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Background: Virtual reality (VR) has emerged as a promising tool in post-stroke
neurorehabilitation, offering immersive and interactive environments capable of
enhancing motor and executive function recovery through mechanisms of
neuroplasticity. Although various VR modalities—immersive (I), semi-immersive
(SI), non-immersive (NI), and mixed (MXD)—have been applied, their relative
effectiveness remains unclear.

Objective: This systematic review aimed to evaluate the efficacy of different VR
modalities in improving motor or executive functions in post-stroke patients and
to explore how the stroke phase and the type of VR system used influence
treatment outcomes.

Methods: A comprehensive literature search was conducted across PubMed,
Embase, Scopus, and the Cochrane Library, resulting in 46 eligible peer-reviewed
studies published between 2014 and 2024. These studies included randomized
controlled trials, quasi-experimental designs, and observational studies, with an
average sample size of approximately 35 participants. The inclusion criteria
focused on studies utilizing VR as a therapeutic modality for motor or
executive function recovery in post-stroke populations.

Results: Forty-six studies met the inclusion criteria. Overall, VR interventions
yielded positive motor outcomes in 76.3% of cases, with semi-immersive VR (SI-
VR) achieving the highest proportion of significant improvements (88.24%),
followed by non-immersive VR (NI-VR) (66.67%) and immersive VR (I-VR)
(50%). Only 13% of studies assessed executive functions, but SI-VR and [-VR
modalities showed more consistent benefits than NI-VR. No statistically
significant associations were found between VR typology, the stroke phase
(chronic vs. subacute), and motor outcome efficacy.

Conclusion: VR is an effective and versatile adjunct to conventional stroke
rehabilitation, with SI-VR showing the most consistent motor benefits and
immersive systems offering additional cognitive engagement. The lack of
significant differences by stroke phase suggests that VR can be applied across
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recovery stages. Future research should address the underrepresentation of
executive function outcomes and directly compare modalities in well-powered

trials.

stroke, virtual
neuroplasticity

1 Introduction

Acquired brain injury is the second most common cause of
death (62.2%) and the third most common cause of death and
disability combined; survivors often suffer severe motor and
cognitive impairments that greatly reduce their own and their
families” quality of life (GBD 2019 Stroke Collaborators, 2021).

In these patients, cognitive and motor rehabilitation treatments
aim to stimulate neuroplasticity and support the reorganization of
damaged brain areas (Einstad et al., 2021).

In recent years, virtual reality (VR) has gained growing interest
due to its capacity to deliver engaging, adaptive, and task-oriented
environments that simulate real-world scenarios while ensuring
patient safety (Massetti et al, 2018). VR enhances motivation,
provides real-time feedback, and allows for the repetition of
exercises in a controlled setting, which are key factors in effective
neurorehabilitation (Rizzo and Koenig, 2017). Depending on the
level of immersion, VR environments can be categorized into
immersive (I), semi-immersive (SI), non-immersive (NI), or
mixed (MXD) reality systems. Immersive VR (I-VR) uses head-
mounted displays to fully surround users with a virtual environment,
enhancing the presence but sometimes causing side effects such as
nausea or disorientation (“VR sickness”) due to sensory conflict
between the visual input and signals from the vestibular system
(Chang et al., 2020). Roussou et al. (2024) showed that I-VR is safe
and usable when basic measures are taken to reduce adverse effects
and help users adapt. Semi-immersive VR (SI-VR) allows interaction
via screens or robotic interfaces while maintaining partial contact
with the real world (Fernandez-Vazquez et al., 2022). Non-immersive
VR (NI-VR) typically involves standard displays such as TVs or
monitors and basic input devices, whereas mixed reality overlays
virtual elements onto physical environments, creating hybrid
scenarios (Howard, 2017).

Clinically, VR has demonstrated promising effects in post-stroke
rehabilitation for both motor and executive function recovery,
including improvements in upper and lower limb coordination,
strength, and range of motion, enhanced attention, processing
speed, and cognitive flexibility (Maier et al., 2019).

Motor and executive functions are closely linked following a
stroke, as goal-directed movements require planning, decision-
making, and attentional control (Schaefer and Schumacher,
2009). Stroke often affects networks involving both motor and
prefrontal regions, leading to concurrent deficits; thus, evaluating
these domains together offers a more complete view of recovery and
potential cross-domain rehabilitation effects (Cramer et al., 2011).
This systematic review aims to bridge this gap by reviewing studies
focused on the impact of VR rehabilitative treatments, across all
modalities—immersive, semi-immersive, non-immersive, and
mixed reality—on both motor and executive functios (or one of
them) in post-stroke patients. A secondary objective is to
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demonstrate the benefits of this innovative therapeutic strategy
and its potential role in advancing neurorehabilitation.

2 Materials and methods

We conducted this systematic review to explore the existing
evidence on innovative rehabilitation for improving motor and
cognitive outcomes in post-stroke patients. This review was registered
with a DOI (osfio/fy3mw) on the Open Science Framework (OSF).

