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Human task performance in extended reality (XR) environments is a critical area of
study due to the growing use of these technologies in fields such as healthcare,
education, manufacturing, and training, as XR has the potential to influence both
how well people complete tasks (e.g., accuracy, speed) and underlying human
states such as cognitive load, stress, and physiological responses. A plethora of
research has explored the benefits of XR across these domains, as well as
research to investigate potential negative impacts on cognition and task
performance. However, the findings regarding task performance remain
inconclusive, and the factors contributing to enhanced versus diminished
performance are poorly defined. In this paper, we conduct a systematic
literature review of 79 research papers from 2015 to 2024, following the
PRISMA guidelines, selected from an initial pool of 6,878 search results from
the Publish or Perish database. Our review reveals that a key gap exists in
understanding how specific XR factors, such as immersion levels, interaction
modalities, and user interface design, influence both task performance and
associated cognitive, psychophysiological, and physiological outcomes. We
also report how these different factors influence the performance of
cognitive, psychophysiological, and physiological tasks in different XR
environments. We conclude by proposing potential research gaps and future
research directions to focus on controlled experimental studies targeting these
factors to gain deeper insights into their impact on human performance in XR
settings.
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1 Introduction

Interest in eXtended Reality (XR) (i.e., umbrella term for virtual
reality [VR], augmented reality [AR], and mixed reality [MR];
Rauschnabel et al. (2022)) is rapidly increasing as these
technologies have widespread applications across diverse fields,
including education (Radianti et al., 2020), defense (Harris et al.,
2023), experiential learning (Mystakidis and Lympouridis, 2024),
skills training (Philippe et al., 2020), and healthcare (Son et al,
2022). Figure 1 shows different applications of XR technologies,
illustrating the use cases in immersive learning, virtual training, and
professional development. These examples present how XR can
create engaging and useful experiences in many different areas. The
growing integration of XR technologies across various fields has
fueled a surge in research investigating human task performance
(HTP) in cognitive, physiological, and psychophysiological tasks
within XR environments. Extensive experimental studies have been
conducted to understand the impact of XR technologies on human
task performance (Scharinger et al., 2023; Lin et al., 2020; Teng,
2022). These studies mostly report the beneficial aspects of XR
compared to real-world settings. However, downsides, such as high
cognitive demand and low task performance due to cybersickness,
have also been reported (Au, 2022; He et al., 2022; Descheneaux
et al, 2020). These discrepancies present significant hurdles in
providing unified design criteria for researchers, designers, and
developers, and a thorough understanding of the possible
correlations between XR and human task performance is
essential but still unclear. To address this knowledge gap, this
paper examines the current state of XR in human performance
through a systematic investigation of the factors, including system
factors (Khalid et al., 2023), design factors (Nenna et al., 2022), and
individual factors (Stanney et al., 2002), influencing human task
performance in XR environments (Harzing, 2007).

Task performance in XR is influenced by system factors (e.g.,
hardware, software, display), individual differences (e.g., age, gender,

10.3389/frvir.2025.1589256

experience), content design complexity, immersion,

(e.g.
motivation) (Shaw et al., 2016). Despite the volume of research,

(e.g.
characters), and contextual elements environment,
these findings are scattered across numerous publications,
necessitating a consolidated overview for better understanding
and future research direction. A comprehensive literature review
can help identify common themes, emerging trends, and areas for
further investigation. Organizing these insights into a cohesive
framework would enable a clearer understanding of how various
factors interact to affect performance in XR environments and could
guide future research and system design to optimize human task
performance across different applications.

To address this issue, in this paper, we conducted a systematic
literature review of 79 papers selected from an initial pool of
6,878 search results using the Publish or Perish (PoP) database.
The review explored the current research trends related to human
task performance in XR systems, the factors affecting the
performance, the negative impacts of XR, and potential research
gaps for future studies. Following the PRISMA guidelines (Moher
et al,, 2009), we utilized the PoP database (Harzing, 2007) to collect
relevant articles from various publishers and libraries. The selected
papers covered a range of topics, including physiological,
psychophysiological, and cognitive tasks, cognitive load, negative
effects of XR, and performance factors. We also conducted a meta-
analysis of the current papers from 2015 to 2024 and reported our
key findings, the research gaps, and future research directions in this
paper. Empirical studies related to human task performance,
cognitive load, negative impacts of XR, and factors for HTP were
the principal criteria for selecting the papers. This review focused on
multiple objectives from three different types of tasks: cognitive,
psychophysiological, and physiological. Our key contributions are
but are not limited to:

Literature Review -

e Contribution 1: Comprehensive

Conducted a thorough review of existing research on

@

Virtual Reality
Device

Augmented
Reality Device

FIGURE 1
Applications of XR technologies in diverse fields. (1) The user is performing training in a virtual reality (VR) environment. (2) A user is performing an

assembly task in a mixed reality (MR) environment. (3) The user is in a learning environment using the Smartphone-based Augmented Reality (AR)
technology.
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Overview of XR task design concepts, factors of human task performance, subjective and objective measurements, and immersion types.

human task performance in XR, focusing on studies involving
procedural experiments. The findings were analyzed and
systematically organized into a taxonomy for clarity and
meaningful interpretation.

e Contribution 2: Identification of Key Performance Factors in
XR Environments - Identified the key factors from the
literature that influence human task performance across
various XR environments. These factors were categorized
into four primary groups to provide a clearer, more
structured understanding of their impact on performance.

e Contribution 3: Analysis of Research Gaps and Proposed
Solutions - Conducted a detailed literature analysis on
human task performance and its influencing factors in XR
systems. Synthesized previous findings to identify research
gaps
recommendations for future studies and developing new

and proposed actionable solutions, including

methodologies to enhance understanding in this field.

The paper is organized as follows. Section 1 outlines the basic
introduction to human task performance in XR systems, cognitive
load, and factors and aspects of their applications. Section 2 details
the relationship between human task performance and XR systems,
while Section 3 details the review methodology, including the
process of paper selection and data extraction. The key findings
are presented in the subsequent sections.

