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As a critical resource for both livelihoods and economic progress, groundwater 
is increasingly endangered by nitrate contamination stemming from intensive 
agriculture, landfill leachates, wastewater effluents, soil nitrogen leaching, 
sewage discharge, and other anthropogenic influences. Stable isotopes (δ15N–
NO₃−, δ18O–NO₃−, δ11B) have emerged as powerful tools to distinguish pollution 
sources, including synthetic fertilizers, animal manure, domestic wastewater, and 
atmospheric deposition. In regions with intensive agriculture and urban sprawl, 
nitrate concentrations frequently exceed safe thresholds, underscoring the need 
for precise source identification to guide mitigation strategies. While traditional 
vulnerability mapping elucidates contamination pathways, it often fails to resolve 
specific sources. The integration of multi-isotope tracers (e.g., δ11B with δ15N–NO₃−, 
δ18O–NO₃−) alongside hydrochemical data has emerged as an effective approach to 
address this gap, particularly in complex hydrogeological settings. While previous 
reviews have addressed nitrate contamination and isotope applications, this study 
adds value through its updated scope (2015–2025), global comparison, emphasis 
on multi-isotope integration, and the presentation of a unified framework and 
best practices for source identification. The findings highlight actionable insights 
for groundwater protection and advocate for the widespread adoption of isotopic 
tools in sustainable water management worldwide.
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Introduction

Groundwater is a vital resource, sustaining life by supplying drinking water and supporting 
irrigation systems (Subba Rao et al., 2020; Gugulothu et al., 2022). However, its quality is 
deteriorating globally, jeopardizing agricultural productivity and human health. Nearly half 
of the world’s population relies on groundwater for daily needs (Mukherjee and Singh, 2018; 
Adimalla and Qian, 2019), yet this critical resource is increasingly threatened by rapid 
agricultural expansion, industrial activities, and urbanization (Zhaoshi et  al., 2021). The 
overuse of fertilizers and pesticides, along with untreated sewage and industrial effluents, has 
severely degraded both surface and subsurface water quality (Suthar et al., 2009). Moreover, 
dynamic groundwater–surface water exchanges influence the physical, chemical, and biological 
characteristics of aquatic ecosystems (Valett and Sheibley, 2009). In this context, a thorough 
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understanding of aquifer geochemistry becomes essential for 
diagnosing contamination processes and supporting effective 
groundwater management strategies (Wu et al., 2021; Eid et al., 2023).

In recent decades, groundwater extraction has surged in response 
to growing agricultural, industrial, and domestic demands, 
accompanied by rising contamination from organic, inorganic, and 
emerging pollutants (Sharma et  al., 2022). Among these, nitrate 
(NO₃−) contamination has emerged as one of the most widespread 
and persistent challenges affecting groundwater quality. Key 
anthropogenic sources include atmospheric deposition, chemical 
fertilizers, animal manure, and untreated urban or industrial waste 
(Kelepertzis et al., 2023).

To address this growing concern, the concept of groundwater 
vulnerability—which assesses the susceptibility of aquifers to 
contamination—has become central to sustainable water resource 
management (Bera et  al., 2021; Paul and Das, 2021). Various 
assessment techniques, such as DRASTIC, GOD (Arauzo, 2017), 
SINTACS (Meng et al., 2020), and GALDIT (Boufekane et al., 2022), 
integrate hydrogeological parameters to delineate areas at risk of 
contamination. While these models are effective in identifying zones 
of heightened vulnerability, they often fall short in accurately 
determining specific nitrate pollution sources, particularly in regions 
with complex land use and overlapping anthropogenic activities.

To address this limitation, stable isotope techniques have emerged 
as powerful tools. In particular, nitrogen (δ15N) and oxygen (δ18O) 
isotopes in nitrate can distinguish between pollution from fertilizers, 
wastewater, and manure (Kendall, 1998; Panno et al., 2001; Bu et al., 
2017; Zhou et al., 2022; Li et al., 2025). Boron isotopes (δ11B) further 
enhance source discrimination, especially in complex hydrogeological 
and land-use settings (Komor, 1997; Sankoh et al., 2021).

This review aims to provide a comprehensive synthesis of global 
applications of stable isotopes in identifying nitrate sources in 
groundwater. It is structured around six thematic components: (1) 
methodological approaches for data collection and the spatial 
distribution of studies; (2) patterns and severity of nitrate 
contamination at a global scale; (3) environmental and anthropogenic 
drivers influencing nitrate dynamics; (4) roles and developments of 
isotopic techniques in groundwater research; (5) specific applications 
of δ15N, δ18O, and δ11B in nitrate source discrimination; and (6) 
implications for groundwater protection and future directions for 
research and management.

Data collection and geographic 
distribution of studies

This review employed a systematic approach to collect and 
analyze global literature on groundwater nitrate contamination and 
isotopic tracing techniques. An extensive literature search was 
conducted using academic databases such as Scopus and Web of 
Science, supplemented by Google Scholar and ResearchGate. To 
ensure a focus on recent methodological advances, emerging isotope 
tracers, and updated hydrochemical applications, the review 
specifically targeted peer-reviewed publications from 2015 to 2025. 
This period reflects a decade marked by significant growth in multi-
isotope integration, the use of δ11B, and the incorporation of isotopic 
tools into groundwater management frameworks. Keywords focused 
on core concepts such as “groundwater nitrate contamination,” 

“stable isotopes,” “pollution sources,” and isotopic markers (“δ15N–
NO₃−,” “δ18O–NO₃−,” “δ11B”), along with related terms like 
“hydrochemical parameters” and “groundwater vulnerability.” The 
selection process prioritized articles indexed in Web of Science and 
Scopus, applying a two-stage screening: initial relevance based on 
isotope use in source identification, followed by methodological 
quality control to remove duplicates and redundant studies. 
Emphasis was placed on research integrating multi-isotope 
approaches with hydrochemical data for complex 
contamination scenarios.

