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With the self-purification ability of lake-reservoir water body gradually weakened

and the oscillation of dissolved oxygen (DO) concentration intensifying, the

high-precision prediction of lake-reservoir DO is important to the aquatic

ecological safety. Aiming at the key problem that the prediction precision is low,

the model structure and hyperparameters of back propagation neural network

(BPNN) are highly sensitive, and the global convergence is poor with high

tendency to fall into local optima in traditional DO prediction. In this study, a new

hybrid optimization technology called Bayesian Optimization (BO) + improved

Sparrow Search Algorithm (SSA), named BO+SSA, is employed to optimize the

hyperparameters of BPNN and search initial weights and thresholds to overcome

such a problem. Chaotic initialization, adaptive weight adjustment, and dynamic

search strategies are integrated to enhance global optimization capability and

accelerate convergence of BPNN. Four representative monitoring sections

(including Baiheshan and Luojiang) from lakes and reservoirs in the eastern

Sichuan Basin, China, were selected for analysis. Based on correlation analysis

and feature importance assessment, pH,water temperature (WT), air temperature

(AT), and atmospheric pressure (AP) were identified as input variables for testing

the predictive performance of the BO+SSA-BPNN model. The coe�cient of

determination (R²) for the test set ranged from 0.861 to 0.939. Furthermore, the

improved BPNNmodel demonstrated a reduction of 30%−61% in Mean Absolute

Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage

Error (MAPE) compared to the original BPNN model. The result proves that the

method of hybrid optimization of BO+SSA can better solve the problems of

complex nonlinear relationship modeling and provide an e�cient BPNN-based

DO prediction model that can be applied to lake-reservoir dynamic monitoring

and management.
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neural network (BPNN), hybrid optimization strategy, prediction accuracy

Frontiers inWater 01 frontiersin.org

https://www.frontiersin.org/journals/water
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://doi.org/10.3389/frwa.2025.1655126
http://crossmark.crossref.org/dialog/?doi=10.3389/frwa.2025.1655126&domain=pdf&date_stamp=2025-10-23
mailto:tansic@foxmail.com
https://doi.org/10.3389/frwa.2025.1655126
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frwa.2025.1655126/full
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Liu et al. 10.3389/frwa.2025.1655126

Introduction

During the continuous process of urbanization and further

agricultural nonpoint source pollution, small watershed water

bodies with limited environmental capacity and multiple points

of pollutant source have added additional risks, such as a quick

change in dissolved oxygen (DO) concentration that impacts the

regional water environmental security. Low DO concentrations

in these small watershed water bodies can adversely affect

aquatic ecosystems, destabilizing the system and depleting aquatic

biological resources, thereby causing ecosystem imbalances (Lee

et al., 2020). Consequently, it is imperative to identify and quantify

the driving factors influencing water quality parameters, such

as DO content, to develop effective water resource management

strategies. Due to the lower flow speed of lake-reservoir type water

bodies, which constrains natural oxygen exchange and inhibits

the self-purification ability of water, a significantly lower rate of

diffusion of DO is also a characteristic (Zhang et al., 2017). Under

the condition of stagnation, the diffusion speed of oxygen between

the surface and bottom layers is much lower than that in themoving

water body. Therefore, for the lake-reservoir monitoring section,

there may be situations where the dissolved oxygen is less than

5 mg/L.

In the past, the prediction of water quality usually depended on

process-based modeling. However, due to the advancement of data

availability, computational ability, machine learning techniques

have shown promising potential in multiple fields (Bolick et al.,

2023; Cojbasic et al., 2023; Kim and Ahn, 2022; Kozhiparamban

et al., 2023). Following research about DOmodeling and estimation

aroused interest in artificial intelligence (AI) as a more robust

alternative to traditional empirical and numerical models, which

are subjected to errors, time-consuming, and expensive (Kumar

et al., 2024; Liang et al., 2024). However, because the spatial

and temporal patterns of DO will be affected by complicated

nonlinear interactions of several environmental factors, such

as pH value, water temperature, and weather conditions, the

traditional statistical models and the single machine learningmodel

usually show insufficient nonlinear relationship fit and a lack of

generalization capabilities (Cojbasic et al., 2023; Liang et al., 2024).

The back propagation neural network (BPNN) has a strong

non-linear mapping and approximation capability but is very

sensitive to the selection of initial parameters and hyperparameters,

which may lead to falling into the local optimum and generating

the prediction bias of its output (Yu et al., 2022). Therefore, the

performance of the BPNN for water quality prediction is inferior

(Bao et al., 2024). For example, Li et al. (2022) demonstrated

that while radial basis function neural network (RBFNN), support

vector machine (SVM), and least squares support vector machine

(LSSVM) achieved near-perfect correlation coefficients (0.99) for

DO prediction in aquaculture systems, the BPNN showedmarkedly

inferior performance with a low correlation coefficient of 0.60.

