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It is suggested that the brain’s peak width of skeletonized water mean diffusivity (PSMD)
is a neuro-biomarker of processing speed, an important aspect of cognitive aging. We
tested whether PSMD is more strongly correlated with processing speed than with other
cognitive domains, and more strongly than other structural brain MRI indices. Participants
were 731 Lothian Birth Cohort 1936 members, mean age = 73 years (SD = 0.7); analytical
sample was 656-680. Cognitive domains tested were as follows: processing speed
(5 tests), visuospatial (3), memory (3), and verbal (3). Brain-imaging variables included
PSMD, white matter diffusion parameters, hyperintensity volumes, gray and white matter
volumes, and perivascular spaces. PSMD was significantly associated with processing
speed (-0.27), visuospatial ability (-0.23), memory ability (-0.17), and general cognitive
ability (-0.25); comparable correlations were found with other brain-imaging measures.
In a multivariable model with the other imaging variables, PSMD provided independent
prediction of visuospatial ability and general cognitive ability. This incremental prediction,
coupled with its ease to compute and possibly better tractability, might make PSMD a
useful brain biomarker in studies of cognitive aging.

Keywords: aging, cognition, processing speed, structural MRI, diffusion MRI, white matter, PSMD

INTRODUCTION

Cognitive functions such as processing speed, visuospatial reasoning, and some aspects of memory
decline, on average, as people grow older, with deleterious effects on people’s quality of life (1-3).
Processing speed has a special place among the cognitive domains; it has been suggested as a
foundation for long-standing differences in, and aging of, other cognitive domains (4-9). With
regard to understanding of cognitive aging, detailed attention has been advocated in the study
of the psychometric aspects of processing speed and its potential neurobiological correlates (10).
Therefore, understanding the neurobiological foundations of people’s differences in, and aging of,
processing speed and other cognitive domains is a research priority (5, 11).
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Even among those with no overt disease, brain-imaging-
derived biomarkers of brain deterioration correlate with
performance on cognitive tests. Such markers include cerebral
tissue volumes and brain atrophy, and indicators of white matter
health and so-called cerebral small vessel disease (12-17).
Cerebral small vessel disease is an important contributor to
vascular-based cognitive deterioration (18). Recognizing that,
a brain imaging marker named “peak width of skeletonized
[water] mean diffusivity” (PSMD) was developed and studied
with respect to its association with processing speed (19). PSMD
is based on skeletonization and histogram analysis of diffusion
tensor magnetic resonance imaging (DT-MRI) data. PSMD was
examined in comparison with other brain imaging markers in
patients with inherited and sporadic cerebral small vessel disease,
and in patients with Alzheimer’s disease and healthy controls (19).
PSMD was reported to be associated with processing speed in all
samples. The authors reported that it correlated with speed more
strongly than other brain imaging markers such as brain volume,
volume of white matter hyperintensities, and volume of lacunes.

However, although a special association between PSMD and the
cognitive domain of processing speed was emphasized by Baykara et
al. (19), no other cognitive domains were examined in their study. The
Trail Making Test—measured in most of their samples—is associated
with general fluid cognitive ability as well as processing speed (20-
22). Therefore, PSMD might correlate with cognitive abilities more
generally. As Schmidt (23) explained, all cognitive domains correlate
positively together, and, therefore, associations with any one domain
might represent an association with general cognitive function
rather than, or in addition to, a domain-specific relationship. Before
concluding that PSMD is a special neuro-biomarker of the important
cognitive domain of processing speed, formal tests of whether
PSMD correlates more strongly with processing speed, general
cognitive ability, or other cognitive domains are needed. We sought
to accomplish this in the present study.

Our present study includes experimental and psychophysical
measures of processing speed in addition to more widely used
paper-and-pencil assessments of speed. The former, arguably,
rely less on acculturalized learning than do the paper-and-
pencil-tests, and they are reckoned to be purer measures of
speed (6, 24). Therefore, our study affords the examination of
relatively specific tests of processing speed. Correlations of the
different processing speed tests with PSMD are compared with
those from a wide variety of other cognitive measures tapping
broad cognitive domains. We also compare PSMD-cognitive
function correlations with other structural brain imaging
biomarkers’ cognitive correlations to test whether its association
with processing speed and other cognitive domains is especially
strong. Here, we run these analyses in a narrow-age sample of
mostly healthy, community-dwelling older people: the Lothian
Birth Cohort 1936 (LBC1936).

MATERIALS AND METHODS

Participants
All participants were members of the LBC1936 (25-27). This
started (LBC1936, Wave 1) as a sample of 1,091 people who were

recruited between 2004 and 2007 at about 70 years of age. All
lived independently in the community, were generally healthy,
and travelled to a clinical research facility for assessment. Most
of them had taken part in the Scottish Mental Survey 1947 at
age 11 years. At Wave 1, they undertook extensive cognitive,
medical, biomarker, psycho-social, and other assessments. The
assessments were repeated at Wave 2, about 3 years later at mean
age 73 years, with the addition of a detailed structural brain MRI
scan (28). Of the 886 who returned at Wave 2, over 700 agreed
to undertake a brain scan. All variables described below were
collected at Wave 2, unless otherwise noted. Ethical approval
for the LBC1936 study came from the Multi-Centre Research
Ethics Committee for Scotland (MREC/01/0/56; 07/MRE00/58)
and the Lothian Research Ethics Committee (LREC/2003/2/29).
All participants, who were volunteers and received no financial
or other reward, completed a written consent form before any
testing took place.

Cognitive Tests

The cognitive test data used here are from Wave 2, at mean age
73 years. All participants had already taken the same cognitive
test battery at age 70 years, ensuring that they were familiar with
the tests.

Processing Speed

Because processing speed was the key cognitive variable
mentioned in relation with PSMD (19), it is apposite that the
LBC1936 has been assessed for processing speed in detail. There
were five tests of processing speed: two were paper-and-pencil
psychometric tests; two were experimental, reaction time tests;
and one was a psychophysical test. The psychometric tests were
from the Wechsler Adult Intelligence Test-ITIVX: Digit Symbol and
Symbol Search (29). The reaction time tests were simple reaction
time (8 practice trials, 20 test trials) and 4-choice reaction time
(8 practice trials, 40 test trials), assessed on a stand-alone device
that was used in the UK’s Health and Lifestyle Study (24). The
psychophysical test was inspection time, assessed using a bespoke
computer program (30). The inspection time task required the
participant to indicate which of two briefly presented parallel
vertical lines was longer; no speeded response was required, and
only the correctness of the response was recorded. Stimuli were
backward-masked. There were 150 trials, with 10 trials at each
of 15 durations, ranging from 6 ms to 200 ms. Durations were
presented at random, using a method of constant stimuli.

Visuospatial Ability

This was assessed using Matrix Reasoning and Block Design
from the Wechsler Adult Intelligence Test-IIIVX (29) and Spatial
Span (total score of forward and backward) from the Wechsler
Memory Scales-IIIVX (29).

Verbal Memory

This was assessed using Verbal Paired Associates (total score)
and Logical Memory (immediate and delayed total score) from
the Wechsler Memory Scales-IIIK (29) and Backward Digit Span
from the Wechsler Adult Intelligence Test-IITX (29).
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Crystallized Ability

This was assessed using the National Adult Reading Test (31),
the Wechsler Test of Adult Reading (32), and a phonemic verbal
fluency test (using the letters C, F, and L) (25).

Demographic and Health-Related
Variables

The participant’s own occupational social class was based on
their most prestigious job prior to retirement and assessed on a
six-point scale from manual to professional (33). Education was
assessed as the number of years of full-time education. These
were assessed at Wave 1. Smoking was assessed at interview
and classed as never, ex-, or current. The Mini-Mental State
Examination (34) was used as a screen for cognitive pathology
and not used as part of the cognitive test battery. Participants
reported if they had a history of hypertension, cardiovascular
disease, or diabetes.

Magnetic Resonance Imaging

All MRI data were acquired using a GE Signa Horizon HDxt 1.5
T clinical scanner (General Electric, Milwaukee, W1, USA) using
a self-shielding gradient set with a maximum gradient strength of
33 mT/mand an 8-channel phased-array head coil. The full details
of the imaging protocol can be found in the LBC1936 imaging
protocol paper (28). Briefly, the DT-MRI examination consisted
of seven T,-weighted (b = 0 s mm™2) and sets of diffusion-
weighted (b = 1,000 s mm~2) single-shot spin-echo echo-planar
(EP) volumes acquired with diffusion gradients applied in 64
non-collinear directions (35). Volumes were acquired in the axial
plane, with a field of view of 256 X 256 mm, contiguous slice
locations, and image matrix and slice thickness designed to give
2-mm isotropic voxels. The repetition and echo time for each EP
volume were 16.5 s and 98 ms, respectively. DT-MRI data were
converted from DICOM (http://dicom.nema.org) to NIfTI-1
(http://nifti.-nimh.nih.gov/nifti-1) format using the TractoR
package (http://www.tractor-mri.org.uk) (36). FSL tools (http://
www.fmrib.ox.ac.uk/fsl) (37) were then used to extract the brain,
remove bulk motion and eddy-current-induced distortions by
registering all subsequent volumes to the first T,-weighted EP
volume (38), estimate the water diffusion tensor, and calculate
parametric maps of mean diffusivity (MD) and fractional
anisotropy (FA) from its eigenvalues using DTIFIT (39).

Peak Width of Skeletonized Water MD

Automatic calculation of PSMD followed the procedure described
by Baykara et al. (19) using the freely available script they
provided (http://www.psmd-marker.com). Briefly, the DT-MRI
data were processed using the standard Tract-based Spatial
Statistics (TBSS) (40) pipeline available in FSL with histogram
analysis performed on the resulting white matter MD skeletons.
First, all participants’ FA volumes were linearly and non-linearly
registered to the standard space FMRIB 1-mm FA template.
Second, a white matter skeleton was created from the mean of
all registered FA volumes. This was achieved by searching for
maximum FA values in directions perpendicular to the local tract

direction in the mean FA volume. An FA threshold of 0.2 was
applied to the mean FA skeleton to exclude predominantly non-
white matter voxels. Third, MD volumes were projected onto
the mean FA skeleton and further thresholded at an FA value
of 0.3 to reduce CSF partial volume contamination using the
skeleton mask provided by Baykara et al. (19). Finally, PSMD was
calculated as the difference between the 95th and 5th percentiles
of the voxel-based MD values within each subject’s MD skeleton.

Other Structural Brain Imaging Variables

The estimation of, respectively, normal-appearing gray and white
matter volumes, brain atrophy (intra-cranial volume minus
total brain volume), general FA and general MD derived from
quantitative tractography, white matter hyperintensity (WMH)
volume, and visually rated perivascular spaces (41) from
LBC1936 Wave 2 have all been described previously, as, mostly,
have their associations with cognitive functions (11, 42-48).
They are included in the present paper in order to compare their
cognitive associations alongside those of PSMD, not as new
results in themselves. Briefly, general FA and general MD were
calculated using confirmatory factor analyses that estimated a
latent factor from the (respective) FA or MD values of each of
12 broad white matter tracts (see Ref. 45 for a list). Each model
included residual correlations between the left and right versions
of the bilateral tracts.

Statistical Analysis

All analyses were run in the lavaan package for R (49). Scores on
each multi-test cognitive domain (processing speed, visuospatial
ability, verbal memory, and crystallized ability) were derived from
separate confirmatory factor analyses assessed using structural
equation models based on the analytic sample. Scores on general
cognitive ability were derived from a hierarchical confirmatory
factor analysis where the score on the general cognitive factor
represented the shared variance among the four cognitive
domains. Associations between brain imaging parameters and
cognitive test scores were conducted using linear regression,
with p values adjusted for the false discovery rate (FDR) (50) as
indicated in results tables. To test whether the relation of each
cognitive test or domain with PSMD was significantly different
from its relation with the other brain-derived variables, we
used Williams’s test for differences in dependent correlations
(implemented using the psych package in R) (51); we treated the
standardized regression betas as correlations for this purpose.
For each test, we accounted for the dependency (correlation)
between the brain variables. Before inclusion in the analysis,
we adjusted all variables for sex and age (in days) at the time of
testing/scanning by regressing them on these two covariates and
saving the residuals.

As an additional multivariable analysis, we ran a set of
structural equation models in which all eight of the brain measures
were entered simultaneously as predictors of the latent cognitive
scores. This allowed us to test whether PSMD was incrementally
significant beyond the more conventionally studied micro- and
macro-structural brain measures. For the general FA and MD
factors, we extracted the factor scores to use as predictors, but
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still estimated the cognitive factors as latent variables. As with
the previous analyses, all variables were corrected for sex and age.
Note that we already reported a similar analysis in this sample
(46). However, the previous analysis did not include PSMD, and
its aim was to discover how much of the variance in cognitive
domains could be accounted for with structural brain variables.
In the present analysis, the aim was novel, i.e., to test whether
PSMD had an incremental contribution in predicting cognitive
variation, in a situation where several structural brain variables
were included simultaneously.

Finally, a reviewer suggested that we run an additional analysis
that controlled for educational attainment and depressive
symptoms. We did so, using the participants’ age-73 total
score on the depression subscale of the Hospital Anxiety and
Depression Scale (HADS) (52) and their self-reported total years
of formal, full-time education, reported at age 70, as additional
covariates in the model. That is, these variables were included
in the regressions along with age and sex from which we saved
residuals for further analysis.

RESULTS

Summary demographic, medical, brain imaging, and cognitive
descriptive results are shown in Table 1. The total number of
subjects who agreed to brain imaging was 731 (388 men), and
between 656 and 680 of them provided brain imaging data that
were able to be used to compute variables for use in this study.
Their mean age was 72.7 years (SD = 0.72). About 47% had a
history of hypertension, 27% had a history of cardiovascular
disease, and 10% had a history of diabetes. Further, up to 35%
had Fazekas WMH scores of 2 or 3 in peri-ventricular or deep
white matter, an elevated rate given their age (see Ref. 53). Their
mean Mini-Mental State Examination score was 28.8 (SD = 1.4).

The age- and sex-adjusted correlations between the brain
imaging measures used in this study are shown in Supplementary
Table 1. PSMD correlated—in terms of absolute standardized
effect sizes—above 0.5 with general FA and MD and WMH
volume, about 0.3 with atrophy and perivascular spaces, and
below 0.2 with gray and white matter volumes.

TABLE 1 | Characteristics of the Lothian Birth Cohort 1936 study sample. Numbers are mean and SD or N and %.

Variable category Variable Mean (SD) or N (%) Total N
Demographic characteristics Age (years) 72.68 (0.72) 866
Sex; male, female 388, 343 1,091
Adult social class 3.49 (1.21) 1,091
Education (years) 10.79 (1.14) 1,091
Smoking (never, ex-, current) 343, 327, 61 866
Mini-Mental State examination 28.76 (1.41) 865
Medical conditions Hypertension (%) 362 (46.9%) 866
Cardiovascular disease (%) 198 (27.1%) 866
Diabetes (%) 77 (10.5%) 866
Hypercholesterolemia (%) 356 (41%) 866
Depression (mean HADS score) 2.62 (2.22) 865
Structural brain imaging measures PSMD 3.17 x 10 672
(56.01 x 109
General FA 0.00 (1.00) 664
General MD 0.00 (1.00) 664
WMH volume (cmd) 12.23 (12.18) 656
Gray matter volume (cm?) 472.43 (44.68) 657
White matter volume (cm?3) 476.89 (50.55) 657
Perivascular spaces 3.51 (1.10) 680
Processing speed tests Wechsler Digit Symbol 56.29 (12.42) 862
Wechsler Symbol Search 24.62 (6.19) 862
Simple reaction time (s) 0.27 (0.05) 865
4-choice reaction time (s) 0.65 (0.09) 865
Inspection time 111.37 (11.75) 838
Visuospatial ability Wechsler Matrix Reasoning 13.36 (4.92) 863
Wechsler Block Design 34.00 (10.07) 864
Wechsler Spatial Span 14.75 (2.77) 861
Verbal memory Wechsler Verbal Paired Associates 27.18 (9.57) 843
Wechsler Logical Memory 74.53 (17.92) 864
Wechsler Digit Span Backward 7.86 (2.32) 866
Crystallized ability National Adult Reading Test 34.36 (8.16) 864
Wechsler Test of Adult Reading 41.01 (6.96) 864
Phonemic verbal fluency 43.22 (12.95) 865

General FA and MD were latent variables created using full-information maximum-likelihood estimation from 12 white matter tract measurements; the total N given is the highest
possible n. HADS, Hospital Anxiety and Depression Scale (total depression score was used for this analysis).
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For clarity in understanding the results reported below, all
significant associations were in the direction indicating that
healthier brains had better performance in processing speed and
other cognitive domains. “Healthier brains” had lower PSMD,
higher general FA, lower general MD, lower WMH volume,
higher gray and white matter volumes, lower atrophy, and fewer
perivascular spaces.

PSMD and Other Brain Imaging Variables
Versus Processing Speed

We first examined the associations between the five tests of
processing speed and PSMD and the other brain imaging
measures (Table 2). Higher PSMD (representing less healthy
white matter) was significantly associated with worse scores on
all five measures of processing speed; the absolute standardized
betas were between 0.11 and 0.23 (mean = 0.17). Those with
higher PSMD had lower scores on Digit Symbol, Symbol Search,
and inspection time, and slower simple and 4-choice reaction
times. Therefore, PSMD does correlate significantly, in the
expected direction, with these five methodologically varied tests
of processing speed.

Normal-appearing gray and white matter volumes and
brain atrophy had similar associations to PSMD with the five
processing speed measures (Table 2); 11 of their 15 betas
were larger in effect size (though not significantly larger) than
those of PSMD. Associations between WMH volume and the
processing speed tests were similar to those of PSMD, though
mostly slightly lower. General FA and MD had significant
associations with all five of the processing speed measures,
with similar betas to those between PSMD and speed measures,
though the majority were slightly lower. Perivascular spaces

had non-significant associations with the five processing speed
measures, and all were notably lower than those with PSMD.
We repeated these analyses, omitting participants with a Mini-
Mental State Examination score below 24; the results were very
similar (Supplementary Table 2).

We tested the effect sizes of the associations between PSMD
and individual processing speed tests to find out formally
whether they were significantly stronger or weaker than those
between other brain imaging variables and the same test. Table 2
shows these results. Apart from perivascular spaces, where
PSMD always had stronger associations with processing speed
measures, PSMD had significantly stronger associations than
other brain variables in only 1 of 30 comparisons.

PSMD and Other Brain Imaging Variables’
Associations With Four Cognitive Domains
and General Cognitive Ability

Next, we examined the possibility that PSMD showed significantly
stronger associations with processing speed than with other
cognitive domains, and whether they were significantly stronger
or weaker associations compared to other brain imaging variables.
We ascertained the associations between PSMD and other brain
imaging measures and the four cognitive domains (each of which
comprised multiple cognitive tests) and general cognitive ability
(the variance shared by the four cognitive domains) (Table 3).
Higher PSMD was significantly associated, at similar effect
sizes, with poorer processing speed (standardized beta = —0.27),
visuospatial ability (-0.23), and general cognitive ability (-0.25).
The association with verbal memory was significant but lower
(=0.17), and the association with crystallized ability was small
and non-significant (-0.07).

TABLE 2 | The association between structural brain imaging parameters and individual tests of processing speed.

Wechsler Digit Symbol Wechsler Symbol Search Simple reaction time 4-choice reaction time Inspection time
[} SE Pag; [} SE Pag; [} SE Pag [} SE Pag; [} SE Pag;
PSMD —-.226 037 1.01x -.155 .038 5.74 x 108 .037 .003 169 .037 1.04 x -.200 .037 3.02 x
10-8 10-° 10-° 107
General FA 188 041 1.70x 119 .042 .005 -.147 .044 .001 -.189 .042 1.70 x A72 .042 8.14 x
10 10-° 10-°
General MD -.143* .041 .003  -.092 .042 .028 21 .043 .008 113 .043 .010 -.162 .042 5.05 x
10+
WMH -.200 .037 555x -.164 .038 3.183 x .044 .037 234 140 .037 212 x -.172 .039 2.45 x
volume 107 10 10 10-°
Gray matter .259 037 2.62x .257F .037 3.60 x -.047 .037 204 -.164 .037 1.48 x 147 .039 2.05 x
volume 10" 10" 10-° 10+
White 292 036 255x .257f .037 3.30 x -.119 .037 .001 -.215 .036 7.45 x A74 .039 1.07 x
matter 1014 101 10-° 10-°
volume
Atrophy .268 .037 4.05x .215 .038 3.16 x -.109 .037 .003 -.180 .037 1.42 x .220 .038 3.16 x
1012 108 106 108
Perivascular -.033* .038 0.646 .005* .039 .899 .059 .037 276 .005* .038 .899 —-.093* .039 .085
spaces

All variables are adjusted for sex and age on the day of testing or MRI scanning. p,q values are FDR-adjusted within each brain variable (that is, by rows of this table).
*Significantly (absolutely) lower than the  for PSMD; 1Significantly (absolutely) higher than the p for PSMD. Standardized regression coefficients are reported throughout.
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For all five of the cognitive variables, normal-appearing
gray and white matter volumes and brain atrophy had stronger
associations than PSMD (Table 3). The associations of WMH
volume were somewhat lower than those of PSMD, and all
but the association with crystallized ability were significant.
General FA and MD had significant associations with all
cognitive domains, except between MD and crystallized ability,
and the betas were mostly slightly lower than those between
PSMD and cognitive domains. Perivascular spaces had no
significant associations with any cognitive domain.

We repeated these analyses, omitting participants with a
Mini-Mental State Examination score below 24; the results were
very similar (Supplementary Table 3). Additional analyses
show the associations between the various structural brain
imaging measures and the individual tests from the cognitive
domains of Visuospatial ability, Memory, and Crystallized
ability (Supplementary Tables 4, 5, and 6, respectively).

We tested the effect sizes of the associations between PSMD
and each cognitive domain and general cognitive ability to find
out formally whether they were significantly stronger or weaker
than those between other brain imaging variables and the same
cognitive variable. Table 3 shows these results. There were 35
comparisons: in 11 of these, PSMD had stronger associations
with cognitive domains and general cognitive ability, and in
five of these, the PSMD associations were significantly weaker.
For processing speed, PSMD was a significantly stronger
associate than general MD and perivascular spaces, and
significantly weaker than white matter volume. Therefore,
although PSMD does correlate significantly, in the expected
direction, with these cognitive measures, it did not exhibit the

largest association among all brain measures in any cognitive
domain.

Multivariable Models to Test PSMD’s
Incremental Contribution to Predicting
Variance in Cognitive Domains and
General Cognitive Ability

The results of the multivariable models, where all brain variables
were entered together to predict variance in cognitive domain
scores and general cognitive ability, are shown in Table 4. In
these models, PSMD had a statistically significant association
with visuospatial ability and with the general cognitive ability
factor, but not with processing speed, verbal memory, or
crystallized ability. No one brain measure consistently emerged
as a statistically significant predictor for each cognitive ability.
Gray matter volume, white matter volume, and atrophy were all
independently significant alongside PSMD in predicting general
cognitive ability. The general FA and MD variables were not
independently significant in any of the models, indicating that
variation in the cognitive abilities was better measured by either
the macrostructural indices (except perivascular spaces, which
were also not significant in any model), or by PSMD.

Analyses With Additional Covariates

As suggested by a referee on an earlier version of this paper,
we re-ran the main analyses with the additional controls
of educational attainment and depressive symptoms (that
is, alongside age and sex). We report the relevant results in
Supplementary Tables 7, 8, and 9 (which are the equivalents of

TABLE 3 | The association between structural brain imaging parameters and domains of cognitive ability and general cognitive ability.

Processing speed Visuospatial ability

Verbal memory

Crystallized ability General cognitive ability

[} SE Padgj [ SE Pagj [} SE Pagj [} SE Pagj [} SE Pag;
PSMD -.273 040  4.64 x -.235 042 366x -.168 045 237x -.072 .040 .070 -.250 .041 2.57 x
10" 108 104 10
General FA .238 046 1.07 x A74* 048 4.44 x 116 .050 .021 100 .043 .021 204 .047 2.89 x
106 104 10-°
General MD -.178* 046 576x  -.163" .047 .002 -117 .050 .025 .003* .043 .951 —.148* .047 .003
10
WMH -.247 042  139x  -.132* .044 .004 -.137 .046 .004 -.048 .040 .231 -.184* .043 4.19 x
volume 108 105
Gray matter 315 .039 6.42 x .310 041 4.46 x .201 044  3.97 x 253t .037 712 x 3571 .038 3.95 x
volume 1016 104 106 1012 1020
White .3641 037  3.94 x .280 042 1.64 x 175 .045  8.82 x 2391 .037 1.21 x .348 .038 2.45 x
matter 10-22 10 10-% 10-10 1010
volume
Atrophy .331 .039  5.89x 277 .042  5.68 x .200 .045  1.06 x 1691 .038 1.33 x .320 .039 9.88 x
102 10" 10 10 1016
Perivascular .038* .043 .638 —.054* .044 .638 -.008* .045 .867 .043 .040 .638 —-.020* .043 .798

spaces

All variables are adjusted for sex and age on the day of testing or MRI scanning. p,q values are FDR-adjusted within each brain variable (that is, by rows of this table).
*Significantly (absolutely) lower than the  for PSMD; tSignificantly (absolutely) higher than the f for PSMD. Standardized regression coefficients are reported throughout.
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TABLE 4 | Multivariable models predicting latent cognitive factors from all brain variables, entered simultaneously.

Processing speed Visuospatial ability

Verbal memory

Crystallized ability General cognitive ability

[} SE Padgj [ SE Pagj [ SE Pagj [} SE Pagj [ SE Pagj

PSMD 0.093 0.060 0240 -0.184 0.063 0.024 -0.095 0.068 0416 -0.043 0.058 0525 -0.146 0.060 0.032

General FA -0.010  0.051 0.969 -0.066 0.055 0.365 -0.045 0.058 0.534 0.037 0.050 0525 -0.026 0.052 0.813

General MD ~ 0.002 0.052 0969 -0.053 0.055 0.447 -0.043 0.059 0.534 0.067 0.051 0.470 -0.008 0.052 0.880

WMH 0.140 0.053 0.021 0.034 0.057 0548 -0.076 0.060 0416 -0.008 0.052 0.872 -0.062 0.054 0.406

volume

Gray matter -0.035  0.059  0.788 0.173 0.062 0.024 0.099 0.069 0.416 0.125 0.057  0.112 0.149 0.059 0.032

volume

White matter -0.223  0.055 1.83 x 0.120 0.059  0.084 0.047 0.064 0.534 0.132 0.053 0.104 0.170 0.056 0.008

volume 104

Atrophy -0.220 0.048 3.69 x 0.122 0.052  0.051 0.124 0.056  0.224 0.056 0.047  0.470 0.171 0.049 0.004
10-5

Perivascular  -0.023  0.042 0.788 -0.030 0.045 0.548 0.028 0.048  0.552 0.032 0.042 0.525 0.016 0.043 0.816

spaces

R? 0.229 0.159 0.082 0.081 0.214

Values in bold had significant p,; values. p,; values were FDR-adjusted within each multivariable model (i.e., within columns of this table).

Tables 2, 3, and 4 in this main article, respectively). The addition
of these covariates made little substantive difference to the
results: effect sizes were changed at the second or third decimal
place. In the multivariable analysis, some of the effect sizes were
made slightly larger, though broadly the picture remained similar
to that described above for the main analyses.

DISCUSSION

In this large sample of community-dwelling older people with a
narrow age range around 73 years, we extended the previously
reported (19) link between PSMD and processing speed to
include necessary comparisons with a variety of more specific
processing speed tests, other correlated cognitive domains,
and other brain measures. In the present study, higher PSMD
correlated significantly with poorer performance on five
methodologically diverse tests of processing speed: two were
psychometric, paper-and-pencil tests; two were experimental,
reaction time tests; and one was a psychophysical test, requiring
no fast motor response. Higher PSMD correlated significantly
with poorer performance on the latent cognitive domain
of processing speed, composed of tests of all three types.
However, PSMD was not the exclusive or strongest associate
of processing speed: normal-appearing gray and white matter
volumes and brain atrophy were often slightly stronger, and
WMH volume and tractography-based general FA and MD
had slightly lower, but still significant associations. Moreover,
PSMD did not have an especially strong association with
processing speed compared with other cognitive domains; it
correlated at similar levels with visuospatial ability and general
cognitive ability, though less strongly with verbal memory
and crystallized ability. In multivariable analyses, PSMD
contributed predictive power, incremental to that of other
structural brain imaging variables, to visuospatial ability and
general cognitive ability.

If PSMD’s association with processing speed had been higher
than those of other structural brain indices, and/or if PSMD
has been especially strong in associating with the domain of
processing speed by comparison with other cognitive domains,
then there would have been strong evidence forarguing that PSMD
stands out among brain imaging parameters in being especially
associated with this important cognitive domain. Rather, the
visuospatial cognitive domain and general cognitive ability were
highlighted as having a heightened relationship with PSMD; that
is, PSMD explained additional variance in these variables that was
independent of the other brain imaging predictors. Because of its
ease of computation and tractability, PSMD might be preferred
over imaging measures that are burdensome to compute and
which are more general properties of the brain. However, global
measures of GM and WM volume can be obtained from a T1
alone, and their automated measurement can also be undertaken
in an automated fashion. That is, both PSMD’s convenience and
link to more specific brain biology might be used to argue in its
favor; the average magnitude of water molecular diffusion in the
center of common white matter pathways provides information
on individual variations in white matter microstructure and the
specific methods reduce the likelihood of influences of partial
volume effects, rather than simply “how much” of a tissue type an
individual possesses. Furthermore, code for performing PSMD is
freely available and based on the commonly used TBSS pipeline,
making it an accessible biomarker of white matter structure.

The similar association of PSMD with other cognitive
domains might not necessarily detract from the claim that it is
a marker of processing speed. This is because processing speed
has long been seen as somewhat special among the cognitive
domains. It has been argued that faster processing speed might
provide a foundation for better cognitive performance in higher
cognitive domains and for less cognitive decline in them (4, 8, 9).
This is because the tests of processing speed are arguably simpler
than those of other cognitive domains, often being referred to as
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elementary cognitive tests. Thus, if links to underlying biological
processes are clearer for PSMD compared with other structural
brain markers, and for processing speed compared with other
cognitive domains, then it may be argued that PSMD is primus
inter (apparent) pares for the brain indices examined here.

The study has the strengths of testing a large and age- and
culturally homogeneous sample, all on the same brain scanner.
The homogeneity of the sample is advantageous in that it
means that there is not a “culture” variable within the sample
that would need to be taken into account, with lowering of
power, and as a possible source of different sizes of association.
Processing speed was tested thoroughly, at three levels of
description (psychometric, experimental, and psychophysical).
Other important cognitive domains that show age-related mean
decline—visuospatial reasoning and memory—and crystallized
ability were assessed using multiple, well-validated tests. Also,
recognizing that all cognitive domains correlate strongly,
a general cognitive ability variable, capturing their shared
variance, was included. The study has some limitations. The
homogeneity of age and cultural background means that we are
not able to generalize beyond those. Neither can we generalize
beyond their status as relatively healthy, community-dwelling
individuals, though we note that markers of small vessel disease
indicated some pathology exceeding the expectations for
their age. It is possible that samples with a broader range of
brain pathology might show stronger brain imaging-cognitive
domain associations, and possibly a pattern that brings out
more of PSMD’s distinctiveness. For example, PSMD was
associated with general cognitive ability and executive function
in patients with WMLs but not in healthy controls (54). The
original PSMD-validation study (19) had the advantage of
multiple clinical and healthy groups, but its limitations included
that most of its samples did not have a relatively specific test
of processing speed and there were insufficient tests of other
cognitive domains.

The present study assessed the usefulness of PSMD as a
biomarker of cognitive function in older age. We found the
predicted association with processing speed, but it was not
exclusive or special with respect to other structural brain
indices, or with respect to other cognitive domains. To sum
up, we found that a) PSMD did not show especially high
associations with processing speed when compared with
other cognitive domains and b) other brain imaging variables
correlated as highly or higher with cognitive variables—
including processing speed—as did PSMD. However, those
are not the only considerations. In the Introduction, we
referred to the special status that some researchers consider
processing speed to have with respect to its being a foundation
for individual differences in cognitive ability and cognitive
aging. We also pointed out that PSMD might have tractability,
i.e., that it might be a more specific brain biomarker than
other imaging measures. Therefore, PSMD’s specificity and
processing speed’s possible special status among cognitive
domains make the PSMD-processing speed association worth
exploring and explaining in a wider range of clinical and

non-clinical populations. For instance, there is recent evidence
of PSMD’s association with speed tests in multiple sclerosis
patients (55). Future research should also seek to clarify the
nature of any distinctive relationships between PSMD with
visuospatial and general cognitive abilities.
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Obesity is arisk factor for cognitive decline and gray matter volume loss in aging. Studies
have shown that different metabolic factors, e.g., dysregulated glucose metabolism
and systemic inflammation, might mediate this association. Yet, even though these
risk factors tend to co-occur, they have mostly been investigated separately, making it
difficult to establish their joint contribution to gray matter volume structure in aging. Here,
we therefore aimed to determine a metabolic profile of obesity that takes into account
different anthropometric and metabolic measures to explain differences in gray matter
volume in aging. We included 748 elderly, cognitively healthy participants (age range:
60 — 79 years, BMI range: 17 — 42 kg/m?) of the LIFE-Adult Study. All participants had
complete information on body mass index, waist-to-hip ratio, glycated hemoglobin, total
blood cholesterol, high-density lipoprotein, interleukin-6, C-reactive protein, adiponectin
and leptin. Voxelwise gray matter volume was extracted from T1-weighted images
acquired on a 3T Siemens MRI scanner. We used partial least squares correlation to
extract latent variables with maximal covariance between anthropometric, metabolic and
gray matter volume and applied permutation/bootstrapping and cross-validation to test
significance and reliability of the result. We further explored the association of the latent
variables with cognitive performance. Permutation tests and cross-validation indicated
that the first pair of latent variables was significant and reliable. The metabolic profile
was driven by negative contributions from body mass index, waist-to-hip ratio, glycated
hemoglobin, C-reactive protein and leptin and a positive contribution from adiponectin.
It positively covaried with gray matter volume in temporal, frontal and occipital lobe
as well as subcortical regions and cerebellum. This result shows that a metabolic
profile characterized by high body fat, visceral adiposity and systemic inflammation is
associated with reduced gray matter volume and potentially reduced executive function
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in older adults. We observed the highest contributions for body weight and fat mass,
which indicates that factors underlying sustained energy imbalance, like sedentary
lifestyle or intake of energy-dense food, might be important determinants of gray matter

structure in aging.

Keywords: obesity, leptin — adiponectin, aging, metabolic risk, multivariate analysis, VBM

INTRODUCTION

Obesity is associated with adverse health consequences (World
Health Organization [WHO], 2000). In particular, several studies
have suggested that higher body mass index (BMI) in mid-
and late life is associated with impairment in cognitive function
(Debette et al., 2011; Smith et al., 2011; Singh-Manoux et al,,
2012) and leads to a higher risk for dementia (Baumgart et al,,
2015; Emmerzaal et al., 2015).

Potential mediators, among others, include metabolic risk
factors, e.g., dysregulated glucose metabolism and chronic
inflammation (Shaw et al., 2017; Corlier et al., 2018; Warren
etal., 2018). Yet, these factors often co-occur and their individual
role is difficult to establish. Consequently, the neurobiological
mechanisms that link obesity and higher risk for cognitive decline
in aging remain poorly understood.

Recent neuroimaging studies have provided neurobiological
evidence of an association between the most common
anthropometric measure of obesity, BMI, and decreased
gray matter volume (GMV) (Gustafson et al., 2004; Enzinger
etal., 2005; Taki et al., 2012; Bobb et al., 2014; Debette et al., 2014;
Kharabian Masouleh et al., 2016).

Further studies have shown that waist-to-hip ratio (WHR),
an indicator of visceral adiposity, might be a better predictor
of GMV loss compared to BMI (Debette et al.,, 2010; Debette
et al., 2014; Janowitz et al., 2015). This finding is in analogy
with the increased cardiovascular risk associated with visceral fat
accumulation (Lee et al., 2008).

Visceral adiposity often goes along with dyslipidemia, e.g.,
increased levels of triglycerides and low-density lipoproteins
along with reduced levels of high-density lipoproteins (Klop et al.,
2013). While dyslipidemia increases the risk for cardiovascular
disease, its association with brain structure is still unclear
(Assessment, 2009). Some studies showed that higher levels of
total cholesterol and lower levels of high-density lipoprotein are
associated with reduced GMV or cortical thickness (Ward et al.,
2010; Walhovd et al., 2014), yet other studies have failed to
replicate these findings (Leritz et al., 2011; Cox et al., 2019).

A vast amount of literature suggests that disturbances in
glucose metabolism, ranging from hyperglycemia and insulin
resistance to manifest diabetes, are associated with decreased
GMYV in middle-aged and older adults (Benedict et al., 2012;
Kerti et al., 2013; Moran et al., 2013; Biessels and Reijmer, 2014;
Reitz et al., 2016; Shaw et al., 2017; Repple et al., 2018). Insulin
resistance might be one mediator of this association given the
role of insulin in memory facilitation and regulation of amyloid-
B (Craft, 2005; Blazquez et al., 2014; Cheke et al., 2017) in the
brain. Accordingly, several studies have reported lower GMV
in key memory regions like hippocampus and temporal lobe

related to disturbances in glucose regulation (Benedict et al.,
2012; Cherbuin et al., 2012; Kerti et al., 2013).

Systemic inflammation is another important metabolic
factor with potential implications for brain health. Visceral
adipose tissue secrets inflammatory cytokines which have been
shown to impair the blood-brain-barrier and might thereby
promote neuro-inflammation (Yaffe et al., 2004; Hsuchou et al.,
2012). Accordingly, previous neuroimaging studies showed
that circulating levels of pro-inflammatory cytokines such as
C-reactive protein (CRP) and interleukin-6 (IL6) predict gray
matter volume decline (Marsland et al., 2008; Papenberg et al.,
2016; Corlier et al., 2018).

Other obesity-related metabolic factors that might have direct
or indirect effects on brain function are adipose-tissue derived
signaling hormones like leptin and adiponectin.

Leptin has multiple effects in the brain beyond its known
role in the hypothalamic control of food intake. For instance,
leptin signaling in the hippocampus plays an important role for
memory (Paz-Filho et al.,, 2010; Irving and Harvey, 2013). First
evidence from neuroimaging indicated that higher leptin levels
might be neuroprotective and help to maintain memory function
in older adults, mediated by hippocampus structure (Lieb et al.,
2009; Narita et al., 2009; Witte et al., 2016). However, in obesity,
leptin is often chronically elevated resulting in central resistance
to the effects of the molecule (Myers et al., 2008).

Adiponectin is an adipokine originally known for its insulin-
sensitizing and anti-inflammatory properties in the periphery
(Lihn et al, 2005). Moreover, it was also suggested to exert
beneficial effects on brain function, e.g., by modulating glucose
metabolism (Cisternas et al., 2018) but to date, neuroimaging
studies have not shown a consistent association of adiponectin
and GMV (Garcia-Casares et al., 2016; Hayakawa et al., 2018).

Taken together, different mechanisms might link obesity and
related metabolic disturbances with brain health and cognitive
function in aging. Most studies so far have focused on single,
mostly anthropometric measures of obesity without taking into
account related metabolic factors. Here, we use a multivariate
method, called partial least squares correlation (PLSC) to derive
informative patterns of covariation between anthropometric
(overall and visceral adiposity) and metabolic measures (markers
of energy metabolism, systemic inflammation and adipose-tissue
derived hormones) of obesity and GMV in a sample of cognitively
healthy older adults (McIntosh et al., 1996). PLSC is well-suited
for data sets with highly correlated variables (e.g., neuroimaging
data) and allows to jointly model behavioral and neuroimaging
data. In particular, we chose PLSC over other multivariate
methods such as canonical correlation analysis as it performs
better in terms of predictive power when a high number of voxel
are investigated (Grellmann et al., 2015).
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We hypothesized a metabolic profile, which highlights
detrimental aspects of obesity-related metabolic dysregulation
to be associated with a pattern of GMV loss including medio-
temporal areas (Cherbuin et al., 2012; Cheke et al, 2017).
Furthermore, we aimed to explore the association of this profile
with cognitive function.

MATERIALS AND METHODS

Sample Selection

The study sample was selected from the LIFE-Adult study
(Loefiler et al., 2015). The study was carried out in accordance
with the Declaration of Helsinki and approved by the
institutional ethics board of the Medical Faculty of the University
of Leipzig. All subjects gave written informed consent.

We included 1222 older participants (>60 years) with
head magnetic resonance imaging (MRI) and without stroke,
major brain pathology, cancer in the last 12 months or
intake of centrally active medication. Out of these, we selected
all participants with complete anthropometric and blood
plasma measurements.

We measured body weight, height, waist and hip
circumference with a precision 0f 0.01 kg and 0.1 cm, respectively,
and calculated BMI and WHR.

Markers of long-term glucose metabolism (HbAlc), lipid
metabolism (total cholesterol and high-density lipoprotein,
HDL), systemic inflammation (CRP and IL6) were obtained
after overnight fasting according to standard procedures
(LoefHler et al., 2015).

Immunoreactive leptin and adiponectin concentrations were
measured from fasted serum samples using immunoreactive Kits
(sensitive ELISA, Mediagnost, Reutlingen).

We excluded participants who scored below 27 in the Mini
Mental State Examination (MMSE) (O’Bryant et al.,, 2008) to
obtain a cognitively healthy sample. From these 754 participants,
six had to be excluded due to failed MRI preprocessing.

We log-transformed IL6, CRP, adiponectin and leptin values
to ensure normality and regressed age and sex from all
predictors prior to PLSC.

Magnetic Resonance Imaging

Anatomical T1-weighted images were acquired using a 3 Tesla
Siemens Verio MRI scanner (Siemens Healthcare, Erlangen,
Germany) with a 3D MPRAGE protocol (inversion time, 900 ms;
repetition time, 2300 ms; echo time, 2.98 ms; flip angle, 9%
field of view, 256 mm x 240 mm X 176 mm; voxel size,
I mm X 1 mm x 1 mm).

We  performed voxel-based morphometry (VBM)
implemented in SPM 12 to obtain voxelwise estimates of GMV.
First, a study-specific template was created from 1186 healthy
participants of the LIFE-Adult study aged 60 years or older using
DARTEL. After non-linear, iterative registration of the white
and gray matter segmentations to this template, the resulting
flowfields were applied to the gray matter segmentation. Finally,
the images were modulated by the amount of spatial distortion
and smoothed with a Gaussian kernel of § mm FWHM.

As we were interested in the association of GMV, metabolic
and anthropometric measures, we aimed to remove the
confounding effect of age, sex and total intra-cranial volume
(TIV). Therefore, we regressed age, sex and TIV from the GMV
using SPM’s implementation of the General Linear Model. To
limit the number of voxels included in the analysis, we only
included voxels with gray matter probability of 0.3 and larger in
the averaged GMV image. The number of voxels included per
participant was 295365.

Statistical Analysis
PLSC Analysis
After preprocessing, the anthropometric and metabolic measures
were organized in a matrix X with dimensions N x p. The GMV
data was stored in a matrix Y with dimensions N x v. Here, N is
the number of participants, p the number of anthropometric and
metabolic measures and v the number of GMV voxels. The data
matrices were columnwise centered and normalized to eliminate
influence of variance differences between measures.

PLSC aims to create latent variables (LV) from the
two data sets that maximize their pairwise correlation
(Krishnan et al., 2011).

maximize(Cov(Xu, Yv)) = maximize(u” X x Yv)

The solution of this maximization problem is obtained by
singular value decomposition (SVD). This operation decomposes
the p x v matrix X”Y into three matrices U(p x R), V(v X R)
and A(R x R) (Abdi, 2007). R is the rank of XT'Y, e.g., maximally
R pairs of latent variables can be extracted (here R =9).

xTy =vuavT

U contains the R left singular vectors, A is a R-by-R diagnoal
matrix containing the R singular values and V contains the R
right singular vectors. The singular vectors, or weights, define the
latent variables as linear combinations of the original data.
Specifically, L,=Xu are the LV describing the
anthropometric and metabolic measures and L, = Yv are
the latent variables describing the GMV. The first pair of LV
explains the largest possible correlation between the two data
sets; the second pair reveals the largest possible correlation under
the constraint that the latent variables are uncorrelated to the
first pair, and so on. In the following, the weights defining the
obesity LV are referred to as metabolic profile and the obesity
and GMV LV are called metabolic and brain score, respectively.

Statistical Inference

Significance of the resulting decomposition was tested with two
approaches: classical permutation-bootstrap inference (Efron
and Tibshirani, 1986; McIntosh and Lobaugh, 2004) and a cross-
validation framework (Smith et al., 2015).

In the permutation-bootstrap inference, we first determined
the significance of the pairs of LV, starting with a full
decomposition, e.g., the maximal number of 9 LV pairs. We
randomly permuted the rows of the obesity data matrix X
while leaving the row order of the imaging data matrix Y
unchanged. This process was repeated 2000 times and for each
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permutation, the SVD was performed and null-distributions
of singular values were built for the pairs of LV. Based on
these distributions, a p-value was attributed to the original,
unpermuted singular values.

_ N(permutedsingularvalue > originalsingularvalue)

N, permutations

A pair of LV was considered significant at a level of a = 0.05.
The amount of explained covariance was calculated as the
singular value of the significant LV pair divided by the sum of
all singular values.

When we considered a pair of latent variables generalizable
based on the permutation-derived p-value, the reliability of the
individual weights was estimated by using bootstrap sampling
with replacement. We bootstrapped 2000 times from the
participants data in the X and Y matrices and calculated the
SVD. Dividing the weights by their standard error derived from
bootstrapping yielded a Z-like score, which indicated stable
weights when Z > 2.3 (Krishnan et al,, 2011).

In order to visualize most stable regions, we performed a
cluster-forming procedure using FSLs cluster-command with an
arbitrary threshold of Z > 5.

We also implemented a cross-validation framework according
to Smith et al. (2015). First, we randomly selected 80% of
the sample for a training set (N~499) and 20% for a test set
(N~149). Then, we estimated the SVD in the training set and
calculated the LV for the test data set by multiplying the resulting
weights for brain and obesity-related measures with the raw
values of the test data set. This yielded a metabolic and a brain
score for each individual. Then, we calculated the correlation of
metabolic and brain scores across participants for the test set.
In order to establish a null distribution, we randomly permuted
the metabolic data matrix within the test set and reprojected the
weights derived from the training set onto the permuted raw data
(N =1000). Then we compared the correlation of the resulting
“random” scores to the original correlation and derived a p-value.

We repeated this procedure twenty times, e.g., twenty different
training-test datasets, and calculated the average correlation
of the true projection, the average correlation of the random
projections and the number of significant permutation tests.

The analyses were implemented in python 2.7, based
on previously published scripts for PLSC'. All code is
openly available under https://github.com/fBeyer89/metabolic_
VBM_PLSC.

Comparison of BMI and Metabolic Score

We assessed whether a LV based on anthropometric and
metabolic measures was a better predictor of GMV than BMI
alone. To do so, we compared two models predicting the total
GMYV, adjusted for intracranial volume, derived by Freesurfer
segmentation software, version 5.3.0. Model 1 comprised age, sex
and BMI as predictors, and Model 2 additionally included the
metabolic score. The model comparison was performed with the
function anova in R version 3.2.3.

Uhttps://libraries.io/github/chrisfilo/pypls

Sensitivity Analyses

We performed sensitivity analyses using the permutation-
bootstrap approach (9 LV, 2000 permutations, 2000 bootstraps)
to assess the effect of different confounding factors.

First, we excluded N = 240 participants with IL6 values
below the detection threshold (<1.5 pg/ml) to ensure that the
skewed distribution arising from this threshold did not affect the
result. Then, we repeated the analysis excluding 25 participants
with markedly high CRP values (>10 mg/l, Macy et al., 1997).
Similarly, we repeated the analysis excluding one participant with
an outlier value in adiponectin (<average value - 50).

Medication  intake,  specifically  antidiabetic = and
antihyperlipidemic treatment, might have confounded the
laboratory measures of HbAlc and total cholesterol/HDL
in our analysis. Therefore, we derived medication-adjusted
HbAlc and total cholesterol/HDL values by regressing out
the intake of antidiabetic or antihyperlipidemic treatment.
A Dbinary definition of antidiabetic treatment was used
based on self-reported diagnosis or medication intake. For
antihyperlipidemic treatment we only took into account
self-reported medication intake. Then, we repeated the
permutation-bootstrap analysis (9 LV, 2000 permutations,
2000 bootstraps) with the medication-adjusted HbAlc and total
cholesterol/HDL values.

Higher BMI is closely linked to higher blood pressure,
which is itself linked to GMV differences (Beauchet et al,
2013). Therefore, we investigated the contribution of systolic
blood pressure to the metabolic score. We performed another
permutation-bootstrap analysis (10 LV, 2000 permutations, 2000
bootstraps) with the previous metabolic and anthropometric
measures and additionally including systolic blood pressure,
adjusted for age and sex. This measure was available in
N = 740 participants.

Cognitive Function

Cognitive function was assessed with the Consortium to Establish
a Registry for Alzheimer’s Disease (CERAD) neuropsychological
test battery. We calculated three composite scores for executive
function, memory and processing speed according to previous
studies (Kharabian Masouleh et al., 2016; Zhang et al., 2018).

Verbal fluency tests “Animals” and “S”-words and the
ratio of Trail-making Test (TMT) parts B and A were
used to define executive function (Zexecutive = z(number of
Animals VF) + z(number of S-words VF) - z(TMT(part B -
part A)/part A)/3).

Memory was based on the 10-item CERAD word learning
task. The composite score was calculated from the number of
learnt words over three consecutive learning trials, the number
of correctly recalled words after a delay of about 5 min and the
number of correctly recognized word from a list of 20 mixed
words [Z memory = (z(number of learned words) + z(number
of recalled words) + z(number of recognized words)/3)].

Processing speed was estimated by the inverse value of
the time needed to complete TMT part A [Z processing = -
z(TMT part A)].

One participant missed data for the TMT.
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RESU LTS TABLE 1 | Demographics of the sample.
. Mean Standard Minimum Maximum
Demographics deviation
See Table 1 for demographic and obesity-related characteristics
. . . Age [years] 68.4 4.8 60.00 79.00
of the study and Supplementary Figure S7 for bivariate
. . . Sex [males/females] 416/332 (55.6%/44.4%)
correlations of the anthropometric and metabolic measures used
for PLS analvsis BMI [kg/m2] 27.7 4. 16.8 42.3
yoIS- WHR 0.96 0.08 0.73 1.17
HbA1c [%] 5.53 0.59 3.84 12.38
Main Analysis Diabetes diagnosis or 642/106 (85.8/14.2%)
In the main analysis, we included BMI, WHR, HbAlc, intake of anti-diabetic
total cholesterol, HDL, CRP, IL6, adiponectin and leptin as Medicaton no/yes]
anthropometric and metabolic measures, and VBM-based GMV Total Gholesterol [mmol/l] 5.86 1.08 2:26 10.76
. . HDL [mmol] 5.85 1.10 1.66 10.76
as brain morphometric measure. . o w4 56
Based on the permutation-bootstrap approach, the first two ﬁ:gggi:'?ﬁ;g; 565/183 (75.5%/24.5%)
pags OflL.V ‘girz 9s(1)/g/r111iic6:3;1t §LX1: p = .0'001’ fL VZ:hP - 0'007,5) CRP [mg/] 2.95 7.40 0.16 146.92
an ei(pl .alned GM \; .6% of t ecova.rlalnceo anthropometric, IL6 [pg/m] 376 3.88 1,50 64.74
mert;hogan , fms\jsures’ respectively. ¢ highey POnECt D/ 77104 46626 2.0 347445
be i rst E‘nr 3 | represents acrll.ffassoaatlor} N ;g ;r Leptin [ng/mi] 12187 12.135 0.000 88.290
metabolic risk and lower GMV in different regions of the g 50 piood pressure 134.44 16.24 86.33 195.67

brain. The metabolic profile was mainly driven by positive
contributions of BMI, WHR, HbAlc, CRP and leptin and
a negative contribution of adiponectin. BMI (0.50), leptin
(0.39), and CRP (0.33) had the highest weights (see Figure 1).
These contributions were stable based on the bootstrapped
Z-value of Z > 2.3.

For the GMYV, a distributed pattern in temporal, frontal and
occipital lobe as well as subcortical regions and cerebellum
had reliable negative weights (Z > 2.3) (see Figure 2,
upper row). Based on an arbitrary threshold of Z > 5,
thalamus, left cerebellum (Crus VI), bilateral insular cortex,

[mmHg]

Given is mean + standard deviation (min, max). BMI, body mass index; WHR,
waist-to-hip ratio; HbA1c, glycated hemoglobin, HDL, high-density lipoprotein; IL6,
interleukin-6;, CRP, C-reactive protein.

left amygdala/hippocampus, right temporal pole, right planum
polare and right postcentral gyrus were identified as most reliable
regions (see Table 2 and Figure 2, lower row).

The correlation of the GMV and metabolic LV was r = 0.246
(p <0.001, N =748).

0.6

0.4

0.2

0.0

Weights (a.u.)

-0.2

bootstrapped Z-scores

-0.4

BMI -

WHR -
HbA1c -
cholesterol -

HDL -

FIGURE 1 | Weights (blue, left y-axis) and Z-scores (red, right y-axis) of the metabolic latent variables (LV) from the first pair of LV. Red line indicates the threshold of
bootstrapped Z-score = 2.3 All measures with a Z-score < 2.3 are shown as transparent. a.u., arbitrary unit; BMI, body mass index; WHR, waist-to-hip ratio;
HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; IL6, interleukin-6; CRP, C-reactive protein.

IL6 -
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axial orientation (2). Legend refers to clusters shown in third row. L, left; R, right.

.R. postcentral gyrus. L. amygdala-hippocampus
.R. planum polare
.R temporal pole

FIGURE 2 | (First row) Sagittal view of the gray matter volume (GMV) weight map of first latent variables (LV). White lines indicate axial slices shown in second row.
(Second row) Axial view of GMV weight map of first LV. (Third row) Axial view of clusters derived from bootstrapped Z > 5. MNI-coordinates are given in mm for

L. insula
B L. cerebellum (C. V1)

The second pair of LV had positive and reliable weights
for total cholesterol and HDL (see Figure 3). Three clusters
of reliable, positive weights were found in the posterior
cingulate and bilateral lateral occipital cortex (see Figure 4). The
correlation of the second pair of latent variables was r = 0.22
(p < 0.001, N =748).

We applied a cross-validation framework to assess the
reliability of the first two pairs of LV.

The mean and standard deviation of the correlation between
the first LV in the test data sets was 0.241 + 0.074 (N = 149).

TABLE 2 | Significant clusters of gray matter volume (GMV) weight map of the first
set of latent variables (LV) according to multivariate partial least squares correlation
(PLSC) analysis, according to bootstrapped Z with an arbitrary threshold of Z > 5.

Region Number of MNI coordinates Bootstrapped Weight

voxels of peak voxel Z at peak at peak
(X,Y,2) voxel voxel

Thalamus (Th.) 1408 55,71, 57 6.94 0.0045
Left cerebellum 756 68, 40, 40 5.83 0.0037
(Crus VI)
Left insular cortex 419 83, 84, 50 5.9 0.0031
Left amygdala/ 353 75, 80, 35 5.66 0.0031
hippocampus
Right insular cortex 347 37, 84, 50 5.58 0.0032
Right temporal pole 343 46, 90, 26 7.27 0.0044
Right planum 139 30, 80, 43 5.82 0.0034
polare
Right Postcentral 101 34,71, 80 6.3 0.0039

gyrus

Out of 20 training-test data sets, the first LV did not reach
nominal significance of p < 0.05 in two data sets where p-values
were 0.13 and 0.094.

The mean and standard deviation of the correlation between
the second LV in the test data sets was 0.10 &= 0.07 (N = 149). Out
of 20 training-test data sets, the second LV did not reach nominal
significance of p < 0.05 in thirteen data sets.

While in the permutation-bootstrap approach the amount
of variance explained in the original dataset was significant,
the correlation of the second pair of LV was not stable in the
cross-validation approach. In PLSC, the second pair of LV is
constrained by its orthogonality to the first pair. This means
that the second pair of LV represented an orthogonal mode
of variation within the anthropometric and metabolic measures
that might, given the relative low amount of variance explained
(~15%), have a limited interpretation. For the following analysis,
we thus focus on the results for the first pair of LV.

Comparison of BMI and Metabolic Score

In Model 1, age, sex and BMI were all significant predictors
of total GMV adjusted for TIV (see Table 3). Yet, model 2
which additionally included the metabolic score, predicted total
GMYV slightly better (see Table 3, model comparison: F = 4.1,
p < 0.042). This indicates metabolic measures explain additional
variance compared to anthropometry when investigating GMV
differences related to higher BMI.

Sensitivity Analysis
We performed sensitivity analysis to detect possible confounding
effects on the first pair of LV.
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FIGURE 3 | Weights (blue, left y-axis) and Z-scores (red, right y-axis) of the metabolic latent variables (LV) from the second pair of LV. Red line indicates the threshold
of bootstrapped Z-score = 2.3. All measures with a Z-score < 2.3 are shown as transparent. a.u., arbitrary unit; BMI, body mass index; WHR, waist-to-hip ratio;
HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; IL8, interleukin-6; CRP, C-reactive protein.
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FIGURE 4 | (Left) Sagittal view of the gray matter volume (GMV) saliency weight map of second latent variables (LV). White lines indicate axial slices shown on the
right. (Right) Axial view of GMV weight map of second LV. MNI-coordinates are given in mm for axial orientation (Z). R, Right.

IL6 Below Detection Threshold

When excluding participants with IL6 values below the detection
threshold, the first pair of LV was similar to the main analysis
(p < 0.001, explained covariance = 0.41). BMI and leptin had
negative weights. Adiponectin had a stable positive contribution
as well as HDL and cholesterol which reached the threshold
of Z > 2.3 in this analysis (see Supplementary Figure S1).
WHR and CRP did not contribute reliably to the metabolic
score of the first LV. The weights of the GMV score remained
essentially unchanged.

Outliers in CRP and Adiponectin

Here, we excluded participants with markedly high CRP values
(>10 mg/l, N = 25) who might have had an acute infection
or another reason for elevated CRP at the time of the
assessment. The first pair of LV were very similar to the

main analysis, except that the bootstrapped Z-value of CRP
dropped to 2.26 below the pre-defined threshold of 2.3 (see
Supplementary Figure S2). The pattern of the GMV score was
essentially unchanged.

When removing one participant with an outlying value in
adiponectin (N = 1), we did not see any differences in the
metabolic and GMV scores (see Supplementary Figure S3).

Systolic Blood Pressure as Additional Predictor

We added systolic blood pressure as another important
cardiovascular risk factor to see whether it explained additional
variance in the obesity-GMV association. There was no reliable
contribution of systolic blood pressure to the first obesity LV (see
Supplementary Figure S4) but the positive contribution of total
cholesterol and HDL to the metabolic score became significant.

The GMYV score did not change.
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TABLE 3 | Statistics according to linear regression models predicting total gray
matter volume (GMV).

Total GMV Model 1 (R?,q; = 0.207) Model 2 (R?,q; = 0.213)
adjusted for

head size st.p T p st.p T p
Age -027 -83 <0.0001 -027 —83 < 0.0001
Sex 0.30 9.3 < 0.0001 0.31 9.4 < 0.0001
BMI -017 —-54 <0.0001 -009 —1.73 0.084
Metabolic score 0.11 21 0.042
(Lv1)

Model 1 included age, sex, and body mass index (BMI). Model 2 additionally
included the metabolic score from the first set of latent variables (LV) according
to multivariate partial least squares analysis (see text for details). st. B, standardized
B-coefficient of the linear regression; Ry, adjusted R°.

Analysis Adjusting for Intake of Antidiabetic and
Antihyperlipidemic Medication

To see whether the observed mode of covariation was driven by
manifest metabolic disease, like diabetes or hyperlipidemia, we
regressed the treatment of those conditions from the respective
variables HbAlc and total cholesterol/HDL. After this correction,
HbAlc did not contribute to the first obesity LV anymore,
indicating that the heightened levels of HbA1c in diabetic patients
might have driven the involvement of HbAlc in the first obesity
LV (see Supplementary Figure S5). The weights of the GMV
LV were unchanged.

Association of the Metabolic Score and

Cognitive Function

We performed linear regression to determine the association
of the brain and metabolic scores and three sum scores of
cognitive function.

For executive function, we found a significant positive
association of brain and metabolic score with the sum score
(standardized B,p, = 0.084, p = 0.021; standardized By a5, = 0.098,
p = 0.007). Higher score on the brain LV and higher
score in the metabolic LV (with negative loadings of BMI
and WHR) both predicted better executive function (see
Figure 5). When excluding one participant with outlying value
in adiponectin, the pattern was even more pronounced (see
Supplementary Figure S6).

No association between brain or metabolic LV was found for
the memory sum score.

Processing speed was positively associated with the brain LV
but not the metabolic LV (standardized p,, = —0.019, p = 0.59;
standardized Ppin = 0.132, p < 0.001).

DISCUSSION

In this study, we showed that a metabolic profile of obesity
predicted lower GMV in a large population-based sample of
older adults. Higher BMI, WHR, leptin, HbAlc, CRP and lower
adiponectin levels were jointly associated with reduced GMV
in cortical, subcortical and cerebellar brain regions, including
the thalamus, insular cortex and temporal pole. We used
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FIGURE 5 | The gray matter volume (GMV) score was positively associated
with the sum score of executive function. A higher metabolic score
(corresponding to lower BMI and indicated by the color coding shown in the
legend) was associated with both higher GMV score and higher executive
function. Black line indicates the locally smoothed average.

two inference schemes and performed sensitivity analysis for
potential confounding of outliers, detection thresholds and
medication intake. Higher scores in the metabolic score and the
GMV score predicted better executive function performance.

The Metabolic Profile

The metabolic profile of the first LV represents common
metabolic dysregulations in obesity (Van Gaal et al., 2006).

Leptin and BMI had the highest weights in the metabolic
profile. BMI is the ratio of body weight to height and an indirect
estimate of body fat (Frankenfield et al., 2001). Yet, due to age-
related changes in body composition, BMI might lack sensitivity
to detect individuals with excess body fat in the older population
(Romero-Corral et al., 2008; Stenholm et al., 2008). Here, leptin
levels are a more accurate estimator of total body fat, as they
increase with the amount of overall adipose tissue in the body
(Considine et al., 1996; Ostlund et al., 1996).

