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Integrating multi-modal data
fusion approaches for analysis of
dairy cattle vocalizations

Bubacarr Jobarteh?, Madalina Mincu-lorga?*, Dinu Gavojdian?
and Suresh Neethirajan**

Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada, ?Cattle Production Systems
Laboratory, Research and Development Institute for Bovine, Balotesti, Romania, *Faculty of
Agriculture, Agricultural Campus, Dalhousie University, Truro, NS, Canada

Non-invasive analysis of dairy cattle vocalizations offers a practical route to
continuous assessment of stress and timely health interventions in precision livestock
systems. We present a multi-modal Al framework that fuses standard acoustic
features (e.g., frequency, duration, amplitude) with non-linguistic, transformer-
based representations of call structure for behavior classification. The classification
analysis represents the core contribution of this work, while the integration of
the Whisper model serves as a complementary exploratory tool, highlighting its
potential for future motif-based behavioral studies. Using contact calls recorded
from a cohort of lactating Romanian Holsteins during a standardized, brief social-
isolation paradigm, we developed an ontology distinguishing high-frequency
calls (HFCs) associated with arousal from low-frequency calls (LFCs) associated
with calmer states. Across cross-validated models, support vector machine and
random-forest classifiers reliably separated call types, and fused acoustic + symbolic
features consistently outperformed single-modality inputs. Feature-importance
analyses highlighted frequency, loudness, and duration as dominant, interpretable
predictors, aligning vocal patterns with established markers of arousal. From a
clinical perspective, the system is designed to operate passively on barn audio
to flag rising stress signatures in real time, enabling targeted checks, husbandry
adjustments, and prioritization for veterinary examination. Integrated with existing
sensor networks (e.g., milking robots, environmental monitors), these alerts can
function as an early-warning layer that complements conventional surveillance for
conditions where vocal changes may accompany pain, respiratory compromise,
or maladaptive stress. While the present work validates behaviorally anchored
discrimination, ongoing efforts will pair vocal alerts with physiological measures
(e.g., cortisol, infrared thermography) and multi-site datasets to strengthen disease-
specific inference and generalizability. This framework supports scalable, on-farm
welfare surveillance and earlier intervention in emerging health and stress events.

KEYWORDS

acoustic pattern analysis, bioacoustics monitoring, cattle vocalizations, multi-modal
data fusion, precision livestock farming

