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This study examines the toxic effects of river pollution on cattle health in Akaki
River Catchment, central Ethiopia. Water and blood samples were collected
from ten sampling points and four clusters, kept the first sampling point and first
clusters as control. Water samples were collected from the river and analyzed for
physicochemical and heavy metal parameters, while blood samples were collected
from cattle and tested for heavy metal accumulation and key hematological
and biochemical health indicators. Based on these analyses, the Livestock Water
Pollution Index (LWPI) and Livestock Health Index (LHI) were developed to assess
water quality and cattle health, respectively. The study found that LWPI values
ranged from 107.16 to 429.93, with a mean value of 299.26. The LWPI| exceeded
safe limit (LWPI = 100) at all ten sampling points, with pollution levels increasing
progressively downstream. Among the measured parameters, turbidity, lead
(Pb), zinc (Zn), and cadmium (Cd) were the most significant contributors to river
pollution, in that order. Blood analysis results showed that the LHI ranged between
15248 and 290.82, with a mean value of 232.81 across all clusters. Similarly,
the LHI was above the normal threshold (LHI = 100) in all clusters studied, with
elevated levels also observed downstream. Lead, blood urea nitrogen (BUN), and
Cd emerged as key contributors to declining livestock health, highlighting heavy
metal contamination and physiological stress as major risk factors. The relationship
between LWPI and LHI revealed a strong positive correlation, suggesting that river
pollution significantly contributed to livestock health risks. The findings highlight
risks to cattle health, with health implications for human consuming milk, meat,
and its products. The study calls for the implementation of integrated one-health
strategies, focusing on enforcement of regulations to reduce waste discharges
to the river, provide safe water alternatives for livestock, assess human health
risks from contaminated cattle products, and engage communities in sustainable
practices through river stewardship programs.
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1 Introduction

Water resources including rivers, lakes, and streams are essential
for human and livestock consumption, irrigation, industry,
transportation, and recreation (Amenu et al., 2013). Clean water is
crucial for maintaining healthy ecosystems, supporting biodiversity,
and ensuring sustainable agricultural practices. Water quality
significantly impacts livestock production, affecting productivity, milk
yield, disease resistance, and reproductive success (Bekele and
Engdawork, 2022; Doreau et al., 2012; Lardner et al., 2005). However,
rapid urbanization and population growth in Ethiopia, particularly in
Addis Ababa, have stressed the city’s wastewater treatment
infrastructure. This imbalance has led to significant environmental
challenges, particularly the degradation of local water bodies (Dessie
etal., 2024). The situation is further exacerbated by rapid urbanization,
weak pollution control measures, and inadequate sanitation
infrastructure (Angello et al., 2021).

Water pollution, mainly driven by human activities, remains a
major environmental concern in many countries (Habeeb et al., 2018).
Similarly, the Ethiopian government has implemented various
institutional and policy frameworks to prevent and control water
pollution, aiming to reduce its harmful effects on ecosystems and
human health [Federal Democratic Republic of Ethiopia National

Jater Policy and Strategy (FDRE), 2020]. These efforts include
adopting the ‘polluter pays’ principle, which requires those responsible
for pollution to bear the cost of reducing it, either based on the
damage caused to society or the extent to which pollution exceeds
acceptable standards [Ministry of Water, Irrigation, and Energy
(MoWIE), 2020].

Despite these measures, there is evidence (Tadesse et al., 2018;
Mekuria et al., 2021) that water quality degradation due to pollution
is on the rise. The size and severity of water pollution are substantially
higher in and around Addis Ababa, notably in the Akaki River
Catchment. Unregulated household and industrial waste disposal, as
well as waste disposal from the agricultural fields, livestock farms, and
healthcare facilities have been contributing to the worsening of water
quality (Tadesse et al., 2018). Both people and livestock residing in the
downstream areas of the Akaki River Catchment in Addis Ababa are
exposed to pollution originating from industrial, municipal, and
healthcare waste sources (Abosse et al., 2024; Mekuria et al., 2021).

Approximately two-thirds of Ethiopia’s industries are concentrated
in and around the Addis Ababa River Catchment, particularly in the
Akaki River Catchment areas. The vast majority (90%) of these
industries, along with some healthcare facilities, lack on-site
wastewater treatment systems. As a result, large volumes of untreated
industrial, commercial, and domestic waste are discharged into local
agricultural and grazing lands, rivers, and streams (Eliku and Leta,
2016; Aschale et al., 2021; Dessie et al., 2022).

Heavy metal contamination of river water represents a serious
environmental and public health risks (Zinabu et al., 2019; Kumar
et al,, 2024) because of its harmfulness, ingenuity, bioaccumulation,
and bio-amplification highpoints. The recent reports on Frontiers
nutrition showed that, the inspected industrial products have
detrimental impacts on human health from increased concentrations
oflead (Pb) and cadmium (Cd). Likewise, high concentrations of toxic
metals that surpass allowed limits in river water might harm the
convenience of river water for irrigation due to soil pollution and
phytotoxicity to plants, which affects the quality of soil, grasses and
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crops and threatens livestock, aquatic life and human health through
the food chain (Mekuria et al., 2021). However, many small-scale
farmers use the river water to cultivate a variety of vegetables, use
grasses for animal foods and cleaning purposes (Mengesha
etal., 2023).

Livestock farming in peri-urban areas of Ethiopia mainly depend
on the river for drinking water and graze on potentially contaminated
grasslands (Mekonnen et al, 2020; Weldesilassie et al., 2011).
Consequently, impressive degrees of toxic metals could be moved to
animals straightforwardly or by implication from contaminated water
sources, spreading through the order of things and representing a
critical health hazard to individuals consuming livestock product
(Gupta et al., 2021; Mengesha et al., 2023). Heavy metals can transfer
from irrigation water to agricultural soils, posing a serious risk to
livestock and human health. This risk arises from direct contact with
contaminated soil and the bioaccumulation of metals in forages
(grasses), which can, in turn, contaminate animal products. Increased
toxicity of heavy metals in human and animal bodies can contribute
to cancer and other non-cancerous diseases (Castro-Gonzalez
etal., 2017).

Since heavy metals are non-biodegradable, they tend to
accumulate in the food chain. Their presence in animals can lead to
adverse health effects by accumulating in internal organs and causing
hematobiochemical and pathological alterations (Gashua et al., 2018).
Ultimately, bioaccumulation and toxicopathological damage can
compromise food security and pose significant public health risks
(Jorge et al., 2013).

Studies on heavy metal contamination of water (Mekuria et al.,
2021), soil (Kaczala and Blum, 2016), and vegetables (Yohannes and
Elias, 2017) in the little Akaki River catchment have shown that the
studied heavy metals were above recommended limits. Industries,
commercial activities, health facilities, petrol stations, garages, public
and domestic utilities release untreated wastes into nearby
environments (Aschale et al., 2021; Olsson et al., 2022). Consequently,
a huge amount of waste is generated every day from different point
and non-point sources.

