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Evapotranspiration (ET), a key component of the hydrological cycle, responds to and influences climate change, making accurate estimation of reference ET (ETo) critical for long-term impact assessments. The widely applied FAO Penman–Monteith (FAO-PM) equation for calculating ETo does not account for rising atmospheric CO2, which reduces vegetation stomatal conductance and can lead to systematic overestimation of ETo. We derived a modified FAO-PM equation incorporating CO2 effects on stomatal behavior. Using projections from five global circulation models, we compared spatiotemporal average of ETo estimates for India from the original and modified equations under SSP5-8.5 and SSP1-2.6. Differences were 0.11–1.29 mm day−1 (2021–2030), 0.09–1.90 mm day−1 (2051–2060), and 0.17–3.14 mm day−1 (2091–2100) under SSP5-8.5, with slightly lower values under SSP1-2.6. Seasonal differences between the predicted ETo from the two equations peaked during the pre-monsoon, reaching 3.90 mm day−1 (SSP5-8.5) and 1.74 mm day−1 (SSP1-2.6). Neglecting stomatal responses to CO2 could lead to ETo overestimation of ~29% under SSP5-8.5 by 2100, potentially biasing projections of droughts, heatwaves, and water demand. By contrast, overestimation is moderate (~13%) under SSP1-2.6. Incorporating the impact of CO2 into ETo estimation is therefore essential for robust climate change impact assessments.
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1 Introduction

The study of climate change and its effects on the hydrological cycle is a prominent and highly emphasized research field. Among the essential components of the hydrological cycle, evapotranspiration (ET) is one crucial component that is highly responsive to climate change and atmospheric CO2 (Parasuraman et al., 2007; Abdolhosseini et al., 2012; Izady et al., 2013; Pan et al., 2015; Rezaei et al., 2016; Sarker, 2022). ET can affect discharge for a large-scale catchment (Dakhlaoui et al., 2020) and crop water requirements on a smaller scale (Djaman et al., 2018). Optimization of irrigation (Wright and Asae, 1985; Bashir et al., 2023) as a way for climate change adaptation (Li et al., 2020; Yang et al., 2023), also makes extensive use of ET estimations. ET can be estimated using field measurements (Tanner, 1967; Liu et al., 2013; Kompanizare et al., 2022) or modeling techniques (Wang et al., 2024). In contrast to field measurements (Tanner, 1967; Liu et al., 2013), modeling-based approaches (Allen et al., 1998; Das et al., 2023) to estimate ET are inexpensive because they rely on readily available meteorological data. One of the popular modeling-based approaches to estimate ET makes use of the FAO Penman-Monteith equation (FAO-PM) (Allen et al., 1998) to calculate reference evapotranspiration (ETo) which is evapotranspiration for a hypothetical reference crop with an assumed crop height of 0.12 m, a fixed surface resistance of 70 s m−1, and an albedo of 0.23 under well-watered condition. The ETo is then multiplied by a crop specific parameter called crop coefficient (Allen et al., 1998) which varies by growth stages and management practices to determine the actual ET for a given crop. The fixed value of 70 s m−1 of surface resistance, incorporated in the FAO-PM, is based on an assumption of a constant stomatal resistance of 100 s m−1 for a single leaf (Allen et al., 1998). However, this assumption is not valid because increasing atmospheric CO2 concentration is known to increase stomatal resistance (Ainsworth and Long, 2021). The global atmospheric CO2 has increased from 320 ppm in 1965 (Statista, 2024), when the original Penman-Monteith equation (Monteith, 1965) was proposed, to 420 ppm in 2024, and CO2 levels could potentially exceed 1,000 ppm by 2100 if the world follows the SSP5-8.5 pathway (Büchner and Reyer, 2022). Increasing CO2 concentration by 300 ppm resulted in a 50% increase in stomatal resistance in a field study of grassland (Vremec et al., 2023). Ainsworth and Rogers (2007) reported a 28% increase in leaf-level stomatal resistance as CO2 rose from 366 to 567 ppm across global bioclimates. Therefore, ETo estimates made using the FAO-PM equation are prone to overestimation. This limitation has been addressed by incorporating a simple function into the FAO-PM equation that allows stomatal resistance to vary as a function of atmospheric CO2 (Li et al., 2019; Yang et al., 2019). Incorporating the impact of CO2 in calculating evapotranspiration (ET) led to a notable reduction in estimated water demand for maize grown under controlled condition (Li et al., 2019), and helped in addressing anomalies caused by the concurrent occurrence of drought conditions and increased runoff (Yang et al., 2019).

An accurate estimation of ET over contiguous India is crucial for the wellbeing of more than a billion people in the context of climate change. Several factors such as reliance on the 4 months of monsoon (Mall et al., 2006), intrinsic relationship between rainfall and ET (Stefanidis and Alexandridis, 2021), spatial–temporal mismatch between water demand and supply (Amarasinghe et al., 2007), makes it necessary to account for the impact of rising atmospheric CO2 concentration in sustainable management of water resources in India. It is essential to consider rising atmospheric CO2 in water resource planning. However, several studies focusing on the availability of water resources (Mall et al., 2006), agricultural water demand (Sreeshna et al., 2024), and extreme events such as flooding (Mall et al., 2006; Bharat and Mishra, 2021; Athira et al., 2023) and droughts (Aadhar and Mishra, 2020) often do not explicitly include the effect of rising CO2 in their analyses. Earlier projections, which excluded the impact of CO2, indicated a significant spatial and temporal variation in the increase in potential ET due to rising temperatures (Chattopadhyay and Hulme, 1997). In this study, we aim to investigate the influence of atmospheric CO2 concentrations alongside future climate projections under SSP1-2.6 and SSP5-8.5 to reassess ETo patterns across contiguous India. To achieve this, we modified the FAO-PM equation and utilized climate projections, including atmospheric CO2 concentrations, to conduct a comprehensive analysis of the spatio-temporal variations in ETo, both with and without accounting for the effects of rising CO2 concentrations.