2.1 Search strategy

A review of currently published studies was performed in the
following databases: PubMed, Embase, Scopus, and the Cochrane
Library. The following search string was used: (((neurorehabilitation
[Title/Abstract]) AND (virtual reality [Title/Abstract])) AND
(executive functions [Title/Abstract])) OR (motor impairment [Title/
Abstract]). All the articles were published between 2014 and 2024.

2.2 Study selection

To minimize bias and ensure a rigorous selection process, three
investigators (C.A., D.C., and G.G.) independently reviewed and
extracted data from the studies. Full-text articles deemed suitable for
the study were then read by these researchers, and any discrepancy
in selection was resolved through collaborative discussion, with
consultation from a fourth researcher (R.S.C). This multistep
that at three
independently assessed each article. In cases of persistent

approach  ensured least research  workers

disagreement, the final decision involved all authors.

2.3 Inclusion criteria

A study was included if it described or investigated patients with
acquired brain injuries who were treated with innovative cognitive
or motor rehabilitation approaches. To ensure consistency and
quality, only articles written in English and published in peer-
reviewed journals were included.

2.4 Exclusion criteria

A study was excluded if it described theoretical models,
technical
descriptions, along with (i) animal studies, (i) conference proceedings

methodological ~ approaches, algorithms, and basic

or reviews, and (iii) studies involving other neurological patients.
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FIGURE 1

PRISMA flowchart of the current review.

2.5 Risk of bias within individual studies

The risk of bias was assessed considering five domains: (i) bias due to
the randomization process, (ii) bias due to deviations from the intended
interventions, (iii) bias due to missing outcome data, (iv) bias due to the
risk of bias in the measurement of post-exposure outcomes, and (v) bias
due to the risk of bias in the selection of the reported outcome. A detailed
summary of the risk of bias is available in Appendix 1.

3 Results
3.1 Synthesis of evidence

The initial search resulted in 11,153 studies from different databases,
such as PubMed, Embase, Scopus, and the Cochrane Library. After
screening the titles, abstracts, and full texts of articles against the
inclusion and exclusion criteria, 46 studies (Duret et al, 2015;
Brunner et al, 2017; Mazzoleni et al., 2018; Mekbib et al., 2021;
Zhang et al, 2023; Dahdah et al, 2017; Torrisi et al, 2021; Lam
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et al., 2022; Gerardin et al., 2022; Valdés and Van der Loos, 2018;
Noveletto et al., 2020; Manuli et al., 2020; Norouzi-Gheidari et al., 2020;
Johnson et al., 2018; Luo et al., 2023; Schuster-Amft et al., 2018; Colomer
et al,, 2016; Yuan et al., 2021; Llorens et al., 2021; Paquin et al., 2015;
Askin et al., 2018; Yao et al., 2020; Saposnik et al., 2016; Kong et al., 2016;
Taravati et al., 2022; Jung et al., 2017; Thielbar et al., 2020; Aprile et al,,
2021; Patel et al., 2019; Senocak et al., 2023; Mazzoleni et al., 2014; Rong
et al, 2021; Lu et al., 2020; Maistrello et al., 2021; Mugler et al,, 2019;
Saleh et al,, 2017; Ranzani et al., 2020; Sip et al., 2023; Kim et al,, 2017;
Sale et al., 2014; Lee, 2019; Adams et al,, 2023; Abd El-Kafy et al., 2022;
Yeh et al., 2017; Thielbar et al., 2014; Palermo et al., 2018) were identified
as eligible for this systematic review. The details of the search process are
shown in Figure 1.

3.2 Description of studies and VR
technologies

All studies included in this systematic review were published
in English between 2014 and 2024. The main features of the used
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VR tasks and technologies are summarized in Supplementary
Table SI.

Out of the 46 studies reviewed, over two-thirds used robotic
devices, either to actively assist limb movement or to provide haptic
and motor feedback. Many studies also used assistive elements, such
as arm supports, smart gloves or handlebars, designed to facilitate
motion or reduce the need for compensatory strategies.

The equipment ranged from head-mounted displays (HMDs)
(Mekbib et al., 2021; Dahdah et al.,, 2017) to robotic exoskeletons
(Manuli et al., 2020; Saposnik et al., 2016; Taravati et al., 2022; Rong
etal, 2021) and glove-based systems (Jung et al., 2017; Adams et al.,
2023; Brunner et al., 2017). Some studies utilized sensor-based
tracking systems, such as Kinect sensors (Valdés and Van der
Loos, 2018; Askin et al., 2018), camera setups (Sip et al., 2023) or
motion-tracking gloves (Paquin et al., 2015; Jung et al., 2017; Yeh
et al, 2017). Non-robotic equipment was often paired with
commercial gaming platforms, particularly the Nintendo Wii
(Paquin et al., 2015; Saposnik et al., 2016; Kong et al., 2016) and
the Xbox Kinect (Paquin et al,, 2015; Saposnik et al., 2016; Kong
et al, 2016). These platforms provided cost-effective, engaging
environments but generally lacked mechanical assistance.

