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Non-invasive analysis of dairy cattle vocalizations offers a practical route to 
continuous assessment of stress and timely health interventions in precision livestock 
systems. We present a multi-modal AI framework that fuses standard acoustic 
features (e.g., frequency, duration, amplitude) with non-linguistic, transformer-
based representations of call structure for behavior classification. The classification 
analysis represents the core contribution of this work, while the integration of 
the Whisper model serves as a complementary exploratory tool, highlighting its 
potential for future motif-based behavioral studies. Using contact calls recorded 
from a cohort of lactating Romanian Holsteins during a standardized, brief social-
isolation paradigm, we  developed an ontology distinguishing high-frequency 
calls (HFCs) associated with arousal from low-frequency calls (LFCs) associated 
with calmer states. Across cross-validated models, support vector machine and 
random-forest classifiers reliably separated call types, and fused acoustic + symbolic 
features consistently outperformed single-modality inputs. Feature-importance 
analyses highlighted frequency, loudness, and duration as dominant, interpretable 
predictors, aligning vocal patterns with established markers of arousal. From a 
clinical perspective, the system is designed to operate passively on barn audio 
to flag rising stress signatures in real time, enabling targeted checks, husbandry 
adjustments, and prioritization for veterinary examination. Integrated with existing 
sensor networks (e.g., milking robots, environmental monitors), these alerts can 
function as an early-warning layer that complements conventional surveillance for 
conditions where vocal changes may accompany pain, respiratory compromise, 
or maladaptive stress. While the present work validates behaviorally anchored 
discrimination, ongoing efforts will pair vocal alerts with physiological measures 
(e.g., cortisol, infrared thermography) and multi-site datasets to strengthen disease-
specific inference and generalizability. This framework supports scalable, on-farm 
welfare surveillance and earlier intervention in emerging health and stress events.
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1 Introduction

Vocal signals play a central role in social and emotional expression across the animal 
kingdom. Mounting empirical evidence demonstrates that a cow’s emotional and physiological 
state is reliably mirrored in its vocal behavior (1). Specifically, acoustic structures such as 
frequency, amplitude, duration, and vocalization rate vary systematically in response to 
emotional arousal. For example, heightened arousal and distress states often lead to 
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vocalizations that are louder, longer, and higher in pitch. Conversely, 
contentment or affiliative interactions are typically accompanied by 
softer, shorter, and lower-frequency calls (2, 3). This predictable 
variation makes vocalization analysis a powerful tool for automated, 
objective welfare assessments that can complement subjective 
observational methods. In dairy cows, vocal signals can be broadly 
categorized into high-frequency calls (HFCs) and low-frequency calls 
(LFCs), each associated with distinct behavioral and emotional 
contexts. HFCs are generally linked to situations of arousal, agitation, 
isolation, or discomfort. These calls are often emitted at higher 
intensities and serve long-distance communicative functions, 
especially under distress (4, 5). LFCs, on the other hand, are 
commonly produced during relaxed, affiliative, or social bonding 
contexts. These low-frequency sounds are typically made at close 
proximity and are often indicative of positive emotional valence, being 
produced particularly in cow-calf interactions (6, 7). However, such 
associations remain context-dependent and should not be interpreted 
as direct indicators of valence. Housing systems, climatic conditions, 
ambient noise, and herd density can all influence the type, frequency, 
and amplitude of vocalizations. For instance, cows housed on pasture 
have been observed to vocalize differently compared to those in 
confined indoor settings, likely due to increased opportunities for 
natural behaviors and social engagement (8). Acoustic properties of 
the environment, such as reverberation and background noise levels, 
also were shown to modulate vocal behavior. The present study was 
built on these foundations by integrating multi-source data fusion and 
advanced computational models to decode dairy cow vocalizations in 
a negative emotional state context. At the core of the methodological 
innovation is the use of the Whisper model, a transformer-based 
acoustic representation tool developed by OpenAI (9). Although 
originally designed for human speech recognition, Whisper has 
demonstrated remarkable adaptability to noisy, unstructured 
bioacoustics data (10, 11). Praat was used for acoustic feature 
extraction, while Whisper was applied to detect symbolic motifs, 
providing complementary insights and practical robustness in barn-
noise conditions. This approach is analogous to the use of 
spectrograms as visual tools that facilitate frequency-time domain 
analysis. By using Whisper-derived sequences, this work was able to 
generate a text-like symbolic form that simplifies the extraction of 
recurring motifs, such as bigrams or trigrams, that may correlate with 
specific emotional states. Worth mentioning is that “bigram” and 
“trigram” counts are used here purely as statistical descriptors of token 
adjacency, commonly applied for motif discovery in animal vocal 
sequences, and do not imply grammatical structure. Similar 
approaches have been employed in studies on primates and birds to 
identify combinations of acoustic elements associated with affective 
or contextual meaning (12). Among the various features extracted 
from cow vocalizations, frequency and amplitude consistently emerge 
as the most informative (13, 14). Frequency is particularly sensitive to 
changes in emotional arousal, often increasing during heightened 
stress or isolation events. Amplitude reflects the intensity or urgency 
of a call, with louder sounds typically associated with more acute states 
of discomfort. Duration and vocalization rate further enrich this 
analysis by providing temporal dynamics that can differentiate 
between chronic and transient stressors. The integration of these 
features into a unified analytical model, particularly when contextual 
metadata is available, would allow for more accurate and interpretable 
classification of emotional states. The theoretical framework 
underpinning our approach draws from systems biology and 

