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Infectious bursal disease (IBD) is an important immunosuppressive disease of
chicken caused by infectious bursal disease virus (IBDV). At present, the newly
emerging novel variant IBDV (varIBDV) and the persistently prevalent very virulent
IBDV (vwIBDV) are two major threats, while the non-var/wIBDV, such as classic IBDV
(cIBDV) and attenuated IBDV (attIBDV), also increases the complexity of clinical
detection. In this study, a multiplex real-time quantitative fluorescence RT-PCR
(QRT-PCR) was developed. Based on sequence analysis of different pathogenic
IBDV strains, three probes with different fluorescent signals (FAM, VIC, CY5) and
two pairs of primers were designed. Specifically, varIBDV exhibits three fluorescent
signals (FAM, VIC, CY5), wiIBDV shows two signals (FAM, VIC), and non-var/vvIBDV
displays one signal (FAM). The method possesses excellent specificity: no cross-
reactivity was observed between different pathogenic IBDV types, nor with other
common avian pathogens. This method has good reproducibility and high sensitivity,
with a minimum detection limit of about 10 copies. Furthermore, in the detection
of laboratory or clinical samples, the consistency rate of this method with the
conventional sequencing analysis method reached 100%. In conclusion, this study
developed for the first time a multiplex gRT-PCR that can universally detect
IBDV and simultaneously distinguish between vvIBDV and varIBDV, which is of
great significance for high-throughput emergency detection and comprehensive
prevention and control of new IBDV epidemics.
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1 Introduction

Infectious bursal disease (IBD) is an acute, highly contagious,
immunosuppressive disease caused by infectious bursal disease virus
(IBDV) (1), which mainly harms chicks and leads to significant
economic losses in the global poultry industry. IBDV is an icosahedral
stereosymmetric, non-enveloped, double-stranded RNA virus that
belongs to the Avibirnavirus genus under the Birnaviridae family. The
IBDV genome is composed of two segments (A and B). Segment A
(3.2 kb) encompasses two partially overlapping open reading frames
(ORFs): the upstream smaller ORF encodes the non-structural protein
VP5 (2), while the downstream larger ORF encodes the polyprotein
of VP2-VP4-VP3. This polyprotein undergoes autoproteolysis to
produced capsid protein VP2, viral serine protease VP4, and
scaffolding protein VP3 (3). Notably, VP2 possesses a hypervariable
region (HVR), which plays a crucial role in cell-tropism, virulence,
and antigenic variation of IBDV (4-8). Segment B (2.8 kb) encoding
the RNA-dependent RNA polymerase VP1, which plays a key role in
the transcription and replication of viruses (9).

Since the first identification of IBDV in Gumboro, United States
in 1957 (10), this virus has undergone numerous mutations and
recombinations resulting in various pathotypes including classic
IBDV (cIBDV), variant IBDV (varIBDV), and very virulent IBDV
(vwIBDV) (11, 12). To prevent IBD, with blind-passage or reverse
genetics, and the attenuated IBDV (attIBDV) from wild IBDV was
developed as vaccines. Since 1989, vvIBDV has become one of the
main threats facing the chicken industry with its high mortality and
high transmission speed. In recent years, with the emergence and
prevalence of novel varIBDV, the chicken industry is facing more
complex challenges (13). The novel varIBDV exhibits significant
differences in antigenicity compared to previous strains, resulting in
existing vaccines being unable to provide complete immune protection
against IBD (14, 15). It is precisely for these reasons that in many
countries of Asian, African, and South American, the newly emerging
varIBDV and persistently circulating vvIBDV are the two predominant
epidemic strains endangering the poultry industry (16-19).

RT-PCR is a commonly used method for detecting IBDV, but it
cannot directly identify different prevalent strains. Currently, the
identification of varIBDV and vvIBDV can only rely on sequencing
analysis, which is time-consuming, laborious, and expensive, and
requires expert technicians. This study developed for the first time a
multiplex real-time fluorescent quantitative RT-PCR (qRT-qPCR) that
can universally detect IBDV and simultaneously distinguish between
varIBDV and vvIBDV, which is of great significance for high-
throughput emergency detection and comprehensive prevention and
control of new IBDV epidemics.