Several researchers (Khan et al., 2021; Luo et al., 2011; Waleed
Makki et al., 2023), reported that serious health problems may develop
as a result of excessive accumulation of heavy metals and even
essential trace elements such as Cu and Zn in human body and
animals consuming these wastewater and contaminated grasses by the
wastewater (Teketel, 2023). In Addis Ababa, large volumes of untreated
water are released to water bodies which farmers use for irrigation
(Weldesilassie et al., 2011). Despite the health risks, many urban
residents rely on irrigated farming for their livelihoods, using polluted
river water to grow high-value crops. Notably, about 60% of the city’s
leafy vegetables are produced by urban farmers using this
contaminated water (Weldesilassie et al., 2011).

However, considering recent rapid dynamics in the river
catchment, it is essential to comprehensively analyze the level of Akaki
River pollution. Moreover, the effect that Akaki River contamination
will have on cattle exposed to the polluted water has not been given
attention in the existing literature. Particularly, there is lack of
information on the heavy metal bioaccumulation in cattle bodies as
no studies conducted in Ethiopia. This study were hypothesized with
livestock with access to clean, uncontaminated river water show
significantly lower blood heavy metal concentrations and better health
indices than those exposed to polluted sources. Hence, this study is
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the first of its kind to examine relationship between wastewater and
heavy metal bioaccumulation in animal body. This study aims to
determine the level of Akaki River pollution and its effect on cattle
health, with specific objectives of analyzing (1) physicochemical and
heavy metal concentration in water samples, and (2) heavy metals
bioaccumulation and its effect on hematological and biochemical
parameters in cattle blood.

2 Materials and methods
2.1 Description of the study area

The study was carried out in the Akaki River Catchment, which
drains the Shagar and Addis Ababa city administrations. It is situated
at elevations ranging from 2,464 meter above sea level (a.s.1) at Gafarsa
reservoir in the North to 2048 m.a.s.I at Aba Samuel reservoir in the
South. The river originates from Mount Entoto in Shagar City, situated
to the Northwest of Addis Ababa (Teketel, 2023). It subsequently
merges with the Gafarsa reservoir, traverses the Southwestern part of
Addis Ababa, and ultimately empties into the Aba Samuel reservoir
after covering approximately 40 kilometers, as shown in Figure 1. The
area of the catchment covers 403.2 km? (Gonfa et al., 2023), with a
temperate Afro-Alpine climate. The average annual rainfall is
1,254 mm, and the average daily temperature ranges between 9.9 and
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24.6 °C. The lower course of river has particularly been the main
source of drinking water for community and the livestock. There are
varieties of vegetables, grasses and other plant species across the Akaki
River Catchment.

The catchment includes eight Addis Ababa Sub-cities: Gulele,
Kolfe keranyo, Addis ketema, Arada, Lideta, Kirkos, Nefas silk Lafto,
and Akaki kality. The catchment also includes five Shagar
Administrative sub-cities: Sululta, Burayu, Furi, Sabata, and Galan
(Gonfa et al,, 2023). Over the past few decades, there have been
significant changes in land use and land cover within the catchment,
characterized by a notable increase in settlement and built-up areas.
These changes have had an impact on the quality of river water (Abi
et al,, 2025) and grasslands found around the river catchments. The
data collection was preceded by ethical approval from the Research
Ethics Committee of the College of Veterinary Medicine and
Agriculture at Addis Ababa University.

2.2 Sampling design

To assess river pollution levels, ten sampling points (S1-S10) were
purposively selected, considering factors such as the presence of
tributaries, flood occurrences, industrial, healthcare facilities, and the
river’s various functions. Water samples were collected three times
during the dry season (February and March 2024) from ten designated
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Map of the study area: Ethiopia, Akaki River Catchment (ARC), sampling points, and clusters.
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sampling points. The sampling locations were organized into four
clusters, as illustrated in Figure 1. At each point, triplicate samples
were obtained in pre-cleaned 500 mL high-density polyethylene
(HDPE) bottles to minimize contamination. The samples were
immediately transported to the laboratory under chilled conditions
for subsequent physicochemical and heavy metal analyses. In total, 30
water samples were collected (three replicates from each of the ten
sites). Sampling was conducted during the dry season to reduce the
potential influence of non-point source pollution commonly
associated with flooding or intense rainfall events. Blood samples were
collected during February and March 2024 from 24 cattle inhabiting
the Akaki River catchment, distributed across four clusters: Cluster 1
(Gafarsa Reservoir, S1), Cluster 2 (Qarsa, S2-S3), Cluster 3 (Ichu, S4-
S7), and Cluster 4 (Galan-Gudda, S8-S10), as illustrated in Figure 1.
These clusters were categorized as good, poor, very poor, and unsuitable
for drinking purposes, following the classification criteria established
by Gani et al. (2025).

A total of 24 animals were sampled across the four clusters. Six
animals were selected from Cluster 1 and designated as the control
group, while six animals were sampled from each of the remaining
three clusters, which served as the treatment groups. The clustering
framework was developed based on the spatial distribution of grazing
sites, the presence and density of cattle, the occurrence of point and
non-point pollution sources, and the degree of exposure to wastewater
within the river catchments. Cluster 1 was deliberately designated as
the control site, representing cattle with no documented history of
contact with wastewater during grazing activities from the researcher’s
observations and report of urban livestock agency. The animals were
grouped according to the geographical boundaries of the town, which
limited movement between clusters. All sampled animals were freely
grazing around the river catchments at the study sites. Blood samples
were collected in three replicates during each sampling period, in
parallel with water sampling. After analysis, the mean concentrations
of heavy metal residues were used for result interpretation.

Confounding factors such as breed, species, feed type, sex, and age
were recorded and assessed in this study. To minimize variation and
enhance internal validity, breed, feed type, and species were controlled
across all study sites. Specifically, only local cattle breeds were
included, and all animals had free access to the same type of grazing
land. By restricting the sample to a single breed, species, and feed type,
the study reduced potential confounding and ensured greater
comparability among groups (Rothman et al., 2008).

Additionally, animals with identified exposure to river water,
particularly those grazing near river catchments and exposed to
grasses collected from the areas, were prioritized. Older animals were
ranked for sampling, with the cattle in this study having an average
age of seven years. Of the sampled animals, fourteen were female and
ten were male. Animals sampled from the Gafarsa reservoir, an area
free from known environmental pollutants were used as the
control group.

Blood was obtained from the jugular vein in an Ethylene-di-
amine-tetra-acetic-acid (EDTA) coated and plain vacutainer tube
(10 mL), stored in an ice-packed cold box, and transported to
Chemistry Laboratory for heavy metal examination. At the same time,
the bloods sampled by the indicated procedures were transported to
Biomedical Laboratory, for hematology and biochemical analysis.
These
hematological analysis.

samples underwent heavy metal, biochemical, and
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2.2.1 Physicochemical analysis of water sample

Physicochemical analysis of water samples was conducted
immediately after delivery to the College of Natural and
Computational Science of Addis Ababa University, Chemistry
laboratory. The characteristics studied were temperature (°C),
power of hydrogen (pH), dissolved oxygen (DO), total dissolved
solid (TDS) (mg/l), salinity, and turbidity (NTU) in practical
salinity unit (PSU). They were measured using a HANNA multi-
parameter instrument (model HI9829-01042) and EUTECH
conductivity/Co/Fo meter. The NTU of the water sample was
measured with equipment TL2360 LED Turbidimeter, ISO,
0-10,000 NTU.

