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Water quality monitoring provides essential insights into the health and safety of 
water resources in a watershed. This study presents a comprehensive analysis 
of water quality spatial and temporal trends in the rivers of Minas Gerais, Brazil, 
from 1997 to 2022. For this aim, we use 258,233 samples from 675 water quality 
stations monitored by the Minas Gerais Institute for Water Management (IGAM). 
The study evaluates the risk of exceeding the established limits for class 2, as 
defined by a national guideline (CONAMA 357/2005). The analysis includes water 
quality parameters representing organic matter, nutrients, and metals related to 
agriculture runoff, urban and mining activities, and vegetation cover. The spatial–
temporal changes in water quality are evaluated using exploratory data analysis 
techniques the machine learning Extra Tree regressor method, and the Theil-
Sen non-parametric trend estimator. As an example, the Extra Trees regressor 
provided a reliable adjustment for total arsenic, yielding a mean absolute error of 
0.002 mg/L. The results indicate that, while median concentrations have declined 
over the 25-year period, exceedance frequencies remain substantial for Mn, Fe, 
and TP. The results also indicate a higher risk of limit transgressions during the 
rainy season, underlining the importance of controlling diffuse sources and 
understanding hydrological processes. Using surrogate monthly mean flow, the 
Extra-Trees regressor ranked flow as the most important predictor among the 
tested variables, followed by urban infrastructure and areas with high metal content. 
The role of forest cover in reducing the risk of transgressions is also emphasized. 
In this sense, the study provides valuable insights to support decision-making 
for pollution control and remediation efforts to guarantee water quality safety. 
This study uniquely combines robust, non-linear statistical modeling with a 25-
year water quality dataset in Minas Gerais, offering new insights into long-term 
environmental changes in a socially and economically important region.
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1 Introduction

1.1 Research problem

Rainfall drains pollutants to rivers after interacting with land use and cover (e.g., forest 
and deforested areas, agriculture, industry, and urban areas), influencing the water quality and 
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biological processes (de Mello et al., 2018; Vörösmarty et al., 2010; 
Zanin et al., 2024). Streams in pasture-dominated watersheds might 
have higher total nitrogen concentrations, which may decrease water 
quality. Oppositely, streams within forested watersheds and large 
riparian vegetation may have more macroinvertebrate diversity and 
protected communities of fish (Tanaka et al., 2016), in addition to 
controlling soil erosion and improving water quality in streams 
(Monteiro et al., 2016; Panagos et al., 2015). Also, the water quality 
changes during different seasons (Xu et al., 2019). For instance, it is 
expected a decrease in point source dilution capacity during dry 
periods (low flows; Carpenter et  al., 1998). Critical water quality 
related to diffusive sources is expected during storm periods 
(Carpenter et al., 1998).

Long-term water quality monitoring is essential for tracking the 
effectiveness of planning and monitoring measures, identifying 
emerging trends, and adapting strategies to the expected dynamic 
changes over time and space (e.g., Fu et al., 2023). Besides, water 
quality studies need to adopt a multi-scale approach, such as 
watershed scale, which better explains variability in water quality 
patterns (de Mello et al., 2018).

Exploratory data analysis (EDA) combines visual and numerical 
techniques to gain meaningful insights from the data. It has been 
widely used to gain an overview of water quality patterns in terms of 
spatial and temporal variations, as well as correlations between water 
quality variables and relevant factors such as land cover and land use 
(e.g., Gorgoglione et  al., 2020; Wang et  al., 2023; Castrillo and 
García, 2020). The EDA encompasses from basic descriptive 
statistics to complex machine learning techniques. The Extra Tree 
and random forest regression are examples of machine learning 
methods that may be  used to assess the water quality and its 
relationship with land use and hydrological features (e.g., Marani 
and Nehdi, 2020; Asadollah et  al., 2021; Wasko et  al., 2020; Fu 
et al., 2023).

Recent studies have further expanded the scope of machine 
learning applications in hydrology. For instance, transformer-based 
and representation learning approaches have been proposed for cross-
basin prediction tasks (Zheng et al., 2025), while hybrid ensemble 
strategies, such as ExtraTrees combined with AdaBoost, have been 
explored for salinity forecasting in estuarine systems (Yousefi et al., 
2024). These contributions highlight the diversity of methodological 
developments currently underway. Our work differs by focusing on 
interpretability and the statewide scale, combining Extra Trees with 
Theil–Sen trend analysis to provide insights across 25 years of 
monitoring in Minas Gerais.

In a recent review of the relationship between land use and surface 
water quality, Cheng et al. (2022) point out that most studies focus on 
river reaches, riparian zones, and sub-basins and that the research 
methods primarily include correlation and redundancy analysis, the 
Soil and Water Assessment Tool (SWAT) model, Geographically 
Weighted Regression (GWR) model, or multiple linear regression. 
Principal Component Analysis (PCA) is also a linear method 
frequently used to achieve this goal (Cruz et al., 2019; Gorgoglione 
et al., 2020). Still, Cheng et al. (2022) acknowledge that accurately 
establishing the relationship between land cover/land use and water 
quality is challenging due to hydrological properties, soil structure, 
and seasonal and historical land use patterns. Therefore, the regression 
methods employed in this study contribute to this matter by 
addressing non-linear aspects and dealing with skewed data.