2 Human task performance in
extended reality

Human task performance is influenced by various factors,
including system characteristics, user interface design, and
typically evaluated
performance metrics such as task pace and accuracy, alongside

individual differences, and is through
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measures of cognitive and physical workload (Wickens et al,
2021). For instance, increasing task pace can reduce precision
and lead to errors (Vekony et al, 2022), while tasks requiring
high precision may take longer and impose greater cognitive load
(Fleming et al., 2023). Cognitive demands, shaped by task
complexity, expertise, and environmental conditions, also play a
role (Darvishi-Bayazi et al,, 2023). In XR environments, sensory
feedback (e.g., visual, auditory, tactile) impacts human task
performance. Figure 2 illustrates the key factors as well as task
setups affecting performance, discussed in detail in this section.

2.1 Human-performed task categories in XR
We classified studies using the following decision rules:

1. Cognitive tasks: The primary manipulation and outcomes
target mental processes (e.g., memory, attention, decision-
making) with no required continuous or coordinated motor
program beyond simple responses (e.g., button press), and
without analysis of physiological signals as primary outcomes.

2. Physiological tasks: The primary outcomes are objective bodily
signals or physical performance (e.g., gait, balance, exertion)
without an explicit cognitive-load manipulation; at least one

signal (HR/HRV, RR, BP, EDA,

EMG, pupil

interpreted as an outcome.

physiological skin

temperature, diameter) is recorded and
3. Psychophysiological tasks: Both (a) a cognitive or affective
manipulation and (b) coordinated motor action are integral to
task success, and at least one physiological signal is analyzed as

an outcome.

Tie-breakers: When a study plausibly fits multiple categories, we
prioritized psychophysiological if both cognitive manipulation and

03 frontiersin.org
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motor coordination were essential and a physiological signal was
analyzed; otherwise cognitive if outcomes were purely performance/
accuracy/RT without physiological analysis; otherwise physiological.
For example, fear-induction paradigms that combine affective
manipulation, task performance, and recorded physiological
responses were classified as psychophysiological.

2.1.1 Cognitive tasks

A cognitive task in an XR system refers to any task that requires
mental processes such as perception, memory, attention, problem-
solving, decision-making, or learning while interacting with
immersive environments (Li et al, 2019). Research highlights
that XR offers unique opportunities to manipulate environmental
variables in ways that traditional learning environments cannot,
thus enhancing human task performance in cognitive learning or
training. Well-designed immersive environments can enhance
learning by providing support for human cognitive limitations,
reducing cognitive load, and increasing learning outcomes (De
Back et al., 2021). Furthermore, immersive learning environments
provide customized learning experiences, simulate real-world
situations, improve memory retention, and reduce cognitive
workload (Marougkas et al., 2024). However, the effects are not
always positive. Issues such as cybersickness, acute stress, and visual
fatigue involved in immersive environments diminish cognitive
performance and impede learning and task performances (Han
et al., 2017).

2.1.2 Physiological tasks

A physiological task in an XR system involves physical responses
or bodily functions, such as movement, balance, coordination, or
exertion, while interacting with a virtual environment (Lee and Kim,
2024). Physiological task performance in XR examines how
responses like heart rate, eye movement, and muscle activity
change to assess stress levels during task completion (Roy et al.,
2019). This metric also evaluates physiological responses with
changes in the virtual environments (Neo et al, 2021). XR can
be shaped to meet users’ physiological needs, enhancing both safety
and realism. For example, such customization enhanced hand-eye
coordination in medical training, and helped medical students and
surgeons perform minimally invasive surgeries guided by medical
imaging (Rosenfeldt Nielsen et al., 2021). Research also shows that
XR can reduce physiological discomfort during medical procedures
by diverting attention to relaxing immersive content (Calogiuri
et al, 2018). XR has potential in domains beyond healthcare,
such as sports training. Thus, exploring physiological task
performance across diverse setups in XR systems is crucial.

Operationalization of physiological change: In this review,
“physiological change” refers to objectively recorded autonomic
or somatic signals (e.g., heart rate, heart rate variability,
respiratory rate, blood pressure, electrodermal activity/skin
conductance, skin temperature, electromyography), and where
relevant, ocular physiology (pupil diameter/eye openness). For
each included study, we extracted and report which specific
physiological measures were collected.

2.1.3 Psychophysiological tasks

A psychophysiological task in an XR environment refers to
activities that require cognitive functions and physiological

Frontiers in Virtual Reality
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These
processes with motor actions, frequently requiring participants to

movements. activities require synchronizing mental
react to visual stimuli in a virtual environment by manipulating their
arms, legs, or other parts of their bodies (Ghrouz et al., 2019).
Measuring the performance for a psychophysiological task in an XR
system integrates simultaneous monitoring of mental load and
physiological reactions such as heart rate and eye movement.
These tasks often get affected by several external factors
including some individual factors such as age, gender, prior
respectability to an XR environment, etc. For instance, older
adults face reduced performance compared to other age groups

when texting and walking (Krasovsky et al., 2018).

2.2 Factors of human task performance

A variety of factors influence human task performance in an XR
system. These factors can be categorized into system factors, user
interface (UI) and user experience (UX) factors, individual
factors, etc.

2.2.1 System factors

System factors encompass the technical aspects that influence
both task performance and immersion in XR systems. These include
hardware components such as display resolution, latency, and input
devices, as well as software elements like the user interface and
feedback systems (Yang et al., 2024). Key factors that significantly
impact task performance include field of view (FoV), optical flow
(OF), and latency, while factors such as user movement control and
exposure duration have demonstrated marginal effects in the
literature. For instance, network latency can negatively affect
cognitive tasks by increasing participants’ mental workload
(Khalid et al., 2023). Similarly, optical flow plays a crucial role in
movement-based physiological tasks by enhancing detection and
enabling redirected walking, thereby leading to more natural
interactions in virtual environments (Lee et al., 2024). These
system factors are discussed in detail in the Results Section 4.

2.2.2 Ul/UX factors

UI/UX factors refer to the design of the virtual environment and
its interaction with real-world elements like lighting and noise,
which can either enhance or hinder task performance depending
on the user’s capabilities and experience with XR systems. A well-
designed UI, featuring intuitive controls, clear navigation, and
responsive feedback, can reduce cognitive load and improve
interactions (Alazmi and Alemtairy, 2024). Conversely, a poorly
designed interface may cause confusion, frustration, and increased
mental workload, all of which diminish task performance.
Cybersickness is a critical issue within UI/UX design, often
arising from mismatches between sensory inputs—particularly
visual and vestibular cues (Stanney et al., 2020). Symptoms such
as fatigue, nausea, and dizziness disrupt immersion and significantly
impair user performance in tasks requiring sustained focus or
physical interaction (Garrido et al.,, 2022).

