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High-resolution soil moisture measurements are indispensable for advancing
hydrological modeling and improving environmental risk assessments at regional
scales. However, it remains an open question to what level hydrological models
are capable of representing spatio-temporal patterns of root-zone soil moisture.
In this study, we present a novel integration of mobile Cosmic-Ray Neutron
Sensor (CRNS) data collected via rail-based measurements into the mesoscale
Hydrologic Model (mHM). Over ten months, daily CRNS observations had been
acquired along a 9-km railway corridor and subsequently aggregated to a
∼ 200 m, spatial resolution to align with the mHM resolution. Soil moisture
related model parameters were optimized for distinct land cover types based
on observed soil moisture dynamics, including dense forest, open forest,
meadow, and railway shunting areas. Model simulations exhibited considerable
improvements with Nash-Sutcliffe Efficiency (NSE) values increasing from
−0.19 to 0.76 in the dense forest, and from 0.50 to 0.79 in the meadow
with homogeneous land cover conditions. In contrast, areas characterized
by mixed land use—such as half-open forests and railway yards exhibited
lower performance, indicating areas of improvements in the model-data fusion
scheme including higher resolution that may be necessary to fully capture
local variability. Further, results of the spatio-temporal analysis demonstrated
the model ability to reproduce observed spatial patterns of CRNS derived soil
moisture with the spatial efficiency (SPAEF) score of 0.71 (1.0 being an ideal
one). Finally, the transferability of the optimized parameters was evaluated by
applying them to independent sites located 38–345 km away from the original
measurement corridor. The reasonably good agreement between simulated
and observed soil moisture at grassland sites further confirms the robustness
and applicability of our model-data fusion approach, while substantial biases
remain in forest sites. Overall, the integration of mobile CRNS measurements
represents a new era for hydrological modeling by providing unprecedented
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spatial resolution and temporal coverage to facilitate more precise soil moisture
estimations for effective water resource management, and forecasting of floods
and droughts.

KEYWORDS

soil moisture, cosmic-ray neutron measurements, MHM, model-data fusion, spatio-
temporal analysis, parameter transferability

1 Introduction

Soil moisture (SM) plays a critical role in the terrestrial
water cycle, influencing key processes such as evapotranspiration,
infiltration, and runoff. Accurate knowledge of SM dynamics
is essential for applications ranging from weather forecasting
to flood and drought risk assessment, irrigation planning, and
climate change impact studies (Seneviratne et al., 2010; Samaniego
et al., 2013; Corradini, 2014; Samaniego, 2025). However, existing
methods for measuring the SM have limitations on accuracy
and resolution. In situ sensors offer high temporal but limited
spatial resolution, while satellite-based sensors (e.g., SMOS, SMAP)
provide broader coverage (∼ 10 km resolution) but are restricted
to shallow depths (0–5 cm) and are influenced by surface and
atmospheric conditions such as cloud vegetation (Fang et al.,
2024; Entekhabi et al., 2014). These limitations underscore the
need for more representative ground-based SM observations at
the horizontal and vertical scales to improve the reliability of the
hydrological model (Oswald et al., 2024).

To overcome the limitations of conventional soil moisture
observation techniques, recent advances have focused on the use
of cosmic ray neutron sensing (CRNS), which provides spatially
integrated soil moisture measurements on intermediate scales,
typically up to 10–20 hectares, with an effective sensing depth
of up to 80 cm (Zreda et al., 2008; Schrön et al., 2018a; Köhli
et al., 2021; Bogena et al., 2022). Unlike point-scale sensors, CRNS
captures a representative average on a footprint, reducing the
spatial mismatch often encountered when integrating observations
with hydrological models (Andreasen et al., 2017; Baatz et al.,
2017; Zheng et al., 2024; Fatima et al., 2024; Scheiffele et al., 2025;
Arnault et al., 2025). However, most CRNS installations have been
stationary, offering limited spatial coverage and often failing to
capture fine-scale heterogeneity across landscapes. Recent advances
in mobile and rail-based CRNS platforms mark a significant step
forward in large-scale soil moisture monitoring. These systems
enable continuous large-scale soil moisture monitoring along
railways, providing high spatial and temporal resolution of soil
moisture at medium scales across diverse landscapes (Schrön et al.,
2021; Altdorff et al., 2023). This mobile CRNS capability fills a
critical gap between traditional in-situ monitoring and coarse-
resolution satellite observations.

Hydrological models simulate the terrestrial water cycle and
predict soil moisture (and other state variables) in unobserved
locations or future states, relying on observational data for
calibration and validation (Fatichi et al., 2016; Gnann et al., 2023).
However, these models are highly dependent on observational data,
which are often scarce, leading to significant uncertainties in the
model predictions (Renard et al., 2010; Teweldebrhan et al., 2018;
Moges et al., 2020).

Several studies have demonstrated the use of CRNS data to
parametrize hydrological and land surface models at intermediate
soil depths (Han et al., 2015; Baatz et al., 2017; Iwema et al.,
2017; Duygu and Akyürek, 2019; Patil et al., 2021; Fatima et al.,
2024; Arnault et al., 2025). These studies underscore CRNS’s
ability to capture soil moisture dynamics at relevant spatial
scales, offering a significant advantage over traditional point-
scale measurements for model calibration. The simulation of
CRNS-derived soil moisture in hydrological models has led to an
improved representation of soil moisture dynamics, particularly
within the root zone (Fatima et al., 2024). Notable benefits include
enhanced estimates of water balance components, more accurate
evapotranspiration modeling, and better parameter transferability
across heterogeneous landscapes.