2 Materials and methods
2.1 Primes and probes

The VP2 gene sequences of different pathogenic IBDV strains
from GenBank database' were analyzed using the Megalign

1 https://www.ncbi.nlm.nih.gov/
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software (DNAStar) and GENEDOC software. Then, using Prime
Express 3 software, two pairs of primers and three probes (Figure 1)
targeting the VP2 gene of IBDV were designed for multiplex
qRT-PCR to discriminate varIBDV, vvIBDV, and non-var/
vvIBDV. The probe design followed a systematic SNP selection
workflow: prioritizing key sites for strain discrimination,
evaluating sequence conservation and flanking regions, and
ensuring efficient allelic discrimination through central mismatch
design. BLAST on the National Center for Biotechnology
Information server® was used to further confirm the specificity of
the probes and primers. Probes and primers were synthesized by
Sangon Biotech (Shanghai) Co., Ltd.

2.2 Virus strains and clinical samples

The varIBDV representative strains of varIBDV SHG19
(GenBank accession number MN393076), vwIBDV HLJ-0504
(GQ451330), cIBDV IBD17JL01 (MN604241.1), and attIBDV Gt
(DQ403248) were identified by the Avian Immunosuppressive
Disease Division, Harbin Veterinary Research Institute (HVRI),
the Chinese Academy of Agricultural Sciences (CAAS) (hereinafter
referred to as “our lab”) (13, 20-22). Avian influenza virus (AIV),
Infectious bronchitis virus (IBV), Newcastle disease virus (NDV),
Reticuloendotheliosis virus (REV), Fowl adenovirus serotype 4
(FAdV-4), Avian reovirus (ARV), Marek’s disease virus (MDV),
Avian leukosis virus subgroup J (ALV-]), ALV subgroup K
(ALV-K), Mycoplasma gallisepticum (M. gallisepticum), and
Mycoplasma synoviae (M. synoviae) were also provided by HVRI
and used to evaluate the specificity of IBDV multiplex qRT-PCR.

2.3 Virus RNA extraction and reverse
transcription

Virus RNA was extracted using the FastPure Viral DNA/RNA
Mini Kit (Vazyme, Nanjing, China) according to the manufacturer’s
instructions. Then, the reverse transcription was performed using
HiScript IT Q RT SuperMix (Vazyme, Nanjing, China).

2.4 Construction of plasmid standards

To construct three recombinant plasmid standards representing
different types of pathogenic strains, the gene fragments of VP2 from
SHG19 strain (varIBDV), HLJ-0504 strain (vvIBDV), and Gt strain
(non-var/vvIBDV) were amplified by RT-PCR using primers
SHG19-F/SHG19-R, HLJ-0504-F/HLJ-0504-R, and Gt-F/ Gt-R
(Table 1). The PCR products were ligated into the pMD18-T vector to
obtain three plasmid standards: pMDI18-T-SHG19, pMD18-
T-HLJ-0504, and pMD18-T-Gt. The copy numbers of the plasmids
were calculated using the following formula: copies/pL = [(plasmid
concentration  (ng/pL) x 6.02 x 10%)]  /
(bp) x 1 x 10° x 660 dalton/bp)] (23).

[(plasmid  length

2 https://blast.ncbi.nlm.nih.gov/Blast.cgi
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FIGURE 1

other IBDV strains besides var. and vv.

Nucleotide sequence alignment of the multiplex gRT-PCR amplification region among different pathotypes of IBDV. (A) Sequence fragment targeted
by forward primer-1, reverse primer-1, and MGB-probe . (B) Sequence fragment targeted by forward primer-2, reverse primer-2, MGB-probe Il, and
MGB-probe Ill. The position of amino acids is determined based on VP2 of varlBDV SHG19 strain (GenBank no. MH879092). Identical residues in
aligned sequences are indicated by dots, and differences were indicated by single letters. Var, variant strain; vv, very virulent strain; non-var/vvIBDV,

=

b
b
Lty
Lo
Lo
s
Lok
=
L&

o
=
S
s
s
e

MEa. ..