evolutionary ethology. Concepts such as degeneracy and modularity 
are central to understanding how vocal signals can robustly convey 
affective states despite environmental variability. Degeneracy refers to 
the phenomenon where multiple different acoustic features can serve 
overlapping communicative functions. For example, both increased 
frequency and extended duration may signal distress, providing 
redundancy that enhances signal reliability (15). Modularity, on the 
other hand, captures the idea that vocal features can be grouped into 
functional clusters, such as temporal versus spectral characteristics, 
that can independently evolve or adapt to contextual demands. From 
an evolutionary standpoint, the structure of vocalizations in mammals 
often conforms to Morton’s motivation-structural rules. These rules 
predict that aggressive or high-arousal calls are typically high-pitched 
and tonally complex, while affiliative or low-arousal calls tend to 
be lower-pitched and more harmonically stable (16). This ethological 
principle has been validated in a range of species, including pigs, 
goats, and birds (13, 17). Observations in dairy cows suggest that these 
rules apply similarly, reinforcing the biological plausibility of acoustic 
classifications (18). To analyze vocal patterns, we employed a suite of 
machine learning algorithms, including Random Forest, Support 
Vector Machine (SVM), and Recurrent Neural Networks (RNN). Each 
of these models bringing distinct strengths to the task of acoustic 
classification. Random Forest is particularly adept at handling high-
dimensional data with mixed feature types, while SVM excels in 
separating nonlinear classes in sparse datasets. RNNs are uniquely 
suited for modeling temporal sequences, making them ideal for 
decoding the structure and dynamics of vocal patterns over time. This 
study presents a novel multi-modal framework for analyzing cattle 
vocalizations, integrating acoustic and symbolic features within 
machine learning classifiers to advance automated behavior 
classification and real-time welfare monitoring in precision livestock 
systems. Our hypothesis was that fusing standard acoustic features 
with Whisper-derived symbolic motifs improves discrimination 
between high-frequency (HF) and low-frequency (LF) calls compared 
with single-modality models (acoustic-only or symbolic-only). 
We  formulated the following predictions: (i) model hierarchy: 
SVM ≥ Random Forest > RNN under our data constraints; (ii) top 
features: frequency, loudness, and duration will rank highest; (iii) 
motifs: frequent bigrams (e.g., “rr”) will align with HFC episodes; and 
(iv) performance: fused features will outperform either modality alone.

2 Materials and methods

2.1 Study design and data collection

Data were collected at the experimental farm of the Research and 
Development Institute for Bovine in Balotesti, Romania. The herd was 
managed indoors year-round under a zero-grazing system, with cows 
housed in tie-stall barns and provided daily access to outdoor paddocks. 
We selected 20 multiparous lactating Romanian Holstein cows with 
homogeneous characteristics in terms of body weight (average 
619.5 ± 17.4 kg), lactation stage (II–III), age, and acclimation to 
housing (minimum 40 days in milk). Our selection criteria targeted 
physiological and behavioral homogeneity to minimize confounding 
factors. By including only multiparous cows in mid-lactation with 
similar body weights, we  controlled for anatomical and hormonal 
variability affecting vocal production traits. Each cow underwent a 
standardized isolation protocol in which it was visually separated from 
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its herd-mates for 240 min post-milking, being tethered in a 1.8 by 
1.2 m stall. Cows were milked twice daily, and all isolation sessions were 
conducted after the morning milking (7:00–11:00 a.m.) to control for 
post-milking oxytocin release, circadian rhythm effects, and to ensure 
consistent daylight recording conditions. During this time, the rest of 
the herd was relocated to adjacent outdoor paddocks, allowing only 
auditory contact between individuals. Although occasional background 
sounds (e.g., distant cow calls, machinery noise, or human activity) 
were present, the isolated cow’s vocalizations were easily distinguishable 
and all ambiguous or overlapping signals were manually removed 
during quality control. The isolation procedure is a widely recognized 
behavioral paradigm to induce a mild negative affective state (19, 20). 
To minimize external influences, human access was restricted and 
machinery activity near the barns was limited. Audio recordings were 
conducted continuously for the entire 4-h period using high-fidelity 
equipment: Sennheiser MKH416-P48U3 directional microphones 
(Sennheiser Electronic GmbH & Co. KG, Wedemark, Germany) 
mounted on tripods at a distance of 5–6 meters from the cows, 
connected to Marantz PMD661 MKIII solid-state recorders (Marantz 
Professional, London, UK). The recordings were captured in WAV 
format at 44.1 kHz sampling rate and 16-bit resolution. A total of 1,144 
vocalizations were retained after rigorous quality control to exclude 
environmental noise and overlapping signals. The dataset included 952 
high-frequency calls (HFCs) and 192 low-frequency calls (LFCs).

