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Drivers and impacts of changes in
water quality behavior from the
Hermit's Peak—Calf Canyon
wildfire

Paige Tunby?, David J. Van Horn? and
Ricardo Gonzalez-Pinzon'*

!Gerald May Department of Civil, Construction and Environmental Engineering, University of New
Mexico, Albuquerque, NM, United States, 2Department of Biology, University of New Mexico,
Albuquerque, NM, United States

Wildfires significantly alter hydrological and biogeochemical processes, impacting
downstream water quality and posing risks to ecosystems and human communities.
Following the 2022 Hermit's Peak-Calf Canyon (HPCC) wildfire in New Mexico,
the largest wildfire recorded in the state of New Mexico, we deployed high-
resolution in-situ sensors at three locations along a > 160 km fluvial network
to investigate event-scale solute transport dynamics and their environmental
drivers. Our objective was to evaluate how post-fire runoff events influenced
water quality behavior across spatial (headwaters to mid- and high-order streams)
and temporal (event to seasonal) gradients. We found that acute water quality
impacts were most severe near the burn area, where turbidity reached ~8,500
FNU and dissolved oxygen fell below regulatory thresholds. These extremes,
largely missed by traditional discrete sampling, were strongly driven by storm
event size and seasonal variability. In contrast, farther downstream, solute export
behavior was better predicted by longer-term indicators such as time since the
fire and vegetation recovery metrics. Our analysis reveals distinct spatial shifts in
concentration-discharge behavior that depend on the water quality parameter
type, event features, and site position in the watershed. These findings highlight
the need for longitudinal, high-frequency monitoring to detect and anticipate
wildfire-induced water quality risks and inform more adaptive, spatially targeted
watershed management strategies.

KEYWORDS

wildfire, water quality, concentration-discharge (C-Q) relationships, semi-continuous
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Introduction

Wildfires are increasing in frequency, severity, and spatial extent across the western
United States (Dennison et al., 2014), driven by various factors including historical fire
suppression, land use change (Allen et al, 2002), and anthropogenic climate change
(Westerling et al., 2006; Abatzoglou and Williams, 2016; Romero, 2023). These shifts in fire
regimes are reshaping terrestrial ecosystems and introducing profound and complex impacts
on downstream hydrology and water quality. Because more than half of the U.S. drinking water
supply originates from forested watersheds (Brown et al., 2008), the integrity of post-fire water
resources has become an urgent national concern.

Following wildfires, the loss of vegetation and alteration of soil properties increase surface
runoff, sediment delivery, and the mobilization of nutrients, metals, and organic matter
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(Bladon et al., 2014). These changes can persist for months to years,
and are often most acute during storm events, which can flush large
volumes of previously immobilized material into river systems (Stone
et al, 2011). Resulting changes in water quality, such as elevated
turbidity, dissolved oxygen sags, altered pH, and changes in specific
conductance (Dahm et al., 2015; Raoelison et al., 2023), can impair
aquatic habitats, reduce reservoir lifespans (Bladon et al., 2014), and
overwhelm municipal water treatment systems (Emelko et al., 2011).
These effects can pose substantial operational and public health
challenges for communities that rely on surface water from recently
burned watersheds (Emelko et al., 2011).

Despite a growing awareness of the hydrologic consequences of
wildfires, the temporal and spatial dynamics of post-fire water quality
responses remain poorly understood. Much of what is known derives
from opportunistic studies (Dahm et al, 2015), short-duration
monitoring (Sherson et al., 2015; Emmerton et al., 2020; Crandall
etal,, 2021), or infrequent discrete sampling campaigns (Johnston and
Maher, 2022; Richardson et al., 2024), which may miss the short-lived
but extreme changes that define post-fire water quality hazards. High-
frequency sensor deployments now enable capturing these rapid
changes in real time. Yet, such tools have rarely been deployed
systematically across spatial gradients within burned fluvial networks.
Consequently, it remains unclear how wildfire impacts unfold over
space, from heavily burned headwaters to downstream river reaches,
and how solute transport behavior evolves, particularly in relation
to event characteristics, seasonal forcing, and watershed recovery
processes.

In April 2022, the Hermit’s Peak-Calf Canyon (HPCC) wildfire
burned over 1,380 km? of forested terrain in northern New Mexico,
producing severe ecological and hydrologic impacts across a large
swath of the Pecos River basin. In response, we established a rapid
response, sensor-based water quality monitoring network across three
locations on the Gallinas Creek—Pecos River system (Tunby et al.,
2023). These sites, separated by more than 160 km and differing
markedly in burn extent and watershed characteristics, provided a
unique opportunity to evaluate how wildfire-induced concentration-
discharge (C-Q) behavior varies across spatial and temporal scales.

This study analyzes 18 months of high-frequency water quality
data to address three research questions. First, how did the HPCC
wildfire affect water quality within the fluvial network? Second, how
did C-Q transport regimes (i.e., mobilization, dilution, or chemostasis)
vary across parameters and along the fluvial network? Third, to what
extent are solute behavior and environmental metrics correlated, and
can solute behavior be predicted using environmental metrics such as
event size, seasonality, and post-fire recovery indicators?

We hypothesized that runoff events at the most severely burned,
upstream sites would exhibit dominant mobilization (e.g., turbidity)
or dilution (e.g., DO) associated with post-fire storm events. In
contrast, we expected that the downstream site, more distally
connected to the burned area, would exhibit more attenuated or
mixed C-Q behavior due to increased contributions of unaffected
tributaries and in-stream processing.

This work seeks to advance understanding of post-fire C-Q
dynamics in river networks by integrating continuous water quality
measurements with event-scale hydrologic and environmental drivers.
In doing so, we aim to inform both scientific understanding and
practical monitoring approaches that support water resource
management in fire-impacted regions.
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Methods

To clearly communicate our research methods, we moved some
details to the Supplementary information of this article. The
accompanying data and analysis code can be found in Tunby (2025).

