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Introduction: Children and adolescents with Autism Spectrum Disorder face
challenges throughout their development. Autism Spectrum Disorder can affect a
multitude of areas, including social, cognitive, and physical. Due to delays in
development, poor motor coordination, hypersensitivities, and difficulties with
motivation and focus, these individuals are uninspired and discouraged to partake
in physical activity. This lack of interest can lead to further impairments in health and
developing social skills. This study evaluated the effect of virtual reality on exercise,
specifically the effects on actual energetic output and perceived energetic output.
Methods: Eleven participants aged 8–19 with Level 1 Autism Spectrum Disorder
completed two walking trials on a treadmill. The control trial did not have
participants wear a virtual reality headset or interact with any games. The virtual
reality trial allowed participants to play an interactive virtual reality game while
walking on the treadmill. Tomeasure actualmetabolic output, energetic costswere
measured by calculating cost of locomotion, cost of transport, and youth
metabolic equivalents via open flow respirometry. To measure perceived levels
of exertion, participantswere asked to rate their exertion level using the BorgRating
of Perceived Exertion scale throughout the duration of the trials.
Results: A statistically significant increase was observed in all energetic measures
during the virtual reality walking trials compared to the control trials (all
p-values <0.020). Differences in perceived exertion were not statistically
significant between the two experimental conditions.
Discussion: These findings suggest that in this patient population, virtual reality
can help promote more intense and energetically costly physical activity, while
having no effect on perceived exertion levels. These findingsmay be explained by
multiple factors, including virtual reality acting as a distractor, the novelty aspect,
or the effects of dual-task cognitive and motor activity.
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Introduction

Autism Spectrum Disorder (ASD) is a developmental condition primarily known for its
impact on social interaction, communication, and repetitive patterns of communication,
interests, and activities (American Psychiatric Association, 2022; Kangarani-Farahani et al.,
2023). A less discussed, but prevalent impact of ASD is neuromuscular impairments,
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leading to difficulties in motor skills, gait, and sensory processing.
(Fournier et al., 2010; Abdel Karim and Mohammed, 2015;
Kindregan et al., 2015; Dufek et al., 2017; Bennett and Haegele,
2021; Kangarani-Farahani et al., 2023). The range of motor and
social impairments, social alienation and marginalization,
inaccessible programs and facilities, contributes to diminished
engagement, active participation, and physical activity as
compared to neurotypical (non-ASD) individuals (Pan, 2008;
Bauman, 2010; Bandini et al., 2013; Ma et al., 2024).

Recently, there has been a broader effort to increase modalities
and forms of structured exercise in the ASD population (Sowa and
Meulenbroek, 2012; Arslan et al., 2022). Physical exercise in the ASD
population has been shown to improve two of the major symptom
domains in the ASD population: motor and social deficits (Sowa and
Meulenbroek, 2012; Ferreira et al., 2019). Additionally, physical
exercise has been shown to improve aspects of cognitive function,
more specifically executive functioning and working memory
(Anderson-Hanley et al., 2011). Overall, physical activity has
been shown to be a promising intervention in improving
function and promoting overall wellbeing (Peng et al., 2022).

Despite the benefits of exercise in the population, many
individuals with ASD do not engage in any voluntary rigorous
activity (Finkelstein et al., 2010; Lang et al., 2010). This can be
attributed to a variety of difficulties, ranging from motor
coordination to difficulties in social interaction (Lang et al.,
2010). Children with ASD can experience reduced motivation to
partake in physical activity due to increased sensitivity to new and
unfamiliar environments, as these children prefer structured and
predictable routines (Wong et al., 2024). Pan et al. (2016) posited
that children with ASD may be reluctant to participate in physical
activities because of their perceived awareness of impaired social
skills, motor skill deficits, and athletic incompetence. These
challenges hinder their ability to connect with peers and perform
activities effectively, leading to reduced enjoyment, diminished
initiation, and limited intrinsic motivation to engage in physical
activities. Exergaming, utilizing virtual reality (VR), has been shown
to motivate neurotypical individuals to participate in exercise more
often (Finkelstein et al., 2010). The motivation and intense focus in
children engaged in gaming can be attributed to a sense of
psychological flow, in which they become fully immersed in an
activity that matches their skill level with the right level of challenge
(Csikszentmihalyi, 2008). This deep engagement fosters enjoyment,
sustained attention, and a desire to persist. Exergaming not only
increases motivation but can create favorable differences between
perceived and actual energy expenditure, allowing participants to
play for longer and at high intensities without the associated
perceptions of exhaustion and fatigue (Stewart et al., 2022;
Yamamoto et al., 2024).