2 Methods

The overall methodology adopted in this study is summarized in the flowchart presented in Figure 1, which offers a step-by-step visual overview of the procedures and analyses undertaken to assess the impact of incorporating atmospheric CO2 concentrations into the estimation of the reference evapotranspiration over India. Detailed explanations of each step are provided in the subsequent subsections. A key strength of this approach is the use of harmonized and bias-corrected future climate data (Hempel et al., 2013; Warszawski et al., 2014), which enables a consistent and spatially explicit evaluation of how excluding atmospheric CO2 may influence evapotranspiration estimations in India, where water availability vary significantly over seasons and regions (Kumar et al., 2005; Cronin et al., 2014; Pathak et al., 2014; Singh and Kumar, 2015).

[image: Workflow for estimating and analysing reference evapotranspiration (ETo) over India using the FAO-PM and modified FAO-PM methods under SSP1-2.6 and SSP5-8.5 scenarios across different time periods. The framework includes model validation, spatio-temporal analyses (decadal, seasonal, annual), national evapotranspiration averages, and sensitivity analyses for CO2 and temperature, with outputs as spatial maps, time series, bar charts, and raster plots.]

FIGURE 1
 Flow chart summarizing the overall methodology used to assess the impact of rising atmospheric CO2 on reference evapotranspiration under Indian conditions.



2.1 Scope and study area

The aim of this paper is to demonstrate the extent of disparity between reference evapotranspiration (ETo) estimated with and without incorporating the influence of CO2 on contiguous India during three timeframes: the near-term (2021–2030), mid-term (2051–2060) and the long-term (2091–2100) periods. To achieve this, data from five Global Climate Models (GCMs) (see Supplementary Table S1) were obtained from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) (Warszawski et al., 2014; Hempel et al., 2013). These five models were chosen because their GCM projections were bias-corrected for the systematic deviation from observations and made freely accessible through the ISIMIP portal of the Potsdam Institute of Climate Impact Research.1 Furthermore, ISIMIP data effectively capture the uncertainties in global temperature change projections (Ito et al., 2020), which is essential since temperature is an important variable in estimating ETo.

We focus on two contrasting climate change scenarios: SSP5-8.5 and SSP1-2.6 (see Supplementary Figure S1), which correspond to projected global CO2 concentrations of approximately 1,130 ppm and 474 ppm, respectively (Büchner and Reyer, 2022). These scenarios are associated with a projected mean temperature rise in India of 4.0-to-4.4 °C under SSP5-8.5 and 1.2-to-1.8 °C under SSP1-2.6 by 2100. We selected SSP5-8.5 because it is commonly used in climate change impact assessment under the worst-case, high-emissions scenario (Jaiswal et al., 2017; Pielke, 2021; Climatedata.ca, 2024), which closely followed observed CO2 emission trends until recent years (Fuss et al., 2014). In contrast, SSP1-2.6 represents a low-emissions, sustainable development pathway, serving as a benchmark for the most optimistic future with aggressive mitigation.



2.2 Estimation of reference evapotranspiration

We employed two approaches to estimate ETo, one without considering the effect of atmospheric CO2 concentration (Equation 1) and the second after incorporating atmospheric CO2 concentration (Equation 6). The first approach is based on the FAO-PM equation (Allen et al., 1998), which combines the aerodynamic component with the energy component and is idealized for a hypothetical reference crop (Allen et al., 1998). The second approach modifies FAO-PM equation by considering stomatal conductance as a function of atmospheric CO2 (Equation 5) (Li et al., 2019) instead of a fixed value of surface resistance of 70 s m−1 as used in the original FAO-PM equation (Equation 1) (Allen et al., 1998).



2.3 Derivation of the modified FAO-PM equation

According to the original FAO-PM equation (Allen et al., 1998),
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where, 
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 is the reference evapotranspiration (mm day−1), Rn is the net radiation (MJ m−2 day−1) at the canopy surface, G is the soil heat flux density (MJ m−2 day−1) (G is assumed negligible and hence equals zero), γ is the psychrometric constant (kPa °C−1), T is mean daily air temperature (°C) at 2 m height, u2 is the wind speed at 2 m height (m s−1), es is the saturation vapor pressure (kPa), ea is the actual vapor pressure (kPa), es - ea is vapor pressure deficit (kPa), and Δ is the slope of the saturated vapor pressure curve (kPa °C−1).
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, to obtain (1 + 0.34u2). As a first step to incorporating CO2 in FAO-PM equation, we modify Equation 1 in the following way (Allen et al., 1998; Li et al., 2019; Jarvis et al., 1997):
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where, rs is the bulk surface resistance (s m−1), ra is the aerodynamic resistance (s m−1), gc is the canopy conductance (m s−1), gs is the leaf stomatal conductance (m s−1), LAIactive is effective leaf area index (m2 m−2), h is the hypothetical crop height (equals 0.12 assumed in Equation 1 in m).

Substituting Equations 2, 3 in Equation 1, we get the modified FAO-PM model (Equation 4)
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In the above equation, stomatal conductance gs (m s−1) appears on the right-hand side of Equation 4. Li et al. (2019) developed a modified hyperbolic model that express gs as a function of atmospheric CO2 as shown in Equation 5.
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We replaced gs (m s−1) from Equation 5 to Equation 4 to obtain CO2 dependent value of reference evapotranspiration (
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) (in mm day−1). Our modified version of the FAO-PM equation, presented in Equation 6, provides a simplified representation of 
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 as a function of atmospheric CO2, and all the other meteorological inputs used in the original FAO-PM equations (Allen et al., 1998).
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2.4 Data for validating the modified FAO-PM equation