2.5 Real-time quantitative PCR

The multiple real-time QRT-PCR was developed to discriminate
varIBDV, vvIBDYV, and non-var/vvIBDV. The amplification reaction
system was performed in QuantStudio 5 Real-Time PCR System
(Applied Biosystems, United States). The total volume of the multiple
real-time qRT-PCR reaction was 20 pL, consisting of 10 pL Premix
EX Taq (Takara), 0.5 pL of forward primer-1, reverse primer-1,

Frontiers in Veterinary Science

forward primer-2 and reverse primer-2 (10 pM), 0.5 pL of probe-I,
probe-II and probe-III (10 pM), 2 pL template cDNA, and 4.5 pL
RNase-free water. The reaction conditions were: 95 °C for 30s;
40 cycles of 95 °C for 3 s and 60 °C for 30s. After each cycle, the
quantitative PCR instrument records the increase in fluorescence
signal through an optical system, and the data including Ct value
was calculated and analyzed through QuantStudio Real-Time PCR
Systems.
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TABLE 1 Primers and probes.

Primers and probes Position in VP2

Sequences (5’ to 3')

Forward primer-1 AGAAGCACACTCTCAGGTCAGAGA bp 231-254
Reverse primer-1 ACAATTAGCCCTGACCCTGTGT bp 282-303
MGB-probe-I FAM-CTCGACCTACAATTT-MGB bp 256-270
Forward primer-2 ACCATCTACCTTATAGGCTTTGATGG bp 908-933

Reverse primer-2

GATGTGATTGGCTGGGTTATCTC

bp 1,028-1,050

MGB-probe-II VIC-ACTGCGGTAATCACCAGA-MGB bp 935-952
MGB-probe-III CY5-CTCATGCCATTCAACCT-MGB bp 995-1,011
SHG19-F GCCTTCTGATGCCAACAACCG bp 180-200
SHGI9-R GGAGGTCACTATCTCCAATTT bp 1,055-1,075
HLJ-0504-F GCCTTCTGATGCCAACAACCG bp 180-200
HLJ-0504-R GGAGGTAACTATCTCCAGTTT bp 1,055-1,075
Gt-F GCCTTCTGATGCCAACAACCG bp 180-200
Gt-R GGAGGTCACTATCTCCAGTTT bp 1,055-1,075

2.6 Specificity of the gRT-PCR

To evaluate the specificity of this qRT-PCR, the DNA or cDNA of
11 other avian pathogens, including AIV (H9-GX11583 strain), IBV
(H120), NDV (Lasota), REV (HLJR0901), FAdV-4 (HLJDAd15), ARV
(ARV-HLJ21-1690401), MDV (LMS), ALV-J (HPRS103), ALV-K
(JS15SGO01), M. gallisepticum (R), and M. synoviae (WVU1853) were
used as templates, with water as the negative control and SHG19 strain
as the positive to perform the qRT-PCR.

2.7 Sensitivity of the qRT-PCR

To assess the sensitivity of this qRT-PCR, the real-time
fluorescence quantitative analysis was conducted using the
recombinant plasmid standards (pMDI18-T-SHG19, pMD18-
T-HLJ-0504, and pMD18-T-Gt) with different dilution gradients (107
copies/pL to 10" copies/pL). The standard curves and detection
efficiency were automatically calculated and plotted. Furthermore,
different strains of IBDV were used to further determine the sensitivity
of qRT-PCR. Dilute the representative strains of each type by 10-fold
ratio: SHG19 (varIBDV, 11,748 copies/uL), HLJ-0504 (vwIBDV, 15,840
copies/uL), and Gt (non-var/vvIBDV, 80,000 copies/uL). And the
sensitivity of this qRT-PCR was detected as mentioned above.