2.2.2 Water sample digestion and analysis for
heavy metals

The samples were preserved in 5 mL of nitric acid (HNO;) and
kept in the refrigerator at 4 °C to avoid volatilization and biological
deterioration between sampling and analysis as such procedures of
Weldegebriel et al. (2012). To determine the heavy metals contents,
the water samples were digested following standard protocols of
American Public Health Association, American Water Works
Association, Water Environment Federation (AAW), 2023. The
preserved water samples were well mixed, and 100 mL of the
combination was digested in a glass-covered beaker with 5 mL of
strong HNO;, which is used to dissolve the sample and remove its
complete organic matrix following the procedures developed by
Mitra (2003). Water sample digestions was followed routine sample
digestion procedures [Kingston and Jassie, 1986; United States
Environmental Protection Authority (USEPA), 1992; Turek et al.,
2019]. 50 mL of water sample and 5 mL of concentrated HNOj;
were mixed in the glass and teflon digestion vessel and heated at
95 °C on a hot plate or digestion block (to avoid boiling) for
30-60 min. Then the HNO; were added and the sample was cooled
to room temperature followed the procedures used by Yong and
Thomas (1999). Organic matter content was determined by loss-
on-ignition (LOI) at 105 °C for 6 h followed by ignition at 60 °C
for 6 h. Sludge pH was measured potentiometrically in a 1:2.5
(m/v) sample-to- potassium chloride (KCl) (1 mol/dm®) solution
using a Mettler Toledo Delta 350 pH meter (Jakubus and
Czekala, 2001).

After boiling and evaporating the sample, 5 mL of concentrated
HNO; and 2 mL of hydrogen peroxide (H,0,) were added to the
digest and reheated until the digest became a light and clear
solution. Following the digestion process, the wall of the
volumetric flask was cleaned with deionized water and the digests
were filtered through Whatman filter paper No. 42. The filtrate
was then transferred to a glass cup that had been previously
cleaned, filled to a capacity of 50 mL with deionized water, sealed,
and refrigerated at 4 °C until analysis. Finally, the outcrop
underwent cooling, filtration, and was measured using inductively
coupled plasma optical emission spectrometry (ICP-OES; Arcos
Spectrophotometer, Germany) analysis. The water samples were
tested for including Pb, Cd, Cr,
Zn concentrations.

heavy metals, and

The instrument was calibrated and adjusted according to the
manufacturer’s specifications. A continuous sample introduction
system, incorporating an auto-sampler for injecting and analyzing
both the acid-diluted sample solution and the reference sample, was
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used. Finally, the concentrations of each heavy metal were assessed
using spike tests and reference samples.

2.2.3 Blood samples digestion and analysis

Blood samples were digested following the procedures used by
Pompilio et al. (2021). From the digested blood, 2 mL of blood plasma
and 2 mL of sulfuric acid (H,SO,) were combined and left in the
laboratory overnight for digestion. The blood was digested by heating
the sample solution to 120 °C. To aid digestion by breaking it down at
this point, 2 mL of H,O, was added. The excess acid mixture was
evaporated and chilled to a semi-dry bulk. The digested samples were
diluted with up to 50 mL of distilled water, placed in glass tubes, and
refrigerated at 4 °C until they were analyzed using an ICP-OES
according to Hussain et al. (2021) procedures.

Digestion parameters were followed the measurement unit of
1,600 W power, 15-min ramp, 1,600 psi pressure, and 20 °C
temperature for 15 min. Heavy metal concentrations in the digested
blood samples were determined by ICP-OES. All chemicals used were
of analytical reagent grade and solutions were prepared using
18.2 MQ cm deionized water. Calibration standards were prepared
from a standard XVI multi-element inductively coupled plasma (ICP)
standard solution (Merck KGaA, Darmstadt, Germany). Sample
solution obtained by acid dilution as well as the reference sample was
injected to the continuous sample introduction system using the auto-
sampler. Finally, the concentration of each of the studied heavy metals
was determined based on spike test and reference samples.

2.2.4 Hematological and biochemical analysis of
blood sample

Hematological and biochemical analysis were performed on the
collected blood. The measurement of Packed Cell Volume (PCV),
Hemoglobin (Hb), White Blood Cell (WBC) count, and neutrophil
count percentage (NCP). NCP were determined from a whole blood
Blood
biochemical markers such as Aspartate Aminotransferase (AST),
Alkaline Phosphate (ALP), Total Protein (TP), Albumin (ALB), and
blood urea nitrogen (BUN) were analyzed with an automated

sample using hematological measurement methods.

biochemical analyzer (Automatic Biochemical Analyzer, Emp-168), a
commercially available blood auto analyzer at College of Veterinary
Medicine and Agriculture (CVMA), Addis Ababa University. The
blood heavy metal analyses were processed as the procedures used for
water sample analysis by ICP-OES (Pompilio et al., 2021).

2.2.5 Preparation of standard reference of heavy
metals in both water and blood samples

To prepare the calibration solutions, HNO; and internal standards
were used to dilute the multi-element standards. The validation
measurements of ICP-OES were performed using a working
calibration solution of the studied toxic heavy metals which were
prepared by appropriate stepwise dilution of a certified standard stock
solution of the elements (Ultra grade 1,000 g/mL, 5% HNO;, ULTRA
scientific analysis solutions) following the procedures of De Luna
etal. (2019).

A two-step process was used to prepare intermediate standard
solutions. At first step, 1.000 mL of Cr, Cd, Zn, and Pb were pipetted
from stock standards into a 100 mL volumetric flask (Nalgene®,
Rochester, NY, United States), the solution was adjusted to a final
volume of 100 mL with a synthetic matrix solution with alternatively,
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1.000 mL of a four-metal custom stock standard was used to prepare
100 mL of the solution. In the second step, four levels of intermediate
standards were prepared by aliquoting varying volumes of the step 1
solution into 15 mL centrifuge tubes (Falcon®, Becton Dickinson), the
volumes were adjusted to 10.0 mL with the synthetic matrix solution
and the first level contained only the diluent (adopted from Gajek
etal., 2013).

2.2.6 Preparation of quality control

For precisions and accuracy of instrumentations, quality
control (QC) samples were prepared by spiking defibrinated sheep
blood with inorganic stock standard solutions at three levels
(QCLow, QCMed, and QCHigh). The spiked blood was preserved
with  approximately 1.5mg/mL Disodium dihydrogen
ethylenediaminetetraacetate (Na,H,EDTA) (Fisher Scientific,
Pittsburg, PA, United States) and stored in 15 mL Falcon®
centrifuge tubes at —20 °C. To minimize freeze-thaw cycles, a set
of three QC samples at different levels was thawed and divided into
1 mL aliquots in 2 mL cryogenic vials (Corning Inc., Corning, NY,
United States) (Gajek et al., 2013).

