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Drivers and impacts of changes in 
water quality behavior from the 
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Wildfires significantly alter hydrological and biogeochemical processes, impacting 
downstream water quality and posing risks to ecosystems and human communities. 
Following the 2022 Hermit’s Peak-Calf Canyon (HPCC) wildfire in New Mexico, 
the largest wildfire recorded in the state of New Mexico, we deployed high-
resolution in-situ sensors at three locations along a > 160 km fluvial network 
to investigate event-scale solute transport dynamics and their environmental 
drivers. Our objective was to evaluate how post-fire runoff events influenced 
water quality behavior across spatial (headwaters to mid- and high-order streams) 
and temporal (event to seasonal) gradients. We found that acute water quality 
impacts were most severe near the burn area, where turbidity reached ~8,500 
FNU and dissolved oxygen fell below regulatory thresholds. These extremes, 
largely missed by traditional discrete sampling, were strongly driven by storm 
event size and seasonal variability. In contrast, farther downstream, solute export 
behavior was better predicted by longer-term indicators such as time since the 
fire and vegetation recovery metrics. Our analysis reveals distinct spatial shifts in 
concentration-discharge behavior that depend on the water quality parameter 
type, event features, and site position in the watershed. These findings highlight 
the need for longitudinal, high-frequency monitoring to detect and anticipate 
wildfire-induced water quality risks and inform more adaptive, spatially targeted 
watershed management strategies.
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Introduction

Wildfires are increasing in frequency, severity, and spatial extent across the western 
United  States (Dennison et  al., 2014), driven by various factors including historical fire 
suppression, land use change (Allen et  al., 2002), and anthropogenic climate change 
(Westerling et al., 2006; Abatzoglou and Williams, 2016; Romero, 2023). These shifts in fire 
regimes are reshaping terrestrial ecosystems and introducing profound and complex impacts 
on downstream hydrology and water quality. Because more than half of the U.S. drinking water 
supply originates from forested watersheds (Brown et al., 2008), the integrity of post-fire water 
resources has become an urgent national concern.

Following wildfires, the loss of vegetation and alteration of soil properties increase surface 
runoff, sediment delivery, and the mobilization of nutrients, metals, and organic matter 
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(Bladon et al., 2014). These changes can persist for months to years, 
and are often most acute during storm events, which can flush large 
volumes of previously immobilized material into river systems (Stone 
et  al., 2011). Resulting changes in water quality, such as elevated 
turbidity, dissolved oxygen sags, altered pH, and changes in specific 
conductance (Dahm et al., 2015; Raoelison et al., 2023), can impair 
aquatic habitats, reduce reservoir lifespans (Bladon et al., 2014), and 
overwhelm municipal water treatment systems (Emelko et al., 2011). 
These effects can pose substantial operational and public health 
challenges for communities that rely on surface water from recently 
burned watersheds (Emelko et al., 2011).

Despite a growing awareness of the hydrologic consequences of 
wildfires, the temporal and spatial dynamics of post-fire water quality 
responses remain poorly understood. Much of what is known derives 
from opportunistic studies (Dahm et  al., 2015), short-duration 
monitoring (Sherson et al., 2015; Emmerton et al., 2020; Crandall 
et al., 2021), or infrequent discrete sampling campaigns (Johnston and 
Maher, 2022; Richardson et al., 2024), which may miss the short-lived 
but extreme changes that define post-fire water quality hazards. High-
frequency sensor deployments now enable capturing these rapid 
changes in real time. Yet, such tools have rarely been deployed 
systematically across spatial gradients within burned fluvial networks. 
Consequently, it remains unclear how wildfire impacts unfold over 
space, from heavily burned headwaters to downstream river reaches, 
and how solute transport behavior evolves, particularly in relation 
to event characteristics, seasonal forcing, and watershed recovery  
processes.

In April 2022, the Hermit’s Peak–Calf Canyon (HPCC) wildfire 
burned over 1,380 km2 of forested terrain in northern New Mexico, 
producing severe ecological and hydrologic impacts across a large 
swath of the Pecos River basin. In response, we established a rapid 
response, sensor-based water quality monitoring network across three 
locations on the Gallinas Creek–Pecos River system (Tunby et al., 
2023). These sites, separated by more than 160 km and differing 
markedly in burn extent and watershed characteristics, provided a 
unique opportunity to evaluate how wildfire-induced concentration-
discharge (C-Q) behavior varies across spatial and temporal scales.

This study analyzes 18 months of high-frequency water quality 
data to address three research questions. First, how did the HPCC 
wildfire affect water quality within the fluvial network? Second, how 
did C-Q transport regimes (i.e., mobilization, dilution, or chemostasis) 
vary across parameters and along the fluvial network? Third, to what 
extent are solute behavior and environmental metrics correlated, and 
can solute behavior be predicted using environmental metrics such as 
event size, seasonality, and post-fire recovery indicators?

We hypothesized that runoff events at the most severely burned, 
upstream sites would exhibit dominant mobilization (e.g., turbidity) 
or dilution (e.g., DO) associated with post-fire storm events. In 
contrast, we  expected that the downstream site, more distally 
connected to the burned area, would exhibit more attenuated or 
mixed C-Q behavior due to increased contributions of unaffected 
tributaries and in-stream processing.

This work seeks to advance understanding of post-fire C-Q 
dynamics in river networks by integrating continuous water quality 
measurements with event-scale hydrologic and environmental drivers. 
In doing so, we  aim to inform both scientific understanding and 
practical monitoring approaches that support water resource 
management in fire-impacted regions.

Methods

To clearly communicate our research methods, we moved some 
details to the Supplementary information of this article. The 
accompanying data and analysis code can be found in Tunby (2025).

Study area and monitoring network

The HPCC fire began in April 2022 and burned over 1,382 km2 
of forested land in the Santa Fe National Forest, New Mexico 
(National Interagency Fire Center, 2022). This fire affected the 
Gallinas Creek-Pecos River-Santa Rosa Lake network. Gallinas 
Creek supplies drinking water to the City of Las Vegas, NM, and 
supports downstream users and ecosystems. In response, 
we deployed water quality sensors at three sites along this fluvial 
network: P2, P3, and P5, located 26, 61, and 167 km downstream of 
the headwaters of Gallinas Creek. These sites were selected to 
capture changes in the spatial relevance of fire impact. From the 
198 km2 draining to P2, ~95% were burned; from the 826 km2 
draining to P3, ~36% were burned; and from the 6,008 km2 draining 
to P5, ~10% were burned. All sites were co-located with 
U. S. Geological Survey (USGS) stream gages to enable synchronized 
hydrologic and water quality data collection (Figure  1). Site 
characteristics for each of the sampling sites’ watershed areas are 
listed in Supplementary Table S1.