2.2.3 Individual factors
Individual factors, such as gender, age, ethnicity, and prior
experience, show varying levels of influence on human task

frontiersin.org
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TABLE 1 Subjective and objective measures used to assess task performance and related internal states®. N denotes the number of papers reporting each

measure.

Category of task  Subjective measures Objective measures

Cognitive NASA-TLX (N = 15), SUS (N = 15), $SQ (N = 2),
FMS (N =2)

Physiological RPE (N = 10), VAS (N = 8), PES (N =5)

Psychophysiological NASA-TLX (N = 10), Perceived Stress Scale (N = 2)

EDA (N = 4), Heart rate (N = 6), EEG (N = 5), Reaction time (N = 5)
Heart rate (N = 10), EDA (N = 7), Respiration rate (N = 8), Blood pressure (N = 6), Skin
temperature (N = 4)

EEG (N = 8), ECG (N = 5), EDA (N = 6), Heart rate variability (HRV) (N = 7), Cortisol
levels (N = 4)

“While some measures directly capture task performance (e.g., reaction time, accuracy), many assess related internal states (e.g., mental workload, stress) that can influence performance.

performance, depending on the task type and environmental
conditions. For instance, age can affect performance in specific
cognitive tasks, such as the Montreal Cognitive Assessment
(MoCA) (Tan et al, 2022), while gender may not have a
significant impact. Prior experience is another critical factor, as
individuals with previous experience tend to perform better in
complex, skill-based tasks by reducing cognitive load and
improving efficiency. However, prior experience may be less
relevant for more intuitive or simpler tasks.

2.2.4 Other factors

Other factors affecting task performance in XR systems do not fit
neatly into the categories of system, UI/UX, or individual factors but
still play a role. For example, disruptions in time perception may not
universally detract from performance but can have substantial
impacts on tasks requiring immediate responses (Cometti et al.,
2018). Collaboration is another pivotal factor as effective
coordination and shared situational awareness are crucial for
success in collaborative XR tasks. The absence of shared
objectives, seamless interaction, and task synchronization can
hinder teamwork and consequently reduce overall task
performance in such environments (De Back et al., 2021).

2.3 Measures of human task performance

Human task performance in XR can be assessed using both
subjective and objective metrics, providing a comprehensive view of
how XR affects cognitive, physiological, and psychophysiological
tasks. Subjective measures evaluate user engagement with XR
systems (Wong et al., 2023), while objective measures provide
empirical data, such as response time, accuracy, and physiological
indicators (Tussyadiah et al., 2018). These methods complement
each other, as subjective insights often impact performance reported
by objective data. Table 1 outlines the techniques used in the
reviewed papers.

2.3.1 Subjective measures

Subjective assessments rely on user-reported data, often via
questionnaires (Schwind et al., 2019). Common tools include the
NASA Task Load Index (NASA-TLX) (Hart and Staveland, 1988)
for physical and cognitive workload, the Presence Questionnaire
(PQ) Witmer and Singer (1998) for immersion, and the System
Usability Scale (SUS) (Brooke, 1996) for usability and satisfaction.
Other measures like the Borg RPE (Borg, 1998), VAS (McCormack
et al,, 1988), and PSS (Cohen et al., 1983) assess physical effort,
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stress, and physiological responses. Cybersickness, impacting task
performance, is evaluated wusing the Simulator Sickness
Questionnaire (SSQ) (Kennedy et al., 1993) and Fast Motion
Sickness (FMS) Scale (Kichkaylo and O’Neill, 1998). These tools
offer valuable insights into subjective task performance in XR
(Lewis, 2018).

2.3.2 Objective measures

Objective measures assess user experience through biological
signals, providing quantifiable data on cognitive and emotional
states  (Zhang,  2020). Common tools include an
electrocardiogram  (ECG), electrodermal  activity = (EDA),
electroencephalogram (EEG), heart rate, blood pressure, and
reaction time. Many studies used EDA, EEG, and ECG to classify
emotions and assess physiological workload (Tremmel et al., 2019;
Mondellini et al., 2023; Marucci et al., 2021; Chiossi et al., 2023),
while others focused on user experience and cognitive load with
blood pressure and heart rate (Hinricher et al., 2023; Archer and
Steed, 2022). Another example is a dual-task paradigm consisting of
a primary task (direct interaction with XR) and a secondary task
(inducing distraction or cognitive load) (De Back et al., 2021),
offering crucial insights into the effects of immersion on
cognitive and psychophysiological abilities and task performance.
When studies are grouped under physiological tasks, at least one of
the following was explicitly measured as an outcome: HR/HRV, RR,
BP, EDA, skin temperature, EMG, or related ocular physiology (e.g.,
pupil diameter). If no such signal was collected or reported, the study
was not treated as assessing physiological change.

3 Review method

In this section, we highlight the review methods following the
PRISMA (Moher et al, 2009) guideline for our paper. A brief
overview of the review method is illustrated in Figure 3.

3.1 Keyword and search criteria

We followed the PRISMA guidelines (Moher et al., 2009) for
this review to collect and synthesize the papers. The process
started by identifying and organizing keywords to facilitate the
search for relevant articles. We developed a comprehensive set of
keywords and search terms aimed at locating studies focused on
human task performance in the XR environment. Table 2
presents the keyword categories used to collect research

05 frontiersin.org


https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2025.1589256

Ahmed et al. 10.3389/frvir.2025.1589256
) e N
N = 6878 records were
s identified from PoP database
8 * Searched by pre-specified
= keywords
e * No patents
* Year (2015-2024)
\ Y,
) e N
N = 2453 records were excluded
¥ « No relevant keywords (e.g. AR/VR/MR) in title
N = 2718 records | (N=1568)
after duplicates > ._;;z\g}ew, survey, meta-analysis, pilot-studies (N
2 removed * Non-english (N = 87)
g \§ J \§ J
I e A
3 N = 152 records were excluded
v » Marked as irrelevant by reading abstract (N =
( ) 104)
N = 265 records were * Full-text unavailable (N = 11)
screened » « Studies not involving human participants (N =
37)
N\ \ v,
_ v
e N
2 N = 113 full-text records N =34 records, eXCIU,dEd _
= were assessed for o Not (elevant to immersive systems (N = 12)
2 eligibility « Not in the domain of HTP (N = 18)
u « Irrelevant study design (N = 4)
\ J
J N y,
A4
3
= N = 79 studies were
° included in the
quantitative synthesis
FIGURE 3

PRISMA (Moher et al.,
2015 to 2024.