2.8 Laboratory samples detection

Divide 9 four-week-old specific pathogen-free (SPF) chickens into
three groups (A, B, and C), with 3 chickens in each group. Groups A
and B were, respectively, inoculated with the varIBDV SHG19 and
vvIBDV HLJ-0504, administering 100 pL (10 BID/mL) via nasal and
ocular routes for each chicken. Group C served as the blank control
group. Among them, one chicken in Group B died at 3 days post-
inoculation (dpi) and two at 4 dpi. At 7 dpi, all surviving chickens
were euthanized using high-concentration carbon dioxide inhalation,
and all the bursa tissues were collected for analysis. Additionally, the
attIBDV Gt and cIBDV IBD17JL01 were, respectively, inoculated into
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DF-1 cells, with cell suspension being collected 48 h post-inoculation.
The samples of these four IBDV strains were used to evaluate this
multiplex QRT-PCR.

2.9 Clinical samples detection

A total of 42 IBDV-positive clinical samples of bursa from
Liaoning, Hebei, Shandong, Henan, Fujian, and Guangdong provinces
of China in 2023-2024 were sent to our lab for IBDV detection. These
clinical bursa samples were detected by the multiplex
qRT-PCR. Meanwhile, the RT-PCR and conventional sequencing
analysis was also performed as described previously (24).

2.10 Statistical analysis

All data analyses were performed using Prism software 10
(GraphPad Software, Inc.).

3 Results
3.1 Feasibility of the gRT-PCR

The main prevalent strains of IBDV in China can be divided into
three types: varIBDV, vwIBDV, and non-var/vvIBDV (attIBDV and
cIBDV). Through sequence alignment analysis of various pathogenic
IBDV strains, it was found that the nucleotide sequence of bp 231-303
in VP2 is conserved across all types of IBDV strains. So, targeting this
region, we designed the probe I (labeled with the FAM fluorescent
dye) and the corresponding forward and reverse primers (Figure 1A)
was designed for universal detection of IBDV. In addition, in the
region of bp 908-1,050 of VP2, probe II (labeled with the VIC
fluorescent dye), probe III (labeled with the CY5 fluorescent dye), and
the corresponding forward and reverse primers were designed. Within
the selected probe II region, varIBDV/vvIBDV exhibits 2-3 single
nucleotide polymorphisms (SNPs) compared to non-var/vvIBDV,
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enabling differentiation = varIBDV/vvIBDV  from non-var/
vvIBDV. Meanwhile, within the probe III region, varIBDV display 2-3
SNPs relative to vwIBDV and non-var/vvIBDV, allowing for the
differentiation of varIBDV by probe III (Figure 1B).

Based on these probes and primers, we developed the multiple
real-time qQRT-PCR to distinguish and quantify varIBDV, vwIBDV, and
non-var/vvIBDV. The test results of recombinant plasmid standards
demonstrated that non-var/vvIBDV could be only detected in the
FAM channel, indicating binding to probe I but not to probes II or III
(Figure 2A); vvIBDV was recognized in the FAM and VIC channels,
suggesting binding to probes I and II but not to probe III (Figure 2B);
varIBDV could be detected in the FAM, VIC, and CY5 channels,
indicating binding to probes I, II, and III (Figure 2C). In a word, for
this IBDV multiple real-time qRT-PCR developed in this study, one
signal (FAM) represents IBDV but non-var/vvIBDV, two signals
(FAM/VIC) represent vvIBDV, three signals (FAM /VIC/CY5)
represent varIBDV (Figure 2).

3.2 Specificity of the qRT-PCR

With this multiplex QRT-PCR of IBDV, only the positive control
of IBDV was positive; all the non-IBDV samples, including AIV, IBV,
NDV, REV, FAdV-4, ARV, MDV, ALV-J/K, M. gallisepticum, and
M. synoviae, showed negative (Figure 2D). These results indicate that
the multiplex QRT-PCR of IBDV exhibits good specificity.