The systematic review followed the PRISMA 2020 guidelines 
(Page et al., 2021), with the study selection process summarized in 
Figure  1. A total of 634 records were identified through database 
searches (Scopus = 400, Web of Science = 234). After the removal of 
150 duplicate records and 40 flagged by automation tools, 444 articles 
remained for screening. Of these, 180 were excluded during the title 
and abstract review. The remaining 264 reports were sought in full 
text, of which 225 were successfully retrieved and assessed for 
eligibility. At this stage, 115 reports were excluded due to incomplete 
isotopic data (n = 50), lack of source apportionment analysis (n = 40), 
or absence of a nitrate/isotope focus (n = 25). The final 110 studies 
met all inclusion criteria and were incorporated into the synthesis.

The systematic review reveals a varied global distribution of 
studies (Figure 2) focusing on nitrate isotopes in groundwater. China 
leads with the highest number of relevant studies (n = 24), followed 
by the United  States (n = 11) and India (n = 9), reflecting strong 
research engagement in these regions. Other countries with moderate 
representation include Ghana (n = 7), Greece (n = 5), Italy (n = 4), and 
Israel (n = 2), as well as several countries with three studies each, such 
as Algeria, Argentina, South Korea, and Mexico. European countries 
like France, Germany, Belgium, and Spain contributed one to two 
studies each. Notably, Morocco appears with 14 studies, which, while 
not employing stable isotope techniques, were included to illustrate 
the widespread and persistent nitrate pollution in the region. Their 
inclusion serves to emphasize the lack of isotopic applications in 
Moroccan groundwater research and highlights a significant regional 
research gap. Some countries, such as Indonesia, Kenya, Nigeria, and 
Pakistan, are represented by only one study. This underscores both the 
global relevance of nitrate-related issues and the uneven distribution 
of isotopic research across regions. The temporal and geographical 
distributions of studies are shown in Figure 3 (by year) and Figure 4 
(by continent), respectively.

Global assessment of nitrate 
contamination in groundwater 
systems

Groundwater constitutes the principal water source for drinking 
and agricultural purposes in arid and semi-arid regions, where 
surface water availability is severely limited (Zazouli et al., 2024). 
Over recent years, reliance on groundwater has increased significantly 
(Zhou et al., 2020; Subba Rao et al., 2020). However, groundwater 
contamination has emerged as a pressing environmental challenge 
with significant regional and global implications (Gao et al., 2020; He 
et al., 2020). This contamination is driven by various factors, including 
erratic rainfall, rapid urbanization, intensive irrigation, excessive 
fertilizer use, unregulated industrial activities, population growth, 
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and both anthropogenic and geogenic pollution (Gao et al., 2020; 
Kumar et  al., 2021; Subba Rao et  al., 2020). Among the most 
concerning groundwater pollutants is nitrate (NO₃−), which has 
become a global issue due to its elevated concentrations. High levels 
of nitrate in groundwater pose serious risks to human health, 
particularly through drinking water exposure (Adimalla and 
Qian, 2021).

Agriculture is the primary source of nitrate pollution, with 
excessive nitrogen fertilizer use and animal waste contributing 
significantly. In addition, poorly designed septic systems also lead to 
nitrate leaching into the water Table. NO₃− pollution originates from 
both point sources—such as domestic sewage discharges, cesspools, 
and dairy lagoons—and non-point sources, including agricultural 
runoff from synthetic fertilizers and manure, soil nitrogen leaching, 
and atmospheric nitrogen deposition. These sources vary in spatial 
and temporal patterns, complicating efforts to trace and manage 
nitrate contamination in groundwater systems (Gao et al., 2020; He 
et  al., 2020). In intensively farmed regions, groundwater nitrate 
(NO₃−) concentrations frequently reach alarming levels, with 
recorded values exceeding 250 mg/L (Hilal et al., 2024)—five times 
the World Health Organization’s (WHO) recommended limit of 
50 mg/L for drinking water. Studies in various agricultural zones have 

documented a steady increase in nitrate pollution over recent decades 
(Nouzha et al., 2016; Aziane et al., 2020; El Khodrani et al., 2020).

In areas with high agricultural activity, particularly those cultivating 
vegetables and industrial crops, nitrate concentrations in groundwater 
often exceed safe thresholds (Nouzha et al., 2016). These elevated levels 
are primarily attributed to livestock waste discharge, excessive chemical 
fertilizer use, and pesticide infiltration. River basins in agricultural 
regions frequently experience nitrate pollution due to farming practices, 
urban expansion, and industrial processes (Kanga et al., 2020).

Inefficient irrigation practices significantly worsen groundwater 
contamination, contributing to both water resource depletion and 
environmental degradation through nitrate leaching and 
eutrophication processes (El Khodrani et  al., 2020). Research has 
shown that nitrate levels are often higher in wells near irrigated 
farmlands, where excess water application facilitates nitrate transport 
into the subsurface (Benkaddour et al., 2020).

Additionally, studies have detected agricultural chemicals in a 
significant proportion of monitored wells, with insecticides and 
nitrogen-based fertilizers being major contributors (El Bouzaidi et al., 
2023). These findings underscore the urgent need for improved 
agricultural practices, stricter pollution controls, and sustainable 
groundwater management strategies worldwide.