In the present sample, the high weights of leptin and BMI
in the profile indicate that the overall amount of adipose tissue
is a strong predictor of reduced GMV in older adults. This
suggests that factors underlying a sustained energy imbalance,
like sedentary lifestyle or intake of energy-dense food, might
be important determinants of gray matter structure in aging
(Erickson et al., 2010; Dingess et al., 2017; Kreutzer et al., 2017).

Considering the central effects of leptin, it is also possible
that leptin levels are directly associated with brain structure. Yet,
previous studies showed mixed results in that both lower and
higher leptin levels predicted reduced GMV in older individuals
(Narita et al,, 2009; Rajagopalan et al., 2013). To reconcile
these contradictory findings it is important to consider the
BMI distribution of the study population. Obesity goes along
with elevated leptin levels and leptin resistance, which may
lead to central deficiency and impaired beneficial action of this
hormone in the brain (Paz-Filho et al., 2010). Therefore, both low
and chronically elevated leptin levels might be associated with
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structural brain differences, especially in the hippocampus (Lieb
et al., 2009; Witte et al., 2016).

In line with the literature, adiponectin was inversely related
to leptin and BMI in the metabolic profile of LV1 (Havel, 2002).
As adiponectin might have positive effects on brain function
related to its insulin-sensitizing and anti-inflammatory properties
(Lihn et al., 2005), reduced levels of adiponectin might indirectly
contribute to reduced GMV.

Smaller weights were found for WHR and CRP in the
metabolic profilee. WHR - in contrast to BMI and leptin -
reflects the distribution of adipose tissue and is considered
a measure of visceral adiposity. Having a higher amount of
visceral adipose tissue is linked to a higher risk for cardiovascular
disease (Lee et al, 2008) due to specific functions of this fat
tissue. Visceral fat tissue releases pro-inflammatory cytokines,
like IL6, and short-chain fatty acids, factors involved in the
development of the metabolic syndrome and arteriosclerosis
(Després and Lemieux, 2006; Bergman Richard et al., 2012; Item
and Konrad, 2012). In line with these findings, the inflammation
marker CRP contributed to the metabolic profile, even though
the association is attenuated when excluding participants with
extremely elevated CRP-levels. This points to the low specificity
of CRP which is a measure of both localized and systemic
inflammation and might therefore be confounded by participants
with acute infections in the sample.

IL6, a pro-inflammatory cytokine secreted by visceral adipose
tissue (Fontana et al., 2007), had no significant weight in the
metabolic profile although it added to the profile in a similar
direction as CRP. This might be due to the reduced sensitivity of
the laboratory assessment and the resulting skewed distribution.
When excluding participants with IL6 values below the detection
threshold, CRP no longer contributed to the metabolic profile.
This indicates that in participants with IL6 values below the
detection threshold, relevant variance regarding inflammatory
processes is captured in the high-sensitivity CRP we assessed.

Overall, the contribution of WHR and CRP to the metabolic
profile shows that beyond increased whole-body fat mass
(measured by BMI and leptin), visceral adipose tissue and
related systemic inflammation play a role in obesity-related
GMV reductions. Pro-inflammatory cytokines can cross the
blood-brain barrier (Hsuchou et al., 2012) and thereby promote
inflammatory reactions in the central nervous system (Erickson
et al., 2012; Spielman et al., 2014). One example is the chronic
activation of microglia, that triggers the production of reactive
oxygen species (ROS) and pro-inflammatory cytokines, and
may lead to neuronal loss (Spielman et al., 2014; Colonna and
Butovsky, 2017).

Long-term glucose marker HbA1C had a significant and
reliable weight in the metabolic profile, indicating that disturbed
glucose and insulin metabolism is another pathway linking
obesity to reduced GMV. High blood glucose levels enchain the
production of advanced glycation end-products (AGEs) which
trigger the production of ROS and may lead to inflammatory
reactions (Yan et al, 2008). Thereby, elevated glucose levels
might damage vasculature or enhance neuroinflammation (Yan
et al,, 2008). Insulin resistance may also damage the brain, given
the importance of insulin for neuromodulatory and —protective

processes as well as memory and cognition (Craft and Watson,
2004; Blazquez et al., 2014).

Our sample included around 100 individuals with diabetes
and when we adjusted for intake of antidiabetic medication,
HbAlc no longer contributed to the metabolic profile. This
result indicates that the contribution of HbAlc might have been
driven by GMV difference in diabetic patients. In line with this
interpretation, pronounced GMV differences have been reported
in diabetic patients while more subtle associations, mostly limited
to the hippocampus, have been reported in the range of normal
glucose metabolism (Benedict et al.,, 2012; Moran et al., 2013;
Shaw et al., 2017).

Regarding the lipid metabolism, we did not find a stable
contribution of total or HDL cholesterol to the metabolic
profile in the main analysis. Still, we found that total and HDL
cholesterol positively covaried with the metabolic profile, this
effect was more pronounced when we excluded participants
with IL6 below the detection threshold or included systolic
blood pressure. In the literature, no or negative associations
have been reported for total cholesterol and GMV (Enzinger
et al., 2005; Chen et al., 2006; Walhovd et al., 2014) while one
study found a positive association of HDL and GMV (Ward
et al., 2010). Adjusting for intake of lipid-lowering medication
did not change the result. Interestingly, in our sample, total
cholesterol and HDL were highly correlated, and against our
expectations, total cholesterol was negatively correlated with BMI
(standardized B = —0.13, p < 0.001, adjusted for age and sex).
This might explain why the lipid measures were not reliably
included into the profile.

Chronically elevated blood pressure is commonly found in
older age and strongly associated with obesity. Elevated blood
pressure is a strong predictor of brain damage, in form of lacunar
infarcts, white matter hyperintensities and GMV loss (Beauchet
et al,, 2013; Suzuki et al., 2017; Haight et al., 2018). Still, systolic
blood pressure did not contribute to the metabolic profile when
it was included along with the other predictors. We noticed
that BMI was weakly negatively associated with systolic blood
pressure in this sample (standardized p = —0.075, p = 0.04,
adjusted for age and sex) which might explain why systolic blood
pressure was not included into the profile.

The GMV Pattern Associated With the

Metabolic Profile

We found a consistent association of the metabolic profile
and lower GMV in thalamus, bilateral insular cortex, left
amygdala-hippocampus, temporal pole and the cerebellum.
These findings are in line with the literature where mostly
negative associations between obesity and GMV are reported
(Willette and Kapogiannis, 2015). More specifically, a recent
meta-analysis reported BMI-associated reductions of GMV in
temporal pole and cerebellum (Garcia-Garcia et al, 2018).
The cerebellum not only contributes to the planning of
motor actions but also plays an important role for cognition
(Buckner et al., 2011). Importantly, atrophy patterns related to
neurodegenerative disease reflect cerebellar-cortical connectivity
patterns, e.g., the cerebellar regions which are functionally
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connected to the default mode network show atrophy in
Alzheimer’s disease (Guo et al., 2016). It is therefore plausible that
obesity-associated metabolic factors, associated with differences
in specific brain networks, might also contribute to cerebellar
atrophy (Haight et al., 2015; Beyer et al., 2017; Kharabian
Masouleh et al., 2018).

Differences in thalamic, insula and amygdalar-hippocampal
GMYV have not been reported in the meta-analysis, but were
found in univariate analysis of obesity-related factors such as
CRP (Corlier et al., 2018), HbAlc (Reitz et al., 2016), and
BMI (Kharabian Masouleh et al, 2016). The current study
investigated the univariate association of BMI and GMV in
a partly overlapping sample with Kharabian Masouleh et al.
(2016) (N = 412 or 55% overlap with the present sample) and
found similar clusters in thalamus, parahippocampal gyrus and
temporal lobe. These regions show a decline in GMV over the
adult life span, and possibly, obesity and related metabolic factors
enhance this effect, as proposed by the increased brain age
observed in white matter of obese participants (Storsve et al,
2014; He et al., 2015; Ronan et al., 2016).

In contrast to previous studies, the metabolic profile was not
predominantly associated with frontal GMV in our analysis. Still,
medial orbitofrontal and superior frontal cortex were reliably
(Z > 2.3) linked to the metabolic profile. Studies suggested
that reduced GMV in obesity might not only be a consequence
but also a potential genetic risk factor for developing obesity
(Opel et al., 2017). Thus, genetic factors, among others, might
have contributed to the observed GMV differences in our study.
Possible mediators include executive functions and impulsive
behavior which might impact eating behavior and thereby lead
to weight gain (Chuang et al., 2015). However, as our analysis
did not include genetic or behavioral traits, in addition to its
cross-sectional design, interpretation of causes and consequences
underlying GMV differences is limited.

Expanding the study by Kharabian Masouleh et al. (2016),
we used a multivariate strategy to characterize the association
of obesity and GMV in older adults. Accordingly, the individual
metabolic profile score explained more variance in total GMV
than BMI alone. This analysis was independent of the actual
pattern of GMV associated with the metabolic score. Yet, the
overall amount of variance in total GMV explained by the
metabolic score is relatively small (~3%) compared to the
variance explained by age and sex (~18%).

Cognitive Function
Regarding the relevance of our findings for cognitive function,
exploratory analyses suggested that executive function was
gradually decreased along the axis of the first obesity-brain
LV. Both lower metabolic LV and higher GMV LV were
associated with increased performance in the domain of executive
function. This result expands previous findings of reduced
executive function related to increased BMI reported in a partly
overlapping sample by Kharabian Masouleh et al. (2016), and
shows that reduced GMV in distributed brain regions might
mediate this effect.

We did not find an association of memory performance
and the GMV pattern of the first LV. While there was no

direct association of BMI and memory performance, (Kharabian
Masouleh et al., 2016) found an indirect effect, mediated by GMV
in frontal and thalamic clusters. Our analysis was possibly not
suited to replicate this region-specific association between brain
and cognition, given that we derived a wide-spread GMV pattern
which, among others, included frontal and thalamic clusters.

We found a positive association of the GMV pattern and
processing speed, but not obesity-related LV and processing
speed. This might reflect the fact that both executive function and
processing speed sum scores are derived from the trail-making-
test, and therefore are partly collinear.

These exploratory results are largely in line with the literature,
where mid-life obesity has been linked to reduced cognitive
function in various cognitive domains (van den Berg et al., 2009;
Prickett et al., 2015). More specifically, our results support the
view that executive function might be more affected by vascular
risk factors than other cognitive domains, such as verbal memory
(Wolf et al., 2007; Debette and Markus, 2010) and that metabolic
disturbances linearly add to obesity-related cognitive decline
(Singh-Manoux et al., 2012).

Strengths and Limitations of the Current
Study

Strengths of this study include a large, well-characterized
participants sample and a comprehensive multivariate analysis
employing two validation schemes. Additionally, we performed
sensitivity analysis and assessed cognitive function of the
participants with a standardized neuropsychological test battery.

The main limitation of this study is that we cannot draw causal
inferences based on our cross-sectional data.

We reported a relatively specific metabolic profile and a
widespread pattern of GMV loss. Yet, due to our multivariate
approach we cannot conclude whether certain metabolic factors,
e.g., pro-inflammatory cytokines, mediate the association or if
they have independent effects on GMV loss. Furthermore,
we cannot test regionally specific associations of single
metabolic factors with GMV loss. This problem might be
partly overcome by using sparse PLSC techniques in future
studies (Monteiro et al., 2016). Introducing a sparsity constraint
to the PLSC decomposition reduces the number of features,
e.g., voxels, and forces many features to have zero weights.
This may aid interpretability especially for high-dimensional
MRI data. Another drawback of the PLSC approach was
the limited interpretability of higher-order latent variables
which are constrained to be orthogonal to previous LV
(Krishnan et al., 2011).

CONCLUSION

Taken together, we provided evidence that a metabolic obesity
profile characterized by increased body fat, visceral adiposity
and systemic inflammation was associated with a widespread
pattern of decreased GMV. The brain-obesity covariation was
stable in two validation schemes and predicted executive function
in a large sample of older adults without diagnosis of cognitive
impairment. We suggest that this unfavorable metabolic profile
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might contribute to reduced executive function via damage to the
gray matter in widespread brain regions.

Following our study, further research is needed to establish
the causal relationship between obesity, decreased gray matter
volume and cognitive function in aging. Our results indicated
a main contribution of overall fat mass and visceral adiposity,
which should be tested in longitudinal studies. Given the
importance of lifestyle factors in mid-life for cognitive function
later in life, these studies might benefit from considering body
weight trajectories or using cumulative measures of metabolic
burden such as “obesity pack years” (Abdullah et al., 2011;
Pedditizi et al., 2016).

Furthermore, investigating measures of brain health beyond
gray matter structure, such as imaging markers of cerebral small
vessel disease and white matter microstructure, might help to
understand the complete picture linking obesity, cardiovascular
risk and cognitive decline in aging.
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Background: The early progression continuum of Alzheimer’s disease (AD) has been
considered to advance through subjective cognitive decline (SCD), non-amnestic mild
cognitive impairment (naMClI), and amnestic mild cognitive impairment (@MCl). Altered
functional connectivity (FC) in the default mode network (DMN) is regarded as a hallmark
of AD. Furthermore, the DMN can be divided into two subnetworks, the anterior and
posterior subnetworks. However, little is known about distinct disruptive patterns in
the subsystems of the DMN across the preclinical AD spectrum. This study investigated
the connectivity patterns of anterior DMN (aDMN) and posterior DMN (pDMN) across the
preclinical AD spectrum.

Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) was used to
investigate the FC in the DMN subnetworks in 20 healthy controls (HC), eight SCD,
11 naMCI, and 28 aMCI patients. Moreover, a correlation analysis was used to
examine associations between the altered connectivity of the DMN subnetworks and
the neurocognitive performance.

Results: Compared to the HC, SCD patients showed increased FC in the bilateral
superior frontal gyrus (SFG), naMCI patients showed increased FC in the left inferior
parietal lobule (IPL), and aMCI patients showed increased FC in the bilateral IPL in the
aDMN; while SCD patients showed decreased FC in the precuneus, naMCI patients
showed increased FC in the left middle temporal gyrus (MTG), and aMCI patients also
showed increased FC in the right middle frontal gyrus (MFG) in the pDMN. Notably,
the FC between the ventromedial prefrontal cortex (vmPFC) and the left MFG and the
IPL in the aDMN was associated with episodic memory in the SCD and aMCI groups.
Interestingly, the FC between the posterior cingulated cortex (PCC) and several regions in
the pDMN was associated with other cognitive functions in the SCD and naMCI groups.
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Conclusions: This study demonstrates that the three preclinical stages of AD exhibit

distinct FC alternations in the DMN subnetworks. Furthermore, the patient group data
showed that the altered FC involves cognitive function. These findings can provide novel
insights for tailored clinical intervention across the preclinical AD spectrum.

Keywords: amnestic mild cognitive impairment, non-amnestic mild cognitive impairment, subjective cognitive
decline, default mode network, functional connectivity

INTRODUCTION

Mild cognitive impairment (MCI), which is divided into
amnestic mild cognitive impairment (aMCI) and non-amnestic
mild cognitive impairment (naMCIL; Grundman et al., 2004; Kim
etal., 2015; Makovac et al., 2018), is regarded as the intermediate
stage between healthy aging and dementia. Neuroimaging studies
have demonstrated that aMCI, characterized by memory decline,
has a high probability of developing into Alzheimer’s disease
(AD) dementia (Rossetto et al., 2018; Chen et al., 2019a).
Moreover, several previous studies have indicated that naMCI
might be an intermediate stage between health and aMCI/AD
(Lee et al.,, 2018; Oltra-Cucarella et al., 2018). Furthermore,
subjective cognitive decline (SCD), as an earlier stage of MCI,
refers to the elderly with a normal cognitive performance level
and no objective signs of cognitive impairment who subjectively
think they are cognitively impaired (Funaki et al., 2019; Hu
et al, 2019). Thus, converging evidence suggests that the
development of AD may partly progress through a continuum
from SCD to MCI and eventually to AD (Berger-Sieczkowski
et al., 2019). This could mean that SCD, naMCI, and aMCI
can be considered as a spectrum of preclinical AD, which may
have a different topography of pathological involvement during
different disease stages. Therefore, it is of great significance to
promote our understanding of abnormal patterns across the
preclinical AD spectrum, and it is particularly important to
provide a tailored clinical intervention across the preclinical
AD spectrum.

In recent years, resting state functional magnetic resonance
imaging (rs-fMRI) has become the main means of cognitive
research, while the default mode network (DMN) has been the
most studied network (Cai et al., 2017; Banks et al., 2018). The
DMN, anatomically distributed in different areas of the brain,
can be divided into two subnetworks, the anterior and posterior
subnetworks. The anterior subnetwork (the anterior DMN,
aDMN) is mainly composed of the ventromedial prefrontal
cortex (vmPFC), which is involved in self-referential mental
idealization, and the posterior subnetwork (the posterior DMN,
pDMN), which consists of the posterior cingulated cortex (PCC)
and is involved in episodic memory retrieval (Yang et al., 2017;
Wang et al, 2018). Some studies have shown that amyloid
deposition is most likely to occur in the medial prefrontal cortex
and PCC, which belong to the DMN (Wang et al., 2013). Further
results have indicated that regions belonging to the DMN were
affected early in the process of developing to AD, and functional
connectivity (FC) changes in the DMN have been reported as
predictors of AD conversion (Crockett et al., 2017; Scherr et al.,
2019). In addition, the altered FC of the DMN is related to the

change of cognitive performance (Joshi et al., 2018). Notably, the
study of altered FC in DMN subnetworks might provide a pattern
to explain the pathophysiology of AD.

Several neuroimaging studies have indicated increased FC in
the DMN in SCD patients compared to healthy controls (HC),
especially between pDMN and the medial temporal memory
system (MTMS; Verfaillie et al., 2018). In naMCI, there tends
to be a change in connectivity between the hippocampus and
the PCC, and the PCC is an important area in the DMN (Dunn
et al,, 2014; Prieto Del Val et al., 2016). Furthermore, there is
no statistical difference in the DMN intra-connectivity between
naMCI and aMCI (Dunn et al., 2014). To our knowledge, there
have been no studies of specific default mode subnetworks
in naMCI. Additionally, in aMCI, some investigations have
found increased FC in the aDMN and decreased FC in the
pPDMN (Wu et al.,, 2016); the increased FC in the aDMN was
considered to be a compensatory addition of cognitive function
to sustain task performance (Qi et al., 2010; Damoiseaux et al.,
2012; Dunn et al, 2014). Taken together, these observations
suggest that the patterns of impairment in the anterior and
posterior subnetworks in these patients seem to differ. However,
prior studies have focused on the specific diseases, and very
little is known about whether there is a progression of the
DMN subnetwork impairment pattern across the preclinical
AD spectrum or potentially a corresponding progression of
cognitive impairment.

Therefore, the objective of the current study is to analyze
changes in the FC patterns of the DMN subnetworks across the
preclinical AD spectrum, including SCD, naMCI, and aMCI,
and to further investigate the relationship between the disruptive
patterns of the DMN subnetworks and cognitive function. We
hypothesized that there exists a distinct alteration of the DMN
subnetworks in the three preclinical stages of AD and that the
altered patterns in the aDMN and pDMN may contribute to
different levels of cognitive impairment across the preclinical AD
spectrum (Yuan et al., 2016b).

MATERIALS AND METHODS

Subjects

The present study recruited 79 elderly individuals: 21 HC,
10 SCD, 15 naMCI, and 33 aMCI individuals were selected to
participate in our research from hospitals, communities, and
a broadcasting station. However, 12 of the participants were
excluded due to no MRI data (n = 10) and excessive head motion
(cumulative translation or rotation >3.0 mm or 3.0°, n = 2).
As a result, the study included 67 subjects in total (20 HC,
8 SCD, 11 naMCI, and 28 aMCI). The study participants had to
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meet the following criteria: (1) 40-80 years old; (2) secondary
school education or higher; (3) right-handedness; (4) Han
Chinese language speakers; (5) no history of serious diseases that
could influence cerebral function, such as severe brain injury,
brain tumor, brain hemorrhage, brain infarction, white matter
disease, neurologic, psychiatric, and systemic illnesses; and
(6) no history of psychoactive medications (Dillen et al., 2017;
Vecchio et al., 2018).

The inclusion criteria for HC were: (1) no memory
complaints; (2) normal cognitive performance of age- and
education-matched volunteers; and (3) Clinical Dementia Rating
(CDR) =0 (Chen et al., 2016b; Gu et al., 2018; Yan et al., 2018).

The inclusion criteria for SCD were based on the published
SCD criteria proposed by the Subjective Cognitive Decline
Initiative (SCD-I): (1) always complained of memory problems;
(2) Subjective Cognitive Decline Questionnaire (SCD-Q) > 5;
(3) normal cognitive performance of age- and education-
matched norms; and (4) CDR = 0 (Dillen et al., 2017; Yan et al.,
2018; Cedres et al., 2019).

The inclusion criteria for naMCI were: (1) normal overall
cognitive function as evidenced by: CDR = 0.5, Mini-Mental
State Examination (MMSE) score = 26, the Montreal Cognitive
Assessment (MoCA) = 26, Mattis Dementia Rating Scale-2
(MDRS-2) = 120, and Hamilton Depression Rating Scale
(HAMD) < 7; and (2) objective impairment in at least one
cognitive domain except memory function, including visual
spatial function, executive function, and information processing
speed (Dunn et al., 2014).

The inclusion criteria for aMCI were: (1) patients complained
of memory impairment of at least 3 months or relatives
confirmed that the memory impairment had lasted for more
than 3 months; (2) objective memory performance documented
by an Auditory Verbal Memory Test-delayed recall (AVLT-DR)
score within < 1.5 standard deviation (SD) of same age- and
education-adjusted norms; (3) normal overall cognitive function
as described for naMCI; and (4) not demented (Dunn et al., 2014;
Chen et al., 2019b; Huang et al., 2019; Zhang et al., 2019).

The study was approved by the responsible Human
Participants Ethics Committee of the Affiliated Brain Hospital
of Nanjing Medical University. Written informed consent was
obtained from all participants.

Neurocognitive Assessments

All participants underwent comprehensive and standard
neurocognitive assessments to evaluate their cognitive function,
including general cognitive functions, episodic memory,
executive function, information processing speed, and visual
spatial domains (Gu et al, 2017; Gao et al, 2018). These
assessments include the MMSE, the ADL, the MDRS-2, the
MoCA, the SCD-Q, the CDR, the Hachinski Ischemic Scale
(HIS), the HAMD, the Auditory Verbal Learning Test (AVLT;
including the AVLT-immediate, the AVLT-5 min delay, and
the AVLT-20 min delay), the Rey Complex Figure Test (CFT)
delay, the Logical Memory Test (LMT), the CFT, the Clock-
Drawing Test (CDT), the Boston Naming Test, the Category
Verbal Fluency Test (including the CVFT-animals and the
CVFT-objects), the Symbol Digit Modalities Test, the part

A and B of the Trail Making Test (TMT), the Digit Span
Test (including the DS forward and the DS backward), part
A, B, and C of the Stroop Test, and the Semantic Similarity
Test. These scales are widely used in cognitive assessment,
verified by two senior neuropsychologists and evaluated by
experienced clinicians.

MRI Data Acquisition

All magnetic resonance imaging (MRI) data were acquired using
a 3.0 Tesla Verio Siemens scanner with an 8-channel head-coil
in the Affiliated Brain Hospital of Nanjing Medical University.
Resting-state functional images were collected when participants
were instructed to rest with their eyes open, to not fall asleep,
and to not think of anything in particular. The gradient-echo
echo-planar imaging (GRE-EPI) sequence included 240 volumes
(Chen et al, 2016a). The parameters were: repetition time
(TR) = 2,000 ms, echo time (TE) = 30 ms, number of slices = 36,
thickness = 4.0 mm, gap = 0 mm, matrix = 64 x 64, flip angle
(FA) =90°, field of view (FOV) = 220 mm x 220 mm, acquisition
bandwidth = 100 kHz, and voxel size = 3.4 x 3.4 x 4 mm?. The
imaging took approximately 8 min.

High-resolution T1-weighted images were acquired by 3D
magnetization-prepared rapid gradient-echo (MPRAGE)
sequence (Chen et al, 2016a). The parameters were:
TR = 1,900 ms, TE = 2.48 ms, inversion time (TI) = 900 ms,
number of slices = 176, thickness = 1.0 mm, gap = 0.5 mm,
matrix = 256 x 256, FA = 9°, FOV = 256 mm x 256 mm, and
voxel size = 1 x 1 x 1 mm?. The imaging took approximately
4.26 min.

Image Preprocessing

All fMRI data were preprocessed by MATLAB2013b! and Data
Processing and Analysis for Brain Imaging (DPABI), which
is based on Statistical Parametric Mapping (SPM8)2. The first
10 volumes were discarded to reduce the instability of the
MRI signal. Corrections were performed for the intra-volume
acquisition time differences among slices and inter-volume
motion effects during the scan. Participants with excessive
head motion (cumulative translation or rotation >3.0 mm or
3.0°) were excluded. Then, we chose affine regularization in
European segmentation and nuisance covariate regression with
24 motion parameters, a global signal, a white matter signal,
and a cerebrospinal fluid signal (Fox et al, 2009). Data were
filtered at 0.01-0.08 Hz to reduce the effect of the low-frequency
drift and high-frequency physiological noise, such as breathing
and heartbeats (Chen et al., 2016a). Next, to spatially normalize
the fMRI data, we used T1 image unified segmentation and
resampled to an isotropic voxel size of 3 mm. At last, spatial
smoothing using a 6-mm full-width half-maximum Gaussian
kernel (Cha et al, 2013) and detrending were applied to
reduce spatial noise and differences in anatomical structures
among subjects. Stringent quality assurance measures were
performed as described in previous studies to reduce the impact
of head motion on the rsfMRI results (Power et al., 2012;
Van Dijk et al., 2012).

Uhttp://www.mathworks.com/products/matlab/
Zhttps://www.fil.ion.ucl.ac.uk/spm/
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TABLE 1 | Demographics and clinical measures of HC and patients with SCD, naMCl, and aMCl.

HC SCD naMCI aMCl F-values (x2) p-values

n=21 n=10 n=15 n =33
Age (years) 57.52 (8.072) 63.10 (8.774) 63.87 (8.568) 66.03 (8.579)* 4.388 0.007
Gender (male/female) 7/14 4/10 6/9 11/22 6.696 0.01
Education level (years) 12.05 (2.747) 13.85(1.827) 10.60 (2.694)** 11.06 (3.358) 3.086 0.032
FD 0.0856 (0.04929) 0.0663 (0.04287) 0.1181 (0.05258) 0.0908 (0.07461) 1.074 0.367
MMSE scores 28.81 (1.209) 27.70 (1.160) 28.27 (1.710) 26.88 (2.027)* 6.156 0.001
MDRS-2 141.00 (2.915) 138.80 (3.393) 137.07 (3.432) 134.82 (7.970)* 5.193 0.003
MoCA 26.20 (2.624) 25.00 (3.432) 24.14 (2.931) 22.40 (3.379)* 5.357 0.002
SCD-Q 3.07 (1.591) 6.05 (0.725)* 4.36 (2.161) 5.45 (1.690)* 9.033 <0.001
Composite Z scores of each cognitive
domain
Episodic memory 0.4953 (0.58422) 0.5788 (0.48495) 0.3315 (0.53204) —0.6245 (0.54907)*/**/#xx 25.373 <0.001
Information processing speed 0.4525 (0.75906) 0.4152 (0.46834) —0.4064 (0.65820)*/** —0.2252 (0.77552)* 6.535 0.001
Executive function 0.4511 (0.72800) 0.4369 (0.50400) —0.2714 (0.48974)*/* —0.2493 (0.61376)"/** 7.974 <0.001
Visuospatial function 0.2642 (0.56747) 0.4183 (0.44671) —0.1231 (0.68174) —0.2438 (1.01123) 2.79 0.046

Numbers are given as means (standard deviation, SD) unless stated otherwise. Scores reflect the number of correct items unless stated otherwise. Significant group differences were
found at p < 0.05 (ANOVA test and Multivariable general linear model), Bonferroni corrected. FD, framewise displacement; MMSE, Mini-Mental State Exam; MDRS-2, Mattis Dementia
Rating Scale-2; MoCA, the Montreal Cognitive Assessment test; SCD-Q, Subjective Cognitive Decline Questionnaire. *Compared to HC, **compared to SCD, ****compared to naMCl;
HC, healthy controls; SCD, subjective cognitive decline; aMCl, amnestic mild cognitive impairment; naMClI, non-amnestic mild cognitive impairment.

Functional Connectivity Analysis

A seed-based FC analysis was performed to explore the
alternation of DMN subnetworks. To identify the seed region
in the present study, two 10-mm spherical regions of interest
centered in the vmPFC (MNI space: 0, 52, —6, Brodmann area
10) and PCC (MNI space: 0, —53, 26, Brodmann area 31) were
created (Zhang and Raichle, 2010; Yuan et al., 2016b). Individual
mean time series were extracted based on the coregistered
seed region as the reference time series, and then a voxel-wise
cross-correlation analysis was carried out between the seed
region and the whole brain within the gray matter (GM)
mask. We used a Fisher’s r-to-z transformation to improve the
normality of the correlation coefficients. Then, we obtained the
vmPFC subnetwork (aDMN) and the PCC subnetwork (pDMN).

Statistical Analyses

The Statistical Package for the Social Sciences (SPSS) software
version 22.0 (IBM, Armonk, New York, NY, USA) was used
for statistical analyses. The analysis of variance (ANOVA), the
multimodal general linear model (GLM), and the chi-square test
were conducted to compare the demographic and neurocognitive
data among groups, including the HC, SCD, naMCI, and aMCI.
The Bonferroni correction was used for post hoc comparisons.
The P-value was set as <0.05 for significant differences.

A one-way ANOVA analysis was performed to compare the
differences in FC in both the aDMN and pDMN among four
groups after controlling for the effects of age, gender, level of
education, and GM volumes. As suggested in a previous study,
the non-parametric permutation test can precisely control the
false positive rate in the cluster-level inference; therefore, we set
the permutation times at 1,000 (Smith and Nichols, 2009). The
corrected p-value < 0.05 was set for statistical significance and
the cluster size >200 voxels (5,400 mm?) was applied for multiple
comparisons at the voxel level. The two-sample T-test was used
for post hoc comparisons with the mask resulted from ANOVA
analyses after controlling for the effects of age, gender, level of

education, and GM volumes. We set the significance level with
a family-wise error (TFCE-FWE) corrected cluster p < 0.05 and
the cluster size >10 voxels (270 mm?). The FCs of significantly
altered regions were extracted with a Resting-State fMRI Data
Analysis Toolkit (REST)® and were later used for correlation
analyses. The correlation analyses were conducted to reveal the
relationships between the altered FCs of the DMN and cognitive
domains after controlling for the effects of age, gender, and level
of education (p < 0.05, Bonferroni-corrected).

It is worth mentioning that, grouped the
neuropsychological tests into four cognitive domains (Gu
et al,, 2017; Gao et al, 2018). Episodic memory data were
mainly derived from AVLT-20-min DR, LMT-20-min DR, and
CFT-20-min DR. The information processing speed dates were
mainly acquired from DSST, TMT-A, Stroop A, and Stroop
B. Visuospatial function data were mainly extracted from the
CFT and CDT. Executive function data were mainly obtained
from VFT, DST-backward, TMT-B, Stroop C, and Semantic
Similarity. The individual raw score of each neuropsychological
test was transformed to normalized Z scores. Subsequently, the
normalized Z score was averaged to calculate the composite Z
score of each cognitive domain (Xie et al, 2012; Chen et al,
2016b; Yuan et al., 2016b).

we

RESULTS

Demographic and Neurocognitive

Characteristics

The demographic and neurocognitive information of all
participants, including 21 HC (mean age 57.52 =+ 8.072),
10 SCD (mean age 63.10 + 8.774), 15 naMCI (mean age
63.87 + 8.568), and 33 aMCI (mean age 66.03 =+ 8.579)
individuals, can be found in Table 1. As expected, our results
showed significant differences in cognitive performance.

Shttp://resting-fmri.sourceforge.net
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FIGURE 1 | Brain regions exhibiting significant differences in functional connectivity (FC) of the anterior default mode network (DMN) subnetwork [the ventromedial
prefrontal cortex (vmPFC) subnetwork] based on analysis of variance (ANOVA) analysis and two-sample T-tests. Age, gender, and years of education were used as
covariates for all these results. (A) Brain regions showing significant differences in FC of the anterior DMN subnetwork between HC, patients with SCD, patients with
naMCI, and patients with Alzheimer’s disease (AD; p < 0.05, the cluster size > 200 voxels). (B-F) The results of post hoc two-sample T-tests in voxel-wise analysis
(TFCE-FWE corrected, cluster size > 10, p < 0.05). aMClI, amnestic mild cognitive impairment; naMCI, non-amnestic mild cognitive impairment; SCD, subjective
cognitive decline; HC, healthy controls; IPL, inferior parietal lobule; PCUN, precuneus; SFG, superior frontal gyrus; MTG, middle temporal gyrus; L, left; R, right.
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Compared to HC, the aMCI group exhibited significantly lower
MMSE, MDRS-2, MoCA scores, episodic memory, information
processing speed, executive function, and visuospatial function,
though it exhibited significantly higher SCD-Q scores; the
naMCI group exhibited significantly lower information
processing speed and executive function. Compared to SCD
group, the aMCI group exhibited significantly lower episodic
memory and executive function; the naMCI group exhibited
significantly lower information processing speed, executive
function, and education level. Compared to naMCI group, the
aMCI group exhibited significantly lower episodic memory
scores. Last, the SCD group had the highest SCD-Q scores
(all p < 0.05).

Altered FC Patterns of DMN Subnetworks
in Patients with SCD, naMCI, and aMClI

In the aDMN subnetwork, the ANOVA analysis showed five
significantly altered brain regions among the groups, including
the bilateral inferior parietal lobule (IPL), left precuneus
(PCUN), left middle temporal gyrus (MTG), and bilateral
superior frontal gyrus (SFG). Compared to the HC, the SCD
patients showed significantly increased FC in the bilateral

SEG, the naMCI individuals showed increased FC in the
left IPL, and the aMCI patients showed increased FC in
the bilateral IPL. Compared to the SCD group, the aMCI
group showed increased FC in the left IPL, left MTG, and
left PCUN, while the naMCI group showed increased FC in
the left IPL. It is worth noting that, compared to the HC,
the SCD, naMCI, and aMCI groups all showed increased
FC in the aDMN (TFCE-FWE corrected, cluster size > 10,
p < 0.05). All results are after controlling the effects of age,
gender, level of education, and GM volumes (see Figure 1
and Table 2).

In the pDMN subnetwork, the ANOVA analysis showed
11 significantly altered brain regions among the groups,
including the bilateral cerebellum posterior lobe (CPL), right
inferior temporal gyrus (ITG), right lingual gyrus (LG), left
inferior frontal gyrus (IFG), left MTG, right middle frontal gyrus
(MFQG), right precentral gyrus (PRG), right superior temporal
gyrus (STG), and bilateral PCUN. Compared to the HC, the SCD
patients showed decreased FC in the right PCUN, the naMCI
individuals showed increased FC in the left MTG, and the aMCI
patients showed increased FC in the left MFG. Compared to the
SCD group, the naMCI group showed increased FC in the left
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TABLE 2 | The differences in functional connectivity in the ventromedial prefrontal cortex (vmPFC) subnetwork.

Region(aal) Peak MNI coordinate F/t Cluster number
X y z
ANOVA
L Inferior Parietal Lobule/Precuneus/Middle Temporal Gyrus —45 —51 51 8.7072 1,178
R Inferior Parietal Lobule 48 —45 36 7.3382 263
B Superior Frontal Gyrus 12 24 66 8.1821 498
SCD>HC
L Superior Frontal Gyrus —-12 36 51 4.4635 20
R Superior Frontal Gyrus 12 33 54 41155 33
aMCI>HC
R Inferior Parietal Lobule 36 —66 45 4.5565 122
L Inferior Parietal Lobule —45 —51 51 4.0654 23
naMCI>HC
L Inferior Parietal Lobule —42 —45 42 3.931 82
aMCI>SCD
L Middle Temporal Gyrus —45 —51 21 4.9974 15
L Precuneus 27 —60 33 4.1604 62
L Inferior Parietal Lobule
naMCI>SCD —36 —45 42 4.0831 68
L Inferior Parietal Lobule —45 —45 57 6.6488 262

The x, y, z coordinates are the primary peak locations in the MNI space. Cluster size > 200 voxels in ANOVA analysis, p < 0.05; Cluster size > 10 voxels in two-sample T-test, p < 0.05,
TFCE-FWE corrected.
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FIGURE 2 | Brain regions exhibiting significant differences in FC of the posterior DMN subnetwork [the posterior cingulated cortex (PCC) subnetwork] based on
ANOVA analysis and two-sample T-tests. Age, gender, and years of education were used as covariates for all these results. (A) Brain regions showing significant
differences in FC of the posterior DMN subnetwork between HC, patients with SCD, patients with naMClI, and patients with AD (p < 0.05, the cluster

size > 200 voxels). (B=F) The results of post hoc two-sample T-tests in voxel-wise analysis (TFCE-FWE corrected, cluster size > 10, p < 0.05). aMCI, amnestic mild
cognitive impairment; naMClI, non-amnestic mild cognitive impairment; SCD, subjective cognitive decline; HC, healthy controls; CPL, cerebellum posterior lobe; ITG,
inferior temporal gyrus; LG, lingual gyrus; IFG, inferior frontal gyrus; MTG, middle temporal gyrus; MFG, middle frontal gyrus; PRG, precentral gyrus; STG, superior
temporal gyrus; PCUN, precuneus; L, left; R, right.
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TABLE 3 | The differences in functional connectivity in the posterior cingulated cortex (PCC) subnetwork.

Region(aal) Peak MNI coordinate F/t Cluster number
X y z
ANOVA
L Cerebellum Posterior Lobe —12 -39 —51 6.7851 211
R Cerebellum Posterior Lobe 51 —60 —51 0.22507 425
L Inferior Temporal Gyrus —48 -3 —48 0.23658 212
R Lingual Gyrus -3 —81 —6 7.5879 314
L Inferior Frontal Gyrus —-27 18 27 0.21662 281
L Middle Temporal Gyrus —57 —51 3 9.2035 380
R Middle Frontal Gyrus 30 66 6 6.9772 248
R Precentral Gyrus/Superior Temporal Gyrus 54 -18 48 5.364 404
R Precuneus —-15 —81 54 0.21035 290
L Precuneus —-15 —-93 36 0.18706 210
HC>SCD
R Precuneus 57 —12 30 4.9182 19
aMCI>HC
R Middle Frontal Gyrus 36 48 —6 3.8891 69
naMCI>HC
L Middle Temporal Gyrus —60 —51 9 4.5979 87
SCD>aMCI
R Cerebellum Posterior Lobe 42 —78 —21 4.2026 24
naMCI>SCD
L Middle Temporal Gyrus —51 —48 -3 5.0983 130
R Superior Temporal Gyrus 57 —15 3 4.6523 50
R Precentral Gyrus 54 0 45 4.434 19

The x, y, z coordinates are the primary peak locations in the MNI space. Cluster size > 200 voxels in ANOVA analysis, p < 0.05; Cluster size > 10 voxels in two-sample T-test, p < 0.05,

TFCE-FWE corrected.

MTG, right STG, and right PCG, while the aMCI group showed
decreased FC in the right CPL. Notably, compared to the HC,
the SCD group showed decreased FC, while both the naMCI
and aMCI groups showed increased FC in the pDMN (TFCE-
FWE corrected, cluster size > 10, p < 0.05). All results are after
controlling the effects of age, gender, level of education, and GM
volumes (see Figure 2 and Table 3).

Behavioral Significance of the Disrupted
Functional Connectivity of DMN

Subnetworks

A correlation analysis was conducted between regions with
altered FC and cognitive domains (Bonferroni corrected,
p < 0.05). In the groups consisting of SCD and aMCI, the
analysis showed that the altered FC between the vmPFC and
the left IPL in the aDMN is negatively correlated with episodic
memory (r = —0.5002, p = 0.0019), while the altered FC between
the vmPFC and the left MTG is positively correlated with
episodic memory (r = 0.6419, p = < 0.0001). In the groups
that contained SCD and naMCI, the analysis showed significant
negative correlation in the pDMN. Altered FC between the PCC
and the right STG was negatively correlated to both executive
function (r = —0.6732, r = 0.0016) and information processing
speed (r=—0.5894, p = 0.0017). Altered FC between the PCC and
the right PRG was negatively correlated with executive function
(r = —0.7070, p = 0.0007), and altered FC between the PCC
and the left MTG was negatively correlated with information
processing speed (r = —0.5894, p = 0.0079). Age, gender, and
years of education were used as covariates for all these results.
There was no statistically significant correlation (Bonferroni

corrected, p < 0.05) between the cognition domains and the
remaining areas (see Figure 3).

DISCUSSION

The present study aimed to investigate changes in FC of the
anterior and posterior DMN between different groups (HC, SCD,
naMCI, and aMCI) and to explore how this altered FC influences
cognitive function. Corresponding with our hypothesis, our
study presents two main findings. First, the FC of the anterior
and posterior subnetworks in the DMN was damaged in the
SCD, naMCI, and aMCI groups after controlling the effects of
age, gender, level of education, and GM volumes. Second, the
correlation analyses demonstrated that the altered connectivity
patterns of the DMN subnetworks were associated with impaired
cognitive function. Moreover, our study further confirms that the
aDMN and pDMN are functionally independent, and the altered
subnetworks have different effects on cognitive function.

The current study indicates that there is significantly altered
FCin the SCD, naMCI, and aMCI groups in/between the anterior
DMN and the posterior DMN, thereby proving the heterogeneity
of the DMN (Damoiseaux et al., 2012; Yuan et al., 2016b).
Compared to the HC, the naMCI and aMCI groups showed
increased FC both in the aDMN and pDMN, while the SCD
group showed increased FC in the aDMN and decreased FC in
the pDMN. Over the years, alterations in FC in the DMN have
been a focal point of many studies, but few investigations have
examined changes in FC in the specific DMN subnetworks.

Our findings in the three preclinical stages of AD demonstrate
a widespread alteration of FC in the DMN, and further illustrate
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FIGURE 3 | (A-F) Significant associations between altered FC and cognitive
function including episodic memory, executive function, and information
processing speed in anterior DMN (aDMN) and posterior DMN (pDMN)
(Bonferroni corrected, p < 0.05). Age, gender, and years of education were
used as covariates for all these results. aMCl, amnestic mild cognitive
impairment; naMClI, non-amnestic mild cognitive impairment; SCD, subjective
cognitive decline; vmPFC, ventral medial prefrontal cortex; PCC, posterior
cingulate cortex; MTG, middle temporal gyrus; PRG, precentral gyrus; STG,
superior temporal gyrus; IPL, inferior parietal lobule; L, left; R, right.

that AD is a disconnection syndrome (Palesi et al., 2016).
Specifically, our results indicate that patients with aMCI have
significantly increased FC between the vmPFC and bilateral
IPL (Cai et al,, 2017), while naMCI patients have significantly
increased FC between the vmPFC and left IPL compared with the
HC. The IPL is a heterogeneous brain area with a role in multiple-
modality functions including sensory motor processing, salience
detection, executive control, and especially episodic memory
(Wang et al.,, 2012, 2016, 2017; Yuan et al., 2016a). Therefore,
our findings might indicate that the right IPL is one of the
brain areas that is responsible for episodic memory. It is worth
noting that the SCD group showed increased FC between the
vmPFC and the bilateral SFG in the aDMN, while it showed
decreased FC between the PCC and the right precuneus in the
pDMN compared to the HC, proving that the changes in FC
precede the appearance of clinical manifestations (Hayes et al.,
2017). Notably, the alterations in the precuneus may begin as
early as approximately 10-20 years before the onset of clinical
symptoms of dementia (Bateman et al., 2012). Furthermore, the
only significantly decreased FC revealed by our study is the FC
between the PCC and the right precuneus in the SCD group
compared with the HC, suggesting that the right precuneus

might be the first damaged area in the DMN and that the
increased FC between the vmPFC and the bilateral SFG might
be a compensatory response. However, no altered FC was
found between the PCC and the precuneus in the naMCI and
aMCI groups compared to the HC, which might represent a
characteristic change in the SCD patients. The PCC-precuneus
plays a vital role in the DMN, and they are among the brain
regions most prone to AD because of their connective, metabolic,
and vascular characteristics (Cha et al., 2013; Prieto Del Val
et al, 2016; Wu et al,, 2016; Wang et al., 2019). In addition, the
present study shows that the naMCI group exhibited increased
FC between the PCC and the left MTG, while the aMCI group
showed increased FC between the PCC and the right MFG
compared to the HC (Liang et al., 2011; Cha et al., 2013). The
MFG region consists of a caudal and rostral area, the latter
including a part of the dorsal lateral prefrontal cortex, which
is responsible for working memory and executive cognitive
functions (Barbey et al., 2013). A previously published study
reported that the MFG is an important area and that increased
FC in the right MFG might be a compensation mechanism
(Cha et al, 2013). Interestingly, the aMCI group showed
decreased FC between the PCC and the right CPL compared
to the SCD group, while both the SCD and aMCI groups
showed no significant differences when compared to the HC.
The cerebellum is involved not only in movement and balance
but also in advanced cognitive functions (Gottwald et al., 2003).
The decreased FC between the PCC and the cerebellum suggests
a potential effect on the cerebellar-related cognitive functions in
aMCI; this finding is in accordance with our previous studies
(Chen et al., 2015, 2019b; Yang et al., 2017). Taken together, the
increased FC between the vmPFC and the left IPL and between
the PCC and the right MFG and the left MTG could serve as
a biomarker for identifying patients with naMCI and aMCI. In
addition, the altered FC between the PCC and the precuneus
could be a potential biomarker of SCD.

The present study indicates that the SCD group showed
increased FC in the aDMN and decreased FC in the pDMN,
while the naMCI and aMCI groups showed increased FC both in
the aDMN and the pDMN. We speculate that memory damage
in the SCD patients is not obvious and that there may be a
decrease in FC in the pDMN. With the progressive decline of
cognitive ability, FC in the naMCI and aMCI patients gradually
increases, which may be indicative of compensatory activity (Qi
et al., 2010). We can conclude that SCD is the intermediate
stage between healthy elderly and MCI, and both naMCI and
aMCI are the preclinical stages of AD. Additionally, the results
of the present study show that the DMN is an important
intrinsic network to differentiate between the healthy elderly,
SCD, naMCI, and aMCI (Wang et al., 2013).

The present study showed observably positive and negative
correlations between FC and cognitive domain scores in patients
with SCD, naMCI, and aMCI. In the anterior DMN subnetwork,
a noteworthy finding was that the episodic memory score
negatively correlated with the increased FC between the vmPFC
and the left IPL in the SCD and aMCI patients; this finding
confirms previously published articles stating that altered FC
is associated with memory deficits in patients with aMCI
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(Bai et al., 2009; Ofer et al., 2018). Furthermore, the finding
indicates that the increased FC between the vmPFC and the
left IPL may be an attempt to combat the induced functional
decline and the negative association with episodic memory,
and this may be reflective of compensatory attempts (Bai
et al, 2009; Zhang et al., 2016). It is worth noting that the
increased FC in the aDMN between the vmPFC and the left
MTG in SCD patients is positively correlated with episodic
memory, suggesting that episodic memory in SCD patients is
not impaired. This could be important evidence that the SCD
is an intermediate stage between healthy elderly and MCI. In
the posterior DMN, we found that the FC in the left MTG,
the right PRG, and the right STG is significantly negatively
correlated with cognitive function, including the information
processing speed and the executive function score. It has
been reported that the left MTG is significantly related to
MMSE scores, and this could reflect the progression of AD
(Chaetal., 2013).

In terms of subnetworks, our findings show that episodic
memory is significantly correlated with the altered aDMN,
while information processing speed and executive function are
negatively correlated with the pDMN. These results indicate that
the aDMN mainly controls the episodic memory function, while
the pDMN is primarily responsible for other cognitive functions
except for memory.

LIMITATIONS

There are two major limitations in our present study. First,
significant differences in age and education levels were present
among the four groups and this potentially negatively affected
our results. However, to avoid the effects of these confounding
factors, we performed all statistical analyses with age, education
level, and gender as covariates. Therefore, we believe that our
results are credible.

Second, the study had a cross-sectional design and a small
sample size, which may prevent us from detecting smaller effect
sizes and may lead to some null results. We will continue
to recruit volunteers to participate in this study and perform
regular follow up in the future. We will try to avoid all
possibilities of potential bias in our data and to further confirm
our results.

CONCLUSION

This study demonstrates that SCD, naMCI, and aMCI are
three preclinical stages of AD and that they exhibit distinct
alternations in the FC of DMN subnetworks. Furthermore,
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Background: Brain reserve can be defined as the individual variation in the brain
structural characteristics that later in life are likely to modulate cognitive performance.
Late midlife represents a point in aging where some structural brain imaging changes
have become manifest but the effects of cognitive aging are minimal, and thus may
represent an ideal opportunity to determine the relationship between risk factors and
brain imaging biomarkers of reserve.

Objective: We aimed to assess neuroimaging measures from multiple modalities to
broaden our understanding of brain reserve, and the late midlife risk factors that may
make the brain vulnerable to age related cognitive disorders.

Methods: We examined multimodal [structural and diffusion Magnetic Resonance
Imaging (MRI), FDG PET] neuroimaging measures in 50-65 year olds to examine the
associations between risk factors (Intellectual/Physical Activity: education-occupation
composite, physical, and cognitive-based activity engagement; General Health Factors:
presence of cardiovascular and metabolic conditions (CMC), body mass index,
hemoglobin Alc, smoking status (ever/never), CAGE Alcohol Questionnaire (>2,
yes/no), Beck Depression Inventory score), brain reserve measures [Dynamic: genu
corpus callosum fractional anisotropy (FA), posterior cingulate cortex FDG uptake,
superior parietal cortex thickness, AD signature cortical thickness; Static: intracranial
volume], and cognition (global, memory, attention, language, visuospatial) from a
population-based sample. We quantified dynamic proxies of brain reserve (cortical
thickness, glucose metabolism, microstructural integrity) and investigated various
protective/risk factors.

Results: Education-occupation was associated with cognition and total intracranial
volume (static measure of brain reserve), but was not associated with any of the dynamic
neuroimaging biomarkers. In contrast, many general health factors were associated with
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the dynamic neuroimaging proxies of brain reserve, while most were not associated with
cognition in this late middle aged group.

Conclusion: Brain reserve, as exemplified by the four dynamic neuroimaging features
studied here, is itself at least partly influenced by general health status in midlife, but
may be largely independent of education and occupation.

Keywords: brain reserve, cognitive aging, multimodal imaging, resilience, dynamic

INTRODUCTION

Brain health is difficult to quantify - other than the absence
of cognitive or neurological disease or pathology. The health of
other organs is more easily measureable. For example, cardiac
health can be described in terms of left ventricular ejection
fraction, cardiac index, or burden of coronary artery disease
(Mosterd and Hoes, 2007; Paulus et al., 2007; Jefferson et al.,
2010). Renal health can be monitored by glomerular filtration rate
or serum creatinine (Traynor et al., 2006). There are established
thresholds or stages of disease severity for both congestive heart
failure and chronic kidney disease (Coresh et al., 2007; Mosterd
and Hoes, 2007). In contrast, although several fundamental
components of brain health have been described, such as brain
reserve and cognitive reserve or resilience, they have not been
widely quantified and utilized.

The focus of the current study is on the concept of “brain
reserve” or “neurobiological capital,” defined as individual brain
variation that may lead to resistance or ability to cope with
pathology (Stern et al., 2018). The traditionally used proxies of
brain reserve include total intracranial volume, premorbid brain
tissue volume, and head circumference (Stern et al., 2018), which
are static or fixed in nature. Although each of these measures are
a gross measure of the brain anatomic capital, these measures
are not sufficient to define the overall brain reserve. Because
midlife and late middle age represent a critical period where
prominent aging-related brain changes begin (Debette et al.,
2011; Ritchie et al., 2015), identifying alterations to brain reserve
in this period will enhance the understanding of early changes in
cognitive and brain aging. Furthermore, studying brain reserve
in late middle age may provide insights into mechanisms of
resilience that could contribute to a better accepted model of
overall brain health (Arenaza-Urquijo and Vemuri, 2018; Stern
et al., 2018, 2019). See Figure 1 for a model of brain reserve
throughout life.

The main objective of this study was to broaden our
understanding of brain reserve, protective/risk factors, and
cognition in late middle age adult participants (age 50-65 years)
without cognitive impairment. We focused on this age group
because it is an age range during which both neuronal
structure and functional alterations are observed but with few
clinical symptoms (Giorgio et al, 2010; Jagust, 2013). We
aimed to: (1) examine protective/risk factors of brain reserve
measures and cognition; and (2) identify optimal neuroimaging
measures related to global and domain-specific cognition
that may best serve as dynamic neuroimaging biomarkers
of brain reserve.

MATERIALS AND METHODS

Selection of Participants

Study participants were from the Mayo Clinic Study of
Aging (MCSA) (Roberts et al., 2008), an epidemiologic study
of Mild Cognitive Impairment (MCI) and dementia among
community-dwelling residents of Olmsted County, Minnesota.
We included 537 late middle age participants (age 50-65 years)
who had available Magnetic Resonance Imaging (MRI) data.
A subset of 454 participants also had '8F-fluorodeoxyglucose
positron emission tomography (FDG PET). All participants were
cognitively unimpaired based upon a clinical adjudication at
the clinical visit corresponding to the imaging visit. The MCSA
was approved by the Mayo Clinic and Olmsted Medical Center
Institutional Review Boards and all participants provided written
informed consent.

Measures of Brain Reserve

We utilized four dynamic or modifiable neuroimaging measures
from three imaging modalities that are related to cognitive aging
and dementia as proxies of overall brain reserve: genu corpus
callosum fractional anisotropy (FA), posterior cingulate cortex
FDG uptake, superior parietal cortex thickness, and AD signature
cortical thickness. We term these proxies of brain reserve as
dynamic because they are not constant or fixed across the
adult lifespan like traditional brain reserve measures such as
intracranial volume.

Diffusion tensor imaging (DTI) is a method utilized to
quantify water diffusion throughout white matter tracts in the
brain, with FA being one diffusion metric to assess white matter
integrity (Le Bihan et al, 2001). Lower FA is related to less
microstructural integrity of the white matter, and lower FA has
been shown to be related to lower cognition in community-
dwelling older adults (Vernooij et al., 2009) and throughout the
Alzheimer’s spectrum (Bozzali et al., 2002; Zhang et al., 2007;
Chua et al., 2008). Microstructural integrity of the genu corpus
callosum as assessed by FA has been shown to be related of
systemic vascular and cerebrovascular health (Vemuri et al,
2018), and is potentially an earlier surrogate of cerebrovascular
health than white mater hyperintensities. There are intrinsic
differences in myelination, axonal density, or even time to
maturity of specific white matter tracks (Kochunov et al., 2012;
Sexton et al., 2014) that uniquely differentiate the genu from
other white matter tracks. Metabolism in the posterior cingulate
cortex, one of the most metabolic brain regions, has been shown
to preferentially decline early in preclinical Alzheimer’s disease
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FIGURE 1 | Model of brain reserve throughout the lifespan. Dotted line: Various factors may decrease brain reserve making likelihood of age-related cognitive
disorders more likely. Solid line: Normal trajectory without onset of clinical symptoms. It would be ideal to study and intervene on factors that negatively influence
brain reserve prior to onset of decline, with hopes of preventing or delaying onset of clinical disease.
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and is lower in APOE E4 carriers (Cunnane et al., 2011; Protas
et al., 2013; Leech and Sharp, 2014). Given the higher baseline
glucose uptake of the posterior cingulate cortex relative to other
brain regions and the disease-related metabolic decline of the
posterior cingulate cortex, it may uniquely serve as proxy of
brain health. Superior parietal cortex thickness has recently been
related to systemic vascular health, such that greater thickness
was associated with a higher number of vascular conditions.
Greater thickness has been posited to be a compensatory response
to early pathology (Vemuri et al., 2018). Reports have described
higher parietal volume in amyloid positive participants (Johnson
et al., 2014), and greater compensatory superior parietal cortical
thickness in those with lower CSF amyloid prior to atrophy
that coincides with increased CSF p-tau (Fortea et al., 2014).
With the significant impact of systemic vascular health on
the brain and potential influence of amyloid and tau on the
superior parietal lobule, we believe superior parietal cortical
thickness uniquely contributes to a more comprehensive view
of brain health. We chose to include Alzheimers disease
signature cortical thickness as a measure of brain reserve
because it has been validated as a measure of neurodegeneration
and is likely a better measure than other traditionally used
proxies of age and disease related neurodegeneration, like
hippocampal volume, as it is not confounded by head size
(Jack et al., 2015).

Structural and Diffusion MRI

All MRI images were acquired on 3T GE MRI (GE Medical
Systems, Milwaukee, WI, United States) using a Sagittal 3D
magnetization prepared rapid acquisition gradient recalled echo
(MP-RAGE) sequence. Repetition time (TR) was 22300 ms, echo

time (TE) ~3 ms, and inversion time (TI) = 900 ms. Voxel
dimensions were ~1.20 x 1.015 x 1.015 mm.

Cortical thickness measurements were computed using
Freesurfer v5.3 and total intracranial volume was computed
using a previously published method (Schwarz et al., 2016)
on standard structural magnetization-prepared rapid acquisition
gradient echo (MPRAGE) scans. We considered the dynamic
measures of superior parietal cortex thickness and composite
measure of cortical thickness from AD vulnerable regions
(average of thickness in entorhinal cortex, inferior temporal,
middle temporal, fusiform) (Jack et al., 2015). As a comparison to
these measures, we have also performed analyses with the static
measure of total intracranial volume.

The details of DTT acquisition and processing are discussed
in our recent publication (Vemuri et al., 2018). We considered
genu of the corpus callosum microstructural integrity as
quantified by FA from DTL

FDG PET

The acquisition, processing, and summary measure details for
FDG PET scans acquired on the MCSA study participants
are previously described (Jack et al, 2015). Computed
tomography scan was obtained for attenuation correction
and FDG PET images were obtained 30-40 min after tracer
injection. We considered posterior cingulate cortex glucose
metabolism from FDG PET.

Selection of Protective and Risk Factors
We examined a broad range of protective and risk factors
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(Stern et al., 2018), and overall proxies of health (e.g., chronic or
comorbid conditions).

Intellectual and Physical Activities

We utilized an education-occupation composite measure that
incorporates years of education and job level score that is
based on the participant’s primary occupation (Vemuri et al.,
2015). We assessed physical and cognitive-based activity using a
questionnaire that quantified the average activity in each domain
during the last 12 months (Vemuri et al., 2012). In our sample
of 50-65 years old participants, these represent self-reported
measures of physical and cognitive-based activities at late middle
age. A complete list of activities queried on the questionnaires are
previously published (Vemuri et al., 2012).

General Health Measures

Given the relationships found between overall health and
cognitive aging and/or age-related disease (Whitmer et al,
2005, 2008; Yafte et al., 2006; Crooks et al., 2008; Craft, 2009;
Byers and Yaffe, 2011), we included measures that are not
routinely studied in the context of cognitive resilience. The
presence of cardiovascular and metabolic conditions (CMC) is
a measure composed of health system data, ICD-9 and ICD-10
codes of seven common conditions related to systemic health:
hypertension, hyperlipidemia, cardiac arrhythmias, coronary
artery disease, congestive heart failure, diabetes mellitus, and
stroke (Vemuri et al., 2017, 2018). The CMC composite score is
an additive measure of the absence or presence of each condition,
with a range score of 0-7 (Vemuri et al, 2017, 2018). With
increasing use of electronic medical records for research data,
this metric may be derived from already collected data and serve
as an overall metric of systemic cardiovascular/metabolic disease
burden. In addition to CMC, we also studied body mass index
[BMI, mass (kg)/height (m?)] (Calle et al., 1999), hemoglobin
Alc (average blood glucose of around the last 90-120 days)
(Rohlfing et al., 2002), ever-smoking (dichotomous), score on
the CAGE Alcohol Questionnaire >2 (dichotomous) (Ewing,
1984), and continuous score on the Beck Depression Inventory
(Beck et al., 1996).

Measures of Cognition

As previously described, cognitive tests were administered by a
psychometrist and included nine tests covering four domains:
memory [WMS-R Logical Memory-II (delayed), WMS-R Visual
Reproduction-II (delayed), AVLT (delayed)], attention (TMT:
Part B, WAIS-R Digit Symbol), language (BNT, category fluency),
and visuospatial (WAIS-R Picture Completion, WAIS-R Block
Design) (Roberts et al., 2008). Individual test scores from
each domain were converted into z-scores, which were then
averaged to make domain-specific z-scores. Global cognition was
estimated from the average of the four domain-specific z-scores
and then itself converted into a z-score for analyses.

Statistical Analyses

We performed multivariable linear regression to examine the
relationship between: (1) protective/risk factors and brain
reserve measures, (2) brain reserve measures and cognition, (3)

protective/risk factors and cognition. Next, to relate both brain
reserve measures and protective/risk factors independently to
cognition, each brain reserve measure and protective/risk factor
was used as a predictor in regression models. All analyses were
adjusted for age, sex, and the presence of an APOE E4 allele.
We also performed t-test and chi-square analyses to assess for
mean differences between sexes in cross-sectional protective/risk
factors, brain reserve measures, and cognition. SAS University
Edition was utilized for analyses. A p < 0.05 was considered
statistically significant.

RESULTS

Participant characteristics are shown in Table 1. Our sample
included 537 participants with a mean age of 58.7 years. There
were nearly identical number of females and males (269 and
268). Of the 537 participants, 29.1% had an APOE4 allele. Mean
education was 15.2 years with a range between 9-20 years.

Table 2 shows descriptive statistics between females and
males. There were no differences in age, education years, APOE4
status between males and females. Females had higher global
cognition, memory, attention, language performance; males had
higher visuospatial skills. Females had higher posterior cingulate
FDG and superior parietal thickness, despite lower intracranial
volume and genu FA. Females had lower presence of CMC and
higher self-reported cognitive activity engagement. There were
no sex differences in body mass index, HbAlc, smoking status,
Beck Depression Inventory score, or CAGE score.