Despite studies of exploratory water quality data focused on local 
events, such as mining accidents (e.g., Guimarães et  al., 2022; 
Thompson et al., 2020), and temporal and spatial on a regional scale, 
long-term and broad-scale assessments are scarce and essential 
because the impacts of anthropogenic or natural activities can take 
time to manifest in surface water, and past conditions can leave lasting 
contamination legacies in the water bodies, as highlighted by Mello 
et al. (2020). This study evaluates the long-term evolution (1997–2022) 
of water quality in the Minas Gerais river network, using monitoring 
data from the Minas Gerais Institute for Water Management (IGAM). 
The exploratory analysis aims to identify key aspects that may 
contribute to the risk of exceeding the established limits for protecting 
the lotic systems, particularly the classification defined for class 2 by 
the CONAMA n°357/2005 (Brazil, 2005). The study focuses on 
discussing the role of land cover and river flow in the spatial–temporal 
changes in water quality, as these factors can impact the pollutant 
loads entering water bodies and their behavior within them 
(Gorgoglione et al., 2020).

Therefore, the main objectives of the exploratory data analysis can 
be summarized as follows: (i) verify data integrity and understand the 
water quality overall behavior, including central tendency and extreme 
values, through descriptive statistics, (ii) demonstrate if water quality 
has improved over the years, using the Theil–Sen slope estimator, (iii) 
identify regions and periods (dry or rainy season) with a higher risk 
of threshold transgressions, comparing risk coefficients, (iv) determine 
the role of land cover types and river flow in the concentration of 
pollutants in river water using Extra Trees regression to evaluate 
feature importance, and (v) identify parameters of greater concern by 
analyzing the frequency of exceedances relative to environmental 
standards. Therefore, land cover and river flow act as pressures/
drivers, water quality indicators represent the state, and observed 
long-term changes provide evidence relevant for management 
responses; it should be noted that discharge data are limited, and 
surrogate monthly averages were used to approximate flow. This 
comprehensive analysis may support decision-making and policy 
formulation by identifying hotspots, analyzing trends over time, and 
providing a holistic understanding of water quality dynamics.

Despite previous studies on water quality in Minas Gerais, most 
analyses are limited to short-term periods, small spatial scales, or 
conventional statistical methods, leaving a gap in understanding long-
term, statewide trends using modern data-driven approaches. 
Previous regional assessments rarely leverage machine learning 
techniques or robust trend estimators to account for non-linearities 
and outliers in the data, limiting their predictive and explanatory 
power. Our study compiles an extensive dataset of 675 monitoring 
stations and 258,233 measurements spanning 25 years, providing a 
uniquely comprehensive view of water quality dynamics across Minas 
Gerais. The novelty of this work lies in combining Extra Trees 
Regressor with Theil–Sen trend analysis to deliver a robust, multi-
decadal, machine-learning-driven assessment of long-term water 
quality changes in a socially and economically critical region.

1.2 Study area

Figure 1 presents Minas Gerais state, which is the Brazil’s fourth 
largest state (586.528 km2, similar to France and Kenya), with a 
population estimated at 20,538,718 inhabitants (IBGE, 2022). Almost 
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30% of the population is concentrated in the metropolitan area 
surrounding the capital city, Belo Horizonte. The state is responsible 
for the third-largest gross domestic product in the country, 
emphasizing agricultural activities and mineral extraction (FJP, 2022). 
The region has one of Brazil’s most important mineral provinces, the 
Iron Quadrangle, accounting for 65% of the national iron and steel 
production (Haddad et al., 2021). Furthermore, it is densely populated, 
particularly in the metropolitan area surrounding the capital city, Belo 
Horizonte. In this context, the state serves as a representative case 
study for many regions worldwide, where surface water quality is 
affected by complex relationships and multiple land and water use. 
Therefore, analyzing water quality data becomes a crucial tool for 
guiding pollution control and remediation efforts undertaken by 
governmental and industrial sectors. Figure 1 also presents the land 
use and geology over Minas Gerais state and the precipitation (annual 
and seasonal patterns). The land use classes were obtained from 
MapBiomas project and the precipitation from CHIRPS (1981 
to 2024).

2 Materials and methods

The material and methods employed in this study are designed to 
systematically analyze water quality dynamics and their relationship 
with river flow and land cover. We  use statistical metrics, feature 

importance assessment, risk analysis, seasonal variation, trend 
analysis, and spatial–temporal variation evaluation to gain insights to 
support informed decision-making in the watershed scale.

2.1 Data sources

The Minas Gerais Institute for Water Management (IGAM) has 
been actively monitoring surface water quality in the state since 
1997, providing a valuable historical dataset for various 
parameters. The dataset employed in this study comprises monthly 
data collected from 675 monitoring stations spanning 381 rivers 
across the state (Figure 1). The analyzed dataset includes a total of 
35,019 for dissolved iron (Fe), 34,118 samples for total manganese 
(Mn), 26,021 samples for total arsenic (As), 33,784 samples for 
total lead (Pb), 43,019 samples for biochemical oxygen demand 
(BOD), 43,000 samples for total phosphorus (TP), and 43,272 
samples for turbidity. According to IGAM, the network is strategic, 
with sampling locations at the boundaries between states, 
confluences of water bodies, and sites with known or potential 
quality impacts.