In the ASD population, exergaming can improve motor skills
and has been shown to be a suitable method for therapeutic
intervention (Caro et al., 2017). The augmentation of VR during
physical activity allows individuals with ASD to achieve higher levels
of activity while reporting increased levels of enjoyment (Finkelstein
et al., 2010; 2013). VR can help decrease ratings of perceived effort,
increasing tolerance for more strenuous exercise (Yamamoto et al.,
2024). These benefits, combined with the increased motivation of
individuals with ASD to exercise using VR, highlights the
effectiveness of VR therapy and exercise in this population.

While the therapeutic effect of exergaming has been proven for
this population, there have been no comparisons on energetic output
and perceived intensity in the ASD patient population. In this study,
we intend to compare actual metabolic output and exertion levels,
measured by indirect respirometry, to perceived exertion levels in
both VR and non-VR environments, to determine the effects of VR
on actual and perceived exertion.

Methods

Study design

This was a prospective, repeated-measures, single-site study
design to measure the effects of VR on energy expenditure and
rating of perceived exertion (RPE) during treadmill walking. All
trials were conducted at Inclusive Sports and Fitness (ISF;
5,004 Veterans Memorial Hwy, Holbrook, NY, 11741), an
outpatient rehabilitation facility for neurodivergent individuals.
The study adhered to ethical guidelines and was approved by the
New York Institute of Technology College of Osteopathic Medicine
Internal Review Board (Protocol: BHS–1932_2024-21).

Subjects

We recruited eleven individuals who were already participants in
structured exercise programs at ISF. All participants have been
diagnosed with Level One Autism Spectrum Disorder (American
Psychiatric Association, 2022), confirmed by the patient’s own
healthcare providers. Level One severity is the least severe diagnosis
of ASD, where individuals with this diagnosis need minimal support
(American Psychiatric Association, 2022). Individuals with this
diagnosis still have deficits in communication and rigid behavioral
routines (American Psychiatric Association, 2022). We excluded
individuals with strength or mobility pathologies, as well as any
preexisting metabolic and cardiorespiratory pathologies. Participants
with a past history of severe motion sickness during VR activities were
excluded. Additionally, participants who were unable to wear the
respirometry mask or the VR headset were excluded.

Energetics protocol

We used the COSMED K5 respirometry system (COSMED,
Concord, CA) for all metabolic energetics testing. Before all tests, we
instructed participants not to consume any food or drink 2 hours
before their scheduled appointment. Prior to treadmill walking, we
fitted participants with an appropriate respirometry mask and asked
them to sit or lie down (self-selected) in a quiet room for
15–20 minutes to measure resting metabolic rate (RMR). Within
the same visit, each subject was required to complete two trials of
continuous walking on a Tuff Tread Sports Performance Treadmill
(Tuff Tread, Conroe, TX) at a pre-determined velocity (see below),
one trial with the VR headset (VR trial) and one trial without
(control trial). The trial concluded once the subject reached a steady
state of oxygen consumption, which has been shown to occur by
6 minutes of exercise (Chernik et al., 2025). A minimum rest period
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of 5 minutes was given between each session to ensure the subject
returned to baseline metabolic rates. During all trials, participants
were monitored by trained occupational therapists. Participants
wore a safety harness to mitigate the risk of fall. The treadmill
used was wide enough to allow forward, lateral, and backward
motion of the arms, without the risk of injury. Figure 1 depicts
the experimental setup during VR trials. Throughout the protocol,
participants were screened for any balance or sensory disturbances
due to the respirometry system or the VR headset.