The inferior performance of BPNN stems from its gradient-based

optimization that easily stagnates in shallow local minima, coupled

with high sensitivity to initial weight selection, which amplifies

prediction variance in complex nonlinear systems like aquatic

environments. In addition, despite the progress in neural-network-

based prediction methods, there is still a notable research gap

in addressing the limitations of traditional BPNN, particularly

their susceptibility to local minima and slow convergence rates

(Xue et al., 2024). Recently, some new techniques in the field

of machine learning, such as Genetic Algorithm and Particle

Swarm Optimization (PSO), BO, and others, have been introduced

to improve the BPNN (Cai et al., 2022; Li C. X. et al., 2024).

Li X. et al. (2024) showed that in predicting levee settlement

caused by shield tunneling, the PSO-BPNN model exhibited

optimal performance with the highest correlation coefficients

(0.8831 in training and 0.8657 in testing) and the lowest errors

(RMSE = 1.901, MAE = 0.8412), significantly outperforming

comparative models such as random forest and support vector

machine. Cui et al. (2023) demonstrated that in flood susceptibility

mapping, the GQA-BPNN model outperformed both the pure

BPNN and GA-BPNN, achieving superior performance in AUC,

RMSE, Nash-Sutcliffe coefficient, and bias percentage, with more

flood points identified in high-sensitivity zones, proving it the

most effective method. Research (Cui et al., 2023) indicates

that standalone optimization algorithms struggle to adequately

enhance BPNN prediction accuracy, particularly when addressing

complex nonlinear relationships, necessitating the development

of advanced hybrid optimization architectures. Moreover, existing

research predominantly focuses on rivers or open water bodies,

with insufficient studies on BPNN model optimization and

feature adaptation for the lake-reservoir monitoring section

DO prediction.

This study introduces a novel hybrid BO+SSA framework

to mitigate the hyperparameter sensitivity, susceptibility to

local optima, and suboptimal convergence often encountered in

traditional BPNN when predicting DO levels in lake-reservoir

systems. The proposed framework integrates four key algorithmic

enhancements into the SSA component: tent chaotic initialization,

adaptive weights, Lévy flight mechanisms, and a dynamic spiral

search strategy. These enhancements are designed to substantially

improve the global optimization capabilities of the SSA for tuning

BPNN weights and thresholds. Focusing on representative lake-

reservoir monitoring sections in China (specifically, Baiheshan,

Luojiang, Duoshipan, and Shangheba), we develop a DO

prediction model based on four key water quality parameters,

including pH and water temperature. The study systematically

evaluates the performance of the BPNN both before and after

optimization via the BO+SSA framework. The resulting optimized

BO+SSA-BPNN model provides an efficient computational tool

for dynamic water quality management, thereby advancing

the application of hybrid optimization techniques in aquatic

ecosystem monitoring.

Materials and Methods

In the past 3 years, more frequent exceedances of DO

were found in the eastern Sichuan basin. In order to analyze

the DO exceedance causes for each section in the basin, this

paper chose typical sections with excessive exceedance times as

the Baiheshan (107.301740, 31.056889), Luojiang (107.562547,

31.314006), Duoshipan (107.157308, 31.033114), and Shangheba

(107.455146, 30.787714), as represented rivers in eastern Sichuan

and the sampling locations are shown in Figure 1.
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FIGURE 1

Location map of water quality monitoring points for each section.

Four lake-reservoir monitoring sections (Baiheshan, Luojiang,

Duoshipan, and Shangheba) in the eastern Sichuan basin were

selected for analysis. Water quality parameters, including water

temperature (WT), dissolved oxygen (DO), pH, ammonium

nitrogen (NH3-N), total nitrogen (TN), total phosphorus (TP),

permanganate index (CODMn), conductivity (Ec), turbidity (NTU),

atmospheric pressure (AP), and air temperature (AT), were

monitored. All water quality data used in this study are time-series

data, collected from June 2023 to June 2024 using professional

water quality sensors installed at fixed stations (calibrated monthly

to ensure accuracy) with a monitoring frequency of once every

4 h. The data were obtained from the Sichuan Dazhou Ecological

Environment Monitoring Center. Due to equipment malfunctions

and environmental interference, the raw data contained missing

values and outliers, which were directly deleted to ensure data

quality. The monitoring procedures conformed to the “Water

Environment Monitoring Specifications” (SL 219-2013), and

exceedance limits were determined based on the Class III criteria

outlined in the “Surface Water Environmental Quality Standards”

(GB 3838-2018).

Model input variable selection

In order to construct a high-performance and highly

interpretable predictive model, this study used correlation analysis

and feature importance for input variable selection. At the

beginning, the Pearson correlation coefficient matrix was used to

obtain primary features that are directly correlated with the target

variable (p < 0.05). This linear correlation analysis provides an

initial filter for potentially relevant features. On the basis of this,

the Gini importance rank of random forest was adopted to model

the non-linear interaction of features, thereby capturing more

complex relationships beyond simple linear correlation, and then

obtaining the feature importance.