To validate our proposed modified FAO-PM equation, we used measured data from six independent sites included in the AmeriFlux network (Novick et al., 2018), which is a part of the global FLUXNET (Pastorello et al., 2020) network of eddy covariance towers.2 The six sites were selected based on details provided about vegetation and/or crop cover, availability of crop coefficients, and availability of the planting and harvest dates (see Supplementary Table S2; Nass, 2010). They comprise of four agricultural and natural vegetation types including alfalfa cultivation (Twitchell and Bouldin Islands), managed pastures (Medford hay pasture), irrigated croplands (continuous maize at Mead) and native prairie ecosystems (Rosemount Prairie and Konza prairie; see Supplementary Table S2). All of the sites also span across different types of climates. Twitchell alfalfa and Bouldin islands come under the Csa Koppen climate classification (Mediterranean) with mild winters and dry hot summers. Medford hay pasture and Konza Prairie exhibits Cfa climate (Humid subtropical) with mild winters, hot summers and year-round rainfall. Rosemount prairie and Mead’s maize site experience a Dfa climate (Humid Continental) with severe winters, hot summers, and no dry season. The downloaded data from the AmeriFlux site consisted of the following variables; air temperature, vapor pressure deficit, net radiation, wind speed, atmospheric pressure, atmospheric CO2 and latent heat flux. Additionally, weather data from two representative stations located in the southern Indian state of Kerala were used to compare model performance: one at Trivandrum (8.544°N, 76.913°E) and the other at Palakkad (10.807°N, 76.7258°E). These datasets were used to compare the performance between the modified FAO-PM equation and two other methods: the original FAO-PM equation (Allen et al., 1998) and the widely used Priestley-Taylor equation (Priestley and Taylor, 1972).



2.5 Validation approach

We converted the daily observed latent heat flux data into actual evapotranspiration by dividing latent heat flux with latent heat of vaporization [λ = 2.45 MJ kg−1 (Allen et al., 1998)] (see Supplementary Equation S1). The actual evapotranspiration was then divided by crop coefficients (see Supplementary Table S2) corresponding to vegetation type (see Supplementary Equation S2) to estimate reference evapotranspiration (
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made using modified FAO-PM equation (Equation 6) for the six sites.

To compare our model estimations against commonly used approaches for selected sites in India, we used the weather data from specific stations in the South Indian state of Kerala (see Supplementary Table S3) to estimate reference evapotranspiration using both the original and modified FAO-PM models. Additionally, the 
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 values were further compared with the estimated values by the Priestley-Taylor equation, based on the same weather station data.

The statistics used for the validation and comparison were Root Mean Square Error (RMSE in mm day−1), coefficient of determination (R2), and the correlation coefficient (r) (see Supplementary Equations S3–S5).



2.6 Climate data for regional simulations

The climate data to estimate ETo across India was obtained from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), ISIMIP3b protocol (Hempel et al., 2013; Warszawski et al., 2014). The ISIMIP project provides bias-corrected gridded global climate projection data from 1800 to 2100 at daily (and coarser) time steps with a spatial resolution of 0.5° × 0.5°. We used projected climate data for contiguous India for the period from 2021–2030 (near-term), 2051–2060 (mid-term), and 2091–2100 (long-term) corresponding to the five GCMs, namely GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL under SSP1-2.6 and SSP5–8.5 scenarios (Lange and Büchner, 2021; see Supplementary Table S1). We downloaded six variables, namely near surface relative humidity, surface air pressure, surface downwelling shortwave radiation, near surface wind speed, daily maximum near surface temperature, and minimum near surface air temperature (Lange and Büchner, 2021). Additionally, ISIMIP3b atmospheric composition input data for annual mean CO2 concentrations under SSP5-8.5 and SSP1-2.6 (Büchner and Reyer, 2022) was also downloaded (see Supplementary Figure S1) to calculate 
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 using modified FAO-PM equation (Equation 6). The soil heat flux density (G) was assumed to be negligible in our calculations (Allen et al., 1998; Varghese and Mitra, 2024).



2.7 Estimations for spatio-temporal analyses

We estimated the daily 
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(Equation 1) and 
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 (Equation 6) for each year from 2021–2030 (near-term), 2051–2060 (mid-term) and 2091–2100 (long-term) across contiguous India using data from each of the five GCMs for both the scenarios (SSP1-2.6 and SSP5-8.5). From this point forward, any reference to India refers to contiguous India.


	(a) Decadal averages of 
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 were computed to conduct spatial analyses across India. Intra-decadal trends in the yearly averaged values of 
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 spatially averaged across India were also analyzed.

	(b) We also calculated the daily difference between 
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 for each GCM, time period, and scenario. These differences were averaged over each decade and mapped to analyze spatial patterns across India.

	(c) To assess seasonal variability, daily estimates of 
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were grouped into four seasons following Jhajharia et al. (2009): winter (Jan–Feb), pre-monsoon (Mar–May), monsoon (Jun–Sep), and post-monsoon (Oct–Dec).

	Thereafter, seasonal averages were computed for each GCM, time period, and scenario. The differences between seasonal 
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 were then calculated for each GCM and these differences were averaged across all five GCMs to obtain an overall seasonal difference.



Maps were classified using manually determined class breaks after identifying the minimum and maximum values projected by all GCMs for each step (ESRI, 2024).



2.8 Estimating the impact of CO2 on the national average evapotranspiration

To quantify relative impact of incorporating CO2 on national average evapotranspiration we have calculated 
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2.9 Sensitivity analysis

After the spatio-temporal analyses, we identified two locations in India which exhibit drastically different response of rising CO2 and temperature on ETo. These two locations were used to conduct a sensitivity analysis of 

ET
o

CO
2


 with respect to temperature and atmospheric CO2. To perform the sensitivity analysis, the CO2 concentration was varied from 400 to 1,200 ppm while keeping all the remaining input parameters unchanged. Similarly, temperature sensitivity analysis was done by varying temperature from 18 to 34 °C while keeping all the remaining input parameters unchanged. These ranges were determined based on meteorological data for the three decadal periods for these two specific locations. The values of all the other variables during sensitivity analysis were kept constant based on their average values and are given in Supplementary Table S4. All the data produced during this analyses is available publicly as an archive (Surendran et al., 2025).




3 Results


3.1 Model validation and comparison

We developed the modified FAO-PM (Equation 6) which effectively predicted the daily reference evapotranspiration (
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) at the six AmeriFlux (Novick et al., 2018) sites (Figure 2) with atmospheric CO2 concentrations ranging from 370 ppm in 2001 to 418 ppm in 2021 (see Supplementary Table S2). The correlation coefficient (r) indicates moderate to strong linear relationships between the observed 
(
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 – see Supplementary Equation S2) and estimated ETo using Equation 6 (
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), with the site US-A32 showing the highest correlation (r = 0.72) and the site US-Ne1 showing the lowest correlation (r = 0.606). The slopes of the regression lines through the origin ranged from 0.8 to 1.04, demonstrating close alignment with the 1:1 line across all six sites (Figure 2). RMSE values ranged from 1.152 to 1.566 mm day−1, with the site US-Ro4 exhibiting the lowest RMSE and the site US-Bi1 showing the highest.