Blood specimens, QC samples, and intermediate standards were
diluted 50-fold with a diluent containing Cr, Cd, Pb, and Zn
(20 pg/L each) as internal standards (ISTDs). A Digiflex CX
dispenser (Titertek, Huntsville, AL, United States) was used to
dispense 4,900 pL of diluent into 15 mL Falcon® centrifuge tubes.
Then, 100 pL of blood specimen or QC sample was added using a
manual Eppendorf pipette (Eppendorf AG, Hamburg, Germany).
Any excess sample on the pipette tip was carefully wiped away with
an absorbent wipe (Fisher Scientific, Pittsburg, PA, United States).
Homogenizations between each sample analysis were done to
minimize the micro-clots of blood.

2.3 Data analysis

The collected data was analysed using Statistical Package for the
Social Sciences (SPSS) software. Descriptive statistics (mean,
standard deviation) were used to present the levels of
physicochemical parameters and heavy metal concentrations in
water samples, as well as heavy metal concentrations and
haematological and biochemical parameters in cattle blood. All
parameters were compared against established normal acceptable
values or ranges to assess the extent of the river pollution and
cattle health.

To examine the impact of water pollution on cattle health, two
indices are developed: the LWPI and the LHI. These indices are
calculated using a structured approach that
measurements from both water and cattle blood samples. LWPI was

incorporates

calculated for the ten sampling points, while the LHI was calculated
for the four clusters. The calculation process considers three key
components: (1) the measured values of selected water quality and
blood parameters, (2) established standard normal limits of water
safety for livestock consumption and livestock health parameters, and
(3) the relative importance of each parameter, represented through
weighted contributions. By integrating these factors, the LWPI reflects
the level of water contamination affecting livestock, while the LHI
provides an overall assessment of livestock health in response to water
quality conditions.
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2.3.1 Livestock water pollution index

Livestock Water Pollution Index was calculated using
physicochemical (TDS, salinity, pH, turbidity, temperature, and
DO) and heavy metal (Pb, Cd, Cr, Zn) analysis of water samples.
The detailed procedures on heavy metal pollution indices, were
derived from the procedure of Mohan et al. (1996) and Tiwari et al.
(2015). The standard safe limit, weight, direction of risk, and
justification for weight of the parameters are provided in
Supplementary Table 1. LWPI is calculated as Equation 1:

SI; = W;
LWPI = M (1)
i
i) If the safe values are < standard safe limit,
SI; = Sub-index for parameter i, calculated as Equation 2:
s, = S )
1 Sl

C; = Measured/observed concentration of parameter i
S; = Standard safe limit for parameter i
2. W; = Weight assigned to parameter i

ii) If safe values lie in the mid of the parameter values, e.g., pH and
Temperature, piecewise equation is used (Equation 3).

100+ 3= PH ) w100 i i <65
SI = 100, if6.5< pH <8.5
100+W*100, if pH >8.5
1oo+(1017_0T)*100, ifT <10 (3)
SI = 100, iF10<T <25
1oo+%*1oo, if T >25

If the safe values are > standard safe limit, e.g., DO calculate SI; as
follows (Equation 4). If C; = 0, simply assign a higher value for SI;, e.g.,
500. However, this is an extremely rare situation.

Si
SIpg =— 4
DO == (4)

i

The actual calculation of LWPI is provided in a spreadsheet in
Supplementary Table 2. The index is interpreted based on a threshold
value of 100. The LWPI value below 100 indicates that the water is
within safe limits and is not contaminated, posing no significant risk
to livestock health. Conversely, an LWPI value exceeding 100 suggests
the presence of heavy metals and other pollutants at levels beyond
acceptable standards (Badeenezhad et al., 2023). Such contamination
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renders the water unsafe for livestock consumption, potentially
leading to adverse health effects.

2.3.2 Livestock health index

Livestock Health Index was calculated using heavy metals
bioaccumulation (Pb, Cd, Cr, and Zn), and haematological and
biochemical (PCV, Hb, WBC, NCP, AST, TP, BUN, ALP, and ALB)
analysis of blood samples. Again, the standard safe limit, weight,
direction of risk, and justification for weight of the parameters are
provided in Supplementary Table 1. To calculate the LHI, the following
equation was used (Equation 5):

(S W)
ZW;

LHI = (5)

i) If the safe values are < standard safe limit,

SI; = Sub-index for parameter i, calculated as (Equation 6):

S =—- ©)

C; = Measured/observed concentration of parameter i
S; = Standard safe limit for parameter i
2. W; = Weight assigned to parameter i

ii) If safe values lie in the mid of the parameter values, piecewise
equation is used (Equation 7).

*
S. . —C:
100+ (Simin = Ci) 100, if C; < Sipin
imin
SI; = 100, lfsimin <GC; <Simax 7)
*
C.—S:
100+ M 100, if Ci > Sipax
imax

Where: S;,ir, is the low bound of the safe limit for parameter i.

Simax is the upper bound of the safe limit for parameter i.

C; = Measured/observed concentration of parameter i

The LHI serves as an indicator of the overall health status of
livestock (see Supplementary Table 2 for calculation of the index). The
LHI value below 100 suggests the absence of toxicity, indicating that
the measured health parameters fall within normal ranges. In contrast,
an LHI value exceeding 100 signals the presence of severe deficiencies
or toxicities, with higher values reflecting greater levels of stress or
health deterioration.

2.3.3 Relationship between LAR pollution and
cattle health

For both the LWPI and LHI, sampling point S1 was designated as
the control site. Differences between S1 and the other sampling points
(S2-S10) were assessed using a One-Sample T-Test to determine trends
in river pollution and its potential impact on cattle health along the
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TABLE 1 Distribution of LWPI and LHI by the clusters and sampling points.

10.3389/frwa.2025.1642296

Clusters Number of cattle Sampling points LWPI LHI
(N = 24)
Cluster 1 6 S1 107.16 152.48
Cluster 2 6 s2 348.28 258.19
S3 429.93 258.19
Cluster 3 6 S4 213.52 229.76
S5 287.40 229.76
S6 362.98 229.76
7 31791 229.76
Cluster 4 6 S8 305.32 290.82
89 317.25 290.82
S10 302.83 290.82

LWPI, Livestock water pollution index; LHI, Livestock health index.

riverbank. Prior to conducting the T-test, the normality of both indices
was evaluated using the Shapiro-Wilk test. The results indicated that
LWPI (Statistic = 0.908, with df = 10 and p = 0.270) was approximately
normally distributed. For LHI, the data points of the four clusters were
attributed to the ten sampling points (S1-S10), since the clusters
encompass the sampling points. The LHI of Cluster 1 was mapped to S1,
Cluster 2 to S2 and S3, Cluster 3 to S4, S5, S6, and S7, and Cluster 4 to
S8, 89, and S10 (see Table 1). The clustered division of sampling points
are based on observed anthropogenic sources of pollution to ARC. This
ensures that both LWPI and LHI have the same number of data points
and the S1 and Cluster 1 was kept as control point of the analyzed results.