2.2 Vocalization segmentation and feature 
extraction

Audio files were segmented into discrete vocalization events using 
Praat software [v6.0.31; (21)]. Each vocalization was annotated with 
23 acoustic features commonly employed in bioacoustic analysis. 

These included fundamental frequency (F0), duration, amplitude 
modulation (AMVar, AMRate, AMExtent), formant frequencies (F1–
F8), harmonicity, and Wiener entropy (2, 22). The features were 
selected for their demonstrated relevance to emotional expression in 
cattle and other mammals. Vocalizations were categorized as either 
high-frequency calls (HFCs) or low-frequency calls (LFCs) based on 
spectral thresholds established in prior literature. Vocalizations with 
dominant peak frequencies above 400 Hz were classified as HFCs, and 
those below were labeled as LFCs (7). These thresholds are consistent 
with known differences in vocal tract configuration during high- 
versus low-arousal states. Table 1 summarizes the acoustic features 
analyzed in this study, along with their operational definitions and 
supporting references. The vocalization recordings were analyzed 
using the Praat DSP package [v.6.0.31; (21)], along with custom-built 
scripts previously developed by Briefer et  al. (23, 24), Reby and 
McComb (25), Beckers (26), and Briefer et al. (27), to automatically 
extract the acoustic features for each vocalization.

2.3 Data preprocessing and representation

All acoustic features were normalized to z-scores to account for 
inter-individual variation. Symbolic sequence representations were 
generated for each vocalization using the OpenAI Whisper model. 
This step did not involve linguistic interpretation but served as a 
means of symbolic encoding to facilitate sequence analysis, such as 
bigram frequency assessment. This approach has been employed in 
computational neuroethology to identify recurring motifs in 
non-human animal communication (12, 35). All audio files were first 
segmented into discrete vocalization events via Praat, with precise 
manual annotations. Each segmented vocalization was processed 
through the Whisper model, which generated symbolic acoustic 

TABLE 1  Parameters extracted from the cows vocalizations.

Parameter Definition References

Duration The duration of a vocalization. (17, 27–29)

Vocalization rate The number of vocalizations in a certain time frame. (27, 30, 31)

F0 The fundamental frequency and its contour (e.g., min, mean, max and range). (23, 28, 32, 33)

FMextent The variation between two peaks of each F0 modulation in Hz. (23)

Bandwidth The difference between the highest and lowest observed frequency (Hz). (32)

Amplitude Level of energy in the vocalization, the intensity of a vocalization (decibel). -

AMextent The mean-to-mean peak variation of each amplitude modulation (decibel). (28, 34)

AMrate The number of amplitude modulations in a certain time frame. (29)

AMVar The cumulative variation in amplitude divided by the duration of a vocalization (dB/s). (28)

Q25% The frequency below which 25 percent of the energy is contained (Hz). (28, 29, 32, 34)

Q50% The frequency below which 50 percent of the energy is contained (Hz). (28, 29, 32)

Q75% The frequency below which 75 percent of the energy is contained (Hz). (28, 29, 34)

Formants Frequencies that correspond to the resonances of the vocal tract. -

F1mean, F2mean, F3mean, 

F4mean
The mean frequency of each formant (Hz). (29)

F1, F2, F3 and F4 range
The frequency range of each formant, thus the difference between the maximum and minimum frequency of that 

formant (Hz).
(29)

Fpeak The frequency of peak amplitude. -
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sequences (e.g., bigram/trigram patterns). These Whisper-derived 
motifs were time-aligned with acoustic features (e.g., frequency, 
duration, amplitude, formant measures), enabling correlation and 
cross-validation. Dominant motifs (such as “rr,” “mm,” “oo”) were 
empirically mapped to specific spectro-temporal acoustic profiles for 
each call type—demonstrating direct correspondence between 
symbolic and conventional bioacoustic parameters. The approach, 
code, and mapping files are supplied as Supplementary material and 
openly accessible repository resources. The Python libraries Librosa, 
NumPy, and Pandas were used for preprocessing and feature 
extraction. Librosa was particularly instrumental in spectral and 
temporal feature computation, including pitch tracking and harmonic-
to-noise ratio calculations.

