm development for each strain under
analysis. A lower agitation speed was used in this case to prevent
spilling of part of the culture. It does not compromise aeration, as
the surface area of the used petri dishes is much higher than that
in microtiter plates. At the end of each period the supernatant
was discarded, and the biofilm was removed with a metal spatula.
Samples were centrifuged to remove excess water and frozen
at —80°C until RNA extraction. Planktonic growing cells, used
as control, were cultivated in RPMI 1640 (pH 4) with orbital
shaking (250 rpm) at 30°C and harvested by centrifugation at
comparable times.

For total RNA extraction, the hot phenol method was applied
(Kohrer and Domdey, 1991). Total RNA was converted to cDNA
for the real-time Reverse-Transcription PCR (RT-PCR) using
the MultiScribe Reverse Transcriptase kit (Applied Biosystems,
Foster City, California) and the 7500 RT-PCR thermal cycler
block (Applied Biosystems, Foster City, California). The quantity
of cDNA for subsequent reactions was kept at ca. 10 ng. The real
time PCR step was carried out using adequate primers (Table 1)
designed by the Primer Express™ Software v3.0.1, SYBR Green®
reagents (Applied Biosystems, Foster City, California) and the
7500 RT-PCR thermocycler block (Applied Biosystems, Foster
City, California). Default parameters set by the manufacturer
were followed, and fluorescence was detected by the instrument
and plotted in an amplification graph (7500 Systems SDS
Software, Applied Biosystems, Foster City, California). C¢gACT1
gene transcript level was used as an internal reference.

Estimation of Plasma Membrane Potential

The estimation of the plasma membrane potential was carried
out by measuring the fluorescence intensity of cells exposed
to the fluorescent carbocyanine 3,3’-Dihexyloxacarbocyanine
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Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rl, United States

Candida albicans is the most common fungal pathogen and relies on the Hog1l-
MAPK pathway to resist osmotic stress posed by the environment or during host
invasions. Here, we investigated the role of SPT20 in response to osmotic stress.
Testing a C. albicans spt20A/A mutant, we found it was sensitive to osmotic stress.
Using sequence alignment, we identified the conserved functional domains between
CaSpt20 and ScSpt20. Reconstitution of the Spt20 function in a spt20A/CaSPT20
complemented strain found CaSPT20 can suppress the high sensitivity to hyperosmotic
stressors, a cell wall stress agent, and antifungal drugs in the Saccharomyces cerevisiae
spt20A/A mutant background. We measured the cellular glycerol accumulation and
found it was significantly lower in the C. albicans spt20A/A mutant strain, compared to
the wild type strain SC5314 (P < 0.001). This result was also supported by quantitative
reverse transcription-PCR, which showed the expression levels of gene contributing
to glycerol accumulation were reduced in Caspt20A/A compared to wild type (GPD2
and TGL1, P < 0.001), while ADH7 and AGP2, whose expression can lead to glycerol
decrease, were induced when cells were exposed to high osmolarity (ADH7, P < 0.001;
AGP2, P = 0.002). In addition, we tested the transcription levels of Hog1-dependent
osmotic stress response genes, and found that they were significantly upregulated in
wild type cells encountering hyperosmolarity, while the expression of HGT10, SKOT,
CAT1, and SLP3 were not induced when SPT20 was deleted. Although the transcript
of ORF19.3667 and ORF19.4370 in Caspt20A/A was induced in the presence of 1
M NaCl, the levels were less than what was observed in the wild type (ORF19.3661,
P =0.007; ORF19.4370, P = 0.011). Moreover, the deletion of CaSPT20 in C. albicans
reduced phosphorylation levels of Hog1. These findings suggested that SPT20 is
conserved between yeast and C. albicans and plays an important role in adapting to
osmotic stress through regulating Hog1-MAPK pathway.

Keywords: Candida albicans, glycerol, Hog1-MAPK, osmotic stress, SPT20
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INTRODUCTION

Candida albicans can be isolated from oral-pharyngeal,
gastrointestinal, and urogenital tracts (Calderone and Fonzi,
2001), and has emerged as one of the most common causes of
nosocomial bloodstream infections (Wisplinghoft et al., 2004).
In order to cause colonization and infection, this successful
opportunistic pathogen has to overcome environmental
challenges, such as host immune defenses, nutrient limitation,
competition with resident microbiota, and physiological
extremes including: pH, osmotic, and oxidative stresses
(Calderone and Fonzi, 2001; Marotta et al., 2013; Dong et al,,
2015). C. albicans has developed a series of complex mechanisms
to respond to these challenges.

The high osmolarity glycerol 1 mitogen activated protein
kinase signaling transduction pathway, also known as the Hog1-
MAPK pathway, can regulate responses to oxidative, osmotic,
and heavy metal stress (Enjalbert et al., 2006). Therefore, the
Hogl signal transduction pathway is crucial for C. albicans cells
during exposure to stressors encountered during pathogenesis
(Alonso-Monge et al., 1999). When cells encounter hyperosmotic
conditions, they rapidly trigger the Hogl-MAPK pathway to
regulate Hogl-dependent osmotic stress response genes, and
the synthesis and accumulation of glycerol. Glycerol is an
important compatible cellular solute. When cells encounter
osmotic challenge, they can make a comparable change in
glycerol content to offset the increasing external osmolarity, thus
buffering the osmotic change to maintain normal cell volume and
enable survival (Reed et al., 1987).

This important pathway can be influenced by other genes.
SPT20, an important component of the SAGA complex, helps
to maintain the structural integrity of the SAGA complex
(Grant et al., 1997; Sterner et al., 1999), controls about 10% of
gene expression (Lee et al., 2000), and is highly conserved in
eukaryote cells (Sellam et al., 2009). The interaction between
Spt20 and Hogl is essential for osmotic adaption (Zapater et al.,
2007). More specifically, when cells were subjected to osmotic
stress, Hogl was activated and bound to osmostress promoters,
then recruited SAGA complex components (including Spt20).
Further experiment showed Hogl co-precipitated the Spt20,
suggesting that Hogl associates with Spt20 (Zapater et al,
2007). The activation of human Hogl did not correlate with
an increased recruitment of hSpt20 subunit under endoplasmic
reticulum stress (Nagy et al., 2009). However, p38IP, the human
ortholog of the yeast Spt20, can directly bind to p38 and
is required for the activation of the mammalian ortholog of
Hogl (Zohn et al, 2006). These previous studies indicate
that further work is still needed to explore the interaction
between Spt20 and Hogl.

In our previous research, we reported that SPT20 was
involved in toleration to high osmotic stress, revealing it was
associated with C. albicans virulence (Tan et al., 2014). However,
the association between CaSPT20 and Hogl-MAPK signaling
pathway in C. albicans is still poorly understood. In this study,
we perform quantitative reverse transcription-PCR (qRT-PCR)
and western blotting to interrogate the relationship between
SPT20 and Hogl-MAPK pathway in C. albicans. We describe the

conserved role of SPT20 between S. cerevisiae and C. albicans
and report, for the first time, that SPT20 takes part in the
C. albicans response to hyperosmotic stress by regulating the
Hogl-MAPK pathway.