However, these studies have also made it clear that there are
still major gaps in the provision of representative data of the
temporal dynamics of soil moisture at model-relevant scales. It is
evident that conventional stationary sensors, including stationary
CRNS probes, are incapable of addressing this discrepancy. The
recent advancements in mobile CRNS technology have enabled the
acquisition of high-resolution data on soil moisture dynamics on
a larger scale, both temporally and spatially. Still, the processing
of such data gives rise to new challenges, particularly with regard
to the interpretation of the CRNS signal under varying vegetation
cover, soil texture, and atmospheric conditions, highlighting the
need for robust correction and calibration techniques. The present
study addresses these challenges and tests for the first time the
integration of a continuous time series of rail-based CRNS data.

The framework integrated into the mesoscale hydraulic model
(mHM; Samaniego et al., 2010b), which enables the simulation of
neutron counts to assess soil moisture accuracy, was demonstrated
by Fatima et al. (2024). In the present study, the integration of
rail-based Cosmic-Ray Neutron Sensor (CRNS) data offers an
opportunity to expand this approach to larger spatial scales. This
work aims to evaluate the capability of the data-model fusion
scheme integrating the mobile CRNS measurements into mHM
for simulations of root-zone soil moisture (RZSM) patterns at
regional scales across various land use types. We also assess the
generality of such a data-model fusion scheme by cross-validating
the model parameterizations established using the railway CRNS
data at remote stationary CRNS sites. This is done to evaluate
the modeling potential to improve soil moisture representation at
ungauged sites.

In this paper, we investigate the use of observational data
from a fully automated rail-based CRNS system for soil moisture
simulations in a large-scale mHM model. The measurement data
provide continuous soil moisture (or soil water content: SWC)
on a ∼ 9 km railway segment between Blankenburg-Rübeland,
Germany (Altdorff et al., 2023). This approach offers novel insights
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into the spatio-temporal variations of the SWC in diverse land
covers, such as grasslands, dense forests, and open forests. The
objectives of this study are 1) to demonstrate the value of high-
resolution CRNS measurements for regional scale soil moisture
predictions by their integration into a large-scale hydrological
model (mHM), and (2) to evaluate the effectiveness of site-specific
constrained model parameterizations, based on rail-based CRNS
data, for soil moisture simulations at other (ungauged) locations
via cross-validation experiments.

2 Data and methods

2.1 Study area

We make use of rail-based CRNS data published by Altdorff
et al. (2023) along a ∼ 9 km long railway segment between
Blankenburg-Rübeland, Germany (Figure 1). Observational rail-
based CRNS data were collected using a novel mobile CRNS system
installed in the locomotive of a cargo train designed for continuous
automated CRNS measurements. This system covers a segment of
the railway and provides hectare-scale neutron counts, revealing
spatial soil moisture patterns on a medium scale. The datasets were
recorded from September 2021 to July 2022. The elevation of the
area ranges from 217 to 482 meters (asl). The experimental railway
track crosses four different types of land cover: dense and open
forest, semi-natural areas, and meadows. The main texture of the
soil is silty loam soil, which has been extensively studied by Yang
et al. (2018); Winter et al. (2021). During the period 1999 to 2019,
Blankenburg recorded an average annual temperature of ◦C and
an average annual precipitation of 760 mm (Altdorff et al., 2023).
For a more detailed analysis of the climatic characteristics of the
Rübeland region, (see Wollschläger et al., 2017). Furthermore, the
red pins on the German map mark the locations of the cross-
validation sites: Grosses Bruch, Hohes Holz, Kall, Rollesbroich, and
Wildenrath. These sites, which have been extensively discussed in
Bogena et al. (2022), Li et al. (2024), Baatz et al. (2017), Baatz
et al. (2014), and Bogena et al. (2018), are utilized here for cross-
validation purposes.

2.2 The mesoscale hydrological model
(mHM)

In our study, we used the mHM (Samaniego et al., 2010b;
Kumar et al., 2013b), https://www.ufz.de/mhm, which is a
distributed hydrologic model that integrates the main hydrological
processes: snow accumulation and melting, evapotranspiration,
canopy interception, soil water infiltration, percolation, and runoff
generation. Inputs to the model consist of meteorological datasets
(i.e., daily precipitation, potential evapotranspiration, and average
air temperature), morphological datasets (i.e., digital elevation
model, slope, aspect, flow direction, and flow accumulation), and
soil/hydrogeological properties (i.e., layer-wise soil characteristics,
such as bulk density, sand, and clay content).

mHM is structured into three spatial levels: Level 0 (�0) focuses
on gathering detailed physical characteristics of the land under
study, Level 1 (�1) integrates these characteristics to simulate

hydrological processes, and Level 2 (�2) applies meteorological
data to drive these simulations accurately. mHM uses a unique
feature, multiscale parameter regionalization, (MPR; Samaniego
et al., 2010b; Kumar et al., 2013b) to estimate effective hydrologic
model parameters. This approach effectively utilities fine-scale (�0)
spatial variability in terrain and landscape attributes, including soil
and vegetation types to parameterize hydrologic model parameters.
MPR relies on the idea of estimating model parameters (e.g.,
soil porosity) based on physiographical properties (e.g., sand and
clay content) and transfer functions (e.g., pedotransfer functions)
at a fine scale, at which physiographical attributes are available
(�0). Transfer functions include functional relationships and global
parameters (e.g., factors of the pedotransfer functions) which are
generally inferred via calibration (Samaniego et al., 2010b; Kumar
et al., 2013b). In the subsequent step of MPR, the �0 derived model
hydrologic parameters are aggregated to the modeling scale (�1)
using upscaling operators (e.g., arithmetic or harmonic means).

