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Editorial on the Research Topic

Modeling for Prediction of Radiation-Induced Toxicity to Improve Therapeutic Ratio in the
Modern Radiation Therapy Era

INTRODUCTION

Radiation therapy (RT) represents a mainstay of treatment for many cancer types, either as a single
modality or within a multidisciplinary approach, including surgery and systemic therapy. From a
general perspective, when planning a curative radiotherapy course, its potential benefits should be
weighed against the risk of acute and late tissue/organ damage. In other words, the main goal of
radiotherapy is to improve the clinical outcome by increasing the therapeutic ratio, i.e., the ratio
between tumor control probability (TCP) and normal tissue complication probability (NTCP).
Although modern radiotherapy techniques, such as Intensity Modulated RT (IMRT), often coupled
with advanced in-room imaging (Image Guided RT, IGRT), Stereotactic Body RT (SBRT), particle
RT, including proton ion and carbon ion RT, allow a better sparing of normal tissues due to their
improved conformity and precision, radiation-induced toxicity is still a matter of concern. Indeed,
dose tolerance of many healthy tissues, called organs at risk, is a little less than or equal to the dose
needed to eradicate cancers.

It is acknowledged that the risk of some induced side effects during and after the course of
curative radiotherapy may be related to radiation doses delivered to multiple organs at risk rather
than to the dose received by a specific organ. Additionally, various patient-related factors, including
comorbidities and genetic, genomic and biological/microenvironment features, may act as modifiers
of the dose-response curve. Thus, predicting toxicity by analyzing the relationship among all
determinants of radiation response of healthy tissues could improve the therapeutic ratio and the
management of side effects.

The QUANTEC (Quantitative Analyses of Normal Tissue Effects in the Clinic) collaboration (1)
presented a synthesis of data and models available in 2010. It derived recommendations based on what
we knew at that moment. The document gave clear and exhaustive recommendations in the (few)

Frontiers in Oncology | www.frontiersin.org

8 May 2021 | Volume 11 | Article 690649


https://www.frontiersin.org/articles/10.3389/fonc.2021.690649/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.690649/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.690649/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.690649/full
https://www.frontiersin.org/research-topics/10439/modeling-for-prediction-of-radiation-induced-toxicity-to-improve-therapeutic-ratio-in-the-modern-rad
https://www.frontiersin.org/research-topics/10439/modeling-for-prediction-of-radiation-induced-toxicity-to-improve-therapeutic-ratio-in-the-modern-rad
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Tiziana.rancati@istitutotumori.mi.it
https://doi.org/10.3389/fonc.2021.690649
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.690649
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.690649&domain=pdf&date_stamp=2021-05-26

Rancati et al.

Editorial: Modeling Radiation-Induced Toxicity

situations where consistent results were available. In the case of
controversial results or still more of a lack of reliable information,
the document critically discussed the controversial points, often
suggesting urgent lines of research and giving clear warnings around
the uncertainty of the proposed recommendations.

During the “post-QUANTEC” years, the field’s progress has
been relevant, confirming its vitality, with many research groups
continuously contributing with ideas and new data. Besides, new
challenges entered into the arena, substantially modifying the
traditional aspects dealing with clinical dose-volume effects
studies (2).

Among them, probably the most important is the shift from
NTCP dose-based modelling to the broader field of more
“comprehensive” predictive models. In the hypothetical case
that two patients receive exactly the “same dose distribution”,
the risk of toxicity is always modulated by the single
individual profile.

The fact that “dose is not enough” was clear from the early
days of radiobiology. It is receiving constantly growing attention
in the current “omics” era (3): the availability of individual
information characterizing the patients and potentially
influencing their reaction to radiation is more and more
essential, especially in the era of image-guided IMRT in which
organs are efficiently spared in most patients.

This implies the need to have access to data including
individually assessed clinical, biological and genetic information
and to face the issue of modeling the response of normal tissue to
radiation in a more and more “phenomenological” approach (4),
requiring robust methods for the selection of the most predictive
variables (both dosimetric and non-dosimetric) and the adoption of
advanced data mining/machine learning methods to manage large
databases, including a large number of patients and lots of variables.

Treatment planning optimization is driven by the knowledge,
often not exhaustive, of quantitative dose-volume effect
relationships. NTCP models are also increasingly used in
protocols of model-based selection of patients for proton therapy
(5-7), impacting both the single patient treatment and National
Health Systems (efficiency and costs). Therefore, every progress in
this field has a vast and rapid impact on how patients are treated
everywhere. This is an active field of research and practice, involving
many radiation oncologists, medical physicists, biologists, and data
scientists in a multiprofessional scenario.

TOPICS COVERED IN THIS
RESEARCH TOPIC

This Research Topic includes Original Research Papers, Reviews,
Mini Reviews and Perspective and Opinion articles focusing on:

e The state-of-the-art of modeling approaches and their
contribution towards personalized cancer treatment;

* The improvements of knowledge on dose-volume
relationships for different organs;

* The integration of clinical/genetic/genomic/biological/
microenvironment/imaging features in prediction models;

* Pre-clinical research on radiation induced damage to normal
tissues using animal models;

* Voxel-based approaches to analysis of radiation induced
toxicity.

PAPERS INCLUDED IN THIS
RESEARCH TOPIC

This Research Topic includes 30 original articles, 2 review,
1 mini-review and 1 perspective article.

The papers are from 160 authors and 18 countries on four
continents. In particular, there are 19 works involving several
centers and countries from one continent (10 from Europe, 6
from Asia, 2 from United States, and 1 from Australia) 9
international papers including countries both from Europe and
other continents, and 6 papers from Italian centers. Authors’
affiliations are equally distributed among academies and hospitals.
These summary statistics mirror the broad interest in modeling
radiation-induced toxicity, the highly multidisciplinary background
of people involved in the field, and the vital relationship between
academic and clinical research teams.

Four pre-clinical studies are presented: McKelvey et al.
consider the interaction between immunotherapy and
radiotherapy, Wang et al. studied the mitigation of side-effects
by removing senescent cells, Li et al. present results in mice on
aerosolized thyroid hormone in preventing lung fibrosis, and
Zuppone et al. propose a review of pre-clinical research on
bladder toxicity

Four manuscript focus on general/methodological issues:
Barry et al. evaluate the propagation of uncertainties in
biologically driven treatment planning systems, Thor et al.
reinforce the value of registering study analysis plans and
proposes some guidelines, Isaksoon et al. review machine
learning methods applied to modeling of radiotherapy
outcomes, while Desideri et al. propose a mini-review on
available models including radiomics features in models.

Most papers (26/34) report original research on modeling
toxicity outcomes in clinical cohorts. Cancer sites include brain
tumors, head-and-neck and thoracic diseases (mainly breast
cancer, lung and esophageal cancers), prostate cancer. Twenty-
one out 26 papers focus on photon external beam radiotherapy.
At the same time, one considers proton-therapy (Palma et al.),
one carbon jons (Dale et al.), one brachytherapy (Panettieri et al.)
and one radioligand therapy (Belli et al.). A last work considers
modeling secondary malignancy in the frame of comparison of
photons and protons radiotherapy (Konig et al.). This uneven
distribution is associated with a more mature experience in
toxicity modeling after external beam RT; simultaneously, it
highlights recent interest from the environment of more
modern therapies.

Thirteen out of 26 papers consider more established modeling
methods, including clinical and dosimetric risk factors (Jasper
et al; Zhao et al.; Lee et al.; Dupic et al.; Scoccianti et al.; Palma
et al; Panettieri et al.; Bresolin et al;; Onjukka et al.; Dale et al;
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Belli et al;; Rattay et al.; Meng et al.). Some papers consider the
inclusion of radiomics (Avanzo et al; Du et al.), genetic
information (Palumbo et al; Massi et al.) and patient-specific
biomarkers (Luo et al.; von Reibnitz et al; Dulong et al.).

Evaluation of models including advanced dosimetric features
beyond the dose-volume-histograms is presented in two papers:
Heemsbergen et al. considering rectum dose maps and Marcello
et al. conducting three-dimensional voxel-based analysis.

Interestingly four papers consider external validation of
previously published models and or clinical/dosimetric/genetic
features (Shi et al.; Panettieri et al; Massi et al.; Rattay et al.),
investigating when models can be generalized to populations
other than the ones used for their training, how well this works
and which cautious should be considered.

Two papers put the use of models in the perspective of
modern radiotherapy: Bijman et al. consider automated
radiotherapy planning to explore at the single-patient level the
trade-off between tumor coverage and predicted toxicity; Lafond
et al. investigate the feasibility and the added value of planning
which considers specific organ sub-regions while preserving the
dose to the target for prostate radiotherapy.

CONCLUSIONS

The QUANTEC papers were published as a special issue of the
Red Journal in March 2010 and became hugely successful with
copies of QUANTEC dose constraints tables hanging in most
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Purpose: To evaluate the performance of the hippocampal normal tissue complication
model that relates dose to the bilateral hippocampus to memory impairment at 18 months
post-treatment in a population of low-grade glioma (LGG) patients.

Methods: LGG patients treated within the radiotherapy-only arm of the EORTC
22033-26033 trial were analyzed. Hippocampal dose parameters were calculated from
the original radiotherapy plans. Difference in Rey Verbal Auditory Learning test delayed
recall (AVLT-DR) performance pre-and 18 (£4) months post-treatment was compared to
reference data from the Maastricht Aging study. The NTCP model published by Gondi
et al. was applied to the dosimetric data and model predictions were compared to actual
neurocognitive outcome.

Results: A total of 29 patients met inclusion criteria. Mean dose in EQD2 Gy to the
bilateral hippocampus was 39.8 Gy (95% Cl 34.3-44.4 Gy), the median dose to 40% of
the bilateral hippocampus was 47.2 EQD2 Gy. The model predicted a risk of memory
impairment exceeding 99% in 22 patients. However, only seven patients were found to
have a significant decline in AVLT-dr score.

Conclusions: In this dataset of only LGG patients treated with radiotherapy the
hippocampus NTCP model did not perform as expected to predict cognitive decline
based on dose to 40% of the bilateral hippocampus. Caution should be taken when
extrapolating this model outside of the range of dose-volume parameters in which it
was developed.

Keywords: NTCP (normal tissue complication probability) model, low grade glioma (LGG), model verification and
validation, neurocognition, memory, late effect of cancer treatment, radiotherapy—adverse effects
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INTRODUCTION

Low grade glioma (LGG) are a group of relatively slow
growing primary brain neoplasms, mainly occurring in those
between 30 and 50 years of age (I, 2). Modern treatment
for LGG patients comprises surgery followed by radiotherapy
and adjuvant chemotherapy (3). Overall survival was recently
reported to be 13.3 years (4), but can vary with molecular subtype.

With many LGG patients living for many years or even
decades after treatment, the late adverse effects of treatment on
quality of life and neurocognitive functioning are of increasing
importance. Although both the tumor itself, as well as the
use of anticonvulsant therapy, have a deleterious effect on
neurocognitive function (5, 6), radiotherapy (RT) in particular
has been associated with a negative impact on neurocognitive
function. This late effect of radiotherapy was found in several
series with a longer follow-up (7, 8), however, it was not found in
several studies that limited observation to the first 5 years (9-12).

A dose response relationship with decreasing neurocognitive
performance (specifically memory) has been attributed to the
hippocampal area (13). A NTCP model for memory impairment
was proposed by Gondi et al. (14). In this study, 18 patients
undergoing fractionated stereotactic radiotherapy for benign
and low-grade tumors (9 vestibular schwannomas, 2 pituitary
adenomas, 3 meningiomas, and 4 low grade gliomas) completed a
comprehensive baseline neurocognitive assessment and a repeat
assessment at 18 months. A control group of 6 non-irradiated
subjects was tested as well, allowing for the use of Z scores for
performance change. Dose in excess of 7.3 EQD2 Gy to 40% of
bilateral hippocampus were found to be significantly correlated
to a decrease in Wechsler Memory Scale III-Word Lists delayed
recall score, a test that measures verbal memory performance.

Although this model is routinely used in the clinic, its
performance has not yet been quantified in the setting of partial
brain irradiation in a population of LGG patients. We analyzed
data from a recently completed and published randomized
phase III trial, where LGG patients in the control arm were
treated exclusively with focal radiotherapy up to 50.4 Gy (15) and
compared the predicted risk of neuropsychological impairment
with the actual outcome.

MATERIALS AND METHODS

Patient Population
Data was acquired within the EORTC 22033-26033
(NCT00182819) trial, which is a prospective, randomized,
open-label, phase 3 Intergroup study (European Organisation
for Research and Treatment of Cancer [EORTC] Radiotherapy
and Brain Tumor Groups, National Cancer Institute of Canada
[NCIC] Clinical Trials Group, Trans Tasman Radiation
Oncology Group [TROG], Medical Research Council [MRC]
Clinical Trials Unit). The study was approved by the institutional
review boards and ethics committees of all participating centers.
All patients provided written informed consent at the time of
registration (15).

In the aforementioned trial, patients of 18 years of age or older
with histologically confirmed and centrally reviewed low-grade

(WHO 2) glioma (diffuse astrocytoma, oligoastrocytoma and
oligodendroglioma, WHO classification 2006) with at least one
high-risk feature (age >40 years, progressive disease, tumor
size >5cm, tumor crossing midline, any focal neurological
deficit) were randomly assigned to treatment with either
radiotherapy (28 x 1.8Gy) or temozolomide chemotherapy.
Between September 2005 and March 2010 477 patients were
randomized. The study design, treatment details and the results
of the primary analysis have been described elsewhere (15).
A total of 103 patients from preselected medical centers also
underwent a detailed neurocognitive examination consisting
of the Rey Auditory Verbal Learning test (AVLT), Concept
Shifting test, Categoric Word Fluency test, and the Digit-
Symbol Substitution test. Neurocognitive tests were conducted
at randomization and then every 6 months until to tumor
progression or death.

The analysis presented herein contains patients with
retrievable radiotherapy planning data and neuropsychological
testing at both baseline and 18 (4 months). The neurocognitive
analysis for the entire patient population of EORTC 22033-26033
is reported elsewhere (16). The present study was conducted
according to the principles of the Declaration of Helsinki
(59th WMA General Assembly, Seoul, October 2008) and in
accordance with the local medical research regulations. The
study protocol has been presented to the local Medical Ethics
Committee (MEC-2017-321). No ethical approval was deemed
necessary and the requirement for additional informed consent
was waived.

Neuropsychological Assessments

One of the tests in the neuropsychological assessment is the
AVLT, which calls for various aspects of learning and recall.
The delayed recall condition (AVLT-dr) requires patients to
memorize a list of 15 words for five consecutive tests, and to recall
these 15 words after 20 min. The maximal score is 15 out of 15.
This test is conceptually identical to the delayed recall condition
in the Wechsler Memory Scale 3—word lists used by Gondi et al.
as the primary outcome measure.

In contrast to the original paper by Gondi et al,
EORTC22033-26033 does not include a control group of
healthy volunteers. Normal data for AVLT-dr, with test-
retest changes, has been published by the Maastricht Aging
Study group (17). This study tested healthy volunteers using
several neuropsychological tests at 2.5 year intervals and gives
parameters for a regression-based change analysis of test-retest
performance. The following relationship between age and change
in AVLT-dr retest score was found.

E =1.025 — 0.035 * (age — 62.5) (1)

Where E is the expected change between test and retest-score.

This can be converted to a Z score using the standardized residual

(which was found to be 2.362 in this test condition).
O—-E

T 2362 @

Where O is the observed retest score, and E is the predicted retest
score. As reported in the paper by Gondi et al., a neurocognitive
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event was defined as a reduction in AVLT-dr score at 18 months
corresponding to a Z score lower than —1.5.

Radiotherapy Treatment

Patients were treated with photon radiotherapy using 3D
conformal radiotherapy (3DCT), fractionated stereotactic
radiotherapy (FSRT) or intensity modulated radiotherapy
(IMRT) techniques depending on the availability at the
institution. Gross tumor volume (GTV) was defined by the
region of high signal intensity on T2 weighted MRI of FLAIR
sequences, or, in case of prior surgery, the resection cavity
and the residual tumor. Clinical target volume (CTV) margin
was 10-15mm. Planning target volume (PTV) margin was
7 mm for all patients. As required per protocol the contralateral
hemisphere was spared, but no specific attempt at sparing one or
both hippocampi was made.

Delineation and DVH Analysis

A rigid registration was applied between the planning CT and
MRI using MIMSoftware (Cleveland, OH, USA). Hippocampus
delineation followed the instructions of the publicly available
atlas from RTOGO0933 (18). In case no registration was
possible, delineation was performed on CT using anatomical
landmarks visible on MRI. Dose volume histograms (DVH)
and subsequent DVH parameters were generated for left and
right hippocampus individually and for composite bilateral
hippocampi. As presented in the paper by Gondi et al, we
assumed an «/P value of 2 to convert physical dose to biologically
equivalent dose in 2 Gy fractions (EQD2 Gy). The Dx% of
bilateral hippocampus was defined as the dose in EQD2 Gy
received by x % of bilateral hippocampal volume.

Statistical Approach

Descriptive statistics were generated for age, tumor laterality,
tumor lobe, anti-epileptic drug treatment (AED), education,
CTYV volume, and hippocampal dosimetry (Table 1). The model
used by Gondi et al. is based on the Lyman model (19). Their
formulation was presented as follows:

1 [t
Pnrep = E/ e 2 du (3)
—00

Where ¢ is a function of TDsg, the dose to 40% of hippocampus
at which the probability of neurocognitive decline is 50%, and m,
is a slope parameter (see below).

,_ D—1TDs W
m TD50
In the paper published by Gondi et al, the obtained values
of TD5p and m were 14.88 and 0.54, respectively. We applied
this model to generate predicted NTCP values for the dose
distributions in our study population. Cases were grouped in
three bins of equal size, according to ascending NTCP. In order to
compute the observed risk the incidence of a neuropsychological
event in each bin is computed. The predicted NTCP was plotted
against observed NTCP in a calibration plot. Next, a linear

TABLE 1 | Patient characteristics.

Age (years) 43.0 (95% CI 27.8-69.4)
Sex Male 18 62.1%
Female 1 37.9%
Handedness Right 24 82.8%
Left 5 17.2%
Years of education 13.8 (95% Cl 12.0-14.4)
Hemisphere Right 10 34.5%
Left 16 55.2%
Both 3 10.3%
Lobe Frontal 10 34.5%
Temporal 6 20.7%
Parietal 2 6.9%
Multifocal 10 34.5%
Other 1 3.4%
CTV volume (cc) 337 (95% CI 278-403)
Number of AEDs 0 3 10.3%
1 2 6.9%
2 24 82.8%
Epilepsy No seizures 31.0%
Generalized tonic-clonic 13.8%
seizures
Partial seizures 12 41.4%
Other 4 13.8%
Technique 3DCT 23 79.3%
IMRT 3 10.3%
FSRT 3 10.3%
Resection status Biopsy 15 51.7%
Partial removal 12 41.4%
Total removal 2 6.9%
IDH mutation Present 27 98.1%
Absent 1 3.4%
Undetermined 1 3.4%
1p/19q codeletion Present 10 34.4%
Absent 14 48.3%
Undetermined 5 17.2%

For age, CTV volume, and years of education the mean is reported along with the 95%
confidence interval.

regression was performed. The regression coefficients can be used
to calibrate the model to the dataset, the constant can be used as
offset parameter and the slope indicates over- or underestimation
of the observed risk.

In order to quantify model performance, the Brier score (BS)
was calculated for the original formulation of the model. BS is a
measure of the accuracy of a prediction with a binary outcome:

BS= 3" (- o) )
Where n is the number of observations, f, is the probability
that was forecast, and o, is the outcome (1 if the event occurs
and 0 if it does not occur). A low Brier score is indicative of
good model performance, it reflects a strong correlation between
forecast and outcome.
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Other Predictive Parameters

In addition to evaluating the performance of the NTCP model,
we investigated if CTV volume, laterality, age, handedness,
and WHO performance score were associated with cognitive
deterioration. To this end, using Spearman’s correlation
coefficient, a correlation matrix was made to identify if bilateral
and contralateral hippocampal DVH parameters correlated with
cognitive deterioration.

Power Considerations

In the paper by Gondi et al,, a lower rate of neurocognitive
impairment was found in the group of patients with a low dose
to bilateral hippocampi, defined as dose to 40% of bilateral
hippocampus volume in EQD2 Gy (D40%BH) <7.3 Gy (11.1 vs.
66.7%). In order to detect this difference in our group with 80%
power and 2-sided significance level a = 0.05, using a Fischer
exact test, and assuming the low-dose and the high-dose group
are equally sized, 15 patients are required per group. The power
calculation was done in SAS software version 14.1, all other
statistics were done in IBM SPSS Version 24 except for the Brier
score, which was calculated in MATLAB v2017a.

RESULTS

Patient Data

Of 477 patients within EORTC 22033-26033, 103 patients
underwent full neurocognitive testing. Of these, 54 patients
were treated with radiotherapy-only. Of these, 33 patients had a
complete neurocognitive assessment at baseline and at a median
follow up of 18.5 months (95% CI 17.3-18.9). Complete original
dosimetry data was available for 31 patients. Two patients
were excluded due to clinically progressive disease at time of
neurocognitive outcome assessment (Figure 1).

Data of 29 patients from 1 Spanish and 4 Dutch institutes is
summarized in Table 1. Median age of patients at randomization
was 43 years (95% CI 39-47). Only three patients did not require
anti-epileptic medication. Sixteen tumors were left sided, 10
right sided, and three were bilateral. Final resection status was
biopsy only in 15 patients, gross total resection in two patients,
and partial resection in twelve patients. An IDH mutation was
present in 27 patients, absent in one patient and undetermined
in one patient. An 1p/19q codeletion was present in 10 patients,
absent in 14 patients, and undetermined in five patients. Twenty-
eight patients were treated to a dose of 50.4 Gy in 28 fractions,
one patient was treated to a dose of 54 Gy in 30 fractions.
Twenty-five patients were treated with 3DCT, three with IMRT
and two with fractionated stereotactic radiotherapy. Mean CTV
volume was 340 cc (95% CI 276-403). Mean dose in EQD2
Gy to bilateral hippocampi was 31.4 Gy (95% CI 27.2-35.6).
The mean D40%BH was 40.9 Gy (95% CI 35.8-46.0), and the
median D40%BH was 47.2 Gy. Only one patient had a D40%BH
lower than 7.3 Gy. Mean dose in EQD2 Gy to contralateral
hippocampus was 21.6 Gy (95% CI 16.7-26.9). Overall, there
was no significant difference between pre- and post-radiotherapy
AVLT-dr score (95% CI 1.09-2.16; Figure 2). A cognitive event
was scored in seven patients (24.1%). At the time of analysis, the
median time to progression in 14 patients was 2.9 years (95% CI
2.2-3.6). Fifteen patients were free of progressive disease after

a median follow-up duration of 3.3 years. We compared the
subgroup of patients with available data (n = 31) with the rest
of the study population (n = 446). The groups were comparable
with respect to tumor laterality, tumor lobe, performance status,
progression free survival, and presence of an 1p/19q codeletion.
However, the number of IDH wildtype tumors was significantly
lower in the study population (3.2 vs. 14%, p = 0.025, see
Supplementary Data).

Model Performance

We were unable to compare the incidence of cognitive events
between the high and low dose group as described in the paper
by Gondi et al. (D40%BH < 7.3 Gy) as there was only one case
in the low dose group. However, there was no difference in the
incidence of a cognitive event between the group that received
a D40%BH above vs. below the median (47.2 Gy) in this study
(14 vs. 25%, p = 0.68). NTCP values are presented in Table 2
with dosimetry and neurocognitive results. A calibration plot is
presented in Figure 3. Linear regression showed a constant of
0.03 (p = 0.60) and a slope of 0.24 (p < 0.01) at an 12 of 0.346.
The Brier score of the model was 0.63.

Dosimetric Parameters

A heat map of the correlation matrix is presented in Figure 4.
Increasing age (p = 0.04) and tumor localization in the left
hemisphere (p = 0.01) were related to poorer neurocognitive
outcome at 18 (£4) months. None of the bilateral hippocampal
dose volume parameters (D10%, D20%, D30% up to D90%,
D95% and mean dose) did exhibit a significant correlation
with outcome.

DISCUSSION

To the best of our knowledge, this is the first attempt to
quantify the performance of the hippocampal NTCP model
within a group of only LGG patients treated with partial
brain irradiation. This model was used in RTOG 0933—
hippocampal sparing whole brain radiotherapy vs. standard
whole brain therapy in brain metastases and in the recently
presented phase III trial exploring WBRT plus memantine,
with or without hippocampal avoidance (NRG-CCO001) (18,
20). Brain metastases are almost never observed in the
hippocampus, and selective avoidance of this region is not
likely to result in a higher risk of intracranial recurrence (21).
This is less clear in LGG where tumor cells are known to be
present within the entire brain (22). Moreover, subventricular
zone involvement has been shown to be a biomarker for
poor prognosis (23), making the hippocampus a potential
treatment target.

In the calibration procedure, the positive slope in the linear
regression indicates an overestimation of NTCP values by the
model in this dataset. The high Brier score indicates poor model
performance. In comparing the two study groups, the incidence
of a neurocognitive event is similar (29.2 vs. 24.1% in this study)
but the range of hippocampal dose is quite different. The median
D40%BH in the paper by Gondi et al. was 7.3 Gy, at above
which a NTCP of 66.7% was observed. By contrast, the median
D40%BH in this paper is 47.2 Gy and all but one of the patients
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Assessed for eligibility (n = 707)

e
\4

Randomized (n = 477)

Assigned to radiotherapy
(n =240)

Underwent neurocognitive
assessment (n = 54)

-

Included in study population
(n=31)

- —
A

Included in analysis
(n=29)

FIGURE 1 | Inclusion of patients.

Not randomised (n = 230)
[see Baumert et al. 2016]

Assigned to temozolomide (n = 230)

Did not start radiotherapy (n = 12)
No neurocognitive assessment (n = 174)

No follow up at 18 +/- 4 months (n = 19)
No baseline assessment (n = 2)
Dosimetry not retrievable (n = 2)

Excluded due to progressive disease
at time of outcome (n=2)

in the present study received a D40%BH in excess of 7.3 Gy. In
comparing the two groups, there are substantial differences in
the delivery technique and target volume. In the paper by Gondi
et al., most patients were treated without a CT'V expansion and
with limited PTV margins (2 mm) using highly conformal dose
distributions. In the present study, patients were treated with a
CTV margin of 10-15mm and a larger PTV (7 mm) resulting
in substantially larger target volumes, and the delivery technique
was mainly 3DCRT. It is likely that this resulted in higher doses
to bilateral hippocampus in this study, to a degree that almost
none of the patients were in the low dose group. As such, we were
unable to compare the incidence of neurocognitive impairment
between the high dose and the low dose group. However, the

hippocampal doses in this study group are probably a good
representation of the hippocampal dose range found in LGG
patients undergoing radiotherapy. Therefore, this study should
not be read as a formal disapproval of the hippocampal NTCP
model, but rather as a caution toward extrapolating a NTCP
model beyond the dose range in which it was developed. A
similar issue was encountered by Moiseenko in comparing NTCP
models for radiation toxicity to the visual apparatus (24). Since
no significant correlation between dosimetric parameters and
outcome was observed, we were unable to generate an alternative
model from this dataset.

The choice of endpoint, neurocognitive failure at 18 months
after radiotherapy, is debatable in LGG patients. Trials that found
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| Histogram of differences in AVLT-dr score per patient (baseline

minus follow-up). Overall, there was no significant difference between pre- and
post-radiotherapy AVLT-dr score.
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| Calibration plot of the original model in this dataset. The predicted

NTCP is calculated using the NTCP model. The observed NTCP is calculated
by sorting the cases in three bins of ascending risk (horizontal axis), and

computing

the incidence of a neuropsychological event in each bin (vertical

axis). The intercept line represents agreement between predicted and
observed NTCP. Error bars are 95% confidence intervals.

TABLE 2 | Dosimetric parameters, expected values derived from the NTCP
model, and cognitive event (see text for definition).

Age Dose to 40% of bilateral Predicted NTCP Cognitive
hippocampus (EQD2 Gy) (NTCP model) event
48.7 3.21 0.07 No
48.0 7.30 0.17 No
36.3 10.04 0.27 No
69.4 18.45 0.67 Yes
49.2 19.31 0.71 No
455 27.24 0.94 No
42.3 28.89 0.96 No
40.3 40.62 >0.99 No
32.9 44.30 >0.99 No
50.8 45.51 >0.99 No
37.1 46.27 >0.99 Yes
35.6 46.52 >0.99 No
40.6 46.79 >0.99 No
41.6 47.08 >0.99 No
50.1 47.18 >0.99 Yes
34.7 47.31 >0.99 No
48.5 47.42 >0.99 No
60.2 47.50 >0.99 Yes
35.9 47.61 >0.99 No
36.3 47.87 >0.99 No
42.5 47.91 >0.99 No
29.5 47.91 >0.99 No
35.2 48.00 >0.99 No
66.5 48.13 >0.99 No
44.3 48.20 >0.99 Yes
34.0 48.43 >0.99 No
50.6 48.73 >0.99 Yes
32.0 48.95 >0.99 No
27.8 50.74 >0.99 No

a significant effect of radiotherapy on neurocognitive function
typically only did so after a follow-up >5 years (7, 8), whereas
several trials with a shorter follow-up found no significant,
or only transient, deleterious effects (9-12, 25). This begs the
question whether neurocognitive impairment at 18 months is
indeed indicative of a persistent neurocognitive deficit.
Although preclinical and radiological (26, 27) data
demonstrated appreciable changes within the hippocampus
after radiotherapy, a relationship between cognitive performance
and a D40% as low as 7.3 EQD2 Gy was not found in the
current study but also not in other studies. In the setting
of prophylactic WBRT in small cell lung cancer and partial
brain irradiation for glioblastoma multiforme, Ma et al. (28)
demonstrated D50% of 22.1 Gy to be associated with a 20%
risk of a significant decline in Hopkins Verbal Learning Test
(HVLT)—delayed recall score. Peiffer et al. (29) identified
the volume of bilateral hippocampi receiving 60 Gy as a
possible predictor for cognitive decline. The analysis by
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FIGURE 4 | Correlation matrix of clinical and dosimetric parameters. Outcome: neurocognitive event, binary (for definition, see “Methods”), WHO, World Health
Organization Performance score; D10%, 20%, etc., dose absorbed by 10, 20%, etc. of bilateral hippocampus volume. Color: Spearman correlation coefficient. There
are significant correlations between age and outcome, laterality and outcome, and between individual dosimetric parameters.

D10%
D20%
D30%

02

04

06

08

Okoukoni et al. (30) established a correlation between post-
treatment HVLT score (no baseline measurement was done)
and even higher doses to the bilateral hippocampi. Here,
hippocampal V55Gy of 0, 25, and 50% were associated
with post-radiation impairment rates of 14.9, 45.9, and
80.6%, respectively.

In this study, we used prospectively acquired baseline and
follow up data from the recently completed EORTC22033-26033
trial, ensuring a homogenous patient group with good adherence
to protocol. The subset of patients included in this analysis
is a relatively small proportion of the radiotherapy-only group
(15%). The main reason for this is that neurocognitive testing was
not mandatory, and a number of centers did no neurocognitive
testing. However, we found no significant differences in clinical
variables (save for presence of IDH mutation) and time to
progressive disease between our subset of and rest of the study
population. In comparing our neurocognitive event-definition to
the one used in the paper by Gondi et al., we did not utilize a
control group but published test-retest data from the Maastricht
Aging study. This data is derived from a study group that is older
(49-56 years), than the average patient in our study (43 years),
and the test-retest interval is twice as long (3 years).

In this dataset of only LGG patients, the NTCP model did
not perform as expected in predicting cognitive decline based
on dose to bilateral hippocampus. Clearly, the understanding
of the relationship between dose to subsites in the CNS and
neurocognitive functioning is still limited, and there exists

a paucity of prospective neuropsychological and dosimetric
parameters with an adequate duration of follow-up.
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Individual Radiosensitivity in
Oncological Patients: Linking
Adverse Normal Tissue Reactions
and Genetic Features

Elisa Palumbo ', Celeste Piotto '**, Enrica Calura?, Elena Fasanaro'f, Elena Groff,
Fabio Busato', Badr El Khouzai’, Michele Rigo ", Laura Baggio ', Chiara Romualdi?,
Demetre Zafiropoulos?, Antonella Russo*, Maddalena Mognato?* and Luigi Corti’

" Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy, 2 Department of Biology, University of
Padua, Padua, Italy, ° National Laboratories of Legnaro, ltalian Institute of Nuclear Physics (LNL-INFN), Padua, Italy,
“ Department of Molecular Medicine, University of Padua, Padua, Italy

Introduction: Adverse effects of radiotherapy (RT) significantly affect patient’s quality
of life (QOL). The possibility to identify patient-related factors that are associated with
individual radiosensitivity would optimize adjuvant RT treatment, limiting the severity of
normal tissue reactions, and improving patient’s QOL. In this study, we analyzed the
relationships between genetic features and toxicity grading manifested by RT patients
looking for possible biomarkers of individual radiosensitivity.

Methods: Early radiation toxicity was evaluated on 143 oncological patients according
to the Common Terminology Criteria for Adverse Events (CTCAE). An individual
radiosensitivity (IRS) index defining four classes of radiosensitivity (highly radiosensitive,
radiosensitive, normal, and radioresistant) was determined by a Go-chromosomal assay
on ex vivo irradiated, patient-derived blood samples. The expression level of 15
radioresponsive genes has been measured by quantitative real-time PCR at 24 h after
the first RT fraction, in blood samples of a subset of 57 patients, representing the four
IRS classes.

Results: By applying univariate and multivariate statistical analyses, we found that
fatigue was significantly associated with IRS index. Interestingly, associations were
detected between clinical radiation toxicity and gene expression (ATM, CODKN1A, FDXR,
SESN1, XPC, ZMAT3, and BCL2/BAX ratio) and between IRS index and gene expression
(BBC3, FDXR, GADD45A, and BCL2/BAX).

Conclusions: In this prospective cohort study we found that associations exist
between normal tissue reactions and genetic features in RT-treated patients. Overall,
our findings can contribute to the identification of biological markers to predict RT toxicity
in normal tissues.

Keywords: radiotherapy, adverse effects, chromosomal radiosensitivity, gene expression, association analysis
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INTRODUCTION

The development of radiation-induced complications following
radiotherapy (RT) has a significant impact on treatment
outcome and patient’s quality of life (QOL). In the last decades
the therapeutic ratio has improved due to advancements in
RT technologies and use of radioprotectors, mitigators, and
radiosensitizers (1). Nevertheless, radiation toxicity of normal
tissues surrounding the tumor is a serious problem for ~5-10%
of patients, who are affected by high intrinsic radiosensitivity
(2-4). Evidence of radiosensitivity in vivo is given by burns
and radiodermitis in the irradiated body parts, together with
bystander effect in neighboring area (5). Several factors, including
cellular composition, differentiation, cell renewal capacity, as well
as cellular radiosensitivity, determine the severity of radiation
toxicity (6). Patient-related factors are deeply linked to the risk
of manifesting radiation toxicity, and reliable biological markers
are still not available to predict the onset of severe side-effects
after RT. Human response to ionizing radiation (IR) is individual
and variable, being influenced by age, smoking, diabetes, collagen
vascular disease and genotype (7). Moreover, multiple genetic
pathways such as DNA damage repair, oxidative stress, radiation
fibrogenesis and endothelial cell damage are implicated in
adverse tissue reactions following radiotherapy (8). However,
the molecular basis of individual radiosensitivity remains poorly
understood, and the relationship between different indicators of
radiation sensitivity is elusive.

RT causes cancer cell death mainly by IR-induced DNA
Double Strand Breaks (DSBs). Formation of DSBs, the most
severe damage for genome integrity, triggers a cascade of cellular
events, collectively termed DNA-damage response (DDR), which
involves sensing the damage, signal transduction to the effectors
of DNA repair, cell cycle arrest and apoptosis induction (9-
11). Radiation-induced DSBs are efficiently repaired to ensure
the maintenance of genome integrity but when DNA repair
is hampered, unrepaired DSBs can originate chromosome
aberrations (12). Following irradiation, unrepaired DSBs can
be quantified in metaphase spreads by the yield of chromatid
breaks formed at Gj-phase, which is inversely related to the
efficiency of the G,-phase checkpoint (13). Thus, the individual
level of radiosensitivity can be assessed in ex vivo irradiated
human peripheral blood lymphocytes (PBLs) by applying a “G,-
chromosomal assay” (14-17).

Increasing evidence supports the existence of individual
response to IR-induced DNA damage, which can be related to
mutations in key genes of DDR pathway or to individual capacity
to modulate the expression of DDR genes after IR-exposure. In
this regard, the expression of genes involved in DDR pathway
may be variable between individuals and can impact on own
radiation response.

Abbreviations: CTCAE, Common Terminology Criteria for Adverse Events;
DDR, DNA-Damage Response; DSBs, Double-Strand Breaks; HNSCC, Head
and Neck Squamous Cell Carcinoma; HRS, Highly Radiosensitive; IR, Ionizing
Radiation; IRS, Individual Radiosensitivity; N, Normal; PBLs, Peripheral Blood
Lymphocytes; QOL, Quality of Life; qRT-PCR, quantitative Real-Time PCR; RR,
Radioresistant; RS, Radiosensitive; RT, Radiotherapy.

Several studies attempted to find biomarkers able to predict
the onset of radiation toxicity in normal tissues after RT.
Individual radiosensitivity evaluated by using in vitro irradiated
patient-derived blood lymphocytes has been found to correlate
with normal tissue reactions (13, 18, 19), and single nucleotide
polymorphisms (SNPs) have been associated with acute and
late radiation-induced normal tissue injury in RT patients (19-
22). Data concerning the association between gene expression
changes and normal tissue radiation toxicity refer to in vitro
irradiation studies (4, 23-25) or to single gene analysis in
oncological patients treated with RT (26). To date, a relationship
between radio-induced normal tissue adverse effects, in vitro
chromosomal radiosensitivity and in vivo expression of a set
of radioresponsive genes is not available in the same cohort of
RT patients. Since future clinical protocols aim at ameliorating
patient’s QOL it is demanding to identify patient-related factors
that are associated with individual radiosensitivity before patients
undergo RT (27, 28).

In this explorative study, the clinical features of early radiation
toxicity have been associated with an Individual Radiosensitivity
(IRS) index, defining four classes of radiosensitivity (highly
radiosensitive, radiosensitive, normal and radioresistant) based
on a Gy-chromosomal assay on patient-derived PBLs irradiated
in vitro (15). The expression level of 15 selected radioresponsive
genes belonging to DDR pathway has been measured in blood
samples from a subgroup of patients, representing the different
IRS classes, 24h after the first RT fraction, as an additional
variable of intrinsic radiosensitivity. Data of clinical and genetic
features have been statistically analyzed to find possible genetic
factors associated with individual radiation sensitivity.

MATERIALS AND METHODS
Outline of the Study

In this prospective study, breast cancer (BC) and head and neck
squamous cell carcinoma (HNSCC) patients were enrolled as
representative of patients experiencing normal tissue reactions
after RT. Data of toxicity grading in normal tissues, in vitro
chromosomal radiosensitivity and in vivo RT-induced gene
expression changes, have been integrated to identify possible
biomarkers of radiosensitivity in patients undergoing RT
(Figure 1). Overall, 143 oncological patients were enrolled: 124
(all females) affected by BC, and 19 (6 females and 13 males)
affected by HNSCC.

Patients
Patients with BC or HNSCC histological diagnosis undergoing
RT were enrolled from 2015 to 2017 at the Department of
Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua,
Italy (IOV) upon evaluation and approval of the IOV-IRCCS
Ethic Committee (CE IOV 2015/18; CE IOV 2016/04). Privacy
rights of human subjects were observed; all the procedures
were in accordance with relevant guidelines and regulations. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Patients were enrolled applying the following exclusion
criteria:  patients suffering from congenital syndromes
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FIGURE 1 | Flow chart showing the experimental phases for the identification of biomarkers of individual radiosensitivity in patients undergoing radiotherapy (RT).
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predisposing to radiosensitivity (such as Ataxia-Telangiectasia,
Bloom syndrome, Down’s syndrome, Gorlin syndrome,
Klinefelter syndrome, Retinoblastoma, Wilm’s tumor, Xeroderma
pigmentosum, Rothmund-Thomson syndrome, Li-Fraumeni
syndrome, Dyskeratosis congenita, Familial dysplastic nevus
syndrome, Common variable immune deficiency, Nijmegen
Breakage Syndrome, Fanconi Anemia, albinism), previous RT
and/or chemotherapy treatment or ongoing chemotherapy
treatment, previous anticancer drug employment, significant
comorbidities, diabetic patients affected by breast cancer,
age < 18 years.

BC patients received by 3DCRT (42.40-50 Gy/16-25
fractions) plus a boost dose of 10 Gy in 5 fractions to the tumor
bed. HNSCC patients received up to 70Gy, daily fraction
1.8-2.12 Gy/day, for 5 days/week on primitive tumor by VMAT
or IMRT.

Adverse tissue reactions (dermatitis radiation, pain, pruritus,
fatigue) have been recorded at the completion of RT treatment
(t;) and 1 month later (t;), using the Common Terminology
Criteria for Adverse Events (CTCAE) (version 4.03, http://ctep.
cancer.gov/protocolDevelopment/adverse_effects.htm). Adverse
effects were classified as: grade 0 (GO, no adverse effects), grade
1 (G1, mild), grade 2 (G2, moderate), grade 3 (G3, severe). At
the Department of Radiotherapy of the IOV-IRCCS management
of acute toxicity followed a standardized procedure. All patients
were clinically evaluated before starting RT and no significant
side-effects were complained by patients.

Chromosome-Based Radiosensitivity
Assay

The Gj-chromosomal assay was performed following a
standardized protocol (15). Briefly, whole blood cultures were
incubated for 72 h at 37°C, 5% CO; before being irradiated with
1 Gy of gamma rays in a Gamma Beam A15 %°Co panoramic
source at the National Laboratories of Legnaro (I.N.F.N., Padua,
Italy; dose rate: 0.5 Gy/min).

Immediately after irradiation, each culture was split in two
and one was treated with 4mM caffeine. After 20 min at 37°C,
both cultures were incubated with Colcemid at concentration
of 0.1ng/mL for 60min, then chromosome spreads were

prepared according to standard cytogenetic procedures. With
few exceptions, chromatid aberration yields were obtained by
scoring for chromatid breaks and gaps 50 metaphases per
culture, under a Zeiss Axiolmager Z2 microscope coupled
with MSearch-AutoCapt software (Metasystems, Altlussheim
Germany). Following calculation of the in vitro individual
radiosensitivity index (IRS = [1-(Geaf-G2)/Gocatl X 100%,
simplified as IRS = (G2/Gyc,f) X 100%) patients were classified
as: highly radiosensitive, HRS (IRS > 70), radiosensitive, RS (50
< IRS < 70), normal, N (30 < IRS < 50), and radioresistant, RR
(IRS < 30) (15, 29).

Gene Expression Analysis

Fifty-seven over 143 patients were randomly selected within
the four IRS classes (HRS, RS, N, RR) in order to have
comparable numbers of patients in each group. This sample size
guarantees a high statistical power (power = 0.83) in identifying
as significant (alpha < 0.1) genes with an effect equal to 1.1
among groups using either an ANOVA test or a Wilcoxon test.
Two whole blood samples were collected from each patient: one
immediately before the first fractionated RT dose and the second
24h later. Samples were collected into PAXgene® Blood RNA
tubes (PreAnalytiX GmbH, Qiagen, Venlo, The Netherlands)
for immediate stabilization of intracellular RNA, and stored at
—80°C. Total RNA was purified by using PAXgene® Blood RNA
Kit 6 (PreAnalytiX GmbH, Qiagen, Venlo, The Netherlands) and
quantified using the ND-1000 spectrophotometer (Nanodrop,
Wilmington, DE, USA).

For mRNA detection, retrotranscription and quantitative real
time-PCR (qRT-PCR) reactions were performed according to
our established protocol (30, 31). The gene-specific primers
for ATM, BAX, BBC3, BCL2, CCNGI1, cMYC, DDB2, FDXR,
GADD45A, MDM2, CDKNIA, PCNA, SESNI, XPC, and
ZMAT3 genes and for GADPH as reference, can be found in
Supplementary Table 1. Real-time PCR was performed using an
Applied Biosystems 7500 Fast Real-Time PCR System according
to the following amplification protocol: 95°C for 10 min, 95°C
for 15 sec, 60°C for 60s (40 cycles). qRT-PCR reactions
were always performed in triplicates. The relative expression
levels of mRNAs between irradiated (2 Gy) and non-irradiated
(0Gy) blood samples of the same patients were calculated
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using the comparative delta CT (threshold cycle number)
method (272ACT) implemented in the 7500 Real Time System
software (32).

Statistical Analysis

ANOVA and ANOVA post-hoc with Bonferroni correction
was used to assess the gene expression mean differences
among groups of patients defined using clinical and IRS
annotations. In case of group size lower than 10 patients
Kruskall-Wallis/Wilcoxon test was used. Multivariate regression
analyses were used to test the association of clinical annotations
(explanatory variables) with IRS value (dependent variable).
Unsupervised cluster analysis of gene expression data was
performed using hierarchical cluster analysis with Euclidean
distance and complete linkage. All the analyses were performed
using the R programming language (version 3.4), and the
Bioconductor software suite (version 3.6).

RESULTS

Radiation-Induced Toxicity in RT-Treated

Patients
All patients were evaluated for the onset of radiation toxicity
at the completion of RT treatment (t;) and 1 month later (t,).

The overall distribution of subjects suffering from dermatitis
radiation, pain, pruritus and fatigue is reported in Figure 2;
Supplementary Table 2. Moderate (G2) dermatitis radiation
was recorded at t; in 13.7 and 21% of BC and HNSCC
patients, respectively, whereas severe (G3) dermatitis radiation
was observed in 5.6 and 10.5% of BC and HNSCC, respectively.
At tp, G2 dermatitis radiation was observed in 8% of BC patients
and in 33% of HNSCC patients; G3 dermatitis radiation was
manifested by 0.8% of BC patients. Pain of G2 grade was
present in 5.6% of BC and in 15.8% of HNSCC patients at t;;
1 month later (t2), 2.4% of BC and 18% of HNSCC patients
manifested G2 pain. At t;, G3 pain was rarely recorded in
BC patients but affected 21% of the HNSCC patients; at t;
none of the BC and HNSCC patients suffered from pain of
G3 grade. Pruritus of G2 and G3 grade was recorded at t;
in 9.7 and 3.2% of BC patients, respectively, while at t;, G2
pruritus was present in 8.9% of BC patients. Concerning HNSCC
patients, 5.2 and 5.5% of them manifested G3 pruritus at t;
and t;, respectively. In summary, HNSCC patients manifested
higher degrees of dermatitis radiation and pain at both t; and
ta, whereas pruritus appeared to be more pronounced in BC
patients. Fatigue (Gl grade) was present in 50.8% (BC) and
57.8% (HNSCC) of patients, and at t, in 33.0 and 44.5%,
respectively (Figure 2).
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TABLE 1 | Names and function of DDR genes evaluated by gRT-PCR in blood
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FIGURE 3 | (A) Data distribution for IRS values. Vertical lines indicate the
observed thresholds for the 4 classes of individual radiosensitivity, calculated
as: RR, mean - SD (IRS < 27.48); N, mean + SD (27.48 < IRS < 48.72); RS,
mean + SD (48.72 < IRS < 69.96); HRS, mean + 3 SD (IRS > 69.96).

(B) Patient distribution according to the four IRS classes.

G>-Chromosomal Radiosensitivity in RT

Patients

IRS values were determined in the complete patient cohort (143
subjects). In blood cultures exposed in vitro to 1 Gy [according to
the standardized protocol developed by Pantelias and coworkers
(15, 29)], the average yield of G, chromatid breaks was 2.5 (with
standard deviation SD = 0.084 and coefficient of variation CV
= 3%); the average IRS was 38.1 (SD = 10.62; CV = 27.8%).
Based on the observed distribution of individual IRS values, the
four classes of individual radiosensitivity should be, respectively:
RR < 27.48 (mean - SD); 27.48 < N < 48.72 (mean =+ SD);
48.72 < RS < 69.96 (mean + SD); HRS > 69.96 (mean +
3xSD) (Figure 3A). As these values are in strict agreement with
those proposed earlier (15), for further statistical analyses we
used the published thresholds (see Materials and Methods). One
patient resulted highly radiosensitive (HRS, 1%), 16 patients were
classified as radiosensitive (RS, 11%), 95 patients as normal (N,
66%) and 31 as radioresistant (RR, 22%) (Figure 3B).

Gene Expression in Blood Samples of RT

Patients
Fifteen radioresponsive genes belonging to DDR pathway
(Table 1) were analyzed by qRT-PCR in blood samples from 57

A samples from RT patients.
RR N RS HRS Gene Gene name Function
30 ! ! ! ! . symbol
25F 3 ATM Ataxia Telangiectasia Mutated =~ DNA damage signal transduction; cell
— [ ] cycle checkpoint
*z; 20 _ - BAX BCL2-associated X protein Apoptosis
2 15 _ _ BBC3 BCL2-binding component 3 Apoptosis
s ] (PUMA)
£ 1F - BCL2 B-Cell CLL/Lymphoma 2 Apoptosis
CCNG1  Cyclin G1 Cell cycle progression/arrest
SF E CDKN1A  Cyclin-dependent kinase Cell cycle arrest
" [ < . ] inhibitor 1A (p21)
0 20 40 60 80 100 cMYC MYC proto-oncogene, bHLH  Cell cycle progression, apoptosis and
IRS transcription factor cellular transformation
DDB2 Damage-specific DNA binding  DNA repair
protein 2 (p48)
B 1% , .
FDXR Ferrodoxin reductase DNA damage, apoptosis

GADD45A Growth arrest and
DNA-damage-inducible, alpha

Growth arrest; DNA repair; apoptosis

MDM2 Mdm2 p53 binding protein Inactivation of tumor protein p53
homolog

PCNA Proliferating cell nuclear antigen DNA repair

SESN1 Sestrin 1 (Sestrins) Cell cycle arrest

XPC Xeroderma pigmentosum, DNA repair
complementation group C

ZMAT3  Zinc finger, matrin type 3 Cell growth; apoptosis

(PAG608)

patients, randomly selected from the whole cohort, in order to
have comparable numbers of patients within the four IRS classes
(HRS, RS, N, and RR). A summary of the clinical data of this
group of patients is available in Supplementary Table 3.

Transcription of most genes was significantly induced after the
first RT fraction (Figure 4A).

The unsupervised cluster analysis of gene expression profiles
reported as a heatmap in Figure 4B did not reveal differences
between the two types of cancer, although the response of
DDR genes was variable across patients. Indeed, a group
of patients is characterized by high expression values of
MDM?2, SESN1, BCL2, ATM, and ZMAT3, however this
group did not show significant enrichment for any of the
available clinical annotations. Finally, the heatmap did not
show any association between IRS index and gene expression
changes (Figure 4B).

Identification of Biomarkers of

Radiosensitivity
Univariate and multivariate statistical analyses were performed
looking for association between (i) clinical variables of radiation
toxicity and IRS index; (ii) clinical variables of radiation toxicity
and expression level of DDR genes; (iii) IRS index and expression
level of DDR genes.

Relationships between clinical variables of radiation toxicity
and IRS classes are shown in Figure 5. At the completion of
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FIGURE 4 | (A) Gene expression analysis by gRT-PCR in blood samples from RT patients. The relative mRNA quantification was performed by comparing irradiated
vs. non-irradiated blood samples derived from the same patient. Values are mean + SE and expressed in fold-change. The value “1” of non-irradiated control (light
gray bars) is arbitrarily given when no change is observed (**p < 0.001; *p < 0.01; *p < 0.05). (B) Heatmap and unsupervised cluster analysis on the expression
profiles of DDR genes analyzed in 57 RT patients. The key color bar indicates standardized gene expression levels (low levels are in red, high levels are in yellow). The
annotation bars (upper part of the heatmap) indicate the four classes of IRS index and tumor types.

RT treatment (t;), patients experiencing adverse effects were  the multivariate nor the univariate analyses showed significant
distributed within the four IRS classes (HRS, RS, N, and RR),  association between IRS index and clinical variables of radiation
without any significant relationship and without differences  toxicity at t,.

between tumor types. Instead, for fatigue the IRS mean values Significant and moderately  significant  associations
significantly differed between patients with and without such  between gene expression and clinical radiation toxicity are
adverse effect. Specifically, the estimated IRS mean values shown in Table 3. Dermatitis radiation at t; was associated
were, respectively, 40.44 and 36.17, with a decrease of 4.27  with a 1.88-fold change of FDXR expression in patients
in patients with G1 fatigue at t; (p = 0.015, t-test). The experiencing G3 toxicity vs. a 1.44-fold change in G2
significance was confirmed by multivariate linear regression  patients. The presence of pain at t; was associated with a
model (adjusted for age and disease type) (Table 2). Neither  decrease of SESNI expression (0.92- vs. 1.36-fold change
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of radiation-induced adverse effects (GO, G1, G2, G3), at the completion of RT treatment (t1) and 1 month later (to). NA, data Not Available.

TABLE 2 | Multivariate linear regression model with IRS values and all clinical
variables as covariates in 143 patients.

Coefficients Estimate Std. error t-value Pr(>|t])
(Intercept) 39.123 5.804 6.740 4.86e-10 ***
Tumor type—HNSCC vs. breast ~ —1.023 2.967 —0.345 0.730
cancer

Age in years 0.005 0.087 0.060 0.952
Dermatitis radiation—G1 vs. GO 3.761 2.216 1.697 0.092 0O
Dermatitis radiation—G2 vs. GO —0.072 3.328 —0.022  0.982
Dermatitis radiation—G3 vs. GO —4.401 4.623 —0.952  0.342
Pain—G1 vs. GO -0.317 2177 —-0.146  0.884
Pain—G2 vs. GO —2.143 3.836 —-0.559  0.577
Pain—G3 vs. GO 1.216 6.050 0.201  0.8410
Pruritus—G1 vs. GO —1.764 2.324 —-0.759  0.449
Pruritus—G2 vs. GO 2.994 3.558 0.841 0.401
Pruritus—G3 vs. GO 6.988 5.370 1.301 0.195
Fatigue-G1 vs. GO —4.265 1.960 -2.176 0.03 *

IRS is considered as continuous value and clinical variables are those defined at the
completion of RT treatment (t1). p-value of the model is 0.2217.

*okk,

p-value < 0.001, *p-value < 0.05, Bp-value < 0.1.

in the comparison presence-absence, and 0.97- vs. 1.36-
fold change when comparing more specifically G1 vs.
GO0). Symptoms of pruritus resulted associated at t; with
a 0.79-fold change of XPC and with a 1.01-fold change
of ZMAT3; at t, pruritus was associated with a 0.87-fold
change of ATM, and a lower BCL2/BAX ratio (respectively,
0.76- vs. 1.15-fold change). G1 fatigue resulted associated
with a 1.19-fold change of CDKNIA (p21) at the second
clinical evaluation.

TABLE 3 | DDR genes associated with clinical variables of radiation toxicity.

Clinical variable Gene Gene Toxicity  Adjusted RT
expression grade p-value timing
value?
Dermatitis radiation FDXR 1.44 G2 0.096° t4
1.88 G3
Pain SESN1 1.36 GO 0.043P t4
0.97 G1
SESN1 1.36 Absent 0.020P 14
0.92 Present
Pruritus XPC 1.49 G1 0.102¢ 4
0.79 G2
ZMAT3 1.43 GO 0.046° 14
1.01 G1
ATM 1.29 Absent 0.0210 to
0.87 Present
BCL2/BAX 1.15 Absent 0.011P to
0.76 Present
Fatigue CDKN1A 1.42 GO 0.049° to
1.19 G1

aGene expression values are reported in irradiated relative to non-irradiated blood samples
from RT patients and expressed in fold-change. Pt-test; SWilcoxon test. Bonferroni
adjusted p-value is significant when <0.05, moderately significant when <0.10.

By univariate analyses (Table4) we found a moderate
significant association between the RS class and BBC3 and
FDXR expression (adjusted p = 0.069) and between RR
class and GADD45A expression (adjusted p = 0.096). The
BCL2/BAX ratio was also associated with the RS class
(adjusted p = 0.017).
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TABLE 4 | DDR genes associated with IRS classes in RT patients.

Gene Gene expression IRS class Adjusted
value? p-value
BBC3 1.28 N 0.069P
1.90 RS
FDXR 1.53 N 0.069P
1.84 RS
GADD45A 1.19 N 0.096°
1.73 RR
BCL2/BAX 1.15 N 0.017°
0.73 RS

aGene expression values are reported in irradiated relative to non-irradiated blood samples
from RT patients and expressed in fold-change. Pt-test; ®Wilcoxon test. Bonferroni
adjusted p-value is significant when <0.05, moderately significant when <0.10.

DISCUSSION

Despite the advancements in understanding and preventing RT
effects on normal tissue, injuries deriving from radiation therapy
cannot be avoided (33-35). Inter-individual differences in
radiosensitivity are due to different endogenous and exogenous
factors (e.g., DNA repair capacity, age, diet, and life-style)
as well as to the experimental endpoint (clinical radiation
toxicity, chromosome aberrations, etc.) (15, 27, 36, 37). Assessing
the intrinsic component of radiosensitivity before RT could
predict toxicity risk and improve the QOL (27, 28). To this
purpose, from a cohort of oncological patients we collected data
concerning radiation toxicity in normal tissues, in vitro G;-
chromosomal radiosensitivity and in vivo expression level of 15
selected radioresponsive genes of DDR pathway, to find possible
associations between genetic features and clinical radiosensitivity
(Figure 1). By univariate and multivariate statistical models we
have looked at significant associations between clinical and
molecular data, controlling for potential confounders and for
the multiplicity of the tests. Remarkably, no statistical differences
have found between tumor types, allowing us to discuss our data
as a whole.

To the best of our knowledge, this is the first study assessing
the relationship between the three experimental endpoints in a
cohort of RT-treated oncological patients. It is noteworthy that all
patients have been enrolled in the same Radiotherapy Unit (IOV-
IRCSS). Specifically, in this explorative study we considered
breast and head and neck cancer patients as representative of
patients experiencing radiation toxicity. Indeed, symptoms of
grade 2 acute skin toxicity are observed in 15-24% of breast
cancer patients at the completion of RT treatment (35, 38)
whereas dermatitis radiation continues to be one of the most
common side effects of RT in head and neck cancers (33,
39). In the present study, we considered dermatitis radiation,
pain, pruritus and fatigue that are adverse effects commonly
manifested in BC and HNSCC patients after RT, while tumor-
specific adverse effects were excluded. Overall, HNSCC patients
manifested higher degrees of dermatitis radiation and pain both
at t; and tp, whereas pruritus was more pronounced in BC
patients at both t; and t, (Figure 2). For patients experiencing

the highest level of dermatitis radiation we verified ex post
the lack of relation with the phototype (Fitzpatrick scale).
Fatigue induced by RT is a common symptom experienced
by patients that deeply affects their QOL (40). In our cohort,
all patients manifesting fatigue were evaluated as G1 grade,
with overlapping proportions irrespective of cancer type: at t;
50.8% (BC) and 57.8% (HNSCC), and at t, 33.0 and 44.5%,
respectively (Figure 2).

Previous studies showed that clinical radiation toxicity is
related to G,-chromosomal radiosensitivity of in vitro irradiated
lymphocytes (13, 19, 41). Here, we followed the standardized
G;-assay developed by Pantelias and Terzoudi (15) in which
the G;-checkpoint efficiency is abrogated by caffeine (inhibitor
of ATM kinase) to maximize the radio-induced chromosomal
damage, i.e., simulating the condition of high radiosensitivity
of AT (Ataxia Telangiectasia) patients. This leads to accurate
estimations of the individual radiosensitivity (the IRS index)
by calculating the percentage ratio between the vyields of
radio-induced chromatid breaks in presence or absence of the
functional G;-checkpoint (15, 29). IRS values obtained in the
present study were distributed in strict agreement with previously
published data (15, 29), confirming the reproducibility of the
standardized Gy-assay for assessing individual radiosensitivity
in vitro. Based on multivariate analyses, fatigue emerged as
the only adverse effect strictly associated with IRS index.
Interestingly, in patients displaying G1 vs. GO fatigue but having
same values of other predictors, the average IRS index differed for
a value of 4.27. No other clinical reactions were found associated
with IRS values in this statistical analysis (Table 2).

Clinical radiosensitivity can be associated with individual
factors, such as abnormal transcriptional responses to DNA
damage and with defects in DNA repair (42-44). In this regard,
previous studies of gene expression profiling, carried out in
patient-derived PBLs irradiated in vitro, succeeded to some
extent in discriminating groups of patients with and without
severe late radiotherapy toxicity (23). An association was also
observed between early skin reaction and the transcriptional
response of lymphoblastoid cells derived from patients with
acute radiation toxicity (4). The candidate genes here analyzed,
belonging to the DNA Damage Response (DDR) pathway, were
chosen on the basis of our previous data showing significant
changes in their expression level in human PBLs at 24 h after
irradiation with 2 Gy of y-rays (30, 31). Moreover, GADD45A,
CDKNIA, DDB2 and XPC, together with FDXR gene are well-
known radio-responsive genes (4, 26, 30, 31, 45, 46). Gene
expression analyses have been carried out in 57 patients randomly
selected within the cohort of 143 patients, as representative of
the four IRS classes (HRS, RS, N, and RR). This sample size is
adequate to identify significant differences of gene expression
among the four IRS classes (statistical power 0.83), either by
ANOVA or Wilcoxon test. The expression of DDR genes was on
the whole significantly induced at 24 h after the first fractionated
dose (Figure 4A), in accordance with their radioresponsiveness.
Notably, FDXR expression showed a 1.6-fold increase, that is
very similar to the ~1.7-fold increase reported at the same time
point in four breast cancer and 8 HNSCC patients (26). In
humans, FDXR expression is upregulated in a dose-dependent
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manner after irradiation, both ex vivo and in vivo, indicating
that FDXR is a good biomarker for radiation exposure and for
estimating in vivo dose (46-48). Moreover, FDXR belongs to
a genetic signature for the early prediction of hematological
acute radiation syndrome (47, 49). Unlike those authors who
have found no association between FDXR expression and the
hematological acute radiation syndrome in subjects undergoing
RT, our work associates FDXR expression level with dermatitis
radiation at the completion of RT treatment (G2 vs. G3 grades,
adjusted p = 0.096) (Table 3). While the expression level of FDXR
gene increased in patients experiencing a high grade of dermatitis
radiation, those of SESNI, ATM, XPC, ZMAT3, CDKNIA genes
decreased when radiation toxicity was manifested (Table 3). Of
course, these findings may be explained by a more complex
radiation response than that determined by the DDR genes
here analyzed. Indeed, additional genes belonging to different
pathways are expected to participate in the whole cellular
response to radiation. Emerging evidence suggests that the
response to radiation is differently regulated in normal vs. cancer
cells/tissues, and even within organism, where maintaining the
overall homeostasis is a priority (50, 51). Interestingly, the
tight interplay between DDR and immune response seems a
key feature shared by systems that differ for higher levels of
complexity (51).

By integrating the data of chromosomal radiosensitivity and
gene expression we found that IRS classes were associated with
the expression level of three DDR genes. In particular, the
increased expression of BBC3 and FDXR genes, involved in
the apoptotic pathway, is associated with the RS class, whereas
the increased expression of GADD45A, regulating cell growth
and apoptosis, is associated with the RR class (Table 4). A role
of apoptotic pathway in normal tissue radiation toxicity has
been previously reported, indeed the T-lymphocyte apoptosis
assay significantly predicted differences in late radiation toxicity
(52). Also the balance between pro-apoptotic and anti-apoptotic
members of the BCL-2 family has a clinical significance on
chemotherapy sensitivity and survival (53, 54). In our cohort,
the BCL2/BAX ratio resulted associated both with the presence of
pruritus 1 month after the completion of RT treatment (Table 3),
and with the class of patients classified as radiosensitive by means
of IRS index (Table4). This common function is reinforcing
the predictive value of these genes, although further analyses
are necessary to support that they are reliable biomarkers of
radiation toxicity.

Given the exploratory and pilot nature of our work, we
privileged a cohort of RT patients, enrolled, treated and clinically
evaluated in the same clinical Institute, irrespective of the
tumor site. However, despite our multivariate analysis shows no
statistical differences between BC and HNSCC patients (Table 2;
Figure 4) future studies would be desirable to validate our results
in a new cohort, taking into account additional clinical variables
such as breast size, body mass index, alcohol consumption,
hypertension, smoking habit, which might be associated to
acute skin toxicity (55-57). Moreover, dosimetric data, radiation
treatment volumes and doses to specific organs at risk would be
important information to be included in future studies. Clearly,
since HNSCC patients are less frequent than BC patients and

often must undergo chemotherapy either before or concomitant
to RT, multicentric studies would be recommended to reach a
large sample size for both diseases.

CONCLUSION

The possibility to identify patients that are sensitive to radiation
and at risk of suffering adverse effects would help clinicians in
tailoring the best RT protocol and improve patient’s QOL. In this
prospective cohort study, we found that symptoms of dermatitis
radiation, pain, pruritus and fatigue were associated with the
expression level of some genes of the DNA-damage response
pathway (FDXR, SESNI, XPC, ZMAT3, ATM, BCL2/BAX,
and CDKNIA). We also found that fatigue was significantly
associated with IRS values; moreover, IRS classes resulted
associated with the expression level of BBC3, FDXR, GADD45A,
and BCL2/BAX genes.

Of course, radiation-induced side effects comprehend a
complex cellular and tissue response that cannot be limited
to the expression level of the DDR genes considered in this
study, but it is rather regulated by a wide network of gene-
interactions. The development of a reproducible and powerful
assay to predict individual normal tissue radiosensitivity has
been referred to as the “holy grail” of radiotherapy. Although
several in vitro assays have been tested to identify reliable
biomarkers able to predict normal tissue radiosensitivity, results
obtained up to now are not informative enough. In this regard,
our multidisciplinary approach can contribute to delineate the
genetic features of patients manifesting different grades of
radiation-induced toxicity.
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Purpose: Radiation-induced lung disease (RILD), defined as dyspnea in this study,
is a risk for patients receiving high-dose thoracic irradiation. This study is a TRIPOD
(Transparent Reporting of A Multivariable Prediction Model for Individual Prognosis or
Diagnosis) Type 4 validation of previously-published dyspnea models via secondary
analysis of esophageal cancer SCOPET1 trial data. We quantify the predictive performance
of these two models for predicting the maximal dyspnea grade > 2 within 6 months after
the end of high-dose chemo-radiotherapy for primary esophageal cancer.

Materials and methods: We tested the performance of two previously published
dyspnea risk models using baseline, treatment and follow-up data on 258 esophageal
cancer patients in the UK enrolled into the SCOPE1 multi-center trial. The tested models
were developed from lung cancer patients treated at MAASTRO Clinic (The Netherlands)
from the period 2002 to 2011. The adverse event of interest was dyspnea > Grade
2 (CTCAE v3) within 6 months after the end of radiotherapy. As some variables were
missing randomly and cannot be imputed, 212 patients in the SCOPE1 were used
for validation of model 1 and 255 patients were used for validation of model 2. The
model parameter Forced Expiratory Volume in 1 s (FEV+), as a predictor to both validated
models, was imputed using the WHO performance status. External validation was
performed using an automated, decentralized approach, without exchange of individual
patient data.

Results: Out of 258 patients with esophageal cancer in SCOPE1 ftrial data,
38 patients (14.7%) developed radiation-induced dyspnea (> Grade 2) within
6 months after chemo-radiotherapy. The discrimination performance of the
models in esophageal cancer patients treated with high-dose external beam
radiotherapy was moderate, area under curve (AUC) of 0.68 (95% CI 0.55-0.76)
and 0.70 (95% CI 0.58-0.77), respectively. The curves and AUCs derived by
distributed learning were identical to the results from validation on a local host.
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Shi et al.

Dyspnea Model for EC Patients

Conclusion: We have externally validated previously published dyspnea models using
an esophageal cancer dataset. FEV4 that is not routinely measured for esophageal
cancer was imputed using WHO performance status. Prediction performance was not
statistically different from previous training and validation sets. Risk estimates were
dominated by WHO score in Model 1 and baseline dyspnea in Model 2. The distributed
learning approach gave the same answer as local processing, and could be performed
without accessing a validation site’s individual patients-level data.

Keywords: radiation-induced dyspnea, esophageal cancer, chemo-radiotherapy, prognostic model, distributed

learning

INTRODUCTION

In radiation therapy, radical radiation doses are expected to
provide better local control than lower palliative doses, however
the risk of radiation-induced adverse events is increased. Clinical
symptoms of radiation-induced lung disease (RILD) include
dyspnea, cough, and fever, which can have a serious effect on
the patients quality of life. Approximately 10-20% of patients
with lung cancer who receive (chemo)-radiotherapy developing
moderate to severe symptomatic RILD (1).