2009) Flow Diagram of the Paper Selection Process for XR-Related Research on Human Task Performance (HTP) from the year

TABLE 2 Categorization of keywords associated with XR task types, immersive environments, and challenges.

Keywords on type of the tasks

Keywords on immersive environment

Keywords on challenges of XR

» e

“Cognitive task”, “Mentally demanding”, “Psychomotor”,
“Psychophysiological”, “Collaborative”, “Decision making”,

“Surgery”, “Sports”, “Multi-task”, “Physiological task” “Immersive Systems”

papers. The keywords for paper searches covered many topics,
including human task performance, types of immersion,
task
performance, mental workload, and associated challenges such

cognitive and  physiological factors influencing
as cognitive load, physiological workload, cybersickness, etc.
Since “Task performance” was the key focus in this review, it
was the common keyword for each search episode. A balanced
number of papers were selected for each category to ensure a
well-distributed taxonomy. The Publish or Perish (PoP) database

was utilized for paper extraction (Harzing, 2007), offering an
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“Virtual reality”, “VR”, “Augmented reality”, “AR”,
“Mixed reality”, “MR”, “Extended reality”, “XR”,

06

“Cognitive load”, “Mental demand”, “Mental
workload”, “Attention capacity”, “Cognitive strain”,
“Mental effort”, “Phsyical demand”, “Physical

» o« » o«

workload”, “Cybersickness”, “Simulator sickness”

easy-to-use interface that allowed filtering by keywords,
publication year, and category (e.g., patents or research papers).

3.2 Paper extraction process

Since all of the papers collected were not relevant to the review
objectives, and to maintain balance over the taxonomies, it was
crucial to follow structured steps to extract the most relevant papers.
Figure 3 shows the high-level overview of the paper extraction for
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the review methods following the PRISMA guidelines (Moher et al.,
2009). There were four fundamental steps for the paper extraction
process. Each of these steps is discussed below:

3.2.1 Identification

Papers were searched and collected using the Harzing PoP
database (Harzing, 2007). This database provided papers based
on the given keywords and filtration regardless of the publisher.
The resulting papers were then collected and saved in comma-
separated value (CSV) format. It yielded a total of 6,878 papers
initially using the search criteria. Patents were excluded during the
extraction, also, the publication year was in or after 2015 set for the
records. Our last search was performed on 07 April 2024. So, these
6,878 records were identified for further synthesis to remove
duplicates.

3.2.2 Screening

After eliminating 4,160 duplicate papers (60.48% of the initial
search), 2,718 records remained for analysis. To focus on
procedural quantitative studies of human task performance in
XR systems, we excluded review papers, surveys, pilot studies,
and doctoral consortium papers. We developed a Python
program (to be publicly accessible later) to streamline this
process by performing keyword analysis, filtering out the
specified types, and compiling the results into a CSV file. By
reviewing titles, we removed an additional 2,453 irrelevant
records (35.66% of the initial search), leaving 265 papers for
screening. We then carefully reviewed the abstracts, excluding
152 papers (2.20% of the initial search) that were irrelevant or
unnecessary for our taxonomy.

3.2.3 Eligibility

During the screening stage, we further narrowed down the
number of papers through multiple assessments. The full text of
each article was thoroughly read and summarized, focusing on their
findings and methodologies. After summarization, the papers were
categorized taxonomically based on factors affecting human task
performance, mental workload, types of tasks, and study design. At
this stage, an additional 34 papers (0.49% of the initial search) were
excluded due to irrelevance to XR environments or misalignment
with our taxonomy.

3.2.4 Inclusion

In the final stage of the paper extraction process, we conducted
an intensive manual review of all selected papers. After the eligibility
assessment, the previous stage yielded a total of 79 papers, each
evaluated against predetermined criteria to ensure relevance and
quality. The full text of each paper was thoroughly re-examined,
focusing on their taxonomy, field, and findings. After double-
checking the data, all 79 papers were deemed suitable and
included in the review.

4 Results

In this section, we present the findings of our systematic
literature review, organized into three key categories: task
performance in XR, the impact of XR (both positive and
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negative) on human task performance, and the factors within XR
that influence human task performance.

4.1 Tasks performance in XR

As we collected various papers from various domains around
human task performance in an immersive system, a diverse list of
topics was identified for this review.

4.1.1 Cognitive task performance in XR

A total of 28 papers (35.44% of the total) discussed the task and
various aspects of cognitive task performance in an immersive
system specifically. Regardless of the types of immersion and
study design, most studies found inconsistent task performance
in XR and the real world. Most of the research (10, 12.65% of the
total) chose within-subject and between-subject (10 papers) as their
study design, while 8 adopted the mixed-design. Figure 4a highlights
the variety of cognitive tasks used in XR studies. Willemsen et al.
(2018) compared participants’ performance in the same task in both
AR and VR modalities across AR, VR, and the real world, finding
that task completion took longer in AR and the real world than in
VR. Redlinger et al. (2022) examined the influence of game-like
visual features in a VR environment but found no significant effect
on participants’ cognitive performance, with only minor changes in
accuracy. Pan et al. (2018) explored the effect of fear induced by an
undersea virtual environment on cognitive tasks of varying
difficulty, discovering that fear impacted task performance with
medium difficulty levels. Wu et al. (2019) investigated the use of
Spherical Video-based Virtual Reality (SVVR) to enhance
elementary students’ cognitive problem-solving skills, and their
finding revealed an improved performance while using SVVR
rather than the traditional methods. Deshpande and Kim (2018)
used Microsoft Hololens for object assembly tasks in AR and found
that performance was better in AR than in the real world. Dasdemir
(2022) tested the effects of AR applications on brain oscillations
using the BOOKAR dataset, and the results indicate that emotion
recognition is more successful when using AR reading. Lastly,
Stanney et al. (2021) conducted a comprehensive study on XR-
based military medical training, demonstrating its advantages for
enhancing cognitive performance.