MATERIALS AND METHODS

Yeast Strains and Growth Conditions

Wild type C. albicans strain SC5314, the spt20A/A null mutant,
the spt20A/SPT20 reconstituted strain, and S. cerevisiae wild
type BY4741 were grown in YPD medium (1% yeast extract, 2%
peptone, 2% dextrose) at 30°C with shaking. The Saccharomyces
cerevisiae spt20A mutant strain (LCT1) was cultured in YPD
medium supplemented with G418 (Sigma-Aldrich, Shanghai,
China). Ampicillin-resistant E. coli was cultured in LB medium
with 100 pg/mL ampicillin at 37°C. Strains with pYES-CaSPT20-
V5 or pYES2.1/V5-His-TOPO plasmids were cultured in Sc-Ura3
media. All strains were cultured to logarithmic growth stage.

C. albicans and S. cerevisiae strains used in this study are listed
in Table 1. All C. albicans strains were derived from the wild
type strain SC5314. AllL S. cerevisiae strains were derived from the
wild type BY4741.

Plasmid Construction
All primers and plasmids used in this study are listed in
Tables 2, 3, respectively. For the creation of plasmid pYES-
CaSPT20-V5, SC5314 genomic DNA was used as a template for
CaSPT20ResFwd and CaSPT20ResRev primers, which generated a
2,678 bp DNA fragment containing BamHI and BstEII restriction
sites, the promoter, ORF of CaSPT20 but lacked the stop codon.
The amplified fragment described above and plasmid
pYES2.1/V5-His/lacZ (Invitrogen, Shanghai, China) were
digested with BamHI-HF and BstEII-HF. The two products
were purified, ligated, and the resulting plasmid was
transformed to DH5a E. coli and colonies were selected
on LB plate with 100 pg/mL ampicillin. PCR followed by
sequencing were used to validate the correct insertion of
PYES-CaSPT20-V5-His/lacZ vector (Supplementary Data).

Generated Strains

Saccharomyces cerevisiae LCT1 was constructed as previously
described (Marotta et al., 2013). The template plasmid pFA6a-
5FLAG-KanMX6 was a gift from Eishi Noguchi (Noguchi et al.,
2008; Addgene plasmid # 15983; http://n2t.net/addgene:15983;
RRID: Addgene 15983). In brief, we used ScSPT20DelFwd
and ScSPT20DelRev as primers and the plasmid pFA6a-
5FLAG-KanMX6 as template to amplify a 1,676 bp DNA
fragment containing the kanamycin resistance gene flanked
by 20 bp of ScSPT20 5 and 3’ sequences. The PCR product
was transferred to S. cerevisiae wild type strain BY4741
using a transformation method described previously by
Gietz (Gietz, 2014). Transformants with the desired insert
were selected on YPD media containing 200 pg/mL G418
and verified by PCR (Marotta et al., 2013). The LCT1 and
BY4741 strains were transformed with the pYES2.1/V5-
His-TOPO vector to generate LCT2 and LCT4 strains,
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TABLE 1 | Strains used in this study.

Microbial Strains Genotype Reference or source
E.coli DH-5a F-, A80dlacZAM15, A(lacZYA-argF)U169, deoR, recA1, endA1, hsdR17 From Takara
(rk-, mk+), phoA, supE44, '\-, thi-1, gyrA96, relA1
S.cerevisiae BY4741 MATa his3Al leu2 AO metl5 AO ura3 A0 From Merck
S.cerevisiae LCTH MATa his3Al leu2 AO metl5 AO ura3 A0:spt20:kanMX6 This study
S.cerevisiae LCT2 MATa his3 Al leu2 AO metl5 A0 ura3 AO:spt20:kanMX6 pYES2.1/V/5-His-TOPO This study
S.cerevisiae LCT3 MATa his3 Al leu2 AO metl5 A0 ura3 AO:spt20:kanMX6 pYES- CaSPT20- V5 This study
S.cerevisiae LCT4 MATa his3Al leu2 AO metl5 AO ura3A0 pYES2.1/V5-His-TOPO This study
C. albicans SC5314 Wild type From Eleftherios Mylonakis
C. albicans Spt20A/A Spt20A:FRT/spt20A:FRT From Eleftherios Mylonakis
C. albicans Spt20A/SPT20 Spt20A:FRT/SPT20-FRT From Eleftherios Mylonakis
C. albicans hog1A/A hog1/hog1 From Ching-Hsuan Lin
C. albicans hog1A/HOG1 hog1/hog1:HOG1 From Ching-Hsuan Lin
C. albicans HOG1-OE spt20A:FRT/spt20A:FRT HOG1/HOG1.::pAGTEF1-NAT1- This study
AgTEF1UTR-TDH3-HOG1
C. albicans SPT20-OE hog1/hog1 SPT20/SPT20::pAQTEF1-NAT1-AgTEF1UTR-TDH3-SPT20 This study
C. albicans wt-HOG1-OE HOG1/HOG1::pAgTEF1-NAT1-AgTEF1UTR-TDH3-HOG1 This study

respectively. To create strain LCT3 (Scspt20A/CaSPT20),
the pYES-CaSPT20-V5 plasmid was transformed to LCTI.
All strains were verified by PCR to ensure the correct
transformants were used.

The construction of overexpression strains was described
previously (Nobile et al., 2008). The NATI-TDH3 promoter
plasmid pCJN542 (Nobile et al, 2008) was used for gene
overexpression. To construct the SPT20 overexpression
strain (SPT20-OE) in hoglA/A mutant background, the
PCR product was amplified using the plasmid pCJN542 as
template and primers SPT20-OEF and SPT20-OER (Table 2)
and then transferred to hoglA/A mutant strain. By the
same method, the PCR product generated using plasmid
pCIN542 as template for and primers HOGI-OEF and
HOGI-OER (Table 2) was transferred to spt20A/A mutant
strain to generate HOGI overexpression strain (HOGI1-OE).
Strains that underwent homologous recombination were
selected on YPD+ Nourseothricin (Werner BioAgents, Jena,
Germany; 400 pg/mL for SPT20-OE strain and 100 pg/mL
for HOGI-OE strain) plates and the recombination events
were verified by PCR with primers SPT20-F-2 and NATI-R
for SPT20-OE strain, and primers HOGI-F-2 and NATI-
OER-det for HOGI-OE strain, respectively. Function of
this overexpression strategy was verified by real-time
PCR with primers HOGI-F and HOGI-R for HOGI1-OE
strain, and primers SPT20-F and SPT20-R for SPT20-OE
strain, respectively.

Sensitivity Assays

Sensitivity to a range of stresses was evaluated using a solid media
assay. All investigational strains were grown to mid-log phase
under suitable growth conditions and collected by centrifugation.
The pellets were suspended in YPD at 2.5 x 107 cells/mL. Ten-
fold serial dilutions from 2.5 x 107 to 2.5 x 10° of all strains were
prepared, and 4 L of each of strain dilutions was spotted onto
the agar plates with integrated stimuli. Cells were incubated at
30°C for 48 h and then observed for growth differences.

RNA Isolation and qRT-PCR Analysis

The C. albicans strains SC5314, Caspt20A/A, Caspt20A/SPT20
were cultured to logarithmic phase and diluted to ODggo = 0.2.
The cultures were incubated at 30°C with shaking for 4 h.
5 x 107 cells were counted with a hemocytometer and then
collected by centrifugation. After being washed twice with sterile
PBS, the pellets were subjected to 1 M NaCl in YPD, while
the control group was added to an equal volume of YPD
medium. All the cultures were grown at 30°C with shaking
for an additional 30 min. After treatment, cells were collected
by gentle centrifugation, and total RNA was extracted using
an RNeasy Mini Kit (Qiagen, Shanghai, China) according to
the manufacturer’s protocol. The concentration, purity, and
integrity of RNA were checked by Nanodrop spectrophotometer.
Generally, RNA samples with an Aje0/A2gp ratio between 1.9 and
2.1 were used for further interrogation.