The territory of Minas Gerais was divided into 36 units for water 
resource planning and management (UPGRH) by the State Council 
of Water Resources CERH-MG, 2002, as illustrated in Figure 1. The 
influence of land use cover (LULC) and flow on river water quality was 

FIGURE 1

Map indicating the location of Minas Gerais and Brazil (A); land use (B); geology (C); mean annual and seasonal precipitation (D); and its sub-basins, 
river network, and monitoring stations (water quality and flow) (E).
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considered at the catchment scale because this approach is often a 
better predictor of water quality than only in the riparian zone, as 
stated by Mello et al. (2020).

A water quality class is a set of conditions and standards necessary 
to meet the preponderant uses, current or future. Class 2 is for river 
water that can be used for human consumption after conventional 
treatment, protection of aquatic communities, primary contact 
recreation, irrigation, aquaculture, and fishing activities. To 
be classified as class 2, it must comply with a lot of water quality 
criteria, including: dissolved iron (≤ 0.3 mg/L), total manganese (≤ 
0.1 mg/L), total arsenic, and total lead (≤ 0.01 mg/L each), biochemical 
oxygen demand (≤ 5 mg/L), total phosphorus (≤ 0.1 mg/L), and 
turbidity (≤ 100 NTU).

To investigate seasonal variations, particularly during rainy 
(October–March) and dry periods (April–September), flow data from 
monitoring stations across the state are utilized (ANA, 2022).

The LULC data is obtained from Map Biomas (2021), following 
the suggested level of division by this database: forest encompasses 
forest and savanna formations; agriculture includes a variety of 
cultivations (sugar cane, citrus, cotton, soybeans, and coffee), forest 
plantation, pasture, mosaic of agriculture and pasture, other perennial 
crops, and mosaic of crops.

2.2 Exploratory data analysis methods

2.2.1 Data description
After collecting the data, the data cleaning phase primarily 

focused on rectifying the identification of sampling points, including 
latitude, longitude, and subbasin names. Statistical metrics of central 
tendency, dispersion, and asymmetry describe the concentration 
dataset. Central tendency metrics, such as the mean or median, 
indicate the average or typical value around which the concentrations 
cluster. Dispersion metrics, such as the standard deviation, quantify 
the spread or variability of the concentrations. Asymmetry metrics, 
such as skewness, assess the departure from symmetry in the 
concentration distribution.

Furthermore, the study calculates the percentage of samples that 
exceed the class 2 water quality standards. This analysis determines 
the proportion of samples that surpass the established thresholds for 
various parameters, indicating potential non-compliance with water 
quality guidelines.

2.2.2 Feature importance analysis
A feature importance analysis was conducted using the Extra Tree 

regressor algorithm to assess the influence of land cover areas and 
river flow on water quality parameters. The analysis aimed to 
determine each feature’s relative importance (score) in predicting 
pollutant concentrations.

The Extra Tree regression algorithm employs decision trees and 
ensemble learning techniques (Asadollah et  al., 2021). In each 
ensemble tree, a random subset of features is considered when 
splitting nodes. This random selection of features introduces diversity 
among the trees, mitigating overfitting and enhancing the model’s 
robustness. By only considering a subset of features at each split and 
aggregating predictions from multiple trees, the algorithm also 
reduces the impact of outliers. Since the method introduces additional 
randomness when selecting feature splits, the impact of 

multicollinearity is mitigated, which is an advantage compared to 
traditional regression models.

The model is fitted with land cover areas (agriculture, forest, 
mining, urban infrastructure) and river flow as the independent 
variables and the corresponding target as the dependent variable. 
Because flow data is not available simultaneously with concentrations, 
the discharge corresponding to each sample was defined as the average 
value for each month of water quality sampling, encompassing all 
monitoring stations within the sub-basin.

In general, model hyper-parameter tuning significantly affects the 
feature importance (Marani and Nehdi, 2020). Hyperparameters are 
the parameters set before the learning process, found in this study 
using Bayesian optimization and cross-validation concepts (Pedregosa 
et al., 2011). This approach iteratively explores the search space based 
on previous evaluations, building a probabilistic model of the objective 
function (e.g., model performance metric). The cross-validation 
process, in its turn, splits the available data into multiple subsets 
(folds), then it trains and evaluates the model multiple times, each 
time using a different combination of training and validation sets. 
Although model performance is not the focus of this study, these 
techniques increase the model’s generalization ability and ensure 
reliable results; performance metrics are presented in the 
Supplementary material.

2.2.3 Risk of threshold exceedance
To evaluate the extent to which the limits for class 2 are exceeded 

within the water quality series in Minas Gerais, the monitoring 
concentrations are compared to the thresholds using the ratio C/Clim. 
Here, C is the pollutant concentration in the water column (mg/L) and 
Clim denotes the limit concentration defined by national regulations 
(Brazil, Pub, 2005). This relationship establishes the risk quotient 
(RQ), where RQ ≥ 1 indicates that the observed concentration exceeds 
the limit and signifies the risk of transgression. This quotient is 
commonly employed in studies associated with ecotoxicological 
assessments (e.g., Viana et al., 2021).