Study area and monitoring network

The HPCC fire began in April 2022 and burned over 1,382 km?
of forested land in the Santa Fe National Forest, New Mexico
(National Interagency Fire Center, 2022). This fire affected the
Gallinas Creek-Pecos River-Santa Rosa Lake network. Gallinas
Creek supplies drinking water to the City of Las Vegas, NM, and
supports downstream users and ecosystems. In response,
we deployed water quality sensors at three sites along this fluvial
network: P2 P3, and P5, located 26, 61, and 167 km downstream of
the headwaters of Gallinas Creek. These sites were selected to
capture changes in the spatial relevance of fire impact. From the
198 km? draining to P2, ~95% were burned; from the 826 km?
draining to P3, ~36% were burned; and from the 6,008 km? draining
to P5, ~10% were burned. All sites were co-located with
U. S. Geological Survey (USGS) stream gages to enable synchronized
hydrologic and water quality data collection (Figure 1). Site
characteristics for each of the sampling sites’ watershed areas are
listed in Supplementary Table S1.

Water quality and discharge monitoring

We measured water quality parameters using YSI EXO2
multiparameter sondes installed in April 2022, i.e., 2 weeks after the
fire began and before any precipitation mobilized burned material
to the fluvial network, and maintained the sensors through
September 2023. The sensors were collocated next to USGS stream
gages (P2 with 08380500, P3 with 08382000, and P5 with 08382650),
which collect discharge data at a 15-min resolution. The length of
the USGS data used was the same as the sensor’s deployment (April
18, 2022). These sensors recorded dissolved oxygen (DO), specific
conductance, turbidity, pH, and water temperature at 15-min
intervals. We inspected and calibrated the sensors every 2 weeks, and
all data were corrected for drift and fouling using manufacturer-
recommended procedures and site-specific calibration offsets.
We identified and removed spurious readings using a moving
window filter with a + 20% threshold, following protocols adapted
from Wagner et al. (2006).

Historical discrete sampling data

To establish pre-fire water quality baselines, we compiled discrete
sample data from the USGS and EPA Water Quality Portal for P2, the
only site with records before and after the fire (National Water Quality
Monitoring Council, 2025). Discrete samples were collected randomly,
over multiple different hydrologic conditions that were inconsistently
recorded. When available, records indicated water level (i.e., low,
normal, or peak) and whether flow conditions were changing (i.e.,
falling, stable, or rising). Lack of flow-related information appears as
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FIGURE 1
Map of the area burned by the Hermit's Peak—Calf Canyon wildfire. The locations of sampling sites and water discharge data are indicated as P2, P3,
and P5, with subindices indicating the kilometers from the headwaters of Gallinas Creek in accordance with Nichols et al. (2024). P indicates that sites
drain to the Pecos River.

‘Not determined’ (Supplementary Table 52). These records span from
1964 to 2009 for pre-fire conditions and 2022 to 2023 for post-fire
discrete samples. Depending on the parameter, sample sizes ranged
from 12 to 99 for pre-fire and 8 to 37 for post-fire datasets.

In most cases, the discrete samples were collected multiple times
a year for consecutive years, with subsequent multi-year gaps in data
collection, as shown in Supplementary Table S2. Discrete sample
turbidity measurements have three different units, ie., Jackson
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Turbidity Units (JTU), nephelometric turbidity units (NTRU), and
Formazin Nephelometric Units (FNU), while post-fire YSI EXO2
sensor data is only in FNU. However, the measurements in JTU and
NTRU are roughly equivalent and were used interchangeably for
comparisons (Bash et al., 2001). The use of FNU has high variability
between sensors, and it has been shown that EXO sensor response is
typically lower than that of other field and laboratory sensors when
compared to in situ and discrete samples. As a result, the turbidity
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measurements and their comparison are likely underestimating the
actual values (Snazelle, 2020; Davies-Colley et al., 2021).

Runoff event delineation

Runoff events were delineated using the USGS stream gage data
at each site for the duration of sensor deployment and the HydRun
toolbox in MATLAB, which identifies hydrograph peaks based on
user-defined thresholds. We applied a filter coefficient of 0.995 to
remove baseflow, a return ratio of 0.25 to define the end of each event,
and set the peak threshold equal to the mean annual baseflow at each
site following established recommendations (Tang and Carey, 2017).
These parameters were selected to capture meaningful storm-driven
runoff events at each site, independent of each other, while filtering
out minor fluctuations in flow. Since in the region of the fire, the
North American Monsoon system brings heavy rainfall during the
summer (Hoell et al., 2016), which contributes up to 50% of the
annual rainfall (Sheppard et al., 2002), we classified events into
monsoon (June 15 through September 30) and non-monsoon seasons
(National Weather Service, 2024).

Event-scale water quality metrics

We estimated the concentration-discharge (C-Q) behavior for
each post-fire event across monitoring sites. Each event’s C-Q behavior
was estimated using a power-law relationship (Equation 1) with
exponent b, using site- and event-specific concentrations (C) paired
with discharge (Q) records:

c=a(Q) )

10g10C=b-log10(Q)+logloa (2)

In log-log space, b is the slope of the linear form of the relationship
and log; a is the intercept. Discharge (Q) values were normalized by
the mean discharge of each event (Qean event) i-€-» Q=Q/ Qunean event
, to facilitate comparison of intercept values across events with differing
discharge magnitudes (Knapp et al., 2020; Johnston and Maher, 2022).
The C-Q slope (b) and intercept (log a) for each event were estimated
using the SciPy curve fit function (Equation 2) (Virtanen et al., 2020).
The fit quality was calculated using the standard error of the slope and
intercept with the Statsmodel package (Seabold and Perktold, 2010).
Events with poor model fit (standard error > 0.5 for either slope or
intercepts, or > 0.25 for both) were excluded from further analysis.

