
Effects of stress on perceptual
learning in a virtual reality
environment

John Cass1*, Wing Hong Fu2, Yanping Li2, Larissa Cahill3 and
Gabrielle Weidemann1

1School of Psychology, Western Sydney University, Sydney, NSW, Australia, 2MARCS Institute for Brain,
Behaviour and Development, Western Sydney University, Sydney, NSW, Australia, 3Department of
Defence, Defence Sciences Technology Group, Melbourne, VIC, Australia

Introduction: This study investigates two key questions in perceptual learning
using a ten-day visual training protocol embedded in a first-person shooter (FPS)
task within virtual reality (VR): (1) whether training improves the visual system’s
ability to integrate orientation information across the visual field, and (2) whether
aversive electrodermal stimulation and associated stress levels influence
perceptual performance and/or learning.
Method: 17 participants successfully completed an orientation-averaging task
involving Gabor arrays of varying set-sizes (1, 2, 4, or 8 elements) under three
shock conditions: no shock, performance-contingent shock, and random shock.
Results: Training led to improvements in both accuracy and response times,
while increasing set-size monotonically impaired performance. The interaction
between training and set-size was weak, suggesting that training benefits likely
emerge at a post-integration or decisional stage. Stress responses, indexed by the
State-Trait Anxiety Inventory (STAI), confirmed elevated anxiety in both shock
conditions compared to control. However, this increase in state anxiety did not
reliably affect task performance or learning outcomes, nor did it modulate set-
size effects. Notably, participants’ accuracy degraded when an on-screen health
bar depicted lower “health” levels, regardless of actual shock delivery or
contingency.
Discussion: These findings indicate that visual feedback cues can shape
engagement or motivation independently of experienced stress. More broadly,
the results underscore the role of motivational and attentional mechanisms in
immersive training environments and provide a framework for evaluating stress
effects using subjective anxiety and objective psychophysical measures.
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1 Introduction

Modern visual displays—including high-resolution monitors and head-mounted
systems—can present complex, dynamic environments with exceptional spatial and
temporal precision (Zhao et al., 2022). However, despite this technological fidelity, the
human visual system is constrained by sensory, attentional, and contextual factors that limit
perceptual access to all available input (Gilbert et al., 2000; Carrasco and Frieder, 1997; He
et al., 1996; Carrasco et al., 1995).
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Among these modulators, experience plays a critical role. In the
short term, perceptual systems exhibit adaptation, whereby recent
exposure to stimuli affects the processing of subsequent inputs
(Heinemann and Marill, 1954; Blakemore and Nachmias, 1971;
Rideaux et al., 2023). Adaptation effects are typically transient,
decaying over seconds to minutes depending on the stimulus and
task (Zhang et al., 2023; Jones and Holding, 1975). These passive
effects contrast with longer-lasting improvements achieved through
active engagement—namely, perceptual learning. Perceptual
learning refers to sustained enhancements in stimulus
discrimination or detection that result from practice and task-
specific exposure (Goldstone, 1998; Prettyman, 2019). Such
learning influences both low-level sensory processing (Polat and
Sagi, 1994; Yehezkel et al., 2015) and higher-order attentional
deployment across the visual field (Donovan and Carrasco, 2018).

1.1 Related work

1.1.1 Ensemble perception and sampling efficiency
One class of perceptual task in which perceptual learning has a

demonstrable impact is ensemble perception, where observers
estimate global statistical properties—such as the average,
variance, or range—across a set of spatially distributed elements
(Whitney and Yamanashi Leib, 2018; Moerel et al., 2016).
Orientation averaging tasks using Gabor patches—sinusoidal
gratings commonly used in vision science to assess orientation
sensitivity—are often used to study this process. Using an
orientation averaging task, Moerel et al. (2016) demonstrated that
accuracy improves with practice, which they attributed to increased
sampling efficiency: the effective number of local elements integrated
by the visual system to estimate the global average.

1.1.2 Attention and computational stages
Dakin et al. (2009) further linked sampling efficiency to

attentional resources by employing a dual-task paradigm.
Participants simultaneously performed a central task and an
orientation-averaging task in the periphery. When central
attentional load increased, orientation-averaging performance
declined. This led to two theoretical accounts. The early selection
account posits that attention limits howmany local signals reach the
integration stage. Alternatively, the late selection account suggests
that integration occurs across all inputs, but attention modulates
signal-to-noise at a later, decisional stage.

1.1.3 Aversive conditioning and perception
Affective and motivational factors also influence perception.

Aversive conditioning—where a neutral stimulus is paired with an
unpleasant outcome—has been shown to enhance discrimination by
increasing the distinctiveness of stimulus features (Rhodes et al.,
2018; Li et al., 2008; Lawrence, 1949; Stegmann et al., 2021).
However, the literature is mixed: other studies have reported
decrements in perceptual performance following exposure to
aversive stimuli (Resnik et al., 2011; Shalev et al., 2018).