Radiation-induced dyspnea (RILD in this study) is a
side-effect for patients treated with high-dose thoracic
irradiation. Studies have reported the predictors for radiation-
induced dyspnea for lung cancer patients treated with
(chemo)radiotherapy (2, 3). The risk factors for RILD include
dosimetric factors, clinical factors, pathological factors and blood
biomarkers (2-16). In our knowledge, there is no published
study reporting the risk factors of radiation-induced dyspnea
for patients with primary esophageal cancer, which might be
explained by the fact that dyspnea is not routinely assessed
during follow-up of esophageal cancer treatment.

The current study conducted a TRIPOD (Transparent
Reporting of A Multivariable Prediction Model for Individual
Prognosis or Diagnosis) Type 4 validation (17) of previously-
published dyspnea models M1 (2) and M2 (3) via secondary
analysis of the SCOPE1 (18, 19) dataset. SCOPE1 was a
randomized controlled trial investigating the effects of chemo-
radiotherapy with and without additional cetuximab in patients
with esophageal cancer, including follow-up assessments of
dyspnea. We quantify the predictive performance of these two
models for predicting the maximal dyspnea grade > 2 within
6 months after the end of high-dose chemo-radiotherapy for
primary esophageal cancer. The goal of this study is to verify
two hypotheses: (I) that a common thoracic RILD model may be
feasible for a different index tumor and (II) that it is feasible to
perform an external validation of a toxicity model between two
sites via a distributed learning approach without any exchange of
patient-specific records.

METHODS AND MATERIALS

Model Development Cohorts

Patient characteristics in the development and validation cohorts
are detailed in Table 1. The first radiation-induced dyspnea
model (M1) (2) was developed from 438 patients with either

non-small cell lung cancer (NSCLC) Stage I-IIIB or limited
disease small cell lung cancer, treated with curatively-intended
(chemo)radiotherapy between January 2002 till January 2007.
Patients in this cohort were predominantly male (328/438, 74.8%)
with confirmed NSCLC histology (292/438, 66.7%) and a spread
of chemotherapy regimens (concurrent 70/438, 16%; sequential
203/438, 46%; no chemotherapy 159/438, 36%, unspecified 6/438,
1%). RILD, including dyspnea, was scored according to CTCAE
(v3.0) (20) during radiotherapy (RT) and up to a maximum of 6
months after RT. A range of radiotherapy prescribed doses from
46.9 to 79.2 Gy were used, with fraction doses not exceeding 2 Gy.
A second radiation-induced dyspnea model was developed
from 259 lung cancer patients treated with curatively intended
chemo(radiotherapy) between 2008 and 2011, Stage I-IIIB
and fractional dose < 3 Gy were used to develop a second
radiation-induced dyspnea model (M2) (3). These patients were
treated in two hospitals, underwent PET/CT for radiotherapy
treatment planning and had lung volumes delineated in the
planning system. This cohort was drawn from an earlier
iso-toxicity dose escalation radiotherapy trial (clinicaltrials.gov
identifier NCT00572325 and NCT00573040) with maximum
tumor dose not exceeding 69 Gy. This cohort was predominantly
male (163/259, 62.9%) with confirmed NSCLC histology
(198/259, 75.6%), received concurrent chemotherapy (148/259,
57.1%) and had no surgery prior to radiotherapy (236/259,
91.1%). Carboplatin and gemcitabine were given for sequential
chemotherapy, and cisplatin and etoposide for concurrent
chemotherapy. RILD, including dyspnea, was scored according
to CTCAE (v3.0), by either thoracic physicians or radiation
oncologists, at baseline and every 3 months following RT.

External Validation Cohort

Two hundred and 58 esophageal cancer patients were enrolled in
the SCOPEL (18, 19) trial from 36 UK centers between February
7, 2008 and February 22, 2012. The inclusion criteria were: non-
metastatic, histologically confirmed carcinoma of the esophagus
(adenocarcinoma, squamous-cell, or undifferentiated carcinoma)
or gastro-esophageal junction (Siewert type 1 or 2 with <2cm
extension into the stomach); selected for definitive chemo-
radiotherapy by a designated multidisciplinary team; aged 18
years or older; WHO performance status 0 or 1; stage I-III
disease (TNM stage 6); and esophageal tumor length < 10 cm as
measured by endoscopic ultrasound. The study protocol has been
published (19) and the trial was coordinated by the Wales Cancer
Trials Unit (WCTU). Recruitment in SCOPE1 was halted due to
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TABLE 1 | Patient characteristics.

Variable D1 D2 vi V2
Maastro clinic  Maastro clinic SCOPE1 SCOPE1
(N = 438) (N = 259) (N =212) (N = 255)
GENDER
Male 328 (74.9%) 163 (62.9%) 120 (56.6%) 145 (56.2%)
Female 110 (25.1%) 96 (37.1%) 92 (43.4%) 113 (43.8%)
AGE (YEARS)
Mean 68 (SD9) Mean67.5(SD Mean72.8 Mean72.9
10.1) (SD 8.95) (SD 9.02)
SMOKING STATUS
Current 77 (29.7%) NA NA NA
smoker
WHO-PS
0 119 (27.9%) 63 (24.3%) 110 (51.9%) 130 (50.9%)
1 223 (52.3%) 153 (59.1%) 102 (48.1%) 125 (49.1%)
>2 84 (19.7%) 43 (16.6%) 0 0
CcCl
0 132 (30.9%) No: 184 (71.0%) NA NA
1 128 (30.0%) Yes: 75 (29%)
2 95 (22.2%)
>3 72 (16.8%)
Missing 0
CARDIAC COMORBIDITY
No 132(30.9%) No: 184 (71.0%) 208 (98.1%) 252 (98.8%)
Yes 295 (69.0%) Yes: 75 (29.0%) 2 (1.0%) 3(1.2%)
Missing 1(0.1%) 2 (1.0%) None
BASELINE DYSPNEA SCORE
0 NA 78 (30.1%) 197 (92.9%) 238 (93.3%)
1 NA 140 (54.1%) 10 (4.7%) 14 (5.5%)
>2 NA 38 (14.7%) 3 (1.4%) 3 (1.2%)
Missing NA 3(1.1%) 2 (1.0%) None
DYSPNEA SCORE AFTER RT
0 NA NA 135 (63.7%) 164 (64.3%)
1 NA NA 46 (21.7%) 53 (20.8%)
>2 NA NA 31 (14.3%) 38 (14.9%)
Missing NA NA
FEV1 (%)
Mean 70.0 (SD 23) Mean 76.0 (SD NA NA
21.86)
CHEMOTHERAPY
No 159 (36.8%) 44 (17.0%) 0 0
Yes 273 (63.2%) 197 (76.1%) 212 (100%) 255 (100%)
Missing 0 18 (6.9%) 0 0
TUMOR LOCATION
Lower/middle 245 (56.3%) 76 (29.3%) NA NA
lobe
Upper lobe 190 (43.7%) 83 (32.1%) NA NA
MEAN LUNG DOSE (GRAY)
13.5(SD 4.5) 15.7(SD 4.44) 9.8(SD2.8) 9.83(SD 2.8)
Min 0.01 0.01
Max 17.9 17.9
Median 10.0 9.9
Missing None 45 (9.80%)
Va0 (%)
Mean 21.0 (SD Mean 25.5 (SD NA NA
7.3) 9.9)

WHO-PS, World Health Organization performance scale; CCl, Charlson comorbidity
index; FEV4, forced expiratory volume (1s); Voo, volume of the lung receiving > 20 Gy,
SD, standard deviation. D1 and D2 are development cohorts for the validated model 1(2)
and model 2 (2). V1 and V2 are validation cohorts.

futility, but follow-up of at least 24 weeks on all recruited patients
was available for secondary analysis.

All patients received four cycles of cisplatin and capecitabine;
two cycles were given prior to commencement of RT,
and two cycles were given concurrently with RT. This
chemotherapy regimen was the most commonly used for
esophageal cancer treatment in the UK. Chemotherapy
dose was modulated for potential hematological toxicity
(based on neutrophil and platelet counts) and kidney
function (based on glomerular filtrate rate). Chemotherapy
cycles were also withheld for serious non-hematological
adverse events until resolution to grade 0 or 1. Half of
these patients were randomized to additional cetuximab for
their chemotherapy.

All 3D conformal RT plans were based on contrast CT 3 mm
slices, for a prescribed dose of 50 Gy in 25 once-daily fractions.
The esophageal clinical target volume (CTV) was manually
delineated as a 2 cm distal and 2 cm proximal expansion along
the esophagus from the gross primary tumor, and a 1 cm radial
expansion. The planning target volume was an additional 1 cm
proximal-distal expansion from the CTV and an extra 0.5cm
radially. Lung volume receiving 20 Gy or higher was constrained
to be <25% of the total lung volume.

None of the SCOPEL1 patients in the validation cohort received
post-RT surgery. The majority of patients were male (145/258,
56%) with either mid- or lower-esophageal tumors (226/258,
87.6%) and mean endoscopy-defined tumor length of 5.6 cm.
Toxicity scoring according to CTCAE (v3.0) was carried out at
baseline, during each chemotherapy cycle, at 24 weeks and then
every 3 months thereafter.

Previously Published Dyspnea Model

Parameters

The model M1 (2) consisted of the following predictors: age,
WHO performance status (WHO-PS) before start of RT, nicotine
use (non-/ex-smoker vs. current smoker), FEV; at baseline and
mean lung dose in Gy. The predictors used in model M2 (3) were
dyspnea score before start of RT, cardiac comorbidity, FEV; at
baseline, tumor location (upper vs. middle/lower lobes of lung)
and sequential chemotherapy. Multivariate logistic regression
analysis was performed to build M1 and M2. The coefficients
used in the models are summarized in Table 2. Both models
defined adverse outcomes as dyspnea grade 2 or higher within
6 months of the end of (chemo)-radiotherapy.

Model Assumptions and Missing-Values

Imputation

The previous M1 and M2 had been developed on, and validated
in, primary lung cancer patients. However, Forced Expiratory
Volume (i.e., FEV;), smoking status and lung tumor location
(lobe) were uniformly absent from the esophageal SCOPE1
dataset. We assumed (based on the trial protocol) that all
SCOPEL patients received chemotherapy and we simulated
different population scenarios for smoking status. For the model
M2, we further assumed that unintended radiation dose for
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TABLE 2 | Coefficients obtained from the multivariate logistic regression in the first
(M1) (2) and second (M2) (3) dyspnea models.

Variable Model coefficients Model coefficients
(M1) (M2)

Intercept —2.2767 —1.512

PERFORMANCE STATUS

WHO-PS = 1 0.28 -

WHO-PS > 2 0.57 -

Current —0.45 -

smoker

Age 0.02 -

Mean lung 0.05 -

dose

Baseline - 0.990

dyspnea

Cardiac - 0.826

comorbidity

Sequential - 0.610

chemotherapy

Tumor in - —0.290

middle/lower

lung lobe

Baseline FEV4 —0.02 —0.007

esophageal cancers were most analogous to RT for lung tumors
in lower and/or middle lung lobes.

Since FEV was a predictor in both M1 and M2, we imputed
the missing FEV; measurements of the SCOPE1 patients from
available data in the model M1 development cohort while
blinded to the dyspnea outcome. The imputation was based on
categorical regression for WHO-PS = 0, WHO-PS = 1 and
WHO-PS >2. A statistically significant fit for FEV1 (in % of total
expired volume) was found using the model:

FEV1 (in %) = 82.0 if WHO — PS = 0
FEV1 (in %) = 74.7 if WHO — PS = 1
FEV1 (in %) = 67.3 if WHO — PS > 2

Distributed Learning

External validation was performed using the same distributed
methodology as published by Deist et al. (21), Jochems et al. (22)
and Shi et al. (23) using the Varian Learning Portal (VLP, Varian
Medical Systems, Palo Alto, CA) v1.0. A validation algorithm
containing model coefficients of M1 and M2 were remotely
distributed from the investigator site to the validation site via
a secured http channel. The SCOPEI data was parsed using
a radiation oncology-specific semantic ontology into the Web
3.0-standard resource descriptor format (RDF). The distributed
validation algorithm executes as a purely site-specific local
computation by querying the local RDF repository. Only the
summary classification results of validation on the SCOPE1
cohort was returned to the investigator site. Security and privacy
settings within VLP blocked transfer and exposure of patient-
level records from the validation site to the investigator. Previous
studies (21-23) have proven that the algorithm converges to the

same result as if all of the patient data was locally processed on
site by an investigator. The workflow of the distributed learning
approach is shown in Figure 1.

Statistical Analysis

The validation algorithm was deployed in MATLAB, version
9.0 (MathWorks, Natick, MA). Discrimination of predictive
model was evaluated using the area under the receiver-
operator curve (AUC) metric (24). The AUC metric was
estimated by bootstrapping (1,000 resamples). Calibration of the
predictive model was assessed using calibration plots. The logistic
recalibration was performed through fitting a logistic regression
model by the linear predictor as the only covariate, which
leads to an updated model without changing discrimination
performance (25, 26).

RESULTS

Out of 258 available validation cases in the SCOPE1 dataset, 46
and 3 patients, respectively, were excluded from the validation
due to missing values of mean lung dose for validation of model
M1 and baseline scores of cardiac comorbidity and dyspnea for
validation of model M2. A total of 212 patients and 255 patients
were available to externally validate model M1 and M2. In the
validation cohort for M1 (V1), there were 31 patients (14.3%)
manifesting dyspnea grade 2 or higher within 6 months of RT. In
the validation cohort for M2 (V2), 38 patients (14.9%) manifested
dyspnea at the equivalent time point.

To investigate the effect of smoking status on the performance
of M1 in the external validation cohort, smoking status was
assigned to (i) all smokers, (ii) non-smokers, and (iii) randomly
and repeat 1,000 iterations. The test yielded the AUC of 0.68 &
0.053, 0.68 =+ 0.054, and 0.65 = 0.04, respectively by bootstrap
sampling. Although the smoking status a missing predictor for
esophageal validation cohort, there was no statistically significant
difference in performance observed based on a bootstrapped
Wilcoxon test between the three scenarios (p = 0.34, p = 0.17,
p = 0.11). Therefore, we set it randomly in the validation cohort.

The receiver operator curves (ROCs) of the models on
external validation sets V1 and V2 are shown in Figure 2.
The AUC of both models measured in the previous studies
were 0.62 and 0.72 in internal validation and 0.61 and 0.67
in external validation. Compared to the previous studies, the
AUC of the two models on V1 and V2 were 0.68 (95%
CL: 0.55-0.76) and 0.70 (95% CI: 0.58-0.77), respectively. No
statistically significant difference in performance was observed
between M1 and M2 in the previous training cohorts and current
external validation cohorts (AUC of M1 0.62 vs. 0.68, p =
0.17; AUC of M2 0.72 vs. 0.70, p = 0.45, Wilcoxon test). The
detailed assessment of accuracy, sensitivity, specificity, positive
predictive value and negative predictive value are shown in
the Supplementary Table 1. Both prognostic models (M1 and
M2) showed poor calibration performance and tended toward
underestimation of dypsnea in the test population, which is
shown in the calibration plots (Figures 3i,iii). Recalibration was
performed to update the prognostic models (Figures 3ii,iv).
As expected, the recalibration resulted in higher predicted
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risks without changing the AUCs. The calibration line of
the recalibrated M1 was shifted be closer to the ideal line,
whereas the calibration line of M2 was not improved overall by
the recalibration.

DISCUSSION

The current study has tested two previously-published RILD
models M1 and M2 (2, 3) on the independent validation
sets V1 and V2 of the SCOPE1 trial data (18, 19), which
comprises esophageal cancer patients treated with chemo-
radiotherapy. Moreover, external validation was successfully
implemented using an automated and decentralized approach
without exchange of individual patient data.

As is well known, high-dose of thoracic radiation can often
provide better local tumor control and survival for patient with
cancer. Previous studies have shown that additional radiation in
an appropriate range can improve locoregional tumor control
and increase survival of patients with lung cancer (27-29).
However, the irradiation dose in the radiotherapy treatment of
esophageal cancer can have an adverse effect on lung tissue
resulting in RILD, such that it leads to disutility of care and
have a serious negative impact on patients’ quality of life. RILD
usually manifests itself in the acute (<6 months) phase as
radiation pneumonitis (RP) and in the later (>6 months) phase
as chronic pulmonary fibrosis (30, 31). RP is the most common
dose-limiting complication of thoracic radiation with clinical
symptoms such as dyspnea, cough, and sometimes fever (32).
Therefore, it is a trade-off between better tumor control (i.e.,
better survival or lower death rate) and RILD.

The prognostic models are regarded as the basis of clinical
decision support systems (CDSS) (33) that can relieve clinicians
from the pressure of analyzing the large volume of publications

and data by applying discoveries from research into a data-
analytics architecture (34, 35). However, it is difficult to apply
the results of research in clinical practice to predict which
patients with esophageal cancer will likely suffer from RILD.
The first reason is that many studies have investigated the risk
predictors of RILD including dosimetric, clinical, pathological
factors or blood biomarkers (2-16), but results between studies
are highly variable or even contradictory (1, 32). In the meantime,
there is no standardized lung toxicity grading system and no
standard data models (so-called umbrella protocols) to guide
prospective collection on routine cases. On the other hand,
few publications report the risk predictors of RILD (e.g., severe
dyspnea), for patients with esophageal cancer. This difficulty
might be explained by the fact that dyspnea is not routinely
assessed during diagnosis and prognosis of esophageal cancer.

At present, it is widely acknowledged that a prognostic model
cannot be applied in clinical practice before its feasibility and
practicability have been certified via validation on different
levels (17, 36). External validation of a prognostic model should
be performed on an/some independent cohort(s), because
most models present optimistic results in the development
cohorts. Validation of prognostic models involves two
aspects (37). First, generalizability of a prognostic model
can be described by validation on similar (reproducibility) or
different (transferability) cohorts. The similarity or difference
between cohorts refer to temporal, geography, methodology or
investigator, which aims to distinguish from the development
cohort of the original model (17, 38, 39). One primary goal
of the current study to investigate the transferability of two
previously-published lung toxicity models M1 and M2 under
these “different” situations.

Second, accuracy performance of a prognostic model shows
the statistical validity (40). Discrimination and calibration, in
general, measure the accuracy performance. (i) Discrimination
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describes whether an individual with higher predictive
probability is indeed experience RILD more often. Area
under the receiver-operator curve (AUC) (24) was used to assess
the discrimination performance, which is shown in Figure 2. The
model M1 achieved a better discrimination performance (i.e.,
AUC) on V1 compared to the internal and external validation
performed in the original study. The M2 obtained a better
AUC on V2 than the AUC of the external validation but was
consistently degraded in AUC from the internal validation of the
original study. (ii) Calibration reflects the agreement between
observed event and predicted risk. The calibration performance
was assessed by calibration plots, which are shown in Figure 3. A
perfectly calibrated model means that the predicted probabilities
of RILD are identical to the observed frequencies of RILD for
all patient groups. The calibration-in-the-large (i.e., intercept)
of M1 and M2 were 3.79 (p = 0.08) and 0.42 (p = 0.46), and
calibration slope were 2.60 (p = 0.007) and 1.99 (p < 0.0001),
which indicates that predicted risks of M1 and M2 in SCOPE1
were systematically under-estimated and there was insufficient
variation of covariates in V1 and V2 sets. A possible explanation
may involve systematic under-reporting of clinical toxicity in
the retrospectively-collected training sets. By testing different
assumptions about smoking status in the test cohorts, there is no
evidence to support an effect of smoking in either aggravating
or protecting against dyspnea. It is also possible that the original
models in lung cancer were improperly calibrated, but there was
no additional information in the published articles to confirm
this. However, a systematic underestimation of the dyspnea
rate would be consistent with an offset error in the linear fit
of FEV1 using the WHO performance score. This potential
source of error could only be circumvented by measuring
the FEV1 for the SCOPEL test cases, which was not done.
To correct poor calibration performance, recalibration can
be performed through fitting a logistic regression model by
the linear predictor as the only covariate, which leads to an
updated model without changing discrimination performance

(25, 26, 41). The calibration performance of M1 was moderate
after conducting recalibration. The M2 model still had poor
calibration performance even after recalibration, which means
care should be taken applied in real clinical practice.

Strengths of the Analysis

The SCOPEL trial data, as an independent validation cohort,
satisfied the conditions of separation in terms of temporal
(different treatment time of patients in SCOPEI and previous
training cohorts), geographic (different regions, Cardiff vs.
Netherlands) and investigator (different people from different
institutes) from the development cohort of lung cancer. It
means that the SCOPE1 was a sufficiently challenging dataset
to externally validate the transferability of a prediction model
between different index cancers (38, 40). Second, we have shown
the RILD models (e.g., M1) can be robustly transferred to other
diseased sites (e.g., esophagus) that only having the incidentally
irradiated normal tissues in common without losing accuracy
performance. Thirdly, this study was implemented using an
automated and distributed approach without exchanging any
patient data. Due to the confidentiality of patient data, local
laws and technical issues, it can be prohibitively difficult
to exchange patient data among hospitals. Compared to the
centralized learning approach, the distributed learning approach
can avoid privacy-related issues by sending research questions
among institutes. The distributed learning can be achieved
by transferring a machine learning algorithm to a target
site and returning the results back to the sender rather
than transferring real data. This process means knowledge
exchange occurs without important clinical data leaving hospitals
and there is no loss of validation integrity when performed
distributed learning.

Weakness of the Analysis
The current study has some limitations worthy of mention. First,
some outcome data and predictor variables were missing in
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the validation cohorts, and data was not missing completely at
random. If the missing data were compulsory predictors for the
prognostic models (M1 and M2) and cannot be imputed, the
corresponding patients had to be removed from the validation
cohort. In addition to this, there are non-random missing data,
which might be explained by the fact that the information
about lung cancer were not be registered for patients with
esophageal cancer in the SCOPEI trial, such as tumor location,
smoking status, and FEV;. For tumor location, we assumed that
all of these esophageal cancer patients treated with radiation
were similar to lung patients with a tumor in the lower lung
lobe. For the missing FEV;, WHO-PS was used to impute as
mentioned above. Second, there are some differences between
the development (D1 and D2) and validation cohorts (V1 and
V2), of which the effect on the model performance are the
subject of future work. (i) SCOPEI randomized half of the
patients between cetuximab or not, whereas patients in D1 and
D2 were not treated with cetuximab. (ii) All patients received
chemo-radiotherapy in V1 and V2, while only 273 (63.2%)
and 197 (76.1%) patients received chemotherapy in D1 and

D2. (iii) The numbers of patients in D2 with baseline score 0,
1, >2 are 78 (30.1%), 140 (54.1%), and 48 (14.7%), whereas
these numbers in V2 are 238 (93.33%), 14 (5.49%), and 3
(1.18%). It indicates that more patients had low-grade or no
dyspnea overall in V2 compared with patients in D2. The
effects of these uncertainties on the performance of prognostic
models M1 and M2 remain unclear and are the subject of
future studies.

Finally, another potential limitation is about the validated
models’ selection, that is the performance of M1 is moderate
in terms of AUC and M2 does not include lung dose volume
parameters. Although the discrimination performance of M1
is moderate, we found it achieved a similar and even better
discrimination performance in the external validation cohort,
which demonstrated that M1 has a good generalization. M2 was
developed using multivariable regression approach. The original
study (3) did evaluate mean lung dose and V20Gy as potential
risk factors, but then dropped it from the final regression model
because their contributions were small and/or could not be
shown to be statistically significant.
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Future Work

Future work would involve two aspects. First, the M1 could be
tested on a similar dataset to validate the reproducibility. Second,
we would like to re-train the lung toxicity model on D1 and
D2 via combining different types of features, such as image,
pathological or generic features.

CONCLUSION

In this study, we have externally validated previously published
dyspnea models using an esophageal cancer dataset. First, the
discrimination performance of the models in esophageal cancer
patients treated with high-dose external beam radiotherapy are
moderate, AUC of 0.68 (95% CI 0.55-0.76.) and 0.70 (95% CI
0.58-0.77), respectively. Second, risk estimates were strongly
determined by WHO score in Model 1 and baseline dyspnea
in Model 2. Third, the distributed learning approach gave
the same answer as local validation but is feasible without
accessing a validation site’s patient-level data. Finally, the
clinical contribution of the dyspnea prognostic model is that
it would help doctors to identify patients who will likely
suffer from severe dyspnea and who could therefore benefit
from dose de-escalation in (chemo)-radiotherapy. Although
we cannot conclude that a common thoracic RILD model is
feasible for a different primary tumor, it can be deemed as
a “benchmark” for further investigation of RILD prognostic
models of thoracic tumor.
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Brain, lung, and colon tissue experience deleterious immune-related adverse events
when immune-oncological agents or radiation are administered. However, there is a
paucity of information regarding whether the addition of radiation to immuno-oncological
regimens exacerbates the tissue inflammatory response. We used a murine model
to evaluate sub-acute tissue damage and the systemic immune response in C57BI/6
mice when administered systemic anti-programmed cell death protein 1 (aPD-1)
immunotherapy alone or in combination with stereotactic fractionated 10 gray/5 X-ray
radiation to normal brain, lung or colon tissue. The model indicated that combinatorial
aPD-1 immunotherapy and radiation may alter normal colon cell proliferation and cerebral
blood vasculature, and induce systemic thrombocytopenia, lymphopenia, immune
suppression, and altered immune repertoire (including interleukin-1p). Therein our data
supports close monitoring of hematological and immune-related adverse events in
patients receiving combination therapy.

Keywords: cancer, radiation, immunotherapy, inflammation, toxicity

INTRODUCTION

While immunotherapies have the potential to revolutionize therapy there is limited understanding
of their interaction with radiation in healthy tissues. To date a number of factors have restricted the
assessment of treatment efficacy of check point inhibitors in combination with radiation in cancer
patients. These include treatment discontinuation in ~10% of patients due to immune-related
adverse events and unacceptable level of injury to healthy tissue (1). These factors sometimes
stem from the complex immunostimulation arising from the combination of radiation and
chemotherapy in these patients. As such it is not clear if patients may derive greater long-term
benefit from combined use of radiotherapy (RT) and an immunotherapy checkpoint inhibitor.
Evidence demonstrating safety, i.e., minimal tissue damage and immune-related adverse events
in normal/healthy tissue is lacking as it is unethical to administer RT to healthy tissue in people.
Immunotherapy alone is reported to induce a range of side effects most commonly in skin,
gastrointestinal tract, lung, and endocrine glands. While the majority of immune-related adverse
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events are mild to moderate, serious and life threatening
events have been reported (2). These led to the introduction
of consensus recommendations from the Society for
Immunotherapy of Cancer Toxicity Management Working
Group (3), and the establishment of clinical practice guidelines
for the management of toxicities from immunotherapy by
the European and American Medical Societies (4, 5). A
systematic review and meta-analysis of 13 studies of patients
receiving the anti-programmed cell death protein 1 (aPD-
1)/PD-L1 immunotherapies nivolumab, pembrolizumab, or
atezolizumab—in combination with chemotherapy—identified
increased odds ratios for the incidence of immune associated
toxicities hypothyroidism, pneumonitis, colitis, hypophysitis
(6), and acute interstitial nephritis (7). The immune-related
adverse events associated with checkpoint inhibitors are thought
to be linked to immunostimulation and reprogramming of the
immune system, leading to a loss of immune tolerance (7). Such
adverse events may be exacerbated by RT, where there is a rising
paradigm of an immunostimulatory effect of RT in patients
undergoing treatment with immune checkpoint inhibitors.
Furthermore, the various checkpoint inhibitors differentially
modulate T-cell responses leading to distinct toxicity patterns,
kinetics, and dose-toxicity relationships. These need to be better
understood before widely utilizing combinations of RT and
immunotherapy in the clinical setting.

Radiation activates an interconnected network of
inflammatory and immune response pathways inducing a
host of changes to the tissue microenvironment (8). Lung and
colon tissues display two of the most common immune-related
adverse events in pneumonitis and colitis, while adverse events in
brain tissue, such as encephalitis and neuropathy, are relatively
rare (2-5). Due to the idiosyncratic nature of adverse events
affected the brain, lung and colon tissues, we sought to pre-
clinically model the subacute response to potentially predict
future immune-related adverse events.

To understand whether the addition of RT to immuno-
oncology agents exacerbates the immune response in normal
brain lung and colon tissues, compared to immune-oncology
agents alone, we used a murine model to characterize and
quantify the sub-acute (day 28) tissue damage and local and
systemic immune responses following combined fractionated
stereotactic RT and oPD-1 immunotherapy. We hypothesized
that this would identify systemic immune markers that could
identify immune-mediated adverse events in brain, lung and
colon tissues.

MATERIALS AND METHODS

Mice

The study was reviewed and approved by the Northern
Sydney Local Heath District Animal Ethics Committee, Royal
North Shore Hospital, St. Leonards, Australia (Approval
#RESP/17/205). Eight week old male C57Bl/6.Kearn’s mice were
kept on 12 h day/night light cycles with standard chow and water
provided ad libitum. Mice were randomly allocated into 6 mice
per treatment group and monitored for well-being by trained
animal house staff prior to being humanely killed by cardiac

puncture under anesthesia at the pre-determined endpoint of 28
days. C57Bl/6 mice were used as this is the background strain to
commonly used syngeneic cancer models.

Immunotherapy

Mice were treated with InVivoMab rat anti-mouse PD-1 (RMP1-
14; 200 pvg/dose; BE0146; BioXCell) or rat IgG2a isotype control,
anti-trinitrophenol (2A3; 200 pg/dose; BE0089; BioXCell) in 100
mirolitres (1) PBS by intraperitoneal injection every 3 days for
5 doses (day 8, 11, 14, 17, 20) alone or in combination with
fractionated stereotactic RT.

Fractionated Stereotactic Radiotherapy
Cone beam computed tomography (CBCT)-guided stereotactic
radiation was delivered to the brain (right hemisphere), lung
(right) or colon (sigmoid colon) region at 10 Gray (Gy)/5 X-
ray on days 1, 2, 3, 4, 5 using the Small Animal Radiation
Research Platform (SARRP; Xstrahl Inc.), 5 x 5 millimeter
(mm) collimator, 220 kV, 13mA, 0.15mm copper filter, 3.71
gray (Gy)/minute (min), 360° Arc (-180 to 180°) alone or in
combination with immunotherapy. Dose output and half-value
layer were verified by 0.6 cm> Waterproof Farmer® Chamber
(PTW TN30013; —400V) under reference conditions; 35cm
source to axis distance, 2 centimeter (cm) solid-state depth.

An additional 4 centigray (cGy) was delivered to each animal
during CBCT imaging dose — 60 kV, 0.8 mA, 360 projections, fine
focus as determined by MOSFET dosimetry MOSkin developed
by the Center for Medical Radiation Physics of the University of
Wollongong, Australia (9, 10) positioned in the center of a 3D
printed modular CBCT cylindrical phantom (mass density p =
1.17 g/cm3) (11).

To estimate the radiation dose delivered to the targeted
tissue region and non-targeted organs at risk, the SARRP Dose
Volume Histogram (DVH) in the Treatment Planning Software
(MuriPlan®; Xstrahl Inc.) was utilized. Tissues were contoured
using the acquired CBCT images and Digimouse murine
anatomy atlas (available at: https://neuroimage.usc.edu/neuro/
Digimouse) (12, 13) (Supplementary Figure 1). Following
application of the planned treatment beam, data indicated
the mean dose per fraction delivered to the targeted brain
region was 199.11 cGy at a volume of 0.02 cubic centimeters
(cc), colon 169.57 cGy at 0.06 cc, and lung 158.39 cGy at
0.01 cc. Doses to non-targeted organs at risk were highest in
tissues surrounding the brain—mean 84.88 cGy, anorectal
region—60.95 cGy, and tissues surrounding the right lung—26.57
cGy (Supplementary Table I).

Histopathology

Brains were harvested and fixed in 10% v/v neutral buffered
formalin for 24h before embedding in paraffin wax. Four
micrometer (4um) sections were rehydrated and microwave
antigen retrieval performed in citrate buffer, pH 6.0. Next,
sections were incubated with 2.5% v/v normal goat serum,
followed by primary antibody for 1 h at room temperature.
Primary antibodies were Ki67 (0.08 ug/ml; 12202; Cell Signaling
Technologies), CD31 (0.013 png/ml; 77699; Cell Signaling
Technologies) and y-H2AX (0.06 ug/ml; ab11174; Abcam).
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Finally, sections were incubated with ImmPRESS™ HRP
goat anti-rabbit IgG polymer (MP-7451; Vector Labs) for
30min at room temperature and detected with NovaRed
(SK-48000; VectorLabs).

Slides were scanned using the Aperio AT2 Digital Pathology
Scanner and five digital images per section at 20x magnification
captured using Aperio ImageScope (v12.3.2.8013; Leica
Biosytems). Ki67 and y-H2AX positive staining was quantified
by ImmunoRatio Image] plugin (v1.0c, 14.2.2011; http://
jvsmicroscope.uta.fi/immunoratio/). CD31 positive vessels were
enumerated and measured using the Microvessel-Segmentation
MATLAB plugin (14).

Hematology and Flow Cytometry

One milliliter (ml) of whole blood was collected via cardiac
puncture into K3EDTA tubes (Minicollect®; Greiner Bio-One)
and assessed by a COULTER® Ac-T diff hematology analyzer
with Vet App 1.06 (Beckman Coulter).

Using 100 pl whole blood, 1 x 10° splenocytes and 1 x
10 bone marrow-derived cells and red blood cells were lysed
and leukocytes stained with a cocktail of antibodies—volume
denoted per test; CD25-BV421 (1pl; 564370), FV510-BV510
(1 l; 564406), CD80-BV605 (1 ul; 563052), NK1.1-BV650 (1 jul;
564143), CD4-BV711 (0.25pl; 563726), CD117-BV786 (1 wl;
564012), CD11b-BB515 (0.25 ul; 564454), CD19-PerCP/Cy5.5
(1 pk 551001), CD115-PE (0.25 ul; 565249), Ly6G-PE/CF594
(0.06 Ll 562700), CD3-PE/Cy7 (1 wl; 552774), CD206-AF647
(1 nl; 565250), CD8a-AF700 (0.25 pul; 557959), Ly6C-APC/Cy7
(0.5ul; 560596; all BD Biosciences). Acquired using a BD
LSRFortessa™ and analyzed using BD FACSDiva™ Software
version 6 (BD Biosciences).

Immune cell populations were defined as CD3" T
cel, CD3TCD4" helper T cell (Th), CD3TCD4TCD25"
regulatory T cell (Treg), CD3TCD8 cytotoxic T cell (Tc),
CD37NK1.17" natural killer (NK) cells, CD3*NK1.1T (NK/T),
CD1157CD11b™ monocytes (Mono), CD1157CD11b+TCD80*"
macrophage type 1 (M1), CD115TCD11b*CD206" macrophage
type 2 (M2), CDI115-CDI11b" dendritic cells (DC),
CD115~CD11b*Ly6CM8'Ly6G~ monocytic-myeloid derived
suppressor cells (M-MDSC), CD115~CD11b*Ly6Cl®"Ly6Ghigh
polymorphonuclear-myeloid derived suppressor cells (PMN-
MDSC), CD117" hematopoietic stem cell (HSC), CD19" B cells
and expressed as a percentage of the parent population.

Multiplex Immunoassays

Plasma was obtained by centrifugation of whole blood (500
X g 5min at room temperature). Mouse cytokine 23-
plex immunoassay (Bio-Plex®; Bio-Rad Laboratories) and
chromogenic  sandwich  enzyme-linked = immunosorbent
assay (ELISA) for transforming growth factor (TGF)-
pl1 (DY1679; R&D Systems) were performed as per the
manufacturer’s instructions.

Statistical Analyses

Animal weight between treatment groups was assessed by Two
Way Repeated Measures Analysis of Variance (ANOVA) with
Tukey’s Multiple Comparison Test. Normality of the data was

confirmed by the D’Agostino-Pearson omnibus test. Histological
data are expressed as the mean of 5 high power fields & standard
error of the mean (SEM). Hematology, flow cytometry and
chemokine/cytokine data are expressed as mean =+ standard
deviation (SD). Two Way Analysis of Variance (ANOVA) with
Tukey’s Multiple Comparison Test were performed to compare
treatments groups for each cell phenotype or cytokine using
Prism 7 for Windows (GraphPad Software, Inc.).

RESULTS
No Change in Animal Weight

Animal weights were not significantly altered by aPD-1
immunotherapy or RT of the brain, colon or right lung
regions [F(g 45 = 1.347; p = 0.25; Supplementary Figure 2].
No animals demonstrated signs of poor body condition
up to day 28; there was no skin irritation, hair loss,
diarrhea or labored breathing. As expected, animal
weight significantly increased with time [F(9 405 = 292.5;
p < 0.0001].

Reduced Ki67* Proliferation and Blood
Vasculature Following Combination

Therapy

Quantification of Ki67" staining showed low levels
of proliferation in normal brain glial cells and lung
stromal cells, and high proliferation in the actively

regenerating colon progenitor cells at the base of the
intestinal crypts (Figure 1A). Combined RT and oPD-1
decreased Ki67" 45% in brain (p = 0.09; Figurel) and
25% in colon tissue (p 0.0003; Figure 1) compared
to oPD-1 alone. Data indicate that normal brain and
colon tissue is susceptible to radiation-induced changes in
cellular proliferation.

To determine whether the combination therapy of
fractionated stereotactic radiation and oPD-1 immunotherapy
would impact blood vasculature, CD31" blood vessels were
quantified at the targeted tissue region. In brain tissue, combined
RT + aPD-1 reduced blood vasculature 3-fold (p = 0.001;
Figure 2), while in lung tissue combined treatment increased
blood vasculature 126% (p = 0.06; Figure2) compared to
RT + IgG2a. Other vasculature parameters assessed were
vessel thickness, perimeter, area, luminal area, and vessel
eccentricity—but did not differ significantly between the
treatment groups (data not shown). Data show that RT +
aPD-1 immunotherapy augments blood vasculature in normal
brain tissue.

To determine whether RT-induced damage was prolonged
at the sites of irradiation when oPD-1 immunotherapy
is combined, y-H2AX staining was performed to identify
double stranded DNA breaks marked for repair (15).
As expected, baseline y-H2AXT staining was higher in
colon tissue than brain and lung due to more rapid cell
regeneration. Somewhat contradictory, y-H2AXT staining
was significantly reduced by 50% in irradiated colon tissue
irrespective of aPD-1 immunotherapy (Figure3). Data
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FIGURE 1 | Ki67* staining at the irradiation sites of murine brain, lung and colon tissue (A). Scale bar, 100 um. Quantitation of five high power fields for each murine
tissue (N = 6 per time point; B). Data are expressed as mean + SEM per high power field. 2p < 0.05 vs. Ctrl, °p < 0.05 vs. IgG2a by Tukey’s multiple comparison test.

show that there is exacerbation of persistent radiation-
induced DNA damage following combined radiation and
aPD-1 treatment.

Combination therapy alters immune cell populations in
systemic compartments. To assess the systemic immune response
to combined stereotactic radiation and aPD-1 immunotherapy,
hematological parameters and immune cell populations in the
spleen, bone marrow and peripheral blood were quantified
by flow cytometric analysis. Of the hematological parameters
assessed, aPD-1 suppressed platelet numbers when compared
to control (905.5 £ 86.8 vs. 1164.4 + 26.6, p = 0.0006) but
normalized in animals that received irradiation of the lung tissue
(1087.3 £ 45.9 vs. 905.5 + 86.8, p = 0.034; Figure 4).

Splenic CD4" helper T (Th) cells increased 20%, while
M-MDSC and M1 decreased 40-80% following combined

treatment compared to aPD-1 alone (p < 0.05; Figure5).
In addition, splenic NK/T and monocytes were suppressed
following irradiation irrespective of aPD-1 immunotherapy,
though these did not reach significance.

In bone marrow, the most striking finding was the reduction
in M1 macrophages with RT independent of immunotherapy
(p < 0.05; Figure 6). These reductions closely mirrored the
responses of splenic M1 macrophages (Figure 5). Furthermore,
in bone marrow Th, Tc and DCs were increased while Tregs
and B cells decreased following brain or lung RT + oPD-1
compared to monotherapies (p < 0.05; Figure 6). Data suggests
that the addition of RT to aPD-1 monotherapy may enhance an
immune response with increased Th, Tc and DCs. Additionally, a
reduction of bone marrow Tregs following combination therapy
in lung, may contribute to lymphopenia or immune suppression
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due to the role of Tregs in B cell differentiation for HSCs (16).
Notably, the proportion of HSCs was not altered by treatment
(Supplementary Figures 3-5).

In peripheral blood, colon RT + oPD-1 increased B-
cells 2.1-fold compared to oPD-1 alone (p < 0.0001;
Figure 7). RT 4 IgG2a decreased DCs in brain and
colon tissue compared to IgG2a alone (p < 0.05) and RT
reduced PMN-MDSCs irrespective of immunotherapy.
M2 were largely absent in peripheral blood but showed

Plasma Cytokines, Chemokines, and
Growth Factors Were Not Altered by

Combination Therapy

To assess the cytokine and chemokine release following 10Gy/5
fractionated stereotactic radiation and oPD-1 immunotherapy
plasma cytokine and chemokine levels were assessed by multiplex
immunoassay. Irradiation of normal brain and lung tissue with
or without aPD-1 decreased interleukin (IL)-1f levels 7 to

increases following brain RT + oPD-1, though this 13-fold when compared to I1gG2a or aPD-1 alone (Figure 8).
did not reach significance (Figure7). Data show that Of note, TGF-f levels were below the level of detection
the addition of brain or colon irradiation to oPD- in 17/48 (35%) of plasma samples (Supplementary Figure 6).
1 immunotherapy may modulate in the peripheral Data suggest that at the sub-acute time point of 28 days
immune response. post treatment commencement radiation-induced reduction of
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IL-1P suppression is neither ameliorated nor exacerbated by
oPD-1 immunotherapy.

DISCUSSION

Radiation induces DNA damage, cellular stress, apoptosis,
cytokine release, and immune cell recruitment and activation
(8). The effect of radiation on the tumor microenvironment
is dependent on type, dose, field size, and fractionation (8).
While this is known in the context of tumors, less is known
regarding the systemic effect in response to local irradiation
of normal tissues particularly when combined with immune-
oncology agents. In this study the local tissue and systemic
immune response of combined fractionated stereotaxic RT and

aPD-1 immunotherapy was assessed in normal tissues that
commonly (lung and colon) and infrequently (brain) experience
immune-related toxicity. A schematic of the existing normal
tissue response to radiation and immunotherapy, and the data
summarized in this manuscript is provided in Figure 9.

The effect of combined radiation and «PD-1 immunotherapy
on proliferative rates of normal tissues was assessed by Ki67+
staining. Ki67 is expressed during all active phases of the
cell cycle (GI, S, G2, and M), but not resting cells (GO)
allowing an assessment of the growth fraction of the irradiated
cell populations. The mammalian intestinal epithelium rapidly
renews itself, with the entire epithelium being replaced in
3-5 days. Additionally, it is known that following radiation
injury, quiescent and/or radioresistant intestinal stem cells
become active stem cells to regenerate the epithelium (17).
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This process incorporates three phases; apoptotic phase (day  time line and fractionated 10Gy/5 radiation treatment regimen
1-2), proliferative phase (days 3-7) and the normalization  utilized in our study, the normal colon tissue showed reduced
phase (days 7-14) (17). In spite of this 2-week restorative Ki67t 28 days post-irradiation of the intestinal epithelial cells.
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While this was not further exacerbated by the addition of
aPD-1 immunotherapy, the data indicate that colon tissue is
susceptible to persistent radiation-induced changes to cellular
proliferation and attribute attributed to the development of
colitis following radiotherapy.

The tumor vasculature and endothelial cells are some of
the most studied components to assess radiobiological effects
in the tumor microenvironment following radiation treatment.
It is well-characterized that radiation induces endothelial
cell dysfunction, including increased permeability, detachment
from the underlying basement membrane, and endothelial cell
senescence and/or apoptosis (18, 19). In normal brain tissue
the aPD-1 immunotherapy alone increased blood vasculature
while in combination with RT blood vasculature reduced.
The latter was not significantly different to the number
of blood vessels quantitated in IgG2a + RT brain tissue,

indicating that this is consistent with the known effect
of radiation on endothelial cells. A preclinical study using
the same strain of mouse (C57Bl/6) to investigate cerebral
permeability following 40Gy/20 fractionated radiation showed
no significant difference in blood brain barrier permeability
at day 30 post-irradiation; blood brain barrier permeability
was not significantly increased until 90 days post-irradiation
(20). Differences in the observance of alterations to blood
vessel numbers and dynamics may be attributable to differences
in radiation delivery and assessment methodologies. Notably,
this study used whole brain irradiation and fluorescein-based
intravital microscopy to assess blood permeability (which has a
limitation of ~1 mm in tissue depth), while our study assessed
physical blood vasculature parameters by histopathology at the
isocentre of our 5 x 5mm stereotactic irradiation focused at
the caudoputamen.
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Under fractionated treatment regimens (with comparatively
low energy photons), radiation-induced DNA damage is
principally evoked via the generation of reactive oxygen species
and is mediated by H2AX (21). DNA damage to a variety of
cell types in the tumor and within the surrounding healthy
tissue can have a range of consequences, including microvascular
endothelial cell apoptosis, crypt damage, organ failure and
death (18). To investigate persistent radiation-induced DNA
damage we quantified y-H2AX staining. At the sub-acute time

point y-H2AX™ staining was significantly reduced by 50% in
irradiated colon tissue, but not when combined with aPD-1
immunotherapy. It is unclear why y-H2AX staining was lower
in aPD-1 treated tissue when compared to control and irradiated
tissues. We speculate that repair of DNA damage may have
occurred, but the normal proliferative rate of cells had been
impacted out to the assessed 28-day post-treatment period. This
has precedence with endogenous y-H2AX being associated with
cell cycle DNA replication mediated by the DNA-dependent
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protein kinases/checkpoint kinase 2 pathway (22). However, y-
H2AX staining was present throughout the intestinal epithelial
cells at not just the intestinal progenitor cells present at the base
of intestinal crypts (as noted with Ki67 staining).
Thrombocytopenia is a hematological adverse event
experienced by patients during immunotherapy treatment
(23). aPD-1 administered alone suppressed platelet numbers,
which normalized to control levels when radiation was added.
In a descriptive observational study comprising three French
pharmacovigilance databases, aPD-1 immunotherapy induced
thrombocytopenia in the 0.5% of cancer patients who developed
immune-related hematological adverse events (23). Surprisingly
we did not observe an exacerbation of reduced platelet counts due
to radiation in irradiated and animals despite bone marrow being
included within our 360" Arc radiation treatment regimens.
Radiation-induced inflammasome activation and apoptosis
has been noted in T cells, NK/T and monocytes with sustained
caspase-1 cleavage until day 7 post-radiation (24) and is reflected
in the splenic compartment (25). In our study, splenic M1 and
M-MDSCs were suppressed in animals receiving combination
therapy, when compared to aPD-1 monotherapy. Combined
these data indicate that the addition of aPD-1 to RT significantly
alters the immune repertoire of the splenic compartments.
oPD-1 immunotherapy suppresses T cell function primarily
by inactivating CD28 signaling (26). In the present study

aPD-1 immunotherapy alone decreased Treg levels in bone
marrow. Tregs play a critical role in B cell differentiation
from HSCs (16) and coincided with decreased B-cells in the
bone marrow compartment. Increased Th, Tc and DC cells in
bone marrow were observed following combined therapy when
compared to IgG2a + RT potentially indicating sequestration
of pro-inflammatory immune cell types in the bone marrow.
Alternatively the decreased Tregs may drive increased DCs via
the PD-1-dependent bidirectional regulation of these two cell
types. PD-1 is a critical homeostatic regulator for Tregs by
modulating proliferation, survival and apoptosis mediated by IL-
2 (27). Furthermore, the reciprocal modulation of Tregs and
DC/MDSCs is dependent on chemokine CCL2 and TGE-f. PD-1
and TGF-f mediate the recruitment and bidirectional regulation
of Treg cells and MDSCs (28-31) and remain elevated for up
to 8 weeks post-radiation (32). While we observed an inverted
Treg/DC relationship, the levels of IL-2, TGF-$ and CCL2/MCP-
1 were not altered in the present study.

Irradiation is known to evoke an inflammation response and
is associated with increases in cytokine production. For example,
irradiation of whole lung tissue with 12Gy elevates serum levels of
G-CSE IL-6, CXCL1/KC, CCL2/MCP-1, CXCL10/1P-10, and IL-
la (33) and the persistent elevation of inflammatory cytokines
contributes to tissue injury and immune-related adverse events
(32). In murine models of radiation-induced injury the serum
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cytokine levels positively correlated with irradiated tissue levels,
implicating blood as a surrogate marker for tissue cytokine
levels (33). The only cytokine/chemokine modulated in our
sub-acute study was plasma IL-18 which decreased in animals
receiving irradiation to brain and lung tissue. While IL-18
is a pluripotent cytokine and plays a role in tumorigenesis
and tumor progression, the role of IL-1f in radiation-induced
normal tissue toxicity is unclear (32) but has been related to
skin-related adverse events (34, 35). We did not observe skin
irritation from the fractionated stereotactic radiation used in
our study.

Immune toxicities from radiotherapy and immunotherapy
alone have been extensively reported. These include the
recent establishment of European and American clinical
guidelines for the management of immune toxicities which
varies with grade from continuation of immunotherapy
with  monitoring,  withholding  immunotherapy  and
administering ~ immunosuppressant  (prednisolone),  to
permanent discontinuation of the immunotherapy (4, 5). What
remains comparatively unknown is whether combining radiation
and immune check point immunotherapy will exacerbate these
immune-related toxicities and whether these can be predicted
at early time points during the treatment regimen. Overall our
acute snapshot of this dynamic response showed that blood
vasculature, cell proliferation, thrombocytopenia, lymphopenia,
immune suppression and altered immune repertoire (including
IL-1B) are observed when combination therapy of fractionated
stereotactic radiotherapy and aPD-1 immunotherapy was used
compared to either monotherapy. Consistent with low number
of clinical studies on concurrent or sequential radiotherapy
and immunotherapy there were no increases in serious acute
toxicity from the combination therapy in our preclinical model
when compared to monotherapy (36), but longer term studies
are required. Akin to the clinical data, our report supports
close monitoring of immune-related adverse events in patients
who are to receive combination therapy. IL-1f and peripheral
blood M2 could be further explored as potential biomarkers for
immune toxicity.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

REFERENCES

1. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line
nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl ] Med.
(2017) 376:2415-26. doi: 10.1056/NEJMoal613493

2. Mantia CM, Buchbinder EI. Immunotherapy toxicity. Hematol Oncol Clin N
Am. (2019) 33:275-90. doi: 10.1016/j.hoc.2018.12.008

3. Puzanov I, Diab A, Abdallah K, Bingham CO III, Brogdon C, Dadu R, et al.
Managing toxicities associated with immune checkpoint inhibitors: consensus
recommendations from the Society for Immunotherapy of Cancer (SITC)
Toxicity Management Working Group. | Immunother Cancer. (2017) 5:95.
doi: 10.1186/s40425-017-0300-z

ETHICS STATEMENT

The animal study was reviewed and approved by Northern
Sydney Local Heath District Animal Ethics Committee,

Royal North Shore Hospital, St Leonards, Australia
(Approval #RESP/17/205).
AUTHOR CONTRIBUTIONS

KM, TE, SC, HW, CD, and VH contributed conception and
design of the study. KM performed the animal experimentation,
histopathology, hematology, flow cytometry, performed the
statistical analyses, and wrote the first draft of the manuscript. RP
contributed to the histopathology. AH performed the multiplex
immunoassay. All authors contributed to manuscript revision,
read, and approved the submitted version.

FUNDING

KM was supported by the Matt Callander ‘Beanie for Brain
Cancer’ HMRI Fellowship (HMRI 17-25) funded by the Mark
Hughes Foundation and AH by The Brain Cancer Group
Fellowship. This project was supported by project grants from
The Mark Hughes Foundation, The Brain Cancer Group, and
Sydney Vital Translational Cancer Research Centre. The SARRP
was funded by a Cancer Institute NSW Research Equipment
Grant (2016/REG007 to VH).

ACKNOWLEDGMENTS

We thank the following groups for technical assistance; Histology
Services, Hunter Medical Research Institute (histopathology).
SARRP validation was performed with assistance from Cameron
Stanton and Andrew Dipuglia, Department of Medical Physics,
Royal North Shore Hospital, Northern Sydney Local Health
District, NSW, Australia, and Michael Lerch, University of
Wollongong, NSW, Australia.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2019.01504/full#supplementary-material

4. Haanen ], Carbonnel F Robert C, Kerr KM, Peters S, Larkin J, et al.
Management of toxicities from immunotherapy: ESMO Clinical Practice
Guidelines for diagnosis, treatment and follow-up. Ann Oncol. (2018)
29(Suppl 4):iv264-6. doi: 10.1093/annonc/mdy162

5. Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino
JM, et al. Management of immune-related adverse events in patients
treated with immune checkpoint inhibitor therapy: american society of
clinical oncology clinical practice guideline. J Clin Oncol. (2018) 36:1714-68.
doi: 10.1200/JC0O.2017.77.6385

6. Baxi S, Yang A, Gennarelli RL, Khan N, Wang Z, Boyce L, et al. Immune-
related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review
and meta-analysis. BMJ. (2018) 360:k793. doi: 10.1136/bmj.k793

Frontiers in Oncology | www.frontiersin.org

50

January 2020 | Volume 9 | Article 1504


https://www.frontiersin.org/articles/10.3389/fonc.2019.01504/full#supplementary-material
https://doi.org/10.1056/NEJMoa1613493
https://doi.org/10.1016/j.hoc.2018.12.008
https://doi.org/10.1186/s40425-017-0300-z
https://doi.org/10.1093/annonc/mdy162
https://doi.org/10.1200/JCO.2017.77.6385
https://doi.org/10.1136/bmj.k793
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

McKelvey et al.

Tissue Toxicity of Novel Combination

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Cortazar FB, Marrone KA, Troxell ML, Ralto KM, Hoenig MP, Brahmer

JR, et al. Clinicopathological features of acute kidney injury associated
with immune checkpoint inhibitors. Kidney Int. (2016) 90:638-47.
doi: 10.1016/j.kint.2016.04.008

. McKelvey KJ, Hudson AL, Back M, Eade T, Diakos CI. Radiation,

inflammation and the immune response in cancer. Mammal Genome. (2018)
29:843-65. doi: 10.1007/s00335-018-9777-0

. Qi ZY, Deng XW, Huang SM, Lu J, Lerch M, Cutajar D, et al. Verification

of the plan dosimetry for high dose rate brachytherapy using metal-oxide-
semiconductor field effect transistor detectors. Med Phys. (2007) 34:2007-13.
doi: 10.1118/1.2736288

Kwan IS, Rosenfeld AB, Qi ZY, Wilkinson D, Lerch MLE, Cutajar DL, et al.
Skin dosimetry with new MOSFET detectors. Radiat Meas. (2008) 43:929-32.
doi: 10.1016/j.radmeas.2007.12.052

Breitkreutz DY, Bialek S, Vojnovic B, Kavanagh A, Johnstone CD, Rovner
Z, et al. A 3D printed modular phantom for quality assurance of image-
guided small animal irradiators: design, imaging experiments, and Monte
Carlo simulations. Med Phys. (2019) 46:2015-24. doi: 10.1002/mp.13525
Dogdas B, Stout D, Chatziioannou AF, Leahy RM. Digimouse: a 3D whole
body mouse atlas from CT and cryosection data. Phys Med Biol. (2007)
52:577-87. doi: 10.1088/0031-9155/52/3/003

Stout D, Chow P, Silverman R, Leahy RM, Lewis X, Gambhir S, et al. Creating
a whole body digital mouse atlas with PET, CT and cryosection images. Mol
Imaging Biol. (2002) 4:S27. Available online at: https://neuroimage.usc.edu/
neuro/Digimouse

Reyes-Aldasoro CC, Williams LJ, Akerman S, Kanthou C, Tozer GM. An
automatic algorithm for the segmentation and morphological analysis of
microvessels in immunostained histological tumour sections. J Microscopy.
(2011) 242:262-78. doi: 10.1111/§.1365-2818.2010.03464.x

Kuo LJ, Yang LX. y-H2AX - a novel biomarker for DNA double-strand
breaks. In vivo. (2008) 22:305-9. Available online at: http://iv.iiarjournals.org/
content/22/3/305.long

Rajani KR, Carlstrom LP, Parney IF, Johnson AJ, Warrington AE, Burns TC.
Harnessing radiation biology to augment immunotherapy for glioblastoma.
Front Oncol. (2019) 8:656. doi: 10.3389/fonc.2018.00656

Kim C-K, Yang VW, Bialkowska AB. The role of intestinal stem cells in
epithelial regeneration following radiation-induced gut injury. Curr Stem Cell
Rep. (2017) 3:320-32. doi: 10.1007/s40778-017-0103-7

Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, et al. Endothelial
apoptosis as the primary lesion initiating intestinal radiation damage in mice.
Science. (2001) 293:293. doi: 10.1126/science.1060191

Venkatesulu BP, Mahadevan LS, Aliru ML, Yang X, Bodd MH, Singh
PK, et al. Radiation-induced endothelial vascular injury: a review
of possible mechanisms. JACC Basic Transl Sci. (2018) 3:563-72.
doi: 10.1016/j.jacbts.2018.01.014

Yuan H, Gaber MW, Boyd K, Wilson CM, Kiani MF Merchant
TE. Effects of fractionated radiation on the
murine model: blood-brain barrier permeability, astrocyte proliferation, and
ultrastructural changes. Int ] Radiat Oncol Biol Phys. (2006) 66:860-6.
doi: 10.1016/j.ijrobp.2006.06.043

Kang MA, So EY, Simons AL, Spitz DR, Ouchi T. DNA damage induces
reactive oxygen species generation through the H2AX-Nox1/Racl pathway.
Cell Death Dis. (2012) 3:¢249. doi: 10.1038/cddis.2011.134

Tu W-Z, Li B, Huang B, Wang Y, Liu X-D, Guan H, et al. yH2AX foci
formation in the absence of DNA damage: mitotic H2AX phosphorylation is
mediated by the DNA-PKcs/CHK2 pathway. FEBS Lett. (2013) 587:3437-43.
doi: 10.1016/j.febslet.2013.08.028

Delanoy N, Michot JM, Comont T, Kramkimel N, Lazarovici J, Dupont R, et al.
Haematological immune-related adverse events induced by anti-PD-1 or anti-
PD-L1 immunotherapy: a descriptive observational study. Lancet Haematol.
(2019) 6:€48-57. doi: 10.1016/52352-3026(18)30175-3

brain vasculature in a

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Stoecklein VM, Osuka A, Ishikawa S, Lederer MR, Wanke-Jellinek L,
Lederer JA. Radiation exposure induces inflammasome pathway activation
in immune cells. J Immunol. (2015) 194:1178-89. doi: 10.4049/jimmunol.13
03051

Balogh A, Persa E, Bogdandi EN, Benedek A, Hegyesi H, Safrany G, et al.
The effect of ionizing radiation on the homeostasis and functional integrity
of murine splenic regulatory T cells. Inflammation Res. (2013) 62:201-12.
doi: 10.1007/s00011-012-0567-y

Hui E, Cheung J, Zhu ], Su X, Taylor MJ, Wallweber HA, et al
T cell costimulatory receptor CD28 is a primary target for PD-1-
mediated inhibition. Science. (2017) 355:1428-33. doi: 10.1126/science.
aaf1292

Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al.
PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-
2 therapy. Blood. (2017) 129:2186-97. doi: 10.1182/blood-2016-09-
741629

Lee CR, Kwak Y, Yang T, Han JH, Park SH, Ye MB, et al. Myeloid-
derived suppressor cells are controlled by regulatory T cells via TGF-beta
during murine colitis. Cell Rep. (2016) 17:3219-32. doi: 10.1016/j.celrep.2016.
11.062

Zhang Y, Velez-Delgado A, Mathew E, Li D, Mendez FM, Flannagan K, et al.
Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the
establishment of an immunosuppressive environment in pancreatic cancer.
Gut. (2017) 66:124-36. doi: 10.1136/gutjnl-2016-312078

Shurin GV, Ma Y, Shurin MR. Immunosuppressive mechanisms of
regulatory dendritic cells in cancer. Cancer Microenviron. (2013) 6:159-67.
doi: 10.1007/s12307-013-0133-3

Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, et al. CCL2
produced by the glioma microenvironment is essential for the recruitment of
regulatory T cells and myeloid-derived suppressor cells. Cancer Res. (2016)
76:5671-82. doi: 10.1158/0008-5472.CAN-16-0144

Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN. A perpetual
cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J
Radiat Oncol Biol Phys. (1995) 33:99-109. doi: 10.1016/0360-3016(95)
00095-G

Ao X, Zhao L, Davis MA, Lubman DM, Lawrence TS, Kong FM.
Radiation produces differential changes in cytokine profiles in radiation
lung fibrosis sensitive and resistant mice. ] Hematol Oncol. (2009) 2:6.
doi: 10.1186/1756-8722-2-6

Liu W, Ding I, Chen K, Olschowka J, Xu J, Hu D, et al. Interleukin 1beta (IL1B)
signaling is a critical component of radiation-induced skin fibrosis. Radiat Res.
(2006) 165:181-91. doi: 10.1667/RR3478.1

Janko M, Ontiveros F, Fitzgerald TJ, Deng A, DeCicco M, Rock KL.
IL-1 generated subsequent to radiation-induced tissue injury contributes
to the pathogenesis of radiodermatitis. Radiat Res. (2012) 178:166-72.
doi: 10.1667/RR3097.1

Verma V, Cushman TR, Tang C, Welsh JW. Toxicity of radiation
and immunotherapy combinations. Adv Radiat Oncol. (2018) 3:506-11.
doi: 10.1016/j.adro.2018.08.003

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 McKelvey, Hudson, Prasanna Kumar, Eade, Clarke, Wheeler,
Diakos and Howell. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org

51

January 2020 | Volume 9 | Article 1504


https://doi.org/10.1016/j.kint.2016.04.008
https://doi.org/10.1007/s00335-018-9777-0
https://doi.org/10.1118/1.2736288
https://doi.org/10.1016/j.radmeas.2007.12.052
https://doi.org/10.1002/mp.13525
https://doi.org/10.1088/0031-9155/52/3/003
https://neuroimage.usc.edu/neuro/Digimouse
https://neuroimage.usc.edu/neuro/Digimouse
https://doi.org/10.1111/j.1365-2818.2010.03464.x
http://iv.iiarjournals.org/content/22/3/305.long
http://iv.iiarjournals.org/content/22/3/305.long
https://doi.org/10.3389/fonc.2018.00656
https://doi.org/10.1007/s40778-017-0103-7
https://doi.org/10.1126/science.1060191
https://doi.org/10.1016/j.jacbts.2018.01.014
https://doi.org/10.1016/j.ijrobp.2006.06.043
https://doi.org/10.1038/cddis.2011.134
https://doi.org/10.1016/j.febslet.2013.08.028
https://doi.org/10.1016/S2352-3026(18)30175-3
https://doi.org/10.4049/jimmunol.1303051
https://doi.org/10.1007/s00011-012-0567-y
https://doi.org/10.1126/science.aaf1292
https://doi.org/10.1182/blood-2016-09-741629
https://doi.org/10.1016/j.celrep.2016.11.062
https://doi.org/10.1136/gutjnl-2016-312078
https://doi.org/10.1007/s12307-013-0133-3
https://doi.org/10.1158/0008-5472.CAN-16-0144
https://doi.org/10.1016/0360-3016(95)00095-G
https://doi.org/10.1186/1756-8722-2-6
https://doi.org/10.1667/RR3478.1
https://doi.org/10.1667/RR3097.1
https://doi.org/10.1016/j.adro.2018.08.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

l\' frontiers
in Oncology

ORIGINAL RESEARCH
published: 24 January 2020
doi: 10.3389/fonc.2019.01488

OPEN ACCESS

Edited by:

Tiziana Rancati,

Fondazione IRCCS Istituto Nazionale
dei Tumori, Italy

Reviewed by:

Shahed Nicolas Badiyan,
Washington University in St. Louis,
United States

Bhanu Prasad Venkatesulu,

Henry Ford Hospital, United States

*Correspondence:

Zhaochong Zeng
zeng.zhaochong@zs-hospital.sh.cn
Jian He

hejlan62@163.com

Specialty section:

This article was submitted to
Radliation Oncology,

a section of the journal
Frontiers in Oncology

Received: 07 September 2019
Accepted: 11 December 2019
Published: 24 January 2020

Citation:

Zhao Q, Li T, Chen G, Zeng Z and
He J (2020) Prognosis and Risk
Factors of Radiation-Induced
Lymphopenia in Early-Stage Lung
Cancer Treated With Stereotactic
Body Radiation Therapy.

Front. Oncol. 9:1488.

doi: 10.3389/fonc.2019.01488

Check for
updates

Prognosis and Risk Factors of
Radiation-Induced Lymphopenia in
Early-Stage Lung Cancer Treated
With Stereotactic Body Radiation
Therapy

Qiangian Zhao, Tingting Li, Gang Chen, Zhaochong Zeng* and Jian He*

Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China

Background: To investigate the role of stereotactic body RT (SBRT) in decreased total
peripheral lymphocyte count (TLC) in patients with early-stage lung cancer and to explore
possible risk factors for RT-induced lymphopenia.

Materials and Methods: \We analyzed the TLCs and lymphocyte subsets of 76 patients
in our prospective clinical database who received SBRT for early-stage lung cancer
treatment. Relationships between clinical factors or dosimetric parameters and TLC were
evaluated using Spearman’s correlation analysis and Chi-square tests for continuous
and categorical variables, respectively. Multivariate linear regression analysis was used
to control for confounding factors. Kaplan—Meier analysis with a log-rank test and a
multivariate Cox regression model were used for survival analysis.

Results: Most patients (64/76, 84.2%) experienced decreased absolute lymphocyte
counts following SBRT, as well as shifts in lymphocyte subset distributions. Spearman’s
correlation coefficients between post-SBRT TLC and the percentage of the lung and
heart receiving 5 to 50 Gy (in 5 Gy increments) shown that most lung DVH parameters
[V(10)-V(50)] were significantly negatively correlated with post-SBRT TLC, while only heart
V(5), V(20), V(25), V(30), and V(45) were significant. Univariate analyses revealed that
a lower Pre-SBRT TLC level, higher mean lung dose, longer treatment duration, and
longer TBT were significantly associated with a lower Post-SBRT TLC level (all P < 0.05).
Stepwise multivariate linear regression, which incorporated all of the significantly clinical
variables and SBRT-related parameters in univariate analysis, revealed that lower pre
-SBRT TLC (P < 0.001), higher heart V5 (P = 0.002), and longer total beam-on time (TBT)
(P = 0.001) were the independent risk factors for decrease in post-SBRT TLC. Patients
with lower post-SBRT TLC and longer TBT exhibited significantly inferior progression-free
survival (PFS) (P < 0.001 and P = 0.013) and overall survival (P = 0.006 and P = 0.043).

Conclusions: G2 and more severe lymphopenia after SBRT might be an independent
prognostic factor for poorer outcome in early-stage lung cancer. Lowering heart V5
and TBT when designing SBRT plans may spare circulating lymphocytes and have the
potential to further improve survival outcomes.

Keywords: radiation-induced lymphopenia, stereotactic body radiation therapy, early-stage lung cancer,
prognosis, risk factors
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INTRODUCTION

The immunological side effects of radiation therapy (RT) for
tumor treatment are complex and include both stimulatory
and inhibitory activity (1, 2). The enhancement of anti-tumor
immunity by RT is best exemplified by the observation that
RT could promote the death of tumor immunogenicity through
the generation of an analogous in situ cancer vaccine (1, 3).
Unfortunately, this positive impact is often counteracted by
RT-induced lymphopenia (RIL) (4). Circulating lymphocyte
populations are highly radiosensitive and can undergo apoptosis
or depletion due to radiation exposure. Ultimately, RIL
suppresses anti-tumor immunity and is associated with inferior
survival in patients with various tumors, including lung
cancer (5-10). Moreover, previous work has shown that
RIL would further compromise the therapeutic efficacy of
immune checkpoint inhibitors through the loss of effector cells,
which identify and destroy tumor cells (11, 12). This further
emphasized the importance of preserving and maintaining
circulating lymphocytes in the setting of the new therapeutic
strategy of combining radiotherapy (RT) and immunotherapy in
cancer patients.

The degree of RIL depends on the RT total dose, target
volume, and number of fractions given (13-16), although many
prior studies of RIL have focused on conventional fractionated
radiotherapy (CFRT) (5). Anti-tumor immunity alterations
caused by stereotactic body radiation therapy (SBRT) and CFRT
differ distinctly (17, 18). Until recently, however, comparatively
little attention has been paid to SBRT-induced lymphopenia.
In clinical practice, the significant effects of SBRT on the total
peripheral lymphocyte count (TLC) and corresponding risk
factors in patients with lung cancer have yet to be established.

Thus, we evaluated the role of SBRT in the reduction of
the TLC in patients with lung cancer and explored possible
risk factors of RIL. Based on our findings, we then offer
some strategies for sparing peripheral lymphocytes and further
improving prognoses of these patients.