4.1.2 Physiological task performance in XR

A total of 29 papers (36.70% of the total) focused on
physiological task performance within immersive systems. Mixed-
design and within-subject approaches were the most common study
designs used. Figure 4b highlights the scope of studies investigating
physiological task performance in XR environments. Results varied
across AR, VR, and MR settings. Some studies, such as Bugdadi et al.
(2019), found no significant impact on task performance during VR-
based surgical training with force feedback devices. They compared
two haptic devices (Omni and Entact) and found no notable
difference in performance. In contrast, Kalkan et al. (2021)
reported a 25% improvement in VR-based assembly task
performance compared to real-world training on a hydraulically-
controlled clutch system. Similarly, Yang et al. (2019) found that AR
assistance reduced task time, errors, and cognitive load during
assembly tasks. However, Wells and Miller (2020) observed no
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significant difference between real-world and VR-based welding
training, suggesting mixed results for task performance in immersive
environments. Ali et al. (2023) reported significant improvements in
student performance in a VR-based chemistry lab, where different
aids in the simulation enhanced task performance and reduced
cognitive load. In dual motor tasks, studies found no significant
impact of immersive environments, regardless of participant age or
task type (Krasovsky et al., 2018; Habibnezhad et al., 2020).

4.1.3 Psychophysiological task performance in XR

A total of 22 (27.84% of the total) papers described specifically
the psychophysiological in XR
highlighting  how might

task performance systems,

immersive environments impact
individual motor abilities and coordination. Several studies have
found that XR systems are effective for training and evaluating
psychophysiological skills, particularly in fields such as medical
training, rehabilitation, and sports performance (Schmid and
Wagner-Hartl, 2023; Barata et al., 2015). Moreover, studies have
shown that psychophysiological performance in XR systems can
translate to real-world improvements, making XR a valuable tool for
skill acquisition and training (do Couto, 2023). These findings
highlight the potential of XR for psychophysiological tasks,
especially in applications that require precise motor control and
coordination. Figure 4c shows the number of papers along with their
study design and aspect of the task in this review. The tasks were
divided Cognitive Inhibition, Motor

Coordination, Gait and Mobility

into five key areas:
Occupational  Training,

Assessment, and Gaming.

4.2 Impacts of XR on human task
performance

This section examines the positive and negative impacts of
XR environments on human task performance, as reported in the
reviewed papers. As shown in Table 3, the impact of XR systems
can vary significantly depending on the context. The immersive
nature of XR enhances engagement, learning, and memory
retention, particularly in fields such as aviation, surgery
(Buttussi and Chittaro, 2018), and industrial training, where
high-risk scenarios can be safely simulated (Rubio-Tamayo
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et al., 2017). Additionally, the ability to visualize abstract
concepts or manipulate virtual objects in real-time has been
linked to
performance, allowing users to engage more deeply with
material (Al-Ansi et al., 2023). For instance, XR has been
shown to improve spatial awareness and problem-solving

improved cognitive and psychophysiological

skills in architectural design and urban planning (Darwish
et al., 2023). However, as outlined in Table 3, the impact of
XR is not always positive. Some users experience serious issues
that negatively affect task performance. Immersive environments
can lead to discomfort, which in turn reduces cognitive and
physiological performance (Lavoie et al., 2021). Common issues
such as motion sickness, disorientation, and eye strain, can
significantly impair task effectiveness (Hein et al., 2023).
Additionally, immersive virtual environments may cause
unpleasant and painful experiences, reducing engagement and
the sense of presence (Quesnel and Riecke, 2018). In some cases,
these negative effects can persist even after the immersion ends
(Mittelstaedt et al., 2019), limiting the ability to transfer skills to
real-world tasks (Dobrowolski et al., 2021). This review also
considered these negative impacts to better understand the
potential factors contributing to performance impairments.

4.3 Factors of human task performance in an
XR system

Identifying and analyzing the key factors affecting human task
performance in immersive systems was a central objective of this
review. The papers were comprehensively analyzed based on these
factors using various study designs and techniques. Figure 5
illustrates the number of papers from various factor categories
related to human task performance in XR systems. A significant
portion (25 papers, 31.64%) focused on UI/UX factors, emphasizing
elements that influence user interface and experience in XR
environments, particularly system design, interaction ease, and
user satisfaction. Another 13 papers (16.45%) investigated the
impact of system factors, mainly addressing technical aspects like
display resolution, frame rate, input devices, and latency, which are
critical to user experience and task performance. While these
categories play a vital role in XR task performance, individual
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TABLE 3 Positive and negative impacts of XR technologies on human task performance for different types of tasks.

Type of Positive impact (with citation)  Negative impact (with citation)
immersion
AR Assembly task Yang et al. (2019); Deshpande | Reduced task completion time, cognitive Increased spatial error, reduced auditory
and Kim (2018); General tasks in construction, = workload Yang et al. (2019); Enhanced susceptibility Au (2022); Kenemans
architecture, operation industries Fazel and performance Deshpande and Kim (2018); et al. (2021)
Adel (2024); Bademosi and Issa (2019); Improvements in accuracy, productivity, safety
Localizing virtual objects using a distance Fazel and Adel (2024); Bademosi and
matching Au (2022); Repeating and generating = Issa (2019)
words during driving Kenemans et al. (2021)
MR Learning in an educational setup Yi Improved understanding of historical stories, = Potential long-term visual disadvantages
et al. (2024); Training Tang et al. (2020); Choi | cultural connotations Yi et al. (2024); Svarverud (2022)
and Kim (2024); Executive functioning Creativity, geometric analysis, model
Svarverud (2022) visualization Tang et al. (2020); Critical-
thinking, motivation in emergency-nursing
training Choi and Kim (2024)
VR Cognitive tail-making task Mostajeran Higher cognitive performance, restorativeness, = Increase in implicit racial bias, cognitive load,
et al. (2023); Recalling items while walking positive affect, lower stress Mostajeran potential for cybersickness, poorer game
Girardeau et al. (2023); Learning through a VR | et al. (2023); Improved memory, learning performance, deterioration in reaction times
application Lin et al. (2020); Teng (2022); outcomes, cognitive paths Girardeau Maloney (2019); Andersen et al. (2020);
Spatial n-back working memory task et al. (2023); Lin et al. (2020); Teng (2022); Liebermann et al. (2024); Baer et al. (2022);
Scharinger et al. (2023); Zhang and Positive effects on cognitive task performance, = Mittelstaedt et al. (2019)
Robb (2021); Walking Birenboim et al. (2021); | reduced cognitive load Scharinger et al. (2023);
Assembly task Kalkan et al. (2021); Tasks in a | Zhang and Robb (2021); High-resolution
virtual chemistry lab Ali et al. (2023); Shooting | physiological walking parameters, wellbeing
Game Maloney (2019); Tutoring during indicators Birenboim et al. (2021); Improved
training Andersen et al. (2020); Prosthetic case | task performance Kalkan et al. (2021); Ali
planning Liebermann et al. (2024); Playing a et al. (2023)
challenging computer game with neck length
biofeedback Baer et al. (2022); VR bike
application Mittelstaedt et al. (2019)
AR and VR Spatial design visualization Jin et al. (2020); Enhanced spatial awareness and problem- Impaired depth perception and virtual hand
Edler and Kersten (2021); Fitt’s law experiment: | solving abilities Jin et al. (2020); Edler and interaction in close spaces Batmaz et al. (2019);
Move to a target area, such as pointing, clicking, = Kersten (2021) Unclear overall impact on learning outcomes,
or tapping Batmaz et al. (2019); Mathematic technological glitches, and reliability issues
education Cevikbas et al. (2023); Immersive Cevikbas et al. (2023); Mismatch between
shopping He et al. (2022) consumer expectations and technology
capabilities He et al. (2022)
BvR AR | MR
System Factors
UI/UX Factors
2
s Individual Factors
3
2
3
Other Factors
Number of Papers
FIGURE 5