The resulting LHI distribution, hereafter adjusted LHI, was
found to be approximately normal, as confirmed by Shapiro-Wilk
test (statistic = 0.851, with df 10 and p = 0.06). To visualize the
distribution of the indices and the relative contribution of different
parameters used in calculating the indices, bar graphs were
employed. Finally, a simple linear regression analysis was
conducted, with LWPI as the predictor variable and the LHI as the
outcome variable, to examine the effect of ARC pollution on cattle
health across the sampling points.

3 Results
3.1 Water sample analysis

3.1.1 Physicochemical analysis of water samples

Physicochemical analyses of water samples were conducted in
ten selected sampling points to determine water quality of the
Akaki River Catchment (ARC). An analysis of physicochemical
parameters provides vital information about the overall quality of
water bodies. As shown in Table 1, the ARC water samples
exhibited variations in several physiochemical parameters across
sampling points (S1 to S10). The average temperature of the water
samples ranged from 16.7 + 1.15 to 23 + 1.53 °C, with all sampling
points falling within the normal range. The sampling points three
(S3) recorded the highest temperature, while the sampling points
six (S6) recorded the lowest.

The power of hydrogen (pH) level ranged from 6.91 + 0.11 to
8.48 +0.21. A pH of seven would be neutral; anything over seven
denotes alkalinity, and anything under seven denotes acidity. The pH
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value denotes a slight deviation from the normal range of 7, except at
sampling points eight (S8), where the pH level was the highest. On the
contrary, the lowest pH value was recorded at sampling points two
(S2). Overall, the pH value for the water samples fell within
acceptable ranges.

The average dissolved oxygen (DO) content in the Akaki River
Catchment water samples varied from 3.44 + 0.34 to 6.46 + 0.52 mg/L,
with the highest concentration observed at sampling points five (S5)
and the lowest at sampling points nine (S9). The DO level exceeded
the normal limit from sampling points one (S1) to S5 but fell below
the normal limit from S6 to sampling points ten (S10). It appears that
the level of DO was higher in the upper stream and lower in the
downstream areas of the river. The lower the DO at the lower stream
is associated with the highest pollution level of the river.

The total dissolved solid (TDS) showed a broad range, with
average values ranging from 82 + 4.9 to 642 + 31.4 mg/L. The highest
TDS concentration was observed at S8, while the lowest was recorded
at S1. The TDS level was below the normal limit from S1 to S3 but
exceeded the normal limit from sampling points four (S4) to S10.

Salinity levels, measured in PSU, ranged from 46 + 6.3 to
139 + 15.9 PSU, with the highest value observed at S4 and the
lowest at S1. The level of salinity at all sampling points was higher
than normal range. The turbidity measurements at the sampling
points varied widely, ranging from 82 + 6.8 to 914 + 55 NTU. The
highest turbidity level was observed at S6, while the lowest was
recorded at S1. Again, the level of turbidity was higher than the
normal limit at all sampling points. Overall, except temperature all
physicochemical parameters were outside the normal range
(Table 2). The pH and TDS levels of water samples appear to
be higher in the downstream areas, while the level of DO was
higher at the upper stream and lower in the downstream areas.
Salinity and turbidity levels were higher than the normal ranges at
all sampling points.

3.1.2 Heavy metal analysis of water samples

Due to its toxicity and capacity to build up and intensify in the
food chain, heavy metal pollution in river water poses serious risks to
the environment and public health (Mekuria et al., 2021). Table 3
presents the heavy metal concentrations in the ARC alongside their
standardized normal ranges. The mean concentration of chromium
(Cr) ranged from 0.0086 + 0.0000 mg/L to 0.0500 + 0.0055 mg/L, all
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TABLE 2 Average physicochemical parameters in water samples.

10.3389/frwa.2025.1642296

Sampling Physicochemical parameters (mean +SD)
points Temperature (°C) pH DO (mg/L) TDS (mg/L)  Salinity (PSU) Turbidity
(NTU)
S1 22+15 7.61+0.21 539+0.51 82+49 46 +£6.3 82+6.9
S2 19+1.53 6.91£0.11 6.22+0.1 195+8.7 67 £10.7 660 + 30.7
S3 23+1.53 7.5+0.05 4.83 £0.04 488 +14.8 89 +13.6 414 +33.6
S4 19.6 £2.1 7.29 +0.08 6.06 £ 0.74 515+7.6 139+ 159 379 +63.9
S5 19+19 7.21£0.00 6.46 + 0.52 588 +15.5 127 £22 914 £55
S6 16.7 £ 1.15 7.23 £0.06 4.27 £0.1 568 +27.3 126 + 14 910 +68.7
S7 208+ 1.7 7.21+0.13 3.84+04 566 + 28.7 131 £ 20.6 735+ 74.7
S8 22.7+1.3 8.48 £0.21 432+0.5 642 +31.4 125+ 15.9 722 +432
S9 19.6 £ 1.7 7.43+0.2 3.44 +0.34 552 +13 97 +8 811 +26.1
S10 18 +1.85 7.44+0.3 4.67 £0.33 569 + 23 83+9.5 621 +67.5
Normal range 10-25 [Ethiopian 6.5-8.5 [Federal >5mg/L <1,000 [Nuclear < 1,000 [European <30 [European
Environmental Protection Ministry of Water [European Union Regulatory Union (EU), 1998] Union (EU), 1998]
Authority (EEPA) and Resources (EU), 1998] Commission (NRC),
United Nations Industrial (FMoWR), 2001; 1974]
Development Organization World Health
(UNIDO), 2003] Organization
(WHO), 2011]

TABLE 3 Average heavy metal concentration in water samples.

Sampling Points

Heavy metals (mean + SD)

Cr (mg/L) Cd (mg/L) Pb (mg/L) Zn (mg/L)
S1 0.0340 £ 0.0055 0.0025 £+ 0.0014 0.0969 + 0.0679 0.0883 £ 0.0265
S2 0.0309 £ 0.0055 0.0050 + 0.0014 0.1454 + 0.1085 0.5180 + 0.0240
S3 0.0149 £ 0.0055 0.0066 + 0.0000 0.1518 £ 0.0271 0.9375 £ 0.0816
S4 0.0118 £ 0.0055 0.0050 + 0.0014 0.2457 £ 0.0271 0.0324 £ 0.0145
S5 0.0086 + 0.0000 0.0042 £ 0.0025 0.0892 + 0.0000 0.2214 +0.0372
S6 0.0372 £ 0.0096 0.0083 + 0.0014 0.2926 +0.0271 0.1159 + 0.0240
S7 0.0245 + 0.0055 0.0091 £ 0.0025 0.3083 +0.0271 0.0287 +0.0128
S8 0.0404 £ 0.0055 0.0115 £ 0.0000 0.1078 £ 0.0927 0.2403 £ 0.0070
S9 0.0500 + 0.0055 0.0033 + 0.0028 0.2613 +0.0271 0.1174 +0.0142
S10 0.0149 £ 0.0055 0.0081 + 0.0029 0.2926 + 0.0271 0.0934 +0.0185
Normal range < 0.05 [Federal Ministry of <0.005 [Ethiopian <0.05 [Ethiopian <0.03 [Ethiopian
‘Water Resources (FMoWR), Environmental Protection Environmental Protection Environmental Protection
2001; World Health Authority (EEPA) and United Authority (EEPA) and United Authority (EEPA) and United
Organization (WHO), 2011] Nations Industrial Development | Nations Industrial Development | Nations Industrial Development
Organization (UNIDO), 2003] Organization (UNIDO), 2003] Organization (UNIDO), 2003]

within the normal range. The highest concentration was recorded at
S9, while the lowest was recorded at sampling points seven (S7).
Similarly, the concentration of cadmium (Cd) varied from
0.0025 + 0.0014 mg/L to 0.0115 + 0.0000 mg/L, also falling within the
normal range across all sampling points. The highest concentration of
Cd was observed at S8, while the lowest was observed at S1. Though
the concentration of both Cr and Cd were within acceptable normal
range, their concentration tends to increase towards the downstream
areas of the river.

