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Effects of nano-zinc oxide
supplementation on milk yield,
rumen fermentation, nutrient
digestibility, and blood indices of
high-yielding dairy cows
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Ashkan Fekri! and Valiollah Palangi?*

!Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran,
Karaj, Iran, 2Department of Animal Sciences, Faculty of Agriculture, Near East University, Nicosia,
Cyprus

Nanoparticles of zinc oxide (NP- ZnOs) are the most extensively utilized nanoparticles
due to the higher surface area, improved bioactivities, and, most importantly, unique
chemical stability and simplicity of production. The study aimed to evaluate the
effects of NP-ZnOs on the rumen parameters, total-tract nutrient digestibility,
and milk performance of Holstein dairy cows. In a completely randomized design,
twenty-four dairy cows (650 + 20 kg of BW; mean + SD) were allocated to one of
four experimental diets, which were as follows: (1) CON + 30 ppm zinc oxide, (2)
CON + 30 ppm ZnO-NPs, (3) CON + 60 ppm ZnO-NPs, and (4) CON + 90 ppm
ZnO-NPs. Throughout the experiment period, milk yield and milk composition were
recorded automatically at each milking time. Body weight (BW) and body condition
score (BCS) were assessed throughout the experiment. The components of milk
production were unaffected by the supplemental zinc (all p > 0.05). Administration
of NP-Zn at 90 ppm caused a numerical decrease in somatic cell count (SCC)
as compared to the other experimental treatments (p = 0.93). The zinc content
of milk increased significantly with NP-ZnO supplementation regardless of the
dose (p < 0.01). Dairy cows receiving diets supplemented with 30 ppm NP-Zn
had higher dry matter intake (DMI), crude fat, and NDF digestibility in comparison
the other groups. Compared to the other treatments, Group feeding with NP-
ZnO at 90 ppm showed the highest concentrations of glucose (p = 0.94) and TG
(p = 0.43), and group receiving 30 ppm resulted in higher cholesterol (p = 0.49).
The indicator of inflammation, albumin, showed a similar trend (p = 0.41). Total
volatile fatty acids (TVFAs) concentration increased with adding NP-Zn at 60 ppm
dose (p = 0.48), although the ruminal content of NH;-N showed a lower value
compared to the other doses (p = 0.329). In conclusion, these results suggested
that supplementing diets of high-yielding dairy cows with NP-ZnOs at 90 mg/
kg dose could be a profitable substitute for high dietary ZnO inclusion in diets to
improve the productivity of dairy cows.
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Introduction

Trace minerals (TM), such as Zn, Mn, Cu, and Co are required
for structural proteins, enzymes, coenzymes, and cellular proteins,
and participate in many enzymatic processes (1); this leads to
changes in the ruminal environment, affecting the production of
volatile fatty acid (VFA), fiber digestibility, and feed digestion (2).
Because of quantum mechanics and their high surface area-to-
quantity ratio, nanoparticles with sizes between 1 and 100 nm
promise great potential for use in a range of sectors, including
animal feed (3). In the same way, the trace minerals could modify
microbial populations and metabolic pathways in the rumen (2).
Studies show a lower cellulose digestion decreases due to TM
deficiencies at high levels of starch (4). This can occur because
fast-growing bacteria (present in high-grain diets) have a higher
TM requirement to degrade starch, and they compete with slow-
growing bacteria that are cellulose digesters (4). Additionally,
supplementation of diets with TM can also modify the molar
proportions of VFA (5). In diets deficient in Se, the ruminal molar
proportion of isovaleric acid increased with Se, which is explained
by increased activity of seleno-enzymes (1).

A necessary mineral, zinc (Zn), participates in a variety of
biological processes, such as gene expression, cell signaling, enzyme
function, and integrity of cell membranes (6-8). Almost every
metabolic pathway depends on at least one zinc-requiring enzyme,
since it functions in the structural and functional integrity of
approximately 2000 transcription factors and 300 enzymes (9). In spite
of the fact that zinc is typically fed as inorganic salts, zinc oxide (ZnO)
and zinc SO,, increasing the bioavailability of zinc may increase
ruminant productivity (10, 11). NP-ZnOs are feed additives that are
beneficial because of their smaller particle size, larger surface area, and
higher chemical reactivity than typical sources, based on al (12),
NP-ZnO has been applied to a variety of sectors, including animal
nutrition (13, 14).