The velocity differed between participants as we set the treadmill
speed to a constant Froude number (0.515) (Alexander, 1996;
Delattre et al., 2009) to control for differences in metabolic costs
associated with body mass and speed (Heglund and Taylor, 1988;
Lighton, 2008; Halsey and White, 2019). This speed equated to a
moderate walking speed (mean velocity 1.52 ± 0.10 m/s). For each
participant, the treadmill speed remained constant for both the VR
and control trials.

Rate of perceived exertion

Prior to any metabolic testing, participants were educated on the
Borg Rating of Perceived Exertion to assess exertion levels
accurately. Participants were informed they would be asked to
rate their exertion on the Borg Scale (6–20) just prior to the test
(minute 0), during the test at minutes 2 and 4, at the end of the test
(minute 6). Participants rated their exertion level by interacting with
the treadmill screen.

Virtual reality gaming

During the VR trial, participants played the popular VR
exergame called Beat Saber (Reality Labs, Menlo Park, CA), an
exergame equated energetically to other upper body active video
games, such as the Wii (Nintendo, Kyoto, Japan) (Butte et al., 2017;
Godfrey et al., 2025). Participants wore a Meta Quest Pro VR (Meta
Platforms, Menlo Park, CA) headset, and held a VR controller in
each hand. Beat Saber was selected as it did not require participants
to walk or laterally shift, mitigating the risk for injury during
treadmill walking, and is a popular VR game accessible for
purchase to any individual with the Meta Quest VR.

Prior to starting the study, participants were offered an
acclimation period for VR exergaming. This acclimation period
included wearing the VR headset and then playing Beat Saber
while standing still in an open space. Once participants felt
comfortable with VR, they were moved to the motionless treadmill
belt, where they played the Beat Saber in the safety harness. During the
acclimation period and VR walking trial, Beat Saber was configured in
the “No Fail” mode, ensuring the game would not stop mid-trial. A
difficulty level of easy was selected, as this was the first time
participants would be using VR while walking on a treadmill.

Data analysis

We analyzed all energetics data using custom-written MATLAB
(MathWorks, Natick, MA) with previously published formulas

(Heglund and Taylor, 1988; Schuna et al., 2016). Briefly, using VO2

(L), we determined the timestamps when steady state occurred (i.e., the
point at which VO2 consumption per minute plateaued). We averaged
the raw metabolic rate (kcal/min) within those timestamps. We
converted metabolic rate (MR) into J·s-1 and subtracted RMR from
MR to yield the net metabolic rate (MRnet). We calculated the net cost
of locomotion (COLnet, in units of J·s-1·kg-1 or W·kg-1) by dividing
MRnet by the participant’s mass (kg). To normalize energetic cost by
the average speed (m·s-1) at which participants ran, we derived the net
cost of transport (COTnet in units of J·kg-1·m-1). To relate energy
expenditure to resting metabolic rates, we calculated the youth
metabolic equivalent (youth MET) of each trial. To calculate, we
averaged the mass-specific VO2 (mL·kg-1·min-1) during steady
state exercise and RMR trials. Youth METs (exercise mass-specific

FIGURE 1
Experimental setup during VR walking trials. Participants wore a
VR headset and K5 respirometry mask. To mitigate risk of injury, each
participant wore a safety harness during all walking trials.
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VO2 / resting mass-specific VO2) was then calculated (Schuna et al.,
2016). Youth METs were used, as this metric has been shown to
provide balance in attenuating the age and sex dependence of youth
energy expenditure estimates (McMurray et al., 2015; Schuna
et al., 2016).

Statistical analyses

We conducted all statistical analyses in R (R Core Team, 2021)
using the packages “lmerTest” (Kuznetsova et al., 2017) and
“effectsize” (Ben-Shachar et al., 2020). VR and no VR trials were
compared using paired t-tests (p = 0.05) for both energetics and
perceived exertion metrics. Effect size was calculated for statistically
significant differences using Cohen’s d. We follow the standard
guidelines on qualitative interpretation of Cohen’s d effect sizes, as
follows: small effects = 0.2; medium effects = 0.5; large effects = 0.8.