MATERIALS AND METHODS

Patient Eligibility and Clinical

Characteristics

We analyzed our prospective clinical database of 171 patients
who received definitive SBRT for lung cancer treatment
between December 2014 and May 2018 at our institution.
All patients underwent a comprehensive assessment before
SBRT, including physical examination, laboratory analysis, chest
computed tomography (CT) scans, abdominal CT or abdominal
ultrasonography, brain magnetic resonance imaging, and bone
scintigraphy. All patients with intrapulmonary tumors without
pathological confirmation underwent '®F-fluorodeoxyglucose-
positron emission tomography/computed tomography (3F-FDG

Abbreviations: RIL, RT-induced lymphopenia; CFRT, conventional fractionated
radiotherapy; TLC, total peripheral lymphocyte count; TBT, total beam-on time;
MLD, mean lung dose; MHD, mean heart dose.

PET/CT) scans. Diagnosis and treatment of these lesions were
determined by a multidisciplinary lung cancer tumor team.

We applied the following study inclusion criteria for
participant selection: (1) clinical early-stage lung cancer (tumor
size < 5cm) without regional lymph metastasis [NO] and distant
metastasis [MO0]; (2) > 18 years of age; (3) Karnofsky performance
status (KPS) > 70; (4) fewer than three pulmonary lesions treated
with SBRT; (5) complete blood cell counts within 1 week before
SBRT and within 1 week after completion of SBRT available; (6)
peripheral total white blood cells (WBCs) above 2,000 cells/pl,
and did not receive prophylactic or remedial treatment for
decreased WBCs during SBRT treatment. Patients were excluded
if they were pathologically diagnosed with small-cell lung cancer,
were missing dosimetry data, had a history of other malignancy
within the last 5 years, had received prior thoracic irradiation,
or had acute or chronic inflammatory, hematologic, or systemic
immune disorders.

The detailed procedures of SBRT administration for lung
cancer at our institution have been described previously (19,
20). All patients were treated with SBRT using the Helical
TomoTherapy Hi-Art treatment system (Accuray; Madison, W1,
USA). The study protocol was approved by the ethics board
of Zhongshan Hospital, Fudan University (Approval Number:
B2014-128). All participants signed an informed consent form
prior to study inclusion.

Data Collection

The demographic and clinical information collected from
participants included sex, age, KPS, smoking history, presence
of respiratory system disease (chronic obstructive pulmonary
disease, chronic bronchitis, or emphysema), tumor diameter,
tumor location (central/peripheral), tumor histology, and total
radiation dose. All laboratory values were measured using routine
automated analyzers in the Clinical Laboratory of Zhongshan
Hospital, Fudan University.

Venous blood samples were drawn from each patient at least
twice: within 1 week before the start of SBRT (pre-SBRT) and
within 1 week after completion of SBRT (post-SBRT) to quantify
TLC and lymphocyte subset counts. Changes in the absolute
counts and percentages of lymphocyte and lymphocyte subsets
for each patient was calculated with the formula: Avalue =
post-SBRT value — pre-SBRT value. According to the National
Cancer Institute Common Terminology Criteria for Adverse
Events version 4.0, post-SBRT TLCs < 1,000 cells/pL were
considered to indicate lymphopenia, and post-SBRT TLCs >
1,000 cells/pL (GO) were non-lymphopenia. Lymphopenia was
further categorized into grade 1 (G1, <1,000 cells/nL), grade
2 (G2, <800 cells/pL), grade 3 (G3, <500 cells/pL), and
grade 4 (G4, <200 cells/pL). For analysis of cell numbers
in blood, peripheral venous blood was collected in lavender
top K3EDTA (ethylenediaminetetraacetic acid) collection tubes
and stained directly with fluorochrome-conjugated monoclonal
antibodies for 30 min at +4°C within 4h of collection. The
monoclonal antibodies used in this study were: FITC-labeled
CD3, clone SK7; PE-labeled CD16, clone B73.1, and CD56, clone
NCAM16.2; PerCP-Cy™5.5"-labeled CD45, clone 2D1 (HLe-1);
PE-Cy™7-labeled CD4, clone SK3; APC-labeled CD19, clone
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SJ25C1;25 and APC-Cy7i-labeled CD8, clone SK1. Following
staining, red blood cells were lysed using FACS Lysing solution
(BD Biosciences) and analyzed on the BD FACSanto™ Flow
Cytometer (BDBiosciences) within 6 h of staining.

Dosimetric parameters were also extracted from the treatment
planning system, including treatment duration, total beam-on
time (TBT), gross tumor volume (GTV), planning target volume
(PTV), mean lung dose (MLD), mean heart dose (MHD), and
a wide range of dose-volume histogram (DVH) parameters for
total lung and heart volume: V5, V10, V15, V20, V25, V30, V35,
V40, V45, and V50. Vi (%) corresponds to the percentage of total
lung or heart volume receiving at least n dose of radiation. The
treatment duration (days) of SBRT was defined as the number
of days from SBRT start to SBRT completion. TBT (seconds) of
SBRT was defined as the length of time of circulating lymphocyte
exposure to radiation, which was calculated by beam-on time per
fraction multiplied by fraction number.

Patient Follow-Up and Outcomes

Follow-up duration and survival time were calculated from the
start date of SBRT; the last follow-up date was May 30, 2019.
Survival was censored if the patient was alive at the time of the
last follow-up. Patients were generally evaluated weekly during
SBRT, every 3 months following SBRT for the first 2 years,
and every 6 months thereafter. PET/CT was performed only
to distinguish recurrence from underlying SBRT-induced lung
fibrosis. Progression-free survival (PFS) was calculated from the
start date of SBRT to the date of any evidence of local or systemic
cancer recurrence, death from any cause, or of the last follow-up.
Overall survival (OS) was calculated from the start date of SBRT
to the date of death from any cause or of the last follow-up.

Statistical Analysis

Continuous variables were summarized as means =+ standard
deviation or medians (ranges) and compared using the Wilcoxon
rank-sum test. Categorical variables were summarized as
proportions and compared using Chi-square analysis or Fisher’s
exact test. Optimal cut-off values of continuous variables for

survival prediction were determined based on the receiver-
operating characteristic (ROC) curve (21). Relationships
between clinical factors or dosimetric parameters and peripheral
lymphocyte levels were evaluated using Spearman’s correlation
analysis for continuous variables and Chi-square tests for
categorical variables. Spearman correlation coefficients were
obtained for the association among different dosimetric
parameters, then stepwise backward elimination with a selection
criterion of p < 0.1 was applied to find the best subset of
variables. Linear regression with a backward-forward stepwise
method was used to analyze the relationships of the clinical
variables and dosimetric parameters with post-SBRT TLC.
The survival of patients with more than a 6-month follow-up
time was analyzed further. The Kaplan-Meier estimator with a
log-rank test was used to calculate and compare PES and OS by
patient covariates. Multivariate Cox regression with a backward-
forward stepwise method was used to assess the potential
influence of clinical factors and dosimetric parameters on PES
and OS. For multivariate linear and Cox regression analyses,
potential variables with P < 0.1 in the univariate analysis
were then included as covariates to identify their independent
effect. P-values of <0.05 were considered statistically significant
and reported as two-sided. All analyses were conducted using
IBM SPSS statistical software (version 23, SPSS Inc.; Chicago,
IL, USA).

RESULTS

Patient Characteristics

A total of 76 eligible patients with 81 small lung tumor lesions
were enrolled in our study (Figure 1). The detailed characteristics
of all of the patients are shown in Table 1.

Changes in TLC and Lymphocyte Subset
Counts Following SBRT

The gating strategy figures of one patient are shown in
Supplementary Figure 1. Alterations of mean cell counts
and percentages of total lymphocytes belonging to specific

Patients received definitive SBRT for lung cancer

between December 2014 and May 2018 (n=171)

Patients did not meet eligibility criteria:

Patients had recurrence or pulmonary metastases
after initial treatment for lung cancer (n = 36)

Patients had no follow-up data and/or complete blood
cell counts before and after SBRT (n = 46)

Patients did not complete SBRT (n = 2)

Patients received steroids during SBRT (n = 3)

Patients meet eligibility criteria (n = 84)

Patients were removed because they:

were pathologically diagnosed with small-cell lung
cancer (n =2)

were missing dosimetry data (n = 3)

had other malignancy (n = 2)

had autoimmune diseases (n = 1)

Patients were eligible and evaluable for analysis (n = 76)

FIGURE 1 | Identification of included and excluded patients with early-stage lung cancer receiving stereotactic body radiation therapy.
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lymphocyte subsets following SBRT. Fifty-five patients had
data on lymphocyte subsets available for analysis. As expected,
the majority of patients (64/76, 84.2%) experienced decreased
absolute lymphocyte counts following SBRT. The mean alteration
of the peripheral lymphocyte count after SBRT was —526.04
cells/pL. In total, 27 (35.53%) patients developed lymphopenia.

TABLE 1 | Baseline characteristics (n = 76).

Characteristic n (%) or median (range)

Sex
Female 29 (38.16)
Male 47 (61.84)
Age at diagnosis (years) 72 (40-89)
Karnofsky performance status score
>80 55 (72.37)
<80 21 (27.63)
Smoking status
Positive 32 (42.11)
Negative 44 (57.89)
Underlying respiratory system disease
Yes 45 (59.21)
No 31 (40.79)

Tumor diameter (mm) 23.00 (9.00-48.00)

Gross tumor volume (cm?®) 10.61 (0.64-85.37)

Tumor location

Central 20 (26.32)

Peripheral 56 (73.68)
SUVimax 5.10 (1.00-24.00)
Tumor histology

Adenocarcinoma 39 (51.32)

Squamous 19 (25.00)

Unknown 18 (23.68)
SBRT dose and fractionation

50 Gy in 5 fractions 26 (34.21)

60 Gy in 10 fractions 50 (65.79)

SUV max, maximum standardized uptake value; SBRT, stereotactic body radiation therapy.

Of these, 13 (17.10%) developed G1 lymphopenia, 11 (14.47%)
developed G2, and 3 (3.95%) developed G3. No patient
experienced G4 lymphopenia. The percentages of all of the
lymphocyte subsets tested were affected post-SBRT (all P
< 0.05), including CD19" B cells (fell by 53.88%), CD3*
T cells (by 30.56%), CD4T T cells (by 34.64%), CD8*
T cells (by 25.96%), and CD56" NK cells (by 13.28%).
We observed a significant decrease in the CD19% B cell
percentage following SBRT from mean 10.85% to 7.23% (P
< 0.001) and the CD4™ T cell percentage following SBRT
from mean 37.95% to 36.27% (P = 0.031) and a significant
increase in CD56116T cells from mean 20.95% to 24.70%
(P < 0.001). No statistically significant differences were
noted in alterations of other lymphocyte subset percentages
(Table 2).

TABLE 2 | Mean =+ standard deviation of peripheral lymphocyte count,
lymphocyte subset counts, percentages of peripheral lymphocyte subsets, and
CD4*/CD8" before and after stereotactic body radiation therapy.

Parameters n Pre-SBRT Post-SBRT P
Total lymphocyte count 76 1760.81 4+ 649.06 1234.78 + 528.82 < 0.001
(cells/wl)

CD19" B count (cells/nl) 55 206.42 + 133.86  95.00 &+ 59.18 < 0.001
CD3* T count (cells/pl) 55 1177.82 +£ 522.81 818.00 £ 426.04 < 0.001
CD4* T count (cells/pl) 55 682.76 4+ 327.47 446.24 £+ 226.61 < 0.001
CD8* T count (cells/pl) 55 436.13 £238.54 322.91 + 223.06 < 0.001
CD56" NK count (cells/pl) 55 361.20 + 269.13  313.25 +£290.30  0.030
CD19%(%) 55  10.85 £ 4.70 7.23+349 < 0.001
CD3*(%) 55  66.62 £+ 13.17 66.28 + 14.78 0.681
CD4* (%) 55  37.95 £ 9.60 36.27 £ 11.09 0.031
CD8%(%) 55  25.42 £+ 10.31 25.83 £ 10.37 0.392
CD56%16(%) 55 20.95 + 11.70 24.70 +£ 1458 < 0.001
CD4*/CD8" 55 1.81 + 1.05 1.68 + 0.96 0.017

SBRT, stereotactic body radiation therapy; CD19% B cells, B lymphocytes; CD3* T cells,
T lymphocytes; CD4™ T cells, T helper cells, CD8" T cells, T cytotoxic cells; CD56" NK
cells, natural killer cells.
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FIGURE 2 | Effect of stereotactic body radiation therapy (SBRT) on peripheral lymphocyte counts (n = 76) and lymphocyte subsets (n = 55). All box-and-whisker
plots show median (middle horizontal line), 75th percentile (top horizontal line), 25th percentile (bottom horizontal line), 90th percentile (top whisker), and 10th
percentile (bottom whisker) for change in lymphocyte and lymphocyte subsets following SBRT. (A) Alteration in absolute counts of lymphocytes and lymphocyte
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TABLE 3 | Correlation between post-SBRT total peripheral lymphocyte count and
percentage of lung or heart dosed.

TABLE 4 | Univariate and multivariate linear regression analysis between
characteristics and post-SBRT TLC.

Characteristic n Spearman correlation coefficient (r) P-value
Lung V5 76 —0.204 0.076
Lung V10 76 -0.276 0.016
Lung V15 76 —0.261 0.023
Lung V20 76 -0.278 0.015
Lung V25 76 —0.287 0.012
Lung V30 76 —0.293 0.010
Lung V35 76 —0.282 0.014
Lung V40 76 —0.331 0.004
Lung V45 76 —0.284 0.013
Lung V50 76 —0.337 0.003
Heart V5 72 —0.235 0.047
Heart V10 72 -0.170 0.152
Heart V15 72 -0.217 0.067
Heart V20 72 -0.271 0.021
Heart V25 72 —0.362 0.002
Heart V30 72 —0.287 0.015
Heart V35 72 —0.221 0.062
Heart V40 72 -0.229 0.053
Heart V45 72 -0.307 0.009
Heart V50 72 -0.212 0.073

SBRT, stereotactic body radiation therapy; Vn (%), the percentage of total lung or heart
volume receiving at least n dose of radiation.

Correlations Between Post-SBRT TLC and

Dosimetric Parameters

Spearman’s correlation coefficients between post-SBRT TLC and
the percentage of lung and heart receiving 5-50 Gy (in 5 Gy
increments) are shown in Table 3. Most lung DVH parameters
[V(10)-V(50) significantly negatively correlated with post-SBRT
TLC, while only heart V(5), V(20), V(25), V(30), and V(45) were
significant. Correlation coefficients remained greatest for lung
V(50) (r = —0.337; P = 0.003) and heart V(25) (r = —0.362;
P = 0.002). The correlation matrix among the different DVH
parameters is presented in Supplementary Table 1.

Association of Post-SBRT TLC With
Clinical Factors

Univariate and multivariate linear regression analysis between
characteristics and post-SBRT TLC levels are shown in Table 4.
Univariate analyses revealed that higher Pre-SBRT TLC level,
higher mean lung dose, longer treatment duration, and longer
TBT were significantly associated with a lower Post-SBRT TLC
level. Stepwise multivariate linear regression, which incorporated
all significantly clinical variables and SBRT-related parameters
in univariate analysis, showed that lower pre-SBRT TLC (P <
0.001), longer TBT (P = 0.001), and higher heart V5 (P = 0.002)
were independent risk factors for decreased post-SBRT TLC.

To evaluate if these associations existed pre-SBRT and
were less likely to be SBRT-induced, we further assessed
the relationships between pre-SBRT TLC and relevant patient

Characteristic Regression 95% CI P
coefficient
Univariate analysis
Sex (female vs. male) —-32.517 —282.896t0 217.861  0.797
Age (year) —3.266 —15.486 to 8.954 0.596
Karnofsky performance status —3.030 —20.028 to 13.968 0.723
(10%)
Smoker (smoker vs. never —-16.403  —231.169 t0 263.976  0.895
smoker)
Tumor diameter (mm) —1.6561 —14.304 to 11.203 0.809
Underlying respiratory system 97.891 —148.671 to 344.452  0.431
disease (yes vs. no)
Pre-SBRT TLC (cells/jl) 0.528 0.385t0 0.672 <0.001
Dosimetric characteristics
Gross tumor volume (cm®) —1.125 —8.857 to 6.608 0.773
Planning target volume (cm?) —1.995 —6.734 t0 2.745 0.404
Mean lung dose (Gy) —73.331 —139.641 to —7.021  0.031
Mean heart dose (Gy) —34.819 —78.494 to 3.855 0.077
Radiation therapy
Treatment duration (days) —38.694 —69.801to —7.587  0.015
Total beam-on time (seconds) -0.129 —0.212 to —0.047 0.003
Fractionation (5 fractions vs. —215.285 —466.881 10 36.310  0.092
10 fractions)
Multivariate analysis
Pre-SBRT TLC (cells/ul) 0.524 0.393 to 0.656 < 0.001
Total beam-on time (seconds) -0.103 —0.164 to —0.041 0.001
Heart V5 —5.452 —8.835 to —2.069 0.002

SBRT, stereotactic body radiation therapy; TLC, total peripheral lymphocyte count; Cl,
confidence interval; V,,, percentage of organ volume receiving n Gy.

characteristics (Table 5). Unlike post-SBRT TLC, we saw no
significant differences in pre-SBRT TLC by sex, age, KPS,
smoking status, underlying respiratory system disease, tumor
diameter, tumor location, and SBRT-related parameters (all
P > 0.05).

Prognostic Value of Post-SBRT TLC

Survival analysis was performed to identify whether post-
SBRT TLC exerted an independent prognostic influence on our
patient population. Based on follow-up criteria, 63 patients were
available for survival analysis. The median follow-up time was
22 months (range 6-55 months) for these patients, and at the
end of the follow-up period, 53 (84.13%) patients were alive.
In subgroup analysis, PFS and OS were not different between
patients with G1 lymphopenia and those with GO (P = 0.466 and
P = 0.449, respectively). However, PFS and OS for G2-3 patients
were significantly worse compared to GO-1 patients (P < 0.001
and P = 0.006, respectively). Considering this difference, we
decided to classify patients into a GO-1 group and a G2-3 group
to evaluate the prognostic value of post-SBRT TLC. In addition,
we classified patients into a short TBT group (<3,500s) or high
TBT group (>3,500s) based on the ROC curve to evaluate the
prognostic value of the beam-on time.
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TABLE 5 | Relationships of Pre-SBRT TLC levels with baseline characteristics in
patients with early-stage lung cancer.

Characteristic Pre-SBRT Pre-SBRT P value
lymphocyte lymphocyte
count < 1,600 count > 1,600
(n =39) (n=237)
Sex
Male 27 20
Female 12 17 0.173
Age (year) 74 (41-89) 70 (40-89) 0.189
Karnofsky performance status
score
>80 29 26
<80 10 1 0.690
Smoking status
Positive 13 14
Negative 26 18 0.368
Underlying respiratory system
disease
Yes 24 18
No 15 19 0.259
Tumor diameter 23.00 23 (9.00-48) 0.686
(9.50-46.00)
Tumor location
Central 7 13
Peripheral 32 24 0.089
Dosimetric characteristics
Gross tumor volume (cmS3) 12.95 10.40 0.776
(0.64-62.36) (0.67-85.37)
Planning target volume (cm®) 31.61 22.94 0.834
(4.14-105.35) (3.82-116.20)
Mean lung dose (Gy) 4.38 (1.73-9.66) 4.27 (2.25-8.87) 0.719
Radiation therapy
Treatment duration (days) 13 (5-16) 12 (5-20) 0.307
Irradiation time (seconds) 3599.00 3654.00 0.527
(1921.50- (1208.50-
8671.00) 6384.00)
SBRT dose and fractionation
50 Gy in 5 fractions 12 14
60 Gy in 10 fractions 27 23 0.516

SBRT, stereotactic body radiation therapy; TLC, total peripheral lymphocyte count.

As shown in Figure3, GO-1 and shorter TBT were
significantly associated with improved PFS (P < 0.001 and P
= 0.013) and OS (P = 0.006 and P = 0.043). Table 6 presents
univariate and multivariate analysis results for PFS and OS
including relevant variables. Multivariate analysis showed that
GO-1 was significantly associated with improved PFS (hazard
ratio [HR]: 0.183; 95% CI 0.076 to 0.441; P < 0.001) and
OS (HR: 0.169; 95% CIL: 0.043 to 0.665 P = 0.011) and
longer TBT was significantly associated with inferior PFS (HR:
3.066; 95% CI: 1.186 to 7.929; P = 0.021) after controlling for
confounding variables.

DISCUSSION

The key observations from the present study include the
following findings. First, the paired analysis complete blood
counts pre- and post-SBRT for lung cancer revealed that patients
experienced a substantially reduced circulating TLC (1760.81
+ 649.06 vs. 1234.78 + 528.82; P < 0.001), despite the small
radiation field. This finding is in accordance with other studies
(14, 22). Second, our multivariate linear regression showed
that lower pre-SBRT TLC, higher heart V5, and longer TBT
were independent risk factors of RIL. Third, multivariate Cox
proportional hazard regression models further identified that
post-SBRT TLC and TBT were independently correlated with
PES and OS in our patient population.

Figure 2 illustrates changes in the lymphocyte subset
distribution following SBRT due to unequal decreases in various
subsets. Peripheral lymphocyte homeostasis was disturbed by
SBRT, as both the absolute number and percentage of CD4™
T cells were significantly decreased after SBRT. Unlike CD4*
T cells, the absolute number of CD8" T cells dropped less,
and its relative percentage was nearly unchanged. Thus, the
ratio of CD47/CD8% T cells decreased following SBRT (P =
0.017), which was also observed by Yang and colleagues in
patients with head and neck cancer after receiving RT (23),
although the radiosensitivities of CD4" T and CD8" T cells
have been demonstrated to be similar (24). This result may be
partially explained by SBRT’s ability to promote priming and
strong mobilization of CD8" T cells, therefore compensating
for the reduced absolute number of CD8" T cells. This finding
also supports the possibility that SBRT increases CD8" T cell
accumulation in tumor sites because the therapeutic efficacy of
local ablative radiation critically depends on the presence of
effector CD8™ T cells, but not CD4™ T cells (25-27).

An effective anti-tumor immune response requires functional
lymphocytes capable of detecting and destroying tumor cells.
Given that the majority of our patients developed severe
RIL following SBRT, which impedes anti-tumor immunity,
determining possible risk factors for RIL is important.
Accumulated data indicate that RIL depends on irradiation
volume and fraction number (14, 15), although these two aspects
of SBRT were not identified as independent risk factors for
RIL in the present study. Perhaps the irradiation volumes of
our patients were too small to achieve statistical significance,
unlike the larger target volume of patients with advanced lung
cancer. However, multivariate analyses of possible risk factors
in previous studies did not incorporate treatment duration and
TBT as variables. In contrast, we included clinical variables
and SBRT-related parameters (lung and heart DVH parameters,
treatment duration, and TBT) and only identified pre-SBRT TLC,
heart V5, and TBT as independent risk factors for RIL. Thus, we
inferred that higher heart V5 and longer TBT contribute to RIL
in lung cancer patients and should be considered when designing
SBRT regimens so as to maximize the number of circulating
lymphocytes sustained during irradiation treatment. In addition,
a positive correlation between tumor volume and beam-on time
was observed (r = 0.503, P < 0.001) in our study. We also
conducted univariate and multivariate Cox regression analyses
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to assess the correlation between survival outcomes and tumor
volume as well as beam-on time. No significant correlation was
found between tumor diameter and survival outcomes (P-value
was 0.799 for PES and 0.659 for OS), while the beam-on time
had a negative effect on survival outcomes, as shown in Table 6.
These results suggest that shortening the beam-on time may
spare peripheral lymphocytes and ultimately improve patient
prognosis. Of course, further large-scale validation studies are
needed to confirm the impact of beam-on time on lymphocyte
populations in patients with NSCLC who receive SBRT.

The mechanism of RIL is not completely understood,
although circulating lymphocytes in peripheral vessels are
directly killed as they pass through radiation treatment fields
(28). Because larger radiation fields and longer TBT expose
circulating lymphocytes to more radiation, the reduction
in TLC should be proportional to the target volume and
TBT (14, 16, 29), a supposition supported by our results.
Irradiation of bone marrow or lymphatic tissue may also cause
direct destruction of lymphocytes. Apart from direct toxicity,
irradiation may indirectly affect circulating lymphocyte levels
via cytokine modulation (15). For example, interleukin-7 (IL-
7), a key cytokine involved in T-cell proliferation, is essential
for maintaining circulating T-cell homeostasis. Although its
circulating level negatively correlates with CD4" T cell counts
(30), no compensatory rise in IL-7 levels in patients with
severe RIL has been observed (31). Peiwen et al. reported an
alternative cellular mechanism driving RIL related to the direct

toxicity of radiation in SBRT-treated early-stage lung cancer.
They considered that SBRT was delivered in a few fractions, thus
limiting circulating lymphocyte exposure to ionizing irradiation
as they pass through small radiation fields (32). However,
SBRT was delivered with high ablative doses, as the biologically
effective dose is often higher than 100 Gy. A negative correlation
between the total radiation dose and post-RT TLC has also
been demonstrated (29). Twelve patients in our study did not
experience a decrease in peripheral lymphocytes. In this subset
of our patient population, we speculate on whether the immune-
stimulating effects of SBRT are greater than immunosuppressive
effects or if their consistent TLC levels are driven by an
unknown mechanism. Multiple questions and issues related
to our observations remain unresolved: (1) the comprehensive
effects of the target volume, fraction regimen, and total dose on
RIL need to be explored; (2) the mechanism of lymphopenia
development and its regulation needs to be characterized; (3) the
optimal RT regimen to spare circulating lymphocytes need to be
established. Given the clinical importance of this condition but
the limited data regarding its nature and progression, additional
research in this area is warranted. Several limitations should
be considered in the interpretation of our findings. First, this
study analyzed a single-centered dataset with limited patient
numbers, so some useful predictors of RIL may have gone
undetected. Second, several patients did not have pathological
confirmation of pulmonary nodules because of the difficulty or
perceived risk of obtaining small lesion specimens. However, all
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TABLE 6 | Cox regression analysis for progression-free survival and

overall survival.

Characteristic

Progression-free

Overall survival

survival
HR P HR P
(95% Cl) (95% ClI)
Univariate associations
Sex
Female
Male 0.932 0.866 0.552 0.390
(0.413-2.103) (0.142-2.140)
Age (years)
<70
>70 1.159 0.734 2.557 0.237
(0.495-2.713) (0.540-12.104)
KPS score
<80
>80 0.816 0.669 0.300 0.075
(0.321-2.073) (0.079-1.130)
Smoking status
Positive
Negative 0.530 0.208 1.313 0.700
(0.197-1.425) (0.329-5.239)
Underlying respiratory
system disease
Yes
No 0.734 0.451 0.460 0.231
(0.328-1.641) (0.129-1.641)
Tumor location
Central
Peripheral 1.830 0.146 2.421 0.165
(0.810-4.132) (0.695-8.429)
Tumor diameter (mm)
<30
>30 1.006 0.799 0.625 0.659
(0.961-1.053) (0.078-5.036)
SBRT dose and
fractionation
50 Gy in 5 fractions
60 Gy in 10 fractions 0.735 0.494 1.175 0.277
(0.304-1.774) (0.878-1.572)
Treatment duration (days)
<7
>7 1.819 0.235 43.621(0.189- 0.194
(0.678-4.880) 9616.973)
Beam-on time (seconds)
<3,500
>3,500 3.034 0.020 4.402 0.063
(1.194-7.708) (0.922-21.022)
Pre-SBRT lymphocytes
(cells/pl)
<1,600
>1,600 1.223 0.623 1.587 0.475
(0.547-2.733) (0.447-5.642)
(Continued)

TABLE 6 | Continued

Characteristic Progression-free Overall survival
survival
HR P HR P
(95% CI) (95% Cl)
Post-SBRT lymphocytes
(cells/pl)
<800 (G2-3)
>800 (GO-1) 0.187 < 0.001 0.178 0.013
(0.080-0.439) (0.046-0.695)
Multivariate associations
KPS score
<80
>80 NI 0.281 0.062
(0.074-1.068)
Beam-on time (seconds)
<3,500
>3,500 3.066 0.021 NI
(1.186-7.929)
Post-SBRT lymphocytes
(cells/ul)
<800 (G2-3)
>800 (GO-1) 0.183 <0.001 0.169 0.011
(0.076-0.441) (0.043-0.665)

PFS, progression-free survival; OS, overall survival; HR, hazard ratio; Cl, confidence
interval; KPS, Karnofsky performance status; NI, not included in the multivariate model;
SBRT, stereotactic body radiation therapy.

patients underwent '®F-FDG PET/CT scans, and the diagnosis
and treatment options for these lesions were determined by a
multidisciplinary tumor board. Third, complete blood counts
were measured at only two time points: before and after
SBRT; our database did not document consecutive circulating
lymphocyte count changes. We could not definitively determine
when levels of circulating lymphocytes began to recover following
SBRT, although we plan to further investigate this aspect of
TLC development. Finally, the population in our study is a little
heterogenous, in that patients with a central tumor or tumor
close to the rib received 60 Gy in 10 fractions while patients with
peripheral tumors received 50 Gy in 5 fractions. Therefore, these
results require further investigations in larger prospective trials
for validation.

Despite these limitations, we demonstrated that G2 and
more severe lymphopenia after SBRT might be an independent
prognostic factor for poorer outcome in early-stage lung
cancer. The data further suggested that lowering heart V5
and reducing TBT may spare circulating lymphocytes in this
patient population. Specifically, limiting the heart radiation
dose and TBT when designing SBRT regimens may be crucial
for reducing lymphocyte radiotoxicity and improving patient
survival, especially in patients with a relatively low pre-SBRT
TLC level.
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Purpose: Radiation pneumonitis (RP) is one of the most severe toxicities experienced
by patients with breast cancer after radiotherapy (RT). RT fractionation schemes and
techniques for breast cancer have undergone numerous changes over the past decades.
This study aimed to investigate the incidence of RP as a function of such changes in
patients with breast cancer undergoing RT and to identify dosimetric markers that predict
the risk of this adverse event.

Methods and Materials: \We identified 1,847 women with breast cancer who received
adjuvant RT at our institution between 2015 and 2017. The RT technique was individually
tailored based on each patient’s clinicopathological features. Deep inspiration breath hold
technique or prone positioning were used for patients who underwent left whole-breast
irradiation for cardiac sparing, while those requiring regional lymph node irradiation
underwent volumetric-modulated arc therapy (VMAT).

Results: Of 1,847 patients who received RT, 21.2% received the conventional dose
scheme, while 78.8% received the hypofractionated dose scheme (mostly 40 Gy in
15 fractions). The median follow-up period was 14.5 months, and the overall RP rate
was 2.1%. The irradiated organ at risk was corrected concerning biologically equivalent
dose. The ipsilateral lung Vgp in equivalent dose in 2 Gy (EQD2) was the most significant
dosimetric factor associated with RP development. Administering RT using VMAT, and
hypofractionated dose scheme significantly reduced ipsilateral lung Vgp.

Conclusions: Application of new RT techniques and hypofractionated scheme
significantly reduce the ipsilateral lung dose. Our data demonstrated that ipsilateral lung
V3g in EQD2 is the most relevant dosimetric predictor of RP in patients with breast cancer.
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INTRODUCTION

Radiation pneumonitis (RP) is one of the most severe toxicities
caused by radiotherapy (RT) in patients with breast cancer.
Although sometimes fatal, particularly in elderly patients or
those with medical comorbidities, most symptoms of RP can
be resolved with steroid-based medications. In the era of two-
dimensional conventional RT, the central lung distance, defined
as the distance between the midpoint of the posterior field and
the chest wall, was used as an indicator of RP (1, 2). After the
introduction of treatment planning based on three-dimensional
conformal RT (3D CRT), studies have aimed to identify the
dosimetric parameters of the lung that predict RP following RT
for breast cancer. However, such studies remain inadequate for
clinical utility (3, 4).

There has been an important paradigm shift in RT for
breast cancer over the past 20 years. First, hypofractionated
dose scheme emerged as a new standard treatment for this
disease. Several prospective randomized trials demonstrated
that the hypofractionation RT is non-inferior to conventional
fractionated RT with respect to treatment outcomes and toxicities
after breast conserving surgery. Although hypofractionation
RT after mastectomy is not standard of care yet, recent
prospective trial has shown non-inferior results compared to
conventional RT (5). More radiation oncologists have adopted
such abbreviated RT methods because of their convenience and
cost-effectiveness (6-9). Along with hypofractionated RT, some
other techniques that have become available include volumetric-
modulated arc therapy (VMAT), deep inspiration breath-hold
(DIBH), and prone positioning.

In this study, we aimed to investigate the incidence of RP
and identify the dosimetric markers that predict the risk of this
adverse effect as a function of changes in hypofractionated dose
schemes and application of new RT techniques used to treat
breast cancer.

MATERIALS AND METHODS

Patients

We identified patients who underwent adjuvant RT following
surgery for breast cancer at our institution between January
2015 and December 2017 using a prospectively collected registry
(n = 2,130). We excluded patients who had distant metastases
at the time of their diagnosis (n = 42), those who did not visit
at regular follow-up (n = 114), and those who were followed at
other hospitals (n = 127). Finally, 1,847 patients who met the
eligibility criteria were included in our study cohort. We reviewed
the medical charts of all patients to determine the incidence of
RP. This study was approved by the institutional review board of
Severance hospital (4-2018-0663).

Treatment

We performed computed tomography (CT) simulation
(SOMATOM sensation; Siemens, Erlangen, Germany) with 3
mm-thick slices for all patients. For immobilization, patients
positioned their ipsilateral arms in abduction and used a
thermoplastic immobilization system (Type-S; Medtec, Alton,

IA, USA). Per our institutional protocol, the irradiation
technique was optimized for each individual to minimize the
dose to the heart while maximizing target dose homogeneity.
Patients with large, pendulous, or ptotic breasts were placed in
the prone position to avoid skin reactions at the inframammary
fold. For cancer of the left breast, the DIBH technique was
applied to displace the heart from the chest wall, as described
previously (10); patients were instructed to apply the Abches
breathing monitoring device (APEX Medical, Tokyo, Japan)
during DIBH. If the distance between the heart and chest wall
was sufficient to lower the heart dose using DIBH by inflating the
lung volume, we performed RT using the DIBH technique. Due
to the setup uncertainties in prone positioning, we underwent
daily cone beam CT during RT. However, if the heart was not
sufficiently spared by DIBH or if internal mammary node (IMN)
irradiation (IMNI) was required, we performed RT with VMAT
for cardiac sparing.

For 3D CRT, target volumes were delineated based on
palpating breast tissue and adding a margin; the border of the
intact breast and treatment planning for 3D CRT was specified
as described elsewhere (11). Regional lymph node irradiation
(RNI), including that of the internal mammary, axillary, and
supraclavicular lymph nodes, was recommended to patients with
metastatic nodes or those with high-risk NO breast cancer (i.e.,
tumor sizes larger than 2 cm, high-grade tumors, and estrogen
receptor-negative tumors) based on two large scale randomized
trials (12, 13). The partial wide tangent field technique was used
to cover the entire breast as well as the IMNs. The supraclavicular
and axillary lymph nodes were irradiated using a separate beam
that did not overlap with that of the breast field. In patients
who had undergone mastectomy, the chest wall and regional
nodes were irradiated using the reverse hockey stick technique
as described elsewhere (14). Since June 2015, we performed
hypofractionation in patients who received mastectomy.

For VMAT, target volumes and organs at risk were contoured
based on European Society for Radiotherapy and Oncology
guidelines, which was validated using both single-center and
multi-center datasets in Korea (15). For patients with T4
stage or N2-N3 stage, we followed the Radiation Therapy
Oncology Group breast cancer target guidelines. For VMAT
planning, two partial arcs were used limiting the unnecessary arc
segments without compromising dose quality. Plan generation
and dose calculation were performed using the RayStation
treatment planning system (version 5.0, RaySearch, Stockholm,
Sweden). For treatment, 6 MV photon beams emitted from a
linear accelerator (Versa HD, Elekta, Stockholm, Sweden) were
used. The 95% isodose encompassed the entire planning target
volume, and volumes in target areas receiving over 107% of
the prescribed dose were minimized. The planning requirements
for organ at risk were as follows: ipsilateral lung V5 <50%,
Vip <35%, Va9 <20% (V, defined as the percentage of the
total volume exceeding x Gy), mean heart dose <3 Gy, mean
left coronary artery dose <6 Gy (maximum point dose [Dmax]
<10 Gy), mean contralateral breast dose <2 Gy, esophagus Dmax
<12Gy, and mean thyroid dose <3 Gy. We concerned the
esophagus and thyroid to reduce radiation induced esophagitis
and hypothyroidism. Cone-beam CT images were obtained daily
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TABLE 1 | Patient characteristics and treatment characteristics.

CF group HF group
No. of patients % No. of patients % No. of patients % p
Age (Year) 0.41
<51 908 49.2% 200 51.0% 708 48.7%
>51 939 50.8% 192 49.0% 747 51.3%
Pathology
Ductal carcinoma in situ 254 14.1% 59 15.1% 195 13.4% 0.56
Invasive ductal carcinoma 1,327 71.7% 283 72.2% 1,044 71.8%
Invasive lobular carcinoma 85 4.6% 12 3.1% 71 4.9%
Muginous carcinoma 36 1.9% 15 3.8% 21 1.4%
Tubular carcinoma 43 2.3% 10 2.6% 33 2.3%
Stage 0.08
0 261 14.5% 55 14.0% 206 14.2%
| 740 40.1% 171 43.6% 569 39.1%
Il 592 31.8% 110 28.1% 482 33.1%
Il 253 13.6% 56 14.3% 197 13.5%
Surgery 0.01
Breast conserving mastectomy 1,485 80.4% 297 75.8% 1,188 81.6%
Mastectomy 362 19.6% 95 24.2% 267 18.4%
Lung disease* 0.94
Yes 9 0.5% 2 0.5% 7 0.5%
No 1,838 99.5% 390 99.5% 1,488 99.5%
Smoking history 0.45
Yes 73 4.2% 13 3.5% 60 4.4%
No 1,728 95.8% 358 96.5% 1,370 95.6%
Regional LN irradiation 0.08
Yes (SCL+IMN+AXL) 712 38.5% 166 42.3% 546 37.5%
No 1135 61.5% 226 57.7% 909 62.5%
Chemotherapy 0.52
Yes
Neoadjuvant CTx 402 21.8% 89 22.7% 313 21.5%
Adjuvant CTx 557 30.2% 109 27.8% 448 30.8%
No 888 48.1% 194 49.5% 694 47.7%
Hormone therapy 0.73
Yes 1,297 70.2% 278 70.9% 1,019 70.0%
No 550 29.8% 114 29.1% 436 30.0%
RT technique <0.001
Free-breathing 1,258 68.1%
FIF 226 12.2% 11 2.8% 215 14.8%
Wedge 194 10.5% 178 45.4% 16 1.1%
RHT 13 0.7% 13 3.3% 0 0.0%
VMAT 825 44.7% 8 2.0% 817 56.2%
DIBH 488 26.4%
FIF 322 17.4% 22 5.6% 300 20.6%
Wedge 164 8.9% 153 39.0% 11 0.8%
RHT 2 0.1% 2 0.5% 0 0.0%
Prone 101 5.5%
FIF 97 5.3% 4 1.0% 93 6.4%
Wedge 4 0.2% 1 0.3% 3 0.2%

*COPD, ILD were included.
CF, Conventional fractionation; HF, Hypofractionation; SCL, Supraclavicular lymph node; IMN, Internal mammary lymph node; AXL, Axillary lymph node; CTx, Chemotherapy; FIF, Field
in field; RHT, Reverse hockey stick; VMAT, Volumetric-modulated arc therapy; BCS, Breast-conserving surgery.
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to verify appropriate patient set-up and minimize positioning
errors. During the study period, three different fractionation
schedules were used: either 40.05 Gy in 15 fractions (n = 1,055,
57.1%), or 42.56Gy in 16 fractions (n = 400, 21.7%) for
hypofractionation and 50.4 Gy in 28 fractions (n = 392, 21.2%)
schedule for conventional fractionation.

For tumor bed boost, 9Gy in 5 fractions was applied
in conventional fractionation (n = 297, 20.8%). The tumor
bed boost in hypofractionated RT differed depending on
RT modalities. In case that patients received RT using 3D
CRT in hypofractionation, 10Gy in 5 fractions was applied
(n = 541, 37.9%). The electron beams were used for boost
with 3D CRT. For patients treated by VMAT, the tumor bed
boost was performed using simultaneous integrated boost. The
simultaneous integrated boost dose was determined based on
RTOG 1005 protocol. Total dose of 48 Gy in 15 fractions was
applied to tumor bed while total dose of 40.05 Gy in 15 fractions
was given to the whole breast or whole breast plus regional LN
(n = 373,26.2%).

Analysis

The primary endpoint was the occurrence of symptomatic RP,
defined as respiratory symptoms (e.g., dyspnea, non-productive
cough) with correlated radiologic images (e.g., chest radiography
and CT). The RP was graded using common terminology criteria

for adverse events version 5.0. Radiation oncologists prescribed
oral prednisolone until symptoms were relieved. To evaluate the
factors affecting the occurrence of RP, univariate and multivariate
analyses using Cox proportional hazards models were performed.
In multivariate analysis, the factors significant (p < 0.05) in
univariate analysis were used. The factors related to RP in
other studies were also included for multivariate analsysis. The
receiver operating characteristic (ROC) and area under the curve
analyses were used to identify the optimal cutoff values that
best predict the occurrence of RP. The comparison between
hypofractionation group and conventional fractionation group
was performed using chi-squared test. The logistic regression
analysis was used to evaluate the factors associated with the lung
dose parameters.

For dosimetric analysis, the planning data of all the
patients were transferred into the MIM software (version
6.7.14; Cleveland, OH, USA) for multiple-plan comparison. To
analyze the ipsilateral lung dose parameter, we collected the
ipsilateral mean lung dose, Vs, Vg, Vis, Va9, V30, and V4. The
ipsilateral lung dose parameters were converted into equivalent
dose in 2Gy (EQD2) with o/f ratio of 3Gy to correct for
hypofractionation. All tests were conducted by using either the
SPSS software version 20.0 (IBM Corp., Armonk, New York,
USA) or R version 3.3.2 (R Foundation for Statistical Computing,
Vienna, Austria).

TABLE 2 | Comparison of lung dose parameter depending on internal mammary node irradiation and radiotherapy technique.

IMN (-) IMN (+)
Free-breathing DIBH 3D CRT Prone 3D  Volumetric arc therapy Free-breathing 3D CRT DIBH 3D CRT  Volumetric arc
3D CRT CRT therapy

No. of patients 307 304 101 423 130 184 398
Mean lung dose

Median 6.50 5.71 1.16 5.70 16.24 11.20 7.56

IQR 4.64-8.32 4.30-8.22 0.52-2.51 4.92-6.76 11.24-19.82 8.9-15.24 6.73-8.33
Vs

Median 2217 21.01 4.03 26.99 54.11 41.30 34.62

IQR 16.54-30.7 15.9-30.00 0.88-8.05 22.92-31.14 43.32-62.21 35.67-51.58 30.91-38.28
Vio

Median 17.34 15.60 2.47 17.24 44.83 33.75 23.49

IQR 12.81-21.54 12.38-21.2 0.33-6.00 14.50-20.40 32.74-51.04 27.95-41.18 20.75-26.55
Vis

Median 14.79 13.07 1.77 12.00 40.09 30.10 17.76

IQR 10.94-18.42 10.156-17.88 0.17-4.54 9.95-15.08 27.91-45.49 23.19-37.02 15.40-20.08
Voo

Median 12.86 11.20 1.35 8.54 36.35 27.13 13.33

IQR 9.38-16.42 8.38-15.78 0.07-3.74 6.69-11.25 24.80-42.00 19.70-33.69 11.19-15.30
Vao

Median 9.59 7.85 0.66 3.60 29.02 18.26 6.30

IQR 6.33-13.09 5.19-12.08 0.00-2.00 2.10-5.62 15.00-35.34 11.25-24.62 4.37-8.45
Vao

Median 3.26 1.85 0.03 0.36 14.00 2.95 1.13

IQR 0.83-8.56 0.18-7.23 0.00-0.37 0.05-1.16 2.10-22.43 0.87-11.70 0.60-2.14

IMN, Internal mammary lymph node; 3D CRT, 3-Dimensional conformal radiation therapy; DIBH, Deep inspiration breath-hold; VMAT, Volumetric-modulated arc therapy; IQR,

Interquartile range.
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RESULTS

Patient Characteristics
The patient and tumor characteristics are summarized in Table 1.
Approximately 85% of the patients had early breast cancer
(stages 0-2). In total, 38.5% received RNI and 51.9% received
either neoadjuvant or adjuvant chemotherapy. Adjuvant RT was
performed either via the conventional dose scheme (21.2%) or
the hypofractionated dose scheme (78.8%); 44.7% of patients
underwent adjuvant RT using VMAT.

We also compared the patient and tumor characteristics
between the conventional fractionation group and
hypofractionation group (Table1). Most of the variables

were well-balanced between two groups except for the method
of surgery and the techniques used for RT. More patients in
the hypofractionated group received breast conserving surgery.
Also, most of the patients treated with VMAT underwent
hypofractionated RT.

RP Incidence

RP occurred in 40 patients (2.1%) within a median follow-up
period of 14.5 months. The commonest symptom was a mild
dry cough; few patients also experienced other symptoms such
as shortness of breath. Patients experiencing RP symptoms were
prescribed steroids, following which these symptoms resolved.
None of the patients developed RP grade >3. Symptomatic RP
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FIGURE 3 | Occurrence of radiation pneumonitis according to subgroups with Vag >10% and Va0<10%.

Sensitivity

0.2

0.4 0.6
1-specificity

0.8 1.0

FIGURE 4 | Receiver operating characteristic curve analysis for the optimal
cutoff value to predict the occurrence of radiation pneumonitis. MLD, mean
lung dose; V,, percentage of the total volume exceeding x Gy.

occurred no sooner than 3 months and no later than 12 months
after commencing RT.

Comparison of Lung Dosimetry

The lung dosing parameters when using different RT techniques
(i.e., free-breathing 3D-CRT, DIBH 3D-CRT, prone positioning
RT, and VMAT) were compared (Table2). Patients who
underwent IMNI had higher doses to the lung than those who
did not. The DIBH technique produced lower lung doses than the
free-breathing technique especially when IMNI was performed.
Among the various techniques, the lung doses in patients who
used prone positioning techniques were significantly lower than

that in patients using other techniques. In patients who did
not undergo IMNI, the lung V3p and V4 were significantly
lower in patients undergoing VMAT than in those in patients
undergoing other techniques, while the lung Vs was higher in
patients undergoing VMAT (Figure 1A). For patients who did
undergo IMNI, the VMAT group showed the lowest mean lung
dose (Figure 1B).

Moreover, we found that patients with RP showed higher
dose-volume histogram parameter values in all areas than those
without RP. Among these individual parameters, ipsilateral lung
V30 showed the largest difference between these two patient
groups (Figure 2).

RPA

We performed RPA to determine the factors associated with
RP. Among various dosimetric parameters, the ipsilateral lung
V30 in EQD2 >10% was associated with significantly higher RP
rates than those of ipsilateral lung V3 in EQD2 < 10%. The RP
occurred in 4.6% in patients with ipsilateral lung V3y more than
10% while only 1.4% of patients experienced RP when ipsilateral
lung V3o was <10% (Figure 3).

Dosimetric Analysis
The mean lung dose, ipsilateral lung Vs, Vig, Vis, V2o, V3o,
and V4o were all significantly associated with RP. The largest
area under the ROC curve was that of the ipsilateral lung V3
(Figure 4). Univariate analysis showed that hormone treatment,
fractionation schedule, RT technique, and the ipsilateral lung V3
significantly affected RP. On multivariate analysis, patients with
ipsilateral lung V3 larger than 10% had a significantly higher rate
of RP than those with ipsilateral lung V39 <10% (Table 3).
Among the RT techniques, fractionation schemes, and IMN
irradiation, VMAT (odds ratio 0.12, 95% CI 0.08-0.17) was a
major determinant of lowering ipsilateral lung V3 followed by
hypofractionation (odds ratio 0.14, 95% CI 0.10-0.19). The IMN
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TABLE 3 | Univariate and multivariate analysis of factors associated with symptomatic radiation pneumonitis.

Univariate analysis Multivariate analysis

Radiation pneumonitis rate HR (95% Cl) P HR (95% CI) P

Age (=51 vs. <51) 1.8vs. 2.5% 0.69 (0.37-1.29) 0.25
Lung disease (Yes vs. No) 11.1vs. 2.1% 5.41 (0.74-39.45) 0.09 5.90 (0.79-43.55) 0.082
Smoking history (Yes vs. No) Ovs. 2.1% 0.05 (0.00-86.13) 0.42
Chemotherapy (Yes vs. No) 1.9vs. 2.5% 0.90 (0.63-1.29) 0.58
Chemotherapy regimen 0.09

Taxane based vs. Adriamycin based 1.1vs. 2.4% 0.52 (0.15-1.88) 0.32

Herceptin based vs. Adriamycin based 6 vs. 2.4% 2.06 (0.83-5.13) 0.12
Hormone therapy (Yes vs. No) 1.7 vs. 3.3% 0.50 (0.27-0.94) 0.03 0.53 (0.28-1.01) 0.053
Regional LN irradiation (Yes vs. No) 2.4 vs. 2.0% 1.12 (0.59-2.09) 0.73
Fraction schedule (Hypofractionation vs. Conventional fractionation) 1.5vs. 4.6% 0.43 (0.23-0.80) <0.01 0.63 (0.31-1.28) 0.203
Ipsilateral lung dose (Vag > 10% vs. Vzg < 10%) 4.6 vs. 1.4% 2.93 (1.563-5.62) <0.01 2.89 (1.51-5.54) 0.002
RT technique 0.007

DIBH 3D CRT vs. Free-breathing 3D CRT 2.5vs. 5.0% 0.47 (0.23-0.95) 0.04

Prone 3D CRT vs. Free-breathing 3D CRT Ovs. 5.0% NR

VMAT vs. Free-breathing 3D CRT 0.7 vs. 5.0% 0.22 (0.09-0.55) 0.001

Cl, Confidence interval; HR, Hazard ratio; LN, Lymph node; 3D CRT, 3-dimensional conformal radiotherapy; DIBH, Deep inspiration breath hold; VMAT, Volumetric modulated arc therapy;

NR, Not reported.

TABLE 4 | Analysis the factor determining the lung Vao.

Univariate analysis

Multivariate analysis

OR (95% ClI) P OR (95% CI) P
IMN irradiation (Yes vs. No) 2.63(2.15-3.22) <.001 6.59 (4.88-8.92) <.001
Hypofractionation (Yes vs. No) 0.07 (0.06-0.10) <.001 0.14 (0.10-0.19) <.001
VMAT (Yes vs. No) 0.12 (0.10-0.16) <.001 0.12 (0.08-0.17) <.001
Prone (Yes vs. No) NR NR
DIBH (Yes vs. No) 0.30 (0.24-0.38) <.001 0.98 (0.73-1.33) 0.911

OR, Od(ds ratio; Cl, Confidence interval; IMN, Internal mammary node; VIMAT, Volumetric modulated arc therapy; DIBH, Deep inspiration breath hold; NR, Not reported.

irradiation was the only factor increasing the ipsilateral lung V3
(odds ratio 6.59, 95% CI 4.88-8.92) (Table 4).

DISCUSSION

This study investigated the incidence of RP in patients with breast
cancer who underwent conventional and hypofractionation RT
and identified dosimetric markers that predict the risk of RP. We
demonstrated that ipsilateral lung V3 is the dosimetric predictor
of RP that is the most relevant in patients with breast cancer. The
change in RT techniques using VMAT and hypofractionation
dose schemes reduce the ipsilateral lung V3.

Several studies have shown that the occurrence of RP is
affected by both patient-related and treatment-related factors.
Patient-related factors that affect the incidence of RP include
existing lung disease, poor pulmonary function, and smoking
history (16, 17). Meanwhile, treatment-related factors known
to affect RP development in patients with lung cancer include
radiation dose, irradiated lung volume, schedule of fractionation,
and usage of chemotherapy (18-21). However, as patients with

breast cancer tend not to have underlying lung diseases or
smoking histories with the same frequencies as those with
lung cancer, our study revealed no association between patient-
related factors and the occurrence of RP. However, treatment-
related factors, particularly those related to RT, did affect RP
development, as reported previously (11).

In this study, we showed that the hypofractionation dose
scheme lowered the ipsilateral lung dose V3. It was suggested
that the o/p ratio for breast tissue ranges from 3 to 4Gy,
which is similar to that of normal tissues (6), and this was later
confirmed in the START A, START B, and another Canadian
study (8, 22, 23). Hence, hypofractionation has become the
standard treatment for breast cancer. While hypofractionation
did not significantly affect RP development in our study, the V3
of the ipsilateral lung were found to be strong predictors of RP.

We also demonstrated that advances in RT techniques have
reduced the incidence rate of RP. Improvements that were
designed to reduce the dose to the heart while maintaining
RT safety and efficacy include intensity-modulated RT (IMRT),
DIBH, and prone positioning; these techniques also significantly
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decreased the dose to the lung by more than 50%. The DIBH can
lower the dose to the heart, but the coverage of the ipsilateral
whole breast planning target volume can be suboptimal. In case
that the tumor was located at medial location of the breast,
tangent fields are difficult to fully cover tumor bed and avoid
the heart simultaneously. Even though the prone positioning for
breast enables lowering the dose to the lung and heart, but setup
uncertainties exist for prone positioning (24). By contrast, IMRT
made it possible to protect the heart and ipsilateral lung without
compromising target coverage and set up uncertainties.

Because landmark studies such as the MA 20 and EORTC
22922 trials demonstrated that RNI can reduce the risk of
early breast cancer recurrence (12, 13), radiation oncologists
increasingly consider its application but remain hesitant owing
to the risk of toxicity to the heart and lung. While we perform
DIBH and prone positioning for patients at our hospital who
are not undergoing RNI, 3D CRT with partially wide tangent
fields has been performed in patients requiring RNI, including
IMNI. IMRT for breast cancer is widely used today after it became
reimbursable by the national insurance program in our country
in 2015. Our study showed that IMRT can sufficiently cover the
whole breast and regional lymph nodes, particularly IMNs, while
effectively reducing lung, and heart toxicity.

The chemotherapy regimen did not affect the incidence of
RP in our study. As some chemotherapeutic agents act as
sensitizers to radiation, the patients who received chemotherapy
could be at higher risk to RP. The article showing that
chemotherapy increased the risk of RP demonstrated that
sequential chemotherapy diminished the risk of RP as compared
to concurrent chemoradiotherapy (25). In our study, none of
the patients underwent concurrent chemotherapy during RT. As
sequential chemotherapy has minimal impact on development
of RP, neither the chemotherapy regimen nor the use of
chemotherapy increased the risk of RP in our study.

Sequential tumor bed boost was applied in patients treated
with 3D CRT while simultaneous integrated boost was used in
patients treated with VMAT. In this study, sequential tumor bed
boost dose was not accounted for analysis. However, as electron
beams were used for sequential tumor bed boost in case of
patients treated with 3D CRT, we believed that the effect of tumor
bed boost to the lung dose was negligible.

No significant parameters predicting the occurrence of RP in
patients with breast cancer have been identified to date. The 3D
CRT technique can reduce the areas receiving low irradiation
doses (e.g., the V5 and Vjg) on the dose-volume histograms
but not the areas receiving high doses. By contrast, the VMAT
technique can reduce the areas of high RT dose while widening
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Radiation ulcers are a prevalent toxic side effect in patients receiving radiation therapy.
At present, there is still no effective treatment for the complication. Senescent cells
accumulate after radiation exposure, which can induce cell and tissue dysfunction.
Here we demonstrate increased expression of p16 (a senescence biomarker) in human
radiation ulcers after radiotherapy and radiation-induced persistent cell senescence in
animal ulcer models. Furthermore, senescent cells secreted the senescence-associated
secretory phenotype (SASP) and induced cell senescence in adjacent cells, which
was alleviated by JAK inhibition. In addition, the clearance of senescent cells following
treatment with a senolytics cocktail, Dasatinib plus Quercetin (DQ), mitigated radiation
ulcers. Finally, DQ induced tumor cell apoptosis and enhanced radiosensitivity in
representative CAL-27 and MCF-7 cell lines. Our results demonstrate that cell
senescence is involved in the development of radiation ulcers and that elimination of
senescent cells might be a viable strategy for patients with this condition.

Keywords: radiation ulcer, oral mucositis, skin ulcer, senescence, apoptosis, SASP

INTRODUCTION

Radiation therapy is a common and efficacious treatment for patients with solid cancers. About 50%
of cancer patients receive radiation therapy, alone or in combination with other treatment methods
such as surgery (1). Among them, radiotherapy is the main treatment method for patients with head
and neck tumors and has varying success (2), but oral mucositis is a crucial dose-limiting toxic
effect (3). Radiotherapy is an important adjuvant treatment after surgery for breast cancer and can
reduce the metastasis and mortality rates (4), but high-dose radiation exposure to superficial tissue
ultimately leads to intractable skin ulcers. Although advances in radiotherapy such as dynamic
intensity-modulated radiotherapy achieve precise delivery of radiation to cancer cells, side effects
to surrounding tissues are still inevitable and bring great pain and/or cost to patients (5).

Various precautionary methods and therapies such as anti-inflammatory agents, local
anesthetics, and growth factors have been used to treat painful ulcerations, but the clinical effects
are poor (2). Palifermin, a recombinant human form of keratinocyte growth factor (KGF), is the
only U.S. Food & Drug Administration-approved agent that is used to prevent oral mucositis in
patients with bone marrow transplantation, but fibroblast growth factor receptor 2b (FGFR2D) is
often overexpressed in cancer cells and increases the risk of tumor growth (6). Although hyperbaric
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Eliminating Senescence Mitigates Radiation Ulcers

oxygen therapy has been reported to reduce skin ulcers after
radiation (7), the treatment duration is long. Therefore, the
development of potential agents that mitigate radiation ulcers
without accelerating tumor growth is intensively needed for
oncological supportive care.

Cell senescence can be triggered by radiation-induced
DNA damage and leads to delayed repair and regeneration of
irradiated tissue (8). Persistent damage activates the cyclin-
dependent kinase inhibitor p16™4? and causes cell cycle arrest
(9). Cellular senescence is not just a state of proliferation
inhibition and genetic alteration (10); senescent cells can
secrete cytokines, called the senescence-associated secretory
phenotype (SASP) including inflammatory factors (11, 12),
tissue-reconstituted proteases, and growth factors, which
can induce persistent chronic inflammation in the tissue
microenvironment (13, 14) and promote cancer relapse (15).
It has been reported that cordycepin and mammalian target
of rapamycin inhibition can protect from radiation ulcers by
inhibiting cell senescence (16, 17). These observations led us to
explore if it is possible to mitigate radiation ulcers by eliminating
senescent cells.

In this study, we show that senescent cells persist in
radiation ulcers (clinical radiation ulcer samples and animal ulcer
models), and clearance of senescent cells by the senolytics drug
cocktail, dasatinib plus quercetin (DQ), can effectively mitigate
radiation ulcers. Moreover, DQ treatment can enhance cancer
cell radiosensitivity. Our findings suggest that cell senescence
is involved in radiation ulcer development, and clearance of
senescent cells can be a potential therapeutic method to mitigate
radiation ulcers.

MATERIALS AND METHODS

Human Skin Samples

Skin tissues were obtained from healthy volunteers and patients
with breast cancer receiving radiation therapy from 2016 to
2018 at Hunan Cancer Hospital (the Affiliated Hospital of
Xiangya School of Medicine of Central South University). Skin
ulcer samples were obtained from the chest wall at the time
of surgery and were processed for further analysis. The studies
involving human participants were approved by the ethics
committee of Hunan Cancer Hospital; the patients/participants
provided their written informed consent to participate in
our study.

Cell Culture

Human oral keratinocytes (HOK ATCC, PCS-200-014)
were cultured in an oral keratinocyte medium containing
antibiotics at 37°C in 5% CO,. Human fibroblasts, CAL27
(CRL-2095), and MCF-7 cells (ATCC, HTB-22) were
cultured in Dulbecco’s minimum essential medium with
high sugar (Invitrogen) supplemented with 10% fetal
bovine serum (Gibco) and 1% streptomycin/penicillin.
The isolation protocol for human fibroblasts was described
previously (18).

Conditioned Medium (CM)

CM was made by exposing young cells to a fresh medium
for 24h. SASP-CM was made by exposing senescent cells
(7 days after radiation) to a fresh medium for 24h. To
collect (SASP+JAKi)-CM, senescent cells were treated with JAK
inhibitor 1 (JAKi) or dimethyl sulfoxide (DMSO) for 72h and
cultured with a fresh medium containing JAKi or DMSO for
another 24 h.

Animal Models

Female C3H mice (6-8 weeks) and male Sprague-Dawley rats
(6-8 weeks) were purchased from Laboratory Animal Center of
Army Medical University. To evaluate the effect of senolytics
on radiation ulcers, animals were divided into non-radiation,
radiation, and D+Q treatment groups. For local fractionated
radiation, the head and neck area was exposed to irradiation at
a dose of 6 Gy/day (X-RAD 160-225 instrument Precision X-
Ray, 1.9 Gy/min) and treated with senolytics dasatinib (5 mg/kg)
plus quercetin (50 mg/kg) (D+Q) (19, 20) by oral gavage every
day for 5 days. Mice were sacrificed at days 3, 6, 8, and 10. For
skin ulcer modeling, rats’ right posterior limbs were exposed
to a single dose of 40 Gy (0.9 Gy/min) radiation and treated
with dasatinib (5mg/kg) plus quercetin (50 mg/kg) (D+Q) by
intraperitoneal injection every day for 5 days after irradiation.
Rats were sacrificed at days 5, 8, 11, and 15 after irradiation.

Immunoanalysis and Histopathology

Tissues were fixed, embedded in paraffin, cut into 3-pum
sections, and stained with hematoxylin and eosin (H&E). For
pl6 immunohistochemistry, slides were boiled in a citrate
buffer for antigen retrieval after dehydration. Slides were then
soaked in 10% hydrogen peroxide for 10min to remove
endogenous peroxidase and were washed. Slides were blocked
in goat serum and incubated in primary antibody against p16
(Abcam, 1:100) at 4°C overnight. Washed slides were then
incubated with secondary antibody for 40min (biotinylated
goat anti-rabbit IgG, BA-1000, Vector Labs), washed, and
incubated in 3’-diaminobenzidine solution. For y-H2AX and
Ki67 immunofluorescence, antigen retrieval and blocking was
performed as above, and primary antibody (y-H2AX, Cell
Signaling, 1:200; Ki67, Cell Signaling, 1:200) was applied and
incubated at 4°C overnight. Slides were washed with phosphate-
buffered saline and incubated with secondary antibody for
40min (biotinylated goat antirabbit IgG, 594nm) before
adding an antifluorescence buffer containing 4’,6-diamidino-2-
phenylindole for imaging.

Real-Time gPCR

Total RNA from tissues or cells was extracted using TRIzol
(Life Technologies) and reverse-transcribed to cDNA using the
Maxima First Strand cDNA Synthesis Kit (Thermo Scientific,
K1671). Real-time PCR was performed by applying the SYBR
Green (Takara) qPCR master mix following the manufacturer’s
protocol. ACt values were calculated as the following formula:
ACt = Ct target — Ct actin. Values of sample reference to control
were calculated using the AACT method; the difference of gene
expression was calculated using the 2~ (A2 formula. gRT-PCR
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primer sequences are shown in Supplementary Table 1. Actin
was used as an internal control.

SA-B-Gal Activity

Cells were seeded into 6-well plates and then either received 8-
Gy (0.9 Gy/min) radiation or not. Cells were passed and assessed
7 days after radiation. SA-B-gal staining was done using a SA--
gal staining kit (Cell Signaling) according to the manufacturer’s
instructions. First, 1 ml 4% paraformaldehyde was added to every
plate to fix cells. Then, cells were incubated at 37°C for 24 h in
a SA-P-gal staining solution (pH = 6.0, Cell Signaling). Blue-
stained cells were senescent cells.

Flow Cytometry

Cells were seeded into 6-well plates at a density of 2 x 10°
cells/well. Cells either exposed to radiation (8 Gy) or not were
treated with DMSO or DQ (ImM D+20mM Q) for 24h,
digested with trypsin, and collected. Cells were then resuspended
in a 100-pl binding buffer with 1-pl fluorescein isothiocyanate
Annexin-V and 1-pl propidium iodine (PI; BD Biosciences,
556547). Finally, samples were analyzed by flow cytometry (C6,
BD Biosciences, San Jose, CA). For cell cycle analysis, cells
were fixed with Fixation/Permeabilization Diluent/Concentrate
(eBioscience) for 30min. Subsequently, intracellular Ki-
67 (eBioscience) and Hoechst33342 (Sigma) staining were
performed using PermWash solution (eBioscience). Cells were
washed once prior to flow cytometry analysis.

Western Blot

Cells were extracted in a cell lysis buffer (Cell Signaling) with
protease inhibitors (Sigma). Proteins were loaded into each lane
on a 5-12% gradient sodium dodecyl sulfate/polyacrylamide
gel and transferred to immunoblot polyvinylidene fluoride
membranes (Bio-Rad). Membranes were blocked with 5% skim
milk and probed with primary antibodies at 4°C overnight.
Horseradish ~ peroxidase-conjugated secondary antibodies
(Beyotime) were applied for 1h at room temperature. The band
intensities were visualized and quantified using an enhanced
chemiluminescence detection system (Bio-Rad Laboratories).
Primary antibodies used were as follows: poly ADP-ribose
polymerase (PARP, 1:1,000, abcam), caspase 3 (1:1,000, abcam),
cleaved caspase 3 (1:1,000, abcam), p-JAK1(1:1,000, abcam),
p-JAK2 (1:1,000, abcam), and B-actin (1:1,000, Beyotime).

Enzyme-Linked Immunosorbent Assay
(ELISA)

The concentrations of human inflammatory cytokines from
HOK and fibroblasts cell supernatant were measured with ELISA
kits. IL-1a (KE00123), IL-6 (KE00139), IL-18 (KE00021), IL-8
(KE00006), and tumor necrosis factor (TNF)-a (KE00154) ELISA
kits from ProteinTech were used following the manufacturer’s
protocols. Generating a linear standard curve based on the OD
value of the standard, the expression of protein was calculated
using the formula generated above.

Statistical Analysis

Comparisons between two groups were analyzed using unpaired
Student’s f-tests, and values are presented as mean with SD.
Statistical significance was set as *P < 0.05, **P < 0.01, and
P < 0.001. SPSS 13.0 statistical software was used to perform
all statistical analyses, and GraphPad Prism 7.0 was used to
generate graphs.

RESULTS

Senescence Biomarkers Accumulate in
Human Radiation Ulcer After Radiotherapy

Senescence can be induced by multiple mechanisms such
as DNA damage, reactive oxygen species (ROS) production,
and oxidative stress (21), and DNA damage is a critical
mediator of cellular alterations caused by radiation exposure
(22). To explore the hypothesis that cell senescence and SASP
are related to human radiation ulcers after radiotherapy, we
first analyzed established senescence genes in the GSE103412
dataset (23) corresponding to mucositis in patients with tonsil
squamous cell carcinoma (during and after radiation therapy)
and control human cohorts (healthy mucosa and patients before
radiotherapy). CDKN2A (pl16) and TP53 were upregulated
within oral mucosa samples of individuals with mucositis
during and after radiation therapy (Figure 1A). In addition,
HIST1H3B, HIST1H2BM, HIST1H3C, HIST1H3H, HISTIH1A,
HIST1H4D, and HIST1H1B were downregulated (Figure 1A)
in mucositis samples, especially at day 7 after radiation. This
is notable since histone gene expression downregulation is a
response to DNA damage (24). Ki67 (a marker of proliferation)
was downregulated, indicating that radiation decreased the
proliferative capacity of mucosa. Based on the hypothesis that
senescent cells promote the development of radiation ulcers
through the secretome, we analyzed the expression of SASP
genes in human mucositis transcriptome datasets (GSE103412).
Expression of pregnancy-associated plasma protein A (23),
several matrix metalloproteinases (MMPs), and interleukin
(IL) family members were also increased after radiation
therapy (Figure 1A).

We also immunohistochemically detected p16 and y-H2AX
in skin tissue samples from healthy volunteers and patients with
breast cancer receiving radiation therapy. As shown in Figure 1B,
a lack of epithelium in the tissue was observed in ulcer tissue
samples compared to normal skin. We also found a remarkable
increase in the senescence marker pl6 (Figure 1C) and the
DNA damage marker y-H2AX (Figure 1D). Collectively, our
results indicate that senescence biomarkers accumulate in human
radiation ulcers after radiotherapy, and senescence may play a
critical role in promoting human radiation ulcers.

