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Reliable flood monitoring and prediction remain a challenge in data-scarce 
regions, particularly in arid and semi-arid environments. This study explores the 
integration of remote sensing data and machine learning techniques to improve 
flood detection and early warning capabilities in Lodwar Town of the Turkwel 
Basin, Kenya. This depended on finding a relationship between daily rainfall and 
Normalized Difference Water Index (NDWI). Among multiple rainfall products 
evaluated, Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) 
was selected due to its fine spatial resolution and performance. Daily NDWI time 
series derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) 
imagery were used as a proxy for water accumulation and flood indicators. A 
python-based Decision Tree Regressor (DTR) model was trained using the daily 
CHIRPS rainfall data with various lag times, along with auxiliary meteorological 
variables including relative humidity, wind speed, and mean temperature for the 
period from 2002 to 2024 to predict NDWI of Lodwar Town. The machine learning 
model substantially improved the correlation between rainfall and NDWI, raising 
the correlation coefficient by 25%. Spatial analysis of rainfall-NDWI correlation 
revealed that areas in the west, northwest, and southwest of Lodwar Town, with 
elevations between 508 m and 648 m have high correlation. Rainfall in these 
regions can serve as signal for potential rapid flooding with 0-day lag-time in 
Lodwar Town situated at an elevation of approximately 500 m. These areas are 
not necessarily the primary high rainfall sources, rather they act as signal zones 
for floods of Lodwar Town that can provide flood early warning information. The 
proposed methodology in this study can offer a practical approach to anticipatory 
action and flood risk reduction for vulnerable communities in remote regions 
with no or limited hydrometeorological stations.
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1 Introduction

Floods have become a pressing global issue, causing widespread devastation and 
economic losses. Globally, during 1990–2022 period 4,713 events were recorded impacting 
over 3.2 billion people, causing 218,000 + deaths, and inflicting more than $1.3 trillion in 
economic losses worldwide (Liu et al., 2024). In 2024, the Australian National University 
(ANU-led) Global Water Monitor reported that water-related disasters (mainly floods) 
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caused more than  $550  billion in losses, displaced 
roughly 40  million people, and resulted in nearly 8,700 deaths 
globally (Van Dijk et al., 2025).

Africa is one of the highly vulnerable continents to climate-
related disasters, with floods causing widespread disruption in 
recent years (WMO, 2025). For instance, devastating floods after 
consecutive years of below average rainfall in East Africa (Taye and 
Dyer, 2022; WMO, 2025) is a case in point. In East Africa, recurrent 
flooding driven by climate extremes and rising water levels affected 
over one million people in 2024 alone through displacement, loss 
of homes and livelihoods, damage to infrastructure, and limited 
access to clean water and basic services. More than 500 people lost 
their lives, and hundreds of thousands were displaced (IOM, 2024; 
UNICEF, 2024).

Floods in Kenya’s Turkana County have caused extensive damage 
over the years, impacting both the physical environment and the local 
economy. The Lodwar Town in the county has faced repeated flood 
disasters caused by the Turkwel River, a perennial river, that 
frequently overflows during the rainy season and the Kawalasee 
River, a seasonal tributary, prone to sudden flash floods (Taye, 2025). 
Significant flood events occurred in multiple years in the past decade, 
including years 2016, 2018, 2019, 2022, and 2024, each posing unique 
challenges to the local community (Korzenevica et al., 2024a,b). In 
2016, heavy rains caused rivers to overflow, leading to loss of lives and 
displacement of over 1,000 residents. Subsequent floods in 2019 
destroyed nine out of twelve boreholes supplying water to the town, 
affecting access to clean water (Korzenevica et al., 2024b). In 2022, 
rising waters submerged critical boreholes and irrigation schemes, 
further exacerbating water shortages and threatening food security 
for thousands (Korzenevica et al., 2024b). By 2024, poor drainage 
systems and inadequate waste management intensified the flooding 
problem, increasing health risks due to contaminated water sources 
(Wanguba et al., 2024).

To respond to the increasing flooding, one of the approaches is 
understanding the characteristics of the floods and their early 
signals through modelling approaches. Modelling floods using 
hydraulic and hydrological models requires high temporal 
resolution of historical rainfall and streamflow datasets, in addition 
to high-resolution digital elevation terrains data (Brázdil et al., 
2024; Ma et al., 2021; Rinat et al., 2021). However, many flood-
affected areas in Africa, which are predominantly lowlands and 
plains, lack sufficient historical high-resolution hydro-
meteorological datasets compared to other regions (Li et al., 2023; 
Zhang et al., 2022). This is the case for Lodwar Town in Kenya.

Recently, other approaches leveraged advanced technologies 
like radar for detecting and forecasting floods. These methods also 
utilize ultrasonic and infrared sensors to measure rainfall rates and 
water levels in real-time, providing timely warnings for floods 
(Martinaitis et  al., 2023; Mashaly and Ghoneim, 2018; Prakash 
et al., 2023). Obtaining advanced high-technology instruments and 
high-quality observed datasets is a significant challenge in 
developing countries in Africa, including Kenya, particularly in 
basins like the Turkwel, where ground observation datasets are 
scarce due to the absence of gauging stations. Consequently, 
remote sensing technology, utilizing satellite imagery, emerges as 
the most effective and viable method for detecting floods in areas 
with limited or no gauging stations available (Atefi and Miura, 
2022; Anushree and Singh, 2023; Sadiq and Imran, 2022).