Backpropagation neural network

ANN is a mathematical model representing the human brain

in an attempt to replicate a vast network structure consisting

of neurons in the human brain. ANN can have one or more
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hidden layers, multiple types of layers, and activation functions for

classification, regression, and clustering. ANN is a generic term for

different types of networks, such as multi-layer perceptron and a

BPNN. Among the many algorithms in ANN, BPNN has attracted

much attention due to its effectiveness and wide application. BPNN

uses gradient descent to minimize the difference between network

output and target output (Sun et al., 2021). In the BPNN model,

each neuron in one layer is directly connected to the neurons of

the subsequent layer with an activation function. In this study, we

adopted the hyperbolic tangent function as the activation function

of each neuron between the input and hidden layers, which is

shown in Equation 1 (Sun et al., 2021):

g(x) =
2

1+ exp(−2x)
− 1 (1)

Moreover, we adopted the linear function as the activation

function of each neuron between the hidden and output layers:

f (x) = x (2)

Then the final output of a BPNN can be written as:

Y(X) = f (W3,2 ∗ g(W2,1 ∗ X + b1)+ b2) (3)

where W2,1 and W3,2 are weight matrices and b1 and b2 are

bias matrices, these four matrices store the coefficients of the BPNN

model and should be optimized via the backpropagation algorithm,

X and Y are the input and output variables.

The hyperbolic tangent function (tanh) was chosen for the

hidden layer due to its desirable properties: it is zero-centered,

aiding in convergence during training, and its output range (−1

to 1) can help mitigate the vanishing gradient problem compared

to sigmoid functions. The linear function was used for the output

layer because the task of predicting dissolved oxygen concentration

is a regression problem, where the network needs to output

continuous values without constraints imposed by non-linear

activation functions like sigmoid or tanh.

Optimization model principles

First layer optimization: BO for hidden layer node number and

learning rate as hyperparameters can effectively improve model

effectiveness. When searching for hyperparameters, their values

need to be optimized continuously to enhance the predictive

effectiveness of the model. We first select BO to optimize the

hyperparameters of the first layer and implement these specific

steps: (1) Objective function f (x) and domain of x are defined. (2) A

set of limited x is selected, and then the corresponding f (x) is solved

as the observed value. (3) According to the observed value, use a

Probability SurrogateModel to estimate the function and obtain the

estimated target value f ∗. (4) Through the rules of the Acquisition

Function, the next observation point is determined to calculate.

(5) Recursively repeat steps (2)–(4), check termination conditions,

until the maximum number of observations is reached, and output

the optimal results (see Supplementary Figure S1).

Second layer optimization: enhanced
sparrow optimization algorithm

The traditional BPNN often relies on empirical determination

of hyperparameters, initial weights, and thresholds, which may

not meet the performance requirements of predictive models.

Therefore, the second layer employs an improved sparrow

algorithm to optimize initial weights and thresholds. This enhanced

sparrow algorithm, designed with four key improvements (Ouyang

et al., 2021).

Improvement 1: The tent chaotic mapping in the SSA generates

population positions with high randomness, potentially leading

to poor initial population quality and slower convergence.

Introducing the tent mapping strategy makes population

initialization more orderly and enhances algorithm controllability,

as illustrated by the following equation:

Zi + 1 =

{

2Zi + rand(0, 1)× 1
N , 0 ≤ Z ≤ 1

2

2(1− Zi) + rand(0, 1)× 1
N ,

1
2 ≤ Z ≤ 1

(4)

The expression after the Bernoulli transformation is

Zi + 1 = (2Zi)mod1 + rand(0, 1)×
1

N
(5)

In Equation 5, N is the number of particles in the chaotic

sequence. According to the characteristics of the tent mapping,

the sequence flow for generating chaos in the feasible domain is

as follows:

(1) Randomly generate the initial value z0 in (0, 1), and let I= 1.

(2) Perform iteration by using that Equation 5 to generate a z

sequence, and i is increased by 1.

(3) Stop if the number of iterations reaches the maximum, and

store the generated z sequence.

Improvement 2: Adaptive weights are introduced to improve

the quality of the discoverer’s position, enabling other individuals

to converge more rapidly to the optimal position and accelerating

convergence speed. The equation for adaptive weights is as follows:

ω(t) = 0.2cos(
π

2
• (1−

t

itermax
)) (6)

The meaning of Equation 6 is that w has the property of

nonlinear change between [0, 1]. According to the characteristics of

the cos function, the weight value is smaller at the beginning of the

algorithm, but the optimization speed is faster, and the later weight

value is larger, but the change speed is slower, so the convergence

property of the algorithm is balanced. The improved discoverer

location is updated as follows:

Xt + 1
i,j =

{

ω(t) • Xt
i,j • exp(

−i
α•itermax

), if R2 < ST

ω(t) • Xt
i,j + Q • L, if R2 ≥ ST

(7)

By introducing adaptive weights to dynamically adjust the

position changes of sparrows, different guidance modes for the

discoverer at different times make the algorithm search flexible.
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As the number of iterations increases, the individual sparrows

converge toward the optimal position, and a larger weight makes

the individual move faster, thus increasing the convergence speed

of the algorithm.

