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This research report evaluates and proposes strategies to address the ongoing 
problem of elevated fluoride and arsenic concentrations in the Aguascalientes 
Valley aquifer (AVA) in Mexico, which serves as the main water supply for almost 
1.35 million people and supports over 65,000 hectares of irrigated agriculture. 
First, we evaluate the AVA’s historical piezometric surface and fluoride and arsenic 
concentrations. We then develop simplified groundwater flow and transport models 
to integrate regional hydrogeological and water quality datasets, providing a basis 
for recommended management interventions. Results indicate mean fluoride 
concentrations of 2.30 ± 1.43 mg/L (MX fluoride standard = 1.5 mg/L), with higher 
levels southeast of Aguascalientes City and a positive temporal trend. Arsenic 
concentrations average 0.0126 ± 0.008 mg/L (MX As standard = 0.01 mg/L), 
with higher concentrations north of the city and a negative temporal trend. The 
global average concentration in both cases exceeds the national and international 
regulatory limits, underscoring the need for immediate action. The piezometric 
level information was sufficient to reproduce the hydrodynamic behavior of the 
aquifer reliably, while the transient flow model successfully reproduced the spatial 
gradient of concentrations. According to the developed mathematical models, 
water security issues are observed within the AVA, while increasing drawdowns 
and As and F concentrations. To improve water quality and quantity in the AVA, 
sustainable practices should be implemented, including potential actions to restore 
groundwater levels, such as managed aquifer recharge options and nature-based 
solutions.
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1 Introduction

Geographical and climatological conditions in Aguascalientes, 
Mexico, render surface water sources scarce, and groundwater supplies 
about 94% of the water demand (Hernández-Marín et al., 2018). Most 
extractions come from the Aguascalientes Valley aquifer (AVA), which 
underlies 95% of the population (1.35 million inhabitants) and 
economic activity of the state (Sainz-Santamaria and Martinez-Cruz, 
2019). Not surprisingly, regional water budget estimates have 
concluded that the current level of extraction is excessive, roughly 80% 
above sustainable extraction volumes (SEMARNAT, 2012; Sainz-
Santamaria and Martinez-Cruz, 2019). To address this, a ban on 
further AVA exploitation has been in place since May 1963, although 
unregistered groundwater continues to occur. This policy forbids the 
installation of new production wells and limits urban, industrial, 
agricultural, and other uses, but achieving compliance is difficult 
without monitoring systems or mathematical models that are useful 
for decision-making, leading to unsustainable exploitation 
of groundwater.

Groundwater quality represents another issue in Aguascalientes. 
The intensive extraction of groundwater from aquifers combined with 
a natural presence of toxic elements can increase their concentrations 
(Armienta and Segovia, 2008), as is the case of fluoride (F–) and 
arsenic (As) in the AVA. Fluoride and arsenic concentrations have 
long been a focal point in regional water quality assessments. These 
contaminants place the population at risk of chronic-degenerative 
diseases (Commission on Habitat, Environment and Sustainability, 
2016). The harmful effects of fluoride (dental and bone fluorosis, 
conditions of the liver, kidneys, heart, lungs, thyroid, development of 
the nervous system and reproductive abilities) and arsenic (lesions 
and cancer of the skin, lungs, heart, vascular system and kidneys) are 
well-documented (Chandrajith et  al., 2020). The World Health 
Organization (WHO, 2018) has established Maximum Permissible 
Limits (MPL) for fluoride and arsenic in water for human 
consumption at 1.5 and 0.01 mg/L, respectively, which align with 
Mexican standards (NOM-127-SSA1-2021, 2022).

Computational models are useful for simulating groundwater 
pumping, flow dynamics, and associated contaminant transport 
behavior. Given adequate spatiotemporal data on aquifer properties, 
groundwater levels, and contaminant concentrations, such models 
provide quantitative connections between past, present, and future 
groundwater conditions. For instance, simulations can be used to 
analyze various phenomena that arise from changes in the system’s 
physical parameters, such as modifications in extraction rates and 
locations, or engineered aquifer recharge aimed at mitigating overdraft 
(González-Mendoza, 2016). While model outcomes are subject to 
uncertainties, they nonetheless enhance decision-making and water 
resources management (Epstein, 2008).