Further details on mHM code can be found at https://mhm-
ufz.org and underlying modeling concepts at Samaniego et al.
(2010a) and Kumar et al. (2013b). An overview of the global
parameters and the resulting effective model parameters can be
found in Supplementary Table S1. The SM dynamics in mHM
are modeled using the infiltration capacity (IC) approach, which
simulates vertical fluxes by allowing water movement in a one-
way downward direction. The mHM model, utilizing this IC-
based soil moisture distribution scheme, has demonstrated strong
performance in predicting fluxes and state variables (e.g., Rakovec
et al., 2016; Boeing et al., 2022) and is effective in generating
transferable parameters (e.g., Kumar et al., 2013a; Samaniego
et al., 2017). The saturated SM content θs (m3 m−3) is calculated
using pedo-transfer functions (PTFs) from Zacharias and Wessolek
(2007). The land use data in mHM are divided into three broad
categories: coniferous and mixed forest (class 1); impervious
areas like settlements, highways, and industrial parks (class 2);
and pervious areas covering fallow lands, agricultural fields, and
pastures (class 3). For the present study, the soil horizon was
divided into three layers with the following depths: shallow layers
(0–5 cm and 5–25 cm) and a deep layer (25–60 cm); and an average
depth of (0–60 cm) was used additionally for comparison. An
overview of the datasets used in the model is provided in Table 1.

2.3 Neutron counts modeling

Since CRNS measures the area-average neutron density rather
than soil moisture directly, it differs from traditional point-based
soil moisture measurements. The technique provides spatially
integrated observations on a larger area (150–200 m radius),
which makes CRNS suitable for evaluating distributed hydrological
models like mHM. The effective integral measurement depth varies
as a function of the soil moisture between ∼ 15 cm for moist
soils and 80 cm for dry soils (Köhli et al., 2015). Thus, the exact
contribution of each soil layer depends on the vertical distribution
of moisture, which changes over time. As a result, it is difficult
to directly match CRNS-derived soil moisture values with specific
layers in the model. To avoid this mismatch, we simulate neutron
counts directly inside mHM based on the soil moisture profile,
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FIGURE 1

Geospatial distribution of observed neutron counts and mHM resolution within the study site, highlighting the four different land cover areas: F3
(grids 1–3; shunting area), F1 (grids 4–11; dense forest), F2 (grids 12–22; open forest), and M (grids 23–29; meadow). [© OpenStreetMap contributors
2021; distributed under the Open Data Commons Open Database License (ODbL) v1.0].

TABLE 1 Overview of the input data used in mHM, including their spatial resolutions and data sources.

Variables Products Spatial resolution Temporal resolutionReferences

Level 2: meteorological data

Precipitation DWD ∼0.2 km (0.00390625◦) Daily Kaspar et al. (2013); Zink et al.
(2017); Boeing et al. (2022) [Link]

Temperature (avg, min, and max) DWD ∼0.2 km (0.00390625◦) Daily Kaspar et al. (2013); Zink et al.
(2017); Boeing et al. (2022) [Link]

Level 0 & 1: morphological data (0.001953◦)

Terrain characteristics (elevation, slope,
aspect, flow direction, and flow
accumulation)

GMTED 2010 225 m (0.0021◦) Static USGS (2017) [Link]

Soil properties (horizon depth, bulk density,
sand and clay content)

BUEK200 250 m (0.0023◦) Static
BGR (2020) [Link]

Geology GLiM v1.0 0.5◦ static Hartmann and Moosdorf (2012)
[Link]

Land use/land cover Globcover 300 m (0.0028◦) Static ESA and UCLouvain (2010) [Link]

Phenology (leaf area index) GLCF 8 km (0.0833◦) Bimonthly [Link]

Model calibration/evaluation In-situ data

Rail-based CRNS NCs/SM data ∼ 30 m Daily Altdorff et al. (2023) [Link]

DWD, German Weather Service; GLCF, Global Land Cover Facility; GLiM, Global Lithological Map; GMTED, Global Multi-resolution Terrain Elevation Data; BUEK, Bodenübersichtskarte;
NCs, Neutron counts.
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which ensures a consistent comparison between model outputs
and CRNS observations. This neutron model implements the
vertically weighted Desilets method across various land cover types
as described in detail by Fatima et al. (2024).

The simulations are performed at a spatial resolution of 200 m
× 200 m, allowing the representation of spatial variability in soil
moisture and land surface characteristics. The model was calibrated
using rail-based CRNS measurements collected along a railway
segment (see details in Section 2). Calibration involved directly
comparing observed and simulated neutron counts, with model
performance assessed by maximizing the Nash-Sutcliffe Efficiency
(NSE) (Nash and Sutcliffe, 1970). This method uses a weighted
SWC (θavg) approach by Schrön et al. (2017) at soil horizon depths
of 0–5 cm, 5–25 cm, and 25–60 cm, along with other fitting
parameters, i.e., a0 = 0.0808, a1 = 0.372, a2 = 0.115, and
N0,Des = 22888 cph. The N0,Des is fixed for the railway sensor
system determined by Altdorff et al. (2023) on the basis of field
measurements. It is the count rate on dry soil under the same
reference conditions.

NDes = N0,Des

(
a0(

θavg + θlw
)
/�b + a2

+ a1

)
. (1)

For lattice water, we assume a linear relationship to clay content
(Avery et al., 2016):

θlw = θlw0 · C + θlw1 , (2)

where C denotes the clay fraction in % Greacen (1981). The
quantity of derived lattice water, θlw, is regionalized based on C and
varies between 0.0 and 0.1 m3 m−3.