1 Introduction

Vocal signals play a central role in social and emotional expression across the animal
kingdom. Mounting empirical evidence demonstrates that a cow’s emotional and physiological
state is reliably mirrored in its vocal behavior (1). Specifically, acoustic structures such as
frequency, amplitude, duration, and vocalization rate vary systematically in response to
emotional arousal. For example, heightened arousal and distress states often lead to
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vocalizations that are louder, longer, and higher in pitch. Conversely,
contentment or affiliative interactions are typically accompanied by
softer, shorter, and lower-frequency calls (2, 3). This predictable
variation makes vocalization analysis a powerful tool for automated,
objective welfare assessments that can complement subjective
observational methods. In dairy cows, vocal signals can be broadly
categorized into high-frequency calls (HFCs) and low-frequency calls
(LFCs), each associated with distinct behavioral and emotional
contexts. HFCs are generally linked to situations of arousal, agitation,
isolation, or discomfort. These calls are often emitted at higher
intensities and serve long-distance communicative functions,
especially under distress (4, 5). LFCs, on the other hand, are
commonly produced during relaxed, affiliative, or social bonding
contexts. These low-frequency sounds are typically made at close
proximity and are often indicative of positive emotional valence, being
produced particularly in cow-calf interactions (6, 7). However, such
associations remain context-dependent and should not be interpreted
as direct indicators of valence. Housing systems, climatic conditions,
ambient noise, and herd density can all influence the type, frequency,
and amplitude of vocalizations. For instance, cows housed on pasture
have been observed to vocalize differently compared to those in
confined indoor settings, likely due to increased opportunities for
natural behaviors and social engagement (8). Acoustic properties of
the environment, such as reverberation and background noise levels,
also were shown to modulate vocal behavior. The present study was
built on these foundations by integrating multi-source data fusion and
advanced computational models to decode dairy cow vocalizations in
a negative emotional state context. At the core of the methodological
innovation is the use of the Whisper model, a transformer-based
acoustic representation tool developed by OpenAl (9). Although
originally designed for human speech recognition, Whisper has
demonstrated remarkable adaptability to noisy, unstructured
bioacoustics data (10, 11). Praat was used for acoustic feature
extraction, while Whisper was applied to detect symbolic motifs,
providing complementary insights and practical robustness in barn-
noise conditions. This approach is analogous to the use of
spectrograms as visual tools that facilitate frequency-time domain
analysis. By using Whisper-derived sequences, this work was able to
generate a text-like symbolic form that simplifies the extraction of
recurring motifs, such as bigrams or trigrams, that may correlate with
specific emotional states. Worth mentioning is that “bigram” and
“trigram” counts are used here purely as statistical descriptors of token
adjacency, commonly applied for motif discovery in animal vocal
sequences, and do not imply grammatical structure. Similar
approaches have been employed in studies on primates and birds to
identify combinations of acoustic elements associated with affective
or contextual meaning (12). Among the various features extracted
from cow vocalizations, frequency and amplitude consistently emerge
as the most informative (13, 14). Frequency is particularly sensitive to
changes in emotional arousal, often increasing during heightened
stress or isolation events. Amplitude reflects the intensity or urgency
of a call, with louder sounds typically associated with more acute states
of discomfort. Duration and vocalization rate further enrich this
analysis by providing temporal dynamics that can differentiate
between chronic and transient stressors. The integration of these
features into a unified analytical model, particularly when contextual
metadata is available, would allow for more accurate and interpretable
classification of emotional states. The theoretical framework
underpinning our approach draws from systems biology and
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evolutionary ethology. Concepts such as degeneracy and modularity
are central to understanding how vocal signals can robustly convey
affective states despite environmental variability. Degeneracy refers to
the phenomenon where multiple different acoustic features can serve
overlapping communicative functions. For example, both increased
frequency and extended duration may signal distress, providing
redundancy that enhances signal reliability (15). Modularity, on the
other hand, captures the idea that vocal features can be grouped into
functional clusters, such as temporal versus spectral characteristics,
that can independently evolve or adapt to contextual demands. From
an evolutionary standpoint, the structure of vocalizations in mammals
often conforms to Morton’s motivation-structural rules. These rules
predict that aggressive or high-arousal calls are typically high-pitched
and tonally complex, while affiliative or low-arousal calls tend to
be lower-pitched and more harmonically stable (16). This ethological
principle has been validated in a range of species, including pigs,
goats, and birds (13, 17). Observations in dairy cows suggest that these
rules apply similarly, reinforcing the biological plausibility of acoustic
classifications (18). To analyze vocal patterns, we employed a suite of
machine learning algorithms, including Random Forest, Support
Vector Machine (SVM), and Recurrent Neural Networks (RNN). Each
of these models bringing distinct strengths to the task of acoustic
classification. Random Forest is particularly adept at handling high-
dimensional data with mixed feature types, while SVM excels in
separating nonlinear classes in sparse datasets. RNNs are uniquely
suited for modeling temporal sequences, making them ideal for
decoding the structure and dynamics of vocal patterns over time. This
study presents a novel multi-modal framework for analyzing cattle
vocalizations, integrating acoustic and symbolic features within
machine learning classifiers to advance automated behavior
classification and real-time welfare monitoring in precision livestock
systems. Our hypothesis was that fusing standard acoustic features
with Whisper-derived symbolic motifs improves discrimination
between high-frequency (HF) and low-frequency (LF) calls compared
with single-modality models (acoustic-only or symbolic-only).
We formulated the following predictions: (i) model hierarchy:
SVM > Random Forest > RNN under our data constraints; (ii) top
features: frequency, loudness, and duration will rank highest; (iii)
motifs: frequent bigrams (e.g., “rr”) will align with HFC episodes; and
(iv) performance: fused features will outperform either modality alone.