In order to remove potential genomic DNA contamination
and synthesize ¢cDNA, we used PrimeScript™ RT reagent
Kit with gDNA Eraser (Perfect Real Time; TaKaRa, Dalian,
China) following the manufacturer’s protocol. Real time reactions
were prepared using TB Green™ Premix Ex Taq II™ Kit
(Tli RNaseH Plus; TaKaRa, Dalian, China), and quantitative
PCR experiments were conducted in a LightCycler480 System
(Roche, Switzerland). Transcript levels were normalized against
185 rRNA expression (used as an internal control of gene
expression). The gene expression changes were measured in
2~ AACt method. Fold changes of target genes in the spt20 mutant
and reconstituted strains were normalized to the untreated
wild type strain.

Intracellular Glycerol Assays

The C. albicans production of intracellular glycerol were
measured as previously described (Ene et al., 2015). In brief,
C. albicans strains SC5314, Caspt20A/A, and Caspt20A/SPT20
were grown overnight. An aliquot of 5 x 107 cells were
treated with 1 M NaCl in YPD for 30 min. Subsequently,
the intracellular glycerol levels were measured using the Free
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TABLE 2 | Primers used in this studly.

Primers for strains construction

Name Sequence (5'-3') Usage

ScSPT20DelFwd ATGAGTGCCAATAGCCCGACAGGAAACGA For the disruption of ScSPT20
TCCCCATGTATTTGGTATTCCTGTGAACGCA
ACACCATCCAATATGGGTTCGCCAGGCAG
TCCAGTTAATGCCGCTAGGGATAACAGGGTA

ScSPT20DelRev AAGTGAGAATTTTTTTTAAATAATGATGT

ACTTTAATACAATATATATATATATATATATA
TATATATATATATATATATAAGGAATGATAACT
CTATTTGAATTCGAGCTCGTTTAAAC

ScKanl deFwd TGCCTCTTCCGACCATCAAG For identification of the strain LCT1
ScKanl deRev CCATGAGTGACGACTGAATC
ScUpl deFwd TGTTACCCGCTCGTGATACC
ScUpl deRev GGGACGAGGCAAGCTAAACA
ScDownldeFwd ATACTAACGCCGCCATCCAG
ScDownldeRev AACCCACTAGAGTGCATGGG
ScSPT20Fwd TATGCCCTACAACGCCCTTC
ScSPT20Rev GTGGCAAATACAGGCGCAAA
LacZFwd CAAGCCGTTGCTGATTCGAG For the construction of LCT2,
LacZRev GTGGCCTGATTCATTCCCCA LCT3, LCT4 strains
Ura3 Fwd GATAGGGAGCCCTTGCATGA
Ura3 Rev CGCTAAAGGCATTATCCGCC
CaSPT20ResFwd CCCGGATCCATTATATATAGCCCATAAATAAATACTG
CaSPT20ResRev CCCGGTCACCATTAGCAGGCGCATTTTTCTTCTTCTGAT
GALTF AATATACCTCTATACTTTAACGTC
CaSPT20R GCAACAAGAAGCAAAGATTC
CaSPT20F CACTTCTGTTCACCCTCCTA
V5-R ATCCCTAACCCTCTCCTCGGT
SPT20-OEF AACAAAATCAGCAGTCAGTTTTTTCCAAATG For the construction of SPT20-OE
GTTTAGATGACTCTTCGATTCTGGAAATGG strain
ACGTTGAATTGAATGACAACTTAATCATAAT
AAGAAATCATCAAGCTTGCCTCGTCCCC
SPT20-OER GTTTTCCACCCTGATTCTGAGTCAGTACTGT
TGTACCATTAGATATAGAGTTTCCCACAGTT
TTGGATGCAGATCCACTCAAAACTTCAGATTT
TATCATATTTGAATTCAATTGTGATG
HOG1-OEF GAACACGCAACAATGCTACCGCGACTACAAAT For the construction of HOG1-OE
GGTTCAATCTGGAGAGAAACTTCCACC and wt-HOG1-OE strains
TCAGCTAGTAACACTACTGTTTTTCTATAAACTG
TTTTCACATCAAGCTTGCCTCGTCCCC
HOG17-OER ATGCTCCCATTCCCACGGGATTTAGCTCAGTG
TATCTATTGGTGATTTCAAAAACAGTC
CCAAATATCTGGGTTCTTGTAAATTCTCCATC
TGCAGACATATTTGAATTCAATTGTGATG
HOGT1-F-2 GGCATAAAAGTGTTGGTAATGGC For colony PCR of HOG1-OE and
NAT1-OE-R-det GCAGTATCATCCAAAGTAGTA wt-HOG1-OE
SPT20-F-2 CTGCAACTGCACCAAGCTAT For colony PCR of SPT20-OE
NATT1-R GAAACAACAACGAAACCAGC
Primers for qRT-PCR
Name Sequence (5'-3')
18S rRNA-F CGCAAGGCTGAAACTTAAAGG
18S rRNA-R AGCAGACAAATCACTCCACC
CAT1-F GGCCAGTGATAAGCCAGTTG
CAT1-R TTGGATAGCAGCATCAGCAC
SKO1-F AACCACCACCACCACAAAAT

(Continued)
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TABLE 2 | Continued

Primers for qRT-PCR
Name Sequence (5'-3')
SKO1-R CACCACGCAATTCATTCACT
AGP2-F CAGTCATGGGGTTCCTGTCT
AGP2-R TACGGTTGGAACCACGATCT
ORF19.3661-F TTGTGAAGCCACTCCTGTTG
ORF19.3661-R CCAGTCGGATTAGCTTGGAA
HOG1-F GACTTGTGGTCTGTGGGTTG
HOGT1-R ACATCAGCAGGAGGTGAGC
TGL1-F TATGCAAGGTTGTTCCGTCA
TGL1-R CACTGTTGCTTGCCGATCTA
ADH7-F TGAAATTGGGTGCTGATGAA
ADH7-R TGTTCAGTGGCTGGTGGTAA
SPT20-F ACAAACTACTGCTGACGGGG
SPT20-R GGAGGGTGAACAGAAGTGGG

TABLE 3 | Plasmids used in this study.

Name Description Reference/source

pFABa-5FLAG-KanMX6 ~ Amp", Kan"
pYES2.1/V5-His-TOPO ~ URA3, Amp'
pPYES2.1/V/5-His/lacZ URAS, Amp', lacZ

From Eishi Noguchi
From invitrogen
From invitrogen

PYES- CaSPT20- V5 CaSPT20 in This study
pYES2.1/V5-His-TOPO
pCJN542 NAT1-TDH3 promoter From Aaron P. Mitchell

Glycerol Reagent (Sigma-Aldrich, Shanghai, China) according to
the manufacturer’s protocol.

