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With the self-purification ability of lake-reservoir water body gradually weakened
and the oscillation of dissolved oxygen (DO) concentration intensifying, the
high-precision prediction of lake-reservoir DO is important to the aquatic
ecological safety. Aiming at the key problem that the prediction precision is low,
the model structure and hyperparameters of back propagation neural network
(BPNN) are highly sensitive, and the global convergence is poor with high
tendency to fall into local optima in traditional DO prediction. In this study, a new
hybrid optimization technology called Bayesian Optimization (BO) + improved
Sparrow Search Algorithm (SSA), named BO+SSA, is employed to optimize the
hyperparameters of BPNN and search initial weights and thresholds to overcome
such a problem. Chaotic initialization, adaptive weight adjustment, and dynamic
search strategies are integrated to enhance global optimization capability and
accelerate convergence of BPNN. Four representative monitoring sections
(including Baiheshan and Luojiang) from lakes and reservoirs in the eastern
Sichuan Basin, China, were selected for analysis. Based on correlation analysis
and feature importance assessment, pH, water temperature (WT), air temperature
(AT), and atmospheric pressure (AP) were identified as input variables for testing
the predictive performance of the BO+SSA-BPNN model. The coefficient of
determination (R?) for the test set ranged from 0.861 to 0.939. Furthermore, the
improved BPNN model demonstrated a reduction of 30%—61% in Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage
Error (MAPE) compared to the original BPNN model. The result proves that the
method of hybrid optimization of BO+SSA can better solve the problems of
complex nonlinear relationship modeling and provide an efficient BPNN-based
DO prediction model that can be applied to lake-reservoir dynamic monitoring
and management.

KEYWORDS

lake-reservoir monitoring section, dissolved oxygen prediction, back propagation
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Introduction

During the continuous process of urbanization and further
agricultural nonpoint source pollution, small watershed water
bodies with limited environmental capacity and multiple points
of pollutant source have added additional risks, such as a quick
change in dissolved oxygen (DO) concentration that impacts the
regional water environmental security. Low DO concentrations
in these small watershed water bodies can adversely affect
aquatic ecosystems, destabilizing the system and depleting aquatic
biological resources, thereby causing ecosystem imbalances (Lee
etal., 2020). Consequently, it is imperative to identify and quantify
the driving factors influencing water quality parameters, such
as DO content, to develop effective water resource management
strategies. Due to the lower flow speed of lake-reservoir type water
bodies, which constrains natural oxygen exchange and inhibits
the self-purification ability of water, a significantly lower rate of
diffusion of DO is also a characteristic (Zhang et al., 2017). Under
the condition of stagnation, the diffusion speed of oxygen between
the surface and bottom layers is much lower than that in the moving
water body. Therefore, for the lake-reservoir monitoring section,
there may be situations where the dissolved oxygen is less than
5 mg/L.

In the past, the prediction of water quality usually depended on
process-based modeling. However, due to the advancement of data
availability, computational ability, machine learning techniques
have shown promising potential in multiple fields (Bolick et al.,
2023; Cojbasic et al., 2023; Kim and Ahn, 2022; Kozhiparamban
etal., 2023). Following research about DO modeling and estimation
aroused interest in artificial intelligence (AI) as a more robust
alternative to traditional empirical and numerical models, which
are subjected to errors, time-consuming, and expensive (Kumar
et al., 2024; Liang et al., 2024). However, because the spatial
and temporal patterns of DO will be affected by complicated
nonlinear interactions of several environmental factors, such
as pH value, water temperature, and weather conditions, the
traditional statistical models and the single machine learning model
usually show insufficient nonlinear relationship fit and a lack of
generalization capabilities (Cojbasic et al., 2023; Liang et al., 2024).

