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Water quality in Minas Gerais,
Brazil: evaluating the past

25 years using ensemble decision
trees and robust trend analysis

Danieli Mara Ferreira’, Rosane Barbosa Lopes Cavalcante?,
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Paulo Régenes Monteiro Pontes?*

ISistema de Tecnologia e Monitoramento Ambiental do Parana, Curitiba, Brazil, 2Instituto Tecnologico
Vale Desenvolvimento Sustentavel, Belém, Brazil

Water quality monitoring provides essential insights into the health and safety of
water resources in a watershed. This study presents a comprehensive analysis
of water quality spatial and temporal trends in the rivers of Minas Gerais, Brazil,
from 1997 to 2022. For this aim, we use 258,233 samples from 675 water quality
stations monitored by the Minas Gerais Institute for Water Management (IGAM).
The study evaluates the risk of exceeding the established limits for class 2, as
defined by a national guideline (CONAMA 357/2005). The analysis includes water
quality parameters representing organic matter, nutrients, and metals related to
agriculture runoff, urban and mining activities, and vegetation cover. The spatial-
temporal changes in water quality are evaluated using exploratory data analysis
techniques the machine learning Extra Tree regressor method, and the Theil-
Sen non-parametric trend estimator. As an example, the Extra Trees regressor
provided a reliable adjustment for total arsenic, yielding a mean absolute error of
0.002 mg/L. The results indicate that, while median concentrations have declined
over the 25-year period, exceedance frequencies remain substantial for Mn, Fe,
and TP. The results also indicate a higher risk of limit transgressions during the
rainy season, underlining the importance of controlling diffuse sources and
understanding hydrological processes. Using surrogate monthly mean flow, the
Extra-Trees regressor ranked flow as the most important predictor among the
tested variables, followed by urban infrastructure and areas with high metal content.
The role of forest cover in reducing the risk of transgressions is also emphasized.
In this sense, the study provides valuable insights to support decision-making
for pollution control and remediation efforts to guarantee water quality safety.
This study uniquely combines robust, non-linear statistical modeling with a 25-
year water quality dataset in Minas Gerais, offering new insights into long-term
environmental changes in a socially and economically important region.

KEYWORDS

water quality in rivers, machine learning, environmental risk assessment, watershed
management, water quality monitoring

1 Introduction
1.1 Research problem

Rainfall drains pollutants to rivers after interacting with land use and cover (e.g., forest
and deforested areas, agriculture, industry, and urban areas), influencing the water quality and

01 frontiersin.org


https://www.frontiersin.org/journals/Water
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frwa.2025.1673441&domain=pdf&date_stamp=2025-09-30
https://www.frontiersin.org/articles/10.3389/frwa.2025.1673441/full
https://www.frontiersin.org/articles/10.3389/frwa.2025.1673441/full
https://www.frontiersin.org/articles/10.3389/frwa.2025.1673441/full
https://www.frontiersin.org/articles/10.3389/frwa.2025.1673441/full
mailto:p.rogenes@gmail.com
https://doi.org/10.3389/frwa.2025.1673441
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Water#editorial-board
https://www.frontiersin.org/journals/Water#editorial-board
https://doi.org/10.3389/frwa.2025.1673441

Ferreira et al.

biological processes (de Mello et al., 2018; Vorosmarty et al., 20105
Zanin et al., 2024). Streams in pasture-dominated watersheds might
have higher total nitrogen concentrations, which may decrease water
quality. Oppositely, streams within forested watersheds and large
riparian vegetation may have more macroinvertebrate diversity and
protected communities of fish (Tanaka et al., 2016), in addition to
controlling soil erosion and improving water quality in streams
(Monteiro et al., 2016; Panagos et al., 2015). Also, the water quality
changes during different seasons (Xu et al., 2019). For instance, it is
expected a decrease in point source dilution capacity during dry
periods (low flows; Carpenter et al., 1998). Critical water quality
related to diffusive sources is expected during storm periods
(Carpenter et al., 1998).

Long-term water quality monitoring is essential for tracking the
effectiveness of planning and monitoring measures, identifying
emerging trends, and adapting strategies to the expected dynamic
changes over time and space (e.g., Fu et al., 2023). Besides, water
quality studies need to adopt a multi-scale approach, such as
watershed scale, which better explains variability in water quality
patterns (de Mello et al., 2018).

Exploratory data analysis (EDA) combines visual and numerical
techniques to gain meaningful insights from the data. It has been
widely used to gain an overview of water quality patterns in terms of
spatial and temporal variations, as well as correlations between water
quality variables and relevant factors such as land cover and land use
(e.g., Gorgoglione et al., 2020; Wang et al., 2023; Castrillo and
Garcfa, 2020). The EDA encompasses from basic descriptive
statistics to complex machine learning techniques. The Extra Tree
and random forest regression are examples of machine learning
methods that may be used to assess the water quality and its
relationship with land use and hydrological features (e.g., Marani
and Nehdi, 2020; Asadollah et al., 2021; Wasko et al., 2020; Fu
etal., 2023).