This research report aims to assess the current condition of AVA 
groundwater quantity and quality, and to provide advice on water 
security questions in this heavily populated region. Previous works on 
the area trace back to the 1971 (Ariel Construcciones SA in 1971, 
Consultores SA in 1981, and SARH in 1987, described at CONAGUA, 
2020), where the first hydrogeological study was developed, presenting 
the conceptualization of the functioning of the aquifer system, 
integrating information from adjacent valleys (Chicalote-Calvillo and 
Venadero), and recognizing their interconnection; more recently 
Martín-Clemente et al. (2015) and De Figueroa Jesús, 2007 present 

estimates of water availability that reveal a water deficit such that the 
groundwater reserve is not renewable in terms of the annual balance; 
lastly, Hughes Lomelín et al. (2023, 2024), integrates the pre-existing 
information regarding the mathematical modeling of the aquifer, 
proposing a simplified version of flow simulation, including a 
particular study on the estimation of hydraulic conductivity based on 
previous lithological studies of the Aguascalientes Valley. We analyzed 
piezometric head and water quality data, using GIS and descriptive 
statistics to assess data quality and identify spatiotemporal trends. 
Groundwater flow (MODFLOW) and transport (MT3D-MS) models 
were parameterized using available hydrogeologic information, and 
calibrated and validated using subsets of the data (SM-1). Potential 
next steps toward refining our understanding of the problem are then 
discussed, along with potential management strategies aimed at 
groundwater sustainability.

2 Materials and methods

2.1 Study area

The AVA is located in the state of Aguascalientes in the high plains 
of Central Mexico (Figure 1). The elevation varies from 1,900 m on 
the valley floor to nearly 3,000 m in the surrounding mountain ranges 
(INEGI, 2013). The climate is semi-arid (BS1kw Köppen) with an 
average annual temperature ranging between 18 and 22°C, while the 
average annual precipitation is limited to 510 mm, due to its location 
relative to the subtropical high-pressure belt and the general 
orientation of the mountain ranges that limit and isolate it from the 
seas, distributed mainly between May and October (García Amaro de 
Miranda, 2003), and an average annual potential evaporation of 
2,010 mm (National Water Commission; CONAGUA, 2020). 
Administratively, the AVA belongs to the Hydrological Region VIII 
“Lerma-Santiago-Pacífico” and the Hydrological Region No. 12 
“Lerma-Chapala-Santiago.” In this report, we focus on the narrow 
valley region of the AVA, consistent with prior work on the AVA 
(CONAGUA, 2020; Guerrero Martínez, 2016, 2020), where data are 
available and where most of the human activity occurs.

The regional geology associated with the AVA is the result of the 
events that originated the Sierra Madre Occidental (CONAGUA, 
2020), with units of different lithographic characteristics, including 
metamorphosed strata from the Cretaceous era, volcanic in the Sierra 
Madre Occidental from the Tertiary, and Quaternary, and basalt/
alluvial material from the Quaternary. Based on well boring logs, 
CONAGUA (2020) describes the AVA as an unconfined, 
heterogeneous, and anisotropic aquifer, where groundwater flows 
through three different media: (i) porous media with primary, 
secondary, intergranular, and fractured permeability; (ii) fractured 
media with secondary permeability; (iii) double porous media with 
combined, intergranular and fracture permeability. The AVA was 
simplified considerably in the groundwater model developed for 
this work.

2.2 Data acquisition and sources

The data required for groundwater and transport modeling of the 
aquifer were obtained from the databases of CONAGUA and the local 
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Citizen Commission for Drinking Water and Sewerage of the 
Municipality of Aguascalientes (CCAPAMA, 2022), as well as 
complementary sources from CONAGUA (2020) and previous studies 
(Hernández-Marín et al., 2018; Guerrero Martínez, 2016; De Figueroa 
Jesús, 2007). Groundwater piezometric head and water quality data 
(1,469 and 320 sampling points, respectively) was collected for the 
period 1985–2014.