2.2.4 Seasonal variation analysis
The seasonal variation analysis compares monthly RQ and the 

state’s flow conditions. Box plots of RQ are grouped by month for each 
pollutant of interest. This approach depicts a comparison of medians, 
interquartile ranges, and outliers.

2.2.5 Trend analysis
Trends of pollutant concentrations, river flows, and land cover 

areas (target variables) are evaluated over the study period. Like the 
approach used in the feature importance analysis, flow data is 
incorporated by considering the average value for each month of water 
quality sampling. This average value is derived from the data collected 
across all monitoring stations within the respective UPGRH, available 
at ANA (2022).

Firstly, the median of each target variable (Y, including 
concentrations of water quality parameters, land cover areas, and 
river flow) is calculated for each year within each sub-basin. After 
sorting the dataset by year, a Theil-Sen Regressor model is fitted 
using the years as the independent variable (predictor, X), and the 
corresponding target variable as the dependent variable. This fitted 
line captures the overall direction and magnitude of the relationship. 
The model parameters are defined similarly to the approach used 
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in the feature selection phase, employing Bayesian search and a 
time series cross-validation technique from the sklearn 
Python library.

The slope of the regression line represents the trend over time, 
providing a measure of how the target variable (Y) changes in 
response to changes in the independent variable (X). Positive or 
negative slopes indicate increasing or decreasing trends over the years. 
According to Fu et al. (2023), the method is particularly useful for 
handling skewed and heteroskedastic data; furthermore, compared to 
simple linear regression, it can provide significantly more 
accurate results.

To assess whether the observed trend holds statistical significance 
(i.e., if the change in median over the years is statistically significant 
or if it remains unchanged), a t-statistic was computed. We established 
a significance level of 0.05, with degrees of freedom equal to n - 2 
(where n is the number of observations in the sample), and then 
calculated a p-value using the two-tailed t-distribution and the 
t-statistic value. If the p-value is less than the chosen significance level, 
the null hypothesis is rejected, indicating that the slope significantly 
differs from zero. Additionally, statistical significance was evaluated 
with the Yue–Pilon modification of the Mann–Kendall test, as 
presented in the Supplementary material.

2.2.6 Spatial–temporal variation analysis
To assess the spatial–temporal variation of RQ and land cover 

areas, maps depicting the median values are generated for every 5-year 
interval throughout the study period. The median RQ values of the 
river stations are organized into sub-basins, visually represented using 
a color scale. The selection of the median as the metric of interest is 
motivated by its ability to capture the central tendency of water quality 
behaviors. By focusing on the median, the potential influence of 
outliers is mitigated, allowing for a more robust assessment of the 
overall water quality within each sub-basin.

These maps provide insights into the spatial distribution and 
changes in pollutant concentrations and land cover classes over time, 
enabling the identification of areas with higher or lower levels of 
pollutants and changes in land cover patterns.

3 Results and discussion

Statistical metrics provide a detailed data description, capturing 
variability and distribution patterns. The feature importance analysis 
using the Extra Tree regression depicts the contributions of river flow 
and land cover in influencing water quality concentrations. Seasonal 
variation analysis highlights the effect of dry and rainy seasons on the 
risk of threshold exceedance. Trend analysis using Theil-Sen 
regression reveals long-term trends, indicating whether the variables 
increase, decrease, or stabilize over time. Lastly, spatial–temporal 
variation analysis maps the risk of threshold exceedance and land 
cover evolution. Together, these results provide a comprehensive 
understanding of long-term water quality dynamics in Minas Gerais, 
supporting effective management strategies for sustaining healthy 
aquatic ecosystems.

3.1 Data description

The dataset utilized in this study comprises 258,233 samples, 
including 35,019 for dissolved Fe, 34,118 for total Mn, 26,021 for total 
As, 33,784 for total Pb, 43,272 for turbidity, 43,000 for Tp, and 43,019 
for BOD (Table 1). Furthermore, the dataset encompasses discharge 
and land use and cover.

These parameters were selected to reflect the effects of prominent 
anthropic or natural activities in the state, such as urban occupation, 
mining, and agriculture. Land cover areas and river flow are key 
practical aspects that watershed managers can effectively control to 
mitigate pollution and ensure water quality. This process may involve, 
for instance, implementing practices to reduce soil erosion and 
promote natural filtration and employing flow regulation, sediment 
control, and sustainable drainage solutions.

The samples show high asymmetry and extreme maximum values 
for all water quality parameters (Table  1). Positive skewness is 
observed, ranging from 15.71 for BOD to 31.71 for total Pb. These 
findings indicate a significant departure from a normal distribution, 
with a greater concentration of values around the mean and outliers 

TABLE 1  Statistical metrics of water quality parameters monitored from 1997 to 2022 (IGAM, 2022).