Radiation Induces Persistent Cell

Senescence in Animal Ulcer Models

To further confirm the correlation between radiation ulcers
and cell senescence, a mouse oral ulcer and rat skin ulcer
model were established (Figure 2A). For radiation-induced oral
ulcers, the head and neck of mice were treated with fractionated

Frontiers in Oncology | www.frontiersin.org

n

February 2020 | Volume 9 | Article 1576


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

Wang et al. Eliminating Senescence Mitigates Radiation Ulcers

Non-uclcer Uclcer

Healthy Before RT Day7 Day 21
I |

|
l cDkN2A
; PAI1
TP53
HIST1H1A
HIST1H1B
HIST1H2B
HIST1H3B
HIST1H3H
HIST1H3C
HIST1H4D
PAPPA
KI67
IL-1B
L6
IL-10
MMP9
I MmP12
JAK1
JAK2
JAK3

y-H2AX DAPI

FIGURE 1 | Senescence biomarkers accumulate in human radiation ulcer after radiotherapy. (A) Heat map showed the expression of senescence, DNA damage, and
SASP genes in mucositis in patients with tonsil squamous cell carcinoma (during and after radiation therapy) and control (healthy mucosa and patient before
radiotherapy) human cohorts (healthy n = 8, before radiation n = 8, day 7 n = 8, day 21 n = 7). (B) Histological analysis of skin tissues from healthy volunteers and
radiotherapy patients. (C) Immunohistochemistry staining of p16 of skin tissues from healthy volunteer and radiotherapy patients. (D) Immunofluorescence staining of
y-H2AX of skin tissues from healthy volunteer and radiotherapy patients. (B-D) Healthy n = 1, radiotherapy patients n = 4, skin tissue from the chest wall; scale bar,
50 pm.

radiation of a 6-Gy dose/day for 5 days (other body parts analyzed. For radiation-induced skin ulcer, each rat’s right
were covered with a lead board). Mice were euthanized at  posterior limb was exposed to a single 40-Gy radiation under
days 3, 6, 8, and 10, and the tongues were removed and anesthesia (25). As shown in Figures 2B,C, the irradiated tongues
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FIGURE 2 | Radiation induces persistent cell senescence in animal ulcer models. (A) Radiation and drug treatment scheme for mice (left) and rats (right).

(B) Histological analysis of mouse tongue tissues 0-10 days postradiation (n = 3). (C) Representative images of hind limb 0-15 days postradiation (top); histological
analysis of rat skin tissues 0-15 days postradiation (bottom) (n = 3). (D) Immunohistochemistry of p16 in mouse tongue and rat skin tissues (n = 3). As indicated by
the arrow, brown represents positive cells. (E,F) The expressions of p16, p21, PAI-1, and SASP genes (IL-1a, IL-10, IL-18, TNF-a, IL-6, MMP3, IL-8, MMP12, and
MCP1) in different time points were quantified by gRT-PCR (mean with SD; n = 3, *P < 0.05, **P < 0.01, **P < 0.001; Student’s t-test). (B,D) Scale bar, 100 um;
(C) scale bar, 50 um.
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and skin exhibited severe destruction of the epithelial layer
compared to normal epithelial morphology. Furthermore, both
models showed increased immunohistochemical staining for the
senescence marker pl6 at different time points (Figure 2D).
qRT-PCR showed that senescence markers pl6, p21, and
plasminogen activator inhibitor-1 (PAI-1) were increased in
irradiated mice/rats (Figures 2E,F). We found that the SASP
factors (26) [IL-18, IL-6, IL-1a, IL-8, IL-10, TNF-a, MMP3,
MMPI12, and monocyte chemoattractant protein-1 (MCP1)]
were all significantly upregulated in irradiated tongue and
skin tissues compared to non-irradiated controls (Figures 2E,F).
These results indicate that senescent cells and the SASP persist
in radiation ulcer. These results are consistent with previously
reported data for senescence-associated beta-galactosidase (SA-
B-gal), a known marker of senescent cells (16). Therefore,
eliminating senescent cells might be a viable strategy to alleviate
radiation ulcers.

Senescent Cells Induce Cell Senescence
and SASP in Adjacent Cells

Senescent cells acquire autocrine/paracrine abilities, and the
cytokines they produce promote dysfunction and growth arrest
in neighboring cells to maintain senescence by an autocrine
positive-feedback loop (27). Next, we tested whether senescent
HOK and human skin fibroblasts induce senescence and
inflammation in adjacent healthy cells. We first established
an in vitro HOK and skin fibroblast cell senescence model
induced by radiation (Figures 3A,B), which were confirmed
by SA-B-gal staining (28) and the expression of senescence
mediators (p21 and p16) and SASP factors (MCP1 and IL-6) (29).
Morphologically, senescent HOK are larger and rounder, with
more vacuoles and fewer antennae compared with young HOK.
Young fibroblasts are spindle-shaped or polygonal, whereas
senescent cells become larger, flat, and overstretched, with
elongated branches at the ends of extensions (Figure 3A).
Notably, IL-1a, IL-8, IL-6, IL-1B, and TNF-a protein expression
levels were increased in cell supernatant from irradiated cells
compared with non-irradiated cells (Figure 3C). Then, CM
from senescent cell supernatant (SASP-CM) and normal cell
supernatant (Con-CM) were collected; we found that exposure
of non-senescent HOK and skin fibroblasts to SASP-CM for
7 days induced SA-B-gal expression and senescent morphology
compared with Con-CM (Figure 3D). Cells were also collected
for gRT-PCR analysis, which showed that CM derived from
senescent cells caused upregulation of senescence genes (p16,
p21, PAI-1) and SASP genes (IL-1a, IL-10, IL-1PB, TNF-a, IL-6,
MMP3, IL-8, MMP12, and MCP1) relative to CM from non-
senescent cells (Figure 3E). These results indicate that the SASP
can induce cell senescence and inflammation in adjacent cells.
The JAK pathway is important in cytokine production, and
JAK1 and 2 primarily regulate inflammatory signaling (30).
The GSE103412 dataset showed increased JAK1/2 in ulcer
patients after radiation therapy (Figure 1A). Similarly, we found
significantly increased JAK expression after irradiating HOK
and skin fibroblasts (Figure 3F). We then assessed the effect of
JAKIi, which can suppress SASP in senescent cells by inhibiting

the JAK pathway. Senescent HOK and skin fibroblasts were
incubated with vehicle and JAKi (1 wM) for 72 h; then CM from
senescent cells (SASP-CM) and senescent cells incubated with
JAKi [(SASP+JAKi)-CM] were collected. The results showed
that JAKi (1 wM) downregulated the expression of crucial SASP
genes in senescent cells (Figure 3G). Furthermore, after young
HOK and skin fibroblasts were treated with SASP-CM and
(SASP+JAKIi)-CM for 24 h, respectively, SASP mRNA levels were
lower in the (SASP+JAKi)-CM group relative to SASP-CM-
treated young cells (Figure 3H). Therefore, SASP in senescent
cells may promote SASP in adjacent cells. However, when young
HOK and skin fibroblasts were treated with SASP-CM, followed
by the addition of JAKi or vehicle for 24 h, we did not observe
decreased levels of SASP (Figure 3I). Therefore, we hypothesize
that JAKi mainly acts on senescent cells by suppressing the SASP
to reduce inflammation, but it has no effect on non-senescent
cells to prevent inflammation caused by SASP. These findings
demonstrate that senescent cells can induce cell senescence and
SASP in adjacent cells, and JAK inhibition alleviates SASP in
senescent cells.

DQ Treatment Eliminates Senescent Cells
by Inducing Apoptosis

The above observations suggest that senescent cells may be
a viable target in preventing radiation ulcers. Therefore, we
assessed the effect of DQ, which has been reported to selectively
clear senescent cells (11, 19, 20). We found that a single dose
of DQ (1 mM dasatinib+20 mM quercetin) eliminated 40-60%
of senescent HOK and 10-20% skin fibroblasts within 24 h;
nevertheless, DQ treatment had no observable effect on young
HOK or skin fibroblasts (Figure 4A). Similarly, calcein AM/PI
staining showed markedly higher cell death in senescent HOK
and fibroblasts compared to young cells (Figure 4B). Moreover,
DQ induced the expression of the apoptosis markers caspase
3, cleaved caspase 3, and PARP in senescent cells (Figure 4C).
These results suggest that DQ selectively removed senescent cells
through the intrinsic apoptotic pathway.

Senescent Cell Clearance Mitigates

Radiation Ulcers

Next, we determined whether DQ could help heal radiation
ulcers. DQ almost entirely prevented the appearance of
mucositis in irradiated mice (Figure 5A). Histological analysis
of the tongues showed complete and continuous epithelial layers
in irradiated DQ-treated mice (Figure 5B). DQ also significantly
decreased radiation-induced skin ulcers, desquamation, and
edema and promoted epithelium repair (Figures5C,D).
In addition, we found reduced levels of the DNA damage
response marker y-H2AX in irradiated DQ-treated mice/rats
(Figure 6A). Furthermore, DQ-treated mice/rats showed
significantly increased levels of the proliferation marker
Ki67 (31) (Figure6B). As expected, DQ-treated mice/rats
showed downregulation of the senescence marker pl6 and
SASP (Figures 6C,D). H&E staining showed that the heart,
spleen, muscle, lung, intestine, kidney, and liver were not
obviously affected by DQ treatment (Supplementary Figure 1),
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FIGURE 3 | Senescent cells induce cell senescence and SASP in adjacent cells. (A) SA-B-gal staining in HOK and skin fibroblasts at 7 days after radiation (n = 3).

(B) mRNA expression levels for p16, p21, MCP1, and IL-6 in HOK and skin fibroblasts at 7 days after radiation (n = 3). (C) Protein expression levels for IL-1a, IL-8, IL-6,
IL-18, and TNF-a in HOK and skin fibroblast cell supernatant (n = 3). (D) HOK and skin fibroblasts were cultured in Con-CM and SASP-CM for 7 days and assessed
by SA-B-gal staining (n = 3). (E) MRNA expression levels of p16, p21, PAI-1, and SASP genes (IL-1a, IL-10, IL-18, TNF-a, IL-6, MMP3, IL-8, MMP12, and MCP1) in
HOK and skin fibroblasts (cultured in Con-CM and SASP-CM for 7 days). (F) p-JAK1 and p-JAK2 expression levels in HOK and fibroblasts after radiation. Three
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FIGURE 3 | independent experiments started with cell plating. (G) Irradiation-induced senescent HOK and fibroblast were treated with JAK inhibitor and vehicle for
72 h. Then RNA was collected, and gRT-PCR was performed (n = 3). (H) Young HOK and skin fibroblasts were treated with SASP-CM and (SASP-+JAKI)-CM for 24 h,
respectively; the mRNA levels of SASP were analyzed. () mRNA levels of SASP in young HOK and skin fibroblasts, which were treated with SASP-CM, followed by
addition of JAK inhibitor 1 or vehicle for 24 h. (E) IR+vehicle group compared with IR+JAKi group. (E,G-I) Mean with SD. n = 3, *P < 0.05, **P < 0.01, **P < 0.001;
Student’s t-test. (A,D) Scale bar, 100 pm.
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FIGURE 4 | Senescent cells are eliminated by DQ treatment. (A) Young/senescent HOK and skin fibroblasts were treated with DMSO or DQ for 24 h, and collected for
apoptosis analysis using flow cytometry (n = 3), repeated three times independently (mean with SD. n = 3, ***P < 0.001; independent samples Student’s t-test; ns,
no significance). (B) HOK and skin fibroblasts were co-stained with calcein-AM (Invitrogen)/PI to visualize live cells (green fluorescence) and dead or late apoptotic
cells (red fluorescence) (n = 3; scale bar, 100 um). (C) Apoptosis markers PARP, caspase3, and cleaved caspase3 expression levels in young/senescent HOK and
skin fibroblasts after being incubated with DMSO or DQ for 24 h. Three independent experiments started with cell plating.
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FIGURE 5 | Senescent cell clearance mitigates radiation ulcer. (A) Toluidine blue staining pictures of mouse tongues at day 10 from non-radiation, radiation, and DQ

treatment mice. Lack of integrated epithelial barrier (ulcer) presents blue staining (n = 5). (B) Histological analysis of mouse tongues from non-radiation, radiation, and
DQ treatment mice (n = 5). (C) Images of posterior limbs from SD rats (non-radiation, radiation, and DQ treatment mice) on day 15 (n = 5). (D) Histological analysis of
skin tissues from non-radiation, radiation, and D+Q treatment rats at day 15 (n = 5). (B,D) Scale bar, 50 pm.
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and there was no statistical difference in body weight
between the DQ- and vehicle-treated groups after radiation
(Supplementary Figure 2). These findings suggest the
possibility that DQ treatment may alleviate DNA damage
and maintain the proliferative capacity of tissue cells by
eliminating senescent cells, thereby preventing the development
of radiation ulcers.

DQ Enhances Cancer Cell Radiosensitivity

Senescence induced by ionizing radiation can contribute to
tumor therapy via cell growth arrest (32) and autophagy (33). It
can antagonize apoptosis and consequently shelter a population
of dormant cells, and this anti-apoptotic effect ultimately leads to
cancer radiotherapy resistance (34) and tumor recurrence (35).
In our study, we assumed that senescent cells including senescent
tumor cells (irradiated tumor cells) might be viable targets of DQ.
CAL27 and MCF-7 cells are used as typical examples of head and
neck squamous cell carcinomas and breast cancer, respectively.
CAL27 and MCF-7 cells were exposed to 8-Gy irradiation and
then incubated with DQ for 24 h. Flow cytometry result showed
that a single dose of 1 mM D+20mM Q induced apoptosis of
CAL27 and MCF-7 and promoted radiosensitivity (Figure 7A).
We next assessed cell-cycle percentages using flow cytometry and
found that cells in the G1 phase were significantly increased in

non-irradiated DQ-treated CAL27 and MCE-7 cells compared
with the control group treated with DMSO (Figure 7B). This
phenomenon was also evident in irradiated cells (Figure 7B),
indicating that DQ treatment induces cell-cycle arrest at G1 and
S/G2/M checkpoints in CAL27 and MCF-7 cells. Proliferation
was measured by colony formation assays, which showed that DQ
reduced the colony formation ability of both CAL27 and MCEF-
7 cells (Figure 7C). Our results suggest that DQ induced tumor
cell apoptosis and also enhanced radiosensitivity and reduced
proliferative capacity in CAL27 and MCF-7 cells.

DISCUSSION

Radiation therapy is an indispensable treatment for tumors
that is applied to approximately half of cancer patients with
different effects. It achieves good results in the treatment of
head and neck and breast cancers. The radiation dose is
determined by the sensitivity of the tumor and surrounding
tissues (36). Oral mucositis is a crucial dose-limiting toxic
effect in radiotherapy for head and neck cancers (37), and
skin ulcers are a common side effect in patients with breast
cancer (38, 39). Radiotherapy induces DNA strand breaks,
ROS production, and oxidative stress that eventually trigger
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FIGURE 6 | Senescent cell clearance mitigates radiation ulcer. (A,B) Immunofluorescence staining of y-H2AX and Ki67 in mouse tongue and rat skin tissues from
non-radiation, radiation, and D+Q treatment groups (n = 5). (C) Immunohistochemistry staining of p16 in mouse tongue and rat skin tissue (n = 5). (D) Quantification
of mRNA expression for p16, p21, and SASP in mouse tongue tissues and rat skin tissues. (D) Mean with SD. n = 3, *P < 0.05, **P < 0.01, ***P < 0.001, # means
no significance; Student’s t-test. (A=C) Scale bar, 25 um.

cell senescence and amplify acute damage (9, 40, 41). Our  senescence-related genes and proteins was significantly increased
results show that senescence biomarkers accumulate in human  after radiation and accumulated over time in radiation-induced
radiation ulcers after radiotherapy. Moreover, the expression of  ulcer models.
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FIGURE 7 | DQ enhances radiosensitivity of cancer cells. (A) Irradiated or non-irradiated CAL27 and MCF-7 were incubated with DMSO or DQ for 24 h, then cells
were collected for analysis of apoptosis using flow cytometry. (B) Irradiated or non-irradiated CAL27 and MCF-7 cells were incubated with DMSO or DQ for 24 h; cell
cycle was analyzed by flow cytometry. (C) Representative colonies of irradiated or non-irradiated CAL27 and MCF-7. (A-C) n = 3; repeated three times independently
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Cellular senescence is a cell-intrinsic program, and there is
considerable evidence that senescent cells can affect neighboring
cells and surrounding environment via their SASP (42, 43).
In this study, senescent cells induced senescence and the
SASP in adjacent cells, and JAK inhibition alleviated the
SASP in senescent cells. Therefore, we reasoned that senescent
cells may be a viable target in alleviating radiation ulcer.

Furthermore, we found that DQ mitigated radiation ulcers
via the removal of senescent cells. We previously reported
that cordycepin prevented radiation ulcers by inhibiting cell
senescence, and in this study, we showed that removal of
senescent cells by DQ effectively ameliorated radiation ulcers.
Therefore, inhibiting cell senescence or clearing senescent cells
can be a therapeutic strategy in mitigating radiation-induced
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ulcers. Plausibly, JAK inhibition can also be used to treat
irradiation ulcers by alleviating the SASP; however, JAK
inhibition needs to be continuously administered daily to
maintain SASP inhibition. For this purpose, DQ would be
administered several times (e.g., once monthly) to minimize
senescent cells (19). Importantly, JAK inhibition causes severe
side effects after discontinuation, including cardiogenic shock,
tumor lysis syndrome, and even life-threatening events, but there
are no obvious side effects after DQ treatment discontinuation
(11, 44). Hence, DQ treatment is a better choice for mitigating
radiation ulcers than JAKi, and there is great potential to treat
radiation ulcers by developing safe and effective drugs that
inhibit SASP.

A major challenge in treating radiation ulcers is repairing
the ulcerated mucosa without promoting cancer, as KGF
was shown to promote growth of human epithelial
tumor cells (45). The development of potential agents
that mitigate radiation ulcers without accelerating tumor
growth is intensively needed in oncological supportive
care. A related report concluded that Smad7 prevents
radiotherapy-induced oral mucositis but does not prompt
tumor growth (46). Here, we showed that DQ treatment
alleviated radiation-induced ulcers by selectively eliminating
senescent cells. Moreover, DQ also enhanced radiosensitivity
and reduced proliferative capacity in representative CAL27 and
MCEF-7 cells.

In summary, we demonstrated that senescent cells persist
in radiation ulcers, and clearance of senescent cells by DQ
can effectively mitigate this painful side effect. Moreover, DQ
treatment can enhance cancer cell radiosensitivity. Our results
indicate that elimination of senescent cells is a potential
therapeutic method to mitigate radiation ulcers.
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Radiation therapy (RT) of thoracic cancers may cause severe radiation dermatitis (RD),
which impacts on the quality of a patient’s life. Aim of this study was to analyze the
incidence of acute RD and develop normal tissue complication probability (NTCP) models
for severe RD in thoracic cancer patients treated with Intensity-Modulated RT (IMRT)
or Passive Scattering Proton Therapy (PSPT). We analyzed 166 Non-Small-Cell Lung
Cancer (NSCLCQC) patients prospectively treated at a single institution with IMRT (103
patients) or PSPT (63 patients). All patients were treated to a prescribed dose of 60
to 74 Gy in conventional daily fractionation with concurrent chemotherapy. RD was
scored according to CTCAE v3 scoring system. For each patient, the epidermis structure
(skin) was automatically defined by an in house developed segmentation algorithm. The
absolute dose-surface histogram (DSH) of the skin were extracted and normalized using
the Body Surface Area (BSA) index as scaling factor. Patient and treatment-related
characteristics were analyzed. The Lyman-Kutcher-Burman (LKB) NTCP model recast
for DSH and the multivariable logistic model were adopted. Models were internally
validated by Leave-One-Out method. Model performance was evaluated by the area
under the receiver operator characteristic curve, and calibration plot parameters. Fifteen
of 166 (9%) patients developed severe dermatitis (grade 3). RT technique did not
impact RD incidence. Total gross tumor volume (GTV) size was the only non dosimetric
variable significantly correlated with severe RD (p = 0.027). Multivariable logistic modeling
resulted in a single variable model including Soogy, the relative skin surface receiving
more than 20 Gy (OR = 31.4). The cut off for Soogy was 1.1% of the BSA. LKB model
parameters were TD5g = 9.5Gy, m = 0.24, n = 0.62. Both NTCP models showed
comparably high prediction and calibration performances. Despite skin toxicity has long
been considered a potential limiting factor in the clinical use of PSPT, no significant
differences in RD incidence was found between RT modalities. Once externally validated,
the availability of NTCP models for prediction of severe RD may advance treatment
planning optimization.

Keywords: radiation dermatitis, dose-surface histogram, proton therapy, intensity modulated radiation therapy,
NSCLC, NTCP
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INTRODUCTION

The development of acute and chronic radiation-induced skin
injuries is a common side effect of radiation therapy (RT).
Acute radiation dermatitis (RD), with reactions evident one to
four weeks after the beginning of RT, may limit the duration
of treatment and the dose delivered (1, 2). The severity of
adverse dermatologic events ranges from mild erythema to moist
desquamation and ulceration, impacting on the quality of a
patient’s life (3). Acute RD occurs most frequently after RT of
breast, pelvic (e.g., anal cancer, vulvar cancer) and head and
neck malignancies, while lower incidence is reported for deeper
tumors as lung cancers (4).

Thanks to the advent of high-energy photon RT, which
provide more skin sparing treatments compared to older ones
with lower energy treatment machines, a general reduction
in RD incidence and severity has been achieved in the past
decades. Still, RD remains one of the significant adverse
effect of RT.

The introduction of most modern treatment modalities, such
as intensity modulated RT (IMRT) or proton beam therapy, has
nowadays changed the dose distribution patterns in the normal
tissues surrounding the tumors (5, 6). Accordingly, advanced
RT techniques have generally reduced the burden of radiation
related risks, included skin toxicity (7, 8). The substantial
sparing of organs-at-risk from proton beams compared to IMRT
is expected to theoretically further reduce radiation-induced
morbidity (9). However, the risk of a potential increase of skin
toxicity has long been considered a peculiar drawback in the
clinical use of protons. The higher beam entry dose of the
spread-out Bragg peak represents a disadvantage for the skin;
thus causing concern over a possible increase in skin adverse
effects (10, 11).

The skin response to radiation has been studied since
the discovery of X-rays (2, 12). Multiple patient-specific and
dosimetric features have been identified as risk factors for acute
skin toxicity after RT for diverse tumor locations, in particular
breast (7, 13, 14), head and neck (15) or brain tumors (16).
Notwithstanding this, normal tissue complication probability
(NTCP) modeling of skin toxicity is still not fully explored.
In addition, the available NTCP models are mostly designed
for dose-volume histogram (DVH) from a target volume (e.g.,
breast) (17-20) or are based on DVH from a pseudo-skin
structure defined as a layer of 2-5mm inward from the body
contour (15, 21, 22). A different approach could directly consider
the surface phenomena connected to the actual organ at risk, i.e.,
the skin (23).

In the present study, we analyzed the incidence of acute
RD in thoracic cancer patients treated with Intensity-
Modulated RT (IMRT) or Passive Scattering Proton Therapy
(PSPT) on a completed prospective randomized trial (24),
and we developed NTCP models for severe acute RD.
The model procedure was based on the introduction
of a fully automated method for skin definition as a
critical organ. Both the Lyman-Kutcher-Burman (LKB)
and multivariable logistic regression modeling strategies
were adopted.

METHODS AND MATERIAL

The study involved 225 patients with locally advanced
Non-Small-Cell Lung Cancer (NSCLC) enrolled in the trial
NCTO00915005. One hundred sixty-six patients were eligible for
the present analysis. The eligibility criteria included acute RD
follow-up data and availability of dose maps. All patients were
treated according to an IRB approved protocol (NCT00915005)
with image-guided IMRT (103 patients) or PSPT (63 patients) to
a prescribed dose of 66 or 74 Gy (RBE) in 33 or 37 conventional
daily fractions delivered with concurrent chemotherapy (CHT).
The typical three-field arrangement was used for all PSPT plans
(24). Typically, a posterior and lateral beams plus an oblique
beam that avoids lung parenchyma in its exit dose (25). In the
IMRT plans, six to nine equidistant, coplanar, axial 6-MV beams
were usually used (26).

Details of the protocol, patient and treatment characteristics
are reported elsewhere (27, 28). All dose maps were obtained with
a dose grid size of 2.0 x 2.0 x 2.5 mm?>.

For each patient, acute RD was assessed as the maximum
score recorded during the treatment and within 90 days after RT.
The RD was graded according to the National Cancer Institute’s
Common Toxicity Criteria for Adverse Events (CTCAE) version
3 into the following groups:

Grade 1: Faint erythema or dry desquamation

Grade 2: Moderate to brisk erythema; patchy moist
desquamation, mostly confined to skin folds and
creases; moderate edema

Moist desquamation in areas other than skin folds and
creases; bleeding induced by minor trauma or abrasion
Life-threatening consequences; skin necrosis or
ulceration of full thickness dermis; spontaneous
bleeding from involved site; skin graft indicated.

Grade 3:

Grade 4:

Dosimetric Analysis

For each patient, individual DICOM RT plans (computed
tomography (CT) scans, doses, and contoured organ structures)
were converted into Matlab-readable format (MathWorks,
Natick, MA, USA) using the CERR (Computational Environment
for Radiotherapy Research) software (29).

The epidermis (skin) was automatically defined by an in-
house segmentation algorithm developed on purpose. In detail,
the body contour was first corrected applying a Hounsfield
unit thresholding over a moving window to exclude possible
contribution from treatment bed. The resulting structure €2 was
then eroded by 3 mm [i.e., approximately the mean skin thickness
(30)]; the skin was then obtained subtracting from €2 its erosion
(Figure 1) according to the following equation

[\ (RO B[r]]

skin = skinz mm

skin,

where B[r] is a spherical structuring element of radius r, \
represents the set difference, and © stands for morphological
erosion (31).

The absolute dose-surface histograms (DSHs) of the skin thus
extracted were computed by an in-house developed library for
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FIGURE 1 | Pictorial representation of the skin segmentation and
dose-surface histogram extraction.

Matlab (23) according to

DVH(X)
DSH (x) = lirr(l) ﬂ
r—

The relative DSH were obtained using the Body Surface Area
(BSA) index as scaling factor. The BSA index was calculated
according to

)0.425 ) (H/cm)0‘725

BSA = 7.184.cm* (W /kg

Where W and H are patient’s weight and height respectively (32).

The following DSH metrics were extracted: the relative skin
surface receiving more than X Gy (Sy) in step of 1Gy, the
minimum dose given to the hottest x% skin surface in step of
5% (Dy), the skin near maximum dose (D) and the mean
dose (Dmean)-

Statistical Analysis

Acute RD was analyzed according to its severity, i.e., grade 3 (G3)
RD vs. GO-G2 RD. All the extracted skin dose parameters along
with patient-specific and treatment-related factors were analyzed
by univariate statistical methods for the above defined grouping.
Categorical variables were tested by Pearson’s x2-test or Fisher’s
exact test when appropriate; continuous variables were tested by
Mann-Whitney U-test.

Average relative DSHs stratified by treatment modality and
toxicity endpoints were compared at each dose point by two-
tailed t-test. A significance a-level of 0.05 corrected according
to the Holm-Sidik method for multiple comparison was
applied (33).

Normal Tissue Complication Probability

Modeling

For the defined endpoint, two different NTCP modeling
approaches were applied: the LKB model, built on generalized
equivalent uniform dose (gEUD) (34, 35) and recast for DSHs
(23), and the multivariable logistic model. The LKB model
parameters (TDsg, m and #) and their 95% confidence intervals
(CIs) were fitted as described in (36). TDsq is the value of the
uniform dose given to the entire organ surface corresponding to
the 50% probability to induce toxicity; m is inversely proportional
to the slope of the dose-response curve; and n accounts, in
this specific case, for the surface effect (n close to 0 meaning
weak surface effect, n close to 1 strong surface effect). Briefly,
the Maximum Likelihood method was used to find the best-
fit values of the LKB parameters by maximizing the logarithm
of the likelihood (LLH). The LLH function was numerically
maximized by the Nelder-Mead Simplex Method using an
in-house developed library for Matlab. Ninety-five percent
confidence intervals for parameters estimates were obtained
using the profile likelihood method.

In order to evaluate the possible impact of dosimetric
and non-dosimetric factors, the multivariable stepwise logistic
regression method for NTCP modeling was also applied (37, 38).
In the multivariable analysis were included only the variables
highly correlated with RD (p < 0.1 at the univariable analysis)
that were not collinear (correlation |Rs|<0.75) with variables
more correlated with RD.

The Leave-One-Out (LOO) method was applied to the whole
statistical pipelines to cross validate the models.

Model performance was evaluated by the area under the
receiver operating characteristic (ROC) curve (AUC) and by
balanced accuracy (39). Cut-off values on the ROC curve were
determined by Youden’s J statistic (40). Calibration plots were
also generated for graphical assessment of the agreement between
observed outcome and LOO prediction.

RESULTS

Of the 166 patients, 118 (71%) developed acute RD of any grade;
fifteen of 166 (9%) patients developed G3 RD. In particular, 71
(69%) of IMRT patients developed a RD of any grade compared
to 47 (75%) of PSPT patients; G3 RD occurred in 8 IMRT (8%)
and 7 (11%) PSPT patients, respectively. The distribution of RD
grades for each treatment modality is reported in Figure 2. There
were no cases of grade 4 toxicity.

No significant differences were found in the distribution of
clinical and disease factors between patients classified according
to the treatment modality (Table 1). In addition, the univariate
analysis did not show significant correlations between treatment
modality and the incidence of RD categorized for any grade
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0 1 2 3
CTCAE Grade Dermatitis

FIGURE 2 | Distribution of radiation dermatitis (RD) grades for patients
categorized by treatment modality [Intensity Modulated Radiation Therapy
(IMRT) vs. Passive Scattering Proton Therapy (PSPT)].

threshold (grade > 1: p = 048; grade > 2: p = 0.19;
grade > 3: p = 0.58).

The analysis of average skin DSH in patients stratified by
treatment modality (Figures 3A,C) showed that PSPT, compared
to IMRT, significantly reduced the skin surface receiving low
doses (<12 Gy). An opposite behavior can be observed in the
range from 25 to 55Gy. Average skin DSHs of patients with
and without G3-RD showed instead a significant separation
between the two curves starting from the dose value of
5 Gy (Figures 3B,D).

At univariate analysis for patients stratified according to
G3 RD (Table2), all the S, metrics for doses greater than
5Gy were significantly correlated with G3-RD; among the
clinical variables, total gross tumor volume (GTV) size was the
only non dosimetric factor significantly correlated with severe
RD (p = 0.027).

From NTCP model training, LKB model resulted in the
following parameters: TD5p = 9.5 Gy (95% CI: [5.9, 18.4] Gy),
m = 0.24 (95% CI: [0.17, 0.35]), n = 0.62 (95% CI: [0.36, 0.92]).
Model performance metrics for both training and LOO cross
validation were reported in Table 3.

Regarding the logistic modeling, after the variable selection
procedure, multivariable modeling resulted in a single variable
model including Sygy (OR = 314, 95% CIL. [7.5, 131.7],
constant= —6.344 1.03). The ROC analysis identified that the
optimal cut-off for Syogy was 1.1% of the BSA.

Similarly, to the LKB model, the logistic model achieved
high prediction performances as shown by the AUC values
reported in Table3. LOO cross validation confirmed
good prediction and calibration performances (Table3 and
Figure 4). Notably, the balanced accuracy demonstrated a good
generalization score and a robust prediction capability despite
data imbalance.

TABLE 1 | Comparison of clinical and disease characteristics between patients
classified according to treatment modality.

IMRT PSPT P-value*
(103 patients) (63 patients)
Continuous variables Median (range) Median (range)
Age at RT (yr) 65 (30-85) 67 (39-80) 0.12
GTV Volume (cm?®) 80.5 (5.8-686.6) 71.0 (1.9-651.8) 0.92
Weight (Kg) 78.2 (48.0-131.4) 81.5 (47.2-122.5) 0.23
Height (cm) 176 (163-180) 176 (164-178) 0.82
BSA (m?) 1.95 (1.50-2.43) 1.96 (1.48-5.43) 0.43
Categorical variables N (%) N (%)
Gender 0.87
Female 46 (45) 27 (43)
Male 57 (55) 36 (57)
Tumor localization 0.49
Left lung 32 (33) 24 (40)
Right lung 65 (67) 35 (60)
Lower lobe 23 (24) 20 (34) 0.34
Middle lobe 5(5) 3 (5)
Upper lobe 69 (71) 35 (58)
Prescribed dose 0.19
66 Gy 44 (43) 20 (32)
74 Gy 59 (57) 43 (68)
Smoking 0.37
No 10 (10) 3(5)
Yes 93 (90) 60 (95)
Radiation Dermatitis 0.6
Grade 0 32 (31) 16 (25)
Grade 1 37 (36) 27 (43)
Grade 2 26 (25) 13 (21)
Grade 3 8(8) 7 (11)

RT, Radiation Therapy;, GTV, Gross Tumor Volume; yr., year; BSA, Body Surface Area;
IMRT, Intensity Modulated Radiation therapy, PSPT, Passive Scattering Proton Therapy.
*“Mann-Whitney U test for continuous variables and x? test for categorical variables.

DISCUSSION

The treatment of choice for many thoracic cancers, such as
NSCLC, consists in RT given with either concurrent or sequential
CHT (10, 41). Radiation induced morbidity to main organs at
risk (heart, lungs, esophagus etc.) represents a major concern
for radiation treatment. Advanced technologies may potentially
reduce the risk of damaging normal tissue, and in particular the
favorable physical characteristics of energy deposition in Hadron
therapy make it a promising strategy for normal tissue dose
sparing and for reducing the side effects of RT.

The skin, however, raises unique issues that deserve a separate
discussion. Indeed, the initial dose build-up typical of photons is
advantageous for skin sparing, compared to the higher entrance
dose deriving from the pile-up of Bragg curves in the production
of spread-out Bragg peaks. This effect may lead to an increase in
incidence or severity of skin toxicity with a potential detrimental
impact on both the RT course and the patients quality of life. In
addition, different amounts of dose may be delivered to the skin
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FIGURE 3 | (A) Average skin Dose Surface Histograms (DSHs) 4+ SEM (Standard Error of the Mean) normalized to Body Surface Area (BSA) in patients treated with
Intensity Modulated Radiation Therapy (IMRT) and Passive Scattering Proton Therapy (PSPT); (B) Average skin DSHs &+ SEM normalized to BSA in patients who
developed severe (G3) radiation dermatitis (G3-RD) and who did not. SEM are plotted as dashed lines. (C) Semi-logarithmic plot for the two-tailed t-test between DSH
values for PSPT and IMRT at each dose point; (D) Semi-logarithmic plot for the two-sample t-test between DSH values for G3-RD and unaffected patients. In (C,D)
blue line for two-tailed t-test p-value, and red line for a-level of 0.05 corrected for multiple comparison according to Holm-Sidak method.
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depending on the particular technology adopted to give proton
therapy, which can rely on either passive scattering or active
scanning techniques (42).

The domain of radiation-related skin side effects following
proton beam therapy were recently investigated for brain tumor
patients (16, 43). Erythema of grade 1-2 was found to be
significantly correlated to skin (defined at 3mm depth) dose
volume parameters in the high dose region (V3sgy) from both
passive or active scanning proton beams. In a different study
on severe RD following PSPT for breast cancer, the authors
identified as prognostic factors the Vsysgy or the Digec of the
skin structure defined as a layer of 5 mm inward from the body
contour (21).

Few studies have performed a direct comparison on RD
incidence following proton versus photon treatments. Acute side

effects were compared in a retrospective study on a small cohort
of patients after proton beam therapy (18 patients) and IMRT (23
patients) for head and neck cancer (44). Interestingly, in their
study, the authors found a greater rate of G2 RD in the proton
therapy group, but no difference in the rate of G3 RD between
proton and IMRT. Recently, De Cesaris et al. (11) reported
on RD after treatment of 86 breast cancer patients undergoing
adjuvant proton or photon RT. They observed an increase in
moderate (G2) toxicity associated to proton therapy; again, no
significant difference between treatment modalities was found for
severe RD.

In the present study, we analyzed the data from a randomized
trial on PSPT vs. IMRT treatment for inoperable NSCLC patients,
and we addressed different aspects related to radiation-induced
skin reactions. This study has the unique characteristic of directly
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TABLE 2 | Patient, treatment characteristics, dosimetric parameters and
univariate analysis against acute grade 3 radiation dermatitis (G3 RD) status.

No G3 RD G3 RD P-value*
Continuous variables Median (range) Median (range)
Age at RT (yr) 66 (33-85) 62 (37-74) 0.13
GTV (cm®) 71.9 (1.9-686.6) 139.3 (12.2-599.2) 0.03
Weight (Kg) 80 (47-129) 84 (59-131) 0.78
Height (cm) 176 (162-180) 176 (166-180) 0.38
BSA (m?) 1.94 (1.48-2.41) 2.02 (1.63-2.43) 0.36
Ssay (%) 2.8(0.7-6.0) 3.9 (1.7-6.6) 0.02
Siogy (%) 1.9(0.3-3.9) 2.5(1.5-4.4) <0.001
Sisay (%) 1.3(0.1-2.9) 2.3(0.1-3.1) <0.001
Soogy (%) 0.8 (0.0-2.2) 1.5(0.7-2.4) <0.001
Sosay (%) 0.5 (0.0-2.0) 1.0(0.3-1.9) <0.001
Saogy (%) 0.3 (0.0-1.1) 0.8 (0.3-1.8) 0.001
Sssay (%) 0.1 (0.0-0.1) 0.5(0.0-1.7) <0.001
Saoay (%) 0.02 (0.00-0.10) 0.3 (0.0-1.6) <0.001
Susay (%) 0.00 (0.00-0.01) 0.01 (0.00-1.50) <0.001
Categorical variables N (%) N (%)
Gender 0.43
Female 68 (45) 5 (33)
Male 83 (55) 10 (67)
Tumor localization 0.40
Left lung 48 (34) 7 (47)
Right lung 92 (66) 8 (53)
Lower lobe 39 (28) 4(27) 0.32
Middle lobe 6 (4) 2 (13)
Upper lobe 95 (68) 9 (60)
RT modality 0.58
IMRT 95 (63) 8 (563)
PSPT 56 (37) 7 (47)
Smoking 1.00
No 12(8) 7)
Yes 139 (92) 14 (93)

RT, Radiation Therapy; GTV, Gross Tumor Volume; yr., year; BSA, Body Surface Area;
IMRT, Intensity Modulated Radiation therapy; PSPT, Passive Scattering Proton Therapy;
Sx (%), percentage skin surface receiving more than X Gy. ‘Mann-Whitney U-test for
continuous variables and x2 test for categorical variables.

comparing acute skin toxicity in a quite large cohort of patients
treated at the same institution with proton or photon RT.

First, we analyzed the differences of acute skin toxicity
between patients treated with IMRT and PSPT. Both the
depth of the lung tumor location within the body and the
passive proton technique—used in the trial patients—were
expected to increase the skin toxicity of the treatment. Despite
this, a key finding of our investigation was that the RT
technique did not impact neither incidence nor severity of
acute RD (Figure 2).

Then, we evaluated the dose to the skin taking advantage
of the DSHs expressly extracted for the epidermis. The DSHs
were obtained by a fully automated algorithm that guarantees
a high level of standardization. To account for the different
patients’ sizes, the absolute DSHs were normalized using the

TABLE 3 | Normal tissue complication probability (NTCP) model performances for
acute grade 3 radiation dermatitis (G3-RD); 95% confidence interval are in
brackets.

G3-RD NTCP Model

Performance LKB MV Logistic
AUC 0.82[0.66, 0.90] 0.85[0.72, 0.94]
Accuracy 0.67 0.93
Balanced accuracy 0.76 0.78
CV-AUC 0.780.62, 0.88] 0.79[0.60, 0.90]
CV-Accuracy 0.69 0.91
CV-Balanced accuracy 0.74 0.77
CV-calibration slope (+SE) 0.76 £ 0.19 1.03 £0.23
CV-calibration intercept (+SE) 0.008 + 0.028 —0.003 + 0.039

LKB, Lyman-Kutcher-Burman; M, Multivariable; SE, Standard Error; AUC, Area under the
ROC curve; CV, cross-validation.

BSA (32) as scaling factor. The DSH differences between RT
modalities showed that PSPT succeeded in lowering the skin
surface receiving low dose (namely, <12 Gy), while the expected
increase in entrance dose was evident for intermediate to high
dose regime (i.e., higher than 25 Gy). Noteworthy, the switch in
dose sparing effectiveness between PSPT and IMRT happens at
a dose level in the range from 20 to 30 Gy. This range of doses
is known to be strongly related to the probability of radiation-
induced dermatological effects (12, 13, 16), as also confirmed
in the current study by the comparison of average skin DSHs
for patients grouped according to the development of severe
RD (Figure 3B).

Since the treatment modality did not correlate with the
considered outcome, the NTCP models for severe RD were
derived from the whole cohort of patients. We focused on
G3 toxicity due to its high clinical relevance. Two different
approaches were applied: the traditional purely dosimetric LKB
model and the multivariable logistic regression modeling scheme.
Both models indeed are important and can find their application
in clinical practice. The multivariate logistic model is more
flexible when non-dosimetric variables needs to be considered
and in order to build predictive tools for improving personalized
patient follow-up care. On the other hand, the LKB scheme is
more robust for treatment planning optimization (gEUD is a
superior evaluator than multiple DSH cut-off points), since it
controls the dose distribution over all dose range.

The LKB approach highlighted a relevant surface effect (n =
0.62) of the dose on RD development. While the LKB »n and
m parameter estimates were comparable with those obtained
in previous published models on acute skin toxicity (1, 13), a
TDsg of 10 Gy was a relatively low dose when compared to those
previous studies. However, a direct comparison was hampered
by the different modeling strategy (LKB recast on DSH) or the
different normalization procedure (the BSA as scaling factor)
adopted in the present analysis.

On the other hand, the multivariable logistic regression model
highlighted that the most and only significantly independent
toxicity predictor was the skin surface receiving more than 20 Gy.
The robustness of those radiobiological hints is supported by
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the good performances of both predictive models, which showed
cross-validated ROC-AUC:s close to 0.8.

The current interest in the investigation on the patterns of
dose-RD response is enhanced by the increasing attention to
the quality of life of patients undergoing RT, in turn triggered
by the substantially improved therapeutic ratio of the modern
treatment techniques. Precise knowledge of the radiobiology of
acute skin radiation effects constitutes the essential basis for the
development of biology-based treatment strategies. In addition,
severe acute skin reactions may be prodromal of consequential
skin late effects (45), thus making their prediction and, possibly,
prevention even more important.

The newest proton facilities have moved toward pencil beam
scanning technology. A phantom dosimetric study investigating
skin dose differences between spot scanning and passively
scattered proton therapy beams indicated that, on average,
a lower skin dose of about 12% was delivered when active
spot scanning proton beams were used (42). Thanks to the
higher flexibility with an enhanced modulation capability, the
combined use of active scanning beams and the inclusion of
skin specific model parameters in the planning strategies may
result in further skin dose sparing to minimize the occurrence
of cutaneous toxicity. In this respect, we focused on two classes
of NTCP models that could be easily ported on the most
common treatment planning systems used in the clinical practice.
Indeed, the DSH formalism can be implemented following
the procedure suggested in (23), thus directly allowing for
the application of the dose constraints (e.g., Sxgy) derived
by the logistic approach. On the other side, the estimation
of the n parameter of the LKB strategy can be exploited
for treatment plan optimization by constraining the gEUD,
which is a widespread empirical model available in several
commercial systems.

In order to improve our understanding of the mechanisms
underlying radiation-induced skin damage, future direction of
the research is the inclusion of spatial information of dose
distributions within the analysis of skin toxicity, as already
performed for different toxicity endpoints after RT (46-50). The
extraction of organ Dose-Surface Maps (51, 52) may allow for an
enhanced prediction of RT toxicity based on the knowledge of the
most radiosensitive skin areas.

Additional issues to be considered when modeling RD
should be the impact of CHT treatments and of different
RT dose fractionation schemes. Radiation-related skin side
effects have been associated to different patient-related factors
such as the use of radiosensitizing CHT and/or biologics
(1). In particular, both incidence and severity of RD may be
increased by concomitant CHT, although conflicting results are
reported in the available literature. For example, a randomized
comparison of patients treated for anal cancer by RT alone or
combined with CHT found overall RD in 76% for radiation
alone versus 93% for combined modality therapy (53). In
contrast, a three-arm randomized trial in advanced larynx
cancer found similar Grade 3-4 acute skin toxicities for patients
receiving RT alone (9%), concurrent RT-CHT (10%), and
sequential CHT-RT (7%) (54). Rates of acute and late skin

toxicity were not significantly different also in a retrospective
analysis of breast cancer patients undergoing lumpectomy
with or without adjuvant CHT followed by hypofractionated
RT (55). Recently, a multivariable NTCP analysis did not
highlighted any effect of CHT on severe RD in breast cancer
patients (13).

As regards to dose fractionation, greater dose per fraction are
generally of concern to normal tissue toxicities. However, data on
adverse skin reactions on patients who underwent Stereotactic
Body Radiation Therapy (SBRT) is still limited (1). Suggested
skin SBRT dose constraints (for toxicity grade > 3) were Djgcc <
23 Gy, for one single fraction of 34 Gy, and Do <30-33 Gy for
a total dose of 40-60 Gy in 4-5 fractions (56). Interestingly, these
dose constraints are in the range of doses strongly related to the
probability of RD (Figure 3B).

In the cohort analyzed in the current study, all patients
received concurrent CHT and standard fractionation regimens.
Future studies on large cohorts of patients undergoing
RT with and without the use of CHT treatments and
with different fractionation size are warranted in order to
shed light on the possible CHT enhancement factor and
fractionation effects.

A potential limitation of the study is related to the dose
calculation uncertainties in the first few millimeters from
body surface, which may be relatively large. However, in
order to quantify their impact on the modeling results, Mori
et al. (15) performed a sensitivity analysis showing that
dose uncertainty has negligible impact on logistic regressions
coeflicients. Furthermore, the percentage differences between the
measured dose to the skin and the estimate of the treatment
planning system with passively scattered proton beams was
evaluated in (42). The average measured doses resulted to be only
2% lower than the average calculated doses.

In conclusion, despite skin toxicity has long been considered
a potential limiting factor in the clinical use of proton
beam therapy, no significant differences in RD incidence
was found between IMRT and PSPT in the analyzed trial.
The developed NTCP models for the prediction of severe
RD, once externally validated, may advance treatment
planning optimization for the implementation of skin
sparing techniques.
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Purpose: Late gastrointestinal (Gl) toxicity after radiotherapy for prostate cancer may
have significant impact on the cancer survivor’s quality of life. To date, little is known
about local dose-effects after modern radiotherapy including hypofractionation. In the
current study we related the local spatial distribution of radiation dose in the rectum to
late patient-reported gastrointestinal (Gl) toxicities for conventionally fractionated (CF) and
hypofractionated (HF) modern radiotherapy in the randomized HYPRO trial.

Material and Methods: Patients treated to 78 Gy in 2 Gy fractions (n = 298) or 64.6 Gy
in 3.4 Gy fractions (n = 295) with available late toxicity questionnaires (n > 2 within 1-5
years post-treatment) and available 3D planning data were eligible for this study. The
majority received intensity modulated radiotherapy (IMRT). We calculated two types of
dose surface maps: (1) the total delineated rectum with its central axis scaled to unity,
and (2) the delineated rectum with a length of 7.cm along its central axis aligned on
the prostate’s half-height point (prostate-half). For each patient-reported Gl symptom,
dose difference maps were constructed by subtracting average co-registered EQD2
(equivalent dose in 2 Gy) dose maps of patients with and without the symptom of interest,
separately for HF and CF. P-values were derived from permutation tests. We evaluated
patient-reported moderate to severe Gl symptoms.

Results: Observed incidences of rectal bleeding and increased stool frequency were
significantly higher in the HF group. For rectal bleeding (o = 0.016), mucus discharge
(o =0.015), and fecal incontinence (p = 0.001), significant local dose-effects were
observed in HF patients but not in CF patients. For rectal pain, similar local dose-effects
(o < 0.05) were observed in both groups. No significant local dose-effects were observed
for increased stool frequency. Total rectum mapping vs. prostate-half mapping showed
similar results.

Conclusion: We demonstrated significant local dose-effect relationships for
patient-reported late Gl toxicity in patients treated with modern RT. HF patients were
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at higher risk for increased stool frequency and rectal bleeding, and showed the most
pronounced local dose-effects in intermediate-high dose regions. These findings suggest
that improvement of current treatment optimization protocols could lead to clinical
benefit, in particular for HF treatment.

Keywords: prostate cancer, hypofractionation, gastrointestinal toxicity, dose-surface maps, radiotherapy, NTCP

INTRODUCTION

Irradiation of tumors in the pelvic area through external beam
radiotherapy comes inevitably with dose delivery to nearby
organs at risk, such as the rectum. The potential permanent
impact of late gastrointestinal (GI) toxicity after radiotherapy
may have significant impact on the cancer survivor’s quality of life
(1). Preventing chronic late GI toxicity is therefore critical. For
this purpose understanding how we should distribute radiation
dose to surrounding normal tissues while keeping toxicity risks
as low as possible is critical.

The QUANTEC project (quantitative analysis of normal tissue
effects in the clinic) previously summarized the available clinical
data and models on acute and late radiation-induced toxicities
with the goal to improve patient care by providing useful
tools (2). These models were mainly derived from traditionally
fractionated 3D conformal radiotherapy (3DCRT). Shortcomings
and open issues of the available models have broadly been
recognized, including the uncertainty of fractionation effects,
a lack of reliable models for modern radiotherapy with
IMRT dose distributions and image-guidance, and a lack
of knowledge concerning spatial effects (3). This causes a
number of deficits in current strategies of treatment planning
optimization in the current era of IMRT, image-guidance, and
hypofractionated treatment.

With respect to the inhomogeneous dose distributions
in the rectum, achieved with either radiation technique or
fractionation schedule, we can theoretically translate physical
dose distributions into (radio)biological dose parameters using
mathematical models derived from radiobiology (4, 5). Altered
fractionation schedules in recent hypofractionation trials in
prostate cancer are based on such models (6-9). However, to
achieve reliable biological NTCP models for late GI toxicity after
modern RT, we first have to gain insight into local dose-effects
and (hypo)fractionation effects in real patient populations rather
than depending solely on theoretical models.

Historically, dose-response for normal tissues were evaluated
taking dose-volume distributions to a whole single organ into
consideration. It is nowadays recognized that function and
radiosensitivity may vary within an organ, and that dose-shapes
might be relevant. Therefore, local spatial dose evaluations
beyond the boundaries of delineations and dose-volume may
enhance our understanding of mechanisms causing radiation-
induced damage (10). In particular voxel-based dose mapping
procedures have been introduced to take into account the
spatial dose distribution by co-registering dose distributions to
a region of interest, often using a template patient. For hollow
organs such as the rectum, a spatial 2D dose distribution of

the rectal wall (ie., virtual unfolding of the rectum to a 2D
structure) is considered reasonably sufficient for this purpose
(11-18). Evaluation of local rectal and anal dose distributions
in relation to acute and late gastrointestinal toxicity endpoints
by means of dose mapping have been previously performed by
several research groups. This concerned mainly patients treated
with conventional fractionation schedules, identifying local dose
effects for various endpoints including rectal bleeding, fecal
leakage, and increased stool frequency (11-18).

In the current study we explored local rectal dose
distributions and their relation to GI toxicity endpoints,
for both hypofractionated (HF) and conventionally fractionated
(CF) treatment, using toxicity data and planning data from
the HYPRO trial. In this trial patients were randomized
between conventional and hypofractionated treatment,
delivered with modern radiotherapy techniques including
IMRT, image-guidance, and online prostate position verification.

MATERIALS AND METHODS

Patient Selection

The dataset of a recent Dutch randomized clinical trial (HYPRO)
was analyzed in which patients were randomized to 78 Gy in
conventional 2 Gy fractions (CF) or 64.4 Gy in hypofractionated
3.4 Gy fractions (HF) (19). Selected patients were eligible for the
current study in case both late toxicity data (n > 2 questionnaires
within the period 1-5 year post-treatment (N = 633, Table 2) and
3D planning data were available (which were not available for
40 patients), leaving 593 patients for the current study. Because
planning of patient visits may vary from the study schedule, we
accepted questionnaires up to 5.5 year post-treatment.

Treatment

Based on an estimated o/f for prostate cancer of 1.5Gy, the
EQD2 was 90.4 Gy for HF vs. 78.0 Gy for CF. For normal rectal
tissue with an estimated a/p of 3 Gy, the EQD2 was 82.7 Gy
for HF vs. 78.0 for CF. The clinical target volume was the
prostate with or without the seminal vesicles (SV): based on the
estimated risk of SV involvement according Partin tables (20),
a SV dose of 0Gy, 72.2Gy, or 78 Gy was planned (19). The
outer contours of the rectum were delineated on the planning CT
scan from the anal verge to the bottom of the sacro-iliac joints.
The HYPRO protocol prescribed that the rectal volume receiving
83% of the prescribed dose should be below 50% for the total
rectal volume or below 60% for the rectal wall. Further treatment
optimization was performed in accordance with local protocols
at each participating center. The applied treatment technique for
99% of the patients was image-guided IMRT with daily online
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positioning of the prostate. For this purpose, cone beam CT was
used in 23% and portal imaging devices was used in 77% of the
cases. A small proportion was treated with 3DCRT (1%). One
center applied a rectal balloon, which pushes the posterior rectal
wall out of the intermediate dose region (21). Further details of
treatment planning have been previously reported (6, 19). CF
patients received 5 fractions per week, and HF patients 3 fractions
per week with 1 day intervals (Monday, Wednesday, Friday).

Toxicity Endpoints

The patient-reported GI symptoms were extracted from a
patient-reported symptom list (questionnaire) distributed in the
HYPRO trial at the late time points of 6 months, and yearly
between 1 and 5 year (22). Evaluated GI symptoms were: rectal
bleeding, fecal incontinence, pain/cramps with stools, mucus
discharge (all had to be reported as moderate or severe to be
scored), and increased stool frequency > 4 per day. We identified
from all available questionnaires the maximum score for each
toxicity endpoint of interest.

Dose-Surface Maps

For the rectal wall the dose surface mapping was based on
a central axis which was first computed as the maximum of
a Euclidean distance transform. The average length of the
delineated rectum along the central axis was 14.9 cm for both
HF and CF. The intersections of equidistant slices perpendicular
to this axis with the delineated rectum surfaces provided the
corresponding locations between patients. We calculated two
types of dose surface maps: (1) “total rectum mapping”: the
delineated rectum with its central axis scaled to unity, and
(2) “prostate half mapping”™: the delineated rectum next to the
prostate with a length of 7 cm along the central axis (plus 4 cm in
cranial direction and minus 3 cm in caudal direction, measured
from the half-height position of the prostate). These cutoffs were
chosen to cover the dose range in the rectum of about 50-100%
of the prescribed dose.

To correct a patient averaged dose-surface map for
fractionation effects using the linear-quadratic model (ie.,
equivalent dose in 2 Gy: EQD2), we applied a chosen a/f ratio
of 3 Gy to the dose distribution of each patient. The resolution
of the dose maps was chosen to effectively slightly exceed a
2mm dose grid resolution. In the circumferential direction 90
pixels were taken, i.e., every 4 degrees. In the axis direction of
rectum maps 100 pixels were taken, which would effectively
cover a 15 cm long rectum at 1.5 mm resolution. As a final step,
resulting dose-surface maps of individual patients (physical
and biological) could be averaged and subtracted for each
identified toxicity endpoint (yes vs. no). Further details have
been previously reported (14).

Statistical Analysis

Distributions of baseline characteristics within the HF and CF
group were calculated and tested for differences applying a
Chisquare test for the ordinal and binary variables, and a T-
test for age. Associations between clinical covariates and toxicity
endpoints were tested univariate using binary logistic regression.
For each evaluated GI symptom, dose difference maps were

constructed by subtracting average EQD2 dose maps of patients
with and without the toxicity of interest, separately for HF and
CF. For the calculation of a p-value for each dose difference
map, we used a permutation approach, randomly re-shuffling
the patients among the subgroups (23). For the determination
of significant differences within a dose-difference map, we
calculated and evaluated the false discovery rates “q” as a realistic
estimate of the local p-values, which is a practical and powerful
approach to tackle the multiple testing issue (24, 25).

RESULTS

Baseline Characteristics

The baseline characteristics of the selected study patients are
summarized in Table 1 which shows that distribution of the
characteristics are similar for HF and CF except for a history
of TURp which was more common in the CF group (11
vs. 7%, p=0.07, Table1). A history of TURp was however
not associated with any of the evaluated moderate to severe
GI symptoms.

Reported Gl Toxicities

In Table 2, the observed incidences of the late GI toxicities
of interest are summarized per treatment group, both for all
patients in the HYPRO trial who filled out >2 late questionnaires
(N =633) and for the selected group with available CT scans
and dose distributions (N = 593). These are the result of
accumulation over all available questionnaires between Year 1
and Year 5, taking maximum scores. The table shows that the
selected population with available dose information, was a non-
biased and representative selection of the patient group that filled
out late questionnaires.

TABLE 1 | Patient and treatment characteristics (N = 593).

Variable CF (n = 298) HF (n = 295) p-value*
Age (mean, sd) in years 70.1 (6.0) 69.5 (6.6) 0.2
TURp 11% 7% 0.07
Abdominal surgery 26% 25% 0.7
Diabetes mellitus 13% 14% 0.5
Adjuvant hormonal therapy 65% 63% 0.6
Fiducial markers 95% 95% 0.9
IMRT 98% 99% 0.3
T category

T1-2 46% 48% 0.7
T3-4 54% 52%

PTV margins prostate

5-7mm 89% 89% 0.9
8-10mm 1% 1%

Dose seminal vesicles

0Gy 23% 20% 0.4
72-78 Gy 77% 80%

*#p-values calculated with Chisquare test, except for age (t-test).
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About 35% of CF and HF patients experienced one or more
moderate to severe late symptoms after modern RT, accumulated
over the evaluated late period (Table2). Compared to CE
significantly higher incidences after HF treatment were observed
for the late endpoints of rectal bleeding and increased stool
frequency. More HF patients experienced multiple moderate to
severe GI symptoms.

Among the late GI endpoints of study, all endpoints showed
significant correlations with the other ones (i.e., if a patient
reported 1 symptom it was likely that he also reports one or more
of the other symptoms). Highest correlations were observed
between fecal incontinence-increased stool frequency, and rectal
bleeding-mucus discharge (p < 0.001).

Associations Between Clinical Covariates
and Toxicity Endpoints

The results of assessing the associations between baseline
covariates and the toxicity endpoints of interest are summarized
in Table 3. Rectal incontinence was significantly associated with
diabetes and age. Rectal bleeding and mucus discharge were
significantly associated with T stage.

Dose-Surface Maps

Figure 1 shows the average EQD2 dose-surface maps and local
standard deviations for both types of mapping and for both
groups (CF and HF). Comparing the EQD2 dose distributions of
CF and HEF, we observed that the high-dose area is darker red for
HF which can be explained by the somewhat higher prescription
dose in EQD2 for HF (82.7 Gy vs. 78 Gy). Furthermore, the rectal
surface receiving dose levels in the range of > 1-> 65 Gy EQD2
look very similar for HF and CE whereas the rectal surface
receiving dose levels in the range of > 65-> 80 Gy EQD2 were
on average different with larger surfaces for HF. From previous
calculations of “traditional” whole organ dose-surface histograms
(DSH), it is known that indeed the average DSH of HF vs. CF
only show a slightly unfavorable dose level in the range of > 65—
> 80 Gy EQD2 (supporting DSH figure in Supplementary File).

Furthermore, local standard deviations were larger for HF. The
rectum adjacent to the prostate, as shown on the prostate-half
maps, received dose levels in the range of 20-80 Gy, with the
largest standard deviations (i.e., variation between patients) at
the cranial and caudal side. The total rectum maps show dose
levels in the range of 0-80 Gy, with 0-10 Gy in the most caudal
15% (the anal canal region) and the most cranial part close to the
rectosigmoid region.

Dose-Difference Maps

For each toxicity endpoint, four dose difference maps were
constructed: total rectum mapping and prostate-half mapping,
and for each type of mapping the HF and CF version
(Figures 2, 3). In general, one or more significant dose difference
maps were obtained for all GI endpoints except for increased
stool frequency (lowest observed p = 0.086). All dose-difference
maps were also generated with physical dose instead of EQD2
dose, to check whether this might change results. Since they were
very similar to the EQD2 versions, we report here only results
based on EQD2 dose maps.

For rectal bleeding, large local dose differences (p = 0.016)
up to >10Gy were observed between patients with and
without this complaint (Figures 2, 3), but only for HF patients.
Remarkably, the prostate-half mapping (Figure 3) indicates
significant differences in the region next to the prostate, whereas
the total rectum mapping (Figure 3) indicates local dose-effects
at a more cranial part of the rectum. Both locations are regions
were on average ~60 Gy (EQD2) is received by the rectal tissue
(Figure 1).

For the late endpoint fecal incontinence, highly significant
local dose-effects were found for the region receiving
intermediate to high dose, i.e., in the neighborhood of the
prostate (Figures 2, 3), but again only for HF patients. For
mucus discharge, we also observed local dose-effects for HF
patients only, which were identified by the total rectum mapping
(Figure 2). Pain/cramps with stools was associated with local

TABLE 2 | Incidence of late gastrointestinal toxicity endpoint (evaluated by the patient as “moderate—severe”) on questionnaires in the period 1-5 year post-treatment.

>2 questionnaires (N = 633)

With available dose maps (N = 593)

CF HF p CF HF p
n =310 n =323 n =298 n =295

Late Gl endpoint
Stool frequency >4/day 12.3% 19.5% 0.013 12.1% 19.7% 0.011
Rectal bleeding 11.0% 16.7% 0.037 10.7% 17.6% 0.016
Mucus discharge 5.2% 6.2% 0.6 5.0% 6.4% 0.5
Pain/cramps with stools 7.4% 9.9% 0.3 7.7% 10.2% 0.3
Fecal incontinence 10.6% 11.1% 0.8 10.7% 11.5% 0.8
>1 symptom 30.3% 35.6% 0.16 30.2% 36.3% 0.12
>2 symptoms 12.6% 18.0% 0.061 12.4% 19.3% 0.020
>3 symptoms 3.2% 6.8% 0.040 3.4% 71% 0.040

P <0.05 are indicated in bold. Gl, gastrointestinal; HF, hypofractionation; CF, conventional fractionation.
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TABLE 3 | Association between clinical baseline covariates and toxicity endpoints.

Stools > 4/day

Rectal bleeding

Mucus discharge Pain/cramps Fecal incontinence

HR P HR P HR p HR p HR P
Age > 70vs. <70 0.87 0.5 0.89 0.6 0.61 0.2 0.63 0.1 2.67 <0.01
TURp yes vs. no 1.19 0.6 0.90 0.8 1.34 0.6 0.37 0.2 1.96 0.07
Previous abdominal surgery yes vs. no 0.76 0.3 1.28 0.4 0.47 0.1 1.14 0.7 1.26 0.4
Diabetes yes vs. no 1.21 0.05 0.84 0.6 no result 0.97 0.9 2.05 0.024
AHT yes vs. no 1.02 0.9 1.1 0.7 1.98 0.09 0.63 0.1 1.16 0.6
T3-4vs. T1-2 1.00 1.0 1.60 0.046 2.13 0.04 1.00 1.0 0.87 0.6

P <0.05 are indicated in bold. Results from univariate logistic regression (N = 633). OR, Odds ratio; TURp, transurectal resection of prostate; AHT, adjuvant hormonal therapy; SV,

seminal vesicles.
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FIGURE 1 | Total rectum (upper panes) and prostate-half (lower panes) mean dose-surface maps with distance along central axis (vertical) against location along
circumference axis (horizontal). Left panes represent mean dose-surface maps of conventionally fractionated patients, right panes for hypofractionated patients. EQD2
= equivalent dose for 2 Gy fractions with a/p =3 Gy. Abbreviations: P, posterior; R, right; L, left; A, anterior; SD, standard deviation.

dose distributions in CF patients; for HF patients no such effect
was observed (Figure 2).

DISCUSSION

We explored local dose-effect relationships for GI toxicity in a
study population treated with both conventionally fractionated
and hypofractionated modern radiotherapy. Since both patient
groups were treated within the same randomized trial, this is
a unique dataset to study hypofractionation effects on rectal
toxicity with a perfect internal reference group of CF patients.
We observed significant local dose-effect relations for all studied

GI endpoints, except for increased stool frequency. For the
endpoints rectal bleeding, pain/cramps, and mucus discharge, we
observed differences between HF and CF in the patterns and
level of significance of local dose-effects, whereas for pain or
cramps with stools, observed patterns and levels of significance
were similar.

We evaluated two types of dose mapping. The “total rectum”
mapping is more accurate in matching specific anatomical sub-
locations within the rectum between different patients an also
covers the most cranial and caudal part of the rectum, whereas
the “prostate-half” mapping is more accurate in matching the
intermediate-high dose areas behind the prostate from one
patient to another. The identified local dose-effects for both types
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of mapping were similar with comparable p-values. Theoretically,
we expected that the prostate-half mapping would be more
accurate in identifying risks associated with high-dose regions
close to the prostate and is therefore of added value to the total
rectum mapping which covers the whole anorectal tract, which
was demonstrated in a previous study (14). However, we could
not confirm this in the current study.

In the current study we used patient-reported toxicity
from a prospective setting, accumulating the incidence over

available questionnaires between year 1 and 5. As a result,
30% (CF) and 36% (HF) reported >1 moderate to severe
complaint within this period. Previously, we reported that at
36 months of follow-up, 36% (CF), and 38% (HF) had a
clinically relevant deterioration on the gastrointestinal subscale
of the Prostate Cancer 25 Quality of Life module (26), which
is in fair agreement with the current findings based on the
symptom questionnaire. As discussed in this previous paper
(26), reported toxicity incidences and differences between CF
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and HF in the HYPRO trial are unfavorable compared to the
CHHIP trial (7), which may have been caused by differences
in target definition (for most HYPRO patients inclusion of
the seminal vesicles), different patient population (HYPRO
patients were mainly high-risk patients), and especially by a
greater difference in EQD2 dose levels (with an o/p of 3 for
normal tissue): 78 Gy (CF) vs. 82.7Gy (HF) for the HYPRO
trial, and 74Gy (CF) vs. 72Gy (HF - 20 x 3) for the
CHHIP trial.

As reported by several previous studies, prospective
registration translates in general into relatively high incidences
of toxicity when compared to studies where only physician-
reported toxicities are used, as we also previously demonstrated
for the HYPRO trial (19). When we compare our patient-
reported rates of rectal bleeding and fecal incontinence with the
recent study of Onjukka et al. who also used patient-reported
late toxicity in a modern IMRT setting with mainly conventional
fractionation and partly mild hypofractionation, the reported
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rates are very similar for both endpoints: about 10% in both
studies (18).

We found that patient-reported GI toxicity incidences were
higher for HF compared to CF with respect to the endpoints
>3 symptoms, stool frequency, and rectal bleeding. Furthermore,
we demonstrated that after converting both the HF and CF
dose maps with the linear-quadratic model (with a/f of 3 Gy)
to EQD2, we obtained very different dose-difference maps
(Figures 2, 3) where we would expect similar local dose-effects.
This suggests that just by calculating EQD2 for a HF schedule,
this might not completely capture the biological effect of a HF
treatment. There are several differences between the HF and CF
group which might have contributed to the observations of both
higher incidences and different dose-difference maps: (a) applied
dose constraints were based on earlier studies with CF; (b) the
rectum dose for HF was on average somewhat higher because of
the higher EQD2 prescription dose of 82.7 Gy with a/p = 3; (c)
local dose variations (standard deviations) were larger for the HF
group; and (d) HF was delivered three times a week with 3.4 Gy
fractions instead of 5 times a week 2 Gy fractions.

The symptom rectal bleeding was highly correlated with
mucus discharge, which can be expected since both symptoms are
the result of a radiation proctitis. In the literature, the endpoint
of rectal bleeding has been extensively studied and modeled since
it is regarded as a dose-limiting late toxicity (3). We observed
a significantly higher incidence of patient-reported moderate to
severe late rectal bleeding for HF compared to CF (17.6% vs.
10.7%). We previously reported the EORTC/RTOG grade >2
incidence of rectal bleeding (requiring clotting time), which was
also higher for HF patients (5 vs. 2%, p = 0.11). (22). For rectal
bleeding pronounced local dose-effects were observed in the
dose-difference maps in the moderate to high-dose rectal regions
close to the prostate, but only for HF patients. The location is in
general in concordance with the literature based on conventional
treatment, were high-dose regions above ~60-70 Gy are found
to be relevant for rectal bleeding. Applied dose constraints in the
clinic are based on these published models (3). In the HYPRO
trial, rectal volumes receiving >83% of the prescribed dose (i.e.,
>65 Gy for CF and >54 Gy for HF) had to be limited at treatment
optimization to <50%. Our results suggest that for HF this
planning criterion was suboptimal, resulting in increased risks of
rectal bleeding. However, this observation might also be in part
related to the higher EQD2 prescription dose of 82.7 Gy.

We observed similar fecal incontinence rates between CF and
HE but higher rates of increased stool frequency for HF (Table 2).
At the same time, these complaints were highly correlated. In a
recent study of Cicchetti et al. (27), comparing CF with mild HF
(2.25-2.75 Gy per fraction), higher levels of fecal incontinence
were observed for mild HF compared to CF. For the endpoints
increased stool frequency and fecal incontinence, dose to other
neighboring structures, such as pelvic floor muscles and nerves,
might be relevant as well, as reported in several studies (28, 29).
However, in other studies, similar rates of fecal incontinence
were observed between 3DCRT and IMRT groups whereas the
latter was associated with largely reduced dose levels to the anal
canal region (27, 30) which is in the same region as the pelvic
floor muscles.

