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Reliable flood monitoring and prediction remain a challenge in data-scarce
regions, particularly in arid and semi-arid environments. This study explores the
integration of remote sensing data and machine learning techniques to improve
flood detection and early warning capabilities in Lodwar Town of the Turkwel
Basin, Kenya. This depended on finding a relationship between daily rainfall and
Normalized Difference Water Index (NDWI). Among multiple rainfall products
evaluated, Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)
was selected due to its fine spatial resolution and performance. Daily NDWI time
series derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer)
imagery were used as a proxy for water accumulation and flood indicators. A
python-based Decision Tree Regressor (DTR) model was trained using the daily
CHIRPS rainfall data with various lag times, along with auxiliary meteorological
variables including relative humidity, wind speed, and mean temperature for the
period from 2002 to 2024 to predict NDWI of Lodwar Town. The machine learning
model substantially improved the correlation between rainfall and NDWI, raising
the correlation coefficient by 25%. Spatial analysis of rainfall-NDW!I correlation
revealed that areas in the west, northwest, and southwest of Lodwar Town, with
elevations between 508 m and 648 m have high correlation. Rainfall in these
regions can serve as signal for potential rapid flooding with 0-day lag-time in
Lodwar Town situated at an elevation of approximately 500 m. These areas are
not necessarily the primary high rainfall sources, rather they act as signal zones
for floods of Lodwar Town that can provide flood early warning information. The
proposed methodology in this study can offer a practical approach to anticipatory
action and flood risk reduction for vulnerable communities in remote regions
with no or limited hydrometeorological stations.

KEYWORDS
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1 Introduction

Floods have become a pressing global issue, causing widespread devastation and
economic losses. Globally, during 1990-2022 period 4,713 events were recorded impacting
over 3.2 billion people, causing 218,000 + deaths, and inflicting more than $1.3 trillion in
economic losses worldwide (Liu et al., 2024). In 2024, the Australian National University
(ANU-led) Global Water Monitor reported that water-related disasters (mainly floods)
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than $550 billion in
roughly 40 million people, and resulted in nearly 8,700 deaths
globally (Van Dijk et al., 2025).

Africa is one of the highly vulnerable continents to climate-

caused more losses, displaced

related disasters, with floods causing widespread disruption in
recent years (WMO, 2025). For instance, devastating floods after
consecutive years of below average rainfall in East Africa (Taye and
Dyer, 2022; WMO, 2025) is a case in point. In East Africa, recurrent
flooding driven by climate extremes and rising water levels affected
over one million people in 2024 alone through displacement, loss
of homes and livelihoods, damage to infrastructure, and limited
access to clean water and basic services. More than 500 people lost
their lives, and hundreds of thousands were displaced (IOM, 2024;
UNICEE, 2024).

Floods in Kenya’s Turkana County have caused extensive damage
over the years, impacting both the physical environment and the local
economy. The Lodwar Town in the county has faced repeated flood
disasters caused by the Turkwel River, a perennial river, that
frequently overflows during the rainy season and the Kawalasee
River, a seasonal tributary, prone to sudden flash floods (Taye, 2025).
Significant flood events occurred in multiple years in the past decade,
including years 2016, 2018, 2019, 2022, and 2024, each posing unique
challenges to the local community (Korzenevica et al., 2024a,b). In
2016, heavy rains caused rivers to overflow, leading to loss of lives and
displacement of over 1,000 residents. Subsequent floods in 2019
destroyed nine out of twelve boreholes supplying water to the town,
affecting access to clean water (Korzenevica et al., 2024b). In 2022,
rising waters submerged critical boreholes and irrigation schemes,
further exacerbating water shortages and threatening food security
for thousands (Korzenevica et al., 2024b). By 2024, poor drainage
systems and inadequate waste management intensified the flooding
problem, increasing health risks due to contaminated water sources
(Wanguba et al., 2024).

To respond to the increasing flooding, one of the approaches is
understanding the characteristics of the floods and their early
signals through modelling approaches. Modelling floods using
hydraulic and hydrological models requires high temporal
resolution of historical rainfall and streamflow datasets, in addition
to high-resolution digital elevation terrains data (Brazdil et al.,
20245 Ma et al,, 2021; Rinat et al., 2021). However, many flood-
affected areas in Africa, which are predominantly lowlands and
lack
meteorological datasets compared to other regions (Li et al., 2023;

plains, sufficient historical high-resolution hydro-
Zhang et al., 2022). This is the case for Lodwar Town in Kenya.
Recently, other approaches leveraged advanced technologies
like radar for detecting and forecasting floods. These methods also
utilize ultrasonic and infrared sensors to measure rainfall rates and
water levels in real-time, providing timely warnings for floods
(Martinaitis et al., 2023; Mashaly and Ghoneim, 2018; Prakash
etal., 2023). Obtaining advanced high-technology instruments and
high-quality observed datasets is a significant challenge in
developing countries in Africa, including Kenya, particularly in
basins like the Turkwel, where ground observation datasets are
scarce due to the absence of gauging stations. Consequently,
remote sensing technology, utilizing satellite imagery, emerges as
the most effective and viable method for detecting floods in areas
with limited or no gauging stations available (Atefi and Miura,

2022; Anushree and Singh, 2023; Sadiq and Imran, 2022).
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Although Normalized Difference Water Index (NDWI),
rainfall products, and machine learning have been applied in flood
studies [e.g., Obada et al. (2025); Wedajo et al. (2024)], most efforts
have focused on detecting flood sources in data-rich regions. Such
approaches remain limited in areas where hydrological
observations and monitoring infrastructure are scarce.