Figure 2 presents the flow diagram of our study; we used
mHM to simulate SWC in various types of land cover. The model
requires multiple input datasets, including meteorological data
(precipitation and temperature), morphological datasets (elevation,
geology, and land cover), and soil datasets (BUEK200); the data
source is given in Table 1. These datasets serve as primary inputs
to define the hydrological conditions in the study area. The model
parameters focus on key hydrological variables, specifically snow,
soil moisture, and neutron count dynamics, which are essential
to simulate water balance dynamics. For the comparison of soil
moisture patterns from CRNS and mHM, we use the gravimetric
soil moisture product from CRNS, and convert the modeled SWC
to gravimetric soil moisture using θgrv = SWC/�b, where �b is the
dry soil bulk density.

2.4 Calibration and evaluation

A large number of combinations of randomly generated model
parameters are needed to quantify the uncertainties of the model
parameters and their influence on the model results. An established
sampling method is the Monte Carlo method, while a more efficient
method is Latin hypercube sampling (LHS), as derived from the
work of McKay and Conover (1979). This method improves the
representativeness of the sample space by dividing the range of each
variable into equal probability intervals and randomly selecting

a value from each interval, thus maintaining the randomness of
sample selection.

Latin hypercube sampling was performed, with 105 runs
varying 27 global model parameters in mHM. Details of parameter
selection can be found in Supplementary Table S1. The time from
2017 to 2022 was selected as the simulation period, while only the
last year was used for the analysis to minimize the influence of the
initial conditions. Calibration was performed using field data from
four distinct sites representing different land cover conditions: (F1
– F3 and M).

To compare the simulated neutron counts with the observed
rail-based CRNS data, the observed data with 30 meter resolution
were upscaled to the model grid resolution of ∼ 200 m (i.e., the
Level-0 of mHM) using the Inverse Distance Weighting (IDW)
approach as described by Shepard (1968). This ensured that the
observed data were comparable to the simulated neutron counts
with the same spatial scale. The comparison was performed for the
period from September 2021 to July 2022.

To assess mHM temporal performance, we used four
performance metrics: Nash-Sutcliffe Efficiency (NSE) (Nash and
Sutcliffe, 1970), Kling-Gupta Efficiency (KGE) (Gupta et al., 2009),
percent bias (PBIAS) (Moriasi et al., 2007), while spatial accuracy
was evaluated using the spatial efficiency (SPAEF) metric (Demirel
et al., 2018; Koch et al., 2018; Demirel, 2020). The SPAEF metric
calculates the spatial pattern similarity between observed and
simulated variables using three equally weighted components:
correlation (A), variability (B), and histogram match (C). It is
mathematically expressed as

SPAEF = 1 −
√

(A − 1)2 + (B − 1)2 + (C − 1)2 , (3)

where A is the Pearson’s correlation coefficient, B is the ratio
of coefficients of variation, and C is the histogram intersection
percentage. SPAEF version 2.0 auto-detects the number of bins
for histogram calculation, ensuring optimal comparison of spatial
patterns. A SPAEF value closer to 1 indicates excellent agreement,
while a value closer to 0 suggests poor performance. The SPAEF
formulation is inspired by KGE, which is characterized by
equally weighted components of variability, correlation, and bias.
Previously, SPAEF was applied successfully to model studies on
evapotranspiration (Demirel et al., 2018), soil moisture (Eini et al.,
2023), snow water equivalent (SWE) (Tiwari et al., 2023), actual
evapotranspiration (ETa) (Demirci and Demirel, 2023; Soltani
et al., 2021; Nguyen et al., 2022), and satellite-derived land surface
temperature (Duethmann et al., 2024).

We preferred NSE as an objective function to constrain
the model parameters based on neutron counts measurements
because it evaluates how well the model captures the variability
in the observed data, rather than just matching the mean or
total volume. A cross-validation experiment was performed using
independent data sets from five test sites to further demonstrate the
generality and/or transferability of the presented modeling scheme:
Grosses Bruch (grassland), Hohes Holz (forest), Kall (grassland),
Rollesbroich (grassland), and Wildenrath (forest). The calibrated
parameter sets from the primary study sites (railway segment
between Blankenburg-Rübeland) of the site F1 and M were
transferred and applied to these test locations to assess model
transferability. This was done by extracting the 10 optimized
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FIGURE 2

Flow diagram of the methodology used in this study to calculate neutron counts using the LHS technique for parameterization in mHM. The neutron
counts were estimated using the NDes,W approach within a model-data fusion scheme.

parameter sets and making decisions on model reliability based
on cross-validation results. To further evaluate our results, we
utilized the mHM simulations established by Boeing et al. (2022)
as a default (reference) mHM simulation. We initially tested the
mHM parameters using the GDM setup by Boeing et al. (2022),
which were calibrated against streamflow using a multi-basin
approach optimized with KGE and the DDS algorithm across 201
catchments. Notably the German drought monitor (GDM) setup
https://www.ufz.de/index.php?en=37937 uses Boeing et al. (2022)
as a reference and this will allow us to quantify the improvements
achieved in our approach relative to those employed by
the GDM.

