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Hybrid STL-SARIMA forecasting of
reservoir inflows in
climate-vulnerable basins: a case
study in the Yalong River

Yanfen Kang?, Yi Xu?, Wei Wu?, Tian Liu?, Xuan Zhang?,
Gaoxu Wang'* and Liyu Quan!

The National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute,
Nanjing, China, 2Ningbo Water Resources Management Center, Ningbo, China

Climate-induced hydrological non-stationarity (e.g., intensified drought-flood
transitions) challenges inflow forecasting in climate-vulnerable basins like the
Yalong River, thereby constraining efficient water resources management. Given
the non-stationary and periodic characteristics of the runoff series, this study
proposes a hovel hybrid forecasting model, named STL-SARIMA, which hybridizes
Seasonal-Trend decomposition using Loess (STL) with the Seasonal Autoregressive
Integrated Moving Average (SARIMA) model, observed runoff data from the Ertan
Hydropower Station for the period 2008-2013 were collected. Based on the
Seasonal-Trend decomposition procedure using Loess (STL) method, the original
data were decomposed into trend, seasonal, and residual components. Combined
forecast values for future runoff were then obtained by integrating the features of
these sub-series. Finally, the prediction results were compared with those from
single models, namely the Autoregressive Integrated Moving Average (ARIMA) and
Seasonal Autoregressive Integrated Moving Average (SARIMA). The results show:
The hybrid model integrating time series decomposition and SARIMA achieved a
Root Mean Square Error (RMSE) of 1,374.07, demonstrating a 6.06% reduction in
error compared to the standalone SARIMA model and a 17.45% reduction relative
to the standalone ARIMA model. During the prediction process, an exhaustive
search optimization method is employed to determine model parameters (2,160
combinations), while the enhancement effects of seasonal periodic components
in the data and normalization of raw input data on prediction accuracy were
investigated. This study establishes scientific support for predicting runoff in
hydrologically abundant yet climatically vulnerable basins.

KEYWORDS

Ertan Hydropower Station, medium to long-term inflow forecasting, SARIMA model,
time series decomposition, normalization methods

1 Introduction

Under global climate change, the increasing frequency of extreme precipitation events and
intensified hydrological cycles have significantly elevated flood risks in river basins (Bloschl
et al,, 2019; Yan et al., 2022a; Patakchi Yousefi et al., 2024; Almeida et al., 2025; Madushani
et al., 2025). As a monsoon dominated country, China has witnessed frequent rainstorm-
induced floods in major basins like the Yangtze and Pearl Rivers in recent years, highlighting
the limitations of traditional short-term flood early warning systems in addressing climate-
driven compound hazards (Tang et al., 2022; Li et al., 2025; Szatten et al., 2025). The
non-stationarity of basin hydrological series is jointly driven by climate variability and human
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activities (Yan et al., 2025). In the Yalong River Basin—the focus of
this study—cascade reservoirs had already been put into operation
during the period from 2008 to 2013. Reservoir regulation significantly
alters both the intra-annual distribution and inter-annual variability
of runoff, thereby introducing an additional source of non-stationarity
(Yan et al., 2022b).

Medium-to-long-term hydrological forecasting is a scientific
prediction of future runoff processes over extended periods based on
historical hydro-meteorological data (Dong et al., 2004; Deman et al.,
2022; Zhao et al., 2024). It serves as a vital tool for water resources
development, allocation and management, as well as the operation
and maintenance of hydraulic engineering projects (Xu et al., 2025).
Common inflow forecasting models include the recession curve
method (Wittenberg and Sivapalan, 1999), antecedent precipitation
index model (Singh and Bardossy, 2012), regression analysis models,
time series analysis methods and artificial neural network models
(Tongal and Booij, 2018; Fathian et al., 2019; Liu et al., 2020; Ha et al.,
2021). Among these, the Autoregressive Integrated Moving Average
(ARIMA) model (Hyndman and Khandakar, 2008; Zhang et al., 2011;
Wang et al., 2012) is a traditional time series analysis method, while
the Seasonal ARIMA (SARIMA) model (Dabral and Murry, 2017;
Dimri et al., 2020; Rather et al., 2025) serves as an improved version
of ARIMA that provides more scientifically sound fitting for periodic
time series data (Yavuz, 2025).