Overall distribution of the factors to different XR systems.

factors were explored less frequently, with only 8 papers (10.12%)
focusing specifically on this area. Table 4 provides a detailed
visualization of the key factors, along with task and environment
design elements found in the reviewed papers. The impact of each
factor varied depending on perspective, so the table includes the type
of immersion, task design, and its effect on human task
performance.

Frontiers in Virtual Reality

4.3.1 Impact of system factors

This review revealed several key system factors that impact
human task performance in the XR system. Increased latency
was found to reduce task performance, though it slightly lowered
error rates (Khalid et al., 2023). An enhanced field of view improved
performance by up to 20% (Ghasemi et al., 2021; Trepkowski et al.,
2019), while shorter exposure durations in mixed reality enhanced
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TABLE 4 Summary of Key Factors Influencing Human Task Performance in XR systems.

Category

System Factors

Factor

Latency

Type of task

Psycho-physiological

10.3389/frvir.2025.1589256

Correlation with performance (with citation)

Increased latency significantly reduces task performance, although it
slightly decreased error rates Khalid et al. (2023)

Field of View (FoV) Physiological Wide FoV (horizontal and vertical) increases physiological
performances Wang et al. (2016); Ghasemi et al. (2021)
Cognitive Enhanced FoV increased performance up to 20% in both VR and AR
Trepkowski et al. (2019)
Exposure Duration Physiological Shorter exposures could enhance performance and reduce sickness

Stanney et al. (2002); Wang et al. (2024)

Display Technology

Psycho-physiological

Projection displays achieved the best task performance, while head-
mounted displays (HMDs) performed worst across all criteria Lin
et al. (2015)

Inertia Load

Physiological

Removing inertial load led to poor motor control and reduced
performance Tang et al. (2023)

Optical Flow (OF)

Psycho-physiological

Optical flow enhances redirected walking (RDW) performance by
adjusting the detection threshold (DT) range Lee and Kim (2024)

Display Fidelity Cognitive Higher display fidelity significantly improves overall performance
Bacim et al. (2013)

Representativeness Physiological Presentation mode affected user preference and task efficiency Le Noury
et al. (2020)

UI/UX Factors Multimodal Feedback Psychophysiological Improved task accuracy and reduced completion time Marucci

et al. (2021); Markov-Vetter et al. (2020); Yildirim (2022); Cooper
et al. (2018)

Sense of presence Cognitive Strong sense of presence enhanced cognitive task performance by
increasing engagement, focus, and immersion Chen et al. (2021);
Maneuvrier et al. (2020); Seeliger et al. (2022)

Sense of presence Physiological Positive Moon et al. (2022)

Information Density

Body Visualization and Embodiment

Psycho-physiological

Physiological

Information density significantly impacts cognitive and physiological
task performance. Participants needed more time at high than at low
density to complete a task Trepkowski et al. (2019); Van de Merwe
et al. (2019)

Whole-body visualization in VR improved accuracy in physiological
tasks and influenced balance task performance, compared to other body
visualization types. Missing a certain part of the body could significantly
decrease task performance. Additionally, embodying a certain avatar
affected task performance considerably Pastel et al. (2020); Kocur

et al. (2020a), (2020b); Borjon et al. (2021); Dudley et al. (2019)

Interface Design

Multi-level precueing

Room Acoustics

Cognitive

Psycho-physiological

Cognitive

Diegetic interfaces improve performance compared to non-diegetic
interfaces Marre et al. (2021)

Performance increases with two to three precues, but decreases with
four precues Liu et al. (2021)

Positive Doggett et al. (2021)

Scene Complexity

Physiological

Increased complexity affects performance negatively Stanney
et al. (2002)

Interaction Type

Psycho-physiological

Action-based VR controls lead to enhanced performance and lower
mental workload compared to button-based controls Nenna
et al. (2022)

User movement control Physiological Enhanced control improved physiological task performance Stanney
et al. (2002)

Task Difficulty Physiological Variable effects for tasks with different levels of difficulty Parton and
Neumann (2019)

Cybersickness Cognitive and Psycho-physiological | Cybersickness reduces cognitive and psychophysiological task

performances Martirosov et al. (2022); Oh and Son (2022)
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TABLE 4 (Continued) Summary of Key Factors Influencing Human Task Performance in XR systems.