[image: Scatter plots comparing estimated ET_o^CO2 versus observed ETo for different locations (a-f). Each plot includes a dashed 1:1 line, a solid regression line, and evaluation metrics: R², correlation coefficient (r), and root mean square error (RMSE). High correlations (R = 0.75–0.90) demonstrate good agreement, with most cases showing slight underestimation (slopes < 1), while some show near-accurate or slight overestimation. RMSE values (~1.15–1.57 mm/day) indicate moderate deviations from observations.]

FIGURE 2
 Scatter plots of the comparison between the observed rates of reference evapotranspiration (

ET
o
obs


in mm day−1) and predicted rates of reference evapotranspiration (

ET
o
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2


 in mm day−1) using the FAO-PM equation modified to incorporate the impact of atmospheric CO2 concentration on surface resistance at the six AmeriFlux sites (a) US-Tw3: Twitchell Alfalfa (2013–2018), (b) US-Bi1: Bouldin Island Alfalfa (2016–2021), (c) US-xKZ: NEON Konza Prairie Biological Station (KONZ) (2017–2021) (d) US-Ro4: Rosemount Prairie (2014–2021), (e) US-A32: ARM-SGP Medford hay pasture (2015–2017) and (f) US-Ne1: Mead - irrigated continuous maize site (2001–2020).


To compare the estimation of the modified FAO PM equation (Equation 6) against commonly used methods for selected Indian sites, we used daily weather data from two stations located in the southern Indian state of Kerala: Trivandrum (8.544°N, 76.913°E) and Palakkad (10.807°N, 76.7258°E). Using this data, reference evapotranspiration was estimated using the original FAO-PM model (ETₒ FAO–PM), the modified CO2-sensitive FAO-PM model (
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o
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), and the Priestley-Taylor model (ETPT). Figure 3 compares 
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o
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 with ETo FAO–PM and ETPT for both locations. The modified FAO-PM model exhibited a strong agreement with the original FAO-PM model at both sites, with high R2 values (0.999 for Trivandrum and 0.988 for Palakkad), strong correlation coefficients (r = 0.996 and 0.992, respectively), and low RMSE values (0.084 and 0.329-mm day−1, respectively). Comparisons with the Priestley-Taylor model showed relatively lower agreement, with higher RMSE values (0.486 and 0.887 mm day−1, respectively) and underprediction tendencies (slopes of 0.82 and 0.76, respectively).

[image: Four scatter plots compare ET_o FAO-PM and ET_PT values against ET_o^CO2 across two locations, Trivandrum and Palakkad. Each plot includes a one-to-one line, a fitted line, and statistical metrics: equations, R², correlation coefficient (r), and RMSE.]

FIGURE 3
 Scatter plots of the comparison between daily reference evapotranspiration estimates from the modified FAO Penman-Monteith model (
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o
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 in mm day−1) with those from the original FAO-PM model (ETₒ FAO–PM) and the Priestley-Taylor equation (ETPT) using observed weather data at two locations in Kerala, India; Trivandrum (8.544°E, 76.913°N) and Palakkad (10.807°E, 76.7258°N). Panels (a) and (c) compare 

ET
o

CO
2


 with ETₒ FAO–PM, while panels (b) and (d) compare 
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o

CO
2



with ETPT.




3.2 Spatio-temporal variations in 
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Analyses of 
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 and 
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 under SSP1-2.6 and SSP5-8.5 scenario utilizing five GCMs (see Supplementary Table S1; Supplementary Figure S1) during near-term (2021–2030), mid-term (2051–2060) and long-term (2091–2100) periods, and all spatial locations in India, showed that the former exceeded the latter consistently in all cases (Figure 4) due to the impact of rising atmospheric CO2 concentration that was not included in the original FAO-PM model (Equation 1). In general, both 
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, are decreasing as we move from west to east for all cases (Figure 4). The highest values of 
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original


and 

ET
o

CO
2


 (Figure 4) and the difference between 
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original


and 
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 (Figure 5) were observed covering parts of desert regions in Rajasthan by all the five GCMs for all the time periods and scenarios.

[image: Maps showing India under different climate scenarios (SSP1-2.6 and SSP5-8.5) and time periods (2021-2030, 2051-2060, 2091- 2100). Each row represents a variable ET_o^original and ET_o^CO2 for different global climate models.]

FIGURE 4
 Decadal average of 

ET
o
original


and 

ET
o

CO
2



in mm day−1 for near-term, mid-term and long-term periods across India for the five GCMs under (a) SSP1-2.6 and (b) SSP5-8.5.


[image: Projection maps for India, showing decadal average of differences between ET_o^original and ET_o^CO2 for three periods (2021-2030, 2051-2060, and 2091-2100) under SSP1-2.6 and SSP5-8.5 scenarios using five climate models (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL). Values of difference remain relatively stable under SSP1-2.6, while under SSP5-8.5 a clearer upward trend is visible toward the end of the century.]

FIGURE 5
 The decadal average of difference between 

ET
o
original


and 

ET
o

CO
2



projected by each of the five GCM’s for near-term, mid-term and long-term across India under (a) SSP1-2.6 and (b) SSP5-8.5.


While the differences between 

ET
o
original

 and 

ET
o

CO
2


 were similar for both SSP1-2.6 and SSP5-8.5 in the near term, they became significantly larger under SSP5-8.5 during the mid-term and long-term time periods, indicating divergent temporal trajectories across the two scenarios (Figure 5). The regions predicted to have lowest values of 
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original

 and 
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 (Figure 4) and their difference (Figure 5) included high-altitude deserts of Ladakh and northeastern states.