As previously published, the results of the HYPRO trial were
negative with respect to its hypothesis, i.e., non-inferiority with
respect to Grade >2 toxicity and superiority with respect to
freedom from failure could both not be demonstrated for the
HF arm (6). Therefore, is this hypofractionation schedule of
19 times 3.4 Gy not recommendable or acceptable for clinical
practice. However, for studying hypofractionation effects and
dose-effect relationships these data are very useful. In current
clinical practice, the hypofractionation schedule of the CCHIP
trial (7) and the Widmark trial (9) have been adopted by centers
worldwide, in which hypofractionated treatment is distributed
over several weeks of treatment with intervals >24h between
fractions, similar to the HYPRO trial. To understand more about
fractionation effects and effects of intervals between fractions on
late (permanent) damage to normal tissues, additional modeling
of the dose and outcome data from hypofractionation trials is
essential. Recently, Wilkins et al. reported on dose-effect analyses
from the CCHIP trial, derived from both conventional whole
organ evaluation and from spatial dose mapping, aiming at
formulating novel dose constraints for mild hypofractionation
regimens in 3 Gy fractions (31). They report that different rectal
dose constraints were obtained for different GI symptoms. In
their study, spatial dose metrics did not improve prediction
compared to dose-volume information.

Data from the hypofractionated trial arm of the HYPRO trial
have been used for toxicity modeling using dose-volume data
and additional features derived from texture analysis (32). They
reported models for the GI symptoms of fecal incontinence and
rectal modeling including clinical factors, dose-volume factors,
and derived texture features. From other phase III randomized
hypofractionation trials (6-9, 33), there are to our knowledge no
publications yet on additional dose-effect modeling.

It is nowadays broadly recognized that incorporating
spatial local dose information from voxel-based organ-at-risk
calculations, in contrast to whole organ evaluations, has the
potential to improve NTCP models and therefore improve the
quality of derived planning constraints (10). Several studies
have demonstrated that spatial local dose metrics are suitable
for NTCP modeling of rectal toxicity compared to traditional
dose-surface (DSH) and dose-volume histograms (DVH) (12—
18). Recently, Casares et al. (34) reported on the superiority
of spatial metric by comparing NTCP models; they concluded
that predictability of patient-reported GI toxicity increased using
spatial metrics compared to DSH/DVH metrics. The HYPRO
data set is a very suitable dataset for bioeffect modeling of
toxicity with the goal to obtain meaningful NTCP models and
related dose constraints for optimized treatment planning with
modern techniques including hypofractionation. An essential
question to answer prior to the modeling is: how to summarize
the inhomogeneous dose distributions into meaningful dose
parameters for subsequent modeling. The dose maps resulting
from this study clearly show that especially intermediate-
high dose areas in the rectum are associated with a number
of GI symptoms, especially for HF treatment. As previously
described by Bentzen et al. (4), true equieffective dose levels
(with the same bioeffect) result in identical toxicity risks.
Further modeling of the HYPRO data, by constructing NTCP
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models based on calculated EQD2 dose for each group, may
demonstrate whether the calculated EQD2 levels are equieffective
or whether other biological factors have to be taken into
account to calculate the true biological equieffective dose.
Furthermore, relevant clinical covariates have to be incorporated
into such models as well to improve the predictive power
of such models. As shown in Table3, for the endpoint
fecal leakage (age and diabetes) and for the endpoints rectal
bleeding and mucus (T stage) predictive clinical covariates
were identified. Our ultimate goal is to use the current
findings to develop a biological NTCP model that correctly
incorporates fractionation effects, modeling the GI toxicity as
a function of biological dose. This could then theoretically be
applied to all types of dose distributions including different
fractionation schedules.

In conclusion, we demonstrated significant local dose-effect
relationships for patient-reported late GI toxicity in patients
treated with modern RT. HF patients were at higher risk for
increased stool frequency and rectal bleeding, and showed the
most pronounced local dose-effects in intermediate-high dose
regions. These findings suggest that improvement of current
treatment optimization protocols could lead to clinical benefit,
in particular for HF treatment.
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Purpose: To determine dose constraints that correlate with alopecia in patients treated
with photon-based Volumetric Modulated Arc Therapy (VMAT) for primary brain tumors.

Methods: During the treatment planning process, the scalp was drawn as a region of
interest. Dose received by 0.1 cc (Dg.1¢c), mean dose (Dmean), absolute volumes receiving
different doses (Vieay, Vooay: Vosay, Vaoay: Vasay: Vaoay, and Vasay) were registered for
the scalp. Alopecia was assessed according to Common Terminology Criteria for Adverse
Events (CTCAE) v4.0. Receiver operating characteristics (ROC) curve analysis was used
to identify parameters associated with hair-loss.

Results: One-hundred and one patients were included in this observational study. At
the end of radiotherapy (RT), 5 patients did not develop alopecia (Dmean Scalp 3.1 Gy).
The scalp of the patients with G1 (n = 11) and G2 (n = 85) alopecia received Dmean
of 10.6Gy and 11.8 Gy, respectively. At ROC analysis, Viggy20ay = 5.2 cC were the
strongest predictors of acute alopecia risk. Chronic hair-loss assessment was available
for 74 patients: median time to recovery from G2 alopecia was 5, 9 months. The actuarial
rate of hair regrowth was 98.1% at 18 months after the end of RT. At ROC analysis,
Vioayasay =2.2 cc were the strongest predictors of chronic G2-alopecia risk. Voogy,
Vi4oay, and Do 1cc Were shown to be independent variables according to correlation
coefficient r.

Conclusions: Voo, and V4ogy Were the strongest predictors for acute and chronic
G2 hair-loss, respectively. The low-dose bath typical of VMAT corresponds to large
areas of acute but transient alopecia. However, the steep dose gradient of VMAT allows
to reduce the areas of the scalp that receive higher doses, minimizing the risk of
permanent alopecia.
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Predictors of Radiotherapy-Induced Alopecia

The application of our dosimetric findings for the scalp may help in reducing the alopecia
risk and also in estimating the probability of hair-loss during patient counseling before

starting radiotherapy.

Keywords: alopecia, radiation-induced hair loss, scalp, constraints, predictors, VMAT, brain tumors, radiotherapy

INTRODUCTION

Due to the high radiosensitivity of hair follicles, radiotherapy
(RT) may induce hair-loss with a huge psychological impact and,
thus, negative effects on patient’s quality of life, also in case of
limited life expectancy (1-5).

In the treatment of brain tumors, the technology of IMRT and,
most recently, rotating gantry IMRT techniques such as VMAT,
can produce dose distributions that conform to the target volume
and deliver a reduced dose to the critical organs (6).

Recently, due to the increased conformality of IMRT
techniques, there has been considerable interest in sparing critical
structures not classically included into the list of intracranial
organs at risk, such as hippocampus (7) or dorsal vagal complex
(8). Likewise, the inclusion of the scalp among the organs at risk
may potentially reduce the incidence or the severity of hair loss.

In the present study we included a total of 101 patients
whose scalp was drawn as a region of interest to spare during
the treatment planning process. The present work reports a
dosimetric analysis of the scalp describing the risk of acute
and permanent hair-loss following cranial irradiation on limited
volume, performed with a VMAT approach.

The primary objective is to define dosimetric predictors for
hair-loss with the aim of using them as dose constraints during
the inverse planning process. Secondary aims were to analyze the
recovery time and to evaluate clinical factors possibly associated
with permanent alopecia.

METHODS AND MATERIALS

Consecutive patients treated for a primary brain tumor in our
Institute with a conventionally fractionated VMAT were included
in this observational study. Eligibility criteria included the use

of partial brain radiotherapy, conventional fractionation, total
dose >50 Gy, life expectancy > 4 months. Exclusion criteria
included previous radiation treatment on the brain; previous
chemotherapy; the need for whole brain radiotherapy; any
previously existing alopecia according to Basic and specific
(BASP) classification (9). All patients signed a consent form
before enrollment in this institutional review board-approved
study. Factors that may have an impact on alopecia such as
age, smoking history, use of antiepileptic drugs (AEDs) and
chemotherapy were registered.

Scalp as a Region of Interest During the

Treatment Planning Process

CT (Computed Tomography) image sets for radiation treatment
planning were acquired using a Brilliance Big Bore CT (Philips
Medical Systems). The slice thickness was 2 mm.

During the contouring process, a region of interest (ROI) was
defined for the scalp.

At the moment of simulation CT, beyond the custom
thermoplastic mask with the patient in the supine position (used
as immobilization device during the treatment, as usual), for each
patient a mask in prone position was molded (Figure 1A). With
the aim of tracing the extension of the follicle-bearing scalp, the
line between the hairy scalp and the hairless skin of the face and
of the neck was defined with a wire (Figures 1B,C). CT scan of
the mask in prone position without the patient was acquired for
each case. These images were co-registered to the simulation CT
of the corresponding patient, in order to avoid the hairless skin
beyond the wire.

The scalp volume was defined as a ROI including
the hair-bearing tissue between the skin and the outer
table of the skull, up to a maximum thickness of 5mm
(4, 10-12) (Figure 2).

FIGURE 1 | Example of a mask in prone position (A) with a wire (B,C) to exclude the hairless skin from the ROI of the scalp.
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FIGURE 2 | Scalp ROI (white line) on the simulation CT of a patient (A-C).
3D-view showing the scalp ROI (D).

The definition of the clinical target volume (CTV) varied
according to the primary tumor. The planning target volume
(PTV) was generated by adding a 3 mm isotropic margin to CTV.

VMAT plans were generated with Monaco (CMS-Elekta
Ltd, UK) using a Monte-Carlo algorithm. Most of the cases
were treated with a coplanar-partial arc technique. During the
treatment planning, the scalp dose was kept as minimal as
possible. Constraints to the other intracranial organs at risk
[brainstem, optic chiasm and nerves, cochleas, pituitary (13)] had
a higher priority than those of the scalp. The irradiation was
delivered, using 6-MV photons with an Elekta Synergy machine
equipped with a Beam Modulator multi-leaf collimator.

Hair Loss Assessment

Alopecia was assessed according to CTCAE version 4.0: Gl
alopecia was defined as hair-loss of <50% of normal for that
individual that is not obvious from a distance but only on close
inspection; a different hairstyle may be required to cover the hair
loss but it does not require a wig or hairpiece to camouflage;
G2 alopecia was defined as hair-loss of >50% normal for that
individual that is readily apparent to others; a wig or hairpiece
was necessary if the patient desires to completely camouflage the
hair loss; associated with psychosocial impact.

At the end of radiotherapy, in order to define the exact
extension of the areas of acute alopecia, patients were required to
wear the prone mask that had been molded during the simulation
CT. Areas of alopecia were defined on the mask with a wire

FIGURE 3 | Posterior view of a patient with a wide area of G2 alopecia (A) at
the end of radiotherapy; prone mask with the wire defining the area of alopecia
(B); original CT simulation of the patient with coregistration of the wired prone
mask (C,D); scalp ROl is black colored, area of alopecia G2 is white colored,
white arrows indicate the wire on the mask. 3D-view of the same patient at the
treatment planning (E).

(Figures 3A,B); a new CT of the mask without the patient was
acquired and, then, co-registered with the original simulation CT
of the corresponding patient. Afterwards, areas of alopecia were
contoured in order to obtain a treatment planning system-based
dosimetric evaluation of the acute hair loss areas (Figures 3C,E).

For all the patients dose-volume histograms of the following
ROIs were created: whole scalp, areas where GI alopecia
had developed during the treatment (G1l-alopeciaendofrT)> areas
where G2 alopecia had developed during the treatment (G2-
alop €Ciaendof RT)-

Data regarding volumes in cc were collected both for the
whole scalp and for the areas of acute alopecia. The following
dosimetric parameters were collected: dose received by 0.1 cc
of the ROI (Dg.1¢cc), mean dose (Dpean), absolute volumes that
received 16, 20, 25, 30, 35, 40, and 43 Gy (Visay, V20Gy> V25Gy,
V30Gy» V35Gy> VaoGy, and Vasgy).

Frontiers in Oncology | www.frontiersin.org

April 2020 | Volume 10 | Article 467


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

Scoccianti et al.

Predictors of Radiotherapy-Induced Alopecia

Patients were evaluated for hair loss at the end of radiotherapy
and, then, every 3 months for the first 3 years of follow up.

G2 hair loss persisting for >9 months after the end of RT was
defined as chronic alopecia.

Statistical Methods
A comparison between the dosimetric data was performed with
the Mann-Whitney test.

The probability of developing acute G2 alopecia as a function
of the Dy, ;. was calculated using the maximal likelihood method
according to the formula P(D) = [1 + (Dso/D)4*0] =1 where
the D5 was Dy 1¢c at which 50% of the patients developed acute
alopecia and y50 was the slope of the curve.

Receiver operating characteristics ROC analysis (14, 15),
already adopted by other authors to identify dosimetric
parameters associated with RT damage (16, 17), was used
to identify the dosimetric parameters related to the risk of
G2 alopecia. The maximum value of the Youden index (J)
(18) was used for selecting the optimal cut-off point for each
dosimetric variable.

Intercorrelation between dosimetric factors was analyzed:
dosimetric variables with coefficient r < 0.75 were considered
independent predictors.

Impact of clinical factors on incidence of acute alopecia was
analyzed with chi-squared (x2) test.

Kaplan-Meier survival analysis was carried out concerning
alopecia recovery. The observation time was measured from
the end of radiotherapy to complete recovery from alopecia
or to the last follow-up for cases with the persistence of hair-
loss. Differences between groups were evaluated by the log-rank
test. Cox proportional regression analysis was used to determine
the role of selected parameters on the risk of event occurrence
by univariate models. Multivariate Cox proportional- hazards
regression analysis was performed including only the variables
that were shown to be not intercorrelated (coefficient r < 0.75).

All the statistical tests were performed using the IBM-
SPSS Statistics software (Statistical Package for Social Science,
version 22).

RESULTS

A total of 101 patients were included in the study. Characteristics
of the patients are in Table 1.

Prescription doses ranged between 50.4 and 60Gy in
conventional fractionation. Mean scalp volume was 234.8 cc
(SD 46.9).

Dosimetry of the whole scalp was available for all the patients.
Of note, among the dosimetric parameters whose values were
collected, V2ogy, V4ogy» and Do,1¢c were shown to be independent
variables according to correlation coefficient r.

Acute Alopecia
Clinical and dosimetric evaluation at the end of RT was available
for all the patients.

TABLE 1 | Patients characteristics.

n Proportion (%)

Patients All 101 100
Gender Female 48 47.5

Male 53 52.5
Age Mean 51.7

Age <14 4 4.0

Age > 14 97 96.0

Age < 50 38 37.6

Age > 50 63 62.4
Smoking history no 68 67.3

yes 33 32.7
Histology High grade gliomas 68 67.3

Low grade gliomas 12 11.9

Meningioma 10 9.9

Others 11 10.9
Antiepilectic drugs no 24 23.8
during
radiotherapy

yes 77 76.2
Concomitant no 41 40.6
chemotherapy

Temozolomide 60 59.4
Chemotherapy no 34 33.7
after radiotherapy Temozolomide 59 58.4

Procarbazine, 8 7.9

vincristine, lomustine

Acute Alopecia: Dosimetry of the Whole
Scalp

Five patients who were treated for deep tumors (pituitary
adenomas n = 4; parasellar meningioma n = 1) did not develop
any area of alopecia. The remaining 96 patients developed acute
alopecia: 11 developed G1 alopecia only whereas 85 patients
developed G2 alopecia (G2 only n = 52; G1+G2 n = 33).
Significant differences in the dosimetric parameters were found
between the scalp of the patients who did not develop alopecia
and the scalp of patients who developed acute G1 alopecia and
G2 alopecia (Table 2).

Dy,1cc varied widely (Figure 4). D5, i.e., Do 1cc at which 50%
of the patients developed acute alopecia was found to be 33,0 £
0,2 Gy. The slope of the curve (y50) was 1,58 = 0,05 (Figure 5).

Acute Alopecia: Dosimetry of the Areas of

Alopecia

Volumetric data regarding the areas of alopecia were collected in
order to define the amount of hair loss in terms of percentage of
the scalp volume at the end of radiotherapy (Figure 6). The mean
volume of Gl-alopeciacq_of_rr and G2-alopeciaeng_of—rT Was
26.6 and 66.1 cc, respectively. On average, Gl-alopeciaend—of—RT
and G2-alopeciaeng_of_rr corresponded to 11.9% (SD 10.4) and
41.7% (SD 20.0) of the whole scalp volume, respectively. The
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TABLE 2 | Dosimetric comparison between the scalp of the patients who did not develop alopecia and the scalp of the patients who developed G1 or G2 alopecia at the
end of radiotherapy: mean values and standard deviations (in brackets) of dosimetric variables.

n Mean Dg.1cc Mean Dpmean Mean Viggy Mean Vyogy Mean Vasgy Mean Vzogy Mean Visgy Mean Vaoey Mean Vyagy
(Gy) (Gy) (ce) (ce) (ce) (ce) (ce) (ce) (ce)
Scalppatients no alopecia 5 19.7 (£ 12.6) 3.1 (£ 1.5) 2.7 (£3.7) 1.4(+1.9) 0.6 (£1.1) 0.2 (£0.5) 0.04 (£0.09) 0 0
Scalppatients with G1 alopecia 11 40.2 (£ 15.2) 10.6 (= 5.0) 45.2(+40.4) 31.0(+33.9) 22.2 (+26.9) 15.6(+20.5) 10.8 (£ 15.6) 7.4 (+ 12.1) 5.8 (+ 10.0)
at the end of RT
p-value from Mann-Whitney Test  0.02 0.001 0.002 0.02 0.03 0.04 0.90 0.90 0.09
Scalppatients with G2 alopecia 89 473 (£9.2) 11.8(+4.4) 68.8(+37.7) 50.6 (+33.4) 34.8(+27.5) 238.1(+22.0) 14.3(+ 16.9) 8.4 (£ 12.0) 5.9 (+9.3)
at the end of RT
p-value from Mann-Whitney Test  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001 0.004 0.005
Do, 1¢c, dose received by 0.1 cc; Dmean, mean dose; Vg, percentage of the scalp volume receiving > x Gy.
Bold text indicates statistical significance.
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FIGURE 5 | Maximum dose (Do, 1cc) @and acute G2 alopecia probability at the
end of radiotherapy: dose-response relationship.

mean volume of alopecia of any grade was 70.7 cc (corresponding
to 30.2% of the scalp, SD 20.7)

Significant differences in the dosimetric parameters were
found when G1-alopeciae,g_of_rT Were compared with alopecia
G2end—of—rr (Table 3).

Acute Alopecia: ROC Analysis

At ROC analysis, all the dosimetric variables were found to be
reliable parameters to distinguish patients at low-risk from those
at high-risk of acute G2 alopecia (Table 4).

Visgy and Vaogy were found to be the strongest predictors
for acute alopecia (AUC 0.776 and 0.792, respectively). Cut-
off values for high risk of development of alopecia at the end
of radiation treatment were 16.7 cc and 5.2 cc for Viggy and
VaoaGy, respectively.

Factors Impacting on Acute Alopecia

Gender (x2 test: p = 0.19), age (x2 test: p = 0.37), smoking
history (x2 test: p = 0.65), use of AEDs (x2 test: p = 0.09),
concomitant chemotherapy (x2 test: p = 0.17) did not have any
significant impact on acute hairloss incidence.

Chronic Alopecia

All the cases of persistent alopecia were an evolution of acute
alopecia (i.e., all the patients who had chronic alopecia, had had
previous acute alopecia in the same areas that did not recover; on
the contrary, all the patients who had had no acute alopecia (n =
5) did not develop chronic alopecia).

Hair-loss assessment for G2-alopecia was available for 74
patients. The mean follow-up was 9.7 months. At the moment
of analysis, 65/74 (87.8%) patients had a complete G2 recovery.

Late recovery from G2 hairloss was possible: 3 patients
recovered between 12 and 18 months. Median time to recovery
was 5.9 months (SD 2.8 months). Actuarial rate of G2 recovery
was 49.2, 87.0, 92.2, and 98.1% at 6, 9, 12, and 18 months after the
end of RT (Figure 7).

Chronic Alopecia: Dosimetry of the Whole
Scalp

Dosimetric analysis of the whole scalp excluded patients with a
follow-up shorter than 3 months (n = 5). Dosimetric parameters
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FIGURE 6 | Percentage of the volume of the scalp with G1 and G2 alopecia at the end of radiotherapy.

TABLE 3 | Dosimetric comparison between the areas of G1 alopecia and the areas of G2 alopecia at the end of radiotherapy: mean values and standard deviations (in

brackets) of dosimetric variables.

n Mean Do 1cc Mean Dyean Mean Viggy Mean Vyogy Mean Vasgy Mean Vaogy Mean Vasgy Mean Vaogy Mean Vasgy
(Gy) (Gy) (ce) (ce) (ce) (ce) (ce) (ce) (ce)
G1-Alopeciaeng of RT 44 334 (£ 14.3) 165(+8.3) 11.9(+146) 7.6(x9.6) 65(x11.8) 3.8(£7.9 2.4 (£6.4) 1.6 (£ 5.4) 1.3(+ 4.8
G2-Alopeciaeng of RT 85 446 (£ 11.2) 20.3(+6.4) 40.2 (+35.4) 31.5(£30.5) 21.8(+24.3) 14.8(+£18.9) 9.2(£14.3) 54 (x10.2) 36(x£7.7)
p-value from Mann-Whitney Test 0.0001 0.002 0.0001 0.0001 0.0001 0.0001 0.001 0.0001 0.001

Do. 1cc, dose received by 0.1 cc; Dmean, mean dose; Vygy, percentage of the scalp volume receiving > x Gy.

Bold text indicates statistical significance.

of the whole scalp of 8 patients who had a persistent alopecia (>9
months) were compared with the dosimetric data of 66 patients
who had an intact scalp within 9 months after the end of RT
(Table 5). Of note, patients who had not developed alopecia at
the end of radiotherapy (n = 5) were included among these
66 patients. V4oGy and Vy3gy were statistically different between
these two groups (Mann-Whitney test p = 0.028 and p = 0.036).

Chronic Alopecia: ROC Analysis

At ROC analysis, several dosimetric variables were significantly
related to the risk of permanent alopecia (Table 6). Among these,
VioGy and Vysgy were the strongest predictors for chronic G2-
alopecia (AUC = 0.738 and 0.725, respectively): patients whose
scalp ROI had V49Gy43Gy-

Kaplan-Meier Analysis and Cox

Regression for Recovery From Alopecia

All the dosimetric parameters that were found to be significant
predictors of chronic G2-alopecia at the ROC analysis (Do, 1cc,
Dmean> V30Gy> V3sGys Vaogy, and Visgy) and all the clinical
variables were included in the Kaplan-Meier analysis (Table 7).

Patients were stratified according to the cut-off values
defined at the ROC analysis for each dosimetric variable
with the aim to have dichotomous variables. All the
tested dosimetric parameters significantly impacted on
recover probability.

Age had a significant impact on recover probability (age
> 14 = 979 vs. age < 14 = 100%; log-rank test p =
0,01). No other clinical factors (gender, smoking history, use
of AEDs, chemotherapy) significantly influenced the recover
probability. Impact on recover probability due to different
chemotherapy schedules was not tested because, among the
cases with trichological follow-up, nearly all patients who had
sequential chemotherapy received temozolomide (52 out of
the 53).

Age and all the above mentioned dichotomous dosimetric
variables were found to be significant at univariate Cox
regression (Table8). Dgj.c maintained significance also
when tested as a continuous variable (p = 0,001) at the
univariate analysis.

Among the dosimetric factors, only V4gy and Dg,1.c were
included in the multivariate Cox regression, because they were
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TABLE 4 | Receiver operating characteristics (ROC) analysis for G2 alopecia at the end of radiotherapy.

Dosimetric variable AUC p-value for AUC Cut-off value Sensitivity, %

Specificity, %

Incidence of acute G2 alopecia Fisher exact test p-value

Low risk, % High risk, %
Do. 100 0.740 0.008 36.2 Gy 87.1 68.7 50.0% 93.7% 0.0000
Mean dose 0.714 0.02 6.9 Gy 87.1 56.2 55.0% 91.3% 0.0006
Vieay 0.776 0.001 16.7 cc 92.9 62.5 37.5% 92.9% 0.0000
Vooay 0.792 0.0003 5.2cc 100.0 56.2 0% 91.4% 0.0000
Vaosay 0.768 0.002 5.5 cc 85.9 68.7 52.2% 93.5% 0.0000
V3oay 0.756 0.003 2.3cc 85.9 68.7 52.2% 93.6% 0.0000
Vasay 0.736 0.005 0.7 cc 82.4 68.7 57.7% 93.3% 0.0005
Vaoay 0.685 0.02 0.6 cc 72.9 75.0 65.7% 93.9% 0.0004
Vazay 0.670 0.04 0.1cc 70.6 68.7 69.4% 92.3% 0.004

Do.1cc, Dose to 0.1 cc of the scalp volume; Vygy, percentage of the scalp volume receiving > x Gy; AUC, area under curve at ROC analysis.

Bold text indicates statistical significance.

Alopecia G2 recovery (%)

Time (months)

FIGURE 7 | Time to recovery from G2 alopecia.

shown to be independent predictors of chronic G2-alopecia
according to correlation coeflicient r. Multivariate analysis
confirmed the predictive value of age (p = 0.0002) and Vyogy
(p =0.02).

DISCUSSION

Hair loss, either temporary or permanent, is one of the most
stressful side effects for patients undergoing oncologic treatment
(1-5). Radiation-induced alopecia may permanently alter the
self-perception of the neurooncological patients and have a
significant impact on their quality of life (2, 5).

To our knowledge, this is the first study reporting a dose-
volume analysis of the scalp describing the risk of hair-loss
following a photon-based, conventionally fractionated VMAT
treatment on a limited brain volume. Herein we reported a
dosimetric analysis based on a TPS-based calculation to find

a dose-response relationship for acute and chronic alopecia.
Besides, although some authors reported about the possibility of
hair regrowth within some months after irradiation (19, 20), to
our knowledge, this is the first observational study focusing on
the analysis of recovery time of the scalp damage.

Dose-Response Relationship for Acute

Alopecia

On review of the available literature regarding photon-based
radiotherapy, the doses that have been reported to cause hair-
loss varied widely. Doses as low as 2 and 3Gy in a single
fraction might cause temporary alopecia according to some
authors (4, 10, 21, 22). In a study regarding the use of VMAT for
whole-brain irradiation (WBRT) in patients with multiple brain
metastases (19), the authors hypothesized that the threshold dose
for temporary alopecia is around 10 Gy in 5 fractions. By contrast,
Archambeau et al. (23) described that acute epilation may be
produced by a total dose of 20 Gy in conventional fractionation.

The risk of acute alopecia during IMRT has been explored
also for patients with head and ncek cancer: Rosenthal et al.
(24) provided recursive partitioning analysis in order to estimate
dose thresholds associated with observed toxicities in a series
of patients with oropharyngeal cancer treated with IMRT: they
found that alopecia in the occipital region occurred more
frequently when scalp maximum dose was >30 Gy (48% of cases)
vs. <30 Gy (19% of cases).

Our experience confirmed that acute alopecia may be caused
by very low doses: acute G2 alopecia developed also in areas
where Dpean may be as low as 1.9 Gy.

However, the fact that we found significant differences
regarding the dose received by the whole scalp between patients
that did not develop alopecia and patients who presented acute
hair-loss, demonstrated that a dose relationship with acute
alopecia exists. That was also confirmed by the dosimetric
analysis regarding the areas of alopecia: G2-alopeciaend—of—Rrr
received significantly higher doses than Gl-alopeciaend—of—rr
(Table 3). Lastly, the relationship between dose and acute
alopecia was also evidenced by the ROC analysis that showed that
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TABLE 5 | Dosimetric comparison of the scalp of the patients who had persistent alopecia at 9 months compared with the scalp of the patients who had complete
recover within 9 months: mean values and standard deviations (in brackets) of dosimetric variables.

ROI n Mean Do 1cc Mean Dyean Mean Viggy Mean Vaogy Mean Vosgy Mean Viogy Mean Vasgy Mean Viogy Mean Vyz gy
(Gy) (Gy) (ce) (ce) (ce) (ce) (ce) (ce) (ce)

Scalp 8 532 (£4.1) 141 (+£4.4) 78.7 (£ 31.3) 57.8 (£ 25.0) 40.1 (£ 17.4) 28.4 (£ 12.7) 19.6 (£ 9.7) 12.6(£8.4) 87 (£ 7.6

patients with alopecia at 9 month—follow up

Scalp patients with complete recovery from 06 46.7 (£ 10.6) 11.6 (£ 4.7) 66.8 (£ 39.3) 49.5 (£ 35.4) 34.7 (£ 29.9) 23.4 (£ 24.3) 14.8 (£ 18.7) 8.9 (£ 13.3) 6.4 (£ 10.4)

alopecia within 9 months after RT

p-value from Mann-Whitney Test 0.12 0.09 0.29 0.34 0.24 0.14 0.053 0.028 0.036

Do.1cc, dose received by 0.1 cc; Dmean, mean dose; Vygy, percentage of the scalp volume receiving > x Gy.

Bold text indicates statistical significance.

TABLE 6 | Receiver operating characteristics (ROC) analysis for G2 alopecia at 9 months after the end of radiotherapy.

Dosimetric variable AUC p-value for AUC Cut-off Sensitivity, %

Specificity, %

Incidence of G2 alopecia at 9 months Fisher exact test

p-value
Low risk, % High risk, %

Do.1cc 0.684 0.008 47.6 Gy 100.00 51.5 0.0% 17.4% 0.007
Mean dose 0.669 0.04 10.1 Gy 100.00 43.9 0.0% 14.0% 0.02
Vaogy 0.662 0.04 11.4 cc 100.00 39.4 0.0% 18.1% 0.04
Vasay 0.710 0.001 9.3 cc 100.00 54.5 0.0% 17.4% 0.005
Vaogy 0.738 <0.0001 5.4 cc 100.00 63.64 0.0% 21.0% 0.0000
Vasgy 0.725 0.0002 2.2cc 100.00 59.1 0.0% 19.5% 0.001

Do.1cc, Dose to 0.1 cc of the scalp volume; Vg, percentage of the scalp volume receiving > x Gy; AUC, area under curve at ROC analysis.

Bold text indicates statistical significance.

the most important predictors of acute alopecia were VigGy and
V20Gy (Table 4).

Consequently, during the treatment planning process, the
doses to the scalp should be kept as low as possible. However,
by maintaining Viecy < 16.7 cc and Vaogy < 5.2 cc, the risk
of acute alopecia may be limited. Since these two variables were
found to be interdependent, considering the better AUC and
statistical significance at the ROC analysis, we would suggest to
try to meet preferably the specified constraints for V20, with the
aim of reducing the risk of acute alopecia.

Moreover, we also found that 50% of the patients who
received Dy jcc of 33 Gy developed acute alopecia at the end of
radiotherapy. All these data may be precious to predict the risk of
acute hairloss when we talk with the patients about the toxicity of
the radiation treatment.

Dose-Response Relationship for Chronic
Alopecia

Our data showed that a dose-effect relationship exists for chronic
alopecia as well: the scalp of patients who completely recovered
from G2 alopecia received lower doses than the scalp of patients
who had persistent alopecia at 9 months. Of note, the difference
between these two groups of patients was significant only in terms
of high doses (Viogy, Vasy) (Table 6). Noteworthy, at ROC
analysis lower doses (<30 Gy) were not associated with chronic
G2-alopecia, while the most important predictors of persistent
alopecia were V4oGy and Vy3gy (Table 7).

All these data taken together indicate that, although low doses
(i.e., 16-20 Gy), are critical for acute alopecia (that is likely to
recover within some months), higher doses (i.e., 40-43 Gy) are
crucial for persistent alopecia.

To our knowledge, the only existing dosimetric study finding
a dose-response relationship that described the probability of
alopecia after photon-based radiotherapy has been reported
in 2004 by Lawenda et al. (25). The authors retrospectively
reviewed 26 patients and they concluded that follicle doses of
43 Gy are associated with a 50% risk of permanent alopecia.
Their results are notably different from our findings due to two
main reasons. First, the authors provided a very rough estimate
of the follicle dose, based on the sum of the entrance and
exit doses for each contributing radiation field, according to a
formula that took into account the absolute dose delivered to
the isocenter for the radiation field of interest; by contrast, the
present study provided an accurate calculation of the dose to the
scalp using a dose-volume histogram analysis calculated by the
treatment planning system. Secondly and even more importantly,
the patients included in the study from Lawenda et al. were
treated with simple conventional photon techniques (typical field
arrangements included parallel-opposed fields and right-angle
field pairs). On the other hand, all the patients in our series
were treated with VMAT-technique. The numerous beam angles
and resultant highly conformal dose distributions of intensity-
modulated treatments (IMRT and VMAT) make these modalities
particularly suited to scalp dose reduction. The use of arcs, typical
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TABLE 7 | Kaplan Meier analysis for factors impacting on the recovery probability
from G2 alopecia.

TABLE 8 | Univariate Cox regression for variables impacting the recovery
probability from G2 alopecia.

Variable pts Events %recovery p-value log rank test Variable p-value HR 95% ClI
Sex Age > 14y 0.017 0.27 0.09-0.80
F 33 28 - 0.99 Do.1cc > 47.6Gy 0.001 0.40 0.23-0.69
M 41 37 Dmean > 10.1 Gy 0.003 0.43 0.24-0.75
Age Vaogy > 11.4 cc 0.0001 0.39 0.22-0.67
<14 4 4 100.0 0.01 Vasay > 9.3 cC 0.0001 0.33 0.19-0.57
>14 70 61 97.9 0.70 Vioay > 5.4 cc 0.0001 0.35 0.20-0.63
<50 30 28 - Vigay > 2.2 cC 0.0001 0.36 0.21-0.64
>50 44 37
Smoking history DOM‘Cj Dose to 0.1 cc of the sca/p vo/ume;VX@‘y, percgntage of the sca/pl vg/ume
receiving > x Gy, HR, Hazard Ratio; Cl, Confidence interval. Bold text indicates
No 51 46 B 0.54 statistical significance.
Yes 23 19
Antiepilectic drugs . .
No 17 16 B 014 dose for WBRT (EQDZ 28-36 Gy) is significantly dlfferent'than
Ves 57 49 the one used for‘ primary tumors .(E.QDZ 50, 4-60 Gy)..Thlrdly,
. most of them did not include clinical data on alopecia: plans
Concomitant chemotherapy X . R 3
No o5 03 ~ 014 of patients who had been previously treated with conventional
Ves 19 " opposed lateral fields were simply replanned with IMRT to
. confirm the potential advantage of IMRT techniques in reducing
Sequential chemotherapy L. .
No . 19 017 scalp dose (10, 11, 28-30). Lastly, although some series including
' clinical evaluation of alopecia exist (12, 27, 28), their authors
Yes 53 46 . :
b did not generate hypotheses about dose/permanent hair loss
ot ce relationship and they did not provide clear dose constraints to
<47.6CGy 34 30 99.9 0.001 C e . . .
76 20 a 066 minimize the risk of chronic alopecia.
=4/, . . : . s
5 Y Due to the very superficial location of the scalp, the existing
mean uncertainty in the superficial dose calculation deserves some
<101y 29 21 999 0.002 considerations. The accuracy of dose modeling in the build-up
=106y 4 % 9.7 region mainly depends on the dose calculation algorithm used in
Vao ey a specific treatment planning system (TPS) (31). MC simulations
<i4ce 26 24 999 0.0001 have been used as a reference tool for superficial dosimetry
z14ce 48 41 97.0 evaluation of dose calculation algorithms in the commercially
Vas ey available TPS (32, 33) because they were shown to be consistent
<93cc 36 32 999 0.0001 with measurements obtained by extrapolation chambers (34, 35).
z9.3¢c 38 33 964 To our knowledge, there are no published studies specifically
Vao gy evaluating the accuracy of dose calculation in the build-up region
<5.4cc 42 38 99.9 0.0001 for Monaco TPS. However, since Monaco TPS uses a MonteCarlo
=54 cc 32 27 95.6 algorithm, we can assume that superficial dose is estimated by this
Vaz ey TPS with reasonable accuracy.
<22cc 34 34 99.9 0.0001 In this clinical experience, the majority of patients (95%)
>2.2¢cc 40 31 96.9 presented acute alopecia in a wide area of the scalp (by average
Total 74 65 30.2%). This phenomenon is due to the fact the highly conformal

Bold text indicates statistical significance.

of the VMAT technique, may further minimize the high doses to
the scalp because the surface dose is distributed over the length of
the arc (19). The investigation of Penoncello et al. (26) confirmed
that VMAT may be superior in minimizing dose to the scalp than
static-field IMRT.

The possibility to reduce the dose to the scalp with IMRT
techniques has been extensively explored in patients treated
WBRT for brain metastases (10-12, 19, 27). These studies differ
from the present study for several reasons: firstly, the number
of patients included was significantly lower (range 6(12)—17(27)
patients) compared to our experience; secondly, the prescription

dose distribution achieved with VMAT comes with the cost of a
larger volume of normal tissue receiving low radiation doses that
are sufficient to cause an acute injury to the hair bulbs.

On the other hand, VMAT led to satisfying results in terms
of hair regrowth (actuarial recovery rate = 98.1% at 18 months
after the end of radiotherapy) because of the high conformality
and rapid dose fall-off. We believe that the application of our
dosimetric findings may further decrease the risk of radiation-
induced hair-loss: maintaining Vigy < 54 and Vggy <
2.2 cc may help in reducing the risk of radiation-induced
chronic alopecia. Since these two variables were found to be
interdependent, considering the AUC and statistical significance
at the ROC analysis, we would suggest to try to meet preferably
the specified constraints for V40 in order to minimize the risk
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of chronic alopecia. Noteworthy, the importance of V40 was
confirmed also by the multivariate analysis.

Time to recovery was related to the dose, as shown by Kaplan—
Meier analysis and Cox regression analysis that confirmed the
significant impact of the dichotomous dosimetric variables on
recovery probability during the follow-up. Furthermore, Dg jcc
maintained significance also when tested as a continuous variable
(p = 0,001) at the univariate Cox regression analysis.

Age < 14 was the only clinical factor to be significantly
associated with a greater probability of recovery. Younger age was
identified as a positive factor also in the series of Rogers et al. (36).

In our experience, chemotherapy was not related to a higher
risk of alopecia. Of note, the majority of chemotherapy-treated
patients in the present series received temozolomide, whereas, in
other experiences where this relationship was found, other drugs
with a stronger alopecia-inducing power were used (10, 25).
Notably, increased risk due to smoking history was not evidenced
in our series.

Another point to mention is that the definition of dosimetric
thresholds for chronic alopecia may also help in estimating
the risk of this relevant side effect when discussing the
toxicity of treatment with our patients. So far, indeed, the
scarcity of available data about radiation-induced hair loss
has led to great difficulties in providing risk estimates for
given doses when radiation treatment is discussed with
patients (37).

Keypoints and Pitfalls of the Study

Strengths of this study are the following: first, given the little
literature on possible predictors of radiation induced alopecia in
patients treated with photons, this study adds new information,
especially considering the fact that it concerns VMAT technique.
Secondly, to our knowledge, this is the first existing observational
study with detailed measurements of the endpoint on patients
treated with photons. On the other hand, our study has several
limitations: the lack of a validation cohort to confirm our
dosimetric results is probably the most important shortcoming.
Secondly, a quality-of-life assessment or a patient-reported
outcome data to describe how the patients psychologically
experienced the hair loss would have added value to our research.
Thirdly, an important drawback of our work is the lack of
a more advanced modeling to robustly predict the risk of
radiation induced alopecia. In this regard, a very recent study
(38) provided normal tissue complication probability (NTCP)
model for alopecia in patients treated with scanning beam
protontherapy. Although it is necessary to take into account the
different dose distribution in the superficial tissues for protons
(which makes their results not applicable to photon-based
radiotherapy), it is of interest to know that relative scalp surface
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Background: This present study aimed to explore the prognostic value of pretreatment
neutrophil and lactate dehydrogenase (LDH) and to develop a prognostic risk scoring
model to predict prognosis in esophageal squamous cell cancer (ESCC) patients treated
with definitive radiotherapy.

Methods: Retrospectively collected data of patients who received definitive radiotherapy
for ESCC at Shantou Central Hospital between January 2009 and December 2015
were included for the analysis. The association between the level of LDH and neutrophil
and clinicopathological characteristics were analyzed. We performed univariate and
multivariate analyses to identify the prognostic predictors for patients with ESCC. Based
on the results, we also developed a prognostic risk scoring model and assessed its
predictive ability in the subgroups.

Results: A total of 567 patients who received definitive radiotherapy for ESCC were
included in the present study. The optimal cutoff values were 4.5 x 10%/L, 3.25, and
220 U/L for neutrophil, neutrophil-to-lymphocyte ratio (NLR), and LDH, respectively. A
high level of LDH was significantly associated with advanced N stage (p = 0.031),
and neutrophil count was significantly associated with gender (o = 0.001), T stage
(p < 0.001), N stage (p = 0.019), clinical stage (p < 0.001), and NLR (p < 0.001).
Multivariate survival analysis identified gender (o = 0.006), T stage (o < 0.001), N stage
(p = 0.008), treatment modality (p < 0.001), LDH level (o = 0.012), and neutrophil count
(p = 0.038) as independent prognostic factors for overall survival. Furthermore, a new
prognostic risk scoring (PRS) model based on six prognostic factors was developed, in
which the patients were divided into three groups with distinct prognosis (x2 = 67.94, p
< 0.0001).

Conclusions: Elevated baseline LDH level and neutrophil count predicted poor
prognosis for ESCC patients treated with definitive radiotherapy. A PRS model comprised
of LDH, neutrophil count, and other prognostic factors would help identify the patients
who would benefit the most from definitive radiotherapy.

Keywords: prognosis, esophageal squamous cell cancer, definitive radiotherapy, LDH, neutrophil
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INTRODUCTION

Esophageal cancer (EC) is one of the most common digestive
malignant tumors, with high recurrence rate and poor overall
survival (OS) (1). For patients with early EC, surgery is the
mainstay of treatment (2). The majority of patients with locally
advanced EC lost the opportunity for surgery at the time
of diagnosis. Definitive concurrent chemoradiotherapy (dCRT)
has been recommended as a standard treatment and plays
important roles in these patients (1). However, the effectiveness
of radiotherapy varies greatly among different patients, even
patients at the same TNM stage and who received similar
radiotherapy regimens, suggesting that there were some other
factors affecting the effectiveness of radiotherapy, including
patients’ characteristics, tumor subsite, and hematological
parameters (3-5). To our knowledge, no widely used prediction
model about prognosis has been established in patients with
esophageal squamous cell carcinoma (ESCC) treated with
radiotherapy. Thus, it is critical to identify more accurate
prognostic indicators and to develop a reliable prediction model
for estimating the prognosis of patients with ESCC treated
with radiotherapy.

The inflammation process has been proposed to be an
important feature in patients with malignant tumors (6),
which is involved in the progression of tumorigenesis, disease
development, and patient prognosis (7, 8). Furthermore, some
routinely tested blood parameters, such as neutrophil count,
lymphocyte count, and lactate dehydrogenase (LDH) level,
have been demonstrated as potential inflammatory biomarkers
and have prognostic value in patients with cancers (9-11).
Neutrophils are acknowledged as the first line of defense against
inflammations and infections, as well as play an important
role in the tumor microenvironment (TME) (12, 13). Previous
studies have shown that tumor-associated neutrophil (TAN) was
capable to suppress the immune system in the TME, which
results in treatment resistance and promotes cancer development
(14, 15). Patients with low neutrophil count were also found
to exhibit better radiosensitivity (16). However, the predictive
value of neutrophil count in the prognosis of ESCC patients
treated with radiotherapy is still unclear. Recently, the prognostic
value of LDH has been widely investigated in various cancers,
such as metastatic renal cell carcinoma (17), breast cancer (18),
nasopharyngeal carcinoma (19), prostate cancer (20), lymphoma
(21), non-small cell lung cancer (22), and ESCC (23, 24).
Although LDH and neutrophil count are reliable prognostic
predictors, it is still not clear whether they can be combined
together in a prognostic risk score model to predict the prognosis
of ESCC patients treated with radiotherapy.

In this study, we aimed to explore the role of neutrophil count
and LDH level in the prognosis of patients with ESCC treated

Abbreviations: LDH, lactate dehydrogenase; ESCC, esophageal squamous cell
cancer; dCRT, definitive chemoradiotherapy; PRS, prognostic risk scoring; EC,
esophageal cancer; OS, overall survival; EAC, esophageal adenocarcinoma; GTV,
gross tumor volume; GTVnd, nodal gross tumor volume; CTV, clinical target
volume; CTVt, tumor clinical target volume; CTVnd, nodal clinical target volume;
PTYV, planning target volume; NLR, neutrophil-to-lymphocyte ratio; ROC, receiver
operating characteristics; RFS, recurrence-free survival; CR, complete response.

with radiotherapy. We performed univariate and multivariate
analyses to identify the prognostic factors for the ESCC patients.
According to the results of the multivariate analysis, we devised
a prognostic risk scoring model for estimating the prognosis of
ESCC patients treated with radiotherapy.

PATIENTS AND METHODS
Study Design

We retrospectively reviewed the patients receiving definitive
radiotherapy for EC at the Department of Radiation Oncology,
Shantou Central Hospital during the period from January 2009 to
December 2015. Only patients pathologically diagnosed as ESCC
were included in this study. Patients with non-ESCC tumors
were excluded from this study. The remaining patients were
excluded if they met the following exclusion criteria: (1) patients
with distant metastatic disease; (2) patients who received low-
dose palliative radiotherapy (<50.4 Gy for patients treated with
radiotherapy without chemotherapy and <60 Gy for patients
treated with chemoradiotherapy); (3) patients who received
preoperative or postoperative adjuvant radiotherapy; (4) patients
who had recurrent disease and received radiotherapy for salvage
purposes; (5) patients who failed to complete therapy; and (6)
patients who had other primary tumor. This study was approved
by the Institutional Committee of the Shantou Central Hospital
on Human Rights. Disease of the patients was staged according
to the sixth edition of AJCC TNM classification for EC.

Radiotherapy Protocols

Radiotherapy was delivered by three-dimensional conformal
radiation therapy or intensity-modulated radiation therapy
technique in this study. A Varian IX or Varian 23EX linear
accelerator was used to deliver the radiotherapy treatment plan.
The treatment planning approach has been reported in our
previous study (25). Briefly, the gross tumor volume (GTV)
includes the EC (GTVp) and the positive regional lymph
nodes (GTVnd). The delineation of GTV was determined by
CT, barium esophagogram, endoscopic examination, or PET
imaging. The GTVp plus a 0.5-1cm radial margin and a 2.5-3 cm
proximal and distal margin and the GTVnd plus a 0.5-0.8 cm
margin were defined as CTV. The planning target volume (PTV)
encompassed the CTV plus a 0.5-1cm margin. All patients
received simultaneous integrated boost (SIB) radiotherapy,
which had been reported in a recent phase 1/2 trial conducted
by Chen et al. (26). The prescribed dose was 60-66 Gy to GTV
in 28-30 fractions, five fractions per week, and at least 50.4 Gy
to CTV in 28 fractions, five fractions per week. Two cycles of
platinum-based chemotherapy combined with 5-fluorouracil or a
taxane (docetaxel or paclitaxel) were administered on the patients
concurrently with radiotherapy.

Data of Hematological Index Collection

The pretreatment data of neutrophil count, lymphocyte count,
and LDH level were collected from the test reports. The cutoff
value for the LDH level was the upper limit of normal (ULN)
values set (220 U/L) of the biochemical detector used in our
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hospital. The neutrophil count divided by the lymphocyte count
was defined as the neutrophil-to-lymphocyte ratio (NLR).

Follow-Up

All patients were assessed weekly during radiotherapy to monitor
the treatment toxicities. Physical examination, blood routine, and
biochemical test were done at a weekly visit. The first follow-
up was 1 month after finishing radiotherapy, then continuing
every 3 months for 2 years and every 6-12 months until disease
progression or death. The last follow-up date was May 31,
2019. Physical examination, blood routine and biochemical test,
barium esophagogram, and contrast-enhanced CT scan of the
neck, chest, and abdomen were done at each follow-up visit.
Information on patients’ clinicopathological characteristics was
retrospectively collected from their medical records.

Statistical Analysis

Recurrence-free survival (RFS) was defined as the interval
from the date of definitive radiotherapy to either the first
evidence of any recurrence (local or distant metastases) or death.
OS was calculated from the date of treatment beginning to
either the date of death from any cause or last follow-up. A
chi-square test was performed to compare the differences of
patients’ clinicopathological characteristics. RES and OS rates
were estimated using the Kaplan-Meier method, and survival
curve comparisons were performed using the log-rank test.
Multivariate analysis was performed using a Cox regression
model to identify prognostic factors associated with OS. The
optimal cutoff value for NLR and neutrophil count to distinguish
the difference of complete response (CR) rate was determined
using the receiver operating characteristics (ROC) curve analysis.
A two-sided P < 0.05 was considered statistically significant.
All statistical analysis and data management were done with the
statistical software IBM SPSS v22.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

Patient Characteristics

A total of 567 ESCC patients who received definitive radiotherapy
for ESCC in our hospital were included in this study, with
413 (72.8%) men and 154 (27.2%) women. The patient
characteristics including age, gender, tumor location, T stage,
N stage, TNM stage, and treatment modality are summarized
in Table 1. All the patients received definitive radiotherapy,
with a radiation dose ranging from 50 to 78 Gy. Two hundred
and forty-seven (43.6%) patients received definitive radiotherapy
alone, and 320 (56.4%) patients received definitive concurrent
chemoradiotherapy. There were 209 (36.9%) patients who
achieved CR after radiotherapy.

Baseline Serum LDH Level, Neutrophil
Count, and Clinicopathological
Characteristics

At baseline, the pretreatment blood routine and blood
biochemical examination were performed in all 567 patients. The
median LDH was 208.0 U/L, ranging from 83.0 to 617.0 U/L.
The default normal range of LDH was 80-220 U/L according to

TABLE 1 | Baseline patient characteristics.

Characteristics Number (n = 567)

Age (years), median 64 (40-95)
<65y 298
>B65y 269
Gender

Female 154
Male 413
Location

Cervical 37
Upper thoracic 125
Middle thoracic 336
Lower thoracic 69
T stage

T 9
T2 162
T3 146
T4 260
N stage

NO 119
INE 448
TNM stage

Bl 238
[IIEZ\Y 329
Treatment

RT 247
CCRT 320
RT dose (Gy), median 64 (50-78)
<64 Gy 313
>64 Gy 254
Complete response

Yes 209
No 358
NLR, median 2.64 (0.60-31.67)

LDH (U/L), median
Neutrophils (10°/L), median

208 (83.0-617.0)
4.8(1.1-15.8)

the biochemical detector used in our hospital. The neutrophil
count ranged from 1.1 to 15.8 x 10°/L, with a median of 4.8
x 10°/L. The pretreatment NLR was calculated by the formula
of the neutrophil count divided by the lymphocyte count. The
median pretreatment NLR was 2.64, ranging from 0.60 to 31.67.
The ROC curve was used to determine the NLR and neutrophil
count thresholds to predict CR. The optimal cutoft values to
predict CR were 4.5 x 10°/L and 3.25 for neutrophil count and
NLR, respectively. The LDH threshold was determined to be 220
U/L according to the upper limit of normal. Using these cutoff
values, we stratified the patients into different groups (LDH <
220 U/L vs. LDH>220 U/L and neutrophil < 4.5 x 10%/L vs.
neutrophil >4.5 x 10°/L, respectively; as shown in Table 2). As
a result, 347 patients had a low level of LDH (=< 220 U/L), and
220 patients had a high level of LDH (>220 U/L). Two hundred
and fifty-one patients had a low count of neutrophil (£ 4.5 x
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TABLE 2 | The association between levels of LDH and neutrophil and clinicopathological characteristics in patients with ESCC.

Characteristics LDH (U/L) Neutrophil (10°/L)
<220 >220 X2/t p <45 >4.5 X2/t p
Age (years) 0.637 0.425 2.0812 0.131
<65y 187 (53.9) 111 (50.5) 123 (49) 175 (55.4)
~65y 160 (46.1) 109 (49.5) 128 (51) 141 (44.6)
Gender 0.190 0.663 10.231 0.001
Female 92 (26.5) 62 (28.2) 85 (33.9) 69 (21.8)
Male 255 (73.5) 158 (71.8) 166 (66.1) 247 (78.2)
Location 1.919 0.589 2172 0.538
Cervical 19 (5.5) 18 (8.2) 13 (5.2) 24 (7.6)
Upper thoracic 79 (22.8) 46 (20.9) 60 (23.9) 65 (20.6)
Middle thoracic 205 (59.1) 131 (59.5) 146 (58.2) 190 (59.3)
Lower thoracic 44 (12.7) 25 (11.4) 32 (12.7) 37 (12.2)
T stage 2.166 0.539 35.330 <0.001
T 6(1.7) 3(1.4) 5(2.0) 4(1.3)
T2 95 (27.4) 57 (25.9) 90 (35.9) 62 (19.6)
T3 82 (23.6) 64 (29.1) 75 (29.9) 71(22.5)
T4 164 (47.3) 96 (43.6) 81(32.3) 179 (56.6)
N stage 4.635 0.031 5.525 0.019
NO 83 (23.9) 36 (16.4) 64 (25.8) 55 (28.7)
N1 264 (76.1) 184 (83.6) 187 (74.2) 261 (71.3)
TNM stage 0.004 0.952 17.822 <0.001
I+l 146 (42.1) 92 (19.4) 130 (51.8) 108 (34.2)
-1V 201 (57.9) 128 (45.2) 121 (48.2) 208 (65.8)
NLR 0.920 0.337 59.839 <0.001
<3.25 239 (68.9) 143 (65.0) 212 (84.5) 170 (53.8)
~3.25 108 (31.1) 77 (35.0) 39 (15.5) 146 (46.2)

10°/L), and 316 patients had a high count of neutrophil (>4.5
x 10°/L). A high level of LDH was significantly associated with
the advanced N stage (p = 0.031), and neutrophil count was
significantly associated with gender (p =0.001), T stage (p <
0.001), N stage (p = 0.019), clinical stage (p < 0.001), and NLR
(p < 0.001).

The Association Between LDH Level,

Neutrophil Count, and Treatment Outcome
Median follow-up was 67.4 months (95% CI, 56.6-73.4 months)
in this study cohort. The median OS was 16.4 months (95% CI,
15.3-18.5 months). We performed univariate and multivariate
analyses to identify the prognostic factors. Univariate analysis
showed that gender (p = 0.001), tumor location (p = 0.001), T
stage (p < 0.001), N stage (p < 0.001), treatment modality (p
= 0.002), LDH level (p = 0.010), neutrophil count (p < 0.001),
and NLR (p = 0.001) were associated with RES. In the following
multivariate analysis, gender (p = 0.004), T stage (p < 0.001),
N stage (p = 0.005), treatment modality (p < 0.001), LDH level
(p = 0.007), and neutrophil count (p = 0.037) were found to
be independently associated with RFS (Table 3). Furthermore,
in the univariate analysis, gender (p = 0.001), tumor location (p
< 0.001), T stage (p < 0.001), N stage (p < 0.001), treatment

modality (p = 0.004), LDH level (p = 0.016), neutrophil count
(p < 0.001), and NLR (p < 0.001) were associated with overall
survival. In the multivariate analysis, gender (p = 0.006), T stage
(p < 0.001), N stage (p = 0.008), treatment modality (p < 0.001),
LDH level (p = 0.012), and neutrophil count (p = 0.038) were
still independently associated with overall survival (Table 4). The
prognostic impacts on overall survival of gender (p = 0.001),
treatment modality (p = 0.0037), T stage (p < 0.0001), N stage
(p = 0.0001), LDH level (p = 0.0158), and neutrophil count
(p < 0.0001) are shown in Figures 1A-F, respectively.

A New Prognostic Risk Scoring Model
Based on LDH Level and Neutrophil Count

We devised a new prognostic risk scoring (PRS) model based
on gender, treatment modality, T stage, N stage, LDH level,
and neutrophil count, which were identified as independent
prognostic factors in multivariate analysis for OS. In the PRS
model, patients with none or one to two of these poor prognostic
factors were scored as one (Group one), patients with three or
four of these poor prognostic factors were scored as two (Group
two), and patients with five or six of these poor prognostic factors
were scored as three (Group three). According to this PRS model,
patients were stratified into three groups with distinct prognosis,
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TABLE 3 | Univariate and multivariate analysis of clinical factors associated with Recurrence-Free Survival among patients with ESCC.

Variates Univariate analysis Multivariate analysis
HR (95%Cl) %2 P HR (95%Cl) %2 P

Gender 0.694(0.559-0.862) 10.870 0.001 0.717 (0.573-0.898) 8.444 0.004
Age 1.032 (0.857-1.243) 0.112 0.738
Location 1.258 (1.104-1.433) 11.925 0.001 3.536 0.316
Cervical Reference
Upper thoracic 1.171 (0.750-1.830) 0.482 0.488
Middle thoracic 1.331 (0.880-2.013) 1.832 0.176
Lower thoracic 1.474 (0.919-2.364) 2.597 0.107
T stage 1.479 (1.320-1.657) 45.647 0.000 27.225 0.000
T4 Reference
T 0.386 (0.166-0.897) 4.890 0.027
T2 0.595 (0.462-0.765) 16.269 0.000
T3 0.563 (0.437-0.724) 20.028 0.000
N stage 1.799 (1.408-2.299) 22.011 0.000 1.449 (1.116-1.881) 7.755 0.005
RT dose 1.063 (0.883-1.280) 0.414 0.520
Treatment 0.749 (0.622-0.901) 9.346 0.002 0.628 (0.518-0.762) 22.314 0.000
LDH 1.280 (1.060-1.546) 6.589 0.010 1.304 (1.076-1.580) 7.317 0.007
Neutrophils 1.427 (1.182-1.723) 13.668 0.000 1.242 (1.013-1.522) 4.352 0.037
NLR 1.389 (1.142-1.688) 10.873 0.001 1.021 (0.825-1.264) 0.037 0.848
TABLE 4 | Univariate and multivariate analysis of clinical factors associated with Overall Survival among patients with ESCC.
Variates Univariate analysis Multivariate analysis

HR (95%Cl) %2 P HR (95%Cl) x2 p
Gender 0.695 (0.558-0.866) 10.536 0.001 0.727 (0.580-0.911) 7.648 0.006
Age 1.048 (0.868-1.265) 0.239 0.625
LocationCervical 1.274 (1.116-1.454) 12.887 0.000 Reference 3.5634 0.316
Upper thoracic 1.154 (0.733-1.819) 0.383 0.536
Middle thoracic 1.319 (0.865-2.011) 1.650 0.199
Lower thoracic 1.471 (0.910-2.379) 2.481 0.115
T stage 1.525 (1.358-1.713) 50.716 0.000 32.151 0.000
T4 Reference
N 0.367 (0.158-0.852) 5.443 0.020
T2 0.568 (0.439-0.735) 18.490 0.000
T3 0.527 (0.408-0.680) 24.268 0.000
N stage 1.799 (1.389-2.280) 20.741 0.000 1.430 (1.099-1.861) 7.077 0.008
RT dose 1.052 (0.871-1.270) 0.274 0.601
Treatment 0.758 (0.628-0.914) 8.360 0.004 0.638 (0.524-0.776) 20.177 0.000
LDH 1.265 (1.044-1.531) 5772 0.016 1.283 (1.076-1.580) 6.278 0.012
Neutrophils 1.462 (1.208-1.771) 15.158 0.000 1.245 (1.012-1.532) 4.308 0.038
NLR 1.426 (1.171-1.738) 12.439 0.000 1.014 (0.8175-1.259) 0.016 0.899

with 42 (7.4%) patients in Group one, 415 (73.2%) patients in
Group two, and 110 (19.4%) patients in Group three. The median
OS time was 101.2 months in Group one, which was significantly
longer than 18 months in Group two and 10.05 months in Group
three (shown in Figure 2, x? = 67.94, p < 0.0001). Moreover, the
CR rate in Group one was significantly higher than that in Group
two and Group three (x2 = 24.031, p < 0.0001). Twenty-three
(54.8%) patients achieved CR in Group one, 166 (40%) patients

achieved CR in Group two, and 20 (18.2%) patients achieved CR
in Group three.

DISCUSSION

For patients with ESCC treated with surgery, TNM stage
classification acts as the most important prognostic factor
for many years. However, TNM stage classification seemed
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not sufficient to present enough prognostic information
for patients treated with definitive radiotherapy (27). There
could be some other factors impacted on the prognosis
of patients who received definitive radiotherapy. Thus,
identification of other new prognostic factors could
allow a Dbetter prediction for treatment outcome. To
further explore prognostic factors to identify patients with
different prognosis, more easily available prognostic factors
are warranted.

Neutrophil count and LDH both routinely detected the
hematological index and were easily available in our clinical
practice. Previous studies have investigated the prognostic
value of LDH level, neutrophil count, and NLR in many solid
tumors (10, 21, 24). However, there was no investigation
about the role of the LDH level combined with neutrophil
count or NLR in the prognosis of ESCC patients treated with

radiotherapy. This study aimed to investigate the prognostic
value of the LDH level, neutrophil count, and NLR in ESCC
patients treated with radiotherapy. What is more, for the
first time, we established a new risk prognostic scoring
model based on the baseline LDH level and neutrophil
count, which stratified patients into three groups with
different prognosis.

According to previous studies, systemic inflammation was an
enabling characteristic for cancer development and promoted
tumor progression by affecting the response to systemic
therapies (6, 28). NLR, determined by the neutrophil count
and lymphocyte count, was suggested to reflect the systemic
inflammatory responses (29). Previous study has reported
that NLR could serve as a prognostic indicator for survival
in EC (30). An investigation that enrolled a relatively large
population of ESCC patients from Chen et al. (31) revealed
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FIGURE 2 | Kaplan-Maier survival curves of overall survival of ESCC patients
treated with radiotherapy stratified according to a new prognostic risk scoring
(PRS) model.

that pretreatment elevated NLR was significantly associated
with an advanced clinical stage and reduced OS. Moreover,
elevated NLR was an independent prognostic indicator for OS
in patients receiving chemoradiotherapy but not those receiving
surgery. Interestingly, in this present study, multivariate
analysis showed that NLR was not an independent prognostic
indicator for RFS and OS in ESCC patients treated with
radiotherapy. However, increased neutrophil was significantly
associated with advanced T stage, N stage, clinical stage,
and poor OS in ESCC patients treated with radiotherapy.
One possible explanation is that tumor microenvironment is
influenced by neutrophils themselves, but NLR is affected
by lymphocyte count and couldn’t reflect changes in the
tumor microenvironment. Another possibility is that NLR and
neutrophil count interact with each other in the modeling
stats. When combined with other prognostic factors in
multivariate analysis, neutrophil count had stronger predictive
ability compared with NLR. Based on the results, pretreatment
neutrophil count might be more appropriate to be used as
a prognostic factor than NLR and could be a useful baseline
indicator to predict the outcome for ESCC patients treated
with radiotherapy.

Growing evidence has showed that neutrophilia can occur in
cancer patients. Moreover, neutrophils are thought to promote
angiogenesis and tumor growth, degrade the extracellular matrix,
provide favorable conditions for metastasis, and potentiate
genome instability and tumor evolution (29). Neutrophils can
also be localized to the tumor to establish tumor-associated
neutrophil (TAN), resulting in treatment resistance and cancer
development (15). In this study, we explored the optimal cutoft
value of neutrophil count using the ROC curve analysis to predict
CR in ESCC patients treated with radiotherapy and found that
patients with high neutrophil count had poor RES and OS,
indicating that increased neutrophil count may be a predictor for
poor radiosensitivity.

According to previous studies, an elevated level of LDH
isoforms is more common in malignant tumors than normal cells
(32). The increased LDH level could promote tumor progression
by regulating the tumor metabolism and microenvironment and
acts as a poor prognostic indicator for cancer patients (32, 33).
A meta-analysis investigating the prognostic value of the LDH
level in solid tumors showed that a high LDH level is associated
with poor survival in melanoma, gastric, lung cancer, prostate,
and renal cell carcinomas (34). Recently, a high LDH level has
been demonstrated to effectively predict the response to cancer
treatment, such as chemotherapy (11), anti-angiogenetic agents
(35), and checkpoint immunotherapy (22, 24) in various cancers.
The prognostic role of the LDH level was also investigated
in ESCC patients who underwent curative treatment in the
study from Wei et al. (23). However, the study included
patients treated with surgery or chemoradiotherapy, which led
to treatment bias. In this present study, we only included the
ESCC patients treated with radiotherapy and demonstrated that
an elevated LDH level was an indicator for poor prognosis in
the setting.

Several limitations were inevitable in our study. First,
the retrospective nature of this study led to selection bias
and potential confounding biases. Second, there were some
other prognostic factors influencing the level of LDH and
neutrophil count such as infectious diseases, which could
not be stratified in our retrospective study, and thus the
implication of the LDH level and neutrophil count on the
prognosis of ESCC patients treated with radiotherapy should be
further investigated in a carefully designed study. Third, some
patients who cannot tolerate concurrent chemoradiotherapy
were treated with radiotherapy only, leading to treatment
selection bias. Thus, we performed multivariate analysis to
identify independent prognostic factors. Finally, the conclusions
were based on only a small number of 567 patients treated with
radiotherapy. It is inappropriate to extrapolate to the patients in
a trimodality setting.

In conclusion, we provided an investigation about the
prognostic significance of the LDH level and neutrophil count in
ESCC patients treated with radiotherapy and the optimal cutoff
value to predict the response to radiotherapy. Furthermore, we
demonstrated that a high level of LDH and neutrophil count
were associated with poor prognosis in ESCC patients, and
proposed a prognostic risk scoring model based on the LDH level
and neutrophil count to help estimate the prognosis for ESCC
patients for the first time.
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Purpose: to predict the occurrence of late subcutaneous radiation induced fibrosis (RIF)
after partial breast irradiation (PBI) for breast carcinoma by using machine learning (ML)
models and radiomic features from 3D Biologically Effective Dose (3D-BED) and Relative
Electron Density (3D-RED).

Methods: 165 patients underwent external PBI following a hypo-fractionation protocol
consisting of 40 Gy/10 fractions, 35 Gy/7 fractions, and 28 Gy/4 fractions, for 73, 60, and
32 patients, respectively. Physicians evaluated toxicity at regular intervals by the Common
Terminology Adverse Events (CTAE) version 4.0. RIF was assessed every 3 months after
the completion of radiation course and scored prospectively. RIF was experienced by 41
(24.8%) patients after average 5 years of follow up.

The Hounsfield Units (HU) of the CT-images were converted into relative electron density
(8D-RED) and Dose maps into Biologically Effective Dose (3D-BED), respectively. Shape,
first-order and textural features of 3D-RED and 3D-BED were calculated in the planning
target volume (PTV) and breast. Clinical and demographic variables were also considered
(954 features in total). Imbalance of the dataset was addressed by data augmentation
using ADASYN technique. A subset of non-redundant features that best predict the
data was identified by sequential feature selection. Support Vector Machines (SVM),
ensemble machine learning (EML) using various aggregation algorithms and Naive Bayes
(NB) classifiers were trained on patient dataset to predict RIF occurrence. Models were
assessed using sensitivity and specificity of the ML classifiers and the area under the
receiver operator characteristic curve (AUC) of the score functions in repeated 5-fold
cross validation on the augmented dataset.

Results: The SVM model with seven features was preferred for RIF prediction and
scored sensitivity 0.83 (95% Cl 0.80-0.86), specificity 0.75 (95% CI 0.71-0.77) and
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Avanzo et al. Radiomics- and BED-Based Machine Learning of Fibrosis
AUC of the score function 0.86 (0.85-0.88) on cross-validation. The selected features
included cluster shade and Run Length Non-uniformity of breast 3D-BED, kurtosis and
cluster shade from PTV 3D-RED, and 10th percentile of PTV 3D-BED.

Conclusion: Textures extracted from 3D-BED and 3D-RED in the breast and PTV can
predict late RIF and may help better select patient candidates to exclusive PBI.
Keywords: radiomics, radiotherapy, machine learning, breast cancer, fibrosis

INTRODUCTION METHODS

Subcutaneous radiation induced fibrosis (RIF) is characterized Patient Data _ . ‘

by a progressive induration and thickening of the subcutaneous ~ One hundred sixty-five patients treated with breast

tissues and is one of the late adverse effects of breast radiotherapy
(RT) mostly affecting cosmesis. It is a dose dependent and
slowly progressive side effect originating from a proliferative
response of surviving fibrocytes to growth factors (e.g., the
transforming growth factor B (TGF-B), released in response to
tissue injury) (1).

The available tools to predict late subcutaneous fibrosis in
patients treated with RT are of limited quality. Models to predict
Normal Tissue Complication Probability (NTCP) for RIF after
breast RT have been first fitted to published data of rates of
incidence from whole breast irradiation (WBI) (2). Later, models
for NTCP of RIF have been refined by including dose volume data
from simulated dose distributions of WBI (3) and partial breast
irradiations (PBI) (4).