Relationship Between Protective/Risk
Factors and Brain Reserve Measures

A regression heatmap from analyses adjusted for age, sex,
and APOE E4 can be found in Figure 2A, and complete
regression output can be found in Table 3A. A higher education-
occupation composite score was associated with higher posterior
cingulate cortex FDG uptake and greater intracranial volume.
More physical activity was associated with higher genu FA
and posterior cingulate cortex FDG uptake. We found no
associations between cognitive-based activity and any of the brain
reserve measures.

A higher number of CMC and higher Beck Depression
Inventory scores were associated with lower posterior cingulate
cortex FDG uptake and AD signature region thickness. Being an
ever-smoker (relative to never-smoker) was associated with lower
genu FA, AD signature region thickness, and superior parietal
cortex thickness. CAGE Alcohol Questionnaire score >2 was
associated with lower AD signature region thickness and superior
parietal cortex thickness. Higher body mass index was related
to lower posterior cingulate cortex FDG uptake and superior
parietal cortex thickness, and higher HbAlc was negatively
related to lower posterior cingulate cortex FDG uptake.

Relationship Between Brain Reserve

Measures and Cognition
We found that higher brain reserve measures were associated
with better global and domain-specific cognition. A regression
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TABLE 1 | Descriptive statistics for total sample.

Variable All (n =537)
Age (years) 58.7 (4.3)
Education (years) 16.2 (2.2)
Educ-occ composite 13.1 (2.2)
Global cognition (Z-score) 0.75 (0.77)
Memory (Z-score) 0.62 (0.88)
Attention (Z-score) 0.66 (0.74)
Language (Z-score) 0.50 (0.87)
Visuospatial (Z-score) 0.61 (0.84)
Genu corpus callosum (FA) 0.62 (0.04)
Posterior cingulate (FDG) 1.96 (0.16)
AD ROI (Thick) 2.98 (0.12)
Superior parietal (Thick) 2.04 (0.13)
Intracranial volume 1488.5 (161.7)
CMC 1.0 (1.1)
BMI 29.3 (5.6)
HbA1c 5.6 (0.7)
BDI score 4.1 (4.8)
Physical activity 6.7 (4.6)
Cognitive activity 21.1 (8.6)

Sex: F/M (%)

Smoke: No/Yes (%)
CAGE > 2: No/Yes (%)
APOE4: —/+ (%)

269 (50)/268 (50)
324 (60)/213 (40)
500 (93)/37 (7)

370 (71)/152 (29)

Mean (Standard Deviation) for continuous variables. —Count

dichotomous variables.

(%) for

heatmap from adjusted analyses can be found in Figure 2B, and
complete regression output can be found in Table 3B. Higher
intracranial volume was associated with better global cognition
and visuospatial ability; higher genu FA with better global
cognition, attention, and visuospatial ability; higher posterior
cingulate cortex FDG uptake with better global cognition and
attention; and higher superior parietal thickness with better
visuospatial ability. There were no significant associations
between AD signature region thickness and cognition in
multivariable models.

Relationship Between Protective/Risk

Factors and Cognition

Education-occupation composite score and cognitive-based
activity engagement in the last 12 months were associated with
better global and domain-specific cognition across all domains.
Physical activity engagement in the last 12 months was associated
with better global cognition and better cognition in attention,
language, and visuospatial ability domain, but not memory.
A regression heatmap from adjusted analyses can be found
in Figure 2C, and complete regression output can be found
in Table 3C.

Being an ever-smoker (relative to non-smoker) was associated
with worse cognition across all domains. A greater number of
depressive symptoms was associated with worse performance in
global cognition and on tests of memory and attention. Higher
body mass index was associated with worse global cognition

and language. We found no relationship between HbAlc or
CAGE Alcohol Questionnaire score >2 and global or domain-
specific cognition.

DISCUSSION

We examined the relationships between protective/risk
factors and imaging proxies of brain reserve in a late
midlife cohort. Our major finding was that several general
health factors were associated with worsening of the four
dynamic neuroimaging biomarkers, in a manner that was
not complicated by concomitant associations of declines in
cognition and at least some of the general health factors.
Depression and smoking showed associations with the
dynamic neuroimaging proxies of reserve but also cognition,
precluding any claims about their indirect relationships
to brain reserve. Education-occupation was not associated
with any of the dynamic brain imaging measures, but
was associated with the static brain reserve proxy of total
intracranial volume.

Brain reserve, as exemplified by the four dynamic imaging
features studied here, is itself at least partly under the influence
of general health status in midlife, but remarkably is largely
independent of education and occupation. Health issues such
as CMC, BMI, glycemic control and alcohol use that arise
in midlife may have indirect effects on risks for later life
cognition by influencing brain structure and function beginning
in midlife or even earlier. Thus, white matter integrity in the genu
corpus callosum, posterior cingulate cortex FDG, and cortical
thickness are influenced by midlife health factors that in later
life moderate the effects of age-related neurodegenerative and
cerebrovascular diseases.

Several features distinguish this study from most published
reports on resilience and brain reserve. First, we worked to
strengthen our understanding of brain reserve by examining a
broader set of dynamic biomarkers of brain reserve from multiple
neuroimaging modalities. Traditional measures of brain reserve
include premorbid brain volume, intracranial volume, or head
circumference, which are fixed throughout the adult life (Stern
et al., 2018). While these measures have been shown to be related
to cognition, they are gross measures of overall brain reserve and
do not encapsulate the likely modifiable nature of brain reserve.
In this study, the static measure of intracranial volume that was
used as a comparison region was only related to education-
occupation and not to the other potential protective/risk factors
that we identified. Whereas three of the four the dynamic brain
reserve measures we used were associated with multiple general
health factors. Importantly, our work builds upon recent studies
that have started to expand our view of brain reserve with the
incorporation of glucose metabolism, white matter integrity, and
patterns of gray matter volume and cortical thickness (Querbes
etal., 2009; Smith et al., 2010; Arenaza-Urquijo et al., 2013; Ewers
et al., 2013; Morbelli et al., 2013; Malpetti et al., 2017; Pettigrew
et al., 2017; Laubach et al., 2018). As shown in our results,
the incorporation of carefully selected dynamic neuroimaging
measures associated with cognitive aging may provide additional
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TABLE 2 | Descriptive statistics by sex.

Variable Female (n = 269) Male (n = 268) p-value
Age (years) 58.7 (4.9) 58.7 (4.2) ns
Education (years) 16.1(2.2) 16.3 (2.2) ns
Educ-occ composite 12.8 (2.3) 13.3 (2.1) 0.0195
Global cognition (Z-score) 0.83 (076) 0.68 (0.77) 0.0297
Memory (Z-score) 0.78 (0.84) 0.45 (0.88) <0.0001
Attention (Z-score) 0.79 (0.75) 0.53 (0.70) <0.0001
Language (Z-score) 0.60 (0.89) 0.39 (0.84) 0.0049
Visuospatial (Z-score) 0.45 (0.80) 0.78 (0.85) <0.0001
Genu corpus callosum (FA) 0.62 (0.04) 0.63 (0.04) 0.0269
Posterior cingulate (FDG) 2.00 (0.16) 1.92 (0.16) <0.0001
AD ROI (Thick) 2.98 (0.12) 2.98 (0.12) ns
Superior parietal (Thick) 2.06 (0.12) 2.03 (0.13) 0.0013
Intracranial volume 1381.3 (112.9) 1596.1 (128.4) <0.0001
CMC 1.0(1.1) 1.3(1.2) 0.0003
BMI 29.3 (6.6) 29.3 (4.5) ns
HbA1c 5.5 (0.6) 5.6 (0.8) ns
BDI score 4.1 (4.7) 4.7 (4.9) ns
Physical activity 6.6 (4.3) 6.8 (4.8) ns
Cognitive activity 23.3 (8.6) 18.9 (8.1) <0.0001
Smoke: No/Yes (%) 170 (63)/99 (37) 154 (57)/114 (43) ns
CAGE > 2: No/Yes (%) 255 (94)/14 (6) 245 (91)/23 (9) ns
APOE4: —/+ (%) 187 (72)/74 (28) 183 (70)/78 (30) ns

Mean (Standard Deviation) for continuous variables. Count (%) for dichotomous variables. p-values for t-test and chi-square of differences in group means.

tools for the study of brain reserve; however, this will require
future studies in independent samples.

Second, we studied a broad array of protective/risk factors
that may impact brain health. Many studies on resilience use
education, occupation, or lifestyle-social activity engagement as
the sole proxy of cognitive resilience (Stern, 2009, 2012; Stern
et al,, 2018). While these contribute to the lower susceptibility to
pathology, other factors may be additive in our understanding of
cognitive resilience and brain health (Clare et al., 2017); notably:
smoking, alcohol intake, and systemic vascular and metabolic
health (Wolf et al., 1988; Ott et al., 1998; Thomas and Rockwood,
2001; Craft, 2009). The general health factors we examined were
largely associated with lower brain reserve, as assessed by the
four dynamic neuroimaging measures. By studying factors other
than education, intellectual and physical activities as factors that
influence cognitive resilience, we have the opportunity to better
define which factors positively or negatively impact brain health
and cognitive aging. This is of fundamental significance given
the aging population throughout the world and an incomplete
understanding of what factors lead to the complex, age-related
cognitive disorders, like Alzheimer’s.

Third, our study was comprised of a late midlife sample
(50-65 years) of participants without clinical signs of cognitive
impairment. To date, many studies concerning resilience or
brain reserve have focused on older adults. This is logical when
working to assess resilience and brain reserve as pathologic
differences may be more evident in that population; however,
it is likely the brain changes that promote cognitive decline
and age-related cognitive disorders begins earlier in life (see

Figure 1). While we are currently unaware of exactly when
these changes begin, pathology studies have shown very low
prevalence of neurodegenerative and cerebrovascular pathologies
before the age of 65 (Nelson et al., 2012). We would advocate
for the study of protective/risk factors that influence resilience,
brain reserve, and overall brain health throughout life to further
our understanding.

Although its increasingly apparent that sex differences
may impact brain health (Mielke et al, 2014; Chéne et al,
2015; Zagni et al, 2016), we still have an inadequate
understanding of how sex impacts brain health throughout
life and the propensity to develop age-related cognitive
disorders. Although our study was not specifically designed
to assess for sex differences, in our sample females scored
higher on all cognitive domains except for visuospatial ability
relative to age and education matched males. Moreover,
despite having significantly lower total intracranial volume,
females had no differences in AD region thickness, with
higher superior parietal thickness and posterior cingulate FDG
relative to males.

Strengths and Limitations

The investigation of a narrow sample of the population
(50-65 years) is a key strength of this work because this
is a critical range where early brain and cognitive changes
are observed without significant burden of cerebrovascular
disease and neurodegenerative disorders. The large sample size
(n = 537) with nearly identical number of females/males in late
middle age that has been well characterized with demographic
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FIGURE 2 | (A) Regression Heatmap for Protective/Risk Factors x Brain Reserve M
relationships between Protective/Risk Factors and Brain Reserve Measures. Shades

Reserve Measures. Complete regression output with Beta and SE can be found in Table 3A. (B) Regression Heatmap for Brain Reserve Measures x Cognitive
Measures. Adjusted analyses shown in figure. Shades of green indicate positive relationships between Brain Reserve Measures and Cognitive Measures. There were
no negative relationships between Brain Reserve and Cognitive Measures. Complete regression output with Beta and SE can be found in Table 3B. (C) Regression
Heatmap for Protective/Risk Factors x Cognitive Measures. Adjusted analyses shown in figure. Shades of green indicate positive relationships between
Protective/Risk Factors and Cognitive Measures. Shades of red indicate negative relationships between Protective/Risk Factors and Cognitive Measures. Complete

regression output with Beta and SE can be found in Table 3C.

BMI HbA1c BDI Smoke CAGE

easures. Adjusted analyses shown in figure. Shades of green indicate positive
of red indicate negative relationships between Protective/Risk Factors and Brain

data and neuroimaging measures obtained at a single site
strengthen our findings.

Several limitations include the homogeneity of our
population-based sample relative to the United States and
worldwide that may limit the applicability of findings.
However, previous reports support the generalizability of
our sample (Rocca et al., 2012; Sauver et al., 2012). The cross-
sectional design of the study limits our ability to assess the
relationship between protective/risk factors and brain reserve
measures to the development of MCI, dementia, or cognitive
change. While we found associations between brain reserve
measures and cognition, these relationships will likely be best
assessed in a longitudinal study where change in cognition
and other clinical outcomes may be examined. Despite these
limitations our study of a unique sample helps contribute to

the understanding of cognitive aging and overall brain health
in late midlife.

Future Directions

Further work is needed to validate the findings of this study
in an independent sample. Future studies will benefit from the
development of composite risk scores and composite measures
for brain health that can be used in tracking brain and cognitive
aging throughout life. A longitudinal study would help to better
assess cognitive decline (change in cognitive outcomes) and risk
for development of MCI and dementia. It may be helpful to
perform voxel-wise analyses of potential brain reserve measures.
Lastly, we may work to stratify cognitively normal participants
by CSF and/or PET amyloid and tau status to determine if
this impacts the relationship between protective/risk factors and
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TABLE 3 | Full regression output including Beta, SE, and p-values for tested relationships, emboldened results are significant.

(A)
Unadjusted Educ-Occ Phys Act Cog Act CcMC BMI HbA1c BDI Smoke CAGE
Risk x BR B SE p B SE p B SE p B SE p B SE p SE SE SE SE
GCC (FA) 0.00108 0.0007 0.1362 0.0008 0.0003 0.01780 -0.00025 0.0002 0.1744 —0.00347 0.0014 0.01060 -0.00023 0.0003 0.4138 0.0024 0.0003 0.0032 0.0063
PCC (FDG) 0.00481 0.0035 0.168 0.0046  0.0017 0.00620 0.00240 0.0009 0.00720 -0.03078 0.0064 0.00001 -0.00285 0.0014 0.03550 0.0112 0.0016 0.0157 0.0304
AD ROI (Thick) 0.00321 0.0024 0.19 0.0023 0.0012 0.0502 —0.00021 0.0006 0.7337 —0.02029 0.0045 0.00001 -0.00259 0.0010 0.00680 0.0081 0.0011 0.0108 0.0211
SupPar (Thick) 0.00255 0.0025 0.314 0.0001 0.0012 0.9613 0.00105 0.0006 0.1035 —0.00384 0.0047 0.4184 0.00173 0.0010 0.0809 0.0084 0.0012 0.0112 0.0216
ICV (VoI) 1453234 31316 0.00001 17694 15417 02516 -221202 0.8103 0.00650 10.88245 59642 0.0686 —1.92489 12462 0.123 10.6098 1.4600 14.2745 27.5332
Adjusted Educ-Occ Phys Act Cog Act CcMC BMI HbA1c BDI Smoke CAGE
Risk x BR B SE P B SE [ B SE [ B SE P B SE P SE SE SE SE
GCC (FA) 0.00091 0.0007 0.2006 0.0007 0.0003 0.04770 -0.00012 0.0002 05285 —0.00242 0.0014 0.0806 —0.00019 0.0003 0.4906 0.0024 0.0003 0.0032 0.0061
PCC (FDG) 0.00756  0.0033 0.02380 0.0045 0.0016 0.00580 0.00137 0.0009 0.1243 -0.02128 0.0064 0.00100 -0.00280 0.0013 0.03050 0.0108 0.0016 0.0150 0.0290
AD ROI (Thick) ~ 0.00323 0.0024 0.1867 0.0020  0.0012 0.0842 —-0.00018 0.0006 0.7814 —0.01840 0.0047 0.00010 -0.00252 0.0009 0.00820 0.0081 0.0011 0.0108 0.0210
SupPar (Thick)  0.00336 0.0025 0.1797  —0.0001 0.0012 0.9073 0.00064 0.0007 0.3265 0.00214 0.0049 0.6606 0.00179  0.0010 0.0865 0.0083 0.0011 0.0111 0.0213
ICV (VoI) 967513 23652 0.00001 1.2796 1.1553  0.2685 1.08832 0.6315 0.0854 —-2.91924 4.6813 0.5332 —1.81222 0.9321 0.0524 8.0080 1.0918 10.70567 20.6777
(B)
Unadjusted GCC PCC AD ROI SupPar icv
BR x Cog B SE P B SE [ B SE [ B SE [ B SE [
Global 280062 0.9010 0.00200 09593 0.2262 0.00001 0.45760 0.2720 0.0931 0.44047 0.2621 0.0934 0.00003 0.0002 0.8902
Memory 1.08056 1.0296 0.2944 06980 0.2449 0.00460 023238 0.3054 04471 -0.11163 0.2964 0.7066 —0.00074 0.0002 0.00160
Attention 224928 0.8604 0.00920 1.0748 0.2169 0.00001 040709 0.2576 0.1146 063481 0.2478 0.01070 -0.00026 0.0002 0.1876
Language 202338 1.0206 0.04790 07009 0.2514 0.00550 0.14444 0.3050 0.636 0.29686 0.2955 0.3156 —0.00009 0.0002 0.7143
Visuospatial 3.60372 0.9785 0.00030 0.2285 0.2447 0.351 068096 0.2952 0.02150 063359 0.2838 0.02600 0.00129 0.0002 0.00001
Adjusted GCC PCC AD ROI SupPar icv
BR x Cog B SE ) B SE ) B SE ) B SE [ B SE [
Global 211878 0.9084 0.02010 06834 0.2342 0.00370 0.37298 0.2730 0.1725 0.21459 0.2605 0.4104 0.00054 0.0003 0.04660
Memory 1.05430 1.0379 0.3102 0.4135  0.2547 0.25466  0.13757 0.3017 0.6486 —0.39130 0.2949 0.1851 —0.00013 0.0003 0.6776
Attention 1.93948 0.8550 0.02370 07098 0.2224 0.00150 0.22823 0.2487 0.3593 0.35902 0.2425 0.1393 0.00050 0.0003 0.0511
Language 1.86428 1.0408 0.0737 0.4275 0.2617 0.1031 0.05065 0.3040 0.8677 0.09951 0.2976 0.7382 0.00061 0.0003 0.0496
Visuospatial 236245 09787 0.01610 0.2611 0.2494  0.2955 0.52470  0.2874  0.0685 0.68476 0.2784 0.01420 0.00105 0.0003 0.00030
©
Unadjusted Educ-Occ Phys Act Cog Act cMC BMI HbA1c BDI Smoke CAGE
Risk x Cog B SE p B SE p B SE p B SE p B SE p SE SE SE SE
Global 0.13989 0.0143 0.00001 0.0274 0.0074 0.00020 0.02990 0.0037 0.00001 -0.06770 0.0287 0.01880 -0.01272 0.0060 0.03440 0.0505 0.0069 0.0668 0.1332
Memory 0.10201 0.0168 0.00001 0.0155 0.0084 0.0655 0.02460 0.0043 0.00001 -0.03664 0.0326 0.2615 —0.01009 0.0067 0.1349 0.0568 0.0079 0.0763 0.1487
Attention 0.09022 0.0142 0.00001 0.0233  0.0070 0.00100 0.02630 0.0036 0.00010 -0.09937 0.0271 0.00030 —0.01030 0.0057 0.0706 0.0485 0.0066 0.0638 0.1271
Language 0.14679 0.0162 0.00001 00260 0.0083 0.00180 0.03322 0.0042 0.00001 -0.04264 0.0324 0.189 —0.01393 0.0067 0.03850 0.0574 0.0079 0.0759 0.1482
Visuospatial 0.11419 0.0161 0.00001 00189 0.0081 0.01940 0.01202 0.0043 0.00500 -0.01840 0.0314 0.5581 -0.00248 0.0066 0.7058 0.0549 0.0076 0.0740 0.1455
Adjusted Educ-Occ Phys Act Cog Act CcMC BMI HbA1c BDI Smoke CAGE
Risk x Cog B SE P B SE [ B SE [ B SE [ B SE P SE SE SE SE
Global 0.14417 0.0138 0.00001 0.0251 0.0072  0.00050 0.03064 0.0038 0.00001 -0.02388 0.0295 04185 -0.01250 0.0058 0.03270 0.0494 0.0068 0.0655 0.1302
Memory 0.11046 0.0164 0.00001 0.0144  0.0082 0.0808 0.02132 0.0044 0.00001 0.00635 0.0335 0.8497 —0.00985 0.0066 0.1361 0.0558 0.0077 0.0752 0.1461
Attention 0.09696 0.0136 0.00001 00237 0.0068 0.00050 0.02472 0.0035 0.00001 -0.05286 0.0275 0.0551 —-0.01014 0.0054 0.0621 0.0464 0.0063 0.0615 0.1248
Language 0.15326 0.0160 0.00001 00248 0.0082 0.00270 0.03292 0.0043 0.00001 -0.00844 0.0337 0.8024 —0.01367 0.0066 0.04000 0.0569 0.0078 0.0755 0.1469
i 0.10693 0.0156 0.00001 0.0160  0.0078 0.04080 0.01919 0.0042 0.00001 —0.00635 0.0317 0.8412 —-0.00167 0.0063 0.7926 0.0532 0.0074 0.0716 0.1407

Results from unadjusted analyses and analyses adjusted for age, sex,

and APOE4-status are provided. (A) Protective/Risk Factors x Brain Reserve Measures, (B) Brain Reserve Measures x Cognitive Measures, (C)

Protective/Risk Factors x Cognitive Measures. Bold values denote statistical significance at a threshold of p < 0.05.
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FIGURE 3 | Hypothetical depiction of connections between protective/risk factors, brain reserve measures, and cognitive measures. All depicted relationships were
significant in our analyses. Note: the cross-sectional design of our study limits the ability to directly connect each protective/risk factor to cognitive measures as
mediated by individual brain reserve measures.

dynamic brain reserve measures. Interestingly, in a study of 52
cognitively normal participants, those with lower CSF amyloid
and higher education had lower FDG PET uptake, while those
with higher CSF amyloid and higher education had higher FDG
PET uptake (Ewers et al., 2013). This suggests that protective
factors may be differentially related to dynamic brain reserve
measures depending on baseline amyloid burden.

To better visualize potential connections between
protective/risk factors, brain reserve measures, and cognition,
we have compiled a flow diagram, indicating the significant
relationships we found. Figure 3 is a hypothetical depiction of
these relationships where both protective/risk factors and brain
reserve measures were related to the same cognitive outcome. For
example, being an ever-smoker was related to lower genu FA and
lower superior parietal cortex thickness, which were related to
worse global cognition, visuospatial ability, and attention. Thus,
it may be possible for smoking to negatively affect cognition via
impact on genu FA and superior parietal cortex thickness. As seen
in this figure, future work would ideally focus on expanding our
understanding of individual and combined factors that augment
brain reserve measures and ultimately lead to discernable clinical
outcomes (i.e., cognition, functional status). Further longitudinal
analyses and data across the lifespan will allow us to understand
the pathways proposed.

CONCLUSION

In conclusion, we found that education-occupation was
associated with cognition and the static brain reserve measure of

total intracranial volume, but was not associated with any of the
dynamic neuroimaging biomarkers. In contrast, many general
health factors were associated with the dynamic neuroimaging
proxies of brain reserve, while most were not associated with
cognition in this late middle aged group. Brain reserve, as
exemplified by the four dynamic neuroimaging features studied
here, is itself at least partly under the influence of general health
status in midlife, but remarkably is largely independent of
education and occupation.

While an incomplete study of the factors that influence brain
health and cognitive aging, this work contributes to the growing
data that noticeable neuroimaging and cognitive relationships
can be found in late midlife. We must continue to build a more
comprehensive view of cognitive resilience and brain reserve to
better understand the factors that make the brain vulnerable to
age-related cognitive disorders.
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Introduction: It has been shown that Alzheimer’s disease (AD) is accompanied by marked
structural brain changes that can be detected several years before clinical diagnosis via
structural magnetic resonance (MR) imaging. In this study, we developed a structural MR-
based biomarker for in vivo detection of AD using a supervised machine learning approach.
Based on an individual’s pattern of brain atrophy a continuous AD score is assigned which
measures the similarity with brain atrophy patterns seen in clinical cases of AD.

Methods: The underlying statistical model was trained with MR scans of patients and
healthy controls from the Alzheimer’s Disease Neuroimaging Initiative (ADNI-1 screening).
Validation was performed within ADNI-1 and in an independent patient sample from the
Open Access Series of Imaging Studies (OASIS-1). In addition, our analyses included data
from a large general population sample of the Study of Health in Pomerania (SHIP-Trend).

Results: Based on the proposed AD score we were able to differentiate patients from
healthy controls in ADNI-1 and OASIS-1 with an accuracy of 89% (AUC = 95%) and 87%
(AUC = 93%), respectively. Moreover, we found the AD score to be significantly
associated with cognitive functioning as assessed by the Mini-Mental State Examination
in the OASIS-1 sample after correcting for diagnosis, age, sex, age-sex, and total
intracranial volume (Cohen’s f° = 0.13). Additional analyses showed that the prediction
accuracy of AD status based on both the AD score and the MMSE score is significantly
higher than when using just one of them. In SHIP-Trend we found the AD score to be
weakly but significantly associated with a test of verbal memory consisting of an
immediate and a delayed word list recall (again after correcting for age, sex, age-sex,
and total intracranial volume, Cohen’s = 0.009). This association was mainly driven by
the immediate recall performance.

Discussion: In summary, our proposed biomarker well differentiated between patients
and healthy controls in an independent test sample. It was associated with measures of
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cognitive functioning both in a patient sample and a general population sample. Our
approach might be useful for defining robust MR-based biomarkers for other
neurodegenerative diseases, t00.

Keywords: Alzheimer's disease, machine learning, dementia, magnetic resonance imaging, FreeSurfer

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder and
accounts for an estimated 60 to 80 percent of cases of dementia
(1, 2). Dementia is characterized by memory impairments,
disordered cognition, language problems, and changes in
behaviour, which seriously impair a person’s ability to live
independently. In advanced AD the person loses basic body
functions like walking and swallowing and requires around the
clock-care. According the World Health Organization (WHO)
the incidence of dementia worldwide will reach about 135
million people in 2050 and will become a major challenge for
health-care systems of western countries (3).

The hallmark pathology of AD is the progressive
accumulation of amyloid beta protein and tau protein in the
brain which is accompanied by death of neurons (1, 4).
Macroscopically this is reflected in atrophy of specific brain
regions which can be assessed via structural magnetic resonance
(MR) imaging. At an early stage, the mild cognitive impairment
phase, there typically is an atrophy only of the temporal lobe.
With progression of the disease other cortical and subcortical
regions, notably the hippocampus, become affected too (5-7).
These structural changes have been shown to be detectable
several years before the clinical diagnosis of AD (8, 9) which
led to the development of imaging-based biomarkers of AD
based on machine learning (10-16). Biomarkers based on
structural MR imaging have been shown to differentiate well
between cases of AD and cognitively healthy controls (17) and
some of them have been shown to be sensitive at the preclinical
stage (18). However, most of these biomarkers have been
investigated in single cohorts only.

Since structural brain changes are detectable several years
before clinical diagnosis MR-based biomarkers for AD are
highly relevant for general population studies, too. However,
the investigation of such biomarkers has gained attention only
recently within the context of general brain ageing (19-21). In
this study, we developed an MR-based biomarker for the in vivo
assessment of AD based on a supervised machine learning
approach. Based on an individual’s pattern of brain atrophy a
continuous score is assigned which measures the similarity with
brain atrophy patterns seen in clinical cases of AD. The
underlying statistical model is trained using data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (22)
and validation is performed in an independent patient sample
from the Open Access Series of Imaging Studies (OASIS) (23).
Finally, our proposed biomarker is investigated in general
population data from the Study of Health in Pomerania
(SHIP-Trend) (24).

MATERIALS AND METHODS

Sample Description

Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance (MR) imaging, positron
emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). For up-to-date information,
see www.adni-info.org. T1-weighted structural MR scans from
413 participants of the ADNI-1 screening sample were
considered in this study. Images were acquired using multiple
scanners with a field strength of 1.5T (25, 26). The detailed MR
protocol can be found in the supplement. Since the ADNI scans
were used to train the AD classifier additional quality control of
the image processing was performed as explained below. The
final sample comprised N = 374 individuals with 165 diagnosed
with AD and 209 cognitively healthy controls (CN) (see Table 1).

Open Access Series of Imaging Studies (OASIS)

To validate the AD classifier we used data from the Open Access
Series of Imaging Studies (OASIS-1) which is a cross-sectional
collection of MR scans of N = 416 individuals aged 18 to 96 (23)
(see Table 1). One hundred of the participants older than 60
have been clinically diagnosed with very mild to moderate AD.
More information can be found at www.oasis-brains.org. Details
of the MR protocol can be found in the supplement. All images
were screened for artefacts, acquisition problems, and processing
errors and images with severe flaws were excluded by the OASIS
investigators. No additional quality control was performed by the
authors. 235 participants (100 AD, 135 CN) completed the Mini-
Mental State Examination (MMSE). The MMSE is a 30-point
questionnaire that is used extensively to screen for
dementia (27).

TABLE 1 | Basic demographic characteristics of all three samples.

ADNI-1 screening OASIS-1 SHIP-Trend
N 374 416 1,973
Females 186 (49%) 254 (61%) 1,038 (53%)
AD 165 (44%) 100 (24%) -
Age [yl 75.7 (6.3) 52.9 (25.0) 51.3 (14.0)
Intracranial Volume [dl] 16.4 (1.7) 14.8 (1.6) 15.9 (1.6)
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Study of Health in Pomerania (SHIP-Trend)

The Study of Health in Pomerania (SHIP) was designed to assess
the prevalence of common risk factors and diseases in a
population of northeast Germany randomly drawn from local
registers (24). 4,308 subjects participated at baseline between
1997 and 2001. In parallel to the original SHIP study a new
independent sample was drawn and examinations of similar
extent were undertaken (SHIP-Trend). In this study, T1-
weighted structural MR images of the head from 2,154
participants of SHIP-Trend were considered (28). Details of
the MR protocol can be found in the supplement. Scans with
very poor technical quality, (e.g. frontal darkening) were
excluded (N = 84). In addition, scans showing structural
abnormalities (e.g. tumors, cysts) and cases of cerebral stroke
were excluded as well (N = 93). The image processing pipeline
(see below) failed to process 4 scans. The final sample comprised
N = 1973 individuals (see Table 1).

Of those, 1,955 participants completed a word list recall
(WLR) test during the face-to-face interview as part of the
standard SHIP-Trend protocol. The WLR test consists of eight
items which needed to be recalled immediately (immediate
WLR, 0 to 8 points) and after a 20 min delay (delayed WLR
with distractor words, -8 to 8 points). The total WLR score was
computed as sum of both tests. The WLR is part of the
Nuremberg Gerontopsychological Inventory (29).

MR Image Segmentation With Freesurfer
Cortical reconstruction and volumetric segmentation of all three
data sets were performed with the FreeSurfer image analysis suite
version 5.3 (“recon-all”), which is documented and freely available
for download online (http://surfer.nmr.mgh harvard.edu).
Briefly, this processing includes removal of non-brain
tissue using a hybrid watershed/surface deformation procedure
(30), automated Talairach transformation, segmentation of

subcortical white matter and deep gray matter volumetric
structures (including hippocampus, amygdala, caudate, putamen,
ventricles) (31-33), intensity normalization (34), tessellation of the
gray matter white matter boundary, automated topology
correction (35, 36), and surface deformation following intensity
gradients to optimally place the gray/white and gray/cerebrospinal
fluid borders at the location where the greatest shift in intensity
defines the transition to the other tissue class (37-39).

Once the cortical models are complete, individual images are
being registered to a spherical atlas which is based on individual
cortical folding patterns to match cortical geometry across
subjects (40), and the cerebral cortex is being parcelled into 68
units with respect to gyral and sulcal structure (41, 42). Cortical
white matter, i.e. white matter up to 5mm below the gray matter
boundary, is also being parcelled into 68 units by assigning each
white matter voxel the label of the closest cortical voxel (43).
FreeSurfer also gives an estimate of the total intracranial volume
(eTIV) which was not used to train the AD classifier but as a
covariate in subsequent statistical analyses.

Although being part of the standard FreeSurfer output several
brain regions were excluded from the analyses. The 5™ ventricle
was excluded because it was not detected in all scan (zero
volume). In addition, the brain stem and optic chiasm were
excluded as well. In total, 169 out of 172 brain regions of gray
matter, white matter, and the ventricular system were considered
(see Figure 1). The complete list of regions can be found in the
Supplementary Material.

Alzheimer’s Disease Classifier

Based on the ADNI-1 screening sample a binary classifier was
trained with diagnoses as dependent variable. In order to
minimize the influence of image segmentation errors on the
classifier, we performed an additional statistical quality control of
each feature. More specifically, we removed all scans with brain

FreeSurfer 5.3

individuals with Alzheimer’s disease and cognitively normal ones.

Cortical thickness

68 features

Volumes of

- subcortical GM (green),
- WM (yellow)

- ventricles (red)

101 features

FIGURE 1 | In total, 169 features of gray matter, white matter, and the ventricular system were used for training a binary classifier which distinguishes between
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measurements deviating more than four standard deviations
from the mean value after adjusting for age, sex, age-sex, eTIV,
and diagnosis (N = 39). All features were standardized to zero
mean and unit variance. We then used L2-penalized (ridge)
logistic regression to train the binary classifier which optimally
separates individuals with AD from CN (44). The AD score was
defined as the linear predictors of the logistic model, i.e. it is
given by log[p/(1-p)] with p denoting the probability of
having AD.

Prediction of AD scores in OASIS-1 and SHIP-Trend were
based on a classifier trained on the whole ADNI-1 sample. The
corresponding model coefficients can be found in the supplement.
The penalization parameter A was selected from the set {2°%, 27,
..., 2} by 20-fold cross-validation with 20 repetitions (A = 0.125)
anduni-modality of the tuning curve was checked by visual
inspection (see Supplementary Material). In order to assess the
classification accuracy within ADNI-1 we used leave-one-out
cross-validation, i.e. each individual’s AD score was calculated
using a model trained on all others. The optimal A was estimated
within a second loop in order to strictly separate training and test
data (again by 20-fold cross-validation with 20 repetitions).

Voxel-Based Morphometry

For SHIP-Trend we additionally performed voxel-based
morphometry (VBM) analyses with SPM12 (Welcome Trust
Centre for Neuroimaging, University College London) and
CAT12 [developed by Christian Gaser, University of Jena,
Germany, http://www.neuro.uni-jena.de, e.g. (45)] in order to
map the contribution of distinct brain regions to the AD score.

All images were bias-corrected, spatially normalized by using
the high-dimensional DARTEL normalization, segmented into
the different tissue classes, modulated for non-linear warping
and affine transformations, and smoothed by a Gaussian kernel
of 8 mm FWHM. The homogeneity of gray matter images was
checked using the covariance structure of each image with all
other images (outliers >3 standard deviations from the mean), as
implemented in the check data quality function in the CAT12
toolbox. To mask irrelevant brain areas of the smoothed gray and
white matter segmentations we used the Masking Toolbox from
Gerard Ridgway to define explicit masks for the gray and white
matter VBM analyses. Specifically, we used the MATLAB script
“make_majority_mask.m” to generate a gray matter mask with
an absolute threshold of 0.1 and a consensus fraction of 80% and
a white matter mask with an absolute threshold of 0.2 and a
consensus fraction of 90%.

The statistical threshold for significant voxels was set to a family-
wise error (FWE) corrected peak-level p-values Ppeypw < 0.025 as
we conducted a two-sided test and looked at positive and negative
associations with the FSAD score while correcting for age, sex,
age-sex, and total intracranial volume. Again, age was modeled by
restricted cubic splines with four knots located at the 0.05, 0.33, 0.66,
and 0.95 age quantiles.

Statistical Analysis

All statistical analyses were performed with R 3.6 (46). The
classifier was implemented using the glmnet package (47).
Association analyses of the AD score with the basic covariates

age, sex, age-sex, eTTV, and diagnosis were performed by ordinary
least-squares multivariable regression. For SHIP-Trend we used
restricted cubic splines (48) with four knots located at the 0.05,
0.33, 0.66, and 0.95 quantile in order to account for the non-
linear dependency of the AD score on chronological age. Effects
of single variables were assessed either by t-tests with robust
variance estimates or ANOVA of type 2.

RESULTS

Prior to training the AD classifier we checked the ADNI-1 screening
sample for possible imbalances with respect to age, sex, and
intracranial volume. We did not find significant differences
between patients and controls with respect to age (t = -0.55, P =
0.58), sex (Fisher’s Exact Test, P = 0.84), and estimated intracranial
volume (t = 0.15, P = 0.88).

Prediction of Diagnoses in ADNI-1 and
OASIS-1 Based on the AD Score

At first, classification performance within the ADNI-1 screening
sample was investigated. Classification accuracy was assessed by
leave-one-out cross-validation, i.e. each individual’s AD score
was calculated using a model trained on all others. The resulting
scores are shown in Figure 2A. Individuals with an AD score
larger than zero and smaller than zero were classified as AD and
CN, respectively, and these classifications were compared with
the known diagnoses. The overall accuracy was 89% with the
95% confidence interval (CI) (85.7%, 92.2%). Sensitivity (true
positive rate) and specificity (true negative rate) was 91% and
87%, respectively. The receiver operating characteristic (ROC)
curves were obtained by systematic variation of the classification
threshold and area under the curve (AUC) was calculated as 95%
with 95% CI (93.5%, 97.6%).

Using the ADNI-1 sample a model was trained and AD scores
were calculated for the OASIS-1 sample. The resulting scores are
shown in Figure 2B, left panel. Again, individuals with an AD
score larger than zero and smaller than zero were classified as AD
and CN, respectively. The overall accuracy was 87% with 95% CI
(83.2%, 90.0%). Sensitivity and specificity were 89% and 79%,
respectively. The AUC was calculated as 93% with 95% CI
(90.0%, 95.7%).

Association Analyses in ADNI-1 and
OASIS-1
We performed association analyses of the AD score with the basic
covariates diagnosis, age, sex, age-sex, and intracranial volume by
means of multivariable regression. For the ADNI-1 sample the
percentage of variation explained (R®) was 72%. As expected, the
AD score was significantly larger in those diagnosed with AD (t =
30, P < 210", see Figure 2A). In addition, there was a significant
effect of age (t = 2.5, P = 0.012). No significant effects of sex (t = 1.1,
P =0.29), age-sex (t = -0.89, P = 0.37), or intracranial volume (t = 1.4,
P = 0.17) were found.

For the OASIS-1 sample the multivariable regression of the AD
score yielded R* = 55%. Again, we found a significant effect of
diagnosis of AD (t = 9.7, P < 2:10™°), and age (t = 8.5, P = 4.9:10).
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ADNI-1 Screening (N=374)

Diagnosis
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FIGURE 2 | The AD score differentiated well individuals with Alzheimer’s disease from cognitively normal ones both in ADNI-1 (A) and OASIS-1 (B). Moreover, it was
significantly associated with cognitive functioning as assessed by the Mini-Mental State Examination within both groups in OASIS-1.

In addition, there was a significant effect of sex with females having
slightly larger AD scores (t = 2.2, P = 0.025). No significant effects of
age-sex (t = -0.75, P = 0.45), or intracranial volume (t = 0.55, P =
0.57) were found.

When analyzing the OASIS-1 subsample with MMSE scores
available (N = 235, 100 AD, 135 CN) we again found significant
effects of diagnosis (t = 9.3, P < 2.2:107'%), and age (t=57,P =
3.9-10%). No significant effects were found for sex (t = 0.97, P =
0.33), age-sex (t = -0.61, P = 0.54), and intracranial volume (t =
0.80, P = 0.42). The total R* was 45%. Adding the MMSE score to
the model increased the R* to 51% and the corresponding
marginal effect was significant (t = -4.1, P = 4.9-10°, Cohen’s
f* = 0.13), i.e. on average individuals with low MMSE scores had
larger AD scores when correcting for all basic covariates
including diagnosis.

Prediction of Diagnoses Using Both the
AD Score and the MMSE Score in OASIS-1
In order to compare the diagnostic utility of the AD score with the
MMSE we aimed to predict diagnoses in the OASIS-1 subsample
with MMSE scores available. For this we used standard logistic
regression models with different sets of predictors and compared
the corresponding classification accuracies. Note that we did not
separate the training and test set since we aimed to compare
different sets of predictors rather than obtaining objective accuracy
estimates. Using a basic model containing age, sex, and its
interaction, we were able to predict AD diagnoses with an
accuracy of 61% (AUC = 70%). Adding either the MMSE score
or the AD score improved the accuracy to 82% (AUC = 91%) and
82% (AUC = 90%), respectively. When adding both the MMSE
score and the AD score the resulting accuracy improved even
further to 87% (AUC = 94%). The accuracy of the combined
model was significantly better than one of the two previous ones
(> =29,P=810%y,> =53, P=310").

General Population Data From the SHIP
Sample

AD scores were calculated for the SHIP-Trend sample (N = 1973,
see Table 1) using a model trained on the whole ADNI-1
screening sample. Again, we performed association analyses of
the AD score with the basic covariates age, sex, age-sex, and

intracranial volume by means of multivariable regression. Since
the AD score was clearly non-linearly related to age (see
Figure 3A) we decided to include age by restricted cubic
splines. ANOVA of type 2 was used to assess the effects of
each variable. We found significant associations with age (F =
170, P < 2:107'°) and age-sex (F = 3.7, P = 0.010). No significant
effects of sex (F = 0.40, P = 0.53), or intracranial volume (t = 2.5,
P = 0.11) were found. The R* was 22%.

The AD score was significantly associated with the total WLR
score (F = 4.1, P = 0.037, Cohen’s £ = 0.009, adjusted for all basic
covariates, see Figure 3B). Additional analyses showed that the
AD score was more strongly associated with the immediate WLR
score (F = 4.9, P = 0.026) than the delayed WLR recall (F = 1.8,
P =0.17).

In order to map the contributions of distinct brain regions to
the AD score in greater detail we performed VBM analyses with
both gray and white matter segmentations in SHIP-Trend. The
results are visualized in Figure 4. Using the gray matter
segmentation we found a large cluster that was negatively
associated with the AD score. The peak voxel was located in
the left medial temporal gyrus. The cluster stretched over the
medial temporal gyrus, the inferior temporal gyrus, the fusiform
gyrus, and the precuneus in both hemispheres, among others.
Using the white matter segmentation we also found a large
cluster that was negatively associated with the AD score. It
comprised the medial temporal lobe, the periventricular area,
and the corpus callosum, among others. Interestingly, it also
includes a large portion of the brain stem which was not included
in the feature set used for constructing the AD score.

DISCUSSION

In this study, we developed a structural MR imaging-based
biomarker for the in vivo detection of Alzheimer’s disease. It
was based on 169 regional brain features of gray matter, white
matter, and the ventricular system derived from the image
processing pipeline FreeSurfer. L2-penalized logistic regression
was used to define a binary classifier which optimally separates
individuals with AD from cognitively normal ones. For the
ADNI-1 screening sample the cross-validated classification
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FIGURE 3 | AD scores for the SHIP-Trend sample plotted against chronological age (A) and the overall word list recall score (B).

accuracy was 89% and AUC was 95%. These results are on par
with other classification studies involving structural MR images
(17). However, most classification studies were based on only one
sample. Here, the classifier was trained using the ADNI-1
screening sample and AD scores were predicted in the
independent sample OASIS-1. We found our classifier to also
perform well with an accuracy of 87% and AUC being 93%.

For obtaining regional brain features we used the freely
available image segmentation pipeline FreeSurfer. FreeSurfer
has been shown to give reliable volumetric estimates
independent of scanner platforms and protocols with the
exception of the magnetic field strength which has been found
to introduce additional bias (49). In our study, however, all scans
were acquired with 1.5T. Since FreeSurfer is available under
an open source license for the GNU/Linux operating system it
can be run within typical high performance computing
environments with little to no additional adaptations.
This facilitates the application to large imaging data sets
which are being used increasingly for the investigation of
neurodegenerative disorders. Moreover, future improvements
of the image processing algorithms used within FreeSurfer will
likely improve any derived biomarkers, too.

On the other hand there is strong evidence for at least three
distinct subtypes of AD with respect to regional brain atrophy
(50, 51). Hence, it is unclear whether further improvements of
the classification accuracy of structural MRI markers with
respect a single diagnostic category (AD diagnosis) can be
expected. Instead, the relation of MRI markers measures and
measures of cognitive functioning, which ultimately impairs the
affected individual’s quality of life, seems to be more appropriate.
Here, we studied the association of the AD score with MMSE
scores in a subsample of OASIS-1. We found a significant
association after correcting for diagnosis, age, sex, age-sex, and
total intracranial volume (Cohen’s f* = 0.13, see Figure 2B). The
AD score was associated with cognitive functioning in AD

patients (adjusted for age, sex, and intracranial volume) which
indicates it to be a measure of the progression of AD.
Interestingly, it was also associated with the MMSE in
cognitive normal individuals after correcting for age, sex, and
intracranial volume, indicating that it captures subclinical
pathology (atrophy), too.

This was supported by the association analyses in the general
population sample SHIP-Trend where we found the AD score to
be significantly associated with the WLR consisting of an
immediate and a delayed recall (again after correcting for age,
sex, age-sex, and total intracranial volume, Cohen’s f* = 0.009).
This association was mainly driven by the immediate recall.
Indeed, there seems to be a deficit in semantic memory years
before AD diagnosis while AD patients show impairments in
multiple cognitive domains (52). Such a deficit in semantic
memory could explain the association with the WLR
performance in SHIP-Trend.

However, the association between the AD score and cognitive
functioning in non-demented individuals could also be partially
driven by other psychiatric diseases. One example for this is
depression which is known to be associated with decreased
hippocampal volume and impaired memory. Since depression
has a much higher life-time prevalence than AD it is potentially
highly relevant for population-based studies. Whether the AD
score proposed here is indeed associated with a specific profile of
cognitive dysfunction in non-demented individuals needs to be
investigated in future studies.

One limitation of our method is that AD scores of single
individuals can only be interpreted within populations after
adjusting for confounding variables like age. In all data sets
the AD score was positively associated with age. In SHIP-Trend
this association was non-linear with the slope increasing around
the age of 60 (see Figure 3A). However, this should not be
interpreted as progression of some sort of AD-related subclinical
pathology, but rather statistical artefact of the spatial overlap of
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FIGURE 4 | Absolute values of the t-statistics of voxel-based analyses of the AD score in SHIP-Trend.

general age-related atrophy and AD-related atrophy. Even if the
model coefficients of the AD classifier were randomly drawn
there would still be a significant association of the resulting
AD score with chronological age. Since age is a potential
confounding variable thorough adjustment of the analyses is
needed. Most of the time this requires non-linear modelling with
polynomials or splines.

In summary, our proposed AD score well differentiated
between patients and healthy controls in an independent test
sample. It was associated with measures of cognitive functioning
both in a patient sample and a general population sample. Thus,
our approach might be useful for defining robust MR-based
biomarkers for other neurodegenerative diseases, too.

DATA AVAILABILITY STATEMENT

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu) and the Open Access Series of

Imaging Studies. Request should be made to the corresponding
author: stefan.frenzel@uni-greifswald.de.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional Review Board of University Medicine
Greifswald (“Ethikkomission an der Universititsmedizin
Greifswald”). The patients/participants provided their written
informed consent to participate in this study. Written informed
consent was obtained from the individual(s) for the publication
of any potentially identifiable images or data included in
this article.

AUTHOR CONTRIBUTIONS

SF performed all statistical analysis, and wrote the manuscript.
SE, JK-K, MH, and HG designed the study. SF, MH, and KW

Frontiers in Psychiatry | www.frontiersin.org

58

January 2020 | Volume 10 | Article 953


adni.loni.usc.edu
mailto:stefan.frenzel@uni-greifswald.de
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles

Frenzel et al.

Atrophy Patterns in Alzheimer’s Disease

processed the MR imaging data. KW conducted the VBM
analyses. RB and HV contributed essentially to the
data collection.

ACKNOWLEDGMENTS

Data collection and sharing for this project was in part funded by
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(National Institutes of Health Grant U01 AG024904) and DOD
ADNI (Department of Defense award number W81XWH-12-2-
0012). ADNI is funded by the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering,
and through generous contributions from the following:
AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery
Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-
Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan
Pharmaceuticals, Inc; Eli Lilly and Company; Eurolmmun; F.
Hoffmann-La Roche Ltd and its affiliated company Genentech,
Inc; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer
Immunotherapy Research & Development, LLC.; Johnson &
Johnson Pharmaceutical Research & Development LLC;
Lumosity; Lundbeck; Merck & Co., Inc.;Meso Scale Diagnostics,
LLC.; NeuroRx Research; Neurotrack Technologies; Novartis
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging;
Servier; Takeda Pharmaceutical Company; and Transition
Therapeutics. The Canadian Institutes of Health Research is
providing funds to support ADNI clinical sites in Canada.

REFERENCES

1. Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures.
Alzheimers Dement (2016) 12:459-509. doi: 10.1016/j.jalz.2016.03.001

2. Barker WW, Luis CA, Kashuba A, Luis M, Harwood DG, Loewenstein D,
et al. Relative frequencies of alzheimer disease, lewy body, vascular and
frontotemporal dementia, and hippocampal sclerosis in the State of Florida
brain bank. Alzheimer Dis Assoc Disord (2002) 16:203. doi: 10.1097/
00002093-200210000-00001

3. Prince MJ, Guerchet MM, Prina M. The Epidemiology and Impact of
Dementia: Current State and Future Trends. Geneva, Switzerland: WHO
Thematic Briefing (2015).

4. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis.
Science (1992) 256(5054):184-5. doi: 10.1126/science.1566067

5. Frisoni GB, Fox NC, Jack CRJr., Scheltens P, Thompson PM. The clinical use
of structural MRI in Alzheimer disease. Nat Rev Neurol (2010) 6:67-77. doi:
10.1038/nrneurol.2009.215

6. Thompson PM, Hayashi KM, Zubicaray G, de, Janke AL, Rose SE, Semple J,
et al. Dynamics of gray matter loss in Alzheimer’s Disease. ] Neurosci (2003)
23:994-1005. doi: 10.1523/J]NEUROSCI.23-03-00994.2003

7. Tondelli M, Wilcock GK, Nichelli P, De Jager CA, Jenkinson M, Zamboni G.
Structural MRI changes detectable up to ten years before clinical Alzheimer’s
disease. Neurobiol Aging (2012) 33, 825:€25-825.e36.

8. Jack CR, Shiung MM, Weigand SD, O’Brien PC, Gunter JL, Boeve BF, et al.
Brain atrophy rates predict subsequent clinical conversion in normal elderly
and amnestic MCI. Neurology (2005) 65:1227-31.

9. Twamley EW, Ropacki SAL, Bondi MW. Neuropsychological and

neuroimaging changes in preclinical Alzheimer’s disease. J Int Neuropsychol

Soc (2006) 12:707-35. doi: 10.1017/S1355617706060863

Beheshti I, Demirel H. Feature-ranking-based Alzheimer’s disease

classification from structural MRI. Magnet Resonance Imaging (2016)

34:252-63. doi: 10.1016/j.mri.2015.11.009

10.

Private sector contributions are facilitated by the Foundation
for the National Institutes of Health (www.fnih.org). The grantee
organization is the Northern California Institute for Research and
Education, and the study is coordinated by the Alzheimer’s
Therapeutic Research Institute at the University of Southern
California. ADNI data are disseminated by the Laboratory for
Neuro Imaging at the University of Southern California.

For this study, we also used data from the Open Access Series
of Imaging Studies (OASIS) Cross-Sectional: Principal
Investigators: D. Marcus, R, Buckner, J, Csernanskny J. Morris;
P50 AG05681, P01 AG03991, P01 AG026276, R0O1 AG021910,
P20 MHO071616, U24 RR021382.

The Study of Health in Pomerania (SHIP) is part of the
Community Medicine Research net (CMR) (http://www.medizin.
uni-greifswald.de/icm) of the University Medicine Greifswald,
which is supported by the German Federal State of Mecklenburg-
West Pomerania. MRI scans in SHIP-Trend have been supported
by a joint grant from Siemens Healthineers, Erlangen, Germany,
and the Federal State of Mecklenburg-West Pomerania.

This study was further supported by the EU-JPND Funding
for BRIDGET (FKZ:01ED1615).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpsyt.2019.
00953/full#supplementary-material

11. Davatzikos C, Xu F, An Y, Fan Y, Resnick SM. Longitudinal progression of
Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD
index. Brain (2009) 132:2026-35.

Duchesne S, Caroli A, Geroldi C, Barillot C, Frisoni GB, Collins DL. MRI-
based automated computer classification of probable AD versus normal
controls. IEEE Trans Med Imaging (2008) 27:509-20.

Fan Y, Resnick SM, Wu X, Davatzikos C. Structural and functional
biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern
classification study. Neurolmage (2008) 41:277-85.

Kléppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, et al.
Automatic classification of MR scans in Alzheimer’s disease. Brain (2008)
131:681-9.

Li H, Habes M, Wolk DA, Fan Y, Alzheimer’s Disease Neuroimaging Initiative
and the Australian Imaging Biomarkers and Lifestyle Study of Aging. A deep
learning model for early prediction of Alzheimer’s disease dementia based on
hippocampal magnetic resonance imaging data. Alzheimers Dement (2019)
15:1059-70.

Salvatore C, Cerasa A, Battista P, Gilardi MC, Quattrone A, Castiglioni L.
Magnetic resonance imaging biomarkers for the early diagnosis of
Alzheimer’s disease: a machine learning approach. Front Neurosci (2015)
9:307.

Rathore S, Habes M, Iftikhar MA, Shacklett A, Davatzikos C. A review on
neuroimaging-based classification studies and associated feature extraction
methods for Alzheimer’s disease and its prodromal stages. NeuroImage (2017)
155:530-48.

Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ.
Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and
pattern classification. Neurobiol Aging (2011) 32, 2322:¢19-27.

Cole JH, Ritchie SJ, Bastin ME, Valdés Hernandez MC, Mufoz Maniega S,
Royle N, et al. Brain age predicts mortality. Mol Psychiatry (2018) 23:1385-92.
doi: 10.1038/mp.2017.62

12.

13.

14.

15.

16.

17.

18.

19.

Frontiers in Psychiatry | www.frontiersin.org

59

January 2020 | Volume 10 | Article 953


http://www.fnih.org
http://www.medizin.uni-greifswald.de/icm
http://www.medizin.uni-greifswald.de/icm
https://www.frontiersin.org/articles/10.3389/fpsyt.2019.00953/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyt.2019.00953/full#supplementary-material
https://doi.org/10.1016/j.jalz.2016.03.001
https://doi.org/10.1097/00002093-200210000-00001
https://doi.org/10.1097/00002093-200210000-00001
https://doi.org/10.1126/science.1566067
https://doi.org/10.1038/nrneurol.2009.215
https://doi.org/10.1523/JNEUROSCI.23-03-00994.2003
https://doi.org/10.1017/S1355617706060863
https://doi.org/10.1016/j.mri.2015.11.009
https://doi.org/10.1038/mp.2017.62
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles

Frenzel et al.

Atrophy Patterns in Alzheimer’s Disease

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Habes M, Janowitz D, Erus G, Toledo JB, Resnick SM, Doshi J, et al. Advanced
brain aging: relationship with epidemiologic and genetic risk factors, and
overlap with Alzheimer disease atrophy patterns. Trans Psychiatry (2016) 6:
e775. doi: 10.1038/tp.2016.39

Janowitz D, Habes M, Toledo JB, Hannemann A, Frenzel S, Terock J, et al.
Inflammatory markers and imaging patterns of advanced brain aging in the
general population. Brain Imaging Behav (2019).

Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ,
et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neurology (2010)
74:201-9.

Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL. Open
Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young,
middle aged, nondemented, and demented older adults. ] Cognit Neurosci
(2007) 19:1498-507.

Volzke H, Alte D, Schmidt CO, Radke D, Lorbeer R, Friedrich N, et al. Cohort
profile: the study of health in Pomerania. Int ] Epidemiol (2011) 40:294-307.
Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al.
The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J
Magnet Resonance Imaging (2008) 27:685-91.

Wyman BT, Harvey DJ, Crawford K, Bernstein MA, Carmichael O, Cole PE,
et al. Standardization of analysis sets for reporting results from ADNI MRI
data. Alzheimer’s Dementia: ] Alzheimer’s Assoc (2013) 9:332-7.

Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical
method for grading the cognitive state of patients for the clinician. J
Psychiatr Res (1975) 12:189-98.

Hegenscheid K, Kiihn JP, Vélzke H, Biffar R, Hosten N, Puls R. Whole-body
magnetic resonance imaging of healthy volunteers: pilot study results from the
population-based SHIP study. Rofo (2009) 181:748-59.

Oswald WD, Fleischmann UM. Psychometrics in aging and dementia:
advances in geropsychological assessments. Arch Gerontol Geriatr (1985)
4:299-309.

Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, et al. A hybrid
approach to the skull stripping problem in MRI. Neuroimage (2004) 22:1060-75.
Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole
brain segmentation: automated labeling of neuroanatomical structures in the
human brain. Neuron (2002) 33:341-55.

Fischl B, Salat DH, van der Kouwe AJW, Makris N, Ségonne F, Quinn BT,
et al. Sequence-independent segmentation of magnetic resonance images.
Neuroimage (2004a) 23 Suppl 1:569-84.

Han X, Fischl B. Atlas renormalization for improved brain MR image
segmentation across scanner platforms. IEEE Trans Med Imaging (2007)
26:479-86.

Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic
correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging
(1998) 17:87-97.

Fischl B, Liu A, Dale AM. Automated manifold surgery: constructing
geometrically accurate and topologically correct models of the human
cerebral cortex. IEEE Trans Med Imaging (2001) 20:70-80.

Ségonne F, Pacheco J, Fischl B. Geometrically accurate topology-correction of
cortical surfaces using nonseparating loops. IEEE Trans Med Imaging (2007)
26:518-29.

Dale AM, Sereno ML Improved localizadon of cortical activity by combining
EEG and MEG with MRI cortical surface reconstruction: a linear approach. J
Cognit Neurosci (1993) 5:162-76.

Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. L.
Segmentation and surface reconstruction. Neuroimage (1999) 9:179-94.
Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex
from magnetic resonance images. Proc Natl Acad Sci USA (2000) 97:11050-5.
doi: 10.1073/pnas.200033797

Fischl B, Sereno MI, Tootell RBH, Dale AM. High-resolution intersubject
averaging and a coordinate system for the cortical surface. Hum Brain Mapp

(1999) 8:272-84. doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-
HBM10>3.0.CO;2-4

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al.
An automated labeling system for subdividing the human cerebral cortex on
MRI scans into gyral based regions of interest. Neuroimage (2006) 31:968-80.
Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, et al.
Automatically parcellating the human cerebral cortex. Cereb Cortex (2004b)
14:11-22.

Salat DH, Greve DN, Pacheco JL, Quinn BT, Helmer KG, Buckner RL,
et al. Regional white matter volume differences in nondemented aging
and Alzheimer’s disease. Neuroimage (2009) 44:1247-58. doi: 10.1016/j.
neuroimage.2008.10.030

Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Berlin, Germany: Springer Science &
Business Media (2001).

Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE. Statistical
Parametric Mapping: The Analysis of Functional Brain Images. Amsterdam,
Netherlands: Elsevier (2011).

Team T. (2008). The R project for statistical computing. http://www.r-Project.
Org.

Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear
models via coordinate descent. J Stat Softw (2010) 33:1-22. doi: 10.18637/
jss.v033.i01

Harrell F. Regression Modeling Strategies: With Applications to Linear Models,
Logistic and Ordinal Regression, and Survival Analysis. Basel, Switzerland:
Springer International Publishing (2015).

Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, et al.
Reliability of MRI-derived measurements of human cerebral cortical
thickness: the effects of field strength, scanner upgrade and manufacturer.
Neuroimage (2006) 32:180-94. doi: 10.1016/j.neuroimage.2006.02.051

Varol E, Sotiras A, Davatzikos C, and the Alzheimer’s Disease Neuroimaging
Initiative. HYDRA: revealing heterogeneity of imaging and genetic patterns
through a multiple max-margin discriminative analysis framework.
Neuroimage (2017) 145:346-64. doi: 10.1016/j.neuroimage.2016.02.041
Whitwell JL, Dickson DW, Murray ME, Weigand SD, Tosakulwong N,
Senjem ML, et al. Neuroimaging correlates of pathologically defined
subtypes of Alzheimer’s disease: a case-control study. Lancet Neurol (2012)
11:868-77.

Adlam A-LR, Bozeat S, Arnold R, Watson P, Hodges JR. Semantic knowledge
in mild cognitive impairment and mild Alzheimer’s Disease. Cortex (2006)
42:675-84. doi: 10.1016/s0010-9452(08)70404-0

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Conflict of Interest: HG has received travel grants and speakers honoraria from
Fresenius Medical Care and Janssen Cilag. He has received research funding from
the German Research Foundation (DFG), the German Ministry of Education and
Research (BMBF), the DAMP Foundation, Fresenius Medical Care, the EU “Joint
Programme Neurodegenerative Disorders (JPND)”.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

The reviewer XH declared a shared affiliation, with no collaboration, with one of
the authors MH to the handling editor.

Copyright © 2020 Frenzel, Wittfeld, Habes, Klinger-Konig, Biilow, Volzke, Grabe.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Psychiatry | www.frontiersin.org

60

January 2020 | Volume 10 | Article 953


https://doi.org/10.1038/tp.2016.39
https://doi.org/10.1073/pnas.200033797
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4&lt;272::AID-HBM10>3.0.CO;2-4
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4&lt;272::AID-HBM10>3.0.CO;2-4
https://doi.org/10.1016/j.neuroimage.2008.10.030
https://doi.org/10.1016/j.neuroimage.2008.10.030
http://www.r-Project.Org
http://www.r-Project.Org
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1016/j.neuroimage.2006.02.051
https://doi.org/10.1016/j.neuroimage.2016.02.041
https://doi.org/10.1016/s0010-9452(08)70404-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles

',\' frontiers

In Aging Neuroscience

ORIGINAL RESEARCH
published: 15 January 2020
doi: 10.3389/fnagi.2019.00368

OPEN ACCESS

Edited by:
Hans J. Grabe,
University of Greifswald, Germany

Reviewed by:

Christian Grinan-Ferré,

Bosch i Gimpera Foundation, Spain
Zhigang Liu,

Northwest A&F University, China

*Correspondence:
Daniel Figeys
dfigeys@uottawa.ca

tPresent address:

Cheng-Kang Chiang,

Department of Chemistry, National
Dong Hwa University, Shoufeng,
Taiwan

Received: 19 June 2019
Accepted: 16 December 2019
Published: 15 January 2020

Citation:

Adler R, Chiang C-K, Mayne J,

Ning Z, Zhang X, Xu B, Cheng H-YM
and Figeys D (2020) Aging Disrupts
the Circadian Patterns of Protein
Expression in the Murine
Hippocampus.