The back propagation neural network (BPNN) has a strong
non-linear mapping and approximation capability but is very
sensitive to the selection of initial parameters and hyperparameters,
which may lead to falling into the local optimum and generating
the prediction bias of its output (Yu et al., 2022). Therefore, the
performance of the BPNN for water quality prediction is inferior
(Bao et al, 2024). For example, Li et al. (2022) demonstrated
that while radial basis function neural network (RBENN), support
vector machine (SVM), and least squares support vector machine
(LSSVM) achieved near-perfect correlation coeflicients (0.99) for
DO prediction in aquaculture systems, the BPNN showed markedly
inferior performance with a low correlation coeflicient of 0.60.
The inferior performance of BPNN stems from its gradient-based
optimization that easily stagnates in shallow local minima, coupled
with high sensitivity to initial weight selection, which amplifies
prediction variance in complex nonlinear systems like aquatic
environments. In addition, despite the progress in neural-network-
based prediction methods, there is still a notable research gap
in addressing the limitations of traditional BPNN, particularly
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their susceptibility to local minima and slow convergence rates
(Xue et al, 2024). Recently, some new techniques in the field
of machine learning, such as Genetic Algorithm and Particle
Swarm Optimization (PSO), BO, and others, have been introduced
to improve the BPNN (Cai et al, 2022; Li C. X. et al, 2024).
Li X. et al. (2024) showed that in predicting levee settlement
caused by shield tunneling, the PSO-BPNN model exhibited
optimal performance with the highest correlation coeflicients
(0.8831 in training and 0.8657 in testing) and the lowest errors
(RMSE = 1.901, MAE = 0.8412), significantly outperforming
comparative models such as random forest and support vector
machine. Cui et al. (2023) demonstrated that in flood susceptibility
mapping, the GQA-BPNN model outperformed both the pure
BPNN and GA-BPNN, achieving superior performance in AUC,
RMSE, Nash-Sutcliffe coefficient, and bias percentage, with more
flood points identified in high-sensitivity zones, proving it the
most effective method. Research (Cui et al, 2023) indicates
that standalone optimization algorithms struggle to adequately
enhance BPNN prediction accuracy, particularly when addressing
complex nonlinear relationships, necessitating the development
of advanced hybrid optimization architectures. Moreover, existing
research predominantly focuses on rivers or open water bodies,
with insufficient studies on BPNN model optimization and
feature adaptation for the lake-reservoir monitoring section
DO prediction.

This study introduces a novel hybrid BO+SSA framework
to mitigate the hyperparameter sensitivity, susceptibility to
local optima, and suboptimal convergence often encountered in
traditional BPNN when predicting DO levels in lake-reservoir
systems. The proposed framework integrates four key algorithmic
enhancements into the SSA component: tent chaotic initialization,
adaptive weights, Lévy flight mechanisms, and a dynamic spiral
search strategy. These enhancements are designed to substantially
improve the global optimization capabilities of the SSA for tuning
BPNN weights and thresholds. Focusing on representative lake-
reservoir monitoring sections in China (specifically, Baiheshan,
Luojiang, Duoshipan, and Shangheba), we develop a DO
prediction model based on four key water quality parameters,
including pH and water temperature. The study systematically
evaluates the performance of the BPNN both before and after
optimization via the BO+SSA framework. The resulting optimized
BO+SSA-BPNN model provides an efficient computational tool
for dynamic water quality management, thereby advancing
the application of hybrid optimization techniques in aquatic
ecosystem monitoring.

Materials and Methods

In the past 3 years, more frequent exceedances of DO
were found in the eastern Sichuan basin. In order to analyze
the DO exceedance causes for each section in the basin, this
paper chose typical sections with excessive exceedance times as
the Baiheshan (107.301740, 31.056889), Luojiang (107.562547,
31.314006), Duoshipan (107.157308, 31.033114), and Shangheba
(107.455146, 30.787714), as represented rivers in eastern Sichuan
and the sampling locations are shown in Figure 1.
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FIGURE 1
Location map of water quality monitoring points for each section.

Four lake-reservoir monitoring sections (Baiheshan, Luojiang,
Duoshipan, and Shangheba) in the eastern Sichuan basin were
selected for analysis. Water quality parameters, including water
temperature (WT), dissolved oxygen (DO), pH, ammonium
nitrogen (NH3-N), total nitrogen (TN), total phosphorus (TP),
permanganate index (CODwy ), conductivity (Ec), turbidity (NTU),
atmospheric pressure (AP), and air temperature (AT), were
monitored. All water quality data used in this study are time-series
data, collected from June 2023 to June 2024 using professional
water quality sensors installed at fixed stations (calibrated monthly
to ensure accuracy) with a monitoring frequency of once every
4h. The data were obtained from the Sichuan Dazhou Ecological
Environment Monitoring Center. Due to equipment malfunctions
and environmental interference, the raw data contained missing
values and outliers, which were directly deleted to ensure data
quality. The monitoring procedures conformed to the “Water
Environment Monitoring Specifications” (SL 219-2013), and
exceedance limits were determined based on the Class III criteria
outlined in the “Surface Water Environmental Quality Standards”
(GB 3838-2018).
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Model input variable selection

In order to construct a high-performance and highly
interpretable predictive model, this study used correlation analysis
and feature importance for input variable selection. At the
beginning, the Pearson correlation coefficient matrix was used to
obtain primary features that are directly correlated with the target
variable (p < 0.05). This linear correlation analysis provides an
initial filter for potentially relevant features. On the basis of this,
the Gini importance rank of random forest was adopted to model
the non-linear interaction of features, thereby capturing more
complex relationships beyond simple linear correlation, and then
obtaining the feature importance.