Although Normalized Difference Water Index (NDWI), 
rainfall products, and machine learning have been applied in flood 
studies [e.g., Obada et al. (2025); Wedajo et al. (2024)], most efforts 
have focused on detecting flood sources in data-rich regions. Such 
approaches remain limited in areas where hydrological 
observations and monitoring infrastructure are scarce.

This study develops a low-cost framework tailored for data-
scarce regions that not only identifies rainfall signal zones but also 
demonstrates potential for flood forecasting when forecasted 
rainfall is available. Using Lodwar Town, Kenya, as a case study, the 
integration of freely available satellite rainfall products and 
machine learning offers a scalable approach for enhancing flood 
detection and early warning.

2 Study area

The Turkwel River, also known as the Suam River at its source is 
located in the northwest of Kenya and flows to the north covering a 
total area of 23,740  km2. The river originates at Mount Elgon 
(4,321 m.a.s.l) and drains into Lake Turkana (361 m.a.s.l) flowing a 
total journey of 125 km as shown in Figure 1 (Gabriel Stecher, 2019). 
The climate of the Turkwel River basin in northern Kenya is 
characterized as semi-arid in the highlands and arid in the lowlands. 
This region experiences significant rainfall variability, with a bimodal 
annual rainfall pattern as shown in Figure 2, that experiences long 
rains from March to May peaking in April and short rains from 
October to December peaking in October. In the higher south-
western area, annual rainfall ranges from 900 to 1,750 mm, while the 
arid lowlands receive much less, typically between 100 to 400 mm per 
year (Gabriel Stecher, 2019; Hirpa et al., 2018). This river is the main 
source of riverine flood in the Lodwar Town. Additionally, the 
Kawalasee River is the second most significant source of flooding in 
Lodwar Town, next in magnitude to the Turkwel River. It is a seasonal 
tributary of the Turkwel that drains the north-western part of the 
basin toward Lodwar. Unlike the perennial Turkwel, the Kawalasee 
typically remains dry during prolonged dry seasons but becomes a 
powerful flash flood channel during periods of intense rainfall.

Lodwar Town that covers a total area of 17 km2 is located in 
north-western Kenya in Turkwel Basin, serving as the capital of 
Turkana County.1 It is situated west of Lake Turkana along the A1 
Road, which connects it to other major towns and regions in the 
area. The town lies between latitudes 3°40′ and 4°30’ North and 
longitudes 35°36′ and 36°40′East, making it a strategic point in 
the region. Surrounded by geographical features such as the Loima 
Hills to the west, Lodwar is characterized by its hot desert climate 
with mean temperatures around 29.4 °C (Figure 3) and maximum 
reaches up to 38 °C. The Potential Evapotranspiration (PET) is 
high due to the hot, dry climate. Estimates range from about 2,000 
to 2,500 mm per year. As the largest town in the region, Lodwar 
plays a pivotal role in  local trade and serves as a gateway to 
exploring the unique landscapes and cultures of Turkana County 
(Gabriel Stecher, 2019). The location of the town is shown in 
Figure 1 relative to Kenya and Lake Turkana.

1  https://www.lodwarmunicipality.go.ke
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FIGURE 1

Location of Lodwar Town within the Turkwel Basin and Lake Turkana, Kenya.

FIGURE 2

Spatial mean monthly rainfall of Turkwel Basin for the period from 2002 to 2024.
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2.1 Datasets

2.1.1 Climatological datasets
For the Lodwar Town due to unavailability of in-situ rainfall 

observations for 2002–2024, we used multiple gridded, satellite-based 
precipitation products to obtain relationship between rainfall and NDWI 
and delineate flood-prone zones. Datasets with high spatial and temporal 
resolution and long-term coverage were selected: CHIRPS (0.05° × 0.05°, 
infrared-based, 1981–present; Funk et  al., 2015). The Multi Source 
Weighted Ensemble Precipitation (MSWEP, 0.1° at 3-hourly intervals, 
combining gauges, satellite, and reanalysis data Beck et al., 2017). The 
Integrated Multi-satellitE Retrievals (IMERG, 0.1° × 0.1° at half-hourly 
intervals, merged GPM satellite data Rajagopal et al., 2021; Saouabe et al., 
2022). The Tropical Applications of Meteorology using Satellite 
(TAMSAT, ~0.0375° daily estimates from Meteosat cold cloud duration 
data Maidment et al., 2014; Tarnavsky et al., 2014).

For flood forecasting, CHIRPS-GEFS was used, which blends 
CHIRPS observations with NCEP’s GEFS to create bias-corrected 
forecasts (5-, 10-, and 15-day totals); in this study, we focus on 10-day 
forecast anomalies via the ClimateSERV portal to capture impending 
rainfall signals. Additionally, we  retrieved daily meteorological 
variables (relative humidity at 2 m, wind speed at 2 m, and mean 
temperature at 2 m) for the Turkwel Basin for the period 2002–2024 

from NASA’s POWER portal. These climate predictors were employed 
as input features in a Decision Tree Regression (DTR) model to 
simulate the NDWI time series and thus infer flood dynamics. The full 
list of input variables is given in Table 1.

2.2 Satellite products for obtaining NDWI

NDWI is a remote sensing index used to detect and monitor 
water bodies. Table 2 summarizes key non-commercial satellite 
imagery products for NDWI time series generation. Moderate 
Resolution Imaging Spectroradiometer (MODIS), a NASA-
operated satellite sensor, provides daily revisit capability with a 
250 m spatial resolution, making it suitable for detecting short-
lived flood events. Sentinel-2 offers higher spatial resolution at 
10 m but with a 5-day revisit period, which may be less effective 
for capturing brief flood events. In this study, Aqua MODIS data 
was utilized for time-series analysis and machine learning to 
investigate the relationships between water pixel dynamics and 
daily rainfall in Lodwar Town. Sentinel-2 data was employed to 
assess historical flood events by mapping and examining the spatial 
distribution of flood inundation during the rainy seasons (March–
May and October–December).