2 Materials and methods
2.1 Study design and data collection

Data were collected at the experimental farm of the Research and
Development Institute for Bovine in Balotesti, Romania. The herd was
managed indoors year-round under a zero-grazing system, with cows
housed in tie-stall barns and provided daily access to outdoor paddocks.
We selected 20 multiparous lactating Romanian Holstein cows with
homogeneous characteristics in terms of body weight (average
619.5 + 17.4kg), lactation stage (II-III), age, and acclimation to
housing (minimum 40 days in milk). Our selection criteria targeted
physiological and behavioral homogeneity to minimize confounding
factors. By including only multiparous cows in mid-lactation with
similar body weights, we controlled for anatomical and hormonal
variability affecting vocal production traits. Each cow underwent a
standardized isolation protocol in which it was visually separated from
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its herd-mates for 240 min post-milking, being tethered in a 1.8 by
1.2 m stall. Cows were milked twice daily, and all isolation sessions were
conducted after the morning milking (7:00-11:00 a.m.) to control for
post-milking oxytocin release, circadian rhythm effects, and to ensure
consistent daylight recording conditions. During this time, the rest of
the herd was relocated to adjacent outdoor paddocks, allowing only
auditory contact between individuals. Although occasional background
sounds (e.g., distant cow calls, machinery noise, or human activity)
were present, the isolated cow’s vocalizations were easily distinguishable
and all ambiguous or overlapping signals were manually removed
during quality control. The isolation procedure is a widely recognized
behavioral paradigm to induce a mild negative affective state (19, 20).
To minimize external influences, human access was restricted and
machinery activity near the barns was limited. Audio recordings were
conducted continuously for the entire 4-h period using high-fidelity
equipment: Sennheiser MKH416-P48U3 directional microphones
(Sennheiser Electronic GmbH & Co. KG, Wedemark, Germany)
mounted on tripods at a distance of 5-6 meters from the cows,
connected to Marantz PMD661 MKIII solid-state recorders (Marantz
Professional, London, UK). The recordings were captured in WAV
format at 44.1 kHz sampling rate and 16-bit resolution. A total of 1,144
vocalizations were retained after rigorous quality control to exclude
environmental noise and overlapping signals. The dataset included 952
high-frequency calls (HFCs) and 192 low-frequency calls (LFCs).

2.2 Vocalization segmentation and feature
extraction

Audio files were segmented into discrete vocalization events using

Praat software [v6.0.31; (21)]. Each vocalization was annotated with
23 acoustic features commonly employed in bioacoustic analysis.

TABLE 1 Parameters extracted from the cows vocalizations.

10.3389/fvets.2025.1704031

These included fundamental frequency (F0), duration, amplitude
modulation (AMVar, AMRate, AMExtent), formant frequencies (F1-
F8), harmonicity, and Wiener entropy (2, 22). The features were
selected for their demonstrated relevance to emotional expression in
cattle and other mammals. Vocalizations were categorized as either
high-frequency calls (HFCs) or low-frequency calls (LFCs) based on
spectral thresholds established in prior literature. Vocalizations with
dominant peak frequencies above 400 Hz were classified as HFCs, and
those below were labeled as LECs (7). These thresholds are consistent
with known differences in vocal tract configuration during high-
versus low-arousal states. Table | summarizes the acoustic features
analyzed in this study, along with their operational definitions and
supporting references. The vocalization recordings were analyzed
using the Praat DSP package [v.6.0.31; (21)], along with custom-built
scripts previously developed by Briefer et al. (23, 24), Reby and
McComb (25), Beckers (26), and Briefer et al. (27), to automatically
extract the acoustic features for each vocalization.

2.3 Data preprocessing and representation

All acoustic features were normalized to z-scores to account for
inter-individual variation. Symbolic sequence representations were
generated for each vocalization using the OpenAI Whisper model.
This step did not involve linguistic interpretation but served as a
means of symbolic encoding to facilitate sequence analysis, such as
bigram frequency assessment. This approach has been employed in
computational neuroethology to identify recurring motifs in
non-human animal communication (12, 35). All audio files were first
segmented into discrete vocalization events via Praat, with precise
manual annotations. Each segmented vocalization was processed
through the Whisper model, which generated symbolic acoustic