Quantitative analysis of medical images could provide
information about intensity, shape, size or volume, and texture
of tumor or organs at risk that is distinct or complementary
to that provided by other data sources (5). Recently, the
combination of quantitative analysis of radiological images with
Machine Learning (ML) methods, also known as “radiomics,”
has been applied also to predict side effects of RT such as
lung-injury following Stereotactic Body RT (SBRT) for lung
cancer (6), gastrointestinal and genitourinary toxicities (7) and
xerostomia (8).

Other 3D information, as dose distribution delivered in RT
calculated on pre-treatment Computer Tomography (CT), can be
integrated in the radiomics analysis. The textural analysis of dose
distribution could provide more detailed spatial information on
the 3D dose distribution: it attempts to extract spatial features
from dose distribution to predict RT response instead of dose-
volume histogram (DVH) typically used in NTCP models.
Dosiomics, or integration of dose features from the irradiated
lung, has shown to be predictive of radiation pneumonitis with
higher accuracy than DVH-based NTCP models (9).

The purpose of the present work is to develop a model
to improve the accuracy of prediction of RIF by integrating
data from pre-treatment CT, 3D dose distribution and clinical
variables. For this purpose, we developed a ML classifier, that
is, a predictive model assigning an unseen patient to one of
two possible classes: patient with or without RIF during follow-
up. Our study is the first, to the best of our knowledge, to
derive a classifier for RIF which includes radiomic variables and
individual dose data using ML algorithms.

conservative surgery for an early stage ductal carcinoma
who underwent external PBI were retrospectively analyzed.
Patient characteristics, with results of univariate statistical tests
to investigate correlation with RIF, are shown in Table 1. All
patients underwent a complete free breathing pre-treatment
planning CT to include all the organs at risk (OAR), according
to the RTOG 0413 protocol (10). CTs were acquired with a
GE Lightspeed RT (GE Medical Systems, Waukesha, WI) or
a Toshiba Aquilion LB (Toshiba Medical Systems Europe,
Zoetermeer, the Netherlands) using 120 kVp, 215-300 mAs
5mm slice thickness, and voxel size ranging from 0.977 to
1.074 mm.

The clinical target volume (CTV) consisted of the
lumpectomy cavity, identified by the post-surgery seroma
or by the surgical clips, uniformly expanded by 15 mm, limited
to 5mm from the skin surface and 5mm from the lung-chest
wall interface. The planning target volume (PTV) was calculated
from the CTV using uniform 3D expansion of 1cm, then it
was limited to exclude the part outside the ipsilateral breast, the
first 5mm of tissue under the skin and the expansion beyond
the posterior extent of breast tissue. Breast tissue visible on the
pre-treatment planning CT was outlined, according to the RTOG
“Breast Cancer Atlas for Radiation therapy planning: consensus
definition” (11).

Patients were treated following a hypo-fractionation protocol
(12) designed using iso-effective doses for subcutaneous RIF
based on NTCP models (4). The hypofractionation schemes
consisted of 40 Gy in 10 fractions (73 patients), 35Gy in 7
fractions (60) and 28Gy in 4 fractions fractions. The RT
technique consisted of “field-in-field” planning (forward-planned
intensity modulated RT) (14) using multiple planar and non-
coplanar 6-MV photon beams, and delivered by a Trilogy linear
accelerator equipped with a kV on-board imager system and
a 120-leaves Millennium multi-leaf collimator (Varian Medical
Systems, Palo Alto, CA, US).

All treatments were developed using the Eclipse treatment
planning system (Varian Medical), and dose calculations were
carried out using the anisotropic analytical algorithm (AAA) with
a grid resolution of 2.5 mm, taking into account heterogeneity
correction. The CT scan, dose matrix and Region Of Interest
(ROI) contours were exported in a DICOM format.

Physicians evaluated toxicity at regular intervals by the
Common Terminology Criteria for Adverse Events (CTCAE)
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TABLE 1 | Patients characteristics with statistical tests to investigate correlation
with RIF.

Categorical variable Patients (%) p-value (Chi-square test)

Number of patients 165 (100)
No RIF 124 (75.2)
RIF Grade 1 26 (15.7)
RIF Grade 2 12 (7.9)
RIF Grade 3 3(1.8
RIF any grade 41 (24.8)

Tumor histology
Ductal 155 (93.9) 0.540
Lobular 10 (6.1)

Laterality
Left 73 (44.2) 0.3651
Right 92 (55.8)

Quadrant (cm)
Upper, outer 80 (48.5.3) 0.056
Upper, inner 32 (19.4)
Lower, outer 15 (9.1)
Lower, inter 23 (18.9)
Central 15(9.1)

Comorbidity
No 112 (67.9) 0.658
Yes 53 (32.1)

Fractionation regimen
40 Gy/10 fx 73 (44.2) 0.5396
35 Gy/7 fx 60 (36.4)
28 Gy/4 fx 32 (19.4)

Chemotherapy
No 152 (92.1) 0.064
Yes 13 (7.9)

Hormone therapy
No 51(30.9) 0.793
Yes 114 (69.1)

Continuous variable Average (95% CIl)  p-value (Wilcoxon test)

Age (years) 69.8 (61.0-82.9) 0.611
Pathological tumor size (mm) 12.1 (4-25) 0.552
Follow-up (months) 60.2 (17.2-82.9) 0.384

(version 4.0). Clinical and demographic variables, age, presence
of comorbidities (diabetes and rheumatological disorders),
tumor histology, laterality and quadrant, administration of
chemotherapy and hormone therapy, were considered (954
features in total). The presence of RIF of any grade (grade 1
or more) was assessed every 3 months after the completion of
radiation course and scored in a prospective database. Forty-
one (24.8%) patients experienced RIF after average 5 years of
follow up. Fibrosis of grade 1, 2, and 3 occurred in 26, 12, and
3 patients, respectively. The maximum toxicity score (Grade 4)
was not recorded during follow up.

Radiomic Analysis of BED and RED

Prior to the calculation of radiomic features, resampling to
isotropic voxel size was applied to have standardized voxel
spacing across the cohort (15). For example, all CT images were
resampled to 3 x 3 x 3 mm? (16). Voxel intensities were grouped

into 64 equally spaced bins to reduce image noise and normalize
intensities across all different patients.

In order to remove dependency on the Hounsfield scale
used by the two scanners (17), the images were converted from
Hounsfield Units to electron density relative to water (3D-
RED) using the Hounsfield Units—RED conversion scales of the
CTs (Figure 1) as measured on phantom on each CT scanner.
Since patients were treated with different fractionation schemes,
the 3D dose distributions were converted into 3D Biologically
Effective Dose (3D-BED) using the number of fractions of the
treatment, and an assumed value of o/ of 3Gy, typical of late-
responding tissues as subcutaneous tissue, which has also been
used to model RIF (2, 18). A total of 21 shapes, 57 radiomic
and 57 dosimetric textural features were calculated from the PTV
and breast volume in the 3D-RED and 3D-BED. The radiomic
features were calculated following definitions and nomenclature
from the Image Biomarker Standardization Initiative (IBSI) (19)
using an in-house Matlab code. The in-house code had been
previously validated by comparing its results with the Ibex open
source software (20). The same features were also calculated
after application of one between Gaussian, Laplacian of Gaussian
(LoG), or Median filtering to 3D-RED and 3D-BED. The clinical
variables follow up, age, tumor location, pathological tumor size,
chemo and hormone therapy, were also collected and included in
the analysis, so that the variables were 954 in total. A common
problem in application of ML classifiers is that some classes have
a significantly higher number of examples, a problem which is
referred to as class imbalance. The effect of imbalanced datasets
on ML performance is detrimental (21, 22), and there are two
methods for overcoming this issue, namely under-sampling and
over-sampling, of which the latter has been proven to be more
effective in ML (21).

We then applied the Adaptive Synthetic Sampling Method
for Imbalanced Data (ADASYN) over-sampling technique (23),
an improved variant of the Synthetic Minority Over-sampling
Technique (SMOTE), which generates synthetic data points by
interpolating new feature values between the minority instance
and its neighbors, according to the Euclidean distance, in the
feature space. In ADASYN, the new minority samples are
generated using a density distribution based on the number of
out-of-class neighbors so that a minority instance surrounded
by more out-of-class instances is considered hard-to-train, and
is thus given a higher probability to be augmented (24).

ADASYN was applied to the level that the imbalance was
completely eliminated, resulting in an augmented dataset of
252 patients, of which 50% had late RIF. All the analysis was
performed using Matlab (Mathworks, Natick, MA).

ML Models

The occurrence of RIF in patients was converted into a binary
outcome, positive for patients who experienced any grade (one
or more) of RIE, and negative for patients who did not experience
RIF during follow up.

The ML process includes two phases (5). First, to prevent
overfitting, prior to applying ML classification, Stepwise forward
feature selection was used to select a subset of variables best suited
to predict late fibrosis. In Stepwise feature selection, terms from a
generalized linear model are removed or added in order to find
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FIGURE 1 | Axial views of 3D-BED and 3D-RED in a patient who did not experience late RIF (A) and one who developed late RIF during follow up (B).
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the subset of variables in the data set resulting in the smallest
model with lowest prediction error (25).

Forward stepwise selection is a wrapper method of feature
selection, that is, a method which uses a learning technique,
in our case a generalized linear model (GLM), to evaluate the
importance of the features. Forward selection starts with an
empty model. Then at each iteration, the single feature that best
improves the fit of the GLM according to a specified criterion
is determined (26). As a criterion we used the deviance of the
values predicted by the GLM from the test data in a 5-fold
cross validation. This is repeated until a best subset predictors
(features) are selected.

In order to choose a proper number of variables, the
process was initially performed with 4 variables allowed in
the feature selection, then repeated with increasing number
of variables.

After feature selection, the following binary ML classifiers
were applied to the dataset to predict RIF:

1) SVM, which, by means of a kernel function, projects the
data into a higher-dimensional feature space and determine
a hyperplane in this feature space which separates data points
into two categories (27). During the optimization, the proper
box constraint level and kernel scale are chosen.

2) Ensemble machine learning (EML) which aggregates multiple
learners into a single learner. Decision Trees were used as
weak learners (5). During training, the best ensemble EML
algorithm is selected between Random forests, Adaptive
Logistic Regression and various boosting algorithms:
Adaptive, Gentle, and Random Undersampling boosting (28)
as well as the optimal number of learning cycles, learning
rate, and minimum leaf size.

3) Naive-Bayesian (NB) classifier which calculates the
probability of each class assuming the conditional
independence of the attributes using the Naive Bayes
formula. A new instance is classified into the class with
maximum calculated probability (29, 30). The optimizer also

TABLE 2 | Features selected to predict late fibrosis.

Image Filter ROI Variables Wilcoxon-Mann-
(3D-RED/ Whitney test
3D-BED) p
3D-BED LoG Breast Cluster shade 0.1389
3D-BED LoG Breast RLN 0.0084
3D-RED None PTV Kurtosis 0.0238
3D-RED Gaussian PTV Range 0.1021
3D-RED Gaussian PTV Cluster shade 0.6687
3D-BED Gaussian PTV 10th Percentile 0.0054
3D-BED LoG PTV Variance 0.1624

LoG, Laplacian of Gaussian filter; RLN, run length non-uniformity.

searches the best type of probability distribution (Gaussian or
Kernel) and width of the kernel function.

The model to predict the occurrence of RIF was chosen according
to the following criteria. First, the performance of the models
was evaluated by calculating the average and 95% confidence
intervals of sensitivity and specificity of the classifier and the
AUC of the score function used by the classifiers in a 5-fold
cross validation repeated 500 times in the augmented dataset.
Finally, the sensitivity, specificity, and AUC were recalculated on
the original, non-augmented dataset.

The models were required to have at least sensitivity and
specificity of 0.75, and AUC of the model score of 0.85. Second,
models were required to provide a realistic description of
occurrence of RIF vs. BED variables. For this purpose, the
score used by the best performing models to predict RIF was
calculated vs. variables from 3D-BED variables. For biological
consistency, models were required to have a continuously
monotonic response to increasing dose. Models with non-
monotonically increasing dose response were discarded, as this
would imply that two different doses can lead to the same risk of
side effects and that increasing dose could reduce the risk (31).
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TABLE 3 | Performances of different models as a function of increasing number of variables allowed.

Model Number of Cross-validation in the augmented dataset, with Original (non-augmented) dataset
variables 95% ClI
Sensitivity Specificity AUC Sensitivity Specificity AUC
SVM 4 0.77 (0.74-0.80) 0.69 (0.66-0.71) 0.80 (0.79-0.81) 0.68 0.70 0.78
5 0.82 (0.79-0.84) 0.68 (0.65-0.71) 0.83 (0.82-0.84) 0.73 0.66 0.81
6 0.85 (0.83-0.87) 0.71 (0.68-0.73) 0.85 (0.84-0.86) 0.81 0.73 0.84
7 0.83 (0.80-0.86) 0.75 (0.71-0.77) 0.86 (0.85-0.88) 0.81 0.77 0.86
8 0.84 (0.81-0.87) 0.76 (0.73-0.78) 0.88 (0.87-0.88) 0.83 0.81 0.89
EML 4 0.78 (0.73-0.84 0.73(0.68-0.78) 0.83 (0.80-0.85) 1.00 1.00 1.00
5 0.84 (0.79-0.88) 0.73(0.69-0.78) 0.87 (0.84-0.90) 1.00 1.00 1.00
6 0.86 (0.81-0.89) 0.77 (0.73-0.82) 0.87 (0.85-0.90) 1.00 1.00 1.00
7 0.87 (0.82-0.91) 0.78 (0.73-0.84) 0.91 (0.88-0.93) 1.00 1.00 1.00
8 0.89 (0.84-0.94) 0.78 (0.73-0.81) 0.92 (0.90-0.94) 1.00 1.00 1.00
NB 4 0.88 (0.84-0.91) 0.44 (0.41-0.47) 0.65 (0.63-0.68) 0.90 0.46 0.71
5 0.92 (0.90-0.93) 0.44 (0.42-0.47) 0.82 (0.81-0.83) 0.90 0.45 0.71
6 0.91 (0.88-0.92) 0.47 (0.45-0.49) 0.82 (0.81-0.83) 0.90 0.46 0.71
7 0.89 (0.86-0.91) 0.40 (0.35-0.43) 0.78 (0.76-0.81) 0.90 0.45 0.71
8 0.95 (0.94-0.95) 0.36 (0.34-0.38) 0.80 (0.78-0.82) 0.90 0.45 0.71

For each model and number of variables, the specificity and sensitivity of the classifier and the AUC with 95% CI calculated in repeated cross-validation are reported, as well as the

specificity, sensitivity and AUC in the original (non-augmented) dataset.

RESULTS

The variables selected for ML are shown in Table 2. Two were
textural variables of 3D-BED from the breast, cluster shade and
Run Length Non-uniformity (RLN) after application of LoG
filter, two were histogram (kurtosis and range) and one textural
(Gray Level Co-occurrence Matrix Cluster shade) features (19)
from the 3D-RED in the PTV and two histogram (10th percentile
and inverse variance) variables of 3D-BED in the PTV. Among
these, three variables (RLN of 3D-BED in breast, kurtosis of
3D-RED in PTV, 10th percentile of 3D-RED in PTV) were
significantly correlated with occurrence of RIF according to
the Wilcoxon-Mann-Whitney test for independent samples. No
clinical variable was selected in the model.

EML with Adaptive Boosting was the best performing model
for any number of variables, and it scored an AUC of the radiomic
signature of 0.87 (0.85-0.90) with only 6 variables. SVM was
the second best performing classifier as it achieved acceptable
scores with 7 variables, while Native Bayes gave generally poor
performance in terms of specificity (Table 3).

To interpret the features, their values were investigated in the
two subsets of patients having extreme values of the function
score. These patients were chosen as the 5% with the lowest score
function among those without RIE and the 5% with the highest
score function of those who had RIF. Their features are shown in
Table 4.

The score functions of the SVM and EML classifiers, were
plotted against the 10th percentile of 3D-BED in the PTV for
two values of kurtosis, that is, the average values of the patients
at low and high risk of RIF, with the other features fixed at their
average values among all the patients (Figure 2). The EML model
was then discarded, as it showed a non-monotonically increasing
dose-score function. The 7 variables SVM, scoring sensitivity

0.83 (95% CI 0.80-0.86), specificity 0.75 (95% CI 0.71-0.77) and
AUC of the score function 0.86 (0.85-0.88) on cross-validation,
was chosen as the preferred model. The model had sensitivity,
specificity and AUC of 0.81, 0.77, and 0.86 respectively in the
original dataset.

DISCUSSION

Supervised ML methods have been increasingly used in medicine,
especially in the field of radiomics (32) to identify patients as
responders or not responders but also to predict side effects
in OARs (13, 13, 27). They are prone to overfitting, an event
in which the model will better reflect noise in the image than
the data themselves (33). Hence, careful feature selection and
validation must be performed to tackle this limitation. In our
results, EML is an example of ML models which overfitted the
data, as it provided the best performance on repeated cross-
validation for any number of variables, but produced unrealistic
dose-response (Figure 2A) which was not monotonic. It was then
discarded in favor of the SVM, whose score was monotonically
increasing as a function of dose (Figure 2B). SVM models are
more robust to overfitting than other ML methods such as
decision trees (34), because they tolerate some points on the
wrong side of the hyperplane, thus improving model robustness
and generalization (5). Because the AUC of the SVM model of
0.86 on the non-augmented dataset is considered excellent (35)
and, as the sum of sensitivity and specificity is 1.58, larger than
1.5, the model fulfills the rule of thumb for being useful of a
clinical test (36), it can be used to stratify patients according to
the risk of subcutaneous RIF.

To the best of our knowledge, this is the first study
using radiomic features extracted from dose distribution after
conversion to 3D-BED, which was necessary since our patients
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TABLE 4 | Values of radiomic variables of the patients with low (A) and high (B) risk of RIF.

Image: 3D-BED 3D-BED 3D-RED 3D-RED 3D-BED 3D-BED 3D-BED
Filter: Log LoG None Gaussian Gaussian Gaussian LoG
ROl Breast Breast PTV PTV PTV PTV PTV
Feature: Cluster shade RLN Kurtosis Range Cluster shade Percentile area 10 Variance
(A)

Patient:

1 —22517 0.58 441.8 3.6 156.2 91.0 0.31
2 —8696.7 0.55 50.7 0.47 —2250.1 74.8 0.43
3 —4993.3 0.62 320.5 1.64 410.6 87.3 0.42
4 —32445.8 0.59 64.2 0.66 —714.9 80.4 0.38
5 —17231.7 0.60 176.7 1.83 400.1 88.4 0.43
6 —10022.4 0.47 15.7 0.90 —2546.9 65.6 0.41
7 35401.4 0.63 92.4 0.64 131.1 90.4 0.39
8 —5332.1 0.54 19.8 0.52 —9583.5 52.41 0.41
Average: —8229.7 0.57 147.7 1.28 —1767.3 78.8 0.40
(B)

Patient:

1 —18557.7 0.62 19.9 0.75 —3129.0 82.2 0.44
2 —3426.54 0.60 23.4 0.71 —2300.7 84.7 0.48
3 —53664.9 0.70 135 0.65 —3202.5 82.3 0.43
4 —80106.7 0.51 1.9 0.19 539.1 94.0 0.47
5 —29002.7 0.57 15.9 0.56 —6021.6 84.8 0.44
6 —29432.7 0.58 18.1 0.70 —-1762.5 81.0 0.46
7 —10230.9 0.63 171 0.71 —2367.8 88.7 0.47
Average —32060.3 0.60 16.7 0.61 —2606.4 85.4 0.46
These were defined as the 5% patients without RIF and with the lowest function score and the 5% patients with RIF with the highest function score, respectively.
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FIGURE 2 | Score function of EML (A) and SVM (B) used to classify patients vs. 10th percentile of 3D-BED in the PTV. The curves are calculated for values of kurtosis
typical of patients at low and high risk of RIF, chosen as average of kurtosis in the 10 patients without RIF with lowest score (blue lines) and in 10 patients with RIF with

had different fractionation schemes. As the BED variables  PTV. This result is in agreement with previous clinical findings
were the most correlated with RIF, our analysis confirms that  showing that fibrosis is related to dose and dose per fraction (18).
radiation-induced RIF is governed by BED calculated with a/B ~ On the other hand, a correlation between RIF and maximum
= 3Gy to the whole breast and to the high dose region, the = dose has been observed in clinical data for both WBI (37) and
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PBI (38). RIF after PBI has been related to minimum PTV
dose (39).

The features that were most correlated with RIF were BED
features10th percentile and variance in the PTV and RLN of the
breast, cluster shade to both PTV and breast.

Among the BED features, the 10th percentile in PTV is a
descriptor of the minimum BED to the PTV, and describes the
dependency of fibrosis on the lowest fractionation-corrected dose
covering at least 90% of PTV. Cluster shade of BED in the PTV
describes asymmetry of the GLCM. A larger module of cluster
shade implies large GLCM asymmetry (19), which means that
there are regions in the PTV with large differences in BED from
their neighbors and may be related to the presence of hot spots in
the PTV. Of note, if a PTV is close to the patient’s surface, like in
Figure 1B, there is a sudden change of dose in the build-up region
which may increase cluster shade of BED. These associations are
confirmed by larger variance of BED to the PTV in patients with
RIF (Table 4).

RLN of BED in the breast describes the similarity among run
lengths, defined as the lengths of consecutive voxels having the
same dose value in a specified direction, in number of voxels (19)
throughout the breast. RLN is related to homogeneity of dose,
and lower values indicate more homogeneity among run lengths
in the image. In our results patients without RIF had lower RLN
of BED (more inhomogeneity). This may be due to larger “out-
of-field” areas of the breast in patients less at risk of fibrosis
(Figure 1A) that, being irradiated with low, uniform doses from
scattered radiation, tend to have larger runs of voxels with the
same values of dose from scattered radiation. An example of
this situation can be observed in Figure 1A, and suggests that
a steep dose gradient outside of the PTV may be beneficial to
prevent fibrosis.

These findings indicate that the radiomic BED variables show
that higher BED and presence of hot spots of BED in the PTYV,
as well as higher volumes receiving intermediate doses out of the
PTYV, as in Figure 1B, are related to occurrence of fibrosis.

The hypothesis underlying the application of radiomics to
predict side effects in OARs is that a patient who is more at
risk of side effect has a particular appearance of the organ at
risk in pretreatment CT from the patient at lower risk. Often,
these models are still perceived as “black boxes,” meaning that
it is difficult to determine how they arrive at their predictions,
which impairs their use by clinicians as part of their clinical
practice (40, 41). To address this issue, we provide interpretation
of the radiomic features that are selected by the models. In
our results, it was found that 3D-RED kurtosis in the PTV
was correlated with a higher risk for RIF. Because kurtosis
describes inhomogeneity of the electron density of the breast, the
patients with more inhomogeneous breast (small kurtosis) are
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In order to limit radiotherapy (RT)-related side effects, effective toxicity prediction and
assessment schemes are essential. In recent years, the growing interest toward artificial
intelligence and machine learning (ML) within the science community has led to the
implementation of innovative tools in RT. Several researchers have demonstrated the
high performance of ML-based models in predicting toxicity, but the application of these
approaches in clinics is still lagging, partly due to their low interpretability. Therefore, an
overview of contemporary research is needed in order to familiarize practitioners with
common methods and strategies. Here, we present a review of ML-based models for
predicting and classifying RT-induced complications from both a methodological and a
clinical standpoint, focusing on the type of features considered, the ML methods used,
and the main results achieved. Our work overviews published research in multiple cancer
sites, including brain, breast, esophagus, gynecological, head and neck, liver, lung, and
prostate cancers. The aim is to define the current state of the art and main achievements
within the field for both researchers and clinicians.

Keywords: radiotherapy, toxicity, predictive models, machine-learning, radiomics

INTRODUCTION

It is estimated that as many as half of the cancer patients in the world are eligible for radiotherapy
(RT), either with curative or palliative intent (1). Ultimate generation linear accelerators and
modern techniques, such as intensity-modulated RT (IMRT), stereotactic body RT (SBRT), and
proton therapy (PT), offer high conformity and submillimetric levels of precision. However, normal
tissues close to the target region, defined as organs at risk (OARs), can also be affected, leading to
RT-induced toxicity. Short-term or acute toxicity occurs during treatment or within 3 months after
its completion, and generally, full recovery occurs within weeks to months. Conversely, late effects,
such as fibrosis or RT-induced oncogenesis, are generally considered as irreversible and progressive
over time. It follows that, when planning any RT treatment, its potential benefits have to be weighed
against the possibilities of damage to healthy organs and tissues, with the final aim of maximizing
curative response while minimizing the probability of normal tissue complications. On the other
hand, when RT is delivered with curative intent, target coverage should not be jeopardized in favor
of sparing OARs (2). However, different RT-induced side effects vary in their clinical significance,
so an accurate estimate of risks is mandatory, especially when alternatives such as surgery or
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chemotherapy are available. The physiopathology of toxicity is
not only related to the radiation dose but also depends on genetic
factors and tumor microenvironment. Therefore, identifying the
main factors that predispose for a specific type of toxicity can
help to improve treatment planning and inform patients and
clinicians about expected treatment tolerance.

Radiosensitivity is generally studied with the so-called normal
tissue complication probability (NTCP) models, which can
be classified into mechanistic (or analytical) and data-driven
[or (semi)empirical] (3). The former category is based on a
simplified characterization of the interaction between radiation
and biological tissues and seeks to explain the underlying
mechanisms with explicit algorithms. The most common
analytical models are the Lyman-Kutcher-Burman models,
which are often included into treatment planning systems to
allow for a biological optimization of the delivered dose among
competing treatment strategies (4). These algorithms are based
on handcrafted rules with intricate exceptions that often fail to
predict the actual complications induced by RT. On the other
hand, data-driven approaches are based on the assumption that
the interaction between radiation and normal tissue is complex
and cannot be properly represented deterministically. Therefore,
such approaches aim to identify the model that best fits the input
data (also termed features or independent variables) and output
data (also termed response or dependent variables). Predictors of
toxicity can be roughly classified into “dosimetric,” which directly
concerns the delivery of radiation (e.g., dose-volume histogram
(DVH) points), “clinical,” which includes patient- and disease-
related variables (e.g., gender and tumor histology), and “image-
based” or “radiomic,” which can be extracted from various
medical images (e.g., the mean, variance, and skewness of image
intensity histograms). In general, these approaches can be further
distinguished into well-known traditional statistical techniques,
such as regression-based techniques, and approaches based on
artificial intelligence (AI) and machine learning (ML) (5).

Abbreviations: 3D-CRT, 3D conformal RT; ADC, apparent diffusion coefficient;
Al, artificial intelligence; ANN, artificial neural network; AUC, area under the
curve; BMI, body mass index; BRT, brachytherapy; CNN, convolutional neural
networks; CP-DMA, canonical polyadic decomposition—-deterministic multi-way
analysis; CT, computed tomography; CTCAE, common terminology criteria for
adverse events; Dmax, dose max; DV, dose-volume; DVH, dose-volume histogram;
EBRT, external beam RT; ED, erectile disfunction; EORTC, European Organization
for Research and Treatment of Cancer; FDG PET, ['®F]-fluorodeoxyglucose
PET; GEC-ESTRO, Groupe Européen de Curiethérapie-European SocieTy for
Radiotherapy & Oncology; GI, gastrointestinal; GLCM, gray level co-occurrence
matrix; GU, genitourinary; H&N, head and neck; IBM, image biomarker;
IBDM, image-based data mining; ICA, independent component analysis; IMRT,
intensity-modulated RT; kNN, k-nearest neighbors; LASSO, Least Absolute
Selection and Shrinkage Operator; LR, logistic regression; MARS, multivariate
adaptive regression splines; ML, machine learning; MRI, magnetic resonance
imaging; NSCLC, non-small-cell lung cancer; NTCP, normal tissue complication
probability; NTR, non-treatment related; OAR, organ at risk; PCa, prostate cancer;
PCA, principal component analysis; PET, positron emission tomography; PLR,
penalized logistic regression; PRFR, pre-conditioned random forest regression;
PSA, prostate-specific antigen; PT, proton therapy; PTV, planning target volume;
RB, rectal bleeding; RE, random forest; RSDM, rectum surface dose maps; RT,
radiotherapy; RUS, random under-sampling; SBRT, stereotactic body RT; SNP,
single nucleotide polymorphism; SVM, support vector machine; TPS, treatment
planning system. TRIPOD, Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis; V20, volume receiving 20% of dose.

ML-Based Models of Toxicity

The theoretical framework for artificially intelligent ML models
was laid down already in the 1950s (6), but it was not until
recently that advances in technology have allowed for the
integration of these tools into the experimental and clinical
practice of health sciences. AL in its broadest sense, denotes an
artificial system able to perform a certain task to some success.
ML, typically considered a subset of Al generally refers to some
set of algorithms that can “learn” to perform a specific task
without explicit implementation of the solution (although the
terms Al and ML are often used interchangeably). For instance,
ML algorithms are able to produce predictions on new and
unseen data after being trained on a finite learning data set
and are especially useful for tasks that involve a large amount
of data or variables (Figure 1). With the plethora of possible
variables that can lead to toxicity, ML approaches are particularly
well suited to model the relationship between treatment-induced
side effects and related covariates. An ML model that is able
to predict an outcome from a set of inputs, after tuning the
best set of parameters on a number of training cases, is referred
to as a classifier. Some common classifiers are naive Bayes,
logistic regression (LR), k-nearest neighbors (kNN), random
forests (RF), support vector machine (SVM), and artificial neural
networks (ANN).

Since the ML model will learn the parameters from the
available data, it follows that the characteristics of the data set
are absolutely crucial. If the training data set is sparse, the model
typically fails to learn a representative set of parameters that
can be generalized to instances outside of the data set. This
problem, which generally arises when a model has been trained
to encompass a particular set of data too closely, is known as
overfitting or overtraining. Overfitting can occur for a variety of
reasons and should always be a major concern when constructing
an ML model.

Since the performance of any ML model depends on the
particular problem and data set it is applied to, it is intractable
to generally rank different methods. Nevertheless, an acceptable
approximation of a model’s performance is given by the so-called
AUC (which is defined as the area under the receiver operating
characteristic curve) applied to an independent validation set.
The AUC value of a model ranges between 1, corresponding to
perfect classification of the validation set, and 0.5, corresponding
to a purely random classification. It is important to note, however,
that the AUC can be severely misleading in case of flaws in the
model design, such as heavily imbalanced data sets or misused
validation procedures.

Successful ML models have the potential to aid clinical
facilities and practitioners in minimizing side effects and
increasing the likelihood of positive outcomes. Despite a good
amount of research in ML methods for toxicity assessment, to
the best of our knowledge, this is the first effort to summarize
the current state of the field. Previous publications have focused
either on specific anatomical districts (5) or exclusively on
methodologies and theory (7, 8). Therefore, the aim of this review
is to present an overview of current achievements in the field as
well as main areas of debate and possible future directions, both
from a methodological and a clinical perspective.

Frontiers in Oncology | www.frontiersin.org

June 2020 | Volume 10 | Article 790


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

Isaksson et al. Machine-Learning for Radiotherapy Toxicity Prediction

Parameters tuning

Predictors Outcomes
* Clinical » Acute toxicity
» Dosimetric + Late toxicity
» Radiomic

Al Algorithms
» Decision Tree
* Naive Bayesian
» k-Nearest Neighbours (KNN)
» Support Vector Machine (SVM)
« Artificial Neural Network (ANN)

FIGURE 1 | Typical workflow of artificial intelligence-based models for clinical toxicity prediction. Machine learning algorithms work by tuning their characteristic
parameters by modeling the relationship between input and output data in an automatic manner.

SEARCH STRATEGY AND SELECTION
CRITERIA

A comprehensive literature review was performed through the
use of a search string (see Supplementary Materials S1) built
by an experienced medical librarian with input from the study
investigators. Different combinations of database-specific terms
were used, supplemented by keywords in order to cover all
the areas related to RT toxicity, ML, and toxicity prediction.
The literature review was conducted using the PubMed/Medline
databases in order to identify publications to be synthetized
into an exhaustive overview of the state of the art of ML
application for the prediction of RT-induced toxicity. The search
resulted in 864 hits. Reference lists of selected articles were hand
searched for further potential relevant papers and also using
the Snowballing technique (9). Studies with no focus on cancer,
radiation therapy, toxicity, or any kind of ML (in its broadest
sense) were excluded, together with articles dealing with pediatric
patients. All publications in languages other than English were
also excluded. In the end, 53 studies were included in this
narrative review. The search was conducted in March 2020 (see
Supplementary Materials S2).

OVERVIEW OF CONTEMPORARY
RESEARCH

Many studies were found that employ ML-based models
to predict RT-related side effects. Most of them concern
head and neck (H&N) (13 studies), lung (15 studies), and
prostate (16 studies) cancers, while a minor portion focused
on brain (1 study), breast (3 studies), esophagus (1 study),
gynecology (3 studies), and liver (1 study) cancers (Table 1). The

presented literature is divided into different sections according
to the anatomical district. Focus was put into presenting both
methodological and clinical aspects of the papers.

Brain

A single study on ML-based toxicity modeling was found related
to brain cancer (4). In the study, the authors conducted a
comprehensive comparison of the performance of different ML
classifiers on multiple data sets including patients with brain,
lung, and H&N primaries. Their models included decision
trees, RE, neural network, SVM, elastic net LR, and Logit-
Boost classifiers and were tested on 12 distinct data sets for
a total of 3496 patients. Both dosimetric and blood marker
data from meningioma as well as (non)-small-cell lung cancer
(NSCLC) and H&N cancer patients were considered. No single
classifier was found to be ideal across all data sets, but RF and
net LR performed comparably (best in six and four data sets,
respectively). Based on these results, the authors also investigated
methods of preselecting a classifier, concluding that empirical
selection of the classifier is advantageous, leading to an average
AUC increase of 0.02.

Breast

Current available literature includes only one abstract (11) and
two full papers (10, 12). In the study by Saednia et al., they
proposed an innovative approach based on the detection of body-
surface temperature increase induced by radiation dermatitis.
Thermal images of the irradiated breast were taken from a pool
of 90 patients at four consecutive time points: pre-RT and after
5,10, and 15 fractions, respectively (with a total dose of 42.50 Gy
in 16 fractions). Skin toxicity was assessed at the end of RT with
the Common Terminology Criteria for Adverse Events (CTCAE)
guidelines. On the independent testing data set, the RF classifier
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TABLE 1 | Summary of reviewed literature.

Cancer type References No. of pts Type of RT Type of predicted Features Classifier Results*
toxicity type
Breast (10) 90 RT Dermatitis R RF Acc = 0.87 (test)
(11) 2277 Moist desquamation, D, C LR, RF, gradient 0.56-0.85
dermatitis, chest pain, boosting
fatigue
(12) 827 RT Telangiectasia D,C LASSO
Esophagus (13) 101 IMRT or 3D-CRT Pneumonitis D, C LR Acc = 0.63
Gyneco (14) 42 EBRT+BRT Rectal toxicity D SVM 0.82-0.91
(15) 42 EBRT+BRT Rectal toxicity D CNN (transfer 1.29
learning)
(16) 35 BRT Fistula formation D,C SVM 1.30
H&N (17) 437 RT (397) PT (40) Toxicity (grade >3) C LR, RF, XGBoost 0.63-0.65
(18) 2121 RT Unplanned D,C LR, gradient 0.64-0.76
hospitalizations, boosting, RF
Feeding tube placement,
Weight loss
(19) 153 RT Xerostomia D,R,C 6 ML algotithms Best SVM and
extra-trees 0.74-0.89
(20) 86 RT Trismus D IBDM Identification of a
cluster of voxel related
with toxicity
(21) 427 RT Xerostomia D,C LR, LASSO, RF Best LR (0.70)
(22) 173 RT Acute dysphagia D,C SVM, RF 0.82
(23) 297 IMRT Xerostomia (grade >2) D,C LR Model updating
is beneficial
(24) 134 IMRT and PT Esophagitis R, D LASSO 0.75
(25) 47 3D-CRT Sensorineural hearing loss R, C Decision stump, 76.08% accurarcy
Hoeffding 75.9% precision
(26) 37 IMRT Parotid shrinkge D,C Fuzzy logic Acc = 0.79-0.86
Xerostomia Naive Bayes
27) 249 IMRT Xerostomia, sticky saliva R, D Multivariate LR 0.77
(28) 351 IMRT Mucositis D,C LR, SVM, RF 0.71 (RF)
(29 1 (H&N) IMRT Xerostomia (H&N), D Decision tree, SYM  0.42% MAE (H&N)
1 (Prostate) Rectal bleeding (prostate) 97% acc (prostate)
Liver (80) 125 SBRT Hepatobiliary toxicity D, C CNN (transfer 1.25
learning)
Lung (81) 110 SBRT LC, DFS, OS, and fibrosis R Cox regression
(32) 203 IMRT or PT Pneumonitis C RF 1.06
(83) 192 IMRT and 3D-CRT  Radiation pneumonitis R,D,C LASSO 0.68
(84) 197 SBRT Chest wall syndrome D,C Descision tree n/a
RF
(4) 3496 RT Classifiers comparison D, C Decision tree, RF, Best: elastic net LR
(lung-+brain ANN, SVM, elastic and RF
+H&N) net, logit-boost
(35) 14 SBRT Lung injuries R, D LR 0.64-0.78
(36) 201 SBRT Pneumonitis D,C Decision trees, RF,
RUSBoost
37) 115 RT Esophagitis D,C LASSO 0.78
(38) 54 3D-CRT Pneumonitis D, C Bayesian network 0.66-0.83
LR
Single variable
(39) 748 RT Esophagitis D,C LR 0.83
(40) 219 3D-CRT Pneumonitis D,C SVM 1.16
(Continued)
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TABLE 1 | Continued

Cancer type References No. of pts Type of RT Type of predicted Features Classifier Results*
toxicity type
(41) 55 (H&N) 3D-CRT Xerostomia, D, C LR, SVM, ANN Best: modified SVM
219+166 Pneumonitis (166)
(Lung) Esophagitis (216)
(42) 219 RT Radiation pneumonitis D, C Decision tree, 0.79
ANN, SVM,
self-organizing
maps
(43) 234 RT Radiation pneumonitis D,C Decision tree 0.72
(44) 166 EBRT Esophagitis D LR
xerostomia
(45) 142 3D-CRT Pneumonitis D ANN 0.61-0.85
Prostate (46) 64 IMRT (52 pts), Urinary toxicity R,D,C LR 0.65-0.77
3D-CRT (12 pts) Gastro-intestinal toxicity
47) 33 IMRT Cystitis R LR 0.62-0.75
(48) 33 IMRT Rectal wall changes R LR 0.46-0.81
(49) 351 RT Rectal bleeding R,D,C LR 0.58-0.73
Fecal incontinence
Urinary incontinence
Nocturia
(50) 598 RT Late fecal incontinence D,C ANN 0.78
(51) 593 RT Rectal bleeding D, C ICA 0.83, 0.80, 0.78
(52) 324 BRT+-EBRT GU toxicity symptoms D,C,G RF 0.7
(53) 118 EBRT, BRT Gl toxicities D LR Identification of spatial
constraint for toxicity
reduction
(54) 368 RT Rectal bleeding, C,G RF, LR 0.71 (rectal bleeding)
Erectile dysfunction 0.68 (erectile
dysfunction)
(55) 79 IMRT Rectal toxicity (grade >2) D,C LR 1.28
(56) 754 EBRT Dysuria, hematuria, D, C LR, Elastic-net, Best: LR, MARS
incontinence, frequency SVM, RF, ANN, AUC = 0.65
MARS
(57) 99 EBRT Rectal bleeding D LDA, SVM, Best: CP-DMA
k-means, kNN,
PCA, CP-DMA
(58) 261 3D-CRT Rectal toxicity, rectal D, C RF NTCP, NTCP 0.76, 0.66
bleeding
(59) 718 RT Rectal bleeding LR, ANN 0.655, 0.704
(60) 321 RT Acute bladder and rectal D, C ANN, SVM 0.7
toxicity
(61) 119 RT Rectal bleeding D ANN Sensitivity and

Nocturia

specificity >55%

3D-CRT, 3D conformal RT; Acc, accuracy; ANN, artificial neural network; AUC, area under the curve; BRT, brachytherapy; CNN, convolutional neural network; CP-DMA, canonical
polyadic decomposition—deterministic multi-way analysis; DFS, disease free-survival; EBRT, external beam RT; Gl, gastrointestinal; GU, genitourinary; H&N, head and neck; IBDM,
image-based data mining; ICA, indipendent component analysis; IMRT, intensity-modulated RT; kNN, k-nearest neighbors; LASSO, Least Absolute Selection and Shrinkage Operator;
LC, local control; LDA, linear discriminant analysis; LR, logistic regression; MAE, mean absolute error; MARS, multivariate adaptive regression splines; ML, machine learning; NTCR,
normal tissue complication probability; n/a, not applicable; OS, overall survival; PCA, principal component analysis; pt, patient; PT, proton therapy; RF, random forest; RT, radiotherapy;
RUSBoost, random under-sampling Boost; SBRT, stereotactic body RT; SVM, support vector machine. Features were classified as clinical (C), dosimetric (D), genomic (G), or radiomic

(R). *If not specified, AUC values are reported.

showed a good accuracy (87%) at the fifth fraction in predicting
the skin toxicity at the end of RT.

The authors in the study by Reddy et al. trained three
different classifiers, namely, RE, gradient boosted decision tree,
and LR, on a large population of 2277 patients to predict
the occurrence of common radiation toxicities, such as moist
desquamation, radiation dermatitis, breast/chest wall pain, and
fatigue. Validation performances reached AUC values of 0.85,

0.82,0.77, and 0.56 for the respective endpoints. According to the
authors, it was the first demonstration of the ability to accurately
predict acute RT toxicities in a prospective validation data set.
Finally, Mbah et al. set out to highlight the main failure
causes for models predicting RT-induced toxicity. Data from two
different German cohorts were used for a total of 827 breast
cancer patients who received RT. The Least Absolute Selection
and Shrinkage Operator (LASSO) LR model was used to predict
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telangiectasia within each individual data set separately. Each
model was also externally tested on the other data set. To their
surprise, they found that one predictive variable (hypertension)
had a positive coefficient on one data set, and a negative
coefficient on the other. Some variables were also exclusive to a
specific model, thus suggesting that overcoming overfitting does
not completely solve the problem of generalization.

Esophagus

An ML-based model for toxicity prediction in esophagus cancer
patients was published by Hart et al. (13). In their work, the
authors investigated the relationship between clinical symptoms
of radiation pneumonitis and the pulmonary metabolic activity
on post-treatment ['8F]-fluorodeoxyglucose positron emission
tomography (FDG PET). Their study included a cohort of
101 patients who underwent restaging FDG PET/computed
tomography (CT) imaging between 3 and 12 weeks after
completing thoracic RT for esophageal cancer. Several LR
models were built with different combinations of treatment
and dosimetric variables, obtaining a peak accuracy of 0.63
with p < 0.032 when combining pulmonary metabolic radiation
response with the mean lung dose, thus indicating a significant
relationship between pulmonary metabolic radiation response
and radiation pneumonitis.

Gynecological Cancers

The three studies in this section analyze toxicity outcomes
prediction following brachytherapy alone or in combination
with external beam RT (EBRT) in gynecological cancers. All the
models were trained with limited data sets, ranging between 35
and 42 patients, and with SVM or convolutional neural network
(CNN) classifiers.

Tian et al. (16) developed a model for fistula formation
prediction with an SVM classifier. Thirty-one different features
were used as predictor variables from a relatively small sample of
35 patients treated with interstitial brachytherapy. Their model
reached a high accuracy of 0.901, but the authors rightfully point
out the strong limitation deriving from the usage of the small
data set.

One study by Chen et al. (14) investigated the relationship
between rectal toxicity (CTCAE grade >2) and dosimetric
features. In detail, the feature calculation was performed
on both the 3D rectum surface and the 2D deformed
accumulated rectal surface dose map. The models, for
which they used SVM classifiers, achieved AUC values of
0.82 and 0.91 for different feature selection procedures (and
42 patients). The authors also demonstrated that the ML
model outperformed classification based on the conventional
Groupe Européen de Curiethérapie-European  SocieTy
for Radiotherapy & Oncology (GEC-ESTRO) dosimetric
parameters Dose to 0.1, 1 and 2 cm?, which achieved an AUC
of 0.71.

Zhen et al. (15) tested the feasibility of a CNN for rectum
toxicity prediction through a transfer learning approach. The
network itself, originally developed by the visual geometry
group at the University of Oxford, had been pretrained on the
ImageNet data set. The fine-tuning step was then performed

on unfolded rectum surface dose maps (RSDM). By using the
gradient-weighted class activation maps, the authors were also
able to identify the existence of discriminative regions on the
RSDM. Their results demonstrate than the CNN can outperform
conventional dosimetric parameters with top AUC values of 0.89
as compared to a meager 0.58 for the one-dimensional dose-
volume (DV) parameters (or 0.7 for 2D RSDM features). The
authors also presented comparisons between the transfer learned
network and a network trained from scratch.

Head and Neck

The size of the training data sets in published works on H&N
cancers ranges from 37 to 2121 patients. Predicted toxicity
outcomes included late xerostomia, acute mucositis, parotid
shrinkage, unplanned hospitalization, and weight loss. Applied
classifiers included LR, RE, gradient boosting, and one based on
fuzzy logic. In addition, one study (4) made a comparison of the
performance of different classifiers on different data sets (please
refer to the Brain section for further details).

The two most recent articles (17, 18) both applied three
different classifiers (RE, gradient boosting, and LR models)
to predict unplanned hospitalizations, feeding tube placement,
and significant weight loss (Reddy) and grade >3 toxicity
(Wojcieszynski). Reddy et al. considered a large data set of
2,121 patients, comparing over 700 treatment-related and clinical
variables, and achieved AUC values of up to 0.640, 0.755,
and 0.751 for RE gradient boosting, and LR, respectively.
Wojcieszynski et al. achieved a moderate success in predicting
grade >3 toxicity for 437 patients after 90 and 180 days (c-statistic
0.65 and 0.63, respectively) using 47 different patient covariates.
Among them, planning target volume (PTV) integral dose, body
mass index (BMI), integral dose to regions outside the PTV, and
age were most statistically impactful ones.

By  retrospectively comparing updating  strategies,
Nakatsugawa et al. (23) demonstrated the importance of
continuous model revising. On their data set, they concluded
that the best strategy was to update the model yearly, keeping
only the two most recent years of data. The method they used
was LR classifying grade >2 late xerostomia with clinical and
dosimetric variables from 297 patients.

The aim of the study by Beasley et al. (20) was to identify
specific CT image regions with a dose-toxicity association to
identify radiation-induced trismus in H&N patients treated
with RT. To achieve this objective, an image-based data
mining (IBDM) framework was applied to a cohort of 86
patients. The IBDM approach allowed for the identification of
a cluster of voxels associated with trismus; this cluster was
internally validated using a DVH-based approach and externally
on a cohort of 35 patients. As stated by the authors, this
study represents the first clinical application of IBDM with a
continuous outcome variable.

Jiang et al. (21) utilized a data set of 427 H&N cancer patients
treated with RT to predict xerostomia. Ridge LR, LASSO LR,
and RF classifiers were trained with planned radiation dose
data and non-dosimetric features to investigate the influence
of dose patterns on xerostomia. Among the three different ML
methods explored, ridge LR showed the best predictive power
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with an AUC of 0.70, although the difference in performance
was not statistically significant. The study highlighted how
radio-morphology combined with ML methods can indicate
the patterns of dose which are most influential on xerostomia,
potentially improving radiation treatment planning.

Dean et al. (22) developed a model to predict severe acute
dysphagia in H&N cancer patients treated with RT. Penalized
LR (PLR), SVM, and RF models were trained using dosimetric
and clinical data and then internally and externally validated on
173 and 90 patients, respectively. Results showed that PLR model
performances were comparable with the more complex models
with an AUC of 0.82 and that dose to the pharyngeal mucosa was
an important predictor of dysphagia.

In another study, Gabrys et al. (19) investigated whether
xerostomia risk assessment can be amended by ML with
dosimetric, radiomic, and demographic features, rather than
only using a NTCP model. The authors compared predictive
performance of seven classification algorithms, six feature
selection methods, and 10 data cleaning/class balancing
techniques using the Friedman test and the Nemenyi post-hoc
analysis. A cohort of 153 H&N cancer patients was used to
predict xerostomia at different time stages. Their multivariate
models achieved AUC values ranging from 0.74 to 0.88, with
SVM and “extra-trees” having the top performances. The
authors also pointed out that LR was preferred for univariate
feature selection, and that data cleaning/class balancing had no
advantage. Their NTCP models, on the other hand, failed to
predict xerostomia (AUC < 0.6).

The study of Abdollahi et al. (48) aimed to predict
sensorineural hearing loss in radiochemotherapy-treated H&N
cancer patients. From a cohort of 47 patients, 490 image features
of 94 cochlea were derived from CT images. To perform
feature selection, classification, and prediction, 10 different ML
approaches were tested. The predictive power (AUC, accuracy,
and precision) of the ML algorithms was over 0.70 in all cases; the
best was obtained by Decision Stump and Hoeffding modeling
with 76.08% and 75.9% accuracy and precision, respectively. In
conclusion, CT radiomic analysis, both with and without clinical
and dosimetric variables, could help with chemoradiation-
induced hearing loss.

On a small data set of 37 patients treated with IMRT, Pota et al.
(26) applied a fuzzy logic-based classifier in order to predict the
occurrence of parotid shrinkage and 12-month xerostomia. To
do this, they used clinical features, dosimetric parameters, CT-
based radiomic features, and combinations thereof as predictor
variables. They achieved high respective accuracies of up to
0.86 (parotid shrinkage) and 0.79 (xerostomia). Their developed
model is easily interpretable and have comparable performance
to a naive Bayes classifier.

The goal of the study by Van Dijk et al. (27) was to
build a predictive model for xerostomia and sticky saliva in
H&N cancer patients using CT image biomarkers (IBMs).
The planning CT scans of 249 H&N cancer patients were
collected to extract IBMs in order to create multivariable LR
models, which were then internally validated by bootstrapping.
In total, 26 features correlated with xerostomia and 24 correlated
with sticky saliva were selected. The results showed how the

addition of IBMs of the parotid and submandibular glands to
dosimetric data improved the mean AUC from 0.74 to 0.77.
The authors found that the IBM “short run emphasis” was the
most important for xerostomia prediction, and “maximum CT
intensity” was the most important for sticky saliva prediction.
These features represented heterogeneity and density within the
salivary glands, respectively.

Dean et al. (28) compared LR, SVM, and RF classifiers in
a framework to predict severe acute mucositis on a cohort
of 351 patients. Their variables included dose-volume (DV)
parameters, spatial dose metrics, and clinical data. Although
model performances were comparable, the best performance
was obtained with the RF classifier, with an AUC value of
0.71. The authors also confirmed that reducing the volumes
of oral cavity receiving intermediate/high doses may reduce
mucositis incidence.

Zhang et al. (29) developed decision tree and SVM models for
a single H&N patient. The model was supposed to predict saliva
flow rate with DV constraints and tailored plan properties as
input variables. The mean absolute error of predicting saliva flow
rate was 0.42%. Their results suggest that “ML tools can be used
to guide planners to select DV constraint settings corresponding
to all involved OARs in a knowledge-driven manner.”

El Naqa et al. (41) investigated several types of linear
and non-linear kernels' to generate interaction terms and
approximate the treatment-response function in order to capture
the potential complexity of heterogeneous variable interactions
more accurately. This study investigated xerostomia on a data set
with 55 H&N cancer patients as well as two data sets with prostate
cancer (PCa) patients. By first analyzing patient distributions
with principal component analysis (PCA), they concluded that
SVM outperformed both LR and an ANN.

Liver

Ibragimov et al. (30) employed a pre-trained CNN model on 3D
dose maps in order to predict liver toxicity after SBRT. They also
included non-dosimetric patient variables as additional inputs to
the network. By using the saliency maps of the network, they were
able to identify anatomical regions that are critical to spare during
SBRT. On their data set of 125 patients, their model managed to
predict hepatobiliary toxicity with an AUC of 0.85. In addition,
their deep learning model also predicted almost two times fewer
false-positive toxicity cases compared to DVH-based predictions.
The authors also observed that irradiation of the proximal portal
vein was associated with two times higher toxicity risks than
irradiation of the left portal vein.

Lung

For lung cancers, the size of the data sets ranged between
54 and 235 patients. The majority of the studies dealt with
radiation-induced pneumonitis, whereas some studies dealt with
esophagitis, xerostomia, sticky saliva, and chest pain. Lung cancer
RT may cause chest pain due to rib fracture, radiation-induced

!n this context, kernels are mathematical transformation functions that allow an
implicit embedding of data in another feature space. For the purpose of this article,
different kernels can be thought of as different types of SVMs.
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neuropathy of the intercostal nerves or nerve branches, chest wall
edema, or chest wall fibrosis. However, the only study we found
that specifically investigated chest pain is the one by (34). The
authors utilized decision tree and RF methods to identify robust
features predictive of chest wall pain in a cohort of 197 patients.
Both univariate and multivariate analyses confirmed the role of
rib dose to 1 cc, chest wall dose to 30 cc, and rib dose max (Dax)
as relevant variables. Based on these findings, efforts should be
directed at lowering the rib dose to 1 cc <4000 cGy, chest wall
dose to 30 cc <900 cGy, and rib Dy < 5100 cGy in order to
mitigate chest wall syndrome.

Das et al. performed two studies (42, 43) for pneumonitis
prediction in a data set of 219 lung cancer patients treated with
RT. In both studies, the final model derived from a fusion of two
or more single models. In the study dated 2007, starting from a
data set of 234 lung cancer patients treated with RT, they trained
a model for lung radiation-induced grade 2+ pneumonitis.
The model consisted of a parametric dose-based Lyman NTCP
model in conjunction with weighted non-parametric decision
trees. The combined models’ predictive power resulted in an
AUC of 0.72—an improvement compared to the 0.62 AUC of
the Lyman NTCP alone. In particular, the information about
non-dose variables provided by the decision trees could add
interpretability and aid in dissemination. In the study dated
2008, the authors constructed a consensus model by fusing
four different non-linear multivariate models: decision trees,
neural networks, SVMs, and self-organizing maps. Consensus
was achieved by simply averaging the predictions for each patient
from all four individual models (in an ensemble-wise manner,
i.e., with several predictions for each individual model). This
achieved an average AUC value of 0.79 with lower variance than
the individual component models.

Esophagitis is another common side effect in lung cancer RT,
but only two studies researched this topic (41, 44). In the former,
the authors explored model building and variable selection
methods for multivariate dose-response assessment, considering
a data set of 166 NSCLC patients. Using a LR classifier, the
authors concluded that performance can be improved by mixing
clinical and DV factors as input parameters. In the second paper,
they investigated several types of linear and non-linear kernels
to approximate the treatment-response function and capture the
potential complexity of heterogeneous variable interactions. This
was done with a data set of 219 lung cancer patients. In the same
article, the authors also investigated pneumonitis on a data set of
166 patients and xerostomia on a data set of 55 patients. After
applying PCA to analyze variable distributions, they concluded
that SVM outperformed both LR and an ANN.

Niedzielski et al. (24) explored a novel method for using CT
imaging biomarkers to quantify patients’ radiosensitivity and
subsequently predict esophagitis risk. Patients with high response
to radiation, despite lower radiation dose, were labeled as
radiosensitive. This information was extracted through K-means
clustering (an automatic clustering algorithm) with three nodes.
The authors concluded that inclusion of the radiosensitive
variable improved LASSO LR model performance (mean AUC,
0.75) compared to models without this information (mean AUC,
0.69). Their predictive model was built with a cohort of 134

NSCLC patients treated with IMRT (85 pts) or passive-scatter PT
(49 pts).

Valdes et al. (36) developed a patient-specific “big data” clinical
decision tool in order to predict radiation-induced pneumonitis
in stage I NSCLC patients who received SBRT. In the study, the
performance of three different algorithms [Decision Trees, RE,
random under-sampling (RUS) Boost] was evaluated on a cohort
of 201 lung cancer patients. The feature selection highlighted that
the most important features for pneumonitis prediction were the
diffusion capacity of the lung for carbon monoxide and the dose
to the heart, trachea, and bronchus. The authors also stated that
at least 800 patients are needed to keep the error below 10% for
pneumonitis prediction.

Huang et al. performed two studies for prediction of
esophagitis. In the first one (39), a model for the assessment
of severe acute esophagitis for NSCLC patients treated with
RT was constructed. Correlation analysis and LR models with
clinical and dosimetric variables were tested on three different
Washington University data sets including a total of 748 patients.
Their most successful bivariate model (using the variables mean
esophagus dose and concurrent chemotherapy) achieved an AUC
of 0.83. In the second one (37), they tested the previously
published model to predict the risk of severe acute esophagitis
on a new independent data set of 115 NSCLC patients. The
model used a logistic function with the same two predictor
variables: mean esophageal dose and concurrent chemotherapy.
When comparing the model with a new model built solely on
the independent data set, the authors concluded that the former
was almost as predictive as the latter (although the same variables
were selected), being AUC = 0.78.

Most of the published studies concern radiation-induced
pneumonitis as the target variable, as it represents one of the
principal dose-limiting toxicities associated with thoracic RT
(40). Of these studies, Lee et al. (38) developed a Bayesian
network approach in a cohort of 54 NSCLC patients treated
with 3D conformal RT (3D-CRT). For inference, they included
DV, clinical, and blood biomarker data. They also compared the
Bayesian network ensemble approach, which managed to achieve
an AUC of 0.83, with a LR classifier (AUC = 0.77), and univariate
predictors (AUC < 0.69). Valdes et al. (36) considered a larger
data set of 201 stage I NSCLC patients to construct different
models with decision trees, RF, and RUSBoost, concluding that
RUSBoost had the best performance. They found that the three
most important predictive features were the dose to 15 cc of the
heart, dose to 4 cc of the trachea or bronchus, and race. However,
rather than developing a model for clinical use, the article focused
on the power of using learning curves and comparisons of testing
and training error to guide the discovery process.

Su et al. (45) investigated an approach to build an ANN,
comparing three different validation methods. The ANN was
built as a fully connected three-layered feed forward network,
and achieved peak AUC values of 0.85. As input to the network,
they used DV data from a data set of 142 patients treated with
3D-CRT. Chen et al. (40) tested an SVM model in a data set
of 219 patients and compared two models: one including only
dose variables (AUC = 0.71), while the other used dose as well
as non-dose variables (AUC = 0.76). They concluded that it is
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indeed beneficial to include non-dose factors in prediction. The
two most predictive variables in their model were generalized
equivalent uniform doses close to the mean lung dose, and
chemotherapy prior to RT. Luna et al. (32) used a RF approach in
a cohort of 203 patients treated with stage II-III locally advanced
NSCLC. They evaluated 32 clinical features at both univariate
and multivariate analysis and confirmed the importance of lung
volume receiving 20% of dose (V20), lung mean, and pack-
year as predictors of radiation pneumonitis. They also identified
esophagus max as a new possible indicator.

Beside dosimetric- and clinical-based predictors, image-based
variable models have also been employed to predict RT-related
toxicity outcomes in lung cancer patients. Bousabarah et al. (31)
used CT-based radiomic features to predict radiation-induced
lung injuries. The study analyzed 110 patients with primary stage
I/ITa NSCLC treated with stereotactic body RT for predicting
various outcomes, including local lung injury up to fibrosis.
Interestingly, for this classification task, only first-order features
from gray-level histogram were found to be predictive. Overall,
the work suggested that radiomic analysis of planning CT images
may help to predict local lung injury up to fibrosis, together
with disease-free survival and overall survival in lung cancer
patients treated with SBRT. The derived features can be regarded
as imaging biomarkers that could support the clinical decision
process to the benefit of the patients and oncologist.

Moran et al. (35) investigated the potential of CT-based
radiomic features to characterize post-SBRT lung injury. They
also investigated the relationship between changes of radiomic
feature values and accumulated dose by constructing dose—
response curves. The ability to assess lung injury was tested by
using a logistic regression classifier, which achieved AUC values
in the 0.64-0.75 range using only gray level co-occurrence matrix
(GLCM) features. Their results showed that eight out of nine
features demonstrated a significant dose-response relationship,
suggesting a potential objective measurement of post-SBRT
lung injury.

Kraftt et al. (33) developed a predictive model for radiation
pneumonitis using CT-extracted radiomic features in
combination with clinical and dosimetric parameters from
a cohort of 192 NSCLC patients. Of the 192 patients, 80% (152)
were treated with IMRT while the remainder with 3D-CRT.
A LASSO logistic regression classifier was built, resulting in
an average AUC of 0.68, showing an increased performance
compared to models not including image features (AUC = 0.51).

Prostate

The most common toxicity outcomes in PCa RT are erectile
dysfunction (ED), gastrointestinal (GI) disorders, rectal toxicity,
and genitourinary (GU) side effects. To predict these unwanted
outcomes, the reviewed studies trained several different ML
classifiers including SVM, ANN, RE and multivariate adaptive
regression splines (MARS) with data sets of sizes between 79
and 754. Lee et al. (52) also took a gene ontology analysis into
account to identify biological processes related to radiation-
induced toxicity and predicted late GU toxicity symptoms in a
cohort of 324 PCa patients. In this study, the only clinically valid
model, which achieved an AUC of 0.7, was for predicting weak

stream with RFs. The genetic analysis they conducted highlighted
neurogenesis and ion transport as key biological processes related
to urinary tract functions.

The study by Carrara et al. (50) was designed to predict
late fecal incontinence in PCa patients treated with RT, using
ANN classification methods. A population of 598 PCa patients
was tested, recording information about comorbidities, previous
abdominal surgeries, drug treatments, and dose distribution.
In order to identify the best-performing ANNs, the authors
varied the number of inputs and neurons and simulated a great
amount of ANN configurations. Finally, the best ANN model was
selected, showing an 80.8% sensitivity and 63.7% specificity in
late fecal incontinence prediction, with an AUC of 0.78.

Fargeas et al. (51) applied an independent component analysis
(ICA) model to predict RB in a cohort of 593 PCa patients
treated with RT. Two subspaces from the rectal DVHs (with
and without RB) were identified and integrated with dosimetric
and clinical parameters in a Cox proportional hazards model
for RB prediction. The model was tested for 3, 5, and 8 years
RB prediction, with AUCs of 0.68, 0.66, and 0.64, respectively.
Interestingly, when ICA parameters were included the model,
performances increased with new AUCs of 0.83, 0.80, and 0.78.

In their paper, Oh et al. (54) developed a novel classification
algorithm that they call pre-conditioned random forest
regression (PRFR). The algorithm was tailored for genome-wide
association studies based on single-nucleotide polymorphisms
(SNPs). On their cohort of 368 PCa patients treated with RT,
the aim was to construct a predictive model of two post-RT
clinical endpoints: rectal bleeding and ED. After generating
a SNP importance score, they included the top 50% most
relevant SNPs in their model. This procedure achieved AUC
values of 0.71 and 0.68 for rectal bleeding and ED, respectively,
outperforming traditional classification algorithms such as RF
and logistic regression. The authors also concluded that the
model performance could be further improved by incorporating
clinical variables.

Moulton et al. (53) investigated the relationship between
spatial dose distribution and GI toxicities including rectal
bleeding, stool frequency, diarrhea, and tenesmus. Their study
contained data from 118 patients treated with a combined
EBRT/high-dose-rate brachytherapy treatment. By building
models with logistic regression and the Wilcoxon signed rank
test, they were able to investigate the association between
dose surface map-related features and toxicities. Their findings
indicated that spatial constraints on doses to certain sections
of the rectum may be important for reducing toxicities and
optimizing the dose.

Both Liu and Li (55) and Pella et al. (60) modeled acute
grade rectal toxicity for PCa patients using dosimetry and
patient clinical characteristics after treatments with IMRT and
3D-CRT, respectively. The model by Liu achieved a significatively
better AUC (0.88) when clinical and dosimetric variables were
combined, as compared to a model considering only dosimetric
features (0.67). In particular, the use of statin drugs and
prostate-specific antigen (PSA) level prior to IMRT was found
to be strongly related to the toxicity outcome. Pella et al.
instead compared an ANN model with an SVM model trained
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with dosimetric and clinical data from 321 patients treated
with conformal RT. The results obtained showed comparable
performances of up to 0.7 AUC for the two compared models.

Yahya et al. (56) conducted a classifier comparison for
different urinary symptoms on a cohort of 754 PCa patients.
With dose-surface data, comorbidities, and medication intake as
input parameters, they analyzed the clinical endpoints dysuria,
hematuria, incontinence, and frequency. The following classifiers
were compared: LR, elastic-net, SVM, RE neural network, and
MARS. They pointed out that the predictive power is endpoint-
dependent and modest at best (AUC = 0.65). Best performance
was found for LR and MARS, although elastic-net and RF gave
comparable results.

Fargeas et al. (57) developed a novel approach that they call
CP-DMA to predict patients presenting rectal bleeding. The
name CP-DMA comes from canonical polyadic decomposition,
an alternative name for tensor rank decomposition, and
deterministic multi-way analysis. The model uses tensor rank
decomposition of the fourth-order tensors created by 3D
dose distributions concatenated for different patients (in the
fourth dimension) in order to find two separate vector
subspaces (one subspace for each outcome, with or without
rectal bleeding). Patients are then classified according to their
distance to the respective subspaces. Results were compared
to linear discriminant analysis, SVM, K-means, kNN, a PCA-
based unsupervised algorithm, unsupervised multidimensional
classification, and an NTCP model. Their model achieved an
AUC of 0.85, outperforming the alternative methods.

Ospina et al. (58) compared the performances of a classical
NTCP model with a RF NTCP model for late rectal toxicity
prediction on a cohort of 261 patients with PCa treated
with 3D-CRT. Both clinical and dosimetric features were
collected to train three RF models in order to predict three
different 5-year rectal toxicity endpoints: grade 2 overall rectal
toxicity and grade 1 and 2 rectal bleeding. Performance of
the model ranged between 0.66 and 0.76 depending on the
toxicity endpoint. Authors highlighted that the most suitable
parameters to be considered in rectal toxicity prediction include
dose to the rectum, age, and anticoagulant treatment of
the patients.

Zhang et al. (29) developed decision tree and SVM
models for one PCa patient (as well as a H&N cancer
case), predicting rectal bleeding (RB) with DV constraints
and tailored plan properties as input variables. The RB
prediction had an average accuracy of 97.04%, indicating that
the selection of DV constraint setting can be guided with
ML methods.

The study by Tomatis et al. (59) aimed to compare the
performances in predicting late RB in a cohort of 718 PCa
patients of an LR model and an ANN one using clinical and
DVH-based parameters. Overall, the ANN model outperformed
the other, with AUCs of 0.704 vs. 0.655, respectively. Authors
suggested how the integration of gene expression profiles and
surface dose mapping could help to improve the predictive
performances of the model.

Gulliford et al. (61) were early adopters of ANN for predicting
biological outcomes following PCa RT. They used the treatment

plan prescription and dose distribution data in order to predict
rectal bleeding and nocturia on a data set with 119 patients.
Analysis was made on different discretization levels of the
outcomes, and an attempt was made to “look inside” the ANN
at a basic level. Their results showed sensitivities and specificities
of roughly 0.55.

Several studies aiming to correlate radiomic features with
toxicity outcomes are present in the literature. In the study
by Mostafaei et al. (46), the potential role of CT radiomics to
predict prostate RT toxicities, including acute bladder and rectal
injuries, was investigated. Sixty-four PCa patients were studied.
The findings highlighted the feasibility and good performance
of pre-treatment CT image features as new markers to predict
radiation toxicities. The results also showed that, for cystitis, the
combination of radiomic features with clinical and dosimetric
features could enhance the predictive performance: from AUC
values of 0.71 and 0.67 for radiomic and clinical models alone,
to AUC = 0.77 when the features were combined. However, for
proctitis modeling, the performance was lower in the combined
setup compared to the radiomics-only model (AUCs for clinical,
radiomic, and clinical-radiomic models were 0.66, 0.71, and
0.65, respectively). These results suggest that integration of
radiomics with clinical and dosimetric features may improve the
performance of predictive models.

Abdollahi et al. (47) analyzed magnetic resonance imaging
(MRI) images from a pool of 33 patients in order to predict
urinary toxicity in PCa patients. Different radiomics features
(§5.0SumVarnc, S2.2SumVarnc, S1.0AngScMom, S0.4SumAverg,
and S5.5InvDfMom) were tested, resulting in AUC values
between 0.62 and 0.75 and showing a major dependence of
radiomic features on radiation dose. Overall, feature changes
resulted to have a good correlation with radiation dose and
radiation-induced urinary toxicity. These radiomic features can
be identified as being potentially important imaging biomarkers
which can also allow to assess mechanisms of radiation-induced
bladder injuries.

Abdollahi et al. (25) applied radiomic feature analysis on
pre/post IMRT MRI images to find imaging biomarkers for
rectal toxicity prediction. Feature extraction was made on both
T2-weighted and apparent diffusion coeflicient (ADC) images
(two different MRI scanning protocols). Pre-IMRT T2-weighted
radiomic image features could predict rectal toxicity with a fairly
good performance (AUC mean: 0.68), showing a better predicting
power in relation to ADC image features (AUC mean: 0.58). The
AUC reached 0.81 when all features were combined, suggesting
that pre-treatment MRI features may be a feasible approach to
predict radiation-induced early rectal toxicity.