Backpropagation neural network
ANN is a mathematical model representing the human brain

in an attempt to replicate a vast network structure consisting
of neurons in the human brain. ANN can have one or more

frontiersin.org


https://doi.org/10.3389/frwa.2025.1655126
https://www.frontiersin.org/journals/water
https://www.frontiersin.org

Liu et al.

hidden layers, multiple types of layers, and activation functions for
classification, regression, and clustering. ANN is a generic term for
different types of networks, such as multi-layer perceptron and a
BPNN. Among the many algorithms in ANN, BPNN has attracted
much attention due to its effectiveness and wide application. BPNN
uses gradient descent to minimize the difference between network
output and target output (Sun et al., 2021). In the BPNN model,
each neuron in one layer is directly connected to the neurons of
the subsequent layer with an activation function. In this study, we
adopted the hyperbolic tangent function as the activation function
of each neuron between the input and hidden layers, which is
shown in Equation 1 (Sun et al., 2021):

2

g0 = 1+ exp(—2x) -1

(1)
Moreover, we adopted the linear function as the activation
function of each neuron between the hidden and output layers:

flo) =x (2)

Then the final output of a BPNN can be written as:

Y(X) =f(W32 % g(Way1 % X + b1) + by) (3)

where W3 and W3, are weight matrices and b; and b, are
bias matrices, these four matrices store the coefficients of the BPNN
model and should be optimized via the backpropagation algorithm,
X and Y are the input and output variables.

The hyperbolic tangent function (tanh) was chosen for the
hidden layer due to its desirable properties: it is zero-centered,
aiding in convergence during training, and its output range (—1
to 1) can help mitigate the vanishing gradient problem compared
to sigmoid functions. The linear function was used for the output
layer because the task of predicting dissolved oxygen concentration
is a regression problem, where the network needs to output
continuous values without constraints imposed by non-linear
activation functions like sigmoid or tanh.

Optimization model principles

First layer optimization: BO for hidden layer node number and
learning rate as hyperparameters can effectively improve model
effectiveness. When searching for hyperparameters, their values
need to be optimized continuously to enhance the predictive
effectiveness of the model. We first select BO to optimize the
hyperparameters of the first layer and implement these specific
steps: (1) Objective function f(x) and domain of x are defined. (2) A
set of limited x is selected, and then the corresponding f(x) is solved
as the observed value. (3) According to the observed value, use a
Probability Surrogate Model to estimate the function and obtain the
estimated target value f*. (4) Through the rules of the Acquisition
Function, the next observation point is determined to calculate.
(5) Recursively repeat steps (2)-(4), check termination conditions,
until the maximum number of observations is reached, and output
the optimal results (see Supplementary Figure S1).
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Second layer optimization: enhanced
sparrow optimization algorithm

The traditional BPNN often relies on empirical determination
of hyperparameters, initial weights, and thresholds, which may
not meet the performance requirements of predictive models.
Therefore, the second layer employs an improved sparrow
algorithm to optimize initial weights and thresholds. This enhanced
sparrow algorithm, designed with four key improvements (Ouyang
etal., 2021).

Improvement 1: The tent chaotic mapping in the SSA generates
population positions with high randomness, potentially leading
to poor initial population quality and slower convergence.
Introducing the tent mapping strategy makes population
initialization more orderly and enhances algorithm controllability,
as illustrated by the following equation:

27; + rand(0,1) x %, 0<Z< %
Ziy1= 11 (4)
2(1—2Z;) + rand(0,1) x 7, 3 <Z =1
The expression after the Bernoulli transformation is
1
Zi +1 = (2Zj)modl + rand(0,1) x N (5)

In Equation 5, N is the number of particles in the chaotic
sequence. According to the characteristics of the tent mapping,
the sequence flow for generating chaos in the feasible domain is
as follows:

(1) Randomly generate the initial value ¢ in (0, 1), and let I = 1.

(2) Perform iteration by using that Equation 5 to generate a z
sequence, and i is increased by 1.

(3) Stop if the number of iterations reaches the maximum, and
store the generated z sequence.

Improvement 2: Adaptive weights are introduced to improve
the quality of the discoverer’s position, enabling other individuals
to converge more rapidly to the optimal position and accelerating
convergence speed. The equation for adaptive weights is as follows:

o(t) = 0.2605(% o(1— ) (6)

itermax

The meaning of Equation 6 is that w has the property of
nonlinear change between [0, 1]. According to the characteristics of
the cos function, the weight value is smaller at the beginning of the
algorithm, but the optimization speed is faster, and the later weight
value is larger, but the change speed is slower, so the convergence
property of the algorithm is balanced. The improved discoverer
location is updated as follows:

(t) 'Xz?,j e exp(————), if Ry < ST

aeiteryax

Xl =
b a)(t)oXl-t,j—l—QoL,ifRZEST

%

By introducing adaptive weights to dynamically adjust the
position changes of sparrows, different guidance modes for the
discoverer at different times make the algorithm search flexible.
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As the number of iterations increases, the individual sparrows
converge toward the optimal position, and a larger weight makes
the individual move faster, thus increasing the convergence speed
of the algorithm.