Results

Descriptive characteristics

Demographic characteristics are presented in Table 1. All
11 participants were included in data analysis. Ten participants
were male, one participant was female. Participant age ranged from
8 to 19 years (13.49 ± 3.63; Table 1). Participants’ activity levels prior
to this study were limited, as many did not partake in any organized
sports or extracurricular exercise outside of the twice weekly 50-min
sessions occurring at ISF. As the participants were recruited from
ISF, they all had some previous interactions with VR.

Energetics

Energetically, the use of VR was more costly compared to the
non-VR walking trial. The COLnet was 7.82 ± 1.53 J·s-1 kg-1 when
playing the VR game. Without the VR game, COLnet was 6.91 ±
1.24 J·s-1·kg-1 (Table 2; Figure 2). This 0.91 J·s-1·kg-1 increase while
playing VR was statistically significant (p = 0.014, Cohen’s d = 0.63;
13% more costly with VR; Table 2).

Accounting for the variation in speed, the COTnet was 5.13 ±
0.97 J·kg-1·m-1 when playing the VR game.Without the VR game, the
COTnet was 4.54 ± 0.78 J·kg-1·m-1 (Table 2; Figure 2). This 0.59 J·kg-1·m-1

increase while playing VR was statistically significant (p = 0.013,
Cohen’s d = 0.65; 13% more costly with VR; Table 2).

When examining energy in terms of metabolic equivalents, the
youth METs were 4.37 ± 0.82 while playing the VR game. Without
the VR game, the youth METs were 4.00 ± 0.79 (Table 2; Figure 2).
This 0.37 increase while playing VR was statistically significant (p =
0.019, Cohen’s d = 0.46; 9% more costly with VR; Table 2).

Rate of perceived exertion

In the control walking trials, participants began the trial at a
rating of “no intensity at all” (Borg RPE = 6.73 ± 1.42; Table 3) and
concluded the trial at rating of “light intensity” (Borg RPE = 11.64 ±
4.27; Table 3). Similar ratings were seen in the VR trial; participants
began the trial at a rating of “no intensity at all” (Borg RPE = 6.73 ±
1.85; Table 3) and concluded the trial at a rating of “light intensity”
(Borg RPE = 11.64 ± 4.18; Table 3) (Williams, 2017). Examining the
changes in RPE at 0, 2, 4, and 6 min, no statistically significant
differences were seen between the VR trials and the non-VR trials
(all p-values >0.768; Table 3; Figure 3).

Discussion

We aimed to explore how virtual reality influences the perception
of and motivation to participate in physical activity among children
with ASD. The subjects included in this study had a documented
history of sedentary behaviors, characterized by minimal engagement
in mainstream physical activities and limited participation in
organized sports. Their daily routines typically involved prolonged
periods of inactivity, preferring passive leisure activities such as screen
time or other non-physical hobbies. Additionally, these participants
had limited exposure to structured physical environments, further
contributing to their reduced physical activity levels and overall

TABLE 1 Demographic and experimental setup data regarding the subjects
(N = 11).

Number of participants 11

Mean age 13.49 ± 3.63

Age range (Years) 8.70–19.9

Gender: Male 10/11 (91%)

Mean speed (mph) 3.41 ± 0.22

Speed range (mph) 3.0–3.7

Leg length (m) 0.89 ± 0.11

Leg length range (m) 0.68–1.05

TABLE 2 Paired t-test analysis analyzing the differences in energy expenditure in the VR and non-VR trials: Cost of locomotion (J·s-1·kg-1), Cost of Transport
(J·kg-1·m-1), and Youth Metabolic Equivalents. VR denotes treadmill walking while using the VR headset. Control denotes treadmill walking without using
the VR headset. Percent change represents the change in energy expenditure between the control and VR trials, with an increase representing more costly
exercise in the VR trials.