Frontiers in Water

Conversely, the concentration of lead (Pb) ranged from
0.0892 + 0.0000 mg/L to 0.3083 + 0.0271 mg/L, with all sampling
points exceeding the normal range. Similarly, the concentration of
zinc (Zn) ranged from 0.0287 + 0.0128 mg/L to 0.9375 + 0.0816 mg/L,
with all sampling points surpassing the normal range, except S7. The
concentrations of Pb tends to increase towards the midstream and
downstream areas of the river, while the concentration of Zn has
shown a mixed result, with higher levels observed in the upper stream
part of the river.
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3.1.3 Summary of the water sample analysis

The distribution of the LWPI across the ten sampling points
reveals significant variation in water quality. The LWPI values range
from 107.16 to 429.93, with a mean LWPI of 299.26. All ten sampling
points exceeded the safe limit of the water (LWPI = 100), indicating
widespread water pollution, as shown in Figure 2. The highest
pollution level was observed at S3 (LWPI = 429.93), followed closely
by S6 (LWPI = 362.98). Conversely, the lowest pollution level was
recorded at control point, i.e., S1 (LWPI = 107.16), though it still
exceeds the safe limit. These results suggest considerable spatial
variability in pollution severity along the river. A One-Sample T-Test
was conducted to compare S1 with other sampling points (S2-510)
to assess the statistical significance of pollution differences. The
results show a mean difference of 213.44, with a t-value of 10.892
(p <0.05), confirming a significant increase in pollution levels at
downstream sites.

Among the measured parameters, turbidity, Pb, Zn, and Cd were
the most significant contributors to river pollution (see Figure 2). The
mean turbidity across the sampling points was 104.1 NTU, with the
highest values observed at S5 (152.3) and S6 (151.7), indicating
excessive suspended particles that can affect water clarity and quality.
Lead (Pb) levels averaged 79.7, with the highest concentrations

10.3389/frwa.2025.1642296

recorded at S7 (123.3) and S6 (117.0), exceeding safe limits and
posing toxicity risks to livestock. Zinc (Zn) exhibited a mean
concentration of 63.8, with the highest value at S3 (250.0),
significantly deviating from the control site (S1). Cadmium (Cd) also
showed elevated levels, averaging 25.4, with peak concentrations at
S8 (46.0) and S7 (36.4), indicating potential bioaccumulation hazards.

3.2 Blood sample analysis

3.2.1 Heavy metals bioaccumulation in blood
samples

Chronic toxicity in animals could be caused by accumulation of
heavy metals in their body (Tahir and Alkheraije, 2023). Heavy metal
analysis was performed on the blood samples collected from cattle
across four distinct clusters along ARC (Table 4). The concentrations
of Cr ranged from 0.0220+0.0078 mg/L in cluster 2 to
0.0277 +0.0172 mg/L in cluster 4. In general, there is a discernible
trend of increasing Cr levels from upper stream to downstream areas
of the river. Nevertheless, Cr levels did not exceed the recommended
limit in any of the clusters. However, the concentrations of Cd varied
from 0.0071 + 0.0035 mg/L in cluster 1 to 0.0038 + 0.0025 mg/L in
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TABLE 4 Average concentration of heavy metals in blood samples.

Clusters

Cr (mg/L)

Heavy metals (Mean + SD)
Cd (mg/L)

Pb (mg/L) Zn (mg/L)

Cluster-1 0.0229 + 0.0058 0.0071 £ 0.0035 0.1503 £ 0.0427 1.3915 £ 0.2032
Cluster-2 0.0220 + 0.0078 0.0052 +0.0016 0.1221 £ 0.0315 1.3660 + 0.2430
Cluster-3 0.0243 +0.0036 0.0061 +0.0035 0.1295 +0.0178 1.2518 £0.1211
Cluster-4 0.0277 £ 0.0172 0.0038 +0.0025 0.1440 £ 0.0358 1.4333 £ 0.0796

Normal range < 0.05 (Makridis et al., 2012)

< 0.005 [World Health
Organization (WHO), 2009]

<0.01 [Food and Agricultural
Organization (FAO), 2004]

0.8-1.2 (Pieper et al., 2018; Giri
et al., 2020)
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cluster 4, indicating a declining trend of level of Cd from upper
stream to downstream areas of the river. Again, the concentration of
Cd was not above recommended normal range in all clusters.

The concentrations of Pb ranged from 0.1221 + 0.0315 mg/L in
cluster 2 to 0.1440 + 0.0358 mg/L in cluster 4. It is crucial to note that
these concentrations exceeded the permissible normal range in all
clusters, suggesting higher accumulation of Pb in the blood of cattle
along the river catchment. Similarly, Zn concentration varied from
1.2518 +0.1211 mg/L in Cluster 3 to 1.4333 + 0.0796 mg/L in Cluster
4. However, the level of Zn concentration was below standardized
normal range in all clusters. The female animals and older age groups
were showed higher concentrations of all the analyzed heavy metals.

3.2.2 Hematological and biochemical analysis of
blood samples

Studies have shown that the exposure of animals to heavy metals,
particularly Cd and Pb, at concentrations above the permissible limit
causes a significant change in their biochemical and hematological
indicators such as Aspartate Aminotransferase (AST), Alkaline
Phosphate (ALP), blood urea nitrogen (BUN), Total Protein (TP),
Albumin (ALB), packed cell volume (PCV), and hemoglobin (Hb)
(Nisha et al., 2009; Patra, 2011; Sato et al., 2019). An analysis of PCV
reveals a rising trend from Cluster 1 to Cluster 4. However, with the
exception of Cluster 1 where the PCV level was lower, PCV levels
were within the normal range for the other Clusters (Table 5).

Hemoglobin levels remained consistent across the first three
clusters, with a slight increase observed in Cluster 4. However, while
Hb levels were within the normal range in all clusters, they were
decreased in Cluster 1. WBC counts showed minimal variation across
the clusters, with a relatively higher value observed in Cluster 4.
However, white blood cell (WBC) levels remained within the
recommended normal range in all clusters. In contrast, neutrophil
count percent (NCP) levels exhibited a declining trend from Cluster
1 to Cluster 4, falling outside the recommended range in all clusters.
Similarly, AST levels also showed a downward trend from Cluster 1
to Cluster 4, with AST values falling outside the normal range in
Cluster 4.