The slopes of each post-fire event were used to classify C-Q
behaviors. A positive slope (b > 0) indicates mobilization (increase) of a
water quality parameter, a negative slope (b <0) indicates dilution
(decrease), and a slope close to zero (b ~ 0) indicates changes in water
quality that are independent of discharge (Knapp et al., 2020) (Figure 2).
The significance of the C-Q slope was calculated using the t-statistic of
the slope (H, = 0) and a significance level of 0.05. If the slope (b) was
significant (p < 0.05), the sign of the slope was used for classification.
Nonsignificant slopes (p > 0.05) were then evaluated using an additional
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criterion based on the ratio of the coefficient of variation of
concentrations (CV¢) to that of discharges (C VQ) (Equation 3):

CVe _#q oc

C VQ Uc oy

3)

where 4 and o represent the mean and standard deviations of
associated quantities (Musolff et al., 2015). If the absolute value of the
ratio is < 0.5, the event behavior is classified as chemostasis, and if the
ratio is > 0.5, the sign of the slope is used as above (Kaphle et al., 2025).
This helps avoid misclassifying chemostatic and chemodynamic
events due to issues associated with detection limits or low sample
concentrations (Musolff et al., 2015).

If events were missing water quality data or lacked continuous
sensor records for one of the water quality parameters, the events were
excluded for all water quality parameters to facilitate comparability
across events. We made an exception for pH at P3, where sensor
failure after June 2023 resulted in missing data during the entire
second monsoon season. If all events had been discarded, it would
have limited the understanding of water quality behavior for the other
water quality parameters.

We examined spatial changes in water quality along the fluvial
network using the C-Q slopes and intercepts for each water quality
parameter at each sampling site. We calculated the medians and
interquartile ranges (IQRs) to facilitate interpretation.

Comparison of pre- and post-fire discrete
samples and post-fire sensor event
extremes

For each water quality parameter, we compared: pre-fire discrete
samples vs. post-fire discrete samples to evaluate overall baseline
changes using the same sampling method; pre-fire discrete samples vs.
post-fire event sensor extremes to evaluate fire effects and differences
due to sample resolution; and post-fire discrete samples vs. post-fire
event sensor extremes to isolate differences due to sampling frequency
and capture short-term post-fire extremes. We evaluated statistical
significance between the above groups using two-sided Mann-Whitney
U tests (p-value < 0.05) and reported effect sizes using Cohen’s d
(Cohen, 1992). A small effect size (d ~ 0.2) indicates a modest difference
between groups that, while statistically real, may have a limited impact.
A medium effect size (d ~ 0.5) indicates a more meaningful shift likely
to affect water quality dynamics. A large effect size (d > 0.8) suggests a
substantial and impactful change that is statistically significant and
highly relevant. A negative sign indicates that the second group (e.g.,
post-fire discrete samples) had higher values than the first group (e.g.,
pre-fire discrete samples). This analysis allowed evaluation of fire
impacts on water quality and a direct comparison of discrete sampling
with high-frequency sensor data following a wildfire.

Derivation of event features
We computed six explanatory features for each runoff event to

explore the environmental drivers of C-Q transport behavior. Three
features were derived directly from hydrograph characteristics: runoff
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Left panels show the conceptual representation of runoff events observed at a site, featuring water quality changes associated with mobilization (a),
dilution (b), and chemostasis (c). The right panels show the corresponding concentration-discharge (C—-Q) relationships.

volume (event area under the curve), event duration (time from
hydrograph start to return to baseflow), and the prior runoff volume
(antecedent 3-day runoff volume excluding baseflow) (Figure 3). Three
additional features were spatial or temporal: average air temperature
during the event, enhanced vegetation index (EVI), and days since fire
declaration. Runoff volume, event duration, and prior runoff volume
examine event scale drivers of behavior; average air temperature and
EVI assess seasonal drivers; and days since fire declaration look at
recovery post-fire. Air temperature was extracted from PRISM 4-km
gridded daily data and averaged over the event period for each
watershed (Oregon State University, 2014). EVI was derived from
MODIS (MOD13Q1 and MYD13Q1) 250 m 16-day composites (Ba
et al., 2022), and the phased satellites provided an 8-day resolution
(Nichols et al., 2024). The EVI raster was masked to the burned portion
of each watershed, and the mean value was calculated. The events were
adjusted for watershed travel time by lagging data 10 h at P3 and 25 h
at P5, based on estimated flow velocities, allowing for the best estimation
of storms originating from burn areas. The EVI value corresponding to
the timestamp closest to the middle of the adjusted event time was used
for each site’s corresponding burned watersheds. The time since fire was
computed as the number of days between April 6,2022 (fire declaration)
and the midpoint of each delineated event’s duration.

Frontiers in Water

Principal components and correlation
analyses

We conducted principal components analysis (PCA) using the
prcomp function in R to examine multivariate patterns in C-Q
transport behavior (R Core Team, 2021). All variables were centered
and scaled before analysis (Jolliffe and Cadima, 2016). We created
PCA biplots for each sampling site using the C-Q slopes obtained
from post-fire events for the five parameters (excluding pH at P3 due
to missing data) and the six event features described above. These
biplots visualized dominant gradients in C-Q behavior and their
association with event drivers. To simplify and make our results
objective, we grouped PCA vectors falling within a 45-degree® arc.

We further quantified the strength of association between
individual event features and C-Q behavior using Spearman rank-
order correlations. Correlations between each C-Q slope and the six
event features were computed at each site and for each water quality
parameter using the spearmanr function in SciPy (Virtanen et al.,
2020). Significance was assessed at p < 0.05 (*), with additional
emphasis on highly significant results p < 0.01 (**). In the main text,
we focused our interpretation on event features significantly correlated
with three or more C-Q slope relationships and present the complete
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Conceptual representation of the six event features used to contextualize concentration-discharge (C-Q) relationships at each site: enhanced
vegetation index (EVI), average air temperature, runoff volume, event duration, prior runoff volume, and days since fire declaration.

correlation matrices in Supplementary Figure S1. Detailed methods
can be found in the Supplementary information.

