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Glycyrrhiza polysaccharide
attenuates Neospora
caninum-induced intestinal
epithelial cell damage by the C/
EBPB/IL-17/TNF signaling
pathway

Shuai Wang, Sudan Meng, Yongsheng An, Weifeng Qian,
Yanbo Ma, Shuai Guo* and Cai Zhang*

College of Animal Science and Technology, Henan University of Science and Technology, Luoyang,
China

Intestinal epithelial cell (IEC) damage is a crucial event in pathogen-induced intestinal
inflammation and systemic pathological responses, and their functional integrity directly
affects animal health. This study used bovine intestinal epithelial cells (BIECs-21) and
mouse models to examine the protective effects of Glycyrrhiza polysaccharide (GCP)
against Neospora caninum (NC)-induced IEC damage and investigate its underlying
mechanisms. In vitro, BIECs-21 were infected with NC to establish an intestinal epithelial
injury model. In vitro experiments revealed that GCP pretreatment effectively inhibited
NC infection-induced decreases in cell viability and lactate dehydrogenase (LDH)
release, preserving intestinal epithelial homeostasis. Transcriptomic analysis results
showed that NC infection activated the interleukin (IL)-17 and tumor necrosis factor
(TNF) signaling pathways, increasing the expression of chemokines (CXCL1/2/3) and
inflammatory genes (FOSB). In contrast, GCP inhibited the expression of transcription
factors CCAAT/enhancer-binding protein p (C/EBPB) and FOS, reduced pro-inflammatory
factors (e.g., IL-6, ILIRAP), and mitigated excessive inflammatory responses. In vivo
experiments confirmed that low-dose GCP intervention significantly reduced intestinal
hemorrhage and edema, decreased parasite loads in intestinal and cerebral tissues
of infected mice, and suppressed protein expression of IL-17RA, TNF-a, p-C/EBPp
and p-NF-«kB in intestinal tissues. These findings demonstrate that GCP mitigates
NC-induced IEC injury by modulating intestinal immune homeostasis through the C/
EBPP/IL-17/TNF signaling pathway, thus establishing a theoretical basis for developing
natural therapeutics against pathogen-induced gut damage.

KEYWORDS

C/EBPp/IL-17/TNF signaling pathway, Glycyrrhiza polysaccharide, inflammatory
regulation, intestinal damage, intestinal health

1 Introduction

The intestine is not only a vital organ for nutrient digestion and absorption but also the
largest immune organ in the body, performing essential roles in immune barrier maintenance
and systemic physiological regulation (1, 2). Thus, ensuring animal intestinal health is one of
the key links in safeguarding the healthy development of the livestock industry. Intestinal
epithelial cell (IEC), the primary barrier against exogenous pathogens, maintain intestinal
homeostasis through tight junction complexes, mucus layers, and antimicrobial peptide
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secretion systems (3). However, the intestine is susceptible to invasion ~ to elucidate underlying mechanisms, with in vivo experiments
by pathogens including bacteria, viruses, and parasites, resulting in  validating the findings.
compromised  barrier integrity and systemic immune
dysregulation (4).

Neospora caninum (NC) infection begins with IEC invasion and 2 Materials and methods
intracellular proliferation, essential steps for systemic dissemination.
However, the endogenous defense mechanisms of IECs against NC 2.1 Cell culture and treatment
remain inadequately characterized. Improving intestinal health is a
crucial strategy to inhibit intracellular pathogen proliferation and BIECs-21, previously immortalized by our laboratory (17), and
prevent infection progression (5-7). Thus, understanding IEC  Vero cells (African green monkey kidney epithelium, kindly provided
defense mechanisms and identifying natural compounds that by Prof. Lei He, Henan University of Science and Technology) were
enhance resistance to intracellular pathogens are important for  utilized. NC tachyzoites were obtained from Prof. Qun Liu at China
improving livestock productivity and public health security. Although ~ Agricultural University.
human infections remain undocumented, anti-NC antibodies have BIECs-21 were maintained in DMEM (Gibco, USA)
been detected in humans (8, 9), and transplacental transmission has ~ supplemented with 10% FBS (Cegrogen, Germany) and 500 pg/
been demonstrated in primate models (Macaca mulatta) (10, 11),  mL G418 (Beyotime, China) at 37 °C under 5% CO,. Vero cells were
indicating potential zoonotic risks. cultured in DMEM with 10% FBS for NC propagation. Infection