To assess AVA groundwater conditions, we obtained data from 
CONAGUA (2020), which showed 1,830 registered users (1,769 deep-
drilled wells and 61 shallow wells), with 1,468 active at the time. The 
available piezometric data is specified by sampling point (usually a 
production well) and collected annually (from 1990 through 2014), 

once the pumping is turned off and static conditions in the well are 
reached. Scarce and semiannual F- and As concentration data were 
obtained from 320 wells from 2003 to 2022, using a limited subset 
(years 2004–2014) to later compare the performance of the model. 
These concentrations were obtained from the water quality laboratory 
at the local water utility (CCAPAMA), in accordance with Mexican 
standards (NMX–AA–077–SCFI–2001, 2002—Test Method, 2016). 
Piezometric data and F- and As concentrations were spatially 
distributed through kriging to obtain gridded maps for each available 
year. Simple statistics (mean, standard deviation, maximum, and 
minimum values) were determined to describe and visualize the 
piezometric surface and chemical concentrations through time.

FIGURE 1

(A) Location map of the Aguascalientes Valley aquifer (AVA). (B) Location of production wells. (C) Wells with water quality records.
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2.3 Groundwater flow and transport 
modeling

We used MODFLOW (Harbaugh, 2005) within the ModelMuse 
(Winston, 2022) users’ interface to develop the AVA groundwater 
model. We employed a single-layer model structure, owing to the 
preliminary nature of this effort. Given the digital elevation model 
(DEM) for the region and the well borehole logs, the aquifer model 
has a variable thickness, from 300 m to the west to 450 m to the East, 
which was consistent with thicknesses reported in prior work 
(Pacheco-Martínez et al., 2013). We calculated an effective value of 
hydraulic conductivity for each well using a weighted average of 
estimated values from well borehole records (SM-2, Sánchez San 
Román, 2022). Simple kriging was then used to create a gridded 
hydraulic conductivity product as the initial MODFLOW layer. 
We applied a uniform initial value of 0.16 for the aquifer-specific yield 
parameter (Sy), as proposed by CONAGUA (2020). The resulting 
model geometry included 335 active 2 × 2 km cells (828 total) 
arranged in 46 rows × 18 columns in the single, heterogeneous layer.

The model simulations required information on natural and 
anthropogenic inflow and outflow, such as potential recharge from 
precipitation (vertical recharge), well extractions based on contracted 
annual values, and horizontal groundwater flows. In order to estimate 
vertical recharge, we employed annual infiltration rates obtained from 
a monthly HBV precipitation-runoff model (Bergström, 1992) 
calibrated for the area (Hughes Lomelín, 2023). Regional inflows and 
outflows were distributed within the model boundaries, with values 
based on an AVA water budget created by CONAGUA (2020).

Starting with the initial piezometric surface, the groundwater 
model was executed in a transient state for 29 years (1985–2014), 
driven by annual changes in extraction and vertical recharge. The 
model was calibrated following a scheme focused on 10 wells located 
along a longitudinal transect (A-A’ in Figure  2), considering the 
piezometric levels of the years 1990, 1996, and 2000, and validated 
using 2007 and 2014. We adjusted the hydraulic conductivity (K) and 
specific yield (Sy) distributions in the model by applying a scaling 
factor, optimizing model-fitting metrics for the 11 transect well 
locations (Moriasi et al., 2007; Lucas Urbina, 2018; Roohollah et al., 
2020; Akter and Ahmed, 2021) (Figure 2; Supplementary Tables 1, 2).

In the case of the solute transport model (MT3DMS, Zheng, 2012) 
utilizes groundwater discharge distributions from the groundwater flow 
model to distribute chemical solutes by advection and dispersion. Its 
model geometry was also developed using ModelMuse with the same 
computational mesh as the MODFLOW model, but reducing the total 
active cells to 248, to overlap with the region where water quality data 
were available. Initial fluoride and arsenic concentration conditions were 
set to the gridded 2003 values, and the source zones were indicated in 
MT3DMS cells associated with the maximum observed concentrations 
(Sathe and Mahanta, 2019). The transport simulations were limited to 
the period 2003–2014, the final year of the MODFLOW simulation.