2.4 Classification models and training

To classify vocalizations, we implemented three machine learning 
algorithms: Random Forest, Support Vector Machine (SVM), and 
Recurrent Neural Network (RNN). Random Forest was used for its 
interpretability and robustness to noise, while SVM provided strong 
performance in high-dimensional spaces. The RNN model, leveraging 
temporal dependencies, was suited for detecting patterns in sequential 
vocal frames. The dataset was split into an 80% training set and 20% 
testing set, using five-fold cross-validation to assess model 
performance. Evaluation metrics included accuracy, precision, recall, 
and F1-score. Feature importance was assessed using permutation 
techniques in the explainable models, revealing that amplitude-related 
features (e.g., AMVar, AMRate), spectral entropy, and formant 
dispersal were among the most informative for classification. The 
model training workflow is summarized as follows: the RNN 
architecture consisted of a Long Short-Term Memory (LSTM) 
network with 128 hidden units, a dropout rate of 0.2, and an Adam 
optimizer (learning rate = 0.001), using tanh and sigmoid activations 
for hidden and output layers, respectively. A total of 23 acoustic 
features extracted via Praat were standardized using z-scores and 
filtered through correlation analysis, followed by Random Forest 
importance ranking to retain the top 15 features based on permutation 
importance, ensuring dimensionality reduction while preserving the 
most informative predictors for model performance. The 
computational environment included Python 3.8, TensorFlow 2.8, 
scikit-learn 1.0.2, Librosa 0.9.1, and Praat 6.0.31. The validation 
strategy used an 80/20 train–test split with 5-fold cross-validation, and 
performance was evaluated using accuracy, precision, recall, and 
F1-score.

2.5 Sentiment pattern analysis (exploratory)

As an exploratory extension, bigram frequency analysis on the 
Whisper-generated symbolic sequences were performed. The goal was 
to detect recurring acoustic motifs potentially indicative of persistent 
emotional states. This analysis was inspired by previous motif-based 
studies in vocal learning species such as songbirds and marmosets (12, 
36). Motif selection followed systematic quantitative criteria, including 
a frequency threshold (>5% of corpus, >57 occurrences), cross-
individual consistency (≥15 of 20 cows), and temporal clustering 

(>60% co-occurrence within specific emotional contexts). 
Associations with HFC and LFC categories were tested using 
chi-square (p  < 0.05). Dominant motifs included “rr” 
(40,000 + occurrences, linked to rapid modulations in HFCs), “mm” 
(35,000+, correlated with stable LFC patterns), and “oo” (28,000+, 
associated with intermediate frequencies). Each motif underwent 
acoustic–symbolic correlation, spectro-temporal alignment, and 
cross-validation using independent test subsets.

2.6 Cow vocalization ontology and feature 
mapping

A structured ontology was developed categorizing vocalizations 
into profiles based on acoustic parameters. High-frequency calls were 
defined by F0 values between 110.59–494.16 Hz, amplitude between 
−39.71 to −2.45 dB, and durations from 0.638 to 9.581 s. In contrast, 
LFCs were characterized by F0 values between 72.61–183.27 Hz, 
amplitude from −53.88 to −8.16 dB, and durations from 0.650 to 
2.921 s. These ranges were consistent with values reported in prior 
literature (4).

3 Results

3.1 Acoustic feature analysis

The bigram “rr” emerged as the most frequently occurring 
symbolic unit, appearing approximately 40,000 times, followed by 
“mm” and “oo.” These patterns are not interpreted linguistically 
but rather viewed as symbolic encodings of recurring acoustic 
shapes produced during vocalizations. The regularity of these 
bigrams, especially during prolonged vocal episodes, suggests that 
cows may exhibit rhythmic, repeated vocal behaviors in certain 
emotional contexts, particularly under emotional distress. 
Figure  1 illustrates the bigram frequency analysis and the 
corresponding word cloud.