FIGURE 3

Monthly mean Temperature of Lodwar Town for the period from 2002 to 2024.

TABLE 1  Input variables and output used for machine learning training.

Inputs Output Remark

Rainfall (CHIRPS, TAMSAT, IMERG, MSWEP) Daily NDWI (2002–2024) Rainfall from 0 to 4-days lag time Daily (2002–2024)

Date features (MMDD) Daily (2002–2024)

Humidity (%) Daily (2002–2024)

Wind speed at 2 m Daily (2002–2024)

Mean Temperature at 2 m Daily (2002–2024)

https://doi.org/10.3389/frwa.2025.1683545
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3 Methodology

3.1 Preliminary assessment

In data-scarce regions where no instrumental flood records are 
available, community-based data collection provides critical 
context for analysis. To support this approach, a stakeholder 
workshop was held in Lodwar from May 2021–2023 under the 
CLARE PALM-TREEs project, hosted by the International Water 
Management Institute (IWMI) following the establishment of 
Turkana’s Climate Information System (CIS). The workshop 
engaged approximately 30 participants, including representatives 
from county government departments, local meteorological 
services, NGOs, academic institutions, and community leaders, 
ensuring that both scientific expertise and local knowledge 
informed the discussions.

Field visits and participatory mapping exercises identified 
flood “hot spots,” including Napetet village and the confluence of 
the Turkwel and Kawalasee rivers, validating remote sensing–
derived inundation zones. Community members highlighted the 
multi-dimensional impacts of floods, such as borehole 
submergence, riverbank erosion, and damage to housing and 
infrastructure. These insights directly informed the study by (i) 

refining the identification of flood prone areas, (ii) contextualizing 
rainfall–NDWI correlations with observed flood experiences, and 
(iii) emphasizing practical priorities such as integration of 
traditional knowledge with scientific forecasting and early warning.

Discussions further clarified the types, sources, and seasonality 
of floods affecting the town. Participants reported two primary 
flood types: riverine flooding from Turkwel River overflow and 
flash flooding from the seasonal Kawalasee River. The major flood 
season occurs from March to May, peaking in April, with a 
secondary season from October to December, peaking in October.

Stakeholders also noted a perceived increase in rainfall in 
recent years, identifying this as a key driver of more frequent 
flooding, and highlighted the expansion of Lake Turkana as a 
visible indicator of this trend. These community observations were 
subsequently examined and validated using remote sensing data. 
Rainfall trends were analysed using the CHIRPS dataset spanning 
from 1981 to 2024, while changes in the surface area of Lake 
Turkana were assessed using Sentinel-2 imagery from 2018 to 
2024. As illustrated in Figure 4, the CHIRPS data confirms a rising 
trend in annual rainfall in Turkwel Basin. Additionally, Figure 5 
shows that the surface area of Lake Turkana expanded by 
approximately 585 km2 during the 2018–2024 period. The Blue 
color indicates the expanded area throughout the Lake Turkana.

TABLE 2  Common types of non-commercial satellite imagery products.

Product name Starting 
period

Spatial resolution Temporal 
resolution

Cloud cover loss (Dhillon et al., 2023)

Landsat 7 1999 30 meters 16 days High (30%)

Landsat 8 2013 30 meters 16 days High (30%)

Sentinel-2 2015 10 meters 5 days High (30%)

MODIS 1999 250 meters 1–2 days Low (2%)

Aqua MODIS 2002 250 meters 1–2 days Low (2%)

Terra MODIS 1999 250 meters 1–2 days Low (2%)

FIGURE 4

Spatial mean of Turkwel Basin’s annual rainfall from 1981 to 2024.
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3.2 NDWI computation

Land surface conditions and rainfall patterns that contribute to flood 
risks can be detected using remote sensing technologies. By monitoring 
changes in vegetation, soil moisture, rainfall, and water bodies over time, 
remote sensing can help identify areas that are particularly vulnerable to 
flooding (Liu et al., 2022). This information is crucial for developing 
effective flood management strategies in flood-prone regions. However, 
freely available satellite imagery products have varying spatial and 
temporal resolutions, time frames and different cloud cover effects. This 
demands careful investigation of a suitable satellite imagery product for 
detecting historical floods for a given location. This is through the use of 
NDWI, which is a proxy and reference as observed data for inundated 
areas that capture pixels covered with water.

Historical flood events were identified by generating and analysing a 
time series of the NDWI using Google Earth Engine (GEE).2 The NDWI 
is a remote sensing index used to detect and monitor water bodies, 
including lakes, rivers, and wetlands. It is calculated by subtracting the 
near-infrared (NIR) band from the shortwave infrared (SWIR) band and 
then dividing it by the sum of the two bands (Liu et al., 2022; Mondejar 
and Tongco, 2019). The NDWI time series derived from satellite imagery 
allows for correlation with historical rainfall data, which can help identify 

2  https://code.earthengine.google.com/

bd7ca6c861565752b95e90bf022328f2

the locations of rainfall events that best correlate with the generated 
NDWI values. Therefore, satellite imagery products capable of generating 
historical daily NDWI time series for specific locations and exhibiting 
strong correlations with rainfall are suitable for detecting potential 
flooding. Moreover, areas demonstrating strong NDWI–rainfall 
correlations can be identified as key rainfall signal zones, serving as early 
indicators of flood risk in Lodwar Town. Signal zones are areas where 
rainfall shows a strong, consistent correlation with downstream flooding, 
serving as early indicators of flood events.