Improvement 3: The Levy flight mechanism, based on the Levy

distribution, generates random long and short-distancemovements

to cover the search space. Incorporating the Levy flight mechanism

enhances the proposed algorithm’s performance, with the position

update equation as follows:

x
′

i(t) = xi(t) + l⊕ levy(λ) (8)

In Equation 8, xi(t) represents the position of the i-th individual

in the t-th iteration, ⊕ is an arithmetic symbol representing point-

to-point multiplication. l denotes a step length control parameter,

which is obtained by this equation: l = 0.01[xi(t)–xp]. Levy (λ)

is a path that obeys the Levy distribution, which represents the

introduced Levy flight strategy and satisfies the following: levy u

= t−λ, 1 < λ ≤ 3.

Because the Levy distribution is very complex, the Mantegna

algorithm is usually used to simulate it. The equation for calculating

the step size is as follows:

s =
µ

|v|1/γ
(9)

µ ∼ N(0, σ 2
µ) (10)

v ∼ N(0, σ 2
v ) (11)

σµ =

{

Ŵ(1 + γ )sin(πγ/2)

γ • Ŵ
[

(γ + 1)/2
]

• 2(γ + 1)/2

}1/γ

(12)

Among them, σ v = 1, and γ is generally 1.5.

The introduction of the Levy flight strategy makes the sparrows

more flexible at this stage and can also lead other individuals to

find a better location, free from the constraints of local extremes.

Therefore, the combination of the Levy flight mechanism and

adaptive weights balances the search method, and the quality of

each solution obtained is improved to a certain extent, which

greatly improves the search ability of the algorithm.

Improvement 4: The adaptive spiral search strategy introduces

a flexible position update strategy for followers, developing various

search paths for position updates and balancing global and local

searches. The equation for the adaptive spiral position update

strategy is as follows:

Xi + 1
i,j =























ezl · cos(2πl) · Q · exp(
Xt
wost−Xt

i,j

i2
), if i > n

2

Xt + 1
p +

∣

∣

∣
Xt
i,j − Xt + 1

p

∣

∣

∣
· A + · L · ezl · cos(2πl),

otherwise

z = ek·cos(π ·(1−(i/imax)))

(13)

In these equations, the z parameter varies with iteration count,

dynamically adjusting the size and amplitude of the spiral according

to the periodic characteristics of the cosine function. The k

represents the change coefficient, set at k = 5; L is a uniformly

distributed random number of [−1, 1]. The complete process of

the optimized model is illustrated in Figure 2.

Assess the quality of the model

To evaluate the performance of the proposed prediction

model, we employed three widely recognized error metrics:

mean absolute error (MAE), root mean square error (RMSE),

and mean absolute percentage error (MAPE). MAE provides a

straightforward measure of the average magnitude of prediction

errors, offering an intuitive understanding of how close predictions

are to actual values. RMSE emphasizes larger errors due to its

quadratic nature, making it particularly suitable for applications

where minimizing significant deviations is critical. MAPE provides

a scale-invariant assessment of model accuracy by expressing

prediction errors as a percentage of the actual values. By analyzing

the results across these three complementary metrics, we provide

a comprehensive validation of the models’ performances, ensuring

both accuracy and robustness in the predictions. The equations for

these three error metrics are as follows:

MAE =
1

n

n
∑

i=1

(xi − x̂i)
2 (14)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(xi − x̂i) (15)

MAPE = 100%∗ 1

n

n
∑

i=1

∣

∣

∣

∣

xi − x̂i

xi

∣

∣

∣

∣

(16)

where, n (n= 1,2,3,4......) represents the sample number; xi denotes

the original sample; and x̂i represents the predicted sample.

The coefficient of determination (R2), commonly referred to

as the goodness of fit, is a statistical measure that evaluates how

well a model fits the data. Ranging from 0 to 1, a value closer to

1 indicates a stronger explanatory power of the model, suggesting

a greater influence of the independent variable on the dependent

variable and a superior fitting effect. In this study, the R2 value was

determined using Origin 2024b.