Figure  2 displays the results of the unigram analysis and its 
corresponding word cloud. The character “r” dominates the dataset, 
followed by “m,” “o,” “e” and “a.” These high-frequency characters 
appear to reflect consistent symbolic encodings of dominant acoustic 
patterns, while the less common characters such as “h,” “n” “u,” “i” and 
“t” point to rarer vocal signatures. These symbolic encodings support 
the detection of structural diversity in cow vocal expressions and may 
serve as proxies for repetitive call elements or phonatory modulations. 
The recurrence of certain unigrams and bigrams, especially in distress-
linked HFCs, suggests acoustic motifs that can be incorporated into 
machine learning pipelines for emotion classification. The acoustic 
analysis focused on five dimensions—spectral, temporal, amplitude 
and energy, formant, and prosodic features—using multi-modal 
fusion. These features were examined in relation to the categorizations: 
high-frequency calls (HFCs), and low-frequency calls (LFCs).

LFCs exhibited spectral centroids between 1,000–1,800 Hz with 
energy concentrated below 3,000 Hz, and narrower bandwidths. In 
contrast, HFCs showed elevated centroids extending from 600 Hz up 
to 3,000 Hz and spectral energy reaching beyond 4,000 Hz. 
Mel-frequency cepstral coefficients (MFCCs) were also markedly 
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different: LFCs demonstrated gradual transitions, while HFCs 
exhibited sharp spectral shifts. These patterns align with prior research 
on arousal-induced vocal variability (37–39). Figure 3 displays the 
spectral profiles of LFCs and HFCs.

HFCs averaged 1.79 s with 10 rapid modulations per call and a 
mean interval of 0.18 s, some as brief as 0.0464 s. LFCs lasted 1.48 s 
with 5 modulations per call and longer average intervals of 0.30 s, 
suggesting stable social communication. These observations are 
consistent with findings by Hernández-Castellano et  al. (40) and 
Gavojdian et al. (22), who reported increased temporal fragmentation 
in stress-related vocalizations. Figure  4 reveals distinct temporal 
dynamics between call types.

Figure 5 shows amplitude and RMS energy patterns for both call 
types. LFCs had a lower RMS energy mean (0.0934) and lower zero-
crossing rate (0.0427), corresponding to smoother transitions. HFCs 
demonstrated higher RMS energy (0.1887) and a higher zero-crossing 
rate (0.0492), which can be  indicative of rapid vocal shifts and 
increased acoustic turbulence during emotional arousal (2, 41).

Figure 6 compares formant structures of both call types, showing 
similar F1 values (~617 Hz), but HFCs displayed elevated F2 
(1,704.81 Hz vs. 1,542.96 Hz for LFCs), likely reflecting constriction 
of the vocal tract under emotional stress. LFCs had slightly higher 
F3 values (2,844.92 Hz vs. 2,779.11 Hz), consistent with a more 

relaxed vocal tract configuration. These trends support previous 
findings in vocal source-filter theory applied to affective states (16, 
42, 43).

HFCs presented a broad F0 range of 514.20 Hz, often with erratic 
pitch and tempo, characteristic of stress or alarm. LFCs had a much 
narrower pitch range (33.03 Hz), showing tonal consistency and social 
bonding cues, possible facilitated by the communication with the 
heard mates from the nearby paddocks (Figure 7). These results are 
aligned with previous work indicating that prosodic modulation is a 
key marker of emotional intensity (17, 44).

The acoustic contour analysis revealed clear motif-specific 
correlations across five dimensions. “rr” motifs were linked to rapid 
spectral transitions (600–3,000 Hz) and high RMS energy 
(0.1887 ± 0.05) with frequent amplitude modulations (zero-
crossing = 0.0492), whereas “mm” patterns showed stable spectral 
centroids (1000–1800 Hz), lower RMS energy (0.0934 ± 0.03), and 
smoother amplitude transitions (zero-crossing = 0.0427). “oo” 
sequences occupied intermediate frequency ranges with moderate 
spectral variability. Temporally, “rr” motifs exhibited wider F0 
ranges (514.20 Hz) and longer durations (1.79 s), while “mm” motifs 
appeared in shorter calls (1.48 s) with stable pitch trajectories, 
confirming distinct acoustic contours aligned with emotional  
context.

FIGURE 1

Bigram frequency analysis of symbolic cow vocalizations (left side); Word Cloud of bigram frequencies, where larger text size reflects higher 
occurrence, with ‘rr’ and ‘mm’ as dominant patterns (right side).

FIGURE 2

Left side – Unigram Frequency Distribution, showing ‘r’, ‘m’, and ‘o’ as the most frequent characters, indicating consistent symbolic encoding of 
common vocal elements; Right side – Word Cloud of unigram frequencies, highlighting dominant vocal elements in symbolic form.
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FIGURE 3

Left side – Spectral analysis of a typical Low-Frequency Call (LFC); Right side – Spectral analysis of a typical High-Frequency Call (HFC).