Recent studies have further expanded the scope of machine
learning applications in hydrology. For instance, transformer-based
and representation learning approaches have been proposed for cross-
basin prediction tasks (Zheng et al., 2025), while hybrid ensemble
strategies, such as ExtraTrees combined with AdaBoost, have been
explored for salinity forecasting in estuarine systems (Yousefi et al.,
2024). These contributions highlight the diversity of methodological
developments currently underway. Our work differs by focusing on
interpretability and the statewide scale, combining Extra Trees with
Theil-Sen trend analysis to provide insights across 25 years of
monitoring in Minas Gerais.

In a recent review of the relationship between land use and surface
water quality, Cheng et al. (2022) point out that most studies focus on
river reaches, riparian zones, and sub-basins and that the research
methods primarily include correlation and redundancy analysis, the
Soil and Water Assessment Tool (SWAT) model, Geographically
Weighted Regression (GWR) model, or multiple linear regression.
Principal Component Analysis (PCA) is also a linear method
frequently used to achieve this goal (Cruz et al., 2019; Gorgoglione
et al., 2020). Still, Cheng et al. (2022) acknowledge that accurately
establishing the relationship between land cover/land use and water
quality is challenging due to hydrological properties, soil structure,
and seasonal and historical land use patterns. Therefore, the regression
methods employed in this study contribute to this matter by
addressing non-linear aspects and dealing with skewed data.

Frontiers in Water

10.3389/frwa.2025.1673441

Despite studies of exploratory water quality data focused on local
events, such as mining accidents (e.g., Guimaraes et al, 2022;
Thompson et al,, 2020), and temporal and spatial on a regional scale,
long-term and broad-scale assessments are scarce and essential
because the impacts of anthropogenic or natural activities can take
time to manifest in surface water, and past conditions can leave lasting
contamination legacies in the water bodies, as highlighted by Mello
etal. (2020). This study evaluates the long-term evolution (1997-2022)
of water quality in the Minas Gerais river network, using monitoring
data from the Minas Gerais Institute for Water Management (IGAM).
The exploratory analysis aims to identify key aspects that may
contribute to the risk of exceeding the established limits for protecting
the lotic systems, particularly the classification defined for class 2 by
the CONAMA n°357/2005 (Brazil, 2005). The study focuses on
discussing the role of land cover and river flow in the spatial-temporal
changes in water quality, as these factors can impact the pollutant
loads entering water bodies and their behavior within them
(Gorgoglione et al., 2020).

Therefore, the main objectives of the exploratory data analysis can
be summarized as follows: (i) verify data integrity and understand the
water quality overall behavior, including central tendency and extreme
values, through descriptive statistics, (ii) demonstrate if water quality
has improved over the years, using the Theil-Sen slope estimator, (iii)
identify regions and periods (dry or rainy season) with a higher risk
of threshold transgressions, comparing risk coefficients, (iv) determine
the role of land cover types and river flow in the concentration of
pollutants in river water using Extra Trees regression to evaluate
feature importance, and (v) identify parameters of greater concern by
analyzing the frequency of exceedances relative to environmental
standards. Therefore, land cover and river flow act as pressures/
drivers, water quality indicators represent the state, and observed
long-term changes provide evidence relevant for management
responses; it should be noted that discharge data are limited, and
surrogate monthly averages were used to approximate flow. This
comprehensive analysis may support decision-making and policy
formulation by identifying hotspots, analyzing trends over time, and
providing a holistic understanding of water quality dynamics.

Despite previous studies on water quality in Minas Gerais, most
analyses are limited to short-term periods, small spatial scales, or
conventional statistical methods, leaving a gap in understanding long-
term, statewide trends using modern data-driven approaches.
Previous regional assessments rarely leverage machine learning
techniques or robust trend estimators to account for non-linearities
and outliers in the data, limiting their predictive and explanatory
power. Our study compiles an extensive dataset of 675 monitoring
stations and 258,233 measurements spanning 25 years, providing a
uniquely comprehensive view of water quality dynamics across Minas
Gerais. The novelty of this work lies in combining Extra Trees
Regressor with Theil-Sen trend analysis to deliver a robust, multi-
decadal, machine-learning-driven assessment of long-term water
quality changes in a socially and economically critical region.

1.2 Study area

Figure 1 presents Minas Gerais state, which is the Brazil’s fourth
largest state (586.528 km?, similar to France and Kenya), with a
population estimated at 20,538,718 inhabitants (IBGE, 2022). Almost
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30% of the population is concentrated in the metropolitan area
surrounding the capital city, Belo Horizonte. The state is responsible
for the third-largest gross domestic product in the country,
emphasizing agricultural activities and mineral extraction (FJP, 2022).
The region has one of Brazil's most important mineral provinces, the
Iron Quadrangle, accounting for 65% of the national iron and steel
production (Haddad et al., 2021). Furthermore, it is densely populated,
particularly in the metropolitan area surrounding the capital city, Belo
Horizonte. In this context, the state serves as a representative case
study for many regions worldwide, where surface water quality is
affected by complex relationships and multiple land and water use.
Therefore, analyzing water quality data becomes a crucial tool for
guiding pollution control and remediation efforts undertaken by
governmental and industrial sectors. Figure 1 also presents the land
use and geology over Minas Gerais state and the precipitation (annual
and seasonal patterns). The land use classes were obtained from
MapBiomas project and the precipitation from CHIRPS (1981
to 2024).