Western Blotting
Candida albicans wild type strain SC5314 and null mutant strain
Caspt20A/A were grown to mid-exponential phase in YPD at
30°C with shaking. Cells were exposed to hyperosmotic stress
for a designated period of time by adding 5 M NaCl stock
solution to YPD medium to achieve a final concentration of 2
M NaCl. As a control, equal volume of YPD was added instead
of NaCl. Following treatment, C. albicans cells were collected
and the pellets were washed twice with sterile PBS. To extract
protein, pellets were suspended in 200 wL RIPA lysis buffer
containing Protease Inhibitor Cocktail (Roche, Shanghai, China),
and an equal volume of acid-washed glass beads (Sigma-Aldrich,
shanghai, China) was added. The cells were vigorously vortexed
for 1 min to mechanically disrupt cell walls then transferred to ice
for 1 min, and vortex and chill process repeated six more times.
Cell extracts were separated from whole cell debris and glass
beads by applying centrifugation at 13,000 rpm at 4°C for 10 min.
The protein concentrations were determined using a
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific,
Shanghai, China). Equal quantities of protein (40 pg) were
loaded onto a 10% gel, analyzed by SDS-PAGE, and then
transferred to PVDF membranes. Anti-phospho-P38 antibody
(Cell Signaling Technology, Shanghai, China) was used to

detect the phosphorylated form of Hogl (Smith et al., 2004).
Total Hogl level was detected by Hogl (D-3) antibody (Santa
Cruz Biotechnology, Shanghai, China). B-anti-actin antibody
(GeneTex, Shenzhen, China) was used as the loading control
(Deng and Lin, 2018).

Statistical Analysis

All experiments were performed at least twice as independent
replicates. Data were analyzed using SPSS software. Student’s
t-test and the analyses of variance (ANOVA) were used
to determine statistical significance. A P-value < 0.05 was
considered statistically significant.

RESULTS
Conservation of CaSPT20

We have previously reported that SPT20 was involved in
regulating virulence and stress responses in C. albicans (Tan et al.,
2014). However, little is known about the underlying molecular
mechanisms. The amino acid sequence alignment showed there
are conserved functional domains between CaSpt20 and ScSpt20
(Supplementary Figure 4). With the hypothesis that C. albicans
SPT20 could be functionally conserved with Saccharomyces
cerevisiae, we endeavored to determine if CaSPT20 could restore
defects in ScSPT20 mutant strains. To this end, we constructed
S. cerevisiae strains LCT1 (Sespt20A), LCT2 (pYES2.1/V5-His-
TOPO in the LCT1 background), LCT3 (pYES2.1/V5-His-TOPO-
CaSPT20 in the LCT1 background) and LCT4 (pYES2.1/V5-His-
TOPO in the background of the wild type strain BY4741), then
performed a series of functional complement assays.

The strains were grown on YPD agar plates supplemented
with hyperosmotic stressors (NaCl, sorbitol, and glycerol),
ethanol stress, cell wall stress agent SDS, or antifungal agents
(amphotericin B, fluconazole, and caspofungin), which directly
perturb cell membrane component ergosterol synthesis or FKS
required for cell wall synthesis. After cultivation for 48 h, cell
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growth was observed under the applied stress conditions. The
introduction of plasmid pYES2.1/V5-His-TOPO had no influence
on cell growth, as seen when comparing growth of LCT4
to BY4741, and LCT2 to LCT1. Deletion of SPT20 impaired
normal cell growth of S. cerevisiae, which was in agreement
with the results reported by Roberts and Winston (Roberts
and Winston, 1996), but growth retardation was exacerbated
when cells were associated with the tested hyperosmotic stressors
and cell membrane targeting antifungal agent fluconazole.
Notably, the cell growth of Scspt20A mutant was rescued with
complementation of CaSPT20, suggesting that SPT20 is required
for the normal cell growth under extracellular osmolarity and cell
membrane stressor exposure. However, the decrease in resistance
to the other stresses (such as ethanol, SDS, amphotericin B, and
caspofungin) seen in Scspt20A cells largely matches the decreased
growth seen in the BY4741 (Figure 1), indicating that the growth
defects of Scspt20A cells in these stresses may not be due to the
deletion of SPT20. Importantly, complementation of CaSPT20
restores the growth of Scspt20A to the wild type levels, supporting
that the function of SPT20 is conserved between C. albicans
and S. cerevisiae.

Hog1 Phosphorylation Is Reduced by
Deletion of CaSPT20

The data demonstrates that Spt20 plays a conserved role in
protecting cells from osmotic stress. A well-known contributor
in protecting fungi from osmotic stress is the Hogl pathway
(Brewster and Gustin, 2014). When C. albicans is exposed to
high osmolarity, Hogl is phosphorylated and then induces target
gene expression to adapt to osmotic stress (Smith et al., 2004;
Day et al.,, 2017). In other words, phosphorylation of Hogl is
the essential step for C. albicans to survive during high osmotic

challenge. To test if CaSPT20 affects Hogl responses to osmotic
stress, we extracted protein from the indicated strains subjected to
2 M NaCl in YPD for various time periods, and then performed
western blotting. Specific antibodies were used to detect the levels
of total Hogl and phospho-Hogl, respectively. In this assay,
p-actin antibody was used as a loading control.

As reported previously (Alonso-Monge et al., 2003; Smith
et al,, 2004), Hogl phosphorylation was induced by osmotic
treatment. Hogl phosphorylation peaked after 10 min under high
osmotic stimulation in wild type SC5314, however, Caspt20A/A
failed to have the same level of Hogl phosphorylation after
10 min of osmotic treatment. Indeed, only a very slight increase
in phosphorylated Hogl was observed after 60 min of stimulation
(Figure 2A). In stark contrast, reconstitution of SPT20 restored
phospho-Hogl to wild type levels (Figure 2B). In addition, the
level of total Hogl transcription in these three strains remained
constant, which was in accord with what Enjalbert et al. reported
(Enjalbert et al., 2006), indicating that Hogl phosphorylation
occurs independent of total Hogl expression levels. Thus, it
appears that SPT20 correlated with the phosphorylation of Hogl.
We then further explored the effects that deletion of SPT20 has
on Hogl responses and the C. albicans phenotype.

CaSPT20 Affects Expression of
Hog1-Dependent Osmotic Stress

Response Genes

As shown above, the level of phosphorylated Hogl in
Caspt20A/A was much less than what was seen in the wild type
strain, suggesting that SPT20 affected the level of phosphorylated
Hogl, which prompted us to investigate whether the expression
levels of Hogl-dependent osmotic stress response genes were
affected by the loss of SPT20. To this end, we measured the

10° 10 10° 10° 10' 100 10' 10°

10°

0.03% SDS

YPD

10"

YPD 0.5M NaCl IM sorbitol 3% glycerol 3% ethanol
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BY4741 p ; g
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LCT2
e a® o ®

Amphotericin B lug/ml

FIGURE 1 | The introduction of CaSPT20 can restore sensitivity to stresses and antifungal agents caused by the loss of ScSPT20. LCT1 (Scspt20A), LCT2
(Scspt20 A+pYES2.1/NV5-His-TOPOQ), LCT3 (Scspt20 A+pYES- CaSPT20-V/5), and LCT4(BY4741+pYES2.1/V5-His-TOPO) were constructed in the background of
S. cerevisiae BY4741 and grown at 30°C for 48 h. The experiment was repeated on 3 independent occasions.
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FIGURE 2 | SPT20 affects the phosphorylation level of Hog1 protein. Cells
were exposed to 2 M NaCl for the indicated time. phosphorylated Hog1
(Hog1-P) and total Hog1 (Hog1) levels of wild type, SPT20 null mutant (A),
and SPT20 reconstitution strain (B) were detected by western blotting with
specific antibodies. The beta actin antibody was used as the loading control.
This experiment was repeated three times independently.

expression of Hogl-dependent osmotic stress response genes.
A panel of genes was assembled for interrogation as the previous
work did, which reported the expression levels of HGTIO
(encoding a glycerol permease involved in active glycerol uptake),