Improvement 3: The Levy flight mechanism, based on the Levy
distribution, generates random long and short-distance movements
to cover the search space. Incorporating the Levy flight mechanism
enhances the proposed algorithm’s performance, with the position
update equation as follows:

x(1) = xi(t) + 1@ levy(h) (8)

In Equation 8, xi(t) represents the position of the i-th individual
in the t-th iteration, @ is an arithmetic symbol representing point-
to-point multiplication. I denotes a step length control parameter,
which is obtained by this equation: I = 0.01[x;()-x,]. Levy (1)
is a path that obeys the Levy distribution, which represents the
introduced Levy flight strategy and satisfies the following: levy u
=t"hM1<Ar<3

Because the Levy distribution is very complex, the Mantegna
algorithm is usually used to simulate it. The equation for calculating
the step size is as follows:

"
T
o~ N(0,0’j) (10)
VNN(O,O'VZ) (11)
) 1/y
I'(1 + y)sin(my/2) (12)

o= yoI'[(y + 1)/2] 820 +1/2

Among them, oy = 1, and y is generally 1.5.

The introduction of the Levy flight strategy makes the sparrows
more flexible at this stage and can also lead other individuals to
find a better location, free from the constraints of local extremes.
Therefore, the combination of the Levy flight mechanism and
adaptive weights balances the search method, and the quality of
each solution obtained is improved to a certain extent, which
greatly improves the search ability of the algorithm.

Improvement 4: The adaptive spiral search strategy introduces
a flexible position update strategy for followers, developing various
search paths for position updates and balancing global and local
searches. The equation for the adaptive spiral position update
strategy is as follows:

1 X«fvust_xxg‘ e
e - cos(2ml) - Q- exp(T”), ifi>1%
i+l X;,*l + ‘XfJ —Xf,* 1‘ AT L e cos(2ml), (13)
i)

otherwise
7= ek-COS(ﬂ'(l*(i/imax)))

In these equations, the z parameter varies with iteration count,
dynamically adjusting the size and amplitude of the spiral according
to the periodic characteristics of the cosine function. The k
represents the change coefficient, set at k = 5; L is a uniformly
distributed random number of [—1, 1]. The complete process of
the optimized model is illustrated in Figure 2.
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Assess the quality of the model

To evaluate the performance of the proposed prediction
model, we employed three widely recognized error metrics:
mean absolute error (MAE), root mean square error (RMSE),
and mean absolute percentage error (MAPE). MAE provides a
straightforward measure of the average magnitude of prediction
errors, offering an intuitive understanding of how close predictions
are to actual values. RMSE emphasizes larger errors due to its
quadratic nature, making it particularly suitable for applications
where minimizing significant deviations is critical. MAPE provides
a scale-invariant assessment of model accuracy by expressing
prediction errors as a percentage of the actual values. By analyzing
the results across these three complementary metrics, we provide
a comprehensive validation of the models’ performances, ensuring
both accuracy and robustness in the predictions. The equations for
these three error metrics are as follows:

n
MAE =1 Z (x; — %) (14)
n i=1
1 n
RMSE = ;Z(x,- — %) (15)
i=1
1< X — %
_ 0, *7 1 1
MAPE = 100%" Z . (16)

i=1

where, n (n = 1,2,3,4......) represents the sample number; x; denotes
the original sample; and X; represents the predicted sample.

The coefficient of determination (R?), commonly referred to
as the goodness of fit, is a statistical measure that evaluates how
well a model fits the data. Ranging from 0 to 1, a value closer to
1 indicates a stronger explanatory power of the model, suggesting
a greater influence of the independent variable on the dependent
variable and a superior fitting effect. In this study, the R? value was
determined using Origin 2024b.