Parameter Definition References
Duration The duration of a vocalization. (17,27-29)
Vocalization rate The number of vocalizations in a certain time frame. (27, 30, 31)
FO The fundamental frequency and its contour (e.g., min, mean, max and range). (23,28, 32, 33)
FMextent The variation between two peaks of each FO modulation in Hz. (23)
Bandwidth The difference between the highest and lowest observed frequency (Hz). (32)
Amplitude Level of energy in the vocalization, the intensity of a vocalization (decibel). -
AMextent The mean-to-mean peak variation of each amplitude modulation (decibel). (28, 34)
AMrate The number of amplitude modulations in a certain time frame. (29)
AMVar The cumulative variation in amplitude divided by the duration of a vocalization (dB/s). (28)
Q25% The frequency below which 25 percent of the energy is contained (Hz). (28, 29, 32, 34)
Q50% The frequency below which 50 percent of the energy is contained (Hz). (28,29, 32)
Q75% The frequency below which 75 percent of the energy is contained (Hz). (28, 29, 34)
Formants Frequencies that correspond to the resonances of the vocal tract. -
Flmean, F2mean, F3mean,
Fdmean The mean frequency of each formant (Hz). (29)
The frequency range of each formant, thus the difference between the maximum and minimum frequency of that
F1, F2, F3 and F4 range (29)
formant (Hz).
Fpeak The frequency of peak amplitude. -
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sequences (e.g., bigram/trigram patterns). These Whisper-derived
motifs were time-aligned with acoustic features (e.g., frequency,
duration, amplitude, formant measures), enabling correlation and
cross-validation. Dominant motifs (such as “rr;” “mm,” “00”) were
empirically mapped to specific spectro-temporal acoustic profiles for
each call type—demonstrating direct correspondence between
symbolic and conventional bioacoustic parameters. The approach,
code, and mapping files are supplied as Supplementary material and
openly accessible repository resources. The Python libraries Librosa,
NumPy, and Pandas were used for preprocessing and feature
extraction. Librosa was particularly instrumental in spectral and
temporal feature computation, including pitch tracking and harmonic-
to-noise ratio calculations.

2.4 Classification models and training

To classify vocalizations, we implemented three machine learning
algorithms: Random Forest, Support Vector Machine (SVM), and
Recurrent Neural Network (RNN). Random Forest was used for its
interpretability and robustness to noise, while SVM provided strong
performance in high-dimensional spaces. The RNN model, leveraging
temporal dependencies, was suited for detecting patterns in sequential
vocal frames. The dataset was split into an 80% training set and 20%
testing set, using five-fold cross-validation to assess model
performance. Evaluation metrics included accuracy, precision, recall,
and Fl1-score. Feature importance was assessed using permutation
techniques in the explainable models, revealing that amplitude-related
features (e.g., AMVar, AMRate), spectral entropy, and formant
dispersal were among the most informative for classification. The
model training workflow is summarized as follows: the RNN
architecture consisted of a Long Short-Term Memory (LSTM)
network with 128 hidden units, a dropout rate of 0.2, and an Adam
optimizer (learning rate = 0.001), using tanh and sigmoid activations
for hidden and output layers, respectively. A total of 23 acoustic
features extracted via Praat were standardized using z-scores and
filtered through correlation analysis, followed by Random Forest
importance ranking to retain the top 15 features based on permutation
importance, ensuring dimensionality reduction while preserving the
most informative predictors for model performance. The
computational environment included Python 3.8, TensorFlow 2.8,
scikit-learn 1.0.2, Librosa 0.9.1, and Praat 6.0.31. The validation
strategy used an 80/20 train-test split with 5-fold cross-validation, and
performance was evaluated using accuracy, precision, recall, and
F1-score.

2.5 Sentiment pattern analysis (exploratory)

As an exploratory extension, bigram frequency analysis on the
Whisper-generated symbolic sequences were performed. The goal was
to detect recurring acoustic motifs potentially indicative of persistent
emotional states. This analysis was inspired by previous motif-based
studies in vocal learning species such as songbirds and marmosets (12,
36). Motif selection followed systematic quantitative criteria, including
a frequency threshold (>5% of corpus, >57 occurrences), cross-
individual consistency (=15 of 20 cows), and temporal clustering
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(>60% co-occurrence within emotional contexts).
Associations with HFC and LFC categories were tested using
<0.05).
(40,000 + occurrences, linked to rapid modulations in HFCs), “mm”
(35,0004, correlated with stable LFC patterns), and “00” (28,000+,

associated with intermediate frequencies). Each motif underwent

specific

«  »

chi-square (p Dominant motifs included “rr

acoustic-symbolic correlation, spectro-temporal alignment, and
cross-validation using independent test subsets.

2.6 Cow vocalization ontology and feature
mapping

A structured ontology was developed categorizing vocalizations
into profiles based on acoustic parameters. High-frequency calls were
defined by FO values between 110.59-494.16 Hz, amplitude between
—39.71 to —2.45 dB, and durations from 0.638 to 9.581 s. In contrast,
LFCs were characterized by FO values between 72.61-183.27 Hz,
amplitude from —53.88 to —8.16 dB, and durations from 0.650 to
2.921 s. These ranges were consistent with values reported in prior
literature (4).

