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Objective: To evaluate the precision of a computer vision (CV) and augmented
reality (AR) pipeline for orthodontic applications, specifically in direct bonding and
temporary anchorage device (TAD) placement, by quantifying system accuracy in
six degrees of freedom (6DOF) pose estimation.
Methods: A custom keypoint detection model (YOLOv8n-pose) was trained
using over 1.5 million synthetic images and a supplemental manually
annotated dataset. Thirty anatomical landmarks were defined across maxillary
and mandibular arches to maximize geometric reliability and visual detectability.
The system was deployed on a Microsoft HoloLens 2 headset and tested using a
fixed typodont setup at 55 cm. Pose estimation was performed in “camera space”
using Perspective-n-Point (PnP) methods and transformed into “world space” via
AR spatial tracking. Thirty-four poses were collected and analyzed. Errors in
planar and depth estimation were modeled and experimentally measured.
Results: Rotational precision remained below 1°, while planar pose precision was
sub-millimetric (X: 0.46 mm, Y: 0.30 mm), except for depth (Z), which showed a
standard deviation of 5.01 mm. These findings aligned with theoretical
predictions based on stereo vision and time-of-flight sensor limitations.
Integration of headset and object pose led to increased Y-axis variability,
possibly due to compounded spatial tracking error. Sub-pixel accuracy of
keypoint detection was achieved, confirming high performance of the
trained detector.
Conclusion: The proposed CV-AR system demonstrated high precision in planar
pose estimation, enabling potential use in clinical orthodontics for tasks such as
TAD placement and bracket positioning. Depth estimation remains the primary
limitation, suggesting the need for sensor fusion ormulti-angle views. The system
supports real-time deployment on mobile platforms and serves as a foundational
tool for further clinical validation and AR-guided procedures in dentistry.
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Introduction

Computer vision (CV) technologies are transforming orthodontics by enhancing
diagnostic and procedural precision (Olawade et al., 2025). These systems analyze
radiographs, 3D scans, and photographs at levels beyond human consistency,
improving detection of malocclusions and anatomical discrepancies (Olawade et al.,
2025). Augmented reality (AR), powered by CV, has shown promise in clinical
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interventions—allowing accurate bracket placement (Lo et al., 2021)
and more reliable insertion of temporary anchorage devices (TADs)
compared to freehand techniques (Riad Deglow et al., 2023). These
tools not only improve outcomes but also streamline workflows in
clinical practice (Riad Deglow et al., 2023).

TADs offer critical anchorage for complex tooth movements
and require high precision for success. Even slight misplacement can
lead to complications such as root damage or reduced stability (3).
AR-guided systems enable clinicians to superimpose digital
templates on patient anatomy in real time, enhancing placement
accuracy. Studies show that AR-assisted TAD insertion significantly
reduces angular and positional deviations, with performance less
dependent on operator experience (Riad Deglow et al., 2023).

This study aims to assess and characterize the precision of a
Computer Vision pipeline for orthodontic applications (e.g., direct
bonding and TAD placement), incorporating image acquisition,
deep learning-based object detection, pose estimation, and AR
visualization. We focus on quantifying cumulative system error
and identifying which pipeline components most
influence accuracy.

Materials and methods

Experimental design

The HoloLens 2 is launched and affixed to a fixed pedestal
with known spatial coordinates. The headset was placed on a
mannequin head, and its position guided by reference markings.
A typodont (Tangshan Zhengtong Exhibition Co., Ltd., China) is
affixed to a rigid base at a determined distance (55 cm) and a pose
applied to the upper and lower arches separately: The typodont
was left installed on its rigid base, and distance to headset camera
measured using a ruler with 1 mm markings. A 30° yaw was
applied to the typodont base, and an additional 25° pitch was
applied to the upper arch using a 3D printed block. Roll was kept
at zero to the reference frame.

We chose the experimental setup at 55 cm to represent the upper
limit of “working distance” as informed by surgical loupe
manufacturers (35–55 cm). Since accuracy of keypoint detection
is expected to be inversely proportional to the distance to the sensor,
this would represent the upper limit of the system’s
internal precision.

Lighting condition: Headset-attached light source, color
temperature 4500K, providing 200–220 Lux illumination (Urceri®

SMT-912 Handheld light-meter).