10.3389/fvets.2025.1736613

3.3 Sensitivity of the gRT-PCR

The detection results of the recombinant plasmid standards of
varIBDV (pMD18-T-SHG19) (Figure 3A), vvIBDV (pMD18-
T-HLJ-0504) (Figure 3B), and non-var/vvIBDV (pMD18-T-Gt)
(Figure 3C) at seven concentration gradients (10’-10' copies/pL)
showed positive, with each dilution tested in triplicate. For the
pMD18-T-SHG19 standard plasmid, in the FAM fluorescence
channel, the correlation coefficient R* and amplification efficiency E
of the equation were 0.999 and 102.235% (Figure 3D); in the VIC
channel, the correlation coefficient R* and amplification efficiency E
of the equation were 0.999 and 99.876% (Figure 3E); and in the CY5
channel, the correlation coefficient R* and amplification efficiency E
of the equation were 0.999 and 99.814% (Figure 3F), respectively. For
pMD18-T-HLJ-0504, in the FAM channel, the correlation coefficient
R? and amplification efficiency E of the equation were 0.997 and
107.581% (Figure 3G), respectively; in the VIC channel, the
correlation coeflicient R2 and amplification efficiency E of the
equation were 0.997 and 105.989% (Figure 3H), respectively; for
pMD18-T-Gt, in the FAM channel, the correlation coefficient R2 and
amplification efficiency E of the equation were 0.997 and 103.056%
(Figure 31), respectively.

For virus sample detection, varIBDV SHG19, vvIBDV HLJ-0504
and non-var/vvIBDV Gt were assayed at 4 (10** to 10" copies/pL)
(Figure 4A), 4 (10** to 10'* copies/pL) (Figure 4B), and 5 dilution
gradients (10** to 10°° copies/pL) (Figure 4C). Each gradient was
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copies/pL) of the standard plasmids of varlBDV (A), wiIBDV (B), and non-var/wIBDV (C). (D—F) The standard curve of the 10-fold dilutions (107 to 10*
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copies/pL) of the standard plasmids of vwIBDV in channel FAM (G) and VIC (H). (1) The standard curve of the 10-fold dilutions (107 to 10* copies/pL) of

tested in triplicate, and all dilution points tested positive. For the
varIBDV SHG19, in the FAM fluorescence channel, the correlation
coefficient R2 and amplification efficiency E of the equation were
0.994 and 103.021% (Figure 4D); in the VIC channel, the correlation
coefficient R2 and amplification efficiency E of the equation were
0.996 and 95.207% (Figure 4E); and in the CY5 channel, the
correlation coefficient R2 and amplification efficiency E of the
equation were 0.990 and 104.088% (Figure 4F), respectively. For
vvIBDV HLJ-0504, in the FAM channel, the correlation coefficient
R2 and amplification efficiency E of the equation were 0.993 and
94.592% (Figure 4G), respectively; in the VIC channel, the
correlation coefficient R2 and amplification efficiency E of the
equation were 0.991 and 97.216% (Figure 4H), respectively; for
non-var/vvIBDV Gt, in the FAM channel, the correlation coeflicient
R2 and amplification efficiency E of the equation were 0.997 and
102.690% (Figure 4I), respectively. These results indicate that the
multiplex qRT-PCR of IBDV has satisfactory repeatability and
sensitivity.
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3.4 Laboratory samples detection

According to the results in Table 2, the varIBDV SHG19-infected
samples were positive with three signals (FAM/VIC/CY5); the
vvIBDV HLJ-0504-infected samples were positive with two signals
(FAM/VIC); the IBD17JL01-infected and
Gt-infected samples were positive with one signal (FAM); and the

non-var/vvIBDV

samples in NC group were negative.

3.5 Clinical sample detection

A total of 42 IBDV-positive clinical samples of bursa were detected
by both multiplex gqRT-PCR and conventional sequencing analysis.
The results showed that 27 were positive for varIBDV, 8 were positive
for vwIBDV, and 7 were positive for non-var/vvIBDV, which was
consistent with the results of conventional sequencing analysis
(Table 3).
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Discussion

Currently, multiple strains of IBDV coexist, and the clinically
pathogenic strains mainly include vvIBDV, varIBDV, and
cIBDV. Among them, the newly emerging varIBDV and persistently
circulating vvIBDV are the two predominant epidemic strains
endangering the poultry industry in many countries, including China
(18, 25, 26). In some chicken farms, the harm of cIBDV also cannot
be ignored. In addition, as a widely used vaccine, attIBDV is often
detected in farms (27). Once the disease occurs in the chicken farm,
quickly and accurately identifying the prevalent strain and taking
matching measures is the top priority for efficient prevention and
control of IBD. So, IBDV identification and detection technology is
urgently needed.