Results
Post-fire runoff events and data availability

Across the three monitoring sites, we identified 108 runoff events
from April 2022 through September 2023. These included 35 events at
the upstream site (P2), 40 at the midstream site (P3), and 33 at the
downstream site (P5). Event frequency was influenced by site-specific
hydrologic responses and data continuity. Notably, sensor failure at
P3 in June 2023 limited pH data availability during the second
monsoon season, and only one runoff event was recorded at P5 during
that same period due to data loss that occurred during storm events. A
summary of events in this analysis is shown in Supplementary Table S3,
with monsoonal events indicated with light blue shading.

Post-fire changes in water quality extremes

Our high-frequency sensors captured extreme water quality
disturbances post-fire that were systematically missed by discrete
sampling. Comparison of pre-fire discrete samples, post-fire discrete
samples, and high-frequency post-fire event sensor extremes at P2
(Figure 4) showed that turbidity had significant deviations post-fire.
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The pre-fire discrete samples did not exceed 100 JTU, whereas discrete
post-fire samples reached a maximum of ~1,800 NTRU. High-
frequency sensors captured an even greater post-fire maximum of
~8,500 FNU and overall showed greater maxima. There is a significant
difference between the discrete sampling pre- and post-fire (p-
value = 0.0009), with a large effect size (Cohen’s d = —0.79), indicating
an increase in turbidity post-fire using the same sampling method.
There is also a significant difference between the discrete post-fire
sampling and post-fire sensor event maximum (p-value = 0.0002) and
a large effect size (Cohen’s d = —0.79) (Supplementary Table 54).

Water temperatures were also elevated post-fire. The maximum
temperature reading (25 °C) was from the pre-fire discrete sampling
dataset (Supplementary Table S5). The pre-fire median was 14 °C,
while post-fire discrete sampling and sensor event maxima were 15.6
and 18.4 °C (Supplementary Table S5). The post-fire event sensor
maximums differed significantly from pre- and post-fire discrete
samples (Cohen’s d &% —0.91 and —0.75, p-value = 0.0002 and 0.0169),
confirming that low-frequency sampling failed to capture high
thermal pulses from runoft events. However, due to the small to
medium effect size (Cohens d = —0.34) (Supplementary Table 54), and
the lack of significant difference detected between pre- and post-fire
discrete samples, there are not likely enough discrete samples to detect
changes post-fire.

The maximum post-fire sensor value for specific conductance is
883 pS/cm, higher than the pre-fire and post-fire discrete sampling
maximum of 335 and 301 pS/cm. However, there are no significant
differences between sensor event maxima and the pre- and post-fire
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(a) Example of boxplots comparing all pre-fire and post-fire discrete sample data available to minima (min) or maxima (max) post-fire extremes
captured with YSI EXO2 sensors at P2. The bars identify significant differences between groups (p-value < 0.05) using the Mann-Whitney U
nonparametric statistical tests. Panels (b—f) show actual data of: (b) turbidity (max), (c) water temperature (max), (d) DO (min), (e) pH (min), (f) specific

discrete samples. In contrast, the comparison of the minimum post-
fire sensor event values and the pre- and post-fire discrete samples
shows significantly lower sensor values (p-value = 3.60x107'" and
8.99x1077), with large sample effects (Cohen’s d = 1.53 and 1.28)
(Supplementary Table S4), indicating that the sensor systemically
captured lower values.

The maximum pH values captured post-fire using the sensors
were similar to the pre- and post-fire discrete sampling distributions,
with only small effect sizes and no statistically significant differences
across groups. However, when comparing the minimum pH values
measured post-fire using the sensors, it was significantly different
from pre- and post- fire discrete sampling (p-value = 0.00005 and
0.00002) with large sample effects (Cohen’s d =~ 0.88 and 1.12)
(Supplementary Table S4), indicating episodic acidification events
potentially driven by ash-laden runoff or organic acid loading, which
were not captured using discrete sampling.

DO dynamics showed the most considerable short-term impacts
regarding ecological risk and emphasized the need for high-
resolution sampling to capture the dynamics accurately. While
discrete samples pre- and post-fire are not significantly different, the
post-fire sensor event minimum values captured DO values as low as
4.7 mg/L, which is below the New Mexico Environmental
Department (NMED) requirements of > 6.0 mg/L (New Mexico
Administrative  Code, 2023), compared to pre-fire discrete
measurements of 6.8 and post-fire of 7.7 mg/L (Supplementary
Table S5). The post-fire discrete samples significantly differed from
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post-fire sensor event minima (p-value = 0.0131) and had a medium
to large effect size (Cohen’s d = 0.75), highlighting substantial under-
detection of DO sags in discrete samples post-fire (Supplementary
Table S4).

Spatial variability in concentration—
discharge behavior

The event median C-Q values of water quality parameters at each
site are shown in Figure 5. Supplementary Table S6 shows interquartile
ranges (IQR) and Supplementary Table S7 presents the counts of each
transport regime.

The C-Q behavior of DO shifted from dilution to mobilization
along the fluvial network. At P2 the median slope was slightly negative
(—0.011, IQR=10.073), with 46% of events exhibiting dilution
behavior. Downstream locations showed positive median slopes at P3
(0.008) and P5 (0.032), with the dominant behavior shifting towards
mobilization (48 and 45% of the events). The IQRs of both also
increased (0.090 and 0.106, respectively), indicating larger variability
in transport behavior in downstream sites. In contrast, the median
intercept, which is the log,, of the concentration, decreases
downstream, from 0.913 (8.2 mg/L) at P2 to 0.843 (7.0 mg/L) at P5.
This shift suggests a longitudinal change in DO dynamics, potentially
reflecting decreased DO demand and increased reaeration
capacity downstream.
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The C-Q behavior of pH trended toward chemostatic behavior
downstream. The median slopes were more negative at P2 (—0.023)
and continued to trend more positive moving downstream to P3 and
P5 (—0.004 and —0.001), with a decreasing variability in the observed
slope values from P2 to P5 (IQR = 0.015 and 0.009). Dilution was the
most prominent behavior observed at 89, 55, and 39% at P2, P3, and
P5, but chemostasis and mobilization behavior increased from P2 to
P5. The median intercept values also increased slightly downstream,
from 0.892 (7.80) at P2 before stabilizing at 0.905 (8.04) and 0.907
(8.07) at P3 and P5.