This study develops a low-cost framework tailored for data-
scarce regions that not only identifies rainfall signal zones but also
demonstrates potential for flood forecasting when forecasted
rainfall is available. Using Lodwar Town, Kenya, as a case study, the
integration of freely available satellite rainfall products and
machine learning offers a scalable approach for enhancing flood
detection and early warning.

2 Study area

The Turkwel River, also known as the Suam River at its source is
located in the northwest of Kenya and flows to the north covering a
total area of 23,740 km? The river originates at Mount Elgon
(4,321 m.a.s.l) and drains into Lake Turkana (361 m.a.s.l) flowing a
total journey of 125 km as shown in Figure 1 (Gabriel Stecher, 2019).
The climate of the Turkwel River basin in northern Kenya is
characterized as semi-arid in the highlands and arid in the lowlands.
This region experiences significant rainfall variability, with a bimodal
annual rainfall pattern as shown in Figure 2, that experiences long
rains from March to May peaking in April and short rains from
October to December peaking in October. In the higher south-
western area, annual rainfall ranges from 900 to 1,750 mm, while the
arid lowlands receive much less, typically between 100 to 400 mm per
year (Gabriel Stecher, 2019; Hirpa et al., 2018). This river is the main
source of riverine flood in the Lodwar Town. Additionally, the
Kawalasee River is the second most significant source of flooding in
Lodwar Town, next in magnitude to the Turkwel River. It is a seasonal
tributary of the Turkwel that drains the north-western part of the
basin toward Lodwar. Unlike the perennial Turkwel, the Kawalasee
typically remains dry during prolonged dry seasons but becomes a
powerful flash flood channel during periods of intense rainfall.

Lodwar Town that covers a total area of 17 km? is located in
north-western Kenya in Turkwel Basin, serving as the capital of
Turkana County." It is situated west of Lake Turkana along the A,
Road, which connects it to other major towns and regions in the
area. The town lies between latitudes 3°40” and 4°30” North and
longitudes 35°36” and 36°40’East, making it a strategic point in
the region. Surrounded by geographical features such as the Loima
Hills to the west, Lodwar is characterized by its hot desert climate
with mean temperatures around 29.4 °C (Figure 3) and maximum
reaches up to 38 °C. The Potential Evapotranspiration (PET) is
high due to the hot, dry climate. Estimates range from about 2,000
to 2,500 mm per year. As the largest town in the region, Lodwar
plays a pivotal role in local trade and serves as a gateway to
exploring the unique landscapes and cultures of Turkana County
(Gabriel Stecher, 2019). The location of the town is shown in
Figure 1 relative to Kenya and Lake Turkana.

1 https://www.lodwarmunicipality.go.ke
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FIGURE 1
Location of Lodwar Town within the Turkwel Basin and Lake Turkana, Kenya.
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FIGURE 2
Spatial mean monthly rainfall of Turkwel Basin for the period from 2002 to 2024.
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Monthly mean Temperature of Lodwar Town for the period from 2002 to 2024.

TABLE 1 Input variables and output used for machine learning training.

Inputs Output

Rainfall (CHIRPS, TAMSAT, IMERG, MSWEP) Daily NDWI (2002-2024)

Date features (MMDD)

Humidity (%)

Wind speed at 2 m

Mean Temperature at 2 m

Remark

Rainfall from 0 to 4-days lag time Daily (2002-2024)

Daily (2002-2024)

Daily (2002-2024)

Daily (2002-2024)

Daily (2002-2024)

2.1 Datasets

2.1.1 Climatological datasets

For the Lodwar Town due to unavailability of in-situ rainfall
observations for 2002-2024, we used multiple gridded, satellite-based
precipitation products to obtain relationship between rainfall and NDWTI
and delineate flood-prone zones. Datasets with high spatial and temporal
resolution and long-term coverage were selected: CHIRPS (0.05° x 0.05°,
infrared-based, 1981-present; Funk et al., 2015). The Multi Source
Weighted Ensemble Precipitation (MSWEDP, 0.1° at 3-hourly intervals,
combining gauges, satellite, and reanalysis data Beck et al,, 2017). The
Integrated Multi-satellitE Retrievals (IMERG, 0.1° x 0.1° at half-hourly
intervals, merged GPM satellite data Rajagopal et al.,, 2021; Saouabe et al.,
2022). The Tropical Applications of Meteorology using Satellite
(TAMSAT, ~0.0375° daily estimates from Meteosat cold cloud duration
data Maidment et al., 2014; Tarnavsky et al., 2014).

For flood forecasting, CHIRPS-GEFS was used, which blends
CHIRPS observations with NCEP’s GEFS to create bias-corrected
forecasts (5-, 10-, and 15-day totals); in this study, we focus on 10-day
forecast anomalies via the ClimateSERV portal to capture impending
rainfall signals. Additionally, we retrieved daily meteorological
variables (relative humidity at 2 m, wind speed at 2 m, and mean
temperature at 2 m) for the Turkwel Basin for the period 2002-2024
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from NASA's POWER portal. These climate predictors were employed
as input features in a Decision Tree Regression (DTR) model to
simulate the NDWI time series and thus infer flood dynamics. The full
list of input variables is given in Table 1.