3 Results and discussion

3.1 Comparison of soil moisture patterns
from rail-based CRNS and mHM
simulations

The Figure 3 presents a comparative analysis of rail-based
CRNS measurement data with the mesoscale hydrological
model (mHM) to improve soil moisture simulations in
different types of land cover. The left panels (a-c) illustrate
the temporal dynamics of the mean values for sites F3 (grids
1–3), F1 (grids 4–11), F2 (grids 12–22), and M (grids 23–29),
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FIGURE 3

Comparison of soil moisture estimates from different methods across various land cover types. (a) Soil moisture measurement using rail-based
cosmic-ray neutron sensing (rail-CRNS). (b) Soil moisture was simulated using mHM from Boeing et al. (2022) used in the GDM. (c) Soil moisture was
simulated using mHM in this study. The left panels show a time series of soil moisture (g/g) for different land cover types (F1 - dense forest, F2 -
half-open forest, F3 - shunting area, M - meadow), along with precipitation data. The right panels display the spatial distribution of soil moisture over
time from Oct 2021 to July 2022 for different grid locations.

while the right panels represent their spatial patterns in all
grids.

For our analysis, we selected 29 grid cells of mHM at a
resolution of 200 m × 200 m: 3 grid cells for F3, 8 for
F1, 11 for F2, and 7 for M. The measurement uncertainty is
indicated in panel a) and ranges from 0.02 g/g in the meadow
to 0.05 g/g in the forest based on the estimations provided
by Altdorff et al. (2023).

We initially tested the mHM parameters of the German
Drought Monitor (GDM) setup by Boeing et al. (2022) by
applying them to the railway segment between Blankenburg-
Rübeland. Comparison with observations highlighted the need
for site-specific calibration, particularly at site F1, where the
model overestimates soil moisture. The simulated value remains
consistently above 0.5 g/g, resulting in a uniform blue color in the
heatmap that indicates unrealistically wet conditions. To address
this, we performed a regional calibration of the mHM parameters
for these sites. Panel (b) presents the results using the parameters
from Boeing et al. (2022), which yielded a SPAEF score of 0.39, a
histogram match of 0.77, a correlation coefficient (CORR) of 0.9,
and a coefficient of variation (CV) of 1.55.

In panel (c), the soil moisture simulated by the site-specific
calibrated mHM of our study shows closer alignment with the
CRNS observations compared to the field observations in panel
(a). This agreement is particularly strong in dense forests F1 and
meadows M. This indicates that the calibration data effectively
constrains mHM parameters for the specific region, leading to
better performance. However, discrepancies remain, particularly
in areas with mixed land cover, such as the half-open forest (F2),
and the shunting area (F3), where the model struggles to capture
small-scale heterogeneity that exists within an mHM grid point.
The shunting area at F3 (i.e., a railway yard and an industrial
site) consistently showed the driest conditions in the measurement.
This is characterized by a relatively open forest structure with
two to three parallel railway tracks, which probably contributes
to its persistently drier environment than other forested areas.
Surfaces, such as the heterogeneous mix of soil, roads, and buildings
in urban areas, can also affect the CRNS signal (Schrön et al.,
2018b). However, the mHM model was unable to capture these
local features.

Winter bias is likely due to uncertainties in the simulation
of frozen soils and snow cover (Thober et al., 2015). Including
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meteorological drivers in snow-dominated regions, the choice of
the model is the main source of uncertainty (Marx et al., 2018).
In addition, the mHM lacks a full energy balance model, which
limits its ability to represent soil frost depths. In comparison, the
calibrated parameter sets achieved a significantly higher SPAEF
score of 0.71, along with improved metrics: a histogram match
of 0.77, a CORR of 0.90, and a CV of 0.85 shown in the
Supplementary Figure S1. The higher SPAEF score (0.71) and

CORR (0.90) for the calibrated parameters suggest that the mHM
model effectively represents the spatial distribution of neutron
counts along the railway track. However, some discrepancies
remain, which was likely due to the model’s limited ability to
fully capture vegetation dynamics and fine-scale heterogeneity in
land cover. The optimal parameter sets derived from the railway
segment between Blankenburg and Rübeland were then cross-
validated at uncalibrated sites to assess the performance of the

FIGURE 4

Neutron counts simulated by mHM at four land cover sites (M: meadow, F2: open forest, F1: dense forest, and F3: shunting area) between
Blankenburg and Rübeland. Measured rail-based CRNS data are shown as gray dots, and an overlay shows daily precipitation (blue bars) from
September 2021 to July 2022.
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mobile CRNS data and determine whether sufficient information
was available to transfer these parameters. The results can be found
in Section 3.4).

3.2 Calibration of mHM to daily rail-based
CRNS data

Figure 4 presents a comparison of daily neutron counts
from rail-based CRNS measurements and mHM simulations
over four types of land cover over a 10-month period. The
corresponding performance metrics are summarized in Table 2
and Supplementary Figure S4. Since CRNS observations provide
an integral value for soil moisture with varying depth and higher
sensitivity to shallow soil horizons, the data cannot be directly
compared with modeled SWC from discrete layers. Instead, we
simulated the CRNS neutron signal inside mHM based on the
physical principles of this depth-sensitivity and compared this value
with the measurement neutrons (Fatima et al., 2024). Using the
match between observed and modeled neutrons in an objective
function, the calibrated model parameters will indirectly result in
improved SWC representations for all soil layers. We selected three
layers for the soil horizons: 0–5 cm, 5–25 cm, and 25–60 cm. The
choice of layering in this study was also made by modeling choices
(0–5 cm layer as litter layer, 25–60 cm layer to read out agricultural
relevant soil depth).