1.1.4 Stress and attention
One proposed mechanism for these opposing effects is stress.

Exposure to unpredictable or intense aversive stimuli triggers a

stress response involving elevated cortisol and sympathetic nervous
system activation (Herman et al., 2016; Arnsten, 2009). This cascade
can impair frontally mediated attentional functions, particularly in
high-demand tasks (Ebersole, 2016; Sanger et al., 2014; de Voogd
et al., 2022; Dinse et al., 2017). As orientation averaging relies on
attention, it is plausible that stress may reduce sampling efficiency,
either by limiting the number of integrated samples (early selection)
or by degrading decision-level processing (late selection).

1.1.5 Motivation and aversive reinforcement
Conversely, performance-contingent punishment—such as

shocks administered after incorrect responses—may enhance
performance through increased task motivation. This process,
grounded in operant conditioning, has been shown to improve
perceptual accuracy when feedback is contingent and behaviourally
relevant (Watson et al., 2019; Sawaki et al., 2015; Erickson, 1970;
Blank et al., 2013). Such effects have been attributed to motivational
sharpening of attention and response caution.

1.2 Research aims and hypotheses

The present study explores how training and affective context
(via aversive electrodermal stimulation) influence orientation-
averaging performance in an immersive virtual reality (VR)
environment. Specifically, we investigate:

1. Whether perceptual training improves ensemble processing via
early-stage sampling or late-stage decision efficiency.

2. How acute stress (induced by random shocks) and motivation
(induced by performance-contingent shocks) modulate
perceptual performance.

3. Whether these effects interact with the quantity of task-
relevant information (set-size: 1, 2, 4, or 8 Gabors).

Our hypotheses are as follows:

• H1: If training improves early-stage sampling, then increasing
set-size will result in shallower performance declines over time
(i.e., improved slope). If training improves late-stage decision
processes, accuracy will increase overall, but the slope of set-
size degradation will remain constant.

• H2: If acute stress impairs attentional capacity, we expect
lower performance in the random shock group compared to
the no shock and performance-contingent shock groups.

• H3: If motivational contingencies improve performance,
accuracy in the performance-contingent shock group will
exceed that in the random shock group.

• H4: If stress impacts early encoding, accuracy will decline
more steeply with set-size in the shock conditions. If stress or
motivation affects late decision stages, we expect group
differences in accuracy without significant changes in slope.

1.3 Experimental overview

We employed a 10-day longitudinal design, in which
17 participants completed a VR-based shooting task involving

Frontiers in Virtual Reality frontiersin.org02

Cass et al. 10.3389/frvir.2025.1623584

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2025.1623584


orientation averaging of Gabor stimuli. Gabor arrays were
positioned in fixed circular configurations to ensure consistent
visual sampling across trials. This design allowed for controlled
manipulation of set-size while minimising confounds due to spatial
unpredictability, which could affect attention allocation.

Participants were randomly assigned to one of three groups: no
shock, performance-contingent shock, or random shock, and we
measured accuracy, response time, and anxiety levels using validated
instruments (e.g., STAI). While the 10-day period aligns with prior
perceptual learning studies indicating reliable gains over such
durations (Moerel et al., 2016), future work may examine shorter
or longer timelines.

This study seeks to clarify the mechanisms by which perceptual
learning unfolds and the influence of stress and motivation on visual
decision-making in immersive environments—critical insights for
adaptive training and human performance optimisation in VR.

2 Methods

2.1 Participants

Twenty-two participants were recruited from the Western
Sydney University community via convenience sampling between
1st April and 31st July 2022. Two participants withdrew from the
study—one due to illness (COVID-19) and one voluntarily—leaving
20 who completed all testing sessions. Three additional participants
were excluded: one for non-compliance with task instructions, and
two for receiving an unusually high number of shocks due to
technical error. The final sample comprised 17 healthy adults
(8 female; 9 male; mean age = 26.2 years, SD = 12.4), all with
normal or corrected-to-normal vision.

All participants provided informed consent prior to
participation. The study was approved by the Western Sydney
University Human Research Ethics Committee (H13736) and
conducted in accordance with the Declaration of Helsinki.
Participants were naïve to the study’s aims and received
$250 AUD for their participation.

2.2 Experimental design

The experiment used a 3 (Shock Group: No Shock, Random
Shock, Performance-Contingent Shock) × 10 (Training Day) × 5
(Set-Size: 1, 2, 3, 4, or 8 Gabor elements) mixed factorial design.
Shock group was a between-subjects factor; training day and set-size
were within-subjects factors. Each participant completed 10 training
sessions on consecutive weekdays.