From the perspective of pathogenic characteristics, the mortality
of vwiIBDV is relatively high, but in immunized chicken flocks,
vvIBDV infection sometimes presents atypical IBD symptoms with
low mortality, mainly manifested as severe lesion of bursa (28). The
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mortality rate of cIBDV is relatively low, and varIBDV does not
directly kill chickens. Their main autopsy symptom is also typical
bursa injury (15). The similarity of symptoms makes it difficult to
achieve initial clinical detection of IBD. Farmers often send samples
of suspected diseased chicken to the laboratory for testing. The
conventional RT-PCR detection results are no longer able to meet the
testing needs of farmers. When RT-PCR detected positive results for
IBDV, they were eager to know what pathogenic types these strains
were. The genetic characteristics of IBDV are closely related to its
pathogenic type, and sequence analysis based on the VP2 gene is often
used to determine the pathogenic type of IBDV (29-31). Although the
sequencing analysis method is very accurate, for the demand of rapid
clinical detection, it is time-consuming, laborious, and expensive, and
requires expert technicians. The conventional sequencing method
requires multiple steps (RT-PCR, agarose gel nucleic acid
electrophoresis, PCR product purification, sequence analysis and
interpretation), over a few days with limited throughput. From an
economic perspective, the single sample cost of QRT-PCR is usually

frontiersin.org


https://doi.org/10.3389/fvets.2025.1736613
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Wu et al. 10.3389/fvets.2025.1736613

TABLE 2 Detection of laboratory samples infected by different strains of IBDV.

Samples gRT-PCR
FAM (Ct) VIC (Ct) CY5 (Ct)
SHG19 (varIBDV) 1 22.05 2222 21.27
2 2248 22.73 21.69
3 21.86 21.96 21.07
HLJ-0504 (vwIBDV) 1 23.79 24.15 Negative
2 23.88 24.71 Negative
3 23.87 24.26 Negative
Gt (attIBDV) 1 25.50 Negative Negative
2 25.32 Negative Negative
3 25.02 Negative Negative
IBD17JL01 (cIBDV) 1 23.05 Negative Negative
2 23.90 Negative Negative
3 24.21 Negative Negative
NC 1 Negative Negative Negative
2 Negative Negative Negative
3 Negative Negative Negative

more than 20 times higher than conventional sequencing method.
Moreover, when the RT-PCR production band is weak, sequencing
results cannot be obtained. Therefore, it is urgent to develop a rapid
identification and detection technology for IBDV, which involves
determining whether it is positive for IBDV and identifying which
dominant epidemic strain (varIBDV or vvIBDV) it is.

RT-PCR-restriction fragment length polymorphism (RT-PCR-
RFLP) requires restriction enzyme treatment of RT-PCR products
before the results can be determined, and the complexity of its
practical application reduces its detection efficiency (32, 33). Multiplex
RT-PCR has been used for pathogen identification and detection. It
involves adding multiple pairs of primers to the same reaction system,
and typing strains based on the presence or length of amplified
fragments (34, 35). However, this method is difficult to implement
because of its high requirements for specific primer design. Recently,
a multiplex real-time qRT-PCR for discriminating between vvIBDV
and non-vvIBDV was developed (36), but it cannot be used for
directly identifying varIBDV. In another study, a TagMan real-time
qRT-PCR was developed to distinguish varIBDV and non-varIBDV
(37), but it cannot be used for directly identifying vwvIBDV. Most
recently, with a high-resolution melting curve qRT-PCR
(HRM-qRT-PCR), the vvIBDV, varIBDV, and attIBDV can be
distinguished using a reaction system (38), but this method may miss
detecting other strains including cIBDV.