SKO1 (encoding a transcriptional factor binding to promoters to
relieve osmotic stress), CAT1 (one of core stress genes, encoding
a key antioxidant enzyme), ORFI19.4370 (predicted ORF),
ORF19.3661 (encoding a putative deubiquitinating enzyme) and
SLP3 (encoding a putative cation conductance protein) were
induced in a Hogl-dependent manner (Enjalbert et al., 2006;
Marotta et al., 2013). As showed in Figure 3, these Hogl-
dependent osmotic stress response genes were significantly
upregulated in wild type cells encountering hyperosmolarity,
while the expression of HGT10, SKO1, CAT1, and SLP3 were
not induced when SPT20 was deleted. Although the transcript of
ORF19.3661 and ORF19.4370 in Caspt20A/A was induced in the
presence of 1 M NaCl, it still did not reach the level observed in
the wild type (ORF19.3661, P = 0.007; ORF19.4370, P = 0.011).
Notably, the transcriptional changes caused by the deletion of
SPT20 gene in C. albicans were in accordance with that caused by
the loss of HOGI gene, which also exhibited reduced expression
of HGT10, SKO1, CATI1, ORFI19.4370, ORF19.3661, and SLP3
in the hogl A/A mutant strain during 1 M NaCl stimulation
(Marotta et al., 2013). Taken together, we can conclude that
SPT20 plays a role in appropriate expression of Hogl-dependent
osmotic stress response genes.

The Cell Growth Defect of Caspt20A/A Is
Rescued by HOG1 Overexpression

Under Osmotic Stress

The Hogl-MAPK pathway has been reported to be involved
in osmoadaptation, take part in resistance to oxidative stress,
and also play a role in morphogenesis changes as well as cell
wall biosynthesis (Monge et al., 2006). As we demonstrated
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c c [ =
- 2.0+ 81
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FIGURE 3 | Expression levels of Hog1-dependent osmotic stress response genes changed significantly when SPT20 was deleted in C. albicans. gRT-PCR
expression analysis of C. albicans Hog1-dependent osmotic stress response genes in the wild type strain, spt20A/ A and spt20A/SPT20. Transcript levels were
normalized to C. albicans 18S rRNA expression and fold changes between strains were normalized to untreated wild type which was adjusted to a value of 1. All
genes were analyzed in triplicate. Error bar represents Mean + SD. *P < 0.5, **P < 0.01.
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earlier, the ability to overcome hyperosmotic stress was impaired
in Caspt20A/A, suggesting CaSPT20 really plays a role in
osmostress responses (Tan et al, 2014). To evaluate if SPT20
responds to osmotic stress in cooperation with the Hogl pathway,
cell growth of strains SC5314, Caspt20A/A, Caspt20A/SPT20,
CahoglA/A and Cahogl A/HOG1 were examined during
exposure to external hyperosmolarity, comparing growth defects
between Caspt20A/A and CahoglA/A strains. As expected,
the knockout of CaSPT20 or CaHOGI both led to impaired
cell growth in hyperosmotic conditions imposed by NaCl or
sorbitol, and for each, growth was restored to wild type levels
when CaSPT20 and CaHOGI were reconstituted, respectively
(Figure 4). This result, along with the affected phosphorylation
level of Hogl and the expression of Hogl-dependent osmotic
stress response genes, suggest a link between SPT20 and

Hogl-MAPK pathway in C. albicans osmoadaptation. Thus, we
hypothesized that SPT20 regulated the Hogl-MAPK pathway
to respond to external osmotic stress. In order to evaluate
this hypothesis, we constructed the HOGI overexpression
strain in the Caspt20A/A mutant background (HOGI-
OE) and in the wild type background (wt-HOGI1-OE), and
SPT20 overexpression strain in the CahoglA/A mutant
background (SPT20-OE). The gene overexpression was verified
by quantitative reverse transcription-PCR analysis. In addition,
the basal levels of phosphorylated Hogl and total Hogl in
the HOGI1 overexpression strains were significantly increased
when compared with wild type (Supplementary Figure 1).
We compared the cell growth of strains SC5314, Caspt20A/A,
HOGI1-OE, CahoglA/A, and SPT20-OE, which were treated
with NaCl. As illustrated in Figure 4, we observed that HOGI

WT
spt204/A

spt20A/SPT20
hoglA/A
hogl VAHOGI

WT
spt204/A

spt20A/SPT20

hoglA/A
hogl /AHOG1
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spt204/A

HOGI1-OE

WT
hoglA/A

SPT20-OE K 4

FIGURE 4 | The cell growth defect of Caspt20A/A is similar to that of Cahog1 A/A and is rescued by HOG1 overexpression. Ten-fold serial dilutions of strains were
spotted on appropriate plates to evaluate the cell growth defects. Cells were grown at 30°C and then photographed. The experiment was repeated on three

independent occasions.
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overexpression can partially rescue the growth defect caused
by SPT20 deletion when cells were exposed to a series of high
osmotic stress (YPD plate supplements with 1.8 M NaCl, or 2.2 M
NaCl), while overexpressing SPT20 did not confer the ability to
resist hyperosmotic stress to the hogl A/A strain. Furthermore,
in order to investigate whether there exists a Spt20-independent
manner contributing to the increasing resistance of HOG1-OE
strain, we observed the cell growth of wt-HOGI-OE strain,
and found that overexpressing HOGI did not enhance the
osmotic tolerance of wild type cells (Supplementary Figure 2).
These results indicate that SPT20 influences Hogl during the
C. albicans response to osmotic stress.

CaSPT20 Regulates Glycerol

Accumulation in C. albicans

To investigate the correlation between CaSPT20 and Hogl-
MAPK pathway in hyperosmotic stress response, we measured
the intracellular glycerol accumulation of strains SC5314,
Caspt20A/A, and Caspt20A/SPT20 after exposure to 1 M NaCl
for 30 min. Our results showed the basal glycerol contents of
these three strains were almost the same, and they all increased
strikingly under hyperosmotic condition. However, the ability to
accumulate intracellular glycerol was impaired in Caspt20A/A
strain (P < 0.001) (Figure 5A).

Glycerol biosynthesis is catalyzed by glycerol-3-phosphate
dehydrogenase (encoded by GPDI/GPD2) and glycerol-3-
phosphatase (encoded by RHR2) (Hohmann, 2002; Fan et al,,
2005). Meanwhile, the increased cellular glycerol concentration
is also forced by regulated activities of triacylglycerol
lipases (encoded by TGLI/TGL2) (Wei et al, 2009), alcohol
dehydrogenase (encoded by ADH) (Blomberg and Adler, 1989),
and amino acid permease (encoded by AGP2) (Marotta et al.,
2013). To further examine the Spt20 influence on cellular
glycerol, we examined expression of these genes involved in
glycerol accumulation. GPD2, which was reported to increase
to a greater extent than GPDI and RHR2 levels in response to
osmostress (Smith et al., 2004; Enjalbert et al., 2006; Jacobsen
et al., 2018), was suppressed when CaSPT20 was knocked out.
Although GPD2 was induced in the presence of 1 M NaCl, its
expression still did not reach the level observed in the wild type
(P < 0.001). In contrast, ADH7 was significantly induced in
the Caspt20A/A mutant, both in the absence and presence of
osmotic stress (6-fold in the presence of 1 M NaCl compared to
wild type; P < 0.001). TGLI was under-expressed in Caspt20A/A
after exposure to osmotic stress (0.31 for the mutant versus 0.76
for wt strain; P < 0.001). When compared to wild type, AGP2, a
gene involved in membrane permeability, experienced reduced
expression in the absence of salt exposure in the Caspt20A/A
strain, but following osmotic stress treatment, it significantly
elevated and was 1.25-fold higher than the expression found
in the wild type strain (P = 0.002) (Figure 5B). The decreased
expression of GPD2 can reduce the accumulation of intercellular
glycerol directly. The expression of ADH7 can reduce the yield
of NADH, then lead to the decreasing production of glycerol
(Blomberg and Adler, 1989). Meanwhile, the reduced transcript
level of TGLI blocks the process of transforming triglycerides

to glycerol (Jandrositz et al, 2005; Wei et al, 2009), while
the upregulation of AGP2 can cause increasing membrane
permeability, so that the intracellular glycerol can spread to
extracellular environments. Taken together, these findings
suggest that CaSPT20 participates in the process of glycerol
accumulation, since GPD2, ADH7, TGL1 and AGP2 expression
were sharply affected when SPT20 was deleted from C. albicans.