The NDWI is computed using the following formula.3

	

( )
( )

−
=

+

NIR SWIR
NDWI

NIR SWIR

The NDWI values correspond to the following ranges:
0.2–1 ➔Water surface, 0.0–0.2 ➔ Flooding, humidity, −0.3–0.0 

➔ Moderate dry non-aqueous surfaces, −1–−0.3 ➔ Dry.
The generated NDWI values range between −1 and 1, representing 

the spectrum from water surface to dry. However, the focus is mainly 
on detecting flood events, which corresponds to NDWI values above 
zero. Therefore, to simplify the analysis and achieve maximum 
correlation with rainfall values, all NDWI values less than zero are 
replaced with zero. By setting negative NDWI values to zero, the 
analysis can concentrate on capturing the extent and duration of flood 
events, which is crucial for understanding the relationship between 
NDWI and rainfall patterns in the region.

3.3 Machine learning: decision tree 
regression

Decision Tree Regression (DTR) was selected for this study due 
to its ability to model nonlinear relationships between NDWI, daily 
rainfall, temporal features (month and day), and lagged rainfall 
variables without extensive pre-processing. Incorporating lag times 
allows the model to capture delayed hydrological responses that are 
critical for early flood detection (Elsayed et al., 2024; Jena et al., 2023). 
While ensemble methods like Random Forests or Gradient Boosting, 
and deep learning approaches, can offer higher predictive accuracy, 
they require larger datasets and many input variables to achieve 
optimal performance, which may not be  feasible in data-scarce 
regions. DTR provides a practical balance between predictive 
performance, simplicity, and interpretability, making it well-suited for 
operational flood early warning in regions with limited 
hydrometeorological data (Meng and Jin, 2023).

The Decision Tree Regression (DTR) approach was implemented 
within a Jupyter Notebook (Python) of Decision TreeRegressor 
package to develop a predictive model. The Decision TreeRegressor 
python package is a powerful machine learning method used for 
predicting continuous target variables by modelling the relationship 
between input features and the output. This algorithm operates by 
splitting the dataset into smaller subsets based on feature values, 
effectively creating a tree-like structure where each internal node 

3  https://eos.com/make-an-analysis/ndwi

FIGURE 5

Expansion of Lake Turkana from 2018 to 2024 (The Blue colour 
indicates the expanded area).
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represents a feature decision, and each leaf node represents a predicted 
outcome (Pedregosa et al., 2011).

The model can handle both numerical and categorical features, 
providing flexibility in its application. Users can control various 
hyperparameters, such as maximum depth and minimum samples per 
leaf, to prevent overfitting and improve generalization to unseen data. 
Once trained, the model can predict outcomes for new data points 
using its predict function, making it suitable for real-time applications 
in various fields, including finance and environmental science 
(Buitinck et al., 2013). The dataset was randomly divided into training 
(80%) and validation (20%) subsets. The training data were used to fit 
the Decision Tree Regression (DTR) model, while the validation data 
were reserved to independently evaluate predictive performance. In 
addition, we  assessed input importance by extracting feature 
importance scores from the DTR model in scikit-learn, which are 
based on the reduction in Coefficient of Correlation (CC) error 
attributed to each predictor across all decision nodes. The normalized 
scores indicate the relative contribution of each input variable to 
streamflow prediction.

This machine learning approach enables more accurate modelling 
of the relationship between lagged rainfall, auxiliary meteorological 
variables, and NDWI, thereby enhancing flood monitoring and 
prediction in the region. Additionally, it improves the correlation 
between input climate features and NDWI by optimizing the model 
through training, leading to better representation of surface water 
dynamics associated with flood events.

Model hyperparameters were calibrated for Lodwar Town to 
optimize predictive accuracy. The selected parameters are summarized 
in Table 3. These values were selected to ensure a balance between 
model complexity and generalization, avoiding both overfitting 
and underfitting.

3.4 Performance evaluation

Four rainfall products of CHIRPS, MSWEP, IMERG, and 
TAMSAT were evaluated on their ability to detect floods represented 
by NDWI for Turkwel Basin’s Lodwar Town generated from Aqua 
MODIS. Each rainfall product is evaluated using the correlation 
coefficient (CC) metric with the NDWI. A higher CC value suggests 
a stronger correlation between rainfall at a given location and NDWI 
on potential flooded areas that helps to prepare a model to predict the 
flood in the Lodwar Town.

The correlation coefficient is a statistical measure that quantifies 
the strength and direction of the linear relationship between two 
variables. It ranges from −1 to 1, with −1 indicating a perfect negative 
correlation, 0 indicating no correlation, and 1 indicating a perfect 
positive correlation (Schober et al., 2018).

	

( )( )
( ) ( )

∑ − −
=

∑ − −

, ,

2 2
, ,

i o o i c c

i o o i c c

ND ND RF RF
CC

ND ND RF RF

Where ,i oND  is the NDWI of the ith day; ,i cRF  is the rainfall of ith 
day; and OND  the average of all the daily NDWI values, and CRF  is 
the average of all daily rainfall values.