Due to their sufficient bioavailability, nanoparticles of trace
minerals can be used to decrease mineral excretion and
environmental contamination (15). Despite some research showing
that NP-ZnO has hazardous effects on animals (16), other studies
support the contradictory outcomes (10, 17). For example, feeding
dairy cows with organic trace minerals instead of inorganic sources
improved fertility, health, and production performance (18-20). In
one study, Formigoni, Fustini (21) found that feeding dairy cows
with 500 g/kg of Cu, Mn, and Zn organic trace minerals (as OTM)
concentration of milk fat increased by 4.4%, meanwhile the
experimental supplements did not have any impact on milk yield,
protein concentration, and somatic cell count (SCC). The
contradictory findings may result from the purity of the trace
mineral supplements, stressors, agents, mineral content in body
cells, and the physiological stage of animals (11).

Although zinc oxide (ZnO) is widely used as a dietary
supplement in dairy nutrition, there is a lack of adequate research
regarding the effects of nano-sized ZnO (NP-ZnO) on the
performance of high-yielding Holstein dairy cows. Given that
nanoparticle forms may offer higher bioavailability and enhanced
cellular uptake compared to conventional ZnO, it is rational to
hypothesize that NP-ZnO could improve the metabolic efficiency
and productive performance of dairy cows. Therefore, this study
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was designed to evaluate the effects of NP-ZnO supplementation on
milk yield and composition, blood metabolites, nutrient
digestibility, and rumen fermentation characteristics in Holstein
dairy cows.

Methods and materials

Characteristics of NP-ZnOs

An apparatus for grinding (Just Nanotech Co., JBM-B035,
Tainan, Taiwan) was used to produce NP-ZnO. 240 milliliters of
95% ethanol were mixed with a mixture of dry materials
consisting of 2.5 grams of dispersed reagent-silica and 10 grams
of zinc oxide to create a slurry. After 1.5 h of pre-mixing, the
slurry was put in a grind chamber containing 500 g of 0.2 mm
zirconium particles. Next, the mixture was milled at 960 x g for
1.5 h. Following grinding, big particles were eliminated from the
slurry by passing it through a 200-mesh sieve. Following that,
the slurry was oven-dried for a whole night at 50 °C. After that,
a 200 mesh sieve was again used to filter the NP-ZnO powder.
The zinc concentration of NP-ZnO was determined using the
atomic absorption spectrometer (Perkin Elmer, Atomic Analyst
100, Waltham, MA, USA).

Animal and experimental design

This study was carried out at the airy research Center of the
University of Tehran, Iran. The University of Tehran’s Animal Science
Committee gave its approval for the animal care and use (No.
9330381002-28.09.94). A total of twenty-four multiparous lactating
Holstein dairy cows (650 + 20 kg of BW; 70 + 4 DIM; parity 2 to 3) in
completely randomized design were randomized to receive one of the
following four treatments: (1) CON + 30 ppm zinc oxide, (2) CON +
30 ppm ZnO-NPs, (3) CON + 60 ppm ZnO-NPs, and (4) CON +
90 ppm ZnO-NPs. The diets containing supplementary minerals had
higher zinc concentrations compared to the control diet. Cows were
placed in separate box stalls (4.40 x 4.40 m?) and had free access to
water throughout the study. Milking of the cows was taken three times
a day at 0600, 1300, and 1900, and recorded at each milking time. To
determine the change in BW, the animals were weighed at the start,
middle, and end of the trial, soon after the afternoon milking. BCS
were assessed using the protocols described by Arruda, Godden (22),
during the same time tables used for BW measures. Dietary ingredients
were combined and supplied as TMR on a daily basis at 0700 and
1700 h. Orts were weighed and collected daily before the afternoon
feeding. Individual feed intake was recorded throughout the
experiment, and the amount of feed offered was modified every day to
obtain 5 to 10% orts. Table 1 describes the ingredients and nutritional
composition of the base diets (NRC, 2001).

Milk sampling and analysis

Milk samples were placed in tubes preserved with 2-bromo2-
nitropropane-1,3 diol (Broad Spectrum Microtabs II; Advanced
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TABLE 1 Ingredient and chemical composition of experimental diets (g/kg DM unless noted otherwise).

Experimental diets?

Ingredient
Corn silage 25.4 25.4 25.4 25.4
Alfalfa hay, chopped 15.9 15.9 15.9 15.9
Corn grain, ground 17.2 17.2 17.2 17.2
Barley grain, ground 7.93 7.93 7.93 7.93
Soybean meal 6.95 6.95 6.95 6.95
Wheat bran 13.5 13.5 13.5 13.5
Canola meal 10.4 10.4 10.4 10.4
Calcium salts of fatty acids” 1.16 1.16 1.16 1.16
Dicalcium phosphate 0.12 0.12 0.12 0.12
Sodium bicarbonate 0.58 0.58 0.58 0.58
Vit and min mix* 0.42 - - -
Vit and min mix - 0.30 - -
Vit and min mix - - 0.60 -
Vit and min mix - - - 0.90
Magnesium oxide 0.12 0.12 0.12 0.12
Bentonite 0.19 0.19 0.19 0.19
Salt 0.24 0.24 0.24 0.24
Chemical composition
DM (%) 52.2 52.2 52.2 52.2
CP (%) 17.9 17.9 17.9 17.9
NDF¢ (%) 321 321 32.1 32.1
NEC (%) 36.3 36.3 36.3 36.3
NE,' (Mcal/kg) 1.71 1.71 1.71 1.71
Starch (%) 26.7 26.7 26.7 26.7
Ash (%) 7.13 7.13 7.13 7.13