Participants were randomly allocated to one of three shock
conditions. In the performance-contingent shock group,
participants received an electrodermal stimulus following every
10th incorrect response. In the random shock group, shocks were
administered with a 3% chance per trial, independent of
performance. This probability was determined via pilot testing to
approximate the average frequency of shocks received by the
performance-contingent group. Participants in the no-shock
group received no stimulation.

Average daily shocks were 10.9 (SD = 2.3) in the performance-
contingent group and 13.1 (SD = 3.0) in the random shock group.

FIGURE 1
First-person perspective of the VR D-world environment and
Gabor arrays. Gabor stimuli of varying set-sizes (1, 2, 3, 4 and 8)
illustrated in panels (a–e) respectively. Note on each trial the average
orientation was plus or minus 5° from vertical. Images all show
Gabors tilted −5° from vertical on average, signifying that the entity on
the left is the enemy.
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The key outcome measures were orientation discrimination
accuracy, correct response time (RT), and state anxiety scores
(via the STAI).

2.3 Task overview

Participants performed a custom-built virtual reality
orientation-averaging task embedded in a first-person shooter
(FPS) game. On each trial, they viewed an array of Gabor
elements (stimulus set-size varied across trials) and judged
whether the average orientation was tilted clockwise or counter
clockwise from vertical (Figure 1). Participants responded by
shooting one of two visually identical virtual agents, each
standing to the left or right of a central post, depending on the
inferred average orientation of the Gabors.

Correct responses prevented hostile fire, while incorrect
responses triggered either a visual consequence (loss of health
bar) or, in shock conditions, electrodermal stimulation
(depending on shock group). The task structure was designed to
promote integration of ensemble visual information and translate
perceptual decisions into motor actions in an immersive
environment.

2.4 Materials and apparatus

2.4.1 Software
The virtual environment was developed using the Unity engine

by MultiSim© and presented via a custom-built ‘D-world’ module.
The D-world simulated a rural Swiss landscape (coordinates: 46.727°

N, 12.219° E) and included all in-game events and stimuli. System
events and behavioural data were recorded in H5 format using a
built-in logger with a maximum sampling rate of 500 Hz. Only state
changes triggered new entries, optimizing data file size.

A separate Python script (v3.8.6) synchronized experimental
events, controlled shock delivery, and parsed task performance.

2.4.2 Hardware
The experiment was run on two Windows 10 PCs: one for

rendering the D-world (Intel Core i7-9700K, NVIDIA GTX 2060),
and another for VR stimulus presentation and headset output (Intel
Core i7-9700K, NVIDIA GTX 2070 SUPER). Audio feedback was
delivered via Philips/Gibson headphones.

Participants viewed stimuli using an Oculus Rift S headset
(1,280 × 1,440 pixels per eye; 80 Hz refresh rate). Interpupillary
distances (IPD) were measured using the ‘GlassesOn’ mobile app
(LTD, 2022) and matched to the headset’s software-adjustable
settings (range: 58–69 mm).

A custom-built replica rifle prop (988 g) (Figure 2a) housed a
left-handed Oculus Touch controller to track six degrees of freedom.
The prop was ergonomically adapted and visually matched to an
EF88 AUS Steyr assault rifle.

2.4.3 Electrodermal stimulation
Electrodermal stimuli were delivered using a Biopac MP-150

with an STMISOC isolated stimulator (Figure 2B). Participants in
shock conditions self-adjusted the stimulation intensity prior to each
session, targeting a level they reported as “uncomfortable but not
painful.” Stimulation pulses were 100 ms in duration, with selected
currents ranging from 30 to 90 µA (mean = 62.7 µA, SD = 14.3).

2.4.4 Subjective measures
State and trait anxiety were measured using the State-Trait

Anxiety Inventory for Adults (STAI-AD) (Spielberger et al.,
1983), administered pre- and post-session via Qualtrics on a
tablet. The STAI-AD includes 40 items rated on a 4-point Likert
scale. It has high reliability (α = 0.86–0.95) and strong
construct validity.

2.5 Stimuli and virtual environment

The virtual environment included a central pole flanked by two
stationary soldier agents (98 × 256 pixels), one of whom was

FIGURE 2
Experimental apparatus and electrodermal stimulus set-up. (a) Shows a participant wearing the VR Oculus headset and headphones holding the
controller-mounted custom rifle prop with electrodes applied to the non-dominant forearm. (b) Shows the Biopac MP-150 signal conditioning module
and STMISOC electrodermal stimulation device.
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designated “hostile” each trial. Hostility was randomly assigned on
each trial and signaled solely via the mean orientation of the Gabor
array: −5° indicated the left agent was hostile; +5° indicated the right.

Stimuli appeared in a semi-transparent 1,024 × 1,024 pixel
square, fixed to the participant’s visual field. The health bar in
the lower-right corner reduced by 10% after incorrect responses for
all participants, acting as performance feedback and shock
countdown (in the performance-contingent group). Following
any trial in which the health bar reached 0%, it was reset to
100% at the start of the subsequent trial.