Results

Statistical analysis of water quality
parameters across monitoring sections

Table 1 shows the statistical results of water quality parameters
among four sections, including Luojiang, Baiheshan, Duoshipan,
and Shangheba section. For DO data, the average dissolved oxygen
in the Luojiang section is 9.74 mg/L, and its minimum value is 3.29
mg/L; the average of the Baiheshan section is 7.04 mg/L, and its
minimum value is 2.78 mg/L; the average of Duoshipan section
and Shangheba section is 8.03 and 8.71 mg/L, and its minimum
value is 2.58 and 4.45 mg/L, respectively. According to the standard
dissolved oxygen (=5 mg/L) for class III water bodies in the
“Environment Quality Standard of Surface Water” (GB3838-2002),
the average value in all sections met the standard, but the minimum
value of DO in the Luojiang and Baiheshan sections was below the
standard, indicating a potential risk of insufficient dissolved oxygen
during certain periods. The observed DO minima falling below
Class III standards (2.78-3.29 mg/L) highlight urgent management
needs, where our high-precision model enables early warning
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FIGURE 2
BO+SSA-BPNN process diagram.

systems to prevent aquatic hypoxia events. When the dissolved
oxygen in each section is below 5 mg/L, the water temperature
is approximately 15-35° C (Supplementary Figure S2). pH is all
between neutral and slightly alkaline (7.69-8.23), the average values
of TN and TP are 1.04-2.09 and 0.04-0.09 mg/L, respectively,
and CODyyy, is 2.18-3.56 mg/L; the difference between sections of
organic pollution intensity is small.

Figure 3, Supplementary Figures S3-S5 analyze the correlation
between DO and the related water quality parameter in each
section, respectively. A positive correlation between DO and pH
was observed across sites, with correlation coefficients ranging from
0.66 in Duoshipan (Supplementary Figure S3) to 0.84 in Shangheba
(Supplementary Figure S5), suggesting that increasing pH levels
can promote DO concentrations. Conversely, water temperature
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is the reverse correlation to DO; the range of correlation
coeflicient is from —0.23 in Luojiang (Supplementary Figure S4)
to —0.65 in Baiheshan (Figure 3), consistent with the physical
law that high temperature will lead to reduced oxygen solubility
in water. The correlation between AT and DO is generally
poor, and it is usually negative, such as Duoshipan —0.34
(Supplementary Figure S3), indicating a weak influence of ambient
temperature on the DO. The AP shows a relatively weak positive
correlation with DO in Duoshipan and Shangheba (0.33 and 0.34;
Supplementary Figures S3, S5), which may be due to the influence
of changes in pressure in the water body on the oxygen exchange
process. Overall, pH and water temperature are the main factors
influencing the change trend of DO and should be focused on in
subsequent water quality regulation work.
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TABLE 1 Statistics of water quality indicators for each section.

10.3389/frwa.2025.1655126

Luojiang

Mean 18.55 8.23 9.74 342.96 17.01 2.18 0.03 0.04 1.04 978.71 20.41
Std 6.06 0.38 2.87 69.93 37.66 0.93 0.03 0.02 0.29 8.00 8.33

Min 10.00 7.38 3.29 198.60 2.40 0.14 —0.04 0.02 0.33 962.31 0.98

Max 32.50 9.46 18.87 479.20 648.20 8.79 0.16 0.26 226 1,004.93 39.21
Baiheshan

Mean 19.66 7.77 7.04 394.91 31.62 2.37 0.20 0.09 2.09 982.31 20.42
Std 5.80 0.15 1.78 83.71 39.58 0.79 0.16 0.07 0.48 8.41 7.86

Min 10.80 7.45 2.78 215.50 6.00 0.77 0.03 0.04 0.98 966.54 0.73

Max 31.60 8.38 13.04 580.70 505.00 7.48 0.97 0.43 3.69 1,007.29 39.45
Duoshipan

Mean 18.40 7.69 8.03 369.63 26.75 2.47 0.11 0.08 1.87 983.15 20.64
Std 6.06 0.30 222 82.75 50.39 0.66 0.13 0.06 0.56 8.23 7.74

Min 9.60 7.00 2.58 201.00 5.70 0.73 0.00 0.02 0.67 966.51 1.22

Max 32.00 8.72 16.06 579.40 683.50 7.49 0.85 0.51 3.51 1,009.97 40.96
Shangheba

Mean 15.25 7.76 8.71 789.30 15.54 3.56 0.19 0.09 1.34 966.15 30.14
Std 4.30 0.18 1.37 318.62 31.24 1.18 0.11 0.04 0.43 8.17 168.60
Min 8.80 7.29 4.45 188.00 1.40 1.63 0.02 0.01 0.49 949.67 0.68

Max 25.90 8.59 14.78 1,322.00 393.20 9.88 0.85 0.63 5.54 989.78 40.38

The selection of input variables is critical in machine learning
model development to ensure model stability and predictive
performance. In this study, we utilized a Scree plot to determine
the number of factors to retain. The Scree plot, with the number
of features on the x-axis and feature importance on the y-axis,
revealed that the first two features exerted considerable influence
on feature importance and correlation (Figure 4). Specifically, for
the Baiheshan, Duoshipan, and Shangheba sections, the water
temperature and pH have the most important influence factors,
while for the Luojiang section, the pH and total nitrogen are the
most important influencing factors, which contributes much more
to explain the correlation of features with the cumulative rate
approximately 75%. Although parameters such as NH3-N, TN, and
TP were monitored, correlation analysis and feature importance
assessments revealed weak or insignificant associations between
these parameters and DO (Figure 3, Supplementary Figures S3-S5,
and Figure 4). Furthermore, there is a time lag in laboratory analysis
to determine NH3-N, TN, and TP concentration. Therefore,
subsequent modeling efforts prioritized pH, WT, AT, and AP as
input variables for predicting DO.

