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Climate-induced hydrological non-stationarity (e.g., intensified drought-flood 
transitions) challenges inflow forecasting in climate-vulnerable basins like the 
Yalong River, thereby constraining efficient water resources management. Given 
the non-stationary and periodic characteristics of the runoff series, this study 
proposes a novel hybrid forecasting model, named STL-SARIMA, which hybridizes 
Seasonal-Trend decomposition using Loess (STL) with the Seasonal Autoregressive 
Integrated Moving Average (SARIMA) model, observed runoff data from the Ertan 
Hydropower Station for the period 2008–2013 were collected. Based on the 
Seasonal-Trend decomposition procedure using Loess (STL) method, the original 
data were decomposed into trend, seasonal, and residual components. Combined 
forecast values for future runoff were then obtained by integrating the features of 
these sub-series. Finally, the prediction results were compared with those from 
single models, namely the Autoregressive Integrated Moving Average (ARIMA) and 
Seasonal Autoregressive Integrated Moving Average (SARIMA). The results show: 
The hybrid model integrating time series decomposition and SARIMA achieved a 
Root Mean Square Error (RMSE) of 1,374.07, demonstrating a 6.06% reduction in 
error compared to the standalone SARIMA model and a 17.45% reduction relative 
to the standalone ARIMA model. During the prediction process, an exhaustive 
search optimization method is employed to determine model parameters (2,160 
combinations), while the enhancement effects of seasonal periodic components 
in the data and normalization of raw input data on prediction accuracy were 
investigated. This study establishes scientific support for predicting runoff in 
hydrologically abundant yet climatically vulnerable basins.
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1 Introduction

Under global climate change, the increasing frequency of extreme precipitation events and 
intensified hydrological cycles have significantly elevated flood risks in river basins (Blöschl 
et al., 2019; Yan et al., 2022a; Patakchi Yousefi et al., 2024; Almeida et al., 2025; Madushani 
et al., 2025). As a monsoon dominated country, China has witnessed frequent rainstorm-
induced floods in major basins like the Yangtze and Pearl Rivers in recent years, highlighting 
the limitations of traditional short-term flood early warning systems in addressing climate-
driven compound hazards (Tang et  al., 2022; Li et  al., 2025; Szatten et  al., 2025). The 
non-stationarity of basin hydrological series is jointly driven by climate variability and human 
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activities (Yan et al., 2025). In the Yalong River Basin—the focus of 
this study—cascade reservoirs had already been put into operation 
during the period from 2008 to 2013. Reservoir regulation significantly 
alters both the intra-annual distribution and inter-annual variability 
of runoff, thereby introducing an additional source of non-stationarity 
(Yan et al., 2022b).

Medium-to-long-term hydrological forecasting is a scientific 
prediction of future runoff processes over extended periods based on 
historical hydro-meteorological data (Dong et al., 2004; Deman et al., 
2022; Zhao et al., 2024). It serves as a vital tool for water resources 
development, allocation and management, as well as the operation 
and maintenance of hydraulic engineering projects (Xu et al., 2025). 
Common inflow forecasting models include the recession curve 
method (Wittenberg and Sivapalan, 1999), antecedent precipitation 
index model (Singh and Bárdossy, 2012), regression analysis models, 
time series analysis methods and artificial neural network models 
(Tongal and Booij, 2018; Fathian et al., 2019; Liu et al., 2020; Ha et al., 
2021). Among these, the Autoregressive Integrated Moving Average 
(ARIMA) model (Hyndman and Khandakar, 2008; Zhang et al., 2011; 
Wang et al., 2012) is a traditional time series analysis method, while 
the Seasonal ARIMA (SARIMA) model (Dabral and Murry, 2017; 
Dimri et al., 2020; Rather et al., 2025) serves as an improved version 
of ARIMA that provides more scientifically sound fitting for periodic 
time series data (Yavuz, 2025).