To further enhance prediction accuracy for complex nonlinear
seasonal time series, some studies have employed the Seasonal-Trend
decomposition procedure based on Loess (STL) (Cleveland and
Cleveland, 1990; Liu et al., 2025) to separate runoff sequences into
trend, seasonal, and residual components. By forecasting each
component individually, these approaches have significantly improved
model accuracy, demonstrating that STL decomposition is an effective
way to boost forecasting performance. Numerous studies have applied
various hybrid models in hydrological forecasting, such as combining
STL with the Prophet model to handle complex seasonal patterns, or
integrating STL with Long Short-Term Memory (LSTM) networks to
capture nonlinear dependencies (Zhang et al., 2023). However, while
the Prophet model demonstrates considerable strength in processing
time series with strong periodicity, it may lack sufficient capability in
capturing long-term climate mode signals. On the other hand, LSTM
models typically require large amounts of training data and substantial
computational resources, and their interpretability is often inferior to
that of statistical models. The novelty of the STL-SARIMA model
proposed in this study lies in the fact that the SARIMA model
possesses a solid statistical theoretical foundation and optimality in
handling linear and seasonal time series, which aligns closely with the
characteristics of the deterministic components (trend and
seasonality) extracted through STL decomposition. This combination
effectively separates the trend and stable seasonal components from
the series and employs SARIMA for accurate modeling, thereby
providing an interpretable, efficient, and robust framework for
understanding and managing hydrological responses in climate-
sensitive river basins.

This study uses monthly flow data from the Ertan Hydropower
Station in southwest China Sichuan Province from 2008 to 2013 as the
research subject. Based on the STL decomposition method and
SARIMA model, the trend sequence, seasonal sequence, and residual
sequence obtained from the decomposition are used as inputs for the
SARIMA model. The model outputs predictions for each sequence
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separately, which are then summed to obtain the final predicted flow
sequence. The study also explores the impact of seasonal periodic
parameters and normalization of the original data on forecast
accuracy, aiming to provide scientific basis for medium to long-term
hydrological forecasting. In flood management systems, 30-90-day
inflow forecasts serve as the basis for pre-allocating reservoir storage
capacity. Our enhanced predictions directly support this preparatory
phase (Pechlivanidis et al., 2025).

2 Materials and methods
2.1 Study region and data sources

The Yalong River is the largest tributary on the left bank of the
Jinsha River in the upper Yangtze Basin, originates from the southern
slopes of the Bayan Har Mountains on the Qinghai-Tibet Plateau.
With a total length of 1,637 km and a drainage area of 12.8 x 10" km?,
it delivers an average annual discharge of 604 x 10* m* and boasts a
theoretical hydropower potential of 4.0 x 10* MW (Zhang et al., 2025).
This river exemplifies the abundant hydro-power resources and
ecological sensitivity typical of the high-mountain canyon region in
southwestern China (Figure 1).

The Ertan Hydropower Station is situated in the lower reaches of
the Yalong River within the Panxi Rift Zone. Its dam controls a
catchment area of 11.6 x 10* km? (90.3% of the entire basin), with a
mean annual flow of 1,670 m’/s, a total reservoir capacity of
58 x 10® m’®, and an installed capacity of 3.3 x 10° MW. As the first
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FIGURE 1
Yalong River Basin.
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major cascaded development project on the Yalong River, it is situated
in the steep transition zone between the Tibetan Plateau and the
Yunnan-Guizhou Plateau. The site is in close proximity to the
confluence with the Jinsha River, located approximately 33 km away.
The station combines large-scale runoff regulation capacity (due to its
high dam) with pronounced spatial heterogeneity in hydro- ecological
processes characteristic of canyon areas (Xiao et al., 2024).

The data used in this study mainly come from the time series
variation mainstream discharge data of the Yalong River monitored
by the Ertan Hydropower Station from 2008 to 2013.