2.5.1 Gabor arrays
Each trial presented 1, 2, 3, 4, or 8 Gabor patches arranged

equidistantly, but otherwise randomly positioned on a circular
annulus (radius: 400 pixels; ~25° visual angle). Each Gabor was a
sinusoidal grating (0.8–1.6 cycles/deg) with a Gaussian envelope
(FWHM = 83 pixels). For multi-element trials, orientations were
sampled from a Gaussian distribution (SD = 20°) with a mean of ±5°

from vertical. The final Gabor’s orientation was adjusted to ensure
the overall mean orientation met the ±5° offset exactly. Figure 1
illustrates all five set-size conditions.

2.5.2 Trial timing and response
Each trial began with a 500 ms system initialization delay,

followed by display of the visual field square. After 500 ms, the
Gabor array appeared and remained visible for up to 2,500 ms or
until the participant shot a target. Reaction time was calculated
from Gabor onset to response. If no response was made within
2,500 ms, an animation showed the hostile agent firing at the
participant.

Incorrect trials (shooting the friendly agent or failing to shoot
the hostile one) triggered a 10% reduction in the health bar. In the

performance-contingent group, a shock was administered when the
health bar reached 0%. In the random group, shocks were
probabilistic and unrelated to health status.

2.6 Procedure

All participants completed 10 testing sessions on consecutive
weekdays. On Day 1, participants were briefed, consented, and
randomly assigned to a shock group (No Shock: n = 5; Random
Shock: n = 5; Performance-Contingent: n = 7). After measuring IPD
and fitting the headset, participants completed a practice session
(~20 trials) to ensure task understanding.

Shock group participants underwent a daily calibration to
identify their preferred stimulation level. Each testing session
consisted of two blocks of 210 trials (42 per set-size), separated
by a 5–10 min break. Participants completed the STAI before and
after each session.

2.7 Ethical considerations and data
availability

The experiment was approved by the WSU Human Research
Ethics Committee (H13736). All procedures complied with the
Declaration of Helsinki. This study was not preregistered. De-
identified data and analysis scripts are available upon request.

2.8 Competing interests statement

The authors declare no competing interests.

FIGURE 3
Accuracy and correct response times. Effects of training session and set-size on participant-averaged accuracy (a-e) and response times (f-j) in each
of the three shock condition training groups: no shock (blue), random shock (red) and performance-contingent shock (yellow). Shaded regions are
between-subjects standard errors.
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3 Results

In this study we assessed two measures of behavioural
performance, accuracy and correct response times. Accuracy was
indexed as the proportion of trials in which the participant correctly
identified and shot the hostile agent prior to themselves being shot
by the hostile agent. Trials in which the participant shot the friendly
agent or were shot by the hostile agent were considered incorrect
trials. Response times refer to the time between the appearance of
the diagnostic Gabor elements and the participant shooting the
hostile agent. Only ‘correct’ trials (those where the participant shot
the hostile agent before the hostile agent was able to shoot) were used
in the calculation of response times.

Performance analyses were conducted using linear mixed-effects
models and growth curve analysis, in accordance with established
methods for longitudinal performance modeling.

The overall effects of set-size and training session on accuracy
and correct reaction times orientation-averaging/shooting task
averaged across participants in each of the three shock conditions
are shown in Figure 3. Visual inspection of this figure reveals several
trends. Most notable are the effects of training session, with
performance generally improving (accuracy increasing (top
row Figures 3a-e), response times decreasing (bottom row
Figures 3f-j)) with subsequent days of testing. With regard to set-
size (columns Figure 3), one can observe overall reductions in
accuracy and increases in response times with increasing set-size.
The effects of our various shock conditions (coloured curves) are less
obvious from visual inspection.

To statistically assess the main and interactive effects of training
and shock condition we applied growth curve analysis (Mirman,
2014). Growth curve analysis can be used to analyse performance

changes in longitudinal studies, so we employed this technique to
model the effects of training in our orientation-averaging task. This
was done using the lmer function from the package lmerTest
(Kuznetsova et al., 2017) in R version 4.2.1 (Team, 2022). Given
that several of the curves in Figure 4 had at least a single inflection,
growth curve data were modelled with up to second-order
orthogonal polynomials, which were assessed by three terms in
the fitted model: the intercept describes the mean values, the linear
term captures the negative or positive slope of the curve over time,
and the second-order quadratic term signifies degree of inflection in
curve complexity, i.e., the depth of any peak or valley in the training
curve over time. Differences in at least one of the three terms
(intercept, linear, and quadratic) must be significant to indicate a
reliable growth curve difference between the three shock
conditions groups.