The objective functions of NSE were used to quantify the
degree of matching of the simulated neutron counts with the
measured rail-based neutron counts. From the 105 parameter
sets, the 10 optimal parameter sets were selected, and their mean
was calculated. The results (Figure 4) show that at sites F1 and
M, the model demonstrates robust performance with an NSE
of 0.76–0.79. In contrast, sites F2 and F3 show discrepancies
between observed and simulated data, with NSE values of 0.24
and 0.45, indicating a weaker performance. At both F1 and M
sites, the simulation and measurements align closely for most
months. However, during the summer months (June to September),
we observe a noticeable mismatch between the simulated and
measured neutron counts, which is in the order of the average
variation of neutron measurements along this track (Altdorff et al.,
2023). Specifically, the model tends to overestimate in June and July
while underestimating in September and October.

In our mHM setup, the land cover was represented using
three dominant classes, forest, permeable, and impervious–derived
from the (ESA and UCLouvain, 2010) database. We used a spatial
resolution of ∼ 200 m × 200 m for land cover, which limits the
model’s ability to resolve subgrid heterogeneity (Zink et al., 2017).
As a result, mixed land cover types within a single grid cell–such
as areas containing both forest and bare soil–are not explicitly
distinguished. However, there are good correlations for F2 and F3,
and the r-squared values of 0.73 and 0.70, respectively, indicate a
strong linearity between the simulated and observed data. The site
M shows the highest model precision among the sites, with an NSE
of 0.79. The r-squared value of 0.82 implies good predictive capacity
and a strong linear correlation with the observed data. During the
winter months from November to March, the temporal variability
of the simulated neutron counts showed minimal variation near full

TABLE 2 Performance metrics of neutron counts for model calibration
from Sep 2021 to Jul 2022 using various methods: Nash-Sutcliffe
efficiency (NSE), Kling-Gupta efficiency (KGE), spatial efficiency metric
(SPAEF), coefficient of determination (r-squared), and percent bias (PBIAS)
across different land cover.

Track
section

Land
cover

Performance matrix

NSE KGE r-squared PBIAS

F1 Dense
forest

0.76 0.88 0.77 -0.1

F2 Open
forest

0.45 0.62 0.73 -0.6

F3 Shunting
area

0.24 0.53 0.70 -0.7

M Meadow 0.79 0.90 0.82 -0.3

soil moisture saturation (Boeing et al., 2022). The overestimation of
neutron counts in June and July indicates dryer soil in the model,
while other effects from vegetation water could also contribute
to this observation (Baatz et al., 2015). Overall, we find that the
forest root fraction coefficient, the organic matter content, and
the infiltration shape factor are the most sensitive parameters for
this study. The temporal dynamics of neutron counts is better
represented for meadow sites.

One of the main challenges identified in this study is the
resolution mismatch between mHM and observed CRNS data.
Although mHM operates at a grid resolution of ∼ 200 m that is
comparable with the CRNS footprint, the detection mechanism
of neutrons is non-linearly sensitive to the near field, e.g., to soil
moisture in the nearest ∼ 30 m around the rail track (Schrön
et al., 2023). This discrepancy affects the performance of the
model in heterogeneous landscapes where the land cover changes
more granularly around the rail track, so that the single land
cover characteristic assigned to the larger model grid loses
representativeness.

Another limitation is the absence of vegetation dynamics in
the parameterization of the model, which can lead to systematic
biases in the model output, especially regarding root water uptake
and soil moisture, as highlighted in previous studies (Zink et al.,
2017; Massoud et al., 2019). The inclusion of a dynamic LAI could
be useful, as it would influence evapotranspiration, infiltration,
and plant-soil water exchanges. Recent advances have introduced
a Parsimonious Canopy Model (PCM) that simulates the daily
dynamics of LAI and gross primary productivity (GPP) based
on temperature and photosynthetically active radiation (Bahrami
et al., 2022). This model provides a prognostic and process-
based representation of LAI, allowing for improved coupling of
vegetation and hydrologic processes. Although promising, this
canopy model has not yet been integrated into mHM, limiting the
ability to fully represent vegetation-soil in our simulations.

Moreover, the study relied on a single year of CRNS data
(September 2021 to July 2022), which may not fully capture inter-
annual variability in meteorological conditions. Extending the
dataset to multiple years would improve model robustness and
generalizability of our findings.
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TABLE 3 Performance assessments for the cross-validation experiment regarding the transferability of at-site calibrated parameters to other sites along
with the reference run (mHM-default) simulations by Boeing et al. (2022).

Grassland Grosses Bruch Kall Rollesbroich

mHM default M mHM default M mHM default M

NSE -1.51 0.5 0.1 0.37 0.45 0.56

KGE 0.53 0.78 0.61 0.61 0.58 0.47

R2 0.70 0.65 0.53 0.65 0.58 0.66

PBIAS -44.3% 9.2% 15.2% 12% 7.4% 0.5%

Forest
Hohes Holz Wildenrath

mHM default F1 mHM default F1

NSE -16.00 -13.61 -5.39 -12.42

KGE -0.32 -0.24 0.20 -0.12

R2 0.82 0.84 0.67 0.68

PBIAS 132% 122.1% 74% 110%

3.3 Model performance

The analysis aimed to evaluate the performance of the mHM
model at different land cover types for representing soil moisture
patterns and dynamics using the closely related neutron count
rate. The various efficiency metrics are shown in Table 3 and
in the Supplementary Figure S3. The 10 optimal parameter set
distributions are summarized in Supplementary Figures S4–S7.
The coefficient of determination (R2) also supports the finding
that the model performs well in the meadow (M) and half-
open forest areas (F2), with CDFs indicating high correlation
values close to 1. The KGE and NSE further underpinned these
findings, with the meadow (M) and denser forests (F1) achieving
high-efficiency scores close to 1, while half-open forests (F2) and
shunting areas (F3) display lower scores. The results from the
Cumulative Distribution Function (CDF) indicate that land cover
has a significant impact on the mHM’s ability to simulate neutron
counts. The model shows high performance in open and half-
open areas (M and F1). In contrast, the denser forests (F2) and
shunting areas (F3) present the lowest performance, potentially due
to the heterogeneous nature of these areas that affect soil moisture
dynamics, which are not adequately captured by the model.