The TP values were relatively consistent across the clusters, with
increase in Cluster 4. However, the level of TP values was not within a
recommended limit in the first three Clusters. The BUN values have also
shown an increasing trend from Cluster 1 to Cluster 4, and above
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normal range in all Clusters. Conversely, the values of ALP have shown
a declining trend from Cluster 1 to Cluster 4. The level of ALP was
within a recommended normal range in all the clusters. The ALB values
increased from Cluster 1 to Cluster 4, and outside normal range in
all clusters.

3.2.3 Summary of blood sample analysis

The mean LHI across all clusters is 232.81, indicating an overall
presence of toxicity in cattle. LHI is above 100 in all sampling points,
suggesting potential health risks (see Figure 3). Among the four
clusters, Cluster 1 has the lowest LHI value (152.48), suggesting
minimal toxicity, while Cluster 4 has the highest, indicating severe
toxicity levels. A One-Sample T-Test was conducted to compare
Cluster 1 with other clusters (cluster 2 - cluster 4) to assess the
statistical significance of livestock health across the clusters. The
results show a mean difference of 107.95, with a t-value of 6.072
(p = 0.026), confirming a significant increase in cattle toxicity levels at
downstream sites.

Among the parameters contributing to LHI, Pb appears to be the
most significant, with its highest concentration in Cluster 4 (190.44) and
amean value of 136.47. BUN also plays a crucial role, with a peak value
in Cluster 4 (22.27) and an average of 15.01, indicating potential kidney
stress. Cd, another heavy metal, shows high concentrations in Clusters
1 and 3, with a mean of 13.32, further contributing to toxicity. These
findings emphasize the impact of heavy metal contamination and
metabolic imbalances on livestock health across the sampling clusters.

3.3 Relationship between Akaki River
Catchment pollution and cattle health

To assess the impact of Akaki River pollution on cattle health, the
relationship between LWPI and the adjusted LHI was examined. Both
LWPI and adjusted LHI were calculated for ten sampling points. The
scatter-gram of the relationship between LWPI and the LHI shows a
positive relationship between LWPI and the adjusted LHI (Figure 4).
The slope of the regression equation shows (f =0.3152) a positive
association between LWPI and adjusted LHI. For every one-unit
increase in LWPI, the predicted adjusted LHI increases by 0.423 units.
Pearson correlation (r) shows a strong positive relationship between
LWPI and LHI (r = 0.6504, with p =0.0417). The r* indicates that

TABLE 5 Average hematological and biochemical parameter values of cattle blood sample.

Study Areas Blood parameters (Mean +SD)
WBC NCP% ASTU/L TPg/dl BUNmg/dl ALPU/L ALBg/dl
(x103/uL)

Cluster-1 2255 7£35 4£0.36 60 +6.9 80 +24 49+133 50.6 £ 6.8 70.7 137 224061
Cluster-2 24+5 8+3 43+04 55+6.7 65+20 47+1.13 526+7.8 73.7 £ 147 23+06
Cluster-3 24+45 8+2 4.4+0.44 53+6 64.9+19.8 5+13 542+7.31 75+18 254+ 0.66
Cluster-4 38+17 1307 6307 50 +2 46+8 7.6+0.5 92.8+19.6 41+38 42+0.28
Normal Range 24-46% 8-15 4-12 15-45 60-125 6-8 7-25 30-150 25-35

[Merck Veterinary
Manual (MVM),
2023; Nour et al.,
2022]
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FIGURE 4
Scatter-gram of the relationship between LWPI and adjusted LHI.
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approximately 42.3% of the variation in adjusted LHI is explained by
LWPL This suggests a moderate explanatory power, suggesting that
while LWPI has substantial influence on adjusted LHI, other factors are
likely to contribute to adjusted LHI.

4 Discussion

This study examines river pollution and its impact on cattle health
in the Akaki River Catchment (ARC), Central Ethiopia. It draws on
an analysis of physicochemical parameters and heavy metal
concentrations in water samples, as well as heavy metal
bioaccumulation and hematological and biochemical parameters in
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cattle blood. Water analysis results were used to calculate the Livestock
Water Pollution Index (LWPI) at ten sampling points along the river
to assess water quality, while blood analysis results were used to
compute the Livestock Health Index (LHI) across four clusters to
indicate cattle health.

4.1 Level of Akaki River Catchment
pollution

The LWPI values across ten sampling points showed significant
variation, ranging from 107.16 to 429.93, with an average of 299.26, all
above the safe limit of 100, indicating widespread pollution. A
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one-sample t-test comparing control point or sampling points one (S1)
to downstream points or sampling points two to ten (S2-S10) confirmed
a statistically significant increase in pollution downstream, highlighting
spatial variability in water quality. The main contributors to river
pollution were turbidity, lead (Pb), zinc (Zn), and cadmium (Cd).
Turbidity averaged 104.1 NTU, with the highest levels at S5 and S6,
indicating excessive suspended particles that can affect water clarity and
quality. Elevated turbidity levels reduce sunlight penetration, and
affecting aquatic biodiversity (Bayissa and Gebeyehu, 2021; Jessica and
Delbert, 2020; Yilma et al., 2019).

Pb levels averaged 79.7, peaking at S7 and S6, exceeding safe limits
and posing toxicity risks to livestock. The main source of Pb
concentration in the river could be attributed to wastewater discharge
from car-wash sites, garages, and fuel stations, which is also confirmed
by the study of Mekuria et al. (2021), Singh et al. (2022), and Yilma et al.
(2019). Pb is known to disrupt reproductive hormones and cause
toxicity in livestock (Valente-Campos et al., 2019).

Zn had a mean of 63.8, with a notably high concentration at S3.
High Zn levels in the river could be attributed to industrial effluents,
fertilizers, and pesticides (Boateng et al., 2015; Wuana and Okieimen,
2011; Chetty and Pillay, 2019). Similarly, Chronic Zn exposure in
livestock could result in adverse livestock health, including anemia,
weight loss, renal disease, and gastrointestinal distress (Alharthi
et al, 2025).

Cd levels averaged 25.4, with the highest at S8 and S7, consistent
with previous studies (Mekuria et al., 2021). Common sources of Cd in
the river include nickel-cadmium batteries, phosphate fertilizers, and
industrial waste. Cd is highly toxic, accumulating in organs over time
and causing kidney, liver, and bone damage (Alharthi et al., 2025; Dessie
et al,, 2022; Genchi et al,, 2020). The study suggests continuous Cd
exposure in cattle, reflecting daily intake and raising concerns about
long-term health impacts.

4.2 Cattle health indicators

The study found that the average LHI across all clusters was 232.81,
indicating widespread toxicity in cattle. All clusters had LHI values
above the safe threshold (LHI = 100), with Cluster 1, located in areas
with relatively lower water pollution in upper stream, shows the least
toxicity, while Cluster 4 at the downstream exhibits the highest LHI.