The software used varied widely: commercial platforms (e.g.,
WiiMote, Unity3D, and VRRS Evo) (Paquin et al., 2015; Kong et al.,
2016; Maistrello et al., 2021), custom-built or proprietary software
[such as tyroS with Amadeo (Paquin et al., 2015; Kong et al., 2016;
Maistrello et al., 2021), REA software Axinesis with REAplan”
(Paquin et al,, 2015; Kong et al., 2016; Maistrello et al., 2021) or
InMotion Solution Designer (Duret et al., 2015; Mazzoleni et al.,
2018)], and hybrid those
brain-computer interface (BCI) components with functional
electrical stimulation (FES) and VR (Zhang et al.,, 2023; Johnson
et al,, 2018). Some systems included multimodal inputs, such as
EMG signals (Zhang et al., 2023; Johnson et al., 2018), EEG (Zhang
et al,, 2023; Johnson et al., 2018) or force feedback (Zhang et al.,
2023; Johnson et al., 2018), emphasizing motor control precision
and adaptability.

All outcomes were measured at baseline and at the end of all

systems, such as integrated

interventions. Cognitive outcomes were assessed using the Montreal
Cognitive Assessment (MoCA) in five studies (Manuli et al., 2020;
Torrisi et al., 2021; Gerardin et al., 2022; Yuan et al., 2021; Taravati
et al., 2022). Three studies (Torrisi et al., 2021; Manuli et al., 2020;
Ranzani et al., 2020) used the Frontal Assessment Battery (FAB) to
evaluate EF. Three studies (Yuan et al., 2021; Schuster-Amft et al.,
2018; Ranzani et al., 2020) assessed the cognitive outcomes by the
mini-mental state examination. One study (Manuli et al., 2020) used
the Trial Making Test (TMT). Two studies (Torrisi et al., 2021; Yuan
et al,, 2021) used the digit span test. In one study (Torrisi et al.,
2021), the attentive matrices test (AMT) was used. Instead, the
Rey-Osterrieth complex figure (ROCF) was used to assess cognitive
outcomes in one study (Torrisi et al, 2021). Finally, one study
(Dahdah et al., 2017) used the Automated Neuropsychological
Assessment Metrics (ANAM), in which a Go/No-Go task and
the Stroop test are involved as EF outcomes.

Regarding the motor outcomes, the Fugl-Meyer Assessment
(FMA) was used in 27 studies (Mekbib et al., 2021; Zhang et al,,
2023; Lam et al., 2022; Valdés and Van der Loos, 2018; Noveletto
et al., 2020; Norouzi-Gheidari et al., 2020; Luo et al., 2023; Llorens
et al,, 2021; Askin et al., 2018; Yao et al,, 2020; Kong et al.,, 2016;
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Thielbar et al., 2020; Aprile et al., 2021; Patel et al., 2019; Senocak
etal., 2023; Mazzoleni et al., 2014; Rong et al., 2021; Maistrello et al.,
2021; Mugler et al., 2019; Sip et al., 2023; Kim et al., 2017; Sale et al.,
2014; Lee, 2019; Adams et al., 2023; Yeh et al., 2017; Thielbar et al.,
2014; Mazzoleni et al., 2018). The Wolf Motor Function Test
(WMEFT) was used by seven studies (Luo et al., 2023; Patel et al,
2019; Senocak et al., 2023; Mugler et al., 2019; Kim et al., 2017;
Adams et al., 2023; Yeh et al., 2017). The Action Research Arm Test
(ARAT) was used in five studies (Lam et al., 2022; Yao et al., 2020;
Abd El-Kafy et al., 2022; Thielbar et al., 2014; Brunner et al., 2017).
Four studies (Mekbib et al., 2021; Yao et al., 2020; Lu et al., 2020;
Palermo et al, 2018) used the Barthel Index to assess motor
outcome, whereas two studies (Aprile et al, 2021; Rong et al,
2021) used the modified Barthel Index (mBI). Two studies
(Adams et al, 2023; Yeh et al, 2017) evaluated the motor
outcomes using the Box and Block Test (BBT), and six studies
(Saposnik et al., 2016; Kong et al, 2016; Taravati et al, 2022;
Palermo et al., 2018; Brunner et al., 2017; Rong et al., 2021) used
the Functional Independence Measure. In two studies (Paquin et al.,
2015; Saleh et al., 2017), the motor outcome measure used was the
Jebsen Hand Function Test (JHFT). Finally, in one study ($enocak
etal, 2023), the Trunk Impairment Scale was used. Moreover, in this
case, all outcomes were assessed at baseline and at the end
of treatment.

3.3 Description of VR interventions and
recipients

The number of participants across the studies varied
considerably, ranging from a minimum of three patients
(Johnson et al., 2018) to a maximum of 141 patients (Saposnik
et al, 2016), with an average sample size of approximately
36 participants per study (Table 1).