FIGURE 4

Left side – Temporal analysis of a typical Low-Frequency Call (LFC); Right side – Temporal analysis of a typical High-Frequency Call (HFC).

FIGURE 5

Left side – Amplitude and energy profile of a Low-Frequency Call (LFC), showing lower RMS energy and smoother transitions supporting a calm vocal 
classification; Right side – Amplitude and energy profile of a High-Frequency Call (HFC), with higher RMS energy and variability reflecting vocal strain 
and emotional intensity.
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3.2 Classification model performance

The Random Forest classifier yielded strong results, correctly 
predicting 135 instances of distress and 42 of calm calls, with only 
minimal misclassifications. Achieving 97.25% accuracy and an AUC 
of 0.99 (Figure 8), the model demonstrated robust generalization. Its 
ensemble architecture allowed effective handling of feature diversity 
and noise.

Figure 9 shows that the SVM classifier outperformed the others 
with an accuracy of 98.35% and an AUC of 0.99. The model correctly 
classified 136 HFC and 43 LFC calls, using a linear kernel to separate 
emotional states based on fused acoustic features.

The RNN model reached 88% accuracy and 0.96 AUC (Figure 10). 
While the model performed well on HFC classification, it struggled 
with LFCs, possibly due to class imbalance and sequence length 
sensitivity. This suggests the need for augmented training data or more 
complex recurrent structures.

Table  2 provides a comparative evaluation. The SVM model 
achieved the highest F1-scores across both classes. Random Forest 
followed closely, particularly strong in detecting distress related 
vocalizations. The RNN lagged in LFC identification. These outcomes 

affirm that multi-source acoustic fusion improves model performance 
in cattle vocalizations classification. Figure 11 highlights the most 
predictive features based on Random Forest outputs. Frequency 
contributed most (importance score: 0.70), followed by loudness 
(0.22) and duration (0.09). Understanding feature impact not only 
aids model interpretability but also informs the design of targeted 
monitoring solutions (45–48).

The Cow Vocalization Ontology was used to conceptualize 
emotional state classifications. It groups vocalizations into HFCs and 
LFCs based on acoustic thresholds and aligns these categories with 
behavioral contexts observed during previous studies. The framework 
is built on previous acoustic-emotional mappings (2–4, 22). 
We  acknowledge the limitation of relying solely on behavioral 
communication context. Future studies will integrate physiological 
sensors to strengthen this ontology, such as stress biomarkers and 
infrared thermography data. Our use of the Whisper model to extract 
symbolic sequences allowed for novel analysis of vocal structure. 
While not interpreted linguistically, the patterns, especially dominant 
bigrams, revealed repetitive, structured components that may signal 
persistent emotional states. These motifs can be integrated into future 
recurrent models or sequence-based behavioral classifiers, similar to 

FIGURE 6

Left side – Formant analysis of a Low-Frequency Call (LFC), where consistent formant structures suggest relaxed vocal tract configurations; Right 
side – Formant analysis of a High-Frequency Call (HFC), with higher F2 and F3 values indicating vocal tract tension consistent with distress.

FIGURE 7

Left side – Prosodic pattern of a Low-Frequency Call (LFC), with a narrow F0 range and stable rhythm indicating calm, affiliative signaling; Right side – 
Prosodic pattern of a High-Frequency Call (HFC), with a broad F0 range and erratic modulation reflecting stress or agitation.
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methods used in studies on vocal learning species (12, 35). 
We emphasized that the SVM model achieved the highest performance 
(98.35% accuracy/F1), outperforming the other models, especially 
when fused acoustic and symbolic features were utilized. Additionally, 
we confirmed through feature importance analysis that frequency, 
loudness, and duration were the most predictive variables.

4 Discussion

In the present study, Whisper was not used to infer semantics or 
syntax in the human linguistic sense. Rather, it served as a pattern 
recognition and feature extraction tool, capable of isolating sequential 
acoustic motifs. Worth mentioning is that the current study does not 
imply that cow vocalizations possess linguistic structures such as 
grammar or syntax. Instead, vocal sequences were categorized as 
temporally organized signals that may contain biologically meaningful 

patterns. Hence, in this study, the notion of symbolic encoding refers 
not to linguistic content, but to the transformation of complex acoustic 
signals into symbolic representations suitable for machine learning 
analysis. The integration of acoustic analysis, machine learning, and 
symbolic sequence modeling in this study validates a powerful 
framework for understanding communication in dairy cows. These 
findings extend earlier research in animal bioacoustics and 
demonstrate that vocal cues can be  reliably analyzed using 
computational approaches. The evidence presented across spectral, 
temporal, formant, and prosodic dimensions demonstrates that HFCs 
and LFCs carry distinct acoustic signatures. These vocal features, 
especially frequency, amplitude, and duration, were confirmed as 
dominant predictors of emotional state (49, 50). The high performance 
of both SVM and Random Forest models in classifying HFC and LFC 
calls demonstrates the practical feasibility of deploying such systems 
on-farm. Symbolic motif analysis adds a new layer of granularity, 
revealing structural patterns in vocalizations that correlate with stress 