DISCUSSION

Osmoregulation by homeostatic mechanisms is crucial in
C. albicans in order to keep appropriate cell volume, turgor,
as well as a suitable intracellular environment for all kinds
of biochemical reactions (Hohmann et al., 2007; Fuchs and
Mylonakis, 2009). In this paper, we show that CaSpt20
has functional similarity with ScSpt20 and can be used
to reconstitute a mutation in the homologous gene. The
increased sensitivity of Caspt20A/A to hyperosmolarity is
due to its reduced phosphorylation levels of Hogl, thereby
causing downregulation of osmotic stress response genes and
decrease in glycerol accumulation, suggesting that SPT20 is
involved in resistance to high osmolarity. These findings
give us new insight into the role of SPT20 in C. albicans
response to osmotic stress, and indicate a new relationship
between Spt20 and Hogl.

As an indispensable component of the SAGA complex,
SPT20 has gained enough attention on its function. It was
reported that Spt20 was involved in endoplasmic reticulum
stress response in human (Nagy et al., 2009), hypoxic response
(Hickman et al., 2011) and the functional interaction between
other SAGA components and TBP in yeast (Roberts and
Winston, 1997), and the calcineurin-mediated CI~ homeostasis
in Schizosaccharomyces pombe (Zhou et al., 2013). Furthermore,
SPT20 is required for normal cell growth (Roberts and
Winston, 1996) and is essential for yeast survival at high
osmolarity (Zapater et al.,, 2007). Here, we demonstrated that
knockout of ScSPT20 caused significantly further growth defects
associated with the tested hyperosmotic stressors (NaCl and
sorbitol) compared to a wild type control exposed to the same
conditions. Additionally, the ability of Caspt20A/A mutant
strain to resist hyperosmolarity was greatly impaired (Figure 4).
These results suggested that SPT20 is required for the normal
cell growth under osmotic condition, which was in accord
with the previous work that reported SPT20 is essential for
yeast survival at high osmolarity (Zapater et al,, 2007). The
similar phenotypes between Scspt20A and Caspt20A/A mutant
strain, and increasing resistance to osmotic stress due to
the complement of CaSPT20, supported that the function of
SPT20 was conserved.

The Hog1-MAPK pathway is critical for C. albicans to respond
to osmotic stress. Hogl, the core component in this pathway, has
a strong functional preservation from yeast to mammals (Sheikh-
Hamad and Gustin, 2004), and its rapid phosphorylation is an
essential step in osmotic toleration (Brewster and Gustin, 2014).
Our findings suggest that Spt20 regulates Hogl activation in
C. albicans response to hyperosmotic stress. The evidences are the
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FIGURE 5 | CaSPT20 regulates intracellular glycerol accumulation under hyperosmotic condition. (A) CaSPT20 has an important effect on intracellular glycerol
content under hyperosmotic condition. 5 x 107 cells with or without treatment (1 M NaCl or YPD) were grown at 30°C for an additional 30 min and then used for
glycerol measurement. The ability of spt20A/ A strain to accumulate cellular glycerol under osmotic stress was impaired. (B) SPT20 affects the expression of genes
involved in glycerol accumulation. gRT-PCR analysis was used to measure the expression of genes involved in glycerol accumulation following exposure to 1 M
NaCl. The following C. albicans strains were evaluated: wild type SC5314, spt20A/ A, and spt20 A/SPT20 and genes were analyzed in triplicate. Expression levels
were normalized to 18S rRNA. Fold changes between strains were normalized to untreated wild type, which was adjusted to a value of 1. Three independent
biological replicates were conducted. Error bar represents Mean + SD. *P < 0.01, **P < 0.001.

following. First, the cell growth defect of Caspt20A/A was similar
to that of Cahogl A/A (Figure 4). Second, the phosphorylation
level of Hogl was significantly decreased because of the absence
of SPT20 (Figure 2). Our western blotting result showed that,
as reported previously (Smith et al., 2004), Hogl was rapidly

but transiently phosphorylated during C. albicans salt exposure.
However, phosphorylation levels were comparably lower in
Caspt20A/A, suggesting that CaSPT20 affected the process of
Hogl phosphorylation. Hogl phosphorylation is a dynamic event
(Alonso-Monge et al., 2003; Smith et al., 2004). The kinetics of
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phosphorylation were different in these two strains: wild type
strain peaked at about 10 min after exposure to stress, while
the mutant strain peaked at about 60 min. However, in both
wild type and mutant strains, the peak levels of phospho-Hogl
were diminished over time. Third, overexpressing HOGI in the
spt20A/A mutant background can partially rescue the growth
defect when spt20A/A mutant strain was exposed to osmotic
stress, while overexpressing SPT20 in the hoglA/A mutant
background was not able to restore its ability to respond to
hyperosmolarity (Figure 4). Meanwhile, the HOG1-OE strain
demonstrated higher basal level of phosphorylated Hogl and
total Hogl protein than wild type and spt20A/A mutant
strain (Figure 2 and Supplementary Figure 1B), which may
contribute to tolerate its osmostress, since C. albicans regulates
the phosphorylation of Hogl to respond to hyperosmolarity
(Smith et al., 2004). Though the basal phosphorylated Hogl1 level
of wt-HOG1-OE strain was enhanced as well, overexpression
of HOGI did not increase the resistance to osmolarity in wild