Specific conductance exhibited a consistently negative median
slope at all sites (P2 =-0.058, P3 =-0.056, and P5=—0.084),
suggesting that dilution was the dominant response to increasing
discharge. Dilution events accounted for over half of the events at each
site, with the largest proportion (73%) of dilution events observed at
P5. The median intercept values increased from 2.268 at P2 (185 pS/
cm) to 2.583 at P3 (383 uS/cm) before decreasing to 2.310 at P5
(204 pS/cm).

Turbidity exhibited the most consistently mobilizing behavior
along the fluvial network. The median slopes were positive at all sites
(0.680 at P2, 0.361 at P3, and 0.475 at P5), and most of the events were
classified as mobilization (69% at P2, 70% at P3, and 91% at P5). The
variability of the slope values decreased downstream from P2 to P5
(IQR = 1.876 and 0.554, respectively). The median intercept decreased
from 2.496 (313 FNU) at P2 to 2.362 (230 FNU) at P3, before
increasing to its highest value of 2.796 (625 FNU) at P5 after joining
the Pecos River.

Water temperature exhibited consistent dilution behavior, with
the proportion of all events classified as such increasing from 46% at
P2 to 67% at P5. The median slopes were increasingly negative
through the fluvial network (—0.025, —0.068, and —0.129 at P2, P3,
and P5, respectively), suggesting that runoff events cooled down the
stream water. There was an expected consistent increase in the water
temperature through the network due to increasing aridity and lower
elevations, with median intercepts changing from 1.196 (15.7 °C) to
1.337 (21.7 °C).

These results show that C-Q behavior differed by parameter and
by location along the fluvial network. Some parameters (e.g., turbidity,
temperature) displayed consistent patterns across sites, while others
(e.g.» DO, pH) showed longitudinal transitions in behavior (Figure 5).
The spatial variations in slope and intercept magnitudes highlight the
importance of considering network position when assessing post-fire
solute export.

Multivariate patterns in C-Q behavior and
event drivers

At P2, the PCA revealed three distinct groups (Figure 6). The
first, comprising the C-Q slope of turbidity, runoff volume, and
event duration, reflects strong mobilization of particulate matter
during larger, longer-duration events. A second group links the C-Q
slope of specific conductance, average air temperature, EVI, prior
runoff volume, indicating seasonal warming, vegetation recovery
and greenness, and antecedent wetness are jointly associated with
the mobilization of dissolved ions. A third group includes the C-Q
slopes of pH and water temperature, which respond similarly to
events but independently of event size or seasonality. Notably, the
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PCA biplots including event features and C-Q slopes for each water
quality parameter and sampling location. Some feature and water
quality parameter names were simplified to improve clarity, i.e.,
average air temperature (Avg. Air Temp.), runoff volume (Runoff Vol.),
prior runoff volume (Prior Runoff Vol.), enhanced vegetation index
(EVI), days since fire declaration (Days from Fire), water temperature
(Temp.), specific conductance (SpCond), turbidity (Turb.), dissolved
oxygen (DO). The pH slope was excluded from PCA analysis at P3
due to missing values for the second Monsoon season.

C-Q slope of DO was orthogonal to that of turbidity, suggesting that
DO replenishing mechanisms countered expected increases in
biochemical DO demand when turbidity increased. The Days from
Fire vector was short and misaligned with any C-Q slope, suggesting
that recovery time had not yet emerged as a dominant influence.
Instead, acute hydrologic and seasonal drivers remained the primary
controls on C-Q export behavior during the first 18 months
post-fire.
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At P3, the PCA biplot reveals distinct groupings of C-Q behavior
that reflect the combined influence of seasonal conditions, event
magnitude, and post-fire recovery. One group includes the C-Q slope
of water temperature, average air temperature, and prior runoff
volume, indicating a relationship between seasonal and antecedent
watershed conditions and thermal responses. A second group links
EVI, runoff volume, and event duration, highlighting the role of
snowmelt and monsoon-season events, where greener vegetation
coincides with larger, longer runoff episodes. Closely aligned with this,
the C-Q slope of turbidity clusters with event duration and runoff
volume, showing that turbidity export remains strongly event-driven
at this site. In contrast, the C-Q slope of DO aligns with Days from
Fire, indicating that DO export is increasingly shaped by longer-term
recovery processes rather than immediate hydrologic forcing. Finally,
the C-Q slope of specific conductance stands apart from other
variables, suggesting that it reflects more localized or variable
dissolved ion transport. These patterns indicate that P3, as a
mid-network site, is shaped by a blend of upstream fire effects,
seasonal hydrology, and ongoing recovery, with different water quality
parameters responding to distinct environmental timescales.

At P5, the PCA analysis using 45° arcs reveals more groups of a small
number of clearly aligned vectors, reflecting distinct environmental
controls on C-Q behavior. The C-Q slope of water temperature and
average air temperature form one group, indicating that thermal C-Q
behavior responses are closely tied to seasonal warming, consistent with
increased solar input and reduced canopy shading during warmer periods
far from the forested mountains. EVI aligns with average air temperature
and prior runoff volume, which indicates vegetation greenness and
antecedent moisture co-occur and shape runoff dynamics. The C-Q slope
of specific conductance and prior runoff volume is also directionally
consistent, highlighting a pathway where wet antecedent conditions
promote ion flushing. The C-Q slope of DO and Days from Fire form a
recovery-aligned pair, indicating that DO behavior continues to reflect
long-term ecological stabilization post-fire. On the event-driven side,
runoff volume and event duration align tightly, and the C-Q slope of
turbidity and event duration are also linked, highlighting that the
magnitude and persistence of runoff events still influence sediment
mobilization at P5. The C-Q slope of pH does not fall within 45° of any
group, indicating more complex or isolated behaviors. Therefore, seasonal
forcing, antecedent wetness, storm intensity, and recovery time each leave
measurable and distinct signatures on C-Q transport behavior post-fire.