Computer vision system

The requirements of the system include estimating the “6DOF”
pose of the dental arches: Spatial position (3DOF: X,Y,Z) and
orientation (3DOF: roll, pitch, yaw). The system should run on a
mobile device, in real time, or near real time.

The pose estimation relies on “keypoint detection” from images
of dental arches. For training the network, we selected known and
easily identifiable landmarks to be used as keypoints for training the
model (yolov8n-pose, Ultralytics®).

On the maxilla, eight keypoints were placed along the gingival
margin from the right to left first premolars (capturing the anterior
gumline curvature), together with four occlusal points at the canine
and first premolar cusp tips and three interproximal incisor contact
points (midline between central incisors and between each central
and lateral incisor). The mandibular arch received an analogous set
of eight gingival margin points, four cusp-tip points (canines and
first premolars), and three incisor contact points, totaling
30 keypoints across both arches. If a tooth’s landmark was
missing or obscured, an estimated anatomical position was used
as a substitute to preserve the complete set (Rodríguez-Ortega et al.,
2025). The landmarks used and an example of the models used for
synthetic data generation are shown in figure 1 e.g. (Figures 1A–C).
This landmark configuration was chosen to maximize visual
detectability and anatomical relevance.

Knowing the spatial relationships between detected keypoints,
the spatial pose of the arch is calculated “in camera space” (relative
to the camera) using the Points-N-Perspective methods (PnP). The
augmented reality system (HoloLens® 2, Microsoft Corp, Redmond,
WA) then integrates this information into a “model” it has of the
“world space”, accounts for head movements and gaze, and projects
the required information to the user’s eyes, using stereoscopic
principles to create the sense of depth. A diagram of the system
architecture is shown in Figure 2.

Additional correction of depth estimates is provided by time-of-
flight sensors and/or stereo-vision systems by leveraging HoloLens
2 built-in sensors.

The keypoint detector is based on custom-trained “State-of-the-
art” vision detectors (Yolo-pose v8n and v11n, multi-class). We
examined existing open source available keypoint (pose) detectors
that could run on the HoloLens processor with reasonable
performance. Yolov8n and Yolov11n, both from Ultralytics were
selected. Alternative offerings focused on human pose and did not
allow customization of the keypoint architecture, or ran on higher
performance hardware. Yolov11 and yolov8 trained networks were
found to perform equally well on detection, but run on different
backends. Yolov11+Sentis performed slightly worse than
yolov8+Barracuda on the HoloLens. Since the purpose of this
paper is to examine the detection pipeline of a typical CV
architecture, we did not perform further comparative work to
identify the most performant detector architecture. Per the
Ultralytics documentation, mAP and precision-recall curves are
useful metrics for object “box” detection, less so for keypoint/
pose detection. Ultralytics proposes KObj/Loss and PoseLoss as
alternatives for pose detection, and those results are reported.

A custom synthetic dataset is generated using 100+ intra-oral scans
of upper and lower arches, in a computer-generated system that
simulates poses, lighting, and backgrounds. The dataset included an
un-edited cohort of consecutive patients at presentation and follow-up,
and covered a range of occlusion types, dental and periodontal
pathologies, including randomly missing dentition at presentation.
No patients were excluded. Missing teeth on intraoral scans were
annotated by “best guess” using existing dentition, and labeled as
“occluded”, as specified in the Yolov8 methodology. The synthetic
training dataset was generated by projecting keypoints over
synthetically generated images as described in Figure 1, using
methodology similar to Tremblay et al. (2018). A manually
annotated dataset of 1K images is used as a supplement. Still images
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were extracted from video capture of the HoloLens of dentitions.
Annotation was done by 3 separate professionals with dental/
orthodontic training. The annotators were instructed to follow the
sequence of landmarks as described in Figure 1, and annotate only
visible landmarks. Manual annotation is very labor intensive and did
not result in significant improvement to NN performance, however,
several authors have promoted mixed datasets containing synthetic and
“real” training data. In total, 1.5M+ images are generated and used for
training. Additionally, a separate dataset of 200K+ is created for a
typodont detector. The specific details of training will be shared in a
follow-up paper.