Performance evaluation of the original
BPNN model in DO prediction

Based on the analysis of data feature importance, correlation,
and data acquisition difficulty, four factors—pH, WT, AT, and
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AP—were selected as input features, with DO as the output
feature. The dataset was randomly divided into training and testing
sets in a 7:3 ratio, and a BPNN was employed to establish the
predictive model.

The relationship between the monitoring data and the
BPNN prediction results based on the training data of the
observation points of Baijheshan, Duoshipan, Luojiang, and
Shangheba in the lake-reservoir monitoring section is shown in
Supplementary Figure S6. The blue line represents the 1:1 line,
while the red line is the fitted curve. A noticeable deviation of
data points from the 1:1 line indicates suboptimal performance
of the BPNN model across these four observation sections. The
substantial angle between the 1:1 line and the fitted regression
further suggests a weak correlation between observed and predicted
values, with the model exhibiting a tendency to under-predict
DO concentrations at higher levels and over-predict at lower
levels. The predictive performance of the BPNN model for DO
was relatively poor, evidenced by low correlation coeflicients
(r < 0.7) and coeficients of determination (R*> < 0.5), with
the Luojiang section exhibiting a particularly low R? of only
0.061 (Supplementary Figure S6¢). The BPNN model did not work
well on the monitoring test data either, with r being 0.685,
0.685, 0.238, and 0.528 for Baiheshan, Duoshipan, Luojiang, and
Shangheba, and R? was 0.469, 0.470, 0.057, and 0.278 for these four
points (Supplementary Figure S6). Therefore, the BPNN model for
predicting the DO of the Lake-reservoir monitoring section is not
good, which still needs to continue to explore or even adjust the
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Correlation heatmap of various water quality indicators in Baiheshan.

model, or add feature variables to the model to achieve a more
accurate effect.

Accuracy enhancement of BPNN via
BO+SSA hybrid optimization

In order to enhance the predictive performance and accuracy
of the BPNN model, a hybrid optimization algorithm of BO4-SSA
for BPNN model optimization was introduced. Figure 5 shows the
correlation between the DO test values and the predicted values
obtained from the training data of the same four monitoring
sections using the optimized model. It can be seen from Figure 5
that the tested data points are mainly distributed along the 1:1
line, which shows that the optimized model has the ability of
generalization in the same section. However, the angle between
the blue and red lines is still observed to exhibit certain bias, and
the optimized model exhibits a bias toward lower forecasts. The
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smaller the angle between the lines, the more the model becomes
accurate. The optimized model presents the best performance in
the Baiheshan section, followed by Shangheba. The correlation
coefficients and R? values further illustrate the effectiveness of the
optimized model, with r values of 0.969, 0.936, 0.957, and 0.928,
and R? values of 0.939, 0.877, 0.915, and 0.861 for Baiheshan,
Duoshipan, Shangheba, and Luojiang, respectively. The optimized
model exhibits r values of more than 0.9 and R? values of above
0.85 in all sections, thus demonstrating a good performance
and stability.

Comparison of model performance
indicators

Figure 6 shows the evaluation of the BO+SSA-BPNN model

on the test data of the lake-reservoir monitoring section, with
the corresponding indices in Table 2. The data points of the test
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Shangheba.

Importance of water quality index characteristics of various sections based on random forest. (a) Baiheshan, (b) Duoshipan, (c) Luojiang, (d)