Water quality and discharge monitoring

We measured water quality parameters using YSI EXO2 
multiparameter sondes installed in April 2022, i.e., 2 weeks after the 
fire began and before any precipitation mobilized burned material 
to the fluvial network, and maintained the sensors through 
September 2023. The sensors were collocated next to USGS stream 
gages (P2 with 08380500, P3 with 08382000, and P5 with 08382650), 
which collect discharge data at a 15-min resolution. The length of 
the USGS data used was the same as the sensor’s deployment (April 
18, 2022). These sensors recorded dissolved oxygen (DO), specific 
conductance, turbidity, pH, and water temperature at 15-min 
intervals. We inspected and calibrated the sensors every 2 weeks, and 
all data were corrected for drift and fouling using manufacturer-
recommended procedures and site-specific calibration offsets. 
We  identified and removed spurious readings using a moving 
window filter with a ± 20% threshold, following protocols adapted 
from Wagner et al. (2006).

Historical discrete sampling data

To establish pre-fire water quality baselines, we compiled discrete 
sample data from the USGS and EPA Water Quality Portal for P2, the 
only site with records before and after the fire (National Water Quality 
Monitoring Council, 2025). Discrete samples were collected randomly, 
over multiple different hydrologic conditions that were inconsistently 
recorded. When available, records indicated water level (i.e., low, 
normal, or peak) and whether flow conditions were changing (i.e., 
falling, stable, or rising). Lack of flow-related information appears as 
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‘Not determined’ (Supplementary Table S2). These records span from 
1964 to 2009 for pre-fire conditions and 2022 to 2023 for post-fire 
discrete samples. Depending on the parameter, sample sizes ranged 
from 12 to 99 for pre-fire and 8 to 37 for post-fire datasets.

In most cases, the discrete samples were collected multiple times 
a year for consecutive years, with subsequent multi-year gaps in data 
collection, as shown in Supplementary Table S2. Discrete sample 
turbidity measurements have three different units, i.e., Jackson 

Turbidity Units (JTU), nephelometric turbidity units (NTRU), and 
Formazin Nephelometric Units (FNU), while post-fire YSI EXO2 
sensor data is only in FNU. However, the measurements in JTU and 
NTRU are roughly equivalent and were used interchangeably for 
comparisons (Bash et al., 2001). The use of FNU has high variability 
between sensors, and it has been shown that EXO sensor response is 
typically lower than that of other field and laboratory sensors when 
compared to in situ and discrete samples. As a result, the turbidity 

FIGURE 1

Map of the area burned by the Hermit’s Peak–Calf Canyon wildfire. The locations of sampling sites and water discharge data are indicated as P2, P3, 
and P5, with subindices indicating the kilometers from the headwaters of Gallinas Creek in accordance with Nichols et al. (2024). P indicates that sites 
drain to the Pecos River.
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measurements and their comparison are likely underestimating the 
actual values (Snazelle, 2020; Davies-Colley et al., 2021).

Runoff event delineation

Runoff events were delineated using the USGS stream gage data 
at each site for the duration of sensor deployment and the HydRun 
toolbox in MATLAB, which identifies hydrograph peaks based on 
user-defined thresholds. We applied a filter coefficient of 0.995 to 
remove baseflow, a return ratio of 0.25 to define the end of each event, 
and set the peak threshold equal to the mean annual baseflow at each 
site following established recommendations (Tang and Carey, 2017). 
These parameters were selected to capture meaningful storm-driven 
runoff events at each site, independent of each other, while filtering 
out minor fluctuations in flow. Since in the region of the fire, the 
North American Monsoon system brings heavy rainfall during the 
summer (Hoell et  al., 2016), which contributes up to 50% of the 
annual rainfall (Sheppard et  al., 2002), we  classified events into 
monsoon (June 15 through September 30) and non-monsoon seasons 
(National Weather Service, 2024).

Event-scale water quality metrics

We estimated the concentration–discharge (C-Q) behavior for 
each post-fire event across monitoring sites. Each event’s C-Q behavior 
was estimated using a power-law relationship (Equation 1) with 
exponent b, using site- and event-specific concentrations (C) paired 
with discharge (Q) records:

	 ( )= ˆ b
C a Q

	
(1)

	 ( )= +10 10 10log ·log gˆ loC b Q a
	

(2)

In log–log space, b is the slope of the linear form of the relationship 
and 10log a is the intercept. Discharge (Q) values were normalized by 
the mean discharge of each event (  mean eventQ ), i.e., =  /ˆ mean eventQ Q Q
, to facilitate comparison of intercept values across events with differing 
discharge magnitudes (Knapp et al., 2020; Johnston and Maher, 2022). 
The C-Q slope (b) and intercept ( 10log a) for each event were estimated 
using the SciPy curve fit function (Equation 2) (Virtanen et al., 2020). 
The fit quality was calculated using the standard error of the slope and 
intercept with the Statsmodel package (Seabold and Perktold, 2010). 
Events with poor model fit (standard error > 0.5 for either slope or 
intercepts, or > 0.25 for both) were excluded from further analysis.

The slopes of each post-fire event were used to classify C-Q 
behaviors. A positive slope (b > 0) indicates mobilization (increase) of a 
water quality parameter, a negative slope (b < 0) indicates dilution 
(decrease), and a slope close to zero (b ≈ 0) indicates changes in water 
quality that are independent of discharge (Knapp et al., 2020) (Figure 2). 
The significance of the C-Q slope was calculated using the t-statistic of 
the slope (H0 = 0) and a significance level of 0.05. If the slope (b) was 
significant (p < 0.05), the sign of the slope was used for classification. 
Nonsignificant slopes (p > 0.05) were then evaluated using an additional 

criterion based on the ratio of the coefficient of variation of 
concentrations ( CCV ) to that of discharges ( Q̂CV ) (Equation 3):

	

µ σ
µ σ

=
ˆ

ˆ ˆ
·QC C

CQ Q

CV
CV 	

(3)

where µ  and σ  represent the mean and standard deviations of 
associated quantities (Musolff et al., 2015). If the absolute value of the 
ratio is < 0.5, the event behavior is classified as chemostasis, and if the 
ratio is > 0.5, the sign of the slope is used as above (Kaphle et al., 2025). 
This helps avoid misclassifying chemostatic and chemodynamic 
events due to issues associated with detection limits or low sample 
concentrations (Musolff et al., 2015).

