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Since Charles Darwin’s influential work on The Expression of the Emotions in
Man and Animals, there have been significant advancements in how animal
behaviorists identify and describe the facial signals of animals, including humans.
Most of these advancements are largely attributed to technological innovations
in how data are recorded in addition to the establishment of computer programs
that aid with behavioral coding and analysis. Consequently, various manual
and automated approaches can be adopted, each with its own benefits and
drawbacks. The goal of this overview is twofold. First, we provide an overview
of the past and present techniques for coding animal facial signals. Second, we
compare and contrast each method, offering multiple examples of how each
technique has been used and can be applied in the study of animal facial signaling
today. Our examples include studies that address empirical questions related to
animal behavior, as well as studies aimed at generating applications for animal
welfare. Instead of favoring or criticizing one approach over another, our aim is
to foster appreciation for the advancements in animal facial signal coding and to
inspire future innovations in this field.

KEYWORDS
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Animal facial signals

For decades, researchers have studied animal facial signals, focusing on their physical
forms, social functions, and emotional links (1–3). These facial signals are generally
defined as combinations of one or more facial muscle movements that animals produce
during bouts of communication (4–6). Notably, these combinations of movements often
seem unrelated to basic biological functions, such as chewing (7–9), and can be directed
toward other animals (10). Some researchers suggest that facial signals in animals are
closely linked to specific categories of emotional arousal, providing valuable non-invasive
insights into their mental lives (1, 11, 12). However, these facial signals, along with
the corresponding muscle movements, are subject to interpretation by others (13, 14).
Consequently, some researchers propose that these signals can reliably predict future
behaviors, allowing individuals to adapt their own actions based on the perceived meaning
of these signals (3, 13–16). The study of facial signals in non-human animals is particularly
important for humans, as we live alongside a variety of species, both in wild and captive
settings. By understanding the social functions and emotional links associated with specific
combinations of facial muscle movements, we can adjust our behavior, which in turn
improves our interactions with non-human animals. For example, understanding the
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facial muscle movements linked to a higher likelihood of aggression
during intraspecific interactions among domesticated cats enables
us to intervene before conflicts occur (17). In the context of cat-
human interactions, this knowledge allows us to adjust our own
behavior to minimize the risk of injury (18).

Manual coding approaches

The study of animal facial signals has been greatly influenced
by technological innovations available to researchers (19). For
example, early naturalists heavily relied on illustrations and
written descriptions (12, 20, 21) until the advent of photography
and videography. Over the past decade, researchers have made
significant progress in identifying and differentiating various types
of facial signals (3, 22). Some of the earliest methods involved
creating ethograms, which categorize facial signals based on key
similarities in facial muscle movements, while also considering
the social context of the interaction (12, 23). In his influential
work, The Expression of the Emotions in Man and Animals, Charles
Darwin differentiates between six facial signals type associated
with distinct categories of emotion (12, 24). Through behavioral
observations, photographs, illustrations, and conversations with
fellow naturalists, Darwin established these categories to highlight
similarities in physical forms and emotional responses among
human and non-human animals. Darwin documented not only
the movements of facial muscles but also various social factors
influencing their production, including the presence or absence of
other animals and the perceived bond between them, such as the
relationship between humans and domesticated animals (12).

Facial action coding systems (FACS)

Almost a decade after Darwin’s work on animal facial signals,
researchers and practitioners began to develop more systematic
and standardized methods for studying these signals. One of
the early pioneers was Carl-Herman Hjortsjö, who focused on
facial mimicry and the silent communication conveyed through
individual facial muscle movements in humans (5). He suggested
that these movements are similar to letters in human language,
where combinations form “words” that can be easily understood
due to their connections with different emotional states (5). To
investigate this “silent language,” Hjortsjö created a coding system
that assigned numerical codes to specific facial movements in
humans, allowing for the identification of unique facial muscle
movement combinations (or signals). For example, while both
“suspicious” and “observing” facial signals share lowered brows,
they differ from one another based on chin position (5).