2 Materials and methods

The material and methods employed in this study are designed to
systematically analyze water quality dynamics and their relationship
with river flow and land cover. We use statistical metrics, feature
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importance assessment, risk analysis, seasonal variation, trend
analysis, and spatial-temporal variation evaluation to gain insights to
support informed decision-making in the watershed scale.

2.1 Data sources

The Minas Gerais Institute for Water Management (IGAM) has
been actively monitoring surface water quality in the state since
1997, providing a valuable historical dataset for various
parameters. The dataset employed in this study comprises monthly
data collected from 675 monitoring stations spanning 381 rivers
across the state (Figure 1). The analyzed dataset includes a total of
35,019 for dissolved iron (Fe), 34,118 samples for total manganese
(Mn), 26,021 samples for total arsenic (As), 33,784 samples for
total lead (Pb), 43,019 samples for biochemical oxygen demand
(BOD), 43,000 samples for total phosphorus (TP), and 43,272
samples for turbidity. According to IGAM, the network is strategic,
with sampling locations at the boundaries between states,
confluences of water bodies, and sites with known or potential
quality impacts.

The territory of Minas Gerais was divided into 36 units for water
resource planning and management (UPGRH) by the State Council
of Water Resources CERH-MG, 2002, as illustrated in Figure 1. The
influence of land use cover (LULC) and flow on river water quality was
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considered at the catchment scale because this approach is often a
better predictor of water quality than only in the riparian zone, as
stated by Mello et al. (2020).

A water quality class is a set of conditions and standards necessary
to meet the preponderant uses, current or future. Class 2 is for river
water that can be used for human consumption after conventional
treatment, protection of aquatic communities, primary contact
recreation, irrigation, aquaculture, and fishing activities. To
be classified as class 2, it must comply with a lot of water quality
criteria, including: dissolved iron (< 0.3 mg/L), total manganese (<
0.1 mg/L), total arsenic, and total lead (< 0.01 mg/L each), biochemical
oxygen demand (< 5mg/L), total phosphorus (< 0.1 mg/L), and
turbidity (< 100 NTU).

To investigate seasonal variations, particularly during rainy
(October-March) and dry periods (April-September), flow data from
monitoring stations across the state are utilized (ANA, 2022).

The LULC data is obtained from Map Biomas (2021), following
the suggested level of division by this database: forest encompasses
forest and savanna formations; agriculture includes a variety of
cultivations (sugar cane, citrus, cotton, soybeans, and coffee), forest
plantation, pasture, mosaic of agriculture and pasture, other perennial
crops, and mosaic of crops.

2.2 Exploratory data analysis methods

2.2.1 Data description

After collecting the data, the data cleaning phase primarily
focused on rectifying the identification of sampling points, including
latitude, longitude, and subbasin names. Statistical metrics of central
tendency, dispersion, and asymmetry describe the concentration
dataset. Central tendency metrics, such as the mean or median,
indicate the average or typical value around which the concentrations
cluster. Dispersion metrics, such as the standard deviation, quantify
the spread or variability of the concentrations. Asymmetry metrics,
such as skewness, assess the departure from symmetry in the
concentration distribution.

Furthermore, the study calculates the percentage of samples that
exceed the class 2 water quality standards. This analysis determines
the proportion of samples that surpass the established thresholds for
various parameters, indicating potential non-compliance with water
quality guidelines.

2.2.2 Feature importance analysis

A feature importance analysis was conducted using the Extra Tree
regressor algorithm to assess the influence of land cover areas and
river flow on water quality parameters. The analysis aimed to
determine each feature’s relative importance (score) in predicting
pollutant concentrations.

The Extra Tree regression algorithm employs decision trees and
ensemble learning techniques (Asadollah et al., 2021). In each
ensemble tree, a random subset of features is considered when
splitting nodes. This random selection of features introduces diversity
among the trees, mitigating overfitting and enhancing the model’s
robustness. By only considering a subset of features at each split and
aggregating predictions from multiple trees, the algorithm also
reduces the impact of outliers. Since the method introduces additional
when

randomness selecting feature splits, the impact of
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multicollinearity is mitigated, which is an advantage compared to
traditional regression models.

The model is fitted with land cover areas (agriculture, forest,
mining, urban infrastructure) and river flow as the independent
variables and the corresponding target as the dependent variable.
Because flow data is not available simultaneously with concentrations,
the discharge corresponding to each sample was defined as the average
value for each month of water quality sampling, encompassing all
monitoring stations within the sub-basin.