3 Results
3.1 Acoustic feature analysis

The bigram “rr” emerged as the most frequently occurring
symbolic unit, appearing approximately 40,000 times, followed by
“mm” and “00” These patterns are not interpreted linguistically
but rather viewed as symbolic encodings of recurring acoustic
shapes produced during vocalizations. The regularity of these
bigrams, especially during prolonged vocal episodes, suggests that
cows may exhibit rhythmic, repeated vocal behaviors in certain
emotional contexts, particularly under emotional distress.
Figure 1 illustrates the bigram frequency analysis and the
corresponding word cloud.

Figure 2 displays the results of the unigram analysis and its
corresponding word cloud. The character “r” dominates the dataset,
followed by “m,” “0” “¢” and “a” These high-frequency characters
appear to reflect consistent symbolic encodings of dominant acoustic
patterns, while the less common characters such as “h,” “n” “u” “i” and
“t” point to rarer vocal signatures. These symbolic encodings support
the detection of structural diversity in cow vocal expressions and may
serve as proxies for repetitive call elements or phonatory modulations.
The recurrence of certain unigrams and bigrams, especially in distress-
linked HFCs, suggests acoustic motifs that can be incorporated into
machine learning pipelines for emotion classification. The acoustic
analysis focused on five dimensions—spectral, temporal, amplitude
and energy, formant, and prosodic features—using multi-modal
fusion. These features were examined in relation to the categorizations:
high-frequency calls (HFCs), and low-frequency calls (LFCs).

LFCs exhibited spectral centroids between 1,000-1,800 Hz with
energy concentrated below 3,000 Hz, and narrower bandwidths. In
contrast, HFCs showed elevated centroids extending from 600 Hz up
to 3,000 Hz and spectral energy reaching beyond 4,000 Hz.
Mel-frequency cepstral coefficients (MFCCs) were also markedly
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occurrence, with ‘rr and ‘mm’ as dominant patterns (right side).

Bigram frequency analysis of symbolic cow vocalizations (left side); Word Cloud of bigram frequencies, where larger text size reflects higher
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FIGURE 2

Left side — Unigram Frequency Distribution, showing r’, ‘'m’, and ‘o’ as the most frequent characters, indicating consistent symbolic encoding of
common vocal elements; Right side — Word Cloud of unigram frequencies, highlighting dominant vocal elements in symbolic form.
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different: LFCs demonstrated gradual transitions, while HFCs
exhibited sharp spectral shifts. These patterns align with prior research
on arousal-induced vocal variability (37-39).
spectral profiles of LFCs and HFCs.

HFCs averaged 1.79 s with 10 rapid modulations per call and a
mean interval of 0.18 s, some as brief as 0.0464 s. LECs lasted 1.48 s
with 5 modulations per call and longer average intervals of 0.30 s,

displays the

suggesting stable social communication. These observations are
) and
Gavojdian et al. (22), who reported increased temporal fragmentation

consistent with findings by Herndndez-Castellano et al. (
in stress-related vocalizations. reveals distinct temporal
dynamics between call types.

shows amplitude and RMS energy patterns for both call
types. LFCs had a lower RMS energy mean (0.0934) and lower zero-
crossing rate (0.0427), corresponding to smoother transitions. HFCs
demonstrated higher RMS energy (0.1887) and a higher zero-crossing
rate (0.0492), which can be indicative of rapid vocal shifts and
increased acoustic turbulence during emotional arousal (2, 41).

compares formant structures of both call types, showing
similar F1 values (~617 Hz), but HFCs displayed elevated F2
(1,704.81 Hz vs. 1,542.96 Hz for LFCs), likely reflecting constriction
of the vocal tract under emotional stress. LFCs had slightly higher
F3 values (2,844.92 Hz vs. 2,779.11 Hz), consistent with a more

Frontiers in

relaxed vocal tract configuration. These trends support previous
findings in vocal source-filter theory applied to affective states (16,
»43).

HECs presented a broad FO range of 514.20 Hz, often with erratic
pitch and tempo, characteristic of stress or alarm. LFCs had a much
narrower pitch range (33.03 Hz), showing tonal consistency and social
bonding cues, possible facilitated by the communication with the
heard mates from the nearby paddocks ( ). These results are
aligned with previous work indicating that prosodic modulation is a
key marker of emotional intensity (17, 44).