Front. Aging Neurosci. 11:368.

doi: 10.3389/fnagi.2019.00368

Check for
updates

Aging Disrupts the Circadian
Patterns of Protein Expression in the
Murine Hippocampus

Paula Adler'23, Cheng-Kang Chiang'?3t, Janice Mayne'?3, Zhibin Ning'2?3, Xu Zhang?3,
Bo Xu'23, Hai-Ying Mary Cheng*° and Daniel Figeys'>36*

" Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized
Pharmacology, University of Ottawa, Ottawa, ON, Canada, ? Ottawa Institute of Systems Biology, University of Ottawa,
Ottawa, ON, Canada, ° Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON,
Canada, * Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada, ° Department of Cell
and Systems Biology, University of Toronto, Toronto, ON, Canada, ® Canadian Institute for Advanced Research, Toronto,
ON, Canada

Aging is associated with cognitive decline and dysregulation of the circadian system,
which modulates hippocampal-dependent memory as well as biological processes
underlying hippocampal function. While circadian dysfunction and memory impairment
are common features of aging and several neurodegenerative brain disorders, how aging
impacts the circadian expression patterns of proteins involved in processes that underlie
hippocampal-dependent memory is not well understood. In this study, we profiled the
hippocampal proteomes of young and middle-aged mice across two circadian cycles
using quantitative mass spectrometry in order to explore aging-associated changes in
the temporal orchestration of biological pathways. Of the ~1,420 proteins that were
accurately quantified, 15% (214 proteins) displayed circadian rhythms in abundance in
the hippocampus of young mice, while only 1.6% (23 proteins) were rhythmic in middle-
aged mice. Remarkably, aging disrupted the circadian regulation of proteins involved
in cellular functions critical for hippocampal function and memory, including dozens
of proteins participating in pathways of energy metabolism, neurotransmission, and
synaptic plasticity. These included processes such as glycolysis, the tricarboxylic acid
cycle, synaptic vesicle cycling, long-term potentiation, and cytoskeletal organization.
Moreover, aging altered the daily expression rhythms of proteins implicated in hallmarks
of aging and the pathogenesis of several age-related neurodegenerative brain disorders
affecting the hippocampus. Notably, we identified age-related alterations in the
rhythmicity of proteins involved in mitochondrial dysfunction and loss of proteostasis,
as well as proteins involved in the pathogenesis of disorders such as Alzheimer’s
disease and Parkinson’s disease. These insights into aging-induced changes in the
hippocampal proteome provide a framework for understanding how the age-dependent
circadian decline may contribute to cognitive impairment and the development of
neurodegenerative diseases during aging.

Keywords: aging, circadian, proteomics, hippocampus, mass spectrometry, neurodegenerative diseases
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Circadian Hippocampal Proteome During Aging

INTRODUCTION

Circadian regulation of various physiological and behavioral
processes is critical to maintaining homeostasis and organismal
health (Bass and Lazar, 2016; Chaix et al., 2016). In mammals,
the suprachiasmatic nucleus (SCN) acts as a central pacemaker
to entrain an organism’s internal clock using environmental cues
such as the daily light/dark cycle, and in turn synchronizes
peripheral oscillators located in other brain regions and organs
(Liu et al., 2007; Dibner et al., 2010). Circadian disturbances
occur during aging and are associated with cognitive decline
and several brain disorders, including neurodegenerative diseases
(Kondratov, 2007; Kondratova and Kondratov, 2012; Musiek
and Holtzman, 2016). Moreover, the circadian clock influences
processes involved in hallmarks of aging, underscoring its
significance in maintaining physiological integrity (Kondratov,
2007; Lopez-Otin et al., 2013; Fonseca Costa and Ripperger, 2015;
Chaix et al,, 2016). Disruption of the temporal coordination of
clock-controlled processes may therefore contribute to functional
decline during aging (Kondratov, 2007; Hood and Amir, 2017).
Furthermore, given the interplay between the circadian system
and the aging process, and that aging is a major risk factor
for several neurodegenerative diseases, the effects of aging
on circadian rhythms could have important implications for
the pathogenesis of these disorders (Kondratov, 2007; Musiek
and Holtzman, 2016). Yet, how aging affects the circadian
orchestration of biological processes in the brain remains largely
unexplored (Hatanaka et al., 2017).

Several molecular and cellular mechanisms underlying
synaptic plasticity and hippocampal function, as well as
hippocampal-dependent memory itself, have previously been
shown to be clock-regulated and disrupted by clock dysregulation
(Smarr et al., 2014; Hannou et al., 2018; Snider et al., 2018).
Circadian clocks modulate the expression or activity of diverse
proteins involved in processes contributing to hippocampal
function, such as neurotransmission, long-term potentiation
(LTP), and energy metabolism (Chiang et al., 2017; Hannou
et al, 2018; Greco and Sassone-Corsi, 2019). These include
proteins such as calcium/calmodulin-dependent protein kinase
IT (CaMKII), glycogen synthase kinase 3 (GSK3p), the GluAl
AMPA receptor (AMPAR) subunit, synaptic vesicle glycoprotein
2A (SV2A), and isocitrate dehydrogenase (IDH) (Chiang et al,,
2014, 2017; Neufeld-Cohen et al., 2016; Hannou et al., 2018;
Snider et al., 2018). Moreover, circadian dysfunction and
cognitive decline are common features of aging and multiple age-
related neurodegenerative disorders, and accumulating evidence
suggests that aging- and disease-related circadian disruption
contributes to memory impairment (Kondratova and Kondratov,
2012; Musiek and Holtzman, 2016). However, the mechanisms
underlying the association between declines in circadian function
and memory during aging remain elusive. The identification
of age-related changes in the circadian regulation of processes
underlying memory function in the hippocampus might
therefore open new avenues to correct dysregulated rhythms and
thereby prevent or reverse cognitive decline.

Systems biology approaches are uniquely positioned to
provide insight into the ubiquitous role of the circadian clock

in physiology and to identify links among diverse temporally
regulated processes (Hughes et al., 2017; Millius and Ueda, 2017).
We have previously shown that the clock regulates key biological
processes at the proteomic and phosphoproteomic levels in the
SCN and hippocampus of young mice (Chiang et al., 2014,
2017). However, the impact of aging on the hippocampus has
not yet been investigated at the global proteomic level from a
circadian perspective. In this study, we compared young and
middle-aged mice using a quantitative mass spectrometry (MS)-
based approach to profile the hippocampal circadian proteome
across two consecutive days, in order to dissect changes in the
temporal orchestration of biological pathways during aging. We
show that aging disrupts the circadian regulation of proteins
involved in cellular functions critical for hippocampal function
and memory, notably energy metabolism, neurotransmission,
and synaptic plasticity. Furthermore, aging altered the daily
expression rhythms of proteins implicated in various processes
linked to neurodegenerative diseases as well as hallmarks of
aging, such as mitochondrial dysfunction and loss of proteostasis.
Collectively, our findings provide further evidence supporting
the contribution of the age-dependent circadian decline to
the development of neurodegenerative diseases and cognitive
deterioration over time.

MATERIALS AND METHODS

Animals and Tissue Collection

Male C57BL/6] mice were purchased from the Jackson
Laboratory (Bar Harbor, ME, United States; Stock #000664)
and aged to 9-10 weeks (young group) or 44-52 weeks (middle-
aged group). Mice were group housed in polycarbonate cages
with ad libitum access to food and water and entrained to a 12-h
light:12-h dark (LD) schedule (lights on at 6:00 a.m., lights off
at 6:00 p.m.) from 5 weeks of age (young group) or 28 weeks of
age (middle-aged group) before being transferred to constant
darkness (DD). After 2 days in constant darkness, mice were
sacrificed at 4-h intervals over 2 days starting at circadian time
(CT) 2 on the third day of DD, where CT was defined by the
zeitgeber time (ZT) of the previous LD schedule (Chiang et al.,
2014, 2017). Sample sizes were as follows: three mice per age
group were sacrificed at each CT, except for CT18 and 22 (four
mice per age group at each CT), CT42 (four young mice and
two middle-aged mice), and CT46 (four young mice). Mice were
sacrificed by cervical dislocation under dim red light and the
hippocampi were quickly excised. Tissues were immediately
flash frozen in liquid nitrogen and stored at —80°C until further
processing. All animal experiments were conducted at the Ottawa
Hospital Research Institute and approved by the University of
Ottawa Animal Care Committee in compliance with institutional
and Canadian Council on Animal Care guidelines.

Proteomic Analysis of Hippocampal

Tissues

Protein extracts from hippocampal tissues of individual mice
were obtained by homogenization in lysis buffer using a pellet
pestle and sonication (three 10 s pulses with 30 s on ice
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between each pulse). The lysis buffer contained 4% (w/v) sodium
dodecyl sulfate (SDS) in 50 mM ammonium bicarbonate (ABC;
pH 8.2) supplemented with complete protease and phosphatase
inhibitor cocktails (Roche; Mississauga, ON, Canada). Protein
concentrations were determined using the DC Protein Assay
(Bio-Rad; Mississauga, ON, Canada), and hippocampal lysates
were loaded onto 30-kDa molecular weight cutoff Microcon
filters (MilliporeSigma; Oakville, ON, Canada). Proteins were
reduced by incubating samples with 20 mM dithiothreitol (DTT;
MilliporeSigma; Oakville, ON, Canada) for 30 min at 37°C with
agitation (245 rpm) and subsequently alkylated with 20 mM
2-iodoacetamide (IAA; MilliporeSigma; Oakville, ON, Canada)
for 30 min in darkness at room temperature. Protein digestion
was performed by incubation with 40:1 (w/w, protein:enzyme)
trypsin (Worthington Biochemical Corporation; Lakewood, NJ,
United States) overnight at 37°C with agitation (245 rpm). Prior
to strong cation exchange (SCX) fractionation of hippocampal
samples, peptides were diluted with 0.1% (v/v) formic acid
(FA) and the pH adjusted with trifluoroacetic acid (TFA) to
3.0. Step elution of peptides was performed using in-house-
made SCX columns (10-pwm SCX beads, Polymer Laboratories)
and subsequent addition of buffers (20 mM boric acid, 20 mM
phosphoric acid, and 20 mM acetic acid) at pH 5, 6, 8, 10, and
12. Samples were desalted using in-house-made C18 desalting
cartridges (C18 beads: ReproSil-Pur C18-AQ, 10 pm; Dr. Maisch
GmbH, Germany) and dessicated using a SpeedVac prior to being
resuspended in 0.1% (v/v) FA for liquid chromatography tandem
MS (LC-MS/MS) analysis.

LC-MS/MS Analysis

Four microliters of resuspended peptides (equivalent to 2 pg
of proteins) from each sample were analyzed by an online
reverse-phase LC-MS/MS platform consisting of an Eksigent
NanoLC 425 System (AB SCIEX) coupled with an Orbitrap
Elite mass spectrometer (Thermo Fisher Scientific, San Jose,
CA, United States) via a nano-electrospray source. Prior to
MS analysis, peptide mixtures were separated by reverse-phase
chromatography using an in-house packed ReproSil-Pur C18-
AQ column (75 pm internal diameter x 15 cm, 1.9 pm, 200 A
pore size; Dr. Maisch GmbH, Germany) over a 120-min gradient
of 5-30% buffer B [acetonitrile (ACN) with 0.1% (v/v) FA] at
a flow rate of 300 nl/min. The Orbitrap Elite instrument was
operated in the data-dependent mode to simultaneously measure
survey scan MS spectra (350-1,800 m/z, R = 60,000 defined at
m/z 400). Up to the 20 most intense peaks were isolated and
fragmented with collision-induced dissociation (CID). System
controlling and data collection were carried out using Xcalibur
software version 2.2 (Thermo Scientific).

Mass Spectrometry Data Processing

Mass spectrometry raw files were processed with MaxQuant
(version 1.5.2.8) using the integrated Andromeda search engine
and UniProt FASTA database from mouse (Mus musculus;
2013_05). The search included variable modifications for
methionine oxidation (M) and acetylation (protein N-term)
as well as fixed modification for carbamidomethylation (C).
Trypsin/P was set as the cleavage specificity with up to two

missed cleavages allowed. The false discovery rate (FDR) cutoffs
were set at 0.01 at the peptide and protein levels and the
minimum peptide length was set at 7. Identification across
different replicates and adjacent fractions was achieved by
enabling the “match between runs” option with a matching time
window of 5 min.

Bioinformatic and Statistical Analyses

Initial bioinformatic analysis was performed with Perseus
(version 1.5.5.3). Following logarithmic (log;g) transformation
of label-free quantification (LFQ) intensities, the raw proteomic
dataset was filtered to include only proteins quantified in a
minimum of two biological replicates per time point in either
young or middle-aged mice. Using these filtered datasets,
circadian rhythmicity in protein abundance over the 12 CTs
was determined using the Perseus periodicity algorithm
(period = 23.6 h) (Robles et al., 2014) with g-value < 0.25
(Mauvoisin et al,, 2014). Heatmaps displaying temporal
expression profiles of circadian proteins ordered by phase were
generated using the logarithmized LFQ intensities after z-score
normalization. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway functional annotations
and enrichment analyses were implemented using DAVID
(version 6.8; one-sided Fisher’s exact test p < 0.05 relative
to the backgrounds of accurately quantified proteins in our
datasets was considered significant) in order to assess changes
in GO biological processes, GO cellular components, and KEGG
pathways. Protein-protein interaction networks were created
using the STRING database (Szklarczyk et al., 2015) (confidence
score cutoft = 70%) and visualized with Cytoscape (version 3.4.0)
to include the phases and g-values of rhythmic proteins.

Data Availability Statement

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD013364. Note that a
stable isotope labeling by amino acids in cell culture (SILAC)
spike-in was introduced during sample preparation but not used
for quantification.

RESULTS

Aging Disrupts the Hippocampal

Circadian Proteome

To examine how aging alters the regulation of rhythmic
processes in the hippocampus, we used a quantitative MS-based
approach to analyze total protein extracts from hippocampal
tissues harvested from young and middle-aged mice over two
consecutive circadian cycles (see the section “Materials and
Methods”; Figure 1A). Samples were processed individually to
yield three to four biological replicates at each of the 12 time
points for each age group, and relative protein abundances were
determined using LFQ. This MS-based analysis identified a total
of 4,433 proteins, of which 1,426 and 1,416 were quantified
in a minimum of two biological replicates at each time point
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FIGURE 1 | Aging disrupts the hippocampal circadian proteome. (A) Experimental design and workflow of the MS-based analysis of proteins extracted from
hippocampal tissues of young (9-10 weeks old) and middle-aged (44-52 weeks old) C57BL/6J mice. Samples were collected every 4 h over 2 days, and proteins
extracted from tissues of individual mice were digested with trypsin, fractionated, and analyzed by an Orbitrap Elite mass spectrometer. (B) Proteome coverage:
Venn diagram displaying the number of proteins quantified in at least two biological replicates per time point in young or middle-aged mice and overlap between
ages. (C) Circadian proteins detected in young or middle-aged mice using the Perseus periodicity algorithm (period = 23.6 h; g-value < 0.25). (D) Percent
distribution of circadian proteins based on changes in rhythmicity during aging. (E) Heatmaps displaying z-score normalized abundances (log1o LFQ intensities) of
circadian proteins detected in young mice and their temporal expression profiles in young mice (left) and middle-aged mice (right). (F) Phase distribution of circadian
proteins detected in young mice (green) or middle-aged mice (red). (G) Correlation heatmaps across 48 h in young mice (left) and middle-aged mice (right) for
circadian proteins detected in young mice. Pearson correlation coefficients are shown as red (positive) or blue (negative).
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in the hippocampus of young mice and middle-aged mice,
respectively (Figure 1B). We used these stringently filtered
datasets of reliably quantified proteins for downstream analysis
(Supplementary Data 1, 2).

Proteins displaying circadian oscillations in their abundances
were identified using the Perseus periodicity analysis algorithm
(period = 23.6 h) (Robles et al., 2014) and a FDR value cutoft
of 0.25 (Mauvoisin et al, 2014) in young and middle-aged
mice. Abundance for 236 proteins changed as a function of
circadian timing at either age (Supplementary Data 3, 4).
As expected, the core circadian clock proteins were not
accurately quantified in our datasets due to their low abundance
in total protein extracts (Millius and Ueda, 2017). A total
of 214 proteins displayed circadian rhythmicity in the
hippocampus of young mice (15.0% of reliably quantified
proteins), while in middle-aged mice a total of 23 rhythmic
proteins were identified (1.6% of reliably quantified proteins)
(Figure 1C). Overall, there were fewer rhythmic proteins
identified in the middle-aged group, reflective of the age-
related decline in the circadian system. Strikingly, ~90% of
circadian proteins detected at either age displayed a loss of
rhythmicity during aging (i.e., oscillated exclusively in young
mice) (Figure 1D), suggesting that aging is associated with
widespread disruption in the temporal regulation of cellular
functions in the hippocampus.

Although most age-related changes involved a loss of
rhythmicity in middle-aged mice, ~9% of all circadian proteins
detected did not oscillate in young mice but gained rhythmicity
during aging (Figure 1D). These included proteins involved
in specific processes known to play roles in aging, such as
apoptosis and the cellular stress response (Supplementary
Figure 1). Consistent with our results, two previous studies
have identified sets of transcripts that gained rhythmicity
during aging in the human prefrontal cortex and in heads
of Drosophila melanogaster, notably genes involved in stress
response functions (Chen et al., 2016; Kuintzle et al., 2017).
Moreover, proteins that have been linked to neurodegenerative
diseases were among those displaying rhythmic abundances in
the hippocampus of middle-aged mice (Supplementary Table 1).
For instance, histone deacetylase 1 (HDACI1) as well as one of
its target proteins, histone H3, gained rhythmicity during aging.
Interestingly, histone acetylation regulates memory function as
well as transcription of clock genes, and age-related changes in
hippocampal-dependent memory have previously been linked to
epigenetic modulation of the clock gene Perl through HDAC3
(Kwapis et al., 2018). Thus, aging might result in altered circadian
epigenetic regulation of clock genes and other genes that affect
hippocampal function.

Rhythmic proteins displayed a variety of temporal abundance
profiles in the hippocampus of young mice (left panel in
Figure 1E), with the phases of peak expression clustering in
the afternoon (Figure 1F), while in middle-aged mice all but
one of these proteins were no longer detected as oscillating
(right panel in Figure 1E). Furthermore, aging resulted in loss
of positive and negative correlations among rhythmic proteins
detected in young mice across the day/night cycle (Figure 1G).
Together, our findings indicate that there are widespread

aging-induced changes in the daily patterns of protein expression
in the hippocampus.

Age-Related Changes in the Circadian

Regulation of Biological Functions

To explore the functional relevance of these age-related
changes, we examined biological pathways and processes using
KEGG and GO analyses to identify functional terms over-
represented among proteins displaying loss of rhythmicity in
abundance during aging (Figure 2). Overall, pathways involved
in basic cellular metabolism, circadian entrainment, synaptic
function, and neurodegenerative diseases were among those
enriched (Figure 2A). Several enriched processes have previously
been characterized as circadian in young mammalian models,
including the tricarboxylic acid (TCA) cycle, dendritic spine
organization, and regulation of DNA repair (Smarr et al., 2014;
Chaix et al., 2016; Neufeld-Cohen et al., 2016). Biological
processes involved in neurotransmission, synaptic plasticity,
mitochondrial function, redox homeostasis, and proteostasis
were also highly represented among proteins displaying age-
related loss of circadian rhythmicity (Figure 2B).

Furthermore, protein—protein interaction  network
analysis of proteins displaying loss of rhythmicity in the
hippocampus during aging revealed interactions among proteins
involved in energy metabolism, mitochondrial function,
cytoskeletal organization, translation, and G-protein signaling
(Supplementary Figure 2). Given that many of these affected
processes are critical for normal hippocampal function and
have been implicated in neurodegenerative brain disorders,
their altered circadian regulation might contribute to aging-
and disease-associated decline in hippocampal function and
memory. For instance, dysfunction of G-protein-coupled
neurotransmission occurs in the brain during aging and
may predispose older individuals to developing age-related
neurodegenerative disorders (Mattson and Arumugam, 2018).

The effects of aging on rhythmic biological functions were
complemented by results from a GO analysis of cellular
components. In young mice, rhythmic proteins participated in
diverse processes involved in the structure and function of
various intracellular organelles, with the mitochondrion and
cytoskeleton being two major sites of circadian regulation
(Figure 2C). Proteins localized to the mitochondrion (including
the mitochondrial inner membrane, ATP synthase complex,
and pyruvate dehydrogenase complex) and synapse (including
synaptic vesicles, terminal boutons, and septin cytoskeleton)
displayed loss of circadian oscillations in abundance, reflective
of the pathways related to mitochondrial energy metabolism,
neurotransmission, and synaptic plasticity (Figures 2A,B).

Interestingly, some of the most highly enriched GO functional
terms included myelination, myelin sheath, and oligodendrocyte
differentiation (Figures 2B,C), which might suggest another
mechanism through which aging disrupts cognitive function.
Consistent with this hypothesis and our results showing that
proteins involved in these functions peak during the daytime in
young mice, it has previously been reported that genes involved
in myelination and promoting proliferation of oligodendrocyte
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FIGURE 2 | Aging leads to loss of circadian oscillations in specific biological functions in the hippocampus. (A-C) Functional analysis of proteins displaying loss of
circadian rhythmicity with aging. Enriched ontology terms corresponding to (A) KEGG pathways, (B) GO biological processes, and (C) GO cellular components are
shown with colored bars (p < 0.05, Fisher’s exact test relative to background of accurately quantified proteins in our dataset).

precursor cells (OPCs) are transcribed preferentially during sleep
in mice (Bellesi et al.,, 2013). Furthermore, OPCs demonstrate
daily rhythms in proliferation in the hippocampus of young mice
(Matsumoto et al., 2011) and sleep loss has been shown to disrupt
myelin formation (Bellesi et al., 2018). While previous work has
shown that myelination is compromised in the aged human brain
and especially in people with cognitive deficits (Mattson and
Arumugam, 2018), our results suggest that age-related changes
in the circadian regulation of myelination may also contribute to
cognitive decline during aging via neural circuit dysfunction and
impaired communication between different brain regions.

We also noted age-related changes in rhythmic abundances of
multiple proteins involved in regulating protein phosphorylation
(Figure 2B), indicating that temporal control of post-
translational modifications such as phosphorylation may be
altered and associated with cognitive decline during aging.
Interestingly, we found that the phases of peak expression
of circadian proteins clustered in the afternoon, at the same
time as the peak in rhythmic phosphoproteins we have
previously reported (Chiang et al., 2017). Moreover, aging-
associated changes in the daily expression profiles of kinases
such as CaMKII and GSK3f (Supplementary Figure 3) might
contribute to the age-related declines in hippocampal-dependent

memory and local clock function (Kon et al., 2014; Besing et al.,
2017). GSK3p, which phosphorylates and regulates BMAL1 and
REV-ERBa (Reischl and Kramer, 2011), has previously been
shown to play important roles in modulating synaptic plasticity
as well as the molecular clock in the hippocampus of young mice
(Besing et al., 2017). Wang et al. (2017) previously reported that
GSK3B peaks in nuclear activity/abundance in the livers of young
mice during the day, consistent with our hippocampal study.
In addition, other proteins involved in clock function displayed
a loss of rhythmicity in the hippocampus of middle-aged mice
(Supplementary Figure 3), highlighting the age-dependent
decline in local clock function at the molecular level. Taken
together, our findings indicate that there is widespread disruption
in the circadian regulation of biological processes and pathways
critical for normal hippocampal function during aging.

Aging Disrupts the Circadian Regulation

of Energy Metabolism

Dysregulated energy metabolism is a hallmark of brain aging and
its exacerbation underlies the molecular pathogenesis of several
age-related neurodegenerative disorders, including Alzheimer’s
disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson’s
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disease (PD), and Huntington’s disease (HD) (Camandola
and Mattson, 2017; Mattson and Arumugam, 2018). We
therefore further examined the effects of aging on the circadian
regulation of energy metabolism in the hippocampus, focusing
on proteins involved in glucose metabolism as well as the
downstream pyruvate metabolism, TCA cycle, and oxidative
phosphorylation pathways.

The relative enrichment among proteins displaying loss of
rhythmicity during aging of pathways such as glycolysis, pyruvate
metabolism, and the TCA cycle (Figures 2A,B) is consistent with
previous studies from our lab and others demonstrating that
several components of these pathways exhibit diurnal rhythms
in protein abundance in the brain as well as peripheral organs
of young mice (Chiang et al., 2014, 2017; Neufeld-Cohen et al.,
2016). We found over 20 proteins participating in critical energy
metabolism pathways that displayed loss of rhythmicity in the
hippocampus during aging (Figure 3A). In young mice, these
rhythmic proteins peaked in a coordinated manner during the
day (Figure 3B), and at the same time that circadian proteins
involved in oxidative phosphorylation peak in the SCN of young
mice (Chiang et al,, 2014). Interestingly, many of the rhythmic
proteins catalyzing steps in glycolysis and the TCA cycle in young
mice are NAD%-dependent enzymes, suggesting a potential
mechanism by which circadian oscillations in NAD' could
couple energy production in the brain to the daily light/dark
cycle (Peek et al, 2013). Importantly, phosphofructokinase
(PFK) and the regulatory subunit of isocitrate dehydrogenase
3 (IDH3) were rhythmic in young mice but not middle-aged
mice. Given that these enzymes catalyze the rate-limiting steps
of glycolysis and the TCA cycle, respectively, aging may have
a significant impact on the dynamics of these pathways and
therefore energy production in the hippocampus. These results
suggest that the dysregulation of energy metabolism that occurs
in the brain during aging extends to its temporal regulation,
and disrupted circadian rhythms in energy metabolism pathways
might contribute to age-related impairments in hippocampal
function and memory.

Aging Disrupts the Circadian Regulation

of Synaptic Structure and Function

Circadian modulation of hippocampal-dependent memory at the
molecular level can occur through clock regulation of multiple
neuronal and synaptic components, including synaptic vesicle
proteins, receptors, transporters, and intracellular signaling
cascades (Hannou et al., 2018; Rawashdeh et al., 2018; Snider
et al., 2018). Thus, we were interested in examining the impact
of aging on the circadian rhythmicity of proteins involved in
synaptic plasticity and function in the hippocampus, given that
changes in the regulation of these processes may contribute to
age-related memory impairment.

We first examined the effects of aging on synaptic vesicle
cycling, which has previously been shown to be rhythmic and
important for circadian gene expression in the SCN (Deery et al.,
2009). Strikingly, middle-aged mice displayed a loss of circadian
oscillations in the abundances of over 10 proteins involved in
this pathway, which were rhythmic in the hippocampus of young

mice (Figure 4A). These included syntaxin binding protein 1
(also known as Muncl8-1), SV2A, and endophilin Al, which
we and others have previously shown to be clock-regulated
at the protein or mRNA level in the brains of young mice
(Chiang et al,, 2014; Hannou et al, 2018). Interestingly, we
also found that the GluA1 AMPAR subunit, along with other
proteins regulating AMPAR phosphorylation and trafficking,
such as CaMKII and protein kinase C vy, displayed loss of
rhythmicity in the hippocampus during aging. Previous work has
demonstrated that glutamate receptor trafficking is regulated by
clock-gated signaling pathways, in line with our results (Snider
et al., 2018). In addition, multiple cytoskeletal components and
regulators lost rhythmicity in middle-aged mice, including actin
regulators such as RHOA and Rho GDP-dissociation inhibitor
(RhoGDI), whose interaction is known to be clock-regulated
(Ma et al., 2018). Several proteins involved in the organization
of microtubules and the septin cytoskeleton were also found
to display loss of circadian oscillations in the hippocampus
of middle-aged mice, suggesting that aging could lead to
disruption of synaptic plasticity through multiple neuronal
cytoskeleton components given that synaptic plasticity is affected
by cytoskeletal remodeling (Gordon-Weeks and Fournier, 2014).
While circadian rhythmicity of proteins involved in synaptic
structure and function was largely lost in middle-aged mice,
these proteins peaked in a coordinated manner during the day
in the hippocampus of young mice (Figure 4B), consistent
with previous work demonstrating that processes supporting
synaptic plasticity peak during sleep in mice (Eckel-Mahan
et al,, 2008). Thus, the age-related dampening in rhythmicity
of proteins involved in the synaptic vesicle cycle, LTP and
AMPAR regulation, and cytoskeleton organization might lead
to compromised synaptic structure and function in the
hippocampus of middle-aged mice, which could in turn result in
impaired hippocampal-dependent memory during aging.

Disruption of Rhythmic Proteins Involved
in Hallmarks of Aging and

Neurodegenerative Diseases

Mitochondrial dysfunction, a hallmark of aging, may contribute
to age-associated damage and has been implicated in
cognitive impairment as well as the pathogenesis of several
neurodegenerative diseases (Lopez-Otin et al., 2013; Mattson and
Arumugam, 2018). We were therefore interested in examining
whether the age-related decline in efficiency of mitochondrial
energy metabolism and antioxidant defense mechanisms extends
to their circadian regulation in the hippocampus (Green et al,,
2011). As discussed above, circadian rhythms of mitochondrial
proteins involved in energy metabolism were particularly affected
during aging, with over 20 proteins displaying age-related loss
of rhythmicity (Figure 3). These proteins included IDH3,
which catalyzes the rate-limiting step of the TCA cycle, as
well as several subunits belonging to electron transport chain
complexes (Figures 3, 5). In young mice, proteins involved in
mitochondrial respiration peaked during the day along with
many antioxidant enzymes, notably superoxide dismutase 1
(SOD1) and peroxiredoxins (PRDX3 and PRDX6). Interestingly,
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Mitochondrion

we found that these and other antioxidant enzymes displayed
loss of rhythmic abundances during aging (Figure 5). We also
found that all three voltage-dependent anion-selective channels
(VDAC:) lost their rhythmic expression in middle-aged mice,
which could impact both mitochondrial function and synaptic
plasticity in the hippocampus (Levy et al., 2003; Figure 5). Thus,
aging-induced changes in the circadian rhythms of proteins
involved in mitochondrial function and reactive oxygen species
(ROS) homeostasis provide additional potential mechanisms
through which aging may lead to an increased susceptibility

to brain disorders characterized by mitochondrial dysfunction,
including neurodegenerative diseases such as AD and PD
(Mattson and Arumugam, 2018).

Genomic instability and epigenetic alterations, two primary
hallmarks of aging, are linked to clock function through
circadian regulation of proteins involved in ROS homeostasis and
epigenetic modification. Given that mitochondrial respiration is
a major intracellular source of ROS (Mattson and Arumugam,
2018), and that both oxidative phosphorylation and the cellular
response to oxidative stress display circadian rhythmicity
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(Chaix et al.,, 2016), age-related changes in the temporal control
of proteins participating in these two processes (as discussed
above) may lead to alterations in the accumulation of genetic
damage. Genomic instability can also result from disruption of
nuclear lamins, such as lamin B1 (Lopez-Otin et al., 2013). Levels
of lamin B1 decline during aging (Lopez-Otin et al., 2013) and
exhibited a loss of rhythmicity in the hippocampus of middle-
aged mice (Figure 5), suggesting that this disruption could lead
to aberrations in the nuclear lamina and contribute to genome
instability during aging. We also found age-dependent changes
in the rhythmicity of three proteins involved in epigenetic
modification, specifically post-translational modification of
histones. These include HDACI, sirtuin 2 (SIRT2), and acidic
leucine-rich nuclear phosphoprotein 32 (ANP32A), which are all
involved in regulating histone acetylation levels (Figure 5). Age-
related changes in the circadian regulation of proteins involved
in maintaining genomic and epigenetic stability might therefore
result in transcriptional alterations and increased DNA damage,
which could in turn stimulate accelerated aging and lead to
increased disease risk.

Loss of protein homeostasis, another primary hallmark of
aging, is linked to various age-related diseases (Lopez-Otin
et al, 2013). While diurnal rhythms in protein synthesis,
processing, and degradation have previously been described
in several organs in young mammals (Panda et al., 2002;
Robles et al., 2014), the impact of aging on the rhythmicity
of these processes is less well characterized. We found that
the daily abundance profiles of rhythmic proteins participating
in protein synthesis, folding, and degradation were altered
during aging (Figure 5 and Supplementary Figure 2). These
proteins included the molecular chaperones calreticulin, heat
shock proteins 60 and 70 (HSP60 and HSP70), and T-complex
protein 1 (TCP-1) subunits, as well as valosin-containing
protein (VCP), which also regulates ubiquitin-dependent protein
degradation (Dai and Li, 2001). Our results suggest that the
temporal control of protein homeostasis in the hippocampus
is altered during aging, which may in turn impact the core
circadian clock transcriptional-translational feedback loop and
thus affect oscillations in other local clock-controlled genes
(Takahashi, 2017).
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To further explore links between age-related disorders and as mitochondrial dysfunction and loss of proteostasis, several
changes in circadian rhythmicity of biological functions during other proteins displaying age-related changes in rhythmicity in
aging, we examined disease-associated pathways containing the hippocampus were also associated with AD. These included
proteins whose abundance was under circadian regulation in the  proteins involved in synaptic dysfunction and cytoskeletal
hippocampus. We found rhythmic proteins associated with the —abnormalities, such as synaptic vesicle proteins, cytoskeleton
pathogenesis of several age-related neurodegenerative diseases components and regulators, and enzymes that regulate protein
affecting the brain (Supplementary Table 1). In addition to phosphorylation (Figure 5 and Supplementary Table 1). Several
proteins involved in the hallmarks of aging discussed above proteins linked to AD and involved in the synaptic vesicle cycle
that are known to play roles in the pathogenesis of AD, such were found to display loss of rhythmicity in the hippocampus
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during aging, including amphiphysin, AP-2 complex subunits,
clathrin heavy chain, endophilin-Al, synaptogyrin-3, and
syntaxin-binding protein 1 (Figures 4, 5 and Supplementary
Table 1). Additional proteins involved in synaptic function
and dysregulated in AD included the GluA1 AMPAR subunit,
CaMKIJ, and protein kinase C y, which all displayed loss of
rhythmicity during aging (Figure 4 and Supplementary Table 1).
Moreover, several cytoskeletal proteins and regulators known to
be implicated in AD pathogenesis were found to lose rhythmicity
during aging, including neurofilaments, septins, and actin
regulators such as drebrin and RHOA (Supplementary Table 1
and Figures 4, 5). Our data indicate that age-dependent changes
in circadian regulation of various processes are associated with
and might contribute to AD pathogenesis.

While decline in hippocampal function is a prominent
feature of AD, it also occurs in several other neurodegenerative
disorders, namely PD (Camicioli et al., 2003), HD (Spargo
et al, 1993), ALS (Takeda et al, 2009), and frontotemporal
dementia (FTD) (Laakso et al., 2000). We were therefore also
interested in identifying age-related hippocampal alterations
in the rhythmicity of proteins involved in these diseases. We
found that several proteins believed to play major roles in the
pathogenesis of these diseases displayed changes in circadian
regulation in the hippocampus during aging, notably TDP-
43, SODI, and TNF receptor-associated protein 1 (TRAP1)
(Supplementary Table 1). TDP-43, which gained rhythmicity
during aging, has been identified as the major pathological
protein in both ALS and FID (Mackenzie and Rademakers,
2008). Moreover, SOD1 displayed a loss of rhythmicity during
aging, and mutations in SODI and the TDP-43 gene TARDBP
are known to occur in familial ALS (Millecamps et al., 2010).
The mitochondrial chaperone TRAP1, also known as HSP75,
gained rhythmicity in the hippocampus of middle-aged mice
and has been linked to familial PD arising due to mutations in
PTEN induced putative kinase 1 (PINK1I) (Pridgeon et al., 2007).
Interestingly, the protective role of PINK1 against oxidative stress
is mediated through phosphorylation of TRAP1 and inhibition
of the mitochondrial release of cytochrome ¢ (Pridgeon et al,
2007), another protein that displayed loss of rhythmicity in
the hippocampus during aging (Supplementary Table 1). Taken
together, these results provide further evidence for the association
of age-related circadian disruption in the brain with the
pathogenesis of neurodegenerative diseases. Furthermore, our
findings highlight the widespread aging-associated alterations in
temporal regulation of biological processes implicated in aging
and age-related brain disorders.

DISCUSSION

Given the regulation of hippocampal physiology and function
by the circadian clock, the age-dependent decline of the
circadian system may contribute to cognitive decline over
time and development of aging-associated neurodegenerative
disorders. Previous large-scale studies of circadian rhythms,
while mainly restricted to examining rhythmic processes in
young model organisms at the transcriptomic level, have

greatly contributed to our understanding of the circadian
system’s role in modulating various processes in a tissue-
specific manner (Zhang et al., 2014; Millius and Ueda, 2017).
Proteomic analyses, which incorporate additional mechanisms
of circadian regulation at the post-transcriptional level, have
been performed on the brain and peripheral organs of
young mice to reveal large-scale coordination of biological
processes by the clock (Millius and Ueda, 2017). However,
how aging modifies clock-controlled processes has only recently
begun to be explored at the transcriptomic level in the liver
and stem cells of mice (Sato et al., 2017; Solanas et al.,
2017), while the effects in the brain are largely unknown.
A large-scale characterization of hippocampal circadian rhythms
in protein abundances at different ages would therefore
provide insight into age-related perturbations in the timing
of cellular functions and could facilitate future studies on
the molecular mechanisms of aging- and disease-associated
cognitive impairment. Further studies are needed to identify age-
related alterations in circadian rhythms of protein abundance in
peripheral organs as well as other brain regions, particularly the
central pacemaker in the SCN.

In this study, we used a quantitative MS-based approach to
analyze hippocampal tissues from young and middle-aged mice
and to explore the effects of aging on circadian regulation at
the proteomic level. Middle-aged mice demonstrate impaired
learning and memory (Shoji et al., 2016), indicating that age-
dependent hippocampal proteomic alterations might contribute
to cognitive decline at this age. We found that there is widespread
disruption of the circadian orchestration of protein expression
rhythms in the hippocampus during aging, reflective of the
age-related decline in the circadian system. Notably, we have
shown that aging leads to a loss of temporal coordination of
pathways critical for normal hippocampal function, including
energy metabolism, neurotransmission, and synaptic plasticity.

Rhythmic proteins involved in energy metabolism and
synaptic vesicle cycling peaked in a coordinated manner
during the day in young mice, complementing previous work
showing that the synaptic vesicle cycle is the main source
of activity-driven metabolic demand at synapses (Rangaraju
et al., 2014). Importantly, these pathways lost rhythmicity in
the hippocampus of middle-aged mice, suggesting that aging
is associated with a disruption in the temporal coupling
between energy demand and production, which could lead to
impaired synaptic function. High rates of energy production
in the brain are required to support neuronal and glial
activities, with neurons relying on glucose as their main
energy source (Camandola and Mattson, 2017). Moreover,
reduced hippocampal energy metabolism (particularly glucose
metabolism) has been associated with cognitive impairment
and AD (Mattson and Arumugam, 2018). Circadian regulation
of energy metabolism and synchronization among local brain
clocks might contribute to sustaining daily cycles in brain
function, such as increases in memory consolidation and
synaptic rewiring during sleep (Kyriacou and Hastings, 2010).
Synaptic plasticity must be supported during sleep, when
consolidation of memories is hypothesized to preferentially
occur (Kondratova and Kondratov, 2012). In line with this
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hypothesis, circadian oscillations in signal transduction events
underlying LTP in the hippocampus have previously been
shown to peak during the day in young mice, and disruption
of these rhythms results in impaired hippocampal-dependent
memory (Eckel-Mahan et al., 2008). Thus, disruption of the
temporal coordination of energy production, which supports
these functions in the hippocampus, might contribute to age-
related cognitive impairment.

The progressive functional deterioration that characterizes
aging is a primary risk factor for various age-related disorders,
including neurodegenerative diseases (Kondratova and
Kondratov, 2012). Interestingly, sleep and circadian disturbances
are shared clinical features of several neurodegenerative diseases,
and a growing body of evidence indicates that disruption of
circadian rhythms contributes directly to their pathogenesis
(Kondratova and Kondratov, 2012; Musiek and Holtzman,
2016). Given that these disorders involve an exacerbation of
aging-associated circadian dysfunction and hallmarks of aging
(Mattson and Arumugam, 2018; Musiek and Holtzman, 2016),
identifying changes in the daily cycles of biological functions
in the brain during normal aging might contribute to a better
understanding of the pathogenesis of these diseases. We found
that proteins displaying age-related alterations in rhythmicity in
the hippocampus of mice were involved in various hallmarks of
aging, including mitochondrial dysfunction, genomic instability,
epigenetic alterations, and loss of protein homeostasis. A recent
study identified age-dependent changes in dynamics of the
oxidative stress response in the hippocampus of aged mice
(Lacoste et al., 2017), consistent with our results. We also found
rhythmic hippocampal proteins involved in the pathogenesis
of several aging-associated neurodegenerative diseases affecting
the brain, indicating that age-related alterations in circadian
regulation are associated with and might contribute to the
pathogenesis of these diseases.

Age-dependent changes in the temporal regulation of proteins
involved in local hippocampal clock function, such as proteins
involved in regulating protein phosphorylation and turnover,
provide novel potential mechanisms through which aging may
be associated with alterations in physiological circadian rhythms.
Additional studies are needed to characterize the effects of aging
on the circadian rhythms of post-translational modifications of
proteins, given that our results implicate enzymes regulating
protein acetylation and phosphorylation in hallmarks of aging
and age-related functional decline. This is plausible given that
we and others have previously shown the relevance of rhythmic
protein phosphorylation in the hippocampus of young mice
(Chiang et al., 2017; Snider et al., 2018).

Our study represents the first large-scale proteomic analysis
of aging in mammals from a circadian perspective, and
our findings provide a framework for understanding the
links between age-related cognitive decline, neurodegenerative
disorders, and the circadian clock. Circadian disruption is
associated with hippocampal-dependent memory impairment,
and it is conceivable that aging-induced alterations in the
circadian regulation of processes critical for hippocampal
function could contribute to this decline. Our results build upon
previous studies examining the circadian proteomes of brain,

liver, and heart tissues from young mice (Millius and Ueda, 2017)
and the circadian transcriptomes of various central and
peripheral tissues from young mice (Zhang et al, 2014) and
baboons (Mure et al., 2018). Furthermore, a growing number
of recent studies are exploring the effects of aging (Sato et al.,
2017), environmental and genetic circadian disruption (Archer
et al., 2014; Martino and Young, 2015), and various diets (Sato
et al., 2017; Tognini et al., 2017) on the circadian regulation of
cellular functions in humans and mice. Our dataset may therefore
also serve as a resource to the circadian biology community
for future studies investigating the effects of environmental and
genetic modifications or potential therapeutic interventions on
hippocampal function in mammals.
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The integrity of the frontal areas of the brain, specifically the prefrontal cortex, are critical
to preserve cognition and mobility in late life. Prefrontal cortex regions are involved
in executive functions and gait control and have been related to the performance
of dual-tasks. Dual-task performance assessment may help identify older adults at
risk of negative health outcomes. As an alternative to neuroimaging techniques that
do not allow assessment during actual motion, functional Near-Infrared Spectroscopy
(fNIRS) is a non-invasive technique that can assess neural activation through the
measurement of cortical oxygenated and deoxygenated hemoglobin levels, while the
person is performing a motor task in a natural environment as well as during cognitive
tasks. The aim of this review was to describe the use of fNIRS to study frontal lobe
hemodynamics during cognitive, motor and dual-tasks in older adults. From the 46
included publications, 20 studies used only cognitive tasks, three studies used motor
tasks and 23 used dual-tasks. Our findings suggest that fNIRS detects changes in
frontal activation in older adults (cognitively healthy and mild cognitive impairment),
especially while performing cognitive and dual-tasks. In both the comparison between
older and younger adults, and in people with different neurological conditions, compared
to healthier controls, the prefrontal cortex seems to experience a higher activation, which
could be interpreted in the context of proposed neural inefficiency and limited capacity
models. Further research is needed to establish standardized fNIRS protocols, study
the cerebral hemodynamic in different neurological and systemic conditions that might
influence cortical activation and explore its role in predicting incident health outcomes
such as dementia.

Keywords: functional Near-Infrared Spectroscopy, gait, dual task, motor task, cognition, older adults, prefrontal
cortex, cerebral hemodynamics
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INTRODUCTION

The worldwide aging of the population makes tackling aging-
associated disability an urgent priority. Cognitive impairment
and mobility disability are key contributors to dementia and
loss of independence in the activities of daily living and have
a synergistic effect (Verghese et al., 2014). The integrity of the
frontal areas of the brain, specifically the PFC, are critical to
preserve cognition and mobility in late life (Beauchet et al.,
2016). PFC regions carry out executive functions, i.e., higher
order cognitive functions essential to plan and execute complex
goal-directed actions, which are also key for motor control
in older adults (Inzitari et al., 2007). The loss of integrity in
frontal or prefrontal regions, either due to neurodegeneration,
cerebrovascular disease or due to their interactions, contributes
to the development of dementia (Burgmans et al., 2009; Kisler
et al, 2017) and mobility impairments (De Laat et al., 2011).
The PFC has also been implicated in performance of DT (Sala
et al., 1995; Dux et al., 2006; Filmer et al., 2013), that are
motor tasks performed simultaneously with a secondary, usually
a cognitive task. DT increases the cognitive demand of walking
and potentially results in a decrease in task performance in one
or both tasks relative to when the tasks are performed separately
as ST. DT performance assessment may help identify older adults
at higher risk of incident cognitive decline (Ceide et al., 2018;
Rosso et al., 2019), disability, frailty and mortality (Verghese
et al., 2012). One of the goals of the study of cognitive aging
is to elucidate neural mechanisms that underlie the ability of
the aging brain to cope with decline in cognitive functions and
efficiency. Several hypothesis have been described and there is still
no consensus regarding definitions of several concepts (Cabeza
etal,, 2018). Two of the previously described hyphotheses are: the
“neural inefficiency hypothesis” (Rypma and D’Esposito, 2000;
Holtzer et al., 2009) or “compensation by upregulation” (Cabeza
et al., 2018), according to which older adults show increased
activity of the same networks recruited by younger counterparts
in order to meet behavioral demands, and the “capacity limitation
hypothesis” (Cabeza, 2004; Holtzer et al., 2009) which postulates
that older adults, while recruiting the same brain networks as
young adults, would show a reduced activation compared to their
younger counterparts (Holtzer et al., 2009; Stern, 2009).

Classic clinical and epidemiological studies have based their
assessment of PFC on a static, structural basis, mainly through
magnetic resonance imaging (MRI) techniques, which have
shown a contribution of both cortical frontal and PFC volumes
(Rosano et al., 2008; Weinstein et al., 2012) and subcortical
alterations to executive dysfunction/dementia (Jokinen et al.,
2009) and mobility limitations (Baezner et al., 2008). In addition,
functional neuroimaging techniques, such as functional MRI
(fMRI), allow the study of PFC by assessing the hemodynamic
changes due to neurovascular coupling that are triggered by its
neural activation (Buchbinder, 2016). fMRI studies assess whole

Abbreviations: AD, Alzheimer’s disease; DT, dual-task; fNIRS, Functional
Near-Infrared Spectroscopy; HHb, deoxygenated hemoglobin; MCI, mild
cognitive impairment; NGA, Neurological Gait Abnormalities; O, Hb, oxygenated
hemoglobin; PD, Parkinson’s disease; PFC, prefrontal cortex; ST, single task; VE
verbal fluency.

brain function with a relatively high spatial resolution, are non-
invasive and the most used technique to date to assess neural
activity during specific task activation (Rosen and Savoy, 2012).
Several fMRI studies have demonstrated the relevance of PFC
for executive functions (Wager et al., 2004; Venkatraman et al.,
2010; Yaple et al., 2019) and DT (Szameitat et al., 2002; Dux et al.,
2006; Jurado and Rosselli, 2007). Limitations of both MRI and
fMRI include their relatively high cost, unsuitability for many
older adults due to metal implants in the body, claustrophobia or
inability to lie still for long periods. Further, due to the nature of
the scanner, the tasks are carried out in unnatural environments
which may alter their relevance to the real-world and do not allow
functional analysis of brain activity during locomotion. Imagined
gait has been used as a way to study the neural correlates of
locomotion with fMRI (Zwergal et al., 2012; Blumen et al,
2014); however, it is not entirely clear how well this mimics
brain activation during actual walking. Other options, although
they do not allow online assessment of gait either, include PET
studies after walk trials with administration of fludeoxyglucose-
18 tracer (la Fougere et al., 2010). We refer the reader to Holtzer
et al. (2014) for a comprehensive review on neuroimaging of
locomotion in aging.

Emerging alternatives to fMRI, based on near-infrared
diffuse optical techniques, allow measurements in more realistic
environments and during motion (Boas et al., 2014; Scholkmann
et al.,, 2014). Accumulating evidence supports the use of these
techniques for the study of frontal hemodynamic and metabolic
changes (Agbangla et al, 2017; Gramigna et al., 2017). These
diffuse optical techniques such as fNIRS (Durduran et al,
2010; Ferrari and Quaresima, 2012) allow the study of tissue
composition by emitting near-infrared light (~650-950 nm)
into biological tissue and collecting the photons that undergo
multiple scattering and absorption (i.e., diffuse) and emerge
few centimeters away from the injection point (Delpy and
Cope, 1997; Durduran et al, 2010). At these wavelengths the
main absorbers in tissues, ie., O,Hb and HHb, differentially
absorb light in a wavelength dependent manner. Therefore, most
common fNIRS methods can relate changes in the detected
light intensity at different wavelengths to changes in oxygenated
and deoxygenated hemoglobin concentrations by utilizing the
modified Beer-Lambert law (Scholkmann et al., 2014). This is
a signal similar to the blood oxygen level dependent (BOLD)
signal from fMRI but can be obtained by portable (even wearable)
instrumentation and flexible fiber-optic probes. The majority
of the systems are using source and detector probes placed
on the scalp of the head. The most common source-detector
separations are of few centimeters. Able to detect signal coming
from superficial cortical layers (Ferrari and Quaresima, 2012),
fNIRS measurement is based on the neurovascular coupling
(oxygen consumption to meet energy demands in activated
cerebral areas cause an increase in blood flow resulting in an
increase of O,Hb and decrease of HHb) and both the analysis
and acquisition methods are still being developed with O,Hb
changes appearing more reliable as a marker of brain activation
since it has shown high reproducibility and stability over time
(Plichta et al.,, 2006) and has the highest correlation to fMRI
BOLD measures (Strangman et al., 2002). fNIRS studies usually
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consist of a combination of resting periods, to assess baseline
brain activity, and different kinds of tasks. Brain activation is then
calculated by comparing hemoglobin measurements at baseline
and during the task, although there is a high heterogeneity in
data processing and analysis methods. Regarding its advantages,
fNIRS is a lower cost modality than fMRI, usable at point-
of-care, and allows measurements during mobility tasks. These
advantatges allow the potential use of the technique to assess
cerebral blood flow and oxygenation with application in different
pathologies (e.g., stroke, psychiatric disorders,. . . ) resulting thus
in continuous growth on relevant literature (Noda et al., 2017;
Giacalone et al.,, 2019). However, the main limitations of most
fNIRS devices include: (i) the limited penetration depth, allowing
only the interrogation of superficial layers of the cortex in the
adult brain, (ii) the assessment of a limited portion of the
cortical surface with often a low spatial resolution with the probes
that are attached to the scalp, not allowing complete whole-
brain imaging, (iii) issues with extracerebral contamination from
superficial tissues (i.e., cutaneous or skull perfusion) and (iv)
motion artifacts.

Recent studies have expanded the use of fNIRS in the
assessment of PFC of older adults during cognitive or motor
tests (Verghese et al., 2017). These studies show changes in PFC
hemodynamics during the execution of cognitive or motor tasks,
and also report differences according to the person’s age and
cognitive function. However, these findings are still preliminary
and it is not yet clear if there is a specific pattern according to
age or cognitive status, nor about how these differences should be
interpreted. Recently published reviews have assessed the results
of studies on fNIRS during cognitive tasks (Herold et al., 2018) or
dual tasks (Gramigna et al., 2017; Herold et al., 2017; Leone et al,,
2017; Vitorio et al., 2017; Stuart et al., 2018; Kahya et al., 2019)
and some of them have chosen to focus on specific clinical profiles
(Gramigna et al., 2017; Vitorio et al., 2017) or on methodological
aspects such as fNIRS signal processing (Herold et al., 2017, 2018;
Vitorio et al., 2017). To the best of our knowledge, our review
is the first to focus specifically on older adults regardless of their
clinical profile and to assess, from a clinical point of view, studies
using only cognitive or motor tasks, as well as DTs.

The aim of this review is to describe, through an updated
literature search, the use of optical techniques, specifically fNIRS,
to study brain hemodynamics, with a focus on frontal regions,
in relation to cognitive and physical function in normal and
pathological older adult populations.

METHODS

This is a narrative review. We performed, however, a search
using pre-set criteria, to make sure that we considered all the
relevant articles on the topic. We included manuscripts that
have aimed to study frontal and prefrontal lobe hemodynamics
(excluding those focusing on other brain regions) using fNIRS
to measure oxygenated and deoxygenated hemoglobin levels
during cognitive, motor and DTs in older adults. Articles were
included if the mean age of the sample or a separately analyzed
subgroup was 60 years or older. Review articles, studies assessing

change in cerebral hemodynamics after an intervention, those
not written in English and those that do not describe the age
of the participants in the manuscript were excluded. In order
to focus on most recent literature, we limited the publication
date to the previous 5 years. The last search was performed on
August 29th, 2018.

The article selection was performed in three phases (review
of titles, abstracts, and full-texts). Two independent reviewers
(CU and MI) reviewed the titles and abstracts resulting from
the search, in order to assess potential inclusion. From the
selected articles, we performed a full manuscript review to assess
if the article met the eligibility criteria. Discrepancies were solved
through consensus.

RESULTS

General Description

As depicted in the flow-chart (Figure 1), after removing
duplicates, our search resulted in 134 items. After excluding
records by title and abstract screening (n = 46), 89 full-text
articles were assessed for eligibility. Studies not meeting the above
described eligibility criteria such as sample/subgroup mean age
(n = 19), the aim/topic focus of our review (n = 6) (ie., use
of NIRS to monitor cancer treatment), methodological aspects
of the design of studies (n = 6) (i.e., different location of the
probes or NIRS measures performed to assess the effect of an
intervention) and review articles (n = 11), were excluded. We
finally included 46 articles in our review.

Of the 46 included articles, 13 included a mix of younger
and older participants (Heilbronner and Minte, 2013;
Ohsugi et al,, 2013; Beurskens et al., 2014; Miiller et al., 2014;
Oboshi et al., 2014; Hernandez et al., 2016; Bierre et al., 2017;
Mirelman et al., 2017; Rosso et al., 2017; Hawkins et al., 2018)
whereas 29 included only older adults (Doi et al., 2013; Heinzel
et al.,, 2013, 2015; Niu et al., 2013; Clark et al., 2014; Vermeij
etal., 2014; Dupuy et al., 2015; Holtzer et al., 2015, 2016, 2017a,b,
2018a,b; Lagué-Beauvais et al., 2015; Al-Yahya et al, 2016;
Maidan et al., 2016, 2017; Mahoney et al., 2016; Nieuwhof et al,,
2016; Osofundiya et al., 2016; Takeuchi et al., 2016; Uemura et al.,
2016; Yeung et al,, 2016a,b; Chen et al., 2017; Huppert et al.,
2017; Verghese et al., 2017; Yap et al., 2017; Halliday et al., 2018;
Katzorke et al., 2018; Lucas et al., 2018; Mori et al., 2018; Thumm
et al, 2018). Moreover, 26 studies included only cognitively
normal participants (Heilbronner and Miinte, 2013; Heinzel
etal., 2013, 2015; Ohsugi et al., 2013; Beurskens et al., 2014; Clark
et al., 2014; Miiller et al., 2014; Oboshi et al., 2014; Vermeij et al.,
2014; Holtzer et al., 2015, 2016, 2017a,b, 2018a,b; Osofundiya
et al., 2016; Bierre et al., 2017; Chen et al., 2017; Huppert et al.,
2017; Mirelman et al., 2017; Rosso et al., 2017; Verghese et al,,
2017; Halliday et al., 2018; Lucas et al., 2018), seven compared
participants with different cognitive status [without cognitive
impairment, with MCI or with mild AD] (Doi et al., 2013; Niu
et al,, 2013; Al-Yahya et al, 2016; Uemura et al,, 2016; Yeung
etal., 2016a,b; Yap et al., 2017; Katzorke et al., 2018), three studies
focused on older adults with previous history of stroke (Al-Yahya
et al., 2016; Hawkins et al., 2018; Mori et al., 2018), five assessed
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FIGURE 1 | Flow chart diagram of the review process.

patients with parkinsonian syndromes (Mahoney et al., 2016;
Maidan et al.,, 2016, 2017; Nieuwhof et al., 2016; Thumm et al.,
2018) and two with Multiple Sclerosis (Hernandez et al., 20165
Chaparro et al., 2017).

Looking at the older adults subgroups that were included in
the studies, there was a wide range of mean ages, from 61 + 4
(Hernandez et al., 2016) to 88.1 & 6 (Huppert et al., 2017). The
largest sample size was 1052 participants (Heinzel et al., 2015)
while a sample of 12 older adults was the smallest (Nieuwhof
et al., 2016). Most source populations were community-dwelling
but two studies included older adults living in nursing home

(Osofundiya et al., 2016; Huppert et al., 2017). Ten studies did
not describe the participant setting (Niu et al., 2013; Oboshi et al.,
2014; Al-Yahya et al., 2016; Uemura et al., 2016; Maidan et al,,
2017; Mirelman et al., 2017; Rosso et al., 2017; Katzorke et al.,
2018; Mori et al., 2018; Thumm et al., 2018).

The majority, 29 studies, used O,HD to assess brain activation
while nine studies (Heilbronner and Miinte, 2013; Beurskens
etal., 2014; Miiller et al., 2014; Al-Yahya et al., 2016; Hyodo et al,,
2016; Nieuwhof et al., 2016; Rosso et al., 2017; Halliday et al,,
2018; Katzorke et al., 2018) used both O,Hb and HHb and one
used only Total Hb (Huppert et al., 2017). Two studies calculated
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the Total Oxygenation Index (O,Hb/Total Hb x 100) in order to
assess brain hemodynamics (Clark et al., 2014; Bierre et al., 2017).
In the following paragraphs, we will use the term activation to
refer to changes in these hemoglobin indices.

Twenty-three studies measuring single cognitive or motor
tasks performed intra-group comparisons of the cerebral
activation during different tasks and the rest periods (see articles
listed in Tables 1, 2A), whereas the other 23 studies compared
cerebral hemodynamics between single and DT (see articles
listed in Table 2B). Twenty-four studies performed comparisons
of cerebral activation patterns between different groups (either
young vs. old, MCI vs. cognitively normal, healthy vs. stroke
etc.) (Heilbronner and Miinte, 2013; Niu et al., 2013; Ohsugi
et al., 2013; Beurskens et al., 2014; Miiller et al., 2014; Oboshi
et al.,, 2014; Lagué-Beauvais et al., 2015; Al-Yahya et al., 2016;
Hernandez et al., 2016; Maidan et al., 2016, 2017; Mahoney et al,,
2016; Osofundiya et al., 2016; Takeuchi et al., 2016; Uemura et al.,
2016; Yeung et al., 2016a,b; Bierre et al., 2017; Mirelman et al,,
2017; Rosso et al., 2017; Yap et al., 2017; Hawkins et al., 2018;
Katzorke et al., 2018; Mori et al., 2018).

Some studies, beyond assessing frontal hemodynamics,
investigated the influence of other clinical characteristics in the
reported frontal activation findings (Albinet et al., 2014; Dupuy
et al., 2015; Hyodo et al., 2016; Osofundiya et al., 2016; Holtzer
et al,, 2016, 2017a,b, 2018a; Verghese et al., 2017; Halliday et al,,
2018; Lucas et al., 2018) (see Table 3).

Studies Assessing the Effect of Cognitive

Tasks

We found 20 articles assessing cerebral activation during
cognitive tasks (Table 1). The most frequent cognitive task
was VF (Heinzel et al,, 2013, 2015; Yeung et al., 2016a; Yap
et al.,, 2017; Katzorke et al., 2018). Generally, VF tests ask the
participants to produce the maximum number of words starting
with a specific letter (phonemic) or belonging to a pre-specified
semantic category (semantic). Three studies used N-back tests
(Niu et al,, 2013; Vermeij et al., 2014; Yeung et al., 2016b),
which assess working memory function. N-back tasks are usually
designed as conditions with increasing working-memory load: 0-
back (subject has to detect if the presented stimulus is the one
described as target), 1-back (the subject has to remember if the
presented stimulus was presented on the previous position) and
2-back conditions (the participant must be able to remember if
the stimulus is the same presented 2 positions before). From the
twelve remaining studies, eleven used different tests of executive
functions (i.e., Stroop, symbol digit coding and shifting attention
test, Go/No go inhibition task, Trail Making Test part B, etc.)
(Heilbronner and Miinte, 2013; Albinet et al., 2014; Miiller et al.,
2014; Oboshi et al., 2014; Dupuy et al., 2015; Lagué-Beauvais
et al., 2015; Hyodo et al., 2016; Bierre et al., 2017; Huppert
et al,, 2017; Halliday et al., 2017, 2018) and one used an episodic
memory task (Uemura et al., 2016).

Cognitively Healthy Older Adults

Regarding the studies that assessed frontal hemodynamics
in cognitively healthy older adults, two studies by
Heinzel et al. (2015) showed different activation patterns

while performing VF tasks: one showed an increased activation
and another found a decreased activation on bilateral inferior
frontal junction in healthy older adults while middle frontal
gyri and supramarginal gyri showed an increased activation
(interpreted as compensatory mechanisms) (Heinzel et al., 2013).
Cognitively healthy older adults showed an increased prefrontal
activation while performing a working memory task with visual
recognition (Oboshi et al., 2014) as well as with increasing
working memory load during a N-back task (Vermeij et al.,
2014). Studies using other executive function tests, found an
increase in frontal lobe activation during executive function
tasks (Heilbronner and Miinte, 2013; Albinet et al., 2014; Miiller
et al., 2014; Bierre et al., 2017; Huppert et al., 2017). One study,
instead of reporting only the mean values of O,Hb, addressed
the association between O,Hb variability and behavioral results
during an executive function task (Halliday et al., 2017). They
reported that within-person O,Hb variability was associated
with better accuracy and faster performance but between-person
variability was associated with slower performance.