of DO and true value are scattered on the 1:1 line, which shows
the good generalization ability of the model for the sections.
However, the angle between blue and red lines denotes bias, with
the smallest angles seen in the Baiheshan and Shangheba sections,
where the model has a good performance, and r values of 0.949
and 0.941, respectively. These results demonstrate the effectiveness
of the BO+SSA-BPNN model in predicting DO concentrations in
the lake-reservoir monitoring section, particularly evident in the
Baiheshan section (MAE = 0.37, RMSE = 0.53, and MAPE =
5.68% for the test set; MAE = 0.31, RMSE = 0.45, and MAPE
= 4.94% for the training set) when compared to the standalone
BPNN model. For Baiheshan, the training set metrics are MAE
of 0.31, RMSE of 0.45, and MAPE of 4.94%; the test set metrics
are MAE of 0.37, RMSE of 0.53, and MAPE of 5.68%. Compared
to the BPNN model, the test set MAE for Baiheshan decreased
by 59.67%, RMSE by 42.43%, and MAPE by 54.54%. Similarly,
for Duoshipan, the test set MAE decreased by 41.34%, RMSE
by 31.81%, and MAPE by 44.05%; for Luojiang, the test set
MAE decreased by 45.24%, RMSE by 34.07%, and MAPE by
54.27%; and for Shangheba, the test set MAE decreased by 56.76%,
RMSE by 31.94%, and MAPE by 61.00%. To further validate the
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stability and consistency of the optimized BO+SSA-BPNN model
across different data subsets, Supplementary Figure S8 presents
the comparison between predicted and actual DO values for the
test set of the four monitoring sections (Baiheshan, Duoshipan,
Luojiang, and Shangheba) using an alternative visualization format.
Specifically, the concentration curve in Supplementary Figure S8
more intuitively reflects the prediction performance of the model
for DO values, where the predicted values closely align with the
observed data, further demonstrating that the hybrid optimization
strategy effectively mitigates the systematic bias of the original
BPNN model.

Discussion

This study systematically analyzed water quality indicators at
four monitoring sections: Luojiang, Baiheshan, Duoshipan, and
Shangheba (Table 1). The findings show that the typical range of
DO concentrations (7.04-9.74 mg/L) in every section surpasses the
Class IIT water quality standard thresholds (>5 mg/L) established
by the Environmental Quality Standards for Surface Water (GB
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Bayesian optimization combined with the sparrow search algorithm to optimize the BP neural network for predicting the training set dissolved
oxygen content: comparison of predicted and actual values. (a) Baiheshan, (b) Duoshipan, (c) Luojiang, (d) Shangheba. The blue lineis a 1:1 line, and
the red line is a fitted curve.

3838-2018). However, the minimum DO levels at Baiheshan and
Luojiang (2.78 and 3.29 mg/L, respectively) fall far lower than the
normal level, indicating the occurrence of potential low oxygen
risks at some time. The pH values in this study are generally
within the neutral to slightly alkaline range, consistent with the
characteristics of most freshwater ecosystems (Wu et al., 2019).
TN and TP have mean concentration from 1.04 to 2.09 mg/L
and from 0.04 to 0.09 mg/L, respectively. These TN and TP
concentrations suggest a potential for eutrophication, given the
observed increasing trends in nitrogen and phosphorus levels.
The average TN value of Baiheshan (2.09 mg/L) is close to the
threshold of eutrophication (2.0 mg/L), which may be influenced
by natural conditions, external inputs, human activities, and the
ecological characteristics of the lake itself (Shang et al., 2021; Su
etal, 2022; Tong et al., 2019). The permanganate index (CODwp),
ranging from 2.18 to 3.56 mg/L, indicated a low level of organic
pollution along the sections, although the elevated mean value
at Shangheba (3.56 mg/L) may be attributable to the agricultural
non-point source pollution in that area.

Correlation analysis detailed the dynamics of links between
DO and key environmental conditions. There is a strong
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positive correlation between DO and pH value (r = 0.66-0.84;
Figure 3, Supplementary Figures $3-S5), which may be due to the
favorable conditions for photosynthesis and oxygen production
of phytoplankton under alkaline (i.e., higher pH) conditions
(Parinet et al., 2004). Eze et al. (2021) found a positive correlation
between dissolved oxygen and pH in aquaculture farms. Negative
correlation between DO and water temperature (r = —0.23 to
—0.65) was consistent with Henry’s Law. The negative correlation
between DO and water temperature was a well-documented
phenomenon in aquatic ecosystems (Abdel-Wareth et al., 2024;
Beshiru et al., 2018; Soltani et al.,, 2024). As water temperature
increases, the solubility of oxygen decreases, leading to lower levels
of dissolved oxygen. The effect of AT on DO was lower compared
with pH and water temperature. The weak positive correlation
between AP and DO (Duoshipan r = 0.33; Shangheba r = 0.34)
may indicate enhanced oxygen exchange at the water surface with
rising pressure. In summary, pH and water temperature are the
main parameters controlling DO variation, and DO management
should pay more attention to the joint effects of these factors
(especially high-temperature season or large intensity of sudden
increase in pollutant load).
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The original BPNN was not applicable for predicting DO at
reservoir-type monitoring sections. The R? values for training sets
and testing sets were less than 0.5 (with the Luojiang testing
set R? only 0.057; Supplementary Figures S6 and S7), which also
suggested that nonlinear associations between input features (pH,
water temperature, air temperature, and atmospheric pressure) and
DO could not be well captured by the proposed model. Elkiran
et al. (2019) used BPNN to predict the DO of three stations on
the Yamuna River. Based on the DC values during the validation
phase, the BPNN performance of the stations was 0.8149, 0.7259,
and 0.6830, respectively, further indicating that a single BPNN
has poor predictive performance for DO. Potential systematic
prediction biases (under-prediction on the high-concentration
side and over-prediction on the low-concentration side) could be
explained due to the simple model structure, imperfect model
hyperparameter optimization, as well as the data imbalance. After
optimizing the BPNN using BO and the SSA, model performance
was improved. The optimized BO+SSA-BPNN model exhibited
substantially enhanced predictive capabilities, with R* values
exceeding 0.85 in each section of the training set (Figure 5).
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This underscores the critical role of the optimization process
in refining BPNN model accuracy. The superior performance
of the optimized model demonstrates the feasibility of accurate
DO prediction using this approach. Moreover, the improved
performance on the testing sets indicates robust generalization
ability, with correlation coefficients (r) exceeding 0.85 for
Baiheshan and Shangheba sections, reaching 0.949 and 0.941,
respectively (Figure 6). Corresponding reductions in MAE, RMSE,
and MAPE by 30%—61% compared to the original BPNN
model (Table 2) further suggest that BO+SSA effectively mitigated
prediction bias and variance through global search and adaptive
parameter adjustment.