To further enhance prediction accuracy for complex nonlinear 
seasonal time series, some studies have employed the Seasonal-Trend 
decomposition procedure based on Loess (STL) (Cleveland and 
Cleveland, 1990; Liu et al., 2025) to separate runoff sequences into 
trend, seasonal, and residual components. By forecasting each 
component individually, these approaches have significantly improved 
model accuracy, demonstrating that STL decomposition is an effective 
way to boost forecasting performance. Numerous studies have applied 
various hybrid models in hydrological forecasting, such as combining 
STL with the Prophet model to handle complex seasonal patterns, or 
integrating STL with Long Short-Term Memory (LSTM) networks to 
capture nonlinear dependencies (Zhang et al., 2023). However, while 
the Prophet model demonstrates considerable strength in processing 
time series with strong periodicity, it may lack sufficient capability in 
capturing long-term climate mode signals. On the other hand, LSTM 
models typically require large amounts of training data and substantial 
computational resources, and their interpretability is often inferior to 
that of statistical models. The novelty of the STL-SARIMA model 
proposed in this study lies in the fact that the SARIMA model 
possesses a solid statistical theoretical foundation and optimality in 
handling linear and seasonal time series, which aligns closely with the 
characteristics of the deterministic components (trend and 
seasonality) extracted through STL decomposition. This combination 
effectively separates the trend and stable seasonal components from 
the series and employs SARIMA for accurate modeling, thereby 
providing an interpretable, efficient, and robust framework for 
understanding and managing hydrological responses in climate-
sensitive river basins.

This study uses monthly flow data from the Ertan Hydropower 
Station in southwest China Sichuan Province from 2008 to 2013 as the 
research subject. Based on the STL decomposition method and 
SARIMA model, the trend sequence, seasonal sequence, and residual 
sequence obtained from the decomposition are used as inputs for the 
SARIMA model. The model outputs predictions for each sequence 

separately, which are then summed to obtain the final predicted flow 
sequence. The study also explores the impact of seasonal periodic 
parameters and normalization of the original data on forecast 
accuracy, aiming to provide scientific basis for medium to long-term 
hydrological forecasting. In flood management systems, 30–90-day 
inflow forecasts serve as the basis for pre-allocating reservoir storage 
capacity. Our enhanced predictions directly support this preparatory 
phase (Pechlivanidis et al., 2025).

2 Materials and methods

2.1 Study region and data sources

The Yalong River is the largest tributary on the left bank of the 
Jinsha River in the upper Yangtze Basin, originates from the southern 
slopes of the Bayan Har Mountains on the Qinghai-Tibet Plateau. 
With a total length of 1,637 km and a drainage area of 12.8 × 104 km2, 
it delivers an average annual discharge of 604 × 108 m3 and boasts a 
theoretical hydropower potential of 4.0 × 104 MW (Zhang et al., 2025). 
This river exemplifies the abundant hydro-power resources and 
ecological sensitivity typical of the high-mountain canyon region in 
southwestern China (Figure 1).

The Ertan Hydropower Station is situated in the lower reaches of 
the Yalong River within the Panxi Rift Zone. Its dam controls a 
catchment area of 11.6 × 104 km2 (90.3% of the entire basin), with a 
mean annual flow of 1,670 m3/s, a total reservoir capacity of 
58 × 108 m3, and an installed capacity of 3.3 × 103 MW. As the first 

FIGURE 1

Yalong River Basin.
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major cascaded development project on the Yalong River, it is situated 
in the steep transition zone between the Tibetan Plateau and the 
Yunnan-Guizhou Plateau. The site is in close proximity to the 
confluence with the Jinsha River, located approximately 33 km away. 
The station combines large-scale runoff regulation capacity (due to its 
high dam) with pronounced spatial heterogeneity in hydro- ecological 
processes characteristic of canyon areas (Xiao et al., 2024).

The data used in this study mainly come from the time series 
variation mainstream discharge data of the Yalong River monitored 
by the Ertan Hydropower Station from 2008 to 2013.

2.2 Research method

To address the challenge that seasonal periodic components in 
runoff series are difficult to capture using ARIMA models, 
we introduce seasonal terms into the ARIMA framework, constructing 
a Seasonal Auto Regressive Integrated Moving Average (SARIMA) 
model for forecasting. The methodological procedure is as follows: 
First, the original runoff series is decomposed into seasonal, trend, 
and residual components using the Seasonal-Trend decomposition 
procedure based on Loess (STL). Second, the SARIMA model is 
applied separately to forecast each decomposed subsequence, with 
model parameters optimized through an exhaustive search method. 
Finally, the predicted values of the trend, seasonal, and residual 
components are summed to obtain the final runoff forecast (Figure 2).