Attributes Limit 
for 

class 
2

Percentage of 
samples with 

concentration 
≥ limit

Minimum Maximum Range Mean Median Standard 
deviation

Skew Samples 
count

Dissolved Fe 

(mg/L)
≤ 0.3 32.80 0.00 37.52 37.52 0.32 0.21 0.63 23.51 35,019

Total Mn 

(mg/L)
≤ 0.1 40.71 0.00 37.25 37.25 0.18 0.08 0.45 25.39 34,118

Total As 

(mg/L)
≤ 0.01 11.45 0.00 1.07 1.06 0.01 0.00 0.02 16.68 26,021

Total Pb 

(mg/L)
≤ 0.01 6.70 0.00 0.77 0.77 0.01 0.01 0.01 31.71 33,784

BOD (mg/L) ≤ 5 13.40 0.10 921.00 920.90 5.48 2.00 19.44 15.71 43,019

TP (mg/L) ≤ 0.1 31.05 0.01 23.92 23.91 0.14 0.06 0.32 16.16 43,000

Turbidity 

(NTU)
≤ 100 15.94 0.29 17949.00 17948.71 88.39 19.50 338.66 17.96 43,272
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in the dataset. These deviations of water quality data from common 
probability distributions, such as normal and lognormal distributions, 
are often found (Lettenmaier et al., 1991; Helsel et al., 2020). Several 
factors can explain the high ranges and skewness, such as natural and 
anthropogenic variability, non-linearity of geochemical processes, and 
problems related to data collection and detection limits (Helsel, 2006; 
Hirsch et al., 1982; Vega et al., 1998; Withers and Jarvie, 2008).

Among the analyzed parameters, 31% of the samples exceeded the 
thresholds for total phosphorus, 13% for BOD, and 16% for turbidity. 
Regarding metals, total Mn and dissolved Fe exhibited the highest 
frequency of exceedances at 41 and 33%, respectively; this is likely due 
to persistent sources, slow metal release from sediments, or limited 
effectiveness of current mitigation measures. Except dissolved Fe, total 
Mn and Turbidity, the median values of all attributes are according to 
typical wastewater values (Gaillardet et al., 2003). However, it is worth 
noting that despite these critical events, the median concentrations for 
all parameters remained below the limits specified for class 2 
water quality.

3.2 Seasonal variation and risk of threshold 
exceedance

The risk quotient for each sample was meticulously calculated and 
then grouped by month, considering all the monitoring points. The 
results, as depicted in Figure 2, offer valuable insights into periods 
with a heightened risk of exceeding limits. The figure also illustrates 
the monthly flows, calculated based on discharges recorded between 
1997 and 2022 across the state. This comparison is crucial, given the 
interplay between discharge and concentrations. Variations in water 
discharge can have an impact on temporal fluctuations and changes 
in the probability distribution of chemical concentrations within a 
stream (Antonopoulos et al., 2001; Helsel et al., 2020).

The results reveal a distinct pattern: during the rainy season 
(October to March), when the median flow fluctuates from 70 m3/s 
in October to 143 m3/s in December, there is a pronounced risk of 

threshold exceedance (i.e., RQ ≥ 1) for turbidity, TP, dissolved Fe and 
total Mn. The median RQ for dissolved Fe is particularly noteworthy, 
nearing 1 in February and November, with a minimum of 0.5 in July. 
Total Mn exhibits the highest median RQ in January (1.4) and 
December (1.2), with a minimum of 0.4  in June and September. 
December emerges as the month with the highest risk for TP, with a 
median RQ of 1; the months with decreased risk were June and July, 
with a median RQ of 0.4. Turbidity shows higher median RQ values 
during December (0.62) and February (0.53), with a smaller value in 
July (0.09).

The median RQ for arsenic remains close to 0.1 throughout most 
of the year, indicating that median concentrations are only 10% of the 
limit for class 2. Similarly, the median of RQ for total Pb and BOD is 
0.5 and 0.4, respectively, indicating that the central tendency of 
concentrations remains close to 50% of the threshold for class 2 in the 
case of Pb and 40% of the limit of BOD.

Critical events are not limited to specific times of the year, as 
evidenced by extreme cases where maximum RQ values reach as high 
as 200. Severe water quality impacts attributed to point source 
pollution typically manifest during summer or dry periods when river 
flows are low, diminishing the dilution capacity, and during storm 
periods when combined sewer overflows operate more frequently 
(Carpenter et al., 1998). Conversely, the critical water quality impacts 
stemming from diffuse source pollution tend to occur during storm 
periods, particularly after a dry spell, when rainfall triggers hillslope 
hydrological processes and the runoff of pollutants from the land 
surface (Carpenter et al., 1998). Considering that the transgression 
limits are generally higher during the rainy season in Minas Gerais, 
these results emphasize prioritizing the control of diffuse sources to 
manage surface water pollution effectively.

The relationship between river flow and parameters such as BOD, 
Pb, and As in Figure 2 did not exhibit a linear correlation. BOD, Pb, 
and As sources in rivers can be diverse, including both natural and 
anthropogenic origins, which may not be directly tied to flow rates. 
Additionally, these parameters’ spatial and temporal variability can 
be  influenced by localized sources and processes, detaching them 

FIGURE 2

Risk quotient and flow by month in Minas Gerais (the dashed blue line indicates RQ = 1; values > 1 indicate concentrations larger than the threshold for 
class 2).
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from flow dynamics. Furthermore, the transformation and 
degradation processes that BOD, Pb, and As undergo within the river 
system can be influenced by biological, chemical, and sediment-water 
interactions, making their relationship with flow rates complex.