In general, model hyper-parameter tuning significantly affects the
feature importance (Marani and Nehdi, 2020). Hyperparameters are
the parameters set before the learning process, found in this study
using Bayesian optimization and cross-validation concepts (Pedregosa
etal, 2011). This approach iteratively explores the search space based
on previous evaluations, building a probabilistic model of the objective
function (e.g., model performance metric). The cross-validation
process, in its turn, splits the available data into multiple subsets
(folds), then it trains and evaluates the model multiple times, each
time using a different combination of training and validation sets.
Although model performance is not the focus of this study, these
techniques increase the model’s generalization ability and ensure
reliable results; performance metrics are presented in the
Supplementary material.

2.2.3 Risk of threshold exceedance

To evaluate the extent to which the limits for class 2 are exceeded
within the water quality series in Minas Gerais, the monitoring
concentrations are compared to the thresholds using the ratio C/Cy,.
Here, C is the pollutant concentration in the water column (mg/L) and
Cyi denotes the limit concentration defined by national regulations
(Brazil, Pub, 2005). This relationship establishes the risk quotient
(RQ), where RQ > 1 indicates that the observed concentration exceeds
the limit and signifies the risk of transgression. This quotient is
commonly employed in studies associated with ecotoxicological
assessments (e.g., Viana et al., 2021).

2.2.4 Seasonal variation analysis

The seasonal variation analysis compares monthly RQ and the
state’s flow conditions. Box plots of RQ are grouped by month for each
pollutant of interest. This approach depicts a comparison of medians,
interquartile ranges, and outliers.

2.2.5 Trend analysis

Trends of pollutant concentrations, river flows, and land cover
areas (target variables) are evaluated over the study period. Like the
approach used in the feature importance analysis, flow data is
incorporated by considering the average value for each month of water
quality sampling. This average value is derived from the data collected
across all monitoring stations within the respective UPGRH, available
at ANA (2022).

Firstly, the median of each target variable (Y, including
concentrations of water quality parameters, land cover areas, and
river flow) is calculated for each year within each sub-basin. After
sorting the dataset by year, a Theil-Sen Regressor model is fitted
using the years as the independent variable (predictor, X), and the
corresponding target variable as the dependent variable. This fitted
line captures the overall direction and magnitude of the relationship.
The model parameters are defined similarly to the approach used
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in the feature selection phase, employing Bayesian search and a

time series cross-validation technique from the sklearn
Python library.

The slope of the regression line represents the trend over time,
providing a measure of how the target variable (Y) changes in
response to changes in the independent variable (X). Positive or
negative slopes indicate increasing or decreasing trends over the years.
According to Fu et al. (2023), the method is particularly useful for
handling skewed and heteroskedastic data; furthermore, compared to
simple linear regression, it can provide significantly more
accurate results.

To assess whether the observed trend holds statistical significance
(i.e., if the change in median over the years is statistically significant
or if it remains unchanged), a t-statistic was computed. We established
a significance level of 0.05, with degrees of freedom equal to n - 2
(where n is the number of observations in the sample), and then
calculated a p-value using the two-tailed t-distribution and the
t-statistic value. If the p-value is less than the chosen significance level,
the null hypothesis is rejected, indicating that the slope significantly
differs from zero. Additionally, statistical significance was evaluated
with the Yue-Pilon modification of the Mann-Kendall test, as

presented in the Supplementary material.

2.2.6 Spatial-temporal variation analysis

To assess the spatial-temporal variation of RQ and land cover
areas, maps depicting the median values are generated for every 5-year
interval throughout the study period. The median RQ values of the
river stations are organized into sub-basins, visually represented using
a color scale. The selection of the median as the metric of interest is
motivated by its ability to capture the central tendency of water quality
behaviors. By focusing on the median, the potential influence of
outliers is mitigated, allowing for a more robust assessment of the
overall water quality within each sub-basin.

These maps provide insights into the spatial distribution and
changes in pollutant concentrations and land cover classes over time,
enabling the identification of areas with higher or lower levels of
pollutants and changes in land cover patterns.

10.3389/frwa.2025.1673441

3 Results and discussion

Statistical metrics provide a detailed data description, capturing
variability and distribution patterns. The feature importance analysis
using the Extra Tree regression depicts the contributions of river flow
and land cover in influencing water quality concentrations. Seasonal
variation analysis highlights the effect of dry and rainy seasons on the
risk of threshold exceedance. Trend analysis using Theil-Sen
regression reveals long-term trends, indicating whether the variables
increase, decrease, or stabilize over time. Lastly, spatial-temporal
variation analysis maps the risk of threshold exceedance and land
cover evolution. Together, these results provide a comprehensive
understanding of long-term water quality dynamics in Minas Gerais,
supporting effective management strategies for sustaining healthy
aquatic ecosystems.

3.1 Data description

The dataset utilized in this study comprises 258,233 samples,
including 35,019 for dissolved Fe, 34,118 for total Mn, 26,021 for total
As, 33,784 for total Pb, 43,272 for turbidity, 43,000 for Tp, and 43,019
for BOD (Table 1). Furthermore, the dataset encompasses discharge
and land use and cover.

These parameters were selected to reflect the effects of prominent
anthropic or natural activities in the state, such as urban occupation,
mining, and agriculture. Land cover areas and river flow are key
practical aspects that watershed managers can effectively control to
mitigate pollution and ensure water quality. This process may involve,
for instance, implementing practices to reduce soil erosion and
promote natural filtration and employing flow regulation, sediment
control, and sustainable drainage solutions.