Comparison of Healthy Old Versus Young Adults
Healthy older adults showed higher frontal activation than
younger persons while performing a visuomotor task with
increasing executive function demand (Bierre et al, 2017).
Moreover, a different activation pattern during executive function
tests between age groups was observed. According to Heilbronner
and Miinte (2013), in older adults, activation shifted rostrally
on the left hemisphere and dorsally on the right hemisphere
during the inhibition task, while Miiller et al. (2014) reported
an additional activation in left medial and lateral PFC during
the TMT-B (while more ventral activation was evidenced in
younger counterparts). The effect of prioritization of a stimulus
was assessed in one study (Lagué-Beauvais et al., 2015) where the
participants were asked to prioritize one of two stimuli displayed
(priority block) or to give the same priority to both stimuli
(equal block). A change in the activation pattern between the
priority and equal conditions was found only in the older adults
group, with a less lateralized pattern (bilateral dorsolateral PFC
activation) when not prioritizing either stimuli.

Comparison by Cognitive Status

Regarding the studies assessing older adults with different
cognitive status, three studies using VF tasks reported an
increased activation during the task in MCI (Yeung et al., 2016a;
Yap et al., 2017) and mild AD (Yap et al., 2017) while Katzorke
et al. (2018) found a decreased activation during VF in MCI
patients. Yap et al. (2017) compared the activation pattern in
cognitively healthy older adults, MCI and mild AD and found the
highest O,Hb increase in MCI older adults followed by healthy
and AD participants, although the difference was not statistically
significant. Increasing working memory load led to lower frontal
lobe activation during a N-back task in MCI, compared to
healthy controls (Niu et al., 2013; Yeung et al., 2016b). Only one
study measured PFC activation during encoding and retrieval of
episodic memory, and it found a decreased activation on bilateral
dorsolateral cortex during memory retrieval in amnestic MCI
(Uemura et al., 2016).
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Studies Assessing the Effect of Motor

Tasks

All the studies that used isolated motor tasks in order to
assess PFC hemodynamics (n = 3) enrolled older adults with
parkinsonian syndromes but were heterogeneous regarding
the motor tasks paradigm (Table 2A). The reported results

were also heterogeneous. According to Mahoney et al. (2016),

older adults with parkinsonian syndromes showed higher PFC

activation while performing a postural control task (compared
to participants with mild parkinsonian signs or without these).
Participants with PD walking on a straight walkway showed
an increased PFC activation, compared to the baseline, and a

TABLE 1 | Summary of the studies assessing fNIRS measures during cognitive tasks in older adults.

First author
(Journal,
year), Country

Sample size (N)
Clinical
characteristics of the
sample (mean

age + SD) NIRS
optodes localization

Paradigm description

Main fNIRS results

Verbal fluency
Heinzel
(Neurobiol
Aging, 2013),
Germany
(Heinzel et al.,
2013)

Heinzel
(PLoS One
2015),
Germany
(Heinzel et al.,
2015)

Yeung

(Front Aging
Neurosci.,
2016), China
(Yeung et al.,
2016a)

Yap

(Front Aging
Neurosci.,
2017), Malaysia
(Yap et al.,
2017)
Katzorke
(Psychiatry Res
Neuroimaging,
2018),
Germany
(Katzorke et al.,
2018)

N-back tasks
Niu

(CNS Neurosci
Ther., 2013),
China (Niu
etal., 2013)

Vermeij
(Front Aging
Neurosci.,
2014),
Netherlands
(Vermeij et al.,
2014)

N = 325 Healthy
(64.6 £ 7.3). Prefrontal,
temporal and parietal.

N = 1052 Healthy
(65.2 £ 6.8). Prefrontal,
parietal and
fronto-temporal.

N =52 MCI
(69.1 £ 6.2); Healthy
(68.8 + 6.1). Prefrontal.

N =61 Healthy

(72.6 + 8.5); MCl
(73.1 &+ 8.2); Mild AD
(74.7 £ 10). Prefrontal
and part of temporal.

N =110 Healthy
(74.2 £ 1.6); MCI
(74.0 + 1.6).

Fronto-temporal.

N =24 MCI

(64.8 & 7.2); healthy
(63.5 £ 5.3). Frontal,
parietal and temporal.

N =18 Healthy older
adults (70.8 £+ 5.0).
Prefrontal.

Tasks:

— Phonetic verbal fluency.

— Semantic verbal fluency.

— Control task: reciting week days.
Three trials: 30 s each.

Rest: 30 sec after each trial.

Tasks:

— Phonetic verbal fluency.

— Semantic verbal fluency.

— Control task: reciting week days.
Three trials: 30 s each.

Rest: 30 sec after each trial.

Tasks:

— Semantic verbal fluency. Two task blocks,
60 s each.

Rest: repeat “1, 2, 3, 4” out loud. Before and
after VF task.

Task:
— Semantic verbal fluency (60 s).
Rest: 20 s before and after task.

Tasks:

— Letter verbal fluency.

— Semantic verbal fluency.

— Control (weekdays).

Three trials per task: 30 sec each.
Rest: 30 s after each task.

Task:

— Digit N-back task (0-back and 1-back
conditions). Three blocks in each
condition: 20 trials for each block followed
by 1000 ms interstimulus period.

Rest: No rest time specified.

Task:

— Spatial N-back (0-back, 1-back and
2-back conditions).

60 trials (500 ms each) with 3000 ms interval

between trials.

Rest: Initial 1 min-baseline (staring at screen).

With increasing age:

{: Lower activation on bilateral inferior frontal
junction during verbal fluency.

Increased bilateral activation at middle frontal gyri
and supramarginal gyri.

11 Increased activation during both verbal fluencies
(compared to control task).

Stronger response in phonological than semantic
(increased activation in right prefrontal and bilateral
inferior parietal regions extending toward
postcentral gyri and decreased in bilateral
fronto-temporal areas).

1 Increased OoHb bilaterally during verbal fluency
in both groups. No significant group differences.
Control group showed left lateralization of frontal
lobe activation (whereas MCI group did not).

1: Highest OoHb increase during task was
observed in MCI followed by healthy and mild AD.

|: Decreased PFC activation during semantic
verbal fluency in MCI compared to healthy controls
(but not during phonological verbal fluency).

U}: MClI participants showed lower OoHb
concentrations in the left dorsolateral PFC, right
supplementary motor area and left superior
temporal regions compared to control group.

1 Increased working-memory load associated
increased prefrontal activation and decreased
performance.

(Continued)
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TABLE 1 | Continued

First author
(Journal,
year), Country

Sample size (N)
Clinical
characteristics of the
sample (mean

age + SD) NIRS
optodes localization

Paradigm description

Main fNIRS results

Yeung
(Dement Geriatr
Cogn Disord.,
2016), China
(Yeung et al.,
2016b)

N =52 MCI

(69.1 £ 6.3); cognitively
normal (68.8 + 6.1).
Frontal.

Other tests for executive functions

Heilbronner
(Neuroimage,
2013),
Germany
(Heilbronner
and Munte,
2013)

* Albinet
(Front Aging
Neurosci.,
2014), France
(Albinet et al.,
2014)

Miller
(Neuropsychologia,
2014),

Germany

(Mdller et al.,

2014)

Oboshi
(PL0S One,
2014), Japan
(Oboshi et al.,
2014)

* Dupuy
(Front Hum
Neurosci.,
2015), Canada
(Dupuy et al.,
2015)

* Hyodo
(Neuroimage,
2015), Japan
(Hyodo et al.,
2016)

N = 35. Healthy older
adults (68 + 1.4);
younger adults group
(23.1 £ 0.4).
Frontotemporal.

N = 40 Healthy old
adults: high-fit

(67.32 + 4.48); low-fit
(68.88 + 3.87)
Prefrontal

N = 40 Older adults
(70.9 + 3.5); younger
adults (25.7 + 3.0).
PFC, motor and
premotor regions.

N =120 Healthy older
adults (71.0 £+ 6.4);
younger adults

(21.7 £ 3.3). Prefrontal.

N = 58 Healthy older
adults (62.9 + 5.4);
young adults

(24.6 £ 3.6). Prefrontal.

N = 60 Healthy older
adults (70.3 &+ 3.2).
Prefrontal.

Task:

— Digit N-back task (0-back and 2-back
conditions). 20 trials (1000 ms each)
followed by 1000 ms interval between
trials.

Rest: 30 s between blocks.

Task:

— Cognitive Go/No Go inhibition task: Go
stimulus: press button; No Go stimulus:
inhibit pressing button.

1083 stimuli in 5 trials.

Rest: Rest in a self-paced manner.

Task:

— Random Number Generation: participants
asked to say random number when heard
a tone. Fast pace (tone/1 s) and slow pace
(tone/1.5 ).

Two trials of 100 responses at each pace.

— Control: count in order from one to nine.

Task:

— Adapted version of Trail Making Test (TMT)
Aand B.

— Control task: retrace 90 interconnected
circles.

Each test presented three times (30 s each).

Rest: 30 s after each test.

Task:
— Visual working memory task.

Six blocks (28.8 s each).
Rest: 30 s.

Task:

— Modified Stroop-task with two conditions:
naming (identify the color of the ink);
executive or incongruent (color of the ink
not matching the color-word displayed).

Four trial-blocks (60 s each).

Rest: 60 s between blocks.

Task:

— Modified Stroop-task: participants asked
to decide if word is printed in the color
written below the word (neutral and
incongruent conditions).

60 trials (30 neutral and 30 incongruent trials).

Rest: 9-13 s interstimulus interval.

U+ MCI group did not show frontal activation.
Tended to reduce activation with high working
memory load.

1: Control group: frontal activation in high working
memory load (2-back condition).

1: Older adults showed activation in frontal areas.
Compared to young participants, activation shifted
rostrally (left hemisphere) and dorsally (right
hemisphere) in older adults.

11 Increasing activation in relation to task difficulty.
High-fit group showed greater increase in OxHb.

1: Older adults showed bilateral ventrolateral and
dorsolateral prefrontal and premotor cortex
activation during TMT-B (more channels active in
the right hemisphere).

Additional activation in medial and lateral PFC in
elderly (younger participants show more ventral
PFC, especially in the left hemisphere).

f: Older adults: OoHb increase during working
memory task. Young adults: Higher OoHb increase
during pre-task (compared to elderly).

Both groups: lower activation during pre-task is
associated with higher OoHb change during
working memory task.

11 High-fit women showed increased activation in
right inferior frontal gyrus (independent of age
group).

Higher fitness levels and left-lateralized PFC
activation related to shorter Stroop interference
time.

Higher fitness associated with more left-lateralized
activation.

(Continued)
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TABLE 1 | Continued

First author
(Journal,
year), Country

Sample size (N)
Clinical
characteristics of the
sample (mean

age + SD) NIRS
optodes localization

Paradigm description

Main fNIRS results

Lagué-
Beauvais
(Brain and
Cognition,
2015), Canada
(Lagué-
Beauvais et al.,
2015)

Bierre

(J Gerontol A
Biol Sci Med
Sci., 2017),
New Zealand
(Bierre et al.,
2017)

Halliday
(Neurophoton.,
2017), Canada
(Halliday et al.,
2017)

Huppert
(PL0S One,
2017), USA
(Huppert et al.,
2017)

* Halliday

(J Clin Exp
Neuropsychol.,
2018), Canada
(Halliday et al.,
2018)

Memory test

Uemura

(Int J Geriatr
Psychiatry,
2016), Japan
(Uemura et al.,
2016)

N = 35 Healthy older
adults (63.47 + 3.67);
young adults

(23.94 + 2.32).
Prefrontal.

N = 72 Healthy older
adults (66 + 3.8);
young adults

(21.9 £+ 2.7). Frontal.

N = 25 Healthy older
adults (75.88 + 3.28)
Prefrontal.

N =19 Older adults
(88.1 £ 6.0). Frontal.

N =27 Older adults
(76.1 £ 3.3). Prefrontal.

N =130 Amnestic MCI
(71.8 £ 43); healthy
older adults

(71.7 £ 3.9). Prefrontal.

Task:

— Color task: identify color of an “X” on
screen (by typing on keyboard).

— Letter task: identify “K” or “L” on screen (by
typing on keyboard).

e Conditions:

— Single pure: only an “X” or letter is
displayed to perform one of the tasks.

— Dual mixed: both an “X” and a letter are
displayed and have to be answered. These
are performed under the instruction to
prioritize the letter over the color task
(Priority Block) or to give the same priority
to both tasks (Equal Block).

Rest: staring at fixation cross on screen

(1000 ms).

Task:

— Visuomotor tasks (increasing executive
demand):

1) Basic visuomotor performance.

2) Adding inhibition.

3) Adding need to switch between tasks.

Rest: 2 min (sitting).

Task:

— Computerized cognitive task: Multi-Source
Interference Task (congruent and
incongruent condition).

Fifteen trials in a 30 s block.

Rest: 60 s baseline before task. 20 s between

blocks.

Tasks:

— Stroop Test.

— Symbol Digit Coding.

— Shifting Attention Test.

Rest: 30 s (quiet sitting baseline).

Task:

— Computerized cognitive task: Multi-Source
Interference Task (congruent and
incongruent condition).

Fifteen trials in a 30 s block (total of 4 blocks

for each condition).

Rest: No rest time specified.

Task:
— Encoding and retrieval of 10 words
(20-30 s respectively).
Repeat vowels: Pre-task (10 s), rest after task
(20-30 s) and post-task (10 s).

Priority condition:

— Older adults: activation in the left dorsolateral
prefrontal cortex and bilateral ventrolateral cortex
during DT.

— Young adults: dual mixed trials showed greater
changes in more frontal areas, especially right
sided.

Equal condition:

— Older adults: dual mixed trials engaged bilateral
dorsolateral prefrontal cortex, compared to
single trials.

— Young adults: no differences between activation
during dual mixed and single trials. Single trials
showed change in activation in right posterior
dorsolateral prefrontal cortex for HHb.

The activation change between priority and equal

conditions was found only in older adults.

1 Older adults showed increased OoHb in relation
to increasing task difficulty.

Older adults showed higher O>Hb compared to
younger adults

Greater mean OoHb during congruent (easier) task
associated with faster performance and during
incongruent (more difficult) task, with slower
performance.

Greater OoHb variability at within-person level
associated with better accuracy and faster
performance.

Greater OoHb variability at between-person level
associated with slower performance.

1t Left Broadmann’s area (BA) 10 (right superior
frontal) activation during Symbol Digit Coding and
Shifting Attention Test.

Right BA-10, right BA-45 and left BA-10 activated
during Stroop test.

1 Fallers: activation during congruent and
incongruent task; recruited additional tissue to
perform at similar level.

Non-fallers: no active channels during congruent
task; little activation during incongruent task (medial
right prefrontal cortex).

|} Reduced activation in bilateral dorsolateral
cortex during memory retrieval in amnestic MCI.
No significant group effects during encoding.

AD, Alzheimer’s Disease; DT, dual-task; fNIRS, Functional Near-Infrared Spectroscopy; HHb, deoxygenated hemoglobin; MCI, Mild Cognitive Impairment; O2Hb,
oxygenated hemoglobin; PFC, Prefrontal Cortex; ST, single task; SD, Standard Deviation; VF, Verbal Fluency. *Articles assessing modulation of health characteristics
on brain activation (Table 3).

Frontiers in Aging Neuroscience | www.frontiersin.org

January 2020 | Volume 11 | Article 367


https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

Udina et al.

Frontal Lobe Activation in Older Adults

TABLE 2 | Summary of the studies assessing fNIRS measures during motor and/or dual-tasks in older adults.

First author
(Journal,
year), Country

Sample size (N)
Clinical
characteristics of the
sample (mean

age + SD) NIRS
optodes localization

Paradigm description

Main fNIRS results

(2A) Motor tasks

Mahoney
(Brain Res.,
2016), USA
(Mahoney et al.,
2016)

Maidan
(Brain Topogr.,
2017), Israel
(Maidan et al.,
2017)

Thumm

(Gait Posture,
2018), Israel
(Thumm et al.,
2018)

(2B) Dual-tasks

Doi

(Aging Clin Exp
Res., 2013),
Japan (Doi
etal., 2013)

Ohsugi
(BMC
Neurosc.,
2013), Japan
(Ohsugi et al.,
2013)

Beurskens
(IntJ
Physchophysiol.,
2014),

Germany
(Beurskens
etal.,, 2014)

Clark
(Front Aging
Neurosci.,
2015) (Clark
etal., 2014)

N = 269 Parkinsonian
syndrome (81.2 & 5.9);
Mild parkinsonian signs
(77.5 £ 6.7); healthy
adults (74.4 + 6.1).
Prefrontal.

N = 49 PD without
cognitive impairment or
freezing of gait

(72.8 £ 1). Frontal.

N=20PD (69.8 + 6.4).
Prefrontal.

N = 16 Older adults
with MCI (75.4 £+ 7.2).
Prefrontal.

N = 35 Healthy older
adults (77.9 £ 5.3) vs.
young (26 + 3.6).
Prefrontal.

N = 25 Healthy older
adults (71.0 £ 3.8) vs.
younger adults

(24.5 + 3.3). Prefrontal.

N =16 Older adults
with mild mobility
difficulties (77.2 + 5.6).
Prefrontal.

Task:
— Postural control while standing and silently
counting for 10 sec.

Task:

— Walk with turns: 30-m walk and 180° turn.

— Five trials: 20 s of quiet standing between
walk and turn.

Rest: 20 s before and after each walk (quiet

standing).

Task:

— 30-m over-ground vs. treadmill walking.
— Five trials (30 s each).

Rest: 20 s quiet standing.

Tasks:

— ST 10-m walk.

— DT: 10-m walk + phonetic verbal fluency.
— Three trials in each condition (20 s each).
Rest: 10 s pre-task and 30 s post-task
(standing).

Tasks:

— ST seated stepping while forward
counting from 0.

— ST: serial 7-subtraction from 100.

— DT: stepping + subtraction.

— Each task repeated three times (30 s
each).

Rest: 30 s (self-paced counting).

Tasks:

— ST treadmill walk.

— ST: checking boxes on paper.

— ST: reciting alternate alphabet.

— DT: walk + check.

— DT: walk + alphabet.

Each task: 30 s and repeated twice.

Rest: seated (duration is not specified).

Tasks:

— ST 90-meter walk (5 x 18 m).

— Walk 4 phonetic verbal fluency.

- Walk 4+ dimmed light.

— Walk + carrying tray.

— Walk + 6 obstacles negotiation.

— Walk 4+ weighted vest.

Rest: 1 min quite standing between tasks.

11 Parkinsonian syndromes: increased prefrontal
activation to maintain postural control (compared to
the other two groups).

11 Increased activation during walking and
decrease during turns (compared to baseline).

1 Older adults with lower gait speed (<1 m/sec):
higher activation during turns (compared to older
adults with normal gait speed).

{: Lower activation during treadmill walking
(compared to over-ground walking).

11 Increased prefrontal activation during DT walking
compared to ST walking.

1: Higher OoHb values during DT compared to
stepping as ST. ST count showed higher activation
compared to stepping.

1+ Older adults: higher OoHb levels during DT
compared to younger adults.

|: Older adults: lower activation during

walk 4+ check compared to ST walk. No significant
difference between walk + alphabet vs. walk.
Young: no significant difference in activation during
ST vs. DT.

11 Higher activation in younger adults compared to
older adults during visually demanding dual-task
(walk + check).

1 Increased activation during DT walk + verbal
fluency, walk 4 vest, walk + obstacles. Although
not significative, there was a trend toward increase
during DT walk carrying tray and walk with dimmed
light.

(Continued)
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TABLE 2 | Continued

First author
(Journal,
year), Country

Sample size (N)
Clinical
characteristics of the
sample (mean

age + SD) NIRS
optodes localization

Paradigm description

Main fNIRS results

Holtzer
(Neuroimage,
2015), USA
(Holtzer et al.,
2015)

Al-Yahya
(Neurorehabil
Neural Repair,
2016), UK
(Al-Yahya et al.,
2016)

Hernandez
(J Neurol Sci.,
2016), USA
(Hernandez
etal., 2016)

* Holtzer
(Brain Topogr,
2016), USA
(Holtzer et al.,
2016)

Maidan
(Neurorehabil
Neural Repair,
2016) (Maidan
etal.,, 2016)

Nieuwhof
(Pilot Feasibility
Stud., 2016),
Netherlands
(Nieuwhof
etal., 2016)

* Osofundiya
(Clin Biomech.,
2016), USA
(Osofundiya
etal., 2016)

N = 348 Healthy older
adults (76.8 £+ 6.8).
Prefrontal.

N = 19 Chronic stroke
(66.2 £ 8.3); healthy
controls (56.2 + 9.5).
Prefrontal.

N =16 Multiple
Sclerosis (57 + 5);
healthy controls

(61 £ 4). Prefrontal.

N = 236 Healthy older
adults (75.5 £+ 6.5).
Prefrontal.

N =106 PD

(71.6 & 0.9); healthy
older adults

(70.4 £ 0.9). Prefrontal.

N =12 Parkinson’s
Disease (70.1 £+ 5.4).
Prefrontal.

N = 20 Cognitively
healthy older adults:
obese (80.5 + 6.8) vs.
non-obese

(80.6 £ 7.5). Prefrontal

Tasks:

— ST. Walk 3 loops on 14-feet walkway.

— ST: 30 s reciting alternate alphabet.

— DT: Walk + alphabet.

Rest: 10 s standing still and counting silently

before tasks.

Tasks:

— ST: feet tapping.

— ST: backward count.

— DT: feet tap + count.

Five trials (30 s for each task).

Rest: 25-45 s in a pseudo-random order

after each task.

Tasks:

— ST. Walk 3 loops on walkway.

— ST 30 s reciting alternate alphabet.

— DT: Walk + alphabet.

Rest: 10 s standing still and counting silently

before tasks.

Tasks:

— ST Walk 3 loops on 14-feet electronic
walkway.

— ST Reciting alternate alphabet (30 s).

— DT: Walk 4 alphabet.

Rest: 10 s standing still and counting silently

before tasks.

Tasks:

— ST. Walk on 30-m walkway (30 s).

— DT: Walk + serial subtractions.

— DT: Walk + obstacles.

5 trials each task.

Rest: 1 min before whole paradigm starts and

20 s standing before and after tasks.

Tasks:

— DT: Walk + counting forward.

— DT: Walk + serial 3 or 7-substraction.

— DT: Walk + reciting digit spans.

Five blocks (with 3 tasks each); 40 s each

task.

Rest: 20 s still-standing before/after task and

1-2 min random rest (while listening to

instructions). At least 1 min stand before

block.

Tasks:

— ST:walk (30 s).

— DT: walk + reciting alphabet (30 s).

— DT: walk and step on targets on walkway
(precision walk).

Two blocks: 4 trials (30 s each) per block.

Rest: quiet sitting (30 s) before start; 10 s

quiet standing between trials; 2 min seating

between blocks.

1 Bilateral increases in OoHb during DT compared
to normal walk. In ST walk, after an initial increase,
OoHb levels decrease in the course of the walk.
While during the DT walk, OoHb remains elevated
during the task.

1: Higher OoHb during DT compared to ST in
stroke participants compared to healthy controls.

11 Higher OoHb levels in MS compared to healthy
controls in walking tasks.

Larger increase in OoHb from ST walk to DT in MS
compared to healthy controls.

1 Normal gait: Higher OoHb levels in DT compared
to ST walk.

U: Central NGA: attenuated changes in PFC O>Hb
levels from ST to DT compared to peripheral NGA
and normal gait group.

1: Peripheral NGA showed greatest increase in
OoHb during DT.

1 Increased frontal activation during DT walking
compared with ST walking in healthy group.

U:In PD, HbO, levels did not increase during DT.
1 In PD, HbO» increased during walk + obstacle
compared with ST walking.

1: Higher increase in activation during ST walking in
PD compared to healthy controls. No significant
difference between groups during DT walks.

1 All tasks increased O>Hb during task compared
to rest.

1: Higher PFC activation during DT and precision
walk compared to ST walk.

1: Obesity associated greater activation in all tasks
but specially during precision walking.

(Continued)
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TABLE 2 | Continued

First author
(Journal,
year), Country

Sample size (N)
Clinical
characteristics of the
sample (mean

age + SD) NIRS
optodes localization

Paradigm description

Main fNIRS results

Takeuchi
(BMC
Neurosci.,
2016), Japan
(Takeuchi et al.,
2016)

Chaparro

(J Neuroeng
Rehabil., 2017),
USA (Chaparro
etal., 2017)

Chen

(Gait Posture,
2017), USA
(Chen et al.,
2017)

* Holtzer
(EurJ
Neurosci.,
2017), USA
(Holtzer et al.,
2017a)

* Holtzer

(J Gerontol A
Biol Sci Med
Sci., 2017),
USA (Holtzer
etal., 2017b)

Mirelman
(Brain Cogn.,
2017), Israel
(Mirelman et al.,
2017)

N = 31 Healthy older
adults (71.7 £ 3.3);
young adults

(25.9 £ 4.4) Prefrontal.

N = 22 Healthy older
adults (63.1 + 4.4);
multiple sclerosis
(66.2 £ 5.1) Prefrontal.

N =90 Healthy older
adults (78 + 15.5).
Prefrontal.

N = 318 Healthy older
adults (76.6 + 6.7).
Prefrontal.

N = 314 Healthy older
adults (76.8 £+ 6.7).
Prefrontal.

N = 43. Healthy older
adults (69.7 + 5.8);
younger adults

(80.9 + 3.7). Prefrontal.

Task:

— ST: walk for 30 s around a 2.5 m-radius
circle

— ST: smartphone-based touch game
(sitting). Participants instructed to touch in
ascending order a set of numbers on
screen.

— DT: walk + touch.

Rest: not described.

Task:

— ST: alternate alphabet reciting (standing)

— ST Normal walk

— DT: walk while reciting alternate alphabet

Walk: 30 s warm-up walk; 30 s test; 15°s

deceleration

Rest: 10 s before each task (quiet standing).

Protocol performed with and without partial

body weight support

Tasks:

— ST Walk 3 loops on 14ft electronic
walkway.

— DT: Walk + alternate alphabet reciting.

— ST: Walk with obstacle negotiation.

— DT: Walk with obstacle + alternate
alphabet reciting.

Rest: 10 s standing still and counting silently

before tasks.

Tasks:

— ST Walk (3 loops on 14-feet electronic
walkway).

— ST Reciting alternate alphabet (30 s).

— DT: Walk + alphabet.

Rest: 10 s standing still and counting silently

before tasks.

Tasks:

— ST. Walk 3 loops on 14-feet electronic
walkway.

— ST Reciting alternate alphabet (30 s).

— DT: Walk 4 alphabet.

Rest: 10 s standing still and counting silently

before tasks.

Tasks:

— ST Walk on 30-m walkway.

— DT: Walk + serial subtraction.

- DT: Walk + obstacles.

Three loops on walkway for 30 s for each

task.

Rest: 20 s quiet standing before/after tasks.

No difference between young vs. old in PFC
activation during DT. Less PFC lateralization in older
adults to suppress DT cost in gait performance.

11 Higher activation during DT compared to normal
walk.

1 MS older adults: larger increase in OoHb during
all tasks in all conditions compared to healthy older
adults (especially during DT without partial body
weight support).

1: Higher activation during DT compared to ST in
both normal walk and walk with obstacles.

1 Participants with slower gait showed higher
increase in OoHb during walk with obstacles
compared to unobstructed walk (relative to
participants with normal gait).

{: Higher levels of perceived task-related stress
associated attenuation of brain activation from ST
to DT.

1 Increased OoHb levels during DT walking
compared with ST walking.

{: Higher levels of subjective fatigue attenuated the
increase in OzHb from ST to DT walking.

1 Older participants increased OoHb during DT
compared to ST walk and during ST walk
compared to rest periods.

1 Young adults: Activation during DT compared to
ST walk. No increase in OoHb during ST walking
(compared to rest).

1: Older adults showed higher O>Hb levels in all
tasks compared to younger participant.

(Continued)
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TABLE 2 | Continued

First author
(Journal,
year), Country

Sample size (N)
Clinical
characteristics of the
sample (mean

age + SD) NIRS
optodes localization

Paradigm description

Main fNIRS results

Rosso

(Gait Posture,
2017), USA
(Rosso et al.,
2017)

*Verghese
(Neurology,
2017), USA
(Verghese

etal., 2017)

Mori

(Gait Posture,
2018), Japan
(Mori et al.,
2018)

Hawkins
(Hum Mov Sci.,
2018), USA
(Hawkins et al.,
2018)

* Holtzer
(Brain Cogn.,
2018), USA
(Holtzer et al.,
2018a)

* Lucas

(J Gerontol A
Biol Sci Med
Sai., 2018),
USA (Lucas
etal., 2018)

N = 16 Healthy older
adults (74 + 5);
younger adults

(24 + 3). Left prefrontal,
temporal, and motor.

N =166 Healthy older
adults (74.9 £ 6.1).
Prefrontal.

N = 28 Post-stroke
(>6 months) with
hemiparesis

(61.1 & 9.3); healthy
controls (66.3 &+ 13.3).
Prefrontal.

N = 48 Post-stroke
(>4 years) with
hemiparesis

(568.0 £ 9.3); older
adults with mild gait
deficits (77.2 £+ 5.6);
young healthy adults
(22.4 £ 38.2). Prefrontal.

N = 315 Healthy old
(76.8 £ 6.7). Prefrontal.

N = 55 Healthy older
adults (74.7 £ 4.9).
Prefrontal.

Tasks:

— ST Attention task (seated).

— ST Postural control (standing).

— DT: Postural control + attention task.

Three trials of each task (121 s each).

Rest: 30 s sitting or standing before and after

each task.

Tasks:

— ST: Walk 3 loops on 14-feet walkway.

— ST: Reciting alternate alphabet (30 s).

— DT: Walk + alphabet.

Rest: 10 s standing still and counting silently

before tasks.

Tasks:

— ST: Serial subtractions of 3 (standing).

— DT: Walk around a circle with 2.5 m
radius + serial subtractions of 3.

3 trials.

Rest: 60 s (repeat sequence of numbers

1-10).

Tasks:

— ST: Walk on an 18-m oval-shaped course.

— DT: Walk 4 obstacle negotiation.

— DT: Walk 4+ phonetic verbal fluency.

Rest: quiet standing (duration not specified).

Tasks:

— ST Walk 3 loops on 14-feet walkway.

— ST: Reciting alternate alphabet (30 s).

— DT: Walk 4 alphabet.

Rest: 10 s standing still and counting silently
before tasks.

Tasks:

— ST Walk 3 loops on 20-feet walkway.

— DT: Walk + reciting alternate alphabet.

Rest: 10 s standing still and counting silently
before tasks.

1+ Older adults had greater activation of prefrontal
and temporal regions compared to younger adults.

1 DT walk showed higher PFC activation than ST
walk.

Higher PFC activation levels on fNIRS during DT
predicted incident falls.

|: Stroke participants: Lower PFC activation during
DT compared to healthy participants.

1t Elderly vs. young: Higher OoHb increase during
normal walk and obstacle negotiation in the early
time period. In the late time period, higher PFC
activation during normal walk (but not with
obstacles).

1t Stroke participants: Higher OoHb increase
during normal walk and obstacle negotiation
compared to young participants. Greater activation
during obstacle negotiation compared to elderly in
the late time period.

Oz Hb increase was highest in the post-stroke
group, followed by older and young adults.

1 Participants without diabetes: increased OoHb
levels during DT compared to ST walk.

|} Diabetes: attenuated increase in OoHb levels
from ST walk to DT (compared to non-diabetics).

1t: Higher PFC activation during DT compared to
ST.

1 Poorer white matter integrity associates greater
increase in OoHb levels during DT.

AD, Alzheimer’s disease; DT, dual-task; fNIRS, Functional Near-Infrared Spectroscopy; MCI, Mild Cognitive Impairment; NGA, Neurological Gait Abnormalities; OsHb,
oxygenated hemoglobin; PD, Parkinson’s disease; PFC, Prefrontal Cortex; ST, single task; SD, Standard Deviation; VF, Verbal Fluency. *Articles assessing modulation of
health characteristics on brain activation (Table 3).

decrease when performing 180° turns (Maidan et al., 2017).

However, when comparing older adults with different gait speed, Tasking

participants with gait speed lower than 1m/sec showed higher
activation during turns, compared to those with normal gait
speed. Thumm et al. reported lower O,Hb levels while walking
on a treadmill vs. over-ground walking in PD participants

(Thumm et al., 2018).

Studies Assessing the Effect of Dual

Twenty-three articles assessed PFC hemodynamics while
performing DT (Table 2B). Studies included in this review
used walking (Doi et al., 2013; Beurskens et al., 2014; Clark
et al., 2014; Holtzer et al, 2015, 2016, 2017a,b, 2018a,b;

Maidan et al.,, 2016; Nieuwhof et al., 2016; Takeuchi et al.,
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TABLE 3 | Studies assessing effect modification by different health characteristics
on PFC activation.

First author (Journal, year) (reference) Clinical variables

Fallers versus
non-fallers

Halliday et al. (J Clin Exp Neuropsychol., 2017) (Halliday
etal., 2018)
Holtzer et al. (Brain Topogr, 2016) (Holtzer et al., 2016) Neurological Gait

Abnormalities

Osofundiya (Clin Biomech., 2016) (Osofundiya et al., Obesity

2016)

Holtzer et al. (Eur J Neurosci, 2017) (Holtzer et al., Levels of perceived
2017a) task-related stress
Holtzer et al. (J Gerontol A Biol Sci Med Sci., 2017) Fatigue

(Holtzer et al., 2017b)

Verghese et al. (Neurology, 2017) (Verghese et al., 2017)  Longitudinal

association with falls
Holtzer et al. (Brain Cogn., 2018) (Holtzer et al., 2018a)
Lucas et al. (J Gerontol A Biol Sci Med Sci., 2018)
(Lucas et al., 2018)
Hyodo et al. (Neuroimage, 2015) (Hyodo et al., 2016)

Albinet (Front Aging Neurosci., 2014) (Albinet et al.,
2014)

Dupuy (Front Hum Neurosci., 2015) (Dupuy et al., 2015)

Diabetes

Relation with white
matter integrity
Fitness levels

2016; Chaparro et al., 2017; Chen et al., 2017; Mirelman et al,,
2017; Verghese et al., 2017; Hawkins et al., 2018; Lucas et al,,
2018; Mori et al,, 2018), feet tapping (Al-Yahya et al., 2016),
stepping (Ohsugi et al, 2013) and postural control (Rosso
et al., 2017) as the motor task and VF (Doi et al., 2013; Clark
et al., 2014; Hawkins et al., 2018), calculation (Ohsugi et al,
2013; Al-Yahya et al., 2016; Maidan et al, 2016; Nieuwhof
et al., 2016; Mirelman et al., 2017; Mori et al., 2018), alphabet
(Beurskens et al., 2014; Holtzer et al., 2015, 2016, 2017a,b,
2018; Chaparro et al,, 2017; Chen et al.,, 2017; Verghese et al,,
2017; Lucas et al, 2018), digit span (Nieuwhof et al.,, 2016),
visual (Beurskens et al., 2014) or attention (Takeuchi et al.,
2016; Rosso et al,, 2017) tasks as the added cognitive tasks.
Other studies used challenging factors while walking such as
obstacle negotiation or carrying a tray as the secondary task to
assess DT performance (Clark et al., 2014; Maidan et al., 20165
Osofundiya et al., 2016; Chen et al., 2017; Mirelman et al., 2017;
Hawkins et al., 2018).

Cognitively Healthy Older Adults

The vast majority of studies reported an increase in
PFC activation in cognitively healthy older adults while
performing several types of DT compared to a ST (Ohsugi
et al, 2013; Clark et al, 2014; Holtzer et al, 2015,
2017a,b; Maidan et al, 2016; Osofundiya et al, 2016;
Chen et al, 2017; Mirelman et al, 2017; Verghese et al,
2017; Lucas et al, 2018). Only one article reported lower
OHb levels during walking while performing a visual
check task compared to ST walk in the older adults group
(Beurskens et al., 2014).

Comparison of Cognitively Healthy Older Versus
Younger Adults

Older older adults showed higher PFC activation during
DT in most studies, compared to younger participants

(Ohsugi et al., 2013; Mirelman et al, 2017; Rosso et al,
2017; Hawkins et al., 2018). Only one study reported lower
activation in older adults, compared to younger older adults,
during a walk and visual check DT (Beurskens et al., 2014)
and Takeuchi et al. (2016) did not find significant differences
between age groups.

Other Clinical Conditions

The effect of dual tasking in older adults with MCI was assessed
in one of the included studies, which found an increased
activation during DT compared to ST walking (Doi et al., 2013).
Frontal hemodynamics has also been studied in stroke patients,
although these studies included participants with heterogeneous
clinical characteristics (mainly the time after the stroke event)
and DT paradigms (i.e., Task protocols). Compared to healthy
controls, patients with stroke history showed higher activation
during counting while feet tapping (Al-Yahya et al., 2016) but
a lower activation during counting while walking in another
study (Mori et al., 2018). Walking while negotiating obstacles
caused a higher activation in stroke patients compared to
younger adults (Hawkins et al., 2018). PD patients show an
increase in frontal activation during DT that involve walking
and counting or reciting digit spans compared to the resting
baseline periods (Nieuwhof et al., 2016). Middle-aged Multiple
Sclerosis older adults show increased PFC activation during
ST and DT walking and larger increases in O,Hb levels from
ST to DT when compared to healthy older adults (Hernandez
etal., 2016; Chaparro et al., 2017). Multiple Sclerosis participants
show an especially larger increase in activation (compared to
healthy counterparts) when not provided with partial body
weight support (Chaparro et al., 2017).

Association Between Activation and
Clinical Variables

Other studies assessed how different variables modulate the
PFC activation during cognitive, motor tasks and DT (Table 3).
Publications from the “Central Control of Mobility in Aging”
(CCMA) study, including community-dwelling older adults
without dementia, found that activation of PFC during DT,
compared to ST, was lower in participants with central NGA
compared to peripheral NGA or with normal gait. In fact, the
highest O,Hb increase during DT was showed by participants
with peripheral NGA (Holtzer et al., 2016). Also in participants
from the CCMA study, higher levels of self-perceived stress
and fatigue were associated with attenuation of brain activation
patterns (lower increase in O,Hb levels from ST to DT walking)
(Holtzer et al., 2017a,b). Participants with diabetes from the
same study showed lower PFC activation during DT, compared
to non-diabetics (Holtzer et al., 2018a), while obese cognitively
healthy older adults from a different study showed higher
activation, especially during a precision walking task, compared
to non-obese counterparts (Osofundiya et al., 2016). When
combining fNIRS with cerebral microstructural white matter
integrity assessment, using MRI with Diffusion Tensor Imaging
(DTI), altered white matter integrity was associated to higher
O,HbD levels during DT walk compared to normal walk in
the CCMA study (Lucas et al, 2018). Using data from the
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same study, Verghese et al. (2017) revealed higher risk of
incident falls in older adults with higher levels of PFC activation
during DT. It is important to note that this is the only article
included in our review that assessed the relationship between
PFC hemodynamic and outcomes in a longitudinal manner.
Furthermore, in a separate sample, fallers compared to non-
fallers (history of falls in the previous 2 years) had higher
activation while performing executive function tasks (Halliday
etal,, 2018). The effect of fitness level on frontal activation during
executive functions tasks among cognitively healthy participants
was addressed in three studies. Although they assessed the
level of fitness with different instruments, it seems that higher
levels of fitness might produce larger increases in prefrontal
activation (Albinet et al., 2014). Two of these studies used two
different versions of modified Stroop tasks and while one found
a more left-lateralized activation in the high-fit participants
(Hyodo et al, 2016), the other study found an increased
activation in right inferior frontal gyrus in the high-fit group
(Dupuy et al,, 2015).

DISCUSSION

Summary and Interpretation of Findings

Our review identified 46 articles that reported the assessment
of frontal and PFC hemodynamics in older adults using fNIRS
during cognitive, motor and DTs.

This has revealed a quite homogeneous pattern of activation of
the PFC in cognitively healthy older adults during cognitive and
DTs compared to rest and to single-task conditions, respectively.
This supports the use of {NIRS investigations to detect changes in
frontal hemodynamics in older adults.

Cognitively healthy older adults, compared to younger ones,
show a higher activation during executive function tasks and
DTs (Ohsugi et al., 2013; Bierre et al., 2017; Mirelman et al,
2017; Rosso et al., 2017; Hawkins et al., 2018). However, one
study reported lower activation during walking while performing
a visual check task compared to ST walk in the older adults group
and compared to the younger group (Beurskens et al., 2014).
The results in older adults with various degrees of cognitive
impairment are more heterogeneous. Overall, MCI older adults
show increased PFC activation during VF tasks (Yeung et al.,
2016a; Yap et al,, 2017) and during DT compared to ST (Doi
etal., 2013). However, gradually increasing working memory load
causes a lower activation compared to healthy controls (Niu et al.,
2013; Yeung et al., 2016b).

These findings are in line with previously proposed
hypotheses, such as the “neural inefliciency theory” (Rypma and
D’Esposito, 2000; Holtzer et al., 2009), according to which older
adults show increased activity of the same networks recruited
by younger counterparts in order to meet behavioral demands.
On the other hand, the lower activation in the healthy old
subgroup relative to younger adults could be interpreted as an
inability to meet the increased cognitive demands during the
more complex DT (Beurskens et al., 2014) and is supported
by the “capacity limitation hypothesis” (Cabeza, 2004; Holtzer
et al., 2009). This theory might also explain the decrease in

activation in MCI older adults with increasing working memory
load (Niu et al, 2013; Yeung et al, 2016b). Importantly,
neural inefficiency and capacity limitation theories are not
mutually exclusive and likely both play a role in determining
activation levels.

Regarding the studies focusing on older adults with other
specific diseases, the findings support an activation of PFC
during gait as ST (Maidan et al, 2017) and DT (Nieuwhof
et al., 2016) in adults with PD (compared to rest periods). The
only study that assessed PFC during postural control found a
higher activation in participants with parkinsonian syndromes
relative to healthier controls (Mahoney et al., 2016). This
could be interpreted in the context of the neural inefficiency
theory, where adults with impaired postural mechanisms as seen
in PD (Baltadjieva et al, 2006; Benitez-Rivero et al., 2013),
need a higher PFC activation to maintain postural control.
Similar results, of higher activation than healthy controls,
were obtained in Multiple Sclerosis participants (Hernandez
et al, 2016; Chaparro et al., 2017) whereas stroke patients
reported more heterogeneous results. This might be due to
different clinical characteristics of the samples and of the
DT paradigms (Al-Yahya et al., 2016; Hawkins et al.,, 2018;
Mori et al., 2018).

Studies that investigated the effect of several clinical
variables on the PFC activation during DT found a higher
activation in participants with peripheral NGA, lower
stress and fatigue levels, obesity, non-diabetics and altered
white matter integrity in MRIL. The only study that assessed
prediction of longitudinal outcomes of frontal hemodynamics,
found a higher risk of falls associated with higher PFC
activation. However, most of these findings come from a
single sample. According to the results from three studies,
higher levels of fitness might produce larger increases in
prefrontal activation during executive functions tasks in
healthy older adults (Albinet et al., 2014; Dupuy et al., 2015;
Hyodo et al., 2016).

Overall, our findings suggest that fNIRS studies are able
to detect changes in frontal and PFC activation in older
adults (both cognitively healthy and MCI), especially while
performing cognitive and DTs that are believed to engage
the frontal areas of the brain. In particular, in both the
comparison between older and younger adults, and in
people with different neurological conditions, compared

to healthier controls, the PFC seems to experience a
higher activation, which could be interpreted in the
context of proposed neural inefficiency and limited
capacity models.

Methodological Aspects and Limitations

Main limitations of the fNIRS technique arise either due to
physical or technological constraints of the setups, due to analysis
methods, or due to the nature of the study itself. It is well
known that the recorded signal contains information not only
from brain activation due to a specific stimulus or task but
is also affected by extra-cerebral (skull and scalp perfusion)
as well as systemic parameters (heart and respiratory rate,
blood pressure, Mayer waves). Nowadays, the fNIRS community
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has made not only technological improvements but also has
developed an abundance of methods to attempt to overcome the
abovementioned limitations (Tachtsidis and Scholkmann, 2016).
Current instrumentation provides the ability of using multiple
source detector pairs that cover a wide range of tissue penetration
depth, giving the possibility to record short channel preparation
and regress out signal coming from superficial tissue layers when
using continuous wave light sources (Yticel et al., 2015). On
the other hand, emerging methods that employ pulsed light
sources [time-resolved NIRS (TRS)], allow for the possibility to
discriminate between intra- and extra cerebral signals (Torricelli
et al., 2014). These methods were prohibitively complex but
have recently begun to become practical (Pifferi et al., 2016). In
this context, to cover a large imaging area, multiple channels
can be used in combination with MRI, thus overcoming the
lack of anatomical information and allow for localization of the
origin of NIRS signal (Okamoto et al., 2004). Another technical
limitation, could originate from the differential path length factor
(DPF), used in modified Beer-Lambert law (Cope and Delpy,
1988), that could lead in cross-talk between oxygenated and
deoxygenated hemoglobin measurements and false calculations
(Hoshi, 2007). Regarding the analysis methods of the acquired
fNIRS signal, to date, there is no standard method established
(Pfeifer et al, 2018). Some of the most common strategies
include the use of low-pass filters to remove heart rate or
instrumental noise and high pass filters to extract low frequency
systemic noise. Signal analysis methods are also heterogeneous
in the current literature (Kirilina et al., 2012; Zhang et al,
2016). Furthermore, in functional studies and especially in motor
and DT, motion artifacts play an important role, therefore,
motion correction processes are widely used, covering a wide
range of proposed methods (Wavelet filtering, Kalman filtering,
spline interpolation, etc.) (Cooper et al., 2012; Brigadoi et al.,
2014). In general, for more accurate results when designing an
fNIRS experimental protocol or analysis method, it is crucial
to take into account, potential particularities that each studied
population might have.

The heterogeneity in task protocols, methodology and small
sample sizes in most of the included articles may limit the
interpretation of the findings, although the studies with larger
samples show promising results in similar directions. The great
majority of the reviewed articles measured activation only over
frontal areas, avoiding the assessment of possible compensatory
activations in distant areas of the brain (Stern, 2005; Holtzer
et al, 2009). This may be mainly due to the simplicity of
the application over hairless areas and can be overcome with
better probe designs.

Furthermore, differences in cerebral activation patterns
detected by fNIRS could be actually related to structural
alterations, as recently reported in an MRI-fNIRS study (Wagshul
etal., 2019) where higher activation in healthy older adults during
DT was related to reduced cortical volumes, especially in bilateral
superior and rostral-middle frontal cortex. More evidence is
needed supporting this concept.

Other gaps and limitations might limit the generalizability
of the results produced by the studies published to date.
Regarding studies reporting the results of the motor task

alone (not as dual task), the studies are limited to older
adults with Parkinson syndromes. The samples are also very
heterogeneous regarding the mean age ranges and other clinical
characteristics. In most of the included studies, inclusion
criteria take into account age and cognitive function, but
individuals of the samples or within the comparison groups
might be heterogeneous regarding aspects which might
affect the cerebral neurovascular coupling and metabolism,
such as cardiovascular risk load, atherosclerosis, small
vessels disease etc.

Our work is not exempt from limitations. In particular, the
non-systematic search strategy might lead to possible missing
relevant published literature on the topic. However, we consider
our pre-defined search strategy sufficiently comprehensive to
include the most if not all relevant ones.

Clinical Implications and Future

Directions

Our findings support the potential role of fNIRS in research
and clinical practice to study cognition and mobility in aging.
As mentioned, fNIRS is a non-invasive technique, which can
assess brain regions involved in executive functions, which
are key to goal-oriented behaviors and preserved cognitive
and motor functions. In particular, fNIRS allows to obtain
relevant information regarding neural activation while the person
is performing a real motor task in a natural environment,
in a relatively inexpensive way. However, further research is
needed to confirm those findings and to establish standardized
protocols (for tasks protocols and fNIRS data acquisition
and processing). Further research should also focus more on
cerebral hemodynamic in different neurological diseases and
on the influence of systemic conditions (e.g., vascular risk
factors such as diabetes and hypertension) on brain activation
patterns as assessed with fNIRS. Furthermore, fNIRS-derived
brain activation patterns can be utilized as predictors of incident
health outcomes including but not limited to dementia.

A recent study demonstrated that within session training
resulted in improved DT walking that was coupled with reduced
activation in the PFC among healthy older adults suggesting
improved neural efficiency due to practice (Holtzer et al., 2018b).
Moreover, the presence of fear of falling delayed practice-related
improvements in PFC efficiency during DT walking (Holtzer
et al,, 2019). These findings suggest that fNIRS can be used to
quantify neuroplasticity, monitor improvement in PFC efficiency
due to practice and detect the effect of clinically relevant variables
such as fear of falling on brain function and efficiency during
active walking. Hence, it is appropriate to consider the inclusion
of NIRS at least as a secondary outcome measure in clinical trials
designed to assess the effect of treatment on brain neuroplasticity
and efficiency as well as for the development and monitoring of
rehabilitation/training programs.

CONCLUSION

In conclusion, our review supports the use of fNIRS as a
neuroimaging technique to study changes in the hemodynamic
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response in the frontal cortex during cognitively demanding tasks
and during active walking under single and DT conditions in
older adults. From a pathophysiological perspective this approach
might help characterize the evolution of functional impairments
in different neurological diseases in older adults as well as
in healthy aging.
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Individuals with mild cognitive impairment (MCI) have worse gait performance compared
to cognitive healthy individuals (CHI). The discrepancy between imagined and performed
timed up and go test (TUG), known as the TUG delta time, is a marker of brain gait
control impairment in individuals with MCI. The study aims to examine the association
between the TUG delta time and brain gray matter (GM) volumes in CHI and individuals
with MCI. A total of 326 participants, 156 CHI and 170 MCI, with TUG delta time and
a brain T1-weighted magnetic resonance imaging (MRI) were selected in this cross-
sectional study. Individuals with MCI were older and had greater (i.e., worst performance)
performed TUG and TUG delta time compared to CHI. The GM volume association with
TUG delta time was examined in CHI and MCI assuming that increased TUG delta time
would be associated with locally decreased GM volumes. No significant association was
found in CHI, whereas TUG delta time was negatively associated with the GM volume of
the right medial temporal lobe in individuals with MCI.

Keywords: MRI, aged, brain, motricity, EPl-epidemiology

INTRODUCTION

Individuals with mild cognitive impairment (MCI) have worse gait performance compared to
cognitive healthy individuals (CHI; Bahureksa et al.,, 2017; Beauchet et al., 2018). Impairment
in gait control at a brain level explains in large part poor gait performance in individuals
with MCI (Beauchet et al., 2018). The mental chronometry applied to the timed up and go
test (TUG)—the time needed for standing up, walking 3 m, turning, walking back and sitting
down—is used to examine impairment in gait control in individuals with MCI (Beauchet
et al., 2014). It has been shown that individuals with MCI executed the imagined TUG more
quickly than the performed TUG, but not CHI (Beauchet et al., 2014). The discrepancy between
imagined and performed TUG, known as TUG delta time, has been proposed as a marker of
impairment in gait control at a brain level in individuals with MCI (Beauchet et al., 2010, 2014).
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No imaging study has examined the association of TUG delta
time and brain regions in CHI and individuals with MCI.
The hippocampus is a key brain region involved in gait
control (Seidler et al., 2010). Decreased hippocampal volume
has been reported in individuals with MCI (Tabatabaei-Jafari
et al., 2015). Performed TUG has been negatively associated
with brain volume reduction in total gray matter (GM) and
in the hippocampus in non-demented older adults (Allali
et al., 2016). Because both increased TUG delta time and
decreased hippocampal volume have been separately reported in
individuals with MCI, we hypothesized that increased TUG delta
time will be associated with decreased hippocampal volume. The
study aims to examine the association between TUG delta time
and brain GM volumes in CHI and individuals with MCI.

MATERIALS AND METHODS

A total of 326 participants—156 CHI and 170 MCI—referred to
the memory clinic of Angers University Hospital (France)
were recruited in the “Gait and Alzheimer Interactions
Tracking” (GAIT) study. All participants with TUG delta
time and a brain T1-weighted magnetic resonance imaging
(MRI) were selected in this cross-sectional study. Exclusion
criteria were an acute medical illness in the past month,
neurological and psychiatric diseases other than cognitive
impairment, and medical conditions affecting gait, dementia,
and morphological (i.e., dilatation of ventricular system
compatible with a diagnosis of normal pressure hydrocephalus)
or vascular abnormalities (i.e., stroke) on the brain MRI.
Cognitive status (i.e, CHI and MCI) was defined during
a multidisciplinary meeting. Information on cognitive
performances, physical examination findings, blood tests,
and the brain MRI were used. Mini Mental State Examination
(MMSE; Folstein et al, 1975), Frontal Assessment Battery
(FAB; Dubois et al.,, 2000), Alzheimer’s Disease Assessment
Scale-Cognitive subscale (ADAS-cog; Rosen et al., 1984), Trail
Making Test (TMT) parts A and B (Brown et al., 1958), French
version of the Free and Cued Selective Reminding Test (Grober
et al,, 1988; Van der Linden et al., 2004), and Instrumental
Activities of Daily Living scale (IADL; Péres et al., 2006)
were the cognitive test used for the assessment of cognitive
performance. Participants who had normal neuropsychological
and functional performances were considered as cognitively
healthy. MCI was defined according to the criteria detailed
by Dubois et al. (2010). Participants with any form of MCI,
amnestic or non-amnestic and affecting single or multiple
domains, were pooled together. Brain imaging was performed
with a 1.5 and 3 Tesla MRI scanner (Magnetom Avanto,
Siemens Medical Solutions, Erlangen, Germany) following a
scanning protocol previously described (Allali et al., 2019).
The structural images were processed using voxel-based
morphometry (VBM) implemented in SPM12, as previously
described (Allali et al., 2019). Overall, the traditional VBM
pre-processing steps were conducted, including the creation of
study-specific template using the diffeomorphic anatomical
registration using exponentiated lie algebra (DARTEL)
approach. Angers Ethical Committee (France) approved

the study protocol and the recruited participants gave their
written informed consent.

The participants’ characteristics were summarized using
means and standard deviations or frequencies and percentages,
as appropriate. Unpaired ¢-test or Chi-square test was used for
the comparisons between CHI and MCI. Whole-brain VBM
analyses were conducted to determine the correlations between
GM volume association with TUG delta time in CHI and MCI.
TUG delta time was entered as a covariate of interest in a
multiple regression statistical model including both CHI and
MCI individuals entered separately, assuming that increased
TUG delta time would be associated with regional decreased GM
volumes. Each model was adjusted by age, sex, total intracranial
volume, white matter abnormalities and type of MRI. The
significance of each effect of interest was determined using the
theory of Gaussian fields. Statistical threshold of P-value < 0.05
family-wise error (FWE) cluster-corrected was used for all
analyses. In addition to correcting for multiple comparisons, a
correction for non-stationary smoothness was applied using the
implementation of this method in the VBM5 toolbox, which is
necessary to avoid false positives or decreased sensitivity when
using cluster-size tests (Hayasaka et al., 2004).

RESULTS

As shown in Table 1, individuals with MCI were older
(P = 0.001), had greater performed TUG (P = 0.001) and
TUG delta time (P < 0.001) compared to CHI. There was
more male in MCI compared to CHI (P = 0.044). There
was no significant difference for the other characteristics. The
associations of brain GM volumes with TUG delta time are
shown in Table 2 and Figure 1. No significant association at
the cluster-corrected threshold was found in CHI, whereas TUG
delta time was negatively associated with a large medial temporal
cluster including the right entorhinal cortex, the amygdala, the
parahippocampal gyrus, the insula, and the hippocampus (P <
0.05 cluster-corrected) in individuals with MCI. TUG delta time
was not associated with GM volume in this region in CHI even
when considering the results with an uncorrected threshold.

DISCUSSION

The main finding is that increased TUG delta time was
negatively associated with the GM volume of the right medial
temporal lobe in individuals with MCI, but not in CHI.
This association suggests that TUG delta time may be an
appropriate marker of gait control in individuals with MCI; this
discrepancy between imagined and performed TUG (i.e., worst
gait control) being associated with a decreased GM volume
(i.e., worst brain structure) in a key brain region for gait control.
This result is consistent with a previous association found
between increased gait variability (i.e., worst gait performance)
and low hippocampal volume in individuals with MCI and
mild dementia (Seidler et al., 2010; Beauchet et al., 2019).
Atrophy of the hippocampus is a morphological characteristic
of individuals with MCI (Tabatabaei-Jafari et al., 2015). This
brain region is a key region involved in memorization and
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TABLE 1 | Clinical characteristics of participants (n = 326).

Participants P-value*
CHI (n = 156) MCI (n = 170)

Age (years), mean + SD 70.4 + 3.7 70.0 +5.1 0.001
Male, n (%) 81(51.9) 107 (62.9) 0.044
High educational level*, n (%) 4(2.6) 3(1.8) 0.619
TUG

Realized (s), mean + SD 95+ 19 10.4 £ 3.1 0.001

Imagined (s), mean + SD 73+26 6.8+ 3.0 0.159

Delta time (%) 30.1 £27.5 44.4 + 33.8 <0.001
3 Tesla MRI scanner, n (%) 60 (38.5) 70 (41.2) 0.617
Total cranial volume (cm?), mean + SD 1,5643.1 £254.0 1,665.4 £ 323.1 0.494
Total white matter abnormality!! volume (cm?®), mean + SD 391.4 £ 372.7 454.2 + 664.3 0.302

MCI, mild cognitive impairment; CHI, cognitively healthy individuals; SD, Standard deviation; *comparisons based on unpaired t-test or Chi-square test, as appropriate; *high school
and above; ||defined as MRI signal abnormalities (i.e. T1 hypointensities) and measured using FreeSurfer software; P-value significant (i.e. <0.05) indicated in bold.

TABLE 2 | Association between gray matter volumes and delta timed up and go time in individuals cognitively healthy and with mild cognitive impairment.

Group of individuals Cluster/peak regions Side X y z Extent T-value*

MCI Entorhinal cortex R 21 1 —42 1,024 3.98
Amygdala R 31 1 —14 SC 3.77
Parahippocampal gyrus R 21 3 —-31 SC 3.23
Insula R 29 11 —14 sc 3.19
Hippocampus R 24 —1 —22 SC 3.15

MCI, mild cognitive impairment; R, Right; L, Left; sc, same cluster; model adjusted by age, sex, total intracranial volume, white matter abnormalities and type of MRI; *P < 0.05 cluster-

corrected.

T value

3.1

3.5

FIGURE 1 | Correlations between brain gray matter (GM) volumes and timed up and go delta time. Correlation between GM regions and gait speed with P-Value <
0.05, cluster corrected). Strength of positive association in individuals with mild cognitive impairment (MCI) shown in blue (lowest) to red (highest). Model adjusted by
age, sex, total intracranial volume, white matter abnormalities and type of magnetic resonance imaging (MRI).

3.9

in navigation defined as the ability to move safely in the
environment (Tabatabaei-Jafari et al., 2015). TUG delta time may
be assimilated as a marker of navigation, low value being an
expression of safe navigation and good gait control (Beauchet
et al., 2010, 2014). In contrast, increased TUG delta time
means inability to navigate appropriately, and this abnormality
is associated with abnormality of the brain region controlling
navigation. Interestingly, our results were only significant for
the right hemisphere. In previous studies focusing on spatial

navigation, the right hemisphere and more specifically, the
right hippocampus, has been more consistently reported to
be related to navigation than the left. For example, in the
investigation of navigation skills of London taxi drivers, the
correlation between time taxi driving and hippocampal GM
volume was right lateralized (Maguire et al., 2006). However,
the left hippocampus has been also associated with navigation
(Ghaem et al., 1997). The cross-sectional design of this study
cannot afford information about the causality of the association
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between decreased GM volume of the medial temporal lobe and
increased TUG delta time, which is the main limitation of our
study. Further research needs to examine this association with an
observational, prospective, and cohort design with the objective
to better understand brain control disorganization in patients
with MCI.
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The hippocampus features structurally and functionally distinct anterior and posterior
segments. Relatively few studies have examined how these change during aging or in
response to pharmacological interventions. Alterations in hippocampal connectivity and
changes in glucose regulation have each been associated with cognitive decline in aging.
A distinct line of research suggests that administration of glucose can lead to a transient
improvement in hippocampus-dependent memory. Here, we probe age, glucose and
human cognition with a special emphasis on resting-state functional connectivity
(rsFC) of the hippocampus along its longitudinal axis to the rest of the brain. Using
a randomized, placebo-controlled, double-blind, crossover design 32 healthy adults
(16 young and 16 older) ingested a drink containing 25 g glucose or placebo across
two counter balanced sessions. They then underwent resting-state functional magnetic
resonance imaging (rs-fMRI) and cognitive testing. There was a clear dissociation in
the effects of glucose by age. Magnitude change in rsFC from posterior hippocampus
(PHPC) to medial frontal cortex (mMPFC) was correlated with individual glucose regulation
and gains in performance on a spatial navigation task. Our results demonstrate that
glucose administration can attenuate cognitive performance deficits in older adults
with impaired glucose regulation and suggest that increases in pHPC-mPFC rsFC are
beneficial for navigation task performance in older participants.

Keywords: resting-state fMRI, glucose, spatial navigation, hippocampus, aging, cognition

INTRODUCTION

Increasing the levels of available glucose, by the administration of a glucose drink, has been shown
to improve cognitive performance in both younger and older adults in the minutes and hours
following the drink (Smith et al., 2011). The effects of glucose have been reported to be comparable
to those observed after administration of pharmaceutical cognitive enhancers (Riby, 2004).

Converging evidence suggests a relationship between the effect of glucose on tasks which are
predominantly related to hippocampal function such as episodic memory and spatial memory
(Riby, 2004; Smith et al., 2011).
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The hippocampus is known to be important in the formation
and recollection of memory (Moscovitch et al., 2005) and
is a key brain hub for episodic memory, operating in the
context of a large-scale network (Nyberg et al., 2000). Resting-
state functional connectivity (rsFC) analysis, including using
functional magnetic resonance imaging (fMRI), has proved to
be a powerful tool to help unravel the functional architecture of
brain networks (Raichle et al., 2001). One of the most common
findings in studies of age-related rsFC is an association between
advancing age and decreased functional connectivity within the
default mode network (Ferreira and Busatto, 2013) and overall
reductions in functional connectivity between the hippocampus
and the rest of the brain (Geerligs et al., 2015).