“Experimental diets were: (1) CON + 30 ppm zinc oxide, (2) CON + 30 ppm ZnO-NPs, (3) CON + 60 ppm ZnO-NPs, and (4) CON + 90 ppm ZnO-NPs.
"Ca-salts of fatty acids, Persiafat, Kimiya Danesh Alvand Co. Iran., contained 84% fat and 9% Ca (1% C14:0; 28% C16:0; 3% C16:1; 5% C18:0; 26% C18:1; 30% C18:2; 3% C18:3; 3% other fatty

acids).

Each kilogram of mineral and vitamin supplement mix contains: calcium: 170 grams, phosphorus 60 grams, magnesium: 100 grams, manganese: 13000 mg, copper: 5000 mg, iron: 4000 mg
Cobalt: 80 mg, Selenium: 110 mg, Iodine: 200 mg, Vitamin A: 1,250,000 IU, Vitamin D3: 300,000 IU, Vitamin E: 6000 IU. ZnO-NPs (zinc oxide nanoparticles with a purity of more than 99%,

containing 79% zinc).

“Neutral detergent fiber exclusive of residual ash.

“Was calculated as 100 — (NDF + CP + Ether extract + Ash).
fCalculated according to NRC (2001).

Instruments Inc.) and kept at —20 °C until they were shipped
overnight to Vahdat Cooperative Inc. (Isfahan, Iran) laboratory. To
determine fat, true protein, lactose, SCC, and milk urea nitrogen
(MUN), Fourier transform infrared spectroscopy with a MilkoScan
FT + (Foss Inc.) was utilized. Milk yield and components were
calculated for each cow individually; the following formulas were
utilized to calculate 3.5% FCM and ECM:

3.5%FCM =[ 0.4324 x milk yield (kg / d) ] +[16.216 x fat yield (kg /d) |;

ECM =0.327 x milk yield (kg / d)+12.95x fat yield (kg /d)
+7.2xprotein yield (kg /d).

Frontiers in Veterinary Science

Blood sampling and analysis

Blood samples (10 mL) from each cow were taken twice a
week via the jugular vein and placed into evacuated tubes
(MediPlus, Sunphoria Co., Ltd., China) containing EDTA,
approximately three hours after morning feeding. Subsequently,
blood samples were centrifuged at 2,000 x g for 10 min and frozen
at —20 °C until the analysis of biochemical components. To
measure serum zinc, 1 mL serum sample was mixed with 4 mL of
nitric acid (65%; Sigma, Steinhein, Germany) and perchloride
acid (70%; Sigma, Merck, Germany) in a ratio of 3:2. Before being
diluted with 1,000 mL of de-ionized water and filtered, the
solution was heated to 300 °C until it turned clearer. Following
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that, the solution was analyzed using an atomic absorption
spectrometer (Perkin Elmer, Atomic Analyst 100). Commercially
available kits were utilized to measure the levels of serum BUN,
glucose, protein, cholesterol, and albumin according to the
manufacturer’s instructions (Pars Azmon, Iran). The Biorex kit
method (BiorexFars, Iran) included utilizing an atomic absorption
spectrophotometer to measure the activity of superoxide
dismutase (SOD) after washing red blood cells three times with a
0.9% saline solution (Varian SpectrAA220, Australia). The level
of this reaction’s inhibition was then used to gauge SOD activity
(23). Each sample’s levels of antioxidant enzymes were measured
and expressed as units per gram of hemoglobin (Hb).