3.1 Training effects

Whether participants performed differently across training
sessions was assessed by fitting linear mixed-effect models with
shock condition and training session as fixed effects and set-size
and participants as random effects. The Kenward-Roger degrees
of freedom approximation (Kuznetsova et al., 2017) was used to
calculate p values for the fixed-effect factors, and the ANOVA
function from package car (Fox and Weisberg, 2018) was used to
calculate F. Pairwise comparisons were conducted using the
lsmeans package (Lenth, 2016) in R when necessary. Linear
mixed-effect ANOVAs on our performance measures were
undertaken using Type-II Wald F tests with Kenward-Roger
degrees of freedom.

FIGURE 4
Effects of training session. Panel (a) shows on participant-averaged accuracy and panel (b) shows response times averaged across set-size in each of
the three shock-conditions: no shock (blue), random shock (red) and performance-contingent shock (yellow). Shaded regions are between-subjects
standard errors.
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3.1.1 Accuracy
There was no main effect of shock condition on accuracy (F (2,

13) = 0.004, p = 0.996), suggesting that exposure to either random or
performance-contingent shock did not influence overall accuracy.

A significant main effect of training session was observed (F (9,
754.02) = 54.639, p < 0.001), with participants showing improved
accuracy over the 10-day training period. Post hoc comparisons
indicated that these gains were driven by improvement after Day 1
(Day 1 vs. Days 2–10, all p < 0.001), with no significant changes
between subsequent training days (all p-values > 0.05).

No interaction between training session and shock condition
was found (F (18, 754.02) = 1.04, p = 0.343), suggesting that shock
exposure did not modulate learning-based accuracy improvements.

3.1.2 Response times
Similarly, no main effect of shock condition was observed on

RTs (F (2, 13) = 0.453, p = 0.646), and no between-group differences
were detected on any testing day (all p > 0.05).

A significant main effect of training session was detected (F (9,
745.01) = 99.249, p < 0.001), with RTs decreasing across sessions.
However, a significant interaction between shock condition and
training session was also found (F (18, 745.01) = 5.181, p < 0.001).
Despite this interaction, follow-up growth curve modeling revealed
no significant differences in intercept, slope, or curvature across
shock groups (all p > 0.05).

Contrasts examining within-group RT changes revealed that
improvements occurred at different time points: performance-
contingent shock participants showed gains from Day 3, no-
shock participants from Day 4, and random shock participants
from Day 5. Further improvements were observed late in training
only in the performance-contingent and random shock groups.

These patterns suggest differential timing in learning progression
across shock conditions, with random shock potentially delaying
early gains.

3.2 Set-size effects

3.2.1 Accuracy
Effects of set-size on accuracy are shown in Figure 5a. A robust

main effect of set-size was observed (F(4, 755) = 484.951,
p < 0.0001), with increasing set-size yielding lower accuracy. All
pairwise comparisons between set-sizes showed significant
differences (all p < 0.0001), except between set-sizes 3 and 4
(p = 0.006).

A significant interaction between set-size and shock condition
was found (F(8, 755) = 2.186, p = 0.026). However, no growth curve
model differences were detected between shock groups (all p > 0.05).
Within each group, performance declined with increasing set-size,
though comparisons between set-sizes 3 and 4 were non-significant
in all groups (all p > 0.05). No significant between-group accuracy
differences were detected at any set-size (all p > 0.05).

3.2.2 Response times
Effects of set-size on response times are shown in Figure 5b.

Response times increased significantly with set-size
(F(4, 755) = 118.530, p < 0.0001). Planned contrasts showed
significant increases for most comparisons, except those involving
set-sizes 3, 4, and 8 (all p > 0.05), suggesting performance plateaued
beyond set-size 3.

A significant interaction between set-size and shock condition
was observed (F (8, 755) = 2.423, p = 0.013), but again no differences

FIGURE 5
Effects of set-size. Panel (a) shows participant-averaged accuracy and panel (b) shows response times averaged across training session in each of
the three shock-conditions: no shock (blue), random shock (red) and performance-contingent shock (yellow). Shaded regions are between-subjects
standard errors.
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in model fit were found (all p > 0.05). Within-group contrasts
showed generally increasing RTs with set-size, but differences were
non-significant between specific sizes, especially beyond set-size 3.
No between-group RT differences were found at any set-size
(all p > 0.05).

3.3 Training × set-size interaction

Mixed-effects models revealed main effects of training session
on both accuracy (F (9, 727.01) = 53.634, p < 0.0001) and RTs (F (9,
727.01) = 86.607, p < 0.0001). Set-size also produced significant
main effects for both accuracy (F (4, 727.00) = 471.307, p < 0.0001)
and RTs (F (4, 727.00) = 111.968, p < 0.0001).

No significant training × set-size interactions were found for
accuracy (F (36, 727.00) = 0.660, p = 0.9441) or RTs (F (36, 727.00) =
0.125, p = 1.0), indicating that training improved performance
uniformly across set-sizes.