Results

Statistical analysis of water quality
parameters across monitoring sections

Table 1 shows the statistical results of water quality parameters

among four sections, including Luojiang, Baiheshan, Duoshipan,

and Shangheba section. For DO data, the average dissolved oxygen

in the Luojiang section is 9.74 mg/L, and its minimum value is 3.29

mg/L; the average of the Baiheshan section is 7.04 mg/L, and its

minimum value is 2.78 mg/L; the average of Duoshipan section

and Shangheba section is 8.03 and 8.71 mg/L, and its minimum

value is 2.58 and 4.45 mg/L, respectively. According to the standard

dissolved oxygen (≥5 mg/L) for class III water bodies in the

“Environment Quality Standard of Surface Water” (GB3838-2002),

the average value in all sections met the standard, but the minimum

value of DO in the Luojiang and Baiheshan sections was below the

standard, indicating a potential risk of insufficient dissolved oxygen

during certain periods. The observed DO minima falling below

Class III standards (2.78–3.29 mg/L) highlight urgent management

needs, where our high-precision model enables early warning
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FIGURE 2

BO+SSA-BPNN process diagram.

systems to prevent aquatic hypoxia events. When the dissolved

oxygen in each section is below 5 mg/L, the water temperature

is approximately 15–35◦ C (Supplementary Figure S2). pH is all

between neutral and slightly alkaline (7.69–8.23), the average values

of TN and TP are 1.04–2.09 and 0.04–0.09 mg/L, respectively,

and CODMn is 2.18–3.56 mg/L; the difference between sections of

organic pollution intensity is small.

Figure 3, Supplementary Figures S3–S5 analyze the correlation

between DO and the related water quality parameter in each

section, respectively. A positive correlation between DO and pH

was observed across sites, with correlation coefficients ranging from

0.66 in Duoshipan (Supplementary Figure S3) to 0.84 in Shangheba

(Supplementary Figure S5), suggesting that increasing pH levels

can promote DO concentrations. Conversely, water temperature

is the reverse correlation to DO; the range of correlation

coefficient is from −0.23 in Luojiang (Supplementary Figure S4)

to −0.65 in Baiheshan (Figure 3), consistent with the physical

law that high temperature will lead to reduced oxygen solubility

in water. The correlation between AT and DO is generally

poor, and it is usually negative, such as Duoshipan −0.34

(Supplementary Figure S3), indicating a weak influence of ambient

temperature on the DO. The AP shows a relatively weak positive

correlation with DO in Duoshipan and Shangheba (0.33 and 0.34;

Supplementary Figures S3, S5), which may be due to the influence

of changes in pressure in the water body on the oxygen exchange

process. Overall, pH and water temperature are the main factors

influencing the change trend of DO and should be focused on in

subsequent water quality regulation work.
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TABLE 1 Statistics of water quality indicators for each section.

Name WT pH DO EC NTU CODMn NH3-N TP TN AP AT

Luojiang

Mean 18.55 8.23 9.74 342.96 17.01 2.18 0.03 0.04 1.04 978.71 20.41

Std 6.06 0.38 2.87 69.93 37.66 0.93 0.03 0.02 0.29 8.00 8.33

Min 10.00 7.38 3.29 198.60 2.40 0.14 −0.04 0.02 0.33 962.31 0.98

Max 32.50 9.46 18.87 479.20 648.20 8.79 0.16 0.26 2.26 1,004.93 39.21

Baiheshan

Mean 19.66 7.77 7.04 394.91 31.62 2.37 0.20 0.09 2.09 982.31 20.42

Std 5.80 0.15 1.78 83.71 39.58 0.79 0.16 0.07 0.48 8.41 7.86

Min 10.80 7.45 2.78 215.50 6.00 0.77 0.03 0.04 0.98 966.54 0.73

Max 31.60 8.38 13.04 580.70 505.00 7.48 0.97 0.43 3.69 1,007.29 39.45

Duoshipan

Mean 18.40 7.69 8.03 369.63 26.75 2.47 0.11 0.08 1.87 983.15 20.64

Std 6.06 0.30 2.22 82.75 50.39 0.66 0.13 0.06 0.56 8.23 7.74

Min 9.60 7.00 2.58 201.00 5.70 0.73 0.00 0.02 0.67 966.51 1.22

Max 32.00 8.72 16.06 579.40 683.50 7.49 0.85 0.51 3.51 1,009.97 40.96

Shangheba

Mean 15.25 7.76 8.71 789.30 15.54 3.56 0.19 0.09 1.34 966.15 30.14

Std 4.30 0.18 1.37 318.62 31.24 1.18 0.11 0.04 0.43 8.17 168.60

Min 8.80 7.29 4.45 188.00 1.40 1.63 0.02 0.01 0.49 949.67 0.68

Max 25.90 8.59 14.78 1,322.00 393.20 9.88 0.85 0.63 5.54 989.78 40.38

The selection of input variables is critical in machine learning

model development to ensure model stability and predictive

performance. In this study, we utilized a Scree plot to determine

the number of factors to retain. The Scree plot, with the number

of features on the x-axis and feature importance on the y-axis,

revealed that the first two features exerted considerable influence

on feature importance and correlation (Figure 4). Specifically, for

the Baiheshan, Duoshipan, and Shangheba sections, the water

temperature and pH have the most important influence factors,

while for the Luojiang section, the pH and total nitrogen are the

most important influencing factors, which contributes much more

to explain the correlation of features with the cumulative rate

approximately 75%. Although parameters such as NH3-N, TN, and

TP were monitored, correlation analysis and feature importance

assessments revealed weak or insignificant associations between

these parameters and DO (Figure 3, Supplementary Figures S3–S5,

and Figure 4). Furthermore, there is a time lag in laboratory analysis

to determine NH3-N, TN, and TP concentration. Therefore,

subsequent modeling efforts prioritized pH, WT, AT, and AP as

input variables for predicting DO.