The transport model calibration and validation were carried out 
similarly to the flow model, applying scaling factors to the initial 
longitudinal dispersivity and porosity values. Initial values for 
longitudinal hydrodynamic dispersion and effective porosity were 
assigned to two zones with different geology, corresponding to 
conglomerate sandstone and rhyolitic tuff. These values, both initial and 
calibrated, are shown in Table 1. In the absence of additional information 
about these contaminants in the aquifer, both fluoride and arsenic were 

assumed in this work to behave as nonreactive and nonsorbing solutes 
(i.e., conservative tracers). While the fluoride anion is not expected to 
react or sorb to aquifer sediments or confining units, arsenic is known 
to adsorb to various metal oxides and clays (Stollenwerk, 2003). 
However, assuming that the current regional dissolved concentrations 
represent long-term steady-state plumes with respect to the source 
zones, we can use the conservative tracer assumption to facilitate the 
simulations; although geogenic sources are expected in the area due to 
thermalism and similar behavior in other aquifers in the region 
(Morales-deAvila et al., 2023; Padilla-Reyes et al., 2024). Due to the 
limited simulation period, fluoride and arsenic observations were 
applied to model calibration and validation, respectively. The transport 
model was calibrated by comparing observed and simulated fluoride 
concentrations in a group of eight additional calibration cells, which 
differed from those used to calibrate the groundwater model due to the 
reduced modeled area and the location of the sampling wells. Kriging 
interpolation method was chosen for both, piezometric and water 
quality distributions, since correlations between observations in space 
is better represented by the spatial structure of the variogram, avoiding 
over-smoothing the spatial distributions.

3 Results

3.1 Groundwater flow model

Groundwater recharge as the main input to the system was 
obtained in a parallel work developed for the area, then it was later 
imposed as a lateral flow entering the active domain of the modeled 
aquifer. Later, the observed AVA piezometric surface was compared 
with observations, showing a decrease throughout the 1990–2014 
period (Figure  2), as expected with increasing population and 
groundwater extractions during this period. The calibrated 
groundwater model reflected the slope of the observed surface, 
ramping downward from north to south in accordance with regional 
topography (see section A-A’ in part D of Figure 2, years 1990, 1996, 
2000; Supplementary Table  1, models fit quality indexes; 
Supplementary Table  2, classification of the fit quality), but was 
consistently above the observed surface. For the validation of the 
groundwater model, we  used the results for 2007, were simulated 
piezometric head is more consistent with the observed water table. 
Although 2014 simulations yielded acceptable results, they significantly 
overestimated drawdowns in the urban region of the AVA. Additionally, 
the hydrological model shows a lower mean precipitation in 2009–
2014 (305 mm/year) compared to previous years (418.4 mm/year in 
2004–2008), that might have impacted the recharge in the period. The 
argument of increasing urbanization and impervious surfaces supports 
the hypothesis of decreased recharge in the AVA area.

3.2 Groundwater transport model

In the case of the transport model, the observed arsenic 
concentrations at the sources were consistently above the maximum 
permissible levels during the studied period, as were the fluoride 
concentrations, except for source 3 (Figure 3). For the calibration points, 
the F- concentrations range from about 1 to more than 4 mg/L; As levels 
clustered between 0.015 and 0.0175 mg/L for 2004 and 2006 data. Later 
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observations found the arsenic data in the range of 0.009 and 
0.017 mg/L, suggesting that some dilution occurred in later years. 
Recalling that the fluoride observations were used for calibration, the 
MT3DMS simulations show good agreement with observed 
concentrations over a range of values, particularly for the earlier 3 years 
(2004, 2006, 2008). The model slightly overestimates the observed 

concentrations in these years. However, in the later cases (2011, 2014), 
there is significantly more variation in the observed fluoride 
concentrations, and the model underestimates are more evident.

The validation data (arsenic) are difficult to describe, as the earlier 
outcomes (2004, 2006) exhibit a clustered pattern, with the simulation 
consistently overestimating the observed concentrations. Nevertheless, 

FIGURE 2

(A,B) MODFLOW simulation (1985–2014) for the Aguascalientes Valley Aquifer (AVA) model. (C) Calibration (1990, 1996, 2000) and validation outcomes 
(2007, 2014), associated with 10 observation cells. (D) Cross-section showing changes in simulated and observed piezometric head in the AVA model.
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the validation improved in the later arsenic data (2008, 2011, 2014), 
as the clustering disperses.