Figure 7 summarizes the event features that exhibit strong
correlations (p < 0.05) with three or more of the C-Q event slopes. At
P2, average air temperature, runoff volume, and event duration were
key drivers strongly associated with changes in C-Q behavior. Warmer
air temperatures were correlated with events featuring more
mobilization of specific conductance and increased water
temperatures, while DO and turbidity were more diluted. Larger and
longer runoff events drove more mobilization of turbidity and DO,
but more dilution of pH and specific conductance, suggesting that the
runoff event size modulates both sediment and chemical responses.
At P3, only average air temperature emerged as a significant predictor,
associated with more mobilization of pH and specific conductance,
but dilution of turbidity, suggesting a seasonal pattern with less
influence from runoff size. By contrast, P5 reflected a division
between seasonal and recovery influences. There, the increases in the
average air temperature during events were linked to more dilution
of DO and pH and increases in water temperature. In contrast, Days
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from Fire was associated with more mobilization of DO and pH,
potentially signaling improving ecosystem function over time,
alongside more reductions of water temperature. All significant
correlations of event features and event slopes can be found in
Supplementary Figure SI, and a summary of the minimum and
maximum values for the event features can be found for each site in
Supplementary Table S8.

These patterns show that C-Q transport behavior evolved
downstream, shifting from more acute, event-driven responses at P2
to seasonally modulated export at P3, and longer-term recovery
dynamics at P5.

Discussion

This study provides a high-resolution, spatially distributed assessment
of post-wildfire water quality behavior in a semiarid fluvial network
impacted by the 2022 Hermit’s Peak—Calf Canyon (HPCC) wildfire.
Using continuous sensor data collected over 18 months across three
locations spanning >160 km, we identified runoft-driven changes in water
quality post-fire and pronounced shifts in C-Q export patterns that varied
across parameters and watershed position. These shifts reflected
differences in burn percentage, hydrologic connectivity, and landscape
recovery processes that are detectable only through high-frequency
sensor data (Dahm et al., 2015; Nichols et al., 2024).

The value of high-frequency sensors
compared to traditional sampling

Comparison of pre- and post-fire discrete samples with sensor-
derived event extremes showed that conventional sampling severely
underestimates both the magnitude and frequency of post-wildfire water
quality disturbances. It is well known that even monthly discrete samples
miss most variability of storm events and only provide long-term trends
in water quality (Kirchner et al., 2004). Therefore, the comparison of
discrete samples before and after the fire only allows us to observe
persistent changes in post-fire water quality. The use of post-fire, high-
frequency sensor data provides the temporal resolution to examine event-
driven extremes, offering a picture of severe and persistent impacts.

Discrete samples showed significant increases in turbidity after the
fire (100 JTU and 1,810 NTRU), but the use of sensors post-fire saw values
of ~8,500 FNU during storm-driven peaks, which exceeded the
maximum post-fire discrete sample by nearly fivefold. There was also a
maximum sensor value for specific conductance of 882 uS/cm, which is
approximately 2.6 times higher than the post-fire maximum of 335 uS/
cm and three times higher than the post-fire discrete sample maximum
of 301 pS/cm. Similarly, DO concentrations dropped below 5mg/L
during several events, crossing a threshold of ecological concern never
detected in discrete samples (Rosenfeld and Lee, 2022). Event-scale sensor
minima and maxima for specific conductance, pH, and temperature also
revealed episodic spikes and sags that were invisible in the discrete
sampling record.

These findings align with previous studies highlighting the limitations
of low-frequency sampling in capturing short-duration water quality
disturbances (Dahm et al., 2015; Sherson et al., 2015; Emmerton et al.,
20205 Snazelle, 2020). Dahm et al. (2015) showed that extreme post-fire
water quality degradation, including rapid declines in DO and increases
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in turbidity, can only be captured with semi-continuous sensor
measurements. Similarly, Emmerton et al. (2020) emphasized that
discrete sampling missed key event-driven spikes in water quality
parameters following major Canadian wildfires. Such transient but
extreme episodes are particularly consequential for aquatic ecosystems
and drinking water utilities (Emelko et al, 2011; Bladon et al., 2014; Paul
et al, 2022), and our data confirm that without sensor deployments,
managers would likely have underestimated the severity of fire-related
impacts on turbidity, DO, and pH.

Frontiers in Water

Moreover, even though the EXO2 sensors used in this study are
known to underestimate turbidity at high values (Snazelle, 2020), the
fact that these instruments still recorded values well beyond the
discrete sample range suggests that the actual post-fire extremes may
have been even more severe than reported. This supports the routine
integration of high-frequency monitoring technologies into post-
disturbance response frameworks, particularly in regions where fire
impacts intersect with surface water supply systems (Smith et al., 2011;
Ball et al., 2021).
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Parameter-specific mechanisms driving
water quality change

Each water quality parameter responded uniquely to post-fire
conditions, reflecting distinct biogeochemical mechanisms and
interactions with hydrologic and landscape processes.

Turbidity was the most consistent indicator of post-fire
disturbance. Its consistent mobilizing behavior, observed across
all events and sites, reflects disturbance pulses triggered by
erosion and ash transport following vegetation loss (Moody and
Martin, 2001). The magnitude of turbidity responses was most
significant at P2, where 95% of the watershed was burned, but
high turbidity persisted downstream (P5), suggesting continued
sediment sourcing from tributaries and mainstem processes even
beyond the immediate burn zone. These patterns are consistent
with prior observations in burned headwaters and show the long
spatial footprint of sediment impacts after wildfire (Smith
etal, 2011).