This suggests a need for the model to incorporate more
sophisticated representations of land cover, particularly for areas
with high biomass and mixed land cover. In the current modeling,
uncertainty is only partly addressed by selecting the good-
performing parameter sets. However, this approach is limited
to parameterization uncertainty related to mHM and does not
consider either model structural or input data uncertainty.
Addressing them requires a more detailed and careful revision
of underlying model components (e.g., elaborated soil water
or vegetation dynamics) and explicit treatment of different
vegetation types (e.g., croplands, grasslands, and extensive pasture
areas). This may have particular impact in forested areas with
dynamic vegetation components, such as site-specific LAI or root-
water uptake from different layers. Further, a more rigorous
uncertainty assessment such as using Bayesian methods or other
formal statistical techniques could be used to explicitly quantify

and propagate different sources of uncertainties throughout the
modeling process. Such an approach should also account for
input data uncertainty, particularly that arising from CRNS sensor
measurements in complex forest environments (Bogena et al.,
2013), as measurement errors and variability in observational data
can strongly influence model outcomes.

Another promising approach that could potentially
enhance the mHM performance is to leverage the recently
introduced fast Richards solver, as reported by Kholis
et al. (2025). The parameterization of the Richards solver
demonstrated strong agreement with point-scale observations,
accurately capturing absolute soil water storage (SWS).
This could be beneficial for CRNS data assimilation
as well.

3.4 Cross-validation of constrained model
parametrization

The transferability of calibrated parameters based on CRNS
data regionalized for the railway segment between Blankenburg-
Rübeland (applied to the Meadow [M] and Forest [F1]), was
evaluated for non-calibrated target sites. The soil moisture
measurements based on CRNS are available from Bogena et al.
(2022). The performance of this parameter transfer is evaluated
in Table 2 and Figure 5. The left panels illustrate the default
mHM simulation based on the parameters of Boeing et al.
(2022), while the right panels show the results of the parameters
transferred from the calibration. We selected the 10 sets of
optimal parameters with 27 global parameters of snow, soil
moisture, and neutron counts as shown in Supplementary Table S1.
By doing so, we aimed to assess whether the calibrated model
parameters, based on spatio-temporal neutron count data from the
rail track, provide adequate information that can be transferred
reliably.

At Grosses Bruch, Kall, and Rollesbroich (Figures 5a–c),
the parameter transfer significantly improved temporal SWC
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FIGURE 5

Comparison of soil moisture (SWC) simulations using mHM at three grassland sites (a) Grosses Bruch, (b) Kall, (c) Rollesbroich, and two forest sites
(d) Hohes Holz, (e) Wildenrath. The left panel represents the mHM default simulation with parameters from Boeing et al. (2022), while the right panel
shows the calibrated simulation using the NDes,W method. Soil moisture is shown for different depths: 5 cm (green), 25 cm (blue), and 60 cm (orange),
along with the average soil moisture (red). Observed CRNS soil moisture measurements are represented by gray dots.

dynamics, reflecting the improved NSE (e.g., Grosses Bruch:
NSE from -1.51 to 0.5) and reduced PBIAS (e.g., Grosses
Bruch: -44.3% to 9.2%) in Table 3. Notably, the parameterized
model better captured seasonal soil moisture minima during
dry summer periods and reflected quicker recovery after
precipitation events. This enhancement is most pronounced
in the topsoil (5 cm), consistent with the known sensitivity of
CRNS to near-surface moisture variability (Baatz et al., 2014;
Rosenbaum et al., 2012). The overall dynamic range and intra-
annual variability were also more realistically reproduced in the
transferred setup.

In Hohes Holz and Wildenrath (Figures 5d, e), there are modest
improvements in NSE (e.g., Hohes Holz: -16 to -13.61) but
persistently high PBIAS (e.g., 132% to 122.1%), indicating systemic
bias. This bias is particularly pronounced at Wildenrath, which
exhibits the poorest performance among the sites. The figure’s
forest panels may reveal persistent mismatches in SWC magnitude,
particularly at the upper layer (5 cm), where neutron counts are
highly sensitive to the topsoil moisture layers. The deeper soil layers
(60 cm) exhibited increased consistency with measured values,
particularly during the wetter seasons. Despite higher R2 values
(e.g., Hohes Holz: 0.82 to 0.84), poor NSE/KGE underscores issues
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in magnitude accuracy, which could manifest as phase shifts or
amplitude errors in the figure. At Wildenrath, SWC did not improve
relative to the reference parameters. A potential contributing factor
is the difference in land use: unlike the F1 site, which features
dense forest cover, the Wildenrath site exhibits a less densely
vegetated landscape. This divergence in land use characteristics
likely accounts for the observed discrepancies in the transferred
parameters from the F1 site. Baatz et al. (2014) reported a very low
average soil moisture, but due to the high amount of above-ground
biomass at the Wildenrath site. Additionally, Bogena et al. (2013)
emphasized the uncertainties in CRNS-derived SWC estimates
within forested ecosystems, attributing them to various additional
hydrogen sources other than soil moisture. These could include
above- and below-ground biomass, the litter layer, intercepted
canopy water, and soil organic matter.