3.4 Health-bar feedback

For the next series of analyses, we investigated whether
performance feedback visible to participants via the ‘health bar’
(present throughout each training session) affected participant
performance (see Methods for information on health bar
performance feedback. Figure 6 shows the relationship between
health-bar level (low (≤20%), medium (21%–80%) and high values
(>80%)) on average accuracy and response times in each of the three
group training conditions.

Health-bar level had a significant main effect on accuracy (F (2,
922) = 497.380, p < 0.0001), with higher visual feedback levels
corresponding to better performance. All pairwise comparisons
were significant (all p < 0.0001).

No effect of health-bar level was observed on RTs (F (2, 922) =
0.310, p > 0.05). Shock condition did not significantly influence
accuracy (F (2, 922) = 0.001, p > 0.05) or RTs (F (2, 922) = 0.475, p =
0.632), and no interactions were found between health-bar and
shock condition (accuracy: F (2, 922) = 0.326, RTs: F (2, 922) =
0.299, both p > 0.05).

3.5 Response to shock delivery

The health-bar provides performance feedback to the
participant, dropping 10% following each incorrect trial, and
refreshing after each 10th incorrect trial. It is worth noting that
the health bar status is predictive and consequential only for
participants in the performance-contingent shock group who
received a shock following nine previous errors. The health bar
level is completely inconsequential (i.e., unpredictive of the of a
shock stimulus) for participants in both the no-shock and random
shock groups. To determine whether there exist additional effects of
anticipating and/or receiving a physical shock, we conducted
additional analyses evaluating the effects on performance
(accuracy and response times) on the five trials immediately
preceding and the five trials immediately succeeding a physical
shock (Figure 7). Given that shock was only presented to
participants in the random and performance-contingent shock
conditions, participants in the no-shock condition were omitted
from these analyses.

Analyses of the five trials before and after shock events in
random and performance-contingent groups revealed no main
effects between these groups on accuracy or RTs (all p > 0.05). A
significant interaction between trial number and shock condition
was observed for RTs (F (4, 99) = 3.313, p = 0.016), but no
pairwise comparisons survived Bonferroni correction
(all p > 0.05).

FIGURE 6
Effects of visual health-bar status. Box plots showing the effect of visual health-bar performance feedback (low (≤20%), medium (21%–80%) and high
values (>80%)) on average accuracy are shown in panel (a) and response times in panel (b) in each of the three shock groups: no shock (blue), random
shock (red), and performance-contingent shock (yellow). Error bars represent between subject standard errors.
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3.6 State anxiety

Effects of pre-vs. post-session training and shock condition on
subjective stress are shown in Figure 8. No main effects were found
for shock condition (F (2, 12.99) = 0.186, p = 0.832) or training
session (F (9, 245.01) = 0.326, p = 0.966) on state anxiety. A
significant effect of test time (pre vs. post) was detected (F (1,
345.00) = 22.032, p = 0.0001), with post-training anxiety higher than
pre-training.

A significant interaction between time (pre vs. post) and shock
condition was found (F (2, 245.00) = 3.359, p = 0.036). Post hoc
analyses revealed no change in the no-shock group (p = 0.996), but

significant post-training increases in anxiety for the performance-
contingent (p < 0.001) and random shock conditions (p = 0.02).

4 Discussion

4.1 Summary of aims and key findings

This study addressed two key questions in perceptual learning.
First, we investigated whether training enhances the human visual
system’s capacity to integrate orientation information across the
visual field. Second, we explored whether aversive electrodermal

FIGURE 7
Performance relative to shock delivery. Mean accuracy on the five trials preceding and succeeding a shock stimulus are shown in panel (a) andmean
response times are shown in panel (b) in the random (black squares) and performance-contingent (unfilled circles) shock training groups. The vertical
grey line in each figure represents the point at which a shock stimulus was presented. Error bars are between-subjects standard errors.

FIGURE 8
Self-reported anxiety before and after training across groups. Relationship between average STAI state anxiety subscale scores obtained across
training sessions for each shock-condition training group: no shock (blue), random shock (red) and performance-contingent (yellow); measured
immediately prior to (solid lines) and following (dashed lines) each training session. Shaded regions represent between-subject standard errors.
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stimulation (used as acute stress or punishment) modulates
perceptual learning in an orientation-averaging task implemented
in virtual reality.

Our findings demonstrate (1) consistent performance
degradation with increasing set-size, (2) significant training-
related improvements in accuracy and response times, and (3) no
evidence that training altered the slope of the set-size effect. These
results suggest that training does not enhance early-stage sensory
integration but likely operates at a post-integration or decisional
stage. We also observed (4) no robust effects of shock condition on
learning outcomes, and (5) an unexpected, systematic influence of
visual performance feedback (“health bar”) on accuracy.