Training is done on an NVIDIA T4 equivalent GPU, with the
large dental dataset (1.5M images) for 100 “epochs” until
convergence, and fine tuning on the typodont dataset (200K
images) is done additionally for another 100 “epochs”. A
successful end point was “pose-error” less than one, as defined
by Ultralytics® documentation, which would translate to

approximately <1 pixel average error per pose. Default
yolov8 and yolov11 training parameters were used (lr0: 0.0, lrf:
0.01, momentum: 0.937, weight_decay: 0.0005, warmup_epochs:
3.0, warmup_momentum: 0.8, warmup_bias_lr: 0.0, box: 7.5, cls:
0.5. dfl: 1.5. Pose Prediction: pose: 12.0, kobj: 1.0, label_smoothing:
0.0, nbs: 64. Auto-Augmentation: hsv_h: 0.015, hsv_s: 0.7, hsv_v:
0.4, degrees: 0.0, translate: 0.1, scale: 0.5, shear: 0.0, perspective: 0.0,
flipud: 0.0, fliplr: 0.5). Further fine-tuning did not improve
performance significantly, instead resulted in possible “over-
fitting” with increased sensitivity to lighting conditions.

The software system is custom built using the Unity® software
development environment (SDE) and uploaded to a HoloLens
2 headset. The software was designed to detect and log
consecutive poses until 30 independent poses were detected.
Individual image data was not recorded. The collected poses were
averaged and the average pose applied to the virtual model to
generate the images shown Figures 4B,C. To capture the

FIGURE 1
(A)Maxillary keypoints (0–14) and Mandibular Arch keypoints (15–29). (B) Keypoints reproduced on digital models for synthetic data generation. (C)
Similar methodology used on bracketed dentition.
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“Through the lens” camera photos (Images 4D and 4E), the Headset
was removed from the pedestal and connected to a separate custom
camera attachment.

Data collection

A custom software logs its detections of keypoints, pose
estimation in camera space, and in world space. 30 detections are
obtained and used as a statistical sample for initial interpretation.

Poses are collected after initial calculations in “camera space”.
Average and standard deviation calculated, and results for X, Y, Z,
Rot X (pitch), Rot Y (Yaw) and Rot Z (roll) are normalized, and the
standard deviation reported. Headset pose provided by the
Augmented Reality system and the composite “world space” pose
(Camera Pose * Headset Pose) are similarly processed.

In this setup, with the poses of camera and object fixed, and a
properly calibrated system, the precision of the sample is used as an
estimate of the accuracy of the pose estimations.

Error estimation

A systematic analysis of potential sources of error in a vision
detection cascade is performed. The errors related to the sensor (lens
distortion, sensor pixel pitch and size) are simplified in the “camera
model” calculations used in computer vision (c.f. OpenCV).

The pixel error of the keypoint detector is then determined
experimentally, and compared to theoretical predictions. The errors

from the pose estimation calculations and the augmented reality
system are similarly determined experimentally.

Results

Training results of the Neural Network used for keypoint
detection (yolov8n-pose) are shown in Figure 3. A useful metric
is Kobj_loss (object loss function) and its comparison between
training and validation datasets.

L oks � ∑ i exp −di^2 / s^2 * ki^2( )( ) * δ vi > 0( )( ) / ∑ i δ vi > 0( )( )

• i is the keypoint index.
• di is the Euclidean distance between predicted and ground
truth keypoints.

• s is the object’s scale.
• ki is a constant for the keypoint category.
• δ is an impulse function showing OKS is calculated for
visible keypoints.

• vi is the visibility of the i-th keypoint.

Error estimates

Planar accuracy
The planar resolution is calculated from the “camera matrix”

camera model. A real-time streaming resolution of
896x504 pixels is used as the input resolution for the Yolo

FIGURE 2
System Architecture overview. NN = Neural network. SLAM: Simultaneous Location and Mapping. IMU: Inertial Monitoring Unit. NED: Near-
Eye Display.
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model. A spatial discrimination subtended by 1 pixel is
determined by the formula:

e � p/f *D

Where e is the error subtended by p pixels. f is the focal distance
in pixels, D is distance to target.

At 45 cm working distance, the error subtended by 1 pixel
is ~0.61 mm.