Records identified through
database searching:

Scopus (n =400)

Web of Science (n = 234)

Records removed before
screening:

Duplicate records removed (n
= 150)

Records marked as ineligible
by automation tools (n = 40)
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(n =444)
Records excluded at title/abstract
stage (n = 180)

Reports sought for retrieval

(n = 264)
Reports not retrieved
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FIGURE 1

PRISMA 2020 Flow Diagram.
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Factors influencing nitrate 
contamination in groundwater

Nitrate contamination in groundwater is influenced by a complex 
interplay of factors, making the relationship between surface nitrogen 
sources and subsurface nitrate levels highly intricate (Malki et al., 
2017). A significant portion of nitrogen from fertilizers can leach into 
groundwater due to irrigation or precipitation (Van Meter et  al., 

2016). Excessive fertilizer application increases soil nitrate levels and 
organic matter, which stimulates microbial processes such as 
nitrification and denitrification. These biological activities alter the 
soil’s capacity to retain pesticides by affecting microbial degradation 
rates and chemical interactions (Oumara and El Youssfi, 2022). When 
nitrogen inputs surpass crop uptake, soluble nitrate compounds 
infiltrate groundwater, leading to contamination (El Khodrani 
et al., 2020).

FIGURE 2

Global distribution of studies.

FIGURE 3

Distribution of studies by year.
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Studies have shown that reducing fertilizer application does not 
immediately lower groundwater nitrate levels due to legacy nitrogen 
in the subsurface (Wang et al., 2015). Key determinants of nitrate 
contamination include climate conditions, such as rainfall patterns, 
temperature, and seasonal variability that influence nitrate leaching 
and microbial processes, as well as fertilizer type, manure management 
practices, and soil properties (El Khodrani et al., 2020). Aquifer depth 
also plays a critical role, with shallow aquifers being more vulnerable 
to nitrate leaching due to their proximity to surface processes, while 
deeper aquifers often exhibit delayed or reduced contamination 
(Aziane et al., 2020).

Additional factors influencing nitrate transport include soil 
texture, permeability, rainfall intensity, recharge rates, water table 
depth, evapotranspiration, and irrigation efficiency (Barakat et al., 
2020). Regions with high precipitation require careful groundwater 
management to minimize nitrate leaching and associated risks, as 
increased rainfall can both dilute nitrate concentrations in 
groundwater and enhance nitrate transport through soil, potentially 
spreading contamination over a larger area (Wang et al., 2015).

Research in agricultural areas has documented widespread nitrate 
exceedances of the World Health Organization’s recommended limits, 
particularly in regions with sandy soils and shallow water tables 
(Marouane et  al., 2015). Seasonal variations further affect nitrate 
dynamics, with spring rainfall promoting pollutant transport to 
deeper layers and summer conditions accelerating nitrification, 
leading to seasonal nitrate peaks (Aziane et al., 2020).

Heavy rainfall events often lead to a rapid increase in nitrate 
concentrations in groundwater due to accelerated infiltration of 
nitrate-rich surface water and soil solutions into the aquifer (Wang 
et al., 2015). This initial spike is typically followed by a gradual decline 
as hydrological conditions stabilize and dilution occurs. Several 
interrelated factors influence these dynamics, including soil texture 
and permeability, which control water movement; land use and 
fertilizer application timing; and microbial processes such as 
nitrification and denitrification that modify nitrate concentrations 

within the subsurface. Additionally, climate variables like precipitation 
intensity, frequency, and seasonal distribution play a critical role in 
modulating nitrate transport and transformation. Understanding 
these complex interactions is essential for developing adaptive 
land-use practices and targeted mitigation strategies, such as 
controlled fertilizer application schedules, buffer zones, and improved 
manure management, to effectively reduce nitrate pollution in 
vulnerable aquifers and optimize groundwater resource management.

Overview of isotope applications in 
groundwater research

Nisi et al. (2016) emphasize that effective groundwater quality 
management depends on accurately identifying pollution sources. In 
many countries, traditional groundwater assessments have 
predominantly used hydrochemical analysis, geophysical techniques, 
and evaluation indices to measure pollutant levels in water samples 
and leachates. Although these approaches offer important data on 
contamination extent and aquifer vulnerability, they frequently fall 
short in pinpointing specific pollution origins. The advent and 
application of isotope techniques have revolutionized groundwater 
studies by enabling researchers to trace pollution sources and gain a 
clearer understanding of the origin of surface and groundwater 
recharge (Jia et al., 2020). Stable isotopes have broad applications in 
hydrological investigations. From their use, we gain crucial insights 
into aquifer–aquifer interconnections, groundwater age, and sources 
of contamination, among other important aspects (Oteng Mensah 
et al., 2014; Yidana et al., 2015). These techniques, some of which 
operate on the principle of tracer analysis, track the transport and 
transformation of key contaminants, such as nitrates, chlorinated 
compounds, and other anthropogenic pollutants, within aquatic 
systems. Isotopic composition is quantified using delta (δ) notation, 
representing the ratio of isotope abundances relative to a standard 
reference (Xu et  al., 2016; Sankoh et  al., 2021), as shown in 
Equation (1).

	
δ

 
= − × 
 

3tandard 1 10
ample

RS
RS 	

(1)

where: RSample are the heavy (rare) to light (abundant) isotope 
ratios of the sample; RStandard are the heavy (rare) to light (abundant) 
ratios of the standard. Oxygen (O), hydrogen (H), carbon (C), sulfur 
(S), and nitrogen (N) are among the most widely used isotopes in 
environmental studies (Sankoh et al., 2021). For over eight decades, 
environmental isotopes (Table 1) have been extensively applied in 
water bodies and other materials to enhance our understanding of 
hydrogeological and environmental processes.

Tracing nitrate pollution sources using 
dual isotopes (δ15N, δ18O) and δ11B

Groundwater contamination arises from both natural sources, 
such as soil nitrogen and atmospheric deposition, and anthropogenic 
sources, including synthetic fertilizers, manure, sewage, industrial 
waste, excessive fertilizer leaching, uncontrolled landfill disposal, 

FIGURE 4

Distribution of publications by continent.
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sewage infiltration, and seawater intrusion. Except for seawater 
intrusion, which primarily introduces saline water rather than nitrate 
contaminants, these sources contribute nitrates with distinct isotopic 
signatures. This variability in isotopic fingerprints makes stable 
isotope analysis a powerful tool for identifying the origins and 
pathways of nitrate pollution in groundwater (Sankoh et al., 2021). 
Nitrogen, a key tracer for nitrate sources, has two stable isotopes: δ14N 
(99.63% abundance) and δ15N (0.37% abundance). Since different 
nitrate (NO₃−) sources exhibit unique isotopic signatures, δ15N and 
δ18O analysis helps pinpoint contamination pathways (Sankoh 
et al., 2021).