DO concentrations showed a spatial transition from dilution near
the burn area to mobilization downstream. At P2, sharp DO declines
during events likely resulted from the influx of oxygen-demanding
materials such as fire-related organic matter, fine sediments, and
nutrients. These inputs can reduce DO despite increased flow and
reaeration (Dahm et al.,, 2015; Sherson et al,, 2015). At P5, DO
mobilizes with discharge, showing larger increases from pre-event
baselines, likely due to enhanced reaeration, DO solubility, and
primary production, a recovery trend also noted by Reale et al. (2015).
This spatial gradient suggests a recovery trajectory in which the acute
oxygen stress associated with runoff events diminishes with distance
from the burn scar and time since fire.

pH values also showed episodic acidification near the burn area.
Dilution behavior at P2 is consistent with the mobilization of organic
acids, pyrogenic carbon, and sulfates during stormflows, which are
common post-fire water chemistry features (Bayley et al., 1992;
Rupert, 2001; Cheng et al., 2006). Downstream, the trend toward
chemostasis may be associated with buffering from baseflow and
unburned tributaries, as well as reduced fire-related inputs due to a
smaller burn percent of the contributing watershed.

Specific conductance is typically expected to increase post-fire due
to elevated ion concentrations from ash leachate (Raoelison et al.,
2023). However, specific conductance declined with increasing
discharge throughout the network, supporting a dilution-dominated
model. This pattern aligns with observations in arid western streams,
where stormflow dilutes ion-rich baseflows (Phillips et al., 2003; Reale
etal, 2015). However, elevated median intercepts at mid-network site
P3 suggest localized solute contributions from tributaries.

Water temperature showed consistent dilution behavior (i.e.,
event-driven cooling) across all sites, likely due to cooler stormwater
mixing with warmer baseflows. However, intercepts increased
downstream, consistent with cumulative solar exposure, lower
elevation, and reduction of riparian canopy across the more
arid landscape.

Our data showed that the pH and water temperature were within
New Mexico Environmental Department regulations. However, DO
(< 6.0 mg/L) and specific conductance (> 300 pS/cm) (Figure 4)
violated these standards (New Mexico Administrative Code, 2023).
Similarly, New Mexico’s surface water quality standards require that
< 10 NTU above

turbidity from non-natural sources remain
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background when baseline values are < 50 NTU, or within 20% above
background for higher baseline values. Additionally, sustained
turbidity episodes beyond durations known to disrupt feeding
behavior are considered violations. During several post-fire events in
our study, post-fire disturbances with increased turbidity exceeded
these thresholds, especially in baseline periods under 50 NTU,
indicating potential ecological impairment under state standards.

Longitudinal shifts in C-Q transport
behavior

A key contribution of this study is the documentation of how C-Q
transport regimes shift with position along a fluvial network following
a gigafire (Linley et al., 2022). Turbidity and water temperature
maintained consistent behavior across sites, characterized by
mobilization and dilution, respectively. These patterns suggest that
both parameters are tightly coupled with hydrologic inputs,
particularly storm-driven sediment pulses post-fire and thermal
dilution, and are less sensitive to in-stream biochemical or recovery-
driven processes (Brown and Hannah, 2007; Smith et al., 2011).

In contrast, DO and pH exhibited clear longitudinal shifts in
their C-Q behavior. At the upstream site (P2), DO and pH
predominantly showed dilution behavior, consistent with the acute
effects of post-fire runoff, including elevated biochemical oxygen
demand, sediment and nutrient influx, and acidification from
pyrogenic organics (Bayley et al., 1992; Cheng et al., 2006; Dahm
et al., 2015). By the time water reached the downstream site (P5),
these same parameters shifted toward mobilization or chemostasis.
pH showed reduced slope variability and higher intercepts,
suggesting increased buffering capacity, mixing with unburned
tributaries, sediment attenuation, and possible metabolic recovery
(Rupert, 2001; Reale et al., 2015). This spatial increase in chemostasis
for pH and DO supports the hypothesis that fire-related disturbances
attenuate along the river continuum, particularly due to dilution,
sediment deposition, and ecosystem recovery processes (Emelko
et al., 2011; Nichols et al., 2024).

The persistence of elevated turbidity at P5, despite a > 160 km
separation from the burn area, indicates that fire-related signals can
propagate over long distances. Previous results from our studies have
shown turbidity, nutrients, and metal propagation to Santa Rosa Lake
(downstream of P5) (Khandelwal et al., 2023; Kaphle et al., 2025).

Khandelwal et al. (2023) used the Navigator, an autonomous
surface vehicle with GPS and water quality sensors, to carry out high-
resolution spatial mapping of water quality conditions in response to
post-wildfire runoft events from the wildfire. Those observations,
downstream of the last station in this analysis, revealed the
continuation of water quality impacts along the watershed’s network
and the spatial shifts across the Pecos River- Santa Rosa Lake delta.
DO dropped from already low ~6 mg/L concentrations in the Pecos
River upstream of the delta to anoxic levels (~0 mg/L) within the delta
zone, before recovering closer to the dam. Those DO sags and
subsequent recoveries were inversely correlated with turbidity levels,
indicating that sediment influx driven by wildfire debris played a
critical role in controlling microbial respiration and photosynthetic
activity. Zones with low DO also exhibited reduced pH values,
suggesting elevated aerobic microbial metabolism and CO, release
associated with high organic loads from fire-related sediment inputs.
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Kaphle et al. (2025) conducted longitudinal assessments of post-fire
water quality dynamics and found that NO;~ and TON exhibited strong
mobilization trends at P5. They found elevated concentrations of Cr*,
Pb*, Zn**, and Sr** at P5. Cr** concentrations at that site (~0.05 mg/L)
were more than double the typical background levels for unaffected
streams (0.01-0.02 mg/L) and closely matched concentrations in other
post-fire studies (0.03-0.07 mg/L). Similarly, Pb*" levels at P5 exceed
natural background values (<0.05mg/L). Zn** concentrations
(~0.30mg/L) also fell within the elevated post-fire range (0.25-
0.35 mg/L), more than doubling the concentrations typically seen in
unburned watersheds (~0.10 mg/L). Sr** levels (~0.20 mg/L) at P5 were
elevated relative to background (~0.10 mg/L) and consistent with limited
post-fire data showing increases up to 0.25 mg/L.