2.2 Research method

To address the challenge that seasonal periodic components in
runoff series are difficult to capture using ARIMA models,
we introduce seasonal terms into the ARIMA framework, constructing
a Seasonal Auto Regressive Integrated Moving Average (SARIMA)
model for forecasting. The methodological procedure is as follows:
First, the original runoff series is decomposed into seasonal, trend,
and residual components using the Seasonal-Trend decomposition
procedure based on Loess (STL). Second, the SARIMA model is
applied separately to forecast each decomposed subsequence, with
model parameters optimized through an exhaustive search method.
Finally, the predicted values of the trend, seasonal, and residual
components are summed to obtain the final runoft forecast (Figure 2).

2.2.1 STL method

The Seasonal-Trend decomposition procedure using Loess (STL)
is an exceptionally common and robust time series decomposition
method. Compared to other classical seasonal decomposition
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FIGURE 2
Methodological flowchart.

Frontiers in Water

03

10.3389/frwa.2025.1674573

approaches, STL can handle any type of seasonality and is capable of
processing seasonal patterns in data across multiple temporal scales.

For flow data Yt (t=1, 2, ..., n), STL decomposes the original
series Yt into seasonal (St), trend (Tt), and residual (Rf) components
using locally weighted regression (Luo et al., 2019). The formula
(Equation 1) is as follows:

Vi=$+T +R 1

The STL decomposition consists of two main components: an
outer loop and an inner loop. The inner loop is primarily responsible
for decomposing the time series into trend (Tt) and seasonal (St)
components through iterative smoothing. The outer loop calculates
the robustness weights required for the Locally Weighted Scatterplot
Smoothing (LOESS) regression in the inner loop. These weights are
then applied in the inner loop to reduce the influence of transient
anomalies and outliers in the trend and seasonal components.

2.2.2 SARIMA model

The ARIMA (Autoregressive Integrated Moving Average) model
primarily consists of three components: the autoregressive (AR)
model, the differencing (I) process, and the moving average (MA)
model (Khan et al., 2025). SARIMA (Seasonal Autoregressive
Integrated Moving Average) extends the ARIMA framework by
incorporating seasonal parameters to account for periodicity explicitly
tied to temporal cycles (e.g., daily, monthly, or annual patterns) (Singh
and Choudhary, 2025). Seasonality refers to systematic variations in
data that recur at fixed intervals associated with specific time points.
In SARIMA, the seasonal parameter (m) corresponds to the number
of observations per seasonal cycle and is predetermined based on data
characteristics. For instance, m = 7 denotes a weekly cycle (7 days),
m = 12 represents monthly seasonality (12 months/year), and m = 52
indicates a weekly cycle across a year (52 weeks/year).

As illustrated in Figure 3, the hydrological data exhibit pronounced
seasonal patterns, justifying the adoption of SARIMA for modeling.

The standard expression for an ARIMA model is denoted as
ARIMA (p, d, q), while the SARIMA model is expressed as
SARIMA (p, d, q) (P, D, Q) [m], where uppercase letters represent
the seasonal components of the model and lowercase letters
represent the non-seasonal components. Here, p and q denote the
orders of autoregression and moving average respectively, d
indicates the number of non-seasonal differences, P and Q
represent the seasonal autoregressive and moving average orders,
D signifies the number of seasonal differences, and m stands for
the seasonal period length (Parviz and Ghorbanpour, 2024). The
mathematical formulation of the SARIMA (p, d, q) (B D, Q) [m]
model (Equation 2) can be expressed as:

®(B)Vix; =0(B)¢

E(Et)=0,Var(Et)=O'i E(e&,)=0,s#t )
E(x; &)=0,Vs<t
Where Vd=(l—B)d,(D(B):1_¢13_..._¢PBP is  the

autoregressive (AR) polynomial of a stationary and invertible ARMA
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(p, ) model, and G)(B) =1-6B—-— Hpqq is the moving average
(MA) polynomial of the same model (Valipour et al., 2013).

The relevant model parameters were set as follows: the initial
values of both p and q were set to 2, with an upper limit of 5; the initial
values of both P and Q were set to 1, with an upper limit of 2; and the
value of D was set to 1, with an upper limit of 10.