When tracing nitrate sources in freshwater, understanding the 
processes affecting δ15N and δ18O is critical. Major nitrate contributors 
include agricultural runoff and industrial discharges, with microbial 
processes, such as ammonia volatilization, denitrification, and 
nitrification that play a pivotal role in nitrogen cycling (Figure 5). 
Notably, ammonia volatilization and denitrification can significantly 
enrich δ15N in residual groundwater nitrate (Sankoh et al., 2021).

Application of δ15N and δ18O isotopic 
signatures for tracing nitrate 
contamination sources

The use of nitrogen isotopes, specifically δ15N, has been explored 
in several recent studies (Bu et al., 2017; Peters et al., 2019; Ren et al., 
2014) to trace the sources of nitrate (NO₃−) pollution. Despite its 
effectiveness in distinguishing between various nitrate sources, the 
δ15N method faces challenges. Specifically, it struggles to differentiate 
between atmospheric nitrate, soil nitrate, inorganic fertilizers, manure, 
and landfill waste, as the multiple nitrogen transformations involved 
cause overlapping δ15N values. To address this uncertainty, researchers 
have turned to the use of oxygen isotopes (δ18O–NO₃−), which can 
complement δ15N data. However, the application of δ18O–NO₃− also 
presents difficulties, as its values tend to overlap for sources such as 
ammonium fertilizers, soil nitrogen, and manure, complicating the 
identification of nitrate sources (Minet et al., 2012). In response to 
these challenges, the combination of δ18O and δ15N, forming a dual 
isotope approach, has been applied by (Lasagna et Luca; 2019) to 
improve the accuracy of identifying nitrate sources. This dual isotope 
technique has become a widely adopted method to trace and 

characterize nitrate pollution in different environments by analyzing 
the distinct δ18O–NO₃− and δ15N − NO₃− signatures (Jiang et al., 2016; 
Puig et al., 2017; Wen et al., 2018; Fernandes et al., 2019; Nyilitya et al., 
2020; Weitzman et al., 2021; Ju et al., 2023).

Isotopic fingerprints of δ15N and δ18O 
in nitrate from manure and septic 
waste

Septic tanks, landfills, animal manure, sewage, and sludge are 
significant contributors of nitrate pollution in aquatic systems. 
These waste sources typically contain organic nitrogen compounds, 
such as urea and organic nitrate, which undergo microbial 
transformations, primarily ammonification, nitrification, and 
denitrification leading to enriched δ15N–NO₃− and δ18O–NO₃− 
isotopic signatures.

Between 2015 and 2025, a wide range of studies conducted across 
Asia, Africa, Europe, and the Americas utilized stable isotope 
techniques to trace nitrate contamination sources. In groundwater 
systems, δ15N values from 0 to +9‰ and δ18O values from +2.5 to 
+7.5‰ were linked to inputs from fertilizers, soil organic matter, 
excreta, and wastewater (Deng et al., 2024). Seasonal variations were 
also observed in river systems, with higher δ18O values in summer and 
lower δ15N in winter, reflecting shifts in nitrate sources throughout the 
year (Wang et al., 2024).

TABLE 1  Environmental isotopes used for various groundwater studies.

Element Isotope notation Isotopic ratio Natural  
abundance (%)

Application Ref.

H δ2H 2H/1H 0.015 Water origin Adomako et al. (2010)

H 3H - 1 × 10−18 Landfill leachate Pujiindiyati and Sidauruk 

(2015)

N δ15N 15N/14N 0.366 Pollution sources Chen et al. (2019)

Cl δ37Cl 37Cl/35Cl 24.23 Transformation of 

chlorinated compounds

Zimmermann et al. 

(2020)

B δ11B 11B/10B 80.1 Pollution source 

(anthropogenic/geogenic)

Nigro et al. (2017)

O δ18O 18O/16O 0.204 Water origin Adomako et al. (2010)

S δ34S 34S/32S 4.21 Sulfate sources (landfill, 

AMD)

Nisi et al. (2016)

FIGURE 5

Biochemical cycles of nitrogen (Sankoh et al., 2021).
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In the Liao River Basin, isotopic signatures (δ15N–NO₃−: +7.7‰ 
to +14.6‰; δ18O–NO₃−: +0.6‰ to +11.2‰) were attributed to 
domestic, industrial, and agricultural effluents (Zhang et al., 2024). 
Downstream increases in δ15N–NO₃−, averaging +13.1 ± 2.2‰, in 
industrialized areas of Greece also indicated intensified organic 
pollution (Kypritidou et  al., 2024). Wastewater samples tended to 
display lower and more variable isotope values, as seen in δ15N–NO₃− 
values of +4.7‰ to +12.6‰ and δ18O–NO₃− of +1.7‰ to +5.7‰, 
consistent with mixed inputs from soils and manure (Quinodoz et al., 
2024). In Tunisia, δ15N and δ18O ranged from +0.9‰ to +23.8‰ and 
+5.3‰ to +21.5‰ respectively, again pointing to wastewater and 
manure as dominant sources (Boumaiza et al., 2022). High δ15N and 
δ18O values in aquifers adjacent to streams in South Korea (up to 
+28.0‰ and +23.0‰, respectively) suggested strong inputs from 
animal waste and sewage (Ju et al., 2023). Similarly, seasonal changes 
in isotopic values (δ15N: +1.05‰ to +15.47‰; δ18O: −7.92‰ to 
+22.94‰) were consistent with variable contributions from manure, 
sewage, and fertilizers (Wang et  al., 2023). Evidence of mixed 
anthropogenic sources is further supported by isotope ranges of δ15N: 
+2.0‰ to +14.5‰ and δ18O: +0.3‰ to +11.0‰ (Kelepertzis et al., 
2023). Sewage sludge, in particular, has shown highly enriched 
isotopic values, with δ15N reaching +33.8‰ and δ18O up to +57.5‰ 
due to processes like nitrification and partial denitrification (Lorette 
et al., 2022).