Finally, Rossi L. et al. (49) applied DVH parameters, texture
features of patients’ 3D dose distributions, and non-treatment-
related (NTR) predictors to develop predictive models for GI
and GU toxicities. Multivariate LR models were trained using
the NTR features alone as well as in combination with the
other variables. RB, fecal incontinence, nocturia, and urinary
incontinence were considered. For RB, fecal incontinence,
and urinary incontinence, AUC values increased when adding
DVH and texture features to NTR features (from 0.58, 0.63,
and 0.68 to 0.73, 0.73, and 0.73, respectively). In the case
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of nocturia, inclusion of DVH parameters resulted in a
marginal improvement (0.64 vs. 0.66). Overall, the inclusion
of more features improved prediction performance for GI and
GU toxicity.

DISCUSSION

In recent years, the growing interest toward Al in all fields of
science has led to the development of innovative tools in RT (62),
including several toxicity prediction models. Some of them have
demonstrated high performance on very large and diverse data
sets, making them potential candidates for clinical integration.
Other ones have highlighted cases where ML prediction seems
to fail, such as in predicting unplanned hospitalizations or
fatigue. Interestingly, almost half of the 53 reviewed papers were
published in the last 3 years, with the earliest publication dating
back to 2004, making it a rather young area of interest with much
potential for future research.

Our overview indicates that the amount of research on ML-
based models for prediction of toxicity is not balanced across
districts, as some of them, such as lung, prostate, and H&N have
been receiving more attention than others such as brain, skin,
blood, and breast. Regarding brain cancer, the lack of ML models
is potentially ascribable to the scarcity of literature in general
concerning radio-induced toxicity within the brain. This may be
explained by the fact that acute and late complications of brain
tumor patients prevalently manifest themselves as neurological
disorders that are difficult to assess. On the other hand, H&N
studies are common mainly because these kinds of cancers, albeit
not as common as PCa or lung cancer, are very often associated
with clinically relevant toxicity, with a well-documented impact
on patients’ quality of life. Additionally, accurate prediction of
RT toxicity in H&N cancer may help physicians to identify
the best treatment option whenever equally effective approaches
(i.e., surgery) are available. Furthermore, integration of genetic
information in the modeling approaches, despite being desirable,
appears almost completely absent, being treated only in two
studies (52, 54).

The large variety of variables, features, and models, as well
as the lack of standardization in the development of predictive
tools, accounts for the scarce comparability of the existing works.
As previously pointed out, performance measures such as the
AUC are not the be-all and end-all of model assessment and
should be taken with a grain of salt. The AUC measure has even
been criticized as an indicator of performance altogether (63)
and can sometimes be misleading. For instance, out of all the
selected papers, the best results (AUC > 0.85) were achieved in
small- or medium-sized data sets (<150 patients). This implies
that further validation of the current best-performing models on
larger and/or more diverse data sets is mandatory.

Since the principal aim of ML models for toxicity prediction
is clinical integration, critical efforts are required to make the
relevant research understandable, transparent, and accessible
to an audience with little or no specific computational
background. As a matter of fact, considering the specific
case of this review, the studies did not always accurately
report clinical information concerning pathology, RT treatment
(technique, dose, fractionation scheme), the kind of developed

toxicity (late or acute), as well as methodological details
(feature selection procedures and employed models). Therefore,
a rigorous method for communicating characteristics and
results of prediction models, which would foster the synthesis
and critical appraisal of the relevant information, is of
paramount importance. One of them was proposed by the
Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis (TRIPOD) initiative
(64), which consists of a checklist that encompasses a
minimum set of details that authors should fulfill to provide
essential and clear information about their work. In particular,
the key points should include a summary of objectives,
study design, setting, participants, sample size, predictors,
outcomes, statistical analysis, results, and conclusions. This
would ensure that proper assessment of usefulness, potential
biases, and possible drawbacks of published research can
be made.

Other open issues are the importance of data sharing among
centers, the need for continuous model updates, and the need
for prospective studies to support the clinical applicability of the
developed models. More research and effort in these areas will
alleviate the issue of clinical integration, which represents both
the primary driver and the ultimate goal of these efforts.

CONCLUSION

Despite the loose ends about the clinical applicability of RT-
induced toxicity models, our overall findings show that ML-based
solutions for toxicity prediction in RT could represent a valid
tool in research settings. In order to maximize the therapeutic
index of RT and to guide the clinical selection of patients, an
effective toxicity prediction scheme is essential. Application of
such models can be a valuable asset in many different aspects for
both patients and clinicians.
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Purpose: For prostate cancer treatment, comparable or superior biochemical
control was reported when using External-Beam-Radiotherapy (EBRT) with
High-Dose-Rate-Brachytherapy (HDRB)-boost, compared to dose-escalation with
EBRT alone. The conformal doses produced by HDRB could allow further beneficial
prostate dose-escalation, but increase in dose is limited by normal tissue toxicity.
Previous works showed correlation between urethral dose and incidence of urinary
toxicity, but there is a lack of established guidelines on the dose constraints to this
organ. This work aimed at fitting a Normal-Tissue-Complication-Probability model to
urethral stricture data collected at one institution and validating it with an external cohort,
looking at neo-adjuvant androgen deprivation as dose-modifying factor.

Materials and Methods: Clinical and dosimetric data of 258 patients, with a toxicity rate
of 12.8%, treated at a single institution with a variety of prescription doses, were collected
to fit the Lyman-Kutcher-Burman (LKB) model using the maximum likelihood method.
Due to the different fractionations, doses were converted into 2 Gy-equivalent doses
(a/B = 5Gy), and urethral stricture was used as an end-point. For validation, an external
cohort of 187 patients treated as part of the TROG (Trans Tasman Radiation Oncology
Group) 03.04 RADAR trial with a toxicity rate of 8.7%, was used. The goodness of fit
was assessed using calibration plots. The effect of neo-adjuvant androgen deprivation
(AD) was analyzed separating patients who had received it prior to treatment from those
who did not receive it.

Results: The obtained LKB parameters were TD50 = 116.7Gy and m = 0.23; n
was fixed to 0.3, based on numerical optimization of the likelihood. The calibration plot
showed a good agreement between the observed toxicity and the probability predicted
by the model, confirmed by bootstrapping. For the external validation, the calibration
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plot showed that the observed toxicity obtained with the RADAR patients was well-
represented by the fitted LKB model parameters. When patients were stratified by the
use of AD TD50 decreased when AD was not present.

Conclusions: Lyman—Kutcher—Burman model parameters were fitted to the risk of
urethral stricture and externally validated with an independent cohort, to provide guidance
on urethral tolerance doses for patients treated with a HDRB boost. For patients that did
not receive AD, model fitting provided a lower TD50 suggesting a protective effect on

urethra toxicity.

Keywords: NTCP, HDR brachytherapy, urethra, predictive modeling, prostate cancer

INTRODUCTION

In the treatment of unfavorable prostate cancer, several studies
have shown that the use of High-Dose-Rate Brachytherapy
(HDRB) as a boost in combination with External Beam
Radiotherapy (EBRT) provides biochemical control and prostate-
cancer specific survival comparable or superior to dose-
escalation with EBRT alone (1-6). These results are in line
with findings suggesting that prostate cancer tends to respond
similarly to late reacting tissues to dose fractionation schedules,
consistent with lower a/f ratio (7, 8). The conformal doses
provided by HDRB could potentially allow further beneficial
dose-escalation due to their excellent organs-at-risk (OARs)
sparing. However, concerns have been raised regarding the
potential risk of acute and late urethral toxicity, in particular
urethral stricture, which has been reported by several authors
in rates up to 30% (9-11). Causes for urethral strictures have
been investigated and contradictory findings are reported in the
literature with reports showing correlation between urethral dose
and incidence of urinary toxicity (10, 12), and others instead
reporting no significant correlations (2, 13, 14).

Due to the variety of fractionation regimens used for HDRB
boost treatments in different centers, ranging from multiple
fractions to monotherapy (9), it is still hard to compare practices
and related toxicity results. Additionally, follow-up time tends
to vary ranging between 2 and over 5 years (2, 10, 13). For
this reason, there is no consensus on the dose constraints for
urethral doses (15-17), and often limits are decided in each
institution based on experience of the practitioners. In-depth
analyses of the dose-effect relationships have been performed for
the bladder and urethral toxicity mainly in the context of EBRT to
gain understanding of the potential effect of increasing dose per
fraction on the main OARs, following the increase in the use of
hypofractionation in prostate radiotherapy treatments (18-20).
A small number of studies have also looked at Normal Tissue
Complication Probability (NTCP) for the urethra, but in all cases,
they have highlighted that parameters for the most used NTCP
models, such as the relative seriality or the Lyman-Kutcher-
Burman model, were not available, and have assumed that the
urethra had a similar response as organs such the esophagus
(21, 22).

Using the long term data and experience accumulated
in our department in treating prostate cancer patients with

HDRB boost the purpose of this work has been to establish
NTCP model parameters specific for the urethra by fitting
a normal tissue toxicity curve on urethral stricture data
recorded in our institution. This curve has then been validated
with an independent external cohort, in order to provide
general applicability and a tool to guide treatment design and
fractionation selection criteria.

MATERIALS AND METHODS
Model Fitting

Patients and Clinical Data

Clinical and three dimensional (3D) treatment planning data
of 258 patients treated at Alfred Health Radiation Oncology
(AHRO) from 2001 to 2013 were retrospectively collected for
this analysis. These 258 patients were selected as a subset of a
larger group of more than 500 patients treated at our institution,
receiving a curative regimen that included a boost of HDRB, in
combination with EBRT, since they had complete retrievable 3D
planning and associated toxicity information with at least 4 years
of follow-up. Most patients were classified in the intermediate
and high risk group, and details of the CT-planning based
treatment technique are presented in previous publications (10,
23). In summary, for patients treated before 2006 metal needles,
replaced by plastic needles for patients treated after 2006, were
inserted transperineally using ultrasound guidance. Before 2005,
patients were not replanned in subsequent days, then until 2008
only if a second CT-simulator scan showed a superior-inferior
displacement of the needles of more than 1cm. As of 2008 for
all patients, a new CT scan and plan is performed on the second
day. All patients received an EBRT dose of 46-50 Gy in 2 Gy
per fraction. For the HDRB boost, a variety of fractionations
regimens were used to treat the patients over the years (Table 1),
but all patients were treated in 2 consecutive days, with the
patients treated with three fractions having two fractions on the
2nd day.

For all patients, clinical, demographic, and toxicity data
were extracted from our institutional prospective brachytherapy
database BrachyNET. All patients had a review after 6, 12, 24
months and every year until 10 years after the HDRB implant,
and no patient was lost to follow-up. At each review, patients
completed the Expanded Prostate Cancer Index Composite
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TABLE 1 | AHRO HDRB boost patients’ characteristics including number of patients (no. of patients), HDRB physical, and biological prescription dose (respectively,
Brachytherapy Prescription dose-physical and equivalent), toxicity rate, mean, and median time to stricture (%), patient who had received Neo-Adjuvant Androgen

Deprivation and age.

Group 1 Group 2 Group 3 Group 4 Total
No of patients 131 17 8 2 258
Brachytherapy Prescription dose 18 Gy in 3 fractions 19 Gy in 2 fractions 17 Gy in 2 fractions 10 and 6 Gy in 2 fractions
(physical dose, Gy)
External Beam Prescription dose 46 Gy in 23 fractions 46 Gy in 23 fractions 46 Gy in 23 fractions 46 Gy in 23 fractions
(physical dose, Gy)
Brachytherapy Prescription dose 28.3Gy 39.4 Gy 32.8Gy 30.8Gy
(2 Gy equivalent dose, a/f = 5 QGy)
Total dose EBRT + HDRB (2 Gy 74.3Gy 85.4Gy 78.8Gy 76.8Gy
equivalent dose, a/p = 5Gy)
Toxicity rate at 4 years (%) 6.9% 20.5% 0% 0% 12.8%
Mean time to stricture (years) 3.6 2.1 Not applicable Not applicable
Median time to stricture (years) 3.0 1.4 Not applicable Not applicable
Adjuvant androgen deprivation (no of 118 113 8 2 241
patients)
Mean age (years) 65.4 66.3 66.1 65 65.7

For EBRT the 46 in 2 Gy per fraction prescription is shown as only 1 patient in the whole cohort had 50 in 2 Gy per fraction.

(EPIC-26) form (24), and rectal and urethral toxicity information
was collected. In terms of urethral toxicity, a stricture was
recorded if the patient underwent a surgical procedure for a
stricture (dilatation or urethrotomy). In this work, the end-point
was chosen to be the time of the first urethrotomy, with a follow-
up cut oft time of 4 years, and the average stricture rate was 12.8%.
Among the clinical parameters, age, and the use of neo-adjuvant
androgen deprivation (AD) were also collected (Table 1). In
the HDRB plan, the urethra was contoured by the Radiation
Oncologist (RO) around the external diameter of a 22-Fr gauge
three-way indwelling urinary catheter as a solid structure from
typically 1cm below the apex to the bladder base (Figure 1a)
considering the specific anatomy of each patient to include
the mucosal wall. OAR doses were limited using departmental
guidelines based mainly on the GEC-ESTRO recommendations
(15). For the Planning Target Volume (PTV): Dggy, > 100% (at
least 100% of prescribed dose covering 90% of PTV), Voo >
95% (i.e., 95% of PT'V receiving at least 100% of the prescription
dose), V1500 = 15-32% (i.e., 150% of the prescription dose to 15—
32% of the PTV), V0% = 5-9% (i.e., 200% of the prescription
dose to 5-9% of the PTV). For the OARs: urethra Djpy <
110% (i.e., 10% of urethra receiving no more than 110% of the
prescription dose), and rectal wall D, < 66% (i.e., 2 cc of rectal
wall receiving no more than 66% of the prescription dose).

Dosimetric Data

Due to the long time period for patient treatment included in this
study the AHRO HDRB patient treatment plans were originally
calculated either in the Plato (Nucletron) or in Oncentra
treatment planning system (Elekta). In order to limit differences
due to different Dose Volume Histogram (DVH) estimates,
all plans were de-identified and re-imported in Oncentra, and
DVHs were recalculated and exported. Since the patients were
treated with four different fractionation regimens, and due to

the inhomogeneous dose in the urethra, each fraction’s physical
doses were converted into equivalent doses in 2 Gy per fraction
(EQD;) considering an o/f ratio of 5Gy, as previously used
by Gloi and Buchanan (22) (of note equivalent doses for late
effects to normal tissues are of interest in the frame of this work).
Due to the conformal nature of the EBRT plan, it was assumed
that for all patients the urethra had received the full EBRT
prescription dose of 46-50 Gy in 2 Gy per fraction. Converted
prescription doses for the brachytherapy boost are shown
in Table 1.

Determination of the Model Parameters

The Lyman-Kutcher-Burman model (LKB) was used in this
analysis (25, 26), and the dose-response curve plotted as
a function of the equivalent uniform dose (EUD). The
determination of the best estimate of the model parameters
was done by fitting clinical and dosimetric data using the
maximum likelihood method as previously described (27, 28),
using MatlabR2018 (Mathworks). Due to the small urethral
volumes involved, initially a numerical optimization of the
likelihood function was performed to establish a volume effect
parameter (n) value descriptive of the relationship between
urethral “architecture” and the considered toxicity endpoint in
the available dataset. Then this value was fixed, and TD50 (Gy)
(EUD that causes 50% probability of toxicity) and m (slope of the
response curve at TD50) were fitted. As the most recent patients
were rescanned and replanned on the 2nd day of treatment, EUD
from day 1 and 2 were considered in the model.

Internal validation was performed by bootstrapping the
original dataset 1,000 times as previously described (29), and
recalculating the model parameters. Results from the bootstrap
procedure were also used to define confidence intervals for best-
fit parameters: a 68% confidence interval was calculated as the
range 16th—84th percentiles of the distribution of the parameter
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FIGURE 1 | Urethra contouring characteristics for AHRO (a) and RADAR (b) patient.

values obtained through bootstrap, while a 95% confidence
interval was calculated as the range 2.5th—97.5th percentiles of
the same distribution.

Goodness of fit was determined by using a model calibration
plot to establish the relationship between the observed and
predicted probability. Due to the binary nature of the stricture
data (yes/no) the observed probabilities were obtained by
dividing the 258 patients studied into four dose-bin groups and
determining the corresponding rate of toxicity of each group.
These observed rates were then plotted against those predicted by
the model and a trend line derived. This line was then compared
against the identity line which represents a perfect prediction
(30). Calibration plot was established for the model fitted with the
original AHRO data (apparent calibration line). Bootstrapping
was employed to determine optimism and optimism-corrected
performance (calibration line after correction for optimism) was
then calculated as described by Steyerberg (31).

The discriminative ability of the model, that is, the ability to
distinguish patients with different outcomes, was also evaluated
with the area under the receiver operating characteristic
curve (AUC).

External Model Validation

Data from a second cohort of 187 patients from a different
institution treated as part of the TROG (Trans Tasman Radiation
Oncology Group) 03.04 RADAR trial (32) were collected. For
this group of patients, the HDRB prescription dose was 19.5 Gy
in three fractions [corresponding to EQD, (a/p = 5Gy)], the
stricture rate at 8.6% was comparable to AHRO patients, and all
patients had ~5 months of AD prior to radiotherapy, as part of a
randomized total of 6 or 18 months of AD. The urethral toxicity
end-point was considered to be equivalent to the one chosen
for the AHRO patients, as the time of the first urethrotomy.
The RADAR cohort was also treated with EBRT doses of 46 in
2 Gy fractions. For this group urethral structures were initially
contoured by the RO as the visible lumen of the urinary catheter
(Figure 1b, blue contour) and, then, these original contours were
expanded on average 2mm in the anterior-posterior and left-
right direction and modified in the superior-inferior direction to

be similar to the AHRO contours (Figure 1b, yellow contour).
An expansion was chosen in order to preserve the variability in
contours due to the RO outlines and provided urethral volumes
on average equivalent to those obtained in the AHRO patients
(respectively, expanded RADAR 1.5 cm® and AHRO 1.4 cm?).

Both structures’ DVHs (RADAR original and expanded) and
associated clinical data were used to externally validate the LKB
parameters obtained with the AHRO cohort. Model calibration,
as described above, was used to establish agreement between
the AHRO model estimated probabilities and RADAR observed
stricture rates.

Effect of Clinical Covariates As

Dose-Modifying Factors

For the AHRO patients, the effect of using AD on the model
parameters was also investigated. The n and m value of the LKB
model parameters were fixed and the fit was re-done separating
the patients with (241/258) and without AD (17/258) to obtain
two different TD50s as proposed by Peeters et al. (33).

RESULTS
LKB Model Parameters

For the AHRO patients, the urethral stricture prediction for the
complete treatment (HDRB + EBRT) was modeled by means
of a sigmoid function of EUD (Figure2A). The numerical
optimization of the likelihood showed a maximum for n =
0.3. The remaining best fitted parameters were found to be
TD50 = 116.7 Gy (68% confidence interval, 108.3-134.1 Gy),
m = 0.23 (68% confidence interval, 0.17-0.31; Table 2). The
AUC of the development population was 0.64. Figure 3 reports
the distribution of TD50 (Gy) and m parameters obtained
with bootstrapping.

The LKB NTCP curve was obtained and compared with
the AHRO observed data (Figure2A). The calibration plot
confirmed the agreement between the observed probability of the
outcome and the probability predicted by the model, as the trend
line between the data was close to the identity line (Figure 2B),
with calibration in the large = 0.007 and slope = 0.92, R?> = 0.71
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TABLE 2 | LKB model parameters obtained fitting the original AHRO data (all
cohort), with bootstrapping, corresponding Confidence Intervals (Cl) and when the
cohort was separated by the use or not of Androgen Deprivation (AD).

TD50 (Gy) m n
AHRO best fit 116.7 0.23 0.3
AHRO Bootstrapping median 116.5 0.23 0.3
AHRO Bootstrapping 68% Cl 108.2-134 0.17-0.31
AHRO Bootstrapping 95% Cl 104.2-218.7 0.14-0.51
AHRO with AD 118.2 0.23 0.3
AHRO without AD 104.9 0.23 0.3

for apparent calibration and calibration in the large = 0.01 and
slope = 0.91 after correction for optimism.

External Validation of the Model

The external validation performed using the urethra data
exported from the RADAR cohort gave the best agreement with
the AHRO prediction model when the urethra contours were
expanded to be similar to AHRO’s contours (calibration in the
large = —0.04 and calibration slope = 1.3, R?> = 0.94). As
shown in Figure 4B, poorer calibration was found when using the
original contours (calibration in the large = —1.5 and calibration
slope = 18.5, R* = 0.93; Figure 4A).

Looking at the dose-response curve (Figure 2A), consistency
was found between the RADAR observed toxicity rates and the
AHRO LKB model, confirming that the RADAR toxicity was
well-represented by the estimated LKB model parameters.

Effect of Using Neo-Adjuvant Androgen

Deprivation
When separating AHRO patients that received AD from those
that did not receive it, results showed a decrease of around 13 Gy

in the TD50 (Gy) for patients who did not receive AD, suggesting
a protective effect of AD (Table 2, Figure 5).

DISCUSSION

Interest in understanding the nature of long term side effects
in OARs produced by prostate radiotherapy has grown due to
the increase in utilization of hypofractionated regimens in EBRT
(34-36). Of particular concern is the risk of urethral stricture
which generally requires surgical intervention to be resolved.
Guidelines for urethral dose constraints are still sparse due to the
fact that urethra contouring has only recently being considered
for such techniques and correlation with dose, and clinical
data follow-up and collection is lacking (17, 18, 30). HDRB
boost techniques, which have been used for decades due to the
introduction of afterloaders (9) instead provide the potential for
analysis of toxicity and dosimetric data specific for the urethral
side effects due to the routine inclusion of the urethral contour in
the planning process.

This work has focused on fitting the LKB model parameters
of urethral stricture data collected on a large cohort of patients
treated with HDRB boost at one single institution for a time-
period of 12 years. This NTCP model was created by considering
urethrotomy recorded in the first 4 years after the treatment
as an end-point. All toxicity data were prospectively recorded
in a database and the follow-up was meticulously done by
reviewing the patients at well set time intervals. Additionally, any
correspondence with the treating doctors after brachytherapy was
analyzed in order to look for additional urethrotomy recorded.

The predictive model fitted in this work showed a clear dose-
effect relationship between the incidence of urethral stricture
and the dose delivered to the urethra (Figure 2A), and it was
obtained by using the DVH as opposed to a single representative
dose parameter (for example, D10%). As shown in Table 1 by
increasing the dose from 18 Gy in three fractions to 19 Gy in two

Frontiers in Oncology | www.frontiersin.org

151 June 2020 | Volume 10 | Article 910


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

Panettieri et al.

Urethral Stricture NTCP Model

contours (B).

A 250 - - - - - - - +— B — v - - -
200
o 150
c
S
-
«©
3
= 100 s
50 1
0 = pa
40 60 80 100 120 140 160 180 200 0.6 0.7 0.8 0.9
TDSO0 (Gy)
FIGURE 3 | Distribution of TD50 (Gy) (A) and m (B) parameters obtained with bootstrapping.
A 0.16 : T . B o0.16 T T r T T
— ~y=-1.5+185x R’=0.93 [ T Ty=-0.04+13x R=0.94
014 [ ]
0.14 + W :
012 ]
012 - 4 [
s 4 0.1 F 2 i
> = L
2 0| , 1 Boosf y ]
-3 P! 2 [
(=} o r
1 0.06 -
0.08 J e r
0.04 — ]
0.06 - [
0.02 - E
0'04>,..>I Lt gL 0 3 3 g & 73 o:llilllllIIIIIIIIIIIIIIIIIIII
0.07 0.075 0.08 0.085 0.09 0 002 004 006 008 01 012 0.14 0.16
Predicted Predicted

FIGURE 4 | Calibration (predicted vs. observed) curve obtained by using the AHRO LKB model for the RADAR data with original contours (A) and the expanded

fractions in a 2-day treatment schedule the incidence of strictures
was increased by almost three times from an average rate of 6.9-
20.5% for an identical cut-off time of 4 years of follow-up. This
finding was previously documented by Hindson et al. (10) for
a similar cohort of patients treated in the same institution, and
it is here confirmed by means of a sigmoidal relationship. The
fitted dose-response relationship showed that to ensure a toxicity
rate to below 10% the urethral EUD should be limited to 85 Gy
(with a/B = 5 Gy). Similar dose correlation was documented by
other groups, with toxicity rates equivalent to the AHRO cohort
for similar fractionation regimens (37, 38), and comparable
follow-up time (5-6 years on average), however, comparisons
were mainly performed by considering the prescription doses
and not the planned dose to the urethra. In contrast, several
publications reported no significant correlation in doses between
the group that had toxicity and the group that did not have

it (39, 40). For example, in the case of HDRB monotherapy,
more recently in an analysis of 178 patients with a median
follow-up time of 28.2 months, Tsang et al. (41) only reported
3% rate of urethral stricture and could not identify significant
correlation with the toxicity and the urethral dose, identifying
instead potential radiomics features that could predict the risk of
developing toxicity on the pre-treatment MRI. This conclusion
is similar to the work by Diez et al. (2) which instead considered
a median follow-up time of 55 months for all groups. However,
by fixing the follow-up time at 4 years the same authors reported
an increase from 3 to 7% of the Kaplan-Meier estimates from
the patients that were treated with 34 Gy in four fractions to
the patients that were treated with 31.5Gy in three fractions
(14). Patients’ follow-up time seems to represent an important
variable in all of these studies, with large variations between
groups and most works not considering a fixed time at which to

Frontiers in Oncology | www.frontiersin.org

152

June 2020 | Volume 10 | Article 910


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

Panettieri et al.

Urethral Stricture NTCP Model

60 T T T T T T T
w— A\
50 || ====- NO AD st
& AD AHRO Observed
B NO AD AHRO Observed
40 - A Observed tox rates RADAR 7
Q.
o
-
Z 30 J
m
X
s |
20 ]
10 &
0 | 1

60 65 70 75 80 8 90 95 100
EUD (Gy)

FIGURE 5 | Dose-volume response curve obtained with the best estimated
parameters for the LKB model for urethral stricture for patients that had
neo-adjuvant androgen deprivation (AD-blue) as opposed to patient that did
not have AD (NO AD-red).

compare different dose groups. For example, in a large cohort,
Bece et al. (13) reported a decrease in toxicity rate from 12.8
to 3% by moving from 18 to 19 Gy in two fractions, however,
the first group was followed for 4 years as opposed to 2 years
for the second group limiting the information collected and the
analysis. As shown in Table 1, in our group for a follow-up of
4 years the time to toxicity on-set decreased with increasing
overall dose (from an average time of 3.6-2.1 years). So, a short
follow-up time could potentially underestimate the recorded
stricture rates.

The fitted model parameters (Table2) well-represented
the AHRO observed data, as shown by the calibration
plot (Figure 2B), and internal calibration bootstrapped results
(Figure 3). The AUC was of the order of 0.64, which is of the
order of values obtained for most models based on dose features
alone (42). An outlier was observed in the 80 Gy EUD dose group,
believed to be associated with the little variability of urethral
doses for patients in this dose group (Figures 2A,B). Notably, the
volume parameter n was larger than expected (0.3), suggesting
that the architecture of the urethra could be more parallel than
generally believed, due to its shape and similarity to structures
such as the spinal cord or the esophagus. However, this result
could be related to the small volumes involved (ranging from 0.02
to 3.6 cm? for the AHRO cohort), and the limitation in fitting the
parameter with the data available. Additional studies have been
undertaken in order to analyze surface or voxelized dose maps
(18) of this organ, as opposed to the 2D representation provided
by the DVH, to identify spatial and volumetric correlations with
toxicity. In this work an a/B = 5 Gy was used in order to convert
the physical doses into EQD;, and EUD. This value was chosen in
accordance to work by Gloi and Buchanan (22) as representative
of the urethral late effects, however, more dedicated studies are

in progress in order to confirm the validity of this assumption,
making it a limitation of this work.

The LKB model parameters were also tested by using data
from a completely independent cohort treated with comparable
HDRB boost doses to establish the generality of its predictive
value. The external cohort was part of a large group of patients
treated as part of the RADAR clinical trial (32) so all patients
were planned by following a well-defined protocol for dose
constraints and contouring guidelines. An interesting finding
was the importance of urethra contouring in the assessment of
NTCP dose-volume relationship. The RADAR patients’ whole
urethras were all initially contoured by the clinician as the
lumen of the urinary catheter (here defined as original-Figure 1b,
blue contour). The DVH extracted from this contour did not
correlate with the initial model as shown in the calibration plot
(Figure 4A). When re-outlined to match the AHRO contours
(Figure 1a, yellow contour) the goodness of fit was confirmed.
This result highlights that in order to understand the relationship
between dose and toxicity, and compare the data of different
groups, consensus for the outlining of the urethral volume is
advisable, and contour practices should be clearly documented. It
also suggests that in order to establish a dose-volume correlation
the urethra should be contoured in order to include the urethral
mucosal wall, and at least 10-20 mm of urethra distally to the
prostate apex in order to include the bulbomembranous portion
as previously highlighted (43). In this work for both AHRO and
RADAR patients, the urethral dose provided by the external beam
portion of the treatment was considered uniform and equivalent
to the EBRT prescription dose. This method was followed due
to the fact that for both cohorts the urethral structures were not
contoured and considered at the time of treatment planning,
and the plan was performed to achieve uniform PTV coverage
(between 95 and 107% of the prescription dose). Due to the
introduction of external beam hypofractionated treatments, and
of routine urethral contouring this assumption might need to be
modified in order to account for the available calculated urethral
DVH information (35, 36).

In this work, the whole urethra was considered, as opposed
to other studies (2, 41) in which the volume was divided in
membranous and prostatic urethra.

Among the patients’ clinical parameters, the effect of the
use of neo-adjuvant androgen deprivation was investigated in
the model fitting. Despite the modeling limitation that a small
number of AHRO patients did not receive AD (Table 1), when
LKB was fitted with and without AD, the TD50 (Gy) showed
an absolute TD50 reduction of 13.3 Gy without AD, suggesting
that AD could act as dose-modifier and a protective effect on
urethral toxicity. A similar result was previously documented
by Palorini et al. (30) for a large multicenter group of patients
treated with EBRT, and it could be due to the known effect of
tumor shrinkage and reduction of the irradiation volume, and
potentially a cytoreductive effect (30, 44).

All DVHs used in this study were extracted from the treatment
planning system and so they are representative of the planned
dose. This is a known limitation as experience and previous
works (10, 13) have shown the potential for prostate swelling
and needle movement with respect to the anatomy, which could
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potentially under or overestimate the dose-toxicity correlation
found. As of 2017, our group has started performing on-line
verification between CT and treatment and re-scanning and
planning the patients when the movement exceeds our clinical
tolerances (45), and data will be analyzed when mature.

CONCLUSION

Urethral toxicity is a limiting factor in providing additional dose
escalation in radiotherapy of the prostate. For HDRB of prostate
cancer clear urethral dose guidelines are still not available due
to the variety of dose prescription used and the variety of
contouring protocols. In this work, an LKB model was fitted to
the risk of urethral stricture for a large single center cohort. The
model was then externally validated with independent patients’
clinical and dosimetric data, showing a clear and reproducible
relationship between dose delivered to the whole organ and
urethral toxicity. When clinical factors were included findings
showed that for patients that did not receive neo-adjuvant
androgen deprivation, model fitting provided a lower TD50 (Gy)
suggesting a protective effect on urethral toxicity, as previously
highlighted for EBRT studies.
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Public preregistration of study analysis plans (SAPs) is widely recognized for clinical trials,
but adopted to a much lesser extent in observational studies. Registration of SAPs
prior to analysis is encouraged to not only increase transparency and exactness but
also to avoid positive finding bias and better standardize outcome modeling. Efforts to
generally standardize outcome modeling, which can be based on clinical trial and/or
observational data, have recently spurred. We suggest a three-step SAP concept in
which investigators are encouraged to (1) Design the SAP and circulate it among the
co-investigators, (2) Log the SAP with a public repository, which recognizes the SAP
with a digital object identifier (DOI), and (3) Cite (using the DOI), briefly summarize and
motivate any deviations from the SAP in the associated manuscript. More specifically,
the SAP should include the scope (brief data and study description, co-investigators,
hypotheses, primary outcome measure, studly title), in addition to step-by-step details of
the analysis (handling of missing data, resampling, defined significance level, statistical
function, validation, and variables and parameterization).

Keywords: cancer, clinical trial, observational study, outcome modeling, preregistration, public repository,
radiotherapy, study plan

INTRODUCTION

Starting from 1997, the Food and Drug Administration Modernization Act (FDAMA) mandated
the National Institute of Health (NIH) to design a platform in which information about
FDA regulated clinical trials would become publicly available!. As a result, NIH launched
ClinicalTrials.gov shortly thereafter (1). Public pre-registration of clinical trials has since become
a general publication requirement (2), and fast forwarded to two decades after FDAMA was
introduced, ClinicalTrials.gov hosts 341 988 (as of June 11, 2020) registered studies conducted
worldwide?.

'Food and Drug Administration Modernization Act of 1997: https://www.govinfo.gov/content/pkg/PLAW-105publ115/pdf/
PLAW-105publ115.pdf#page=16
Zhttps://clinicaltrials.gov/ct2/resources/trends
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FIGURE 1 | The number of preregistered SAPs during the last two decades under ClinicalTrials.gov? and under OSF® (data from ClinicalTrials.gov is taken from?; data
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This site primarily focuses on interventional studies/clinical
trials while study analysis plans (SAPs) and associated results
from observational studies are scarce (1)? as also illustrated
in Figurel where the number of preregistrations from
ClinicalTrials.gov and from the Open Science Foundation
(OSF)3, which mainly holds SAPs from observational studies,
is given over time. Consequently, for observational exploratory
research it is often unclear as to the number of analyses
undertaken, which further feeds into what is referred to
as “p-hacking’ i.e., a positive finding publication bias since
the vast majority of published studies that report p-values
disclose positive/significant findings (3, 4). Further, SAP pre-
registration is likely to facilitate researchers to better distinguish
between confirmatory research (hypothesis-testing in which
p-values retain diagnostic value) and exploratory research
(hypothesis-generating in which p-values loose diagnostic value)
in order to avoid overconfidence in post-hoc explanations
in a finding that has not been proven, which could limit
reproducibility (5).

The Transparent Reporting of a multivariate prediction model
for Individual Prognosis Or Diagnosis (TRIPOD) statement
has encouraged to better standardize outcome modeling (6).
Outcome modeling can be based on data generated from
clinical trials or observational studies. Here we propose to
pre-register SAPs under public repositories for any outcome
modeling study to further promote standardization, transparency
and exactness and to mitigate the false positive inflation of
published results.

3https://osf.io/

METHODS AND MATERIALS

Public pre-registration of SAPs could be thought of as
committing to an analytical path but without advancing
knowledge of the research outcome (4). To date, the two most
commonly used public SAP repositories, which both provide
SAP unique digital object identifiers (DOIs), are located under
ClinicalTrials.gov (1) and under the OSF®. As previously pointed
out, ClinicalTrials.gov has primarily been used to register clinical
trials, while under OSF a larger extent of SAPs from observational
studies can be found.

THE SAP CONCEPT

The suggested SAP concept consists of three steps: (1) Designing
the SAP and circulating it among the co-investigators; (2)
Logging the SAP with a public repository, which recognizes
the SAP with a DOI, and (3) Citing (using the DOI), briefly
summarizing and motivating any deviations from the SAP in the
associated manuscript (Note: any new major post-SAP analysis
should only be considered hypothesis-generating/exploratory). The
three-step SAP concept is summarized in Figure 2.

The outcome modeling pipeline in the SAP should adhere to
the modeling procedures defined in the TRIPOD landmark paper
on how to model outcomes (6). This refers to description of data,
outcomes and input variables and parameterization in addition
to detailed step-by-step lay-out of the analysis. Below we list
more specifically what the SAP should include (at a minimum)
inspired by OSF’s preregistration template, which is available
as a GoogleDoc here: https://docs.google.com/document/d/
1DaNmJEtBy04bq1150xS4JAscdZEKUGATURWwnBKLYxk/
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FIGURE 2 | A flow chart of the suggested three-step SAP concept: (1) Design SAP and distribute to co-investigators (left); (2) Log SAP (middle), and (3) Cite (using the
DOl), summarize and motivate any deviations from the SAP in the associated manuscript (right).

edit?pli=1, but more directed toward outcome modeling
assuming an observational study design. An associated example
SAP template for the purpose of outcome modeling is provided
in the Supplementary Material.

Scope (Description of Data and Study)

The study scope should include title, co-investigators,
and a brief study description, and the underlying study
hypothesis/hypotheses. The brief study description should
be accompanied by a description of data/patient population
(inclusion criteria, number of patients, primary tumor site,
treatment era, etc.) and primary outcome measure with
range and minimum follow-up time and censoring defined if
applicable. The study type should also be clearly stated (e.g.,
validation, exploration, and/or prediction).

Analysis (Description of the Analysis)

All variables considered for analysis should be described in
detail along with their parameterization (binary, categorical
and continuous; specify increments if applicable). Handling of
missing data (if excluding data then describe how this will
be accounted for) should be disclosed, and if applicable data
transformation (or normalization) as well as definition of variable
interaction terms should be given. The exact definition of the
studied outcome, e.g., timing and scoring of radiation-induced
toxicity and how pre-treatment status was taken into account,
should be given. Although this SAP concept work focuses on
outcome modeling in general, the expected minimum level
of detail on reported variables is exemplified for RT dose,
which is central for outcome modeling following RT: Specify if
dose was parameterized as 2D dose-volume histograms (denote
metrics, interval investigated and sampling), and/or summary
measures such as the mean dose or the generalized equivalent
uniform dose, and/or if being represented spatially (denote
metrics and describe method) and if dose originated from the
planned dose distribution, if being accumulated (plus type of
dose accumulation), and/or if during treatment dose was used
(applies possibly only for acute toxicity). Denote if and how
fractionation effects were handled, and give the exact anatomical

definition of the investigated organ(s) along with the associated
segmentation approach. Please refer to the Results section for a
practical example of the level of detail in describing dose.

The statistical functions/methods of analysis (e.g., regression
(and type), time to event, competing risk, etc.) should be
explained in detail along with a description of risk groups
and defined errors/confidence intervals (if wvalid), any
considered resampling (e.g., iterated cross-validation hold-
out or bootstrapping; number of iterations, etc.), validation
(external/internal), and if and how univariate and/or
multivariate analysis will be performed. Any considered
level of significance/model quality should be specified and the
associated performance metric described. If investigating more
than one variable authors should denote how multiple testing
will be corrected for.

Lastly, the SAP should include the statistical software tools
(and version) that are being considered.

LITERATURE RESOURCES FOR
OUTCOME MODELING IN RADIOTHERAPY

Aside from advocating the use of TRIPOD (6) as a guideline
for outcome modeling in general, we below provide a short
introduction to relevant literature for outcome modeling in
radiotherapy (RT) with a particular emphasis on standardization.

To obtain reliable information about toxicities that influence
patients quality of life, normal tissue toxicities are likely
best represented by patient-reported outcomes (PROs) (7).
Using clinical decision-support tools (8, 9) and keeping the
number of items/questions as few as possible (10) are necessary
for actionability to patient-reported complaints. Dose-volume
histogram (DVH) metrics of interest depend on a large
variety of factors as pointed out within the 21 papers by the
QUANTEC effort (11). Gathering published DVH metrics to
better understand the reliability and generalizability of such
metrics was first initiated by QUANTEC and is, as illustrated in
their offspring efforts [pediatric RT (12) and hypo fractionated
RT (13)] and work by other groups (14), a continuous process.
These and related efforts (ideally multi-institutional) in which
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models have been validated (6, 15, 16) probably hold the
most reliable DVH findings. Also, incorporation of additional
sources of data is likely to shed much further light on the
complex mechanisms of both tumor response and normal
tissue toxicity following RT. Examples are shown in studies
focusing on genome-wide assays (17) and immune status (18)
as well as medical imaging within associated standardization
efforts (19).

RESULTS
A SAP Pre-registration Example

The authors recent experience in depositing an outcome
modeling SAP with a public repository (15) will be used as an
example of the SAP pipeline and content for outcome modeling.

After circulating the SAP among co-investigators, the SAP was
logged with the OSF on July 23rd 2018 (15), and the analysis
was, thereafter, initiated [the associated full-length manuscript
was recently accepted for publication (16)].

As stated under the study scope (15), data were generated
from a clinical trial (20) but the trial was not part of the
outcome modeling itself. The primary outcome measure was
overall survival defined from the start date of randomization
and right-censoring was applied if alive at the last follow-
up. For Input data related to disease, patient and treatment
characteristics (the latter included 2D DVH parameterizations
of the atria, lung, pericardium, and ventricles [please see (16)
for exact anatomical definitions and parameterization of the
remaining input data] structures: the minimum dose to the
hottest 5-95% volume in steps of 5%, mean dose, minimum
dose, max dose and the mean of the hottest 5-100% volume
in steps of 5%, all metrics were corrected for fractionation
effects assuming a/f = 3 Gy), significance was denoted at a
5% Bonferroni-corrected level. Validation was considered using
a holdout subset on which performance would be assessed
after settling the final model. The validation procedures were
directly adopted from a previously published study (21).
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The main statistical function was Cox Proportional Hazard
regression. Both univariate and multivariate analyses, with a
clear advancement criterion (p < 0.05 of the log-likelihood
statistics), were undertaken, and re-sampling was considered
using Bootstrapping with 1,000 iterations. Lastly, arriving at
the final model, two alternative approaches were explored—
the >10% most frequently selected multivariate models or the
ensemble thereof.

CONCLUSION

We have suggested a SAP pre-registration pipeline to be used
for outcome modeling studies, which typically use observational
data. An example of an already submitted SAP and cited for
outcome modeling is given along with an outcome modeling
directed SAP template. The ambition of the authors is that pre-
registration of SAPs, using the suggested layout and pipeline,
is becoming standard, like it has for clinical trials, also in
outcome modeling.
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Automated Radiotherapy Planning
for Patient-Specific Exploration of
the Trade-Off Between Tumor Dose
Coverage and Predicted
Radiation-Induced Toxicity—A Proof
of Principle Study for Prostate
Cancer

Rik Bijman*, Linda Rossi, Abdul Wahab Sharfo, Wilma Heemsbergen, Luca Incrocci,
Sebastiaan Breedveld and Ben Heijmen

Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands

Background: Currently, radiation-oncologists generally evaluate a single treatment plan
for each patient that is possibly adapted by the planner prior to final approval. There is
no systematic exploration of patient-specific trade-offs between planning aims, using a
set of treatment plans with a-priori defined (slightly) different balances. To this purpose,
we developed an automated workflow and explored its use for prostate cancer.

Materials and Methods: For each of the 50 study patients, seven plans were
generated, including the so-called clinical plan, with currently clinically desired >99%
dose coverage for the low-dose planning target volume (PTV| ow). The six other plans
were generated with different, reduced levels of PTV . coverage, aiming at reductions
in rectum dose and consequently in predicted grade>2 late gastro-intestinal (Gl) normal
tissue complication probabilities (NTCPs), while keeping other dosimetric differences
small. The applied NTCP model included diabetes as a non-dosimetric predictor. All plans
were generated with a clinically applied, in-house developed algorithm for automated
multi-criterial plan generation.

Results: With diabetes, the average NTCP reduced from 24.9 4+ 4.5% for >99%
PTV| ow coverage to 17.3 & 2.6% for 90%, approaching the NTCP (15.4 + 3.0%) without
diabetes and full PTV| o coverage. Apart from intended differences in PTV| o,y COverage
and rectum dose, other differences between the clinical plan and the six alternatives were
indeed minor. Obtained NTCP reductions were highly patient-specific (ranging from 14.4
to 0.1%), depending on patient anatomy. Even for patients with equal NTCPs in the
clinical plan, large differences were found in NTCP reductions.

Conclusions: A clinically feasible workflow has been proposed for systematic
exploration of patient-specific trade-offs between various treatment aims. For each
patient, automated planning is used to generate a limited set of treatment plans with
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well-defined variations in the balances between the aims. For prostate cancer, trade-offs
between PTV| o coverage and predicted Gl NTCP were explored. With relatively small
coverage reductions, significant NTCP reductions could be obtained, strongly depending
on patient anatomy. Coverage reductions could also make up for enhanced NTCPs
related to diabetes as co-morbidity, again dependent on the patient. The proposed
system can play an important role in further personalization of patient care.

Keywords: personalized radiotherapy, automated multi-criterial treatment planning, normal tissue complication
probability (NTCP), prostate cancer, gastro-intestinal

INTRODUCTION

The aim of radiotherapy treatment planning is to define a
treatment that provides adequate tumor volume irradiation
with the highest expected therapeutic ratio. To this purpose,
doses in organs at risk (OARs) are minimized based on known
risks for radiation-induced toxicity (1). Technical developments
in external beam radiotherapy (EBRT), e.g., replacement of
3D-conformal radiotherapy (3DCRT) by intensity modulated
radiation therapy (IMRT) and volumetric modulated arc therapy
(VMAT) (2-4), and improvements in image guidance (5-7),
have significantly improved treatment outcome and/or reduced
radiation induced side effects in a variety of treatment sites.
Recently, developments in automation of treatment planning
have further enhanced opportunities for generation of high
quality treatment plans (8-10).

Ideally, toxicity risks to be used in planning are modeled
with normal tissue complication probabilities (NTCPs). There
is an active field of research developing these predictive
models (1, 11-15). More and more, published NTCP models
include non-dosimetric parameters that modulate the radiation-
induced toxicity risk (16). For example, Cozzarini et al.
(14) used multivariate logistic regression to include both
dosimetric parameters, extracted from the clinical plans, and
patient characteristics (e.g., smoking status, age, application and
duration of hormonal therapy) in the toxicity prediction models.
Pre-selection of a relevant predictor subset was performed
using univariate logistic regression. A similar approach was
performed in previous work by Sharfo et al. (17) who developed
a multivariate logistic regression model predicting radiation
induced gastro intestinal (GI) toxicity.

Current practice in radiation therapy treatment planning is
based on treatment site specific clinical protocols, containing
hard constraints, and planning aims. Evidence based medicine
recommends the definition of clinical protocols, based on
findings in prospective clinical trials and dose escalation studies
(18). Generally, the planning protocol is used by a planner to
generate for each patient a single treatment plan that may or
may not be adjusted after discussion with the treating physician
prior to final approval. There is no systematic exploration of
patient-specific trade-offs between the various planning aims by
generation of a set of treatment plans for each patient with
(slightly) different trade-offs.

We hypothesized that generation of a limited set of well-
designed treatment plans per patient, instead of a single plan, can

help to better identify plans with optimal patient-specific trade-
offs. For example, for some patients with specific anatomies, a
slight decrease in coverage might result in a relatively large NTCP
gain. For patients with non-dosimetric conditions that result in a
significantly enhanced predicted NTCP, a lower PTV coverage or
a somewhat enhanced NTCP for a different side-effect might be
accepted to counter-act the enhancement. We also hypothesized
that automated planning can be used to effectively generate the
required treatment plans.

In this paper we have investigated these hypotheses for
treatment of prostate cancer. An automated planning algorithm
was used to generate for each patient a set of plans to explore
the trade-off between the dose coverage of the large planning
target volume to be irradiated with reduced dose (PTVyy) and
the predicted NTCP for grade >2 GI toxicity for otherwise
similar dose distributions. In particular, measures were taken
to maintain clinical target volume (CTV) coverage at 100%
and to keep the coverage of the (smaller) PTVyjgn at the
requested >99% level. Deterioration of bladder dose was also
to be avoided. We also investigated to what extent reduction in
PTVyow coverage could compensate for significantly enhanced
toxicity risks caused by diabetes.

MATERIALS AND METHODS

Patients and Clinical Protocol

Fifty arbitrarily selected prostate cancer patients, previously
treated in our center in the context of the randomized HYPRO
trial (19) with a simultaneously integrated boost technique,
were included in the study. PTVy;, consisted of the prostate
(CTVhigh) expanded with a 5-6mm isotropic margin, but
avoiding overlap with the rectum. PTVi,, was defined by
applying a 8-10 mm isotropic margin around the prostate +
seminal vesicles (CTVpioy). All patients were treated in the
hypofractionation arm with prescribed total doses for PT Vg,
and PTVy,w of 64.6 Gy and 57.76 Gy, delivered in 19 fractions.
For both PTVs, the planning aim was to have >99% of the
volume covered by 95% of the prescription dose, with full
coverage of the CTVs. Contoured organs at risks (OARs) were
rectum, bladder, anus, and hips. Reduction of rectum dose was
the highest OAR priority.

System for Automated Plan Generation
In this study, all treatment plans were generated with the in-
house developed Erasmus-iCycle system for fully-automated
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multi-criterial plan generation, which has been extensively
described in the literature (8, 20-22). Generated plans are Pareto-
optimal and often superior to manually generated plans (10, 23,
24). Here a short description of the system provided. Plans are
generated using a so-called wish-list (described in more detail in
section Wish-Lists) that defines the protocol for automated plan
generation, based on a set of cost functions that are either defined
as hard constraints or planning objectives with assigned priorities
and goal values. In plan generation, planning constraints are
never violated. On the other hand, goal values of objective
functions are met as well as possible or possibly superseded,
taking into account the constraints and ascribed priorities.
Planning objectives are sequentially optimized according to their
priorities while always adhering to all imposed constraints.
After each objective function optimization, a new constraint is
added to the optimization problem to ensure that the previously
obtained function value is maintained while minimizing lower
priority objectives. Wish-lists are treatment site specific and are
constructed in an iterative tuning process, together with the
treating physician. Although clinically delivered manual plans
serve as an initial reference for wish-list generation, the final goal
is always to supersede the manual plan quality.

Exploration of Patient-Specific Trade-Offs
Between Target Coverage and
Radiation-Induced Toxicity

In a recent study, Sharfo et al. (17) used automated treatment
planning to investigate the quality of dose distributions delivered
in the HYPRO trial (19). To that purpose, logistic regression
analyses was used to develop an NTCP model (Equation 1) for
grade > 2 GI toxicity, based on scored toxicities, delivered doses
and non-dosimetric predictive parameters.

1

NTCP = 1+ —6.362+B-2.083+D-0.608+T1-0.406+E-0.084 (1)

B = Baseline GI toxicity (yes/no), D = Diabetes (yes/no),
T = High risk treatment group (yes/no) (19), and E =
rectum gEUDEQD2Gy(7.7).

Here we used this model to systematically investigate patient-
specific trade-offs between predicted GI toxicity and PT Vi
coverage. Seven plans were generated for each patient to quantify
risk reductions associated with reductions in coverage from the
clinical >99% to as low as 90% for otherwise highly similar
dose distributions.

A sub-group of the patients in the study cohort had diabetes
as a co-morbidity. However, to systematically explore diabetes as
a co-morbidity, analyses were performed both assuming that all
patients had diabetes or none of them had.

Generated Treatment Plans

Erasmus-iCycle was used to automatically generate VMAT
plans with 10 MV photon beams. Starting point for the plan
generations was a slightly modified version of the wish-list
developed by Sharfo et al. (17) for automated generation of plans
with >99% coverage for both PTVs, in line with the HYPRO
protocol. In this study, this wish-list was used to generate for

each patient the so-called ‘clinical plan” which is a high-quality
Pareto-optimal plan with the currently required >99% coverage
for both PTVs. (Note: these are not the clinically delivered plans,
which were manually generated and of lower quality (17). The
six alternative plans with various PTVy,,, coverages in the range
99%—90% were generated with modified versions of this wish-list
(as specified in section Wish-Lists) aiming for increased rectum
sparing while guaranteeing high similarity with the clinical plan
for other dose parameters.

Wish-Lists

The applied wish-lists are described in Table1 with some
explanations in the following text. In Erasmus-iCycle, target
coverage is generally optimized by minimizing a logarithmic
tumor control probability (LTCP) cost function (Equation
2) (25),

1
LTCP = — Z,: e(—a(d—PD) @)

where m is the number of voxels in the target, PD the prescribed
dose, dj the dose in voxel j, and « the cell sensitivity parameter
(26). A >99% coverage for PTVhigh was for all generated plans
achieved using a goal value of 0.8. Minimum dose constraints for
CTVhjgh and CT Vo guaranteed that CTV coverage was always
maintained when reducing PT V4, coverage.

For generation of the clinical plan, the priority 2 cost function
was disabled and a goal value of X = 0.4 was used in priority
3 to always acquire >99% coverage for PTVy,, (the LTCP
cost function was applied to the entire PTVy4y, including the
overlapping area with the rectum). Rectum sparing was obtained
by optimizing a gEUD(k) with k equal to 7.7, in line with the
NTCP model (Equation 1). Conformality of the dose outside
the PTVs was controlled by a set of maximum dose objectives
(priorities 5 and 8), assigned to concentric shells around PTVyy,.

For generation of the six plans with reduced PT V1,4, coverage,
modifications in the wish-list were made at the level of the
bold/italic lines in Table 1. The aim was always to have PTViqy,
underdosages in the most promising regions for GI NTCP
reduction, i.e., where rectum was overlapping with the PTVyy
and its surroundings, without compromising the CTV doses and
while keeping the remainder of the dose distribution as similar
as possible to the clinical one. To this purpose, the priority 2
objective was introduced for dose optimization in the PTVygy-
RectumPRYV structure in which the overlapping rectum expanded
by a margin was subtracted from the PTVy,,. The applied
PRV margins were 25, 20, 15, or 10 mm for patient-specific
PTV1ow and rectum overlapping areas of <4, <6, <7, or >7%,
respectively. An LTCP cost function with a goal value of 0.4 was
used to always cover >99% of PTVpqy-RectumPRV.

To obtain plans with various PTVy,,, coverages <99%, the
LTCP in priority 3 was now used for partial recoveries of the
PTVyow coverage in a controlled way. This was performed by
using well-selected (patient-independent) X-values in priority
3 that were different for each of the six plans generated
with reduced PTVie, coverage. For generation of the plans
with reduced PTVp,, coverage, the bladder Dyjean objective in
priority 9 was removed, while a bladder Dyjean constraint was
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TABLE 1 | Wish-lists used for automated plan generations in this study.

CONSTRAINTS
Structure Constraint function Limit
PTVHigh Maximum dose <105% of PDhjgn
PTVhigh Mean dose <100.5% of PDyjgn
PTViow-(PTVhigh exp  Maximum dose <95% of PDyigh
by 2.5mm)
PTV Shell 50 Maximum dose <50% of PDjgn
Rectum Maximum dose <102% of PDjgn
Anus Maximum dose <102% of PDnigh
Patient Maximum dose <105% of PDyign
CTVHigh Minimum dose >95% of PDyign
CTViow Minimum dose >95% of PDiow

OBJECTIVES

Priority Structure Aim & objective Goal value

function (Sufficient)
1 PTVHigh J LTCP(99.5% of 0.8(0.8)
PDrjgh.o0 =0.8)

2 PTViow- | LTCP(PDow,2=1.4) 0.4 (0.4)
RectumPRV

3 PTViow } LTCP(PDow,a=1.4) X (X)

4 Rectum J gEUD(7.7) 0

5 Entrance Dose J Maximum dose <20% PDyow

5 PTV Shell 5 J} Maximum dose <80% PDyow

6 Rectum J} Mean dose 5

7 Anus J Mean dose 5

8 PTV Shell 15 J Maximum dose <50% PDyow

8 PTV Shell 25 | Maximum dose <30% PDyow

9 Bladder | Mean dose 5

10 Hip left J Maximum dose 40

10 Hip right J Maximum dose 40

Bold/italic lines are different for the clinical plans and alternative plans (see text).
Minimum values to CTVs were set 2Gy higher to account for voxel sampling in the
optimizations. PDyygn, prescribed dose for PTVign (64.6 Gy); PDyow, prescribed dose for
PTViow (67.76 Gy); gEUD(K), generalized equivalent uniform dose; k, volume parameter;
LTCP(PD,w), logarithmic tumor control probability (25); with «, cell sensitivity; OAR, organ
at risk; |, minimization; t, maximization.

added with a limit value equal to the patient-specific bladder
DMean Obtained in the clinical plan. This was done in order
to avoid dose being pushed away from the rectum toward
the bladder.

Creation of the appropriate wish-lists was performed
in a tuning process involving CT-scans of a set of
10 patients.

RESULTS

Figures 1, 2 show NTCP reductions for the 50 study patients
as a function of the loss in PTVy,, dose coverage. Figure 1
is valid in case of diabetes, while for Figure2 we assumed
that there was no diabetes. As explained in the M&M section,
reductions in PTVy,, coverage in the six alternative plans for
each patient were obtained with (convex) LTCP cost functions.

Convexity avoids getting trapped in local minima, but with
the LTCP cost function, obtained PTVi,, coverage values
vary somewhat between patients. For generation of Figures 1,
2, NTCPs for the defined coverage reductions were for each
patient obtained by piecewise linear interpolations between
the generated plans. The different colors show the impact of
incremental underdosage steps of 1% in PTVp,, on obtained
NTCP. For some patients (e.g., patient 13), reducing the coverage
to as low as 90% was not possible, possibly due to not sufficiently
large PRV margins or conflicting constraints on the PT Vi
and the CTVs dose requirements. For patient 50, accepting
lower PTVy,, coverage did not result in any NTCP reduction
because of lack in overlap between PTVp, and rectum (see also
Figure 6).

Following Equation 1, NTCP values were indeed higher in
case patients had diabetes (compare upper panels of Figures 1, 2).
On the other hand, NTCP reductions were also larger in
case of diabetes. For a PTVy,, coverage of 95%, average
NTCP reductions of 4.3% (0.3-8.0%) and 2.9% (0.2-5.5%)
were obtained with or without diabetes, respectively. For 90%
coverage, the obtained NTCP reductions increased to 8.3%
(0.3-14.4%) and 5.6% (2.0-10.1%), respectively. Both with and
without diabetes, there was an overall trend toward enhanced
NTCP reductions for patients with the highest clinical NTCPs
(lower panels Figures 1, 2). On the other hand, large inter-patient
variations were observed. For example, patients 1 and 3 had
similar clinical NTCPs, but a large difference in achievable NTCP
reductions. Moreover, similar NTCP reductions were observed
for different costs in PT Vi, coverage. For example, patients 12
and 14 have similar NTCP reductions of ~10% accepting 94%
or 91% PTVye, coverage instead of 99% (Figure 1). Observed
maximum NTCP reductions ranged from > 14% (patient 1) to
<1% for patient 50, depending on differences in anatomy (see
Figure 6).

Figures 3, 4 show the differences between clinical and
alternative plans on a per patient base and in population
DVHs, respectively. They demonstrate that the enforced PTVy gy
coverage reductions mainly had an impact on rectum sparing
while having a clinically insignificant dosimetric impact on
PTVhigh> CTVhigh, CTVLow, bladder, anus and hips, as intended
(section Generated Treatment Plans). Figure5 shows for an
example patient highly similar dose distributions, except for the
region of overlap between rectum and PTVyqy.

In Figure 6 we investigated the extent of feasible NTCP
reduction as a function of overlap between rectum and
PTViow. Although, there is an overall trend toward more
reduction with larger overlap, there are inter-patient variations
with R? equal to 0.6 and 0.7, for 95 and 90% PTVigy
coverage, respectively.

For the 50 patients in this study, presence of diabetes resulted
in an average increase in clinical NTCP from 154 %+ 3.0%
(1SD) to 24.9 £+ 4.5% (1SD) (compare also the upper panels
of Figures 1, 2). Figure 7 explores opportunities for mitigation
of enhanced toxicity risk due to diabetes by reducing required
PTVyoy coverage. Clearly, depending on the allowed coverage
reduction and the patient anatomy, NTCP enhancements due to
diabetes could be largely compensated. For some patients, (e.g.,
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Clinical NTCP with Diabetes
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FIGURE 1 | (Top) NTCP values for the clinical plans (PTV o coverage >99%) in case of diabetes as a co-morbidity. (Bottom) Cumulative NTCP reductions for
decreasing levels of PTV o coverage. Patients were sorted according to their clinical NTCP as visualized in the top panel.
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1, 6, and 8) the impact of diabetes could be completely canceled DISCUSSION

when using a coverage of 90-91%. Other patients (e.g., 3 and 20)

demonstrate quite large residual differences in NTCP with and ~ In this study, we have used prostate cancer radiotherapy as
without diabetes, for reduced PTVy,,, coverages. a model for development of a clinically feasible workflow for
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application of automated planning for assessment of patient-  in the autoplanning configuration (i.e., wish-list), the PTVyy
specific trade-offs between treatment goals. All plans were  coverage could be varied in a controlled way in the range 99-
generated fully automatically, i.e., without any manual fine- 90% to reduce the predicted NTCP, without significant further
tuning. With carefully designed, patient-independent variations  changes in the dose distributions. In particular, CTV coverage
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Clinical Plan: Alternative Plan:
99% coverage for PTV,,, 94% coverage for PTV,,

mm61.37 Gy
mm 54 .91 Gy
== 50 Gy
== 40 Gy
= 30 Gy
== 20 Gy
mm 10 Gy

FIGURE 5 | Dose distributions of patient 13 for 99% (left) and 94% PTV, . dose coverage. For both patients, top: sagittal view through isoc., bottom: axial views at
two levels. Structures: red = PTVjgh, blue = PTV oy, White = rectum, and yellow = bladder. Apart from the dose in the posterior part of PTV 4y, dose distributions
are highly similar.

95% coverage of PTV 90% coverage of PTV
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FIGURE 6 | NTCP reductions by going from >99% coverage for PTV,, to 95% (Left) and 95% (Right), as a function of the percentage of rectum overlapping with
PTViow. Each dot represents one of the fifty study patients. In the left panel, patients 1 and 50 are marked for discussions in the text.

remained 100%, PTVyign coverage was kept at >99%, and ~ >99%) was used as constraint in the generation of the six
bladder dose did also not significantly change. For each patient,  other plans with reduced PT V1, coverage. It was demonstrated
the obtained bladder Dyjean in the clinical plan (PT V14, coverage  that large, but highly patient-specific NTCP reductions could
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Compensation of diabetes enhanced NTCP by reduction of PTV ., coverage

as for Figure 1.
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FIGURE 7 | Compensation for diabetes induced-enhancement of predicted NTCPs (compare black solid and dashed lines) by reducing PTV, o, coverage levels. With
gradual decreases in coverage, NTCPs with diabetes gradually approach the dashed curve for NTCPs without diabetes. Patient sorting along the x-axis was the same

be obtained. For a PTVy,, coverage of 90%, observed NTCP
reductions ranged from 14.4 to 0.1%, compared to 99% coverage,
depending on the patient anatomy. Reductions in required
PTVioy coverage could to a large extent make up for diabetes
as a co-morbidity, again depending on patient anatomy. To the
best of our knowledge, this is the first study that proposes the
use of automated planning for patient-specific exploration of
opportunities for dosimetric compensation of non-dosimetric
toxicity risk factors.

Automated treatment plan generation required about 1-2h
per treatment plan. No manual interaction was required at any
step of the procedure. Therefore, multiple plans could be run,
sequentially or in parallel, over the night. Generation of a wish-
list generally takes several weeks. This is a one-time effort and
should be seen as an upfront time-investment, which saves a
lot of manual planning time at a later stage. Specifically for
this project, the wish-list was already developed in a previous
study (17).

Observed NTCP reductions correlated to some extent with
the volume of rectum overlapping with PTVi,, (Figure6,
R? =0.6-07). Once a correlation model is built based on the
plans generated with the proposed method, the regression lines
might be of use as a tool for selection of the PTVy,, coverage
region of interest, or for selection of patients. That is, the
proposed method could be applied only to patients and/or
to PTViey levels that show to be more promising in NTCP
reduction. However, even in the relatively easy treatment site of
prostate cancer, a not too strong correlation was found. Different
parameters may be investigated, but for more challenging
treatment sites finding predictors for NTCP reduction may be

even more complex. The presented method, on the other hand,
only requires computation time once the procedure is defined.

In the wish-lists applied in this study, concentric shells at
distances of 5, 15, 25, and 50 mm from the PTV edge were
used to control plan conformality (Table 1). The limit and goal
values were the same for all patients and all plans. Initially, we
did however try to get further NTCP reductions by loosening
conformality goal values. This was not successful; conformality
worsened but NTCPs remained practically unchanged.

Equation 1 was used for NTCP prediction in this study, as
our patients were treated in the context of the HYPRO trial, and
Equation 1 was derived for these patients. Important to note is
that various alternative predictive models exist (11, 15), which
could possibly have resulted in different conclusions, or could
have resulted in different approaches for lowering NTCPs. Direct
use of Equation 1 in this study was limited to plan evaluations,
i.e., Equation 1 was not used in the wish-list for plan generations
(see Table 1). For planning, we generally prefer to use convex
cost functions to avoid getting trapped in local minima, and the
NTCP expression in Equation 1 is not convex. Alternatively, the
(convex) rectum gEUD (7.7), as used in Equation 1, was directly
applied as an objective function (priority 4 in Table 1).

The proposed method to explore trade-offs in planning goals
has some similarities with the well-known Pareto navigation,
using a graphical user interface with sliders to find a clinically
favorable plan (8, 26-31). Also in that method, multiple plans
are automatically generated for manual plan selection. There are,
however, important differences. The most important difference
is that for each patient, we first generate a high-quality, Pareto
optimal plan (“wish-point”) with clinically most desired PT Vo
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coverage (>99%). For each patient, this plan is then used
as anchor point for patient-specific generation of the plans
with slightly reduced PTVy,, coverage, using the bladder dose
obtained in the wish-point plan as constraint. In the proposed
workflow, only plans are generated that are useful for the
desired analyses. In conventional generation of plans for Pareto
navigation, there is no knowledge of the “wish-point,” and
generation of plans is less focused. Due to our highly focused
plan generation, only few plans are needed for the analyses. In
this study we used seven plans per patient. This number was not
optimized in terms of finding the minimum number of required
plans. The aim was to include for all patients, the full range of
PTV1w coverages from 99 to 90%. If a clinical protocol has more
precise directions for reductions in PTVy, coverage, for sure
even fewer plans need to be generated.

PTV margins are generally used to minimize risk in CTV
miss. In this paper, we kept all margins unchanged, but allowed
doses in the overlap area of PTVp,, with rectum to get
lower than in the clinical plan. Coverages in PTVy;e, and
CTV were always maintained. With this approach, the risk
of CTV miss was minimized, but still (at least potentially)
enhanced compared to regular clinical planning. Therefore,
clinical introduction of this type of workflow is not trivial.
Extensive computer simulations could be performed to assess
the true risks, taking into account the clinically applied image-
guided approach. Clinical introduction could well be performed
in a formal study. Anyway, it seems that patient selection could be
important, with patients with a high clinical NTCP (e.g., related
to an unfavorable anatomy or diabetes) and a large potential
for NTCP reductions, as best candidates. It is important to
realize that we used in this study our clinically required PTV
coverage level of 99%. In many studies, coverages of 95% were
reported (32).

We have investigated trade-offs between PTV coverage and
GI NTCP for prostate cancer but believe that the proposed
methodology could also be applied for other tumor sites. The
system could also be used to explore patient-specific trade-ofts
between various toxicities for fixed PTV coverage. Focusing
on balances between toxicities instead of toxicity vs. PTV
coverage could ease clinical implementation. The developed
workflow could potentially also be used in shared decision
making studies.
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Purpose: Proton radiotherapy (PRT) is potentially associated with a lower risk for
secondary malignancies due to a decreased integral dose to the surrounding organs at
risk (OARs). Prospective trials confirming this are lacking due to the need for long-term
follow-up and the ethical complexities of randomizing patients between modalities. The
objective of the current study is to calculate the risk for secondary malignancies following
PRT and photon-based intensity-modulated radiotherapy (IMRT).

Materials and Methods: Twenty-three patients (16 female and seven male), previously
treated with active scanning PRT for malignant mediastinal lymphoma at Heidelberg lon
Beam Therapy Center, were retrospectively re-planned using helical photon IMRT. The
risk for radiation-induced secondary malignancies was estimated and evaluated using
two distinct prediction models (1-4).

Results: According to the Dasu model, the median absolute total risk for tumor
induction following IMRT was 4.4% (range, 3.3-5.8%), 9.9% (range, 2.0-27.6%), and
1.0% (range, 0.5-1.5%) for lung, breast, and esophageal cancer, respectively. For PRT,
it was significantly lower for the aforementioned organs at 1.6% (range, 0.7-2.1%),
4.5% (range, 0.0-15.5), and 0.8% (range, 0.0-1.6%), respectively (p < 0.01). The
mortality risk from secondary malignancies was also significantly reduced for PRT
relative to IMRT at 1.1 vs. 3.1% (p < 0.001), 0.9 vs. 1.9% (p < 0.001), and 0.7
vs. 1.0% (p <0.001) for lung, breast, and esophageal tumors, respectively. Using the
Schneider model, a significant risk reduction of 54.4% (range, 32.2-84.0%), 56.4%
(range, 16.0-99.4%), and 24.4% (range, 0.0-99.0%) was seen for secondary lung,
breast, and esophageal malignancies, favoring PRT vs. X-ray-based IMRT (o < 0.01).
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Secondary Malignancy Risk After Radiotherapy

Conclusion:

Based on the two prediction models, PRT for malignant mediastinal

lymphoma is expected to reduce the risk for radiation-induced secondary malignancies
compared with the X-ray-based IMRT. The young age and the long natural history
of patients diagnosed with mediastinal lymphoma predisposes them to a high
risk of secondary malignancies following curative radiotherapy treatment and, as a
consequence, potentially reducing this risk by utilizing advanced radiation therapy
techniques such as PRT should be considered.