After the CC evaluation, the P-test was carried out whether a 
sample correlation coefficient 𝑟 provides sufficient evidence to 
conclude that a true population correlation (𝜌) exists between two 
variables, rather than the observed correlation being due to chance 
(Turney, 2024).

	 ( ) = − 2 1 F ||;t||;||;dfp

Where F is the cumulative distribution function (CDF) of the 
t-distribution with df degree of freedom. Then the t distribution is 
calculated as.

	

−
= = −

− 2

2t with df n 2
1

r n

r

Where, n is the sample size and if p < 0.05: statistically significant 
and if p > 0.1 not statistically significantly.

4 Results

4.1 NDWI data availability analysis

Among the available satellite imagery products, Aqua MODIS 
was selected for this study due to its high temporal resolution, 
which is essential for capturing short-duration flood events 
(Table 3). Although Landsat 7, Landsat 8, and Sentinel-2 offer 
finer spatial resolution (10–30 m), their longer revisit periods 
(16 days for Landsat and 5 days for Sentinel-2) increase the 
likelihood of missing dynamic hydrological events. In contrast, 
Aqua MODIS provides daily observations with a moderate spatial 
resolution of 250 meters and minimal cloud cover loss (~2%) 
(Dhillon et al., 2023), enabling the generation of historical daily 
NDWI products with low noise. This makes Aqua MODIS 
particularly suitable for temporal analyses, such as correlating 
daily NDWI with rainfall for flood monitoring. For analyses that 
require higher spatial detail, such as mapping flood extent, 
Sentinel-2 was employed due to its finer spatial resolution.

TABLE 3  Parameters of the Decision Tree Regression (DTR) for Lodwar Town NDWI.

S. No Parameter Description Calibrated value

1 max_depth Controls the maximum depth of the tree, balancing model complexity to avoid underfitting or overfitting. 5

2 min_samples_leaf Specifies the minimum number of samples required to be at a leaf node, helping to prevent the creation of 

leaves with very few samples, thus improving generalization.

4

3 min_samples_split Denotes the minimum number of samples required to split an internal node, set to 2 in this case to allow 

splits when there are at least two samples.

2

https://doi.org/10.3389/frwa.2025.1683545
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


Lakew et al.� 10.3389/frwa.2025.1683545

Frontiers in Water 08 frontiersin.org

FIGURE 6

Spatial mean of April rainfall from 2002 to 2024 for Turkwel Basin per year.

4.2 Rainfall analysis

Table 4 compares the four rainfall datasets, revealing that CHIRPS 
and MSWEP exhibit the strongest alignment with NDWI, with 
correlation coefficients of 0.51 and 0.53, respectively; both correlations 
are statistically significant (p < 0.001). This suggests they are more 
effective in capturing water pixels (flooded area) represented by the 
daily NDWI generated from Aqua MODIS product for the period 
2002–2024. Both CHIRPS and MSWEP, along with TAMSAT, have a 
lag time of 0 days for the highest correlation values, indicating that 
their rainfall estimates have an immediate impact on potential flood 
generation in the Lodwar Town.

In contrast, IMERG shows a significantly lower correlation 
coefficient of 0.13 and a lag time of 2 days. This indicates that IMERG 
is not suitable for flood analysis and poor to capture flood events in 
the region compared to the other rainfall products. The TAMSAT 
rainfall shows relatively average performance compared with the other 
rainfall products with CC of 0.47 to capture the NDWI of 
Lodwar Town.

Both MSWEP and CHIRPS rainfall products exhibited 
comparable performance. However, CHIRPS was selected for further 
analysis due to its finer spatial resolution, making it more suitable for 
localized flood assessment. Following its selection as the most 
appropriate rainfall dataset for the Turkwel Basin and Lodwar Town, 
a detailed analysis of the spatial distribution of average monthly 

rainfall was carried out for the period 2002 to 2024 (Figure 2). Figure 2 
indicate that in the Turkwel Basin, peak rainfall occurs in April, 
followed by May, marking the onset and progressive intensification of 
the wet season. During the October–December rainfall window, 
October exhibits the highest rainfall. Consequently, April and October 
have been identified as the months with maximum rainfall, 
establishing clear temporal benchmarks for focused flood analysis in 
Lodwar Town. Concentrating efforts on these periods allows for 
targeted examination of rainfall patterns that may serve as indicators 
of potential flood-prone areas.

Following the bar graph presented in Figure  2, a time-series 
analysis of CHIRPS total rainfall for April and October was conducted 
(Figures 6, 7). This analysis aimed to identify the year with the highest 
cumulative rainfall in the Turkwel Basin. The results indicate that 
April 2018 recorded the highest rainfall during the 2002–2024 period, 
while October 2019 exhibited the peak October rainfall within the 
study timeframe. “This analysis indicates that the October 2019 flood 
was primarily driven by the intense rainfall that occurred within that 
month, whereas the April 2018 flood was associated with the 
cumulative effect of successive peak rainfall. To validate these findings, 
daily Aqua MODIS-derived NDWI data for Lodwar Town were 
compared between the 2 years corresponding to these peak rainfall 
months. Figure 8 depicts the NDWI time series: in April 2018, the 
index shows multiple moderate peaks, indicating sustained periods of 
inundation, whereas October 2019 features a single, sharp peak, 

TABLE 4  Correlation coefficient (CC) performance of different rainfall products with the Aqua MODIS NDWI of Lodwar Town.