Feed sampling and analysis

To modify TMR and calculate DMI, representative samples
(about 300 g) of silage, TMR, and orts were taken twice weekly and
dried in a forced-air oven at 55 °C for 48 h. To assay the index of
digestibility, spot fecal samples were taken weekly during the
experiment (4 samples/cow); were crushed to pass through a
1-mm Wiley mill screen (Arthur H. Thomas), the samples were
evaluated for DM, ash, OM, and total N employing a Nitrogen
Analyzer (Leco Instruments Inc.); heat-stable a-amylase and
Na,SO; were used to analyze NDF (24). Total-tract apparent
digestibility (%) was calculated for all nutrients analyzed
as follows:

100 [nutrient%feces x fecal output (kg / d)]

/[nutrient intake (kg / d)] '
trient% TMR

where nutrient intake (kg / d) = {nu Tene }

xTMR offered (kg / d)
—[nutrient%orts xorts (kg / d)]

Rumen sampling and analysis

On the last day of the study, approximately four hours after
the morning feeding, ruminal fluid (9.8 mL) was collected using
a stomach tube (25). After filtering the rumen liquor using three
layers of cheesecloth, the ruminal fluids pH was quickly
determined using a portable digital pH meter, calibrated at pH 4
and 7 (HI 8318; Hanna Instruments, Cluj-Napoca, Romania). The
ruminal fluid (9.8 mL) was put into 10-mL centrifuge tubes,
acidified with 0.2 mL of a 50% H2SO4 solution (vol/vol), and
centrifuged at 7,000 x g for 15 min at 4 °C. Then, the supernatant
was kept at —20 °C for further investigation. A Merck Hitachi
Elite LaChrome HPLC system (L2400, Hitachi) and a Bio-Rad
Aminex HPX-87H column (Bio-Rad Laboratories) were used to
evaluate volatile fatty acids. A UV detector (wavelength 210 nmy;
Hitachi L2400) and a flow rate of 0.7 mL/min at 46 °C were
utilized in an isocratic elution system with the column, which
included 0.015 M sulfuric acid (H,SO,) in the mobile phase of
HPLC. Ammonia-N was tested with a Technicon autoanalyzer,
which used a colorimetric approach to quantify N.
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Statistical analysis

All weekly data were analyzed using SAS version 9.4’s MIXED
approach (SAS Institute Inc., Cary, NC) in line with the repeated
measures model specified below:

Yijk = pu+Ti+ Ak +Tix Aj +Cj(Ti) +eijk.

where Y, = dependent continuous variable, y = overall mean,
T,=fixed effect of A, =fixed effect of
T; x A = interaction between treatment and time, C(T;) = random effect

treatment, time,
of cow, and ey, = residual error. For all variables, the covariates for dry
matter intake (DMI) and prior 305-day milk yield were kept in the model
when they were significant (p < 0.05). Normal probability and box plots
were used to confirm that the residuals were normally distributed. The
model without the time impact was used to analyze cumulative milk
yield and DMI using SAS’s MIXED technique. Significance was set at
P <0.05, and trends were considered significant at p < 0.10.

Results
Milk yield, milk composition, and DMI

Milk compositions are shown in Table 2 and Figure 1. Dry
matter intake (DMI) was significantly influenced by the treatments;
diets containing 30 ppm NP-ZnO showed a higher value
(23.12 kg/d; p < 0.01). We observed the highest concentration of Zn
in milk with NP-ZnO at 90 ppm dose compared to the other doses
(2.71 pg/mL; p < 0.01). Regarding the percentage of milk protein
and fat, the group receiving 60 ppm NP-ZnO level showed a higher
concentration than CON (3.16 and 3.06%, respectively).

Total-tract nutrient digestibility

Dietary supplements did not affect the nutrient digestibility of the
dairy cows (Table 3) despite numerical differences across treatments.
The 30 ppm NP-ZnO dose had higher dry matter (p = 0.14), crude
fat (p = 0.55), and NDF digestibility (p = 0.11); the 60 ppm NP-Zn
group had the highest crude protein digestibility (p = 0.40).

Plasma indices

Table 4 and Figure 2 present the impact of dietary supplements on
plasma biomarkers. Group feeding with NP-ZnO at 90 ppm showed the
highest concentrations of glucose (p = 0.94) and TG (p = 0.43), and the
group receiving 30 ppm resulted in higher cholesterol (p = 0.49). The
indicator of inflammation, albumin, showed a similar trend (p = 0.41).

Rumen fermentation parameters

Table 5 shows the characteristics of rumen fermentation in
Holstein dairy cows fed with different doses of NP-ZnO supplements.
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TABLE 2 Effect of dietary-supplemented different zinc sources on DMI, milk yield, milk composition, and BW and BCS changes.