Measure VR Control p value Cohen’s d 95% Confidence interval Percent change

Cost of Locomotion 7.82 ± 1.53 6.91 ± 1.24 0.014 0.63 0.23–1.58 13.08%

Cost of Transport 5.13 ± 0.97 4.54 ± 0.78 0.013 0.65 0.16–1.03 13.02%

Youth Metabolic Equivalents 4.37 ± 0.82 4.00 ± 0.79 0.019 0.46 0.07–0.67 9.35%

Significant p-values are bold.
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fitness. This sedentary lifestyle of individuals with ASD highlights the
necessity of investigating innovative interventions, such as virtual
reality, to promote increased physical engagement and motivation
(Finkelstein et al., 2010).

This study aimed to evaluate how virtual reality influences
perceptions of physical activity and compare these perceived
levels of physical activity to actual measured energetic

consumption. Energy expenditure, measured by cost of
locomotion, cost of transport, and youth metabolic equivalents,
were all increased during the VR walking trial. This observation
aligns with our predictions, as previous studies have examined the
effects of playing VR games such as Beat Saber (Godfrey et al., 2025).
Using this data, we can calculate the youth METs of Beat Saber
around 2.1, which corresponds with other forms of active video
games (Butte et al., 2017). While nearly half the energetic cost of
walking (youth METs 4.07), the additional exertion of VR increased
overall energetic costs during exercise. These findings correspond
with previous research examining the use of VR during exercise and
the reported increase in energy expenditure during VR exercise
(Barbour et al., 2024; Merola et al., 2025). Our findings of energy
expenditure during walking correspond with previous values in the
literature, especially when comparing youth METs (Schuna
et al., 2016).

While energy expenditure increased during the VR trials, we
found no statistically significant difference in perceived exertion
levels. Participants demonstrated a greater tolerance for
increasingly demanding physical activities when immersed in
VR, while still reporting similar feelings of exertion compared
to performing the same activities without VR. Using VR,
participants were able to sustain higher levels of energic output
and physical activity, while reporting no changes in perceived
effort levels. These findings highlight the potential benefits of VR
exergaming to increase the tolerance of exercise intensity.
Particularly, our findings support previous studies, which found
despite similar or increased levels of energy expenditure and actual
exertion during VR exercise, participants did not report any
perceived differences in exertion levels (Finkelstein et al., 2013;
McDonough et al., 2020; Yamamoto et al., 2024). These results can
be explained through VR’s effect on limiting pain and discomfort
while increasing motivation (Mesa-Gresa et al., 2018; Matsangidou
et al., 2019).

A lower perceived exertion level paired with higher physiologic
metabolic costs can help further motivate participants to continue
exercising beyond their typical tolerance levels when using
immersive VR (Kilpatrick et al., 2020). Virtual environments
may effectively enhance physical engagement, advancing
cardiorespiratory performance and health and wellness among
children with ASD. The subjects exhibited significantly improved
tolerance to moderate exercise during the VR game, as indicated by
an increased cost of locomotion, transport, and METs in the VR
trials. Although the locomotor costs were noticeably higher,
subjects reported a lower perceived rate of exertion and showed
greater tolerance for the activities, demonstrating the ability to
push themselves beyond their usual point of fatigue. This
disconnect between RPE and energy exertion may be explained
by the VR intervention. Our findings may be explained by a
multitude of factors, which may include the effects of VR as a
distractor during exercise, dual-task cognitive and motor activity,
and the novelty of VR.