FIGURE 8

Left side – Confusion matrix of the Random Forest classifier, displaying classification accuracy of HFC and LFC calls; Right side – ROC curve of the 
Random Forest model, with a high AUC (0.99) confirming robust classifier performance.

FIGURE 9

Left side – Confusion matrix of the SVM classifier, demonstrating superior accuracy in classifying call types; Right side – ROC curve of the SVM model, 
showing near-perfect separability of vocalization classes.
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responses. By incorporating these motifs into behavioral classifiers, 
future systems can achieve greater accuracy and adaptability. 
Moreover, the framework holds promise for broader applications in 
cross-species emotional modeling and neuroethology. Furthermore, 
the emergence of repetitive acoustic motifs, such as recurring bigrams 
or trigrams, aligns with theories from information theory and 
bioacoustics (e.g., Shannon’s redundancy for signal reliability, Wiener’s 
signal-to-noise optimization, and ethological concepts of degeneracy 
and modularity supporting communicative robustness). Repetition 
within vocal sequences may serve to increase the salience or 
redundancy of signals in noisy environments, especially during 
periods of distress. For example, repeated “rr” or “mm” motifs in high-
frequency calls may not constitute syntactic units in the linguistic 
sense but can nonetheless function as consistent acoustic markers of 
arousal or need (12, 51, 52). Comparable studies across taxa confirm 
that symbolic sequence modeling is an effective approach for decoding 
non-linguistic acoustic structure. For instance, Bosshard et al. (12) 
applied symbolic sequence analysis to Callithrix jacchus (common 
marmosets), revealing bigram motifs analogous to those observed in 

our dairy cattle dataset. Likewise, Sainburg et al. (35) demonstrated 
that motif-based representations capture repertoire diversity across 
multiple songbird species, while research on other vocal-learning 
primates shows that recurrent symbolic patterns reliably accompany 
emotional or social contexts. Despite these strengths, we acknowledge 
the absence of physiological validation in the current study. To address 
this, we have outlined plans to integrate biomarkers such as cortisol, 
heart rate variability, and infrared thermography in future work. Such 
integration will strengthen the interpretive power of our ontology and 
improve the biological relevance of vocal emotion classification. The 
path toward intelligent animal care lies in deploying emotion-aware 
systems directly into the infrastructure of precision livestock farming. 
Embedding real-time vocal monitoring into robotic milking stations, 
smart barn sensor networks, and commercial animal behavior 
platforms has the potential to transform welfare from a periodic 
assessment into a continuous, responsive process. Acoustic sensors 
positioned in milking parlors or calving pens could flag early distress, 
discomfort, or illness, triggering automated alerts and informing 
on-farm decisions with minimal human intervention. These types of 

FIGURE 10

Left side – Confusion matrix of the RNN model, highlighting strengths and limitations in sequence modeling; Right side – ROC curve of the RNN 
model, with a moderate AUC (0.96) indicating effectiveness, with room for improvement.

TABLE 2  Performance evaluation result of Random Forest, support vector machine and RNN.