Performance evaluation of the original
BPNN model in DO prediction

Based on the analysis of data feature importance, correlation,

and data acquisition difficulty, four factors—pH, WT, AT, and

AP—were selected as input features, with DO as the output

feature. The dataset was randomly divided into training and testing

sets in a 7:3 ratio, and a BPNN was employed to establish the

predictive model.

The relationship between the monitoring data and the

BPNN prediction results based on the training data of the

observation points of Baiheshan, Duoshipan, Luojiang, and

Shangheba in the lake-reservoir monitoring section is shown in

Supplementary Figure S6. The blue line represents the 1:1 line,

while the red line is the fitted curve. A noticeable deviation of

data points from the 1:1 line indicates suboptimal performance

of the BPNN model across these four observation sections. The

substantial angle between the 1:1 line and the fitted regression

further suggests a weak correlation between observed and predicted

values, with the model exhibiting a tendency to under-predict

DO concentrations at higher levels and over-predict at lower

levels. The predictive performance of the BPNN model for DO

was relatively poor, evidenced by low correlation coefficients

(r < 0.7) and coefficients of determination (R2 < 0.5), with

the Luojiang section exhibiting a particularly low R2 of only

0.061 (Supplementary Figure S6c). The BPNN model did not work

well on the monitoring test data either, with r being 0.685,

0.685, 0.238, and 0.528 for Baiheshan, Duoshipan, Luojiang, and

Shangheba, and R2 was 0.469, 0.470, 0.057, and 0.278 for these four

points (Supplementary Figure S6). Therefore, the BPNN model for

predicting the DO of the Lake-reservoir monitoring section is not

good, which still needs to continue to explore or even adjust the
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FIGURE 3

Correlation heatmap of various water quality indicators in Baiheshan.

model, or add feature variables to the model to achieve a more

accurate effect.

Accuracy enhancement of BPNN via
BO+SSA hybrid optimization

In order to enhance the predictive performance and accuracy

of the BPNN model, a hybrid optimization algorithm of BO+SSA

for BPNN model optimization was introduced. Figure 5 shows the

correlation between the DO test values and the predicted values

obtained from the training data of the same four monitoring

sections using the optimized model. It can be seen from Figure 5

that the tested data points are mainly distributed along the 1:1

line, which shows that the optimized model has the ability of

generalization in the same section. However, the angle between

the blue and red lines is still observed to exhibit certain bias, and

the optimized model exhibits a bias toward lower forecasts. The

smaller the angle between the lines, the more the model becomes

accurate. The optimized model presents the best performance in

the Baiheshan section, followed by Shangheba. The correlation

coefficients and R2 values further illustrate the effectiveness of the

optimized model, with r values of 0.969, 0.936, 0.957, and 0.928,

and R2 values of 0.939, 0.877, 0.915, and 0.861 for Baiheshan,

Duoshipan, Shangheba, and Luojiang, respectively. The optimized

model exhibits r values of more than 0.9 and R2 values of above

0.85 in all sections, thus demonstrating a good performance

and stability.

Comparison of model performance
indicators

Figure 6 shows the evaluation of the BO+SSA-BPNN model

on the test data of the lake-reservoir monitoring section, with

the corresponding indices in Table 2. The data points of the test
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FIGURE 4

Importance of water quality index characteristics of various sections based on random forest. (a) Baiheshan, (b) Duoshipan, (c) Luojiang, (d)

Shangheba.

of DO and true value are scattered on the 1:1 line, which shows

the good generalization ability of the model for the sections.

However, the angle between blue and red lines denotes bias, with

the smallest angles seen in the Baiheshan and Shangheba sections,

where the model has a good performance, and r values of 0.949

and 0.941, respectively. These results demonstrate the effectiveness

of the BO+SSA-BPNN model in predicting DO concentrations in

the lake-reservoir monitoring section, particularly evident in the

Baiheshan section (MAE = 0.37, RMSE = 0.53, and MAPE =

5.68% for the test set; MAE = 0.31, RMSE = 0.45, and MAPE

= 4.94% for the training set) when compared to the standalone

BPNN model. For Baiheshan, the training set metrics are MAE

of 0.31, RMSE of 0.45, and MAPE of 4.94%; the test set metrics

are MAE of 0.37, RMSE of 0.53, and MAPE of 5.68%. Compared

to the BPNN model, the test set MAE for Baiheshan decreased

by 59.67%, RMSE by 42.43%, and MAPE by 54.54%. Similarly,

for Duoshipan, the test set MAE decreased by 41.34%, RMSE

by 31.81%, and MAPE by 44.05%; for Luojiang, the test set

MAE decreased by 45.24%, RMSE by 34.07%, and MAPE by

54.27%; and for Shangheba, the test set MAE decreased by 56.76%,

RMSE by 31.94%, and MAPE by 61.00%. To further validate the

stability and consistency of the optimized BO+SSA-BPNN model

across different data subsets, Supplementary Figure S8 presents

the comparison between predicted and actual DO values for the

test set of the four monitoring sections (Baiheshan, Duoshipan,

Luojiang, and Shangheba) using an alternative visualization format.