2.2 Satellite products for obtaining NDWI

NDWTI is a remote sensing index used to detect and monitor
water bodies. Table 2 summarizes key non-commercial satellite
imagery products for NDWI time series generation. Moderate
Resolution Imaging Spectroradiometer (MODIS), a NASA-
operated satellite sensor, provides daily revisit capability with a
250 m spatial resolution, making it suitable for detecting short-
lived flood events. Sentinel-2 offers higher spatial resolution at
10 m but with a 5-day revisit period, which may be less effective
for capturing brief flood events. In this study, Aqua MODIS data
was utilized for time-series analysis and machine learning to
investigate the relationships between water pixel dynamics and
daily rainfall in Lodwar Town. Sentinel-2 data was employed to
assess historical flood events by mapping and examining the spatial
distribution of flood inundation during the rainy seasons (March—
May and October-December).
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TABLE 2 Common types of non-commercial satellite imagery products.

10.3389/frwa.2025.1683545

Product name Starting Spatial resolution Temporal Cloud cover loss ( )
period resolution
Landsat 7 1999 30 meters 16 days High (30%)
Landsat 8 2013 30 meters 16 days High (30%)
Sentinel-2 2015 10 meters 5 days High (30%)
MODIS 1999 250 meters 1-2 days Low (2%)
Aqua MODIS 2002 250 meters 1-2 days Low (2%)
Terra MODIS 1999 250 meters 1-2 days Low (2%)
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FIGURE 4
Spatial mean of Turkwel Basin's annual rainfall from 1981 to 2024.

3 Methodology
3.1 Preliminary assessment

In data-scarce regions where no instrumental flood records are
available, community-based data collection provides critical
context for analysis. To support this approach, a stakeholder
workshop was held in Lodwar from May 2021-2023 under the
CLARE PALM-TREE:s project, hosted by the International Water
Management Institute (IWMI) following the establishment of
Turkanas Climate Information System (CIS). The workshop
engaged approximately 30 participants, including representatives
from county government departments, local meteorological
services, NGOs, academic institutions, and community leaders,
ensuring that both scientific expertise and local knowledge
informed the discussions.

Field visits and participatory mapping exercises identified

»

flood “hot spots,” including Napetet village and the confluence of
the Turkwel and Kawalasee rivers, validating remote sensing-
derived inundation zones. Community members highlighted the
of floods, borehole

submergence, riverbank erosion, and damage to housing and

multi-dimensional impacts such as

infrastructure. These insights directly informed the study by (i)
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refining the identification of flood prone areas, (ii) contextualizing
rainfal-NDWTI correlations with observed flood experiences, and
(iii) emphasizing practical priorities such as integration of
traditional knowledge with scientific forecasting and early warning.
Discussions further clarified the types, sources, and seasonality
of floods affecting the town. Participants reported two primary
flood types: riverine flooding from Turkwel River overflow and
flash flooding from the seasonal Kawalasee River. The major flood
season occurs from March to May, peaking in April, with a
secondary season from October to December, peaking in October.
Stakeholders also noted a perceived increase in rainfall in
recent years, identifying this as a key driver of more frequent
flooding, and highlighted the expansion of Lake Turkana as a
visible indicator of this trend. These community observations were
subsequently examined and validated using remote sensing data.
Rainfall trends were analysed using the CHIRPS dataset spanning
from 1981 to 2024, while changes in the surface area of Lake
Turkana were assessed using Sentinel-2 imagery from 2018 to
2024. As illustrated in Figure 4, the CHIRPS data confirms a rising
trend in annual rainfall in Turkwel Basin. Additionally, Figure 5
shows that the surface area of Lake Turkana expanded by
approximately 585 km? during the 2018-2024 period. The Blue
color indicates the expanded area throughout the Lake Turkana.

frontiersin.org
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FIGURE 5
Expansion of Lake Turkana from 2018 to 2024 (The Blue colour
indicates the expanded area).

3.2 NDWI computation

Land surface conditions and rainfall patterns that contribute to flood
risks can be detected using remote sensing technologies. By monitoring
changes in vegetation, soil moisture, rainfall, and water bodies over time,
remote sensing can help identify areas that are particularly vulnerable to
flooding (Liu et al,, 2022). This information is crucial for developing
effective flood management strategies in flood-prone regions. However,
freely available satellite imagery products have varying spatial and
temporal resolutions, time frames and different cloud cover effects. This
demands careful investigation of a suitable satellite imagery product for
detecting historical floods for a given location. This is through the use of
NDWI, which is a proxy and reference as observed data for inundated
areas that capture pixels covered with water.