In this study, through the comparative analysis of massive
sequences of different strains of IBDV, three specific probes with
different fluorescence signals and two pairs of primers were designed
to distinguish varIBDV, vvIBDV, and non- var./vvIBDV. This multiplex
qRT-PCR of IBDV will have three types of result signals when the
sample is positive: three fluorescent signals (FAM, VIC, and CY5) for
varIBDV; two fluorescent signals (FAM and VIC) for varIBDV; one
fluorescent signal (FAM) for other type of IBDV (such as cIBDV and
attIBDV) but not varIBDV/vvIBDV. This multiplex qRT-PCR has
good specificity and no cross reactivity with other common avian
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pathogens, including AIV, IBV, NDV, REV, FADV4, ARV, MDYV,
ALV-J/K, M. galliseticum, and M. synovia. The detection results of
plasmid standards and different representative strains showed that this
multiplex qRT-PCR has good repeatability and high sensitivity, with
a minimum detection limit of about 10 copies. Furthermore, in
laboratory or clinical sample testing, the multiplex QRT-PCR has a
high consistency rate of 100% with conventional sequencing analysis
methods. Among the 42 clinically positive samples tested, varIBDV,
vvIBDYV, and non-var/vvIBDV accounted for 64.3% (27/42), 19.0%
(8/42), and 16.7% (7/42), respectively. This suggests that in 2023-2024,
varIBDV and vvIBDV still are the dominant epidemic strains in
China’s major poultry farming areas. Although our probe and primer
designs are based on the alignment of many IBDV gene sequences
from GenBank, more clinical testing, more detection alignment, and
third-party validation are crucial for the maturity of the
detection method.

The IBDV multiplex qRT-qPCR developed in this study
demonstrates high efficiency and practicality. The entire workflow,
from nucleic acid extraction to final results, requires only 2-3 h and
is capable of processing up to 96 samples simultaneously in a single
run. Although this multiplex qRT-PCR is developed to address the
shortcomings of conventional sequencing method, it cannot replace
conventional sequencing method. Under field conditions, it is rare for
different strains of IBDV to infect the same bursa, but it occasionally
occurs. This multiplex qRT-PCR cannot distinguish this mixed
infection. In addition, as this multiplex QRT-PCR only targets viral
VP2 gene, it cannot detect B-segment reassortment events of
IBDV. Sanger sequencing remains necessary to detect mixed
chromatogram peaks, and virus isolation is still essential for separating
mixed or reassortant strains. So the IBDV multiplex qRT-qPCR is a
beneficial supplement to conventional detection techniques. However,
in the future, there is still room for optimization in many aspects of
this multiplex qRT-qPCR. For example, changing the two-step
method to a one-step method to further improve detection efficiency;
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TABLE 3 Clinical samples detection using the qRT-PCR.

Sample no. gRT-PCR VP2-HVR sequencing
FAM (Ct) VIC(Ct) CY5(Ct) Result Phenotype GenBank Genotype
accession
number