Factor

Category

Type of task

Correlation with performance (with citation)

Congruency of Information

Cognitive

Congruency of visuotactile information decreased reaction times and
increased performance Odermatt et al. (2021)

Individual Factors | Cognitive competency

Cognitive and Psycho-physiological

Increased cognitive competency leads to reduced errors and slower
reaction time Juliano et al. (2022); Norouzi et al. (2019)

Gender

Age

Prior experience

Physiological competency

Physiological

Psycho-physiological

Cognitive

Psycho-physiological

Male participants show enhanced motor performance Kocur
et al. (2020a)

Older people face reduced task performance Liao et al. (2019);
Krasovsky et al. (2018)

Prior experience slightly increases task accuracy Schmid and
Wagner-Hartl (2023)

Increased physiological workload enhances stress level and reduces task
performance Markov-Vetter et al. (2020)

Skill Level Physiological Higher competence enhances task performance due to familiarity with
system interfaces Dobrowolski et al. (2021a)
Other Factors Coordination Cognitive Coordination in collaborative tasks motivates users and enhances
performances Khalid et al. (2023)
Spatial understanding Cognitive Better spatial understanding reduces task completion time Drey
et al. (2023)
Physical Training Intensity Physiological Marginal impact on human task performance Bauer and

Andringa (2020)

Task familiarization

Psycho-physiological

Task familiarization significantly reduce discomfort and increases task
accuracy Cometti et al. (2018)
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] Psychophysiological

(a) UI/UX Factors

Multimodal feedback
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-
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(b) System Factors
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Dsiplay Technology
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Number of Papers

Distribution of UI/UX and System Factors of HTP in XR. (a) The distribution of Ul/UX factors reveals a focus on task difficulty, embodiment, and sense
of presence, with embodiment receiving notable attention. (b) The distribution of system factors shows a concentration on the field of view, latency, and

display fidelity.

performance and reduced sickness (Wang et al., 2024; Stanney et al.,
2002). Among display technologies, projection displays led to the
best task outcomes, while head-mounted displays (HMDs)
performed the worst (Lin et al, 2015). The removal of inertial
load negatively affected motor control and overall performance in
physiological tasks (Tang et al., 2023), and optical flow improved

Frontiers in Virtual Reality

et

redirected walking by optimizing the detection threshold range (Lee

al., 2024). Higher display fidelity consistently enhanced

performance (Bacim et al., 2013), and the representativeness of
physiological tasks influenced user preferences and efficiency (Le
Noury et al, 2020). These factors underline the importance of
optimizing system characteristics to maximize task performance
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Distribution of male and female participants across three task
categories: Psychophysiological, Physiological, and Cognitive tasks.

in immersive environments. Figure 6b shows the distribution of
system factors over the papers with their specific task setup. It is clear
from the chart that a limited number of papers (2 papers) found in
this review for ‘cognitive tasks’ focus on the system factors, while it
was 8 papers for physiological tasks.

4.3.2 Impact of UI/UX factors

The results of this review demonstrate that a variety of UI/UX
factors have significant impacts on human task performance in
virtual and augmented reality environments. As shown in Figure 6a,
the embodiment stands out as a key factor that receives significant
attention in the literature. It enhances the user’s sense of agency and
engagement (Pastel et al., 2020; Kocur et al., 2020a,b). This, in turn,
helps improve task performance. Multimodal feedback consistently
improved task accuracy and shortened completion times throughout
the studies (Marucci et al., 2021; Markov-Vetter et al., 2020;
Yildirim, 2022; Cooper et al., 2018), while a strong sense of
presence enhanced cognitive performance by increasing user
engagement and attention (Chen et al, 2021; Maneuvrier et al.,
2020; Seeliger et al, 2022). Information density was found to
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influence both cognitive and physiological task performance, with
higher densities leading to longer task completion times
(Trepkowski et al., 2019; Van de Merwe et al., 2019).

4.3.3 Impact of individual factors

Although the studies in this review did not strongly emphasize
individual factors, they remain important and could be a focus of
future research. Figure 7a highlights the number of papers
discussing individual factors such as cognitive competency, age,
and gender. Notably, 27 papers (34.17% of the total) reported the
gender distribution of participants. Figure 8 shows the breakdown of
male and female participants, revealing that most studies involved a
majority of male participants. This raises the possibility that results
might differ if female participants were more dominant, even though
some research has underscored “Gender” as a significant factor in
human task performance in XR systems (Kocur et al, 2020a).
Additionally, several studies examined the influence of age on
task performance (Banakou et al., 2018; Krasovsky et al., 2018;
Ali et al,, 2023). Figure 9 presents the distribution of age groups and
ethnicities across the reviewed papers. It is clear from Figure 9 that
studies primarily focused on adults (age: 26-40), and very less
amount of research was conducted on older adults (age: 61+),
with European (i.e., Caucasian) majority groups.

4.3.4 Impacts of other factors

Apart from system factors, individual factors, and UI/UX factors,
there were some other factors identified in this review that were
identified by the researchers during their studies but did not fall
into any of these categories. For example, the physiological training
intensity was marked influenced physiological task (Bauer and
Andringa, 2020), even though it was not very significant. Spatial
understanding and collaboration in a collaborative task had a
significant impact on human task performance (Khalid et al., 2023;
Drey et al., 2023). Additionally, Task familiarization improves human
task performance as users get more comfortable with the system and
tasks (Cometti et al., 2018). Figure 7b shows the number of papers in
this review focusing on other factors except the aforementiond three
categories along with their task setups.

5 Discussion

This review adopts a broad perspective on human task
performance in XR, encompassing both observable performance

frontiersin.org


mailto:Image of FRVIR_frvir-2025-1589256_wc_f7|eps
mailto:Image of FRVIR_frvir-2025-1589256_wc_f8|eps
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2025.1589256

Ahmed et al. 10.3389/frvir.2025.1589256
(a)Number of Papers by Ethnicity (b)Number of Papers by Age Group
Mixed/Other Older Adults (61+)
Middle-Aged Adults (41-60)
African
Adults (26-40)
American
Young Adults (18-25)
European
Adolescents (13-17)
Asian Children (0-12)
0 1 2 3 4 5 6 7 0 2 4 6 8 1012 14 16 18
Number of Papers Number of Papers
FIGURE 9

Distribution of age and ethnicity. (a) Distribution of ethnicity. (b) Distribution of age.

metrics (e.g., speed, accuracy, errors) and underlying cognitive,
that
influence or result from performance. In this section, we discuss

psychophysiological, and physiological outcomes can
potential research gaps (PRGs) related to human task performance
in immersive virtual environments, analyzing the research questions
from 45 VR papers, 23 AR papers, and 11 MR papers. This section
identifies areas for further exploration within XR, highlighting gaps
that need more research to understand human task performance in

XR systems.