The spatially averaged values of 
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original

 and 
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o
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2


 across India (Figure 6) indicated a small variation in the time-series of estimated values within a period of 10-years corresponding to the near-term, mid-term and long-term time periods for all the GCMs and under both SSP1-2.6 and SSP5-8.5 scenarios. The predicted values of 

ET
o
original

 was consistently higher than 

ET
o

CO
2


 for all the scenarios and time periods. The differences between the two were largest for the long-term (2091–2100) period under SSP5-8.5 when CO2 concentrations are projected to reach 1,130 ppm (see Supplementary Figure S1).

[image: Projected changes in mean reference evapotranspiration (ETo in mm day-1) under two climate scenarios: SSP1-2.6 (panel (a), left) and SSP5-8.5 (panel (b), right). Each sub-panel (i–vi) represents different time slices, with coloured lines for five global climate models (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL) and a black dashed line showing the multimodal mean.]

FIGURE 6
 Annual time series of (i) 
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original

 for near-term (2021–2030) (ii) 
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for near-term (iii) 

ET
o
original

 for mid-term (2051–2060) (iv) 
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o
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for mid-term (v) 

ET
o
original

 for long-term (2091–2100) and (vi) 

ET
o

CO
2



for long-term obtained using five GCMs and their overall average under (a) SSP1-2.6 and (b) SSP5-8.5.




3.3 Seasonal variations in the ETo difference

Spatial variations in the magnitude of the differences between 

ET
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original

 and 
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o

CO
2



for the four seasons are seen in all three time periods under both the scenarios (Figure 7). The differences between 
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original

 and 
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was the largest during the pre-monsoon season, in most parts of India except the far-northern and north-eastern states. The lowest differences were observed during the post-monsoon and winter season (Figure 7). Spatially, the magnitude of these differences for the winter and post-monsoon seasons were the least in the northern and north-eastern regions and highest in major parts of Rajasthan, Gujarat, Maharashtra and southern India for all time periods and scenarios. The differences were higher for the long-term period than for the near-term period and mid-term period only under scenario SSP5-8.5 for all the locations and seasons. Under the SSP1-2.6 scenario, the differences were smaller and ranged from 0.05 to 2.5 mm day−1 across all seasons and time periods.

[image: Climate projection maps of India showing seasonal changes in multi modal ensemble average of differences between ET_o^original and ET_o^CO2 for SSP1-2.6 and SSP5-8.5 scenarios from 2021-2030, 2051-2060, and 2091-2100. Each row represents a time period, and each column depicts a season: Monsoon, Post-Monsoon, Winter, and Pre-monsoon. Colours indicate varying reference evapotranspiration levels, with scales on the right for each scenario. Under both scenarios, evapotranspiration generally increases over time, with the strongest rise occurring by the end of the century. The high-emission scenario (SSP5-8.5) shows much larger increases, especially during the monsoon and pre-monsoon seasons, with widespread intensification across most regions of India.]

FIGURE 7
 Average of difference between 
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 and 

ET
o

CO
2



obtained using five GCMs, corresponding to four seasons for near-term, mid-term and long-term periods under (a) SSP1-2.6 and (b) SSP5-8.5.


The absolute spatio-temporal average values of the seasonal (monsoon, post-monsoon, winter, and pre-monsoon) variations of
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 and 
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for the near-term, mid-term and long-term periods under SSP1-2.6 and SSP5-8.5 are shown in Table S5 and S6, respectively (see Supplementary material) for the five GCMs. The seasonal patterns are nearly consistent among GCMs with higher values of 
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 and 
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observed during pre-monsoon and lower values observed during the post-monsoon and winter season for all the three simulation periods and scenarios. All seasons show a decrease in the predicted ETo when incorporating the effect of CO2 for SSP5-8.5 (see Supplementary Tables S5, S6).



3.4 Sensitivity analyses of 
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The sensitivity analysis of 

ET
o

CO
2


 with respect to temperature and CO2 concentration (Figure 8) revealed distinct trends at both the locations selected. Location 1 (26.75°N, 70.25°E), situated in the arid desert region of Rajasthan with a hot desert climate, exhibited 
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 values ranging from 3.22 to 9.65 mm day−1 as CO2 concentration increased from 400 to 1,200 ppm and temperature was varied from 26 to 33 °C. This location showed the greatest difference in ETo​ estimated using original and modified FAO-PM equations. Location 2 (23.75°N, 93.25°E), situated in Arunachal Pradesh with a tropical rainforest climate, showed 
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 values ranging from 0.6 to 1.35 mm day−1 for the same CO2 range and temperature variation from 18 to 24 °C. This location exhibited the lowest difference in ETo estimated using original and modified FAO-PM equations.

[image: Figure showing map of India on the left with two locations; Location 1 in the north and Location 2 in the northeast, whose meteorological data is used to conduct the sensitivity analyses. On the right, two graphs show variation of ET_o^CO2 with CO2 concentration (ppm) and temperature (℃). At Location 1, ET_o^CO2 is higher and increases with temperature but decreases with rising CO2. At Location 2, ET_o^CO2 values are much lower overall and decline further as CO2 concentration increases.]

FIGURE 8
 Interaction of CO2, temperature and 
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 at location 1 (26.75°N, 70.25°E) and location 2 (23.75°N, 93.25°E). These locations are characterized by highest (location 1) and lowest (location 2) differences of 
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o
original

 and 

ET
o

CO
2


.




3.5 Impact of CO2 on the national average evapotranspiration

Spatio-temporal averages across India (Figure 9) shows that incorporating CO2 concentrations in calculating ETo results in a reduction of 12.4, 13.9, and 13.0% for near-term, mid-term, and long-term time periods respectively under SSP1-2.6. Under SSP5-8.5, the percentage difference (12.6%) was more-or-less similar to the ones observed under SSP1-2.6 for the near-term period but were much larger for the mid-term and long-term periods (18.0 and 29%, respectively).

[image: Bar charts comparing average values of ET_o^original and ET_o^ CO in mm day-1 for SSP1-2.6 and SSP5-8.5 scenarios. Both scenarios show spatially and temporally averaged values of ET_o^original and ET_o^CO2 during near-term, mid-term, and long-term periods. In SSP1-2.6, ET_o^original values are increasing slightly from near-term (4.34) to long-term (4.54) whereas ET_o^CO2 values increase from 3.80 during near-term to 3.95 during long-term. In SSP5-8.5, ET_o^original values rise from 4.22 to 4.95, whereas ET_o^CO2 values decrease from 3.79 to 3.53.]