2.2.3 Exhaustive search optimization method

During the SARIMA model forecasting process, an exhaustive
search optimization method was employed to determine the
optimal parameters (p, d, q) and (B, D, Q). This approach fits the
best model to the time series based on information criteria (AIC,
AICc, BIC, or HQIC), with Akaike’s Information Criterion (AIC)
selected in this study for model evaluation (Martinez-Acosta
et al., 2020).

Under given constraints, the algorithm systematically searches
across possible non-seasonal and seasonal orders, selecting the
parameter combination that minimizes the chosen metric (AIC). The
detailed search procedure is illustrated in Figure 4.

The Akaike Information Criterion (AIC) is a statistical measure
for evaluating the goodness-of-fit of models. In its general form, the
AIC (Equation 3) can be expressed as:

AIC=2k-2In(L) (3)

Where k is the number of estimated parameters in the model, L is
the maximized value of the likelihood function.

2.2.4 Model evaluation metrics

This study fitted a model using the flow data from Ertan
Hydropower Station from 2008 to 2011 and tested the model’s
predictive effectiveness with the flow data from 2012. The model’s
fitting and predictive performance were evaluated using the Root
Mean Squared Error (RMSE).

RMSE is one of the most commonly used metrics for
evaluating the accuracy of predictive models. It quantifies the
deviation between predicted values and actual observations by
calculating the square root of the average squared differences
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FIGURE 4
Flowchart of the exhaustive search optimization method.

(Valipour et al., 2013; Yaseen et al, 2019). The formula
(Equation 4) is as follows:

RMSE = (4)

Where y; are observed (true) values, J;are predicted values, n is
the number of samples (Latif et al., 2024).

3 Results and analysis
3.1 STL time series decomposition results

The STL model was constructed, and through a process of
parameter tuning, a seasonal period of 24 was found to yield the
best decomposition results, as shown in Figure 5. The trend
component exhibits an overall variation pattern consistent with the
original runoff series, but with significantly smoother fluctuations,
more effectively representing the long-term directional behavior of
the runoff sequence. The seasonal component displays clear
periodicity, though the amplitude of its oscillations varies with the
magnitude of flood seasons. The residual component derived from
the runoff series demonstrates a random distribution, with notable
increases during annual flood seasons. No discernible patterns were
observed in the residuals. It is noteworthy that the residual
component exhibits greater variance and uncertainty during the
flood season (Figure 5). This amplification can likely be attributed
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to the high intensity and short duration of rainfall events and the
associated rainfall-runoff processes, which exhibit strong
stochasticity and nonlinearity. These complex phenomena are not
fully captured by the deterministic trend and seasonal components
and are thus retained in the residuals. This phenomenon highlights
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a limitation of the proposed hybrid model: its predictive uncertainty
increases under extreme hydrological conditions.

3.2 Runoff prediction results

Due to the limited volume of available data, it was partitioned into
a training set and a test set, with 80% allocated to the training set and
20% to the test set (Figure 5).

The ARIMA model and SARIMA model were used to predict the
original data and the three decomposed sequences. The optimal
performance was achieved by the STL-SARIMA hybrid approach
(Figure 6). The root mean square error (RMSE) for the trend
component prediction was 834.35, for the seasonal component
prediction it was 347.70, and for the residual component prediction it
was 877.51. The overall prediction RMSE was 1374.07. The optimal
parameters for SARIMA prediction of the original flow data were
SARIMA (3,0,0) (1,1,0) (15 with a RMSE of 1462.65. The model
parameters for ARIMA prediction of the original flow data were
ARIMA (2,0,0) (0,0,0), with a RMSE of 1664.57. Compared to the
three prediction methods, the error values obtained by using SARIMA
model prediction with the data after STL decomposition were 6.06%
lower than those obtained by directly predicting the original flow data,
and 17.45% lower than those obtained by using the ARIMA model to
predict the original flow data.