If events were missing water quality data or lacked continuous 
sensor records for one of the water quality parameters, the events were 
excluded for all water quality parameters to facilitate comparability 
across events. We  made an exception for pH at P3, where sensor 
failure after June 2023 resulted in missing data during the entire 
second monsoon season. If all events had been discarded, it would 
have limited the understanding of water quality behavior for the other 
water quality parameters.

We examined spatial changes in water quality along the fluvial 
network using the C-Q slopes and intercepts for each water quality 
parameter at each sampling site. We  calculated the medians and 
interquartile ranges (IQRs) to facilitate interpretation.

Comparison of pre- and post-fire discrete 
samples and post-fire sensor event 
extremes

For each water quality parameter, we compared: pre-fire discrete 
samples vs. post-fire discrete samples to evaluate overall baseline 
changes using the same sampling method; pre-fire discrete samples vs. 
post-fire event sensor extremes to evaluate fire effects and differences 
due to sample resolution; and post-fire discrete samples vs. post-fire 
event sensor extremes to isolate differences due to sampling frequency 
and capture short-term post-fire extremes. We  evaluated statistical 
significance between the above groups using two-sided Mann–Whitney 
U tests (p-value < 0.05) and reported effect sizes using Cohen’s d 
(Cohen, 1992). A small effect size (d ≈ 0.2) indicates a modest difference 
between groups that, while statistically real, may have a limited impact. 
A medium effect size (d ≈ 0.5) indicates a more meaningful shift likely 
to affect water quality dynamics. A large effect size (d ≥ 0.8) suggests a 
substantial and impactful change that is statistically significant and 
highly relevant. A negative sign indicates that the second group (e.g., 
post-fire discrete samples) had higher values than the first group (e.g., 
pre-fire discrete samples). This analysis allowed evaluation of fire 
impacts on water quality and a direct comparison of discrete sampling 
with high-frequency sensor data following a wildfire.

Derivation of event features

We computed six explanatory features for each runoff event to 
explore the environmental drivers of C-Q transport behavior. Three 
features were derived directly from hydrograph characteristics: runoff 
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volume (event area under the curve), event duration (time from 
hydrograph start to return to baseflow), and the prior runoff volume 
(antecedent 3-day runoff volume excluding baseflow) (Figure 3). Three 
additional features were spatial or temporal: average air temperature 
during the event, enhanced vegetation index (EVI), and days since fire 
declaration. Runoff volume, event duration, and prior runoff volume 
examine event scale drivers of behavior; average air temperature and 
EVI assess seasonal drivers; and days since fire declaration look at 
recovery post-fire. Air temperature was extracted from PRISM 4-km 
gridded daily data and averaged over the event period for each 
watershed (Oregon State University, 2014). EVI was derived from 
MODIS (MOD13Q1 and MYD13Q1) 250 m 16-day composites (Ba 
et al., 2022), and the phased satellites provided an 8-day resolution 
(Nichols et al., 2024). The EVI raster was masked to the burned portion 
of each watershed, and the mean value was calculated. The events were 
adjusted for watershed travel time by lagging data 10 h at P3 and 25 h 
at P5, based on estimated flow velocities, allowing for the best estimation 
of storms originating from burn areas. The EVI value corresponding to 
the timestamp closest to the middle of the adjusted event time was used 
for each site’s corresponding burned watersheds. The time since fire was 
computed as the number of days between April 6, 2022 (fire declaration) 
and the midpoint of each delineated event’s duration.

Principal components and correlation 
analyses

We conducted principal components analysis (PCA) using the 
prcomp function in R to examine multivariate patterns in C-Q 
transport behavior (R Core Team, 2021). All variables were centered 
and scaled before analysis (Jolliffe and Cadima, 2016). We created 
PCA biplots for each sampling site using the C-Q slopes obtained 
from post-fire events for the five parameters (excluding pH at P3 due 
to missing data) and the six event features described above. These 
biplots visualized dominant gradients in C-Q behavior and their 
association with event drivers. To simplify and make our results 
objective, we grouped PCA vectors falling within a 45-degree° arc.

We further quantified the strength of association between 
individual event features and C-Q behavior using Spearman rank-
order correlations. Correlations between each C-Q slope and the six 
event features were computed at each site and for each water quality 
parameter using the spearmanr function in SciPy (Virtanen et al., 
2020). Significance was assessed at p < 0.05 (*), with additional 
emphasis on highly significant results p < 0.01 (**). In the main text, 
we focused our interpretation on event features significantly correlated 
with three or more C-Q slope relationships and present the complete 

FIGURE 2

Left panels show the conceptual representation of runoff events observed at a site, featuring water quality changes associated with mobilization (a), 
dilution (b), and chemostasis (c). The right panels show the corresponding concentration-discharge (C–Q) relationships.
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correlation matrices in Supplementary Figure S1. Detailed methods 
can be found in the Supplementary information.

Results

Post-fire runoff events and data availability

Across the three monitoring sites, we identified 108 runoff events 
from April 2022 through September 2023. These included 35 events at 
the upstream site (P2), 40 at the midstream site (P3), and 33 at the 
downstream site (P5). Event frequency was influenced by site-specific 
hydrologic responses and data continuity. Notably, sensor failure at 
P3  in June 2023 limited pH data availability during the second 
monsoon season, and only one runoff event was recorded at P5 during 
that same period due to data loss that occurred during storm events. A 
summary of events in this analysis is shown in Supplementary Table S3, 
with monsoonal events indicated with light blue shading.