Historical flood events were identified by generating and analysing a
time series of the NDWI using Google Earth Engine (GEE).? The NDWI
is a remote sensing index used to detect and monitor water bodies,
including lakes, rivers, and wetlands. It is calculated by subtracting the
near-infrared (NIR) band from the shortwave infrared (SWIR) band and
then dividing it by the sum of the two bands (Liu et al., 2022; Mondejar
and Tongco, 2019). The NDWI time series derived from satellite imagery
allows for correlation with historical rainfall data, which can help identify

2 https://code.earthengine.google.com/
bd7ca6c861565752b95e90bf022328f2
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the locations of rainfall events that best correlate with the generated
NDWI values. Therefore, satellite imagery products capable of generating
historical daily NDWT time series for specific locations and exhibiting
strong correlations with rainfall are suitable for detecting potential
flooding. Moreover, areas demonstrating strong NDWI-rainfall
correlations can be identified as key rainfall signal zones, serving as early
indicators of flood risk in Lodwar Town. Signal zones are areas where
rainfall shows a strong, consistent correlation with downstream flooding,
serving as early indicators of flood events.
The NDWTI is computed using the following formula.’

(NIR -SWIR)
NDWI[=>—————2
(NIR +SWIR)

The NDWI values correspond to the following ranges:

0.2-1 =>Water surface, 0.0-0.2 = Flooding, humidity, —0.3-0.0
=> Moderate dry non-aqueous surfaces, —1-—0.3 => Dry.

The generated NDWI values range between —1 and 1, representing
the spectrum from water surface to dry. However, the focus is mainly
on detecting flood events, which corresponds to NDWI values above
zero. Therefore, to simplify the analysis and achieve maximum
correlation with rainfall values, all NDWI values less than zero are
replaced with zero. By setting negative NDWI values to zero, the
analysis can concentrate on capturing the extent and duration of flood
events, which is crucial for understanding the relationship between
NDWTI and rainfall patterns in the region.

3.3 Machine learning: decision tree
regression

Decision Tree Regression (DTR) was selected for this study due
to its ability to model nonlinear relationships between NDWTI, daily
rainfall, temporal features (month and day), and lagged rainfall
variables without extensive pre-processing. Incorporating lag times
allows the model to capture delayed hydrological responses that are
critical for early flood detection (Elsayed et al., 2024; Jena et al., 2023).
While ensemble methods like Random Forests or Gradient Boosting,
and deep learning approaches, can offer higher predictive accuracy,
they require larger datasets and many input variables to achieve
optimal performance, which may not be feasible in data-scarce
regions. DTR provides a practical balance between predictive
performance, simplicity, and interpretability, making it well-suited for
operational flood early warning in regions with limited
hydrometeorological data (Meng and Jin, 2023).

The Decision Tree Regression (DTR) approach was implemented
within a Jupyter Notebook (Python) of Decision TreeRegressor
package to develop a predictive model. The Decision TreeRegressor
python package is a powerful machine learning method used for
predicting continuous target variables by modelling the relationship
between input features and the output. This algorithm operates by
splitting the dataset into smaller subsets based on feature values,
effectively creating a tree-like structure where each internal node

3 https://eos.com/make-an-analysis/ndwi
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represents a feature decision, and each leaf node represents a predicted
outcome (Pedregosa et al., 2011).

The model can handle both numerical and categorical features,
providing flexibility in its application. Users can control various
hyperparameters, such as maximum depth and minimum samples per
leaf, to prevent overfitting and improve generalization to unseen data.
Once trained, the model can predict outcomes for new data points
using its predict function, making it suitable for real-time applications
in various fields, including finance and environmental science
(Buitinck et al., 2013). The dataset was randomly divided into training
(80%) and validation (20%) subsets. The training data were used to fit
the Decision Tree Regression (DTR) model, while the validation data
were reserved to independently evaluate predictive performance. In
addition, we assessed input importance by extracting feature
importance scores from the DTR model in scikit-learn, which are
based on the reduction in Coeflicient of Correlation (CC) error
attributed to each predictor across all decision nodes. The normalized
scores indicate the relative contribution of each input variable to
streamflow prediction.

This machine learning approach enables more accurate modelling
of the relationship between lagged rainfall, auxiliary meteorological
variables, and NDW]I, thereby enhancing flood monitoring and
prediction in the region. Additionally, it improves the correlation
between input climate features and NDWI by optimizing the model
through training, leading to better representation of surface water
dynamics associated with flood events.

Model hyperparameters were calibrated for Lodwar Town to
optimize predictive accuracy. The selected parameters are summarized
in Table 3. These values were selected to ensure a balance between
model complexity and generalization, avoiding both overfitting
and underfitting.

3.4 Performance evaluation

Four rainfall products of CHIRPS, MSWEP, IMERG, and
TAMSAT were evaluated on their ability to detect floods represented
by NDWI for Turkwel Basin’s Lodwar Town generated from Aqua
MODIS. Each rainfall product is evaluated using the correlation
coefficient (CC) metric with the NDWI. A higher CC value suggests
a stronger correlation between rainfall at a given location and NDWI
on potential flooded areas that helps to prepare a model to predict the
flood in the Lodwar Town.

The correlation coeflicient is a statistical measure that quantifies
the strength and direction of the linear relationship between two
variables. It ranges from —1 to 1, with —1 indicating a perfect negative
correlation, 0 indicating no correlation, and 1 indicating a perfect
positive correlation (Schober et al., 2018).

10.3389/frwa.2025.1683545

Where ND; , is the NDWI of the i day; RE,  is the rainfall of i
day; and N_Do the average of all the daily NDWI values, and E is
the average of all daily rainfall values.