According to the post-stroke timeframe proposed by Bernhardt
et al. (2017), the majority of studies involved individuals in the
chronic stage; a total of 25 studies focused on chronic patients
(Torrisi et al., 2021; Gerardin et al., 2022; Valdés and Van der Loos,
2018; Noveletto et al., 2020; Manuli et al., 2020; Norouzi-Gheidari
etal., 2020; Johnson et al., 2018; Luo et al., 2023; Schuster-Amft et al.,
2018; Colomer et al., 2016; Llorens et al., 2021; Paquin et al., 2015;
Askin et al., 2018; Thielbar et al., 2020; Lu et al., 2020; Maistrello
etal,, 2021; Mugler et al., 2019; Saleh et al., 2017; Sip et al., 2023; Kim
et al,, 2017; Sale et al., 2014; Adams et al., 2023; Abd El-Kafy et al.,
2022; Yeh et al., 2017; Thielbar et al., 2014). Fifteen studies included
individuals in the subacute phase (Mekbib et al., 2021; Zhang et al.,
2023; Lam et al., 2022; Yuan et al., 2021; Saposnik et al., 2016; Kong
et al,, 2016; Jung et al., 2017; Aprile et al., 2021; Patel et al., 2019;
Senocak et al., 2023; Rong et al., 2021; Ranzani et al., 2020; Palermo
et al., 2018; Duret et al., 2015; Brunner et al., 2017), whereas four
studies involved mixed chronic/subacute samples (Yao et al., 2020;
Taravati et al., 2022; Mazzoleni et al., 2014; Mazzoleni et al., 2018).
Only two studies did not specify the stroke phase of the participants
(Dahdah et al., 2017; Lee, 2019).

In terms of the type of VR used, 21 studies used NI-VR systems
(Zhang et al., 2023; Lam et al., 2022; Gerardin et al., 2022; Valdés and
Van der Loos, 2018; Johnson et al., 2018; Luo et al., 2023; Paquin
etal,, 2015; Askin et al., 2018; Saposnik et al., 2016; Kong et al., 2016;
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TABLE 1 Summary of patients’ characteristics, VR features, and outcomes of the studies included in the research.

Sample VR Duration Frequency Total number of EF/MOT Significant Significance
size typology sessions improvement outcome
Maistrello et al. (2021) 50 NI 4w 5 se/w 20 n.a./+* MAS/FMA-UE/RPS p < 0.001
Askin et al. (2018) 40 NI 4w 5 se/w 20 n.a./+* FMA/BBT p < 0.05
Mugler et al. (2019) 32 NI 6w 6 se 6 n.a./- FMA/WMFT/MASA p =0.15
Kim et al. (2017) 30 NI 4w 3 se/w 12 n.a./+ FMA/WMEFT p = 0.461
Lu et al. (2020) 26 NI 6w 4 se/w 24 n.a./- BI p = 0.606
Gerardin et al. (2022) 24 NI 3d 1 se/d 3 n.a./+* FMA-UE/BBT p = 0.0003
Luo et al. (2023) 17 NI 3m n.s n.s na./+* FMA-UE p = 0.045
Valdés and Van der Loos 14 NI 1d n.s 1 na./+ FMA/trunk rotation p > 0.05
(2018)
Paquin et al. (2015) 10 NI 8w 2 se/w 16 n.a./+* JHFT/BBT/NHPT/SIS  p=0.03;p=0.03;p=0.01;p=0.009
Johnson et al. (2018) 3 NI 6w 3/w 18 na./+* BBT p < 0.01
Colomer et al. (2016) 30 MXD 2m 3 se/w 24 na./+* WMFT/BBT p <001
Manuli et al. (2020) 90 SI 8w 5 se/w 40 +*/n.a EF (FAB; TMT) p < 0.001
Schuster-Amft et al. 54 SI 4w 4 selw 16 na./+* BBT p =0.08
(2018)
Torrisi et al. (2021) 48 SI 8w 5 se/w 40 +H/+* EF/FMA-UE p = 0.04; p = 0.028
Abd El-Kafy et al. (2022) 40 SI 12w 3 se/w 36 n.a./+* ARAT/WMFT/MAS/ p = 0.0001; p = 0.0001; p = 0.0314;
AROM p = 00152
Llorens et al. (2021) 29 SI 2m 1 se/w 4 na./+* FMA/WMFT p = 0.043
Adams et al. (2023) 21 SI 8w 4 se/lw 32 n.a./+* FM-UE/WMFT p = 0.002
Thielbar et al. (2020) 20 SI 4w 2/w 8 na./+* FMA-UE p = 0.006
Saleh et al. (2017) 19 SI 2w 4/w 8 n.a./+* JTHET p =0.03; p = 0.048
Yeh et al. (2017) 16 SI 8w 3 se/w 24 na./+* FMA/WMFT p < 0.01
Thielbar et al. (2014) 14 SI 6w 3 se/lw 18 na./+* ARAT p = 0.022
Sale et al. (2014) 14 SI 4w 5 se/lw 20 na./+* FMA p < 0.01
Noveletto et al. (2020) 11 SI 10 w 2 se/w 20 na./+* FMA-LE/TUG p < 0.001
Norouzi-Gheidari et al. 4 SI 1 m 10 se/m 10 na/+ FMA-UE p > 0.05

(2020)

(Continued on following page)
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TABLE 1 (Continued) Summary of patients’ characteristics, VR features, and outcomes of the studies included in the research.