Post-fire changes in water quality extremes

Our high-frequency sensors captured extreme water quality 
disturbances post-fire that were systematically missed by discrete 
sampling. Comparison of pre-fire discrete samples, post-fire discrete 
samples, and high-frequency post-fire event sensor extremes at P2 
(Figure 4) showed that turbidity had significant deviations post-fire. 

The pre-fire discrete samples did not exceed 100 JTU, whereas discrete 
post-fire samples reached a maximum of ~1,800 NTRU. High-
frequency sensors captured an even greater post-fire maximum of 
~8,500 FNU and overall showed greater maxima. There is a significant 
difference between the discrete sampling pre- and post-fire (p-
value = 0.0009), with a large effect size (Cohen’s d = −0.79), indicating 
an increase in turbidity post-fire using the same sampling method. 
There is also a significant difference between the discrete post-fire 
sampling and post-fire sensor event maximum (p-value = 0.0002) and 
a large effect size (Cohen’s d = −0.79) (Supplementary Table S4).

Water temperatures were also elevated post-fire. The maximum 
temperature reading (25 °C) was from the pre-fire discrete sampling 
dataset (Supplementary Table S5). The pre-fire median was 14 °C, 
while post-fire discrete sampling and sensor event maxima were 15.6 
and 18.4 °C (Supplementary Table S5). The post-fire event sensor 
maximums differed significantly from pre- and post-fire discrete 
samples (Cohen’s d ≈ −0.91 and −0.75, p-value = 0.0002 and 0.0169), 
confirming that low-frequency sampling failed to capture high 
thermal pulses from runoff events. However, due to the small to 
medium effect size (Cohen’s d = −0.34) (Supplementary Table S4), and 
the lack of significant difference detected between pre- and post-fire 
discrete samples, there are not likely enough discrete samples to detect 
changes post-fire.

The maximum post-fire sensor value for specific conductance is 
883 μS/cm, higher than the pre-fire and post-fire discrete sampling 
maximum of 335 and 301 μS/cm. However, there are no significant 
differences between sensor event maxima and the pre- and post-fire 

FIGURE 3

Conceptual representation of the six event features used to contextualize concentration-discharge (C-Q) relationships at each site: enhanced 
vegetation index (EVI), average air temperature, runoff volume, event duration, prior runoff volume, and days since fire declaration.
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discrete samples. In contrast, the comparison of the minimum post-
fire sensor event values and the pre- and post-fire discrete samples 
shows significantly lower sensor values (p-value = 3.60×10−10 and 
8.99×10−7), with large sample effects (Cohen’s d = 1.53 and 1.28) 
(Supplementary Table S4), indicating that the sensor systemically 
captured lower values.

The maximum pH values captured post-fire using the sensors 
were similar to the pre- and post-fire discrete sampling distributions, 
with only small effect sizes and no statistically significant differences 
across groups. However, when comparing the minimum pH values 
measured post-fire using the sensors, it was significantly different 
from pre- and post- fire discrete sampling (p-value = 0.00005 and 
0.00002) with large sample effects (Cohen’s d ≈ 0.88 and 1.12) 
(Supplementary Table S4), indicating episodic acidification events 
potentially driven by ash-laden runoff or organic acid loading, which 
were not captured using discrete sampling.

DO dynamics showed the most considerable short-term impacts 
regarding ecological risk and emphasized the need for high-
resolution sampling to capture the dynamics accurately. While 
discrete samples pre- and post-fire are not significantly different, the 
post-fire sensor event minimum values captured DO values as low as 
4.7 mg/L, which is below the New Mexico Environmental 
Department (NMED) requirements of > 6.0 mg/L (New Mexico 
Administrative Code, 2023), compared to pre-fire discrete 
measurements of 6.8 and post-fire of 7.7 mg/L (Supplementary  
Table S5). The post-fire discrete samples significantly differed from 

post-fire sensor event minima (p-value = 0.0131) and had a medium 
to large effect size (Cohen’s d ≈ 0.75), highlighting substantial under-
detection of DO sags in discrete samples post-fire (Supplementary  
Table S4).

Spatial variability in concentration–
discharge behavior

The event median C-Q values of water quality parameters at each 
site are shown in Figure 5. Supplementary Table S6 shows interquartile 
ranges (IQR) and Supplementary Table S7 presents the counts of each 
transport regime.

The C-Q behavior of DO shifted from dilution to mobilization 
along the fluvial network. At P2, the median slope was slightly negative 
(−0.011, IQR = 0.073), with 46% of events exhibiting dilution 
behavior. Downstream locations showed positive median slopes at P3 
(0.008) and P5 (0.032), with the dominant behavior shifting towards 
mobilization (48 and 45% of the events). The IQRs of both also 
increased (0.090 and 0.106, respectively), indicating larger variability 
in transport behavior in downstream sites. In contrast, the median 
intercept, which is the log10 of the concentration, decreases 
downstream, from 0.913 (8.2 mg/L) at P2 to 0.843 (7.0 mg/L) at P5. 
This shift suggests a longitudinal change in DO dynamics, potentially 
reflecting decreased DO demand and increased reaeration 
capacity downstream.

FIGURE 4

(a) Example of boxplots comparing all pre-fire and post-fire discrete sample data available to minima (min) or maxima (max) post-fire extremes 
captured with YSI EXO2 sensors at P2. The bars identify significant differences between groups (p-value < 0.05) using the Mann–Whitney U 
nonparametric statistical tests. Panels (b–f) show actual data of: (b) turbidity (max), (c) water temperature (max), (d) DO (min), (e) pH (min), (f) specific 
conductance (min).
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FIGURE 5

Post-fire, event-based concentration-discharge (C-Q) slope versus intercept plots for (a) DO, (b) pH, (c) specific conductance, (d) turbidity, and (e) 
water temperature at sampling locations P2, P3, and P5. Each circle, colored by sampling site, represents the slope and intercept pair obtained for an 
individual runoff event analysis. Cross markers show the median values for each site. The dashed line at zero slope indicates the transition between 
mobilization (positive) and dilution (negative) behaviors, and the arrows in the first box illustrate directional trends in the C-Q slope.
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The C-Q behavior of pH trended toward chemostatic behavior 
downstream. The median slopes were more negative at P2 (−0.023) 
and continued to trend more positive moving downstream to P3 and 
P5 (−0.004 and −0.001), with a decreasing variability in the observed 
slope values from P2 to P5 (IQR = 0.015 and 0.009). Dilution was the 
most prominent behavior observed at 89, 55, and 39% at P2, P3, and 
P5, but chemostasis and mobilization behavior increased from P2 to 
P5. The median intercept values also increased slightly downstream, 
from 0.892 (7.80) at P2 before stabilizing at 0.905 (8.04) and 0.907 
(8.07) at P3 and P5.