The acoustic contour analysis revealed clear motif-specific
correlations across five dimensions. “rr” motifs were linked to rapid
spectral transitions (600-3,000 Hz) and high RMS energy
(0.1887 £ 0.05) with frequent amplitude modulations (zero-
crossing = 0.0492), whereas “mm” patterns showed stable spectral
centroids (1000-1800 Hz), lower RMS energy (0.0934 + 0.03), and
smoother amplitude transitions (zero-crossing = 0.0427). “00”
sequences occupied intermediate frequency ranges with moderate
spectral variability. Temporally, “rr” motifs exhibited wider FO
ranges (514.20 Hz) and longer durations (1.79 s), while “mm” motifs
appeared in shorter calls (1.48 s) with stable pitch trajectories,
confirming distinct acoustic contours aligned with emotional
context.
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Left side — Amplitude and energy profile of a Low-Frequency Call (LFC), showing lower RMS energy and smoother transitions supporting a calm vocal
classification; Right side — Amplitude and energy profile of a High-Frequency Call (HFC), with higher RMS energy and variability reflecting vocal strain
and emotional intensity.
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Left side — Formant analysis of a Low-Frequency Call (LFC), where consistent formant structures suggest relaxed vocal tract configurations; Right
side — Formant analysis of a High-Frequency Call (HFC), with higher F2 and F3 values indicating vocal tract tension consistent with distress.
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Left side — Prosodic pattern of a Low-Frequency Call (LFC), with a narrow FO range and stable rhythm indicating calm, affiliative signaling; Right side —
Prosodic pattern of a High-Frequency Call (HFC), with a broad FO range and erratic modulation reflecting stress or agitation.
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3.2 Classification model performance

The Random Forest classifier yielded strong results, correctly
predicting 135 instances of distress and 42 of calm calls, with only
minimal misclassifications. Achieving 97.25% accuracy and an AUC
0f 0.99 (Figure 8), the model demonstrated robust generalization. Its
ensemble architecture allowed effective handling of feature diversity
and noise.

Figure 9 shows that the SVM classifier outperformed the others
with an accuracy of 98.35% and an AUC of 0.99. The model correctly
classified 136 HFC and 43 LFC calls, using a linear kernel to separate
emotional states based on fused acoustic features.

The RNN model reached 88% accuracy and 0.96 AUC (Figure 10).
While the model performed well on HFC classification, it struggled
with LFCs, possibly due to class imbalance and sequence length
sensitivity. This suggests the need for augmented training data or more
complex recurrent structures.

Table 2 provides a comparative evaluation. The SVM model
achieved the highest F1-scores across both classes. Random Forest
followed closely, particularly strong in detecting distress related
vocalizations. The RNN lagged in LFC identification. These outcomes
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affirm that multi-source acoustic fusion improves model performance
in cattle vocalizations classification. Figure 11 highlights the most
predictive features based on Random Forest outputs. Frequency
contributed most (importance score: 0.70), followed by loudness
(0.22) and duration (0.09). Understanding feature impact not only
aids model interpretability but also informs the design of targeted
monitoring solutions (45-48).

The Cow Vocalization Ontology was used to conceptualize
emotional state classifications. It groups vocalizations into HFCs and
LFCs based on acoustic thresholds and aligns these categories with
behavioral contexts observed during previous studies. The framework
is built on previous acoustic-emotional mappings (2-4, 22).
We acknowledge the limitation of relying solely on behavioral
communication context. Future studies will integrate physiological
sensors to strengthen this ontology, such as stress biomarkers and
infrared thermography data. Our use of the Whisper model to extract
symbolic sequences allowed for novel analysis of vocal structure.
While not interpreted linguistically, the patterns, especially dominant
bigrams, revealed repetitive, structured components that may signal
persistent emotional states. These motifs can be integrated into future
recurrent models or sequence-based behavioral classifiers, similar to
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Left side — Confusion matrix of the Random Forest classifier, displaying classification accuracy of HFC and LFC calls; Right side — ROC curve of the
Random Forest model, with a high AUC (0.99) confirming robust classifier performance.
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showing near-perfect separability of vocalization classes.

Left side — Confusion matrix of the SVM classifier, demonstrating superior accuracy in classifying call types; Right side — ROC curve of the SVM model,
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methods used in studies on vocal learning species (12, 35).
We emphasized that the SVM model achieved the highest performance
(98.35% accuracy/F1), outperforming the other models, especially
when fused acoustic and symbolic features were utilized. Additionally,
we confirmed through feature importance analysis that frequency,
loudness, and duration were the most predictive variables.