Sample Stroke VR Duration Frequency Total number of EF/MOT Significant Significance
size phase typology sessions improvement outcome
Sip et al. (2023) 20 C I 3w n.s n.s na./+* FMA-UE/SF-36 p =0.009; p = 0.001 (EG) p = 0.019;
p = 0.022 (CG)
Taravati et al. (2022) 37 S/C NI 4w 5 se/w 20 +X/+* FMA/MOCA p > 0.05; p = 0.025
Mazzoleni et al. (2014) 25 S/IC NI 6w 5 se/w 30 n.a./+* FM (S); MSS-SE (C) p < 0.05 (S); p < 0.001 (C)
Yao et al. (2020) 40 S/IC SI 2w 5 se/w 19 n.a./+* FM-UE; ARAT; BI p < 0.05; p = 0.003; p = 0.026; p =
0.043
Mazzoleni et al. (2018) 40 S/IC SI 6w 5 se/w 30 na./+* FM/MAS p < 0.001; p = 0.002 (C); p < 0.001;
p = 0.063 (S)
Saposnik et al. (2016) 141 N NI 2w 10 se 10 na./+ WMFT/BBT/SIS p =070
Kong et al. (2016) 105 S NI 3w 4 se/w 12 na./+ FMA/ARAT/SIS p =0.15
Lam et al. (2022) 83 N NI 8w 2 se/w 16 na./+* FMA-UE/ARAT p = 0.001
Aprile et al. (2021) 51 N NI 6w 5 se/w 30 n.a./+* mBI index/FMA-UE p = 0.006; p = 0.037
Senocak et al. (2023) 41 S NI 6w 5 se/w 30 + FMA-UE/WMFT p = 0.556
Rong et al. (2021) 40 S NI 4w 5 se/w 20 n.a./+* FMA-UL/FIM p = 0.048
Zhang et al. (2023) 33 S NI 1m 18 se 18 na./+* FMA-UE p = 0.027
Ranzani et al. (2020) 33 S NI 4w 15 se 15 +/+ FAB/FMA-UE p = 0.7079; p = 0.529
Duret et al. (2015) 25 S NI 8w 4 se/lw 32 na./+* FMA p = 0.002
Brunner et al. (2017) 120 S SI 4w 5 se/lw 20 na./+ ARAT/BBT p = 0.234
Yuan et al. (2021) 30 S SI 2w 6 se/w 12 +/+* FEMA-L/MMSE p = 0.022
Jung et al. (2017) 13 S SI 3w 5 se/w 15 n.a./+* WMFT p = 0.046
Patel et al. (2019) 13 S SI 1w 8 se/w 8 na./+* FMA-UE/wrist AROM p = 0.024; p = 0.019
Palermo et al. (2018) 10 S SI 5w 4 se/w 20 na./+* FIM/BI/FAT/FMA p = 0.005
Mekbib et al. (2021) 23 S I 2w 4 se/w 8 n.a./+* FMA-UE/BIL p = 0.0001; p = 0.003
Lee (2019) 42 n.s SI 6w 5 se/w 30 na./+* FMA-LE p < 0.05
Dahdah et al. (2017) 15 n.s I 4w 2 se/lw 8 + */na EF, information p = 0.0408; <0.0001

processing

Legend: NI, non-immersive; SI, semi-immersive; I, immersive; d, day; w, week; m, month; n.s., not specified; ¢, chronic; s, subacute; EF, executive function; MOT, motor function; n.a., not assessed; +*, significant improvement; +, improvement; —, no change; FMA-UE,
Fugl-Meyer assessment for upper extremity; BI, Barthel Index; BBT, Box and Block Test; WMFT, Wolf Motor Function Test; FAB, Frontal Assessment Battery; TMT, Trial Making Test; ARAT, Action Research Arm Test; MAS, Modified Ashworth Scale; AROM, active
range of motion; JHFT, Jebsen Hand Function Test; NHPT, Nine-Hole Peg Test; SIS, Stroke Impact Scale; MoCA, Montreal Cognitive Assessment; MSS-SE, shoulder and elbow section of motor status scale; JTHFT, Jebsen-Taylor hand function test; FMA, Fugl-Meyer
assessment; FMA-LE, Fugl-Meyer Assessment Lower Extremity; TUG, timed up and go test; MMSE, mini-mental state examination; FIM, functional independence measure; FAT, Frenchay Arm Test; SF-36, 36-Item Short Form Survey.