1 28.03 29.77 28.77 varIBDV varIBDV/ PQ673688 A2 2023
2 27.66 29.03 27.82 varI[BDV varIBDV PQ673689 A2 2023
3 24.94 26.87 25.72 varIBDV varIBDV PQ673690 A2 2023
4 26.33 27.79 26.88 varIBDV varIBDV PQ673691 A2 2023
5 29.69 30.96 29.69 varIBDV varIBDV PQ673692 A2 2023
6 29.83 30.77 29.48 varIBDV varIBDV PQ673693 A2 2023
7 20.55 21.26 19.93 var[BDV varIBDV PQ673694 A2 2023
8 28.73 32.03 31.47 varIBDV varIBDV PQ673695 A2 2023
9 19.58 20.17 19.16 varIBDV varIBDV PQ673696 A2 2023
10 17.47 18.23 18.02 varI[BDV varIBDV PQ673697 A2 2023
11 20.61 21.55 20.78 varIBDV varIBDV PQ673699 A2 2023
12 18.31 18.48 18.15 varIBDV var[BDV PQ673700 A2 2023
13 20.32 21.09 19.66 varI[BDV varIBDV PQ673701 A2 2023
14 20.59 24.63 23.38 varIBDV varIBDV PQ673702 A2 2023
15 20.63 22.03 20.90 varIBDV varIBDV PQ673703 A2 2023
16 29.80 31.06 30.25 varIBDV varIBDV PQ673724 A2 2024
17 27.53 28.74 27.70 varIBDV varIBDV PQ673706 A2 2023
18 23.76 25.50 24.20 varI[BDV varIBDV PQ673729 A2 2024
19 21.64 23.47 22.31 varIBDV varIBDV PQ673735 A2 2024
20 26.02 27.40 26.28 varIBDV varIBDV PQ673737 A2 2024
21 21.54 22.93 21.78 varI[BDV varIBDV PQ673739 A2 2024
22 19.52 20.53 19.27 varIBDV varIBDV PQ673741 A2 2024
23 21.61 23.09 2197 varIBDV varIBDV/ PQ673743 A2 2024
24 23.66 22.83 23.75 var][BDV varIBDV PQ673746 A2 2024
25 23.98 22.89 23.63 varIBDV varIBDV PQ673748 A2 2024
26 24.14 22.98 23.80 varlBDV varIBDV PQ673751 A2 2024
27 24.89 24.00 24.73 varIBDV varIBDV PQ673752 A2 2024
28 19.11 19.27 Negative vwIBDV vwIBDV PQ673730 A3 2024
29 20.58 20.64 Negative vwIBDV wIBDV PQ673731 A3 2024
30 27.19 26.86 Negative vwIBDV vwIBDV PQ673732 A3 2024
31 21.56 21.27 Negative vvIBDV vvIBDV PQ673733 A3 2024
32 29.00 29.10 Negative vwIBDV wIBDV PQ673768 A3 2024
33 25.61 25.97 Negative wIBDV wIBDV PQ673769 A3 2024
34 30.90 31.98 Negative wIBDV vwIBDV PQ673770 A3 2024
35 15.96 15.26 Negative vwIBDV wIBDV PQ673773 A3 2024
36 16.79 Negative Negative Non-varIBDV/ | Non-varIBDV/ PQ673698 Al 2023

vwIBDV vwIBDV
37 27.67 Negative Negative Non-varIBDV/ | Non-varIBDV/ PQ673760 A8 2024

vwIBDV vwIBDV
38 28.66 Negative Negative Non-varIBDV/ | Non-varIBDV/ PQ673761 A8 2024

vvIBDV vvIBDV
39 29.01 Negative Negative Non-varIBDV/ | Non-varIBDV/ PQ673762 A8 2024

wIBDV vwIBDV

(Continued)
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TABLE 3 (Continued)

10.3389/fvets.2025.1736613

Sample no. gqRT-PCR VP2-HVR sequencing
FAM (Ct) VIC(Ct) CY5(Ct) Result Phenotype GenBank Genotype
accession
number
40 28.64 Negative Negative Non-varIBDV/ | Non-varIBDV/ PQ673763 A8 2024
vwIBDV vwIBDV
41 19.56 Negative Negative Non-varIBDV/ | Non-varIBDV/ PQ673764 A8 2024
vwIBDV wIBDV
42 20.14 Negative Negative Non-varIBDV/ | Non-varIBDV/ PQ673771 Al 2023
wIBDV wIBDV

further optimize the probes to detect the mix-infection of dominant
strains (23); cover the probe targets with dual segments of viral
genome to detect segment-reassortment of IBDV; continuously
tracking the emergence of new epidemic strains to upgrade and
replace existing detection system.

In summary, for the first time, this study developed a multiplex
qRT-qPCR that can universally detect IBDV and simultaneously
discriminate the predominant epidemic varIBDV and vvIBDV. This
method is specific, sensitive, and can be used for clinical sample
detection, solving the urgent need for clinical differential detection in
cases of co-infection with multiple strains of IBDV.
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