In Mexico, nitrate in groundwater showed δ15N–NO₃− values 
between +8.86‰ and +39.67‰, and δ18O–NO₃− values up to 
+14.89‰, indicating a strong influence from domestic wastewater and 
manure (Torres-Martínez et  al., 2021). Comparable findings were 
noted in Argentina, where δ15N values above +12.8‰ were attributed 
to septic tank seepage (Blarasin et al., 2021). In Ghana, Lartsey et al. 
(2024) investigated nitrate contamination sources in groundwater and 
surface water of the north-western Volta River Basin using 
hydrochemical and multi-isotopic approaches, showing that the 
dominant sources of nitrate are manure and sewage, with a smaller 
contribution from soil nitrogen. Isotopic analysis (δ15N and δ18O of 
NO₃−) and mixing models revealed that manure accounts for an 
average of 74% of nitrate in groundwater, while soil nitrogen 
contributes about 10%. Recharge primarily originates from rainfall, 
with some influence from the Black Volta River, and biological 
processes such as nitrification and denitrification affect nitrate 
concentrations. Although about 80% of samples were classified as 
pollution-free based on the Nitrate Pollution Index, anthropogenic 
inputs were evident near discharge zones, highlighting the significant 
role of agricultural and domestic waste in groundwater nitrate 
contamination in the region. Similarly, groundwater in northern 
Ghana displayed δ15N values of +5.8‰ to +7.0‰ and δ18O values near 
+17‰, indicative of contamination from domestic and animal waste 
(Gibrilla et al., 2020), while seasonal variations in Greece also revealed 
δ15N values between +4.6‰ and +17.7‰, again pointing to inputs 
from soil and organic waste (Kazakis et al., 2020).

In Kenyan urban centers, δ15N values soared to +51.8‰ during 
the dry season, clearly implicating sewage and manure (Nyilitya 
et  al., 2020). Multi-source river systems displayed extremely 
variable nitrate isotope signatures, with δ15N from −23.5‰ to 
+32.0‰ and δ18O from −12.7‰ to +39.2‰, depending on 
pollution sources and hydrological conditions (Peters et al., 2019). 
Urban groundwater studies in Eastern Europe revealed δ15N values 
between +12.6‰ and +18.0‰, and δ18O from −0.1‰ to +8.7‰, 

both consistent with anthropogenic waste inputs (Vystavna et al., 
2017). In the White Volta River in Ghana, δ15N values up to +22.1‰ 
were also linked to sewage and animal waste (Anornu et al., 2017). 
Similarly, values up to +32.5‰ for δ15N–NO₃− and +18.1‰ for 
δ18O were recorded in Spanish waters, pointing to manure and 
wastewater under denitrifying conditions (Puig et al., 2017).

In northern China, groundwater showed isotope values ranging 
from −0.6‰ to +31‰ for δ15N–NO₃− and from +16.3‰ to +37.4‰ 
for δ18O–NO₃−, suggesting diverse sources including manure and 
volatilized ammonia (Jiang et al., 2016). Foundational data by Li et al. 
(2007) established that δ15N values from +10‰ to +25‰ are typical 
of animal manure and ammonia volatilization. The primary sources 
of nitrate pollution identified in these studies include animal manure, 
sewage, ammonia volatilization from urea, agricultural activities, 
farming, and denitrification processes influenced by precipitation.

In Israel, Shalev et al. (2015) report that nitrate contamination of 
groundwater in the Central Arava Valley is primarily linked to 
agricultural sources, with isotopic and chemical analyses indicating 
that all applied fertilizers (synthetic nitrate, synthetic ammonium, and 
manure) contribute to contamination, generally in proportion to their 
use in local fertilization schemes, alongside occasional inputs from 
leaking sewage reservoirs. Similarly, in the Gaza Strip, Shomar et al. 
(2008) found that groundwater is mainly impacted by manure and, to 
a lesser extent, by septic effluents and sludge, while synthetic fertilizers 
play only a minor role. Isotopic signatures (δ15N and δ18O) confirm 
these patterns: manure and sludge exhibit enriched δ15N values (+4.6 
to +11.9‰), whereas synthetic fertilizers are near 0‰, corresponding 
to the ranges observed in groundwater (+3.2 to +12.8‰). No 
significant denitrification was detected in Gaza, and in both regions, 
irrigation practices and recharge dynamics strongly influence nitrate 
leaching. These findings underscore the utility of isotope-based 
approaches for distinguishing contamination sources and guiding 
sustainable groundwater management.

Isotopic fingerprints of δ15N and δ18O 
in ammonia from fertilizers and 
precipitation

The intensive and often poorly regulated use of nitrogen-based 
fertilizers in agriculture has significantly elevated nitrate (NO₃−) 
concentrations in groundwater systems. Synthetic fertilizers such as 
urea, potassium nitrate (KNO₃), and ammonium nitrate (NH₄NO₃), 
derived from industrial nitrogen fixation, typically exhibit δ15N values 
between −4‰ and +4‰, reflecting their atmospheric nitrogen origin. 
In the Erhai Basin, nitrate isotopic compositions revealed δ15N–NO₃− 
values ranging from −0.64‰ to +17.67‰ (mean: +6.89‰) and δ18O–
NO₃− from −1.87‰ to +24.43‰ (mean: +7.88‰), with microbial 
nitrification dominating approximately 60% of samples particularly in 
oxygen-rich upstream and littoral zones while denitrification was 
identified in only 13.56% of cases (She et al., 2024).