After the CC evaluation, the P-test was carried out whether a
sample correlation coefficient r provides sufficient evidence to
conclude that a true population correlation (p) exists between two
variables, rather than the observed correlation being due to chance
(Turney, 2024).

p=2[1-F(|[:t|l}sdf )]

Where F is the cumulative distribution function (CDF) of the
t-distribution with df degree of freedom. Then the t distribution is
calculated as.

tzr—m_zzwithdf:n—z

1-r

Where, n is the sample size and if p < 0.05: statistically significant
and if p > 0.1 not statistically significantly.

4 Results
4.1 NDWI data availability analysis

Among the available satellite imagery products, Aqua MODIS
was selected for this study due to its high temporal resolution,
which is essential for capturing short-duration flood events
(Table 3). Although Landsat 7, Landsat 8, and Sentinel-2 offer
finer spatial resolution (10-30 m), their longer revisit periods
(16 days for Landsat and 5 days for Sentinel-2) increase the
likelihood of missing dynamic hydrological events. In contrast,
Aqua MODIS provides daily observations with a moderate spatial
resolution of 250 meters and minimal cloud cover loss (~2%)
(Dhillon et al., 2023), enabling the generation of historical daily
NDWTI products with low noise. This makes Aqua MODIS
particularly suitable for temporal analyses, such as correlating
daily NDWI with rainfall for flood monitoring. For analyses that
require higher spatial detail, such as mapping flood extent,
Sentinel-2 was employed due to its finer spatial resolution.

TABLE 3 Parameters of the Decision Tree Regression (DTR) for Lodwar Town NDWI.

S. No Parameter Description Calibrated value
1 max_depth Controls the maximum depth of the tree, balancing model complexity to avoid underfitting or overfitting. 5
2 min_samples_leaf Specifies the minimum number of samples required to be at a leaf node, helping to prevent the creation of 4
leaves with very few samples, thus improving generalization.
3 min_samples_split Denotes the minimum number of samples required to split an internal node, set to 2 in this case to allow 2
splits when there are at least two samples.
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4.2 Rainfall analysis

Table 4 compares the four rainfall datasets, revealing that CHIRPS
and MSWEP exhibit the strongest alignment with NDWI, with
correlation coefficients of 0.51 and 0.53, respectively; both correlations
are statistically significant (p < 0.001). This suggests they are more
effective in capturing water pixels (flooded area) represented by the
daily NDWI generated from Aqua MODIS product for the period
2002-2024. Both CHIRPS and MSWEP, along with TAMSAT, have a
lag time of 0 days for the highest correlation values, indicating that
their rainfall estimates have an immediate impact on potential flood
generation in the Lodwar Town.

In contrast, IMERG shows a significantly lower correlation
coefficient of 0.13 and a lag time of 2 days. This indicates that IMERG
is not suitable for flood analysis and poor to capture flood events in
the region compared to the other rainfall products. The TAMSAT
rainfall shows relatively average performance compared with the other
rainfall products with CC of 0.47 to capture the NDWI of
Lodwar Town.

Both MSWEP and CHIRPS rainfall products exhibited
comparable performance. However, CHIRPS was selected for further
analysis due to its finer spatial resolution, making it more suitable for
localized flood assessment. Following its selection as the most
appropriate rainfall dataset for the Turkwel Basin and Lodwar Town,
a detailed analysis of the spatial distribution of average monthly

10.3389/frwa.2025.1683545

rainfall was carried out for the period 2002 to 2024 (Figure 2). Figure 2
indicate that in the Turkwel Basin, peak rainfall occurs in April,
followed by May, marking the onset and progressive intensification of
the wet season. During the October-December rainfall window,
October exhibits the highest rainfall. Consequently, April and October
have been identified as the months with maximum rainfall,
establishing clear temporal benchmarks for focused flood analysis in
Lodwar Town. Concentrating efforts on these periods allows for
targeted examination of rainfall patterns that may serve as indicators
of potential flood-prone areas.

Following the bar graph presented in Figure 2, a time-series
analysis of CHIRPS total rainfall for April and October was conducted
(Figures 6, 7). This analysis aimed to identify the year with the highest
cumulative rainfall in the Turkwel Basin. The results indicate that
April 2018 recorded the highest rainfall during the 2002-2024 period,
while October 2019 exhibited the peak October rainfall within the
study timeframe. “This analysis indicates that the October 2019 flood
was primarily driven by the intense rainfall that occurred within that
month, whereas the April 2018 flood was associated with the
cumulative effect of successive peak rainfall. To validate these findings,
daily Aqua MODIS-derived NDWI data for Lodwar Town were
compared between the 2 years corresponding to these peak rainfall
months. Figure 8 depicts the NDWI time series: in April 2018, the
index shows multiple moderate peaks, indicating sustained periods of
inundation, whereas October 2019 features a single, sharp peak,

TABLE 4 Correlation coefficient (CC) performance of different rainfall products with the Aqua MODIS NDWI of Lodwar Town.

Rainfall type CcC Lag time
CHIRPS 0.51 0 day
IMERG 0.13 2 days
TAMSAT 0.47 0 day
MSWEP 0.53 0 day

Bold values indicate the highest correlation coefficients among the rainfall products.

