

OPEN ACCESS

EDITED AND REVIEWED BY
Regiane R. Santos,
Schothorst Feed Research, Netherlands

*CORRESPONDENCE
Shuli Yang

☑ yangshuli77@163.com
Ying Li
☑ yingli@fosu.edu.cn
Jianmin Chai
☑ jchai@uark.edu

[†]These authors have contributed equally to this work

RECEIVED 18 September 2025 ACCEPTED 13 October 2025 PUBLISHED 23 October 2025

CITATION

Zhao Z, Wei X, Deng F, Yang S, Li Y and Chai J (2025) Editorial: Advancements in synthetic microbiomes for enhancing animal health. *Front. Vet. Sci.* 12:1708299. doi: 10.3389/fvets.2025.1708299

COPYRIGHT

© 2025 Zhao, Wei, Deng, Yang, Li and Chai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Advancements in synthetic microbiomes for enhancing animal health

Zhengge Zhao^{1†}, Xiaoyuan Wei^{2†}, Feilong Deng¹, Shuli Yang^{1*}, Ying Li^{1*} and Jianmin Chai^{1*}

¹Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, China, ²Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States

KEYWORDS

microbiome consortium, assembly of microbes, microbiota, host-microbe interactions, microbial modulation

Editorial on the Research Topic

Advancements in synthetic microbiomes for enhancing animal health

The study of microbial communities is grounded in two foundational, yet distinct, concepts. The microbiota refers to the assembly of microorganisms belonging to different kingdoms, while the microbiome not only refers to the microorganisms involved but also encompass their theater of activity, forming a dynamic ecosystem integrated into macro-ecosystems like eukaryotic hosts (1). Microbiomes exhibit an astounding genetic, physiological, and biochemical diversity, enabling their survival across diverse environmental conditions and in various hosts worldwide. With advances in sequencing technologies, our understanding of microbiomes' abilities and their effects on hosts and environments has significantly expanded (2). For instance, recent research on the giant panda gut microbiome has revealed that Streptococcus lactis serves as a key player in the gut microbiota, enhancing protein metabolism to help the host adapt to a highfiber, low-protein bamboo diet (3). Additionally, the identification of 1,214 antibiotic resistance genes (ARGs) in the giant panda gut microbiome that are homologous to those found in the human gut highlights a potential risk of cross-species transmission between giant pandas and humans (4). Researchers are now harnessing the expansive capabilities of microbes for bioremediation and various applications in biotechnology, agriculture, and medicine. By constructing synthetic microbial communities—novel in composition, genetics, and phenotypes—scientists can tackle foundational biological issues and address broader societal challenges. Nonetheless, expansive research is essential to thoroughly explore the significance and applications of synthetic microbiomes.

This Research Topic aims to collect state-of-the-art knowledge regarding the manipulation of synthetic microbiomes, particularly focusing on animal gut microbiota. The gut microbiome is pivotal in nutrient metabolism, immune response, and the overall wellbeing of animals (5, 6). Defined as engineered collections of microbes with unique or intentionally modified characteristics, synthetic microbiomes allow researchers to investigate how these communities can enhance nutrient absorption, prevent metabolic diseases, and boost animal health by influencing digestion and metabolism processes. Key to this research is also the understanding of interactions between synthetic and natural microbiota components.

Zhao et al. 10.3389/fvets.2025.1708299

The research included in this special topic reveals the application value of synthetic microbiomes in animal health from multiple perspectives. The first category of research focuses on microbial assembly and functional regulation associating with animal health. For example, Zhang et al. employed a combination of in vitro and in vivo approaches to evaluate the effects of eight plant-derived fermentation broths (FB) on rumen fermentation, gastrointestinal development, and microbial communities in fattening lambs. Their results demonstrated that adding FB to drinking water at a 1:500 ratio improved rumen fermentation and microecological balance. Wang W. et al. revealed that ruminal methane production is determined by functional pathway activity rather than archaeal abundance, with Treponema species showing a consistent negative correlation with methane emissionhighlighting their potential as probiotics for methane mitigation. Fan et al. showed that yeast peptides significantly reduced the incidence of diarrhea in lambs by targeted modulation of the colonic microbiota, with a recommended dosage of 2,000 mg/d. In a study on 200-day-old Hyline Brown laying hens, Wang Y. et al. found that dietary supplementation with compound probiotics enhanced production performance and immune function by optimizing gut microbial composition. Using a male C57BL/6 mouse model, Moon et al. reported that both 4% bitter melon and 4% fermented bitter melon significantly altered the gut microbiota and regulated metabolism, suggesting their potential use in preventing diet-induced metabolic disorders and obesity. Yang et al. evaluated the effects of replacing chemical fertilizers with different concentrations of biogas slurry (BS) on the microbial community structure and gene distribution in rapeseed field soil. Their short-term study indicated minimal impact on soil microbes and antibiotic resistance genes, supporting BS as a feasible alternative to chemical fertilizers, though long-term ecological safety under varying soil types and management practices requires further monitoring. Lee et al. observed that antioxidant supplementation induced significant molecular changes in the liver—particularly in transcriptional activity and mitochondrial processes—even in the absence of detectable phenotypic differences in Hanwoo beef cattle. Additionally, Wang Y. et al. systematically reviewed the role of the gut microbiota in pig health and productivity, noting that there is still no unified definition of an "optimal" or "healthy" microbial community. They emphasized that future research should focus on microbial modulators and their physiological and immune functions to develop strategies for rapidly restoring microbial balance after stress, antibiotic treatment, or infection, thereby improving productivity, reducing losses, and preventing diseases.