3.3 Influence of land cover and river flow 
on pollutant concentrations

Figure 3 presents the results of the feature importance analysis 
conducted using the Extra Tree regressor; a threshold of 0.10 was 
adopted to interpret feature importance, since values below this level 
likely reflect noise rather than meaningful contributions. The findings 
indicate that river flow was ranked highest in feature importance 
(however, this reflects correlation with the monthly, sub-basin-average 
surrogate flow rather than synchronous discharge and should not 
be  interpreted causally), followed by urban infrastructure and 
mining areas.

River flow plays a crucial role in the transport, dilution, and 
dispersion of pollutants within the river system, facilitating the mixing 
of different water masses and influencing chemical reactions that can 
alter the composition of pollutants. Additionally, river flow is closely 
linked to sediment transport, which affects the fate and transport of 
sediment-bound pollutants, including metals (Ferreira et al., 2023; 
Xue et al., 2022).

However, it is essential to acknowledge that the distribution of 
pollutants in rivers is a complex outcome influenced by various 
physical, chemical, and biological processes. Factors such as soil type, 
geology, vegetation cover, geomorphological features, point sources of 
pollution, atmospheric deposition, human activities, and hydrological 

and hydrochemical processes all contribute to the overall 
concentration of pollutants (Hill and Neal, 1997). Other features not 
evaluated in this study (e.g., pH, temperature, conductivity etc) might 
play significant roles in pollutant concentration dynamics (Peng et al., 
2021). Additionally, because discharge for each sample was defined as 
the monthly average across all sub-basin monitoring stations, spatial 
and temporal mismatches may alter correlations.

Nonetheless, the findings from this study emphasize the 
importance of monitoring both discharge and pollutant 
concentrations. Effective pollution control measures need to address 
the contributions from urban and mining areas, as they have been 
identified as key factors influencing river pollutant concentrations. 
These findings align with previous research conducted in Brazil, where 
studies have shown that urban occupation and mining (although they 
represent a small percentage of the territory) are among land uses with 
substantial impacts on water quality (Mello et al., 2020).

Although the relationship between river flow and parameters such 
as BOD and Pb did not exhibit a clear behavior when comparing 
monthly boxplots (Figure 2), the feature importance analysis showed 
that river flow significantly affects these concentrations. This 
highlights the importance of employing non-linear methods such as 
the Extra Tree regression in understanding and predicting river 
pollutant concentrations.

The models were also evaluated preventing temporal and spatial 
leakage using blocked TimeSeriesSplit and GroupKFold by station. 
For each target, the fold-averaged performance metrics (Coefficient 
of determination: R2, Mean Absolute Error: MAE, and Root Mean 
Squared Error: RMSE; mean ± standard deviation: SD) are presented 
in the suplementary material. In addition, per-fold permutation 
feature importance was computed, and quantified the stability of 

FIGURE 3

Importance of land cover areas and flow over concentrations; the vertical axis represents the feature importance score, estimated with the Extra Tree 
regression method; the error bar is a standard deviation that indicates how much the values might vary across different decision trees in the ensemble.
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feature rankings across folds using Kendall’s τ. Additionally, tests for 
turbidity and BOD transformed using log1p were added.

Model performance under blocked temporal and spatial cross-
validation revealed that predictive skill was generally low for several 
targets, with small or slightly negative R2 values. Permutation feature 
importance identified river flow and mining as recurrently relevant 
predictors, though stability across folds (Kendall’s τ) varied by target. 
For variables not meeting the ideal threshold, results are presented for 
transparency but interpreted cautiously.

3.4 Yearly trend of the variables

Supplementary Table 2 presents the average change in median 
concentrations, land cover area, and median river flow per year over 
the 25-year period (the red font color indicates a negative slope, i.e., a 
decreasing trend over the years; the red cells with values accompanied 
by “*” indicate statistically significant changes). To illustrate the table 
interpretation, for the sub-basin DO1: dissolved Fe increased by 
0.00013 mg/L per year, the flow rate increased by 0.014 m3/s per year, 
agricultural area decreased by 31.78 km2 per year, and forest area 
increased by 28.56 km2 per year. Dissolved Fe shows a small rising 
trend over the years in some sub-basins, from 3.51 × 10−5 to 
0.015 mg/L. Similarly, total As has increased across the State, although 
the magnitude is relatively less significant for most regions (𝜇g/L). The 
results generally indicate that changes from 1 year to the next are 
stable, with negligible changes in the central tendency.

The yearly trend analysis also revealed a few rapid changes in 
specific sub-basins. For example, the sub-basin GD8 has faced a 
significant decrease in the central tendency of river flow. These 
conditions have led the state to recognize the water shortage issues in 
recent years and to prompt restrictions on water resource uses (e.g., 
CERH-MG, 2002; IGAM, 2022). Nonetheless, regional perspectives 
might be attributed to specific events like pollution incidents, sampling 
timing (for instance, if most samples were collected before a rainfall 
event, results might be biased), construction of dams and reservoirs, 
weather patterns, or policy changes.