Specific conductance exhibited a consistently negative median 
slope at all sites (P2 = −0.058, P3 = −0.056, and P5 = −0.084), 
suggesting that dilution was the dominant response to increasing 
discharge. Dilution events accounted for over half of the events at each 
site, with the largest proportion (73%) of dilution events observed at 
P5. The median intercept values increased from 2.268 at P2 (185 μS/
cm) to 2.583 at P3 (383 μS/cm) before decreasing to 2.310 at P5 
(204 μS/cm).

Turbidity exhibited the most consistently mobilizing behavior 
along the fluvial network. The median slopes were positive at all sites 
(0.680 at P2, 0.361 at P3, and 0.475 at P5), and most of the events were 
classified as mobilization (69% at P2, 70% at P3, and 91% at P5). The 
variability of the slope values decreased downstream from P2 to P5 
(IQR = 1.876 and 0.554, respectively). The median intercept decreased 
from 2.496 (313 FNU) at P2 to 2.362 (230 FNU) at P3, before 
increasing to its highest value of 2.796 (625 FNU) at P5 after joining 
the Pecos River.

Water temperature exhibited consistent dilution behavior, with 
the proportion of all events classified as such increasing from 46% at 
P2 to 67% at P5. The median slopes were increasingly negative 
through the fluvial network (−0.025, −0.068, and −0.129 at P2, P3, 
and P5, respectively), suggesting that runoff events cooled down the 
stream water. There was an expected consistent increase in the water 
temperature through the network due to increasing aridity and lower 
elevations, with median intercepts changing from 1.196 (15.7 °C) to 
1.337 (21.7 °C).

These results show that C-Q behavior differed by parameter and 
by location along the fluvial network. Some parameters (e.g., turbidity, 
temperature) displayed consistent patterns across sites, while others 
(e.g., DO, pH) showed longitudinal transitions in behavior (Figure 5). 
The spatial variations in slope and intercept magnitudes highlight the 
importance of considering network position when assessing post-fire 
solute export.

Multivariate patterns in C-Q behavior and 
event drivers

At P2, the PCA revealed three distinct groups (Figure 6). The 
first, comprising the C-Q slope of turbidity, runoff volume, and 
event duration, reflects strong mobilization of particulate matter 
during larger, longer-duration events. A second group links the C-Q 
slope of specific conductance, average air temperature, EVI, prior 
runoff volume, indicating seasonal warming, vegetation recovery 
and greenness, and antecedent wetness are jointly associated with 
the mobilization of dissolved ions. A third group includes the C-Q 
slopes of pH and water temperature, which respond similarly to 
events but independently of event size or seasonality. Notably, the 

C-Q slope of DO was orthogonal to that of turbidity, suggesting that 
DO replenishing mechanisms countered expected increases in 
biochemical DO demand when turbidity increased. The Days from 
Fire vector was short and misaligned with any C-Q slope, suggesting 
that recovery time had not yet emerged as a dominant influence. 
Instead, acute hydrologic and seasonal drivers remained the primary 
controls on C-Q export behavior during the first 18 months 
post-fire.

FIGURE 6

PCA biplots including event features and C-Q slopes for each water 
quality parameter and sampling location. Some feature and water 
quality parameter names were simplified to improve clarity, i.e., 
average air temperature (Avg. Air Temp.), runoff volume (Runoff Vol.), 
prior runoff volume (Prior Runoff Vol.), enhanced vegetation index 
(EVI), days since fire declaration (Days from Fire), water temperature 
(Temp.), specific conductance (SpCond), turbidity (Turb.), dissolved 
oxygen (DO). The pH slope was excluded from PCA analysis at P3 
due to missing values for the second Monsoon season.
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At P3, the PCA biplot reveals distinct groupings of C-Q behavior 
that reflect the combined influence of seasonal conditions, event 
magnitude, and post-fire recovery. One group includes the C-Q slope 
of water temperature, average air temperature, and prior runoff 
volume, indicating a relationship between seasonal and antecedent 
watershed conditions and thermal responses. A second group links 
EVI, runoff volume, and event duration, highlighting the role of 
snowmelt and monsoon-season events, where greener vegetation 
coincides with larger, longer runoff episodes. Closely aligned with this, 
the C-Q slope of turbidity clusters with event duration and runoff 
volume, showing that turbidity export remains strongly event-driven 
at this site. In contrast, the C-Q slope of DO aligns with Days from 
Fire, indicating that DO export is increasingly shaped by longer-term 
recovery processes rather than immediate hydrologic forcing. Finally, 
the C-Q slope of specific conductance stands apart from other 
variables, suggesting that it reflects more localized or variable 
dissolved ion transport. These patterns indicate that P3, as a 
mid-network site, is shaped by a blend of upstream fire effects, 
seasonal hydrology, and ongoing recovery, with different water quality 
parameters responding to distinct environmental timescales.

At P5, the PCA analysis using 45° arcs reveals more groups of a small 
number of clearly aligned vectors, reflecting distinct environmental 
controls on C-Q behavior. The C-Q slope of water temperature and 
average air temperature form one group, indicating that thermal C-Q 
behavior responses are closely tied to seasonal warming, consistent with 
increased solar input and reduced canopy shading during warmer periods 
far from the forested mountains. EVI aligns with average air temperature 
and prior runoff volume, which indicates vegetation greenness and 
antecedent moisture co-occur and shape runoff dynamics. The C-Q slope 
of specific conductance and prior runoff volume is also directionally 
consistent, highlighting a pathway where wet antecedent conditions 
promote ion flushing. The C-Q slope of DO and Days from Fire form a 
recovery-aligned pair, indicating that DO behavior continues to reflect 
long-term ecological stabilization post-fire. On the event-driven side, 
runoff volume and event duration align tightly, and the C-Q slope of 
turbidity and event duration are also linked, highlighting that the 
magnitude and persistence of runoff events still influence sediment 
mobilization at P5. The C-Q slope of pH does not fall within 45° of any 
group, indicating more complex or isolated behaviors. Therefore, seasonal 
forcing, antecedent wetness, storm intensity, and recovery time each leave 
measurable and distinct signatures on C-Q transport behavior post-fire.