April Rainfall in the Turkwel Basin

Spatial mean of April rainfall from 2002 to 2024 for Turkwel Basin per year.
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October Rainfall in the Turkwel Basin
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FIGURE 7

Spatial mean of October rainfall from 2002 to 2024 for Turkwel Basin per year.
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FIGURE 8
Daily Aqua MODIS NDWI time series of Lodwar Town for 2018 and 2019.

reflecting a more acute flood response. These contrasting patterns
underscore distinct flood dynamics between the two events. The
similar temporal patterns observed between CHIRPS-derived rainfall
and MODIS-based NDWI confirm that both datasets consistently
capture flood events in Lodwar Town. This conclusion is further
validated by community insights from a workshop held on May 2025,
as part of the PALM-TREE:s project in Lodwar. Participants including
residents and government stakeholders noted October 2019 as the
most severe recent flood, reflecting extensive damage and confirming
the timing identified through remote sensing.

The spatial flood-inundation maps derived from Sentinel-2
NDWTI for Lodwar Town (2018-2023) with April results in Figure 9
and October results in Figure 10 provide independent confirmation
of the flood peaks identified through Aqua MODIS NDWI and
CHIRPS rainfall time series. April 2018 shows the most widespread
inundation during the MAM season, while October 2019 exhibits
notably high flood coverage in the OND season. These Sentinel-2
observations reinforce the conclusion that April 2018 and October

2019 corresponded, respectively, to the wettest and most flood-
prone periods.
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FIGURE 11
The spatial distribution of April and October rainfall throughout the Turkwel Basin.

However, Sentinel-2’s ability to capture every flood event is limited
by its optical nature: cloud cover and revisit intervals can result in
missed inundation events. In contrast, MODIS, despite its coarser
spatial resolution, offers daily coverage and composites that enable the
monitoring of flood dynamics on a consistent temporal basis. Thus,
combining Sentinel-2’s detailed spatial inundation mapping with
MODIS’s temporal consistency yields a more robust framework for
flood analysis.

Figure 11 illustrates the spatial distribution of mean April and
October rainfall (in millimetres) across the Turkwel Basin. The
northern and north-eastern sectors of the basin exhibit the lowest
rainfall, whereas the southern and south-western regions receive the
highest rainfall in the basin. These spatial variability in April and
October rainfall suggests that the southern and south-western parts
of the basin are likely the primary sources of flooding due to their
significantly higher rainfall inputs.

In contrast, Figure 12, which presents the NDWI-cross-
correlation (CC) map, reveals that areas exhibiting the highest
correlation coeflicients with the NDWI time series of Lodwar Town
are situated near the town and receive relatively low rainfall. This
observation aligns with Figure 11, which shows that these high-
correlation regions correspond to zones with lower rainfall levels,
highlighting an inverse relationship between rainfall amount and
correlation strength with NDWTI in Lodwar. Therefore, the integrated
analysis of Figures 11, 12 reveals a key insight that the regions
exhibiting high NDWI cross-correlation with Lodwar Town are not
the primary sources of flooding, as they do not experience the highest
rainfall intensities. Instead, these areas may function as critical flood
signals. When significant rainfall does occur in these proximal zones,
the likelihood of short-lived flooding events impacting Lodwar Town
increases substantially.

The performance evaluation of rainfall products, as shown in
Table 4 and Figure 12, revealed that the highest cross-correlation (CC)
between the NDWTI time series of Lodwar Town and rainfall data was
0.51. This moderate correlation indicates the need for the application
of additional machine learning techniques to strengthen the predictive
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FIGURE 12
Rainfall-NDW!I correlation coefficient map of the Turkwel Basin
based on 2002-2024 data.

relationship. Integrating remote sensing-based variables as input
features can further improve the model’s ability to represent NDWI
dynamics and enhance flood detection in the region.

4.3 Machine learning application
To assess the contribution of each variable, an input importance

analysis was performed, as shown in Figure 13. The results indicated
that rainfall with zero-day lag (RF_0DayLT) was the most significant
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Relative importance of meteorological variables and date features used as inputs in the machine learning model.
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Rainfall- NDWI coefficient of correlation map after machine learning.

input, followed by relative humidity, date features (MMDD), and
mean temperature. In contrast, rainfall data with one-day or greater
lag (RF_1DayLT, RF_2DayLT, RF_3DayLT) contributed minimally,
suggesting that in Lodwar Town, rainfall impacts flood conditions
almost instantaneously. Among the input variables, RF_3DayLT
exhibited relatively low importance, followed by RF_2DayLT and
wind speed, indicating their limited contribution to the model’s
predictive performance compared to other features.

The application of the DTR algorithm from the Python machine
learning library resulted in a substantial improvement in the
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correlation coefficient between CHIRPS rainfall data and the NDWI
of Lodwar Town, increasing from 0.51 (as shown in Table 4 and
Figure 12) to 0.64 (Figure 14). This enhancement was achieved by
training the DTR model using CHIRPS rainfall with various lag times,
along with auxiliary meteorological variables such as mean
temperature, humidity, wind speed, and dates. The trained model was
then used to predict daily NDWI values derived from Aqua MODIS
observations for Lodwar Town.