The analysis of land cover changes reveals that urban 
infrastructure and mining have expanded over the years, primarily 
concentrated in the sub-basins SF3 and SF5 (corresponding to the 
state’s central region). A trade-off has been observed between forest 
cover and agriculture in some basins. For instance, in the SF6 
sub-basin, agriculture has been expanding at a rate of 99.32 km2 per 
year, while forest cover has been decreasing at 93.6 km2 per year.

It is important to acknowledge that the interpretation of the 
findings assumes a linear relationship between the year and the 
variables. Moreover, this interpretation represents an approximate rate 
of change over the entire study period and may not reflect specific 
variations or fluctuations within shorter time intervals (i.e., intra-
annual variabilities, such as seasonal patterns, are not accounted for—
for reference, the Supplementary material presents figures with annual 
sample counts per period in each sub-basin, highlighting a consistent 
pattern of similar sample counts between dry and rainy periods across 
most years).

Annual trends were also estimated using the Theil–Sen estimator 
with blocked temporal and spatial cross-validation. Residual 
autocorrelation was checked using ACF and PACF diagnostics (lag 1). 
Additionally, tests for turbidity and BOD transformed using log1p 

were included. The results are presented in the excel file as 
Supplementary material. Despite the high variability at some sites, the 
non-parametric Mann–Kendall trend analysis was able to corroborate 
the changes at certain locations. Moreover, although minor residual 
autocorrelation was observed, its effect on the detected trends is 
considered minimal.

3.5 Spatial–temporal variation trends: risk 
quotient and land cover

The spatial–temporal variation in water quality in Minas Gerais 
was assessed by comparing the median risk quotient (RQ) every 
5 years within each sub-basin. Figure 4 illustrates the spatial–temporal 
variation of the median RQ values, while Figure 5 presents the same 
for land cover areas (forest, agriculture, urban infrastructure, 
and mining).

Overall, forest and agriculture, which cover most of the state, have 
remained relatively stable over the years across most sub-basins. 
Despite that, the changes over the 25 years were significant in most 
sub-basins (Supplementary Table 2). However, on a regional scale, 
land use has changed over time, for instance, the slight increase in the 
silviculture area in the north of Minas Gerais (Cerrado Biome) 
between 2000 and 2015 (Espírito-Santo et al., 2016).

There has been notable growth in urban infrastructure and 
mining activities, particularly in the central region of Minas Gerais. 
Despite these land cover trends, there has been an overall decrease in 
the risk of exceeding thresholds for most water quality parameters 
throughout the state. This improvement can be attributed to better 
control of point and diffuse sources that reach the rivers. The study 
conducted by Pataca et  al. (2020) revealed that, although the 
population of Minas Gerais has grown, the improvement of 
socioeconomic variables (such as HDI, poorness, and sanitation 
percentage) has contributed to the improvement of surface water 
quality in the State.

The median RQ reached maximums of 1.85 for dissolved Fe, 5.25 
for total Mn, 1.29 for total As, 2.2 for BOD, and 2.7 for TP; total Pb 
and turbidity exhibited median concentrations below the limits for 
class 2, with maximum median RQ of 0.8 and 0.7, respectively.

Notably, dissolved Fe is the only parameter that showed increasing 
concentrations over the years. The increase in RQ for dissolved Fe was 
more pronounced in the state’s southern areas rather than in regions 
with marked urbanization and mining. For example, in the SF9 region 
(north of the state), the median RQ changed from 0.17 during 1997–
2001 to 0.40 during 2017–2022. This change could be attributed to the 
overall reduction in pH levels in river waters (the mean pH in the state 
decreased from 7.12 in 1997 to 6.81 in 2021, according to data from 
IGAM), potentially increasing the solubility of metals and resulting in 
higher dissolved metal concentrations; nonetheless, other processes 
(such as mining activity, changes in analytical procedures, and 
socioeconomic influences) could also play a role. Additionally, a lower 
risk of transgression for dissolved Fe was observed in the state’s 
northern region, where forest cover is higher. This can be explained 
by the fact that vegetation cover helps reduce erosion and 
sedimentation, regulating the input of iron-rich sediments into 
the water.

Higher concentrations of total Mn, total As, total phosphorus, and 
BOD were observed in the state’s center, particularly in sub-basin SF5. 
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FIGURE 4

Risk quotient every 5 years in rivers of Minas Gerais; each sub-basin is colored with the median RQ in its rivers (in the gray areas the value was not 
calculated due to lack of data).
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However, it is worth noting that the RQ of manganese and arsenic 
tended to decrease over time in these areas despite the increase in 
urbanization and mining activities, reinforcing overall improvement 
in the state’s environmental controls.

Despite some improvements resulting from the recent 
implementation of sewage collection and treatment methods, the 
condition of the region is highly affected by domestic and industrial 
sewage originating in Belo Horizonte (Mello et al., 2020). Moreover, 
stormwater runoff carrying improperly disposed of garbage, detritus, 
and toxic substances from the basin into water bodies may also result 
in water quality impairment. Mello et al. (2020) I further emphasize 

that, within the Brazilian context, a distinction exists between sewage 
treatment systems and stormwater drainage systems—only the former 
undergoes treatment, leaving the latter untreated. Therefore, if urban 
land use increases without careful planning, it can significantly impact 
water quality.