Atrticles were grouped according to the patients’ stroke temporal phase (chronic, subacute or not specified) and listed in descending order by both the sample size and VR typology used (non-immersive, semi-immersive, and immersive) at the time of the last clinical
assessment/observation.
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Taravati et al., 2022; Aprile et al., 2021; Senocak et al, 2023;
Mazzoleni et al, 2014; Rong et al, 2021; Lu et al, 2020;
Maistrello et al., 2021; Mugler et al., 2019; Ranzani et al., 2020;
Kim et al., 2017; Duret et al., 2015), and another 21 studies used SI-
VR systems (Torrisi et al., 2021; Noveletto et al., 2020; Manuli et al.,
2020; Norouzi-Gheidari et al., 2020; Schuster-Amft et al., 2018; Yuan
et al., 2021; Llorens et al., 2021; Yao et al., 2020; Jung et al., 2017;
Thielbar et al., 2020; Patel et al., 2019; Saleh et al., 2017; Sale et al.,
2014; Lee, 2019; Adams et al., 2023; Abd El-Kafy et al., 2022; Yeh
et al., 2017; Thielbar et al., 2014; Palermo et al., 2018; Brunner et al.,
2017; Mazzoleni et al, 2018). Only one study used an MXD
approach (Colomer et al, 2016), whereas three studies
implemented I-VR systems (Mekbib et al., 2021; Dahdah et al,
2017; Sip et al., 2023). Treatment duration ranged from a minimum
of 1 day (Zhang et al., 2023; Johnson et al., 2018) to a maximum of
3 months (Zhang et al., 2023; Johnson et al., 2018). The total number
of VR training sessions ranged from a single session (Zhang et al.,
2023; Johnson et al.,, 2018) to a maximum of 40 sessions (Torrisi
et al, 2021; Manuli et al., 2020), whereas the frequency varied
between a minimum of one session per week (Torrisi et al., 2021;
Manuli et al., 2020) to a maximum of daily sessions (i.e., one session
per day in consecutive days) (Torrisi et al., 2021; Manuli et al., 2020).

Regarding outcome assessment for executive function (EF) and
motor functions (MOTs), only 6 out of 46 studies assessed executive
functioning, whereas 44 studies evaluated motor outcomes. Of the
studies assessing executive function, four studies reported
statistically significant improvements (+) (Dahdah et al, 2017;
Torrisi et al., 2021; Manuli et al., 2020; Taravati et al., 2022) and
two observed a nonsignificant trend toward improvement (+) (Yuan
etal,, 2021; Ranzani et al., 2020), with no study reporting null effects
(-); the remaining 40 studies did not assess EF at all (n.a.) (Mekbib
etal., 2021; Zhang et al.,, 2023; Lam et al., 2022; Gerardin et al., 2022;
Valdés and Van der Loos, 2018; Noveletto et al., 2020; Norouzi-
Gheidari et al., 2020; Johnson et al., 2018; Luo et al., 2023; Schuster-
Amft et al., 2018; Colomer et al., 2016; Llorens et al., 2021; Paquin
et al,, 2015; Askin et al., 2018; Yao et al., 2020; Saposnik et al., 2016;
Kong et al,, 2016; Jung et al., 2017; Thielbar et al., 2020; Aprile et al.,
2021; Patel et al., 2019; Senocak et al., 2023; Mazzoleni et al., 2014;
Rong et al., 2021; Lu et al., 2020; Maistrello et al., 2021; Mugler et al.,
2019; Saleh et al., 2017; Sip et al., 2023; Kim et al., 2017; Sale et al.,
2014; Lee, 2019; Adams et al., 2023; Abd El-Kafy et al., 2022; Yeh
et al., 2017; Thielbar et al., 2014; Palermo et al., 2018; Duret et al,,
2015; Brunner et al, 2017; Mazzoleni et al., 2018). Considering
motor function, 34 studies reported statistically significant
improvements (+) (Mekbib et al, 2021; Zhang et al, 2023;
Torrisi et al, 2021; Lam et al., 2022; Gerardin et al, 2022;
Noveletto et al., 2020; Johnson et al., 2018; Luo et al, 2023;
Schuster-Amft et al, 2018; Colomer et al., 2016; Yuan et al,
2021; Llorens et al., 2021; Paquin et al., 2015; Askin et al., 2018;
Yao et al., 2020; Taravati et al., 2022; Jung et al., 2017; Thielbar et al.,
2020; Aprile et al., 2021; Patel et al., 2019; Mazzoleni et al., 2014;
Rong et al,, 2021; Maistrello et al., 2021; Saleh et al., 2017; Sip et al.,
2023; Sale et al.,, 2014; Lee, 2019; Adams et al., 2023; Abd El-Kafy
etal, 2022; Yeh et al., 2017; Thielbar et al., 2014; Palermo et al., 2018;
Duret et al., 2015; Mazzoleni et al., 2018), 8 studies observed only a
nonsignificant improvement trend (+) (Saposnik et al., 2016; Kong
etal., 2016; Senocak et al., 2023; Ranzani et al., 2020; Kim et al., 2017;
Brunner et al., 2017; Valdés and Van der Loos et al., 2018; Norouzi-
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Gheidari et al., 2020), and two studies reported no change (-) (Lu
et al., 2020; Mugler et al., 2019); only two studies did not assess
motor outcomes (n.a.) (Dahdah et al., 2017; Manuli et al., 2020).

In terms of intervention strategies, the duration of treatment
ranged from a minimum of a single session (Valdés and Van der
Loos, 2018) to a maximum of 12 weeks (Abd El-Kafy et al., 2022).
The mean duration of treatment was 5.3 weeks.