Following Hjortsjö’s work, Paul Ekman developed the human
Facial Action Coding System (FACS) in 1978. He argued that
the “language” of emotional facial signals was “universal” across
human societies, and that the meaning of each signal could be
identified based on individual muscle movements (11). During his
research, Ekman noted that certain cultures had “display rules” or
socially constructed facial signals, making it difficult to identify the
“true” underlying emotion being experienced (25). To understand
the true meaning (i.e., emotional link) of these facial signals,

Ekman developed the FACS (6, 26). FACS employs both posed
photographs and video to train individuals in recognizing subtle
and overt facial muscle movements (called Action Units, or AUs)
that are combined to create a signal (6, 26). Facial signals can be
captured and coded through photographs, video clips, or in real
time. Together, Hjortsjö and Ekman’s coding systems represent the
most comprehensive and systematic approaches to studying human
facial signals, minimizing observation bias by considering all facial
movements equally (27). It is important to recognize that both
Hjortsö’s and Ekman’s coding schemes focus on the physical aspects
of human facial signals (22). Researchers using these protocols are
tasked with creating additional metrics and measures that link these
physical forms to their socio-emotional functions.

Recently, efforts to systematize and standardize the study of
non-human animal facial signals have led to the development
of FACS for various animal species, collectively known as
animalFACS [https://animalfacs.com/; (22)]. These systems have
been developed for a diverse range of species, including non-
human primates (27–35) and domesticated animals (36–38).
As a result, our understanding of animal facial signals has
significantly improved. Recent studies indicate that some mammals
can produce dozens of distinct facial muscle movements for
communication, surpassing what was previously documented
(9, 17, 39, 40). Researchers utilizing animalFACS have found
that specific combinations of facial muscle movements correlate
with distinct social outcomes, highlighting the direct relationship
between the physical form of facial signals and their social
functions (41, 42). Furthermore, studies indicate that animals’
facial signaling behaviors are influenced by multiple factors
such as the strength of social bonds (39), levels of social
tolerance (43), and group size (40), with noticeable variations
both within and between species (40). AnimalFACS facilitates
cross-species comparisons by providing a consistent method
for identifying and documenting facial muscle movements,
thereby ensuring more accurate assessments across different
species (22).

Finally, FACS are now used to assess animal welfare by
identifying key facial muscle movements linked to pain and other
negative emotions (44). For instance, in domesticated animals,
facial muscle movements described in FACS such as AU143
(blink), AU145 (eye closure), and lip corner puller (AU12) has
been observed in facial behaviors associated with pain among
domesticated cats (45) and dogs (46). It is important to note
that in studies of pain among non-human animals without an
established FACS, such as rodents, researchers often employ similar
systematic and standardized methods for identifying facial muscle
movements, taking inspiration from FACS-based approaches (47).
In these cases, researchers identify, describe, and examine Facial
Action Units (FAUs), specific facial movements that occur during
pain episodes (46, 48), highlighting the significance and practicality
of FACS-based approaches.

Limitations of FACS coding

Although animalFACS are systematic and standardized
methods that have enhanced our understanding of animal facial
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FIGURE 1

This figure features a chimpanzee named Ben producing pant hoots, identifiable by the presence of AUs 22+25+26+50 (i.e., the lips are funneled,
lips parted, and jaw dropped, all accompanied by a vocalization). Pant hoot calls are generated during periods of high excitement, such as responses
to observing playful interactions, distress, or the availability of food (51). In this scenario, Ben produces a pant hoot facial signal and vocalizes in
response to another chimpanzee’s scream, causing the surrounding chimpanzees to heighten their vigilance and attend to the situation. In the top
image, Ben’s face is clearly visible as he sits still, devoid of any other chimpanzees or objects that could obscure his facial muscle movements.
Conversely, the bottom image presents challenges for FACS coding: Ben’s face (on the right) is partially obscured by other chimpanzees, and he is in
motion, moving quickly from left to right. Additionally, the profile view in the video clip complicates the discernment of his facial muscle movements
compared to a head-on perspective.