5.1 Major challenges in XR task performance

Human task performance in XR systems often declines due to
factors such as increased cognitive and physiological load,
cybersickness, and technological misalignments, all of which pose
serious threats to performance. Cognitive load, frequently cited in
this review (which is also described in a later section in detail), is a
key factor that reduces performance by overwhelming mental capacity
when users process large amounts of sensory information or handle
complex interfaces (Chang et al, 2022). Physiological load, from
prolonged XR use, leads to muscle fatigue, eye strain, and
discomfort due to physical engagement or poorly optimized
hardware (Wrzus et al., 2024). Cybersickness, caused by mismatches
between visual and vestibular inputs, significantly disrupts performance,
affecting accuracy, reaction time, and efficiency (Martirosov et al., 2022;
Oh and Son, 2022). While real-time mitigation strategies have been
explored (Islam and Islam, 2024), more research is needed, particularly
regarding system factors of cybersickness, despite evidence for
individual factors (Setu et al, 2024). These challenges can reduce
XR’s effectiveness for tasks such as training, simulation, and
collaboration, limiting user engagement and adoption.

5.2 Potential research gaps (PRGs)

The potential research gaps are described in this section in detail,
along with possible future study directions.
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5.2.1 PRGI: factors influencing task performance
in XR

Factors identified in this review were classified into four major
categories: system factors, UI/UX factors, individual factors, and
other factors. UI/UX factors were the most dominant, with 25 papers
(31.64% of the total) explicitly or implicitly discussing these factors.
Some papers found a severe impact of such factors (Cooper et al.,
2018; Marucci et al., 2021), while others reported marginal impact
(Parton and Neumann, 2019). The prevalence of this category
highlights the significant amount of research focused on user
interface and experience design and its role in enhancing
performance in XR environments. In our analysis, we found
limited research examined system factors, primarily in the MR
domain (Figure 6). While the findings on system factors are well-
supported in terms of latency, FoV, optical flow, etc., (Khalid et al.,
2023; Ghasemi et al., 2021; Wang et al., 2016), further investigation
is needed to assess their impact on task performance in other
immersive technologies beyond VR. Similarly, research on
individual factors is limited, indicating the need for more studies
in this area. Most of the studies in this category focused on adults
and younger participants (Juliano et al., 2022), with other groups
underrepresented. This gap warrants further exploration in future
research. While there were no direct findings related to the impact of
“Ethnicity”, it remains a factor that should be investigated in future
studies (Figure 9). Additionally, some factors influencing task
performance fall outside these categories (i.e., coordination,
spatial Understanding, and such) but are nonetheless important
(Figure 7). Comprehensive studies should address these overlooked
factors to provide a more complete understanding of human task
performance in XR systems.

5.2.2 PRG2: adaptability to different types of tasks

Minimal investigations have explored how different types of
tasks influence user performance metrics in an immersive virtual
environment. One of the recent papers utilized the research lack
for decision-making collaborative time-critical tasks in the AR
domain (Gower, 2022). Apart from that, Pan et al. (2018) found
differential effects of sea-level-induced fears among users for
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Comparison for study design of papers in this review.

different types of tasks. Furthermore, a limited amount of
research focused on learning-based tasks and gaming in an XR
system for assessing human task performance. A thorough
investigation of these areas could provide significant insights
into the effects of task variety on user engagement, learning
outcomes, and performance efficiency. For example,
understanding how immersive technologies may be optimized
for learning objectives or conditions that cause stress might result

in more efficient designs of XR applications.

5.2.3 PRG3: experimental design on XR task
performance

Many studies on human task performance in XR systems do
not fully examine the effects of different experimental designs,
such as within-subject, between-subject, and mixed designs.
These experimental approaches are crucial for accurately
assessing the relative effectiveness of XR systems versus
traditional real-world environments (Belcher and Halliwell,
2021; 10). like
difficulties finding participants and balancing demographics

Figure However, practical constraints
like age and gender might make it difficult to carry out
thorough investigations. This review found that approximately
35.4% of studies used a within-subject design, while 32.9%
employed between-subject designs, and 31.6% utilized mixed
designs. These findings suggest that using various study
designs opens the door to different insights, as study design
can significantly influence outcomes and findings in human task
performance research within XR environments (Matovu et al.,
2022). Furthermore, experimental design is crucial for future
research since appropriate participant distribution in study
setups is essential to providing reliable outcomes (Griibel,
2023). Additionally, experimental research should also focus
on diverse age groups and ethnicities to perform user studies

so that the gaps in these criteria can be bridged.

5.2.4 PRG4: cognitive load in XR systems
load
environments is still limited despite its critical importance. A

Research on  cognitive in immersive virtual

high cognitive load can impair task performance, while too low a
load may cause boredom and disengagement (Yin et al., 2020).
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Studies emphasize the need to explore optimal levels of
that the load for better
performance outcomes (Agbo et al., 2023; Norouzi et al,

immersion balance cognitive
2019). Few papers specifically focus on the cognitive load itself
rather than its contributing factors. However, evaluating these
factors is essential when developing XR systems. For example,
increased cognitive load may result from additional sensory
information in VR, which can negatively impact learning
abilities (Li et al., 2022). There is significant potential for
future research to investigate cognitive load factors during
virtual immersion. Various elements of an immersive
environment, such as interface complexity, interaction modes,
and sensory engagement, all influence cognitive load. A complex
interface, for instance, increases cognitive demand, diverting
users’ attention from primary tasks and diminishing task
performance. Therefore, understanding these components is
key to designing XR systems that optimize cognitive load and

enhance user experience.

6 Conclusion

This review centered on human task performance within XR
systems, exploring the various factors that influence it, the study
designs employed, and the assessment techniques utilized. By
conducting a comparative assessment between real-world and XR
environments, this paper highlighted both the positive and negative
impacts of XR systems on human task performance across different
task settings. The analyses underscored how different study designs
affect the reliability and validity of research findings in this domain.
The evaluation methods discussed were essential not only for
but
satisfaction.

also for
A
contribution of this review is the in-depth analysis of the factors

measuring performance outcomes assessing

participant  engagement and significant
impacting human task performance in XR systems. We extensively
investigated these factors, representing their positive or negative
effects based on several criteria, thereby providing valuable insights
for future research. Notably, while much of the existing research has
focused on system factors concerning human task performance, our
review highlights the importance of other factors as well. Therefore,
we recommend that future studies broaden their focus to include
additional

understanding of human task performance in XR environments.

these factors to gain a more comprehensive
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