Depth accuracy
Depth error of an object of known dimensions estimated by the

pixel-wise method can similarly be calculated. The depth error d is
inversely proportional to the maximum dimension of the object (in
pixels) and increases with the distance.

d � e/w *D

Using the above error estimate, and an average intercanine distance
(w) of 33 mm, the depth error d of a full pixel error is 8.85 mm.

The accuracy of Microsoft’s ToF depth sensor is dependent on
the depth measured and is reported as 5 mm at 50 cm in some
publications (Mar et al., 2024).

The Depth Accuracy of stereo systems is dependent on the pixel
pitch and square of the distance measured.

Δz � z2

f_b
Δd

Where Delta z is the depth error, Delta d is the pixel error, f is the
focal distance in mm, and b is the baseline (distance between stereo
cameras). Due to sampling multiple “feature” pairs, some authors
report the pixel error can be decreased to 0.2 pixels (c.f. NI vision
systems). In the HoloLens system, where f is 8 mm, b is 10 cm, the
pixel depth error is 4.43 mm at 45 cm.

Detector errors
A yolov8n model was trained as above. The results of training

are shown in Figure 3. The reported “pose error” (c.f. Ultralytics) is
0.92 pixels. This corresponds to a planar error of 0.56 mm at a
working distance of 45 cm.

Experimental results
An example of the experimental setup and the resulting overlay

results are shown in Figure 4.

FIGURE 3
Neural net training results after 100 epoch. (A)Confusionmatrix indicating the accuracy of detecting upper vs lower arch. (B) Trainingmetrics. Please
refer to text for interpretation of key metric Kobj_loss. Further details are available at https://docs.ultralytics.com/guides/yolo-performance-metrics/
#how-can-validation-metrics-from-yolo11-help-improve-model-performance.
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Functionality. D, E: Through-the-lens camera capture of the same
scenes using a digital camera. 34 poses were collected, with 4 poses
containing only upper arch detection. 34 poses were used for upper arch
calculations, while 30 were used for the lower arch. No pose estimates
were excluded (i.e., no “outlier” exclusion). The system runs at 30 fps,
and performs 7.5-9 pose estimations per second.

Headset pose
The headset was stationary for the duration of testing. The

standard deviation of the collected headset poses is shown in Table 1.

Upper arch
Camera space pose estimates for the upper arch are shown in

Table 1 and Figure 5.
Composite pose (“world space”) estimates are shown in Table 1

and Figure 6.

Lower arch
Camera Space error estimates are shown in Table 1 and Figure 7.
World Space pose estimates for the lower arch are shown in

Table 1 and Figure 8.

FIGURE 4
(A) Experimental setup: The headset is placed at a “working distance” from the typodont model. Headset pose data (in “world space”) and “object
pose” (in “camera space”) are obtained and used for calculations. (B,C) Synthetic overlay of typodontmodel and “typodont roots”obtained using in-device
“Mixed Reality Capture” functionality. (D,E) Through-the-lens camera capture of the same scenes using a digital camera.
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Discussion

The focus of this paper is the precision of a vision-based pose
estimation system, that is, the consistency or repeatability of the
system’s outputs under identical conditions. Precision reflects

internal variability and is a critical early step in system validation. In
contrast, accuracy refers to how close those outputs are to ground truth
or real-world measurements. Our controlled bench-top setup
deliberately minimizes user-dependent and environmental variability
(e.g., motion, lighting, occlusions), allowing us to isolate and

TABLE 1 Precision of normalized results relative to camera (operator) orientation. X, Y, Z indicate linear precision in millimeters, RotX, RotY, and RotZ
indicate angular precision in degrees.

X Y Z Rot X Rot Y Rot Z

Headset Pose 0.07732 0.0787 0.1158 0.0392 0.01646 0.054

Upper arch

Camera Space Pose 0.46584 0.30574 5.11044 0.50131 0.93975 0.24347

World Space Pose 0.45957 0.72217 5.01104 0.51091 0.97426 0.36982

Lower arch

Camera Space Pose 0.51233 0.33984 4.97441 0.40691 0.81322 0.19901

World Space Pose 0.49438 1.11148 4.87919 0.42119 0.78255 0.19262

FIGURE 5
Positional and Rotational precision of Upper Arch detection in “camera space”.
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characterize internal system fluctuations. This distinction enables us to
establish baseline system performance without conflating it with
downstream application noise. Subsequent work will assess accuracy
in real-world conditions using ground-truth tools such as optical
trackers or robotic arms.