signals, they are associated with multiple drawbacks. Many
of these limitations stem from the manual coding required,
as researchers must analyze photographs, videos, or real-
time behaviors to identify the presence or absence of many
different facial muscle movements. First, to use animalFACS,
researchers must first undergo training and pass a certification
test that evaluates their reliability in coding facial movements
when compared to FACS experts (22, 49). This process is
crucial for ensuring consistency in published studies and
applications, but it can be quite time- and resource- intensive
(49). Second, coding using FACS-based approaches is extremely
time-consuming; just a few seconds of video footage can take
several hours to analyze (50). Even coding photographs is a
lengthy process, as researchers must assess dozens of distinct
facial muscle movements. Third, given the number of facial
muscle movements documented in animalFACS, type 2 coding
errors may occur when attempting to code all possible Action
Units (AUs). Finally, coding accuracy and efficiency are largely
influenced by many external factors, such as the visibility of
subjects and the number of subjects within a given setting
(Figure 1).

The artificial intelligence revolution

By building upon the FACS system, which offers an objective
framework for characterizing facial behavior, researchers were able
to formalize animal communication in a manner consistent with
modern data analysis (52). This data-driven approach, centered on
anatomically-based AUs, inherently defines numerical framework
such as time series, classification, and regression tasks (48, 53, 54).
Despite its promise, the limitations of the FACS systems rendering
large-scale, long-duration studies time and resource intensive at
best and sometimes even impractical (22, 55, 56). In this context,
the advent of artificial intelligence (AI), in general, and computer
vision methods, in particular, presented a promising alternative to
overcome these limitations (44, 57, 58). By leveraging AI-powered
systems, researchers and practitioners aimed to produce objective
and rapid scores for facial signals (48, 59, 60). This transition
was not a rejection of prior methodologies, but a progression
enabled by technology. For example, catFACS have been utilized
to develop facial landmark schemes that can automatically detect
the presence or absence of specific AUs through video footage (61),
allowing for the identification of emotional states such as pain
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(62). The annotated data painstakingly collected through manual
coding became the essential “ground truth” for training data driven
algorithms based on novel methods such as machine learning
(63, 64). This symbiotic relationship underscores that for any new
species to be studied, a foundational, human-led effort to create
a species-specific ethogram or coding system must precede the
development of an automated solution. The human observer’s role
has therefore shifted from a primary data collector to a foundational
dataset creator and validation expert, a crucial step in the causal
chain of modern animal behavior research.

AI as a tool for pain and welfare assessment

The most impactful early applications of AI in mammalian
facial signal coding focused on automating grimace scales,
providing a critical tool for assessing pain and welfare, particularly
in laboratory and agricultural settings (44). This area of research
began with rodents, which are widely used in biomedical studies
(65). A pioneering 2018 study detailed the development of
an automated Mouse Grimace Scale (aMGS) using a deep
convolutional neural network (CNN) architecture (66), specifically
a retrained InceptionV3 model (67). This model was trained
on a dataset of over 5,700 images and achieved an accuracy of
94% in assessing the presence of pain. The automated scores
demonstrated a high correlation with human scores with a
Pearson’s score of 0.75. By this, demonstrating the machine’s ability
to accurately replicate and even surpass human-level performance.
This principle of grimace scale automation was later extended to
other species, including rats, where a study developed an automated
Rat Grimace Scale (RGS) that achieved 97% precision and recall
for AU detection (65). Similarly, and right after, studies about the
usage of AI-based models to automate the Horse Grimace Scale
(HGS) were proposed (68–70). These studies employed recurrent
neural networks (RNNs) (71) to capture the temporal dynamics of
facial signals, a critical factor for accurate pain recognition (70).
The results were highly promising, with AI models classifying
experimental pain more effectively than human raters.