Although the correlation improvement from 0.51 to 0.64 may
appear modest, it has practical significance for flood monitoring
and early warning in data-scarce regions. The higher correlation
indicates that rainfall signals are more accurately captured by the
NDWI-based model, allowing for more reliable identification of
“signal zones” where rainfall is likely to trigger flooding
downstream. By incorporating lag times, the model provides
actionable lead time identifying areas where rainfall can potentially
cause flooding in Lodwar Town within 0 day. Furthermore, if
forecasted rainfall with a 7-day lead time or more is available, it
could significantly enhance preparedness by allowing authorities
and communities to plan and implement mitigation measures in
advance. This enhanced predictive capacity enables timely alert
dissemination, evacuation planning, and targeted monitoring,
thereby reducing flood risks even in regions with limited
hydrometeorological data.

The blue marked highlighted spot areas that have high correlation
coeflicients encircled in red in Figure 14 indicate locations where
CHIRPS rainfall data exhibits significant correlation (correlation
coeflicients >0.6) with daily NDWI. These regions, despite receiving
relatively low rainfall (Figure 11), demonstrate a strong association
with NDWTI fluctuations in Lodwar Town. This suggests that these
areas act as signal zones, where significant rainfall events are indicative
of an increased likelihood of flooding in Lodwar Town, despite not
being the primary sources of floodwaters. As such, these regions serve
as valuable early-warning indicators of flood risk rather than direct
contributors to flood generation.
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These zones are in the west, north-west, and south-west of Lodwar
Town. Rainfall observed in identified flood indicator areas with
elevations ranging from 508 m to 648 m. This flooding occurs with a
0-day lag time, as the town is situated at approximately 500 m
elevation. Therefore, model result from machine learning revealed
that, if forecasted rainfall data from the identified areas is available, it
is possible to forecast potential flooding events in the town.

4.4 Predictive model evaluation

The trained DTR model then was applied to predict daily
NDWI values for the year 2018 a period marked by high rainfall
and notable flood events in Lodwar Town utilizing 10-day
forecasted CHIRPS-GEFS rainfall data along with auxiliary
meteorological variables. This evaluation aimed to assess the
model’s capability to reproduce observed NDWI dynamics and
capture flood for the year 2018 using the 10-day forecasted
CHIRPS-GEEFS rainfall data in Lodwar Town.

The evaluation of 10-day CHIRPS-GEFS rainfall forecasts for the
Turkwel Basin reveals a consistent positive bias compared to observed
CHIRPS data, indicating that bias correction is essential before
integrating these forecasts into machine learning models. By analysing
paired historical forecast and observed values, an empirical bias-
correction formula was derived to recalibrate future forecasts.

To correct the CHIRPS-GEFS precipitation forecasts,
we applied a simple bias correction using observed CHIRPS
rainfall. First, the spatially averaged rainfall over the study basin
was computed for both CHIRPS (observed) and CHIRPS-GEFS
(forecasted) for the period 2002.-2024. The bias-corrected forecast
was then calculated by scaling the CHIRPS-GEFS forecast
according to the ratio of observed CHIRPS rainfall to the CHIRPS-
GEFS forecast:

P. = Popps * PeHirps
FaErs

10.3389/frwa.2025.1683545

where P, is the bias-corrected forecast, Pggpg is the original
CHIRPS-GEFS forecast, and Pcyjrps and Pgpps are the spatially
averaged rainfall values over the basin for the historical period.

This method ensures that the forecasted rainfall aligns with the
long-term observed rainfall climatology. Validation was performed by
comparing the bias-corrected CHIRPS-GEFS forecasts with the
observed CHIRPS rainfall, which showed improved agreement and
reduced systematic over- or underestimation of rainfall over the basin.

Application of this bias correction results in adjusted CHIRPS-
GEFS rainfall estimates that better reflect both the magnitude and
temporal variability of observed CHIRPS values, as demonstrated in
Figure 15. Notably, once corrected, these forecasts more accurately
predict enhanced water pixel prevalence crucial indicators of flood-
prone zones and used to validate the year of 2018 NDWT using the
machine learning model. Ultimately, obtaining improved forecast
accuracy will strengthen machine learning models tasked with
identifying flood prone areas in Lodwar Town by capturing the
NDWI values.

The ML (DTR) model achieved a correlation coefficient of 0.66
between the predicted and observed NDWI, indicating a
substantial improvement in performance and demonstrating the
utility of machine learning for capturing flood indicators for the
high rainfall recorded year 2018. Despite the overall strong
agreement, visual inspection of Figure 16 reveals that the model
tends to underestimate certain NDWI peak values. While the
general temporal trend is well captured, the inability to reproduce
some of the sharper peaks suggests limitations, likely stemming
from the coarse spatial resolution of the Aqua MODIS sensor used
to derive the observed NDWL

At the time of the analysis, Aqua MODIS represented the only
freely available satellite product suitable for continuous NDWI
monitoring in the region. However, to improve model accuracy
and better represent peak flood-related signals, future studies
might consider incorporating higher-resolution satellite imagery
products, which may provide more detailed spatial information
for NDWI and associated

critical accurately predicting

flood events.

Turkwel Basin Spatial Mean Annual Rainfall
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FIGURE 16
Observed daily NDWI generated from Aqua MODIS and predicted NDWI for the Lodwar Town using forecasted CHIPRS-GEFS rainfall.