It is increasingly recognized that there is a structural
and functional dissociation between anterior and posterior
segments of the hippocampus (Strange et al., 1999). This
includes distinct patterns of rsFC displayed by anterior
(aHPC) and posterior parts (pHPC) of the hippocampus
(Wagner et al, 2016). The functional relevance of these
networks and age-related changes therein are largely
unknown. There is mixed evidence regarding the association
between pHPC and aHPC connectivity and performance
on cognitive tasks, and the functional differentiation of
aHPC and pHPC is yet to be clearly defined. An episodic-
spatial dichotomy of anterior and posterior hippocampal
segments has been proposed, with pHPC being related to spatial
memory functions and aHPC to episodic memory functions
(Persson et al., 2018).

Much of the work on the influence of glucose on
neurocognitive performance has focused on age-related effects
(van der Zwaluw et al., 2015). Senescence is accompanied by
changes in glucose metabolism (Blesa et al., 1997), specifically
poorer glucose regulation. These changes in glucose regulation
have been linked to age-related cognitive decline (Korol
and Gold, 1998; Awad et al., 2004) and Alzheimer’s disease
(Watson and Craft, 2003).

While cognitive domains implicated in the glucose facilitation
effect have been argued to preferentially enhance hippocampus-
dependent tasks, relatively limited research has directly explored
underlying neurophysiological mechanisms in the human brain.
Several event-related potential (ERP) studies support the
involvement of the hippocampus (Smith et al., 2009; Brown
and Riby, 2013; Scholey et al., 2015). Further evidence for the
involvement of the hippocampus in the effect stems from a study
using fMRI (Parent et al., 2011).

To the best of our knowledge, no study to date has
considered the anterior-posterior division of the hippocampus
in the study of the glucose facilitation effect. Furthermore,
rsfMRI has not been directed to compare the modulation
of cognition and resting-state connectivity in younger and
older adults. The present study addresses these gaps in the
literature. Here, we describe the outcomes of a placebo-
controlled, double-blind, crossover neuroimaging study
investigating the relationship between age, glucose and human
cognition with a special emphasis on the connectivity of the
hippocampus along its anterior-posterior axis to the rest of
the brain.

MATERIALS AND METHODS

Participants

A total of 32 healthy right-handed participants from Melbourne,
Australia, were recruited for this randomized, double-blind,
crossover trial. Half of this group (n = 16, eight women) consisted
of younger subjects (mean & SD: age 25.8 & 3.2 years, range
21-30) and the other half (n = 16, eight women) consisted of
older subjects (mean £ SD: age 68.6 + 6.54, range 55-78).
The participants were recruited via flyers, online advertising and
from a database. All participants provided informed consent and
received a small monetary compensation for their participation.
The study was approved by the Swinburne University Ethics
committee and all procedures were performed in accordance
with the principles of the 1974 Declaration of Helsinki.

Inclusion criteria included normal or corrected-to-normal
vision and hearing, no major physical illness and had no history
of neurological/psychiatric illness or head trauma. Further
exclusion criteria were a diagnosis of diabetes mellitus, a history
of hypersensitivity to glucose, heart disease or high blood
pressure, smoking, substance abuse, intolerance to artificial
sweeteners, pregnancy, claustrophobia, metal implants or any
other contraindications to MRL

Participants were excluded if they reported health conditions
that would affect food metabolism including the following: food
allergies, kidney disease, liver disease and/or gastrointestinal
diseases (e.g., irritable bowel syndrome, coeliac disease,
peptic ulcers).

Subjects were also excluded if they were taking any
medication, herbal extracts, vitamin supplements or illicit drugs
which might reasonably be expected to interfere with blood
glucose levels within 4 weeks prior to and during the study.
In order to study associations with glucoregulation, the study
included a range of fasting blood glucose levels (mmol/l).
Fasting levels above 6 mmol/l were presumed to reflect fasting
compliance with compromised glucoregulation as long as they
were noted consistently across visits. Where fasting levels above
six were not noted across both visits, the subject was excluded
from the analysis as this was taken as evidence of non-compliance
with fasting.

During the testing session, participants could be excluded
if they scored lower than 25 on the Mini-Mental State
Exam (MMSE; Folstein et al, 1975). Participant enrolment
and inclusion pathways are depicted in a CONSORT flow
diagram in the Supplementary Figure S1.1. All testing
occurred at the Centre for Human Psychopharmacology at
Swinburne University.

Procedure

Participants ~ attended  the  Centre  for = Human
Psychopharmacology on three occasions a screening visit
and two experimental sessions (with the experimental sessions
balanced for treatment order). At the screening visit, informed
consent was obtained, and eligibility was confirmed. Socio-
demographic and morphometric data were collected (see
Table 1). The session also served to familiarize participants
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TABLE 1 | Demographics.

Young Older P-value
N (female) 16 (8) 16 (8) -
Age (years) 25.0+ 3.5 68.3 + 6.4 -
BMI (m/kg?) 23.0+45 25.0 £ 4.01 0.224
Education (years) 17.0+£2.0 154 £ 3.6 0.117
MMSE 29.8+0.3 29.2+1.0 0.025*

Note: for BMI, education and MMSE numbers represent: mean (standard deviation),
significant results are marked *at 0.05 level.

with the cognitive tasks they would encounter during the
study days.

The two experimental sessions started between 8.30 am
and 10 am and were scheduled between 2 and 14 days,
apart. Participants were asked to abstain from food and drink
(except water) after 10 pm before testing (to achieve a 12-h
overnight fast). Participants were questioned on compliance
and excluded in case of non-compliance. Fasting blood glucose
levels were measured via capillary fingerprick using a Freestyle
Optium Blood Glucose Sensor and Optium Blood Glucose
Test Strips (Abbott Diabetes Care Limited, Witney, UK)
according to the manufacturer’s instructions. Following baseline
glucose measurement, participants were asked to complete
self-report questionnaires measuring mood and appetite. The
self-report questionnaires were administered after each blood
glucose measurement throughout the testing day and will be
described elsewhere. They then received the treatment drink
which consisted of 25 g glucose (Glucodin Pure Glucose
Powder) mixed with 150 ml of water and 20 ml of sugar-free
cordial in the glucose condition, and two tablets (30 mg)
sodium saccharine (Hermesetas® ) mixed with 150 mL of
water and 20 ml sugar-free cordial in the placebo condition.
It has previously been shown that the two drinks are
indistinguishable in taste and mouthfeel (Scholey et al., 2001;
Scholey and Fowles, 2002). There is evidence that the glucose
facilitation effect follows an inverted U-shape dose-response
curve in humans (Parsons and Gold, 1992), and 25 g has
been reported as the optimal dose for memory enhancement
(Riby, 2004).

Participants were randomly assigned to a treatment sequence
that counterbalanced the order of treatments within age groups
and gender. To ensure blinding, randomization and preparation
of the drink were performed by a disinterested third party with
no other involvement in the study. Blood glucose was measured
again 20 min, 120 min, and 150 min post-ingestion by a person
who was not the experimenter to maintain blinding (unblinding
occurred only after data analyses were completed).

MRI scanning commenced 30 min post-ingestion. This
interval was selected to ensure that blood glucose levels would
be maximally elevated during MRI scanning (Korol and Gold,
1998). Anatomical (T1) images were acquired first, followed by a
seven-minute resting-state scan (Figure 1).

Cognitive Testing

Cognitive testing took place after MRI scanning (120 min post-
ingestion; Figure 1). Two cognitive tests focusing on different
domains of memory were used, as follows.

Working Memory

Working memory performance was assessed using the
mental arithmetic Serial Sevens task. It involves the serial
subtraction of seven from a given number. Previous work has
shown that performance on this to be enhanced by glucose
administration (Scholey et al., 2001). Standard instructions
were displayed on a computer monitor, informing the
participant to count backward in sevens from the given
starting number, as quickly and accurately as possible, using
the numeric keypad to enter each response. Performance
was assessed using the number of correct subtractions
within 2 min.

Spatial Learning and Memory

Spatial learning performance was measured using a virtual analog
of the Morris Water Maze (VMWM; Morris, 1981). The latter
has been used extensively in rodents to study hippocampal-
dependent spatial navigation. The vMWM has been validated for
use in humans (Cornwell et al., 2008).

Participants were instructed to try to find a platform in a
virtual pool environment presented on a computer screen. The
platform was visible on some trials and hidden (“submerged”)
on others (Figure 2).

Probe trials were administered in which the platform was
removed unbeknownst to participants. In this case, participants
started from a novel position in the pool in order to assess spatial
memory performance beyond immediate training experience.
The platform was then moved to a new location and participants
completed an additional set of hidden platform trials along with
a second probe trial. The dependent measure was heading error
(square-root transformed) or angular deviation from a straight
path to the platform’s location on the probe trials.

For detailed task descriptions see section 2 in
Supplementary Material.

MRI Acquisition

Participants underwent MRI scanning on both testing days,
following the same protocol. fMRI data were acquired using a
3-Tesla Siemens Magnetom Trio scanner (Siemens, Erlangen,
Germany) at Swinburne University of Technology, Melbourne,
Australia with a 32-channel head coil. To minimize head
movement comfortable padding was placed around the
participants’ head and participants were instructed to lie as
still as possible. Structural high-resolution 3D T1-weighted
magnetization prepared rapid acquisition gradient echo (MP-
RAGE) anatomical images for anatomical reference were
collected at the start of the scanning session (1 mm isotropic
MP-RAGE, TR = 1,900 ms, TE = 2.52 ms, flip angle = 9°).
Following the anatomical image, the participant underwent
7 min 15 sec resting-state fMRI (rstMRI), during which they
were instructed to keep their eyes open and look at a fixation
cross. Functional data were obtained continuously with an
interleaved multi band sequence (multiband acceleration
factor = 6, bandwidth = 1,860 Hz/Px, TR 870 ms,
TE = 30 ms, echo spacing = 0.69 ms, flip angle = 55°, field
of view = 192 mm, voxel resolution = 2 X 2 x 2 mm, slice
orientation = transversal, number of slices = 66,500 volumes
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FIGURE 1 | Schematic representation of the testing timeline for the treatment visits.
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FIGURE 2 | Screenshots of the virtual Morris Water Maze Task (VYMWM)
which was presented to the participants on a computer screen. Panel (A)
depicts a trial where the platform is visible (red arrow and circle were added
retrospectively and are not part of the actual display). Panel (B) depicts a trial
where the platform is hidden (“submerged”).

per session). MRI scanning took 60 min in total and also included
two task-related fMRI scans and a spectroscopy sequence that
will be reported elsewhere.

Resting-State Analysis

Functional and structural images were processed using the
CONN toolbox Version 17f (Whitfield-Gabrieli and Nieto-
Castanon, 20121) for Statistical Parametric Mapping Software
(SPM12; Wellcome Department of Imaging Science, Functional
Imaging Laboratory, University College London) run under
Matlab R2014a. Preprocessing steps were conducted using
the default preprocessing pipeline for volume-based analysis
(to MNI space; realignment and unwarping, ART-based
identification of outlier scans for scrubbing, simultaneous
gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) segmentation and normalization into standard
MNI space (Montreal Neurological Institute, Montréal,
QC, Canada).

To remove confounding effects from the BOLD time
series the anatomical CompCor strategy (Behzadi et al,
2007) was used as implemented in the CONN toolbox.
Physiological and other spurious sources of noise were
estimated and regressed out of the BOLD functional

Uhttp://www.nitrc.org/projects/conn

data in the denoising step (simultaneous option). Five
principal components were extracted from both WM and
CSF, as well as 12 motion regressors (six head motion
parameters + six first-order temporal derivatives) derived
from spatial motion correction, which were used as temporal
covariates and removed from the BOLD functional data using
linear regression.

The resulting residual BOLD time series were band-pass
filtered with a frequency window of 0.008 Hz-0.2 Hz.

In addition to the above steps controlling for motion,
an analysis of motion across groups and conditions was
conducted. Framewise displacement (FD; maximum total and
averages scan-to-scan) was calculated according to Power et al.
(2012) between-sessions and between-groups (see section 3.1 in
Supplementary Material). As FD was higher for younger adults
than older adults at both treatment sessions, and FD also differed
between sessions in the younger group, all group-level analyses
included average framewise displacement as a covariate at the
second level.

Seed Based Connectivity Analysis

To assess rsFC of the hippocampus, four seed regions were
defined based on coordinates which have been used in previous
research (Wagner et al., 2016) to facilitate comparisons of results.
Four ROIs were created in MarsBar toolbox? and defined as
spheres with a 5 mm radius around the anterior and posterior
part of the hippocampus on the left (anterior: x = —28, y = —12,
z = —20; posterior: x = —28, y = —24, z = —12) and right
side (anterior: x = 28, y = —12, z = —20; posterior: x = 32,
y = —24, z = —12). The resting-state BOLD signal time-series of
each hippocampal region of interest was extracted and correlated
against voxels of the rest of the brain for each session of each
subject. Fisher z transformation was applied.

Statistical Analysis

Blood glucose level and cognitive outcomes were assessed by
mixed-design ANOVA, with treatment as a repeated-measures
factor and age as a between-subjects factor (IBM SPSS Statistics,
Version 24). Blood glucose levels had additional repeated
measures factor of assessment time within sessions. Glucose

Zhttp://marsbar.sourceforget.net/
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tolerance was assessed as an incremental area under the curve
(iAUC) using the trapezoidal rule (Le Floch et al., 1990) based on
the four blood glucose measurements taken at baseline, 20 min,
120 min and 150 min post glucose administration. Higher iAUC
values reflect higher circulating glucose levels, indicative of
poorer glucoregulatory ability.

Functional connectivity analyses used whole-brain voxel-wise
mixed within-subject (glucose, placebo) and between-subject
(younger, older) second-level models, using the partitioned
variance approach implemented in CONN, in order to test for
treatment x age-group interactions. All rsFC analyses used a
cluster-extent FWE-corrected p-value < 0.05, obtained using
non-parametric statistics with 5,000 permutations at a cluster-
defining threshold of p < 0.001.

To explore the relationship between changes in rsFC
and performance on cognitive measures, post hoc Pearson’s
correlation coefficient analyses were carried out using SPSS.

RESULTS

Data from two participants of the young group (one male, one
female) was omitted from the analysis because they showed
significantly higher fasting glucose levels at a single session
compared to the other session. The higher fasting glucose levels
could indicate non-compliance to the fasting regime, therefore
they were excluded from further analysis.

Blood Glucose Levels

Blood glucose levels throughout both testing sessions for each
group are depicted in Figure 3A, which also presents the timing
of the experimental measures. There were no between-group
differences in baseline blood glucose levels between the younger
and older group either at glucose (T 25) = 0.59, P = 0.954) nor
placebo visit (T 1 28) = —0.878, P = 0.387).

A 2 (Age: young/old) x 2 (Treatment: Glucose/Placebo) x 4
(Timepoint: 0, 20, 120, 150 min) ANOVA was conducted. The
rmANOVA analysis of glucose levels omitted data from one
young participant who had a missing post-dose blood glucose
assessment at the placebo visit.

There was a significant main effect of Treatment
(Fa,27)=25.18 P < 0.001, n? = 0.485), a main effect of Time point
(Fas67,27) = 59.43, P < 0.001, n* = 0.688, Greenhouse-Geisser)
and a significant Treatment x Timepoint interaction
(F1.843,27) = 19.43, P < 0.001, n* = 0.644, Greenhouse—Geisser).
There was also a main effect of Age (F(;,7) = 9.076, P = 0.006,
n? = 0.252). The older group showed a greater increase of blood
glucose levels in response to glucose ingestion than the younger
group (T (128) = —2.99, P = 0.006).

There was also a significant difference in blood
glucose levels 20 min post-ingestion at the placebo visit
(Tap7) = — 3.72, P = 0.001). Glucose levels decreased in the

younger group.

Using blood glucose iAUC at the glucose visit as a measure
of glucoregulatory efficiency, older participants had significantly
higher iAUC than younger participants (7' s) —3.403,
P = 0.002), indicative of poorer glucose regulation in the older
sample (Figure 3B).

Resting-State
A significant Treatment x Age-group interaction in rsFC was
observed between left pHPC and a cluster within in the medial
frontal cortex (mPFC) encompassing areas in anterior cingulate,
paracingulate gyrus and superior frontal gyrus [Brodmann
Area (BA) 32 and 8 MNI peak (+08 +26 +30; Table 2
and Figure 4A)]. There were no main effects of condition
or group.

Post hoc t-tests revealed that glucose (compared to placebo)
significantly increased left pHPC-mPFC connectivity in older

A= 10 B 250
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3 -~ YOUNG GLU £ 200
i 8 1 —#- OLDPLA S
-9 oLDGLU x
8 7 = 150
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-]
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(@] fMRI vMWM <
O 3
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Baseline 20 min 120 min 150 min YOUNG OLD
FIGURE 3 | (A) Mean (with SEM) blood glucose levels at baseline, pre-magnetic resonance imaging (MRI) (20 min post-dose), post-MRI (120 min post-dose), and
end of testing (150 min post-dose) for each group and each visit. Circles depict younger adults, while squares depict older adults. Filled symbols represent measures
taken on glucose visit, while open symbols represent measures at the placebo visit. *Indicates a significant difference between drink condition and significant
difference between ages in both drink conditions (p-values see text). Timing of fMRI and virtual Morris Water maze (\MWM) are indicated in relation to glucose
measurements. (B) Blood glucose incremental area under the curve as a measure of glucoregulatory efficiency, bars depict mean (with SEM). Older adults had
significantly higher incremental area under the curve (IAUC) than younger adults (T4 2¢) = —3.403, P = 0.002), indicating poorer glucose regulation. ***P < 0.005.
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TABLE 2 | Whole-brain voxel-wise rmANOVA of resting-state functional connectivity (rsFC) with left posterior hippocampus.

Cluster p Cluster size Peak MNI co-ord (peak) Peak region
(FWE-corr) k voxels t X y z
0.044 96 —6.39 8 26 30 Paracingulate gyrus R

Treatment x age-group interaction (young > older; Glucose > Placebo) for left posterior hippocampus (pPHPC) seed (two-sided contrast; 5,000 permutations, FWE-corrected) to
cluster in mPFC (encompassing anterior cingulate, paracingulate gyrus and superior frontal gyrus). The table displays cluster size p-value (FWE-corr), cluster size (k), Peak t-value,
Montreal Neurological Imaging (x, y, z) peak coordinates, peak region (Harvard-Oxford Atlas), R = right hemisphere.

participants, T(,5 = 5.13, P < 0.001), whereas the reverse To relate the present finding to individual glucose regulation,
was observed in young participants, T3 = —3.6, P = 0.003  post hoc Pearson correlation using iAUC at the glucose
(Figure 2B). treatment visit and rsFC connectivity were performed. Change

This analysis was repeated using individual pHPC volume  in pHPC-mPFC rsFC was correlated with individual glucose
as a covariate. The cluster in the same area remained regulation across the whole sample (r = 0.39, P = 0.04;
significant although smaller in size [MNI peak (+04 +24 +44);  Figure 4C).

Voxels) = 58]; see section 3.2 in Supplementary Material,

Supplementary Table S$3.2). No significant differences were Task Performance

observed from any of the other seed ROIs (right pHPC, or left  Data from two additional participants (one young, one old) was
and right aHPC). omitted from the analysis of the vYMWM due to missing data.

Further post hoc tests showed that younger participants  There was a significant Treatment x Age-group interaction for
exhibited higher rsFC between left pHPC and mPFC relative performance on the VYMWM task (F(126) = 8.64, P = 0.007)
to older participants under placebo conditions, T(125) = 3.54,  as depicted in Figure 5A. Post hoc pairwise comparisons
P = 0.001; and that older participants exhibited significantly  revealed that while the older group showed significantly worse
greater left pHPC-mPFC connectivity relative to the younger performance compared to the younger group under placebo
group after glucose ingestion alone, T(108) = —2.75, P = 0.01  (T(; 56 = —3.42, P = 0.02), there was no group difference after

(Figure 4B). glucose administration (T j 56) = 0.35, P = 0.73). No Treatment by
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FIGURE 4 | (A) Resting-state functional connectivity (rsFC) brain map for left posterior hippocampus (pHPC) showing: Treatment x Age-group interactions
exhibited from left pHPC to cluster in medial frontal cortex (mPFC; encompassing anterior cingulate, paracingulate gyrus and superior frontal gyrus; fisher
z-transformed correlation values). (B) Extracted connectivity strength from pHPC to mPFC for each group per session (error bars reflect SEM). (C) Scatterplot of
correlation between change in rsFC of pHPC and mPFC and glucose regulation as measured by iAUC (r = 0.39, P = 0.04).
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age-group interactions were found in the Serial Sevens (correct;
F(1.28) = 1.38, P = 0.25).

We further probed the relationship between significant
changes in left pHPC-mPFC rsFC and change in performance
on the spatial navigation task. Change in rsFC magnitude

between left pHPC and mPFC was correlated with
changes in spatial memory performance (r = —0.56,
P = 0.002). The negative correlation reflects greater

connectivity after glucose to be associated with smaller
heading errors (averaged across the two probe trials) after
glucose ingestion. Specifically, in older participants, glucose
increased functional connectivity between the left posterior
hippocampus and mPFC and that the magnitude of this
functional connectivity change correlated with the change in
performance (Figure 5B).

DISCUSSION

The aim of the present study was to investigate age-related
differences in changes in rsFC in response to a glucose load
from the anterior and posterior segments of the hippocampus,
comparing a group of younger and a group of older adults.
Further, we wanted to investigate if these changes are linked to
individual glucose regulation and how they relate to memory
performance on two different memory tasks.

After the ingestion of a 25 g glucose drink, we observed
changes in functional connectivity of the pHPC to a cluster in
the mPFC. In older participants, glucose increased rsFC between
pHPC and mPFC. Furthermore, the change in connectivity
was related to glucoregulatory ability. Participants with poorer
glucose regulation, as indicated by greater circulating glucose
following administration, benefited most from the glucose load.
In younger participants we observed the opposite pattern of
connectivity change. Moreover, the change in the magnitude
of rsFC was correlated with gains in performance on a spatial
memory task.

Here, we demonstrate age-dependent, acute modulation of
pHPC connectivity, suggesting that connectivity of the posterior

segment of the hippocampus is differentially susceptible to an
acute glucose load in older individuals.

This study is the first to compare the effects of glucose on rsFC
and cognition in both younger and older individuals. There is
a general consensus that glucose enhancement is more effective
in older compared to younger adults (Macpherson et al., 2015).
This effect has been partially attributed to an age-related decline
in glucose regulation. Our findings indicate that pHPC-mPFC
connectivity increases were more marked as glucoregulation
worsened in older participants (see Figure 4C). Our results
suggest that these connectivity changes may contribute to
previously reported demonstrations that glucose more readily
attenuates age-related cognitive performance decrements in
elderly adults with impaired glucose regulation (Kaplan et al,
2000; Messier et al., 2003).

The hippocampus has been hypothesized as a key structure
in the glucose facilitation effect (Smith et al., 2011). Our results
show the potential importance of considering subdivisions
of the hippocampus along its anterior-posterior axis in
neuropharmacological studies.

The hippocampus and surrounding temporal lobes have long
been recognized to be an important node for the processing
of spatial information (for a review, see Howard et al., 2005).
The results of the present study support the role of the
posterior segment of the hippocampus in spatial memory
performance. This relationship has recently been demonstrated
in a rsfMRI study by Persson et al. (2018), who predicted spatial
memory performance from pHPC, but not aHPC, rsFC. Our
results are also consistent with reports of positive associations
between posterior hippocampal activation and virtual navigation
performance (Maguire et al, 1998; Hartley et al, 2003;
Cornwell et al., 2008).

Growing evidence points to the importance of the mPFC,
including the anterior cingulate cortex (ACC), in spatial
memory. Interactions between mPFC and hippocampus have
been proposed to be critical to successful encoding and retrieval
of spatial information (Wirt and Hyman, 2017). The present
results show that increases in pHPC-mPFC rsFC are beneficial
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to navigation task performance, thus contributing to the growing
amount of literature emphasizing the importance of information
sharing between these two areas in spatial memory.

The post-glucose performance of the older participants
was similar to that of the younger group. Conversely, in the
younger group performance decreased slightly. In young adults,
the glucose facilitation effect is most readily observed under
increased task difficulty (Kennedy and Scholey, 2000; Scholey
et al., 2001) and divided attention (Stinram-Lea et al., 2002;
Scholey et al., 2009). It is thus possible that the task demands in
this study were not high enough to elicit an effect in the younger
group. It is also the case that there are a number of studies where
glucose modulation did not affect behavioral task performance
(Knott et al., 2001; Riby, 2004), and there are isolated reports
of decreased task performance after glucose ingestion (Scholey
etal,, 2015). This may be a manifestation of complex interactions
between glucose levels and task demands which make the effect
more fragile in younger adults.

The reason for the difference between blood glucose levels
20 min post-ingestion of the placebo drink are unknown, but
they may reflect better glucoregulation as reflected intact insulin
signaling after (false) nutritional load in the young group.
Anticipatory hormonal response to flavoring (without glucose)
has been observed before (Scholey and Kennedy, 2004).

There were some limitations to this study. The sample sizes
were relatively small, and future studies with larger sample sizes
are needed in order to investigate the glucose facilitation effect
especially with regard to mediating variables such as gender.
There is research suggesting that gender might be a contributing
factor in the atrophy of the hippocampus (Pruessner et al,
2001) as well as a factor in the glucose facilitation effect (Craft
et al., 1994). Even though gender-matched cohorts were used in
the current study, larger sample sizes are necessary to increase
the power to detect potential gender differences. Future studies
investigating the effects of gender and other mediating variables
are encouraged.

The consumption of glucose results not only in increases
in glucose levels but also increases in systemic insulin
and gut peptides, such as glucagon-like peptide-1 (GLP-1),
cholecystokinin (CCK) and peptide tyrosine-tyrosine (PYY;
Zanchi et al., 2017). In the current investigation we did collect
endocrine data, which limits the interpretation of results. As the
timing of cognitive task was 2 h post glucose ingestion it could
be argued that the effect was driven by changes in insulin levels.
Cognitive enhancing properties of insulin have been revealed
in previous investigations (Benedict et al., 2004; Krug et al,
2010). A recommendation for future studies is, therefore, to
include measurements of insulin and gut peptides to examine
the cognitive enhancing mechanism of glucose ingestion in
more detail.

We wused a hypothesis-driven seed-based analysis to
investigate the role of the anterior and posterior segments
of the hippocampus in the glucose facilitation effect. This kind
of analysis is influenced by the seed coordinates chosen. The
seed coordinates for the anterior and posterior hippocampus in
the present study were determined based on other investigations
(Wagner et al.,, 2016) to facilitate comparisons between studies.

However other researchers have used different seed coordinates
for anterior and posterior hippocampus (e.g., Damoiseaux et al.,
2016) which may affect the results.

CONCLUSION

This is the first study investigating the functional connectivity of
aHPC and pHPC after glucose load in young and elderly adults.
The results of the present study indicate the possibility that the
pHPC is especially sensitive to pharmacological interventions,
as we have shown that a simple glucose load modulates its
connectivity and enhances cognitive performance in older adults.
The results also suggest that glucose modulated functional
connectivity and cognitive performance more readily in older
adults with impaired glucose regulatory ability. We further
demonstrated the functional relevance of the changes in
functional connectivity by relating gains in performance on a
spatial memory task to increase in pHPC-mPFC connectivity.
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Background: Genetics play a significant role in the etiology of late-life neurodegenerative
diseases like Alzheimer’s disease, Parkinson’s disease, and frontotemporal dementia.
Part of the individual differences in risk for these diseases can be traced back decades
before the onset of disease symptoms. Previous studies have shown evidence for
plausible links of apolipoprotein E (APOE), the most important genetic marker for
Alzheimer’s disease, with early-life cognition and neuroimaging markers. We aimed to
assess whether genome-wide genetic burden for the aforementioned neurodegenerative
diseases plays a role in early-life processes.

Methods: We studied children from the Generation R Study, a prospective birth cohort.
APOE genotypes and polygenic genetic burdens for Alzheimer’s disease, Parkinson’s
disease, and frontotemporal dementia were obtained through genome-wide genotyping.
Non-verbal inteligence was assessed through cognitive tests at the research center
around the age of 6 years, and educational attainment through a national school
performance test around the age of 11 years. The Child Behavior Checklist was
administered around the age of 10 years, and data from the anxious/depressed,
withdrawn/depressed, and the internalizing behavior problems scales were used.
Children participated in a neuroimaging study when they were 10 years old, in which
structural brain metrics were obtained. Lipid serum profiles, which may be influenced by
APOE genotype, were assessed from venal blood obtained around the age of 6 years. The
sample size per analysis varied between 1,641 and 3,650 children due to completeness
of data.

Results: We did not find evidence that APOE genotype or the polygenic scores impact on
childhood nonverbal intelligence, educational attainment, internalizing behavior, and
global brain structural measures including total brain volume and whole brain fractional
anisotropy (all p > 0.05). Carriership of the APOE €2 allele was associated with lower and
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APOE €4 with higher low-density lipoprotein cholesterol concentrations when compared

to APOE £3/e3 carriers.

Conclusion: We found no evidence that genetic burden for late-life neurodegenerative
diseases associates with early-life cognition, internalizing behavior, or global

brain structure.

Keywords: polygenic risk scores, Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, cognition,
neuroimaging, lipid profiles, internalizing behavior

INTRODUCTION

Genetic factors play a significant role in the etiology of late-life
neurodegenerative diseases like Alzheimer’s disease (AD) (1, 2),
Parkinson’s disease (PD) (3), and frontotemporal dementia
(FTD) (4). With the exception of rare Mendelian forms of
diseases, cases arise due to multifactorial processes where many
genetic variants confer risk of neurodegeneration, in
combination with non-genetic factors. The clinical onset of the
aforementioned diseases tends to be preceded by years of
deterioration of cognition and brain structure (5-7) as well as
an increased incidence of depressive and psychiatric symptoms
(8-10). For AD, these differences may even extend decades
before the onset of disease (11-13), which could partly be
explained by individual differences in the genetic burden for
AD. As the genome is stable throughout life, the genes implicated
in late-life neurodegenerative disease may already lead to subtle
differences during childhood.

The apolipoprotein E epsilon 4 allele (APOE ¢€4) is the
strongest common genetic variant for AD (14-16). The APOE
gene plays a role in lipoprotein metabolism, and has been shown
to affect lipid serum profiles during adulthood (17-21), and
potentially during childhood (22, 23). As APOE also increases
the risk for AD, its role in early-life cognition and brain markers
has also been studied. The studies on APOE €4 and cognition
during adolescence and early adulthood have reported mixed
results, with some reporting lower cognitive function, some
higher, and most reporting no difference (24). Additionally, a
number of studies showed that APOE €4 may relate to lower
brain volumes during infancy and childhood, particularly in
regions affected in AD such as the hippocampus (25-30).
Overall, APOE €4 may associate with early-life processes, but
this needs to be elucidated further.

With the advent of genome-wide association studies (GWAS)
there has been an increase in the number of genes identified for
neurodegenerative disease. GWAS has led to the discovery of at
least 30 new genetic loci for AD (1, 2), at least genetic 24 loci for
PD (3), and at least 3 loci for FTD (4). The disease burden per
locus can be combined into a single score, known as polygenic
risk scores (PGRS), to assess the genetic burden a person has for
that disease (31). The genetic burden for AD, PD, and FID may
relate to early-life processes, which can be studied using PGRS.
However, few studies exist that assesses the effect of such PGRS
on early-life markers.

To obtain a more comprehensive overview of the relevance in
early-life of genes related to late-life neurodegenerative disease

we performed a comprehensive study within the Generation R
birth cohort. We assessed the APOE genotype and created PGRS
for AD, PD, and FTD. Given the existing literature we
hypothesized that these genetic predispositions to late-life
neurodegenerative disorders associate with early-life non-
verbal intelligence quotient (IQ), educational attainment,
internalizing behavior, and neuroimaging markers, and that
APOE and the AD PGRS associate with lipid profiles.

METHODS

Participants

The data was obtained from the Generation R cohort, a
prospective birth cohort based in Rotterdam, the Netherlands
(32). Pregnant women in Rotterdam were at their first prenatal
visit approached to participate. A total of 9,901 children were
born as part of the Generation R cohort and were invited to
participate in questionnaires and research center visits beginning
in 2002 to the present day.

DNA was sequenced from blood obtained from the umbilical
cord or with blood samples collected around 6 years of age, and
genetic data was available for 5,725 children. In the case of sibling
pairs (n = 235 pairs) we included the oldest sibling. This led to a
sample of 5,490 children. The focus of the current study was on
cognitive function, brain structure, and blood lipid profiles. Non-
verbal IQ was measured at approximately 6 years (n = 3,650) and
educational attainment at 11 years of age (n = 1,641). The
Childhood Behavior Checklist (CBCL) was administered
around the age of 10 years with data for the anxious/depressed
scale (n = 1,867), the withdrawn/depressed scale (n = 1,862), and
the internalizing problems scale (n = 1,859) used for this study.
Magnetic resonance imaging (MRI) of the brain was done when
the children were approximately 10 years of age, collecting both
T;-weighted (n = 1,962) and diftusion-weighted images (n =
1,832). Blood lipid profiles were determined with blood samples
obtained around the age of 6 years (n = 2,749). A flow chart of
the study population is shown in Supplementary Figure 1.

Ethics Statement

The study was conducted in accordance with the guidelines as
proposed in the World Medical Association Declaration of
Helsinki and was approved by the Medical Ethics Committee
of the Erasmus MC. Written informed consent was obtained
from primary caregivers on behalf of the child.
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Genotyping, Apolipoprotein E ¢4, and
Polygenic Risk Scores

DNA sample collection, genotype calling procedures, and
subsequent quality control have been described elsewhere (33,
34). In brief, samples were either collected from cord blood at
birth (Illumina 610K Quad Chip) or from venipuncture at a visit
to the research center when children were between the age of 5
and 8 years (Illumina 660K Quad Chip). Single nucleotide
polymorphisms were filtered for minor allele frequency < 0.01,
Hardy-Weinberg disequilibrium p < .00001, and missing rate >
0.05. To be able to account for population stratification, we
calculated the first 10 genomic components using the multi-
dimensional scaling function of PLINK (34, 35).

APOE carriership status was assessed from the genotyped
data and based on the nucleotide combinations of two single
nucleotide polymorphisms: rs429348 and rs7412. A thymine at
both locations is classified as APOE €2, one thymine and one
cytosine as APOE €1 or APOE €3, and both cytosines as APOE
€4. As APOE ¢l and APOE €3 cannot be distinguished we
classified both as APOE €3. We considered APOE €3/€3 to be the
reference category as this is the most prevalent genotype.

PGRS for AD, PD, and FTD were calculated using PRSice-2
(36). The scores were based on summary statistics from the
largest GWAS for each respective neurodegenerative disease (3,
4, 37). PGRS are generally calculated for different thresholds of
statistical significance in the summary statistics. As we did not
have an a priori hypothesis on the optimal threshold, we
calculated PGRS based on single nucleotide polymorphisms
below the following p-value thresholds: 0.000001, 0.000005,
0.00001, 0.000005, 0.00001, 0.00005, 0.0001, 0.0005, 0.01, 0.05,
0.1, 0.5, and 1.0. Strand flips were corrected and we used
clumping to build the score using independent loci.

Non-Verbal Intelligence Quotient

and Educational Attainment

Two measures for cognitive function were available. The first was
an assessment of non-verbal IQ at the research visit around the
age of 6 years. Participants completed two subtests of the
Snijders-Oomen Non-Verbal Intelligence Test-Revised (SON-R
2%-7) (38): “Mosaics,” a spatial visualization task, and
“Categories,” an abstract reasoning task. The raw scores were
converted to IQ scores using age and sex-specific norms. As both
tasks specifically assess non-verbal cognition, we considered
these scores as non-verbal IQ scores. The correlation between
IQ derived from the whole test battery and IQ derived from just
the “Mosaics” and “Categories” tests has been shown to be high
(r = 0.86) (39).

The measure of cognitive function was the educational
attainment score obtained at the age of 11 years. The “Centraal
Instituut voor Toetsontwikkeling” (CITO) test is administered in
the majority primary schools in the Netherlands and is
completed during the final year of primary school. The CITO
test generally consists of two main skill domains: language and
mathematics. The raw test scores for both domains were
obtained for most Generation R children that took the CITO
test during the years 2014 to 2017 and that were still part of

Generation R at the time. As the test difficulty tends to vary
slightly each year we summed the raw domain scores to a total
score for each child, standardized the scores for all children
within a given year, and finally combined the stratified
distributions into one distribution. This method yielded
standardized scores that were comparable across testing years.

Child Behavior Checklist

Behavioral problems were assessed using the CBCL for ages 6 to
18 (40). The CBCL is a validated and reliable 113-item inventory
that uses caregiver-reported information to assess behavioral
problems in children. The procedure and specific characteristics
for Generation R have been described elsewhere (41). For this
study we considered mother-reported data on the anxious/
depressed, the withdrawn/depressed, and the internalizing
problems scales.

Image Acquisition and Processing

Image acquisition has been described elsewhere (41). In brief,
structural brain MR images were obtained on a single 3T GE
Discovery MR750w MRI system (General Electric, Milwaukee,
WI, USA) utilizing an eight-channel receive-only head coil. T;-
weighted images were collected using a three-dimensional (3D)
inversion recovery-prepared fast spoiled gradient recalled
sequence (Tr = 8.77 ms, Tg = 3.4 ms, T = 600 ms, flip angle =
10°, field of view = 220 x 220 mm, acquisition matrix = 220 x 220,
slice thickness = 1 mm, number of slices = 230, bandwidth = 25
kHz). Diffusion-weighted images consisted of three by volumes
and 35 diffusion directions using an echo planar imaging
sequence (Tr = 12,500 ms, Tg = 72 ms, field of view = 240 x
240 mm, acquisition matrix = 120 x 120, slice thickness = 2 mm,
number of slices = 65, b = 900 s/mm”).

T,-weighted images were processed through the FreeSurfer
analysis suite, version 6.0.0 (42). The procedure has been
described elsewhere (43). Briefly, non-brain tissue was
removed, voxel intensities were normalized for Bl
inhomogeneity, whole-brain tissue segmentation was
performed, and a surface-based model of the cortex was
reconstructed. For each participant we obtained metrics for
total brain volume, cortical gray matter volume, cerebrospinal
fluid volume, and mean cortical thickness. For analyses of APOE
status and the AD PGRS we additionally focused on volumes of
the hippocampus, the entorhinal cortex, the middle temporal
gyrus, and the parahippocampal gyrus. For the PD PGRS we also
considered volumes of the nucleus accumbens, the caudate
nucleus, the globus pallidi, and the putamen. Finally, for the
FTD PGRS we also looked at the frontal and the temporal lobes,
and in particular the volume, the mean thickness, and the surface
area. For all lateralized structures we took the mean of both sides.

Diffusion tensor imaging (DTI) images were processed
through the FMRIB Software Library (FSL), version 5.0.9 (44).
The full procedure is described elsewhere (43). Briefly, non-brain
tissue was removed and images were corrected for eddy-current
artifacts and translations/rotations resulting from head motion.
Diffusion tensors were fitted at each voxel using the RESTORE
method from the Camino diffusion MRI toolkit (45). We further
performed probabilistic white matter fiber tractography in native
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space for each participant using the FSL plugin AutoPtx to
identify connectivity distributions of a number of well-known
fiber bundles (46). Average fractional anisotropy and mean
diffusivity values were then computed for each white matter
tract. Global measures for fractional anisotropy and mean
diffusivity were obtained by performing factor analyses on the
tract-specific values (47).

Lipid Profiles

Lipid profiles of the children were assessed from venous blood
acquired during the research visits around the age of 6 years after
a 30 min fast. Serum total cholesterol, high-density lipoprotein
cholesterol (HDL-c), and triglyceride concentrations were
derived with the Roche cobas 8000 analyzer (Roche
Diagnostics GmbH, Penzberg, Germany), and low-density
lipoprotein cholesterol (LDL-c) was estimated using the
Friedewald equation (48). We considered these lipids in
relation to APOE status and the AD PGRS as the APOE gene
plays a significant role in lipid metabolism (49), whereas we did
not have such a prior expectation for PD and FTD.

Statistical Analysis

Statistical analyses were performed with the R statistical package,
version 3.5.2 (R 50). We used multiple linear regression for all
outcomes, correcting for age at outcome measurement, sex of the
child, maternal education (low, intermediate, or high), and the
first 10 genomic components. The latter was done to take into
account the underlying genetic structure of the population. The
serum lipid models were additionally adjusted for body mass
index (BMI) at the time of the venous puncture. The volumetric
neuroimaging models, i.e. cortical volume, cerebrospinal fluid
(CSF) volume, and the disease-specific regional brain volumes,
were additionally adjusted for total brain volume. Furthermore,
we applied square-root transformations to the CBCL scales to
better satisfy the linearity assumption of linear regression.

Polygenic burden may only affect those whose burden is
above a certain threshold, thus leading to non-linearity of an
association. We assessed this through two approaches: 1)
dichotomization of the top PGRS decile versus the rest of the
population, 2) fitting restrictive cubic splines on the PGRSs to
assess any non-linearity in the association.

Use of PGRS in the Generation R Study requires a critical
consideration of ethnicity. The GWAS from which we used the
summary statistics were based on populations of European
ancestry. Findings from GWAS and by extension PGRS are
specific to the ethnicity of the original study population. The
Generation R study is based in the city of Rotterdam, where
about half of all individuals are of non-European ancestry. We
focused our main findings on the complete population, but we
additionally stratified our analyses for European ancestry to
check for any effects related specifically to ethnicity. We
additionally performed sensitivity analyses where we did not
correct for the first 10 genomic components, to see whether
improper correction for population stratification is relevant for
studies on APOE and studies on AD, PD, and FTD PGRS (51).

Multiple testing correction was considered on three levels: 1)
the PGRS for AD, PD, or FTD, 2) the PGRS thresholds, and 3)

the outcome measures. We did not expect dependence among
the PGRS of the neurodegenerative diseases. Therefore, we
applied a Bonferroni correction across AD, PD, and FTD. As
the PGRS thresholds were strongly intercorrelated as well as
some of the outcome measures, we applied a false discovery rate
(FDR) correction within a given disease. The p-values reported
below are those after the FDR correction.

RESULTS

Population Characteristics

Table 1 shows the characteristics of the total study population
and stratified by European ancestry and non-European ancestry.
Overall, the most common APOE genotypes were £3/€3 (64.9%),
€2/€3 (11.5%), and €3/e4 (19.1%), whereas the other genotypes
were much less common, i.e. €2/€2 (0.5%), €2/e4 (2.3%), and €4/
€4 (1.6%). These numbers were similar for those with European
and non-European ancestry.

Apolipoprotein E and Polygenic Risk
Scores for Alzheimer’s Disease

Figures 1 and 2 display the results of the associations of all relevant
outcomes with APOE genotype and AD PGRS, respectively.
Neither APOE genotype nor any AD PGRS associated with non-
verbal IQ during the 6-year visit or the CITO score at 11 years (all
Peorrected > 0.05). The APOE genotype and AD PGRS also did not
relate to global brain metrics such as total brain volume and CSF
volume, nor with the connectivity metrics global fractional
anisotropy and mean diffusivity (all peorrectea > 0.05). APOE
genotype and the AD PGRS also did not associate with region-
specific metrics for the hippocampus, the entorhinal cortex, the
medial temporal gyrus, and the parahippocampal region. Finally,
APOE genotype and AD PGRS did not show any statistically
significant associations with the CBCL scales anxious/depressed
or withdrawn/depressed, nor with the internalizing problems scale
(aﬂ Peorrected > O~05)-

The APOE genotype associated with serum lipid profiles.
Compared to the APOE €3/¢3 genotype, those with APOE €2/¢3
had lower total cholesterol concentrations ( = —0.32, SE = 0.06,
Peorrected < 0.001), lower LDL-c concentrations (f = —0.57, SE =
0.06, Peorrected < 0.001), and higher HDL-c concentrations (B =
0.22, SE = 0.06, pcorrected = 0.01). The APOE €2/€2 followed the
exact same pattern but with even larger differences.

Compared to the APOE €3/e3 genotype those with £3/e4 had
higher total cholesterol concentrations (B = 0.19, SE = 0.05,
Peorrected = 0.003), higher LDL-c concentrations (§ = 0.16, SE = 0.05,
Peorrected < 0.001), and lower HDL-c concentrations (3 = 0.26, SE =
0.05, Peorrected = 0.02). These differences were similar and larger
when comparing the APOE €3/€3 genotype with the APOE €4/
€4 genotype.

Triglycerides were higher in all genotypes compared to APOE
€3/¢e3, although none of these were statistically significance (all
Pcorrected > 005)

The AD PGRS also associated with serum lipid profiles, but only
at stricter PGRS thresholds, i.e. PGRS thresholds below 0.001.
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TABLE 1 | Characteristics of the study population.

Characteristics All European Non-European
ancestry ancestry

(N=5,490) (N =2,651) (N =2,839)

APOE genotype (%)

€2/e2 0.5 0.5 0.6

€2/e3 1.5 10.4 12.6

e2/ed 2.3 2.5 2.1

€3/e3 64.9 60.6 69.0

€3/e4 191 21.6 16.8

ed/ed 1.6 2.2 1.1

Visit around 6 years

Non-verbal IQ (mean, SD) 101 (15) 105 (14) 97 (15)

Total cholesterol (mean, SD) 4.2 (0.6) 4.2 (0.6) 4.3 (0.7)

(mmol/L)

HDL-c (mean, SD) (mmol/L) 1.3 (0.3) 1.3(0.3) 1.4 (0.3

LDL-c (mean, SD) (mmol/L) 2.4 (0.6) 2.3(0.6) 2.4 (0.6)

Triglycerides” (geometric 1.0 (0.5) 1.1 (0.5) 1.5 (0.5)

mean, SD) (mmol/L)

Visits at 10 and 11 years

CITO score, standardized 0.0 (1.0 0.2 (0.9 -0.3 (1.1)

(mean, SD)

Total brain volume (mean, SD) 1,200 (118) 1,225 (113) 1,168 (116)

(cm®)

Cortical volume (mean, SD) 574 (59) 588 (56) 556 (59)

(cm®)

Cerebrospinal fluid volume 0.9 (0.2 0.9 (0.2) 0.9 (0.2

(mean, SD) (cm?)

Mean cortical thickness 2.67 (0.08) 2.68 (0.08) 2.67 (0.08)

(mean, SD) (mm)

Global FA, standardized 0.00 (1.00) 0.11 (0.97) -0.15 (1.02)

(mean, SD)

Global MD, standardized 0.00 (1.00) —-0.03 (0.98) 0.04 (1.03)

(mean, SD)

Anxious/depressed scale 2.2 (2.7) 2.2 (2.7) 2.2 (2.6)

(mean, SD)

Withdrawn/depressed scale 1.1 (1.6) 1.1(1.5) 1.1(1.8)

(mean, SD)

Internalizing problems scale 4.7 (5.0) 4.5 (4.8) 5.1(5.4)

(mean, SD)

APOE, apolipoprotein epsilon.

1Q, intelligence quotient.

HDL-c, high density lipoprotein cholesterol.
LDL-c, low density lipoprotein cholesterol.

FA, fractional anisotropy.

MD, mean diftusivity.

Triglyceride serum values were log-transformed.

However, these associations disappeared upon including the APOE
genotype as a covariate (all peorrectea > 0.05). Furthermore, the
results did not differ when using the top-decile PGRS
dichotomization rather than the continuous PGRS, or when
modeling cubic splines.

Polygenic Risk Scores for Parkinson’s

Disease and Frontotemporal Dementia

The results for the PD and FID PGRS are shown in Figures 3
and 4, respectively. We found no support for associations of
scores at any threshold with non-verbal IQ, educational
attainment, internalizing behavior scales, or neuroimaging
markers. Furthermore, we did not find evidence for
associations of the PD scores with the volumes of the nucleus

accumbens (8 for PGRS at 0.05 threshold = —0.08, SE; o5 = 0.12,
Peorrected = 1.00), the caudate nucleus (85 = 0.03, SEq 95 = 0.12,
Peorrected = 1.00), the globus pallidus (8905 = —0.07, SEgo5 =
0.13, Peorrected = 1.00), or the putamen (905 = —0.13, SEg o5 =
0.12, Peorrectea = 1.00). Similarly, we did not observe any
associations of the FTD scores with the volumes of the frontal
(Bo.os = —0.00, SEg 05 = 0.03, Peorrected = 1.00) or temporal lobes
(80.05 =0.01, SEO.OS =0.03, Pcorrected = 100)

Population Structure

All analyses were performed in all available participants, and
were controlled for the first 10 genomic components. We further
stratified the analyses for European versus non-European
ancestry (Figures 5A, D, Supplementary Figure 2), and the
effect estimates were generally similar. We additionally reran the
analyses without correcting for the genomic components, and
this led to stark changes in the results (Figures 5B, E,
Supplementary Figure 3). The higher the PGRS threshold, the
more statistically significant findings were present in the analyses
not corrected for genomic components compared to when we
did correct for genomic components. We further split the
uncorrected analyses for European versus non-European
ancestry, to see whether one of these groups was driving the
sudden change in findings (Figures 5C, F, Supplementary
Figure 4). Within the uncorrected analyses for individuals of
non-European ancestry we find an inflation of the number of
statistically significant findings, whereas this was not the case for
individuals of European ancestry.

DISCUSSION

None of the measures for genetic burden for AD, PD, or FTD
were associated with childhood non-verbal IQ, educational
attainment, internalizing behavior, global brain structure, or
disease-specific regional brain structures. Although genetic
burden for late-life neurodegenerative disease has been linked
to brain structure and cognitive function during late-life, we find
no evidence that these affect the same processes during early life.
Furthermore, we provided clear evidence that the APOE
genotype affects lipid profiles during childhood. Finally, we
showed that improper control of the ethnic structure of the
population through genomic components can lead to false
positive associations when considering PGRS for AD, PD,
and FTID.

We found no support for the link between AD genetic burden
and global, hippocampal. and temporal regions although
previous studies have provided evidence for such links during
infancy (28, 29), childhood (25, 30, 52, 53), and early adulthood
(27, 54-61). The support for such associations does seem
stronger in studies during early adulthood than during
childhood. This suggests that the genetic burden for AD
becomes more relevant with age, and that there are cumulative
processes at play which may only become apparent after early-
life. For example, the pathological burden in APOE €4 carriers
may be increased due to accumulation of lipoprotein (62, 63),
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CBCL Anxious/Depressed scale (10 year visit)

CBCL Withdrawn/Depressed scale (10 year visit)

CBCL Internalizing Problems scale (10 year visit)
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FIGURE 1 | Heatmap showing the regression coefficients between apolipoprotein E (APOE) genotype and all phenotypes. The E3/3 genotype is used as a reference
for the other genotypes. All coefficients are standardized. The reported p-values were corrected for multiple testing. 1Q, intelligence quotient; CBCL, Child Behavior
Checklist; HDL, high-density lipoprotein; LDL, low-density lipoprotein; CSF, cerebrospinal fluid; FA, fractional anisotropy; MD, mean diffusivity; * = 0.05; ** = 0.01;

*=0.001.

reduced neuronal reparative capacity (64, 65), and altered
responses to neuroinflammatory processes (66).

Interpreting the role of APOE in childhood brain development is
further complicated by the inconsistency of findings. Shaw and
colleagues found in children and adolescents that APOE €4 carriers
had thinner entorhinal cortices than non-carriers (25). Chang and
colleagues also studied children and adolescents, but they found that
€4 carriers had larger hippocampi than non-carriers (30).
Additionally, they report that €4 carriers compared to non-
carriers had larger volumes for the cuneus, the temporal pole, the
lateral occipital pole, and the medial orbitofrontal cortex. The two
studies that report that APOE affects brain structure in infants show
that €4 carriers have smaller hippocampi than non-carriers (28, 29).
Furthermore, they report that APOE affects regions that are very
different from those reported by Chang and colleagues (30). More
recently, Axelrud and colleagues reported that the AD PGRS relates
to hippocampal volume in Brazilian children aged 6 to 14 years old
(53). However, the source GWAS on which the PGRS in the latter
study was based was performed in a population of European
ancestry (37). As we have shown, using the AD PGRS in
populations of non-European ancestry leads to false positive

findings. Indeed, Axelrud and colleagues could not replicate their
findings in a separate Canadian population of 1,024 adolescents. In
summary, previous findings have been inconsistent, which suggests
that AD genetic burden may only affect early-life brain structure
under specific circumstances or that the effect is unlikely to be
clinically relevant.

We did not find evidence in our study to suggest that AD
genetic burden affects cognitive functioning during childhood.
Previous studies on this topic report mixed results, but several
larger studies also did not find evidence for such a link. Taylor and
colleagues studied cognition in the Avon Longitudinal Study of
Parents and Children (ALSPAC) study (23). The only pattern
observed was that APOE €4 carriers performed better on cognitive
tests than those with a APOE €3/e3 genotype, although not
statistically significant. In our study we found no evidence to
support this. More recently, Weissberger and colleagues meta-
analyzed data from 9,234 individuals aged 2 to 40 years old and
found no association of APOE €4 carriership with intelligence,
attention, executive function, language, memory, processing
speed, and visuospatial abilities (67). In our study we confirmed
this finding at two timepoints in childhood (around 6 years of age
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based on a different threshold for inclusion of single-nucleotide polymorphisms (SNPs) into the score. All coefficients are standardized. The reported p-values were
corrected for multiple testing. 1Q, intelligence quotient; CBCL, Child Behavior Checklist; HDL, high-density lipoprotein; LDL, low-density lipoprotein; CSF,
cerebrospinal fluid; FA, fractional anisotropy; MD, mean diffusivity; ** = 0.01; ** = 0.001.
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FIGURE 3 | Heatmap showing the regression coefficients between the Parkinson’s disease (PD) polygenic risk score (PGRS) and all phenotypes. Each score is
based on a different threshold for inclusion of single-nucleotide polymorphisms (SNPs) into the score. All coefficients are standardized. The reported p-values were
corrected for multiple testing. None of the associations were statistically significant after correction. 1Q, intelligence quotient; CBCL, Child Behavior Checklist; HDL,
high-density lipoprotein; LDL, low-density lipoprotein; CSF, cerebrospinal fluid; FA, fractional anisotropy; MD, mean diffusivity.

and around 11 years of age), and we also extend the findings to The role of the APOE gene in serum lipid profiles during early
APOE €2 genotypes and to broader AD genetic burden. Taken  life has been studied before. In 2011, a study by Taylor and
together, the literature and this study suggest that AD genetic  colleagues assessed the relation between APOE status and serum
burden does not affect cognition during early life. lipid profiles in 2,875 children aged 8 to 11 years from the ALSPAC
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cohort, a prospective birth cohort study (23). They showed that
carriership of APOE €2 was associated with reduced cholesterol and
increased triglyceride levels compared to APOE €3/e3, whereas
APOE €4 carriers had both elevated cholesterol and triglyceride

levels. In 1997, Kallio and colleagues showed that cord blood from
42 APOE €4 carriers contained higher concentrations of cholesterol
than 13 carriers of APOE €2 (22). In addition, LDL levels rose
steeper during the first year of life in the APOE €4 carriers than in
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the APOE €2 carriers. In our study we had similar findings for €2/€3
and €3/e4 but not for €2/€2 and e4/e4 genotypes, likely because
those genotypes were uncommon within the current study
population. Our findings further consolidate the causal role of
APOE genotype in serum lipid levels even during early life.

We found no evidence that PD and FTD genetic burden
influences early-life processes. However, the etiology and
pathogenesis of PD and FTD are poorly understood, and less is
known on the preclinical disease stage compared to AD. It is
therefore not clear how genetic burden for PD or FTD would
influence early-life processes. As both syndromes can occur
through dominant autosomal inheritance, it should be possible to
investigate families of PD or FTD patients to identify such
processes. However, we were unable to identify any such study in
the literature. Another route would be to look at healthy carriers of
known genetic risk variants for either PD or FTD to identify affected
processes. For example, the G2019S mutation in the LRRK2 gene,
the gene most widely associated with Parkinson’s disease, has been
studied in healthy controls. Different studies found this gene to be
associated with lower executive functioning (68), changes in gait
(69), olfactory dysfunction (70). However, all these studies were
small and exploratory. To the best of our knowledge, no studies
focusing on FTD candidate genes in healthy controls are available.
Further work is needed to elucidate whether PD and FTD genetic
burden play a role in other domains during early-life, for example
brain function rather than brain structure.

The etiology of AD, PD, and FTD extend beyond lipid profiles,
the brain, behavior, and cognition, thus raising the question which
other processes could be relevant during childhood. For example,
cerebrospinal fluid markers levels such as Tau and phosphorylated
Tau are affected by APOE €4 carriership in demented individuals
(71-74).In addition, APOE protein levels in cerebrospinal fluid, but
not blood serum, depend on the APOE genotype (75). Another
avenue for further research are inflammatory markers such as C-
reactive protein, interleukin-6, and ol-antichymotrypsin, which
have shown predictive value for the onset of all-cause dementia (76).
Further assessment of endophenotypes closely related to specific
gene function may provide more stable findings related to early life.

Our findings may have been limited by several aspects of the
study design. First, we relied on cross-sectional data. Brain growth
follows non-linear trajectories, reaching a peak at around the age
when the children in our study underwent neuroimaging (77). The
genetic burdens for neurodegenerative disease may affect the
trajectories of brain development, which would only be detectable
through longitudinal studies. Alternatively, the genetic burden for
late-life neurodegenerative disease may not express until later in
childhood or adolescence, and the study population may simply be
too young for the research questions athand. Second, the number of
individuals with €2/e2 or e4/e4 genotypes was relatively low, thus
we were likely underpowered to establish any small effects for those
genotypes. Third, we administered a limited number of cognitive
tests around the age of 6, limiting our investigation to non-verbal
IQ. AD is generally characterized by a loss of memory function, for
which we did not have an adequate test in children.

Our study also had clear strengths. The size of our study
population ensured sufficient power to detect relatively small

effects related to the common APOE genotypes and the AD, PD,
and FTD PGRS. Furthermore, we provide an unambiguous case
for proper control of population stratification, which was only
possible due to the large proportion of participants of non-
European ancestry. Finally, the Generation R study is a
representative sample from the general population, which
vastly improves the generalizability to a community-dwelling
population of European descent.

In conclusion, we found no evidence to support the role of
genetic burden for late-life neurodegenerative disease in early-life
cognitive performance, internalizing behavior, and brain metrics.
APOE genotype was related to blood lipid profiles. Genetic
burden for AD, PD, and FID did not relate to cognition or
brain structure. These findings suggest that the etiology of late-
life neurodegenerative disease becomes only relevant later in life.
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Mild cognitive impairment (MCI) is often considered a critical time window for predicting
early conversion to Alzheimer's disease (AD). Brain functional connectome data
(i.e., functional connections, global and nodal graph metrics) based on resting-state
functional magnetic resonance imaging (rs-fMRI) provides numerous information about
brain networks and has been used to discriminate normal controls (NCs) from subjects
with MCI. In this paper, Student’s t-tests and group-least absolute shrinkage and
selection operator (group-LASSO) were used to extract functional connections with
significant differences and the most discriminative network nodes, respectively. Based
on group-LASSO, the middle temporal, inferior temporal, lingual, posterior cingulate,
and middle frontal gyri were the most predominant brain regions for nodal observation in
MCI patients. Nodal graph metrics (within-module degree, participation coefficient, and
degree centrality) showed the maximum discriminative ability. To effectively combine
the multipattern information, we employed the multiple kernel learning support vector
machine (MKL-SVM). Combined with functional connectome information, the MKL-
SVM achieved a good classification performance (area under the receiving operating
characteristic curve = 0.9728). Additionally, the altered brain connectome pattern
revealed that functional connectivity was generally decreased in the whole-brain
network, whereas graph theory topological attributes of some special nodes in the brain
network were increased in MCI patients. Our findings demonstrate that optimal feature
selection and combination of all connectome features (i.e., functional connections,
global and nodal graph metrics) can achieve good performance in discriminating NCs
from MCI subjects. Thus, the combination of functional connections and global and
nodal graph metrics of brain networks can predict the occurrence of MCl and contribute
to the early clinical diagnosis of AD.

Keywords: resting-state functional magnetic resonance imaging, functional connectivity, graph theory, multiple
kernel learning, mild cognitive impairment
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder characterized by loss of memory and cognitive decline
(Blennow et al., 2006). With the aging of the global population,
there will be an estimated 115 million AD patients in the world
by 2050, with an average of 1 new AD patient every 33 s (Ijaopo,
2017). Mild cognitive impairment (MCI) is an intermediate stage
that precedes early AD. Evidence indicates that about 15% of
MCI patients progress to AD per year (Petersen et al., 1999;
Grundman et al, 2004). Therefore, MCI is regarded as the
critical time window for early prediction of conversion to AD
(Manly et al., 2008).

Components of the brain functional connectome, including
functional connections and graph theory topological metrics,
have become important imaging markers for exploring brain
networks and predicting the classification of neurodegenerative
diseases (Biswal et al., 2010; Wang et al., 2013; Filippi et al,
2018). The functional connectome systematically depicts global
graph metrics (i.e., small world, modularity, global efficiency),
nodal graph metrics (i.e., degree, participant coefficient, shortest
path length), and functional connections of the network. It
provides a novel approach for revealing altered brain network
patterns (delEtoile and Adeli, 2017; Khazaee et al., 2017; Filippi
et al,, 2018). Given the large numbers of network features in the
brain connectome, the Student’s ¢-test (Qiao et al., 2016; Li W.
et al,, 2019) and sparse methods such as least absolute shrinkage
and selection operator (LASSO) have been applied to select the
critical features of brain networks (Wee et al., 2014; Li Y. et al,,
2019). Nodal graph metrics naturally have a group topology
(i.e., a node corresponds to a group of node-graph theoretical
attributes). Group-LASSO is a regression-analysis method for
group-feature selection and regularization that can be adopted
to select nodal graph metrics (Liu et al, 2019) and maintain
significant discrimination of nodal features.