Rainfall type CC Lag time

CHIRPS 0.51 0 day

IMERG 0.13 2 days

TAMSAT 0.47 0 day

MSWEP 0.53 0 day

Bold values indicate the highest correlation coefficients among the rainfall products.
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reflecting a more acute flood response. These contrasting patterns 
underscore distinct flood dynamics between the two events. The 
similar temporal patterns observed between CHIRPS-derived rainfall 
and MODIS-based NDWI confirm that both datasets consistently 
capture flood events in Lodwar Town. This conclusion is further 
validated by community insights from a workshop held on May 2025, 
as part of the PALM-TREEs project in Lodwar. Participants including 
residents and government stakeholders noted October 2019 as the 
most severe recent flood, reflecting extensive damage and confirming 
the timing identified through remote sensing.

The spatial flood-inundation maps derived from Sentinel-2 
NDWI for Lodwar Town (2018–2023) with April results in Figure 9 
and October results in Figure 10 provide independent confirmation 
of the flood peaks identified through Aqua MODIS NDWI and 
CHIRPS rainfall time series. April 2018 shows the most widespread 
inundation during the MAM season, while October 2019 exhibits 
notably high flood coverage in the OND season. These Sentinel-2 
observations reinforce the conclusion that April 2018 and October 
2019 corresponded, respectively, to the wettest and most flood-
prone periods.

FIGURE 7

Spatial mean of October rainfall from 2002 to 2024 for Turkwel Basin per year.

FIGURE 8

Daily Aqua MODIS NDWI time series of Lodwar Town for 2018 and 2019.
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FIGURE 10

Sentinel-2 maximum NDWI spatial of October for the Lodwar Town for 2018–2023.

FIGURE 9

Sentinel-2 maximum NDWI spatial map of April for the Lodwar Town for 2018–2023.
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However, Sentinel-2’s ability to capture every flood event is limited 
by its optical nature: cloud cover and revisit intervals can result in 
missed inundation events. In contrast, MODIS, despite its coarser 
spatial resolution, offers daily coverage and composites that enable the 
monitoring of flood dynamics on a consistent temporal basis. Thus, 
combining Sentinel-2’s detailed spatial inundation mapping with 
MODIS’s temporal consistency yields a more robust framework for 
flood analysis.

Figure 11 illustrates the spatial distribution of mean April and 
October rainfall (in millimetres) across the Turkwel Basin. The 
northern and north-eastern sectors of the basin exhibit the lowest 
rainfall, whereas the southern and south-western regions receive the 
highest rainfall in the basin. These spatial variability in April and 
October rainfall suggests that the southern and south-western parts 
of the basin are likely the primary sources of flooding due to their 
significantly higher rainfall inputs.

In contrast, Figure  12, which presents the NDWI–cross-
correlation (CC) map, reveals that areas exhibiting the highest 
correlation coefficients with the NDWI time series of Lodwar Town 
are situated near the town and receive relatively low rainfall. This 
observation aligns with Figure  11, which shows that these high-
correlation regions correspond to zones with lower rainfall levels, 
highlighting an inverse relationship between rainfall amount and 
correlation strength with NDWI in Lodwar. Therefore, the integrated 
analysis of Figures  11, 12 reveals a key insight that the regions 
exhibiting high NDWI cross-correlation with Lodwar Town are not 
the primary sources of flooding, as they do not experience the highest 
rainfall intensities. Instead, these areas may function as critical flood 
signals. When significant rainfall does occur in these proximal zones, 
the likelihood of short-lived flooding events impacting Lodwar Town 
increases substantially.

The performance evaluation of rainfall products, as shown in 
Table 4 and Figure 12, revealed that the highest cross-correlation (CC) 
between the NDWI time series of Lodwar Town and rainfall data was 
0.51. This moderate correlation indicates the need for the application 
of additional machine learning techniques to strengthen the predictive 

relationship. Integrating remote sensing-based variables as input 
features can further improve the model’s ability to represent NDWI 
dynamics and enhance flood detection in the region.

4.3 Machine learning application

To assess the contribution of each variable, an input importance 
analysis was performed, as shown in Figure 13. The results indicated 
that rainfall with zero-day lag (RF_0DayLT) was the most significant 

FIGURE 11

The spatial distribution of April and October rainfall throughout the Turkwel Basin.

FIGURE 12

Rainfall-NDWI correlation coefficient map of the Turkwel Basin 
based on 2002–2024 data.
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FIGURE 13

Relative importance of meteorological variables and date features used as inputs in the machine learning model.

input, followed by relative humidity, date features (MMDD), and 
mean temperature. In contrast, rainfall data with one-day or greater 
lag (RF_1DayLT, RF_2DayLT, RF_3DayLT) contributed minimally, 
suggesting that in Lodwar Town, rainfall impacts flood conditions 
almost instantaneously. Among the input variables, RF_3DayLT 
exhibited relatively low importance, followed by RF_2DayLT and 
wind speed, indicating their limited contribution to the model’s 
predictive performance compared to other features.

The application of the DTR algorithm from the Python machine 
learning library resulted in a substantial improvement in the 

correlation coefficient between CHIRPS rainfall data and the NDWI 
of Lodwar Town, increasing from 0.51 (as shown in Table  4 and 
Figure 12) to 0.64 (Figure 14). This enhancement was achieved by 
training the DTR model using CHIRPS rainfall with various lag times, 
along with auxiliary meteorological variables such as mean 
temperature, humidity, wind speed, and dates. The trained model was 
then used to predict daily NDWI values derived from Aqua MODIS 
observations for Lodwar Town.