Glycyrrhiza polysaccharide (GCP), a bioactive compound  models were established by inoculating BIECs-21 with NC tachyzoites
extracted from the traditional Chinese herb licorice, demonstrates ~ at a 3:1 parasite-to-host cell ratio. For pretreatment experiments,
immunomodulatory, antioxidant, anti-inflammatory, and gut  BIECs-21 were incubated with the optimal dose of GCP (1,000 pg/
microbiota-regulating properties (12, 13). It decreases intestinal ~ mL, Supplementary Figure 1) for 12 h prior to NC exposure.
permeability and serum levels of pro-inflammatory cytokines (IL-1,
IL-6, TNF-a) while increasing anti-inflammatory IL-10, thus
ameliorating murine colitis (14). Furthermore, GCP modulates gut 2.2 Cell viability assay
microbiota composition by enhancing beneficial bacterial growth and

inhibiting pathogenic species (15, 16). However, the role of GCP in BIECs-21 were seeded in 96-well plates and divided into four groups:
regulating IEC-intrinsic defense mechanisms against NC infection  control (C), GCP-treated (GCP), NC-infected (NC), GCP-pretreated +
remains unexplored. NC-infected (GNC). After 12 h GCP incubation and 4 h NC infection

This study used BIECs-21 to assess NC-induced cellular damage ~ (MOI = 3:1), cell viability was assessed using CCK-8 (Solarbio, China).
and the protective effects of GCP. Transcriptomic profiling was used  Following reagent addition (10 pL CCK-8 + 90 uL DMEM), plates were
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FIGURE 1
Damage to BIECs-21 by NC and protective effects of GCP. (A) Morphology of BIECs-21 cells in different treatment groups. (B,C) Cells viability and LDH
activity of BIECs-21 with NC infected for 4 h and pretreated with GCP for 12 h. p < 0.01, ***p < 0.001. NS, no significant differences.
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incubated at 37 °C for 1.5 h. The absorbance of the supernatant was
measured at 450 nm using a microplate reader (Thermo, USA).

2.3 Lactate dehydrogenase (LDH) release

BIECs-21 cells were seeded in a 96-well plate and the lactate
dehydrogenase (LDH) activity in the culture supernatant was

10.3389/fvets.2025.1753653

quantified using a Lactate Dehydrogenase Assay Kit (Nanjing
Jiancheng, China). After incubation at 37 °C for 1 h, the absorbance of
the supernatant was measured at 490 nm to assess membrane integrity.

2.4 Transcriptomic profiling

Total RNA from four experimental groups (C, GCP, NC, GNC)
was extracted with TRIzol (Ambion, USA). RNA libraries were
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Transcriptome analysis of BIECs-21 pretreated with GCP and infected with NC. (A) Correlation analysis of patterns of gene expression in each group.
(B) A heatmap of DEGs in each group. (C) Venn diagram of the number of DEGs in each group. (D) Circular visualization of the genomic alterations in
BIECs-21 exposed to NC and pretreated with GCP. (E) A volcanic map of DEGs in control and GCP group. (F) A volcanic map of DEGs in control and
NC group; (G) A volcanic map of DEGs in NC group and GCP-pretreated group.
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prepared using NEBNext Ultra II reagents (New England Biolabs) and
sequenced on Illumina NovaSeq 6,000 (150-bp paired-end) by
Personalbio (Shanghai, China). Differentially expressed genes (DEGs)
were identified with |log,FC| > 1 and p < 0.05. Functional enrichment
analyses were performed using topGO (v2.40.0) for Gene Ontology
and ClusterProfiler (v3.16.1) for KEGG pathways.