Previous studies have also shown that, when hydrological 
processes are properly accounted for, the apparent influence of land 
use on water quality may be reduced, although outcomes depend on 
multiple factors and remain constrained by observational data 
limitations (Shadmehri Toosi et al., 2025). Flow variability, dilution, 
and storage can also act as controls on pollutant transport. Recent 

FIGURE 5

Median land cover area (km2) every 5 years in Minas Gerais (in the gray areas the value was not calculated due to lack of data).
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modeling advances further integrate meteorological predictors to 
improve water-quality forecasting, highlighting their importance in 
trend interpretation (Zheng et al., 2025). In Minas Gerais, persistent 
contaminant inputs from mining and expanding urban areas 
contribute to chronic pollutant loads and increased runoff from 
urbanized catchments, reinforcing the detectable influence of land use 
on water quality in this region.

The state’s central region is under the influence of the Iron 
Quadrangle, one of the most important mineral provinces in the 
country. Higher river concentrations in these areas may be attributed 
to dissolution processes from nearby rocks, which are transported by 
hydrological fluxes (Moldovan et al., 2022). For instance, da Costa 
et al. (2015) identified anomalous metal concentrations in stream 
sediment samples in the Iron Quadrangle due to the natural 
weathering process of geological materials rather than solely from 
anthropic interference.

4 Conclusion

Exploratory Data Analysis (EDA) techniques were employed in 
this study to gain insights into the spatial and temporal variations in 
water quality of rivers in Minas Gerais. Additionally, the study 
investigated the impact of land cover and river flow on the risk of 
exceeding water quality limits. The reference is the national guideline 
CONAMA 357/2005, that defines class 2 for water bodies safe for 
aquatic life and suitable for human consumption after 
conventional treatment.

The water quality data analysis indicated high asymmetry and the 
presence of extreme values, deviating from normal distribution 
patterns. Although exceedances of threshold limits were common in 
the historical series, the median concentrations for all parameters 
remained below the defined limits for class 2 water quality since 1997. 
Among the parameters analyzed, metal concentrations exhibited the 
highest frequency of exceedances for class 2, with total Mn at 41% and 
dissolved Fe at 33%. TP exhibited a 31% exceedance rate, BOD at 13%, 
and turbidity at 16%.

The risk quotient analysis demonstrated that the rainy season was 
associated with a higher risk of threshold transgressions, emphasizing 
the significance of controlling diffuse sources, which are highly 
correlated with hydrological processes. The study also employed the 
Extra Tree regressor to assess the factors influencing pollutant 
concentrations. River flow was identified as the most influential 
aspect, followed by urban infrastructure and areas with high metal 
content. These findings underline the necessity of monitoring flow 
simultaneously with concentration levels, as the values were 
approximated to averages in this study; future studies could refine flow 
estimates using gauge-pair data or hydrological regionalization 
techniques. Another relevant outcome is that, given that Minas Gerais 
has one of the largest mineral deposits in Brazil (Iron Quadrangle), 
further investigation is also needed to understand the role of 
geological traits and natural weathering processes over surface 
water quality.

The quantification of trends using Theil-Sen regression indicated 
an overall stagnation in concentrations throughout the state, 
suggesting that most sub-basins have not undergone rapid median 
fluctuations. In addition, the assessment of maps at 5 years intervals 
indicates an overall reduction of the risk of threshold exceedances, 

demonstrating improved effectiveness of measures to regulate 
pollution sources over the last 25 years. However, the increasing risk 
of dissolved iron concentrations larger than the limit indicates the 
need for further analysis to identify its causes, such as physical–
chemical processes within the water column, and to develop targeted 
interventions. The comparison between land cover and the risk of 
threshold exceedances also suggests that forest cover may contribute 
to lower risks of transgressions, emphasizing the importance of 
vegetation maintenance.

While the study provides valuable insights to support 
decision-making for pollution control and remediation efforts, 
further evaluation is suggested. For instance, the analysis did not 
consider other influential environmental factors such as pH, 
temperature, conductivity, and precipitation. Additionally, no 
specific censoring strategy was applied, and serial autocorrelation 
in the Theil–Sen slopes was not assessed, as monthly samples 
were used and residual autocorrelation is often low or statistically 
insignificant (e.g., Monteiro and Costa, 2018). Future studies 
should explore the role of these additional parameters and 
investigate their relationships with other substances, as river 
concentration dynamics in time and space a result from complex 
and interconnected aspects (e.g., physical–chemical-biological 
reactions, hydrodynamic conditions, and geological influence). 
In addition, other steps for advancing this line of research 
include: installing high-frequency in situ sensors to capture 
temporal variability; testing flow-event sampling strategies to 
improve machine-learning; and coupling hybrid machine 
learning–process frameworks to represent non-linear pollutant 
dynamics at catchment scale; for formal trend inference in 
individual series, pre-whitened Mann–Kendall or similar 
approaches are recommended, as well formally assess assumptions 
such as normality, homoscedasticity, and independence when 
interpreting results. Finally, a more comprehensive risk analysis 
is recommended for health assessment, encompassing exposure 
pathways, duration, and sensitivity of organisms or individuals.
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