4 Discussion

In the present study, Whisper was not used to infer semantics or
syntax in the human linguistic sense. Rather, it served as a pattern
recognition and feature extraction tool, capable of isolating sequential
acoustic motifs. Worth mentioning is that the current study does not
imply that cow vocalizations possess linguistic structures such as
grammar or syntax. Instead, vocal sequences were categorized as
temporally organized signals that may contain biologically meaningful
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patterns. Hence, in this study, the notion of symbolic encoding refers
not to linguistic content, but to the transformation of complex acoustic
signals into symbolic representations suitable for machine learning
analysis. The integration of acoustic analysis, machine learning, and
symbolic sequence modeling in this study validates a powerful
framework for understanding communication in dairy cows. These
findings extend earlier research in animal bioacoustics and
demonstrate that vocal cues can be reliably analyzed using
computational approaches. The evidence presented across spectral,
temporal, formant, and prosodic dimensions demonstrates that HFCs
and LFCs carry distinct acoustic signatures. These vocal features,
especially frequency, amplitude, and duration, were confirmed as
dominant predictors of emotional state (49, 50). The high performance
of both SVM and Random Forest models in classifying HFC and LFC
calls demonstrates the practical feasibility of deploying such systems
on-farm. Symbolic motif analysis adds a new layer of granularity,
revealing structural patterns in vocalizations that correlate with stress
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FIGURE 10
Left side — Confusion matrix of the RNN model, highlighting strengths and limitations in sequence modeling; Right side — ROC curve of the RNN
model, with a moderate AUC (0.96) indicating effectiveness, with room for improvement.

TABLE 2 Performance evaluation result of Random Forest, support vector machine and RNN.

Model Class Precision Recall F1-Score Accuracy
HEFC 0.98 0.99 0.98 0.9725
LFC 0.95 0.93 0.94

Random Forest
Macro Avg 0.97 0.96 0.96
Weighted Avg 0.97 0.97 0.97
HFC 0.99 0.99 0.99 0.9835
LFC 0.98 0.96 0.97

SVM
Macro Avg 0.98 0.97 0.98
Weighted Avg 0.98 0.98 0.98
HFC 0.89 0.97 0.93 0.88
LFC 0.88 0.62 0.73

RNN
Macro Avg 0.88 0.80 0.83
Weighted Avg 0.88 0.88 0.88

responses. By incorporating these motifs into behavioral classifiers,
future systems can achieve greater accuracy and adaptability.
Moreover, the framework holds promise for broader applications in
cross-species emotional modeling and neuroethology. Furthermore,
the emergence of repetitive acoustic motifs, such as recurring bigrams
or trigrams, aligns with theories from information theory and
bioacoustics (e.g., Shannon’s redundancy for signal reliability, Wiener’s
signal-to-noise optimization, and ethological concepts of degeneracy
and modularity supporting communicative robustness). Repetition
within vocal sequences may serve to increase the salience or
redundancy of signals in noisy environments, especially during
periods of distress. For example, repeated “rr” or “mm” motifs in high-
frequency calls may not constitute syntactic units in the linguistic
sense but can nonetheless function as consistent acoustic markers of
arousal or need (12, 51, 52). Comparable studies across taxa confirm
that symbolic sequence modeling is an effective approach for decoding
non-linguistic acoustic structure. For instance, Bosshard et al. (12)
applied symbolic sequence analysis to Callithrix jacchus (common
marmosets), revealing bigram motifs analogous to those observed in
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our dairy cattle dataset. Likewise, Sainburg et al. (35) demonstrated
that motif-based representations capture repertoire diversity across
multiple songbird species, while research on other vocal-learning
primates shows that recurrent symbolic patterns reliably accompany
emotional or social contexts. Despite these strengths, we acknowledge
the absence of physiological validation in the current study. To address
this, we have outlined plans to integrate biomarkers such as cortisol,
heart rate variability, and infrared thermography in future work. Such
integration will strengthen the interpretive power of our ontology and
improve the biological relevance of vocal emotion classification. The
path toward intelligent animal care lies in deploying emotion-aware
systems directly into the infrastructure of precision livestock farming.
Embedding real-time vocal monitoring into robotic milking stations,
smart barn sensor networks, and commercial animal behavior
platforms has the potential to transform welfare from a periodic
assessment into a continuous, responsive process. Acoustic sensors
positioned in milking parlors or calving pens could flag early distress,
discomfort, or illness, triggering automated alerts and informing
on-farm decisions with minimal human intervention. These types of
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Feature importance in Random Forest model. Frequency, loudness, and duration rank as top predictors for vocalizations classification.