Keywords: mediastinal lymphoma, proton radiotherapy, intensity modulated radiotherapy, photon radiotherapy,

secondary malignancies, risk

INTRODUCTION

Over the last few decades, significant improvements in combined
modality therapy consisting of multi-agent chemotherapy and
consolidation radiotherapy (RT) have resulted in high cure rates
in patients diagnosed with lymphoma. Furthermore, due to their
young age and excellent survival rates, the mediastinal lymphoma
patients are at a significant risk for late toxicity from their
oncologic therapy. Notable improvements in oncologic outcomes
have prompted a new focus on the reduction of treatment-
related morbidity via de-escalation in both the chemotherapy
and the radiation realms. A reduction in RT treatment doses
and field sizes, as well as the utilization of modern highly
conformal RT techniques [e.g., intensity-modulated RT (IMRT),
in contrast to conventional 3D-conformal radiotherapy], has
led to a further reduction in radiation doses to organs at risk
(OARs) (5-8). Thoracic radiotherapy to the mediastinum poses
notable challenges due to the close proximity of target volumes
to OARs including the heart, breast, and esophagus, making
dose reductions to these organs difficult despite using the most
advanced X-ray-based radiotherapy techniques such as IMRT.
Multiple comparative dosimetric studies have demonstrated
radiation dose reductions to healthy surrounding tissues due
to the superior physics of proton therapy vis-a-vis the Bragg
Peak (9-12). Radiobiologically, these dose reductions can not
only result in reduced deterministic side effects leading to lower
acute toxicity rates but also in reduced stochastic side effects
and, consequently, reduced risk for secondary malignancies
(SM). Due to the stochastic nature of the risks, even small
doses delivered to OARs may induce a long-term SM induction
after RT. However, prospective trials confirming this are lacking
due to the need for an extremely long-term follow-up and the
ethical complexities of randomizing patients between these two
modalities. Although the risk for development of SM is small, it
is statistically significant, particularly for long-term survivors of
treatment, e.g., lymphoma patients (7, 8). One study conducted
with extended follow-up, published by Sethi et al., reported
statistically significant reductions in secondary malignancy risk
in pediatric patients treated for retinoblastoma (0 vs. 14%, p =
0.015) (13). The frequency of radiation-induced cancers after
total body exposures with very low doses of ionizing radiation
has been determined in different epidemiological studies (14, 15).
However, these epidemiologic data involve doses (<100 mSv)
which are dramatically lower than those used for RT. Hence,

different dose-response models, valid for all dose levels, have
been proposed using mechanistic models for predicting cancer
induction after fractionated radiotherapy, which are based upon
the linear-quadratic model:

(1) The Dasu model (1) explores several methods for estimating
the risk of cancer following RT in order to investigate the
influences of fractionation and non-uniformity of dose to
the irradiated volume. This model takes into consideration
the competition between cell killing and the induction of
carcinogenic mutations for a more realistic risk estimate.

(2) The Schneider model introduced the concept of organ
equivalent dose (OED) to estimate organ-specific radiation-
induced cancer incidence rates (4). The OED concept
assumes that any two dose distributions in an organ are
equivalent if they cause the same radiation-induced cancer
incidence. The two operational parameters of the OED
concept are the organ-specific cancer incidence rate at low
doses, which was taken from the data of atomic bomb
survivors, and cell sterilization at higher doses. For the
OED concept, the effect of cell sterilization in various
organs was estimated by analyzing the historical secondary
cancer incidence data of patients treated with RT due to
Hodgkin’s disease. Using these two model parameters, the
OED concept can be applied to any three-dimensional dose
distribution for estimating radiation-induced secondary
malignancy incidence.

The aim of the present study was to use these two radiobiological
models to investigate the potential improvement of PT vs.
X-ray irradiation relative to the risk of radiation-related
secondary malignancies using actual proton dosimetric data from
patients who were previously treated with mediastinal RT for
malignant lymphoma.

MATERIALS AND METHODS

Patient Selection and Treatment Planning

Twenty-three (16 female and seven male) patients with
histologically proven lymphoma with mediastinal involvement
and treated with consolidative proton radiotherapy were
included in the present study. The patients received PT due to
their young age (<30 years), in female patients with an expected
high dose to breast tissue (Dmean > 4.5 Gy) and/or in patients
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TABLE 1 | Patient, treatment, and disease-specific characteristics of 23 patients
with mediastinal lymphoma.

Number of patients 23
Median age (range) 30 years (18-54 years)
Sex (m/f) 7/16
HL/NHL 13/10
Ann Arbor staging

| 3 (13%)

Il 13 (67%)

Il 0 (0%)

IV 7 (30%)
Median total dose (range) 36 Gy(RBE) [20-39.6 Gy(RBE)]
Median no. of fractions (range) 18 (10-22)

Median dose per fraction (range)
Median PTV
Mediastinal involvement

2 Gy(RBE) [1.8-2 Gy(RBE)]
494 ml (120-886 ml)

Only superior 10 (43%)

Superior and inferior 13 (67%)
Laterality

Left 8 (35%)

Right 9 (39%)

Middle 6 (26%)
Additional cervical involvement 8 (35%)

Gy(RBE), Gray (Relative Biological Effectiveness); PTV, Planning target volume.

with particularly high expected radiation dose to the heart
(Dmean > 5 Gy) if treated with conventional photon irradiation.
In summary, 10 patients with bulky disease (>7.5cm) non-
Hodgkin lymphoma (NHL) received consolidation RT following
induction chemotherapy consisting of R-CHOP+/—MTX (16-
18). Thirteen Hodgkin lymphoma (HL) patients were treated
according to the German Hodgkin Study Group criteria,
depending on the stage and the risk factors (2, 19, 20). Treatment
technique and clinical outcomes have recently been described
in detail (12). The patient, treatment, and disease-specific
characteristics are presented in Table 1.

For treatment planning, the patients were immobilized with
the help of either individually shaped thermoplastic masks with
shoulder fixation or the WingSTEP system (IT V, Innsbruck).
A planning computed tomography (CT) scan with 3-mm slice
thickness as well as a 4D CT scan under free breathing were
acquired using Siemens’ either Somtom or Confidence (Siemens
Healthnears, Erlangen Germany). The aim of the 4D CT was
to qualitatively analyze the impact of respiratory motion on
tumor movement. Particle therapy planning was performed using
Siemens Syngo PT Software (Siemens, Erlangen, Germany) that
applies pencil beam algorithm for dose calculation (21-23). The
prescribed dose was optimized with proton beams of spot size
of 8-25mm full width at half maximum, and with 2-3 mm of
overlap in lateral (dx, dy) and longitudinal (dz) directions. Both
single-beam optimization and multi-beam optimization (IMPT)
were applied, depending on the different tumor locations. If
IMPT was applied, generation of high-dose gradients per field
was avoided. Due to the location of the clinical tumor volumes

(CTV)s in close proximity to the lungs, a maximum of two
anterior beams with gantry angles between + 20° was selected.
CTV coverage with D95% to 95% of the prescribed dose was
aimed while respecting known OAR dose constraints (24). The
final proton dose was scaled with a constant radiobiological
effectiveness (RBE) factor of 1.1. An active beam application
with raster-scanning technique (25) under daily image guidance
was used.

Comparative photon plans were calculated for all patients
using the TomoTherapy® Treatment Planning System
(Tomotherapy, Accuray® Incorporated, Sunnyvale, USA).
Whenever possible, directional or complete blocks for breast
tissue were used for optimization, resulting in a “butterfly”
IMRT beam arrangement approach [weighted anteriorly and
posteriorly oblique beam entry angles (26)]. The planning goals
were the same for the proton and the IMRT plans, with the aim
to keep the dose to the surrounding OAR as low as reasonably
achievable and not only according to QUANTEC and Emami
constraints, which can be easily achieved in moderate-dose
prescriptions like lymphoma treatments. Since this young
patient cohort was treated on a solely curative basis, main
priority was always given to optimal target coverage. Further
prioritization depended on the anatomical localization (upper
vs. lower mediastinal region with precardial involvement)
and the gender of the patient, but with a generally higher
priority to breast and heart tissue compared to the lung and
the esophagus.

Risk Estimation for Radiation-Induced

Secondary Cancers

Two distinct radiobiological models proposed by Dasu et al. (1)
and Schneider et al. (4) were applied for the risk estimation
of radiation-induced secondary cancers as previously described
by Mondlane et al. (27). Data extracted from the dose-
volume histograms from both the proton and the X-ray
plans were used for the risk calculation of radiation-induced
secondary malignancies.

Dasu Model

The Dasu model is a linear-quadratic (LQ)-based model
(Equation 1):

1
Totalriskorean = ——— ZV'
gan Z Vi 1
ity

2 2
X{(O{lDi 4 ﬂlD,‘) X exp|: — (OlzDi 4 ﬂZrll)i )]}

n
where v; is the volume of tissue receiving dose D; given in n
fractions. The first term in the parenthesis describes the induction
of DNA mutations, while the second term models cell survival
in the irradiated organs. Calculations of the parameter o1 were
performed with the risk coeflicients for fatal and total risk of
cancer induction derived according to the recommendations
of ICRP Publication 103 as previously described (1, 27, 28)
(see Table 2). The term “total risk” defines the mere risk for
development of cancer, while the term “fatal risk” describes the
risk of induced secondary cancer leading to death. An «/f ratio
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TABLE 2 | Risk coefficients (a1, second and third column) and the linear quadratic
model parameter (last column) used for risk assessment for the different organs
at risk.

Organ a1 (Gy ) fatal risk a1 (Gy ~7) total risk oz (Gy )
Lung 0.0101 0.0144 0.129
Breast 0.0028 0.0144 0.008
Esophagus 0.0014 0.0015 0.274

The risk coefficients were taken from ICRP 103, the linear LQ-model parameters were
adapted from Schneider et al. (4).

of 3 was taken for the lungs, esophagus, and breasts. Nominal
risk coefficients are derived by averaging sex and age at exposure
lifetime risk estimates in representative populations.

Schneider-Model

The risks for inducing secondary malignancies were also
estimated using the Schneider model, which is based on
determination of the OED (Equation 2):

1

2ivi

OED =

Z v; x RED(D;)
i

where v; and D; are defined as in the Dasu model and RED (D;)
is the selected dose-response relationship.

As described by Mondlane et al. (27), three distinct dose-
response relationship scenarios (linear, linear—exponential, and
plateau) were applied for estimating the risk of SM. The linear
model assumes a direct increase in risk with increasing doses.
The linear-exponential dose relationship completely neglects
the repopulation/repair effect, while the plateau model expects
complete repopulation/repair to take place. The aforementioned
three equations modeling the dose-response relationship for
linear, linear-exponential, and plateau models are depicted in
Equation (3).

RED (D;) =

According to Mondlane et al. (27), ' is defined by applying the
LQ model and is proportional to the number of cells which are
reduced by cell killing:

’ D;
o =a+p—
n

in which » is the number of fractions used. The values of «
in Equation (4) are shown in the last column of Table 2 as «5.
Analogously to the Dasu model, an «/f ratio of 3 was taken for
the lungs, esophagus, and breasts. The relative risks for SMs were
calculated as the ratio of the OEDs obtained for specific OARs
(the PT dose relative to the photon dose). Therefore, a value <1
stands a lower risk for SM induction following PT.

Follow-Up

Following the completion of thoracic proton radiotherapy,
the patients received regular follow-up visits including clinical
examinations and CT or MR imaging. Response to treatment was
assessed using the revised response criteria for lymphoma (29).

Statistical Analysis

Statistical comparisons were performed using the non-
parametric Wilcoxon signed-rank test. Significance was noted
for two-tailed p-values of <0.05. Survival analyses for overall
(OS) as well as progression-free survival (PFS) following
radiotherapy were performed using the Kaplan-Meier method.
A p-value <0.05 was considered as statistically significant. All
statistical analyses were performed using the software SPSS 24.0
(IBM Corporation, Armonk, NY, USA).

Ethical Approval
Ethical approval was obtained from the local Ethics Committee
of Heidelberg University Hospital (S-201/2017).

RESULTS

Patient and Treatment Characteristics
Twenty-three patients with a median age of 30 years (range, 18—
54 years) and diagnosed with mediastinal lymphoma were treated
with consolidation radiotherapy using PT. Fifty-seven percent
(n = 13) of the patients suffered from HL, whereas 43% (n =
10) of the patients had aggressive NHL. Most patients presented
in Ann Arbor stages I-1I (70%) with involvement of the superior
and the inferior mediastinal regions (57%). Additional cervical
involvement was present in one third of the patients. Median
treatment volume (planning target volume) was 494 ml (range,
120-886 ml). Complete patient-, treatment-, and disease specific
characteristics are shown in Table 1.

Planning and Dosimetric Characteristics

The Dasu model was applied to estimate both the total risk as
well as the fatal risk. Figure 1 depicts the calculated risks for
total and fatal SM induction for relevant thoracic organs for each
patient. For X-ray irradiation, the median total risk for tumor
induction was calculated to be 2.2% (range, 1.6-3.1%), 2.1%
(range, 1.7-2.9%), and 1.0% (range, 0.5-1.5%) for the right lung,
the left lung, and the esophagus, while for proton irradiation the
risk was significantly reduced to 0.8% (range, 0.1-1.2%), 0.8%
(range, 0.3-1.4%), and 0.8% (range, 0.0-1.6%), respectively (p <
0.001). The fatal risk for secondary malignancies also significantly
decreased to 0.5% (range, 0.1-0.9%), 0.6% (range, 0.2-1.0%), and
0.7% (range, 0.0-1.5%) in the right lung, the left lung, and the
esophagus when applying PT, compared to 1.5% (range, 0.7-
2.2%), 1.5% (range, 0.6-2.0%), and 1.0% (range, 0.5-1.4%) with
photon irradiation (p < 0.001). For female patients treated with
PT, the risk of total and fatal cancer induction was 1.5% (range,
0-10.1%) and 0.3% (range, 0-2.0%) for the right breast as well as
2.4% (range, 0-9.7%) and 0.5% (range, 0-1.9%) for the left breast,
respectively. A significant increase in both total cancer and fatal
cancer induction was calculated in the corresponding photon
plans with 3.5% (range, 0.8-10.4%) and 0.7% (range, 0.2-2.0%)
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FIGURE 1 | Total (A) and fatal (B) secondary malignancy risks according to the Dasu model for relevant thoracic organs (right and left lung, esophagus, right and left
breast) for each patient. Total and fatal secondary malignancy risks for photons are depicted in red, for protons in blue.

for the right breast and 6.6% (range, 0.9-22.7%) and 1.4% (range,
0.2-4.4%) for the left breast, respectively (p < 0.001). However,
one patient showed a slightly increased risk for both total and
fatal esophagus cancer induction when PT was applied compared
to photon irradiation (patient 10, Figure 1).

Utilizing the Schneider model to estimate the risk for
carcinoma induction, the ratios of the OED values derived from
the PT and the X-ray therapy plans were calculated and the
relative risk reduction using the linear, the linear-exponential,
and the plateau model was derived. According to all three models,
PT statistically significantly reduced the risk of radiation-induced
lung, esophagus, and breast carcinoma for female patients (at
least p < 0.008) when compared to X-ray irradiation (Table 3).
For each patient, the calculated relative risks for tumor induction
in bilateral lungs, esophagus, and bilateral breasts for female
patients are presented in Figure 2 for the three distinct dose-
response relationship models. However, two patients (patients
10 and 18) were calculated to have an increased relative risk
for esophageal cancer and two female patients showed a higher
relative risk for right-sided breast cancer (patients 2 and 20) for
PT compared to X-ray radiotherapy.

Clinical and oncologic outcomes have been reported in detail
elsewhere (12). At the time of this analysis, median follow-up
was 49.5 months (range, 34.7-68.8 months), and 5-year OS and
5-year PFS were 100 and 91.3%, respectively. No SM have been
documented during follow-up.

DISCUSSION

As oncologic outcomes for mediastinal lymphoma have
improved over time, there has been a renewed focus on
treatment-related side effects. This is all the more important in
a patient population who are typically diagnosed at a younger
median age and have a more extended cancer natural history.
Multiple dosimetric studies have provided evidence that PT
offers a superior dose distribution in patients with mediastinal
lymphoma relative to X-ray irradiation (12, 30, 31), which may
lead to reduced acute and long-term toxicity. Of undisputed
importance is the induction of SM, particularly lung and breast
cancer. Majority of the applications are retrospective in nature
and prospective trials are pending and oftentimes not feasible
due to ethical complexities. Furthermore, for patients that
have already been treated with PT, long-term data are still
lacking, given the very long-term follow-up periods acquired
to identify chronic toxicity including cardiovascular diseases or
SM induction.

The bulk of clinical data comes from the X-ray era and
partially from the 2D RT era and are therefore of limited
applicability to modern RT techniques such as IMRT. One
Dutch retrospective cohort study enrolled 3,905 HL patients
treated with RT (primarily large-field irradiation techniques)
and who had survived HL. In this cohort, 1,055 SM were
diagnosed, resulting in a standardized incidence ratio of 4.6
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TABLE 3 | Median values (range) of the relative risks for observing carcinomas at OAR (lung, breast, esophagus) assessed using the Schneider-model.

Proton/Photon relative risk of cancer

Linear p-value Exponential p-value Plateau p-value
Lung right 0.38 (0.08-0.60) <0.001 0.34 (0.04-0.60) <0.001 0.35 (0.05-0.50) <0.001
Lung left 0.46 (0.16-0.68) <0.001 0.39 (0.13-0.63) <0.001 0.41(0.13-0.58) <0.001
Breast right 0.33 (0.00-2.68) 0.008 0.33 (0.00-2.14) 0.008 0.33 (0.00-2.4) 0.008
Breast left 0.44 (0.01-0.84) <0.001 0.42 (0.01-0.81) <0.001 0.43(0.01-0.83) <0.001
Esophagus 0.72 (0.01-2.77) 0.002 0.70(0.01-1.63) <0.001 0.76 (0.01-2.24) 0.001
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FIGURE 2 | Relative risk reduction for the three distinct dose-response relationship models (linear in blue, the linear-exponential in red and the plateau model in green)
according to the Schneider model. Calculated relative risks for tumor induction are shown for relevant thoracic organs (right and left lung, esophagus, right, and left
breast) for each patient.

compared to the general population, with the cumulative
incidence of SM being 48.5% at 40 years after treatment vs.
19% in the general population. In this series, breast and lung
cancer contributed the bulk of overall absolute excess risk
increase (each 20%) (32). Furthermore, Moskowitz reported
that the cumulative incidence of breast cancer by the age of
50 is comparable with the risk of BRCA1 mutation carriers
for childhood HL survivors (33). Although data have to
be interpreted with caution when extrapolating older studies
using less advanced radiation techniques with current RT
technology, these clinical data emphasize the importance of dose
reduction, especially in young patients where the risk is even
higher (34).

Regarding PT, clinical data are even more limited; however,
in a retrospective matched-pair analysis of 558 patients, SM
occurred in 7.5% after X-ray irradiation vs. 52 % after PT
(35). Although the median follow-up is short (6.7 years), the
extrapolated incidence rate of SM after X-ray irradiation was
10.3 cancers per 1,000 person-years compared to 6.9 cancers per
1,000 person-years following PT. Moreover, the interpretation of
these results is also complicated by the heterogeneity of tumor
and histologies, variations in combined modality approach,

heterogeneity of radiation dose, and fractionation schemes used
which may bias the results.

In an effort to evaluate the risk for SM induction following RT
with modern techniques, we performed a pairwise comparison
of the estimated individual risks for radiation-induced SMs
after PT vs. X-ray irradiation for relevant organs in patients
with mediastinal lymphoma using two different, well-established
mechanistic calculation models. We showed that the calculated
risks were significantly lower after PT compared to X-ray
irradiation for all OARs investigated in this study (i.e.,
lungs, esophagus, and breast). Of note is that the risks
in the aforementioned publications (32-34) may be higher,
owing to the older radiation techniques, younger patient age,
and consideration of the cumulative risk for all secondary
malignancies, compared to an organ-, sex-, and age-specific
risk estimation like our analysis. Several publications already
confirmed a strong dependency of developing cancer at the age of
exposure, including Hancock et al. who reported over three times
of elevated risk for breast cancer when a patient below the age of
20 years was compared to older patients aged 20-29 years (36).

A retrospective comparative analysis of HL patients
demonstrated that PT decreased the avoidable cancer incidence
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compared to X-rays by a factor of about 2 (3), using the IRCP-60
method. Similarly, our results show comparable values for
risk reduction when using protons of 2.75-3.0 for lung cancer,
2.75-2.33 for breast cancer, and 1.25 for esophageal cancer
(total risk according to Dasu), confirming previously reported
results with a larger patient cohort. Another valuable metric,
investigated by Rechner et al. (37), is the calculation of life
years lost (LYL) attributable to the late effects after RT. This
publication evaluated the risk for 22 patients and found that the
use of PT significantly reduced LYL compared to IMRT. The
primary drivers for LYL were heart failure, myocardial infarction,
valvular heart disease, and breast and lung cancer, which again
emphasize the importance of dose reduction to these OARs.

In two patients (nos. 2 and 20), the risk ratio (RR) according
to the Schneider model for breast cancer on the right side was >1
and therefore higher with PT. Of note is that both patients were
diagnosed with more right-lateralized mediastinal involvement
and beam application was weighted more from this side, resulting
in a lower dose to the left side (see Figure 2) and especially
a lower dose to the heart. In both patients, for example, this
was considered more important since these patients had already
suffered from grade 2 chronic heart failure after chemotherapy.
In general, this demonstrates that relative risks are associated
not only with treatment planning and technique factors but also
with patient-specific geometry and tumor location. Nevertheless,
these two patients were treated with PT due to the significant
improvement in other thoracic OARs. Finally, the two patients
(nos. 10 and 18) with a higher RR for esophageal cancer
induction were both patients with cervical and upper mediastinal
involvement, where the dose to the esophagus was higher with
PT, owing to the beam arrangements. Nevertheless, PT was
chosen in these patients due to better sparing of other OARs
(breast and heart), where risk for SM or long-term toxicity is
more relevant.

Overall, most organs at risk demonstrated significant
dosimetric improvements across the cohort analyzed. However,
tumor location and patient geometry, on rare occasions, led
to improvements in dose to certain organs. As a result,
clinician judgment must be used on a case-by-case basis when
deciding between radiation modalities that may have variable
improvements between OAR doses, that is, if a given proton
plan yields reduction in heart and lung dose but higher breast
dose relative to a comparative IMRT plan, clinical factors will
need to be weighed by the radiation oncologist to choose the
plan most likely to optimize patient clinical outcome. Notably,
there are several limitations for modeling radiation-induced
carcinogenesis: Firstly, both models applied in this analysis use
data derived from epidemiological studies which per se have
uncertainties: factors like whole-body exposure in atomic bomb
survivors vs. local dose exposure in radiotherapy might reduce
comparability (38). Moreover, RBE may vary in PT, and this
effect is currently not considered in these models but is also
not taken into consideration in standard clinical PT (use of
constant RBE of 1.1).

Nevertheless, the strength of the two models is the inclusion
of factors for cell killing as well as repair and repopulation,
which reflect the non-linear dose-response relationship that is
well known for SM induction (39).

Apart from all these factors, real patient data (that need
decades to be collected) will also suffer from variables
that influence certainty, e.g., variation of target size and
tumor location between patients, as well as the use of
different planning/optimization techniques and constraints. In
this context, using risk ratios in a pairwise comparison of
different modalities may be very useful when ranking RT
modalities like proton and photon irradiation in a given
patient cohort.

As proposed by a current guideline of the ILROG (40), PT
is an attractive treatment option which should be discussed
for lymphoma patients, especially if mediastinal involvement
is present. Nevertheless, the potential benefit is variable and
dependent on many factors including age, gender, tumor
location, and patient-specific comorbidities. This specific
radiation modality should be discussed on a “case-by-case”
basis and, if found to be warranted, patients should be treated
at PT facilities with sufficient expertise (41). At our facility, all
lymphoma patients treated with PT are placed on a prospective
registry study with long follow-up to investigate long-term
toxicities like cardiac events or SM.

Furthermore, the American Cancer Society, the American
College of Radiology, and the Society of Breast Imaging
recommend annual screening by breast magnetic resonance
imaging as an intensified screening for breast cancer, especially
for patients treated at an age <30 years, similar to the already
established screening for high-risk patients with a BRCA1
mutation (42, 43).

CONCLUSION

Proton therapy for patients diagnosed with mediastinal
lymphoma offers a dramatic dose reduction to surrounding
thoracic OARs. Based on the multiple radiobiological models
utilized in the present study, PT is estimated to reduce SM
risk for lung and breast tissue. Future research will include a
long-term follow-up of patients treated at experienced facilities
to identify the “real” risk of secondary malignancies in this
patient population.
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Biologically based treatment planning is a broad term used to cover any instance in
radiotherapy treatment planning where some form of biological input has been used. This
is wide ranging, and the simpler forms (e.g., fractionation modification/optimization) have
been in use for many years. However, there is a reluctance to use more sophisticated
methods that incorporate biological models either for plan evaluation purposes or for
driving plan optimizations. This is due to limited data available regarding the uncertainties
in these model parameters and what impact these have clinically. This work aims to
address some of these issues and to explore the role that uncertainties in individual
model parameters have on the overall tumor control probability (TCP)/normal tissue
complication probability (NTCP) calculated, those parameters that have the largest
influence and situations where extra care must be taken. In order to achieve this, a
software tool was developed, which can import individual clinical DVH’s for analysis
using a range of different TCP/NTCP models. On inputting individual model parameters,
an uncertainty can be applied. Using a normally distributed random number generator,
distributions of parameters can be generated, from which TCP/NTCP values can be
calculated for each parameter set for the DVH in question. These represent the spread
in TCP/NTCP parameters that would be observed for a simulated population of patients
all being treated with that particular dose distribution. A selection of clinical DVHs was
assessed using published parameters and their associated uncertainties. A range of
studies was carried out to determine the impact of individual parameter uncertainties
including reduction of uncertainties and assessment of what impact fractionation and
dose have on these probabilities.

Keywords: normal tissue complication probability (NTCP), tumor control probability (TCP), uncertainty, biologically
based treatment planning, biological optimization

INTRODUCTION

Radiobiology has played a critical role in clinical radiotherapy for many years, and it is common
practice to use radiobiological methods, for example, to account for different fractionation
regimes and modalities in combined treatment (such as combined external beam radiotherapy
and brachytherapy in gynecological treatments) (1) and to account for interruptions in treatment
(2). Following the significant technological development of the last decade, which has resulted
in a variety of methods for the delivery of precise radiation doses, there is now a drive
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to implement radiobiological methods in either the evaluation
of treatment plans (for plan comparison for an individual
patient) or for triaging patients who would benefit from more
advanced radiotherapy techniques, e.g., protons (3) or the actual
optimization of plans. Moreover, the use of radiobiological
models for treatment plan optimization is an important first
step for the development of truly personalized radiotherapy.
This would allow full exploitation of the therapeutic power of
radiation and the advances in genomic testing while safeguarding
the more radiosensitive individuals.

The Task Group document from the AAPM, report 166 (4,
5) provides an outline describing biologically based treatment
planning including descriptions of commonly used models and
how different treatment planning systems (TPS) implement
these. They also provide guidelines for implementation and
quality assurance (QA) of such systems and vision for the
future. A coherent explanation of the different levels of biological
optimization was described by Nahum et al. (6). They outlined
the different levels, which ranged from very simple methods
(Ievel 1) included in trials, such as IDEAL-CRT and I-Start,
which individualize/escalate prescription levels based on organ
at risk dose, to level 5, where they envisage such techniques being
employed that would take into account a patient’s individual (not
based on population data) biology. The different levels coined
by Nahum et al. are paraphrased from the original publication
(6) below. The reader is directed to their publication for further
details on this subject.

Level 0: no biological optimization.

Level I. individualization of prescription dose for specified
level of toxicity [i.e., dose escalated in plans where
possible using fixed normal tissue complication
probability (NTCP) level for the organ at risk (OAR)].

Level II: the same as above, but the number of fractions is
adjusted as well as the prescription dose based on an
isotoxic basis.

Level III: biological cost functions used in the actual
optimization of the dose distribution. Equivalent
uniform dose (EUD), TCP, and NTCP parameters are
used alongside conventional DVH parameters used in
the optimization (e.g., Dmax, D99, V50%, mean).

Level IV: individual patient-specific data is used in the
optimization of the patients plan (e.g., use of
functional imaging to highlight areas of hypoxia and
other areas of increased radio-resistance).

Level V: using individual patient biology to optimize dose
prescriptions in conjunction with any of the
other levels.

We are currently at, or are approaching, level III where TPS
are now incorporating biological models for either evaluation
or optimization purposes. One of the benefits in using TCP
or NTCP models is that a single value can be used in place
of an array of dosimetric parameters describing points along
a DVH curve. However, it is critical to assess the uncertainty
affecting such values and what the key elements underpinning
such uncertainty are. Different companies and TPS systems
employ different formalisms and algorithms despite adopting

the same radiobiological models, resulting in fundamental
differences for the final calculations of the TCP/NTCP values
and related uncertainties. An accurate understanding of how
the uncertainties associated with the input parameters impact
the final NTCP or TCP values is paramount and will support
the increasing use of such approaches in planning radiotherapy
treatments. Moreover, understanding how uncertainties are
propagated in the TCP and NTCP calculations will identify the
input parameters, which will need to be better defined along
with their acceptable level of uncertainty to guide pre-clinical
research efforts.

The aim of this study was to assess the impact of uncertainties
in individual parameters used in TCP/NTCP calculations. This
was achieved using in-house software developed in MATLAB™
vR2017a (The MathWorks Inc., MA, USA) that generates a
simulated population of parameters within the constraints of
the input parameters and their uncertainties, from which TCP
or NTCP values and their uncertainties can be calculated. Dose
is supplied using the 1D dose distribution as described by the
planning DVH for the structures in question. The simulated
data is generated using MatLab™’s normally distributed random
number generator. A set of values are generated that are normally
distributed with a mean, standard deviation, and size as specified
by the user. The impact from single-parameter and multiple-
parameter uncertainties was assessed for a range of clinically
acceptable prostate plans, focusing on both survival probability
and the probability of rectal complications. A similar approach
was taken by Zhang et al. (7) for epithelial pleural mesothelioma
where they applied an uncertainty to either the alpha term for the
TCP model used (8) or the D5y parameter of the NTCP model
used, the Lyman Kutcher Burman (LKB) model (9-12). This
was to simulate heterogeneity in radiosensitivity of a population
over a set dose range and focusing on therapeutic ratio for the
prescription dose set. Our approach used uncertainties in all
model input parameters and was focused not on a prescription
dose but the planned organ doses (physical and biological)
from clinical plans. No uncertainty was applied to the dose;
however, there was a natural variation in doses as a result of the
uncertainties applied to those parameters used in the biological
dose calculation. The resulting dose (for the rectum especially)
was very specific to the individual anatomy and the resulting
plan generated. Plans were selected to represent the full range of
possible doses that might be encountered.

The data reported show how the proposed approach can
quickly generate uncertainty levels for TCP and NTCP models
(for individual dose distributions as calculated by a treatment
planning system for clinically acceptable plans) taking into
consideration the uncertainties in the input parameters. The
approach was tested for the specific case of prostate treatment
and using the Lind (13) and LKB (9-12) models for TCP
and NTCP, respectively, and highlighted the key role that the
Dsy parameter plays in the overall uncertainties. The study
also indicates a strong synergy between the input parameters
with small uncertainties on a single parameter having an
overall large effect on the variation in the TCP/NTCP values
generated when combined with uncertainties from the other
parameters. The approach can be considered a first step in the
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robustness validation of radiotherapy treatment planning based
on biological optimization.

METHODS

Software

Software was developed in MATLAB, which allowed the import
of dose volume histograms from clinical plans from different
TPS. Different input formats available were for DVHs from
BioSuite® (13), Eclipse™, Pinnacle™, and Raystation™. Dose
and volume data were processed to allow the visualization of
both cumulative and probability density histograms of the data.
Using the linear quadratic formula, dose was converted into
the equivalent dose if the treatment was given in 2 Gy fractions
(LQED2) (14, 15) using the alpha/beta ratio (a/p) and the
number of fractions as supplied by the user (see Equation 1).
The o/p ratio is from the linear-quadratic relationship between
cell survival and irradiated dose, D; is the total dose per DVH
dose-bin, and n is the number of fractions.

D,‘/I’l

1+
LQED2; = D; - 7“? (1)

1 -
TP

It is possible, in the software, to incorporate an uncertainty
on the a/B value entered. This is used to generate a normally
distributed virtual distribution of alpha and beta parameters.
This is done using the normally distributed random number
generator in MatLab™, which generates a distribution of values
of size n. The values are generated such that they have a mean
and standard deviation that matches that supplied by the user.
Using these parameters, simulated variations in the LQED2 are
calculated. After calculation of the LQED?2 variations for a DVH,
the required radiobiological models can be selected for the TCP
and NTCP analysis.

The TCP model used for this study was Lind’s model (16).
Equation (2) shows the model formula as displayed in AAPM
report 166 (4) for use with doses converted into LQED2 using
Equation (1). The y parameter is the slope parameter, Dsg is
the dose at which there is a 50% probability of tumor control
occurring, and D; and v; are dose-bin values and corresponding
fractional volume obtained from the DVH, respectively.

P(D)) = exp (—exp (ey = Dg (ey —In (lnz))>>

50

TCP

M
[] Py 2)

i=1

The NTCP model used in this study was the LKB model (9-12)
(see Equations 3-5), where effective dose (Deg) is the uniform
dose, which gives the equivalent biological effect to the structure
in question as the planned inhomogeneous dose distribution
from the DVH. The volume parameter n describes how serial
or parallel an organ is. D; and v; are dose-bin values and
corresponding fractional volume obtained from the DVH. The m

parameter describes the slope of the NTCP vs. dose relationship,
and Dsg is the dose at which 50% chance of complications
occur. Similar to what was described for the a/f uncertainty,
uncertainties in all the above user input parameters (i.e., D59, m,
n) can be provided and are propagated to the final NTCP value
calculated. TCP/NTCP values are collected for each simulation
and the standard deviation calculated as a measure of the
propagated uncertainty.

NTCP = —— e dx 3)
V2 J—x
D,y — D
f = eff 50 (4)
mDsg

Dy = (Z v,-D}/") (5)

Input Parameters

DVHs from a selection of clinically acceptable prostate plans
were used for this study. The conventional vs. hypofractionated
high-dose intensity-modulated radiotherapy for prostate cancer
(CHHIP) trial (17) planning constraints were used, and the
prescription was either 74 or 78 Gy to allow a range of doses
(and, therefore, positions on the TCP curve) to be evaluated.
The input parameters investigated were taken from the literature.
Initial study parameters for rectal toxicity were from Lyman et al.
(10): Dsg = 7,500 cGy, m = 0.1, n = 0.1, and a/f = 300 cGy. A
study from Marzi et al. (18) was used for the later analysis as this
study provided uncertainty values with its published parameters.
Parameters used were for the prediction of greater than, or equal
to, G2 late toxicity of the rectum; D5y = 7,600 & 190 cGy, o/p
= 230£60 cGy, n = 0.12, and m = 0.15 (no uncertainties were
provided for the n and m parameters). The TCP values used for
the prostate PTV analysis were from Okunieff et al. (19) for T2
multi-institute macroscopic disease; the slope parameter y was
used for the slope parameter y in the Lind formulism, y = 1.16
and D5y = 4,518 c¢Gy. Data from the CHHIP trial (17) was used
for the prostate a/f parameter: a/p = 180 cGy.

Analysis 1

For the first analysis, the uncertainty in each parameter was
progressively increased to determine its specific impact on
the final probability calculated. The analysis was performed
by varying the uncertainty on one parameter at a time while
assuming no error on the other parameters. This was carried
out for both NTCP and TCP models investigating the rectum
and for the prostate PTV. Analysis was performed using Lyman
and Okunieff parameters for the NTCP and TCP calculation,
respectively. For each model, in turn, and for each associated
parameter, in turn, the MatLab code allowed simulated sets
of parameters to be generated. These sets of input parameters
were simulated such that the mean and standard deviation
were as specified by the user. Using each value, in turn,
from the simulated parameter set, an NTCP or TCP value
was then calculated. Finally, a mean and standard deviation
was calculated over the probabilities (either NTCP or TCP)
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FIGURE 1 | Data collected for Analysis 1, normal tissue complication probability (NTCP) calculations using the Lyman Kutcher Burman (LKB) model for the rectum.
(A-C) The impact on the overall NTCP uncertainties as a result of increasing uncertainty in the individual parameters. Values used for a/g, n, Dsp, and m were 300
cGy, 0.1, 7,500 cGy, and 0.1, respectively, and the uncertainties applied are expressed as a fraction of each parameter. (D) shows the relationship between Dgsr (as a
fraction of the Dso) and the uncertainty in the final NTCP calculated for different levels of uncertainty in the Dsy parameter; lines are for guiding the eye only.
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calculated for an individual user-defined set of parameters and
associated uncertainties.

Analysis 2

The second analysis involved using the Marzi parameters and
uncertainties for calculating the NTCP for late rectal toxicity with
the aim of determining the impact of such clinically acceptable
values in the final probability calculated. For this analysis, all the
reported uncertainties were simultaneously considered.

RESULTS

Figures 1A-C report how the uncertainties in the calculated
NTCP values varies as a function of the uncertainties of the input
parameters for three clinically approved treatment cases with
different D.g doses. Figure 1D shows how the D¢ as a percentage
of the D5 parameter varies with uncertainty in NTCP for the four

patient cases investigated. The different curves represent different
levels of uncertainty applied to the Dsg-simulated parameter
sets. For all cases, the uncertainty in the NTCP calculation is
dominated by the uncertainty in the D5y parameter, and it follows
a similar trend with its value initially increasing exponentially
to then reaching a plateau (NTCP uncertainty ~42%) for Ds
uncertainties >40%. There is an almost immediate increase in
NTCP uncertainty for the patients with the higher D.g, while a
slight lag is observed for the lowest D¢g patient. A similar trend
is observed for the NTCP uncertainty as a function of the m
parameter, although the impact is much smaller than for the Dsg
parameter. Interestingly, the other parameters (including the o/p
ratio) play a much smaller role contributing at most 15% of the
NTCP uncertainty for 100% uncertainty in the input parameter.
The uncertainty in the o/f ratio had the least impact on the
overall uncertainty in NTCP. Only the patient with the very
highest D¢ showed a significant increase in NTCP uncertainty
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FIGURE 2 | The relationship between the uncertainty in n (A) and m (B) with the overall uncertainty in the NTCP calculated for a selection of patients with ranging
values of rectum Deff. Values used for o/, n, Dsg, and m were 230 + 60 cGy, 0.12, 7,600 + 190 cGy, and 0.15, respectively (18). The uncertainties applied are
expressed as a fraction in question and uncertainties are applied to either n or m individually with an uncertainty of zero used for the parameter not being assessed.

but that was small and not observed until the uncertainty in a/f
reached 40%.

Considering the critical effect of D.g, the uncertainties in
the NTCP have been reported as a function of the Deg/Ds
ratio for different D5y uncertainties in Figure 1D. The data
highlight how, for low Deg plans, the uncertainty in NTCP
are quite small irrelevant of the uncertainty in all the input
parameters. However, as D.g approaches 80% of the D5y value,
the inaccuracy in determining the Dsg has a major impact on
the NTCP uncertainty. From Figure 1, it also emerges that an
uncertainty of D5y < 6.7% would be required to maintain the
NTCP uncertainty <5% irrespective of the Dg values. The only
exception is patient A (uncertainty in NTCP of 6.9%); however,
this patient is at the upper limit of what would be accepted
clinically for rectal doses.

In order to appreciate the level of uncertainties, which
commonly affect clinically relevant NTCP estimations, the data
set from Marzi et al. was used on the four patient cases
highlighted above. This data set was selected as it investigated
NTCP for a relevant biological endpoint and was one of the
fewer studies quoting uncertainties on input parameters, 2.5 and
26% for Dsy and a/p, respectively. Without further uncertainty
considerations for the other parameters, the overall NTCP
uncertainties calculated through the simulation approach are
of the order of 2% for all cases investigated (Figure 2). This
is significantly lower than the uncertainty that would result
from a simple relative error propagation (i.e., square root of
the sum of the individual relative errors squared), which would
be dominated by the error in the a/p resulting in the overall
uncertainty for the NTCP values of ~26%. Moreover, the
impact of uncertainties in the n or m parameters (the former
in particular) become quickly significant pushing the NTCP
uncertainty up to ~10% for an input parameter error of 40%

[Figures 2A (n), B (m)]. The effect was again more pronounced
for patients with high D.g. For small uncertainties in m or n, the
uncertainty in NTCP derives mainly from the D5y uncertainty,
and the differences in the uncertainties between the patients are
a consequence of the different D values.

As expected, the uncertainties in the input parameters
combine for the overall NTCP calculations. For the patient with
the highest D.g, a Dsp uncertainty alone of 2.5% (as for the Marzi
data set) would result in an NTCP uncertainty of 1.9%, which
remains the same when combined with the uncertainty in o/
(up to ~26%). With a 26% uncertainty in the o/f alone, the
uncertainty in the final NTCP parameter is 0.3% confirming that
Dsy is the dominant source of uncertainty where the fractionation
regime is at, or close to, 2 Gy/fraction. This clearly shows that
impact of the individual parameters is not linear with regard to
uncertainty propagation.

In order to better appreciate the interlink between the input
parameter uncertainties, variation in the NTCP values have
been simulated for the four different clinical cases assuming
uncertainties on all the parameters simultaneously. The Marzi
data set was again used as starting point, and errors of ~7
or ~20% were added to both the n and m parameters. Data
in Figure3A (no uncertainty on m or n) clearly show the
impact of uncertainty in the D5y and a/f on the NTCP values
with minimum effect on the Dgg. It is also interesting to
notice how the NTCP values are not symmetrically distributed
around the NTCP curve but stretched toward the high NTCP
values. This would have strong consequences for the setting
of NTCP acceptance levels for a population case. The addition
of uncertainties in the n and m parameters (see Figures 3B,C)
increases the D.g values moving the calculations toward the
steeper part of the NTCP curve resulting, therefore, in higher
NTCP values. While an individual ~20% uncertainty in the n or

Frontiers in Oncology | www.frontiersin.org

185

July 2020 | Volume 10 | Article 1058


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

Barry et al.

Evaluating BBTP Uncertainty Propagation

A B C
0.8 | |——NTCP curve 0.8 f |——NTCP curve 0.8 f |[——NTCP curve
PtA Pt A PtA
0.6 « PtB 0.6 « PtB 06 « PtB
% « PtC EL) « PtC 25 * PtC
- « PtD - + PtD o | * PtD
Eo04 E 04 Eo4
0.2 0.2 0.2¢
0 —/‘ 0 4‘ 0
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
D, - LQED 2Gy D, - LQED 2Gy D, - LQED 2Gy
FIGURE 3 | (A) The NTCP vs. Dgss curve for grade 2 late toxicity of the rectum (18). Values used for a/B, n, Dso, and m were 230 cGy, 0.12, 7,600 cGy, and 0.15,
respectively. Simulated rectum NTCP values for a selection of patients with uncertainties of 60 and 190 cGy applied to o/ and Dsp parameters, respectively, have
been plotted onto the curve for a selection of patients with different Dest. Each point represents one simulation. (B,C) The simulated results when an additional
uncertainty is applied to both m and n of 0.1 (B) and 0.3 (C).

m parameters had only a small effect on the NTCP uncertainty
when D5y ~2.5% (Figures 3A,B), their combined effect pushes
the NTCP values from <15% up to 40% despite a still low
D5 uncertainty (Figure 3C). Therefore, when considering the
combined uncertainties, it is important to keep the uncertainty
in the m and n parameters below 0.3 for both parameters.

For a greater understanding of the overall picture, the range in
the NTCP values calculated was also evaluated. The NTCP range
without uncertainties applied to the m and n parameter was 0.03—
0.21. This range increases to 0.01-0.21 for an uncertainty of 0.1
in m and n and then to 0-0.37 for an uncertainty of 0.3. This
demonstrates a clear benefit in keeping the uncertainty for such
parameters in the lower range (around the 0.1 mark) where the
influence of these parameters is low.

Interestingly, a conventional error propagation approach
would result in an average NTCP uncertainty of ~28% for the
input parameter set: D5y = 7,600 £ 190, a/p = 230 £ 60, n
= 0.12 £ 0.01 and m = 0.15 + 0.01, while the simulation
approach estimates an uncertainty of ~40% for the selected
patients. The average NTCP values also change when accounting
for uncertainties using the simulation approach due to the low-
level boundary of NTCP = 0 and the data spread, which pushes
the NTCP values up. Table 1 shows the difference in the NTCP
values and their related uncertainties comparing a conventional
error propagation method to the simulation approach.

A similar approach has been also used to investigate the
impact of the input parameter uncertainties on the TCP
calculations (see Figures4A-D). Each input parameter was
individually considered for the four cases used so far and
the relationship between uncertainty in TCP plotted against
the uncertainties applied to the individual input parameters.
The PTV was used as opposed to the prostate volume due
the availability of data. For the one patient data set where
both PTV and prostate volume were present, an analysis was
performed with both structures, and data were very similar
(see Figures 4A,B). D5y again appeared to be the most critical
parameter, however, following a more linear response than
for the NTCP investigations. The relationship between TCP

TABLE 1 | Table showing the differences in both mean and uncertainty (standard
deviation expressed as a percentage of the mean) for different methods of error
propagation calculation, the conventional numerical method, and the simulated
method discussed in this manuscript.

Conventional error propagation Simulation approach

NTCP Error [%] NTCP Error [%]
Patient A 0.0733 28 0.0761 32
Patient B 0.0535 28 0.0557 36
Patient C  0.0367 28 0.0391 41
Patient D 0.0040 28 0.0046 63

and uncertainty in parameter appeared to be almost linear for
all parameters and almost identical for all D.g analyzed. The
relationship Deg/Ds5g vs. TCP uncertainty showed a slight benefit
for the higher dose structures (see Figure 4D). From the limited
range of cases investigated, uncertainty levels <10% for Ds
would be required to achieve TCP uncertainties <5%. This could
also be of importance when considering co-factors, e.g., clinical
factors such as age, concurrent chemo, prior surgery, etc. A study
on the impact of co-factors (20) dealt with differences in response
through the D5 parameter. Using an uncertainty analysis such as
described could be used clinically to define a level (uncertainty in
Dsp) at which it is appropriate to separate sub-groups out of a
main group.

Uncertainties in the a/f parameter appear to have a negligible
impact on the TCP uncertainty for the Lind model. This is due to
the fractionation regime used and the fact that the influence of the
/P ratio is in converting from physical dose into LQED2. Owing
to the fact that most of the voxels in the PTV will be receiving
a fractionation of very close to 2 Gy per fraction, physical dose
is almost identical to LQED2, which means that the parameter
has very little impact on the structure dose being evaluated with
this model. The only response observed were for patients B and C
(Figure 4C), where there was a small impact on TCP uncertainty
after an uncertainty in the parameter of greater than 0.5. These
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FIGURE 4 | Data collected for Analysis 1, tumor control probability (TCP) calculations using the Lind model for the prostate and prostate PTV. PTV and prostate data
displayed in Panel (A, B) respectively for Pt A. Patient B PTV data displayed in Panel (C). Panels show the impact on the overall TCP value as a result of increasing
individual parameters. Values used for o/, Dsp and y were 180 cGy, 4518 cGy and 1.16 respectively and the uncertainties applied are expressed as a fraction of each
parameter. Panel (D) shows the relationship between Des (as a fraction of the Dsp) and the uncertainty in the final TCP calculated for different levels of uncertainty in

patients had the highest Deff and, therefore, the highest dose per
fraction (~2.2 Gy/fraction), which is the farthest dose/fraction
from 2 Gy, which is the fractionation that LQED?2 is referenced
to. While the behavior observed with these test cases would hold
true for a large majority of treatments, it would not be the case for
all. With the move toward more biologically driven treatments
[e.g., use of biological treatment volume (BTV) and also dose
escalation to parts of the tumor] (21), far less homogenous
treatments are used with large variations in dose across the PTV;
these could exceed 130%. In such cases, not all voxels within the
PTV will have doses at, or around, 2 Gy/#, and this will influence
the impact of alpha-beta ratio uncertainty.

Figures 5A-C show the shape of the TCP curve using prostate
tumor parameters from Okunieff et al. (19). Similar to the NTCP

analysis, uncertainties of 2.5 and 26% were applied to Dsy and
a/P, respectively, and the simulated data were plotted on the
graph. Uncertainties of 0, 0.1, and 0.3 were applied to the y
parameter and are shown in Figures 5A-C, respectively. A value
of —10 was selected for the “a” parameter to convert the DVH
dose into an equivalent uniform dose (EUD), which is identical to
Deg, with n = 1/a. This value is widely used for tumor structures,
and due to the fact that the variation in the dose distribution
(from the DVH) for the structure is low (1% variation), it was
thought to be an appropriate choice (22). Of course, in cases
where there is dose escalation in the PTV, an appropriate value
for the parameter “a” would have to be considered more carefully.
There is little spread in the x-direction axis due to the fact that the
only parameter with influence on dose is the a/p. As mentioned
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iny of 0.1 and 0.3 respectively. D¢ for each simulation was calculated using the generalized equivalent uniform dose (EUD) formula, with parameter a set to —10.

earlier, where the fractionation regime is close to a standard one
delivering 2 Gy/fraction, the a/f has little impact on the resulting
LQED2 Gy calculated. Patients B and C have the largest spread
because their dose/fraction is farthest away from the standard 2
Gy/fraction. However, while their x-axis uncertainty is larger, the
overall uncertainty in the TCP is lower (e.g. 3.5% for Patient C
(less standard dose/fraction) compared with 4.4% for Patient D
(standard dose/fraction) for an uncertainty in y of 30%), which is
in keeping with the relationship shown in Figure 4D, where the
higher-dose PTVs benefit from slightly improved uncertainties
in TCP for different levels of uncertainty in the D5y parameter.
As for the NTCP data, the combined effect of uncertainties in the
input parameters quickly results in a significant increase in the
TCP range. The TCP value range using an uncertainty in y of
30% is high (~48 to 99%) compared to a range of 88 to 96% for 0
uncertainty in y, which increases to 85 to 97% for uncertainty in y
of 10%. While the actual TCP uncertainty (calculated as standard
deviation of the probability data collected) is under 5% for all
patients, the spreading of the range data shows a clear benefit
(similar to the LKB for the NTCP data) of keeping uncertainties
in the y below 10%.

There was a dose effect with structures having D.g or EUD
at the periphery of the slope, having smaller uncertainty than
those nearer the center of the curve. This is due to the fact that
positions on the curve that are at the start or end of the curve are
on a shallower gradient and, therefore, less impacted by changes
in the slope. This software can be used as a tool to highlight
where models maybe susceptible to steep increases in uncertainty
size, e.g., for LKB, there are certain boundaries around which you
may need to be especially careful; however, for the Lind model,
there seems to be an almost linear increase in uncertainty in TCP
for increasing uncertainty of the input parameters. The analysis
also indicates the desired level of uncertainty for the input
biological parameters in order to obtain TCP/NTCP values with
reasonable confidence intervals. Such information can be used to
focus future research efforts and improve estimation of biological
parameters, which play a key role in TCP/NTCP models.

CONCLUSION

We have developed software, which allows an estimation of
the uncertainty associated with TCP/NTCP predictions. The
approach can provide insight on the uncertainty associated with
TCP and NTCP calculations as a function of the uncertainty
for the biological input parameters, the patient specific anatomy
and the treatment dose. The software has been used to identify
the dominant parameters (Dsy for both models tested) with
respect to uncertainty propagation. A conventional basic error
propagation approach was also carried out, and it appeared to
underestimate the error in the final NTCP/TCP values suggesting
that different approaches should be considered. Owing to the
fractionation regime of the treatment plans used for the study,
there was little impact from the o/ parameter. For future work,
there is a need to evaluate the impact for cases where the
fractionation regime is significantly different, e.g., CHHIP trial
and also in cases where inhomogeneous dose distributions are
delivered to the PTV. This could soon be the norm especially now
that imaging modalities are in place to identify such areas within
the PTV with, e.g., increased radiosensitivity, increased clonogen
density, and areas of increased hypoxia that would benefit from
escalated doses. As we are moving into an era of highly conformal
treatment planning, dose escalation, and novel approaches, such
as dose painting, including radiobiological guidance as part of
the optimization process, has been proposed to help inform
the evaluation of the trade-off between tumor control and
normal tissue toxicity (21, 23-25). Including uncertainty will
allow evaluation and optimization of the robustness of plans
to biological variations. Similarly, the algorithm can be used
as a useful tool to compare radiobiological models both in
terms of sensitivity and, through application to clinical studies,
accuracy and guide further developments. The present approach
estimates the errors on the NTCP/TCP values by simulating a
random population of input parameters uncorrelated but each
with constrains of their individual uncertainties. Future work
will look at the inter-dependency of input parameter errors
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using Bayesian approaches. An additional useful feature to
include in this software would be to incorporate an uncertainty
in the dose itself. Currently, the software only looks at the
probability in input parameters; however, there is an uncertainty
on dose from many contributing factors. It would be useful
to be able to characterize the uncertainty in the DVH and
incorporate dose uncertainties in the TCP/NTCP uncertainties.
Finally, the study will also be extended to allow analysis of
data from other TCP and NTCP calculations that incorporate
the a/f directly into the models to a greater extent and not
just through converting physical dose to LQED2, e.g., the
Webb model (22).
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Purpose: Dose information from organ sub-regions has been shown to be more
predictive of genitourinary toxicity than whole organ dose volume histogram information.
This study aimed to identify anatomically-localized regions where 3D dose is associated
with genitourinary toxicities in healthy tissues throughout the pelvic anatomy.

Methods and Materials: Dose distributions for up to 656 patients of the Trans-Tasman
Radiation Oncology Group 03.04 RADAR trial were deformably registered onto a single
exemplar CT dataset. Voxel- based multiple comparison permutation dose difference
testing, Cox regression modeling and LASSO feature selection were used to identify
regions where 3D dose-increase was associated with late grade > 2 genitourinary
dysuria, incontinence and frequency, and late grade > 1 haematuria. This was externally
validated by registering dose distributions from the RTO1 (up to n = 388) and CHHIP (up
to n = 247) trials onto the same exemplar and repeating the voxel-based tests on each
of these data sets. All three datasets were then combined, and the tests repeated.

Results: Voxel-based Cox regression and multiple comparison permutation dose
difference testing revealed regions where increased dose was correlated with
genitourinary toxicity. Increased dose in the vicinity of the membranous and spongy
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urethra was associated with dysuria for all datasets. Haematuria was similarly correlated
with increased dose at the membranous and spongy urethra, for the RADAR, CHHIP, and
combined datasets. Some evidence was found for the association between incontinence
and increased dose at the internal and external urethral sphincter for RADAR and
the internal sphincter alone for the combined dataset. Incontinence was also strongly
correlated with dose from posterior oblique beams. Patients with fields extending
inferiorly and posteriorly to the CTV, adjacent to the membranous and spongy urethra,
were found to experience increased frequency.

Conclusions: Anatomically-localized dose-toxicity relationships were determined for
late genitourinary symptoms in the urethra and urinary sphincters. Low-intermediate
doses to the extraprostatic urethra were associated with risk of late dysuria and
haematuria, while dose to the urinary sphincters was associated with incontinence.

Keywords: external beam radiotherapy, prostate cancer, urinary toxicity, voxel-based analysis, dose-toxicity

relationships

INTRODUCTION

External beam radiotherapy (EBRT) is a prominent treatment
option for prostate cancer patients (1), resulting in genitourinary
(GU) toxicity with an even higher incidence than rectal
toxicity (2). Relationships between treatment and patient specific
risk factors, and GU toxicity have been established (3-5).
More evidence of GU dose-toxicity relationships is required
as more conformal techniques (6, 7) have introduced dose-
escalated treatments.

Risk estimation used in establishing dose constraints for
healthy organs at risk (OARs) associated with GU toxicity, such
as the bladder and urethra, is typically based on considering
the planned dose to the whole organ according to dose volume
histogram (DVH) or dose surface histogram (DSH) information.
This is problematic, however, as it ignores potential spatially
varied intra-organ radio-sensitivity. Intuitively, planned dose
to symptom related sub-regions (SRSs) of the urethra and
bladder has been shown to be more predictive of GU symptoms
than information derived from whole-organ DVHs (8). Further
understanding of the relationship between dose and urinary
toxicity at the voxel level could assist in identifying new SRSs,
confirm established SRSs, and help provide these SRS with
optimal dose constraints. This would restrict dose to healthy
tissues with more spatial specificity, and thus help reduce GU
toxicity in patients while maintaining tumor control.

Evidence is accumulating for the establishment of
relationships between acute and late GU toxicity and spatial dose
variance, particularly within the prostatic urethra (8), at various
regions on the surface of the bladder (9, 10), the bladder trigone
(11-13), the bladder neck (14) and at subregions within the
bladder volume (8). No study to date, however, has performed
a voxel-based analysis searching for correlation between dose
variation and GU toxicity throughout the entire pelvic anatomy
without the assumption that dose-toxicity relationships are
limited to within OAR volumes or surfaces. This would enable
the identification of dose-toxicity relationships in a broader
range of the urinary tract, beyond the prostatic urethra to the

membranous and spongy urethra. This extended naive analysis
may also improve understanding of how broader dose patterns,
such as those representative of treatment technique (e.g., beam
arrangement), relate to toxicity.

In this study, multiple voxel-based statistical methods were
employed to investigate the association between 3D planned dose
and measures of late GU toxicity in the entire pelvic anatomy.
Many shortcomings have typically hindered previous voxel-based
analyses (15, 16), including misregistration of planned 3D dose
distributions, false positive rates due to the large number of
voxels being statistically compared, not using time-to-event data,
or not controlling for patient baseline characteristics. This study
performed a combination of statistical tests to compensate for
these shortcomings. High quality planned dose data from three
prospective multi-center prostate radiotherapy clinical trials was
utilized in order to assess the consistency of derived associations
across cohorts, participating centers, employed radiotherapy
techniques and overall treatment approach. “Validation” was
defined as applying the same voxel-based tests to datasets from
two other trials, with one trial providing a cohort similar
to that of the primary dataset and the other substantially
different (primarily in terms of treatment technique). This
validation determined whether the emergent dose-toxicity
patterns within the primary dataset were generalizable to these
(similar and different) external datasets. This validation also had
an exploratory element, in that it enabled the identification of
new emergent patterns in the external datasets regardless of
whether they matched the patterns in the primary datasets.

METHODS AND MATERIALS

RADAR Trial

Coordinated by the Trans-Tasman Radiation Oncology
Group (TROG), the Randomized Androgen Deprivation and
Radiotherapy (RADAR) phase 3 factorial trial (TROG 03.04)
compared 6 months of androgen deprivation therapy (ADT)
plus radiotherapy with 18 months of ADT with the same
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radiotherapy, with and without bisphosphonates (17, 18).
Accruing a total of 1071 men between October 2003 and August
2007, trial patients had T2 - T4 prostate cancer, undergoing
dose-escalated 3D conformal EBRT with prescribed doses of 66,
70 or 74 Gy, or 46 Gy EBRT combined with a brachytherapy
boost. Plans could be generated with any preferred combination
of 3 or more conformal beams. 3D planned dose distributions
with corresponding CT images including delineated CTYV,
rectum and bladder were collected and utilized as the primary
dataset for this study. RADAR was the first TROG trial to
incorporate full electronic review of the treatment planning
data of accrued patients, facilitated by use of the SWAN system
(19). See Table 1 for information on each trial summarized for
direct comparison.

RTO1 Trial

The RTO01 phase 3, international, superiority, randomized
controlled trial compared dose-escalated conformal radiotherapy
with standard-dose conformal radiotherapy (20, 21). Accruing
a total of 843 men between January 1998 and December 2001,
patients had confirmed T1b - T3a prostate cancer. The patients
underwent 3D conformal EBRT with either a conventional
prescribed dose of 64 Gy using prescribed arrangements of either
3 or 4 beams, or the same with an additional 4 or 6 beam boost to
74 Gy. ADT was recommended for 6 months. Similar 3D planned
dose distributions, CT and delineation data were collected and
utilized as the first external validation dataset of this study. The
trial was managed by the Medical Research Council Clinical
Trials Unit at University College, London.

CHHiIP Trial

The CHHiP randomized phase 3 non-inferiority trial compared
conventional and hypofractionated prostate Intensity Modulated
Radiotherapy (IMRT) (22, 23). 3,216 men with T1b-T3a
localized prostate cancer were accrued to the trial between
October 2002 and June 2011. These underwent IMRT with
a conventional prescribed dose of 74 Gy in 2 Gy fractions or
hypofractionated courses of 60 Gy or 57 Gy in 3 Gy fractions,
all with optional IGRT. ADT was recommended for 6 months,
but was optional for patients with low risk disease. Similar 3D
planned data was utilized as the second external validation data
set for this study. Data was limited to an early cohort of CHHiP
patients with processed DICOM information available at the time
of acquisition. This trial was managed by the Clinical Trials and
Statistics Unit at The Institute of Cancer Research, UK.

3D Data Preparation

Three CT image templates were chosen from an independent
cohort of 39 prostate EBRT patients (26). Pairwise registrations
of CT images within this cohort along with registrations between
this cohort and the RADAR CT dataset were used to generate a
normalized cross correlation similarity matrix. This matrix was
used to perform clustering by affinity propagation to select the
single most representative patient CT as an exemplar from the
initial cohort. This exemplar was the first registration template
(T1). Next, an anti-exemplar, most-different from T1, was chosen
as a template on which the impact of registration and reference

geometry could be tested (T2). Finally, a similar process was
used to select a cropped exemplar, enabling analysis to be
restricted to a small region including the prostate and immediate
surrounding organs (T3). Dose distributions were then deformed
onto these templates through application of deformation vector
fields obtained from the image-based registrations above. All
registration and dose deformation were performed in 3D. See
Appendix Section 2 for images of templates and registration
pipelines. The 3D dose distributions from all phases of
radiotherapy were summed together according to biologically
isoeffective 2 Gy per fraction dose (EQD?2) (27), using a spatially
invariant alpha/beta ratio of 3, resulting in a single distribution
for each patient registered onto each template. The number of
voxels and dimensions of the CT image of each registration
template and corresponding dose distributions are as follows:

T1: 332 x 249 x 64 voxels
voxel size: 1.17 x 1.17 x 2 mm

T2:327 x 178 x 76 voxels
voxel size: 1.17 x 1.17 x 2.5 mm

T3:132 x 130 x 129 voxels
voxel size: 1.24 x 1.24 x 1 mm

Dose distributions used in this analysis were uniformly sampled 1
in 2 voxels for T1 and T2 (due to the large number of total voxels).
For T3, every voxel was used.

Genitourinary Toxicity Endpoints

Four time-to-event GU toxicity endpoints were included
for analysis: urinary dysuria, haematuria, incontinence and
frequency. For each endpoint, an event consisted of the first
peak grade > 2 occurrence during follow-up. For haematuria,
however, grade > 1 events were considered instead, due to the
rarity of grade > 2 events in the RADAR cohort. All toxicity
events were late (> 3 months). All patients who experienced
baseline toxicity of grade > 1 were removed from analysis,
apart from potential baseline dysuria and haematuria patients
from the RTO1 dataset, as this information was not available.
Physician assisted toxicity grading was performed according
to the Late Effects on Normal Tissue, Subjective, Objective,
Management, Analytic (LENT/SOMA) questionnaire (28). For
RADAR, patients were routinely followed up, post-treatment,
approximately every 3 months for 18 months, every 6 months
to 5 years, and annually thereafter. RT01 patients were assessed
for toxicities at 6, 12, 18, and 24 months after commencing
radiotherapy, and annually thereafter. CHHIiP patients were
assessed for late side-effects beginning 26 weeks after the start
of radiotherapy and every 6 months for 2 years, and then
annually thereafter.

Note that all voxel-based tests were repeated for all four
endpoints, on all three trial datasets (RADAR, RT01 and CHHiP),
as well as on a dataset combining patients from all trials
(“Combined”). All three registration templates were used for
RADAR for exploration of dose-toxicity associations, but only T'1
for RT01, CHHiP and Combined for validation. The permutation
and uni-voxel tests were performed using MATLAB R2016b
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TABLE 1 | Clinical trials information.

RADAR

RTO1

CHHIiP

Full name

Descriptors

Goal

Countries

Accrual years

Total accrued patients
Date data was frozen
Patients

Radiotherapy type

Prescribed dose groups
(dose per fraction)

Beam arrangements

Electronic review of
treatment planning data

Manager

Trial registration number

Ethics approval number

Randomized Androgen Deprivation and
Radiotherapy (TROG 083.04) Trial (17, 18)

e Randomized
e Phase 3
e Factorial

Comparison of 6 months of androgen
deprivation therapy (ADT) plus radiotherapy
with 18 months of ADT with the same
radiotherapy

Australia and New Zealand

Oct 2003 — Aug 2007

1071

June 2015

Intermediate-risk (T2a) or high-risk (T2b+)

prostate cancer
Dose escalated 3D conformal EBRT

66 Gy (2Gy), 70Gy (2Gy), 74 Gy (2Gy)

Any preferred combination of 3 or more
conformal beams

Full retrospectve review for all patients (19)
TROG Cancer Research, NSW, Australia
ISRCTN90298520

Approved by Hunter New England Human
Research Ethics Committee Trial ID

A Randomized Trial of High Dose Therapy
in Localized Cancer of the Prostate using
Conformal Radiotherapy Techniques

(20, 21)

e Randomized

e Phase 3

e Superiority

Comparison of 64 Gy standard-dose and
74 Gy dose-escalated conformal
radiotherapy

United Kingdom, New Zealand, Australia

Jan 1998 — Dec 2001

843

Aug 2013

T1b — T3a prostate cancer

Standard or dose escalated 3D conformal
EBRT

64 Gy (2Gy), 74 Gy (2Gy)

3 or 4 beams (anterior/lateral/posterior) for
first 64 Gy, with additional 4 or 6 beam
boost to 74 Gy

No electronic individual plan review (24)

Medical Research Clinical Trials Unit,
London, UK

ISRCTN47772397

North Thames Multi-center Research

Conventional or Hypofractionated High Dose
Intensity Modulated Radiotherapy for Prostate
Cancer Trial (22, 23)

e Randomized
e Phase 3
o Non-inferiority

Comparison of conventional and
hypofractionated IMRT

United Kingdom, New Zealand, Rep. of Ireland,
Switzerland

Oct 2002 - Jun 2011
3216

Oct 2017

T1b — T3a prostate cancer

Dose escalated IMRT

57 Gy (3Qy), 60Gy (3Qy), 74 Gy (2Gy)

3 or 4 beams (anterior/lateral/posterior) or 5
beams or more if inverse planning utilized

Full prospective case reviews for the first 2 or 3
patients at each center (25)

Clinical Trials and Statistics Unit, the Institute of
Cancer Research, London, UK

ISRCTN97182923
Approved by the London Multi-center Research

Ethics Committee number MREC/97/2/16 Ethics Committee number 04/MRE02/10

03/06/11/3.02

and later versions (MathWorks, Natick MA), while the multi-
voxel LASSO test was performed on R 3.6.1 (The R Foundation,
Vienna). All 3D results were displayed using ITK-SNAP version
3.8.0 (29).

Voxel-Based Dose Difference

Permutation Test

It is recommended that Figure 1 is closely followed while reading
through the following descriptions of the voxel-based tests.
This test was performed according to the method outlined
by Chen et al. (16). Following (Figure 1A), for each given
toxicity endpoint, patients were divided according to whether
they experienced a toxicity event at any time during follow-
up. The mean dose distributions of each group were then
compared to each other, voxel-by-voxel, to reveal regions of
statistically significant dose difference. This method utilizes
a non-parametric permutation-based test in which the group
labels (for the with and without toxicity groups) are randomly
swapped (permuted) and the dose-comparison repeated for each
permutation. 1,000 permutations were performed generating a
distribution of test statistics. Each test statistic was calculated as

the maximum value across all voxels of the locally normalized
dose difference in each voxel for both the true labeling sample
and all random permuted samples. The null hypothesis was that
the mean of the distribution of dose values in a given voxel for the
with toxicity group is not different to the without toxicity group.
To find voxels of significant dose-difference between the with and
without toxicity groups at any given p-value a, a test statistic
T was calculated as the (1 — o) percentile of the test statistics
distribution from the random permuted samples. Voxels where
the locally normalized dose difference values for the true labeling
sample were greater than T are voxels where the dose difference
between the with and without toxicity groups is statistically
significant at the p = o level. In this study, thresholds of p <
0.05,p < 0.1, p < 0.2, and p < 0.3 were applied. Multiple p-value
thresholds were applied in an attempt to thoroughly explore the
dose difference, accounting for the conservative nature of the
permutation test (see section discussion for furt<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>