2.2.1 STL method
The Seasonal-Trend decomposition procedure using Loess (STL) 

is an exceptionally common and robust time series decomposition 
method. Compared to other classical seasonal decomposition 

approaches, STL can handle any type of seasonality and is capable of 
processing seasonal patterns in data across multiple temporal scales.

For flow data Yt (t = 1, 2, …, n), STL decomposes the original 
series Yt into seasonal (St), trend (Tt), and residual (Rt) components 
using locally weighted regression (Luo et  al., 2019). The formula 
(Equation 1) is as follows:

	 = + +t t t tY S T R 	 (1)

The STL decomposition consists of two main components: an 
outer loop and an inner loop. The inner loop is primarily responsible 
for decomposing the time series into trend (Tt) and seasonal (St) 
components through iterative smoothing. The outer loop calculates 
the robustness weights required for the Locally Weighted Scatterplot 
Smoothing (LOESS) regression in the inner loop. These weights are 
then applied in the inner loop to reduce the influence of transient 
anomalies and outliers in the trend and seasonal components.

2.2.2 SARIMA model
The ARIMA (Autoregressive Integrated Moving Average) model 

primarily consists of three components: the autoregressive (AR) 
model, the differencing (I) process, and the moving average (MA) 
model (Khan et  al., 2025). SARIMA (Seasonal Autoregressive 
Integrated Moving Average) extends the ARIMA framework by 
incorporating seasonal parameters to account for periodicity explicitly 
tied to temporal cycles (e.g., daily, monthly, or annual patterns) (Singh 
and Choudhary, 2025). Seasonality refers to systematic variations in 
data that recur at fixed intervals associated with specific time points. 
In SARIMA, the seasonal parameter (m) corresponds to the number 
of observations per seasonal cycle and is predetermined based on data 
characteristics. For instance, m = 7 denotes a weekly cycle (7 days), 
m = 12 represents monthly seasonality (12 months/year), and m = 52 
indicates a weekly cycle across a year (52 weeks/year).

As illustrated in Figure 3, the hydrological data exhibit pronounced 
seasonal patterns, justifying the adoption of SARIMA for modeling.

The standard expression for an ARIMA model is denoted as 
ARIMA (p, d, q), while the SARIMA model is expressed as 
SARIMA (p, d, q) (P, D, Q) [m], where uppercase letters represent 
the seasonal components of the model and lowercase letters 
represent the non-seasonal components. Here, p and q denote the 
orders of autoregression and moving average respectively, d 
indicates the number of non-seasonal differences, P and Q 
represent the seasonal autoregressive and moving average orders, 
D signifies the number of seasonal differences, and m stands for 
the seasonal period length (Parviz and Ghorbanpour, 2024). The 
mathematical formulation of the SARIMA (p, d, q) (P, D, Q) [m] 
model (Equation 2) can be expressed as:

	

( ) ( )
( ) ( )
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Where ( ) ( ) φ φ∇ = − Φ = − − −11 , 1dd p
pB B B B  is the 

autoregressive (AR) polynomial of a stationary and invertible ARMA 

FIGURE 2

Methodological flowchart.
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(p, q) model, and ( ) θ θΘ = − − −11 q
pB B q  is the moving average 

(MA) polynomial of the same model (Valipour et al., 2013).
The relevant model parameters were set as follows: the initial 

values of both p and q were set to 2, with an upper limit of 5; the initial 
values of both P and Q were set to 1, with an upper limit of 2; and the 
value of D was set to 1, with an upper limit of 10.

2.2.3 Exhaustive search optimization method
During the SARIMA model forecasting process, an exhaustive 

search optimization method was employed to determine the 
optimal parameters (p, d, q) and (P, D, Q). This approach fits the 
best model to the time series based on information criteria (AIC, 
AICc, BIC, or HQIC), with Akaike’s Information Criterion (AIC) 
selected in this study for model evaluation (Martínez-Acosta 
et al., 2020).

Under given constraints, the algorithm systematically searches 
across possible non-seasonal and seasonal orders, selecting the 
parameter combination that minimizes the chosen metric (AIC). The 
detailed search procedure is illustrated in Figure 4.

The Akaike Information Criterion (AIC) is a statistical measure 
for evaluating the goodness-of-fit of models. In its general form, the 
AIC (Equation 3) can be expressed as:

	 ( )= −2 2 lnAIC k L 	 (3)

Where k is the number of estimated parameters in the model, L is 
the maximized value of the likelihood function.