Although the correlation improvement from 0.51 to 0.64 may 
appear modest, it has practical significance for flood monitoring 
and early warning in data-scarce regions. The higher correlation 
indicates that rainfall signals are more accurately captured by the 
NDWI-based model, allowing for more reliable identification of 
“signal zones” where rainfall is likely to trigger flooding 
downstream. By incorporating lag times, the model provides 
actionable lead time identifying areas where rainfall can potentially 
cause flooding in Lodwar Town within 0 day. Furthermore, if 
forecasted rainfall with a 7-day lead time or more is available, it 
could significantly enhance preparedness by allowing authorities 
and communities to plan and implement mitigation measures in 
advance. This enhanced predictive capacity enables timely alert 
dissemination, evacuation planning, and targeted monitoring, 
thereby reducing flood risks even in regions with limited 
hydrometeorological data.

The blue marked highlighted spot areas that have high correlation 
coefficients encircled in red in Figure 14 indicate locations where 
CHIRPS rainfall data exhibits significant correlation (correlation 
coefficients >0.6) with daily NDWI. These regions, despite receiving 
relatively low rainfall (Figure 11), demonstrate a strong association 
with NDWI fluctuations in Lodwar Town. This suggests that these 
areas act as signal zones, where significant rainfall events are indicative 
of an increased likelihood of flooding in Lodwar Town, despite not 
being the primary sources of floodwaters. As such, these regions serve 
as valuable early-warning indicators of flood risk rather than direct 
contributors to flood generation.

FIGURE 14

Rainfall- NDWI coefficient of correlation map after machine learning.
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These zones are in the west, north-west, and south-west of Lodwar 
Town. Rainfall observed in identified flood indicator areas with 
elevations ranging from 508 m to 648 m. This flooding occurs with a 
0-day lag time, as the town is situated at approximately 500 m 
elevation. Therefore, model result from machine learning revealed 
that, if forecasted rainfall data from the identified areas is available, it 
is possible to forecast potential flooding events in the town.

4.4 Predictive model evaluation

The trained DTR model then was applied to predict daily 
NDWI values for the year 2018 a period marked by high rainfall 
and notable flood events in Lodwar Town utilizing 10-day 
forecasted CHIRPS-GEFS rainfall data along with auxiliary 
meteorological variables. This evaluation aimed to assess the 
model’s capability to reproduce observed NDWI dynamics and 
capture flood for the year 2018 using the 10-day forecasted 
CHIRPS-GEFS rainfall data in Lodwar Town.

The evaluation of 10-day CHIRPS-GEFS rainfall forecasts for the 
Turkwel Basin reveals a consistent positive bias compared to observed 
CHIRPS data, indicating that bias correction is essential before 
integrating these forecasts into machine learning models. By analysing 
paired historical forecast and observed values, an empirical bias-
correction formula was derived to recalibrate future forecasts.

To correct the CHIRPS-GEFS precipitation forecasts, 
we  applied a simple bias correction using observed CHIRPS 
rainfall. First, the spatially averaged rainfall over the study basin 
was computed for both CHIRPS (observed) and CHIRPS-GEFS 
(forecasted) for the period 2002.–2024. The bias-corrected forecast 
was then calculated by scaling the CHIRPS-GEFS forecast 
according to the ratio of observed CHIRPS rainfall to the CHIRPS-
GEFS forecast:

	
= ∗ CHIRPS

c GEFS
GEFS

PP P
P

where cP  is the bias-corrected forecast, GEFSP  is the original 
CHIRPS-GEFS forecast, and CHIRPSP  and GEFSP  are the spatially 
averaged rainfall values over the basin for the historical period.

This method ensures that the forecasted rainfall aligns with the 
long-term observed rainfall climatology. Validation was performed by 
comparing the bias-corrected CHIRPS-GEFS forecasts with the 
observed CHIRPS rainfall, which showed improved agreement and 
reduced systematic over- or underestimation of rainfall over the basin.

Application of this bias correction results in adjusted CHIRPS-
GEFS rainfall estimates that better reflect both the magnitude and 
temporal variability of observed CHIRPS values, as demonstrated in 
Figure 15. Notably, once corrected, these forecasts more accurately 
predict enhanced water pixel prevalence crucial indicators of flood-
prone zones and used to validate the year of 2018 NDWI using the 
machine learning model. Ultimately, obtaining improved forecast 
accuracy will strengthen machine learning models tasked with 
identifying flood prone areas in Lodwar Town by capturing the 
NDWI values.

The ML (DTR) model achieved a correlation coefficient of 0.66 
between the predicted and observed NDWI, indicating a 
substantial improvement in performance and demonstrating the 
utility of machine learning for capturing flood indicators for the 
high rainfall recorded year 2018. Despite the overall strong 
agreement, visual inspection of Figure 16 reveals that the model 
tends to underestimate certain NDWI peak values. While the 
general temporal trend is well captured, the inability to reproduce 
some of the sharper peaks suggests limitations, likely stemming 
from the coarse spatial resolution of the Aqua MODIS sensor used 
to derive the observed NDWI.

At the time of the analysis, Aqua MODIS represented the only 
freely available satellite product suitable for continuous NDWI 
monitoring in the region. However, to improve model accuracy 
and better represent peak flood-related signals, future studies 
might consider incorporating higher-resolution satellite imagery 
products, which may provide more detailed spatial information 
critical for accurately predicting NDWI and associated 
flood events.