Figure  7 summarizes the event features that exhibit strong 
correlations (p < 0.05) with three or more of the C-Q event slopes. At 
P2, average air temperature, runoff volume, and event duration were 
key drivers strongly associated with changes in C-Q behavior. Warmer 
air temperatures were correlated with events featuring more 
mobilization of specific conductance and increased water 
temperatures, while DO and turbidity were more diluted. Larger and 
longer runoff events drove more mobilization of turbidity and DO, 
but more dilution of pH and specific conductance, suggesting that the 
runoff event size modulates both sediment and chemical responses. 
At P3, only average air temperature emerged as a significant predictor, 
associated with more mobilization of pH and specific conductance, 
but dilution of turbidity, suggesting a seasonal pattern with less 
influence from runoff size. By contrast, P5 reflected a division 
between seasonal and recovery influences. There, the increases in the 
average air temperature during events were linked to more dilution 
of DO and pH and increases in water temperature. In contrast, Days 

from Fire was associated with more mobilization of DO and pH, 
potentially signaling improving ecosystem function over time, 
alongside more reductions of water temperature. All significant 
correlations of event features and event slopes can be  found in 
Supplementary Figure S1, and a summary of the minimum and 
maximum values for the event features can be found for each site in 
Supplementary Table S8.

These patterns show that C-Q transport behavior evolved 
downstream, shifting from more acute, event-driven responses at P2 
to seasonally modulated export at P3, and longer-term recovery 
dynamics at P5.

Discussion

This study provides a high-resolution, spatially distributed assessment 
of post-wildfire water quality behavior in a semiarid fluvial network 
impacted by the 2022 Hermit’s Peak—Calf Canyon (HPCC) wildfire. 
Using continuous sensor data collected over 18 months across three 
locations spanning >160 km, we identified runoff-driven changes in water 
quality post-fire and pronounced shifts in C-Q export patterns that varied 
across parameters and watershed position. These shifts reflected 
differences in burn percentage, hydrologic connectivity, and landscape 
recovery processes that are detectable only through high-frequency 
sensor data (Dahm et al., 2015; Nichols et al., 2024).

The value of high-frequency sensors 
compared to traditional sampling

Comparison of pre- and post-fire discrete samples with sensor-
derived event extremes showed that conventional sampling severely 
underestimates both the magnitude and frequency of post-wildfire water 
quality disturbances. It is well known that even monthly discrete samples 
miss most variability of storm events and only provide long-term trends 
in water quality (Kirchner et al., 2004). Therefore, the comparison of 
discrete samples before and after the fire only allows us to observe 
persistent changes in post-fire water quality. The use of post-fire, high-
frequency sensor data provides the temporal resolution to examine event-
driven extremes, offering a picture of severe and persistent impacts.

Discrete samples showed significant increases in turbidity after the 
fire (100 JTU and 1,810 NTRU), but the use of sensors post-fire saw values 
of ~8,500 FNU during storm-driven peaks, which exceeded the 
maximum post-fire discrete sample by nearly fivefold. There was also a 
maximum sensor value for specific conductance of 882 μS/cm, which is 
approximately 2.6 times higher than the post-fire maximum of 335 μS/
cm and three times higher than the post-fire discrete sample maximum 
of 301 μS/cm. Similarly, DO concentrations dropped below 5 mg/L 
during several events, crossing a threshold of ecological concern never 
detected in discrete samples (Rosenfeld and Lee, 2022). Event-scale sensor 
minima and maxima for specific conductance, pH, and temperature also 
revealed episodic spikes and sags that were invisible in the discrete 
sampling record.

These findings align with previous studies highlighting the limitations 
of low-frequency sampling in capturing short-duration water quality 
disturbances (Dahm et al., 2015; Sherson et al., 2015; Emmerton et al., 
2020; Snazelle, 2020). Dahm et al. (2015) showed that extreme post-fire 
water quality degradation, including rapid declines in DO and increases 
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in turbidity, can only be  captured with semi-continuous sensor 
measurements. Similarly, Emmerton et  al. (2020) emphasized that 
discrete sampling missed key event-driven spikes in water quality 
parameters following major Canadian wildfires. Such transient but 
extreme episodes are particularly consequential for aquatic ecosystems 
and drinking water utilities (Emelko et al., 2011; Bladon et al., 2014; Paul 
et al., 2022), and our data confirm that without sensor deployments, 
managers would likely have underestimated the severity of fire-related 
impacts on turbidity, DO, and pH.

Moreover, even though the EXO2 sensors used in this study are 
known to underestimate turbidity at high values (Snazelle, 2020), the 
fact that these instruments still recorded values well beyond the 
discrete sample range suggests that the actual post-fire extremes may 
have been even more severe than reported. This supports the routine 
integration of high-frequency monitoring technologies into post-
disturbance response frameworks, particularly in regions where fire 
impacts intersect with surface water supply systems (Smith et al., 2011; 
Ball et al., 2021).

FIGURE 7

Summary of significant correlations between event features and at least three water quality parameters at each site. Positive Spearman correlations 
(blue) indicate increasing mobilization behavior of the water quality parameter with increased event feature values. A negative correlation (green) 
indicates increased dilution behavior with increases in the event feature values. The matrix of correlations with all values is available in 
Supplementary Figure S1.
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Parameter-specific mechanisms driving 
water quality change

Each water quality parameter responded uniquely to post-fire 
conditions, reflecting distinct biogeochemical mechanisms and 
interactions with hydrologic and landscape processes.

Turbidity was the most consistent indicator of post-fire 
disturbance. Its consistent mobilizing behavior, observed across 
all events and sites, reflects disturbance pulses triggered by 
erosion and ash transport following vegetation loss (Moody and 
Martin, 2001). The magnitude of turbidity responses was most 
significant at P2, where 95% of the watershed was burned, but 
high turbidity persisted downstream (P5), suggesting continued 
sediment sourcing from tributaries and mainstem processes even 
beyond the immediate burn zone. These patterns are consistent 
with prior observations in burned headwaters and show the long 
spatial footprint of sediment impacts after wildfire (Smith 
et al., 2011).