type. Our working hypothesis is that the phospho-Hogl level
in wild type may be similar to that in wt-HOG1-OE strain
under osmotic exposure which leads to similar cell growth.
Additionally, overexpression HOGI did not revert the growth
defect of Caspt20A/A mutant strain to a level comparable to
the wild type, suggesting that besides the Hogl-MAPK pathway,
there may exist another mechanism that accounts for SPT20
response to osmotic stress. Strikingly, SPT20 overexpression in
the hogI A/A mutant background reduced the cell growth in
the YPD plate. This phenotype was not due to the changes in
the shape of fungal cells, since the SPT20-OE strain cells grew
as unicellular yeast and the shape was similar to that of wild
type and hoglA/A mutant strain (Supplementary Figure 3).
SPT20 is crucial for the structural integrity of SAGA complex
(Grant et al., 1997; Sterner et al., 1999), thus, overexpressing
SPT20 may change the structure of SAGA complex, which
would hamper the normal gene expression and then impair
normal cell growth.
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We noticed that, compared to wild type, the transcript level
of genes involved in glycerol accumulation was either reduced
or induced in the Caspt20A/A mutant strain (Figure 5B).
However, the changing patterns of these genes were similar
to that of wild type. When C. albicans cells were subjected
to osmotic stress, the activation of the Hogl-MAPK pathway
can regulate the synthesis and accumulation of glycerol (San
José et al., 1996; Monge et al., 2006), along with up-regulation
of genes contributing to increase the intercellular glycerol
levels and down-regulation of genes contributing to reduce
the glycerol levels. Although the magnitude of Hogl activation
was significantly decreased in Caspt20A/A mutant strain
(Figure 2A), the reduced phosphorylated Hogl can still induce
or repress the related gene expression to cope with osmolarity.
Strikingly, the fold induction of GPD2 in Caspt20A/A mutant
strain is greater than that in wild type. We hypothesized that
the repressed expression of ADH7 and TGLI, together with the
up-regulation of AGP2 contribute to the decrease of intracellular
glycerol, which may in turn lead to a greater fold induction of
GPD2 in Caspt20A/A mutant strain response to osmotic stress.
Furthermore, in contrast to the induction of GPD2 expression
reported previously (Enjalbert et al., 2006; Marotta et al., 2013),
there was no increase in GPD2 expression in wild type cells
when osmotic stress was imposed. However, the transcript level
of GPD2 is dynamic and related to the incubation time upon
osmotic stress (Enjalbert et al., 2006) and the C. albicans wild type
strains used in these studies were different, thus we speculated
that the incubation time and the wild type strains were associated
with the different GPD2 expression.

Our study has limitations that need to be taken into account
and addressed in the future. First, although the growth defects
of Scspt20A were rescued with complementation of CaSPT20
(Figure 1), C. albicans SPT20 gene was not codon optimized
prior to expression in S. cerevisiae, which should be noted as a
limitation in our study because it may lead to mistranslation.
Also, in future work, we plan to evaluate a Caspt20A/hogl A
double mutant strain to further assess genetic epistasis between
SPT20 and HOGI.

CONCLUSION

In conclusion, we confirm that SPT20 is functionally conserved
between S. cerevisiae and C. albicans, and report that SPT20
plays a critical role in C. albicans response to hyperosmotic
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Candida albicans is an opportunistic pathogen causes fungal infections that range from
common skin infections to persistent infections through biofilm formation on tissues,
implants and life threatening systemic infections. New antifungal agents or therapeutic
methods are desired due to high incidence of infections and emergence of drug-
resistant strains. The present study aimed to evaluate (i) the antifungal and antibiofilm
activity of 1-alklyl-3-methyl imidazolium ionic liquids ([CnMIM]*[X]~, n = 4, 12 and 16)
against Candida albicans ATCC 10231 and two clinical C. albicans strains and (i) the
mechanism of action of promising antifungal ionic liquid on C. albicans. Two of the
tested compounds were identified as more effective in preventing growth and biofim
formation. These ionic liquid compounds with —dodecyl and —-hexadecyl alkyl groups
effectively prevented biofilm formation by fluconazole resistant C. albicans 10231 and
two other clinical C. albicans strains. Although both the compounds caused viability loss
in mature C. albicans biofilms, an ionic liquid with —hexadecyl group ([C1gMIM]T[CI]7)
was more effective in dispersing mature biofilms. This promising ionic liquid compound
([C16MIM]T[CI]™) was chosen for determining the underlying mode of action on
C. albicans cells. Light microscopy showed that ionic liquid treatment led to a significant
reduction in cell volume and length. Increased cell membrane permeability in the ionic
liquid treated C. albicans cells was evident in propidium iodide staining. Leakage of
intracellular material was evident in terms of increased absorbance of supernatant
and release of potassium and calcium ions into extracellular medium. A decrease in
ergosterol content was evident when C. albicans cells were cultured in the presence of
antifungal ionic liquid. 2’,7’-Dichlorodihydrofluorescein acetate assay revealed reactive
oxygen species generation and accumulation in C. albicans cells upon treatment with
antifungal ionic liquid. The effect of antifungal ionic liquid on mitochondria was evident
by decreased membrane potential (measured by Rhodamine 123 assay) and loss of

Frontiers in Microbiology | www.frontiersin.org 31

April 2020 | Volume 11 | Article 730


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2020.00730
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2020.00730
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2020.00730&domain=pdf&date_stamp=2020-04-21
https://www.frontiersin.org/articles/10.3389/fmicb.2020.00730/full
http://loop.frontiersin.org/people/827254/overview
http://loop.frontiersin.org/people/53663/overview
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Reddy and Nancharaiah

Antifungal Imidazolium lonic Liquids

metabolic activity (measured by MTT assay). This study demonstrated that imidazolium
ionic liquid compound exert antifungal and antibiofilm activity by affecting various cellular
processes. Thus, imidazolium ionic liquids represent a promising antifungal treatment
strategy in lieu of resistance development to common antifungal drugs.

Keywords: imidazolium ionic liquids, antifungal drugs, antibiofilm agents, Candida albicans biofilms, ergosterol
content, membrane damage, mitochondrial dysfunction, oxidative stress

INTRODUCTION

Fungal pathogens are a major health issue causing over 1.6
million deaths annually (Almeida et al., 2019). Several species
of Candida are responsible for the fungal infections, collectively
called as candidiasis. These are commensal organisms in
healthy individuals and reside in gastrointestinal, respiratory,
and genitourinary tracts. In immunocompromised or diseased
patients, they become opportunistic and cause infections ranging
from superficial (oral or vaginal) to life threatening systemic
infections'. About 50 to 70% of systemic fungal infections
are caused by Candida spp. (Santos et al, 2018). Candida
albicans is the most frequently observed organism in candidiasis.
Persistent Candida infections are increasingly being reported
in medically implanted devices such as catheters, heart valves,
pacemakers, vascular bypass grafts, dentures and endotracheal
tubes thus leading to high mortalities (Ramage et al., 2006;
Sardi et al., 2013; Santos et al, 2018). Biofilm mode of
growth by Candida spp. further complicates the treatment
as the cells reside in biofilms are about 2000 times more
resistant to fluconazole and amphotericin B over their planktonic
counterparts (Bergamo et al., 2015).

Azoles, polyenes, allylamines, and echinocandins are the
current antifungal arsenal available for treating candidiasis
(Fuentefria et al.,, 2018). Fluconazole is most commonly used
for treating candidiasis due to its low cost, high bioavailability
and possibility of drug administration is various formulations
(Martin, 1999). However, well documented resistance of Candida
spp. to fluconazole makes this drug a less attractive antifungal
agent in the current treatment scenario. Besides drug efflux
mechanisms, alterations in target sites/gene expression, current
challenges in treatment include biofilm formation which directly
or indirectly enhances the drug resistance (Fuentefria et al.,
2018). Currently applied strategies are ineffective against biofilms
warranting prospective new antifungal agents from natural
or synthetic origin (Sardi et al., 2013; Gyawali and Ibrahim,
2014; Nobile and Johnson, 2015). A potential antifungal agent
should have broad spectrum activity in terms of antifungal
and antibiofilm activities with minimal cytotoxicity and side
effects to the host.