Pose estimation using keypoint detection, as opposed to “Deep Pose
Estimation”method which estimates the pose directly from the image,
has the advantage of a lighter computing footprint, and is compatible
with mobile systems. So-called “state-of-the-art” yolov8 and
v11 detectors also offer the flexibility of detecting multiple arches
(upper vs. lower), allowing for some anatomical variations in arch

form, missing dentition, orthodontic appliances, etc. Conversely,
separate calculations are needed to obtain the pose estimations.

This “off-the-shelf” system achieves sub-millimeter planar precision
(~0.56 mm) and angular error below 1°, which aligns closely with
clinical tolerances reported for orthodontic bracket placement. Studies
have shown that deviations within ±0.5 mm in linear position and ±2°

in angulation are generally acceptable and fall within the range of
conventional indirect bonding systems or transfer trays (Aboujaoude
et al., 2022; Koo et al., 1999). For TAD placement, clinical safety
margins are more stringent: horizontal deviations exceeding 1.5–2 mm
may risk root contact or affect primary stability, particularly in

FIGURE 6
Positional and Rotational precision of Upper Arch detection in “world space”.
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interradicular sites (Liou et al., 2004; Schnelle et al., 2004). Given our
observed depth variability (~5mm), the current system is not suitable as
a stand-alone guide for depth-critical procedures like unsupervised
TAD placement. However, it may support planar guidance by visually
projecting root anatomy to assist practitioners in selecting insertion
zones between roots. This visual augmentation can enhance operator
judgment while allowing traditional mechanical depth control through
screw length or physical depth stops. Currently, alternatives for TAD
placement include visual estimation of root orientation and 3D printed
guides (Bae et al., 2013; Amm et al., 2023). CV-based guidancemethods
offer significant potential advantages in simplicity and costs for the
latter, and accuracy for the former.

Keypoint selection is critical in this task. Occlusal keypoints
(cusp tips and incisor contacts) are high-contrast, point-like features
that can be reliably identified on digital images, with sharp dental
points demonstrating sub-millimeter reproducibility in 3D scans
(Park et al., 2019). Gingival margin keypoints, while broader, serve
as stable reference markers at the tooth base and have been utilized
in digital model analyses of tooth movement (Levrini et al., 2021).
Notably, arch expansion studies measure changes at both cusp-tip
and cervical/gingival margin points, underscoring the importance of

including both types of landmarks when tracking orthodontic
movement (Levrini et al., 2021; Houle et al., 2017). By combining
occlusal and gingival points, this 30-landmark scheme captures both
the tooth crown and base, providing robust anchor points for pose
estimation. Such a multi-point configuration is consistent with
earlier orthodontic imaging workflows that employed similar
dental keypoints for model alignment and tracking (Park et al.,
2019; Houle et al., 2017).

Correct Keypoint detection is critical to a correct pose-estimation.
Neural Network engineering for keypoint detection is beyond the scope
of this article, but several excellent research papers are available (Yang
et al., 2023). In short, keypoints are detected based on local or regional
image features such as lips, gingiva, etc. depending on the training
dataset. We avoided using facial features and minimized inclusion of
lips since they are likely to be covered during the intervention. Similarly,
a sampling of cheek retractor type and color was included but its use
minimized. Conversely, partial “occlusion” and “distractors” was
emphasized in the training dataset.

Empirically, common detection errors included incorrect arch
detection (i.e., lower arch confused to upper arch and vice-versa), and
“frame-shift errors (i.e., premolar confusedwith canine, due to dental self-

FIGURE 7
Positional and Rotational precision of Lower Arch detection in “camera space”.
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similarity) resulting in rotational error of the arch corresponding to
skipping one dental crown width. The network design (Ultralytics
Yolov8n-pose) is robust to partial occlusion, and provides best-guess
estimates of occluded keypoints, including the unseen contralateral
dentition. Occluded keypoints have lower precision, but attempts at
using only high precision keypoints for pose estimation did not yield
higher precision results for the dental arch pose.