In recent years, machine learning approaches with data-
driven algorithms have been used to combine and classify
brain features. Some classifiers such as support vector machines
(SVMs) (Prasad et al.,, 2015; Khazaee et al., 2016), Naive Bayes
(Zhuo et al.,, 2018) and deep neural networks (Themistocleous
et al., 2018) are applied to discriminate normal controls from
subjects with MCI. However, most of these methods focus
on a single modality of imaging, the functional connectome,
or graph theory attributes separately, resulting in relatively
poor classification performance (Suk et al., 2014). Therefore,
the multimodal brain network (i.e., functional connections and
graph theory topological metrics) should be used to provide
a comprehensive and insightful understanding of the brain
network in patients with MCI. Combined with information from
different attributes, multiple kernel learning SVM (MKL-SVM)
(Niu et al,, 2017) can partially alleviate the high-dimensional
curve of multiple features and measure the contributions of
different features to the classification. These proposed methods
could help select critical features and discriminate normal
controls from subjects with diseases.

The main purposes of the present study were to select
discriminative features of the brain connectome (i.e., functional

connections, global graph metrics, and nodal graph metrics) and
develop a classification of MCI based on different attributes of
the brain network. Altered patterns of discriminative features
were further analyzed using the proposed methods. By combining
the group-LASSO model and MKL-SVM, we (i) identified the
most discriminative nodal features of the brain connectome
and predominant brain regions in MCI patients, (ii) achieved
accurate and automatic classification of MCI patients and normal
controls (NCs), and (iii) analyzed the changed patterns in
the brain network.

MATERIALS AND METHODS

Participants

Participants with MCI and NCs were recruited to establish
a registry at Huashan Hospital. Each participant underwent
a comprehensive evaluation, including clinical interview,
neuropsychological assessment, laboratory tests, and multimodal
magnetic resonance imaging (MRI) examinations of the brain.
MCI was defined according to the following criteria (Petersen,
2004): (i) cognitive concern/complaint by the subject, nurse,
or physician, with a Clinical Dementia Rating (CDR) = 0.5;
(ii) objective impairment in >1 cognitive domain based on 1.5
standard deviations (SDs) below the mean using the norms
obtained in the pilot study; (iii) basic normal functional activities
(determined by CDR and daily living activity assessment);
(iv) absence of dementia according to the Diagnostic and
Statistical Manual of Mental Disorders, 4th edition (Rabe-
Jablonska and Bienkiewicz, 1994). The inclusion criteria of NCs
were: (i) no neurology-related or cerebral vascular diseases
(e.g., Parkinson’s disease, intracranial aneurysms, or cerebral
tumors); (ii) no severe mental retardation or schizophrenia;
(iii) no severe problems in speaking, vision, or hearing;
(iv) able to actively participate in the neuropsychological
assessment. In the present study, 105 participants (41 MCI
patients and 64 NCs) were selected. Two patients with MCI
and four NCs were excluded due to incomplete data in resting
state-functional MRI (rs-fMRI) and severe head motion
at some time points. Finally, data from 99 individuals (39
MCI patients and 60 NCs) were included in the subsequent
statistical analyses. The clinical and demographic data of
these 99 participants were summarized. The study protocol
was approved by the Ethics Committee of Huashan Hospital
of Fudan University (Shanghai, China). Written informed
consent was obtained from each participant (or his/her legal
representative). In addition, we adopted the Alzheimer’s
Disease Neuroimaging Initiative (ADNI)' dataset as an
independent test dataset to verify the performance of the
pre-trained model.

Data Acquisition

Rs-fMRI and structural MR images were acquired on a 3T MR
scanner (Magnetom® Verio; Siemens, Munich, Germany) using
a 32-channel head coil. Before imaging, all participants were

'http://adni.loni.usc.edu/
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instructed to keep their eyes closed (but not to fall asleep),
think of nothing, and move as little as possible during data
acquisition. Three-dimensional (3D) T1-weighted sagittal images
were acquired using magnetization-prepared rapid gradient echo
with the following parameters: repetition time (TR) = 2530 ms,
echo time (TE) = 2.34 ms, flip angle = 7°, inversion time
(TT) = 1100 ms, matrix = 256 x 256, slice number = 192,
thickness = 1.0 mm, and voxel size = 1 x 1 x 1 mm?>. The scan
lasted 6 min 03 s. The parameters of the rs-fMRI protocol were
as follows: axial acquisition, TR = 2000 ms, TE = 30 ms, flip
angle = 90°, slice thickness = 3.8 mm, slice number = 31, field
of view = 220 x 220 mm?, matrix size = 64 x 64, and voxel
size = 3.4 x 3.4 x 3.8 mm?. Each scan collected 240 volumes with
a scan time of 8 min 06 s. The ADNI dataset was acquired on the
3T Philips with the following scan parameters: TR = 3000 ms,
TE = 30 mm, flip angle = 80°, slice thickness = 3.3 mm, slice
number = 48, matrix size = 64 x 64, and measurements = 140.

Image Preprocessing

Preprocessing procedures were carried out using Data Processing
Assistant for Resting-State fMRI (DPARSF)* and Statistical
Parametric Mapping (SPM12)’. The first 10 time points
were not used to ensure stabilization of the initial signal
and adaptation of participants to the environment. Timing
correction to the last slice was conducted. Realignment for
compensation of head-movement effects was achieved using
a six-parameter rigid-body spatial transformation. All spatial
movement was <3 mm of displacement and <3° of rotation
in any direction, and no participant was excluded. Next, rs-
fMRI images were co-registered to the high-resolution 3D-
T1 structural images. Normalization of 3D-T1 structural MRI
images to Montreal Neurological Institute (MNI) space was
undertaken by non-linear warping based on Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL). Then, rs-fMRI images were spatially normalized
to the MNI space using the parameters derived from the
normalization of structural images and simultaneously resampled
into 3-mm isotropic voxels. All normalized fMRI images
were smoothed with a 6-mm, full-width at half-maximum
Gaussian kernel. Linear detrending and band-pass filtering
at 0.01-0.1 Hz were carried out to control low-frequency
drift and high-frequency physiological noise. Finally, nuisance
covariates were regressed out, including the Friston 24-
motion parameter model (six head-motion parameters, six
head-motion parameters one time point before, and the 12
corresponding squared items), global mean, white matter, and
cerebrospinal fluid signals.

Brain Network Construction

The average time series within each region based on the
264 putative functional area atlas were separately extracted to
construct the connectivity brain network (Power et al.,, 2011).
The Pearson’s correlation coefficients of all pairs of 264 regions
of interest (ROIs) were applied separately to define the edges

Zhttp://restfmri.net/forum/index.php
3http://www.fil.ion.ucl.ac.uk/spm

of functional connections. Thus, the functional connectivity
matrix (adjacency matrix) was constructed (Li et al, 2017).
The final functional connection networks produced N*(N-1)/2
edges, where N corresponded to the number of nodes in the
networks. Considering the ambiguous interpretation of negative
correlations, we restricted the analysis to positive correlations and
set the negative correlation coefficients as zero. A thresholding
method based on network sparsity was adopted to remove the less
significant connections and to retain the topological properties
of graph theory by setting an appropriate threshold for network
sparsity (Dai et al., 2019). Sparsity thresholds (ranging from 0.02
to 0.5, with steps of 0.01) were set to acquire a binary undirected
network (Chang et al., 2016). To avoid ambiguity, we used the
area under the curve (AUG; i.e., the sum value of 49 values of the
corresponding node attributes) as input for the node attribute to
train the classifier.

Computation of Graph Metrics

Based on binary undirected matrices, we systematically analyzed
the global and local properties of the functional brain
network with the Graph Theoretical Network Analysis Toolbox
(GRETNA)* based on Statistical Parametric Mapping (SPM8;
see text footnote 3) with MATLAB R2013b. Global metrics
[i.e., clustering coefficient (Cp), characteristic path length (L;),
normalized clustering coefficient (y), normalized characteristic
path length ()), small-world o, global efficiency (Egiobal)l,
and nodal properties (i.e., degree centrality, nodal efficiency,
betweenness centrality, shortest path length) were applied to
characterize the different patterns of connections in the brain
network (Table 1; Wang et al., 2015). The modularity (Q) of a
brain network quantified the efficiency of segmenting a network
into modules (Newman, 2006). A modified greedy optimization
algorithm was used as follows:

N
Q=D [L/L— (di/2L)*]

i=1

where N, represents the number of modules, L is the total
number of edges in the brain network, and [; is the number
of within-module edges in module i; d; represents the sum
of the linked edges at each node within module i. Modified
greedy optimization was applied to detect the modular structure
(Newman, 2004).

“www.nitrc.org/projects/gretna/

TABLE 1 | Global and local graph metrics of the brain connectome.

Global graph metrics Local graph metrics

Clustering coefficient Cp, Betweenness centrality

Characteristic path length Ly Degree centrality
Normalized clustering coefficient y Nodal clustering coefficient
Normalized characteristic path length » Local efficiency

Shortest path length

Participant coefficient

Small-world o
Network efficiency

Modularity Within-module degree
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At the module level, the intra-module connectivity density
(Ds) and intermodule connectivity density (D ;) were calculated
as follows:

22 s

ijes

T N.(Ns— 1)

S

where Ny is the number of nodes within module s, and ¢; j are the
edges within module s.

2. Eij
i€s,jet
Dt = ——+
N, sk Nt
where N; is the number of nodes within module s, N; represent
the number of nodes within module ¢, and ¢;; is the number of
edges between module s and module ¢.
Moreover, at the nodal level, within-module degree (WD) and
the participation coefficient (PC) were measured as follows:

e;— e
WD; = i s

Os

where e; is the nodal degree of node i within module s, e is
the average nodal degree of all nodes in module s, and o; is the
standard deviation of the nodal degree within the module of all

nodes in module s.
1,8
ri=1-3 (%)

s=1

where N,, is the number of modules and k;; is the number
of connections between node i and module s. k; represents the
number of connections of node i to all other nodes within the
N,, modules.

Nodes with a degree of 2 standard deviations higher than
the mean of the degree of all nodes were identified as hub
nodes (Rubinov and Sporns, 2010). Small-world attributes were
applied to characterize an optimized balance between functional
segregation and integration of the network.

Statistical Analyses

For demographics and clinical characteristics, two-sample
Student’s ¢-tests were carried out except for sex, which was tested
by the chi-square test. P < 0.05 indicated a significant difference
in the demographic data. First, functional connections and global
and local metrics were regressed to remove potential effects of
the covariates age, sex, and education duration. Then, differences
pertaining to graph theory metrics between MCI patients and
NCs were compared based on two-sample Student’s ¢-tests.
A procedure to ascertain the false discovery rate was performed to
further correct for multiple comparisons. To localize the specific
pairs of regions in which functional connections were altered in
MCI patients, we used a network-based statistic (NBS) approach
(Zalesky et al., 2010). A corrected P-value was calculated for each
component using the null distribution of the maximal connected
component size, which was empirically derived using a non-
parametric permutation approach (10,000 permutations) (Zuo
etal, 2012). P < 0.01 indicated a significant difference.

Feature Selection for Nodal Graph

Metrics

As mentioned above, the brain was divided into 264 nodes
based on the 264 putative functional area atlas (Power et al,
2011), and each node corresponded to seven local graph metrics
(i.e., betweenness centrality, degree centrality, nodal clustering
coeflicient, local efficiency, shortest path length, participant
coefficient, within-module degree). Thus, the nodal graph metrics
naturally have a group topology, that is, a node corresponds to
a group of node-graph theoretical attributes. Given the natural
group attributes, we used group-LASSO as the feature-selection
scheme for nodal graph metrics.

nSub nROI 7
miny Z log|1+exp | —yix Z Z Wi,k X(,k) T €
i=1 j=1 k=1
nROI

0D Iwiklg,
j=1

where y; is the label of the i-th participant, and wj ) and x; k)
are the weight and value of the j-th ROI and k-th Nodal Graphic
Metric, respectively. Note that x(j ) is normalized by Fisher
Z-transformation to avoid scale imbalance. We used the SLEP
toolbox® to calculate wy; ) with a default setting of A = 1.

Classification

Combination of information provides an effective way to
integrate multiple views of biomarkers (i.e., connections and
graph metrics). The simplest way is to overlay the data directly,
but this approach can be inappropriate due to the high-
dimensional curve and small number of samples. Moreover, a
modality with more dimensions can submerge a modality with
fewer dimensions. To overcome this challenge, we used MKL-
SVM for information combination because the kernel trick can
partially alleviate the high-dimensional curve. MKL-SVM was
conducted as shown below.

Suppose that there are n training samples with connection
values and graph metrics. For x}", m = 1,2,3, which correspond to
the connection value, the nodal graph metrics and global graph
metrics respectively. y represent the correcponding class label of
the i-th sample. MKL-SVM solves the following primal problem:

2 2
1 m) 2
min - Zlﬁmnw [ +czé
m= 1=

2

st )’i(z Bun (™) 6" (") + b) >1-¢
m=1

=0, i=12

where ¢ represents a mapping from the original space to

the Represent Hilbert Kernel Space (RHKS), w™ represents the

normal vector of the hyperplane in RHKS, and B,, denotes the

>www.yelab.net/software/SLEP
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corresponding combining weight on the m-th modality. Then,
the dual form of MKL-SVM can be represented as:

n 2
1
max E aj — > E 00 YiYj E Brmk™ (<", yi")
i=1 ij m=1

n

s.t. Zoc,-yi =0
i=1

0<o <C,i=1,2

1

on the m-th modality. After we trained the model, we tested the
new samples x = {x1, X2, ..., xpr}. The kernel between the new
test sample and the i-th training sample on the m-th modality
is defined as K" (x", x™) = (])’”(xf")Tcl)’”(x'”). In the end, the
predictive level based on MKL-SVM can be formulated as follows:

where K™ (x]", yi") = <])m(x§”)T¢m(me) and is the kernel matrix

n M
f@x1, %2, ..., xy) = sign (Z yidi D Bmk™ (", ™) + b)

i=1 m=1

The proposed formulation of MKL-SVM is similar to but
different from existing multi-kernel learning methods because
Bm is selected based on the cross-validation scheme on the grid-
searching space with constraints > ,, = 1. The range of c was
2"—5 to 2"5. All data-processing and classification procedures
used in our study are shown in Figure 1. Due to the small sample
size, we used the leave-one-out cross-validation (LOOCYV)
strategy to verify the performance of the methods, in which only

one subject is left out for testing while the others are used to train
the models and obtain the optimal parameters. For the choice
of optimal parameters, an inner LOOCV was conducted on the
training data using a grid-search strategy. Moreover, in order to
verify the performance of the proposed model, we also tested the
model on the independent ADNI dataset.

RESULTS

Demographics and Clinical

Characteristics

The demographic data and clinical characteristics of all
participants are summarized in Table 2. There were no significant
differences in sex, age, or education level between the MCI and
NC groups (P > 0.05 for all). However, the MCI group had
significantly lower scores on the Mini Mental State Examination
(P < 0.001) than the NC group. We also selected 50 samples
(27 MCI and 23 NCs) from the independent ADNI dataset. The
details of their demographic and clinical characteristics are listed
in Table 3.

Significant Differences of Functional

Connections in Brain-Network

The mean connection strengths of the whole brain network were
compared between MCI and NC. A total of 3072 connections
with significant differences were extracted between the MCI and
NC groups within the range of fully sparse values from 0.02 to
0.5 (P < 0.01) using Student’s t-tests. After permutation of NBS,

Global Graph
Metrics
B
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. Network
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Nodal Graph
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!

FIGURE 1 | Data-processing and classification procedures employed in our studly.
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TABLE 2 | Demographics and clinical characteristics of MCI patients and NCs in dorsal attention network, and visual network. Compared with
the current study. NCs, patients with MCI had significantly lower functional
connection strength in brain-network connections (P < 0.01).

Characteristic MCI (n = 39) NCs (n = 60) P
Male/fernale, 25/14 30/30 o.1682  Global Graph Metrics of the Functional
Age, years, mean +SD 7400+7.67 71.25+7.08 0.071P Brain Connectome
+ b
Education, years, mean £5D 1097429 12422858 00747 e global graph metrics of the MCI and NC groups showed the
MMSE, mean +D 2677 £2.33 2828+ 135 <0.001°

small-world topological attributes. That is, the functional brain
networks had larger clustering coefficients and almost identical
MMSE, Mini mental state examination. #The P-value was obtained by using the ~ shortest path lengths compared with the matched random

Hippocampal volume (x 10% mm?) 6.80 4+ 0.87 7.43 4+ 0.69 0.002°

; b i i o . . . .
chi-square test. °The P-value was obtained by using a two-sample t-test. networks. With in creasing connection denSIty, Cp increased,
whereas Lp, ¥, A, and small-world o decreased in the MCI and NC
TABLE 3 | Demographics and clinical characteristics of the ADNI dataset. groups. Statistical analysis revealed that the Cp of MCI patients
was higher than that in the NC group, whereas \ and small-world
Characteristic MCI (n = 27) NCs (n = 23) P o were lower in the MCI group compared with the NC group
Male/female. n 13/14 11/12 0ggpa (P < 0.01). However, these differences were only observed at a
Age, years, mean +SD 7011 +£8.17 75.02 + 6.82 00210 few network thresholds (Figure 3).
MMSE, mean +SD 25.33 + 1.07 2717 £ 1.30 <0.001P

Nodal Graph Metrics of the Functional

Brain Connectome

Two strategies were developed to investigate the discriminative
features of nodal graph metrics and nodes based on local network
we retained the most significant 100 connections with the lowest ~ parameters. On the one hand, we analyzed the most predominant
P-values (Figure 2). We projected them into the corresponding  brain regions with the greatest number of significant differences
subnetworks and found that the most discriminative network in nodal graph metrics. Before group-LASSO, 212 significantly
connections were mainly distributed in the default mode network  different nodes were observed between MCI and NC groups
(DMN), subcortical network, frontoparietal task control network, (P < 0.01). However, after feature selection by group-LASSO,

MMSE, Mini mental state examination. 8The P-value was obtained by using the
chi-square test. ®The P-value was obtained by using a two-sample t-test.

MCI

NC

FIGURE 2 | The most significant 100 connections mapped on the ICBM 152 template using the BrainNet Viewer software package (http://nitrc.org/projects/bnv/).
The connectivity matrices of the fully connected network of MCI patients and NCs are shown. The 100 most significant connections were retained, with gray
indicating a reduction in connectivity strength. Plots in this figure were created by BrainNet Viewer (http://nitrc.org/projects/bnv/). The color-bar numbers represent
the subnetworks with reference to the 264 putative functional area atlas proposed by Power et al. (2011). The details are: 1 sensory/somatomotor hand network; 2
sensory/somatomotor mouth network; 3 cingulo-opercular task control network; 4 auditory network; 5 default mode network; 6 memory retrieval network; 7 visual
network; 8 frontoparietal task control network; 9 salience network; 10 subcortical network; 11 ventral attention network; 12 dorsal attention network; 13 cerebellar
network; 14 unknown network.
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we selected the nodal graph metrics from 76 ROIs as inputs. right precuneus, left median cingulate gyrus, left cuneus, and
These 76 ROIs were considered as the extremely predominant paracingulate gyri. More importantly, some hub nodes were
nodes for discriminating MCI patients from NCs, and each present only in MCI patients and absent in NCs: the left
ROI had >4 and <7 nodal topological metrics with significant  paracentral lobule, right paracentral lobule, left postcentral gyrus,
differences. The locations of nodes in the 264 atlas were labeled and right cuneus. Simultaneously, there were also some hub
according to the AAL_90 atlas (Figure 4 and Table 4). On the nodes in NCs but not in MCI patients. These regions were located
other hand, we identified the distinguishing features for each  on the left Heschl, right superior temporal, left inferior occipital,
nodal graph theory attribute using the feature selection of group- and left middle occipital gyri. Hub nodes play critical roles
LASSO (Table 5). The top-20 nodal graph topological features in maintaining high-level cognitive functions by coordinating
with maximum discriminative ability are listed in Table 6. overall information flow and supporting the integrity of the
Therefore, the most predominant brain regions with the greatest ~ brain connectome (Wang et al., 2013). The similar distributions
numbers of significant nodal graph measures and the most suggested preservation of hubs in MCL
discriminative nodal graph features were distributed mainly in Further comparisons of the predominant brain regions
the temporal, cingulate, superior frontal, lingual, and parietal —mentioned above revealed that MCI patients had significantly
gyri, which corresponded to the DMN, dorsal attention network, lower values of betweenness centrality and degree centrality
and cingulo-opercular task network. and significantly higher values for the nodal shortest path in
According to the definition of “hubs,” we identified hub the frontal lobe (e.g., bilateral superior frontal gyrus), temporal
nodes in MCI patients and NCs. Figure 5 shows the hub nodes lobe (e.g., bilateral inferior temporal gyrus), limbic lobe (e.g.,
in each group. In MCI patients and NCs, the common hub left median cingulate and paracingulate gyri), and parietal lobe
regions were mainly located in the left middle temporal gyrus, (e.g., left inferior parietal gyrus) compared with the NC group

——MCI —NC —MCI —NC —MCI —NC
C o

0.8 P 3 %

0.7 6

0.6
4

0.5

0.4 2
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01 02 03 04 o 01 02 03 04 05 01 02 03 04 05

FIGURE 3 | Comparison of clustering coefficient (Cp), normalized clustering coefficient (y), and small-world o between MCI and NC groups.

Before group-LASSO After group-LASSO

FIGURE 4 | The most predominant nodes for discriminating MCI patients from NCs. Before group-LASSO, 212 significantly different nodes were present between
MCI and NC groups (P < 0.01). After feature selection by group-LASSO, the 76 most highly discriminative nodes were reserved. The color-bar numbers represent
the subnetworks with reference to the 264 putative functional area atlas proposed by Power et al. (2011). The details are: 1 sensory/somatomotor hand network; 2
sensory/somatomotor mouth network; 3 cingulo-opercular task control network; 4 auditory network; 5 default mode network; 6 memory retrieval network; 7 visual
network; 8 frontoparietal task control network; 9 salience network; 10 subcortical network; 11 ventral attention network; 12 dorsal attention network; 13 cerebellar
network; 14 unknown network.
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TABLE 4 | Top 20 most predominant nodes (brain regions) with the greatest
number of significant differences in nodal graph metrics.

TABLE 5 | Number of discriminative features for each nodal graph metrics from

the feature-selection step of LASSO.

Nodal graph metric

Number of selected features

Betweenness centrality 33
Degree centrality 46
Nodal clustering coefficient 48
Nodal local efficiency 19
Nodal shortest path length 44
Participant coefficient 70
Within-module degree 81

TABLE 6 | Top 20 features corresponding to nodal graph metrics with maximum

discriminative ability.

ROI Corresponding AAL Sub-network Number of
number area nodal metrics
77 Lingual_L Default mode 7
126 Fusiform_L Default mode 7
4 Temporal_Inf_L Unknown 7
116 Temporal_Mid_R Default mode 7
22 Precuneus_R Sensory/somatomotor 6
17 Paracentral_Lobule_L Sensory/somatomotor 6
251 Precuneus_R Dorsal attention 6
259 Parietal_Inf_L Dorsal attention 6
75 Frontal_Mid_Orb_R Default mode 6
92 Cingulum_Post_R Default mode 6
224 Thalamus_L Subcortical 6
225 Thalamus_R Subcortical 6
53 Supp_Motor_Area_R Cingulo-opercular task 6
211 Insula_R Salience 6
203 Cingulum_Mid_R Salience 6
124 ParaHippocampal_L Default mode 6
139 Frontal_Inf_Orb_R Default mode 5
51 Cingulum_Mid_L Cingulo-opercular task 5
172 Fusiform_L Visual 5
263 Parietal_Sup_L Dorsal attention 5

AAL, the automated anatomical labeling atlas.

(P < 0.01 for all). Nevertheless, in the occipital lobe (e.g.,
left lingual and left fusiform gyri), the MCI group showed
significantly higher values of betweenness centrality and degree
centrality and significantly lower values of nodal shortest path,
which was opposite to the pattern of nodal graph metrics in the
brain lobes mentioned above (Figure 6).

Classification

After feature selection of functional connections with Student’s
t-tests and nodal graph metrics by group-LASSO, MKL-SVM
was carried out to combine the brain connectome information.
We evaluated the classification performance of different methods
with a set of quantitative measures — accuracy, sensitivity, and
specificity - which were defined as follows:

TP+ TN
Accuracy = ,
TP + FP+ TN + FN
Sensitivit L
ensitivity = ————,
T TP YN
TN
Specificity = ———,
pecificity = o Fp

where TP, TN, FP, and FN denote the number of true-
positive, true-negative, false-positive, and false-negative values,
respectively. The area under the receiver operating characteristic
curve (AUC) was calculated as a performance measure for
binary classification of the MCI and NC groups. In particular,
LOOCV was employed in this study due to the small sample
size, which provided an optimistic estimate of the classification
accuracy since all except one of the subjects are used to

Nodal graph measure ROl  Corresponding AAL  Subnetwork
number area
Within-module degree 124 ParaHippocampal_L Default mode
Within-module degree 89 Precuneus_R Default mode
Within-module degree 191 Parietal_Sup_L Frontoparietal
task

Degree centrality 77 Lingual_L Default mode
Participant coefficient 9 Temporal_Inf_R Uncertain
Within-module degree 92 Cingulum_Post_R Default mode
Degree centrality 225  Thalamus_R Subcortical
Participant coefficient 118 Temporal_Mid_L Default mode
Participant coefficient 75 Frontal_Mid_Orb_R Default mode

Nodal clustering coefficient 75 Default mode

Nodal shortest path length 75

Frontal_Mid_Orb_R

Frontal_Mid_Orb_R Default mode

Participant coefficient 17 Paracentral_Lobule_L  Sensory/
somatomotor
Degree centrality 224 Thalamus_L Subcortical
Nodal shortest path length 9 Temporal_Inf_R Uncertain
Participant coefficient 83 Temporal_Inf_L Default mode
Degree centrality 126 Fusiform_L Default mode
Betweenness centrality 7 Lingual_L Default mode
Nodal clustering coefficient 77 Lingual_L Default mode
Betweenness centrality 51 Cingulum_Mid_L Cingulo-opercular
task
Nodal local efficiency 92 Cingulum_Post_R Default mode

AAL, the automated anatomical labeling atlas.

train the classifier. For other approaches such as k-fold cross-
validation, only N-k (N is the total number of participants
in the dataset) participants are included during the training
process, resulting in poorer performance due to the small dataset
(Wee et al,, 2012). For the functional connections (C), global
metrics (G), and nodal metrics (N) of the brain network,
we obtained AUCs of 0.9605, 0.7290, and 0.9576, respectively
(Table 7). We also performed classification experiments by
combining functional connections (C), global metrics (G), nodal
metrics (N), global metrics (G), and nodal metrics (N). The
results showed that despite the low classification performance
of single global graph metrics, they still effectively increased the
classification performance of nodal graph metrics and functional
connections. For a direct combination of connections, global
metrics, and nodal metrics, we obtained 87.88% accuracy and
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MCI

FIGURE 5 | Hub nodes of MCI and NC groups in the brain. The color-bar numbers represent the subnetworks with reference to the 264 putative functional area
atlas proposed by Power et al. (2011). The details are: 1 sensory/somatomotor hand network; 2 sensory/somatomotor mouth network; 3 cingulo-opercular task
control network; 4 auditory network; 5 default mode network; 6 memory retrieval network; 7 visual network; 8 frontoparietal task control network; 9 salience
network; 10 subcortical network; 11 ventral attention network; 12 dorsal attention network; 13 cerebellar network; 14 unknown network.
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FIGURE 6 | Comparison of values of nodal graph metrics between MCI patients and NCs. Betweenness centrality, degree centrality, and nodal shortest path length
of Node 9 (right inferior temporal gyrus). Betweenness centrality, degree centrality and nodal shortest path length of Node 259 (left inferior parietal). Betweenness
centrality, degree centrality, and nodal shortest path length of Node 77 (left lingual gyrus).
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TABLE 7 | The evaluation of classification performance corresponding to different
functional connectome features.

Method Accuracy (%) Sensitivity (%) Specificity (%) AUC

Connection (C) 85.86 82.05 88.33 0.9605
Global Metrics (G) 73.74 69.23 76.67 0.7290
Nodal Metrics (N) 87.88 82.05 91.67 0.9576
MKL_CG 86.87 82.05 90.00 0.9329
MKL_CN 90.91 84.62 95.00 0.9581
MKL_GN 89.90 84.62 93.33 0.9371
C+G+N 87.88 92.31 85.00 0.9666
MKL_CGN 92.93 89.74 95.00 0.9728
Hippocampal (H) 72.73 71.67 74.36 0.7005
MKL_CH 86.86 84.62 88.33 0.9509
MKL_GH 76.77 73.33 82.05 0.8117
MKL_NH 89.90 87.18 91.67 0.9647

MKL-SVM, multiple kernel learning support vector machine.

an AUC of 0.9666, which meant that simple combination
did not effectively improve the classification performance.
Finally, the combination of all connectome features based on
MKL-SVM achieved the best classification performance, with
92.93% accuracy, 95.00% specificity, and an AUC of 0.9728.
Moreover, the weight values (B) of functional connections, global
metrics, and nodal metrics were 0.3, 0.01, and 0.6, respectively,
indicating that the node attributes contributed most to the
classification (Figure 7). It should be noted that MKL-SVM
both combines the information of functional connectivity and
graph theory attributes and provides a method to merge more
useful information for MCI identification. Therefore, we also
combined the traditional unimodal marker of hippocampal
volume with the brain connectome; the results are listed in
Table 7. Our results suggest that the AUC of the hippocampal
volume was 0.7005, and the AUCs of the combination
of hippocampal volume with functional connectivity, global
graph theory attributes, or node graph theory attributes were
0.9509, 0.8117, and 0.9647, respectively. In addition, the
independent ADNI dataset was then employed to verify the
generalization of the pre-trained model. The all connectome
features combination based on MKL-SVM achieved classification
performance with 66.00% accuracy, 70.37% sensitivity, and
60.87% specificity.

DISCUSSION

In the present study, we selected discriminative features from
different attributes of the brain connectome (i.e., functional
connections, global graph metrics, and nodal graph metrics) and
combined the information to train a classifier for distinguishing
subjects with MCI from NCs. Based on the feature selection
and combination of the proposed methods, we further described
the altered patterns of the best distinguishing features of MCI
through group comparison, aiming to further clarify disease
pathogenesis. Our detailed results are listed as follows. First, the
most predominant brain regions and most discriminative nodal
graph metrics for discriminating NCs from MCI were selected

0.9
[17
0.8 FH
0.7 [
0.6 Connection
o GlobalMetric
o 0.5F NodalMetric |
= MKL-CG
MKL-CN
0.4 MKL-GN 1
C+G+N
0.3 MKL-CGN 1
Hippocampal
0.2 MKL-CH i
MKL-GH
MKL-NH
0.1 J 9
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

FPR

FIGURE 7 | ROC of classification based on different features. C, connection;
G, global metrics; N, nodal metrics; H, hippocampal volume; MKL, multiple
kernel learning; FPR, false positive rate; TPR, true positive rate.

by the group-LASSO. Second, the information combination
strategy (MKL-SVM) effectively improved the classification
performance, and the nodal graph metrics of the connectome
contributed most to the classification. Finally, the altered
functional brain connectome pattern in MCI patients included
a general decrease in functional connections in the whole brain
network, whereas nodal topological attributes in some local brain
regions were increased.

The Most Predominant Brain Regions

and Discriminative Nodal Graph Metrics
The nodal graph metrics have a natural group topology; that
is, a node corresponds to a group of node-graph theoretical
attributes. Thus, we used group-LASSO as the feature-selection
scheme for nodal graph metrics. It effectively extracted the group-
structure information of nodal attributes. The most predominant
brain regions (with seven significantly different nodal topological
metrics) were mainly distributed in the left lingual, left fusiform,
left inferior temporal, and right middle temporal gyri. These
brain regions showed significant changes in nodal graph metrics
and so could be regarded as the most sensitive observation areas
for nodal topological attributes in MCI patients. Also, within-
module degree, degree centrality, and participation coeflicient
showed the most significant discriminative ability among the
selected nodal graph metrics. The corresponding brain regions
with the three most discriminative nodal metrics considerably
overlapped with the hub nodes found in MCI patients. Overall,
our results emphasize the importance of analyzing the attributes
of intra-modules and hub nodes for early discrimination of NCs
from subjects with MCI.
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By projecting brain regions with significant differences of
functional connections and graph metrics in the brain network to
subnetworks, we found that the differences between MCI patients
and NCs were distributed mainly in the DMN, dorsal attention
network, cingulo-opercular task network, and frontoparietal
task network. Of these, the DMN had the most significant
discriminative ability. Studies have verified the correlations
between these subnetworks and cognitive functions in the human
brain, corresponding to spatial attention (Rolle et al., 2017),
visual attention (Wirth et al., 2017), and executive function
(Talpos and Shoaib, 2015).

In this study, the DMN carried the most distinguishing
information, which was verified by the proposed feature selection
methods. Previous studies showed that the DMN is involved
in episodic memory and is considered the major cognitive
domain impaired in the early stage of AD (Meskaldji et al,
2016; Dillen et al., 2017). Besides validating the discriminative
ability of the DMN for discriminating NCs from MCI, we
accurately located the predominant brain regions (middle
temporal, inferior temporal, lingual, posterior cingulate, and
middle frontal gyri) in the DMN and the corresponding nodal
graph metrics. These results may facilitate the early and accurate
diagnosis of MCI. They also demonstrate the repeatability and
verifiability of the proposed methods, which is an important
contribution of our work.

Fusion Classification of MKL-SVM and

Identification of Maximum Contribution

Group-LASSO is valid for nodal feature selection because it can
retain significant features with the most discriminative ability
while avoiding data redundancy. We carried out reduction of
nodal features according to group-LASSO and selected optimal
features to achieve the best performance for discriminating
NCs from MCI. This is an effective way to integrate multiple
views of biomarkers for AD classification. The simplest way is
to directly splice the data. Studies using multivariate pattern
analysis [e.g., linear discriminate analysis (Alam et al., 2017),
artificial neural networks (Quintana et al., 2012), and random
forest (Sarica et al, 2017)] have been undertaken to identify
MCI using complex network characteristics. However, those
approaches could be inappropriate due to the high-dimensional
curves and small samples. Information with higher dimensions
can submerge the low-dimension information. To overcome
these challenges, we employed MKL-SVM for information
combination. MKL (Niu et al., 2017) is a sparse machine-
learning method that allows identification of the most relevant
classification sources. The results suggested that the performance
of classification by combining multiple brain connectome
features was better than that of individual connectome features.
The weight value (B) of functional connections, global metrics,
and nodal metrics emphasized that nodal graph attributes had
the greatest contribution to classification. It also indicated
that MCI patients had significant changes in nodal properties.
More surprisingly, although global metrics showed the worst
classification performance, they can still provide important
information about functional connections and nodal metrics.

After combining functional connections and global metrics
(C + G), functional connections and nodal metrics (C + N), and
global metrics and nodal metrics (G + N), the results indicated
that classification performance was effectively improved by
combining the information of global metrics.

To verify this significant improvement, the Delong test was
applied (DeLong et al, 1988). We found that the proposed
method significantly outperformed the global graph attributes,
functional connection, and nodal graph attributes under the
95% confidence interval with P-values of 0.0002, 0.0227,
and 0.0419, respectively. Although MKL-SVM did not yield
significant improvements compared to the feature concatenation
method (P = 0.1627), it still had two advantages. First, MKL-
SVM could address the imbalanced dimension issue across
modalities to some extent and better embody the contribution
of different information sources to distinguish MCI patients
from NCs. Second, experimental results demonstrated that the
proposed method outperformed the single modality of the
functional connectome in the brain network. It should also
be noted that both methods are simple attempts to verify
information effectiveness.

The classification results based on the traditional marker
of hippocampal volume suggested that the combination of
hippocampal volume and connectome features could also
improve classification accuracy. The MKL-SVM can be used
to combine multiple features of the brain connectome and
effectively integrate multimodal information to discriminate NCs
from patients with MCIL.

During validation of the proposed model, the classification
performance of the independent ADNI dataset was not as good
as the pre-trained sample. This may be due to heterogeneity
in scanning machines, parameters, and physiological structures
between western and eastern samples, which obviously violates
the independently identically distribution assumption of SVM.

Altered Pattern of the Brain Network

Connectome in MCI

At the global brain level, we found that MCI patients had
weaker functional connections in the brain network, which was
consistent with previous functional network studies of AD (Li
et al,, 2016) and MCI (Wang et al., 2013; Lee et al., 2016). Some
results demonstrated that these abnormal functional connections
were directly related to the global topological attributes of brain
networks (Wang et al, 2013). In our study, we first found
that patients with MCI and NCs fit the features of a small-
world network in a global network topology. That is, the brain
network supported rapid, real-time integration of information
across separate sensory brain regions to confer resilience against
pathology and maximize efficiency with minimal cost for effective
information processing between brain regions (Sporns and
Zwi, 2004; Achard and Bullmore, 2007; Sporns, 2011). Further
comparison suggested that the value of small-world ¢ in MCI
patients was lower than that in NCs, indicating “economic
small-world” disruption (Liao et al., 2017) (i.e., reduction of the
segregation and integration functions of effective information
in the brain network). Moreover, we found changes in the
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functional segregation of brain networks in MCI patients
(increased C,). Cp, is a measure of local network connectivity
(Bullmore and Sporns, 2009) that reflects the efficiency of local
information transfer and the ability to defend against random
attacks against a network. A higher value of C, represents
a more concentrated clustering of local connections and a
stronger capacity for processing local information. It is notable
that previous studies reported decreased C, in AD patients
(Zhao et al.,, 2012). The reason for this difference might be
related to the compensatory change of segregation function in
the transition stage of MCI. Therefore, our results suggested
that functional connections in the whole-brain network were
generally decreased, whereas the network segregation of local
information processing was increased.

At the local brain level, further analyses of the hub nodes
and nodes with the most discriminative ability for MCI showed
that MCI patients had significantly lower values of betweenness
centrality and degree centrality and higher values of nodal
shortest path in some brain regions (the frontal, temporal, limbic,
and parietal lobes) compared with NCs. These data suggested
that the network integration and local transmission capability of
these lobes were decreased in MCI patients. However, in critical
nodes in the occipital lobe, the increased betweenness/degree
centrality and decreased shortest path indicated enhanced
integration function and greater local transmission efficiency. We
speculated that enhanced variation of these nodal graph metrics
in some occipital nodes suggests compensation to maintain high-
level cognitive performance despite the pathological process of
amyloid accumulation during the earliest phases of AD. This
functional variation in the occipital lobe was also mentioned
in previous studies. For example, Dai et al. found that the left
fusiform gyrus exhibited higher functional connections in the AD
group (Dai et al., 2015). Bokde et al. (2010) found significantly
greater activation in the right middle occipital gyrus during the
location-matching task.

Therefore, the altered brain connectome patterns in our
study revealed that functional connections generally decreased
in the whole brain network but increased for nodal graph
topological attributes of local brain regions. This might suggest
functional compensation in some brain regions to maintain
normal cognitive function in the early stage of AD.

Limitations and Future Directions

There are still several limitations that need to be considered
further. First, the class imbalance issue. Although there are
several approaches (e.g., resampling or reweighting) to overcome
imbalance, taking them makes it difficult to estimate whether the
improvement of performance is based on these adjustments or on
the proposed methods. In the future, we plan to investigate high-
quality data with more balanced samples for feature selection and
classification or develop a more robust algorithm that improves
classification accuracy and generalization.

Second, we assessed a small sample size. The optimization of
parameters and hyperparameters inevitably leads to overfitting
for small samples. To avoid this issue, we empirically chose
parameters with a default setting of lambda = 1 and C =1
instead of optimized parameters and hyperparameters. In the

future, we will conduct parameter optimization based on a
larger sample size.

Third, we must consider the generalization of the model.
For the independent ADNI dataset, classification performance
was not as good as observed for the pre-trained sample,
which suggests a limitation in modal generalization for different
centers. We intend to improve the classification performance of
multicenter data sources by combining domain adaptation.

Finally, our cross-validation approach may have been
insufficient. Evaluation of classification by k-fold cross-validation
might be more precise when sufficient data are available.
Therefore, in the future, it is necessary to compare the results
obtained by different cross-validation methods (i.e., LOOCV and
k-fold cross-validation).

CONCLUSION

In the present study, the discriminative features of functional
connections and nodal graph metrics were selected by Student’s
t-tests and group-LASSO, respectively. The combination of
all connectome information using MKL-SVM achieved the
best classification performance (AUC = 0.9728). In addition,
the altered brain connectome pattern revealed that functional
connectivity was generally decreased in the whole-brain network,
whereas graph theory topological attributes of some special nodes
were increased in MCI patients. Our findings demonstrate that
optimal feature selection and the combination of all connectome
features could achieve good performance for discriminating NCs
from MCI. The combination of functional connections and
global and nodal graph metrics of brain networks can predict
the occurrence of MCI and contribute to the early clinical
diagnosis of AD.
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Patients with amnestic mild cognitive impairment (@MCI) demonstrate significant
cognitive deficits, especially in the memory aspect. The memory deficiency might be
attributed to the difficulties in the inhibitory function to suppress redundant stimuli.
Sensory gating (SG) refers to the attenuation of neural responses to the second identical
stimulus in a paired-click paradigm, in which auditory stimuli are delivered in pairs with
inter-stimulus intervals (ISI) of 500 ms and inter-pair intervals of 6-8 s. It is considered
as an electrophysiological signal to reflect the brain’s automatic response to gate out
repetitive sensory inputs. However, there has been no study systematically investigating
SG function in aMCI patients. Thus, the present study used magnetoencephalography
(MEG) to record neuromagnetic responses to a paired-click paradigm in 23 healthy
controls (HC) and 26 aMCI patients. The Stimulus 2/Stimulus 1 (S2/S1) amplitude
ratio was used to represent the SG function. Compared to HC, aMCI patients showed
M50 SG deficits in the left inferior frontal gyrus (IFG) and right inferior parietal lobule (IPL).
M100 SG defects were also observed in the right IPL. Based on the ROIls showing
significant between-group SG differences, we found that a more deficient M50 SG
function in the right IPL was associated with poorer performance in the immediate recall
of Logic Memory (LM), Chinese Version Verbal Learning Test (CVVLT) and Digit Span
Backward (DSB) Test. Furthermore, the M50 SG ratios of the right IPL together with the
neuropsychological performance of LM and CVVLT demonstrated very good accuracy
in the discrimination of aMCI from HC. In conclusion, compared to HC, aMCI patients
showed a significant SG deficit in the right IPL, which was correlated with the auditory
short-term memory function. We suggest the combination of SG in the right IPL, LM and
CVVLT to be sensitive indicators to differentiate aMCl patients from HC.

Keywords: sensory gating, mild cognitive impairment, aging, inhibitory control, magnetoencephalography (MEG)
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INTRODUCTION

Amnestic mild cognitive impairment (aMCI) is considered as
an intermediate phase between normal aging and Alzheimer’s
disease (AD; Feldman et al., 2004; Petersen et al., 2014). Despite
the intact function of activities of daily living, patients with aMCI
are characterized by declined performance on standardized
cognitive tests, particularly in the aspects of learning and
memory. Inhibitory function plays a vital role in the memory
performance since successful encoding and/or consolidation
requires not only enhancement of task-relevant representations,
but also suppression of task-irrelevant representations (Hasher
and Zacks, 1988; Gazzaley et al,, 2008; Chadick et al., 2014).
Using functional magnetic resonance imaging (MRI), it has been
shown that older adults demonstrated a relatively preserved
capacity in the cortical enhancement of task-relevant stimuli,
while a significant deficit in the top-down inhibition of cortical
activities related to task-irrelevant stimuli (Gazzaley et al,
2005). Such a top-down inhibitory deficit was also found to
be correlated with working memory performance (Gazzaley
et al., 2005, 2008). In addition to top-down inhibitory function,
bottom-up inhibition is a more fundamental ability in the early-
stage information processing and may have an impact on the
subsequent cognitive operations.

Sensory gating (SG) refers to the ability of the brain to
automatically (i.e., bottom-up) inhibit the responses to the
repetitive or redundant sensory inputs (Boutros and Belger,
1999; Cheng et al., 2015, 2016a, 2018). It has been proposed to
serve as a protective mechanism against sensory inundation in
the central nervous system (Patterson et al., 2008; Earls et al,,
2016). SG is typically assessed in a paired-click paradigm in
which two identical auditory stimuli are presented with an inter-
stimulus interval (ISI) of 500 ms and an inter-pair interval of
6-8 s. Quantitatively, the amplitude ratio of the second stimulus
(S2) over the first stimulus (S1; S2/S1) is calculated to reflect
the SG function. A lower ratio reflects better performance in
inhibiting irrelevant information (Cheng et al., 2016b, 2017b). In
the electrophysiological recordings of auditory evoked potentials
(AEPs), P50 (or its magnetic counterpart, M50) and N100 (or
its magnetic counterpart, M100) are the two major components
to assess SG. Since paired-click paradigm is a well-established
and solid method, a number of clinical investigations have
been conducted in patients with schizophrenia, and the results
suggested a significant SG deficit either in the prodromal (Hsieh
et al., 2012; van Tricht et al,, 2015), acute (Devrim-Ucok et al.,
2008; Oranje et al., 2013), or chronic (Brockhaus-Dumke et al.,
2008; Micoulaud-Franchi et al., 2015) stage.

There have been some studies examining the SG function
in neurodegenerative diseases, including dementia (Jessen et al.,
2001; Cancelli et al., 2006; Thomas et al., 2010; Cheng et al., 2012;
Josef Golubic et al., 2017). For example, Thomas and colleagues,
recruiting 19 patients with probable AD and 17 healthy older
adults, have revealed a significant P50 SG deficit in AD patients
than in control subjects (Thomas et al., 2010). This result was
similar to earlier reports in which mild AD (Cancelli et al,
2006) and moderate AD (Jessen et al., 2001) were studied.
Regarding the association of SG function and neuropsychological

assessments, a higher SG ratio (i.e., poorer inhibitory function)
was reported to correlate with a more deficient performance on
working memory, verbal fluency, and global cognitive function
when AD and healthy older subjects were pooled together
(Thomas et al., 2010; Josef Golubic et al., 2017). However, other
studies failed to detect such a relationship (Jessen et al., 2001;
Cancelli et al., 2006). Although previous studies have shown a
deficit of SG in AD patients, there is no study, to the best of
our knowledge, systematically investigating SG function by using
paired-stimulus paradigm in patients with aMCIL.

Considering the methodological issue, all of the
aforementioned studies have applied electroencephalography
(EEG) to compare SG ratios between AD and healthy controls
(HC). With the limitation of electrode number and different
conductivities of structures, it is less possible for EEG to probe
the SG function at the source level. Magnetoencephalography
(MEG), in contrast, has a better spatial resolution than EEG
(Hari et al., 2010; Baillet, 2017) and therefore possesses a greater
potential to disentangle the neural substrates underlying SG
deficits. In addition, compared to the focal source modeling,
the minimum norm estimate (MNE) is a distributed source
imaging method, which can display a number of activated
sources even when they overlap in time (Hémadldinen and
Ilmoniemi, 1994). Thus, MNE has been considered to be a
preferred strategy when analyzing multi-source evoked responses
(Lin et al., 2006).

To be more specific, the goals of the present study were
3-fold. First, we attempted to test whether M50 and M100 SG
ratios at the cortical level would be higher (i.e., worse function)
in the patients with aMCI than those in the healthy older
controls. Second, we sought to examine whether the regions
exhibiting SG deficits would be associated with deteriorated
neuropsychological performance, particularly those related to
auditory short-term memory function because the memory
impairment is the major clinical manifestation in aMCI patients.
Finally, in order to differentiate aMCI from normal aging at the
individual level, we further examined whether the SG ratio or
its combination with short-term memory tests could serve as
good indicators.

MATERIALS AND METHODS

Participants

A total of 23 community-dwelling elderly adults (nine
males, mean age = 69.04 £ 1.77 years) were recruited as
the HC group. A total of 26 aMCI patients (14 males, mean
ages = 69.96 £ 1.78 years) were enrolled from the outpatient
memory clinic of the Department of Neurology, Taipei
Veterans General Hospital. Each subject was interviewed
by the neurologist (P-NW) to obtain a clinical history
and neuropsychological performance. MRI and laboratory
examinations were used to rule out tumors, strokes, severe
white matter diseases. All participants had no history
of epilepsy, alcoholism, major psychiatric illness, poly-
pharmacy, or other systematic diseases that potentially
affect cognitive function. The aMCI patients fulfilled the
Peterson criteria (Petersen et al., 1999). They had objective
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memory impairment, MMSE >24, normal basic daily living
activities, and without dementia (Wang et al., 2014). All of the
subjects also reported no hearing impairment and normal or
corrected-to-normal vision. Most of them were right-handed
(handedness >80%) as evaluated by the Edinburg Inventory
(Oldfield, 1971).

The present study was approved by the Institutional Review
Board of Taipei Veterans General Hospital (Taipei, Taiwan),
and was performed in accordance with approved guidelines and
regulations. All the participants gave written informed consent
after detailed descriptions of experimental procedures.

Neuropsychological Testing

All the  studying  subjects thorough
neuropsychological assessments, including: (1) Mini-Mental
State Examination (MMSE), with the proposed cutoff score
between HC and dementia of 23/24 (Kochhann et al., 2010);
(2) Chinese Version Verbal Learning Test (CVVLT), in which
the proposed cutoff point of total score between HC and
dementia was 20/21 (Chang et al, 2010); (3) Logic Memory
(LM) Test of Wechsler Memory Scale, which has been shown
to be a sensitive measure for detecting MCI and AD (Rabin
et al., 2009); (4) Boston Naming Test, whose normative data
from geriatric performance has been established (Jefferson
et al., 2007); (5) Rey-Osterrieth Complex Figure Test, with the
proposed cutoff score delayed recall subscale between HC and
MCI of 18/19 (Takayama, 2010); (6) Trail Making Test Part A
and B, whose psychometric properties have also been established
in Chinese version (Wei et al., 2018); (7) Digit Span Forward
and Backward Test (Muangpaisan et al., 2010); and (8) Verbal
Fluency Test, with the proposed cutoff score between HC and
those with cognitive impairments (MCI and mild dementia)
of 16/17 (Alegret et al., 2018). Apolipoprotein E ¢4 (APOE 4)
genotyping was also performed in all subjects. The detailed
demographic and neuropsychological data were presented in
Table 1.

MEG Recordings

During MEG recordings, a paired-stimulus paradigm was
presented to the subjects by means of Presentation software
(version 11.3, Neurobehavioral System Inc., Davis, CA, USA).
Stimuli consisted of a series of pairs of identical click-like
tones (800 Hz, ISI = 500 ms, inter-pair interval = 6 s) and
were binaurally delivered at the intensity of 60-70 dB through
plastic earphones. Subjects were instructed to watch a silent,
emotionally-neutral movie with subtitles and to ignore the
auditory stimuli.

AEFs were recorded with a whole-head 306-channel
MEG (Vectorview, Elekta-Neuromag, Helsinki, Finland). The
sampling rate and online bandpass filter were set at 1,000 Hz and
(0.1, 200) Hz, respectively. The head position in relation to MEG
sensors was measured by four head position indicators (HPIs)
attached to known sites on the scalp. The sites of three fiducial
points (i.e., nasion, left and right preauricular points) and scalp
surface were localized with a 3-D digitizer to allow alignment
of the MEG and MRI coordinate systems. Electrooculograms
(EOGs) attached above the left orbit and below the right orbit

underwent

TABLE 1 | Demographic variables and neuropsychological measures
(mean + SEM).

HC (n =23) aMCl (n = 26) P-values
Sex (male/female) 9/14 14/12 0.30
Age (years) 69.04 +£1.77 69.96 +1.78 0.72
Education (years) 13.04 +0.72 11.12 £ 0.77 0.08
APOE 4 (yes/no) 5/18 4/212 0.72
MMSE 28.83 £ 0.22 28.35 £ 0.25 0.16
ST™M 248 £0.15 227 £0.13 0.30
CWLT
Total 31.00 £ 0.73 25.88 +£ 0.84 <0.001
Delayed 8.26 +£0.19 6.46 £+ 0.30 <0.001
WMS Logic memory
Immediate 15.78 + 0.80 10.04 +£0.78 <0.001
Delayed 14.96 + 0.84 7.81+£0.77 <0.001
CFT
Copy 32.48 +£ 0.52 31.69 + 0.66 0.36
Immediate 2515 +£1.25 19.52 + 1.46 0.006
Delayed 24.74 +£1.34 18.38 + 1.44 0.002
VFT-animal 19.26 + 0.92 15.46 £1.01 0.008
BNT
Spontaneous 27.09 £ 0.54 26.85 £ 0.54 0.75
Semantic cues 0.39+£0.15 0.19+0.10 0.26
Phonemic cues 1.62 £0.29 1.46 £ 0.31 0.89
Digit Span Test
Forward 8.39 +0.24 8.00 £ 0.21 0.23
Backward 5.61+0.34 4.65 £0.27 0.038
Trail Making Test
Part A (s) 16.83 + 3.49 12.92 £ 0.85 0.29
Part B (s) 36.74 + 5.65 48.23 +5.48 0.15

SEM, standard error of the mean; HC, healthy control; aMCl, amnestic mild cognitive
impairment; STM, short-term memory; CVVLT, Chinese Version Verbal Learning Test;
WMS-Logic memory, Wechsler Memory Scale-Logic memory; CFT, Rey-Osterrieth
Complex Figure Test; VFT-animal, Verbal Fluency Test-animal; BNT, Boston Naming Test.
aThe blood test from one aMCl patient was not valid.

were used to monitor eye movements. In addition, heartbeats
were recorded by electrocardiograms (ECGs). At least 100
pairs were collected from each participant for further analysis.

MEG Data Analysis

In order to reduce the artifacts originating inside the device and
external interferences outside the sensors, we applied MaxFilter
from the Neuromag software system (Taulu et al., 2004; Taulu
and Simola, 2006). Furthermore, all the acquired raw data
contaminated by eye blinks and heartbeats were removed by
using signal space projections (SSP), with the default setting in
the Brainstorm software (Tadel et al., 2011).

The averaged AEFs were then offline filtered with a bandpass
(1, 30) Hz, with a 100-ms baseline correction. The M50 peak was
defined as the maximal response between 30 and 80 ms after the
stimulus onset, and the M100 peak was defined as the maximal
response between 70 and 160 ms after the stimulus onset.

The source activities of neuromagnetic data were analyzed
by using depth-weighted MNE (Hédméldinen and Ilmoniemi,
1994) implemented in the Brainstorm software. The forward
problem of MEG measures was resolved by the overlapping-
sphere model (Huang et al., 1999), which estimates the strength
of electrical dipoles located at the cortical surfaces. The noise
covariance in the source estimation was calculated directly
from the recordings. For each participant, the cortical-constraint
MNE was computed over a set of ~15,000 dipoles distributed
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over the cortical envelope. Based on the prior knowledge
from literature and our grand-averaged MNE results, a cluster
of 30 vertices of 4-5 cm? were manually selected to define
regions of interest (ROIs) for M50 and M100, including
bilateral superior temporal gyrus (STG; Edgar et al, 2003;
Cheng et al., 2017a), bilateral middle temporal gyrus (MTG;
Boutros et al, 2013; Cheng et al, 2015), bilateral inferior
frontal gyrus (IFG; Garcia-Rill et al., 2008; Bak et al., 2014),
and bilateral inferior parietal lobule (IPL; Boutros et al., 2013;
Cheng et al, 2015). Although these anatomical structures
cover a relatively wide area of cortical surfaces, the maximal
activation cluster of each ROI in response to S1 was used
as the center of the scout for both M50 and M100 from
each participant. This method allowed us to extract the largest
amplitudes of M50 and MI100 to calculate SG ratios in
each ROL

In order to obtain the MNE source maps with a better
signal-to-noise ratio, the time-resolved magnitude of each dipole
was normalized to its baseline, yielding z-score values at each
cortical location. The z scores were rectified to produce absolute
magnitude changes above baseline levels. The peak response to
S1 and S2 were extracted from each participant at the identified
ROIs, and the SG ratio was derived from S2/S1 in the M50 and
M100 components.

Statistical Analysis

All the data were presented as mean =+ standard error of the
mean (SEM). All variables included in the final analysis were
normally distributed as verified by the Kolmogorov-Smirnov test
(Z < 1.168, p > 0.131). The differences of SG ratios (M50 and
M100) between HC and aMCI groups were compared by means
of independent ¢-test in each identified ROL Based on the ROIs
with significant between-group differences, partial correlations,
with age, gender and years of education as covariates, were
used to further investigate the relationship between SG ratios
and auditory short-term memory assessments, such as CVVLT,
Digit Span Backward (DSB), and immediate recall of LM
Test. Finally, we applied receiver operator characteristic (ROC)
curve analysis to test if the SG ratio or its combination with
auditory short-term memory tests could differentiae aMCI from
HC. For the area under the curve (AUC), AUC between
0.5 and 0.7 was considered less accurate, AUC between 0.7 and
0.9 was considered moderately accurate, and AUC above
0.9 was considered very accurate (Greiner et al., 2000). A p-
value < 0.05 (two-tailed) was considered to be statistically
significant. In the correlational analysis, p-values were corrected
for multiple comparisons by the Benjamini and Hochberg
approach (Benjamini and Hochberg, 1995).

RESULTS

The two study groups did not significantly differ by age, gender,
years of education, APOE 4 carrier distribution and MMSE
scores. However, the patients with aMCI performed worse than
HC in most of the neuropsychological tests, including CVVLT,
LM Test of Wechsler Memory Scale, Rey-Osterrieth Complex
Figure Test, Verbal Fluency Test, and DSB Test (Table 1).

The upper panel of Figure 1 displays the grand-averaged AEFs
to paired-click stimulation in the HC (n = 23) and aMCI (n = 26)
groups. Compared to S1, neuromagnetic responses to S2 were
reduced in both M50 and M100 components, either in the HC
or aMCI subjects. The lower panel of Figure 1 shows the MNE
source maps of M50 and M100 components. In addition to the
temporal cortex, several regions of parietal and frontal cortices
were activated to paired-click stimulation.

We further compared the SG ratios between the two
groups in the identified ROIs (Figure 2). There were no
significant differences in the STG and MTG. However, we
found that compared to HC, patients with aMCI demonstrated
conspicuously higher M50 SG ratios in the left IFG (t = 2.063,
p =0.045) and right IPL (¢ = 3.726, p = 0.001). As for M100 SG, a
significant between-group difference was also found in the right
IPL (t = 3.550, p = 0.001).

Since the significant between-group differences were found
in the left IFG and right IPL, we further investigated
whether SG ratios in these ROIs would show associations with
neuropsychological assessments in which auditory short-term
memory function was involved. M50 SG ratios of the left
IFG and MI100 SG ratios of right IPL did not show any
significant correlation with neuropsychological performance
after the correction of multiple comparisons. M50 SG ratios in
the right IPL were significantly correlated with scores of LM
(immediate recall, r = —0.436, adjusted p = 0.006), CVVLT
(r = —0.372, adjusted p = 0.011), and DSB (r = —0.292, adjusted
p = 0.049; Figure 3).

The AUC of M50 SG ratio of the right IPL was 0.791
(sensitivity = 0.846, specificity = 0.609), considered moderately
accurate. Furthermore, this M50 SG ratio in combination with
LM scores (AUC = 0.891, sensitivity = 0.885, specificity = 0.783)
or CVVLT scores (AUC = 0.870, sensitivity = 0.846,
specificity = 0.870) improved the discrimination ability
(Figure 4). It was notable that the M50 SG ratio together
with LM and CVVLT scores reached a very accurate ability
in the discrimination of aMCI from HC (AUC = 0.915,
sensitivity = 0.923, specificity = 0.783). Table 2 shows the
detailed results of the ROC curve analysis.

DISCUSSION

This study compared the pre-attentive SG function between HC
and aMCI at the source level and attempted to determine whether
the SG ratios would be correlated with neuropsychological
tests in which auditory short-term memory was involved. Our
data yielded three major findings. First, compared to HC,
patients with aMCI demonstrated deficient SG function in the
left IFG and right IPL. Based on the aforementioned ROIs
showing obvious between-group differences, M50 SG ratios of
the right IPL were significantly correlated with the performance
of short-term memory tests. Finally, ROC curve analysis revealed
that the combination of the M50 SG ratio in the right IPL, LM
and CVVLT had very good accuracy in differentiating aMCI
from HC.

SG deficits have been evident in patients with AD (Jessen
et al,, 2001; Cancelli et al., 2006; Thomas et al.,, 2010; Cheng
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FIGURE 1 | Upper panel: grand-averaged sensor waveforms of the auditory paired-stimulus paradigm in healthy controls (HC) and patients with amnestic mild
cognitive impairment (aMCI). Lower panel: spatiotemporal dynamics of minimum norm estimate (MNE) regarding the M50 and M100 components. The cortical
surfaces have been smoothed for better visualization (dark gray, sulci; light gray, gyri). L, left hemisphere; R, right hemisphere.
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FIGURE 2 | The regions of interest (ROIs) were manually identified in the bilateral superior temporal gyrus (STG), middle temporal gyrus (MTG), inferior frontal gyrus
(IFG), and inferior parietal lobule (IPL) to study sensory gating (SG). Compared to HC, patients with aMCI demonstrated significantly higher M50 SG in the left IFG and
right IPL. As for the M100 component, aMCl patients also showed an elevated SG ratio. These results suggest a deficit of inhibitory function in this clinical

et al., 2012), whereas the relevant investigation on aMCI is
extremely scarce. One of the major reasons is possibly due to
the insensitivity of the recording instruments. In the previous
EEG studies, midline electrodes, such as Fz or Cz, were
analyzed to reflect the electrophysiological activities from the
summation of temporal and frontal sources. Mastoid electrodes,
on the other hand, were considered as a pure indicator of
the temporal generators when the auditory evoked potentials
were studied (Kujala and Nadtianen, 2001; Cooper et al., 2006).

However, the SG deficiency in the aMCI, compared to the
control subjects, might not be obvious enough that can be
detected by EEG electrodes. The advantage of MEG in its
superior spatial resolution covers the weakness of EEG in
the aspect of source localization. Our current MEG data, to
some extent, supported this account since we did not find
the significant between-group SG differences in the bilateral
STG and MTG, both of which were considered as main neural
generators of SG (Edgar et al,, 2003; Cheng et al,, 2017a).
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Instead, compared to the HC, aMCI showed a deficient SG
function in the left IFG and right IPL. These findings suggested
that reduced SG function in aMCI was attributed to the
information processing deficits in the relatively higher-order

centers (e.g., IFG and IPL), rather than basic sensory centers
(e.g., STG and MTG).