4 Discussion

STL decomposition can extract trend and seasonal components
from the original series. The trend component likely embodies the
aggregated long-term effects of both climate change and human
activities. The STL-SARIMA model developed in this study is
designed primarily to describe and predict non-stationary series
under such combined influences, rather than to strictly attribute
contributions to individual driving factors. It demonstrates a
satisfactory ability to capture regular seasonal variations resulting
from reservoir operations; however, its capability to respond to abrupt
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FIGURE 6
Comparative results of three prediction methods.
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and irregular human interventions, such as emergency flood
discharge, may be limited. This is a common constraint among data-
driven models. Future research could focus on integrating external
variables, such as reservoir operation rules and precipitation forecasts,
to further improve predictive performance (Yan et al., 2023).

The hydrological flow data inherently exhibit distinct
seasonal characteristics, which conventional ARIMA models
often fail to adequately capture. The prediction performance
showed moderate improvement after incorporating seasonal
parameters (SARIMA model). However, the most significant
accuracy enhancement was achieved through STL decomposition,
which separates the time series into seasonal, trend, and residual
components prior to modeling.

Through random sampling of the seasonal parameter m
within the range [0, 50], variations in m can significantly impact
SARIMA model performance. From the test results, we selected
the optimal parameter set yielding minimal error, as illustrated
in Figure 7. The seasonal parameter m = 12 was identified as
producing the lowest RMSE value. It can be seen that the impact
of m on the model is not a linear relationship but rather there is

10.3389/frwa.2025.1674573

an optimal value, which will infinitely approach the optimal value
as it is continuously adjusted.

A comparison of prediction results using different seasonal
parameters (Figure 8) revealed systematic deviations when validated
against hydrometric station flow data. All model configurations
exhibited consistent errors in predicting maximum flow values.
However, the optimal model performed well during the prediction
phase from December 2011 to June 2012, which is related to the
characteristics of the SARIMA model itself. The SARIMA model has
limitations in predicting nonlinear sequences. Due to the nonlinear
characteristics and complex processes of the runoff sequence, no
model or algorithm can achieve perfect prediction results. Uncertainty
always exists in the modeling process. Therefore, in subsequent
research, models suitable for predicting nonlinear sequences, such as
Long Short Term Memory Network (LSTM), should also
be considered.

The original time series was normalized by scaling the data to the
range [0, 1] before decomposition and forecasting. The formula
(Equation 5) is as follows:

X- Xmin

Xnorm = (5)
Xmax ~ Xmin
Where X is the original data value, X,;, and X, are the minimum
1800 i and maximum values in the dataset, respectively, and X, is the
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m L4 . . . . .
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5 Conclusion

This study developed a hybrid runoff forecasting model integrating
time series decomposition with SARIMA modeling. The runoff
characteristics of the Ertan Hydropower Station in the Yalong River Basin
were analyzed and simulatively predicted using observed data from 2008
to 2013. The main research conclusions are as follows:

Analysis of STL-decomposed runoff data from Ertan Hydropower
Station reveals: The trend component maintains close alignment with
the original runoff series while demonstrating enhanced smoothness;
The seasonal component exhibits distinct periodicity, with its
oscillation amplitude modulated by flood season discharge magnitude;
The residual component lacks discernible patterns but displays
significant amplification during annual flood seasons.

The proposed STL-SARIMA model in this study addresses
limitations of conventional forecasting approaches, including low
prediction accuracy, poor interpretability, and difficulty in capturing
seasonal components. This hybrid framework achieves enhanced
forecasting precision while maintaining straightforward modeling
procedures. The RMSE of the STL-SARIMA model prediction result
is 1,374.07, demonstrating a 6.06% reduction in error compared to the
standalone SARIMA model and a 17.45% reduction relative to the
standalone ARIMA model.

Frontiers in Water

The seasonal parameter m significantly influences SARIMA
model predictions, with the minimal RMSE achieved at m = 12.
However, persistent deviations between predicted maxima and
observed values indicate inherent limitations of SARIMA in
forecasting nonlinear sequences. Thus, subsequent refinement of the
methodology necessitates incorporating models specifically designed
for nonlinear sequence prediction.

Normalizing the original data sequence improves the accuracy of
the SARIMA model. The results obtained from STL decomposition
and SARIMA model prediction on normalized data are optimal.
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