Previous studies have shown the effects of VR as a distractor
during physical exertion, limiting any perceived increases in physical
exertion (Runswick et al., 2024). Virtual reality has also been shown
to reduce levels of discomfort and pain (Gromala et al., 2015; Sharar
et al., 2016). Instead of focusing on their exertion levels, participants
are preoccupied with a new and exciting task in front of them. VR

FIGURE 2
Box plots showing energetic variables: (A) Cost of Locomotion
(J·s-1·kg-1), (B) Cost of Transport (J·kg-1·m-1), and (C) Youth Metabolic
Equivalents. Each graph depicts the two trial types: VR Trial, where the
participant is playing the VR game while walking, and Control,
where the participant is not wearing the VR headset while walking. The
black “X” denotes the mean.
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has been shown to promote disassociation and avoidance of body
sensation (Baños et al., 2016; Runswick et al., 2024). As discussed
above, the energetic costs of Beat Saber are not negligible (2.1 youth
METs) (Godfrey et al., 2025), and therefore we would expect some
increase in perceived exertion levels. Our findings align with
(Runswick et al., 2024), who examined the effects of VR creating
incongruent exercise (actual vs. perceived incline while cycling), and
demonstrated VR’s ability to manipulate perceived exertion levels.
This effect can help prolong exercise duration and increase exercise
adherence in populations who are traditionally averse to exercise,
such as ASD.

The idea of VR acting as a distractor does conflict with the
association between exergaming and dual-task cognitive and motor
activity. Virtual reality has been used to encourage dual-task
cognitive and motor activity in Parkinson’s patients (Killane
et al., 2015) and older individuals (Gallou-Guyot et al., 2020).
Previous studies have shown an increase in perceived exertion
levels when dual-task exercise and cognitive effort occurs
(Condello et al., 2019; Maeneja et al., 2023). In contrast, during
the VR trial participants reported non-statistically significant lower
or equal levels of exertion through the entire duration of the trial
(Table 3). However, it is important to note cognitive effort was not
measured in this study, so it is difficult to quantify the level of
cognitive difficulty subjects faced during VR trials. This
measurement is an area for future research.

Along similar lines, the novelty effect of a “new” stimulus could
be contributing to our results. Mestre et al. (2011) demonstrated
decreased interaction with virtual reality as participants spent more
time with the virtual reality system. While this is a concerning fact,
as VR augmented exercise therapy should be a continuous tool, the
study above used identical VR environments across trials, limiting
any “new” stimulus. Beat Saber, along with many other VR games,
can create new and different stimuli between each game, meaning no
two games of Beat Saber are identical. VR has been shown to be an
effective rehabilitative tool well past the “novelty effect” window
(Elor et al., 2022). Future work in this area should include
longitudinal studies, where the novelty effect of VR exercise can
be better explored.

A possible underlying mechanism for our results, and area for
future research, is flow state. Flow state is a mental state marked by
intense motivation, deep focus, and engagement during enjoyable
and challenging activities (Csikszentmihalyi, 2008). Virtual reality
can help modulate effort and attention levels to achieve an
appropriate, “just right” distracting challenge for individuals with
limited physical capabilities (Tatla et al., 2013). Participants, focused
on the VR task at hand, may have a limited perception of effort
levels. While this theory is plausible, this study did not include any

measurements of flow and is merely speculative. This idea is an area
for further research.

Traditional occupational and physical therapy interventions
often face challenges in engaging children with ASD in exercise
due to the difficulty with sensory-motor control or performance,
reliance on verbal instruction and communication disorders, and
monotonous repetitive delivery methods that may not align with the
child’s sensory preferences or motivation (Ashburner et al., 2014;
Bumin et al., 2015; Simonyan and Harutyunyan, 2022). These
approaches can feel demanding or unappealing, leading to
reduced participation and effort. Wong et al. (2024) found
motivation for physical activity in the ASD population is largely
influenced by their sensory environment. Traditional interventions
can appear overwhelming and overstimulating, limiting the
motivation of the participants. In contrast, immersive VR
exergaming offers an interactive and visually stimulating
environment that naturally captures attention and promotes self-
directed engagement (Farrow et al., 2019). By integrating movement
with play and allowing individualized pacing, VR exergaming
transforms physical activity into a motivating, enjoyable
experience that encourages greater engagement and sustained
participation among children with ASD (Finkelstein et al., 2010;
Rose et al., 2021; Stewart et al., 2022). By modulating the game and

TABLE 3 Paired t-test analysis analyzing the differences in perceived exertion levels using the Borg Rating of Perceived Exertion Scale (6–20). A higher value
represents a greater rating of perceived exertion. VR denotes treadmill walkingwhile using the VRheadset. Control denotes treadmill walkingwithout using
the VR headset. There is no statistically significant differences in perceived exertion between control and VR settings.