All the interventions involved virtual reality devices in different
modalities. In particular, five studies (Mekbib et al., 2021; Dahdah
etal, 2017; Sip et al., 2023; Lee, 2019; Palermo et al., 2018) involved
patients undergoing rehabilitation treatment in an immersive virtual
reality environment. Sixteen studies (Manuli et al., 2020; Norouzi-
Gheidari et al., 2020; Schuster-Amft et al., 2018; Yuan et al., 2021;
Llorens et al., 2021; Yao et al., 2020; Jung et al., 2017; Thielbar et al.,
2020; Patel et al., 2019; Sale et al., 2014; Adams et al., 2023; Abd El-
Kafy etal., 2022; Yeh et al., 2017; Thielbar et al., 2014; Brunner et al.,
2017; Mazzoleni et al., 2018) based their rehabilitation interventions
on sessions of semi-immersive virtual reality. However, 24 studies
(Zhang et al., 2023; Torrisi et al., 2021; Lam et al., 2022; Gerardin
et al., 2022; Valdés and Van der Loos, 2018; Noveletto et al., 2020;
Johnson et al., 2018; Luo et al., 2023; Paquin et al., 2015; Askin et al.,
2018; Saposnik et al., 2016; Kong et al., 2016; Taravati et al., 2022;
Aprile et al., 2021; Senocak et al., 2023; Mazzoleni et al., 2014; Rong
etal, 2021; Lu et al., 2020; Maistrello et al., 2021; Mugler et al., 2019;
Saleh et al., 2017; Ranzani et al., 2020; Kim et al., 2017; Duret et al.,
2015) based the treatment on a non-immersive virtual reality
modality. Finally, one study (Colomer et al, 2016) used a
treatment in mixed virtual reality.

To explore potential associations between treatment efficacy and
key clinical and technological factors, we conducted chi-square tests
of independence. In particular, we examined whether the
distribution of motor outcomes [categorized as statistically
significant improvement (+*), nonsignificant positive trend (+) or
no improvement (—)] varied according to the type of VR applied
(non-immersive, semi-immersive, immersive or mixed) and the
stroke phase (chronic vs subacute). Motor function outcomes
were selected for analysis due to their consistent reporting across
studies. The chi-square analysis revealed no statistically significant
association between VR typology and motor treatment outcomes
[x*(6) = 5.98; p = 0.425]. Similarly, no significant association was
found between the stroke phase and motor outcomes [x*(2) = 5.46;
p =0.486]. These results suggest that, based on the available data, the
efficacy of VR interventions on motor function does not appear to be
significantly influenced by either stroke chronicity or the level of
immersion of the VR system used.

4 Discussion

4.1 Mechanistic differences across VR
modalities

Generally, our findings confirm that VR interventions improve
both motor and executive functions in post-stroke rehabilitation,
with varying efficacy depending on the degree of immersion.
However, as only four studies used I-VR (Mekbib et al., 2021;
Dahdah et al.,, 2017; Sip et al,, 2023) or only one use the MXD-
VR modality (Colomer et al., 2016), a real comparison was possible
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only between SI-VR and NI-VR. In particular, SI-VR demonstrated
superior motor outcomes (88.24% positive results) compared to NI-
VR (66.67%). Although I-VR is typically delivered through head-
mounted displays that enhance sensorimotor engagement and
presence (Patsaki et al., 2022; Laver et al.,, 2017), SI systems use
large screens or projection setups, and by balancing realism and
comfort, they often achieve high adherence and motor outcomes
comparable to immersive setups (Hao et al., 2024). The advantages
of SI-VR may derive from tasks such as grasping tasks, which
improve upper limb movements and cerebral connectivity
(Llorens et al., 2021; Yao et al,, 2020; Jung et al., 2017; Saleh
et al., 2017; Adams et al., 2023; Brunner et al., 2017; Cano-de-la-
Cuerda et al., 2015; Laver et al., 2015), along with mirror tasks (Sip
et al,, 2023), throwing tasks (Mekbib et al., 2021), and hitting or
cycling tasks for the lower limbs (Noveletto et al., 2020; Lee, 2019).
On the other hand, NI-VR, including BCI-based motor imagery
(Zhang et al., 2023) and gaming consoles such as Xbox (Askin et al.,
2018; Thielbar et al., 2020) and Nintendo Wii (Saposnik et al., 2016;
Kong et al,, 2016), shows lower efficacy than SI-VR. Nevertheless,
NI-VR shows good motor gains, particularly in upper limb recovery,
making it preferable to conventional rehabilitation, possibly due to
its precise motion tracking and accessible design (Zhang et al., 2025;
Molier et al., 2010).

Post-stroke  EF
inhibition) can benefit from VR’s real-world-like challenges
(Makmee 2022),
flexibility and engagement. I-VR and SI-VR modalities lead to

impairments (planning, attention, and

and Wongupparaj, enhancing  cognitive
significant improvement in the majority of cases (Dahdah et al,
2017; Torrisi et al., 2021; Manuli et al., 2020), with only one study
showing just a positive, nonsignificant trend improvement (Yuan
et al,, 2021). On the other hand, both studies using the NI-VR
modality showed nonsignificant improvements (Taravati et al,
2022; Ranzani et al., 2020).