4.2 Visual integration and training effects

Whilst broadly consistent with prior work, we show for the first
time that orientation-averaging performance degraded with larger
set-sizes. This suggests that the visual system’s capacity for averaging
orientation information across 2D space is fundamentally
constrained. Whilst training led to significant gains in accuracy
and response speed, there was with no interaction between training
and set-size, implying that the quantity of integrated information
did not increase. These gains, therefore, are likely to arise at
decision-related stages—possibly by increasing the signal-to-noise
ratio during integration or decision execution (Dakin et al., 2009;
Moerel et al., 2016).

Our task design departed from prior orientation-averaging studies
in several important respects, particularly in how local Gabor
orientations were sampled on each trial. While previous studies
typically draw orientations randomly from Gaussian distributions
with a defined mean and standard deviation (e.g. (Moerel et al.,
2016; Dakin et al., 2009)), we used a deterministic method to fix the
global mean orientation across trials. Specifically, we first sampled all
but one Gabor from a Gaussian distribution and then adjusted the final
Gabor’s orientation to ensure that the mean orientation of the array
exactly matched a predefined target (e.g., ±5° from vertical). This
approach eliminated trial-by-trial variability in global mean
orientation that can arise in probabilistic sampling schemes.

However, one potential drawback of our method is that it may have
encouraged participants to adopt a “max-rule” strategy—relying on the
most tilted element in the array rather than computing a true average.
Such a strategy would introduce substantial variability in responses and
lead to a higher rate of incorrect choices. If participants relied on this
approach, at least on a subset of trials, task performance may have been
supported in part by relational visual search mechanisms (e.g. (Becker
et al., 2025)), rather than global ensemble processing. Future work could
address this limitation by drawing stimulus sets from a large library of
pre-generated Gaussian samples with fixed means and variances, which
would preserve statistical consistency across trials without encouraging
max-rule heuristics.

4.3 Crowding, eye movements, and
generalisability

While visual crowding can impair averaging by reducing access
to local features, we argue that crowding is unlikely to account for

our set-size effects. First, the inter-Gabor spacing in our design
exceeded Bouma’s limit for crowding interference (Kurzawski et al.,
2023; Van der Burg et al., 2024; Bouma, 1970). Second, participants
were free to move their eyes, which reduces crowding by
maintaining central fixation and reducing retinal eccentricity.
Nonetheless, because eye movement patterns were not
monitored, comparisons with fixed-eccentricity paradigms should
be interpreted with caution as the distinction between early and late
selection frameworks typically hinges on whether orientation
averaging depends on retinotopically local filters—such as
V1 neurons—which are spatially specific and sensitive to gaze
position. In our task, Gabor elements were visible for extended
durations, allowing participants to freely move their eyes. This limits
our ability to isolate the contribution of early, retinotopically specific
encoding mechanisms, as participants may have used saccades to
serially sample the array. That said, it is nonetheless noteworthy that
performance consistently declined with increasing set-size,
suggesting that averaging was at least partially capacity-limited
despite the opportunity for foveal sampling. Future studies
should address this issue by using brief stimulus presentations
(<200 m) to ensure that saccades are not utilised during
encoding. In addition, gaze-contingent presentation could be
employed to fix the eccentricity of the Gabor elements relative to
gaze, enabling more direct assessment of peripheral ensemble
processing. Finally, integrating eye-tracking measures would
allow quantification of oculomotor strategies and their impact on
orientation averaging.

4.4 Role of attention in perceptual learning

Although perceptual learning can improve orientation
discrimination through early-stage enhancements (Matthews
et al., 1999; Zhang et al., 2010), our task introduced random
variation in both Gabor location and orientation across trials.
Such variation likely prevented low-level learning. Prior work
shows that perceptual learning generalises across location and
orientation when exogenous attentional cues are present
(Donovan et al., 2020). In line with this, we propose that
learning in our task reflects enhancements in attentional
efficiency at a post-integration or decisional stage—rather than
early-stage sensory encoding.

4.5 Shock, stress, and perceptual learning

Contrary to predictions, we observed no main effect of shock
condition on task accuracy or learning rate. However, a shock
condition × session interaction was observed for response times,
with participants in the performance-contingent shock condition
improving faster than those in no-shock or random-shock groups.
This may reflect increased urgency or motivation to avoid
aversive outcomes.

Temporal patterns differed across groups: performance-
contingent shock yielded improvements by Day 3, while other
conditions lagged by 1–2 days. These differences suggest subtle
effects of punishment contingency on response preparation or
motivational state, although not robust enough to affect accuracy.
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Self-reported anxiety, as measured by the STAI, was elevated
post-training in shock conditions, particularly in the performance-
contingent group. Yet, no correlation was found between anxiety
scores and behavioural performance. This suggests that STAI may
lack sensitivity to trial-level changes or that anxiety’s influence is
indirect. Future studies should incorporate objective physiological
stress markers (e.g., salivary cortisol (Hellhammer et al., 2009),
pupillometry (Ginton et al., 2022)) to clarify these relationships.