FIGURE 9
 ETo averaged over the entire country for near-term, mid-term and long-term periods under (a) SSP1-2.6 and (b) SSP5-8.5 using climate data from five GCMs (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL).


If one continues to use original FAO-PM equation (Equation 1), which does not consider the effect of rising CO2, then the increase in the ETo is expected to be 4.0 and 4.6% as we move from near-term (2021–2030) to mid-term (2051–2060), and near-term to long-term (2091–2100) periods, respectively, under scenario SSP1-2.6. These numbers change to 6.0 and 16.0%, respectively under the scenario SSP5-8.5.




4 Discussion


4.1 Reliability of modified FAO-PM equation spans a wide variety of vegetation types and climatic conditions

Our model performed satisfactorily against the AmeriFlux network data (Novick et al., 2018), with R2 values ranging from 0.75 to 0.90 (Figure 2). These values are comparable to those reported by Li et al. (2019), who found R2 values of 0.76 to 0.83 while validating 
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2


 against water balance-based estimates for maize under controlled conditions. In contrast, our validation included six sites with diverse vegetation types and management practices (see Supplementary Table S2), where site selection was guided by the availability of crop coefficient (Basketfield, 1985; Allen et al., 1998; Nass, 2010; Pereira et al., 2023), which is essential for converting actual evapotranspiration (ETactual) (see Supplementary Equation S1) from eddy covariance towers to 

ET
o
obs

 using crop coefficients (see Supplementary Equations S1, S2). The greater scatter observed in our validation plot (Figure 2) can be attributed to uncertainties in crop coefficients (Peng et al., 2019), as well as site-specific factors such as spatial heterogeneity, variations in planting and harvest dates, irrigation practices, environmental stresses, and other management practices.

The comparison of the modified FAO-PM model using daily weather data from two locations in Kerala, Palakkad and Trivandrum, showed strong agreement with the original FAO-PM formulation, yielding high R2 values (0.98 to 0.99) (Figure 3). These sites represent typical humid tropical environments characterized by high moisture availability and seasonal variability, making them suitable test references for model evaluation in such climates. Palakkad includes agriculturally important areas, further supporting the relevance of these results. The high agreement with the original FAO-PM method suggests that the modified model preserves the core structure and reliability of the standard formulation while integrating the physiological response of vegetation to elevated CO2. Previous studies, such as Nandagiri and Kovoor (2006) have shown that radiation-based models like Priestley-Taylor (PT) perform reasonably well in humid regions. Supporting this, our comparison of 

ET
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with ETPT at both Kerala locations showed strong statistical relationships (R2 = 0.936-to-0.966; r = 0.919-to-0.988), indicating that PT captures the temporal patterns of evapotranspiration well. However, the slopes of the lines (0.76 and 0.82) and relatively higher RMSE values (0.486 to 0.887 mm day−1) point to a consistent underestimation by the PT method compared to the modified FAO-PM model (Figure 3). This underprediction highlights the advantage of including physiological and aerodynamic controls, as well as CO2 sensitivity, which are absent in simpler radiation-based models.

Together, these results show that the modified FAO-PM model not only performs reliably under controlled or semi-controlled conditions but also maintains robustness across complex, real-world scenarios. This consistency across different climates, vegetation types, and data sources supports the model’s potential for large-scale applications in climate impact studies and agricultural water management.



4.2 Impacts of incorporating changing CO2 concentrations across the three decadal periods

The CO2 range in the validation data for the modified FAO-PM equation (Equation 6) was relatively narrow (370–418 ppm) (see Supplementary Table S2), reflecting past natural environmental conditions. However, this modified FAO-PM equation (Equation 6) has been previously validated under controlled conditions with CO2 levels up to 900 ppm (Li et al., 2019). This higher level is comparable to the atmospheric CO2 concentrations projected by the SSP5-8.5 scenario in the long-term period (2091–2100) (see Supplementary Figure S1), considered in our study to evaluate the spatial variation of the impact of CO2 on ETo across India (Figures 4b, 5b).

We predicted a consistent trend of 
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being less than 
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original

 (Figures 4, 5) due to the CO2 impacts on stomatal closure, which is similar to reported trends in previous studies (Li et al., 2019; Yang et al., 2019; Varghese and Mitra, 2024). In our knowledge, the absolute values of 
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 and 
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 covering whole India have not been reported previously. The predicted 
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 for the near-term period ranged from 1.94-to-7.04 mm day−1 under both SSP1-2.6 and SSP5-8.5 (Figure 4), aligning with recent estimates done for smaller regions within India (Jhajharia et al., 2009; Nag et al., 2014; Pandey et al., 2016; Das et al., 2023). The increase in 
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original

 from the near-term to long-term (Figure 4b) can be attributed to rising temperatures under SSP5-8.5, as studies have shown a positive correlation between temperature and ETo (Wang et al., 2022; Zhou et al., 2022) with temperature contributing up to 45% of ETo variation (Varghese and Mitra, 2024). However, this increase in ETo is moderated (
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 < 
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 in Figure 4) as a consequence of incorporating the effect of CO2 in our calculations. Estimations using all five GCMs (Figures 4, 5) are consistent in predicting the 
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 to be less than the 
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 but they differ in the magnitude as well as spatial variations of the differences. The spatial averages (Figure 6) reveal no distinct temporal trends within 10-year intervals for either the near-term or long-term periods across all GCMs. However, transitioning from the near-term to long-term period highlights the dominant influence of CO2 on ETo, with reductions in ETo due to elevated CO2 levels outweighing increases driven by rising temperatures under SSP5-8.5 (Figure 6b). Consequently, long-term 
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 is projected to be lower than the current estimates, under the SSP5-8.5 scenario, contrary to several previous studies (Liu et al., 2020; Zhai et al., 2020) that did not account for the impact of CO2.