2.5 Quantitative PCR

Total RNA was extracted from cells or tissues using TRIzol
(Ambion). Specific primers were designed and synthesized by Sangon
Biotech (Shanghai, China), and the primer sequences can be found in
the Supplementary Table 1. cDNA was synthesized using a reverse
transcription kit (Vazyme, China). SYBR Green-based qPCR (Vazyme,
China) was conducted on a Bio-Rad system(Bio-Rad, USA) with
f-actin as endogenous control. Relative expression was calculated via
2ACAAE) method.

2.6 Animal experimentation

Fifty female Kunming mice (6 ~ 8 weeks old) were housed under
controlled conditions (20 ~ 24 °C, 40 ~ 70% humidity, 12 h light/dark
cycle) with ad libitum access to food and water. Mice were randomized

10.3389/fvets.2025.1753653

into five groups (n = 10/group): control (no treatment), NC-infected
(NC), low-dose GCP (100 mg/kg) + NCinfected (NC + L), medium-dose
GCP (200 mg/kg) + NC infected (NC + M), High-dose GCP (400 mg/
kg) + NC infected (NC + H). GCP was administered via drinking water
for 25 days pre-infection. All groups except controls were intraperitoneally
inoculated with 1x 10° tachyzoites/mouse. GCP supplementation
continued for 8 days post-infection.

2.7 Parasite load quantification

Brain and duodenal tissues collected 8 days post-infection were
homogenized for genomic DNA extraction. Absolute qPCR was
performed using standardized DNA (200 ng/pL) to quantify parasite
load. Primer sequences for NC: F: 5-ACTGGAGGCACGCT
GAACAC-3,R: 5-AACAATGCTTCGCAAGAGGAA-3".

2.8 Western blot assays

Total proteins extracted with RIPA buffer (Solarbio, China) were
separated by SDS-PAGE and transferred to PVDF membranes. After
blocking with 5% BSA, membranes were probed with primary antibodies
followed by HRP-conjugated secondary antibodies. Signals were detected
using ECL substrate (Millipore, USA) and analyzed with Image J.
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2.9 Statistical analysis

Data are presented as mean + SEM. Group comparisons employed
Student’s t-test (pairwise) or one-way ANOVA with Duncan’s post hoc
test (SPSS v19.0). Graphical outputs were generated using GraphPad
Prism 8. Significance thresholds: *p < 0.05, **p < 0.01, ***p < 0.001.

3 Results

3.1 Damage to BIECs-21 by NC and
protective effects of GCP

No morphological changes were observed in BIECs-21 among
control, NC group, GCP group or GNC group (Figure 1A). However,
cell viability significantly increased in the GCP group and decreased

10.3389/fvets.2025.1753653

in the NC group compared to controls. GCP pretreatment markedly
inhibited NC-induced viability reduction (Figure 1B). Furthermore,
LDH activity was significantly lower in the GCP group than in
controls, while the NC group exhibited a trend toward elevated
LDH. Notably, GCP pretreatment (GNC group) substantially reduced
LDH activity relative to the NC group (Figure 1C).

3.2 Transcriptomic profiling of differentially
expressed genes (DEGs)

Transcriptomic analysis revealed high reproducibility and
intergroup correlation (Figure 2A). Comparative DEG analysis
identified significant differences between G (GCP-treated) vs. C
(control), NC vs. C, and GNC vs. NC groups, with pronounced
changes in G vs. C and GNC vs. NC (Figure 2B). Specifically, 688
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qRT-PCR validation of transcriptome sequencing data. (A—C) DEG heatmaps of top 50 in each group. (D—F) gRT-PCR validation of differentially
expressed genes among groups. (G,H) gRT-PCR was used to verify the signaling pathways identified by transcriptome sequencing. The data are
expressed in the form of "Mean+SEM." Statistical significance was calculated by Student's t test. Significance: *p < 0.05, ** p < 0.01, p < 0.001. NS, no
significant differences.
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DEGs (226 upregulated, 462 downregulated) were detected in G vs. C,
115 DEGs (69 upregulated, 46 downregulated) in NC vs. C, and 575
DEGs (216 upregulated, 359 downregulated) in GNC vs. NC
(Figures 2C-G).