Specifically, the concentration curve in Supplementary Figure S8

more intuitively reflects the prediction performance of the model

for DO values, where the predicted values closely align with the

observed data, further demonstrating that the hybrid optimization

strategy effectively mitigates the systematic bias of the original

BPNN model.

Discussion

This study systematically analyzed water quality indicators at

four monitoring sections: Luojiang, Baiheshan, Duoshipan, and

Shangheba (Table 1). The findings show that the typical range of

DO concentrations (7.04–9.74 mg/L) in every section surpasses the

Class III water quality standard thresholds (≥5 mg/L) established

by the Environmental Quality Standards for Surface Water (GB
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FIGURE 5

Bayesian optimization combined with the sparrow search algorithm to optimize the BP neural network for predicting the training set dissolved

oxygen content: comparison of predicted and actual values. (a) Baiheshan, (b) Duoshipan, (c) Luojiang, (d) Shangheba. The blue line is a 1:1 line, and

the red line is a fitted curve.

3838-2018). However, the minimum DO levels at Baiheshan and

Luojiang (2.78 and 3.29 mg/L, respectively) fall far lower than the

normal level, indicating the occurrence of potential low oxygen

risks at some time. The pH values in this study are generally

within the neutral to slightly alkaline range, consistent with the

characteristics of most freshwater ecosystems (Wu et al., 2019).

TN and TP have mean concentration from 1.04 to 2.09 mg/L

and from 0.04 to 0.09 mg/L, respectively. These TN and TP

concentrations suggest a potential for eutrophication, given the

observed increasing trends in nitrogen and phosphorus levels.

The average TN value of Baiheshan (2.09 mg/L) is close to the

threshold of eutrophication (2.0 mg/L), which may be influenced

by natural conditions, external inputs, human activities, and the

ecological characteristics of the lake itself (Shang et al., 2021; Su

et al., 2022; Tong et al., 2019). The permanganate index (CODMn),

ranging from 2.18 to 3.56 mg/L, indicated a low level of organic

pollution along the sections, although the elevated mean value

at Shangheba (3.56 mg/L) may be attributable to the agricultural

non-point source pollution in that area.

Correlation analysis detailed the dynamics of links between

DO and key environmental conditions. There is a strong

positive correlation between DO and pH value (r = 0.66–0.84;

Figure 3, Supplementary Figures S3–S5), which may be due to the

favorable conditions for photosynthesis and oxygen production

of phytoplankton under alkaline (i.e., higher pH) conditions

(Parinet et al., 2004). Eze et al. (2021) found a positive correlation

between dissolved oxygen and pH in aquaculture farms. Negative

correlation between DO and water temperature (r = −0.23 to

−0.65) was consistent with Henry’s Law. The negative correlation

between DO and water temperature was a well-documented

phenomenon in aquatic ecosystems (Abdel-Wareth et al., 2024;

Beshiru et al., 2018; Soltani et al., 2024). As water temperature

increases, the solubility of oxygen decreases, leading to lower levels

of dissolved oxygen. The effect of AT on DO was lower compared

with pH and water temperature. The weak positive correlation

between AP and DO (Duoshipan r = 0.33; Shangheba r = 0.34)

may indicate enhanced oxygen exchange at the water surface with

rising pressure. In summary, pH and water temperature are the

main parameters controlling DO variation, and DO management

should pay more attention to the joint effects of these factors

(especially high-temperature season or large intensity of sudden

increase in pollutant load).
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FIGURE 6

Bayesian optimization combined with the sparrow search algorithm to optimize the BP neural network for predicting the test set dissolved oxygen

content: comparison of predicted and actual values. (a) Baiheshan, (b) Duoshipan, (c) Luojiang, (d) Shangheba. The blue line is a 1:1 line, and the red

line is a fitted curve.