Treatment? P-value®

3 Treatment Time Treatment x
Time

Intake, kg/d

DM 22.1 23.1 23.02 22.5 113 0.36 <0.01 <0.01
Yield, kg/d
Milk 44.4 41.5 37.8 44.2 2.82 0.33 <0.01 0.53
3.5% FCM 41.5 39.6 36.4 43.5 2.96 0.39 <0.01 0.55
3.5% ECM 41.6 39.7 36.6 43.5 2.78 0.36 <0.01 0.55
Fat 1.37 1.33 1.24 1.50 0.12 0.45 <0.01 0.56
Protein 1.29 1.23 1.15 1.33 0.08 0.38 <0.01 0.56
Lactose 2.04 191 1.72 2.02 0.13 0.33 <0.01 0.53

Milk composition, %

Fat 331 3.17 3.62 3.01 0.23 0.41 0.05 0.92
Protein 2.97 2.98 3.06 3.00 0.09 0.90 0.48 0.93
Lactose 4.58 4.61 4.55 4.57 0.04 0.82 <0.01 0.74
MUN, mg/dL 10.8 10.7 10.6 10.7 0.16 0.71 <0.01 0.16
SCC, 10° cells/ 2 5 5 3 1 0.69 0 0.9
mL

Zn, pg/mL 0 1 2 2 0 <0.01 - -
BW change, kg —18.6 —18.1 —-17.8 —-14.1 233 0.52 - -
BCS change, kg 2,61 271 268 258 0.07 031 - -

“Experimental diets were: (1) CON + 30 ppm zinc oxide, (2) CON + 30 ppm ZnO-NPs, (3) CON + 60 ppm ZnO-NPs, and (4) CON + 90 ppm ZnO-NPs.

bp-values refer to the ANOVA results for the main effect of treatment, the main effect of time, and the interaction between treatment and time.

3.5%FCM = [0.4324 x milk yield (kg/d)] + [16.216 x fat yield (kg/d)].

3.5% ECM = 0.327 x milk yield (kg/d) + 12.95 x fat yield (kg/d) + 7.2 x protein yield (kg/d).

‘DM, dry matter; FCM, fat corrected milk; ECM, energy corrected milk; MUN, milk urea nitrogen; SCC, somatic cell count; BW, body weight; BCS, Body condition score.

SEM=2.82
P-value (Trt)=0.33
P-value (TrtxTime)=0.53

601
-o— TI
3 50 = T2
£
3 o T3
.9
-
§40_ - T4
30

12345678 910111213 14151617 18 19 20 21 22 23 24 25 26 27 28
Day of lactation

FIGURE 1
Effect of dietary-supplemented different zinc sources on milk yield of dairy cows. Experimental diets were: (1) CON + 30 ppm zinc oxide, (2) CON +
30 ppm ZnO-NPs, (3) CON + 60 ppm ZnO-NPs, and (4) CON + 90 ppm ZnO-NPs. Values are means, with SEM represented by vertical bars.
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The treatments impacted none of the measures; adding NP-ZnO to
the control diet increased total VFA (p = 0.48), but a numerical
reduction in ruminal content of NH;-N (p = 0.32). Furthermore,
neither the pH (p = 0.11) nor the proportions of individual VFAs were
impacted by the experimental diets.

Discussion
Milk yield and composition, DMI

Supplementing various forms of Zn has resulted in different
performances of Holstein dairy cows. During the period, there was

TABLE 3 Effect of dietary-supplemented different zinc sources on
nutrient digestibility of Hosltein dairy cows.

Treatment?®
SEM  P-value®
DM (%) 723 73.6 72.5 71.03 0.88 0.145
NDF (%) 58.8 55.4 529 53.6 0.62 0.112
CP (%) 77.1 79.2 80.6 81.4 045 0.401
EE (%) 702 74.4 71.8 69.4 0.92 0.553

“Experimental diets were: (1) CON + 30 ppm zinc oxide, (2) CON + 30 ppm ZnO-NPs, (3)
CON + 60 ppm ZnO-NPs, and (4) CON + 90 ppm ZnO-NPs.

bp-values refer to the ANOVA results for the main effect of treatment, the main effect of time,
and the interaction between treatment and time.

‘DM, dry matter; NDF, neutral detergent fiber; CP, crude protein; EE, ether extract.

10.3389/fvets.2025.1720270

an increase in DMI of dairy cows fed with different doses of
NP-ZnO, ranging from 30 mg/kg DM to 90 mg/kg DM. In their
study, Raje et al. (15) observed an increase in DMI in pre-weaning
dairy calves receiving different doses of Zn in the starter (35.5, 34.7,
or 33.7 mg/kg of DM) and attributed it to the higher bioavailability
of the Zn source. The higher DMI in rats (26) and broilers (27) fed
with nano-particles of Zn in their diets. Additionally, Wang et al.
(28) showed that high-yielding Holstein dairy cows fed with diets
supplemented with coated zinc sulfate (CZS) increased their DMI
as compared to the group fed with CON diets. The authors
suggested that the higher DMI is probably a consequence of higher
digestibility of NDF and ADEF, which increases the passage rates of
the fiber (29), although in the current trial, we did not observe any
alterations in NDF digestibility. This finding is in disagreement with
the outcomes of Cope et al. (18) who showed that different levels of
ZnO (40 and 60 mg/kg DM) in a 14-wk trial did not influence DMI
of dairy cows. However, in a study of Malcolm-Callis, Duff (30)
there was a reduction in DMI of cross-bred beef steers (British x
Continental) that received an increasing dose of ZnSO,. The
decrease in DMI was related to the adverse impacts of higher ZnO
doses, although the form of Zn had a negligible effect on the DMI
of dairy cows (18).