The spatial variability of differences between 
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 and 
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original

 (Figure 5) is influenced by climate inputs beyond CO2 as shown in the sensitivity analyses of the modified FAO-PM (Equation 6) for two distinct locations (Figure 8). Location 1 (26.75°N, 70.25°E), characterized by the hot desert climate in the northwest, exhibits a pronounced response to rising CO2, with 
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 ranging from 3.22-to-9.65 mm day−1, as CO2 concentration increases from 400 to 1,200 ppm and temperature varies from 26-to-33 °C. In contrast, Location 2 (23.75°N, 93.25°E), characterized by a tropical rainforest climate of the northeast, shows minimal response, with 
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 values varying from 0.6-to-1.35 mm day−1 for the same CO2 range and temperature variation from 18-to-33 °C. This non-linear, location-specific interaction between CO2, temperature, and ETo may help explain deviations from the typically positive correlation between ETo and temperature (Wang et al., 2022; Zhou et al., 2022), a phenomenon often referred to as the “evapotranspiration paradox” (Rao and Wani, 2011; Varghese and Mitra, 2024). The “evapotranspiration paradox” may result from overly simplistic vegetation representation in hydrological models, despite the fact that leaf stomatal transpiration can account for over 80% of evapotranspiration (Nelson et al., 2020; Yu et al., 2024). Similar behavior was observed by Vremec et al. (2024) in the Austrian Alps. Consequently, the effects of climatic factors such as CO2, temperature, humidity, wind speed, and radiation on leaf stomatal behavior are often unappreciated (Ainsworth and Long, 2021) and continue to remain a challenge in the field of hydrology (Blöschl et al., 2019). However, substantial uncertainties also remain in predicting these variables (temperature, humidity, wind speed, and radiation), making it essential to select GCMs based on performance indicators tailored to specific regions (Raju and Kumar, 2020). Unfortunately, most studies evaluating the suitability of GCMs have focused on specific regions within India (Song et al., 2023; Verma et al., 2023). Panjwani et al. (2019) have covered all of India but could not identify a single GCM capable of reliably predicting all variables required for evapotranspiration calculations. Consequently, it is challenging to determine which of these models (see Supplementary Table S1) is best for ET predictions across India. However, multimodal ensemble methods are often preferred over single-model predictions (Khan et al., 2018), as demonstrated in several studies on issues related to water resources under climate change (Haddeland et al., 2011; Davie et al., 2013).

Incorporating changing CO2 concentrations in the mid-term period (2051–2060) allows us to assess not only the long-term implications of elevated CO2 but also the potential transitional effects that may influence water demand and crop planning strategies over the coming few decades. Although the mid-term atmospheric CO2 levels (~550-to-650 ppm under SSP5-8.5) are lower than those projected for the long-term period, they still represent a significant increase compared to the near-term period (2021–2030). Our results show that even at these intermediate concentrations, 
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 is consistently lower than 
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 across most regions of India (Figures 4, 5), suggesting that stomatal closure effects begin to noticeably influence evapotranspiration well before the end of the century (Figure 9). This mid-term reduction in ETo has critical implications for regional irrigation scheduling and water resource allocation, especially in semi-arid and arid zones where small changes in evaporative demand can significantly alter water availability (Konapala et al., 2020). Furthermore, by capturing the gradual onset of CO2-driven feedbacks on evapotranspiration, our study emphasizes the importance of accounting for dynamic CO2 trajectories even in near- and mid-term projections, an aspect often overlooked in traditional ETo estimation frameworks.



4.3 Impact of CO2 on the national average evapotranspiration

The outcomes of this study suggest that atmospheric CO2 can greatly impact India’s annual water budget. Rainfall in India is expected to rise by 6 to 14% under various climate scenarios (Chaturvedi et al., 2012; Kumar et al., 2013) by the end of the century. The combination of reduced ETo due to incorporation of CO2 and seasonal variations may exacerbate the difference between water demand and supply both spatially and temporally, potentially leading to water scarcity during peak agricultural demand and flooding during the monsoon season when water demand is minimal. Evapotranspiration, accounting for approximately 40% of India’s water budget (Narasimhan, 2008), is anticipated to be over-estimated by approximately 29% over the long term (Figure 9) under SSP5-8.5 if the effects of CO2 are disregarded. However, under SSP1-2.6, the contribution of CO2 is not significant because of limited increase in atmospheric CO2 concentration and temperature. This underscores the critical necessity to incorporate CO2 in models that forecast water demand and supply, especially when considering business-as-usual scenario such as SSP5-8.5.



4.4 Implications of incorporating CO2 in evapotranspiration estimations for environmental protection and climate change

The differences between 

ET
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original

 and 
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2



averaged across five GCMs using the multimodal ensemble method, shows significant spatial variations across India for the four seasons (monsoon, post-monsoon, winter, and pre-monsoon; Figure 7). These variations in the ETo caused by atmospheric CO2, often ignored in climate change impact assessments on agricultural water demand (Sreeshna et al., 2024) and drought (Aadhar and Mishra, 2020; George and Athira, 2025; Varghese and Mitra, 2025), could play a critical role in future water resources planning in India (Varghese and Mitra, 2024). Generally, a reduction in ETo corresponds to a decrease in agricultural water demand, aligning with field observations (Ainsworth and Long, 2021). However, this effect is often overlooked or inadequately represented in climate change impact assessments on water resources (Döll et al., 2015; Athira et al., 2023) resulting in poor predictions of water availability and demand in the agricultural sector. Our projections indicate that the impact of CO2 on ET will remain moderate from the near-term to mid-term and long-term time periods under SSP1-2.6, but will intensify significantly under SSP5-8.5, potentially leading to severe consequences for various sectors intricately linked to climate change. For example, the major grain producing states in India (Uttar Pradesh, Madhya Pradesh; Ministry of Finance, 2023) are expected to experience a decrease of 1.1-to-2.8 mm day−1 in 
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 (Figure 5b) by the end of the century, which appears to be beguiling in terms of reduced agricultural water demand, but could pose serious challenges for the management of water resources and extreme hydrological events, if CO2 effects are not considered. In this context itself, we must also consider seasonal variations (Kingra et al., 2024; Figure 7b) as water consumption may differ throughout the seasons. The seasonal variation (see Supplementary Table S6; Figure 7b) has major consequences for extreme events such as flooding (Döll et al., 2015) and heatwaves (Ford and Schoof, 2017). While runoff is estimated to be more responsive to variations in precipitation than ETo (Bharat and Mishra, 2021), the role of ETo is likely to become more important in a future with higher levels of CO2 (Davie et al., 2013; Meng et al., 2016). Flood-prone regions in India (Chakraborty and Joshi, 2016) may likely experience a decrease in ETo of up to 2.1 mm day−1 during the monsoon season (Figure 7b), potentially worsening the flood conditions. The increasing severity of heatwaves attributed to climate change in Rajasthan, Bihar, West Bengal, specific areas of Kerala, and northeastern India may be underestimated, as prior work on impact of climate change on heatwaves (Dubey and Kumar, 2023; Ravindra et al., 2024) did not account for the influence of rising CO2 levels on ETo and, subsequently, on heatwaves. Additionally, neglecting CO2 in seasonal ETo estimates can influence prediction of flash droughts which are closely linked to evapotranspiration rates (Mahto and Mishra, 2020; Wang et al., 2016; Pendergrass et al., 2020). Accurately representing the role of CO2 in estimating ET is crucial for hydroclimatic forecasting, as it helps explain contradictory phenomena like the observed greening of the earth despite continental drying (Milly and Dunne, 2016; Chen et al., 2023) and inconsistent runoff estimations (Kooperman et al., 2018; Zhou et al., 2023; Lesk et al., 2024). The implementation and scaling of large-scale land-based climate solutions (Jaiswal et al., 2025) that rely on plants will also be influenced by the accurate representation of evapotranspiration, particularly in the context of water demand and supply.