4.6 Unexpected role of visual feedback

A key and unexpected finding was that orientation-averaging
accuracy varied systematically with health-bar status—even in
conditions where the health bar had no consequences (no-shock,
random-shock). Higher displayed “health” predicted better
accuracy, regardless of shock contingency. This effect was not
accompanied by changes in response times, ruling out a speed-
accuracy trade-off.

We propose that the health bar acted as a motivational or
attentional cue. Visual feedback has been shown to enhance
perceptual learning by directing attention and reinforcing
effort (Seitz and Watanabe, 2003; Posner, 1980; Ahissar and
Hochstein, 1993). In our task, the health bar may have
operated as an implicit performance incentive, encouraging
attentional persistence and error avoidance. This aligns with
prior findings showing that feedback—even when decoupled
from consequence—can shape perceptual strategies (Blank
et al., 2013; Eisma et al., 2021; Choi and Watanabe, 2012).
While some studies dispute the necessity of feedback for
learning (Asher and Hibbard, 2020), our findings suggest that
continuous visual feedback can enhance perceptual accuracy
independently of external reinforcement.

Time-course analyses further support this view: performance
was not different immediately before or after shock events, ruling
out the possibility that shock anticipation alone explains the health
bar effect.

4.7 Limitations and future directions

While the present study offers novel insights into perceptual
learning and the effects of aversive stimulation within a VR
environment, several limitations should be acknowledged.

First, although our findings suggest that training-related gains
occur at a post-integration stage, the possibility that eye movements
may have contributed to orientation averaging performance limits
our ability to draw definitive conclusions about early-stage
mechanisms. Because Gabor arrays were visible until response
and no gaze-contingent control was implemented, participants
were free to foveate individual elements. Future studies should
adopt brief (<200 m) stimulus presentation times and/or gaze-
contingent displays to ensure that ensemble averaging relies on
peripheral processing and to isolate the contributions of early,
retinotopically specific filters.

Second, the lack of objective physiological markers of arousal
limits interpretation of the observed elevation in STAI-measured
anxiety following shock exposure. While the STAI is widely used,

it may not capture transient fluctuations in arousal that occur on
a trial-by-trial basis. Incorporating direct physiological metrics
such as salivary cortisol, galvanic skin response, or pupillometry
would enable more precise characterization of stress responses
and their relationship to perceptual performance.

Third, while our findings suggest that the health bar acts as a
visual feedback signal that improves performance, we did not
include a condition in which the health bar was absent. As such,
although the statistical association between health bar magnitude
and accuracy was robust—even in conditions where it had no
consequences—causal inferences are constrained. Future
research should include a no-health-bar control condition and
manipulate the timing, visibility, or relevance of feedback to
better understand its role in attentional persistence and
performance modulation.

Finally, although our immersive VR platform enabled a more
engaging and ecologically valid testing environment, it also
introduced some variability in response timing and user
interaction. Comparing outcomes from VR-based tasks with
those obtained from conventional 2D psychophysics paradigms
would help assess the generalisability of results across modalities
and help establish VR as a reliable platform for vision science.

Taken together, these limitations suggest several promising
directions for future work. Larger sample sizes, objective
arousal measures, constrained visual exposure, and systematic
feedback manipulation will be key to refining our
understanding of the interplay between motivation, stress, and
perceptual learning.

5 Conclusion

This study investigated how perceptual learning in a visual
averaging task unfolds over time and under varying levels of
aversive electrodermal stimulation in an immersive VR
environment. We found that while training led to clear
improvements in accuracy and response time, these gains did not
interact with set-size, suggesting that learning likely occurred at a
post-integration or decisional stage rather than through
enhancements in early-stage sensory processing.

Contrary to expectations, shock-based stimulation—whether
performance-contingent or random—had limited impact on task
accuracy, although the performance-contingent shock condition did
yield faster improvements in response time. Self-reported anxiety
increased in shock groups, but this did not correlate with
performance outcomes.

A key and unanticipated finding was that visual feedback, in the
form of a health bar, strongly predicted accuracy—even in
conditions where it carried no external consequences. This
suggests that persistent visual feedback may serve as an implicit
motivator or attentional cue, influencing perceptual performance
independently of reinforcement.

Taken together, our findings highlight the role of attentional and
motivational mechanisms in perceptual learning and demonstrate
that immersive VR platforms can be used to systematically
investigate these processes. Future studies should include
objective physiological measures, remove or manipulate feedback
mechanisms, and compare immersive versus traditional platforms
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to further distinguish the factors that shape learning in across visual
presentation environments.
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