The samples show high asymmetry and extreme maximum values
for all water quality parameters (Table 1). Positive skewness is
observed, ranging from 15.71 for BOD to 31.71 for total Pb. These
findings indicate a significant departure from a normal distribution,
with a greater concentration of values around the mean and outliers

TABLE 1 Statistical metrics of water quality parameters monitored from 1997 to 2022 (IGAM, 2022).

Attributes Limit Percentage of Minimum Maximum Range Mean Median Standard Skew Samples
for samples with deviation count
class concentration
> limit
Dissolved Fe
<03 32.80 0.00 37.52 37.52 0.32 0.21 0.63 2351 35,019
(mg/L)
Total Mn
<0.1 40.71 0.00 37.25 37.25 0.18 0.08 045 25.39 34,118
(mg/L)
Total As
<0.01 1145 0.00 1.07 1.06 0.01 0.00 0.02 16.68 26,021
(mg/L)
Total Pb
<0.01 6.70 0.00 0.77 0.77 0.01 0.01 0.01 3171 33,784
(mg/L)
BOD (mg/L) <5 13.40 0.10 921.00 920.90 5.48 2.00 19.44 15.71 43,019
TP (mg/L) <0.1 31.05 0.01 23.92 2391 0.14 0.06 0.32 16.16 43,000
Turbidity
<100 15.94 0.29 17949.00 17948.71 | 88.39 19.50 338.66 17.96 43,272
(NTU)
Frontiers in Water 05 frontiersin.org
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in the dataset. These deviations of water quality data from common
probability distributions, such as normal and lognormal distributions,
are often found (Lettenmaier et al., 1991; Helsel et al., 2020). Several
factors can explain the high ranges and skewness, such as natural and
anthropogenic variability, non-linearity of geochemical processes, and
problems related to data collection and detection limits (Helsel, 20065
Hirsch et al., 1982; Vega et al., 1998; Withers and Jarvie, 2008).

Among the analyzed parameters, 31% of the samples exceeded the
thresholds for total phosphorus, 13% for BOD, and 16% for turbidity.
Regarding metals, total Mn and dissolved Fe exhibited the highest
frequency of exceedances at 41 and 33%, respectively; this is likely due
to persistent sources, slow metal release from sediments, or limited
effectiveness of current mitigation measures. Except dissolved Fe, total
Mn and Turbidity, the median values of all attributes are according to
typical wastewater values (Gaillardet et al., 2003). However, it is worth
noting that despite these critical events, the median concentrations for
all parameters remained below the limits specified for class 2
water quality.

3.2 Seasonal variation and risk of threshold
exceedance

The risk quotient for each sample was meticulously calculated and
then grouped by month, considering all the monitoring points. The
results, as depicted in Figure 2, offer valuable insights into periods
with a heightened risk of exceeding limits. The figure also illustrates
the monthly flows, calculated based on discharges recorded between
1997 and 2022 across the state. This comparison is crucial, given the
interplay between discharge and concentrations. Variations in water
discharge can have an impact on temporal fluctuations and changes
in the probability distribution of chemical concentrations within a
stream (Antonopoulos et al., 2001; Helsel et al., 2020).

The results reveal a distinct pattern: during the rainy season
(October to March), when the median flow fluctuates from 70 m3/s
in October to 143 m3/s in December, there is a pronounced risk of

10.3389/frwa.2025.1673441

threshold exceedance (i.e., RQ > 1) for turbidity, TP, dissolved Fe and
total Mn. The median RQ for dissolved Fe is particularly noteworthy,
nearing 1 in February and November, with a minimum of 0.5 in July.
Total Mn exhibits the highest median RQ in January (1.4) and
December (1.2), with a minimum of 0.4 in June and September.
December emerges as the month with the highest risk for TP, with a
median RQ of 1; the months with decreased risk were June and July,
with a median RQ of 0.4. Turbidity shows higher median RQ values
during December (0.62) and February (0.53), with a smaller value in
July (0.09).

The median RQ for arsenic remains close to 0.1 throughout most
of the year, indicating that median concentrations are only 10% of the
limit for class 2. Similarly, the median of RQ for total Pb and BOD is
0.5 and 0.4, respectively, indicating that the central tendency of
concentrations remains close to 50% of the threshold for class 2 in the
case of Pb and 40% of the limit of BOD.

Critical events are not limited to specific times of the year, as
evidenced by extreme cases where maximum RQ values reach as high
as 200. Severe water quality impacts attributed to point source
pollution typically manifest during summer or dry periods when river
flows are low, diminishing the dilution capacity, and during storm
periods when combined sewer overflows operate more frequently
(Carpenter et al., 1998). Conversely, the critical water quality impacts
stemming from diffuse source pollution tend to occur during storm
periods, particularly after a dry spell, when rainfall triggers hillslope
hydrological processes and the runoff of pollutants from the land
surface (Carpenter et al., 1998). Considering that the transgression
limits are generally higher during the rainy season in Minas Gerais,
these results emphasize prioritizing the control of diffuse sources to
manage surface water pollution effectively.