It has been stated that the higher DMI and DM digestibility
(DMD), critical parameters influencing animal performance, were
the causes of the positive impact of zinc supplementation on milk
production, regardless of the type of zinc supplement (31, 32).
Adequate administration of Zn in the diets of dairy cows has the
potential to improve productivity by reinforcing the intestinal
epithelial membrane, stabilizing the microbiota in the gut,

TABLE 4 Effects of dietary-supplemented different zinc sources on blood traits of Hosltein dairy cows.

Treatment? P-value®
2 3 Treatment Time Treatment X
Time
Glucose (mg/dL) 525 50.5 50.0 53.0 4.02 0.94 0.29 0.61
Triglyceride (mg/ 19.3 18.6 16.1 19.1 1.53 0.43 0.87 0.11
dL)
Cholesterol (mg/ 256 241 206 189 342 0.49 0.57 0.94
dL)
Total protein (mg/ 7.92 8.03 7.45 7.76 0.24 0.38 0.78 0.82
dL)
BUN (mg/dL) 353 325 353 357 251 0.79 035 0.51
Albumin 3.92 3.87 3.13 3.67 2.65 0.41 0.20 0.42
ALT (U/L) 36.3 393 37.04 416 2.04 0.27 0.87 0.90
AST (U/L) 74.0 66.8 743 775 527 0.29 0.92 0.92
Bilirubin (mg/dL) 0.34 0.35 0.29 0.24 0.05 0.34 0.66 0.67
WBC (10*/m?) 11.2 11.9 11.2 11.02 0.524 0.13 - -
RBC (10°/m?) 8.28 8.45 8.64 9.04 0.617 0.09 - -
Alkaline 104 106 108 106 5.03 0.184 - -
Phosphatase (IU/L)
SOD (IU g Hb) 2 2 2 2 5 <0.01 - -
Zn (ug/mL) 113 1.26 1.39 1.50 0.09 0.32 - -

“Experimental diets were: (1) CON + 30 ppm zinc oxide, (2) CON + 30 ppm ZnO-NPs, (3) CON + 60 ppm ZnO-NPs, and (4) CON + 90 ppm ZnO-NPs.
hp-va.lues refer to the ANOVA results for the main effect of treatment, the main effect of time, and the interaction between treatment and time.

AST, aspartate aminotransferase; ALT, alanine aminotransferase; SOD, super oxide dismutase.
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optimizing the efficiency of digestion and absorption of nutrients,
and increasing the availability of nutrients and energy for higher
milk production (33-35). Furthermore, Xie et al. (35) stated that an
increase in milk production by incorporating Zn sources into diets
at an appropriate dose might have a beneficial impact on milk
efficiency of dairy ruminants. Milk production was unaffected by
the different doses of NP-ZnO in the current investigation (Table 3),
which is in line with the findings of Martino, Ianni (36), who stated
that lack of influence of ZnO or NP-ZnO at 44 mg/kg DM was likely
caused by the fact that the bioavailability of supplemental Zn may
not be important to show a significant effect on milk yield (37).
Furthermore, in a study, Ianni, Innosa (38) did explore no increase
in DMI and milk yield of Friesian dairy cows fed with 37 mg/kg
DM. Comparing dietary zinc in organic and inorganic forms, Cope,
Mackenzie (18) found that although DMI did not change among the
treatments, milk yield increased with 300 mg of chelated Zn/kg DM
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in the diet of Holstein-Friesian dairy cows; however, milk
components were not influenced by the Zn sources and doses.
However, Wang et al. (28) observed an increase in milk yield in
groups of dairy cows fed with Zn sources and linked to factors, such
as Zn concentration in basal diets, dose, and sources of Zn
administered into the diets.