Seasonal isotopic shifts further illustrate the dynamic nature of 
nitrate inputs. During the dry season, δ18O–NO₃− values ranged from 
−5‰ to +16.85‰ (mean: +2.68‰), and δ15N–NO₃− from −1.17‰ to 
+8.40‰ (mean: +2.28‰). Conversely, the wet season displayed δ18O–
NO₃− values from −4.78‰ to +11.59‰ (mean: −0.52‰) and δ15N–
NO₃− from −0.63‰ to +27.06‰ (mean: +1.83‰), suggesting additional 
inputs from organic fertilizers and domestic effluents (Su et al., 2024).
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Isotopic compositions typical of synthetic fertilizers were also 
documented elsewhere. For example, δ15N and δ18O values of 
approximately +0.5‰ and +7‰, respectively, were reported in a 
wastewater-influenced context (Quinodoz et al., 2024). In agricultural 
areas, Kim et al. (2023) recorded broader δ15N–NO₃− values (+3.0‰ 
to +27.5‰) and δ18O–NO₃− values (−2.4‰ to +7.7‰), indicating a 
mixture of sources, including livestock waste, synthetic fertilizers, and 
soil-derived nitrogen. In riverine systems, dominant nitrification 
processes were inferred from δ15N–NO₃− values around +5‰ and 
δ18O–NO₃− around +4‰, with over 70% of δ18O–NO₃− values 
aligning with microbial nitrate production (Zhou et al., 2022).

Despite their typically low δ15N signatures (−8‰ to +7‰), synthetic 
nitrate fertilizers can exhibit enriched δ15N–NO₃− values following post-
application transformations such as nitrification (Piatek et al., 2005). The 
δ18O of nitrate formed via nitrification reflects a combination of oxygen 
from atmospheric O₂ (≈ + 23.9‰) and water (≈ − 25‰ to +4‰), 
producing δ18O–NO₃− values that generally lie between −10‰ and 
+10‰ (Kendall, 1998; Kendall and Aravena, 2000; Mayer et al., 2001; 
Veale et  al., 2019). This trend was evident in the observations by 
Weitzman et al. (2021), who reported δ18O–NO₃− values ranging from 
−3.2‰ to +17.4‰, and by Wen et al. (2018), who found δ18O–NO₃− 
between +0.07‰ and +1.77‰both consistent with agricultural inputs.

In regions of Nebraska, groundwater nitrate concentrations 
ranged from 6.5 to 53 mg/L, with δ15N–NO₃− values between 
−0.3‰ and +7.8‰, and δ18O–NO₃− values from −1.4‰ to +7.8‰, 
reflecting predominant inputs from ammonium nitrification and 
soil organic nitrogen (Spalding et al., 2019). Although synthetic 
nitrate fertilizers are characterized by higher δ18O–NO₃− values due 
to their exclusive reliance on atmospheric oxygen (typically +17‰ 
to +25‰), such values are rarely observed in field settings (Mayer 
et  al., 2001; Veale et  al., 2019). For example, δ18O–NO₃− values 
reported in boreholes, wells, and surface waters across Ghana 
ranged from +5.1‰ to +8.83‰ (Anornu et al., 2017), well below 
the levels typical of atmospheric nitrate deposition (≈ + 60‰ to 
+70‰) or synthetic fertilizers. Similarly, groundwater nitrate in 
Mexico showed δ18O–NO₃− values between +3.84‰ and +10.96‰ 
(Pastén-Zapata et al., 2014). These findings, supported by Kendall 
(1998) and Mayer et al. (2001), further underscore that nitrification 
can elevate δ18O–NO₃− values by up to 5‰ above theoretical 
estimates, reinforcing the role of microbial activity in shaping 
isotopic profiles.

Isotopic fingerprints of δ15N and δ18O 
in atmospheric deposition

Atmospheric nitrate originates from nitrogen oxides (NOₓ), which 
are primarily produced through fossil fuel combustion in power 
plants, vehicles, and industrial processes. These NOₓ compounds 
undergo various atmospheric transformations, including nitrification, 
denitrification, and ammonia volatilization, depending on whether 
nitrogen is present as ammonium (NH₄+) or nitrate (NO₃−), and on 
the nature of anthropogenic inputs in precipitation. As a result, 
atmospheric nitrate exhibits highly variable δ15N values, typically 
ranging from −0.6‰ to +31‰ (Jiang et al., 2016).

However, δ15N alone may not reliably distinguish atmospheric 
nitrate from other anthropogenic sources due to overlaps in isotopic 

signatures. In contrast, δ18O–NO₃− provides a more definitive tracer. 
Atmospheric deposition of nitrate is generally characterized by highly 
enriched δ18O values, typically ranging from +60‰ to +70‰ 
(Kendall et al., 2007). This contrasts with biologically derived nitrate 
in soils and water, which usually exhibits δ18O values between 0.8‰ 
and 5.8‰ (Chen et al., 2019) or between −15‰ and +15‰ (Shi 
et al., 2014).

For instance, Jiang et  al. (2016) reported δ18O–NO₃− values 
exceeding +30‰ in atmospheric nitrate. Similarly, Ogrinc et al. 
(2019) recorded δ18O–NO₃− values as high as +34.6‰ in 
groundwater from the Sava River aquifer, implicating atmospheric 
deposition as the dominant nitrate source. These findings are 
consistent with observations in areas lacking significant land-based 
anthropogenic pollution. Moreover, Shi et  al. (2014) noted that 
rainfall nitrate can initially present δ18O values between +65‰ and 
+70‰, but these values rapidly decline to 2–5‰ after biological 
processing in the soil.

The elevated δ18O values in atmospheric nitrate are attributed to 
photochemical reactions and incomplete fossil fuel combustion 
(Kendall et al., 2007). During these reactions, atmospheric molecular 
oxygen naturally enriched in δ18O is incorporated into nitrate 
molecules, leading to pronounced isotopic enrichment. As Ogrinc 
et al. (2019) explain, photochemical processes driven by sunlight 
enhance the δ18O content of atmospheric compounds, thereby 
producing nitrate with distinctive δ18O signatures.