The relationship between river flow and parameters such as BOD,
Pb, and As in Figure 2 did not exhibit a linear correlation. BOD, Pb,
and As sources in rivers can be diverse, including both natural and
anthropogenic origins, which may not be directly tied to flow rates.
Additionally, these parameters’ spatial and temporal variability can
be influenced by localized sources and processes, detaching them
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from flow dynamics. Furthermore, the transformation and
degradation processes that BOD, Pb, and As undergo within the river
system can be influenced by biological, chemical, and sediment-water
interactions, making their relationship with flow rates complex.

3.3 Influence of land cover and river flow
on pollutant concentrations

Figure 3 presents the results of the feature importance analysis
conducted using the Extra Tree regressor; a threshold of 0.10 was
adopted to interpret feature importance, since values below this level
likely reflect noise rather than meaningful contributions. The findings
indicate that river flow was ranked highest in feature importance
(however, this reflects correlation with the monthly, sub-basin-average
surrogate flow rather than synchronous discharge and should not
be interpreted causally), followed by urban infrastructure and
mining areas.

River flow plays a crucial role in the transport, dilution, and
dispersion of pollutants within the river system, facilitating the mixing
of different water masses and influencing chemical reactions that can
alter the composition of pollutants. Additionally, river flow is closely
linked to sediment transport, which affects the fate and transport of
sediment-bound pollutants, including metals (Ferreira et al., 2023;
Xue et al., 2022).

However, it is essential to acknowledge that the distribution of
pollutants in rivers is a complex outcome influenced by various
physical, chemical, and biological processes. Factors such as soil type,
geology, vegetation cover, geomorphological features, point sources of
pollution, atmospheric deposition, human activities, and hydrological

10.3389/frwa.2025.1673441

and hydrochemical processes all contribute to the overall
concentration of pollutants (Hill and Neal, 1997). Other features not
evaluated in this study (e.g., pH, temperature, conductivity etc) might
play significant roles in pollutant concentration dynamics (Peng et al.,
2021). Additionally, because discharge for each sample was defined as
the monthly average across all sub-basin monitoring stations, spatial
and temporal mismatches may alter correlations.

Nonetheless, the findings from this study emphasize the
importance of monitoring both discharge and pollutant
concentrations. Effective pollution control measures need to address
the contributions from urban and mining areas, as they have been
identified as key factors influencing river pollutant concentrations.
These findings align with previous research conducted in Brazil, where
studies have shown that urban occupation and mining (although they
represent a small percentage of the territory) are among land uses with
substantial impacts on water quality (Mello et al., 2020).

Although the relationship between river flow and parameters such
as BOD and Pb did not exhibit a clear behavior when comparing
monthly boxplots (Figure 2), the feature importance analysis showed
that river flow significantly affects these concentrations. This
highlights the importance of employing non-linear methods such as
the Extra Tree regression in understanding and predicting river
pollutant concentrations.

The models were also evaluated preventing temporal and spatial
leakage using blocked TimeSeriesSplit and GroupKFold by station.
For each target, the fold-averaged performance metrics (Coeflicient
of determination: R?, Mean Absolute Error: MAE, and Root Mean
Squared Error: RMSE; mean + standard deviation: SD) are presented
in the suplementary material. In addition, per-fold permutation
feature importance was computed, and quantified the stability of
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FIGURE 3
Importance of land cover areas and flow over concentrations; the vertical axis represents the feature importance score, estimated with the Extra Tree
regression method; the error bar is a standard deviation that indicates how much the values might vary across different decision trees in the ensemble.
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feature rankings across folds using Kendall’s z. Additionally, tests for
turbidity and BOD transformed using loglp were added.

Model performance under blocked temporal and spatial cross-
validation revealed that predictive skill was generally low for several
targets, with small or slightly negative R* values. Permutation feature
importance identified river flow and mining as recurrently relevant
predictors, though stability across folds (Kendall’s T) varied by target.
For variables not meeting the ideal threshold, results are presented for
transparency but interpreted cautiously.

3.4 Yearly trend of the variables

Supplementary Table 2 presents the average change in median
concentrations, land cover area, and median river flow per year over
the 25-year period (the red font color indicates a negative slope, i.e., a
decreasing trend over the years; the red cells with values accompanied
by “*” indicate statistically significant changes). To illustrate the table
interpretation, for the sub-basin DO1: dissolved Fe increased by
0.00013 mg/L per year, the flow rate increased by 0.014 m’/s per year,
agricultural area decreased by 31.78 km? per year, and forest area
increased by 28.56 km? per year. Dissolved Fe shows a small rising
trend over the years in some sub-basins, from 3.51 x 107° to
0.015 mg/L. Similarly, total As has increased across the State, although
the magnitude is relatively less significant for most regions (ug/L). The
results generally indicate that changes from 1 year to the next are
stable, with negligible changes in the central tendency.