There have been suggestions that the ewes receiving Zn
supplements, particularly NP-ZnO, had lower milk SCC, in contrast
to the control group. This could be because the animals fed ZnO
and NP-ZnO had better total leukocytes and total antioxidant
capacity (TOAC), which reduces the udder’s vulnerability to
bacterial infections (18, 39). Another possible explanation for
NP-ZnO’s improved efficacy in lowering ewe milk SCC is its
diminished impact on harmful microorganisms (40). Additionally,
Zn exhibits antioxidant properties and stabilizes membranes, which
suggests its role in the prevention of free-radical-induced injury
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TABLE 5 Effect of dietary-supplemented different zinc sources on ruminal pH and fermentation characteristics.

Treatment?

pH 6.42 6.37 6.22 6.35 0.25 0.116
N-NH; (mg/dL) 17.2 15.4 14.01 16.3 1.46 0.329
TVFA (mmol/L) 114 115 117 115 1.72 0.485
Acetate (%) 68.1 65.5 69.2 66.7 2.98 0.392
Propionate (%) 19.9 20.4 18.6 18.5 0.12 0.465
Butyrate (%) 10.3 8.73 9.12 8.45 0.36 0.097
A/P 3.42 3.21 3.71 3.60 0.09 0.078

“Experimental diets were: (1) CON + 30 ppm zinc oxide, (2) CON + 30 ppm ZnO-NPs, (3) CON + 60 ppm ZnO-NPs, and (4) CON + 90 ppm ZnO-NPs.
Pp-values refer to the ANOVA results for the main effect of treatment, the main effect of time, and the interaction between treatment and time.

“TVFA, total volatile fatty acids.

during inflammatory processes (41). In another study, Rajendran,
Kumar (42) found that in comparison to animals fed ZnO,
supplementation of diets with NP-ZnO enhanced the production of
milk and reduced milk SCC in cows with subclinical mastitis. Also,
Machado, Bicalho (43) showed that injection of a multimineral
preparation (including selenium, copper, zinc, and manganese) had
a positive impact on udder health, decreasing linearly SCC scores
and the incidence of subclinical and clinical mastitis. In contrast,
Whitaker, Eayres (44) recorded no effect of dietary zinc
supplementation on SCC. Furthermore, Spain (45) found no
significant differences in SCC in the Iris trial, whereas in fact the
cows receiving zinc proteinate ended up with slightly higher values.
According to Chibisa, Christensen (46), normal ruminal
fermentation, which prevents fluctuations in milk fat, may be the
reason for the lactating ewes’ identical milk fat contents, suggesting
that the ewes’ ability to obtain post-ruminal metabolizable protein
(MP) was unaffected by the various dietary zinc sources, as there
was no influence of either ZnO or NP-ZnO on the milk protein.
Raynal-Ljutovac, Lagriffoul (47) found that the zinc level of CON
milk was similar to that of raw milk. The Zn content of milk was
also found to be substantially raised by a Zn-enriched diet (36),
which is in line with the current study.

Total-tract nutrient digestibility

The nutrient digestibility results were consistent with those of
Mandal, Dass (48), who found that in bulls fed a basal diet
(32.5mg Zn/kg DM) supplemented with 35 mg Zn/kg DM,
dietary zinc did not affect DM, CP, ADF, or NDF digestibility.
Likewise, Garg, Mudgal (49) found no impact of zinc
supplementation on lambs’ N retention or balance. Furthermore,
piglets (50) and goat kids (51) did not exhibit a change in DMD
when fed NP-ZnO instead of ZnO. However, Salama, Caja (52)
found that dairy goats fed a diet supplemented with 1 g/day of
organic zinc had higher apparent digestibility of DM and
CP. Furthermore, Garg, Mudgal (49) discovered that feeding
lambs a diet with 34 mg of zinc/kg DM in addition to 20 mg of
organic zinc/kg DM enhanced the digestibility of ADF while not
affecting DM, CP, or NDF digestibility. The therapeutic benefits
of zinc supplementation on DMD in the studies may be attributed
to the beneficial effects of zinc on the activities of digestive
enzymes (53) and the proliferation and function of rumen bacteria
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(54). An additional explanation could be related to how zinc
improves the gastrointestinal tract’s hydrolase activity (55). It
might be connected to the increased proliferation of fiber-
degrading rumen bacteria due to NP-ZnO’s great adsorbing
capacity and higher surface activity (56). In line with these studies,
the other researchers demonstrated that NP-ZnO supplementation
improved digestibility both in vitro (57) and in vivo studies (58),
and related it to the stimulation of rumen microbial activity and
the subsequent biological action of nano-minerals. It is crucial to
consider that preparation and time affect the stability and size of
nanoparticles. Therefore, it is preferable to determine the nano
minerals’ particle size right before the experiment.