RPE measurement VR Control p value Cohen’s d 95% Confidence interval

0 Mins 6.73 ± 1.85 6.73 ± 1.42 1.000 — −0.52–0.52

2 Mins 8.91 ± 2.77 9.18 ± 3.37 0.769 — −2.29–1.74

4 Mins 10.73 ± 3.95 10.91 ± 3.67 0.821 — −1.93–1.57

6 Mins 11.64 ± 4.18 11.64 ± 4.27 1.000 — −1.80–1.80

FIGURE 3
Box plots showing the Rating of Perceived Exertion. Participants
were prompted to evaluate their exertion levels at: 0 (before starting
trial), 2, 4, and 6 (immediately after trial conclusion). Values are
separated by trial type, with VR Trial representing trials where the
participant is playing the VR game while walking, and Control
representing trials where the participant is not wearing the VR headset
while walking. The black “X” denotes the mean.
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tasks given to each individual, VR’s ability to distract users from
physical effort while promoting engagement offers a unique
opportunity to design more effective and enjoyable therapeutic
interventions, especially for the pediatric population. Future
studies with larger and more diverse populations can expand on
the understanding of how VR-based interventions can be optimized
for various therapeutic goals.

Limitations

The experimental design and recruitment for this study faced
several challenges. Recruiting participants proved difficult due to the
protected nature of this patient population, and recruitment was
limited to word-of-mouth and social media. Inclusion criteria, such
as verbal consent capability, absence of any strength, mobility, and
cardiorespiratory pathology, and tolerance of wearing both a VR
headset and a tight fitting respirometry mask further narrowed the
pool. Those who are unable to remain calm during resting metabolic
rate measurements or exercise with the mask and VR headset were
excluded. Additionally, our capacity to test participants was
constrained by the necessity of one-to-one observation and
coaching. Regarding assessments, this study did not implement
any measures of cognitive function or measures of flow state.
Future studies should implement established testing protocols to
assess the changes in cognitive function during VR and non-VR
exercise training. Additionally, examining the accuracy and
performance of gameplay during walking and standing is an area
of future research.

When considering internal validity, the use of paired t-tests
minimizes the influence of between-subject confounding
variables. Randomization of trial order, along with sufficient
rest between trials, limited the fatigue experienced by
participants. However, the novelty of VR, along with the
potential increases in stress that using VR can create, even
with an acclimation period, must be acknowledged as a
potential confounding variable. While all participants had
some baseline level of activity, we did not collect or control for
varying levels and history of activity. Future studies should
address this limitation to better assess how this intervention
applies to individuals with different levels of activity.
Recruitment of subjects was conducted via convenience
sampling, as participants were already enrolled in structured
exercise programs at ISF, and almost all had past interactions
with VR. As participants were already enrolled in structured
exercise, our sample may not reflect the abilities or tolerance of
the broader pediatric ASD patient population, who may be naïve
to structured exercise and VR exergaming, as our participants had
previous exposure to VR. However, the intervention used in this
study is intended to help augment therapy and structured exercise,
and proper supervision and structure is still necessary.

Conclusion

This study examined the effects of VR augmented exercise in the
ASD patient population. We found that using VR during exercise
increased energy expenditure while having no effect on perceived

exertion levels. These findings highlight the benefits of including VR
in exercise and therapy programs for children with ASD. Virtual
reality and other exergaming experiences can enhance participation
and outcomes by aligning with the everyday experiences and
interests of those with ASD. The use of VR in exercise can
encourage individuals with ASD to sustain higher levels of
exertion at similar levels of perceived exertion, allowing for
prolonged physical activity. The use of technology that provides
meaningful and pleasurable experiences can lead to greater
therapeutic compliance and improve health and wellness among
individuals with ASD.
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