The analysis identified Pb as the major contributor to LHI, with the
highest concentration found in Cluster 4. The observed Pb levels were
higher than those reported in previous studies (e.g., Rodriguez et al.,
2015; Ahmad et al., 2016). In acute cases, Pb poisoning in cattle can lead
to sudden death with no visible symptoms, while chronic exposure may
cause stunted growth, impaired reproductive performance, and
contamination of meat and dairy products (Alharthi et al., 2025). The
elevated Pb levels observed in cattle from downstream areas indicate a
potential health risk to consumers through the consumption of
contaminated animal products.

Similarly, Blood Urea Nitrogen (BUN) levels were elevated,
particularly in Cluster 4. Increased BUN concentrations may indicate
compromised kidney function, potentially linked to heavy metal
exposure, as noted by Godt et al. (2006). This finding suggests that
livestock in downstream areas may be experiencing physiological stress
or early signs of organ dysfunction, posing both animal welfare concerns
and potential risks to food safety. Elevated AST levels, typically two to
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four times higher than normal, suggest damage to organs like the heart,
liver, or kidneys. Even mild kidney impairment can alter BUN levels
(Afzal and Mahreen, 2024; Godt et al., 2006).

Cd, another heavy metal, exhibited high concentrations in Clusters
1 and 3, further contributing to overall toxicity. Chronic exposure to
elevated Cd levels has been associated with metabolic and reproductive
disorders and may even contribute to cancer development in cattle
(Kurdziel et al., 2023). These findings raise serious concerns about the
long-term health of livestock in the affected areas and suggest that
continued exposure could reduce productivity and pose risks to the
safety of animal-derived food products.

4.3 Toxic effects of Akaki River Catchement
pollution on cattle health

To assess the impact of Akaki River pollution on cattle health, the
relationship between LWPI and the LHI was examined. The relationship
between LWPI and LHI demonstrates a strong positive correlation, with
water pollution explaining approximately 42.3% of the variation in cattle
health. The regression analysis indicates that as LWPI increases, LHI
also rises, suggesting that water contamination plays a crucial role in
livestock health deterioration. However, the remaining unexplained
variation implies that other factors, such as diet, disease, or additional
environmental stressors, may also contribute to poor cattle health
outcomes (Dessie et al., 2024; Mengesha et al., 2023).

Among the studied parameters, Pb, Cd, and Cr pose significant
public health risks due to their high toxicity. As systemic toxicants, they
can cause organ damage even at low exposure levels and are classified
as human carcinogens by the U.S. Environmental Protection Agency
and the International Agency for Research on Cancer (Chen et al., 2022;
Tchounwou et al., 2012).

These results emphasize the importance of integrated water and
livestock management strategies, ensuring that pollution control
efforts are aligned with broader livestock health interventions to
safeguard both water quality and animal well-being. In addition it
emphasizes the impacts of increasing level of pollutions posing
significant threat to human and animal health. This quest for effective
and sustainable methods to purify water through different ways like
photocatalytic water purification technology (Omar et al., 2024).

5 Limitations of the study

The study identified that, those cattle frequently exposed to
wastewater are more prone to toxic heavy metals than cattle less
exposed to the wastes. Despite its valuable contributions and insights
into the impact of water pollution on livestock health and its
consequences to human health, this study had some limitations. It did
not assess point-source pollution from specific industrial, healthcare,
or municipal discharge sites, nor did it include heavy metal analysis of
forage, an important potential route of contamination. While
confounding factors such as breed, feed type, and species were
controlled, further research is recommended under expanded study
conditions, including larger sample sizes, different breeds and species,
various feed types, and additional sampling sites. Moreover, the
absence of alternative clean river water sources limited the inclusion
of appropriate control groups. Addressing these gaps in future studies
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is essential to generate more robust evidence to inform policy and
intervention strategies.

6 Conclusion

This study investigates the toxic effects of river pollution on
cattle health in the ARC, central Ethiopia. Water samples from ten
sites were analyzed for physicochemical and heavy metal
parameters, while cattle blood samples were tested for heavy metal
accumulation and key hematological and biochemical health
indicators. Using these data, the Livestock Water Pollution Index
(LWPI) and Livestock Health Index (LHI) were developed to
assess water quality and cattle health, respectively.

This study highlights high level of pollution in the ARC, with all ten
sampling points recording LWPI values far exceeding the safe threshold.
The results indicate spatial variation in water quality, with downstream
areas experiencing significantly higher contamination. Key pollutants
identified include turbidity, lead (Pb), zinc (Zn), and cadmium (Cd),
all of which have known detrimental effects on water quality, ecosystem
integrity, and livestock health. These findings suggest the urgent need
for targeted pollution control measures to mitigate the impact of
untreated waste discharge into the river system.

The analysis of cattle health revealed high LHI values across all
clusters, indicating widespread physiological stress and toxicity.
Cluster 4, located downstream, and exhibited the highest LHI,
consistent with greater water pollution exposure. Pb emerged as the
most critical contaminant affecting livestock health, with its presence
linked to both acute and chronic health issues in cattle and potential
contamination of meat and dairy products. Other biochemical
markers, such as high Blood Urea Nitrogen (BUN), also signal
possible kidney dysfunction associated with heavy metal exposure,
underscoring the threat to both animal welfare and public health.

A strong positive relationship was observed between LWPI and
LHI, with water pollution accounting for over 42% of the variation in
cattle health outcomes. This finding demonstrates a clear link between
environmental contamination and livestock well-being. However, the
unexplained variation also points to the potential influence of other
contributing factors such as nutrition, disease, breed, species or
alternative contamination pathways. Improving outcomes therefore
requires a multifaceted approach that includes pollution reduction,
animal health interventions, and ecological management. Incorporating
One Health principles into future interventions will help ensure that
environmental, animal, and human health are addressed sustainably.
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Glossary

AAS - Atomic Absorption Spectrophotometry
LB - Albumin

ALP - Alkaline Phosphate

AAW - American Public Health Association, American Water Works
Association, Water Environment Federation

ARC - Akaki River Catchment

AST - Aspartate Aminotransferase

BUN - Blood urea nitrogen

Cr - Chromium

Cd - Cadmium

CVMA - College of Veterinary Medicine and Agriculture
QC - Quality control

DO - dissolved oxygen

EDTA - Ethylene-di-amine-tetra-acetic-acid
FDRE - Federal Democratic Republic of Ethiopia
Hb - Hemoglobin

HNO,; - nitric acid

H,O0, - hydrogen peroxide

Frontiers in Water

16

10.3389/frwa.2025.1642296

ICP-OES -
Emission Spectrometry

Inductively ~ Coupled  Plasma  Optical

KCl - potassium chloride

LHI - Livestock Health Index

LOI - Loss-on-ignition

LWPI - Livestock Water Pollution Index

MoWIE - Ministry of Water Irrigation and Energy
Na,H,EDTA - Disodium dihydrogen ethylenediaminetetraacetate
NCP - neutrophil count percentage

Pb - Lead

PCV - Packed Cell Volume

PH - power of hydrogen

H,SO, - sulfuric acid

TDS - total dissolved solid

TP - Total Protein

USEPA - United State Environmental Protection Agency
WBC - White Blood Cell

Zn - Zinc
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