Model Class Precision Recall F1-Score Accuracy

Random Forest

HFC 0.98 0.99 0.98 0.9725

LFC 0.95 0.93 0.94

Macro Avg 0.97 0.96 0.96

Weighted Avg 0.97 0.97 0.97

SVM

HFC 0.99 0.99 0.99 0.9835

LFC 0.98 0.96 0.97

Macro Avg 0.98 0.97 0.98

Weighted Avg 0.98 0.98 0.98

RNN

HFC 0.89 0.97 0.93 0.88

LFC 0.88 0.62 0.73

Macro Avg 0.88 0.80 0.83

Weighted Avg 0.88 0.88 0.88
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sensors have been developed to predict emotional state and social 
isolation (18), oestrus (53), respiratory diseases (54) and painful 
husbandry procedures (55). This represents a critical shift from 
reactive to proactive animal welfare management. Building models 
that perform reliably across diverse farm contexts requires a broader 
and more inclusive dataset. Integrating recordings from multiple cow 
breeds, production systems, and geographical regions would improve 
generalizability, enabling algorithms to adapt to variation in breed-
specific vocal anatomy, environmental noise profiles, and behavioral 
baselines. This fusion of environmental, acoustic, and behavioral data 
strengthens model robustness and ensures relevance in real-world 
deployment. To further improve model performance and sensitivity 
to subtle emotional states, advanced machine learning architectures 
such as transformers and self-supervised learning frameworks should 
be explored. These approaches are well-suited for capturing long-term 
dependencies in vocal sequences and detecting emergent patterns 
from sparse or imbalanced datasets. When applied to longitudinal 
herd data, such models can help uncover trends in stress, social 
dynamics, or disease progression over time. Expanding beyond audio 
alone, the integration of visual and behavioral data offers a 
multidimensional view of animal welfare (56). By fusing indicators 
such as gait asymmetry, tail posture, facial tension, and ear orientation 
with vocal features, future systems can achieve a more nuanced and 
reliable assessment of emotional state. These multimodal systems 
could be  embedded in barn-mounted camera arrays or wearable 
sensors, enabling real-time inference and targeted interventions. The 
end goal is the development of intelligent, sensor-driven platforms 
that integrate vocal, visual, behavioral, and physiological data into a 
unified, real-time decision support system. These platforms could 
be deployed in commercial barns, robotic milking systems, or even 

mobile health units, providing continuous feedback on herd welfare 
and individual animal status. Such systems would not only enhance 
welfare and productivity but also improve public trust in livestock 
practices by providing transparent, science-based insights into animal 
well-being. A key limitation of this work is the relatively small dataset 
(20 cows, 1,144 vocalizations), collected under a single housing 
system. This restricts the extent to which the findings can 
be  generalized across breeds, management systems, or acoustic 
environments. We clearly acknowledge this limitation and encourage 
future studies across different farms, breeds, and management systems 
to validate and extend our results. Additionally, the lack of concurrent 
physiological validation (e.g., cortisol, thermography) limits the direct 
confirmation of inferred emotional states, although behavioral 
paradigms provide strong indirect evidence. Another limitation of this 
work is the absence of formal ablation analyses, which should 
be incorporated in future research to better quantify the influence of 
individual acoustic features and model components. From a technical 
perspective, machine learning (ML) has driven substantial progress in 
automated acoustic data processing and pattern recognition across 
multiple fields, from speech and ocean acoustics to animal bioacoustics 
(57–62). In general, ML approaches fall into three main categories: 
supervised, unsupervised, and reinforcement learning, with the first 
two being the most widely used in acoustic research (63). Feature 
representations, whether derived directly from raw signals, reduced 
using principal component analysis (PCA), or modeled 
probabilistically through Gaussian mixture models (GMMs), are 
fundamental for enabling ML systems to detect and learn structure in 
complex acoustic data (64–67). Importantly, ML can complement 
traditional physics-based acoustic models by uncovering patterns that 
are difficult to capture analytically, supporting hybrid strategies that 

FIGURE 11

Feature importance in Random Forest model. Frequency, loudness, and duration rank as top predictors for vocalizations classification.
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integrate physical insight with data-driven inference (65, 66). 
Nonetheless, one of the main limitations of ML, particularly deep 
learning, remains its reliance on large training datasets and the limited 
interpretability of its internal representations (63).

5 Conclusion

Harnessing the capabilities of machine learning and multi-modal 
information fusion has opened new frontiers in decoding vocal 
expressions in dairy cattle. By classifying calls into high- and 
low-frequency categories using fused acoustic features such as pitch, 
loudness, and duration, the framework outlined here demonstrates a 
practical pathway toward real-time, non-invasive welfare monitoring. 
Moreover, the top-ranked features identified by the models, 
particularly frequency, amplitude, and duration, correspond closely 
with behavioral indicators of arousal and welfare. The performance of 
Support Vector Machine and Random Forest classifiers affirms the 
viability of integrating such tools into future intelligent farm 
management systems. Translating raw audio into structured, symbolic 
representations using the Whisper model added a unique layer of 
interpretability. These representations, while not semantically 
decoded, captured consistent bigram patterns that enrich our 
understanding of vocal cues. Their integration alongside acoustic 
parameters supports a deeper exploration of temporal structure in 
animal communication. Deploying these fusion-based systems within 
working agricultural environments could offer transformative 
potential. Real-time monitoring powered by multi-sensor integration 
would allow for the early identification of stress, illness, or discomfort. 
Such proactive interventions can not only elevate welfare standards 
but also improve productivity, resource efficiency, and decision-
making precision on farms.
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