Vision-based detection systems have proven highly accurate in
detecting planar features, but suffer from imprecision related to
depth estimation. Stereovision systems perform better in such use-
cases. They rely on “stereo disparity”, by detecting the difference in
pixels of similar features between right and left images. Scanning for

all possible ranges of pixel disparity requires larger computing power
and slows the system down. Therefore, most stereo vision systems
are optimized to certain depths. The depth accuracy is inversely
proportional to the square of the distance. Similarly, Time-Of-Flight
sensors (TOF) emit photons, typically from an InfraRed Laser
source, detect their reflection, and estimate the distance traveled
by the phase change of the photon wavelengths. Their accuracy is
inversely proportional to the linear distance (e.g., 1% of distance
between 0 and 2 m reported for the HoloLens 2 (Mar et al., 2024))
but displays a periodic variability within the distance bracket.

Precision of headset pose estimation (Table 1), which constantly
estimates the pose of the headset in space, provided by the

FIGURE 8
Positional and Rotational precision of Lower Arch detection in “world space”.
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Augmented Reality platform, is an order of magnitude smaller than
the precision of the pose detection system. Nonetheless, the
combination of the two poses, to generate the “world space”
estimate, resulted in a noticeable increase in pose error of Y
estimates (Table 1). The reason why headset pose would affect
the Y estimates preferentially is not known. Although the headset
was secured to a rigid platform, environmental micro-motions and
vibrations were not measured in this experiment. Furthermore, the
detected object dimensions in the experimental set-up (see photos)
are smaller in the Y-dimension, making them more sensitive to
compound error added by the headset’s “spatial tracking” systems.

The precision of the estimates is below 1 mm and 1°, except for
depth estimates, which are within 5 mm, as expected from our depth
error estimates. The experimental results confirm our theoretical
estimates for pipeline accuracy. These results suggest a sub-pixel
average error for the keypoint detector, averaging over visible
keypoints. Further work is needed to characterize individual
keypoint accuracy, and its effect on overall pose estimation.

Depth error remains the major source of imprecision in our
results. The experimental “monocular” depth precision reported is
within the range of the errors expected from un-optimized stereo-
discrepancy systems and the TOF sensor (~5 mm). Incremental
improvements can be expected from optimizations of existing
systems, and increasing image resolution, but a quantitative leap
could be obtained from a networked “system of sensors”: Since
planar estimates are more accurate, depth error can be mitigated by
using two perspective views at 90°.

This experimental design does not address errors related to
projection of the models back into the user’s eyes. A similar, reverse
pipeline exists between the virtual representation of the scene
models, “near eye displays” and the operator’s eyes. This will be
the focus of a sister paper submitted to this journal.

The precision of this system can be judged to be sufficient for
certain orthodontic tasks that require planar accuracy, such as
providing visual augmentation of the dental roots during
placement of TAD anchors, but not for tasks that depend on
accurate depth estimates, such as endodontic work or others.
Further pre-clinical and clinical work is needed to assess the
applicability of such systems.

The low precision of depth estimates restricts the applications of
pure CV-based registration algorithms to tasks that rely on planar
accuracy, where depth precision is less important. TAD placement
under CV-guidance for example, would overlay the tooth roots
thereby allowing the practitioner to choose a placement site in
between them. Since the practitioner is wearing the headset, the
CV-cameras have the same approximate perspective on the
surgical field. The planar overlay is therefore expected to be
correct in the operator’s perspective. The depth of insertion of the
screw is pre-determined by the length of the TAD chosen, therefore
minimizing the impact of depth inaccuracies. It is, however, important
to repeat CV-based registration whenever the operator of the subject
changes perspective. Overlaying the crowns offers a direct and
intuitive way for the operator to detect deviations in registration.

Conversely, tasks such as external approaches to root abscesses
require precise depth tracking. In such cases, compensatory methods
are needed, such as Multiview registrations or use of physical,
typically 3D printed guides as a depth stop. The precision of
such mitigatory methods is beyond the scope of this paper. For

further discussions on the use of computer vision in dentistry and
orthodontics, please see (Ding et al., 2023; Dinesh et al., 2024).

Conclusion

We described a system architecture for a dental pose estimator
that can run real-time or near real-time on a mobile system. We
describe the training of a custom vision detector for dental
keypoints. We provided a theoretical and experimentally derived
estimate of the precision of such systems. This off-the-shelf system’s
precision suggests potential selected orthodontic applications.
Directions for future studies are also shared herein.
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