Combining δ11B and δ15N isotopic 
analysis to identify groundwater 
contamination sources

The non-conservative behavior of nitrogen can interfere with 
isotopic fractionation, making it challenging to accurately identify the 
sources of NO₃− in groundwater (Widory et al., 2005). This challenge 
can be addressed by combining δ15N and δ11B isotopic analyses, as 
suggested by Bronders et al. (2012) and Saccon et al. (2013).

Boron exists in nature as two isotopes, 10B and 11B, which exhibit 
significant mass differences. This mass disparity leads to a broad 
natural variability in δ11B values, enabling the differentiation of 
various boron sources in groundwater.

In industrial applications, boron compounds such as boric 
acid and borate minerals are extensively used in manufacturing 
glass, porcelain, carpets, leather, photographic chemicals, 
cosmetics, fertilizers, and metals (Vengosh et al., 1998). Sodium 
perborate, commonly found in household cleaning products as a 
bleaching agent, also contributes to boron accumulation in 
wastewater. When these products are released into the 
environment, boron-containing effluents can infiltrate water 
resources (Vengosh et al., 1998).

Conventional wastewater treatment processes are ineffective at 
removing elemental boron, making δ11B a reliable and conservative 
tracer for identifying wastewater contamination (Saccon et al., 2013). 
Due to its stability, widespread use in agriculture and industry (Saccon 
et al., 2013), and natural occurrence in saline waters, δ11B is a valuable 
tool for pinpointing pollution sources. These sources include 
fertilizers, septic system effluents, wastewater discharges, animal 
manure, and seawater intrusion.
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Boron isotope variations (δ11B) in 
natural and anthropogenic sources

Boron isotope ratios (δ11B) reliably trace both natural and 
anthropogenic water contamination sources, from seawater intrusion 
to agricultural impacts (Reed and Duranceau, 2016). Initial 
applications by Komor (1997) introduced δ11B as a co-tracer for 
nitrate pollution, complementing its prior use in hydrogeochemical 
assessments (Vengosh et al., 1998; Bassett, 1990).

Natural waters such as pristine groundwater are typically 
characterized by enriched δ11B values (~30‰) and low boron 
concentrations (0.01–0.13 mg/L) (Vengosh et al., 1998; Widory et al., 
2005). Seawater shows even higher δ11B values (+33‰ to +60‰) with 
boron concentrations averaging 1.9 mg/L and reaching up to 
5.04 mg/L (Vengosh et al., 1998; Tirez et al., 2010).

Animal manure exhibits source-specific δ11B signatures. Hog 
manure ranges from 7.2‰ to 42.4‰ with boron concentrations as 
high as 8.12 mg/L, while cattle manure shows δ11B values between 
6.2‰ and 24‰ but with lower boron concentrations (0.05–
0.41 mg/L) (Komor, 1997; Widory et al., 2005; Tirez et al., 2010). 
Interestingly, groundwater impacted by pig manure retains similar 
δ11B values to the manure itself, while cattle manure–impacted 
groundwater becomes more enriched (32.5–38.6‰), possibly due to 
isotopic fractionation (Komor, 1997).

Sewage and detergents contribute significantly to anthropogenic 
boron in water bodies, largely due to sodium borate (NaBO₃) used in 
cleaning products. Sewage effluents generally display δ11B values from 
−2.8‰ to +12.9‰ and boron concentrations ranging from 0.13 to 
4.1 mg/L (Vengosh et al., 1998; Widory et al., 2005; Tirez et al., 2010). 
The overlap in δ11B values between sewage and natural borate minerals 
(e.g., sodium perborate) highlights the difficulty in distinguishing some 
anthropogenic inputs. Furthermore, municipal solid waste leachates 
show δ11B values of +3‰ to +10‰, similar to sewage sources (Nigro 
et al., 2017), suggesting overlapping contamination signatures.

Inorganic fertilizers display variable δ11B compositions. Komor 
(1997) reported δ11B values of ~0.7‰ for NH₄NO₃, ~0.4‰ for urea, 
and ~14.8‰ for phosphate fertilizers, with boron concentrations 
ranging from 0.46 to 13.3 mg/L. In contrast, Tirez et  al. (2010) 
observed different δ11B values for urea (20.6‰) and NPK fertilizers 
(0.2–7.2‰), highlighting formulation-dependent variability.

Postigo et al. (2021) integrated δ11B with δ15N and δ18O isotopes 
to trace nitrate sources in the Llobregat Basin. Elevated δ15N–NO₃− 
values (up to +13.2‰) and δ11B signatures pointed to dominant inputs 
from wastewater and manure, while chemical fertilizers contributed 
to select samples.

Overall, δ11B values help differentiate between natural sources, pig 
and cattle manure, sewage, and fertilizers. However, overlaps—
particularly between sewage and landfill leachates—limit δ11B’s 
discriminative power in some cases. In such contexts, additional 
tracers like tritium isotopes are recommended to confirm the origin 
of nitrate pollution.

δ11B as a tracer for pollution source 
identification

Research conducted across several European countries—
including Spain, Portugal, and Italy—has shown that the integrated 

use of δ15N–NO₃−, δ18O–NO₃−, and δ11B isotopes provides an effective 
means of identifying nitrate pollution sources, such as organic and 
inorganic fertilizers, animal manure, and domestic and septic waste 
(Sankoh et al., 2021).

In Spain, Puig et al. (2017) investigated the Baix Ter Aquifer to 
trace the origins of nitrate contamination and the geochemical 
processes influencing its distribution. Their analysis revealed δ15N–
NO₃− values ranging from +5.0 to +32‰ and δ18O–NO₃− values from 
+8.9 to +18.1‰, suggesting significant contributions from sewage, 
animal manure, and leachates from dumpsites. Similarly, Fernandes 
et al. (2019) reported elevated δ15N–NO₃− and δ18O–NO₃− values in 
Portugal, pointing to contamination primarily from animal waste 
and sewage.