4 Discussion

The data and models presented in this study highlight water 
security issues in the Aguascalientes Valley aquifer (AVA), a 
groundwater reservoir that supports 1.35 million people and US$156 
million in annual agricultural revenue. The aquifer exhibits increasing 
drawdown and As and F- concentrations.

The flow and transport models are simplistic, single-layer models, 
but both captured the dynamics of the AVA relatively well. However, the 
flow model tends to underestimate aquifer drawdown relative to 
observed values during its calibration, and shifts to overestimating 
drawdown in the validation period. As noted, we used water concessions 
as extraction volumes in the model. Under-extraction (relative to water 
concessions) and increased extraction in the respective calibration and 
validation phases explain the differences in drawdown estimation, as 
reported in previous works when dealing with scarce data (Navarro-
Farfán et al., 2024), and intense groundwater use (Ávila-Carrasco et al., 
2023; Rubio-Arellano et al., 2023).

TABLE 1  Longitudinal hydrodynamic dispersion and effective porosity values in the two geological zones of the study, proposed with an initial value 
(according to literature, Custodio and Llamas, 1983; Vázquez-Sánchez and Jaimes-Palomera, 1989; Gómez, 2016), and then calibrated by a trial and 
error procedure.

Zones Geology Longitudinal hydrodynamic 
dispersion (m2/year)

Effective porosity (0-1)

Initial Calibrated Initial Calibrated

1 Conglomerate sandstone 200 350 0.8 0.5

2 Rhyolitic tuff 100 10 0.5 0.1

FIGURE 3

(A) Transport model MT3DMS simulation outcomes for the Aguascalientes Valley Aquifer. (B) Evolution of As and F- concentrations, compared with 
national and international maximum permit limits. (C) Comparison of simulated and observed concentrations for F- and As.
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The AVA transport simulations capture the behavior of F- 
dispersion better than that of As, which exhibited concentrations 
clustered at about 18 ppb in 2004 and 2006 before dispersing to agree 
more with the later simulations. This behavior is challenging to explain, 
but may suggest that changes in pumping after 2006 modified the 
system, causing the As concentrations to disperse, as well as REDOX 
and pre-existing geochemical conditions might also contribute to the 
control of the release and transport of these and other contaminants. 
The aforementioned adsorption tendencies of As species may also 
complicate its transport behavior, particularly if new pumping results in 
As transport into previously uncontaminated zones. Decreases in the 
simulated F- concentrations are in agreement with observed 
concentrations in recent years, which could also be caused by changes 
in pumping extraction or the addition of fresh water coming from 
leakages in the water supply system and agricultural irrigation returns, 
causing oxidation of water with current high concentrations, as occurs 
in the San Joaquín Valley California (Haugen et al., 2021).

The results of this research highlight the need for a more 
comprehensive investigation of the AVA system, including potential 
actions to restore and implement sustainable groundwater practices. A 
good first step would involve revisiting the soil boring logs in the 
region, developing a multi-layer AVA flow and transport model, and an 
intensified groundwater monitoring program (quarterly at a 
minimum). An effort to identify the critical horizontal and vertical 
locations of F- and As should be coupled with the expanded modeling 
effort. The resulting model would help identify future extraction and 
recharge strategies to deliver water while minimizing further water 
quality degradation. Once calibrated, the model would also be valuable 
for assessing the impact of climate change and human behavior 
modifications on the AVA system.

The long-term sustainability of the regions will depend on more 
judicious use of the AVA system. First and foremost, legal restrictions on 
current and pending groundwater extraction will need to be more closely 
monitored and enforced. Second, coupling water reuse and managed 
aquifer recharge (MAR) with population growth and wastewater 
treatment planning is strongly recommended, or a combination with 
nature-based solutions such as constructed wetlands and limestone filters. 
Examples of that management can be seen in the San Joaquin Valley 
California (Casillas-Trasvina et al., 2025; Haugen et al., 2021), and in 
Central Valley California (Warrack and Kang, 2021), which can 
be replicable in the AVA, where similar conditions of decrease in arsenic 
concentration is occurring, possibly caused by the movement downwards 
of oxidizing groundwater. Such efforts should include careful studies on 
the role of changes in recharge water chemistry on the mobilization and 
transport of F- and, particularly As, as well as trace chemicals typically 
present in water reuse scenarios, such as chloride and nitrate compounds.
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