3.3 Functional annotation of DEGs

GO enrichment analysis indicated that NC altered immune-
related processes in BIECs-21, including chemokine-mediated
signaling, neutrophil chemotaxis and inflammatory response. GCP
exerted protective effects by modulating stimulus response regulation,
signal transduction and cell proliferation (Figures 3A-C). KEGG
pathway analysis highlighted significant enrichment of DEGs in IL-17
and TNF signaling pathways across groups (Figures 3D-F). Cross-
comparison of these pathways revealed upregulated inflammatory
genes (FOSB) in NC vs. C and downregulated CCAAT/enhancer-
binding protein f(C/EBPp) and FOS in GNC vs. NC.

3.4 Validation of DEGs

Cluster heatmaps of top 50 DEGs (Figures 4A-C) and qRT-PCR
validation confirmed transcriptomic data consistency. Compared to
controls, GCP downregulated ILIRAP, IL1IRL1, IL18R1, IL4R, IL33,
IL6, ACKR3, and NR4A1 mRNA (Figure 4D), and NC upregulated
CXCL1, CXCL2, and CXCL3 mRNA (Figure 4E). GNC downregulated
IL1RL1, IL6, and NR4A1 mRNA versus NC (Figure 4F). Additionally,
FOSB mRNA was elevated in NC vs. C, while C/EBPf and FOS mRNA

10.3389/fvets.2025.1753653

were reduced in GNC vs. NC (Figures 4G,H). These results suggest that
NC exacerbates inflammation via FOSB upregulation, whereas GCP
attenuates damage by suppressing C/EBPp and FOS expression.

3.5 GCP alleviates NC-induced intestinal
damage in mice

To validate the in vivo efficacy of GCP, this study established
a NC-infected mouse model. In vivo, low-dose GCP (50 mg/kg)
significantly increased body weight gain pre-infection and
reduced post-infection weight loss (8 days post-infection)
compared to untreated controls (Figure 5A). GCP improved
survival rates (Supplementary Figure 2) and mitigated intestinal
hemorrhage and swelling (Figure 5B). Further analysis of parasite
load in the duodenum and brain tissues of mice across groups
revealed that, compared with the NC group, the low-dose GCP
treatment significantly reduced parasite load in these two tissues
(Figure 5C).

3.6 Mechanistic insights into
GCP-mediated protection

To investigate the mechanism by which GCP alleviates
NC-induced intestinal damage in mice, this study detected relevant
biomarkers in duodenal tissues based on transcriptome sequencing.
qRT-PCR analysis revealed significantly higher FOSB mRNA levels
in the NC group compared with uninfected controls. C/EBPf and
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FOS mRNA levels were significantly lower in GCP-treated groups
versus the NC group. However, no significant differences in IL-6 or
NF-kB mRNA levels were observed between the high-dose GCP
group and the NC group (Figures 6A-C). Western blot analysis of
proteins associated with the IL-17 and TNF signaling pathways

10.3389/fvets.2025.1753653

revealed that the expression levels of TNF-a, p-NF-kB/NF-kB,
IL-17RA, and p-C/EBPp in the NC group were significantly higher
than those in the control group. These elevated protein levels were
effectively attenuated by low-dose GCP intervention, whereas high-
dose GCP exhibited no significant regulatory effects (Figures 6D-I).
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4 Discussion

The intestine, a critical organ for digestion, absorption, and
immunity, maintains a central role in systemic homeostasis. IECs,
the foundation of the intestinal mucosal barrier (18), function
not only as barriers but also as frequent primary targets for
pathogen attack. For example, NC, an obligate intracellular
parasite, can penetrate IECs to spread to nucleated cells
throughout the host (19, 20). Therefore, understanding the
specific mechanisms by which GCP reduces damage to IECs
caused by such pathogens holds significant importance for
protecting intestinal health.