These studies highlighted the necessity of data augmentation
techniques to compensate for the scarcity of annotated horse
facial data (20, 21). The success of AI in automating grimace
scales fundamentally changes the paradigm of pain assessment.
The objectivity, consistency, and ability to analyze vast datasets
mean that AI-derived scores can become the new gold standard,
potentially more reliable than those from human coders. This
transition allows for a shift from reactive, infrequent checks to
continuous, proactive monitoring, ultimately leading to improved
animal care (72). Across studies reviewed here, automated
systems were evaluated against human-coded ground truth derived
from certified FACS coders. Typical protocols involved several
steps, including: (1) coder training/certification; (2) double-coding
subsets and reporting human-to-human reliability (e.g., Cohen’s
κ/ICC); and (3) using a consensus human label as ground truth
for model testing. For Action Unit (AU) detection and facial signal
classification, researchers typically reported standard classification
metrics such as precision, recall, F1, and accuracy, although these
measures are not consistent between studies. Where available,

calibration/error metrics (e.g., ROC-AUC, Brier score) and
confusion matrices were also reported in some studies. To interpret
disagreements between humans and models, multiple studies used
third-party adjudication or expert review of discrepant items to
determine whether errors arose from annotation ambiguity, image
quality/pose/occlusion, or genuine model misclassification.

Social and emotional states

As the field has matured, AI methodologies have been applied
to classify a wider range of emotions and behaviors, enabling
new avenues of research in social dynamics and human-animal
interaction (73–75). Studies on domestic dogs, for instance, have
moved beyond a simple pain/no-pain binary to classify more
nuanced emotional states (76–78) developed a method using
computer vision and transfer learning with a MobileNet (79)
architecture to analyze canine emotional behavior. The model was
trained on 1,067 images across four categories: aggressiveness,
anxiety, fear, and neutral. While achieving a test accuracy of 69.17%,
the research demonstrated the feasibility of using AI to develop
tools for dog trainers and handlers, improving the selection and
training processes for working dogs. The application of AI to
domestic cats addresses a significant gap, as this species is known
for its subtle and often enigmatic emotional cues (80, 81) presented
a real-time system using convolutional neural networks (CNNs)
to classify cat facial signals into four categories: Pleased, Angry,
Alarmed, and Calm. The model showed high recognition accuracy
and holds substantial potential for applications in veterinary care
and enhancing pet-owner communication. Complementing this,
(82) leveraged a more specialized architecture, DenseNet (83),
which uses dense connectivity patterns to capture intricate features
in pet facial signals. This methodological evolution from general
CNNs to specialized models like DenseNet and RNNs reflects the
growing sophistication of the field and the increasing specificity of
research questions.

Beyond welfare, AI is being used in fundamental scientific
inquiry to understand the neurobiological basis of facial
communication. Studies on primates, such as the work by
Chang and Tsao (85), have used computational models to
demonstrate how neural ensembles in macaque face patches
employ a combinatorial code to represent faces (84, 85). This
represents a fascinating reverse application of AI principles, where
the study of the brain’s own coding mechanisms can inform the
development of more efficient AI algorithms (84).

Limitations of artificial intelligence

While the application of AI to coding animal facial signals has
demonstrated immense potential, significant challenges remain.
The most persistent obstacle is the scarcity of large, high-
quality, and annotated datasets for many species (86, 87).
The process of manual ground-truthing, though foundational,
remains a bottleneck that limits the development of robust
models. Furthermore, models trained on specific breeds or
environmental conditions may struggle to generalize to new
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FIGURE 2

This figure illustrates two primary ways in which both manual and AI-powered approaches can be integrated. The first method involves
implementing AI-based vision models on video footage collected by animal behaviorists. These models are used to identify and quantify various
variables, such as the distance between animals and the presence/absence of facial muscle movements. The second method involves applying
AI-based tabular models to pre-existing datasets that have been manually coded, allowing researchers to explore novel questions. For instance, this
may include identifying patterns in communication variables or determining whether instances of rapid facial mimicry are occurring.