The yearly trend analysis also revealed a few rapid changes in
specific sub-basins. For example, the sub-basin GD8 has faced a
significant decrease in the central tendency of river flow. These
conditions have led the state to recognize the water shortage issues in
recent years and to prompt restrictions on water resource uses (e.g.,
CERH-MG, 2002; IGAM, 2022). Nonetheless, regional perspectives
might be attributed to specific events like pollution incidents, sampling
timing (for instance, if most samples were collected before a rainfall
event, results might be biased), construction of dams and reservoirs,
weather patterns, or policy changes.

The analysis of land cover changes reveals that urban
infrastructure and mining have expanded over the years, primarily
concentrated in the sub-basins SF3 and SF5 (corresponding to the
state’s central region). A trade-off has been observed between forest
cover and agriculture in some basins. For instance, in the SF6
sub-basin, agriculture has been expanding at a rate of 99.32 km? per
year, while forest cover has been decreasing at 93.6 km? per year.

It is important to acknowledge that the interpretation of the
findings assumes a linear relationship between the year and the
variables. Moreover, this interpretation represents an approximate rate
of change over the entire study period and may not reflect specific
variations or fluctuations within shorter time intervals (i.e., intra-
annual variabilities, such as seasonal patterns, are not accounted for—
for reference, the Supplementary material presents figures with annual
sample counts per period in each sub-basin, highlighting a consistent
pattern of similar sample counts between dry and rainy periods across
most years).

Annual trends were also estimated using the Theil-Sen estimator
with blocked temporal and spatial cross-validation. Residual
autocorrelation was checked using ACF and PACF diagnostics (lag 1).
Additionally, tests for turbidity and BOD transformed using loglp
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were included. The results are presented in the excel file as
Supplementary material. Despite the high variability at some sites, the
non-parametric Mann-Kendall trend analysis was able to corroborate
the changes at certain locations. Moreover, although minor residual
autocorrelation was observed, its effect on the detected trends is
considered minimal.

3.5 Spatial—temporal variation trends: risk
quotient and land cover

The spatial-temporal variation in water quality in Minas Gerais
was assessed by comparing the median risk quotient (RQ) every
5 years within each sub-basin. Figure 4 illustrates the spatial-temporal
variation of the median RQ values, while Figure 5 presents the same
for land cover areas (forest, agriculture, urban infrastructure,
and mining).

Overall, forest and agriculture, which cover most of the state, have
remained relatively stable over the years across most sub-basins.
Despite that, the changes over the 25 years were significant in most
sub-basins (Supplementary Table 2). However, on a regional scale,
land use has changed over time, for instance, the slight increase in the
silviculture area in the north of Minas Gerais (Cerrado Biome)
between 2000 and 2015 (Espirito-Santo et al., 2016).

There has been notable growth in urban infrastructure and
mining activities, particularly in the central region of Minas Gerais.
Despite these land cover trends, there has been an overall decrease in
the risk of exceeding thresholds for most water quality parameters
throughout the state. This improvement can be attributed to better
control of point and diffuse sources that reach the rivers. The study
conducted by Pataca et al. (2020) revealed that, although the
population of Minas Gerais has grown, the improvement of
socioeconomic variables (such as HDI, poorness, and sanitation
percentage) has contributed to the improvement of surface water
quality in the State.

The median RQ reached maximums of 1.85 for dissolved Fe, 5.25
for total Mn, 1.29 for total As, 2.2 for BOD, and 2.7 for TP; total Pb
and turbidity exhibited median concentrations below the limits for
class 2, with maximum median RQ of 0.8 and 0.7, respectively.

Notably, dissolved Fe is the only parameter that showed increasing
concentrations over the years. The increase in RQ for dissolved Fe was
more pronounced in the state’s southern areas rather than in regions
with marked urbanization and mining. For example, in the SF9 region
(north of the state), the median RQ changed from 0.17 during 1997-
2001 to 0.40 during 2017-2022. This change could be attributed to the
overall reduction in pH levels in river waters (the mean pH in the state
decreased from 7.12 in 1997 to 6.81 in 2021, according to data from
IGAM), potentially increasing the solubility of metals and resulting in
higher dissolved metal concentrations; nonetheless, other processes
(such as mining activity, changes in analytical procedures, and
socioeconomic influences) could also play a role. Additionally, a lower
risk of transgression for dissolved Fe was observed in the state’s
northern region, where forest cover is higher. This can be explained
by the fact that vegetation cover helps reduce erosion and
sedimentation, regulating the input of iron-rich sediments into
the water.

Higher concentrations of total Mn, total As, total phosphorus, and
BOD were observed in the state’s center, particularly in sub-basin SF5.
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However, it is worth noting that the RQ of manganese and arsenic
tended to decrease over time in these areas despite the increase in
urbanization and mining activities, reinforcing overall improvement
in the state’s environmental controls.

Despite some improvements resulting from the recent
implementation of sewage collection and treatment methods, the
condition of the region is highly affected by domestic and industrial
sewage originating in Belo Horizonte (Mello et al., 2020). Moreover,
stormwater runoff carrying improperly disposed of garbage, detritus,
and toxic substances from the basin into water bodies may also result
in water quality impairment. Mello et al. (2020) I further emphasize

Frontiers in Water

that, within the Brazilian context, a distinction exists between sewage
treatment systems and stormwater drainage systems—only the former
undergoes treatment, leaving the latter untreated. Therefore, if urban
land use increases without careful planning, it can significantly impact
water quality.