The original BPNN was not applicable for predicting DO at

reservoir-type monitoring sections. The R2 values for training sets

and testing sets were less than 0.5 (with the Luojiang testing

set R2 only 0.057; Supplementary Figures S6 and S7), which also

suggested that nonlinear associations between input features (pH,

water temperature, air temperature, and atmospheric pressure) and

DO could not be well captured by the proposed model. Elkiran

et al. (2019) used BPNN to predict the DO of three stations on

the Yamuna River. Based on the DC values during the validation

phase, the BPNN performance of the stations was 0.8149, 0.7259,

and 0.6830, respectively, further indicating that a single BPNN

has poor predictive performance for DO. Potential systematic

prediction biases (under-prediction on the high-concentration

side and over-prediction on the low-concentration side) could be

explained due to the simple model structure, imperfect model

hyperparameter optimization, as well as the data imbalance. After

optimizing the BPNN using BO and the SSA, model performance

was improved. The optimized BO+SSA-BPNN model exhibited

substantially enhanced predictive capabilities, with R² values

exceeding 0.85 in each section of the training set (Figure 5).

This underscores the critical role of the optimization process

in refining BPNN model accuracy. The superior performance

of the optimized model demonstrates the feasibility of accurate

DO prediction using this approach. Moreover, the improved

performance on the testing sets indicates robust generalization

ability, with correlation coefficients (r) exceeding 0.85 for

Baiheshan and Shangheba sections, reaching 0.949 and 0.941,

respectively (Figure 6). Corresponding reductions in MAE, RMSE,

and MAPE by 30%−61% compared to the original BPNN

model (Table 2) further suggest that BO+SSA effectively mitigated

prediction bias and variance through global search and adaptive

parameter adjustment.

The model comparison detailed in Supplementary Table S1

demonstrates the significant performance advantages of BO

+ SA-BPNN in DO prediction. Across the four monitoring

sections—Baiheshan, Duoshipan, Luojiang, and Shangheba—BO

+ SA -BPNN consistently achieves the lower MAE, RMSE,

and MAPE values, while maintaining high R2 values (ranging

from 0.85 to 0.90). Compared to models employing traditional

single optimization algorithms [Particle Swarm Optimization
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TABLE 2 Model e�ciency comparison.

Name BO+SSA-BPNN BPNN

MAE RMSE MAPE MAE RMSE MAPE

Baiheshan

Training

set

0.31 0.45 4.94% 1.34 1.72 16.80%

Test set 0.37 0.53 5.68% 0.92 1.12 12.50%

Duoshipan

Training

set

0.57 0.79 8.16% 1.57 2.01 19.30%

Test set 0.62 0.87 8.84% 1.05 1.35 15.80%

Luojiang

Training

set

0.70 1.07 6.92% 2.24 2.89 25.60%

Test set 0.72 1.11 7.45% 1.32 1.68 16.30%

Shanghebai

Training

set

0.30 0.40 3.64% 1.05 1.38 12.40%

Test set 0.38 0.74 4.56% 0.89 1.08 11.70%

(PSO)-BPNN and Genetic Algorithm (GA)-BPNN], BO + SA-

BPNN, leveraging the synergistic effect of Bayesian optimization

for hyperparameter tuning and the improved sparrow algorithm

for weight adjustment, reduces MAE by 14%−59.8% and increases

R2 by 3%−5%. Furthermore, in prediction scenarios primarily

influenced by static features, such as locations near river dams,

BO + SA-BPNN demonstrates superior efficiency compared to

time-series models like Long Short-Term Memory (LSTM) and

Gated Recurrent Unit (GRU), achieving a significantly lower

MAPE (4.56%) than GRU (5.67%), highlighting the efficacy of the

optimized feedforward network. While the model’s performance

is influenced by cross-sectional characteristics. Consequently, BO

+ SA-BPNN mitigates the local optima and hyperparameter

sensitivity issues inherent in traditional BPNNs. This provides

a high-precision and readily deployable solution for water

quality prediction scenarios dominated by static features, such

as lakes and reservoirs with infrequent monitoring, thereby

validating the universality and practical value of this hybrid

optimization strategy.

Conclusion

This study demonstrates the successful integration of BO+SSA

to enhance the prediction accuracy of BPNN in modeling DO

concentration dynamics in lakes and reservoirs. The resulting

BO+SSA-BPNN model exhibits a robust global search capability

and rapid self-adaptive parameter tuning, effectively mitigating

the local optima convergence issues and limited generalization

capacity often associated with traditional BPNN. The test-set R2

reached the maximum value of 0.939, and the error index was

decreased by more than 40%. This study finds that the pH and

the temperature of the water are significant influence factors

for DO variation, and the high prediction accuracy can still be

achieved even though the feature input of the model is only

static features, so that the model can be used under conditions

of having less input data. Compared with single optimization

algorithms and conventional machine learning models, the hybrid

strategy is more efficient in improving the convergence rate and has

excellent ability to eliminate bias, which also proves significantly

superior to the individual algorithm. In the follow-up study, we

may explore a hybrid strategy with more model algorithms by

integrating time features to improve the stability of DO variation

prediction in water bodies under extreme weather and sudden

changes in pollutant load. This study provides effective scientific

evidence and technical support for accurate and efficient prediction

and ecological monitoring of DO variation in lake and reservoir

water bodies.
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