subjects or different settings (88). The high variability in the
facial anatomy across animal species makes a universal, one-
size-fits-all model difficult to achieve. Another fundamental
challenge lies in the distinction between classifying facial signals
and interpreting the underlying emotional state. While AI is
excellent at recognizing and quantifying facial movements, it still
cannot fully interpret the internal emotion or intent. The link
between a specific facial movement and an internal state (e.g.,
pain, fear, pleasure) must still be established through careful,
human-led behavioral and physiological studies. This human-
centric validation remains a critical component of the research
process. Several constraints outlined for manual FACS coding
also hinder automated performance because they disrupt the
facial features models need to detect. Beyond these shared issues,
automated approaches introduce additional challenges, including
but not limited to: (1) domain shift and dataset bias where
models trained on specific facilities, breeds, or camera setups may
not generalize without adaptation; (2) annotation noise in the
human-provided ground truth used for training; (3) probability
calibration/thresholding; and (4) temporal dependence where
frame-based models can miss dynamic cues unless explicitly
modeled. These considerations motivate reporting human-to-
human reliability alongside model-vs.-human agreement, subject-
disjoint evaluation, and cross-site tests.

Discussion

Both manual coding and AI-powered approaches offer distinct
benefits and drawbacks. To fully leverage the advantages of each
method while minimizing their limitations, it is essential to
foster collaborative efforts (Figure 2). By combining different kinds

of research expertise, more comprehensive studies can also be
conducted, bridging gaps in knowledge (89–91). For instance, by
utilizing video footage and FACS-coded data, (92) discovered that
domesticated cats, like many other mammals, can perform rapid
facial mimicry during affiliative interactions. Through the analysis
of existing chimpanzee datasets, the authors found that multimodal
communication (i.e., where both facial signals and manual gestures
are used) along with clear signaling (i.e., which involves employing
distinct types of signals during interactions), plays a crucial role in
predicting the success of social negotiations among chimpanzees
(93). It has been also found that the communicative patterns of
chimpanzees vary based on their social rank (94). Understanding
how cats communicate can enhance training techniques, inform
social interventions, and improve the bond between cats and their
owners (95). Similarly, studying chimpanzee communication offers
valuable insights into the evolution of human communication
and informs conservation efforts, helping to guide decisions
about interventions and transfers across accredited institutions.
To this end, scholars and practitioners can take advantage of
commercial-grade, end-to-end “FaceReader-like” systems for non-
human animals. These systems more often than not produce
highly accurate results for well-photographed domestic species
(e.g., cats, dogs, horses), provided species-specific training data
and validated AU/grimace annotations. Early components already
exist, such as automated grimace scales and facial-state classifiers
for multiple species, on-farm welfare pipelines, and landmark-
based cat facial analysis. This demonstrates technical viability and
practical utility for this technology and further emphasize that
remaining barriers are less about algorithms and more about
data coverage (age, breed, morphology), deployment conditions
(lighting, camera placement), and standardized validation against
certified human coders across sites.
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The development of standardized, publicly available datasets
for a wider range of species would also accelerate research and
improve model generalizability. To this end, benchmarking studies
on common tasks in the field and across these emerging datasets
can provide researchers and practitioners a quick start from the
AI modeling perspective (96–99). Future work may also focus on
developing models that can generalize across related species or
different taxa, reducing the need to build a new model from scratch
for every animal (100–102). As AI becomes more deeply integrated
into animal research and care, it is also crucial to consider the
ethical implications of using this technology (103, 104), including
data privacy and the potential for over-interpretation of animal
signals, ensuring that these powerful tools are used responsibly
to enhance, not diminish, animal wellbeing. Through large-scale
collaborative efforts, such considerations can be addressed more
effectively while also advancing our understanding of animal
facial signaling.
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