Previous studies have also shown that, when hydrological
processes are properly accounted for, the apparent influence of land
use on water quality may be reduced, although outcomes depend on
multiple factors and remain constrained by observational data
limitations (Shadmehri Toosi et al., 2025). Flow variability, dilution,
and storage can also act as controls on pollutant transport. Recent
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modeling advances further integrate meteorological predictors to
improve water-quality forecasting, highlighting their importance in
trend interpretation (Zheng et al., 2025). In Minas Gerais, persistent
contaminant inputs from mining and expanding urban areas
contribute to chronic pollutant loads and increased runoff from
urbanized catchments, reinforcing the detectable influence of land use
on water quality in this region.

The state’s central region is under the influence of the Iron
Quadrangle, one of the most important mineral provinces in the
country. Higher river concentrations in these areas may be attributed
to dissolution processes from nearby rocks, which are transported by
hydrological fluxes (Moldovan et al., 2022). For instance, da Costa
et al. (2015) identified anomalous metal concentrations in stream
sediment samples in the Iron Quadrangle due to the natural
weathering process of geological materials rather than solely from
anthropic interference.

4 Conclusion

Exploratory Data Analysis (EDA) techniques were employed in
this study to gain insights into the spatial and temporal variations in
water quality of rivers in Minas Gerais. Additionally, the study
investigated the impact of land cover and river flow on the risk of
exceeding water quality limits. The reference is the national guideline
CONAMA 357/2005, that defines class 2 for water bodies safe for
life
conventional treatment.

aquatic and suitable for human consumption after

The water quality data analysis indicated high asymmetry and the
presence of extreme values, deviating from normal distribution
patterns. Although exceedances of threshold limits were common in
the historical series, the median concentrations for all parameters
remained below the defined limits for class 2 water quality since 1997.
Among the parameters analyzed, metal concentrations exhibited the
highest frequency of exceedances for class 2, with total Mn at 41% and
dissolved Fe at 33%. TP exhibited a 31% exceedance rate, BOD at 13%,
and turbidity at 16%.

The risk quotient analysis demonstrated that the rainy season was
associated with a higher risk of threshold transgressions, emphasizing
the significance of controlling diffuse sources, which are highly
correlated with hydrological processes. The study also employed the
Extra Tree regressor to assess the factors influencing pollutant
concentrations. River flow was identified as the most influential
aspect, followed by urban infrastructure and areas with high metal
content. These findings underline the necessity of monitoring flow
simultaneously with concentration levels, as the values were
approximated to averages in this study; future studies could refine flow
estimates using gauge-pair data or hydrological regionalization
techniques. Another relevant outcome is that, given that Minas Gerais
has one of the largest mineral deposits in Brazil (Iron Quadrangle),
further investigation is also needed to understand the role of
geological traits and natural weathering processes over surface
water quality.

The quantification of trends using Theil-Sen regression indicated
an overall stagnation in concentrations throughout the state,
suggesting that most sub-basins have not undergone rapid median
fluctuations. In addition, the assessment of maps at 5 years intervals
indicates an overall reduction of the risk of threshold exceedances,
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demonstrating improved effectiveness of measures to regulate
pollution sources over the last 25 years. However, the increasing risk
of dissolved iron concentrations larger than the limit indicates the
need for further analysis to identify its causes, such as physical-
chemical processes within the water column, and to develop targeted
interventions. The comparison between land cover and the risk of
threshold exceedances also suggests that forest cover may contribute
to lower risks of transgressions, emphasizing the importance of
vegetation maintenance.

While the study provides valuable insights to support
decision-making for pollution control and remediation efforts,
further evaluation is suggested. For instance, the analysis did not
consider other influential environmental factors such as pH,
temperature, conductivity, and precipitation. Additionally, no
specific censoring strategy was applied, and serial autocorrelation
in the Theil-Sen slopes was not assessed, as monthly samples
were used and residual autocorrelation is often low or statistically
insignificant (e.g., Monteiro and Costa, 2018). Future studies
should explore the role of these additional parameters and
investigate their relationships with other substances, as river
concentration dynamics in time and space a result from complex
and interconnected aspects (e.g., physical-chemical-biological
reactions, hydrodynamic conditions, and geological influence).
In addition, other steps for advancing this line of research
include: installing high-frequency in situ sensors to capture
temporal variability; testing flow-event sampling strategies to
improve machine-learning; and coupling hybrid machine
learning-process frameworks to represent non-linear pollutant
dynamics at catchment scale; for formal trend inference in
individual series, pre-whitened Mann-Kendall or similar
approaches are recommended, as well formally assess assumptions
such as normality, homoscedasticity, and independence when
interpreting results. Finally, a more comprehensive risk analysis
is recommended for health assessment, encompassing exposure
pathways, duration, and sensitivity of organisms or individuals.
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