Ionic liquids are a novel class of molten salts at <100°C
and exclusively made up of combination of cations and anions
(Rogers and Seddon, 2003). These salts typically comprises
of a large cationic core (often a nitrogen containing group
with alkyl substituent) and a small counter anion (Pendleton
and Gilmore, 2015). Apart from their applications in chemical
industry (Vekariya, 2017), these compounds are promising

"http://www.cdc.gov/fungal/diseases/candidiasis/

as components of active pharmaceutical ingredients and
antimicrobials (Egorova et al., 2017). The tunable property of
ionic liquids by way of changing their constituent ions, allows
making large structural diversity of about 10'® compounds
(Pernak etal., 2007) with altered physical, chemical and biological
activities. Some of these ionic liquids have been explored as
antimicrobials, antiseptics and antifouling agents (Pernak et al.,
2004; Nancharaiah et al., 2012; Egorova et al., 2017). Imidazolium
ionic liquids have been reported for effective control of bacterial
and phototrophic biofilms (Carson et al., 2009; Busetti et al.,
2010; Reddy et al, 2017, 2020). With respect to antifungal
activity, —ethyl and -butyl side chain containing imidazolium,
pyridinium and cholinium ionic liquids were evaluated against
Penicillium sp. (Petkovic et al., 2009). Schrekker et al. (2013)
reported the efficient antifungal activity of N-alkyl-substituted
imidazolium salts with —decane, —tetradecane and -hexadecane
side chain containing cations against fungal pathogens with
minimum toxicity to leukocytes. Activity of ~hexadecyl side chain
containing imidazolium ionic liquid against multidrug resistant
Candida tropicalis and clinical dermatophyte strains showed
potential activity against biofilms (Bergamo et al., 2014, 2015;
Dalla Lana et al., 2015). Inhibition of conidia germination and
mycelial growth was observed in Fusarium graminearum (Ribas
et al., 2016). Antifungal ionic liquids were incorporated into
poly(L-lactide) biomaterials for inhibiting adhesion of Candida
spp. (Schrekker et al., 2016). Using contaminated acrylic resin
strip specimens, 1-n-hexadecyl-3-methylimidazolium chloride
was demonstrated as a strong antifungal for mouthwash
formulation (Bergamo et al., 2016). Although several studies have
reported antifungal activity, effect of imidazolium ionic liquids
on preformed fungal biofilms (biofilm eradication potential) is
largely unknown (Table 1). Evaluation of antifungal ionic liquids
on preformed biofilms is of clinical relevance as the biofilm
formation often precedes treatment. Cell membrane has been
identified as the potential target in the case of imidazolium ionic
liquids (Nancharaiah et al., 2012; Benedetto, 2017; Egorova et al.,
2017). Other studies indicated that imidazolium ionic liquids can
decrease the content of ergosterol, an important component of
fungal cell membranes (Schrekker et al., 2013). Ionic liquids are
currently seen as promising asset for fighting fungal infections
(Hartmann et al, 2016). Due to limited understanding of
mechanisms, studies aimed at identifying potential targets and
underlying mode of action of antifungal ionic liquids are desired
for their prospective use in treating infections.

This study was aimed to determine the antifungal, antibiofilm
and biofilm eradication activities of three imidazolium ionic
liquids against C. albicans strains and to understand the
mode of action of potent antifungal imidazolium ionic
liquid. Antibiofilm activity was determined as prevention
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Antifungal Imidazolium lonic Liquids

TABLE 1 | Summary of studies on evaluation of ionic liquids against various fungal strains.

lonic liquid Fungi MIC (wmol I-7) MFC (uwmol I-1) Effective Biofilm Reference
Antibiofilm eradication
concentrations

[CisMIMICI 6 isolates of 0.04 ND 0.08-0.65 Killing of biofilm Bergamo et al.,

C. tropicalis cells. 2014
[CAMIMICI (n = 4, 21 strains of Avg MICsp C4 = 71; C1s = 0.6-36 for ND ND Dalla Lana et al.,
10, 12, 16, 18); Microsporum sp.; C10 =10.16; Microsporum sp.; 2015

24 strains of G2 =6.59; C15 =0.20; Gy =0.23-36.4

Trichophyton sp. C1g = 20.08. for Trichophyton sp.
[CAMIM]MeS 21 strains of Avg MICsp C4 = 53; C16 = 0.5-31 for ND ND Dalla Lana et al.,
(n=4,9, 16) Microsporum sp.; Cg =17.37 C1 = 0.12. Microsporum sp.; 2015

24 strains of C16 = 0.5-31 for

Trichophyton sp. Trichophyton sp.
[C1sMIMICI; Candida tropicalis ND ND ND Killing of biofilm Bergamo et al.,
[C16MIM]MeS cells 2015
[C1sMIMICI; 4 Fusarium 9.1-18.2and 7.7-15.5 ND ND ND Ribas et al., 2016
[CisMIM]MeS graminearum

strains
[CAMIMICI (n = 4, Three fluconazole C4 > 1000, Cqp =25, C4 > 1000, C4 =NE, Gy = 25, Cq4 =NE; Current study
12, 16) resistant Cip =4.68 Cio =75, Cig =6.25 Cyo = Biofilm cell

C. albicans strains Cig =6.25 killing; C16 = Killing

and biofilm removal

[CaMIMICI: 1-n-Alkyl-3-methylimidazolium chloride; [CnMIMIMeS: 1-n-Alkyl-3-methylimidazolium methanesulfonate; ND, not determined; NE, no effect.

of biofilm formation in the presence of ionic liquids and
antifungal drugs. Biofilm eradication was determined in terms
of killing and dispersal activity of ionic liquids on preformed
fungal biofilms.

MATERIALS AND METHODS

Organisms, Media and Growth
Conditions

This research was conducted using C. albicans ATCC
10231 (Microbiologics, United States), a reference strain
commonly used for evaluating antifungal and antibiofilm
agents. Experiments were conducted with two clinical strains
of C. albicans [CA i16 (GenBank No. MG757722.1) and CA
i21 (GenBank No. MG757724.1)] which were isolated from
sputum samples of patients. The clinical strains were obtained
from University of Madras, India. These cultures were routinely
maintained on potato dextrose agar (PDA) (HiMedia, India).
For liquid cultures, a single colony was picked from PDA,
transferred to potato dextrose broth (PDB) and incubated for
24 h at 30°C and 120 RPM in a temperature controlled orbital
shaker. Cells harvested from PDB were used for growth and
biofilm experiments.

Filter sterilized RPMI 1640 medium (L-Glutamine,
phenol red, 2 g 17! glucose and 0.165 mol 17! MOPS
buffer, pH 7.0) (Part No. AT180, HiMedia, India) was
used for biofilm experiments. Cultures were grown in
PDB for 24 h, pelleted by centrifugation, re-suspended
in RPMI 1640 and adjusted to desired cell density for
performing biofilm experiments. For determining the
mechanism of action, cells were re-suspended in phosphate
buffered saline (PBS).

Imidazolium lonic Liquids and Antifungal
Drugs

1-butyl-3-methylimidazolium chloride ([C4MIM][CI)),
1-dodecyl-3-methylimidazolium iodide ([CoMIM][T]),
fluconazole and amphotericin B were purchased from Sigma-
Aldrich  (United States). 1-hexadecyl-3-methylimidazolium
chloride ([C;¢MIM][CI]) was purchased from Acros
(United States). The chemical structures of three ionic liquids
used in this study are given in Supplementary Information
(Supplementary Figure S1). Stock solutions (100 mmol 17 1)
of ionic liquids were prepared in sterile, ultrapure water and
stored at room temperature until further use. Stock solutions of
fluconazole (32 mmol 1=!) and amphotericin B (13 mmol 171)
were prepared, respectively, in ethanol and dimethyl sulfoxide
(DMSO). These stock solutions were stored at 4°C until use.

MIC and MFC of lonic Liquids Against
C. albicans ATCC 10231