Across grassland sites, SWC estimates using transferred
parameter sets showed improved alignment with CRNS-derived
measurements, confirming the utility of integrating neutron
count based assimilation approaches in large-scale hydrological
modeling. However, in the forest site, we observe a systematic bias,
an overestimation of the soil moisture compared to observations.
This overestimation may be attributed to the absence of an
explicit representation of the litter layer in the mHM under
canopy vegetation. Unlike models such as CABLE land surface
model (Haverd et al., 2016), which incorporate a physically
accurate treatment of the litter layer and its role in mediating soil
evaporation and energy fluxes, mHM does not explicitly resolve
this component. To improve the model’s accuracy, one potential
solution would be to incorporate an explicit representation of
the litter layer in mHM or explicitly account for litter extraction
in the neutron-based measurements (Iwema et al., 2017). This
adjustment could reduce the bias and enhance the model’s ability
to represent the soil moisture dynamics more accurately. Another
pragmatic option could also be the introduction of a bias correction
factor, which is a typical procedure in climate and hydrological
modeling (Su and Ryu, 2015; Fairbairn et al., 2024). The generally
significant uncertainty in forested areas indicates a need for further
studies to refine model parameterization and processes.

Besides above aspects, another avenue for model improvement
lies in the explicit treatment of vegetation dynamics, including
phenological development, particularly in forested land cover, as
well as the implementation of alternative soil moisture dynamics
schemes. Vegetation dynamics, including above-ground biomass,
LAI, and their seasonal changes, play a central role in controlling
interception, evapotranspiration, and related processes, with strong
impacts on root-zone soil moisture. To this end, Bahrami et al.
(2022) proposed a parsimonious canopy model (PCM) to predict
the daily variability of LAI and other vegetation dynamics (e.g.,
gross primary productivity, GPP) that are closely linked to root-
zone soil moisture processes. Incorporating such a representation,
and ongoing efforts to couple PCM with mHM, would enable a
more realistic treatment of vegetation-soil interactions in forested
regions.

Regarding soil moisture dynamics, in this work mHM currently
applies the infiltration-capacity approach, similar to the HBV
model (Samaniego et al., 2010b). More recent developments
in mHM include an explicit solution of the Richards equation
with an improved parameterization approach (Kholis et al.,

2025). Compared to the infiltration-capacity approach, the 1D
Richards equation—owing to its two-way flow mechanism—
provides improved soil moisture predictions, particularly in deeper
soil layers. Ongoing research is investigating how these approaches
could translate into better representation of in-situ measurements,
which remains an active and important task.

The present results collectively demonstrate the potential of
rail-based CRNS networks, when coupled with optimal parameter
estimation, to support regional-scale soil moisture modeling with
limited calibration requirements. However, further analysis is
warranted to quantify the spatial limits of transferability, especially
across heterogeneous land cover and topographic gradients. These
findings support recent developments in hydrological observatories
such as TERENO in central Germany (Wollschläger et al., 2017)
or TERENO-Rur (Bogena et al., 2018) and strengthen the growing
evidence that the use of soil moisture data derived from CRNS or
SMAP improves the precision of hydrological models at different
scales (Zhao et al., 2025; Li et al., 2024).

4 Conclusions

The availability of mobile cosmic-ray neutron datasets across
time and space marks a new era for hydrological model evaluation.
Using data from a 9 km railway track passing through different
types of land cover in central Germany, we were able for the
first time to evaluate the performance of the hydrological model
mHM in representing spatial patterns of root-zone soil moisture.
By parameter calibration, we achieved significant improvements
in model performance, particularly for homogeneous land cover
types such as meadows (M) and dense forests (F1). The calibration
improved soil moisture dynamics in the model (e.g., NSE from 0.50
to 0.79 for the meadow) and soil moisture spatial patterns (SPAEF
from 0.39 to 0.71 along the whole track). These results underscore
the value of CRNS-derived soil moisture data in constraining
hydrological model parameters and capturing spatio-temporal
dynamics at a 200 m resolution.

These findings demonstrate the potential of a model-data
fusion approach, where high-resolution CRNS measurements are
integrated into a large-scale hydrological model, to improve
regional soil moisture prediction. Furthermore, the transferability
of site-calibrated parameters to (other) independent grassland sites
validates their robustness for regional applications.

However, challenges persisted at forest sites, where vegetation
biomass and the effects of the litter layer may have introduced
biases. The systematic overestimation of soil moisture in forests
highlighted the need for more sophisticated process descriptions
as well as datasets to explicitly represent the dynamics of vegetation
and the interactions between soil, plants, and atmosphere in mHM.
Better datasets of water dynamics in the litter layer would also
help CRNS products to better represent the water content in the
soil. It has also been noted that the spatial resolution of mHM
is larger than the near-field sensitvity of CRNS measurements,
which limits the performance of the spatial pattern comparison
especially in mixed landscapes with small-scale heterogeneity.
We also emphasize the limitation of spatial transferability of the
presented results due to the short length of the investigated rail
track. Future extension of the regions covered by CRNS detectors
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on rails will provide better coverage of the diversity of land use
classes in Germany and, in combination with the multi-scale
parameter regionalization of MPR, facilitate better transferability
also to ungauged regions.

Overall, the demonstrated value of rail-based CRNS data in
hydrological modeling highlights its practical relevance to improve
predictions and support sustainable water resource management.
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