Plasma indices

The variations in SOD activity in plasma between the treatments
were statistically significant. Additionally, NP-ZnO increased
several enzyme activities, such as alkaline phosphatase. According
to Li, Huang (50), zinc has an essential role in SOD, the main
antioxidant enzyme found in cells, which is involved in detoxifying
superoxide free radicals and shielding cells from oxidative stress.
Bun, Guo (59) reported an increased SOD in the plasma and liver
of broilers with increasing the levels of supplementation and the use
of organic sources. It is reported that Zn is an essential component
of SOD, the primary antioxidant enzyme in cells, which plays a
fundamental role in the detoxification of superoxide free radicals
and protection of cells against oxidative stress (60). Zn deficiency
leads to decreased activity of SOD, resulting in increased tissue
sensitivity to oxidation due to the weakness of the antioxidant
system (10). One of the proposed mechanisms of action for Zn is
its capacity to displace transition metals (Fe and Cu) from binding
sites. Zn can compete with iron and copper to bind to the cell
membrane and decrease the production of free radicals, thus
exerting a direct antioxidant action (41).

Compared to ZnO, feeding NP-ZnO resulted in a decrease in
white blood cells, which might be NP-ZnO has a higher cellular
bioavailability (61). Similarly, the dietary substitution of NP-ZnO for
ZnO demonstrated a positive impact on the piglets’ immune systems
(50). According to NRC (2001), ruminants typically have plasma zinc
levels between 0.9 and 1.5 mg/L. Current results demonstrated no
discernible variation in the plasma zinc content between these groups,
and that dietary supplementation of NP-ZnOs raised plasma zinc
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concentration, demonstrating that NP-ZnO was more accessible than
inorganic ZnO.

According to previous reports, nanoparticles can improve drug
absorption and have a greater bioavailability (54, 62). Comparable to
our findings, Chhabra and Arora (63) discovered that goats given a
basal diet (15 mg Zn/kg DM) supplemented with 65 mg Zn/kg DM
had greater plasma Zn contents than control goats. In addition,
Puchala, Sahlu (64) observed that Angora goats fed a basal diet
containing 22 mg Zn/kg DM had greater serum Zn concentrations
when supplemented with 40 mg Zn/day. According to Jia (65), when
zinc levels are at a medium level, homeostatic mechanisms would not
expect supplementary zinc to raise plasma zinc concentrations. This
suggests that the ideal supplemental zinc concentration for Cashmere
goats was 30 mg/kg DM (total of dietary zinc 52.3 mg/kg DM).

Rumen fermentation parameters

The ruminal pH values of the cows ranged from 6.22 to 6.42,
which falls within the typical range of 5.5 to 6.8 (32). The concentration
of NH;-N varied from 14.01 to 17.23 mg/dL, exceeding the minimum
concentration of 5 mg/dL required for the proper establishment of
rumen bacteria (32). Due to the denaturing effect of higher diet zinc
on soluble proteins and the deactivating effect of supplemental zinc
on ruminal proteolytic enzymes, the dietary addition of NP-ZnOs
may have reduced ruminal NH;-N concentration by decreasing
ruminal proteolysis (66). Another explanation for the lower ruminal
NH;-N could be the increased intake, digestibility, and energy
availability, which also promote the absorption of ammonia in
microbial protein (67). The higher DMI and DMD of the
Zn-supplemented cows may be a result of higher ruminal TVFA
content compared with the control group (32). Nevertheless, the
identical molar ratios of the distinct VFA in the cows’ rumen
demonstrated that the dietary Zn supplementation did not affect their
relative production and absorption. According to the current findings,
adding Zn sources to the diet may alter the rumen fermentation
process to capture the increased feedstuff energy as VFA. These
statements are consistent with the results of Bateman II, Williams (68).
Similarly, Kumar (57) demonstrated that adding NP-ZnOs to a diet
based on sorghum stover raised the in vitro ruminal VFA
concentration while not affecting the number of protozoa. Ginting
and Simanihuruk (69), on the other hand, found that giving goats
higher dietary quantities of zinc, such as ZnO, did not affect their
ruminal VFA.

Conclusion

that
supplementation with NP-ZnO improved Zn concentration in both

In conclusion, the current study demonstrates
milk and serum compared with the control diet. The results also
indicate a potential positive role of NP-ZnO in enhancing milk
composition, Zn retention, and certain blood antioxidant parameters
in dairy cows. Although these improvements were not always
statistically significant, the overall numerical trends suggest a
beneficial effect on physiological responses. Considering milk
performance, a dietary inclusion level of 90 ppm NP-ZnO appears to
be a promising concentration. Nevertheless, further studies with
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larger sample sizes and longer feeding periods are needed to confirm
these findings and to clarify the absorption mechanisms and
metabolic pathways of NP-ZnO in dairy cows.
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