Regarding the reduced M50 SG function of the IFG in aMCI
patients, there are two plausible accounts to interpret our data.
A prevailing contention is the inhibitory deficit hypothesis due
to frontal dysfunction (Hasher and Zacks, 1988; Alain and
Woods, 1999; Stothart and Kazanina, 2016). Compared to the
younger adults, the elderly have been reported to demonstrate
significantly larger P50 and/or N100 amplitudes to repetitive
auditory stimulation (Chao and Knight, 1997). Furthermore,
subjects with prefrontal damages showed an enhancement of
P50 and/or N100 amplitudes to frequent auditory stimuli
(Knight, 1984; Alho et al., 1994). Another account is the
predictive coding hypothesis (Garrido et al., 2009; Grotheer and
Kovacs, 2016). SG or repetition suppression is an indicator of
error minimization occurring when bottom-up sensory inputs
from the level below (e.g., temporal cortex) coincide with the
top-down predictions from the level above (e.g., frontal cortex;
Friston, 2005; Auksztulewicz and Friston, 2016). Upon repetitive
stimulation, the predictive error is reduced by adjusting synaptic
activities within and between multiple hierarchical levels. By
using a paired-stimulus paradigm, our data indicated that
compared to the HC, aMCI patients exhibited higher SG ratios
in the IFG, suggesting such inhibitory deficit may be indicative of
a deficiency of top-down processing according to the predictive
coding hypothesis.

The neurophysiological meanings regarding the reduced
M50 and M100 SG of the IPL in aMCI patients remain
extremely elucidative. First of all, it should be noted that
the IPL is involved in the SG function. Using the grid and
strip electrodes on the cerebral cortex, Boutros and colleagues
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TABLE 2 | ROC curve analysis with the combination of different variables.

AUC Sensitivity Specificity
M50 SG 0.791 0.846 0.609
M50 SG + LM 0.891 0.885 0.783
M50 SG + CWLT 0.870 0.846 0.870
M50 SG + DSB 0.834 0.885 0.739
M50 SG + LM + CWLT 0.915 0.923 0.783
M50 SG + LM + DSB 0.893 0.885 0.739
M50 SG + CVVLT + DSB 0.891 0.885 0.826
M50 SG + LM + CVVLT + DSB 0.916 0.885 0.826

ROC, receiver operator characteristic;, M50 SG, M50 sensory gating ratio in the right
inferior parietal lobule; LM, Logic Memory; CVVLT, Chinese Version Verbal Learning Test,
DSB, Digit Span Backward; AUC, area under the curve.

have reported that in addition to the temporal lobe, the
parietal cortex was part of neural circuits underlying P50 SG
(Boutros et al., 2013) and N100 SG (Boutros et al., 2011). Our
previous MEG study, by identifying a number of ROIs, has
also found that S2-evoked M100 amplitude was significantly
lower than Sl-evoked M100 amplitude in the IPL among the
younger adults (Cheng et al, 2015). The functional role of
the IPL may be related to the monitoring of the information
originating from other sensory cortex (Balslev et al, 2006;
Schnell et al., 2007). In our previous MEG study, we did not
observe age-related M100 SG differences in the IPL, suggesting
healthy aging does not interfere with this function. However,
when the pathological aging occurred, such as aMCI, SG was
apparently deteriorated and could be detected at the basis
of group comparisons. In addition, it should be noted that
the AD-related pathologies occur a couple of years prior to
the clinical manifestations. Also, the preclinical state can be
longer than 2-3 years. Subjective cognitive decline (SCD), a
self-perceived worsening in cognitive capacity along with normal
performance on standardized cognitive assessments, has gained
much attention over the past decade. It will be of clinical
importance for future studies to investigate whether older adults
with SCD show an altered auditory SG ability compared to those
without SCD.

Based on the ROIs showing significant between-group SG
differences, we further explored the relationships between
SG and auditory short-term memory tests. Although there
were several studies investigating the correlations between SG
and all kinds of neuropsychological tests (Smith et al., 2010;
Thomas et al., 2010; Hamilton et al., 2018), the present study
only selected those in which auditory short-term memory
was assessed since these cognitive assessments and SG were
tested through the auditory modality. We found that M50 SG
ratios of the right IPL were significantly correlated with
the performance of short-term memory function (Figure 3).
These results were consistent with previous studies showing
that lower P50 SG and/or N100 SG ratios (i.e., better SG
function) were related to better performance of attention and
working memory in patients with schizophrenia (Smith et al,,
2010; Hamilton et al., 2018). As for the AD patients, gating
deficit has been related to the poor performance of DSB
when healthy elderly and AD subjects were pooled together
(Thomas et al., 2010). The novel result of the present study
was that such an association was specifically observed in the

IPL. Previous studies have applied regional homogeneity (ReHo)
to measure local coherence of spontaneous brain activity and
found that compared to HC, aMCI patients demonstrated
reduced ReHo in the IPL (Zhang et al, 2012; Yuan et al,
2016). By analyzing the n-back working memory paradigm, a
previous coordinate-based meta-analysis has shown that bilateral
IPL was consistently activated across all the studies (Wang
et al, 2019). In addition, a delicate study tracking cognitive
changes over 6 months with longitudinal functional MRI
data revealed a significant correlation between performance
changes in free recall and brain activation changes in the IPL
(McLaren et al,, 2012). Taken together, our results suggest
the critical role of IPL, particularly the right hemisphere, in
the relationship between neurophysiological SG function and
short-term memory performance.

We considered M50 SG in the right IPL as an acceptable
neurophysiological indicator (AUC = 0.791, sensitivity = 0.846,
specificity = 0.609) in differentiating aMCI from HC. A
previous study applying another electrophysiological signal,
called mismatch negativity (MMN), has revealed a similar
accurate level as ours. More specifically, they found the MMN
amplitude, but not latency, to be a reasonable biomarker
(AUC = 0.76 for the first evaluation and AUC = 0.82 for the
second evaluation; Lindin et al., 2013) for the discrimination
between aMCI and middle-aged controls. In our present study,
M50 SG ratios of the right IPL together with the LM and CVVLT
further improved the discriminative accuracy. We suggest the
combination of SG of the right IPL, LM and CVVLT to be
sensitive indicators to differentiate aMCI patients from HC.

Conceptually, it is interesting to discuss the
similarities/differences of the terminologies including SG and
repetition priming (RP). Generally speaking, the aforementioned
terms refer to the same phenomenon that the neural responses
would be reduced after the repeated stimuli. However, based
on different experimental paradigms or academic fields, there
are somewhat different descriptions and meanings. The RP is
usually studied with the semantic judgment task or working
memory task, in which the subjects are required to respond
to targets (Olichney et al, 2000, 2008; Yang et al, 2014;
Broster et al., 2018). A stronger repetition effect (e.g., higher
accuracy rate or shortened reaction time to the subsequently
repeated stimuli, reduced amplitude after the repeated stimuli,
etc.) indicates better memory-related performance since the
N400 and/or P600 components are measured (Olichney et al.,
2000, 2008; Yang et al., 2014). The SG is usually studied with the
auditory (Smith et al., 2013; Rosburg, 2018) and somatosensory
(Kisley and Cornwell, 2006; Cheng and Lin, 2013) paired-click
paradigms, in which the subjects do not require to make
a behavioral response. A lower ratio, that is more neural
suppression to the repeated stimuli, indicates better SG function.
Due to the independence of the behavioral requirement, SG
has been widely studied in the clinical populations who have
difficulties in maintaining attention and motivation. In our
present study, aMCI and HC did not show significant differences
of SG ratios in the primary sensory cortex (i.e., STG) but in the
IPL, which was consistent with a previous report showing that
patients with AD demonstrated spared repetition effect in the
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primary visual cortex (Broster et al., 2018). These findings also
supported the prevailing notion that during neurodegenerative
processes, most of the cortices (frontal cortices, parietal cortices,
cingulate regions) apart from primary cortices have experienced
major pathophysiological changes.

Several limitations of the present study must be
acknowledged. First, the sample size was relatively small,
which might impede us to find significant differences of APOE
4 carrier distribution between HC and aMCI. Previous large-
scale studies have suggested that compared to the healthy older
adults, the prevalence of APOE 4 was increased in patients
with aMCI (van der Flier et al., 2008; Edmonds et al., 2015).
Second, the individual’s hearing threshold was not collected
in this study. Despite self-reportedly no obvious hearing
impairments from our participants, we could not rule out the
possibilities of hearing acuity on central auditory processes due
to aging. However, it has been shown no significant age-related
differences in hearing threshold at 1,000 Hz (Horvath et al,
2009). All of our subjects were older adults, which represented
a more homogeneous sample in terms of auditory acuity. It was
also important to note that the frequency we used in the present
study was 800 Hz so that all the participants could successfully
register the auditory inputs. Finally, the significant associations
between neurophysiological function and neuropsychological
performance did not allow us to infer their causality. Future
research, which investigates whether the changes of SG will
show concomitant changes along with the neuropsychological
performance, is needed.

In conclusion, compared to HC, aMCI patients exhibited SG
deficits, particularly in the right IPL. Such a deficiency was also
related to the immediate recall of auditory memory tests. Our
data further highlighted the importance of the combination of
SG ratios and short-term memory tests in the discrimination
between HC and aMCI.
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Age-related alterations of functional brain networks contribute to cognitive decline.
Current theories indicate that age-related intrinsic brain functional reorganization may
be a critical marker of cognitive aging. Yet, little is known about how intrinsic
interhemispheric functional connectivity changes with age in adults, and how this relates
to critical executive functions. To address this, we examined voxel-mirrored homotopic
connectivity (VMHC), a metric that quantifies interhemispheric communication, in 93
healthy volunteers (age range: 19-85) with executive function assessment using the
Delis-Kaplan Executive Function System (D-KEFS) scales. Resting functional MRI data
were analyzed to assess VMHC, and then a multiple linear regression model was
employed to evaluate the relationship between age and the whole-brain VMHC. We
observed age-related reductions in VMHC of ventromedial prefrontal cortex (vmPFC)
and hippocampus in the medial temporal lobe subsystem, dorsal anterior cingulate
cortex and insula in salience network, and inferior parietal lobule in frontoparietal control
network. Performance on the color-word inhibition task was associated with VMHC of
vmPFC and insula, and VMHC of vmPFC mediated the relationship between age and
CWIT inhibition reaction times. The percent ratio of correct design scores in design
fluency test correlated positively with VMHC of the inferior parietal lobule. The current
study suggests that brain interhemispheric functional alterations may be a promising
new avenue for understanding age-related cognitive decline.

Keywords: executive function, voxel-mirrored homotopic connectivity, Delis-Kaplan executive function system,
mediation analysis, medial temporal lobe subsystem, salience network, frontoparietal control network

INTRODUCTION

Cognitive function is altered with age (Ulman, 2014; Harrington et al., 2017). In particular, its
decline with age affects quality of life and life satisfaction in older adults (Reuter-Lorenz and
Park, 2010; Ferreira and Busatto, 2013). Executive functions broadly consist of inhibition, working
memory, and cognitive flexibility (Diamond, 2013). Studies on cognitive performance in healthy
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elder groups have indicated that increasing age is associated with
multifaceted impairments of executive function (Ulman, 2014;
Harrington et al., 2017). For example, aging is associated with
impairment in cognitive performance in verbal fluency, category
fluency, and category switching tests (Harrington et al., 2017). In
addition, many studies have used the color-word Stroop task and
found that response inhibition performance, or the ability to stop
unwanted or inappropriate responses, declines with age (Ivnik
et al., 1996; Klein et al., 1997; Troyer et al., 2006; Adélfsdottir
et al.,, 2016; Anderson and Craik, 2017; Harrington et al., 2017).
Resting-state functional MRI (rs-fMRI) imaging technology
permits studying age-related intrinsic brain alterations in vivo.
Accumulating studies have shown age-related regional functional
connectivity (FC) decreases in brain regions within default
mode (DMN), salience (SN), and frontoparietal control (FPCN)
networks (Grady, 2012; Li et al., 2015). The most common FC
reductions within DMN have been reported in medial prefrontal
cortex and posterior cingulate cortex (PCC/precuneus) (Bluhm
et al., 2008; Damoiseaux et al., 2008; Koch et al., 2010; Allen et al.,
2011; Wu et al,, 2011; Tomasi and Volkow, 2012; Grady et al,,
2016). Age increase is also generally associated with decreases in
intra-network FC within the bilateral insula and dorsal anterior
cingulate cortex (dorsal ACC) (Keiichi et al, 2012; He et al,
2014; Zhang et al., 2014). FPCN shows numerically lower intra-
network FC in older adults compared to young adults (Elman
et al., 2014; Geerligs et al., 2014a; Grady et al., 2016). Further,
the FC reduction within FPCN has been shown in middle-
aged (41-60 years) compared to young (21-40 years) individuals
(Siman-Tov et al.,, 2017). The reduced network covariation is
in line with the idea that increasing age is accompanied by
decreasing connectivity within functional brain systems (Chan
et al., 2014; Geerligs et al., 2014a; Grady et al., 2016). Moreover,
inter-network FC patterns have shown alterations with aging,
including reductions in the segregation of DMN, SN, and FPCN
(Chan et al., 2014; Geerligs et al., 2014a), and enhancements in
FC strength between DMN and FPCN with age (Geerligs et al.,
2014a; Grady et al., 2016). Thus, rs-fMRI may be a powerful tool
to investigate age-related brain functional reorganization.
Neuropsychology studies have indicated that the age-related
intrinsic functional reorganizations of DMN, SN, and FPCN
are associated with impaired executive function. Age-related
reductions in FC between MPFC and PCC/precuneus correlated
with loss of executive function, memory, and processing speed
(Andrews-Hanna et al,, 2007). A higher number of Stroop
errors correlated with reduced FC within the DMN and SN in
cognitively normal elders (Duchek et al., 2013). In older adults,
the strength of network covariation of the left insula and dorsal
ACC in SN correlated significantly with executive functions
measured by Frontal Assessment Battery (FAB) and Kohs Block-
Design Test (Keiichi et al., 2012). Further, FC between SN
and frontal cortex successfully predicted response inhibition
as assessed by the Stroop test (La Corte et al., 2016). The
between-network connectivity of the FPCN is enhanced in older
subjects, and its strength is positively correlated with associative
memory performance (Grady et al., 2016). These findings on
intrinsic brain functional reorganizations shed light on the neural
mechanisms underlying age-related executive function decline.

Theories on the relationship between age and neurocognition
suggest a hemispheric asymmetry reduction for older adults
(HAROLD model) in response to cognitive tasks (Cabeza, 2002;
Manuela et al., 2013). For example, elders were shown to recruit a
more bilateral frontal pattern within the task-related network to
achieve successful performance during working memory (Sala-
Llonch et al, 2012) and inhibitory control (Colcombe et al.,
2005) tasks, while younger groups recruited the right-lateralized
frontal regions (Colcombe et al., 2005; Sala-Llonch et al., 2012).
This reduced lateralization pattern in frontal cortex suggests that
functional reorganization occurs across hemispheres with age,
and therefore, these changes may be measurable outside of the
task state (e.g., alterations in resting-state FC or in structural
changes). In support of this idea, a study on white matter integrity
has shown that age-related changes are prominently seen in the
anterior corpus callosum (Frederiksen and Waldemar, 2012),
which is involved in information transformation across the right
and the left brain hemisphere. For example, the changes of
anterior corpus callosum are suggested to be accompanied by
alterations of interhemispheric FC pattern of frontal cortex for
healthy young participants (Qiu et al., 2017). However, little is
known about the age-related alterations of interhemispheric FC
pattern and whether such interhemispheric functional alterations
contribute to age-related executive function change.

In the rs-fMRI literature, voxel-mirrored homotopic
connectivity (VMHC) offers a metric to evaluate
interhemispheric FC (Zuo et al., 2010), which measures integrity
of information communication between brain hemispheres.
Abnormal VMHC patterns in widespread cortical and subcortical
networks have been reported in studies on cocaine addiction
(Kelly et al, 2011), mild cognitive impairment (MCI) (Luo
et al., 2018), Alzheimer’s disease (Wang et al., 2015; Li et al,,
2018), and schizophrenia (Hoptman et al., 2012), indicating
that VMHC is a reliable neural marker for brain functional
reorganization. This abnormal VMHC has been associated with
impaired executive functioning in individuals with MCI (Luo
et al., 2018) and Alzheimer’s disease (Li et al., 2018), suggesting
that altered VMHC might associate with executive function
change. Taken together, the VMHC-based rs-fMRI analysis may
provide additional information beyond classical FC metrics
for understanding neural mechanisms of age-related executive
function alteration. To our best knowledge, only one study
has explored the relationship between VMHC and age (Zuo
et al., 2010). This study included 7- to 85-year-old healthy
participants, and focused on the developmental trajectories
of brain inter-hemisphere FC in the lifespan (Zuo et al,
2010). However, the age-related homotopic FC alterations in
adult and its associations with executive functions have not
yet been examined.

We examined whether homotopic FC measured with
VMHC changes with age in adults aged 19-85. Furthermore,
we tested whether any age-related alterations of VMHC
would be associated with executive function, as assessed
by Delis-Kaplan Executive Function System (D-KEFS) scales.
Finally, we employed a mediation analysis to identify whether
interhemispheric connectivity is a possible neural mechanism
underlying age-related cognitive decline.
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MATERIALS AND METHODS

Participants

For the current study, Nathan Klein Institute (NKI) data
(Nooner et al,, 2012) (demographic and executive function data,
resting functional and structural MRI images) were downloaded
from http://fcon_1000.projects.nitrc.org/indi/pro/nkihtml. The
NKI data included 207 subjects. First, subjects with a history
of psychiatric disorders or medical conditions were excluded.
For example, subjects with Beck Depression Inventory (BDI)
(Beck et al., 1988) scores higher than 15, indicating mild-
severe depression, were excluded. Forty-one healthy children and
adolescents (age < 18) were excluded from the current study.
For the 105 healthy adults, there were two subjects without
D-KEFS scores (Homack et al., 2005) and three subjects without
resting functional MRI data. Six subjects were excluded due to
large head movements (mean framewise displacement >0.4 mm)
(Power et al., 2014). One subject with extensive large color-word
inhibition scores in D-KEFS test (105, which exceeded three
standard deviations from the mean) was excluded. The final
sample consisted of 93 healthy adults subjects (female: 45, male:
48; age range: 19-85, mean = 42.65 & 1.93 SE years; 31 subjects
aged 19-29, 11 subjects aged 30-39, 22 subjects aged 40-49, 8
subjects aged 50-59, 9 subjects aged 60-69, 9 subjects aged 70—
79, 3 subjects aged 80-85) who completed resting-state MRI,
structural scans, and the D-KEFS test. For the final sample, there
was no subject with hypertension or diabetes, and systolic blood
pressure was less than 140 mmHg. There was no subject taking
daily medications. There was no subject with past or current
mental disorder or substance abuse disorder. Handedness was
assessed with the Edinburgh Handedness Inventory (Oldfield,
1971), height and weight of participant were measured on the
day before the MRI scan, and then BMI was calculated. Table 1
provided the subjects’ demographic information.

Executive Function Measurements

For the NKI data, five tests from D-KEFS were conducted
to assess executive function, namely, Color-Word Interference
(CWIT), Verbal Fluency, Design Fluency, Sorting, and Twenty
Questions Tests. Detailed task descriptions can be found in
Swanson (2005) and Mace et al. (2018). In brief, CWIT required
participants to name the color or word in congruent and
incongruent conditions. For example, when the word “green”
was printed in red ink, participants were asked to process
task-relevant color information (ink) and inhibit pre-potent

TABLE 1 | Demographic characteristics.

Range Mean + SE
Age (years) 19-85 42.65 + 1.93
Gender F45/M48
Handedness Right 79/Left 12, one subject was unknown,
one subject was ambidextrous
BMI (kg/m?) 16.3-40 26.16 &+ 0.50
BDI_Total 0-12 2.43 +0.33

processing of conflicting task-irrelevant information (word
meaning). CWIT data included scores of word naming, color
naming, and color-word inhibition. For the Verbal Fluency Test,
participants were asked to name uniquely as many words as
possible in 60 s by letter or category for altering categories.
Data included scores of letter fluency, category fluency, category
switching fluency, and category switching accuracy. On the
Design Fluency Test, participants were instructed to draw unique
geometric designs in dots arrays within 60 s. The paradigm
consists of three conditions: connection of filled dots, connection
of empty dots, and alternating connections between filled and
unfilled dots. Data included scores of filled dots design, empty
dots design, switching design, and total percent ratio of correct
design. The Sorting Test asked participants to sort items into
categories and describe the applied categorization rules and
included two card sets. The number of correct sorts was
computed and included scores of free sort confirmed sorts,
free sort description, and sort recognition description. Twenty
Questions Test asked participants to guess the objects from 30
common objects, and the participants were instructed to ask
as few “yes” or “no” questions as possible. It included scores
of initial abstraction, total questions asked, and total weighted
achievement. The MRI scans were conducted at 9:00 am, and
D-KEFS test was conducted at 12:30 pm on the same day.

MRI Data

All participants provided written informed consent and were
scanned according to procedures approved by the local
Institutional Review Board (IRB) at the NKI. The data
were shared with the approval of the IRB at the NKI. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Resting functional images were acquired using a Siemens
MAGNETOM Tim Trio 3.0 T scanner. There were 260
functional MRI images (lasting for 10.83 min) with a gradient
echo-planar sequence (TR = 2.5 s; TE = 35 ms; flip angle = 80°;
FOV: 256 x 256; in-plane resolution = 3 mm x 3 mm, slice
thickness: 3 mm). Structural MRI scans were acquired with
the same Siemens MAGNETOM Tim Trio 3.0 T scanner using
T1-weighted MPRAGE sequence (TR = 2.5 s; TE = 3.5 ms;
TI = 1200 ms; FOV: 256 x 256; slice thickness: 1 mm; flip angle:
8°; matrix size: 256 x 256; 200 Transverse slices).

MRI Preprocessing

Functional data were analyzed using Data Processing & Analysis
for Brain Imaging (DPABI) toolbox (Yan et al., 2016). Image
preprocessing included slice-time correction, image realignment,
skull stripping, coregistration between functional and structural
images, spatial normalization to the stereotactic space of the
Montreal Neurological Institute (MNI), and resampling to 3-mm
isotropic voxels and smoothing with a Gaussian kernel of 6-
mm FWHM. Head motion correction was conducted based
on a “scrubbing” approach (Power et al., 2014). Specifically,
if the framewise displacement (FD) was larger than 0.5 mm,
the corresponding volume was linearly interpolated using its
temporal neighbors (Power et al., 2014). In addition, the mean FD
value was used as a regressor in the group-level regression model
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and partial correlation analyses to control the possible motion
influence. Multiple linear regression was performed to remove
nuisances including the mean signal fluctuations in the whole
brain, ventricles, and white matter, and the six head realignment
parameters and their derivatives. Detrending and a temporal
band-pass filtering (0.01-0.08 Hz) were subsequently conducted
to minimize temporal drifts and white noise.

VMHC measurements assumed symmetric morphology
between each brain hemisphere. To minimize differences in the
geometric configuration of the cerebral hemispheres, we averaged
93 normalized T1 images to create a group-mean T1 image.
This image was averaged with its left-right mirrored version to
generate a group-specific symmetrical template. Each individual
T1 image was non-linearly registered to the standard template,
and the identical transformation was then applied to the resting-
state functional images. VMHC was obtained by calculation of
Pearson’s correlation coeflicient between the time series of each
voxel and that of its symmetrical interhemispheric counterpart.
Voxels medial of x = +4 were excluded, to minimize the blurring
effect across the midline (Kelly et al., 2011).

Correlation Analysis of D-KEFS Scores
and Age

Partial correlations were conducted on each D-KEFS score and
age, with gender, handedness, and body mass index (BMI) as
covariates. Bonferroni correction was carried out for multiple
comparisons, and level of significance was set at P < 0.0025
(0.05/18 for 18 D-KEFS scores). Finally, scores of color-word
inhibition, category switching fluency and category switching
accuracy, the percent ratio of correct design, and sort recognition
description were significantly correlated with age. Then, the
correlations of these five scores and age-related interhemispheric
FC were examined.

Statistical Analyses on Resting fMRI
Data

Statistical ~ analyses  were  performed using SPMI12
(Welcome Department of Cognitive Neurology, London,
United Kingdom)'. Multiple linear regression model was
used to assess the association between age and VMHC
metrics. The subjects BMI, gender, handedness, mean
FD, and total intracranial volume (TICV) were included as
covariates. Statistical significance was based on a familywise
error (FWE) correction for multiple comparisons at the
cluster level (Prwg < 0.05) with a minimum cluster size of
k = 30 voxels and a cluster-defining threshold P < 0.001, in
line with current reporting guidelines (Eklund et al, 2016;
Flandin and Friston, 2019).

ROI-Based Analysis

When the significant age-related statistics brain mapping was
acquired, regions of interest (ROI) were defined by spheres with
6-mm radius and center at the local peak voxel in statistics
brain mapping. Mean regional values were calculated for each

Thttp://www.filion.ucl.ac.uk/spm

subject. Then, group-level partial correlations were conducted
on age-related regional VMHC values and scores of color-word
inhibition, category switching fluency and category switching
accuracy, the percent ratio of correct design, and sort recognition
description respectively, with BMI, gender, handedness, mean
FD, and TICV as covariates. Bonferroni correction was carried
out for multiple comparisons, and level of significance was set at
P < 0.0008 (0.05/12/5 for 12 pairs of mirrored regions in VMHC
results by five D-KEFS scores).

In order to test whether shifting with one TR lag of time
courses from the opposite hemisphere affected VMHC, Pearson
correlation coefficients were calculated between time courses
of brain regions in the left hemisphere lagging one TR and
time courses of their mirrored brain regions in the right
hemisphere without lag (termed FCs_leftlag), between time
courses of brain regions in the left hemisphere without lag
and time courses of their mirrored brain regions in the right
hemisphere lagging one TR (termed FCs_rightlag), as well as
between time courses of brain regions in the bilateral hemisphere
both without lag (termed FCs_nolag). Three two-way ANOVA of
FC types (specially, FCs_leftlag and FCs_nolag, FCs_rightlag and
FCs_nolag, FCs_leftlag and FCs_rightlag) by region (12 pairs of
mirrored brain regions) were conducted to examine the effect of
time course lag.

Mediation Analysis

For all age-related brain regions, we examined whether
interhemispheric functional coupling of these regions mediated
the relationship between age and these five scores respectively.
We tested our mediation hypothesis with Multilevel Mediation
and Moderation Toolbox (Wager et al., 2008), with age, BMI,
gender, handedness, FD, and TICV as covariates. Bonferroni-
correction was carried out for multiple comparisons, and level
of significance was set at P < 0.0008 (0.05/12/5 for 12 pairs of
mirrored regions in VMHC results by five D-KEFS scores).

RESULTS

Behavioral Results

Table 2 shows the range, mean, and standard error of 18
D-KEFS scores, as well as their partial correlations with age.
Age was significantly associated with scores of category switching
fluency (r = —0.347, P = 0.001) and category switching accuracy

(r = —0.361, P = 0.001), percent ratio of correct design
(r = —0.352, P = 0.001), and sort recognition description
(r = —0.321, P = 0.002). Age was positively correlated with

color-word inhibition reaction times (r = 0.462, P < 0.001).
Supplementary Figure S1 shows the scatter plots of age and these
five D-KEFS scores.

VMHC Results

There was no brain region in which VMHC correlated positively
with age. Age correlated negatively with VMHC between bilateral
putamen, insula (BA 13), hippocampus, superior temporal gyrus
(BA 22), globus pallidus, paracentral lobule (BA 3), precentral
gyrus (BA 4), perigenual and dorsal anterior cingulate gyrus
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TABLE 2 | Descriptive analysis on D-KEFS scores, and the partial correlations of each D-KEFS scores and age, with gender, handedness, and body mass index (BMI) as

covariates.
Task Scores Range Mean + SE Correlation with Age R (P)
Verbal Fluency Letter Fluency 18-67 42.67 £1.15 0.094 (0.382)
Category Fluency 18-63 42.73 £ 0.95 —0.217 (0.042)
Category Switching Fluency 7-20 13.17 £ 0.30 —0.347 (0.001)
Category Switching Accuracy 3-19 11.41 +£0.34 —0.361 (0.001)
Design Fluency Empty Dots Design 2-18 10.65 + 0.34 —0.139 (0.197)
Filled Dots Design 4-20 10.27 + 0.35 —0.113 (0.292)
Alternating Design 14-50 32.63 + 0.81 0.214 (0.045)
Percent Ratio of Correct Design 34-100 82.49 £+ 1.45 —0.352 (0.001)
Color Word Interference Word Naming 12-33 20.66 £+ 0.45 0.145(0.177)
Color Naming 16-45 27.12 £ 0.54 0.262 (0.014)
Color-word Inhibition 26-95 50.88 &+ 1.32 0.462 (<0.001)
Sorting Free Sort Confirmed Sorts 2-53 9.60 £ 0.55 —0.167 (0.121)
Recognition Sorts 16-63 36.73 + 1.16 —0.321 (0.002)
Description Sorts 8-59 34.66 + 1.12 —0.205 (0.056)
Twenty Questions Tests Total Questions Asked 16-46 26.62 + 0.61 0.051 (0.634)
Total Weighted Achievement 7-20 156,12 £ 0.28 —0.080 (0.457)
Initial Abstraction 7-60 29.09 + 1.31 —0.027 (0.801)

Significant correlations were showed in bold fonts.

(pgACC and dorsal ACC, BA 24), ventromedial prefrontal cortex
(vmPFC, BA 10), and inferior parietal lobule (IPL, BA 39) (see
Table 3 and Figure 1).

ROI-Based Analysis

CWIT inhibition reaction times correlated negatively with
VMHC in the insula (r = —0.41, P = 0.00007), vmPFC
(r = —0.46, P = 0.000006), hippocampus (r = —0.39, P = 0.0002),
and superior temporal gyrus (r = —0.37, P = 0.0004). The
percent ratio of correct design scores correlated positively with
VMHC in the IPL (r = 0.36, P = 0.0006) (Supplementary

TABLE 3 | The foci of brain areas showed intrinsic activity associating with age
(Prwe = 0.05, family-wise error correction) when controlling for gender,
handedness, body mass index (BMI), FD, and total intracranial volume (TICV).

Region BA Voxel V4 MNI

X Y z

Brain regions that VMHC showed negative correlation with age

Putamen - 2733 7.08 + 27 -3 9
Insula BA 13 6.02 + 36 21 6
Hippocampus BA 28 5.72 +24 —15 —21
Superior Temporal Gyrus BA 22 5.42 + 54 -9 —15
Globus Pallidus - 5.23 +24 15 6
Paracentral Lobule BA3 129 5.53 + 21 -30 60
Precentral Gyrus BA 4 131 4.94 + 45 -9 48
Anterior Cingulate BA 24 149 4.96 +12 33 21
Anterior Cingulate BA24 4.35 +6 6 42
Medial Frontal Gyrus BA 10 36 4.48 +6 54 -9
Medial Frontal Gyrus BA 10 4.47 +6 48 —-18
Inferior Parietal Lobule BA 40 47 4.22 + 60 -39 45

BA, Brodmann area; -, no BA covered.

Figure S2 shows scatter plots of the significant correlations
above). The result showed that FCs_nolag was significantly
larger than FCs_leftlag [F(1,20) = 204.208, P < 0.001] and
FCs_rightlag [F(1,20) = 214.208, P < 0.001]. There was no
significant difference between the FCs_leftlag and FCs_rightlag
[F(1,20) = 1.987, P = 0.174].

Mediation Analysis

Table 4 shows all estimated mediation models. When multiple
comparisons were considered, mediation analyses showed that
VMHC in vmPFC significantly mediated the relationship
between age and CWIT inhibition reaction time (vmPFC:
ab = 0.122, P = 0.0003, confidence interval (CI): [0.041, 0.262])
(see Figure 2).

At an uncorrected level, VMHC in insula, hippocampus, and
precentral gyrus also mediated the relationship between age and
CWIT inhibition reaction time (insula: ab = 0.128. P = 0.027, CI:
[0.015, 0.276]); hippocampus: ab = 0.125. P = 0.026, CI: [0.013,
0.277]; precentral gyrus: ab = 0.102. P = 0.014, CI: [0.016, 0.245]).
Moreover, VMHC in IPL, pgACC, globus pallidus, and putamen
mediated the relationship between age and the percent ratio of
correct design scores, respectively (IPL: ab = —0.106, P = 0.014,
CI: [—-0.221, —0.040]; pgACC: ab = 0.100, P = 0.015, CI: [0.022,
0.206]; globus pallidus: ab = 0.156, P = 0.016, CI: [0.028, 0.290];
putamen: ab = 0.149, P = 0.025, CI: [0.021, 0.295]).

DISCUSSION

Little is known regarding the influence of age on brain homotopic
functional coupling and how this reorganization might be
associated with age-related executive function alterations. In
line with FC-based rs-fMRI studies on normal aging, here
we observed age-associated reduction of interhemispheric FC
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paracentral lobule.

Brain regions where VMHC are associated with AGE

FIGURE 1 | Brain mapping of VMHC demonstrated a significant association with age (Prwe = 0.05, family-wise error correction). VMHC was negatively associated
with age in brain regions with cool color. Color bar provides T values. vmPFC, ventromedial prefrontal cortex; HIPP, hippocampus; STG, superior temporal gyrus; GP,
globus pallidus; pgACC, perigenual anterior cingulate cortex; dACC, dorsal anterior cingulate cortex; PreG, precentral gyrus; IPL, inferior parietal lobule; ParaCL,

of medial temporal lobe subsystem (vmPFC and pgACC and
hippocampus) within DMN, dACC and insula within SN, and
IPL within FPCN. Further, we showed that response inhibition
performance was associated with reduced interhemispheric
functional coupling of medial temporal lobe subsystem of DMN
and insula in SN, and correct design scores were associated with
functional coupling of bilateral IPL of FPCN. Our findings extend
previous studies on age-related intrinsic functional network
reorganization (Damoiseaux et al., 2008; Keiichi et al., 2012; Chan
et al., 2014; Grady et al., 2016) and indicate that the alterations
of interhemispheric functional coupling might also at least partly
underlie age-related executive function change.

Age-Related Executive Function
Alterations

In the current study, age was negatively associated with
performance in color-word inhibition (reaction time), category
switching task (fluency and accuracy), design fluency (percent

ratio of correct design), and sort recognition tasks. Performance
on these tasks assesses higher executive function, such as
inhibitory control, cognitive flexibility, and conceptual
reasoning. The previous cross-sectional (Ivnik et al., 1996;
Klein et al,, 1997; Harrington et al., 2017) and longitudinal
studies (Adolfsdottir et al., 2016) of the Stroop task have
indicated a negative relationship between response inhibition
and age after controlling for basic word naming and color
naming conditions. This negative relationship between category
switching performance and age seems to corroborate the
previous study indicating significant age-related effects in
category switching task (Wecker et al., 2005; Lanting et al., 2009).
Moreover, older adults were found to complete significantly
fewer designs than middle-aged adults in design fluency task
(Ready, 2010; Sanders and Schmitter-Edgecombe, 2012). Age has
also been negatively associated with scores of sort recognition
(Mattioli et al., 2014). These results reiterate the viewpoint that
higher executive function is vulnerable to aging.
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TABLE 4 | Mediation models on the relationship between age and D-KEFS scores.

D-KEFS task (Y) Brain region (M) Path a (X — > M) Pathb (M - > Y) Path c’(a — > Y) Pathc (a- > Y) Mediation path ab
CWIT inhibition scores Hippocampus (+24, —15, —21) Beta —0.005 —25.012 0.209 0.335 0.125
P 0.0003 0.046 0.006 0.00003 0.026
Cl [-0.007, —0.003] [-48.716, —3.061] [0.051, 0.394] [0.181,0.512] [0.013, 0.277]
Insula (£36, 21, 6) Beta —0.005 —27.078 0.206 0.334 0.128
P 0.0003 0.032 0.007 0.00002 0.027
Cl [-0.006, —0.003] [-51.450, —2.091] [0.057, 0.393] [0.183, 0.518] [0.015, 0.276]
Precentral Gyrus (+45, —9, 48) Beta —0.004 —24.826 0.232 0.334 0.102
P 0.001 0.048 0.003 0.00002 0.014
Cl [-0.006, —0.003] [-48.027, —4.394] [0.082, 0.387] [0.181, 0.510] [0.016, 0.245]
vmPFC (+6, 48,—18) Beta —0.003 —37.276 0.213 0.335 0.122
P 0.0009 0.0009 0.0005 0.00002 0.0003
Cl [-0.005,—0.001] [-57.702,—-17.681] [0.092, 0.356] [0.180, 0.517] [0.041, 0.262]
The percent ratio of Inferior Parietal Lobule (£60, —39, 45) Beta —0.004 29.821 —0.146 —0.251 —0.106
correct design scores P 0.0001 0.002 0.105 0.0007 0.014
Cl [-0.005, —0.002] [10.700, 52.456] [-0.332, 0.018] [-0.422, —0.109] [-0.221, —0.040]
Anterior Cingulate Cortex (£12, 33, 21) Beta —0.003 —33.278 —0.350 —0.250 0.100
P 3.04E-06 0.019 0.0006 0.001 0.015
Cl [-0.004, —0.002] [-60.171, —4.815] [-0.545, —0.182] [-0.424, —0.105] [0.022, 0.206]
Globus Pallidus (£24, 15, 6) Beta —0.004 —41.254 —0.407 —0.251 0.156
P 0.0001 0.002 0.0004 0.001 0.016
Cl [-0.005, —0.003] [-69.503, —5.897] [-0.610, —0.183] [-0.430, —0.107] [0.028, 0.290]
Putamen (£27, -3, 9) Beta —0.005 —29.378 —0.400 —0.251 0.149
P 0.0009 0.023 0.001 0.002 0.025
Cl [-0.006, —0.004] [-53.794, —3.423] [-0.646, —0.162] [-0.423, —0.1086] [0.021, 0.295]
Sort recognition Hippocampus (+24, —15, —21) Beta —0.005 —20.805 —0.266 —0.168 0.098
description scores P 0.0002 0.020 0.0004 0.013 0.015
Cl [-0.006, —0.003] [-40.696, —2.551] [-0.410, —0.123] [-0.295, —0.037] [0.019, 0.210]
Putamen (+£27, —3, 9) Beta —0.005 —27.758 —0.307 —0.168 0.139
P 0.001 0.012 0.0003 0.0166 0.005
Cl [-0.006, —0.004] [-49.604, —7.309] [-0.481, —0.143] [-0.302, —0.040] [0.039, 0.262]

In the model, age was the independent variable, each D-KEFS score was set to be the dependent variable. VMHC of brain regions significantly associated with age and D-KEFS score was set to be mediator, respectively.
Path “a” was the effect of independent variable on mediator, Path “b” was the effect of mediator on dependent variable with independent variable as covariates. Path “c”” was the direct effect of independent variable
on dependent variable with mediator being taken into consideration. Path “c” was the direct effect of independent variable on dependent variable without mediator being taken into consideration. Mediation path “ab”
was the effect of mediator on the relationship of the independent variable on the dependent variable. Gender, handedness, body mass index (BMI), FD, and total intracranial volume (TICV) were included as covariates.
Cl, confidence interval. The model with significant mediation effect was showed in bold fonts.
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FIGURE 2 | Mediation models on the relationship between age and CWIT
inhibition reaction times. The relationship between age and CWIT inhibition
reaction time was attenuated after controlling for VMHC of bilateral vmPFC.
However, the direct effect of age on CWIT inhibition reaction time was still
significant. Their relationship was therefore partly mediated by VMHC of
bilateral vmPFC. ***P < 0.001.

Age-Related Interhemispheric FC

Alterations

In the current study, age correlated negatively with VMHC
of vmPFC, pgACC, and hippocampus areas that belong to
the medial temporal lobe subsystem of DMN (Andrews-Hanna
et al., 2010). The medial temporal lobe subsystem has been
associated with episodic judgments about the personal future,
among other high-level executive functions (Andrews-Hanna
et al., 2010). Damoiseaux et al. (2008) have employed ICA and
showed that network covariation of the anterior part of DMN
inversely correlated with age. Further, FC density of the vmPFC
is decreased with age (Tomasi and Volkow, 2012). Previous FC
studies have indicated that the DMN may be one of the brain
networks most vulnerable to aging. Our results thus extend prior
work indicating that age affects the interhemispheric functional
coupling of the medial temporal lobe subsystem of DMN.

We observed that VHMC of bilateral dACC and insula
attenuated with aging, both of which were key components of
SN. The insula is involved in detecting and selecting salient
stimuli by combining endogenous and exogenous information,
and mediating interactions with other neurocognitive systems
(Seeley et al., 2007; Tim et al., 2007; Sridharan et al., 2008).
A body of studies have shown reduction of intra-network FC
of dACC and insula with aging (Keiichi et al., 2012; He et al,,
2014; Zhang et al., 2014). The inter-network FC profiles between
SN and visual network, as well as the SN and the anterior
part of the DMN, are powerful predictors of age (Keiichi et al.,
2012). These results are in line with the notion that SN is
one of the brain networks most vulnerable to aging (La Corte
et al., 2016). However, relatively few studies have examined the
interhemispheric FC strength of SN. There is one study showing
that FC strength of the bilateral insula negatively correlates with
age (Keiichi et al., 2012). Our findings confirm these results,
and further indicate that interhemispheric functional coupling
of dACC decrease with age increase, suggesting that these effects
extend to other nodes of the SN.

In the current study, VMHC of IPL (belonging to
FPCN) correlated negatively with age. IPL is involved
in adaptive cognitive control decision-making processes

(Vincent et al., 2008). With regard to neurocognitive aging, IPL
has shown an asymmetric response pattern in cognitive tasks
for older and younger adults: younger adults utilize the left IPL
more than older adults when ignoring irrelevant stimuli on
1-back memory task (Campbell et al, 2012). However, older
adults show stronger activation of the right IPL during target
detection than young adults (Geerligs et al., 2014b). These two
studies may emphasize the adapting response of IPL to external
cognitive control task for older adults. Grady et al. (2016) have
employed a graph theory method to show that, in older adults,
the bilateral IPL are functionally stronger connected with brain
cortices in the dorsal attention network than with classic brain
regions in FPCN, indicating the functional reorganization of
parietal regions for older adults. The current study added to this
literature in that IPL showed reorganization of interhemispheric
functional coupling in older adults. However, Madhyastha and
Grabowski, 2014 find that the FC between bilateral IPL is not
correlated with age in older subjects (aged 56-89), possibly
because FC between bilateral IPL is vulnerable to age at an early
stage (Siman-Tov et al., 2017).

The Relationship of Age-Related VMHC

Alterations and Executive Function

CWIT inhibition scores (reaction time) correlated negatively
with VMHC in vimPFC. The vimPFC is implicated in governing
goal-directed learning (Valentin et al., 2007; Sanne et al., 2009)
and decision-making (Sanne et al., 2009; Reber et al., 2017) for
outcome valuation. Previous fMRI studies have also suggested
that vmPFC is more heavily recruited during the processing of
incongruent trials in a spatial Stroop task, and its activation has
shown correlations with the efficiency of top-down cognitive
control (Araneda et al., 2018). fMRI studies have documented
an association between diminished activity in vmPFC and
poor performance on the Stroop task in pathological gamblers
(Potenza et al., 2003) and individuals with binge eating disorder
(Balodis et al., 2013), suggesting a pivotal role of vmPFC in
cognitive control. In line with this, the negative association
between VMHC of vmPFC and CWIT inhibition reaction times
confirms the key role of vmPFC in cognitive control, suggesting
that the functional coordination of vmPFC is also a sensitive
neural marker to age-related change in response to inhibition
performance. One possible explanation is that inhibition requires
a decision that is congruent on a complex goal rather than
an immediate response to stimuli; this process may depend on
the encoding of goal values by vmPFC (Reber et al., 2017). In
addition, we showed that VMHC of bilateral vmPFC mediated
the influence of age increase on CWIT inhibition reaction time,
indicating that age-related functional alterations of vmPFC might
be part of the neural mechanism underlying age-related decline of
response inhibition (Andrews-Hanna et al., 2007).

CWIT inhibition reaction time also correlated with VMHC
of the bilateral insula. The right insula has been emphasized
by its prominent role in saliency processing and initiating
attentional control during executive control behaviors (Eckert
et al,, 2009, 2010). The bilateral insula have been indicated
as common regions that are recruited in Go/NoGo, Flanker
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and Stimulus-response compatibility tasks (Morelli et al., 2015).
Their task-related activation levels are shown to correlate with
behavioral performance (Eckert et al, 2010; Morelli et al.,
2015), such as Stroop performance (Leung et al., 2000; Potenza
et al., 2003; Zysset and Schroeter, 2007; Balodis et al., 2013).
One rs-fMRI study finds a positive association between FC of
the bilateral insula with categorical verbal fluency test scores
(Keiichi et al.,, 2012). In line with these studies, our findings
show that insular VMHC numerically mediated the relationship
between age and CWIT inhibition performance, suggesting
that functional coupling of bilateral insula is, at least partly,
involved in neural mechanisms underlying age-related decline in
response inhibition.

In the current study, percent ratio of correct design scores
correlated positively with VMHC of IPL. A body of literature
has implicated that IPL is commonly involved in executive
function tasks, such as working memory, response inhibition,
interference control, and sustained attention (Langner and
Eickhoff, 2013; Cieslik et al., 2015; Krall et al., 2015). Moreover,
an accumulating literature has shown that performance in design
fluency task is positively associated with bilateral IPL gray matter
volume (Kramer et al., 2007; Possin et al., 2012). Furthermore,
interhemispheric IPL connectivity has shown to be reduced in
patients after pediatric arterial ischemic stroke, and D-KEFS
category fluency correlated positively with the interhemispheric
IPL connection in both these patients and healthy controls
(Kornfeld et al., 2018). In line with the study above, we also
found that age-related reductions in connectivity of bilateral
IPL contributed to attenuation of performance in design fluency
task. Successful design fluency task complement has been shown
to require processing of abundant bottom visual and motor
information under top-down cognitive control (Yana et al., 2010).
IPL comprises multimodal neurons for integration of auditory,
sensory, visual, and motor information (Daniel et al., 2015)
and receipt top-down regulation of dACC for cognitive control
(Harding et al., 2015), which is a candidate brain region to be
involved in design fluency task. In line with this point, VMHC
of IPL mediated the relationship between age and the percent
ratio of correct design scores (at trend level), suggesting that
IPL function plays a pivotal role in age-related performance
alteration of design fluency task. Our findings extend previous
ones that found age-related functional reorganization of FPCN
contributing to cognitive ability decline, suggesting that the
alterations of interhemispheric functional coupling of posterior
parietal cortex might also contribute to age-related performance
decline in design cognition.

Limitations

In the current study, there are some limitations that should
be noted. First, previous studies have indicated that aging
influences the brain in multiple ways, such as alteration
of cortical thickness, gray matter volume, and functional
organization. The current study shed light on alterations of
interhemispheric communication with aging, but in future
work, it will be important to study other kinds of brain
FC to investigate more comprehensive patterns of age-related
brain functional reorganization. For example, one could employ

connectome-based individualized prediction modeling (Jiang
et al,, 2018). Second, we did not perform test-retest examination
on independent data due to unavailability of a similar resting
fMRI data with similar age range and executive function test.
Future studies are thus needed to replicate our findings.

CONCLUSION

The current study highlights age-related interhemispheric FC
alterations and explores the links between these alterations and
executive function. Aging was associated with interhemispheric
FC alterations of brain areas belonging to medial temporal lobe
subsystem of DMN, insula, and dorsal ACC of SN, and IPL of
FPCN. Further, interhemispheric FC alterations contributed to
age-related executive function change. Our findings provide new
evidence for theories of age-related cognitive decline.
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There are controversial results if leukocyte telomere length (LTL) is related to structural brain
changes and cognitive decline in aging. Here, we investigated the association between LTL
and 1) global MRI correlates of brain aging such as brain parenchymal fraction (BPF) and white
matter hyperintensities (WMH) load and Fazekas score as well as 2) global (g-factor) and
domain-specific cognition such as attention/speed, conceptualization, memory, and
visuopractical skills. In total, 909 participants of the Austrian Stroke Prevention Study with
LTL, MRI, and cognitive tests were included. There were 388 (42.7%) men, and the mean age
was 65.9 years. Longer LTL was significantly associated with larger BPF (3 = 0.43, p < 0.001),
larger WMH load (8 = 0.03, p = 0.04), and score (B = 0.05, p = 0.04) after adjusting for age,
sex, vascular risk factors, and ApoE4 carrier status. The effect on BPF was more significant in
the subgroups of women (3 = 0.51, p = 0.001), age >65 years ( = 0.58, p = 0.002), BMI > 25
(B = 0.40, p = 0.004), education <10 years (B = 0.42, p = 0.002), hypertensives (B = 0.51,
p = 0.001), cardiovascular disease (CVD) (3 = 0.58, p = 0.005), non-diabetics (3 = 0.42,
p < 0.001), and Apoe4 non-carriers (B = 0.49, p < 0.001). The effect on WMH was significant
within the hypertensives (load: B = 0.04, p = 0.02), non-diabetics (load:B = 0.03, p = 0.01;
score: B =0.06, p = 0.02), in those with education <10 years (load: § = 0.03, p = 0.04; score:
B =0.07,p=0.02), in ApoE4 non-carriers (load: B = 0.03, p = 0.02; score: § =0.07, p=0.01)
and in subjects without CVD (score: B = 0.06, p = 0.05). We only observed a significant
association between LTL and the cognitive domain of attention/speed, which was confined to
the subgroups of BMI > 25 (B = 0.04, p = 0.05) and education <10 years (3 = 0.04, p = 0.05).
The effect of LTL on attention/speed was partly mediated in both subgroups by BPF (B = 0.02,
95% ClI = 0.01:0.08) when tested by bootstrapping. Our results support a strong protective
role of longer LTL on global brain volume which in turn may contribute to better cognitive
functions, especially in the attention/speed domain in the elderly.

Keywords: telomeres, leukocyte telomere length, brain aging, cognition, brain parenchymal fraction, white matter
hyperintensities, attention/speed
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INTRODUCTION

Telomeres are nucleoprotein protective caps at the end of the
chromosomes containing repeating hexamer, TTAGGG,
sequences. They shorten during mitosis due to the inability of the
DNA polymerase to complete replication, and due to oxidative
stress, they are particularly prone to. During life, there are two
phases of accelerated telomere attrition 1) during development up to
puberty due to the high number of cell divisions and 2) during aging
due to a high level of oxidative stress (1). Telomere shortening
destabilizes the genome and leads to the senescence of the affected
cells. Cellular senescence is part of the aging process at the
organismal level as well (2). In human epidemiological studies,
leukocyte telomere length (LTL) is used as a biological marker of
aging (3). LTL also reflects the telomere length of other cell types
within the body, which is called synchrony. The heritability estimate
of LTL is approximately 60%, while that of LTL shortening
approximately 30%. Shorter LTL is related to the presence of
vascular risk factors such as smoking, obesity, physical inactivity,
poor diet, hypertension, and type 2 diabetes mellitus (2, 3). It is
associated with age-related chronic vascular and degenerative
diseases, especially with Alzheimer's disease and stroke (2, 4).
Shorter LTL is also related to all-cause mortality in the elderly (5).

The role of telomeres in normal brain aging is debated. LTL,
as well as LTL attrition, has been associated with structural brain
changes on magnetic resonance imaging (MRI), including both
regional and global brain volumes as well as with white matter
hyperintensities (WMH) (6, 7). Results are particularly
inconsistent with the effect of short LTL on cognitive function
and decline. No relationship was observed in the Dallas Heart
Study (DHS) including 2606 subjects between LTL and cognition
(8), while recently 2 large meta-analyses studies found an
association between longer LTL and higher level of general
cognition (9) as well as better cognitive performance and better
memory, speed, and executive function (10). Also, longitudinal
studies reported associations between LTL attrition and cognitive
decline (11).

Studies investigating the effect of LTL on both brain structure
and cognitive function in a simultaneous way at the population
level are so far largely missing. Here, we tested the hypothesis
that longer LTL is related to 1) better structural preservation of
the brain such as larger brain parenchymal fraction (BPF) and
less WMH, 2) better cognitive performances including g-factor
and composite scores for attention/speed, conceptualization,
memory, visuopractical skills. We tested the hypothesis in a
large cohort of normal elderly participating in the Austrian
Stroke Prevention Study (ASPS) (12). We explored if the effect
of LTL on brain phenotypes is modified by the presence of risk
factors such as sex, age, hypertension, body mass index (BMI),
education, diabetes, cardiovascular disease (CVD), and ApoE4
carrier status using subgroup analyses. We also performed
mediation analyses to asses if the observed significant effects of
LTL on cognition are mediated by structural brain changes
(Figure 1). To our knowledge, this is the first study finding
evidence that the protective effect of LTL on the brain is highly

significant at the structural level and that this, in turn, may
transform into better cognition in the attention/speed domain.

METHODS

Participants

In the present study, we included 909 participants from the
ASPS, a community-dwelling cohort study in the elderly
population in the city of Graz, Austria, who underwent LTL
measurements along with MRI and cognitive tests (12). The
study was approved by the Medical Ethics Committee of Karl-
Franzens University of Graz. Written informed consent was
obtained from all study participants. The mean age of the
participants was 65.9 + 8 years (range: 46-90), 42.7% were
males, 69.4% hypertensives, 10.9% diabetics, and 40% had
CVD. The mean years of education were 11.3 + 2.6 (range: 9-
18 years). There were 28.3% former smokers and 11% current
smokers in the study sample. In total, 898 participants had the
ApoE4 genotypes, with 0.8% being homozygous and 19.3%
heterozygous carriers.

LTL Measurement

All 909 participants had LTL measurements. A detailed
description of the method was published previously (13). In
brief, DNA was extracted from EDTA whole peripheral blood
using the phenol-chloroform method. Two quantitative
polymerase chain reactions were used to measure telomere
repeat copy (T) and single-copy gene (36B4) (S). We
normalized the relative LTL (T/S ratio) using reference DNA
pooled from 24 subjects, and the final T/S ratio was calculated
according to Cawthon’s modified method (14). The median of
relative LTL was 0.61 (range: 0.05-2.60). The median of LTL was
0.61 (IQR: 0.47 to 0.82).

Brain MRI

All MRI scans were performed on 1.5T scanners using proton
density- and T2-weighted sequences. All punctate early confluent
and confluent WMH in the deep and subcortical white matter and
periventricular WMHs irregularly extending into the deep white
matter were marked and outlined on a transparency that was
overlaid on the proton density scan. Periventricular caps, pencil-
thin lining, and periventricular halos were not included for WMH
load measurement as these changes are considered to be of non-
ischemic origin. Independent from visual analysis, WMH load
measurements were done on proton density-weighted images on
an UltraSPARC workstation (Sun Microsystems, Santa Clara, CA)
by a trained operator using DISPImage. The operators used a
hardcopy overlaid by the transparency, with each single lesion
outlined by the experienced readers as reference. Every single
lesion was segmented on the computer image, and its area was
provided by the semi-automated thresholding algorithm
implemented in DISPImage. Each hyperintensity volume was
calculated by multiplying the area by slice thickness. Total
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Graz, Austria

2007 subjects randomly selected from the city of

A 4

909 Subjects with LTL(909), MRI (852)
& cognitive tests (891)

A

Description of the distribution of LTL,
cognitive functions, MRI correlates & risk factors in
the total cohort & subgroups

Table 1
Supp. Table 1

A

Correlation between LTL, cognitive functions, MRI
correlates & risk factors

Supp. Table 2

A 4

A\ 4

Model I age, sex
Model II: +Risk factors
Model III: +ApoE4 carrier status

Association of LTL & cognitive functions &
MRI correlates by linear regression with covariates

Table 2
Supp. Table 3

A 4

Model I, II and III

Subgroup analyses by linear regression

Sex: Men / Women | Age: <65y / >65y |
HT: No/Yes | BMI: <25 />25 |
Education: <10y />10y | DM: No / Yes |
CVD: No / Yes | ApoE4: non-carriers / carriers

Table 3
Supp. Table 4

Mediation between LTL and attention/speed by BPF
and WMH load and score using bootstrapping

Figure 2
Table 4

FIGURE 1 | Workflow of the study design. The current study cohort is a subsample of the Austrian Stroke Prevention Study. Risk factors include hypertension,
diabetes, cardiovascular diseases, body mass index, education, high-density lipoprotein, and smoking status. LTL, Leukocyte Telomere Length; HT, Hypertension;
DM, Diabetes Mellitus; CVD, Cardiovascular Disease; BPF, Brain Parenchymal Fraction; WMH, White Matter Hyperintensities.

WMH load in cubic millimetres was the sum of volumes of single
lesions in a given study participant. WMH load was available from
827 participants. WMH score was based on the Fazekas scale on
deep white matter changes where a score of 0 is an absence of any
white matter change, 1 is punctate foci, 2 is beginning confluence
of foci, and 3 is large confluent areas (15). WMH score was
available in 852 participants. Brain volume was calculated from the
T2-weighted spin-echo sequence using automated structural
image evaluation of atrophy'. BPF is the ratio of brain

'SIENEX, part of EMRIB Software Library; https:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/

parenchymal volume to total intracranial volume (16). BPF was
available in 739 subjects.

Cognitive Testing

For cognitive evaluation, participants went through a group of
tests to assess performance in the domains of attention/speed,
conceptualization, memory, and visuopractical skills. In detail,
information on the conduction of these tests is published
previously (12). The measures of the cognitive performance
were converted into z-scores by normalizing to the mean of
the group. G-factor, which is the first unrotated component of
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principal component analysis performed on the results of the
battery of cognitive tests, was used as a measure of global
cognition (17).

Covariate Analyses

Hypertension was coded as a categorical variable, and a participant
considered as hypertensive when there was a history of
hypertension or hypertension medication or mean systolic blood
pressure > 140 mm of Hg or mean diastolic pressure > 90 mm of hg.
Diabetes was defined as a history of diabetes, use of antidiabetic
treatment, or fasting blood sugar level >140 mg/dl. Cardiovascular
disease assumed to be present if there was evidence of cardiac
abnormalities known to be a source for cerebral embolism, evidence
of coronary heart disease, appropriate ECG findings, or if an
individual presented signs of left ventricular hypertrophy on
echocardiogram or ECG (12). Education was measured in years
of schooling, meaning the number of years a person attended school
including university and higher education programs. Smoking
status was assigned after asking each participant whether they
ever smoked or if they are currently smoking. It was coded in the
form of never, former, or current smoker. Participants were
genotyped for the presence of E4 allele using PCR-RFLP and
graded as heterozygous (presence of one allele), homozygous
(presence of two alleles), or absence of E4 allele (18).

Statistical Analyses

The statistical analysis was performed using IBM SPSS statistics
version 25°. The normal distribution of the variables was tested
using the Kolmogorov-Smirnov test and by visual inspection of
histograms. LTL measurement was transformed into z-scores
relative to the mean of the whole group. The z-transformation
was done by subtracting the mean LTL of the cohort from the
observed value of that individual and dividing by the standard
deviation. This was done to interpret the relative position of a
particular individual under the LTL distribution curve of the
cohort. The skewed distribution of WMH load was converted
into normal distribution by log transformation after adding 1 to
the volume. BPF was converted into percentage by multiplying
the value of fraction by 100 to facilitate the interpretation of the
results from linear regression. Cognitive tests had a normal
distribution. One outlier with a value of -5.95 within the
attention/speed domain was removed.

Co-variates for multiple linear regression models were selected
based on their correlation with outcome variables and LTL
(Pearson’s correlation p < 0.1) and/or based on previous reports
on their association with the phenotypes. Linear regression models
were used to test the effect of LTL on brain morphological measures
and cognition in the presence of age, sex, risk factors such as
hypertension, diabetes, cardiovascular disease, BMI, HDL, years of
education, smoking, and ApoE4 genotypes. Model I was adjusted
for age and sex, Model 11, additionally for hypertension, diabetes,
cardiovascular disease, BMI, education, HDL, and smoking status,
and Model III for ApoE4 carrier status. We formally tested the
collinearity amongst independent variables by calculating variance

*IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0.
Armonk, NY: IBM Corp.

inflation factors. The variance inflation factor for all independent
variables was <1.5, indicating almost no correlation between them.

Subgroup Analyses

We divided our cohort into subgroups based on sex (men/
women), age (< 65y/ > 65y), hypertension (normotensives/
hypertensives), BMI (normal weight: < 25 Kg/m?/overweight:
>25 kg/m?), education (basic education < 10y/ > 10y mid to high
education), diabetes (No/Yes), CVD (No/Yes), and ApoE4
carrier status (No/Yes).

The continuous variables age and BMI were used as covariates
in the subgroup analyses within the respective subgroups of age <
65y/ > 65y and, BMI < 25 /BMI >25), while years of education
was omitted due to only minimal variation left after stratifying
on educational status (basic education< 10 years subgroup
included 250 persons with 9 years and 366 with 10 years of
schooling; mid-high education subgroup > 10 years 213 with 13
years and 80 with 18 years of education). We also did not include
ApoE4carrier status as covariate in the ApoE stratified analyses
for the same reason (7 subjects homozygous, 173 heterozygous
for the ApoE4 allele, and 718 non-carriers.)

Due to a large number of statistical tests performed owing to
the explorative strategy of this study, we performed the Benjamini-
Hochberg procedure to control the false discovery rate (FDR). We
used a FDR of 0.05 to calculate the Benjamini-Hochberg critical
value and provide the adjusted p-values for each test.

We formally tested if the effect of LTL is modulated by the
risk factors by using the interaction terms namely (gender x
zLTL), (age x zLTL), (hypertension x zLTL), (BMI x zLTL),
(education x zLTL), (DM x zLTL), (CVD x zLTL), and (ApoE4
status x zLTL) in the model III of regression.

Mediation Analysis

In order to test if the effect of LTL (independent variable) on
attention/speed (dependent variable) is mediated either by BPF
or WMH, we used bootstrapping (PROCESS macro version
3.4)°. We applied model III including age, sex, risk factors
such as hypertension, diabetes, cardiovascular disease, BMI,
HDL, years of education, smoking, and ApoE4 genotypes as
covariates. Bootstrapping gives the estimates of direct and
indirect effects. The extent of the effect which was mediated
through BPF or WMH was calculated by repeating the sampling
procedure 5000 times. Effect sizes, as