DO concentrations showed a spatial transition from dilution near 
the burn area to mobilization downstream. At P2, sharp DO declines 
during events likely resulted from the influx of oxygen-demanding 
materials such as fire-related organic matter, fine sediments, and 
nutrients. These inputs can reduce DO despite increased flow and 
reaeration (Dahm et  al., 2015; Sherson et  al., 2015). At P5, DO 
mobilizes with discharge, showing larger increases from pre-event 
baselines, likely due to enhanced reaeration, DO solubility, and 
primary production, a recovery trend also noted by Reale et al. (2015). 
This spatial gradient suggests a recovery trajectory in which the acute 
oxygen stress associated with runoff events diminishes with distance 
from the burn scar and time since fire.

pH values also showed episodic acidification near the burn area. 
Dilution behavior at P2 is consistent with the mobilization of organic 
acids, pyrogenic carbon, and sulfates during stormflows, which are 
common post-fire water chemistry features (Bayley et  al., 1992; 
Rupert, 2001; Cheng et al., 2006). Downstream, the trend toward 
chemostasis may be  associated with buffering from baseflow and 
unburned tributaries, as well as reduced fire-related inputs due to a 
smaller burn percent of the contributing watershed.

Specific conductance is typically expected to increase post-fire due 
to elevated ion concentrations from ash leachate (Raoelison et al., 
2023). However, specific conductance declined with increasing 
discharge throughout the network, supporting a dilution-dominated 
model. This pattern aligns with observations in arid western streams, 
where stormflow dilutes ion-rich baseflows (Phillips et al., 2003; Reale 
et al., 2015). However, elevated median intercepts at mid-network site 
P3 suggest localized solute contributions from tributaries.

Water temperature showed consistent dilution behavior (i.e., 
event-driven cooling) across all sites, likely due to cooler stormwater 
mixing with warmer baseflows. However, intercepts increased 
downstream, consistent with cumulative solar exposure, lower 
elevation, and reduction of riparian canopy across the more 
arid landscape.

Our data showed that the pH and water temperature were within 
New Mexico Environmental Department regulations. However, DO 
(< 6.0 mg/L) and specific conductance (> 300 μS/cm) (Figure  4) 
violated these standards (New Mexico Administrative Code, 2023). 
Similarly, New Mexico’s surface water quality standards require that 
turbidity from non-natural sources remain ≤ 10 NTU above 

background when baseline values are ≤ 50 NTU, or within 20% above 
background for higher baseline values. Additionally, sustained 
turbidity episodes beyond durations known to disrupt feeding 
behavior are considered violations. During several post-fire events in 
our study, post-fire disturbances with increased turbidity exceeded 
these thresholds, especially in baseline periods under 50 NTU, 
indicating potential ecological impairment under state standards.

Longitudinal shifts in C-Q transport 
behavior

A key contribution of this study is the documentation of how C-Q 
transport regimes shift with position along a fluvial network following 
a gigafire (Linley et  al., 2022). Turbidity and water temperature 
maintained consistent behavior across sites, characterized by 
mobilization and dilution, respectively. These patterns suggest that 
both parameters are tightly coupled with hydrologic inputs, 
particularly storm-driven sediment pulses post-fire and thermal 
dilution, and are less sensitive to in-stream biochemical or recovery-
driven processes (Brown and Hannah, 2007; Smith et al., 2011).

In contrast, DO and pH exhibited clear longitudinal shifts in 
their C–Q behavior. At the upstream site (P2), DO and pH 
predominantly showed dilution behavior, consistent with the acute 
effects of post-fire runoff, including elevated biochemical oxygen 
demand, sediment and nutrient influx, and acidification from 
pyrogenic organics (Bayley et al., 1992; Cheng et al., 2006; Dahm 
et al., 2015). By the time water reached the downstream site (P5), 
these same parameters shifted toward mobilization or chemostasis. 
pH showed reduced slope variability and higher intercepts, 
suggesting increased buffering capacity, mixing with unburned 
tributaries, sediment attenuation, and possible metabolic recovery 
(Rupert, 2001; Reale et al., 2015). This spatial increase in chemostasis 
for pH and DO supports the hypothesis that fire-related disturbances 
attenuate along the river continuum, particularly due to dilution, 
sediment deposition, and ecosystem recovery processes (Emelko 
et al., 2011; Nichols et al., 2024).

The persistence of elevated turbidity at P5, despite a > 160 km 
separation from the burn area, indicates that fire-related signals can 
propagate over long distances. Previous results from our studies have 
shown turbidity, nutrients, and metal propagation to Santa Rosa Lake 
(downstream of P5) (Khandelwal et al., 2023; Kaphle et al., 2025).

Khandelwal et  al. (2023) used the Navigator, an autonomous 
surface vehicle with GPS and water quality sensors, to carry out high-
resolution spatial mapping of water quality conditions in response to 
post-wildfire runoff events from the wildfire. Those observations, 
downstream of the last station in this analysis, revealed the 
continuation of water quality impacts along the watershed’s network 
and the spatial shifts across the Pecos River- Santa Rosa Lake delta. 
DO dropped from already low ~6 mg/L concentrations in the Pecos 
River upstream of the delta to anoxic levels (~0 mg/L) within the delta 
zone, before recovering closer to the dam. Those DO sags and 
subsequent recoveries were inversely correlated with turbidity levels, 
indicating that sediment influx driven by wildfire debris played a 
critical role in controlling microbial respiration and photosynthetic 
activity. Zones with low DO also exhibited reduced pH values, 
suggesting elevated aerobic microbial metabolism and CO₂ release 
associated with high organic loads from fire-related sediment inputs.
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Kaphle et al. (2025) conducted longitudinal assessments of post-fire 
water quality dynamics and found that NO₃− and TON exhibited strong 
mobilization trends at P5. They found elevated concentrations of Cr3+, 
Pb2+, Zn2+, and Sr2+ at P5. Cr3+ concentrations at that site (~0.05 mg/L) 
were more than double the typical background levels for unaffected 
streams (0.01–0.02 mg/L) and closely matched concentrations in other 
post-fire studies (0.03–0.07 mg/L). Similarly, Pb2+ levels at P5 exceed 
natural background values (<0.05 mg/L). Zn2+ concentrations 
(~0.30 mg/L) also fell within the elevated post-fire range (0.25–
0.35 mg/L), more than doubling the concentrations typically seen in 
unburned watersheds (~0.10 mg/L). Sr2+ levels (~0.20 mg/L) at P5 were 
elevated relative to background (~0.10 mg/L) and consistent with limited 
post-fire data showing increases up to 0.25 mg/L.