In this study, BIECs-21 served as an in vitro model to investigate
cellular responses to NC infection. NC infection significantly reduced
BIECs-21 viability, which was effectively mitigated by GCP
pretreatment. LDH release, an indicator of cell membrane integrity,
was markedly suppressed by GCP (21), demonstrating its protective
effect against NC-induced cytolysis.

Transcriptome sequencing was used to screen DEGs in order to
examine the interaction mechanisms between NC infection and
BIECs-21, as well as the mechanism of action of GCP. Transcriptomic
profiling and pathway analysis (GO/KEGG) revealed that NC
infection disrupted immune regulation and signal transduction,
particularly activating TNF and IL-17 signaling pathways. NC
infection elevated transcript levels of IL-17 pathway-associated
chemokines (CXCL1/2/3) and inflammatory genes (e.g., FOSB),
while GCP pretreatment reduced IL-17/TNF pathway components,
including IL-6 and IL1IRAP.

TNF-a, a critical immune-regulatory cytokine in the TNF
signaling pathway, activates the NF-kB and MAPK pathways by
binding to TNFR1, thereby mediating cell survival/death signaling and
inflammatory responses (22-25). Similarly, IL-17 cytokines (IL-17A-F)
enhance antimicrobial defenses and inflammatory reactions by
activating the NF-kB, MAPK, and C/EBP pathways (26-28). The AP-1
transcription factor family (e.g., c-Fos, FosB) and C/EBPp, a member
of the C/EBP transcription factor family, bind promoters of
inflammatory genes (e.g., IL-6, TNF-a), amplifying inflammatory
signals (29, 30). C/EBPS, a transcription factor common to both TNF
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FIGURE 7
The potential mechanism of GCP relieving NC damage to BIECs-21.
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and IL-17 pathways, undergoes phosphorylation upon IL-17
stimulation, modulating inflammatory gene expression (31-33).

IL-17A enhances host immune responses to suppress Trypanosoma
cruzi infection by promoting macrophage microbicidal activity (34,
35). In this study, NC infection upregulated FOSB expression, whereas
GCP suppressed C/EBP and FOS expression, suggesting that GCP
alleviates NC-induced inflammation by targeting C/EBPp.

In vivo, low-dose GCP attenuated weight loss, mesenteric
hemorrhage, and parasite loads in intestinal and cerebral tissues of
NC-infected mice. Consistent with transcriptome data, NC infection
elevated duodenal FOSB mRNA and IL-17/TNF pathway-related
protein expression, while GCP inhibited C/EBPB/FOS expression and
downstream signaling. Furthermore, GCP significantly reduced both
total C/EBP protein level and its phosphorylation level, resulting in a
decrease in the absolute level of the active phosphorylated form, p-C/
EBPp. These findings indicate that GCP not only inhibits C/EBPS
protein synthesis but also effectively suppresses its phosphorylation. In
addition, the findings support the role of GCP in alleviating intestinal
damage by modulating C/EBPp activity. However, high-dose GCP did
not demonstrate a therapeutic effect, potentially due to adverse effects
on pathways related to gut microbiota and glucose metabolism (36-38).

Several questions warrant further investigation, including the
mechanisms underlying the role of gut microbiota in the anti-NC effects
of GCP, and the molecular cascades through which GCP regulates the
IL-17 and TNF signaling pathways by C/EBPp. Nevertheless, this study
demonstrates that GCP enhances the ability of IECs to resist NC
infection by modulating immune-related signaling pathways (Figure 7).

5 Conclusion

In conclusion, this study provides an in vitro model for elucidating
the pathogenic mechanisms of host-pathogen interactions and establishes
a theoretical foundation for developing natural medicinal agents aimed at
preventing and treating pathogen-induced intestinal injury.
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