Both studies also utilized δ11B isotopes to further refine the 
identification of pollution sources. For example, Puig et al. (2017) 
found δ11B values between +1.4 and +9.0‰ in two samples, indicating 
sewage input, while 10 samples showed values from +23.5 to +34.5‰, 
consistent with pig manure signatures. Likewise, Fernandes et  al. 
(2019) observed δ11B values ranging from +28.5 to +44‰, supporting 
the identification of pig manure as a dominant source.

In Italy, Lasagna and De Luca (2019) conducted a study in the 
Turin-Cuneo plain using δ15N–NO₃− and δ18O–NO₃− isotopes to 
distinguish between synthetic and organic pollution sources. They also 
applied δ11B isotopic analysis to trace anthropogenic inputs, reporting 
values from +8.37 to +18.05‰. These isotopic signatures suggested 
sewage contamination at the lower end and potential overlap of cattle 
and pig manure at the higher end. When boron concentrations were 
considered (0.06–0.09 mg/L), the results aligned more closely with 
cattle manure, as earlier studies (Widory et al., 2005; Vengosh et al., 
1998; Komor, 1997) indicated higher boron levels (1.43–8.12 mg/L) in 
pig manure and lower levels (0.05–0.41 mg/L) in cow manure.

Overall, the combined application of δ15N–NO₃−, δ18O–NO₃−, and 
δ11B isotopes proves to be a valuable and reliable tool for accurately 
tracing nitrate sources in complex hydrogeological settings.

Rapid guide to identifying pollution 
sources through isotope analysis

Tracing groundwater pollution sources using isotopic techniques 
is essential for effective water quality management. However, 
interpreting and applying these methods can be  complex for 
researchers, policymakers, and environmental professionals. To 
facilitate this process, (Table 2) presents a structured overview of key 
isotopic parameters, their characteristics, and corresponding ranges. 
This multi-isotope approach, incorporating δ15N, δ18O, and δ11B, 
enhances pollution source identification by distinguishing between 
nitrate from precipitation, fertilizers, manure, and sewage 
contamination. By providing a clear reference, this guide supports 
informed decision-making and the implementation of targeted 
pollution mitigation strategies.

Conclusions and perspectives for 
future groundwater management

Groundwater nitrate contamination continues to pose a significant 
global challenge, exacerbated by agricultural intensification, urban 
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expansion, and inadequate wastewater treatment practices. This 
review underscores the growing relevance of stable isotope 
techniques—particularly δ15N–NO₃−, δ18O–NO₃−, and δ11B—in 
accurately identifying the sources of nitrate pollution. While 
traditional methods such as vulnerability mapping and hydrochemical 
analyses provide valuable information on contamination pathways, 
they often fall short in resolving specific pollution origins, especially 
in complex hydrogeological settings.

The combined use of multi-isotope approaches and 
hydrochemical data has proven to be a powerful tool for nitrate 
source apportionment. The inclusion of δ11B enhances the 
reliability of isotopic analysis by addressing key limitations 
related to denitrification and the overlapping signatures of 
different nitrogen sources. This integrative approach allows for 
more accurate assessments of groundwater quality and supports 
the development of targeted mitigation strategies.

Looking toward the future, the adoption of advanced isotopic 
techniques should be prioritized in groundwater monitoring and 
management efforts worldwide. Expanding global and regional 
datasets, refining analytical methodologies, and fostering 
collaboration among scientists, water managers, and policymakers 
will be essential for advancing these tools from research to practical 
application. Incorporating isotope-based methods into water 
governance frameworks can significantly improve the precision and 
effectiveness of pollution control measures, especially in areas 
facing high nitrate loads.

Ultimately, stable isotope techniques offer a promising pathway 
toward more informed, science-based groundwater management. 
Their broader implementation will be  crucial to protecting water 
resources, preserving public health, and ensuring long-term 
groundwater sustainability in an increasingly vulnerable 
global environment.
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TABLE 2  Rapid guide to identifying pollution sources.

Isotope parameter Source Characteristic range (‰ or mg/L) Ref.

δ15N, δ18O Precipitation δ15N: −0.6 to +31‰; δ18O: +30 to +70‰ Jiang et al. (2016), Kendall et al. (2007), Kendall 

and Aravena (2000), Veale et al. (2019), and Mayer 

et al. (2001)

Soil Nitrogen δ15N: +3 to +8‰; δ18O: −8 to +12‰ Sigman et al. (2001) and Wang et al. (2024)

NH₄+ Fertilizer δ15N: −8 to +7‰; δ18O: −8 to +12‰ Wang et al. (2024) and Kelepertzis et al. (2023)

NO₃− Fertilizer δ15N: −5 to +8‰; δ18O: +17 to +25‰ Kelepertzis et al. (2023) and Wang et al. (2024)

Manure/Sewage δ15N: +5 to +25‰; δ18O: −8 to +12‰ Lorette et al. (2022), Deng et al. (2024), Quinodoz 

et al. (2024), Kypritidou et al. (2024), Torres-

Martínez et al. (2021), and Blarasin et al. (2021)

δ11B Uncontaminated GW δ11B: +23.8 to +38.5‰; B: 0.015–0.15 mg/L Dotsika et al. (2010)

Synthetic Fertilizer δ11B: −6 to +5‰; B: 0.05–0.41 mg/L

Hog Manure δ11B: +7.2 to +42.5‰; B: 1.43–8.12 mg/L

Cattle Manure δ11B: +22.3 to +24‰; B: 0.05–0.41 mg/L

Sewage/Landfill δ11B: +5 to +25‰; B: 0.13–4.1 mg/L
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