Overall, this spatial divergence in C-Q behavior highlights the 
complex and parameter-specific nature of post-fire water quality 
recovery and supports the importance of monitoring both proximal 
and distal sites to capture the full trajectory of aquatic system response 
(Ball et al., 2021; Paul et al., 2022; Nichols et al., 2024).

Transition from event-scale to 
recovery-driven controls

Our correlation and PCA analyses revealed a shift in the dominant 
drivers of C-Q behavior, from short-term hydrologic features 
upstream to longer-term recovery metrics downstream. At P2, event 
volume and duration were the strongest predictors of C-Q responses, 
particularly for turbidity and DO. This pattern shows the rapid 
mobilization of ash, sediment, and oxygen-demanding materials 
initiated by post-fire storms, a well-documented driver of post-fire 
erosion and water quality degradation (Moody and Martin, 2001; 
Emelko et al., 2011; Murphy et al., 2015).

In contrast, at P5, significant correlations emerged between C-Q 
behavior and long-term recovery indicators, including time since fire 
declaration. Positive correlations between DO and pH C-Q slopes and 
time since fire suggest a gradual improvement in biogeochemical 
function, potentially due to microbial recovery, enhanced organic 
matter processing, and the reestablishment of riparian buffers (Bixby 
et al., 2015; Crockett and Hurteau, 2024). These findings are consistent 
with studies showing that as burned watersheds transition out of the 
acute disturbance phase, C-Q dynamics are increasingly related to 
seasonal (average air temperature) and ecological recovery processes 
(days since fire declaration), rather than being dominated by 
individual runoff events.

This temporal evolution of C-Q drivers was further evidenced by 
a decline in event-driven correlation strength from P2 to P5. While 
upstream sites responded consistently to runoff-event characteristics, 
downstream responses became more nuanced and context-dependent, 
integrating antecedent moisture conditions, vegetation status, and 
catchment memory.

Implications for monitoring and 
management

Our findings have important implications for post-wildfire water 
quality monitoring and watershed management. First, the failure of 
sporadic discrete sampling to detect critical disturbances, especially in 

DO and turbidity, highlights the need to expand high-frequency 
sensor deployments in fire-impacted watersheds. Such sensors can 
capture rapid water quality disturbances that discrete sampling 
consistently misses (Sherson et  al., 2015; Emmerton et  al., 2020; 
Snazelle, 2020). These omissions can be ecologically consequential, 
particularly near drinking water intakes and sensitive aquatic habitats. 
For example, the City of Las Vegas, NM continues to face treatment 
challenges two years after the HPCC fire, primarily due to recurring 
turbidity spikes and sediment loads that complicate water treatment 
operations (Olague, 2024; Wulfeck, 2024).

Second, the transition from event-driven to recovery-driven C-Q 
behavior downstream suggests that monitoring programs should 
extend beyond the immediate post-fire period and be  adaptively 
tailored by watershed position. Upstream sites may benefit from real-
time alerts to capture acute impacts on water quality, while 
downstream sites could emphasize long-term ecological recovery 
metrics, including vegetation regrowth (EVI), baseflow stabilization, 
and sediment attenuation (Paul et al., 2022; Crockett and Hurteau, 
2024; Nichols et al., 2024).

Finally, the spatial divergence in C-Q behavior highlights the 
importance of distributed monitoring networks. Relying on single-site 
data can obscure the heterogeneity of post-fire responses across a river 
network. To capture acute disturbances and chronic recovery signals, 
longitudinal data collection across multiple nodes is essential, 
particularly in systems where fire severity, hydrology, and connectivity 
vary with distance from the burn scar (Dahm et al., 2015; Nichols 
et al., 2024).

Conclusion

This study provides a detailed, multi-parameter evaluation of 
post-wildfire water quality responses using high-resolution sensor 
data collected over 18 months across a > 160 km fluvial network 
impacted by the Hermit’s Peak—Calf Canyon fire. Through the 
integration of event-scale C-Q dynamics, spatial comparisons across 
watershed positions, and multivariate analyses of environmental 
drivers, we advance understanding of how wildfire affects riverine 
water quality over time and space.

Our findings show that the most severe and ecologically 
consequential impacts, including turbidity surges exceeding 8,500 
FNU and DO concentrations falling below water quality standards 
(~5 mg/L), occurred near the burn area during runoff events. These 
extremes were entirely missed by traditional discrete sampling. 
Concentration-discharge behavior also varied substantially across 
sites: turbidity consistently increased with flow (mobilization) at all 
locations, while DO and pH transitioned from dilution-dominated 
behavior upstream to more chemostatic or mobilizing behavior 
downstream. Specific conductance declined with flow across the 
network, and water temperature consistently exhibited dilution, with 
stronger effects at downstream sites.

These patterns indicate a spatial and temporal evolution in 
dominant controls on water quality. Upstream C-Q behavior was 
closely linked to event-scale hydrologic features such as runoff volume, 
runoff duration, and air temperature (seasonal indicator), consistent 
with acute post-fire disturbance. In contrast, downstream responses 
were less unique and more strongly influenced by longer-term 
indicators of watershed recovery, including time since fire.
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Importantly, our results highlight the limitations of 
low-frequency sampling in capturing post-fire water quality 
disturbances and demonstrate the value of continuous monitoring 
for research and management. The persistence of elevated turbidity 
and evolving C-Q behavior more than a year after the fire suggests 
that monitoring efforts should extend beyond the immediate post-
burn period and be spatially distributed to account for network-
scale heterogeneity.

This study contributes new insight into the trajectories of post-fire 
water quality and integrates sensor-based monitoring with hydrologic 
and landscape analysis by capturing both acute impacts and early signs 
of recovery. Our findings can inform the design of more responsive, 
risk-aware water resource management strategies in fire-prone regions.
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