2.2.4 Model evaluation metrics
This study fitted a model using the flow data from Ertan 

Hydropower Station from 2008 to 2011 and tested the model’s 
predictive effectiveness with the flow data from 2012. The model’s 
fitting and predictive performance were evaluated using the Root 
Mean Squared Error (RMSE).

RMSE is one of the most commonly used metrics for 
evaluating the accuracy of predictive models. It quantifies the 
deviation between predicted values and actual observations by 
calculating the square root of the average squared differences 

(Valipour et  al., 2013; Yaseen et  al., 2019). The formula 
(Equation 4) is as follows:

	
( )

=
= −∑ 2

1

1 ˆ
n

i i
i

RMSE y y
n 	

(4)

Where iy  are observed (true) values, ˆiy  are predicted values, n is 
the number of samples (Latif et al., 2024).

3 Results and analysis

3.1 STL time series decomposition results

The STL model was constructed, and through a process of 
parameter tuning, a seasonal period of 24 was found to yield the 
best decomposition results, as shown in Figure  5. The trend 
component exhibits an overall variation pattern consistent with the 
original runoff series, but with significantly smoother fluctuations, 
more effectively representing the long-term directional behavior of 
the runoff sequence. The seasonal component displays clear 
periodicity, though the amplitude of its oscillations varies with the 
magnitude of flood seasons. The residual component derived from 
the runoff series demonstrates a random distribution, with notable 
increases during annual flood seasons. No discernible patterns were 
observed in the residuals. It is noteworthy that the residual 
component exhibits greater variance and uncertainty during the 
flood season (Figure 5). This amplification can likely be attributed 

FIGURE 3

Discharge data chart of one hydrological station.

FIGURE 4

Flowchart of the exhaustive search optimization method.
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to the high intensity and short duration of rainfall events and the 
associated rainfall-runoff processes, which exhibit strong 
stochasticity and nonlinearity. These complex phenomena are not 
fully captured by the deterministic trend and seasonal components 
and are thus retained in the residuals. This phenomenon highlights 

a limitation of the proposed hybrid model: its predictive uncertainty 
increases under extreme hydrological conditions.

3.2 Runoff prediction results

Due to the limited volume of available data, it was partitioned into 
a training set and a test set, with 80% allocated to the training set and 
20% to the test set (Figure 5).

The ARIMA model and SARIMA model were used to predict the 
original data and the three decomposed sequences. The optimal 
performance was achieved by the STL-SARIMA hybrid approach 
(Figure  6). The root mean square error (RMSE) for the trend 
component prediction was 834.35, for the seasonal component 
prediction it was 347.70, and for the residual component prediction it 
was 877.51. The overall prediction RMSE was 1374.07. The optimal 
parameters for SARIMA prediction of the original flow data were 
SARIMA (3,0,0) (1,1,0) [12], with a RMSE of 1462.65. The model 
parameters for ARIMA prediction of the original flow data were 
ARIMA (2,0,0) (0,0,0), with a RMSE of 1664.57. Compared to the 
three prediction methods, the error values obtained by using SARIMA 
model prediction with the data after STL decomposition were 6.06% 
lower than those obtained by directly predicting the original flow data, 
and 17.45% lower than those obtained by using the ARIMA model to 
predict the original flow data.

4 Discussion

STL decomposition can extract trend and seasonal components 
from the original series. The trend component likely embodies the 
aggregated long-term effects of both climate change and human 
activities. The STL-SARIMA model developed in this study is 
designed primarily to describe and predict non-stationary series 
under such combined influences, rather than to strictly attribute 
contributions to individual driving factors. It demonstrates a 
satisfactory ability to capture regular seasonal variations resulting 
from reservoir operations; however, its capability to respond to abrupt 

FIGURE 5

STL time series decomposition results. (a) Streamflow Measurement 
Records of Hydrometric Monitoring Station (b) Trend Component (c) 
Seasonal Component (d) Residual Term.

FIGURE 6

Comparative results of three prediction methods.
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FIGURE 8

Predictive performance across seasonal parameter settings.

and irregular human interventions, such as emergency flood 
discharge, may be limited. This is a common constraint among data-
driven models. Future research could focus on integrating external 
variables, such as reservoir operation rules and precipitation forecasts, 
to further improve predictive performance (Yan et al., 2023).