In addition to CO2, other factors such as vegetation, temperature, rainfall (Lovelli et al., 2010), and vapor pressure deficit (VPD) (Ort and Long, 2014) will also impact ET. Assessing the complex interactions among these variables including teleconnections between climate variables is challenging (He et al., 2022; Sidhan and Singh, 2025). Both ETo (Soni and Syed, 2021) and climate teleconnections (Sharma et al., 2020; Sahu et al., 2025) can influence the water budgets of India’s 20 major river basins, which collectively provide an average of 1,914 billion cubic meters of replenishable water resources (Bassi et al., 2020). India’s multiple river basins are not only hydrologically fragmented but also affected by the non-uniform distribution of rainfall, both of which pose major challenges to achieving nationwide water security. In response, the national river-linking project was proposed to redistribute water from flood-prone regions to water-scarce areas and to manage rainfall variability according to regional demand. However, the original design of this initiative did not account for the impacts of climate change. This omission is particularly critical, as rising atmospheric CO2 levels can significantly influence ETo, especially in large river basins where hydrological responses are highly sensitive to land use/land cover changes (Das et al., 2018) and climatic variability (Sarker, 2022). To ensure long-term sustainability and effectiveness, the river-linking project must incorporate climate change considerations — particularly the effects of elevated CO2 on ETo — in evaluating impacts on river networks (Abed-Elmdoust et al., 2016), the role of critical hydrological monitoring nodes (Singhal et al., 2024), the maintenance of river network integrity (Sarker et al., 2019), and the strategic placement of dams (Gao et al., 2022).



4.5 Limitations and future scope

Our approach is based on empirical data that does not make distinction between C3 and C4 crops (Li et al., 2019). It is well recognized that these plant types respond differently to elevated CO2 (Leakey et al., 2019) but semi-empirical approaches such as FAO-PM are not suitable to incorporate such details. Making ETo predictions after accounting for the photosynthetic pathway (C3 or C4 types) would require using biophysical approaches (Lochocki et al., 2022) that model behavior of stomatal conductance to CO2 concentration (Ball et al., 1987) while accounting for leaf biochemical characteristics. Model coupling tools (Surendran and Jaiswal, 2023) can also be a simpler way to enhance existing models neglecting CO2 concentration to make reliable predictions under rising CO2 concentrations. The sensitivity of evapotranspiration water losses may also vary (Lockwood, 1999) across different landcover types (such as grasslands, slow growing tall canopies) and these factors are also not included in our modified approach.

Our analysis aimed to provide a broad, country-level perspective on the impact of CO2 on reference evapotranspiration using ISIMIP data at a spatial resolution of 0.5° × 0.5°. For studies focused on finer spatial scales or specific regions within India (Mishra et al., 2020), incorporating spatial downscaling or using regional climate models (RCMs) would enhance the resolution and enable more localized insights. Such approaches can be particularly valuable for translating large-scale climate projections into actionable information at the state or district level.




5 Conclusion

In order to account for the impact of increasing CO2 levels on the estimation of ETo we developed a modified equation from the original FAO-PM equation to include the stomatal conductance as a function of CO2 (Equation 6). The difference between 
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 exhibited minimal spatial and magnitude variations in the near-term (2021–2030) period, but it substantially varied both spatially and in magnitude during the mid-term (2051–2060) and long-term (2091–2100) period for all five GCMs under scenarios SSP1-2.6 and SSP5-8.5. But the overall impact of CO2 on ETo was moderate under scenario SSP1-2.6 in comparison to SSP5-8.5. There was a significant overestimation of ETo when CO2 was not incorporated under both scenarios SSP1-2.6 and SSP5-8.5. For both scenarios, the seasonal 
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 were highest during the pre-monsoon season and decreased progressively toward the winter season for all the three time periods and for all five GCMs. Predicting ETo without considering the effects of changing CO2 concentrations on stomatal closure is essentially incorrect, which could lead to unreliable evaluations on water availability, water demand, extreme droughts, runoff, floods, and heatwaves especially under scenario SSP5-8.5 characterized by elevated CO2 concentration of greater than 1,000 ppm.

Our modified FAO-PM model offers a straightforward yet robust approach for estimating reference evapotranspiration, which, in conjunction with crop coefficients, could be used for calculating actual evapotranspiration, enabling more accurate predictions under various environmental conditions especially those characterized by elevated CO2. Under future climate conditions with increasing CO2 concentrations, this improvement would be especially beneficial for applications in agriculture, water resource management, and climate modeling, where precise evapotranspiration estimates are crucial for decision-making. The results produced here are important for practical use by irrigation planners, farmers, researchers, and other stakeholders.
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