5 Discussion

This study demonstrates a practical approach for enhancing flood
detection and forecasting in regions with limited hydrometeorological
infrastructure. By leveraging machine learning and exclusively using
remotely sensed data, the method significantly advances flood
monitoring capabilities, particularly in areas such as Lodwar Town,
where ground-based stations and historical hydrological records are
scarce (Remesan and Mathew, 2015). Similar approaches using
NDWTI, and rainfall data have been successfully applied in semi-arid
regions for flood monitoring (McFeeters, 1996), but the integration of
bias-corrected CHIRPS-GEFS forecasts with machine learning models
in this study provides added predictive capability.

The machine learning system effectively predicts NDWI values
based on rainfall and supplementary meteorological datasets. This
enables timely identification and forecasting of floods in flood-prone
areas whenever rainfall forecasts are available. Such predictive ability
empowers local authorities and communities to implement preparatory
measures, thereby minimizing the adverse impacts of short-lived floods,
particularly where conventional observing networks are lacking
(Rasheed et al., 2022). A robust association is established between
periods of extreme rainfall and observed flood events in the Turkwel
Basin, with April 2018 and October 2019 identified as especially flood
prone. This conclusion is supported by the convergence of multiple data
streams, including, CHIRPS rainfall data, Aqua MODIS NDWI time
series, and high-resolution spatial mapping from Sentinel-2. The
evident increase in extreme rainfall during these periods underscores
an escalating flood risk across the region.

Analysis reveals a moderate temporal correlation (r ~ 0.51 at zero
lag) between daily CHIRPS rainfall and MODIS NDWI, improving to
~0.64 with decision-tree regression models. This indicates the NDWT’s
strength in detecting and tracking inundation events and aligns with
previous studies using machine learning for streamflow or flood
prediction in ungauged basins (Khosravi et al., 2021). The detailed
spatial information from Sentinel-2 maps corroborates flood
occurrence and extent, despite occasional underestimation caused by
cloud cover and limited revisit frequency. MODIS, while offering
coarser spatial resolution, provides consistent temporal coverage

Frontiers in Water

critical for early warning in data-scarce regions, similar to findings by
McFeeters (1996).

Bias correction of CHIRPS-GEFS rainfall forecasts significantly
improves alignment with observed CHIRPS rainfall, enhancing their
utility as inputs for machine learning flood prediction models. Without
such corrections, raw CHIRPS-GEES forecasts tend to overestimate
rainfall, which could reduce predictive accuracy. The model also
demonstrates actionable lead time: even modest improvements in
correlation enable identification of “signal zones” and potential flooding
in advance, and the use of 7-day or more ahead forecasted rainfall could
further enhance preparedness (Nearing et al., 2024).

Opverall, the study’s integrated, multi-sensor framework presents
a scalable and robust solution for flood detection in data-scarce
environments. The strong agreement among the various datasets
rainfall, NDWTI variability, spatial inundation, and bias-corrected
forecasts bolsters the reliability of early warning systems. As a result,
this framework holds promise for broader application in other semi-
arid regions susceptible to riverine and short-lived flooding. To
further strengthen these capabilities, future research might incorporate
high spatiotemporal resolution satellite imagery and extend the
methodology to comparable at-risk regions.

6 Conclusion

This study underscores the effectiveness of integrating remote
sensing data with machine learning techniques to improve flood
detection and prediction in data-scarce regions, exemplified by Lodwar
Town in the Turkwel Basin. The use of the DTR algorithm significantly
enhanced the correlation between CHIRPS rainfall incorporating
various lag times and auxiliary meteorological variables with the NDWI
derived from Aqua MODIS imagery of Lodwar Town, which serves as
an indicator of surface water dynamics and flood events.

The DTR model improved the correlation coeflicient from 0.51 to
0.64 during training, and further to 0.66 when evaluated for the year
2018 using bias corrected CHIRPS-GEFS forecasted 10-day rainfall
data, which recorded the highest rainfall during the 2002-2024 study
period. These results demonstrate the viability of machine learning
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models, combined with remotely sensed data, in supporting early
warning systems using the forecasted rainfall data and enhancing
flood risk assessment where ground-based hydrometeorological
observations are limited or unavailable.

The model successfully captured the general temporal trends of
NDWI and exhibited the capacity to reflect flood-related signals.
However, it underestimated certain NDWI peak values, a limitation
attributed in part to the coarse spatial resolution of MODIS data. Aqua
MODIS was the only freely available satellite product suitable for this
purpose, however future research might explore higher-resolution
alternatives to improve peak flood detection.

Spatial analysis revealed that areas with high cross-correlation to
Lodwar’s NDWI are not the main sources of floods, as they receive
relatively low rainfall. Instead, these regions function as hydrological
indicator zone’s locations where significant rainfall can signal a high
probability of flooding in Lodwar Town. This finding highlights the
importance of identifying such signal regions to support early warning
and disaster preparedness efforts.

Overall, the study underscores the value of digital innovations,
particularly the integration of remotely sensed data and machine
learning, in supporting early warning systems in regions lacking
hydrometeorological observation networks. This method provides a
viable, cost-effective alternative for enhancing short lived flood
detection and forecast in vulnerable, data-limited regions.
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