FIGURE 15

Bias corrected forecasted CHIRPS-GEFS and observed CHIRPS for the Turkwel Basin.
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5 Discussion

This study demonstrates a practical approach for enhancing flood 
detection and forecasting in regions with limited hydrometeorological 
infrastructure. By leveraging machine learning and exclusively using 
remotely sensed data, the method significantly advances flood 
monitoring capabilities, particularly in areas such as Lodwar Town, 
where ground-based stations and historical hydrological records are 
scarce (Remesan and Mathew, 2015). Similar approaches using 
NDWI, and rainfall data have been successfully applied in semi-arid 
regions for flood monitoring (McFeeters, 1996), but the integration of 
bias-corrected CHIRPS-GEFS forecasts with machine learning models 
in this study provides added predictive capability.

The machine learning system effectively predicts NDWI values 
based on rainfall and supplementary meteorological datasets. This 
enables timely identification and forecasting of floods in flood-prone 
areas whenever rainfall forecasts are available. Such predictive ability 
empowers local authorities and communities to implement preparatory 
measures, thereby minimizing the adverse impacts of short-lived floods, 
particularly where conventional observing networks are lacking 
(Rasheed et  al., 2022). A robust association is established between 
periods of extreme rainfall and observed flood events in the Turkwel 
Basin, with April 2018 and October 2019 identified as especially flood 
prone. This conclusion is supported by the convergence of multiple data 
streams, including, CHIRPS rainfall data, Aqua MODIS NDWI time 
series, and high-resolution spatial mapping from Sentinel-2. The 
evident increase in extreme rainfall during these periods underscores 
an escalating flood risk across the region.

Analysis reveals a moderate temporal correlation (r ≈ 0.51 at zero 
lag) between daily CHIRPS rainfall and MODIS NDWI, improving to 
~0.64 with decision-tree regression models. This indicates the NDWI’s 
strength in detecting and tracking inundation events and aligns with 
previous studies using machine learning for streamflow or flood 
prediction in ungauged basins (Khosravi et al., 2021). The detailed 
spatial information from Sentinel-2 maps corroborates flood 
occurrence and extent, despite occasional underestimation caused by 
cloud cover and limited revisit frequency. MODIS, while offering 
coarser spatial resolution, provides consistent temporal coverage 

critical for early warning in data-scarce regions, similar to findings by 
McFeeters (1996).

Bias correction of CHIRPS-GEFS rainfall forecasts significantly 
improves alignment with observed CHIRPS rainfall, enhancing their 
utility as inputs for machine learning flood prediction models. Without 
such corrections, raw CHIRPS-GEFS forecasts tend to overestimate 
rainfall, which could reduce predictive accuracy. The model also 
demonstrates actionable lead time: even modest improvements in 
correlation enable identification of “signal zones” and potential flooding 
in advance, and the use of 7-day or more ahead forecasted rainfall could 
further enhance preparedness (Nearing et al., 2024).

Overall, the study’s integrated, multi-sensor framework presents 
a scalable and robust solution for flood detection in data-scarce 
environments. The strong agreement among the various datasets 
rainfall, NDWI variability, spatial inundation, and bias-corrected 
forecasts bolsters the reliability of early warning systems. As a result, 
this framework holds promise for broader application in other semi-
arid regions susceptible to riverine and short-lived flooding. To 
further strengthen these capabilities, future research might incorporate 
high spatiotemporal resolution satellite imagery and extend the 
methodology to comparable at-risk regions.

6 Conclusion

This study underscores the effectiveness of integrating remote 
sensing data with machine learning techniques to improve flood 
detection and prediction in data-scarce regions, exemplified by Lodwar 
Town in the Turkwel Basin. The use of the DTR algorithm significantly 
enhanced the correlation between CHIRPS rainfall incorporating 
various lag times and auxiliary meteorological variables with the NDWI 
derived from Aqua MODIS imagery of Lodwar Town, which serves as 
an indicator of surface water dynamics and flood events.

The DTR model improved the correlation coefficient from 0.51 to 
0.64 during training, and further to 0.66 when evaluated for the year 
2018 using bias corrected CHIRPS-GEFS forecasted 10-day rainfall 
data, which recorded the highest rainfall during the 2002–2024 study 
period. These results demonstrate the viability of machine learning 

FIGURE 16

Observed daily NDWI generated from Aqua MODIS and predicted NDWI for the Lodwar Town using forecasted CHIPRS-GEFS rainfall.
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models, combined with remotely sensed data, in supporting early 
warning systems using the forecasted rainfall data and enhancing 
flood risk assessment where ground-based hydrometeorological 
observations are limited or unavailable.

The model successfully captured the general temporal trends of 
NDWI and exhibited the capacity to reflect flood-related signals. 
However, it underestimated certain NDWI peak values, a limitation 
attributed in part to the coarse spatial resolution of MODIS data. Aqua 
MODIS was the only freely available satellite product suitable for this 
purpose, however future research might explore higher-resolution 
alternatives to improve peak flood detection.

Spatial analysis revealed that areas with high cross-correlation to 
Lodwar’s NDWI are not the main sources of floods, as they receive 
relatively low rainfall. Instead, these regions function as hydrological 
indicator zone’s locations where significant rainfall can signal a high 
probability of flooding in Lodwar Town. This finding highlights the 
importance of identifying such signal regions to support early warning 
and disaster preparedness efforts.

Overall, the study underscores the value of digital innovations, 
particularly the integration of remotely sensed data and machine 
learning, in supporting early warning systems in regions lacking 
hydrometeorological observation networks. This method provides a 
viable, cost-effective alternative for enhancing short lived flood 
detection and forecast in vulnerable, data-limited regions.
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