For both motor and executive functions, each VR modality
offers unique advantages. I-VR may better stimulate visuospatial
and body representation networks, whereas NI-VR systems increase
usability and training frequency (Weiss et al., 2004). The current
results align with previous reviews, showing that VR, across
modalities, supports motor recovery and, to a lesser extent,
cognitive improvement post-stroke (Cano-de-la-Cuerda et al,
2015; Lohse et al., 2014). Patsaki et al. (2022) emphasized I-VR’s
sensory richness, whereas Zhang et al. (2025) and Molier et al.
(2010) highlighted the effectiveness of NI-VR systems, particularly
when tasks are gamified and adaptive. Hao et al. (2024) found no
consistent superiority of any single modality, suggesting that
contextual and patient-related factors such as tolerance, stage of
recovery, and resource availability are critical in modality selection.
However, considering the significant fine mobility improvements
reported by the only study involving a mixed VR modality (Colomer
et al, 2016), the comparative efficacy with single-modality
treatments (I, SI, and NI) remains an open question.

4.2 Neurophysiological correlates, stroke
phase, and VR treatment response

VR promotes neuroplasticity through repetitive, task-specific,
multisensory stimulation that engages both motor and cognitive
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networks (Laver et al., 2015). Functional neuroimaging studies
demonstrate that VR tasks can induce neural reorganization,
excitability,
connectivity, and enhance activity in prefrontal areas during
cognitive-motor tasks (Calabro et al, 2017; Shin et al, 2016;
Feitosa et al,, 2022). I-VR and SI-VR may more strongly activate

increase  cortical strengthen  sensorimotor

visuospatial integration areas, whereas NI-VR can still promote
significant reorganization when the feedback is salient and tasks
are motivating (Mirelman et al., 2011). These mechanisms likely
underlie the dual-domain benefits observed in our review. Our
stratified analysis showed VR to be effective in both chronic and
subacute phases, with no significant differences in motor outcomes
by the stroke stage. However, a study suggested that the subacute
stage may offer heightened neuroplastic potential, allowing faster
gains in some cases (Hao et al., 2024). Chronic patients, nevertheless,
can achieve meaningful improvements when therapy remains
intensive and engaging (Patsaki et al., 2022; Laver et al.,, 2017).
The adaptability of VR tasks makes them suitable across recovery
stages, with adjustments in difficulty, duration, and feedback
tailored to each phase.

4.3 Clinical implications and
recommendations

The results of this review highlight the value of VR as an adjunct
to conventional rehabilitation for post-stroke patients, yet they also
suggest that its effectiveness depends on patient-related factors that
should be carefully considered in clinical practice. The stroke stage
appears to play an important role. Although our analysis did not
identify statistically significant differences in outcomes between
subacute and chronic patients, existing evidence suggests that the
subacute phase may represent a window of heightened neuroplastic
potential in which VR interventions could accelerate functional
recovery (Peng et al, 2021). At the same time, patients in the
chronic stage are not excluded from potential benefits. Intensive
and engaging VR protocols support meaningful gains even several
months or years after stroke, indicating that treatment is delivered
with sufficient frequency and challenge (Laver et al., 2017). Another
determinant of treatment success is the severity of motor
deficits
semi-immersive VR

impairment. Patients with mild-to-moderate often

respond well to non-immersive or
environments, including commercial gaming platforms or home-
based telerehabilitation programs, which combine accessibility with
strong motivational components. In contrast, individuals with more
severe impairments may require robotic-assisted or sensor-based
VR systems that provide physical support, multimodal feedback,
and a higher level of guidance to facilitate active participation
(Aprile et al, 2021; Mazzoleni et al, 2018). In this sense,
tailoring the level of technological assistance to the patient’s
motor profile is crucial to maximizing engagement and avoiding
frustration. Cognitive status also influences the suitability of
different VR modalities. Immersive systems, which demand
sustained attention and tolerance of sensory load, may be more
appropriate for patients with preserved cognitive and perceptual
abilities, whereas simpler non-immersive setups may better serve
individuals with cognitive impairments or limited tolerance.
Motivation and adherence emerge as additional key factors as
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VR’s capacity to provide real-time feedback, gamified challenges,
and socially meaningful tasks can reinforce patient engagement and
ultimately promote functional recovery (Proffitt and Lange, 2015).

From a clinical perspective, these findings suggest that VR
cannot be applied indiscriminately but should instead be
integrated into individualized rehabilitation plans. Subacute
patients with moderate deficits may benefit from early exposure
to semi-immersive or non-immersive VR to capitalize on
neuroplasticity, whereas chronic patients with severe impairments
may still achieve progress when supported by robotic VR systems.
Immersive VR may be reserved for those able to tolerate and benefit
from enriched environments, whereas home-based VR represents a
promising solution for maintaining therapy intensity after
discharge, indicating that appropriate monitoring and safety
protocols are ensured.

In conclusion, VR should be regarded not as a one-size-fits-all
intervention but rather as a flexible therapeutic platform whose
modality and intensity can be adapted to stroke stage, impairment
severity, cognitive status, and contextual factors. By stratifying
patients along these dimensions, clinicians can better determine
who is most likely to benefit from VR-based rehabilitation, thereby
optimizing outcomes and enhancing the translation of this
technology into routine practice.
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