Overall, this spatial divergence in C-Q behavior highlights the
complex and parameter-specific nature of post-fire water quality
recovery and supports the importance of monitoring both proximal
and distal sites to capture the full trajectory of aquatic system response
(Ball et al., 2021; Paul et al., 2022; Nichols et al., 2024).

Transition from event-scale to
recovery-driven controls

Our correlation and PCA analyses revealed a shift in the dominant
drivers of C-Q behavior, from short-term hydrologic features
upstream to longer-term recovery metrics downstream. At P2, event
volume and duration were the strongest predictors of C-Q responses,
particularly for turbidity and DO. This pattern shows the rapid
mobilization of ash, sediment, and oxygen-demanding materials
initiated by post-fire storms, a well-documented driver of post-fire
erosion and water quality degradation (Moody and Martin, 2001;
Emelko et al., 2011; Murphy et al., 2015).

In contrast, at P5, significant correlations emerged between C-Q
behavior and long-term recovery indicators, including time since fire
declaration. Positive correlations between DO and pH C-Q slopes and
time since fire suggest a gradual improvement in biogeochemical
function, potentially due to microbial recovery, enhanced organic
matter processing, and the reestablishment of riparian buffers (Bixby
etal,, 2015; Crockett and Hurteau, 2024). These findings are consistent
with studies showing that as burned watersheds transition out of the
acute disturbance phase, C-Q dynamics are increasingly related to
seasonal (average air temperature) and ecological recovery processes
(days since fire declaration), rather than being dominated by
individual runoff events.

This temporal evolution of C-Q drivers was further evidenced by
a decline in event-driven correlation strength from P2 to P5. While
upstream sites responded consistently to runoff-event characteristics,
downstream responses became more nuanced and context-dependent,
integrating antecedent moisture conditions, vegetation status, and
catchment memory.

Implications for monitoring and
management

Our findings have important implications for post-wildfire water

quality monitoring and watershed management. First, the failure of
sporadic discrete sampling to detect critical disturbances, especially in
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DO and turbidity, highlights the need to expand high-frequency
sensor deployments in fire-impacted watersheds. Such sensors can
capture rapid water quality disturbances that discrete sampling
consistently misses (Sherson et al., 2015; Emmerton et al., 20205
Snazelle, 2020). These omissions can be ecologically consequential,
particularly near drinking water intakes and sensitive aquatic habitats.
For example, the City of Las Vegas, NM continues to face treatment
challenges two years after the HPCC fire, primarily due to recurring
turbidity spikes and sediment loads that complicate water treatment
operations (Olague, 2024; Wulfeck, 2024).

Second, the transition from event-driven to recovery-driven C-Q
behavior downstream suggests that monitoring programs should
extend beyond the immediate post-fire period and be adaptively
tailored by watershed position. Upstream sites may benefit from real-
time alerts to capture acute impacts on water quality, while
downstream sites could emphasize long-term ecological recovery
metrics, including vegetation regrowth (EVI), baseflow stabilization,
and sediment attenuation (Paul et al., 2022; Crockett and Hurteau,
2024; Nichols et al., 2024).

Finally, the spatial divergence in C-Q behavior highlights the
importance of distributed monitoring networks. Relying on single-site
data can obscure the heterogeneity of post-fire responses across a river
network. To capture acute disturbances and chronic recovery signals,
longitudinal data collection across multiple nodes is essential,
particularly in systems where fire severity, hydrology, and connectivity
vary with distance from the burn scar (Dahm et al., 2015; Nichols
etal., 2024).

Conclusion

This study provides a detailed, multi-parameter evaluation of
post-wildfire water quality responses using high-resolution sensor
data collected over 18 months across a > 160 km fluvial network
impacted by the Hermits Peak—Calf Canyon fire. Through the
integration of event-scale C-Q dynamics, spatial comparisons across
watershed positions, and multivariate analyses of environmental
drivers, we advance understanding of how wildfire affects riverine
water quality over time and space.

Our findings show that the most severe and ecologically
consequential impacts, including turbidity surges exceeding 8,500
FNU and DO concentrations falling below water quality standards
(~5mg/L), occurred near the burn area during runoff events. These
extremes were entirely missed by traditional discrete sampling.
Concentration-discharge behavior also varied substantially across
sites: turbidity consistently increased with flow (mobilization) at all
locations, while DO and pH transitioned from dilution-dominated
behavior upstream to more chemostatic or mobilizing behavior
downstream. Specific conductance declined with flow across the
network, and water temperature consistently exhibited dilution, with
stronger effects at downstream sites.

These patterns indicate a spatial and temporal evolution in
dominant controls on water quality. Upstream C-Q behavior was
closely linked to event-scale hydrologic features such as runoff volume,
runoff duration, and air temperature (seasonal indicator), consistent
with acute post-fire disturbance. In contrast, downstream responses
were less unique and more strongly influenced by longer-term
indicators of watershed recovery, including time since fire.
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Importantly, our results highlight the limitations of
low-frequency sampling in capturing post-fire water quality
disturbances and demonstrate the value of continuous monitoring
for research and management. The persistence of elevated turbidity
and evolving C-Q behavior more than a year after the fire suggests
that monitoring efforts should extend beyond the immediate post-
burn period and be spatially distributed to account for network-
scale heterogeneity.

This study contributes new insight into the trajectories of post-fire
water quality and integrates sensor-based monitoring with hydrologic
and landscape analysis by capturing both acute impacts and early signs
of recovery. Our findings can inform the design of more responsive,
risk-aware water resource management strategies in fire-prone regions.
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