sensors have been developed to predict emotional state and social
isolation (18), oestrus (53), respiratory diseases (54) and painful
husbandry procedures (55). This represents a critical shift from
reactive to proactive animal welfare management. Building models
that perform reliably across diverse farm contexts requires a broader
and more inclusive dataset. Integrating recordings from multiple cow
breeds, production systems, and geographical regions would improve
generalizability, enabling algorithms to adapt to variation in breed-
specific vocal anatomy, environmental noise profiles, and behavioral
baselines. This fusion of environmental, acoustic, and behavioral data
strengthens model robustness and ensures relevance in real-world
deployment. To further improve model performance and sensitivity
to subtle emotional states, advanced machine learning architectures
such as transformers and self-supervised learning frameworks should
be explored. These approaches are well-suited for capturing long-term
dependencies in vocal sequences and detecting emergent patterns
from sparse or imbalanced datasets. When applied to longitudinal
herd data, such models can help uncover trends in stress, social
dynamics, or disease progression over time. Expanding beyond audio
alone, the integration of visual and behavioral data offers a
multidimensional view of animal welfare (56). By fusing indicators
such as gait asymmetry, tail posture, facial tension, and ear orientation
with vocal features, future systems can achieve a more nuanced and
reliable assessment of emotional state. These multimodal systems
could be embedded in barn-mounted camera arrays or wearable
sensors, enabling real-time inference and targeted interventions. The
end goal is the development of intelligent, sensor-driven platforms
that integrate vocal, visual, behavioral, and physiological data into a
unified, real-time decision support system. These platforms could
be deployed in commercial barns, robotic milking systems, or even

Frontiers in Veterinary Science

mobile health units, providing continuous feedback on herd welfare
and individual animal status. Such systems would not only enhance
welfare and productivity but also improve public trust in livestock
practices by providing transparent, science-based insights into animal
well-being. A key limitation of this work is the relatively small dataset
(20 cows, 1,144 vocalizations), collected under a single housing
system. This restricts the extent to which the findings can
be generalized across breeds, management systems, or acoustic
environments. We clearly acknowledge this limitation and encourage
future studies across different farms, breeds, and management systems
to validate and extend our results. Additionally, the lack of concurrent
physiological validation (e.g., cortisol, thermography) limits the direct
confirmation of inferred emotional states, although behavioral
paradigms provide strong indirect evidence. Another limitation of this
work is the absence of formal ablation analyses, which should
be incorporated in future research to better quantify the influence of
individual acoustic features and model components. From a technical
perspective, machine learning (ML) has driven substantial progress in
automated acoustic data processing and pattern recognition across
multiple fields, from speech and ocean acoustics to animal bioacoustics
(57-62). In general, ML approaches fall into three main categories:
supervised, unsupervised, and reinforcement learning, with the first
two being the most widely used in acoustic research (63). Feature
representations, whether derived directly from raw signals, reduced
(PCA), or
probabilistically through Gaussian mixture models (GMMs), are

using principal component analysis modeled
fundamental for enabling ML systems to detect and learn structure in
complex acoustic data (64-67). Importantly, ML can complement
traditional physics-based acoustic models by uncovering patterns that

are difficult to capture analytically, supporting hybrid strategies that
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integrate physical insight with data-driven inference (65, 66).
Nonetheless, one of the main limitations of ML, particularly deep
learning, remains its reliance on large training datasets and the limited
interpretability of its internal representations (63).

5 Conclusion

Harnessing the capabilities of machine learning and multi-modal
information fusion has opened new frontiers in decoding vocal
expressions in dairy cattle. By classifying calls into high- and
low-frequency categories using fused acoustic features such as pitch,
loudness, and duration, the framework outlined here demonstrates a
practical pathway toward real-time, non-invasive welfare monitoring.
Moreover, the top-ranked features identified by the models,
particularly frequency, amplitude, and duration, correspond closely
with behavioral indicators of arousal and welfare. The performance of
Support Vector Machine and Random Forest classifiers affirms the
viability of integrating such tools into future intelligent farm
management systems. Translating raw audio into structured, symbolic
representations using the Whisper model added a unique layer of
interpretability. These representations, while not semantically
decoded, captured consistent bigram patterns that enrich our
understanding of vocal cues. Their integration alongside acoustic
parameters supports a deeper exploration of temporal structure in
animal communication. Deploying these fusion-based systems within
working agricultural environments could offer transformative
potential. Real-time monitoring powered by multi-sensor integration
would allow for the early identification of stress, illness, or discomfort.
Such proactive interventions can not only elevate welfare standards
but also improve productivity, resource efficiency, and decision-
making precision on farms.
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