The model comparison detailed in Supplementary Table S1
demonstrates the significant performance advantages of BO
+ SA-BPNN in DO prediction. Across the four monitoring
sections—Baiheshan, Duoshipan, Luojiang, and Shangheba—BO
+ SA -BPNN consistently achieves the lower MAE, RMSE,
and MAPE values, while maintaining high R? values (ranging
from 0.85 to 0.90). Compared to models employing traditional
single optimization algorithms [Particle Swarm Optimization
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TABLE 2 Model efficiency comparison.

Name BO+SSA-BPNN BPNN

MAE RMSE MAPE MAE RMSE
Baiheshan
Training | 0.31 0.45 4.94% 1.34 1.72 16.80%
set
Test set 0.37 0.53 5.68% 0.92 1.12 12.50%
Duoshipan
Training | 0.57 0.79 8.16% 1.57 2.01 19.30%
set
Test set 0.62 0.87 8.84% 1.05 1.35 15.80%
Luojiang
Training | 0.70 1.07 6.92% 2.24 2.89 25.60%
set
Test set 0.72 1.11 7.45% 1.32 1.68 16.30%
Shanghebai
Training | 0.30 0.40 3.64% 1.05 1.38 12.40%
set
Test set 0.38 0.74 4.56% 0.89 1.08 11.70%

(PSO)-BPNN and Genetic Algorithm (GA)-BPNN], BO + SA-
BPNN, leveraging the synergistic effect of Bayesian optimization
for hyperparameter tuning and the improved sparrow algorithm
for weight adjustment, reduces MAE by 14%—59.8% and increases
R? by 3%—5%. Furthermore, in prediction scenarios primarily
influenced by static features, such as locations near river dams,
BO + SA-BPNN demonstrates superior efficiency compared to
time-series models like Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU), achieving a significantly lower
MAPE (4.56%) than GRU (5.67%), highlighting the efficacy of the
optimized feedforward network. While the model’s performance
is influenced by cross-sectional characteristics. Consequently, BO
+ SA-BPNN mitigates the local optima and hyperparameter
sensitivity issues inherent in traditional BPNNs. This provides
a high-precision and readily deployable solution for water
quality prediction scenarios dominated by static features, such
as lakes and reservoirs with infrequent monitoring, thereby
validating the universality and practical value of this hybrid
optimization strategy.

Conclusion

This study demonstrates the successful integration of BO+SSA
to enhance the prediction accuracy of BPNN in modeling DO
concentration dynamics in lakes and reservoirs. The resulting
BO+SSA-BPNN model exhibits a robust global search capability
and rapid self-adaptive parameter tuning, effectively mitigating
the local optima convergence issues and limited generalization
capacity often associated with traditional BPNN. The test-set R?
reached the maximum value of 0.939, and the error index was
decreased by more than 40%. This study finds that the pH and
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the temperature of the water are significant influence factors
for DO variation, and the high prediction accuracy can still be
achieved even though the feature input of the model is only
static features, so that the model can be used under conditions
of having less input data. Compared with single optimization
algorithms and conventional machine learning models, the hybrid
strategy is more efficient in improving the convergence rate and has
excellent ability to eliminate bias, which also proves significantly
superior to the individual algorithm. In the follow-up study, we
may explore a hybrid strategy with more model algorithms by
integrating time features to improve the stability of DO variation
prediction in water bodies under extreme weather and sudden
changes in pollutant load. This study provides effective scientific
evidence and technical support for accurate and efficient prediction
and ecological monitoring of DO variation in lake and reservoir
water bodies.
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