The second category explores microbiome engineering under stress conditions. Under heat stress, Mei et al. found that niacin supplementation improved poultry performance by enriching beneficial microorganisms and promoting short-chain fatty acid production. Mohiti-Asli et al. reported that lysophospholipid supplementation enhanced production performance and lipid utilization in heat-stressed broilers. Wang X. et al. demonstrated that a Chinese herbal formula improved physiological and biochemical parameters, enhanced antioxidant and immune capacity, and alleviated heat stress through modulation of the rumen microbiota.

In addition, several studies address mechanistic insights and innovative applications of microbiomes. Wang Y. et al. investigated crAss-like phages in the pig intestine, revealing intricate virus-bacterium interaction mechanisms. Cantas et al. provided evidence that fecal microbiota transplantation (FMT) is a simple and safe procedure that can restore gut microecological balance and improve overall health in dogs. Zhao et al. elucidated the host-bacterium interactions during single and co-infection of mammary epithelial cells with *Escherichia coli* or *Staphylococcus aureus*, uncovering distinct and shared transcriptional regulatory networks that provide a theoretical basis for precise prevention and control of mastitis.

These studies demonstrate that we can effectively address challenges related to animal health, production, and the environment through precise modulation of microbiomes. However, translating laboratory findings into practical applications still faces challenges such as stability and safety. Research on synthetic microbiomes is in a phase of rapid development, holding significant potential for promoting animal health and achieving sustainable development in animal husbandry. The findings presented in this Research Topic provide essential knowledge and innovative ideas for the future advancement of this field.

Author contributions

ZZ: Data curation, Writing – original draft, Visualization, Resources. XW: Writing – original draft. FD: Writing – original draft, Resources, Supervision. SY: Project administration, Writing – review & editing, Resources, Visualization, Supervision, Conceptualization, Funding acquisition. YL: Writing – review & editing, Resources, Funding acquisition, Supervision, Project administration, Conceptualization. JC: Visualization, Conceptualization, Resources, Funding acquisition, Supervision, Project administration, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This research was funded by the National Key Research and Development Program of China (2023YFE0124400).

Acknowledgments

The Authors thank the Frontiers admin team for their wonderful support with the Research Topic as well as the numerous peer reviewers.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Zhao et al. 10.3389/fvets.2025.1708299

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- 1. Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC, Charles T, et al. Microbiome definition re-visited: old concepts and new challenges. *Microbiome*. (2020) 8:103. doi: 10.1186/s40168-020-00875-0
- 2. Deng F, Han Y, Li M, Peng Y, Chai J, Yang G, et al. HiFi based metagenomic assembly strategy provides accuracy near isolated genome resolution in MAG assembly. *iMetaOmics*. (2025) 2025:e70041. doi: 10.1002/imo2.70041
- 3. Deng F, Wang C, Li D, Peng Y, Deng L, Zhao Y, et al. unique gut microbiome of giant pandas involved in protein metabolism contributes to the host's dietary adaption to bamboo. *Microbiome.* (2023) 11:180. doi: 10.1186/s40168-023-01603-0
- 4. Deng F, Han Y, Huang Y, Li D, Chai J, Deng L, et al. comprehensive analysis of antibiotic resistance genes in the giant panda gut. *Imeta.* (2024) 3:e171. doi: 10.1002/imt2.171
- 5. Zhuang Y, Abdelsattar MM, Fu Y, Zhang N, Chai J. Butyrate metabolism in rumen epithelium affected by host and diet regime through regulating microbiota in a goat model. *Anim Nutr.* (2024) 19:41–55. doi: 10.1016/j.aninu.2024.04.027
- 6. Yang S, Zheng J, Mao H, Vinitchaikul P, Wu D, Chai J, et al. Multiomics of yaks reveals significant contribution of microbiome into host metabolism. *NPJ Biofilms Microbiomes*. (2024) 10:133. doi: 10.1038/s41522-024-00609-2