The hydrological flow data inherently exhibit distinct 
seasonal characteristics, which conventional ARIMA models 
often fail to adequately capture. The prediction performance 
showed moderate improvement after incorporating seasonal 
parameters (SARIMA model). However, the most significant 
accuracy enhancement was achieved through STL decomposition, 
which separates the time series into seasonal, trend, and residual 
components prior to modeling.

Through random sampling of the seasonal parameter m 
within the range [0, 50], variations in m can significantly impact 
SARIMA model performance. From the test results, we selected 
the optimal parameter set yielding minimal error, as illustrated 
in Figure  7. The seasonal parameter m = 12 was identified as 
producing the lowest RMSE value. It can be seen that the impact 
of m on the model is not a linear relationship but rather there is 

an optimal value, which will infinitely approach the optimal value 
as it is continuously adjusted.

A comparison of prediction results using different seasonal 
parameters (Figure 8) revealed systematic deviations when validated 
against hydrometric station flow data. All model configurations 
exhibited consistent errors in predicting maximum flow values. 
However, the optimal model performed well during the prediction 
phase from December 2011 to June 2012, which is related to the 
characteristics of the SARIMA model itself. The SARIMA model has 
limitations in predicting nonlinear sequences. Due to the nonlinear 
characteristics and complex processes of the runoff sequence, no 
model or algorithm can achieve perfect prediction results. Uncertainty 
always exists in the modeling process. Therefore, in subsequent 
research, models suitable for predicting nonlinear sequences, such as 
Long Short Term Memory Network (LSTM), should also 
be considered.

The original time series was normalized by scaling the data to the 
range [0, 1] before decomposition and forecasting. The formula 
(Equation 5) is as follows:

	

−
=

−
min

max min
norm

X XX
X X 	

(5)

Where X is the original data value, Xmin and Xmax are the minimum 
and maximum values in the dataset, respectively, and Xnorm is the 
normalized value.

To facilitate comparison with predictions from 
non-normalized data, the forecasted values were inverse-
normalized to their original scale before error computation. 
Normalization significantly reduced prediction errors compared 
to raw data forecasting (Figure 9). This improvement was observed 
regardless of whether STL decomposition was applied, confirming 
that normalization independently enhances forecast accuracy 
(Bouach, 2024) (Figure  10). Normalization improved 
computational efficiency during model optimization. It 
accelerated the identification of the optimal seasonal parameter 
(m) due to stabilized gradient dynamics in parameter 
search algorithms.

FIGURE 7

Root mean square error (RMSE) comparison for various parameter 
settings.
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5 Conclusion

This study developed a hybrid runoff forecasting model integrating 
time series decomposition with SARIMA modeling. The runoff 
characteristics of the Ertan Hydropower Station in the Yalong River Basin 
were analyzed and simulatively predicted using observed data from 2008 
to 2013. The main research conclusions are as follows:

Analysis of STL-decomposed runoff data from Ertan Hydropower 
Station reveals: The trend component maintains close alignment with 
the original runoff series while demonstrating enhanced smoothness; 
The seasonal component exhibits distinct periodicity, with its 
oscillation amplitude modulated by flood season discharge magnitude; 
The residual component lacks discernible patterns but displays 
significant amplification during annual flood seasons.

The proposed STL-SARIMA model in this study addresses 
limitations of conventional forecasting approaches, including low 
prediction accuracy, poor interpretability, and difficulty in capturing 
seasonal components. This hybrid framework achieves enhanced 
forecasting precision while maintaining straightforward modeling 
procedures. The RMSE of the STL-SARIMA model prediction result 
is 1,374.07, demonstrating a 6.06% reduction in error compared to the 
standalone SARIMA model and a 17.45% reduction relative to the 
standalone ARIMA model.

The seasonal parameter m significantly influences SARIMA 
model predictions, with the minimal RMSE achieved at m = 12. 
However, persistent deviations between predicted maxima and 
observed values indicate inherent limitations of SARIMA in 
forecasting nonlinear sequences. Thus, subsequent refinement of the 
methodology necessitates incorporating models specifically designed 
for nonlinear sequence prediction.

Normalizing the original data sequence improves the accuracy of 
the SARIMA model. The results obtained from STL decomposition 
and SARIMA model prediction on normalized data are optimal.
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